

r

Plexus Sys3 UNIX Programmer's Manual-- vol 2B

98-05037.5 Rev A September 24, 1984

PLEXUS COMPUTERS, INC.

3833 North First St.

San Jose, CA 95134

408/943-9433

Copyright 1984
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval
system, or translated into any language, in any
form or by any means, without the prior written
consent of Plexus Computers, Inc.

The information contained herein is subject to
change without notice. Therefore, Plexus
Computers, Inc. assumes no responsibility for the
accuracy of the information presented in this
document beyond its current release date.

Printed in the United States of America

Programmer's Manual for UNIX* System III

Volume 2 - Supplementary Documents

January 1983

This volume contains documents that supplement the information contained in the Plexus Sys3
UNIX Programmer's Manual - vol 1. The documents are grouped roughly into the areas of
General Works, Basics, Document Preparation Tools, Programming and Language Tools, and
System Administration and Maintenance Tools. Further general information may be found in the
July - August 1978 special issue of "The Bell System Technical Journal" on the UNIX Time
Sharing System.

These documents contain occasional localisms, typically references to other operating systems
like GeOS and IBM. In all cases, such references may be safely ignored by users of UNIX
systems.

• UNIX is a trademark of AT&T Bell Laboratories.

',"--------- .

Plexus Sys3 UNIX Programmer's Manual -- vol 2B

PREFACE

This manual contains a collection of documents that describe specific aspects of the UNIX*
operating system. These include descriptions of programming, language, administrative and
maintenance tools.

Additional documents describing the operating system, document preparation tools and
programming and language tools are collected in the Plexus Sys3 UNIX Programmer's Manual
-- vol2A (Plexus publication number 98-05036).

Both these volumes (2A and 2B) should be used as supplementary documents for the Plexus
Sys3 UNIX Programmer's Manual -- vol 1 A (Plexus publication number 98-05045) and Plexus
Sys3 UNIX Programmer's Manual -- vol 1 B (Plexus publication number 98-05046), the basic
reference manual for the operating system.

Comments
Please address all comments concerning this manual to:

Plexus Computers, Inc.
Technical Publications Dept.
3833 North First St.
San Jose, CA 95134
408/943-9433

Revision History
The second edition (#98-05037.2) contained new front matter.

The third edition (#98-05037.3) contained a new VPM document.

For the fourth edition (#98-05037.4), several documents were re-typeset.

This edition (#98-05037.5) re-typesets several other documents and includes an updated
version of the VPM documents.

r . UNIX is a trademark of AT&T Bell Laboratories. Plexus is licensed to distribute UNIX under the authority of AT&T.
-I.

r

BC - An Arbitrary Precision Desk -Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-ll under the UNIXt time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input, output,
and do arithmetic on indefinitely· large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage all0cator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the us~s of this compiler are

to do computation with large integers,

to do computation accurate to many decimal places,

conversion of numbers from one base to another base.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

BC - An Arbitrary Precision Desk -Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction
BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIXt

time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called DC [5]) which are capable ·of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language
[2]. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers
The simplest kind of statement is an arithmetic expression on a line by itself. For

instance, if you type in the line:

142857 + 285714

the program responds immediately with the line

428571

The operators -, *, /, %, and ~ can also be used; they indicate subtraction, multiplication, divi­
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the 'unary' minus sign). The expression

7+-3

is interpreted to mean that - 3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with ~ having the greatest binding power, then * and % and /, and finally + and
-. Contents of parentheses are evaluated before material outside the parentheses. Exponen­
tiations are performed from right to left and the other operators from left to right. The two
expressions

tUNIX is a Trademark of Bell Laboratories.

aAbAc and aA(bAc)

are equivalent, as ar~ the two expressions

a*b*c and (a*b)*c

- 2 -

BC shares with Fortran and C the undesirable convention that

alb*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

x=x+3

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x = sqrt(191)
x

produce the printed result

13

Bases
There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase',

initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A - F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10-15 respectively. The
statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of 'obase', initially set to 10, are used as the base for output numbers. The
lines

obase = 16
1000

will produce the output line

- 3 -

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit­
ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting 'obase' to 100000. Strange (i.e. 1, 0, or negative) output bases are han­
dled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are con­
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (Le., more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called 'scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications, the scale of the result is never less than the max­
imum of the two scales of the operands, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity 'scale'. The scale of a quotient is the contents of the internal quantity 'scale'.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled' as if the implied multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu­
ment and the contents of 'scale'.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed.

The contents of 'scale' must be no greater than 99 and no less than O. It is initially set to
O. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale', 'ibase', and 'obase' can be used in expressions just like
other variables. The line

scale = scale + 1

increases the value of 'scale' by one, and the line

scale

causes the current value of 'scale' to be printed.
The value of 'scale' retains its meaning as a number of decimal digits to be retained in

internal computation even when 'ibase' or 'obase' are not equal to 10. The internal computa­
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions
The name of a function is a single lower-case letter. Function names are permitted to col­

lide with simple variable names. Twenty-six different defined functions are permitted in addi­
tion to the twenty-six variable names. The line

- 4 -

define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace}. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return (x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one 'auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function definition is

define a (x,y) I
auto z
z = x*y
return(z)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: bOo

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array narne and the
expression in brackets is called the subscript. Only one-dirnensional arrays are perrnitted. The
narnes of arrays are perrnitted to collide with the narnes of sirnple variables and function narnes.
Any fractional part of a subscript is discarded before use. Subscripts rnust be greater than or
equal to zero and less than or equal to 2047.

Subscripted variables rnay be freely used in expressions, in function calls, and in return
staternents.

An array narne rnay be used as an argurnent to a function, or rnay be declared as
autornatic in a function definition by the use of ernpty brackets:

f(a[J)
define f(a [J)
auto a[]

- 5 -

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The 'if, the 'while', and the 'for' statements may be used to alter the flow within pro­
grams or to cause iteration. The rang~ of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way

or

if(relation) statement
while(relation) statement
for (expression 1; relation; expression2) statement

if(relation) {statements}
while(relation) {statements}
for (expression 1; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators <, >, < =, > =,
= =, or ! =. The relation :.: = stands for 'equal to' and ! = stands for 'not equal to'. The
meaning of the remaining relational operators is clear.

BEW ARE of using = instead of = = in a relational. Unfortunately, both of them are
legal, so you will not get a diagnostic message, but = really will not do a comparison.

The 'if' statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The 'while' statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false, con­
trol passes to the next statement beyond the range of the while.

The 'for' statement begins by executing 'expression 1'. Then the relation is tested and, if
true, the statements in the range of the 'for' are executed. Then 'expression2' is executed.
The relation is tested, and so on. The typical use of the 'for' statement is for a controlled itera­
tion, as in the statement

for{i=l; i<=lO; i=i+l) i

which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define f(n) (
auto i, x
x=l
for{i=l; i<=n; i=i+O x=x*i
return (x)
}

The line

f(a)

- 6 -

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){
auto x, j
x=l
forG=l~j<=m~j=j+1) x=x*(n-j+1)/j
return (x)
I

The following function computes values of the exponential function by summing the appropri­
ate series without regard for possible truncation errors:

scale = 20
define e (x) I

auto a, b, c, d, n
a = 1
b = 1
c = 1
d=O
n = 1
while (1 = = 1) I

Some Details

a = a*x
b = b*n
c = c + alb
n = n + 1
if(c= =d) return(c)
d==c

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state­
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any­
where that an expression can. For example, the line

(x=y+ 17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a[i=i+I]

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.

x=y=z is the same as
x=+y
x=-y
x =* y
x =/ y
x =%y
X =A Y
x++
x--
++x
--x

- 7 -

x=(y=z)
x = x+y
x = x-y
x = x*y
x = x/y
x ~ x%y
x = xAy
(x=x+I)-I
(x=x-l)+ I
x = x+l
X"" x-I

Even if you don't intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x=-y and x= -yo The first replaces x by x-y and the second by -yo

Three Important Things

1. To exit a BC program, type 'quit'.

2. There is a comment convention identical to that of C and of PLII. Comments begin
with '/*' and end with '*/'.

3. There is a library of math functions which may be obtained by typing at command level

bc -I

This command will load a set of library functions which, at the time of writing, consists of sine
(named's'), cosine ('c'), arctapgent ('a'), natural logarithm ('I'), exponential ('e') and Bessel
functions of integer order ('j(n,x)'). Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library routines is discussed elsewhere [3]. ,

If you type

bc file ...

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

Acknowledgement
The compiler is written in Y ACC [4]; its original version was written by S. C. Johnson.

References
[1] K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories, 1978.

[2] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Prentice-Hall, 1978.

[3] R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell Laboratories
internal memorandum, 1975.

[4] S. C. Johnson, YACC - Yet Another Compiler-Compiler. Bell Laboratories Computing Sci­
ence Technical Report #32, 1978.

[5] R. Morris and L. L. Cherry, DC - An Interactive Desk Calculator.

C

- 8 -

Appendix

1. Notation

In the following pages syntactic categories are in italics~ literals are in bold~ material in
brackets [] is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state­
ments.

2.1. Comments

Comments are introduced by the characters /* and terminated by * /.

2.2. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict~ a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade­
cimal digits A- F are also recognized as digits with values 10-15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre­
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.

- 9 -

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, name~ expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3.1.1.1. identifiers

Simple identifiers are named expressions. They have an iqitia, value of zero.

3.1.1.2. array-name I expression I
Array elements are named expressions. They have an initial value of z1ro.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expres~ions, !lcale is the
number of digits after the decimal point to be retained in arithmetic operations. scal~ has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name ([expression [, expression . ..]])

A function call consists of a function name followed by par~ntheses ~ontaining a C;omma­
separated list of expressions, which are the function arguments. A whole i:trray passed as an
argument is specified by the array name followed by empty square brackets. All function argu­
ments are passed by value. As a result, changes made to the formal parameters hav~ no effect
on the actual arguments. If the function terminates by executiflg a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale (expression)

The result is the scale of the expression. The scale of the rl!sult is zero.

3.1.3. Constants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

r

- 10 -

3.2. Unary operators

The unary operators bind right to left.

3.2.1. - expression
The result is the negative of the expression.

3.2.2. + + named-expression
The named expression is incremented by one. The result is the value of the named

expression after incrementing.

3.2.3. - - named-expression
The named expression is decremented by one. The result is the value of the named

expression after decrementing.

3.2.4. named-expression + +
The named expression is incremented by one. The result is the value of the named

expression before incrementing.

3.2.5. named-expression - -

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left.

3.3.1. expression A expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso­
lute value of the right expression, then the scale of the result is:

min (axb, max (scale, a))

3.4. Multiplicative operators

The operators *, I, % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

min (a +b, max (scale, a, b))

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More pre­
cisely, a%b is a-alb*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

- 11 -

3.5. Additive operators .

The additive operators bind left to right.

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the max­
imum of the scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression = + expression

3.6.3. named-expression = - expression

3.6.4. named-expression = * expression

3.6.5. named-expression = / expression

3.6.6. named-expression = % expression

3.6.7. named-expression = A expression

The result of the above expressions is equivalent to "named expression = named expres­
sion' OP expression", where OP is the operator after the = sign.

4. Relations

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression < expression

4.2. expression > expression

4.3. expression < = expression

4.4. expression > = expression

4.5. expression = = expression

4.6. expression ! = expression

- 12 -

s. Storage classes

There are only iwo storage classes in BC, global and automatic (local). Only identifiers
that are to be local to a function need be declareq with the auto command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PLII.
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur­
rounding them with (}.

6.3. Quoted string statements

"any string"

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement

The substatement is executed if the relation is true.

6.5. While statements

while (relation) statemel1l

The statement is executed while the relation is true. The test occurs before each execu­
tion of the statement.

6.6. For statements

for (expression; relation; expression) statemem

The for statement is the same as
,!irst-expression
while (relation) {

statement
last-expression

All three expressions must be present.

6.7. Break statements

break

- 13 -

break causes termination of a for or while statement.

6.S. Auto statements

auto ident(/ier [,idenN/ier]

The auto statement causes the values of the identifiers to be pushed ~own. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol­
lowing the array name by empty square brackets. The auto statement must be the first state­
ment in a function definition.

6.9. Define statements

define([parameter [,parameter . ..]]) (
statements}
The define statement defines a function. The parameters Jllay be ordinary identifiers or

array names. Array names must be followed by empty square brackets.

6.10. Return statements

return

return (expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return (0). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it
is first encountered. Because it is not treated as an executable statemem. it cannot be used in a
function definition or in an if, for, or while statement.

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIXt
time-sharing system to do arbitrary-precision integer arithmeti!;. It has provi­
sion for manipulating scaled fixed-point numbers and for input and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits on the smalle~t systems to
several thousand on the largest.

November 15, 1978

tUN IX is a Trademark of Bell Laboratories.

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNIXt time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be maintained.

A language called BC [tJ has been developed which accepts programs written in the fami­
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number
The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A - F which are treated as digits with values 10-15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

+ _ * % A

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
(f), remaindered (%), or exponentiated n. The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun­
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

tUNIX is a Trademark of Bell Laboratories.

r sx

Ix

- 2 -

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the I is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command I and is treated
as an error by the command L.

d

p

f

x

I ... I

q

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capi­
talized, the top value on the stack is popped and the string execution level is popped by
that value.

<x >x =x !<x !>x !=x

v

c

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX

command terminates.

All values on the stack are popped; the stack becomes empty.

i

o

k

z

?

- 3 -

The top value on the stack is popped and used as the number radix for further input. If i
is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

I nternal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that all
digits are in the range 0-99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represepted in the 100's complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative number
is always -1 and all other digits are in the range 0-99. The digit preceding the high order -1
digit is never a 99. The representation of -157 is 43,98, -1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary. to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi­
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,3
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic s~ring storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the ~.
string, the next place to write, and the next place to read. Communication between the alloca-
tor and DC is done via pointers to these headers.

r
- 4 -

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
'buddy system' of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca­
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward­
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a serles of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou­
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99, -1 by the digit -1. In any case, digits which are not in the range
0-99 must be brought into that range, propagating any carries or borrows that result.

- 5 -

Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi­
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni­
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder
The division routine is caUed and division is performed exactly as described. The quantity

returned is the remains of the dividend at the end of the divide process. Since division trun­
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root
The scale is stripped from the operand. Zeros are added if necessary to make the integer

result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton's method with successive approximations
by the rule

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation
Only exponents with zero scale factor are handled. If the exponent is zero, then the

result is 1. If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the indicated multiplication had been
performed.

r

- 6 -

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A - F correspond to the
numbers 10-15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the· stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f. The 0

command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command 0 pushes the value of the output base on the
stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output;
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line; a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal­
hexadecimal conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis­
ters with the commands sand l. The command sx pops the top of the stack and stores the
result in register x. x can be any character. Ix puts the contents of register x on the top of the
stack. The I command has no effect on the contents of register x. The s command, however.
is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in () pushes the ascii string on the stack. The q command quits or in
executing a string, pops the recursion levels by two.

Internal Registers - Programming DC
The load and store commands together with () to store strings, x to execute and the test­

ing commands '<', '>', '=', '!<', '!>', '!=' can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com­
mands compare the top two elements on the stack and if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0-9,

[lipl + si lilO>a]sa
Osi lax

- 7 -

Push-Down R.egisters and Arrays

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands Sand L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands sand
I also work on registers but not as push-down stacks. I doesn't effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are : and;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com­

mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general 'Purpose pro­
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket [, . .1 commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan­
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much faster.

The reason' for a stack-type arithmetic design was to permit all DC commands from addi­
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com­
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith­
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user

r

- 8 -

asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.

References

[1] L. L. Cherry, R. Morris, BC - An Arbitrary Precision Desk-Calculator Language.

[2] K. C. Knowlton, A Fast Storage A /locator, Comm. ACM 8, pp. 623-625 (Oct. 1965).

/~
>'" •

A Portable Fortran 77 Compiler

S. I. Feldman

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Fortran language has just been revised. The new language, known as For­
tran 77, became an official American National Standard on April 3, 1978. We
report here on a compiler and run-time system for the new extended language.
This is believed to be the first complete Fortran 77 system to be implemented.
This compiler is designed to be portable, to be correct and complete, and to
generate code compatible with calling sequences produced by C compilers. In
particular, this Fortran is quite usable on UNIxt systems. In this paper, we
describe the language compiled, interfaces between procedures, and file formats
assumed by the 110 system. An appendix describes the Fortran 77 language.

1 August 1978

tUN IX is a Trademark of Bell Laboratories.

1. INTRODUCTION

A Portable Fortran 77 Compiler

S. I. Feldman

P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

The Fortran language has just been revised. The new language, known as Fortran 77,
became an official American National Standard [1] on April 3, 1978. for the language, known
as Fortran 77, is about to be published. Fortran 77 supplants 1966 Standard Fortran [2]. We
report here on a compiler and run-time system for the new extended language. The compiler
and computation library were written by SIF, the I/O system by PJW. We believe ours to be
the first complete Fortran 77 system to be implemented. This compiler is designed to be port­
able to a number of different machines, to be correct and complete, and to generate code com­
patible with calling sequences produced by compilers for the C language [3]. In particular, it is
in use on UNIXt systems. Two families of C compilers are in use at Bell Laboratories, those
based on D. M. Ritchie's PDP-ll compiler[4] and those based on S. C. Johnson's portable C
compiler [5]. This Fortran compiler can drive 'the second passes of either family. In this paper,
we describe the language compiled, interfaces between procedures, and file formats assumed by
the I/O system. We will describe implementation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-lI,
111780, and the Interdata 8/32 UNIX systems. The command to run the compiler is

f77 ./fags jile ...

the VAX-

f77 is a general-purpose command for compiling and loading Fortran and Fortran-related files.
EFL [6] and Ratfor [7] source files will be preprocessed before being presented to the Fortran
compiler. C and assembler source files will be compiled by the appropriate programs. Object
files will be loaded. (The f77 and ct commands cause slightly different loading sequences to be
generated, since Fortran programs need a few extra libraries and a different startup routine than
do C programs.) The following file name suffixes are understood:

.f Fortran source file

.e EFL source file

.r Ratfor source file

.c C source file

.s Assembler source file

.0 Object file

The following flags are understood:
-S Generate assembler output for each source file, but do not assemble it. Assem-

tUNIX is a Trademark of Bell Laboratories.

r

-c
-m

-f

-p
-oj

-w
-w66

-0
-C
-onetrip

-u

-u
-12

-E
-R

- 2 -

bIer output for a source file x.f, x.e, x.r, or x.c is put on file x.s.

Compile but do not load. Output for x.f, x.e, x.r, x.c, or x.s is put on file x.o.

Apply the M4 macro preprocessor to each EFL or Ratfor source file before
using the appropriate compiler.

Apply the EFL or Ratfor processor to all relevant files, and leave the output
from x.e or x.r on x.f. Do not compile the resulting Fortran program.

Generate code to produce usage profiles.

Put executable module on file f (Default is a.out).

Suppress all warning messages.

Suppress warnings about Fortran 66 features used.

Invoke the C object code optimizer.

Compile code the checks that subscripts are within array bounds.

Compile code that performs every do loop at least once. (see Section 2.10).

Do not convert upper case letters to lower case. The default is to convert For­
tran programs to lower case.

Make the default type of a variable undefined. (see Section 2.3).

On machines which support short integers, make the default integer constants
and variables short. (-14 is the standard value of this option). (see Section
2.14). All logical Quantities will be short.

The remaining characters in the argument are used as an EFL flag argument.

The remaining characters in the argument are used as a Ratfor flag argument.

-F Ratfor and and EFL source programs are pre-processed into Fortran files, but
those files are not compiled or removed.

Other flags, all library names (arguments beginning -0, and any names not ending with one of
the understood suffixes are passed to the loader.

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in boldface lower case.
Examples will be presented in lightface lower case. Names representing a class of values will be
printed in italics.

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler generates C compiler
intermediate code. Since there are C compilers running on a variety of machines, relatively
small ch~nges will make this Fortran compiler generate code for any of them. Furthermore,
this approach guarantees that the resulting programs are compatible with C usage. The runtime
computational library is complete. The mathematical functions are computed to at least 63 bit
precision. The runtime 110 library makes use of D. M. Ritchie's Standard C 110 package [8]
for transferring data. With the few exceptions described below, only documented calls are
used, so it should be relatively easy to modify to run on other operating systems.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the differences
briefly in the Appendix. The most important additions are a character string data type, file­
oriented input/output statements, and random access 110. Also, the language has been cleaned
up considerably.

In addition to implementing the language specified in the new Standard, our compiler
implements a few extensions described in this section. Most are useful additions to the

- 3 -

language. The remainder are extensions to make it easier to communicate with C procedures
or to permit compilation of old (1966 Standard) programs.

2.1. Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of double
precision real variables. A double complex version of every complex built-in function is
provided. The specific function names begin with z instead of c.

2.2. Internal Files

The Fortran 77 standard introduces "internal files" (memory arrays), but restricts their
use to formatted sequential 110 statements. Our 110 system also permits internal files to
be used in direct and unformatted reads and writes.

2.3. Implicit Undefined statement

Fortran 66 has a fixed rule that the type of a variable that does not appear in a type state­
ment is integer if its first letter is i, j, k, I, m or n, and real otherwise. Fortran 77 has an
implicit statement for overriding this rule. As an aid to good programming practice, we
permit an additional type, undefined. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic
for each variable that is used but does not appear in a type statement. Specifying the -u
compiler flag is equivalent to beginning each procedure with this statement.

2.4. Recursion

Procedures may call themselves, directly or through a chain of other procedures.

2.S. Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as
"types" in type statements and in implicit statements. Local variables are static by
default; there is exactly one copy of the datum, and its value is retained between calls.
There is one copy of each variable declared automatic for each invocation of the pro­
cedure. Automatic variables may not appear in equivalence, data, or save statements.

2.6. Source Input Format

The Standard expects input to the compiler to be in 72 column format: except in com­
ment lines, the first five characters are the statement number, the next is the continuation
character, . and the next sixty-six are the body of the line. (If there are fewer than
seventy-two characters on a line, the compiler pads it with blanks; characters after the
seventy-second are ignored).

In order to make it easier to type Fortran programs, our compiler also accepts input in
variable length lines. An ampersand ("&") in the first position of a line indicates a con­
tinuation line; the remaining characters form the body of the line. A tab character in one
of the first six positions of a line signals the end of the statement number and continua­
tion part of the line; the remaining characters form the body of the line. A tab elsewhere
on the line is treated as another kind of blank by the compiler.

In the Standard, there are only 26 letters - Fortran is a one-case language. Consistent
with ordinary UNIX. system usage, our compiler expects lower case input. By default, the
compiler converts all upper case characters to lower case except those inside character
constants. However, if the - U compiler flag is specified, upper case letters are not
transformed. In this mode, it is possible to specify external names with upper case letters
in them, and to have distinct variables differing only in case. Regardless of the setting of

r

- 4 -

the flag, keywords will only be recognized in lower case.

2.7. Include Statement

The statement

include 'stuff'

is replaced by the contents of the file stuff. includes may be nested to a reasonable
depth, currently ten.

2.8. Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a binary con­
stant, denoted by a letter followed by a quoted string. If the letter is b, the string is
binary, and only zeroes and ones are permitted. If the letter is 0, the string is octal, with
digits 0-7. If the letter is z or x, the string is hexadecimal, with digits 0-9, a-f. Thus,
the statements

integer a(3)
data a / b'IOIO', 0'12', z'a' /

initialize all three elements of a to ten.

2.9. Character Strings

For compatibility with C usage, the following backslash escapes are recognized:

\n
\t
\b
\f
\0
\'
\"
\\
\x

newline
tab
backspace
form feed
null
apostrophe (does not terminate a string)
quotation mark (does not terminate a string)
\
x, where x is any other character

Fortran 77 only has one quoting character, the apostrophe. Our compiler and 110 system
recognize both the apostrophe (,) and the double-quote ("). If a string begins with one
variety of quote mark, the other may be embedded within it without using the repeated
quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string constant is
aligned on an integer word boundary. Each character string constant appearing outside a
data statement is followed by a null character to ease communication with C routines.

2.10. Hollerith

Fortran 77 does not have the old Hollerith (nh) notation, though the new Standard
recommends implementing the old Hollerith feature in order to improve compatibility
with old programs. In our compiler, Hollerith data may be used in place of character
string constants, and may also be used to initialize non-character variables in data state­
ments.

2.11. Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a multiply­
dimensioned array to be represented by a singly-subscripted reference in equivalence
statements. Fortran 77 does not permit this usage, since subscript lower bounds may now
be different from I. Our compiler permits single subscripts in equivalence statements,
under the interpretation that all missing subscripts are equal to 1. A warning message is

- 5 -

printed for each such incomplete subscript.

2.12. One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be performed if the ini­
tial value is already past the limit value, as in

do 10 i = 2, 1

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop would be performed at least once. In order
to accommodate old programs, though they were in violation of the 1966 Standard, the
-onetrip compiler flag causes non-standard loops to be generated.

2.13. Commas in Formatted Input

The 110 system attempts to be more lenient than the Standard when it seems worthwhile.
When doing a formatted read of non-character variables, commas may be used as value
separators in the input record, overriding the field lengths given in the format statement.
Thus, the format

(ilO, f20.10, i4)

will read the record

-34S,.OSe-3,12

correctly.

2.14. Short Integers

On machines that support halfword integers, the compiler accepts declarations of type
integer*2. (Ordinary integers follow the Fortran rules about occupying the same space. as
a REAL variable; they ar~ assumed to be of C type long int; halfword integers are of C
type short int.) An expression involvins only objects of type integer*2 is of that type.
Generic functions return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using the -12 flag, all small integer constants will
be of type integer*2. If the precision of an integer-valued intrinsic function is not deter­
mined by the generic function rules, one will be chosen that returns the prevailing length
(integer*2 when the -12 command flag is in effect>. When the -12 option is in effect, all
quantities of type logical will be short. ~ote that these short integer and logical quantities
do not obey the standard rules for storage association.

2.1S. Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard.
In addition, there are functions for performing bitwise Boolean operations (or, and, xor,
and nod and for accessing the UNIX command arguments (getarg and iargc).

3. VIOLATIONS OF THE STANDARD
We know only thre ways in which our Fortran system violates the new standard:

3.1. Double Precision Alignment
The Fortran standards (both 1966 and 1977) permit common or equivalence statements to
force a double precision quantity onto an odd word boundary, as in the following example:

real a(4)
double precision b,C'

equivalence (a(1),b), (a(4),C>

r
- 6 -

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities
be on double word boundaries; other machines (e.g., IBM 370), run inefficiently if this
alignment rule is not observed. It is possible to tell which equivalenced and common
variables suffer from a forced odd alignment, but every double precision argument would
have to be assumed on a bad boundary. To load such a quantity on some machines, it
would be necessary to use separate operations to move the upper and lower halves into
the halves of an aligned temporary, then to load that double precision te~porary; the
reverse would be needed to store a result. We have chosen to require that all double pre­
cision real and complex quantities fall on even word boundaries on machines with
corresponding hardware requirements, and to. issue a diagnostic if the source code
demands a violation of the rule.

3.1. DumlllY PfOCedure Arguments
If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in an external statement. This requirement arises as a
subtle corollary of the way we represent character string arguments and of the one-pass
nature of the compiler. A warning is printed if a dummy procedure is not declared exter­
nal. Code is correct if there are no character arguments.

3.3. T and TL Formats
The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record which has already been pro­
cessed. {Section 6.3.2 in the Appendix.> The implementation uses seeks, so if the·unit is
not one which allows seeks, such as a terminal, the program is in error. {People who can
make a case for using tl should let us know.> A benefit of the implementation chosen is
that there is no upper limit on the length of a record, nor is it necessary to predeclare any
record lengths except where s~cifically required by Fortran or the operating system.

4.INTER·PROCEDUREINTERFACE

To be able to write C procedures that call or are called by Fortran procedures, it is neces­
sary to know the conventions for procedure names, data representation, return values, and
argument lists that the compiled code obeys.

4.1. Procedure Names
On UN1X systems, the name of a common block or a Fortran procedure has an underscore

appended to it by the compiler to distinguish it from a C procedure or external variable with the
same user-assigned name. Fortran library procedure names have embedded underscores to
avoid clashes with user-assigned subroutine names.

4.1. Data Representations

The following is a table of corresponding Fortran and C declarations:

Fortran

integer*2 x
integer x
logical x
real x
double precision x
complex x
double complex x
character*6 x

short int x;
long int x;
long int x;
float x;
double x;

C

struct { float r, i; } x;
struct { double dr, di; } x;
char x[6];

(By the rules of Fortran, integer, logical, and real data occupy the same amount of memory).

- 7 -

4.3. Return Values

A function of type integer, logical, real, or double precision declared as a C function that
returns the corresponding type. A complex or double complex function is equivalent to a C
routine with an additional initial argument that points to the place where the return value is to
be stored. Thus,

complex function f(...)

is equivalent to

C(temp, .. .)
struct { float r, i; } *temp;

A character-valued function is equivalent to a C routine with two extra initial arguments: a data
address and a length. Thus,

character*15 function g (...)

is equivalent to

g_ (result, length, .. .)
char result[];
long int length;

and could be invoked in C by

char chars[15];

g (chars, 15L, ...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels), are not passed to the
function, but are used to do an indexed branch in the calling procedure. (If the subroutine has
no entry points with alternate return arguments, the returned value is undefined.) The state­
ment

call nret(*l, *2, *3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret().

4.4. Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of
type character or that is a dummy procedure, an argument giving the length of the value is
passed. (The string lengths are long int quantities passed by value). The order of arguments is
then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

r

r

external f
character*7 s
integer b(3)

call sam(f, b(2), s)

is equivalent to that in

int fO;
char s[7];
long int b[3];

sam (f, &b[1], s, OL, 7L);

- 8 -

Note that the first element of a C array always has subscript zero, but Fortran arrays begin at 1
by default. Fortran arrays are stored in column-major order, C arrays are stored in row-major
order.

5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary files
which are assumed to have the proper internal structure.

Fortran I/O is based on "records". When a direct file is opened in a Fortran program,
the record length of the records must be given, and this is used by the Fortran I/O system" to
make the file look as if it is made up of records of the given length. In the special case that the
record length is given as 1, the files are not considered to be divided into records, but are
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. (A read or
write request on such a file keeps consuming bytes until satisfied, rather than being restricted to
a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will
ever be read or written by any means except Fortran 110 statements. Each record is preceded
and followed by an integer containing the record's length in bytes.

The Fortran I/O system breaks sequential formatted files into records while reading by
using each newline as a record separator. The result of reading off the end of a record is
undefined according to the Standard. The 110 system is permissive and treats the record as
being extended by blanks. On output, the 110 system will write a newline at the end of each
record. It is also possible for programs to write newlines for themselves. This is an error, but
the only effect will be that the single record the user thought he wrote will be treated as more
than one" record when being read or backspaced over.

5.2. Portability Considerations

The Fortran I/O system uses only the facilities of the standard C I/O library, a widely
available and fairly portable package, with the following two nonstandard features: The 110 sys­
tem needs to know whether a file can be used for direct 110, and whether or not it is possible
to backspace. Both of these facilities are implemented using the fseek routine, so there is a
routine can seek which determines if fseek will have the desired effect. Also, the inquire state­
ment provides the user with the ability to find out if two files are the same, and to get the name
of an already opened file in a form which would enable the program to reopen it. (The UNIX
operating system implementation attempts to determine the full pathname.) Therefore there are
two routines which depend on facilities of the operating system to provide these two services.
In any case, the I/O system runs on the PDP-ll, VAX-1l1780, and Interdata 8/32 UNIX sys­
tems.

- 9 -

5.3. Pre-Connected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the
standard input, unit 6 is connected to the standard output, and unit 0 is connected to the stan­
dard error unit. All are connected for sequential formatted I/O.

All the other units are also preconnected when execution begins. Unit n is connected to
a file named fort. n. These files need not exist, nor will they be created unless their units are
used without first executing an open. The default connection is for sequential formatted I/O.

The Standard does not specify where a file which has been explicitly opened for sequential
I/O is initially positioned. In fact, the I/O system attempts to position the file at the end, so a
write will append to the file and a read will result in an end~of-file indication. To position a file
to its beginning, use a rewind statement. The preconnected units 0, 5, and 6 are positioned as
they come from the program's parent process.

REFERENCES

1. S;gpian Notices 11, No.3 (1976), as amended in X3J3 internal documents through
"/90.1" .

2. USA Standard FORTRAN, USAS X3.9-1966, New York: United States of America Stan­
dards Institute, March 7, 1966. Clarified in Comm. ACM 12, 289 (1969) and Comm.
ACM14, 628 (1971).

3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood Cliffs:
Prentice-Hall (1978).

4. D. M. Ritchie, private communication.

S. S. C. Johnson, "A Portable Compiler: Theory and Practice", Proc. 5th ACM Symp. on
Principles of Programming Languages (January 1978).

6. S. I. Feldman, "An Informal Description of EFL", internal memorandum.

7. B. W. Kernighan, "RATFOR - A Preprocessor for a Rational Fortran", Bell Laboratories
Computing Science Technical Report # 55, (January 1977).

8. D. M. Ritchie, private communication.

r

- 10 -

APPENDIX. Differences Between Fortran 66 and Fortran 77

The following is a very brief description of the differences between the 1966 [2] and the
1977 [1] Standard languages. We assume that the reader is familiar with Fortran 66. We do
not pretend to be complete, precise, or unbiased, but plan to describe what we feel are the most
important aspects of the new language. At present the only current information on the 1977
Standard is in publications of the X3J3 Subcommittee of the American National Standards
Institute. The following information is from the "/92" document. This draft Standard is writ­
ten in English rather than a meta-language, but it is forbidding and legalistic. No tutorials or
textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of "Hollerith" (nh) as data have been officially removed, although our com­
piler, like almost all in the foreseeable future, will continue to support this archaism.

1.2. Extended Range

In Fortran 66, under a set of very restrictive and rarely-understood conditions, it is per­
missible to jump out of the range of a do loop, then jump back into it. Extended range
has been removed in the Fortran 77 language. The restrictions are so special, and the
implementation of extended range is so unreliable in many compilers, that this change
really counts as no loss.

2. Program Form

2.1. Blank Lines

Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that program an external
name:

program work

Block data procedures may also have names.

block data stuff

There is now a rule that only one unnamed block data procedure may appear in a pro­
gram. (This rule is not enforced by our system.) The Standard does not specify the effect
of the program and block data names, but they are clearly intended to aid conventional
loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have addi­
tional entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, all entry points are subroutine names. If it begins with a function
statement, each entry is a function entry point, with type determined by the type declared
for the entry name. If any entry is a character-valued function, then all entries must be.
In a function, an entry name of the same type as that where control entered must be
assigned a value. Arguments do not retain their values between calls. (The ancient trick

- 11 -

of calling one entry point with a large number of arguments to cause the procedure to
"remember" the locations of those arguments, then invoking an entry with just a few
arguments for later calculation, is still illegal. Furthermore, the trick doesn't work in our
implementation, since arguments are not kept in static storage.)

2.4. DO Loops

do variables and range parameters may now be of integer, real, or double precision types.
(The use of floating point do variables is very dangerous ·because of the possibility of
unexpected roundoff, and we strongly recommend against their use). The action of the
do statement is now defined for all values of the do parameters. The statement

do 10 i = 1, u, d

performs max(O, l<u-/)/d 1> iterations. The do variable has a predictable value when
exiting a loop: the value at the time a goto or return terminates the loop; otherwise the
value that failed the limit test.

2.5. Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments may be noted by
an asterisk, as in

subroutine s(a, *, b, *)

The meaning of the "alternate returns" is described in section 5.2 of the Appendix.

3. Declarations

3.1. CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by a constant
expression:

character*17 a, b(3,4)
character*(6+3) c

If the length is omitted entirely, it is assumed equal to 1. A character string argument
may have a constant length, or the length may be declared to be the same as that of the
corresponding actual argument at run time by a statement like

character*(*) a

(There is an intrinsic function . len that returns the actual length of a character string).
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the last charac­
ter of the preceding element, without holes.

3.2. IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with i, j,
k, I, m, or n is of type integer, other variables are of type real, unless otherwise declared.
This general rule may be overridden with an implicit statement:

implicit reaI(a-c,g), complex(w-z), character*(17) (s)

declares that variables whose name begins with an a ,b, c, or g are real, those beginning
with w, x, y, or z are assumed complex, and so on. It is still poor practice to depend on
implicit typing, but this statement is an industry standard.

- 12 -

3.3. PARAMETER Statement

It is now possible to give a constant a symbolic name, as in

parameter (x=17, y=x/3, pi=3.141S9dO, s='hello')

The type of each parameter name is governed by the same implicit and explicit rules as
for a variable. The right side of each equal sign must be a constant expression (an
expression made up of constants, operators, and already defined parameters).

3.4. Array Declarations

Arrays may now have as many as seven dimensions. (Only three were permitted in
1966). The lower bound of each dimension may be declared to be other than 1 by using a
colon. Furthermore, an adjustable array bound may be an integer expression involving
constants, arguments, and variables in common.

real a(-S:3, 7, m:n), b(n+l:2*n)

The upper bound on the last dimension of an array argument may be denoted by an aster­
isk to indicate that the upper bound is not specified:

integer a(S, *), b(*), dO:!, -2:*)

3.S. SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure do not necessarily
retain their values between invocations of that procedure. At any instant in the execution
of a program, if a common block is declared neither in the currently executing procedure
nor in any of the procedures in the chain of callers, all of the variables in that common
block also become undefined., (The only exceptions are variables that have been defined
in a data statement and never changed). These rules permit overlay and stack implemen­
tations for the affected variables. Fortran 77 permits one to specify that certain variables
and common blocks are to retain their values between invocations. The declaration

save a, Ibl, c

leaves the values of the variables a and c and all of the contents of common block b
unaffected by a return. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block
must be saved in every procedure in which it is declared if the desired effect is to occur.

3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, "intrinsic func­
tions", rather than being divided into "intrinsic" and "basic external" functions. If an
intrinsic function is to be passed to another procedure, it must be declared intrinsic.
Declaring it external (as in Fortran 66) causes a function other than the built-in one to be
passed.

4. Expressions

4.1. Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apos­
trophe is to be included in a constant, it is repeated:

'abc'
'ain"t'

- 13 -

There are no null (zero-length) character strings in Fortran 77. Our compiler has two
different quotation marks, " , '" and" "". (See Section 2.9 in the main text.>

4.2. Concatenation

One new operator has been added, character string concatenation, marked by a double
slash ("/I"). The result of a concatenation is the string containing the characters of the
left operand followed by the characters of the right operand. The strings

'ab' /I 'cd'
'abcd'

are equal. The strings being concatenated must be of constant length in all concatenations
that are not the right sides of assignments. (The only concatenation expressions in which
a character string declared adjustable with a "*(*)" modifier or a substring denotation
with nonconstant position values may appear are the right sides of assignments).

4.3. Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left
side.) If the left side is longer than the right, it is padded with blanks. If the left side is
shorter than the right, trailing characters are discarded.

4.4. Substrings

It is possible to extract a substring of a character variable or character array element, using
the colon notation:

a(i,j) (m:n)

is the string of (n-m+O characters beginninA at the mIll character of the character array
element Qu' Results are undefined unless m~ n. Substrings may be used on the left
sides of assignments and as procedure actual arguments.

4.5. Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to
real or complex powers. (The principal part of the logarithm is used). Also, multiple
exponentiation is now defined:

a**b**c = a ** (b**c)

4.6. Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, it is permissible to combine
integer and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except in data state­
ments. (A constant expression is made up of explicit constants and parameters and the
Fortran operators, except for exponentiation to a floating-point power). An adjustable
dimension may now be an integer expression involving constants, arguments, and vari­
ables in B common ..
Subscripts may now be general integer expressions; the old cv ± c' rules have been
removed. do loop bounds may be general integer, real, or double precision expressions.
Computed goto expressions and 110 unit numbers may be general integer expressions.

r

r

- 14 -

5. Executable Statements

5.1. IF-THEN-ELSE

At last, the if-then-else branching structure has been added to Fortran. It is called a
"Block If'. A Block If begins with a statement of the form

if (...) then

and ends with an

end if

statement. Two other new statements may appear in a Block If. There may be several

else ifC . .) then

statements, followed by at most one

else

statement. If the logical expression in the Block If statement is true, the statements fol­
lowing it up to the next elseif, else, or endif are executed. Otherwise, the next elself
statement in the group is executed. If none of the elseif conditions are true, control
passes to the statements following the else statement, if any. (The else must follow all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside of other Block If
structures). A case construct may be rendered

if (s .eq. 'ab') then

else if (s .eq. 'cd') then

else

end if

5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an aster­
isk, as in

call joefj, *10, m, *2)

A return statement may have an integer expression, such as

return k

If the entry point has n alternate return (asterisk) arguments and if 1 ~ k ~ n, the return
is followed by a branch to the corresponding statement label; otherwise the usual return to
the statement following the call is executed.

6. Input/Output

6.1. Format Variables
A format may be the value of a character expression (constant or otherwise), or be stored
in a character array, as in

write(6, '(i5)') x

- 15 -

6.2. END-, ERR-, and IOSTAT- Clauses

A read or write statement may contain end==, err==, and iostat== clauses, as in

write(6, 101, err-20, iostat-a(4»
. read(S, 101, err 20, end-30, iostat=x}

Here 5 and 6 are the units on which the 1/0 is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during I/O, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable
referred to in the lostat- clause is given a value when the I/O statement finishes. (Yes,
the value is assigned to the name on the right side of the equal sign'> This value is zero if
all went well, negative for end of file, and some positive value for errors.

6.3. Formatted I/O

6.3.1. Character Constants

Character constants in formats are copied literally to the output. Character constants can­
not be read into.

write(6,'(i2," isn""t ",il)'} 7,4

produces

7 isn't 4

Here the format is the character constant

02,' isn"t ' ,il}

and the character constant

isn't

is copied into the output.

6.3.2. Positional Editing Codes

t, tI, tr, and x codes control where the next character is in the record. trn or nx specifies
that the next character is n to the right of the current position. tin specifies that the next
character is n to the left of the current position, allowing parts of the record to be recon­
sidered. til says that the next character is to be character number n in the record. (See
section 3.4 in the main text.)

6.3.3. Colon

A colon in the format terminates the I/O operation if there are no more data items in the
I/O list, otherwise it has no effect. In the fragment

x='("hello", :, " there", i4}'
write(6, x} 12
write(6, x}

the first write statement prints hello there 12, while the second only prints hello.

6.3.4. Optional Plus Signs
According to the Standard, each implementation has the option of putting plus signs in
front of non-negative numeric output. The sp format code may be used to make the
optional plus signs actually appear for all subsequent items while the format is active. The
ss format code guarantees that the I/O system will not insert the optional plus signs, and
thes format code restores the default behavior of the I/O system. (Since we never put

r
- 16 -

out optional plus signs, ss and s codes have the same effect in our implementation.)

6.3,5. Blanks on Input
Blanks in numeric input fields, other than leading blanks will be ignored following a bn
code in a format statement, and will be treated as zeros following a bz code in a format
statement. The default for a unit may be changed by using the open statement. (Blanks
are ignored by default.>

6.3.6. Unrepresentable Values
The Standard requires that if a numeric item cannot" be represented in the form required
by a format code, the output field must be filled with asterisks. (We think this should
have been an option.)

6.3.7. hv.m
There is a new integer output code, iw.m. It is the same as iw, except that there will be at
least m digits in the output field, including, if necessary, leading zeros. The case i w. 0 is
special, in that if the value being printed is 0, the output field is entirely blank. i w.t is
the same as i w.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning.
On output we always use e. The e and d format codes also have identical meanings. A
leading zero before the decimal point in e output without a scale factor is optional with
the implementation. (We do not print it.) There is a Iw.d format code which is the same
as ew.d and fw.d on input, but which chooses for e formats for output depending. on the
size of the number and of d.

6.3.9. "A" Format Code

A codes are used for character values. a w use a field width of w, while a plain a uses the
length of the character item.

6.4. Standard Units

There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be expli­
citly specified by an asterisk, as in

read(*, 10) a,b

Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write(*, 10)

6.5. List-Directed Formatting

List-directed 110 is a kind of free form input for sequential I/O. It is invoked by using an
asterisk as the format identifier, as in

read(6, *) a,b,c

- 17 -

On input, values are separated by strings of blanks and possibly a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between
two consecutive commas, means the corresponding variable in the 110 list is not changed.
Values may be preceded by repetition counts, as in

4*(3.,2,} 2*, 4*'hello'

. which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, suitable formats are chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

6.6. Direct 110
A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access 110 statements.

Direct access read and write statements have an extra argument, ree=, which gives the
record number to be read or written.

read(2, rec=13, err=20) (am, i=I, 203)

reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below).
files may be connected for either formatted or unformatted I/O.

6.7. Internal Files

Direct access

Internal files are character string objects, such as variables or substrings, or arrays of type
character. In the former cases there is only a single record in the file, in the latter case
each array element is a record. The Standard includes only sequential formatted 1/0 on
internal files. (IIO is not a very precise term to use here, but internal files are dealt with
using read and write). There is no list-directed 110 on internal files. Internal files are
used by giving the name of the character object in place of the unit number, as in

character*80 x
read(S, n(a)n) x
read(x,"(i3,i4)") nl,n2

which reads a card image into x and then reads two integers from the front of it. A
sequential read or write always starts at the beginning of an internal file.

(We also support a compatible extension, direct I/O on internal files. This is like direct
110 on external files, except that the number of records in the file cannot be changed,)

6.8. OPEN, CLOSE, and INQUIRE Statements
These statements are used to connect and disconnect units and files, and to gather infor­
mation about units and files.

6.8.1. OPEN
The open statement is used to connect a file with a unit, or to alter some properties of the
connection. The following is a minimal example.

open (I, file = 'fott.junk')

open takes a variety of arguments with meanings described below.

r
- 18 -

unit= a small non-negative integer which is the unit to which the file is to be connected.
We allow, at the time of this writing, 0 through 9. If this parameter is the first one
in the open statement, the unit= can be omitted.

iostat= is the same as in read or write.

err= is the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is the name of the
file to be connected to the unit. The filename should not be given if the
status = scratch.

status= one of old, new, scratch, or unknown. If this parameter is not given, unknown
is assumed. If scratch is given, a temporary file will be created. Temporary files are
destroyed at the end of execution. If new is given, the file will be created if it
doesn't exist, or truncated if it does. The meaning of unknown is processor depen­
dent; our system treats it as synonymous with old.

access= sequential or direct, depending on whether the file is to be opened for sequen­
tial or direct 110.

form = formatted or unformatted.
recl= a positive integer specifying the record length of the direct access file being opened.

We measure all record lengths in bytes. On UNIX systems a record length of 1 has
the special meaning explained in section 5.1 of the text.

blank= null or zero. This parameter has meaning only for formatted 1/0. The default
value is null. zero means that blanks, other than leading blanks, in numeric input
fields are to be treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the
old file.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err= with their usual meanings, and status=
either keep or delete. Scratch files cannot be kept, otherwise keep is the default. delete
means the file will be removed. A simple example is

close(3, err = 17)

6.8.3. INQUIRE
The inquire statement gives information about a unit ("inquire by unit") or a file
("inquire by file"). Simple examples are:

inquire(unit=3, namexx)
inquire (file = 'junk', number = n, exist = I)

file= a character variable specifies the file the inquire is about. Trailing blanks in the file
name are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly one of file= or
unit= must be used.

iostat=, err= are as before.
exist= a logical variable. The logical variable is set to .true. if the file or unit exists and

is set to .false. o)herwise.
opened = a logical variable. The logical variable is set to . true. if the file is connected to

a unit or if the unit is connected to a file, and it is set to .false. otherwise.

- 19 -

number= an integer variable to which is assigned the number of the unit connected to
the file, if any.

named= a logical variable to which is assigned . true. if the file has a name, or . false.
otherwise.

name= a character variable to which is assigned the name of the file (inquire by file) or
the name of the file connected to the unit (inquire by unit>. The name will be the
full name of the file.

access= a character variable to which will be assigned the value 'sequential' if the con­
nection is for sequential 110, 'direct' if the connection is for direct 110. The value
becomes undefined if there is no connection.

sequential= a character variable to which is assigned the value 'yes' if the file could be
connected for sequential 110, 'no' if the file could not be connected for sequential
110, and 'unknown' if we can't tell.

direct= a character variable to which is assigned the value 'yes' if the file could be con­
nected for direct 110, 'no' if the file could not be connected for direct 110, and 'unk­
nown' if we can't tell.

form= a character variable to which is assigned the value 'formatted' if the file is con­
nected for formatted 110, or 'unformatted' if the file is connected for unformatted
110.

formatted= a character variable to which is assigned the value 'yes' if the file could be
connected for formatted 110, 'no' if the file could not be connected for formatted
110, and 'unknown' if we can't tell.

unformatted= a character variable to which is assigned the value 'yes' if the file could be
connected for unformatted 110, 'no' if the file could not be connected for unformat­
ted 110, and 'unknown' if we can't tell.

recl= an integer variable to which is assigned the record length of the records in the file
if the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the
last record read from a file connected for direct access.

blank= a character variable to which is assigned the value 'null' if null blank control is in
effect for the file connected for formatted 110, 'zero' if blanks are being converted to
zeros and the file is connected for formatted 110.

The gentle reader will remember that the people who wrote the standard probably weren't
thinking of his needs. Here is an example. The declarations are omitted.

openO, file="/dev/console")

On a UNIX system this statement opens the console for formatted sequential 110. An inquire
statement for either unit 1 or file "/dev/console" would reveal that the file exists, is connected
to unit 1, has a name, namely "/dev/console", is opened for sequential 110, could be connected
for sequential 110, could not be connected for direct 110 (can't seek), is connected for format­
ted 110, could be connected for formatted 110, could not be connected for unformatted 110
(can't seek), has neither a record length nor a next record number, and is ignoring blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for
a file is to open it and try to read and write it. The err= parameter will return system error
numbers. The inquire statement does not give a way of determining permissions.

RATFOR - A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Although Fortran is not a pleasant language to use, it does have the advantages of universality and
(usually) relative efficiency. The Ratfor language attempts to conceal the main deficiencies of Fortran
while retaining its desirable qualities, by providing decent control flow statements:

• statement grouping

• if-else and switch for decision-making

• while, for, do, and repeat-until for looping

• break and next for controlling loop exits

and some "syntactic sugar":

• free form input (multiple statements/line, automatic continuation)

• unobtrusive comment convention

• translation of >, > =, etc., into .QT., .QE., etc.

• return(expression) state~ent for functions

• define statement for symbolic parameters

• include statement for including source files

Ratfor is implemented as a preprocessor which translates this language into Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden, the resulting language is
remarkably pleasant to use. Ratfor programs are markedly easier to write, and to read. and thus easier to
debug, maintain and modify than their Fortran equivalents.

It is readily possible to write Ratfor programs which are portable to other env ironments. Ratfor is
written in itself in this way, so it is also portable; versions of Ratfor are now running on at least two
dozen different types of computers at over five hundred locations.

This paper discusses design criteria for a Fortran preprocessor, the Ratfor language and its imple­
mentation, and user experience.

RATFOR A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Most programmers will agree that Fortran
is an unpleasant language to program in. yet
there are many occasions when they are forced
to use it. For example. Fortran is often the only
language thoroughly supported on the local com­
puter. Indeed. it is the closest thing to a univer­
sal programming language currently available:
with care it is possible to write large. truly port­
able Fortran programs [I I. Finally. Fortran is
often the most "efficient" language available.
particularly for programs requiring much compu­
tation.

But Fortran is unpleasant. Perhaps the
worst deficiency is in the control flow statements
- conditional branches and loops - which
express the logic of the program. The condi­
tional statements in Fortran are primitive. The
Arithmetic IF forces the user into at least two
statement numbers and two (implied) GOTO'S; it
leads to unintelligible code. and is eschewed by
good programmers. The Logical IF is better. in
that the test part can be stated clearly. but hope­
lessly restrictive because the statement that fol­
lows the IF can only be one Fortran statement
{with some further restrictions!>. And of course
there can be no ELSE part to a Fortran IF: there is
no way to specify an alternative action if the IF is
not satisfied.

The Fortran DO restricts the user to going
forward in an arithmetic progression. It is fine
for" I to N in steps of I (or 2 or .. .)". but there
is no direct way to go backwards. or even (in
ANSI Fortran[2]) to go from 1 to N-1. And of
course the DO is useless if one's problem doesn't
map into an arithmetic progression.

The result of these failings is that Fortran
programs must be written with numerous labels
and branches. The resulting code is particularly
difficult to read and understand. and thus hard to
debug and modify.

When one is faced with an unpleasant
language. a useful technique is to define a new
language that overcomes the deficiencies. and to
translate it into the unpleasant one with a
preprocessor. This is the approach taken with
Ratfor. (The preprocessor idea is of course not
new. and preprocessors for Fortran are especially
popular today. A recent listing [3) of preproces­
sors shows more than 50. of which at least half a
dozen are widely available.)

2. LANGUAGE DESCRIPTION

Design

Ratfor attempts to retain the merits of
Fortran (universality. portability. efficiency)
while hiding the worst Fortran inadequacies.
The language is Fortran except for two aspects.
First. since control flow is central to any pro­
gram. regardless of the specific application. the
primary task of Ratfor is to conceal this part of
Fortran from the user. by providing decent con­
trol flow structures. These structures are
sufficient and comfortable for structured pro­
gramming in the narrow sense of programming
without GOTO·S. Second. since the preprocessor
must examine an entire program to translate the
control structure. it is possible at the same time
to clean up many of the "cosmetic" deficiencies
of Fortran. and thus provide a language which is
easier and more pleasant to read and write.

Beyond these two aspects - control flow
and cosmetics - Ratfor does nothing about the
host of other weaknesses of Fortran. Although
it would be straightforward to extend it to pro­
vide character strings. for example. they are not
needed by everyone. and of course the prepro­
cessor would be harder to implement.
Throughout. the design principle which has
determined what should be in Ratfor and what
should not has been Ra(I'or doesn't know any For­
trail. Any language feature which would require

This paper is a revised and expanded version of oe published in SQliware-Praclice and £'(perience. October
1975. The Ratfor described here is the one in use on UNIX and Gens at Bell Laboratories, Murray Hill. N. J.

r

that Ratfor really understand Fortran has been
omitted. We will return to this point in the sec­
tion on implementation.

Even within the confines of control flow
and cosmetics, we have attempted to be selective
in what features to provide. The intent has been
to provide a small set of the most useful con­
structs, rather than to throw in everything that
has ever been thought useful by someone.

The rest of this section contains an infor­
mal description of the Ratfor language. The con­
trol flow aspects will be quite familiar to readers
used to languages like Algol, PLlI, Pascal, etc.,
and the cosmetic changes are equally straightfor­
ward. We shall concentrate on showing what the
language looks like.

Statement Grouping

Fortran provides no way to group state­
ments together, short of making them into a
subroutine. The standard construction "if a con­
dition is true, do this group of things," for
example,

if (x > 100)

- 2 -

(call error{"x> 1 00"); err = 1; return 1
cannot be written directly in Fortran. Instead a
programmer is forced to translate this relatively
clear thought into murky Fortran, by stating the
negative condition and branching around the
group of statements:

10

if (x .Ie. 100) goto 10
call error(Shx > 100)
err = 1
return

When the program doesn't work, or when it
must be modified, this must be translated back
into a clearer form before one can be sure what
it does.

Ratfor eliminates this error-prone and
confusing back-and-forth translation; the first
form is the way the computation is written in
Ratfor. A group of statements can be treated as
a unit by enclosing them in the braces (and I.
This is true throughout the language: wherever a
single Ratfor statement can be used, there can be
several enclosed in braces. (Braces seem clearer
and less obtrusive than begin and end or do and
end, and of course do and end already have For­
tran meanings.)

Cosmetics contribute to the readability of
code, and thus to its understandability. The
character ">" is clearer than :'.GT.'·, so Ratfor
translates it appropriately, along with several
other similar shorthands. Although many For­
tran compilers permit character strings in quotes

((ike "x> 100"), quotes are not allowed in ANSI

Fortran, so Ratfor converts it into the right
number of H's: computers count better than
people do.

Ratfor is a free-form language: statements
may appear anywhere on a line, and several may
appear on one line if they are separated by semi­
colons. The example above could also be written
as

if (x > 100) (
call error("x > 1 00")
err = 1
return

In this case, no semicolon is needed at the end
of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the
if is a single statement (Ratfor or otherwise), no
braces are needed:

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, z

No continuation need be indicated because the
statement is clearly not finished on tbe first line.
In general Ratfor continues lines when it seems
obvious that they are not yet done. (The con­
tinuation convention is discussed in detail later.)

Although a free-form language permits
wide latitude in formatting styles, it is wise to
pick one that is readable, then stick to it. In par­
ticular, proper indentation is vital, to make the
logical structure of the program obvious to the
reader.

The "else" Clause

Ratfor provides an else statement to han­
dle the construction "if a condition is true, do
this thing, ofh~rwis~ do that thing."

if (a < = b)
(sw = 0; write(6, I) a, b 1

else
(sw = I; write(6,]) b, a 1

This writes out the smaller of a and b, then the
larger, and sets sw appropriately.

The Fortran equivalent of this code is cir­
cuitous indeed:

10

20

if (a .gt. b) goto 10
sw == 0
write(6, 1) a, b
goto 20

sw = I
write(6, 1) b, a

This is a mechanical translation; shorter forms
exist, as they do for many similar situations. But
all translations suffer from the same problem:
since they are translations, they are less clear and
understandable than code that is not a transla­
tion. To understand the Fortran version, one
must scan the entire program to make sure that
no other statement branches to statements 10 or
20 before one knows that indeed this is an if­
else construction. With the Ratfor version, there
is no question about how one gets to the parts of
the statement. The if-else is a single unit, which
can be read, understood, and ignored if not
relevant. The program says what it means.

As before, if the statement following an if
or an else is· a single statement, no braces are
needed:

if (a <= b)
sw = 0

else
sw= I

The syntax of the if statement is

if (legal Fortran cOlldition)
Ra(for statement

else
Ra(for statement

where the else part is optional. The legal Fortran
condition is anything that can legally go into a
Fortran Logical IF.' Ratfor does not check this
clause, since it does not know enough Fortran to
know what is permitted. The Ra(/or statemelll is
any Ratfor or Fortran statement. or any collec­
tion of them in braces.

Nested if's

Since the statement that follows an if or an
else can be any Ratfor statement, this leads
immediately to the possibility of another if or
else. As a useful example, consider this problem:
the variable f is to be set to -lif x is less than
zero, to + I if x is greater than 100. and to 0
otherwise. Then in Ratfor, we write

- 3 -

if (x < 0)
f =-1

else if (x > 100)
f = +1

else
f = 0

Here the statement after the first else is another
if-else. Logically it is just a single statement,
although it is rather complicated.

This code says what it means. Any ver­
sion written in straight Fortran will necessarily be
indirect because Fortran does not let you say
what you mean. And as always, clever shortcuts
may turn out to be too clever to understand a
year from now.

Following an else with an if is one way to
write a multi-way branch in Ratfor. In general
the structure

if Coo)

else if Coo)

else if L)

else

provides a way to specify the choice of exactly
one of several alternatives. (Ratfor also provides
a switch statement which does the same job in
certain special cases: in more general situations,
we have to make do with spare parts'> The tests
are laid out in sequence, and each one is fol­
lowed by the code associated with it. Read down
the list of decisions until one is found that is
satisfied. The code associated with this condition
is executed,. and then the entire structure is
finished. The trailing else part handles the
"default" case, where none of the other condi­
tions apply. If there is no default action, this
final else part is omitted:

if (x < 0)
x=O

else if (x > 100)
x = 100

if-else ambiguity

There is one thing to notice about compli­
cated structures involving nested ifs and else's.
Consider

if (x > 0)
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

There are two irs and only one else. Which if
does the else go with?

This is a genuine ambiguity in Ratfor, as it
is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by
saying that in such cases the else goes with the
closest previous un-else'ed if. Thus in this case,
the else goes with the inner if, as we have indi­
cated by the indentation.

It is a wise practice to resolve such cases
by explicit braces, just to make your intent clear.
In the case above, we would write

if (x > 0) {
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

which does not change the meaning, but leaves
no doubt in the reader's mind. If we want the
other association, we must write

if (x > 0) {
if (y > 0)

write(6, 1) x, y

else
write(6, 2) y

The "switch" Statement

The switch statement provides a clean way
to express multi-way branches which branch on
the value of some integer-valued expression.
The syntax is

switch (expression) {

case exprl :
statements

case expr 1. exprJ :
statements

default:
statements

Each case is followed by a list of comma­
separated integer expressions. The expression
inside switch is compared against the case
expressions exprl. expr1. and so on in turn until
one matches. at which time the statements fol­
lowing that case are executed. If no cases match
expression. and there is a default section. the

- 4 -

statements with it are done; if there is no
default. nothing is done. In all situations, as
soon as some block of statements is executed,
the entire switch is exited immediately.
(Readers familiar with C(4) should beware that
this behavior is not the same as the C switch.)

The "do" Stlltement

The do statement in Ratfor is quite similar
to the DO statement in Fortran, except that it
~ses no statement number. The statement
number, after all, serves only to mark the end of
the DO, and this can be done just as easily with
braces. Thus

doi-I,n{

is the same as

x(i) == 0.0
y(j) ... 0.0
z(j) "'" 0.0

do 10 i I, n
x(j) all! 0.0
y(i) =0 0.0
z(j) =- 0.0

10 continue

The syntax is:

do legal-Fortran-DO-text
Raffor statemellf

The part that follows the keyword do has to be
something that can legally go into a Fortran DO
statement. Thus if a local version of Fortran
allows DO limits to be expressions (which is not
currently permitted in ANSI Fortran). they can be
used in a Ratfor do.

The Raffor statement part will often be
enclosed in braces. but as with the If. a single
statement need not have braces around it. This
code sets an array to z,ero:

do i I, n
x(j) = 0,0

Slightly more complicated,

do i = I, n
do j = I, n

mO, j) = 0

sets the entire array m to zero, and

do i I. n
doj==l.n

if 0 < j)
mO. j) = -I

else if 0 = = j)
mO. j) == 0

else
mO.j) = +1

sets the upper triangle of m to -I. t'he diagonal
to zero. and the lower triangle to + I. (The
operator = = is "equals". that is. ".EQ.".) In
each case. the· statement that follows the do is
logically a single statement. even though compli­
cated. and thus needs no braces.

"break" and "next"

Ratfor provides a statement for leaving a
loop early. and one for beginning the next itera­
tion. break causes an immediate exit from the
do; in effect it is a branch to the statement after
the do. next is a branch to the bottom of the
loop. so it causes the next iteration to be done.
For example. this code skips over negative
values in an array:

doi=l.nl
if (x(j) < 0.0)

next
process positill(! elemellf

break and next also work iii the other Ratfor
looping constructions that we will talk about in
the next few sections.

break and next can be followed by an
integer to indicate breaking or iterating that level
of enclosing loop; thus

break 2

exits from two levels of enclosing loops. and
break 1 is equivalent to break. next Z iterates
the second enclosing loop. (Realistically. multi­
level break's and next's are not likely to be
much used because they lead ,to code that is hard
to understand and somewhat risky to change.)

The "while" Statement

One of the problems with the Fortran DO
statement is that it generally insists upon being
done ,once. regardless of its limits. If a loop
begins

DO I = 2. I

this will typically be done once with I set to 2.
even though common sense would suggest that
perhaps it shouldn't be. Of course a Ratfor do
can easily be preceded by a test

- 5 -

if (j <= k)
do i = j. k

but this has to be a conscious act. and is often
overlooked by programmers.

A more serious problem with the DO state­
ment is that it encourages that a program be
written in terms of an arithmetic progression
with small positive steps, even though that may
not be the best way to write it. If code has to be
contorted to fit the requirements imposed by the
Fortran DO. it is that much harder to write and
understand.

To overcome these difficulties. Ratfor pro­
vides a while statement. which is simply a loop:
"while some condition is true, repeat this group
of statements". It has no preconceptions about
why one is looping. For example, this routine to
compute sin (x) by the Maclaurin series combines
two termination criteria.

real function sin (x. e)
returns sin (x) to accuracy e. by
sin (x) = x - x**3/3! + x**S/S! - ...

sin = x
term = x

i = 3
while (abs{term) >e & i < 100) (

term = -term * x**2 / float(j.(j-l»
sin = sin + term
i=i+2

return
end

Notice that if the routine is entered with
term already smaller than e. the loop will be
done zero times. that is. no attempt will be made
to compute x**3 and thus a potential underflow
is avoided. Since the test is made at the top of a
while loop instead of the bottom, a special case
disappears - the code works at one of its boun­
daries. (The test i< 100 is the other boundary -
making sure the routine stops after some max­
imum number of iterations.)

As an aside. a sharp character "#" in a
line marks the beginning of a comment; the rest
of the line is comment. Comments and code can
co-exist on the same line - one can make mar­
ginal remarks. which is not possible with
Fortran's "C in column I" convention. Blank
lines are also permitted anywhere (they are not
in Fortran); they should be used to emphasize
the natural divisions of a program.

The syntax of the while statement is

while (legal Fortran condition)
R a (I'or sta temellf

As with the if, legal Fortran condition is some­
thing' that can go into a Fortran Logical IF, and
Ra(I'or statemellf is a single statement, which may
be multiple statements in braces.

The while encourages a style of coding not
normally practiced by Fortran programmers. For
example, suppose nextch is a function which
returns the next input character both as a func­
tion value and in its argument. Then a loop to
find the first non-blank character is just

while (nextch(ich) = = iblank)

A semicolon by itself is a null statement, which
is necessary here to mark the end of the while;
if it were not present, the while would control
the next statement. When the loop is broken,
ich contains the first non-blank. Of course the
same code can be written in Fortran as

100 if (nextch(ich) .eq. iblank) goto 100

but many Fortran programmers (and a few com­
pilers) believe this line is illegal. The language at
one's disposal strongly influences how one thinks
about a problem.

The "for" Statement

The for statement is another Ratfor loop,
which attempts to carry the separation of loop­
body from reason-for-looping a step further than
the while. A for statement allows explicit initiali­
zation and. increment steps as part of the state­
ment. For example, a DO loop is just

for (i = I: i < = n; i = i + 1) ...

This is equivalent to

i = 1
while (j < = n)

i=i+l

The initialization and increment of i have been
moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the
advantage that they will be done zero times if n
is less than 1; this is not true of the do.

The loop of the sine routine in the previ­
ous section can be re-written with a for as

- 6 -

for 0=3; abs(term) > e & i < 100; i=i+2) (
term = -term. x**2 I floatO.O-I)
sin = sin + term

The syntax of the for statement is

for (init ; condition; increment)
Ra(for statemellf

init is any single Fortran statement, which gets
done once before the loop begins. increment is
any single Fortran statement, which gets done at
the end of each pass through the loop, before
the test. condition is again anything that is legal
in a logical IF. Any of in it. condition. and incre­
ment may be omitted, although the semicolons
must always be present. A non-existent condition
is treated as always true, so for(;;) is an
indefinite repeat. (But see the repeat-until in
the next section.)

The for statement is particularly useful for
backward loops, chaining along lists. loops that
might be done zero times, and similar things
which are hard to express with a DO statement,
and obscure to write out with IF'S and GOTO'S.

For example, here is a backwards DO loop to find
the last non-blank character on a card:

for (j = 80; i > 0; i = i-I)
if (card(i) ! = blank)

break

("! =" is the same as ".NE."). The code scans
the columns from 80 through to 1. If a non­
blank is found. the loop is immediately broken.
(break and next work in for's and while's just as
in do's). If i reaches zero. the card is all blank.

This code is rather nasty to write with a
regular Fortran DO, since the loop must go for­
ward. and we must explicitly set up proper condi­
tions when we fall out of the loop. (Forgetting
this is a common error.) Thus:

DO 10 J = 1.80
I = 81 - J
IF (CARDW .NE. BLANK) GO TO II

10 CONTINUE
1=0

II

The version that uses the for handles the termi­
nation condition properly for free; i is zero when
we fall out of the for loop.

The increment in a for need not be an
arithmetic progression; the following program
walks along a list (stored in an integer array ptr)
until a zero pointer is found. adding up elements
from a parallel array of values:

sum = 0.0
for (j = first; i > 0; i =- ptr(j»

sum =- sum + value(j)

Notice that the code works correctly if the list is
empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential
boundary error.

The "repeat-until" statement

In spite of the dire warnings, there are
times when one really needs a loop that tests at
the bottom after one pass through. This service
is provided by the repeat-until:

repeat
Raffor statemeflf

until (legal Fortran condition)

The Raffor statement part is done once, then the
condition is evaluated. If it is true, the loop is
exited; if it is false, another pass is made.

The until part is optional, so a bare repeat
is the cleanest way to specify an infinite loop. Of
course such a loop must ultimately be broken by
some transfer of control such as stop, return, or
break, or an implicit stop such as running out of
input with a READ statement.

As a matter of observed factl8l, the
repeat-until statement is much less used than the
other looping constructions; in particular, it is
typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that
test only at the bottom often don't handle null
cases well.

More on break and next

break exits immediately from do, while,
for, and repeat-until. next goes to the test part
of do, while and repeat-until, and to the incre­
ment step of a for.

"return" Statement

The standard Fortran mechanism for
returning a value from a function uses the name
of the function as a variable which can be
assigned to; the last value stored in it is the
function value upon return. For example, here
is a routine equal which returns 1 if two arrays
are identical, and zero if they differ. The array
ends are marked by the special value -I.

- 7 -

equal _ comparestrl to str2;
return 1 if equal, 0 if not

says

integer function equal(strl, str2)
integer strHlOO), str2(00)
integer i

for (j = 1; strl(j) == str2(i); i = i + I)
if (strl(j) = = -1) {

equal = 0
return
end

equal = 1
return

In many languages (e.g., pun one instead

return (expression)

to return a value from a function. Since this is
often clearer, Ratfor provides such a return
statement - in a function F, return(expression)
is equivalent to

{ F = expression; return }

For example, here is equal again:

equal _ compare strl to str2:
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer strl(lOO), str2(l00)
integer i

for (j = 1; strl (j) = = str2(j); i = i + 1)
if (strl (j) = = -1)

return (0)
end

return 0)

If there is no parenthesized expression after
return, a normal RETURN is made. (Another
version of equal is presented shortly,)

Cosmetics

As we said above, the visual appearance of
a language has a substantial effect on how easy it
is to read and understand programs. Accord­
ingly, Ratfor provides a number of cosmetic
facilities which may be used to make programs
more readable.

Free-form Input

Statements can be placed anywhere on a
line; long statements are continued automati­
cally, as are long conditions in if, while, for, and
until. Blank lines are ignored. Multiple state­
ments may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make

r

r

some reasonable guess about whether the state­
ment ends there. Lines ending with any of the
characters

+ * &

are assumed to be continued on the next line.
Underscores are discarded wherever they occur;
all others remain as part of the statement.

Any statement that begins with an all­
numeric field is assumed to be a Fortran label,
and placed in columns 1-5 upon output. Thus

write(6, 100); 100 format("hello")

is converted into

write(6, 100)
100 format(5hhello)

Translation Services

Text enclosed in matching single or double
quotes is converted to nH... but is otherwise
unaltered (except for formatting - it may get
split across card boundaries during the reformat­
ting process). Within quoted strings, the
backs lash '\' serves as an escape character: the
next character is taken literally. This provides a
way to get quotes (and of course the backslash
itself) into quoted strings:

"\ \ \'"
is a string containing a backs lash and an apos­
trophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character '%'
is left absolutely unaltered except for stripping
off the '%' and moving the line one position to
the left. This is useful for inserting control
cards. and other things that should not be
transmogrified Oike an existing Fortran pro­
gram). Use '%' only for ordinary statements,
not for the condition parts of if. while. etc., or
the output may come out in an unexpected place.

The following character translations are
made, except within single or double quotes or
on a line beginning with a '%'.

. eq. != .ne .
> . gt. >= .ge .
< .It. <= .Ie.
& .and. I .or.

.not. .not.

In addition, the following translations are pro­
vided for input devices with' restricted character
sets.

[
$(

1
$)

- 8 -

"define" Statement

Any string of alphanumeric characters can
be defined as a name; thereafter, whenever that
name occurs in the input (delimited by non­
alphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing white
spaces are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic
parameters:

define ROWS 100
define COLS 50

dimension a(ROWS>, b(ROWS, COLS)

if (i > ROWS I j > COLS) ...

Alternately, definitions may be written as

define(ROWS, 100)

In this case, the defining text is everything after
the comma up to the balancing right parenthesis;
this allows multi-line definitions.

It is generally a wise practice to use sym­
bolic parameters for most consSants, to help
make clear the function of what would otherwise
be mysterious numbers. As an example, here is
the routine equal again, this time with symbolic
constants.

define
define
define
define

YES
NO
EOS
ARB

I
o
-1
100

equal _ compare strl to str2;
return YES if equal, NO if not

integer function equal(strl, str2)
integer strJ(ARB), str2(ARB)
integer i

for (j = I; strl(i) == str2(j); i = i + J)
if (strl (i) = = EOS)

return(YES)
return (NO)
end

"include" Statement

The statement

include file

inserts the file found on input stream .tile into the
Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks
on a file. and include that file whenever a copy is
needed:

subroutine x
include common blocks

end

suroutine y
include common blocks

end

This ensures that all copies of the COMMON

blocks are identical

Pitfalls. Botches. Blemishes and other Failings

Ratfor catches certain syntax errors, such
as missing braces, else clauses without an if, and
most errors involving missing parentheses in
statements. Beyond that, since Ratfor knows no
Fortran, any errors you make will be reported by
the Fortran compiler, so you will from time to
time have to relate a Fortran diagnostic back to
the Ratfor source.

Keywords are reserved - using if, else,
etc., as variable names will typically wreak havoc.
Don't leave spaces in keywords. Don't use the
Arithmetic IF.

The Fortran nM convention is not recog­
nized anywhere by Ratfor; use quotes instead.

3. IMPLEMENTATION

Ratfor was originally written in C[4] on the
UNIX operating system[5]. The language is
specified by a context free grammar and the
compiler constructed using the Y ACC compiler­
compiler[6].

The Ratfor grammar is simple and straight­
forward, being essentially

prog stat
prog stat

stat if L) stat
if (...> stat else stat
while L) stat
for C .. ; ... ; ...) stat
do ... stat
repeat stat
repeat stat until (...)
switch C ..) { case ... : prog ...

default: prog }
I return
I break
I next
I digits stat
I { prog }
I anything unrecognizable

The observation that Ratfor knows no Fortran
follows directly from the rule that says a state­
ment is "anything unrecognizable". In fact most

- 9 -

of Fortran falls into this category, since any
statement that does not begin with one of the
keywords is by definition "unrecognizable."

Code generation is also simple. If the first
thing on a source line is not a keyword (like if,
else, etc.) the entire statement is simply copied
to the output with appropriate character transla­
tion and formatting. (Leading digits are treated
as a label.) Keywords cause only slightly more
complicated actions. For example, when if is
recognized, two consecutive labels Land L+ I
are generated and the value of L is stacked. The
condition is then isolated, and the code

if (.not. (condition» goto L

is output. The statemellf part of the if is then
translated. When the end of the statement is
encountered (which may be some distance away
and include nested irs, of course), the code

L continue

is generated, unless there is an else clause, in
which case the code is

goto L+I
L continue

In this latter case, the code

L+ I continue

is produced after the statement part of the else.
Code generation for the various loops is equally
simple.

One might argue that more care should be
taken in code generation. For example, if there
is no trailing else,

if (j > 0) x = a

should be left alone, not converted into

if (.not. (j .gt. 0» goto 100
x = a

100 continue

But what are optimizing compilers for, if not to
improve code? It is a rare program indeed where
this kind of "inefficiency" will make even a
measurable difference. In the few cases where it
is important, the offending lines can be protected
by'%'.

The use of a compiler-compiler is
definitely the preferred method of software
development. The language is well-defined, with
few syntactic irregularities. Implementation is
quite simple; the original construction took
under a week. The language is sufficiently sim­
ple, however, that an ad hoc recognizer can be
readily constructed to do the same job if no
compiler-compiler is available.

The C version of Ratfor is used on UNIX

and on the Honeywell GCOS systems. C com­
pilers are not as widely available as Fortran,
however, so there is also a Ratfor written in
itself and originally bootstrapped with the C ver­
sion. The Ratfor version was written so as to
translate into the portable subset of Fortran
described in [11, so it is portable, having been
run essentially without change on at least twelve
distinct machines. (The main restrictions of the
portable subset are: only one character per
machine word; subscripts in the form c*I'±c;
avoiding expressions in places like DO loops; con­
sistency in subroutine argument usage, and in
COMMON declarations. Ratfor itself will not gra­
tuitously generate non-standard FortranJ

The Ratfor version is about 1500 lines of
Ratfor (compared to about 1000 lines of 0; this
compiles into 2500 lines of Fortran. This expan­
sion ratio is somewhat higher than average, since
the compiled code contains unnecessary
occurrences of COMMON declarations. The exe­
cution time of the Ratfor version is dominated
by two routines that read and write cards.
Clearly these routines could be replaced by
machine coded local versions; unless this is
done, the efficiency of other parts of the transla­
tion process is largely irrelevant.

4. EXPERIENCE

Good Things

"It's so much better than Fortran" is the
most common response of users when asked
how well Ratfor meets their needs. Although
cynics might consider this to be vacuous, it does
seem to be true that decent control flow and
cosmetics converts Fortran from a bad language
into quite a reasonable one, assuming that For­
tran data structures are adequate for the task at
hand.

Although there are no quantitative results.
users feel that coding in Ratfor is at least twice
as fast as in Fortran. More important. debugging
and subsequent revision are much faster than in
Fortran. Partly this is simply because the L'Ode
can be read. The looping statements which test
at the top instead of the boltom seem to elim-

- 10 -

inate or at least reduce the occurrence of a wide
class of boundary errors. And of course it is
easy to do structured programming in Ratfor:
this self-discipline also contributes markedly to
reliability.

One interesting and encouraging fact is
that programs written in Ratfor tend to be as
readable as programs written in more modern
languages like Pascal. Once one is freed from
the shackles of Fortran's clerical detail and rigid
input format, it is easy to write code that is read­
able, even esthetically pleasing. For example,
here is a Ratfor implementation of the linear
table search discussed by Knuth [7):

Mm+\) = x
for (i = L AW != x: i = i + \)

if (i > m) I
m = i
BW = I

else
B(i) = B(i) + I

A large corpus (5400 lines) of Ratfor. including
a subset of the Ratfor preprocessor itself. can be
found in [81.

Bad Things

The biggest single problem is that many
Fortran syntax errors are not detected by Ratfor
but by the local Fortran compiler. The compiler
then prints a message in terms of the generated
Fortran. and in a few cases this may be difficult
to relate back to the offending Ratfor line, espe­
cially if the implementation conceals the gen­
erated Fortran. This problem could be dealt with
by tagging each generated line with some indica­
tion of the source line that created it. but this is
inherently implementation-dependent. so no
action has yet been taken. Error message
interpretation is actually not so arduous as might
be thought. Since Ratfor generates no variables.
only a simple pattern of IF's and GOTO·S. data­
related errors like missing DIMENSION statements
are easy to find in the Fortran. Furthermore.
there has been a steady improvement in Ratfor"s
ability to catch trivial syntactic errors like unbal­
anced parentheses and quotes.

There are a number of implementation
weaknesses that are a nuisam·e. especially to new
users. For example. keywords are reserved.
This rarely makes any difference. except for
those hardy souls who want to use an Arithmetic
IF. A few standard Fortran constructions are not
accepted by Ratfor. and this is perceived as a
problem by users with a large corpus of existing
Fortran programs. Protecting every line with a

'%' is not really a complete solution, although it
serves as a stop-gap. The best long-term solu­
tion is provided by the program Struct (9), which
converts arbitrary Fortran programs into Ratfor.

Users who export programs often complain
that the generated Fortran is "unreadable"
because it is not tastefully formatted and con­
tains extraneous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the gen­
erated Fortran), but it has always seemed that
effort is beller spent on the input language than
on the output esthetics.

One final problem is partly attributable to
success - since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor.
Fortunately, so far most of the differences are in
character set, or in invisible aspects like code
generation.

S. CONCLUSIONS

Ratfor demonstrates that with modest
effort it is possible to convert Fortran from a bad
language into quite a good one. A preprocessor
is clearly a useful way to extend or ameliorate
the facilities of a base language.

When designing a language, it is important
to concentrate on the essential ,requirement of
providing the user with the best language possi­
ble for a given effort. One must avoid throwing
in "features" - things which the user may trivi­
ally construct within the existing framework.

One must also avoid gelling sidetracked on
irrelevancies. For instance it seems pointless for
Ratfor to prepare a neatly formatted listing of
either its input or its output. The user is
presumably capable of the self-discipline required
to prepare neat input that reflects his thoughts.
It is much more important that the language pro­
vide free-form input so he call format it neatly.
No one should read the output anyway except in
the most dire circumstances.

Acknowledgements

C. A. R. Hoare once said that "One thing
[the language designer) should not do is to
include untried ideas of his own." Ratfor follows
this precept very closely - everything in it has
been stolen from someone else. Most of the
control flow structures are taken directly from
the language C[4] developed by Dennis Ritchie;
the comment and continuation conventions are
adapted from Altran[101.

I am grateful to Stuart Feldman, whose
patient simulation of an innocent user during the
early days of Ratfor led to several design
improvements and the eradication of bugs. He

- II -

also translated the C parse-tables and Y ACC
parser into Fortran for the first Ratfor version of
Ratfor.

References

[11 B. G. Ryder, "The PFORT Verifier,"
Software-Practice & Experience. October
1974.

(2) American National Standard Fortran.
American National Standards Institute,
New York, 1966.

[3] For-word: Fortran Developmel11 Newslel1er.
August 1975.

[4] B. W. Kernighan and D. M. Ritchie, The C
Programming Language. Prentice-Hall, Inc.,
1978.

(5) D. M. Ritchie and K. L. Thompson, "The
UNIX Time-sharing System." CACM, July
1974.

(6) S. C. Johnson, "Y ACC - Yet Another
Compiler-Compiler." Bell Laboratories
Computing Science Technical Report #32,
1978.

(7) D. E. Knuth, "Structured Programming
with goto Statements." CompUfing Surveys,
December 1974.

(8) B. W. Kernighan and P. J. Plauger,
SQfiware Tools. Addison-Wesley, 1976.

(9) B. S. Baker, "Struct - A Program which
Structures Fortran", Bell Laboratories
internal memorandum, December 1975.

[10] A. D. Hall. "The Altran System for
Rational Function Manipulation - A Sur­
vey." CACM, August 1971.

-r

1. INTllODUCTION

PWB/Graphics Overview
A. R. Feuer

Bell Laboratories
Piscataway. New Jersey 08854

PWBIQraphics. or just graphia. is the name given to a srowinl collection of numerical and
&raPhicaJ commands available as pan of the Prosrammer's WorkbeDch (11. In its initial reJeue.
graph,a includes commands to constrUct and edit numeriCal data plots aDd hierarchy chans.
This memorandum will help you let Slaned using ~ph;cs aDd show you where to find more
information. The examples below assume that you are familiar with the UNIX1M Shell [I].

1. BASIC CONCEPTS

The basic approach taken in graphit:S is to generate a drawinl by describinl it rather than b~'
drafting. it. An~' drawing is seen as having two fundamental attributes: its underlying logic and
its visual layout. The layout encompasses one representation of the Jogic. For example.
consider the attributes of a drawing that consiStS of a plot of the function .v-x~ for x between 0
and) O. The logic of the plot is the description as just given. viz. y-x~.O' x, 10. The layout
consistS of an x-y grid. axes labeled perhaps 0 to 10 and 0 to 100. and lines dra..,." connecting
the X-)' pairs 0.0 to 1.1 to 2.4 and so on. .

The way to generate a picture in 1'aphics is

gather data I transform the data i generate a layout I display the layout.

To generate the specific plot of y-.\·~.0'.\"'10 and display it'on a Tektronix· display terminal
would be:

pS -sO.tlO I af ·x"r I plot ltd

ps generates sequences of numbers. in this case staning at 0 and terminating at
10.

af performs general arithmetic transformations.

plol builds x-y plotS.

td displays drawings on Tektronix terminals.

The resulting drawing is shown in Figure 1.

The layout generated by a ~raphirs program may not always be precisely what is wanted. There
are two ways to influence the layout. Each drawing program accepts options to direct certain
layout features. For instance. in the previous example we may have wanted the x-axis lab~ls to
indicate each of the numbers ploued and we might not have wanted any y-axis labels at al!. To
achieve this the ,,101 command would be changed to:

plot -xil.ya

producin~ the drawing of Figure 2.

The output from any drawing command can also be affected by editing it directl~' at a display
terminal using the g.raphicaJ editor. ~d. To edit a drawing really means to edit the computer
representation of the drawing. In the case of 1'arl/lIcs the representation is called a graphical
Dnmll!ve strin~. or GPS. All of the drawing commands (e.g. .• "Im I write GPS and all of the
device fillers (e.g .. rd) read GPS. Gcod allows you 10 manipulate GPS at a display terminal b~

interaC:lin~ wnh the drawing the GPS desc:ribes.

1

· ~ ~~:~ ~ ~--. • • · : · . : • ·
· • · :

--.... --.... ---------------------· --~o

· · :
: · · · . sa .. ~-..-.:

• • • • · · · • · • · · · · -
•

...

tit

i 8 i ~ o·

-
!-· --• &

• • -A -•
~ • •
'­•

.
N

i --.

~ -• 0 -Go -• N
C • •

" -
SiI
•
i ,
• 3-
• -
i -'-

3

GPS describes Jl'lPbicaJ objects drawn within a Cartesian plane 65.534 UDiti OIl each Dis. The
plaDe. mown IS the III1iYeIW, is partitioned into 2S equal sized square rePcms. . Multi-dnwiDa
displays can be produced by placin& drawings into adjacent resions md thCD disp1a~lII each
reaion.

3. GEmNG STAll TED

To access the graphics commands when loUecl in on I PWBItJ'NlX system type paphlcs. YOUf

Shell variable PA TB will be altered to include the f1'tIphia commands and the SlleU primary
prompt will be c:hm&cd to". Any command accessible before typing II'&phics will still be
IC'CeSsible; graphics only adds commands. it doesn't tAke any away. 0Dc:e in IftlPhia. you CIJl
find out about any of the graphics commands using WMru. Typing -bad. by itself on a
command line will senerate a list of all the commands in graphics alone with iDstnactions on
bow to find out more about any of them.

All of the graphics commands accept- the same command line format:

A commaDd is: a COmnumd·IIIlIM fonowed by tI~nr(s).

A COmmllnd-lIIlrM is:

An Il1'fJlIfWnt is:

A jiil-llll",e is:

An optio"-",i,,, is:

the DIme of lilY of the graphics commands.

a jW-lIIlmt or an OPlio"-,,,;,,,.

lilY file Dame not beaizmiDg with -. or a - by itself to
reference the standard input.

a - followed by option(s).

An option is: lener(s) fonowed by III optional value. Options may be
separated by commas.

You will get the best results with graphics commands if you use a display terminal. Plor(l)
filters can be used in conjunction with flOP (see ruri/(1» to get somewhat desraded drawin~ on
Versatec printers and Dasi-type terminals. And since GPS can be stored in a file. it can be
createcl from any terminal for later displaying on a graphical device.

To remove the f1'tIPhlcs commands from your PATH Shell variable type EOT (COIllrol-c1 on !riost
terminals). To logoff UNIX from graphics type quit.

~. EXAMPLES OF WHAT YOU CAN DO

~.1 Numerical Mulp1llatloD ud PlottiDc

Surt (1) describes a collection of numerical eommlllds. All of these commands operate on
vet.tors. A vector is a text file that contains numbers separated by delimiters. where a delimiter
is l11ythi~& that is not a number. For example.

1 2345, IIld
uf ny47 Mar 5 09:52

are both vectors. (The latter being the vector: 47 S 9 52,)

Here is an easy way to generate B Celsius-Fahrenheit conversion table using gas to generate the
vector of Celsius values:

1&5 -50,t100,110 I al·C,91S·C+3:%"

4

The OUtput is:

0.0 32
10 50
20 68
30 86
40 104
SO 122
60 1"4)

-'0 1'8
80 176
90 194
100 211

This is wba1 is ,ciDl 011:

PI -sO,CI00JlO We haw seeD zru in III earlier example. In this case the
seqwmc:.e suns It ~ tem:2iDates at 100, aDd the iDa"emat
between successive elements is 10.

We have also sea at Arswncnts to at are expressioDS.
Opermds in m expression are either CODSWlts or filenames. If
a Blcume is JiveD thatdaes not exist in the c:urre11t c1irec:ory it
is __ • the DIme for the SW1darcl input. In this example C
ref'ermces the samdard input. The ouq,ut is a vector with odc1
eiementl comiz:Ia Crom the SWlciarU input and even elements
beinla ClIDCtioc or the precedin,· 0<k1 element.

Here is III example tbal iIlUSU'ltes the use of vector titles and a1ulUline plots:

PI I title - yaBlst tID bateprsa > N
raet N >llN
NOt -r3 N >!UN
root -rU N >1l1.!N
plot -FN,a N Il..5N L~!UN I til

The resultiq piot is shown in Acme 3.

lOIIC. -rlt

plot - r.t. rrv

TiM associates a /UZ1J'W with a vector. In this case, ant tell
bagpn is associated with the vector output by ItU. The vec".or
is starec1 in me N.

Root outpUtS the "th root or each elemat on the inlNt. If
-fir is DOt JiVeD then the square root is output. Also, if the
input is a titled vector the title win be trmsformed to-reflect the
root CUIlcUOC.

This commasd pnCflleS a multiline plot with yrv· plotte4.
versus L The I option causes tick marla to appear instead of
arid tiDes.

!he next example ,mentes a histosram or ra.'tldom numbers.

·rad -11100 I title -y~OO rmdOlll alllDlMnal qsort I bucket I hut I cd

The O\lq)Ul is mowtl in MI\U'I 4.

iC s:s Ii • • - SII sa • • .,

\ • · · • • \ • \
\ ,
•
\
\
\ •

--

.. ,
;
ci

-...
c5

;!
1ft ..
II .,
ci -R
ci

!
d -!
0

N C

--
I
I
I , • ,
I , , , , ..

•
1ft

.,

..

..

I
I
I

»
~
5
; ...
I! -..

c
1
i
~

8 -
'&

~
II -= . ..
~ -•

i
c: -

.. .,
!
J
'"
l -•

5·

6

rud-DlOO

qsort

backet

RaM OUl>1~:Jts nndom numbers llSinl rand(3C). 1D this case
100 nw:cbers are output in tbe ranle 0 to 1.

Qmn sons the elemems of 3. vector U:, ,i!.;')I,,"':Xldina orc1er.

Budrn breaks th~ rmle of a vector into interVals and anmts
now many elcr&Wlts· from the veetot' fall into eadl interYll.
The output l-S a vectOr with oc:1cl elements bema the interval
boWldarie:s md even elements beiDa the countS.

Hisl bui!J.s a lti.stolr8m baRel 011 interval boundaries mel
cowm.

U Dnwbals B.nt tn. Beus

'l"hcre is a 1a:rp c!ass of mwinp caml'Oseci from boxes and text. Examples are str.1c:ture
charts. CO~011 mwinp. and flow diqrams. In graphia the lenera! procec1ure to
CODSU'UCt sud1 box dnwinp is the same .. !S that for numerical plotting. Namely sather and
traDSform the dau. builellDcl display the layout.

M an example. collSiclcr hierarchy chans. The command line

dtoc I Ttoc I td

ou~uts the drawinl showa in Fiaure S.

Droc output! a table of cotlWlCS tl:W c1e:scribes a cllrectory structure (Filure Sa). The aelds
from left to ri&hI are level number. cllrcctory aame. and the number of ordinary readable files
contained in the CiRc:ory. YrDC'reads a (texnzal) table of cOI1tentS and outputs a visual table of
contentS. or hierarchy chart. Input to vtoC c011Sists of a sequence of entries. each c1escrlbinl a
box to be drawn. An eDU')' cc11Sists of a level number, an optional style field. a text mini to
be placed in the box. and a mark field to II'peaf above the top nabt hand corner of the box.

5. WHERE TO GO nOM Hnl:

T1i~ best way to learn about graphic is to leg onto a PW'BIt..TN1X system and use it. Tutorials
exist for star(l) anel ,.d(lL [2} c:cnt2ins administrative information for graphia. Re!eren=
informatiOl1 can be foUDd in the PWBIUNIX User's Manual under the followinS manual pales:

ged(l) t the ~bical editor;
.G7.S<5), a descriptiOll of a IfIPhica1 primitive string:
zrqlria(1), the encrypcmt for grdpltic;
gutil(l), 3. ccUedicm of atility commaads;
milO). numeric:ai maaipuLaUOI1 and plotting commands;
lIk4000(I), I =Uec:icm of commanc1s to manipulate Tektronix 4000 series termiaa1s·, and
toe(1). routines to build. tables of =ntents.

,. J.UD.J:NCIS

[11 PWBlUNlX Uxr's MtlmMJJ - Release 2.0., BeU Laboratories. 1979.

(2) R. L. CheD and. D. E. Pinkston.. AdministratM In/omllltiOlf /0' PWBlGraphia. Bell
Laboruories Memorandum.. 1979.

Janua" 1980

(f"
\

FIgure 5. Director~ Structure For Gra~hIcs

D.
1.
1. 1.
1. Z.
2.
2. 1.
2.2.
2.3.
3.
4.
4. 1.
4.4.
S.
S. 1.
5.2.
6.

2
1
12
14
6
?
e
5

t a
3
3
22
105

• j' .. ,:'10 i
'--_.J I

---~---"""I , .. L. I " , .. •

E1 i .. ·1
r 1 QU"'II 50. V t.cIC CI.I~ to

7

Administrative Information For PWB/Graphics
Ruth L Chen

Diane E. Pinkston
Bell Laboratories

Piscataway. New Jersey 08854

1. INTRODUcrJON

This document is a reference guide for system administrators who are usina or establishing a
PWB/Graphics facility (1] on UNIXn.t. It contains information about directory strUcture.
installation. makefiles. hardware requirements. and miscellaneous facilities of PWB/Graphics.

1. PWB/Grapbics STll ucruRr
Fisure 1 contains a graphical representation of the directory structure of PWB/Graphics. In this
paper. the Shell variable SSRe will represent the parent node for ITaphics source. On
PWBlUNIX SSRC is lusr/srclcmd. If PWB/Graphics is copied onto other systems. SSRC could
have other values but should. in general. be the same as on PWB/UNIX.

The ~ra"hics command (see ~"h;csC1)) resides in lusr/bin. AU other PWB/Graphics
execulables are located in lusr/bin/graf. lusr/lib/,ra{ contains text for what is documentation
(see Illtri/(1 » and editor scripts for noc (see 10c(1)).

PWBlGraphics source resides below the director,' SSRC/grat. SSRC/lraf is broken into the
following subdiretories:·

• include - contains the following header files: debug.h. errpr.h. gs1.h. gpl.h. sctopt.h. and
util.h. .

• src - contains source code panitioned into subdirectories b~' subsystem. Each subdirecl0r~
contains its own Makefile (or Install file for whatis.dL

• glib.d - contains source used to build the graphical subroutine library in
SSRC/grafllib/glib.a.

• Stat.d - contains source for numerical analysis and plotting routines.

• tek4000.d - contains source for led (the graphical editor). Id (a Tektronix display
function). and other Tektronix dependent routines.

• gUlil.d - contains source for utility programs.

• toc.d· contains source for table of contents drawing routines.

• whatis.d - contains mm files and the install routine for quiCk-reference documentation.

• lib· contains glib.a which contains commonly used graphical subroutines.

• man - Figure 1 shows SSRC/graf/man as a dotted box because this directory does not exist
on PWB/UNIX systems where all manual pages reside in lusr/man. SSRC/graf/man IS

created if PWB/Graphics is copied on10 another system (see section 3.1. and will contain the
follOwing manual page files: graphics. 1. gutil.I. Stat.l. tek4000.1. toc.I. gect.} and IPS 5 .

3. INSTALLING PWB/Grapbics

Procedures for installing PWB/Qraphics:

Fi~ 1 PWB/Grcpnic8 St~ctu~.

- usa

8DI LIB SAC .
.

r l I rNI ! I ra; 0Cl l __ J, I .J tn_. __

CPJF

I I '-- . __ .:.1_ ..
I I • • • •

ncw::E. K UI • MAH •
I I •

I
, • , I

I • • t .• • :1 .•••

I
I I I

Q.JI.C srAT.D TD~C Ttr.D wrn.c ~rts.c

3

1. PWBIt1NIX I)'SIeIDS.

2.

- To build the entire Graphics system (i.e. III boxes except maD in F'apre 1), aec:ate
(0 superuser)

J:akemd snf
J:mkcmd resides in /usr/src. and aJImanuaJ pqes exist in lusr/me.

- To build. panicular subsystem, execute

.I:mkcmd craf lUb~m
- To build a particular comlftllnd within a subsystem, execute

J :mkc:md IJ'Bf subsystem C01ftlfJllM-IIIIIM

- See appendix for tape copying procedures.

- BuDd SSRClsratlUb aDd PWB/Graphics executables (dashed boxes in Fasure 1l by
typing:

make -r ssac/snf/paf.mk

- To make a panic:ular sraphics subsystem use the Make1ile in SSRClpal/src, "e.,.

cd SSaC/am/sre
make Albsyslem

- Note, there is a name conflict between PWB/Graphics plot and UNIXITS plor(l). The
recommended fix is to remove lusrlbin/plot and move the plot{I) fillerS from lust/lib
to lusr/bin.

A subsystem is either glib, Slat.. tek4000, IDe, IUtil or whtztis. Glib must exist before other
subsystems can be built. Write permission in lusr/bin and lust/lib is needed, and lbe
foUowin, libraries are assumed to exist:

/lib/libc.a

llib/libm.a

/usr/lib/maerosl[nt}pv/bmm.m-

Standard C library, used by all subsystems.

Math library, used j)y all subsystems.

Programmer's Workbench memorandum macros
for [norD§, used by the whatis subsystem.

The build process takes approximately one hour of system time. If the make must be
stopped. it is a ,00<1 idea to rebuild from the top Upon completion, the followiD& thiD&s
will be created aIid owned by bin.

/usr/lib/graf A clirectory (or data and editor scripts.

lusr I bini graf

lusr/binI graphics

A directory for executables.

Command entry poiDt for PWBIGrapbics.

Makefiles use executable Shell procedures ceo and cea. Ceo is used to compile C source
and install load modules in lusr/binlgraf. The ct:Q command compiles C propams and
loads object code into archive files.

Whatis.d contains source files for whatis and the executable r;OfJIIDI.lld Install.

bl!~tp..n cofflmandmMme

"
calls 1f1'OItIJ prcc!uce wIwis documeDwiOll for eJlPI1M1Jd-1flIIIV in/usrlUb/srat. To insW1
t!11 enUre wbads subsystem. _ the M.altcB1e iD SSllCl araIJ src. . '. , .

3.1 !Uk.m. PII"Ul1eCa'I

Makdies use various D1ICZ'O parameters. same at which caD be specified all the command. line
to l'Illdirecl out1)uts or mpur.s. Parameters speciBed in hiaher level MWBles are passed. tIJ lower
levels. Below is a Ust at speci8ab\e parameters (or Maleeflles CoUewed by their default values in
p&l"etllhais and m explUlatiol1 or their usqe.

1. SSRCliraI/sraf'.mk

BINt (/u.vlbiJI) iDsralWiCll direczGry (or the IfQphia commmci.

BOO (/usr/biaJlfIf) iluWlUicm direc:cory Car ather Il'IPhic =mmmds.

S»'C Uwu/srclcmd) parent directory (or sourco code.

2. $SRCI araIl srdMakeflle

BOO (/usr/biD) iDstalJatiOIl directory Car the ,,(lpma commanci.

BlNl (/usrlbiJllsraO insuUaIiOll directory Cor other IfIPhic commands.

LIB (/usr/Ublaraf) iDstIIladOll directory Cor wbads doc".uueatatiol1.

3. SSJ.ClgraClsrclstaLdiMake1Ue

BIN ('J .Jbild insWlaliOll directory (or executable =ramands.

4. SSIlClaraIlsrcltoc.dIMake£ile"

. BIN (.J JbiJI) iDsrallaUOIl directory for exec-.llable commands.

S. SSltClsnf/srcltek4000.dlMakeflle

BIN (.J .Jbia) iDmUaUOIl direaary for executable commands.

6. ~C/ srall srcI SUtil.dlMakefile

BIN (.J .Jbia) insraIlaliOll directory for exec:utabl.e =mma.ads.

The foUowinl example wiU make a new versiOll or the paphica1 edicor~ Ifd.. in /al/pmtldp/bm:_

d !4JI.C/lft\flSRltsk4000 ••
mW BIN-/al/paatldpllalD._

4. rntllONtX TDMINAL

The PWDiGraphics display f\uscioa uI md the JrIphica1 editor Jed both use Tektronix Series
4010 swfqe tubes. Below is a list or device coasicieraliollS aecemry Cor PWB/Oraphics
opewicm.

4.1 GGftJ Tule EJdr7

Wham a Temorux 4010 series ten:Dinal is C011Dectcd via • dec1icatec1line to UNIX, an el1try in
the system table (i21 /1J!JllsrcJandJletty.c) is sugesteC1. to store te.rmiDa1 status· information.
Thi.s Wde eDttJ appears as (oUows OIl PWBI~"NIX:

r

r1able '" - 4800/9600 - temoDix 4014-1
"'.7,
ANYP+ RA w+ m, ANYP+ ECHO+- OMOD+ m,
84800 .. 84800,
,033\014\OOOloaiD: .,

7. ','.
ANYP+ IlA w+ m. ANYP+ ECHO+- CIlMOD+ FFl,
B96OO, 19600.
,033\014\0001 •• ,

5

but OIl other systems it may have to be created and then referenced in lelCliDinab. StlDclard
parity IDd I form-feed delay are necasary. The form-feed delayaiVes ~e SCI:C4'D. time to clear
without losiDl iDformatioll. Below is an example of the termiuI· status IS printed by my.

speed 4800 baud
erase - '#'; tiU - t ••

even odd - nl echo - tabs ft'l

~.2 Sen, Optioas

. The SIaDdard strap options as listed below should be used (see th. Referenee Manual for the
Telaronix 4014 [3]):

1. LF d'ect • LF causes line-feed only.

2.
3.
4.

Cll eft'let - Cit caused carriaae relum only.

Del implies loy - Del key is interpreted IS Jow-order y value.

Graphics Input terminators • None.

4.3 Ialwaced Graphics Motlale

lbe E.nhanced Graphics Module of Tektronix terminals is required for PWB/Graphics. Tbe
EGM provides different lin. styles (solid. dotted, dot.dlsbed. dasbed., and long-dasbed). right
and left margin cursor location. and 12·bit cursor addr.ssm, (4096 by 4096 screen points).

5. MISCELLANEOUS INFOllMA nON

5.1 AueuOt/menls

The I1tlphiCS command provides a means of printin& out lDDounccments to users. To set up an
. anouncement facility, create a readable text file containinl the announcements named

BIlD011Dee. Also in /usr/biDIJl'&Phics redefine the Shell variable SGllAI to be lbe directory
pathname of lbe &DDoUDCt file.

5.% Use10s

The f1IZphics command also provides a means of monitorin& iu us. by listin& users in a file. To
set up a uselOS facUity create a writeable file named Ioa (in the same clirectory as announce
it umounccments are beiDa used) and redefine the SMII variable SGllAF within
lusr/biDlsraphics to specify the directory location. Eacb time a user executes graphics.. an entry
of the 108ill name. terminal number. and system date are recorded in .IIHloa.

5.3 IlHtnClecl EDviroameats

R.estricted environments ean be used to limit user access to the system (se: nh{l) (4}). In a
restricted environment, commands in /rbilland lusr/rbin are executed before those ill/bill and
/usr/biIl. The co11ltTW1ds ed, MV, rm., and m require restricted interface prosrams wbich do Dot
allow users to move Of remove files that begin with dot (.) [21.

6

Cmu:ins restricted envitoameats for ~hics:

1. Create I tes".ricted ltd commlllel in lusr/rbm, as (onows:

uec l'UrralD/cral/l_ -a

1. Cmte resuicte4 losiDs tor users or male I community top with a workinS directolT
Cradled throush .proAl.> set up for ada user. A resuictecl lop speciAes IbiDIrsh as
the termiJW interface prosram mel is crealect by addiDS IbiDlrsb to the end of the
/eu:lpasswc1 tile eDtr)' tor tbal toam.

3. Call1f2Phies -r from .prom ..

The e:OCUUOll or IfZphics -r dwiles SPATH to toOk far camm.mds in IrbiD Ulel/usr/rbin
aDd executes a restricted SMIL 'Ille -:I option is appended to the ted commanci so that the
escape Cram lid to UNIX (!colJlllldlld) will also use a restric:ted SW

Aa.~OWUDGDa~

We wish to thank Alan R.. Peuer for his valuable contributioDS. suuesUoas. and careful readies
of tbis ciocumeaL We also thaDJc M. J. Petrella (or his help in supplyiDa iDformalioa
concemi.ns the PWBItr.itX e:viroamel1C.

unUNCES

(1) Peuer. A. R. PWBlGtapnia OvrIiDi. Bell Laboratories. 1979.

(2) Peuella. M. 1. Rarrit2d .4«1$1 to PWBIUNIX - CRAfT. BeD laboratories. May 1979.

[3} Tektronix. Ustn's.'JallUlll/or 4014 atul40J<l-J Displtzy TmrriML July. 1974.

[4} PWBlUNU (ism's MalrUlll- Release 2.0.

,\.PPENDIX

Procedures for tape c:opyiD& (u superuser)

- Locale J1'I.phics source by cb'nsi"B directory to ISltC. the parent direc:tory •

.... Then copy source aDd llWluaJ ~ from the tape by tnriD&
cpl. -idm < /drr/mt4 (creates craO
cdJraf
epio -idm < IdeY/md (creates man)

7

This will result in the directory strueturc indicated by the soUd boxes plus SSllClsraf/mu in
MaDre 1. Necessary sulM!ireclories will be created (see cpio(l».

JlZmlllry 1980

/~
"'---

A Tatorlal Introduction to the Graphical Editor

AIIJ" R. FtIWI'
Bell Laboratories

Pisc:aCaway. New Jersey 08854

1. INTRODUCTJON

Ged is an interactive Jl'&phical editor used to display, edit, and construct drawiDp on
TelaroD.ix- 40 1 0 series display terminals. The drawinp are represented as a sequence of
objects in a token laDguase known as GPS (for Jl'&phical primitive strin&>. GPS is produced by
the drawina commands in PWB/Graphics (11 such as ,toe and plot as weU as by ged itself.

The examples in this tutorial iUUSU'ate how to CODStrUct and edit simple drawinp. Try them to
become familiar with how the editor works, but keep in mind that rH is intended primarily to
edit the output of other prosramJ rather than to CODSU'Uct drawinp from scratch. A summary
of editor commands and optioas is liven in Section 3.

As for notation, Uteral keysU'okes are printed in boldface. Meta-characters are also in boldface
and are surrounded by angled brackets. for example, <return> means return and <s,>
means space. In the examples, output from the terminal is printed in Dormalface type. In1iDe
comments are in normalface and are surrounded by parentheses.

1. COMMANDS

To start we will assume that you have successfully entered the sraphics environment (as
descri bed in graphics(1) of (21) while lOlled in at a display terminal. To enter led type

led <return>

After a moment the screen should be clear save for the led prompt, ., in the upper left comer.
The • tells you that fed is ready to accept a command.

Each command passes through a sequence of stales durina which you describe what the
command is to do. All commands pass through a subset of these stiles:

1. com1l'lQnd line

2. text

3. points

4. pivot

S. destiMlion

As a rule, each stage is terminated by typing <return> . The <retarD> for the last stage of a
command trigers execution.

1.1 The COIDJDud LlDe

The simplest commands consist only of a commDftd lin,. The command liM is modeled after a
conventional command line in the SheIL That is

commaM-lIDm, {-oprion(s)J (fiIeMmel <returD.>

? is an example of a simple command. It lists the commands and options understood by Ird.
Type

.? <return>

to generate the list.

(you type a question mark foUowed by a return)

1

A commanel is executed by typinl the 8rst character of its name. GetI will echo the fuD name
and wait for the rest of the command/1M. For example, • references the efd~ command. As
f~ consists oo.1y of SUSt 1, typinl <ret1lnl> causes the erase action to occur. Typinl
<rubout> after a a>ll1.I.'UaI1el name mel before the ft.ual <retiam> for the commanel abortS the
command. Thus wbile

-«ase < ret1lnl>

erases the display screen,

-.rase <rabout>

brinp the editor back to ...

f'oDowina the cammanc1-Dame, options may be entered. Options control such thinp as the
wic1th and style of tines to be draW'll or the me and orientation of text. Most options have a •

. default value that applies if a value (or the option is aot speci&ed. on the commanel line. The
set c:ommanel allows you to examine and modif'y the default values. Type

-set <return>

to He the current default values.

The value of an option is either of type incecef. character, or BooleUl. Boolean values are
repre3ente4 by + for true mel - for false. A default value is modified by provid.iJ1& it as an
option to the set command. For example, to cha.Dse the default text height to 300 units type:

-set -bJOO <retarD>

Arauments 011 the command liDe, but aot the com.mand-name, may be edited usinl the erase
and kill characters from the SMIL (Actually, this applies whenever text is oeing entered.)

1.1 C4MU1IcWJl Gtapllic:l1 O'jecss

Oravrinss are store4 as OPS in I diqltly burn intemal to the edilOt'. Typically. a drlwinl in ltd
is composed oC iastances oC three sraphical primitives: QI'(. lin,1- anel lCt.

1.2.1 GeMNlinr ta:r. To PUI a liDe oC ten on the display suee:l use the Tat c:ommand. FltSt
enter the COIM'lQM lin. (staat 1):

-Text <retRl1l>

Next enter lbe tll%l (stqe 2):

a Un. of test < remna> .

Aad then onter the staniDl point (or the text (st.qe 3):

< posAda. cursor> < reC1U'll >
PositiOt1ina of the JnPbic cursor is done either with the tbumbwheel knobs on the terminal
keyboarc1 or with an auxiliuy joystick. The < mu.na > establishes the location or the cunor to
be the stII1ina point for the tul suiDa. The Ter cammll14 ends at suae 3, so this <mura>
initiates the drawiDa or the tal suiq. .

Tar KCeptS· optioas to vary the a.a.sle. heilht. and tine width or the characters. mel to eicher
ca11tef or riaht justify the text objecL The text strirl& may SPI4 more thaD one line by escapinl
the <reiUnl> (i \<nfImI» to indicate COIltinuation. To illustrate some o(these
~bi1ities. U1 the foUowinI:

til Text -r < 1'et1Ilm:>
top\<nmm>
riSh! < retm'1:a:>
<poslti@D C1mJGB':> <nt1U'lll>
.. Text -dO <rcaum>
lower\< return >
left < !l'etum >
< position CW'SOr> < return >

(right justify text)

(rotlte text 90 degrees)

(pick a pOint below and left of the previous point)

top
rIght

Flllll't 1. Generating text objects .

3

2.2.2 Drawing lines. The Lines command is used to construct objects built from a sequence of
straight lines. It consists of stases 1 andl. Stage 1 is straightforward:

.. Lines possible options < return>

Lines accepts options to specify line style and line width.

Stage 3, tbe entering of poina. is more interesting. Points are referenced either with the sr&phic
cursor or by name. We have already entered a point with the cursor for the Text command.
For Lines it is more of the same. As an example, let us build a triangle:.

o Lines < retarn >
<position cursor> <5P>
< position cursoll' > < sp >
<position cursor> <5p>
<position cursor> <sp>
<return>

(locate the first point)
(the second point)
(the third point)
(back to the first point)
(terminate pointl, draw triangle)

Typing <5P> enters the location of the aosshairs as a point. Gedidentifies the point with an
integer and adds the loation to the current point se~ The last point entered can be erased by
typing # . The current point set can be cleared by typing • . On receiving the final < return >
the points are connected in numerical order.

2.2,1.1 A.ccessing poina by name. The points in the current point set may be·referenced by
name using the S operator. Sn references the point numbered n. Using S we can redraw the
triangle of Section 2.2.2 by entering:

.. Lines <retum>
<position cursor> <sp>
< position eunor> < sp >
<position C1U'SGf> <sp>
$0 < rnt'llf1l >
<1'~t'Ulm>

(reference point 0)

At the stan or eKl1 ~ommancl that includes staae 3. points. tbe current poinl set is empty. The
;xlint set CrolD the previous commancl is saved md is accessible 1.lS~& the. operator. • swaps
the points ill the previous poillt set widlthose in the current set. The - operator can .~ use4
to id~lil7 tbe currenl points. To Ulustrale. I.e us use the trianale just enlereel as tbe basis for
.m.win& a quadrilateral:

• Lines < ret1UD >

•
#I
<positfoD cunor> <sp>
SO <rlmm>
<rettm1>

(aa:aalbe previous paiDt sel)
(iclatiCy dle currenc paints)
(.. die last point)
(addln.w point)
(close tile ftaute)

s

rtpre 3. ~ccessinlthe previous point set

Individual points (rom the previous point set can be referenced by usinl the. operator with S.
We will build a trian&le that shares an edle with the quadrilateral:

-Lines < renam >
S.l <rehlm>
S.l < rehlm >
<sp>
SO <retum>
<return>

(reference point 1 Crom the previous point set)
(reference point 2)
(enter a new point)
(or 5.1, to close the filure)

poLMl I '''0'1 ~evlcus pel"" s."k-_____ nltV pcln"

FIpre 4. Referencinl points from the previous point set

A point can also be liven a Dame. The > operator allows you to wociate In upper case lener
with a point just entered. A simple example is:

6

-Lines 0< reC1Il1I>
< position c:unor> < sp>
>.-\
< poslUoa eunor> <sp>
<nt1U'D>

(auer a point)
(Dame the point A)

ta commands tha& foUow you c:aa DOW reference point A usinl the S operalOr. as in:

-Lines <retum>
SA ...
< positioQ cursor> < sp>
<rehlnl>

1.1.1 Dftlwi", curv.~ Curves are interpolated from a sequence of three or more pointS. The
..4/C: command ieneraw a circular arc liven three poinu on a circle. The arc is drawn sWtinl
at the first point. wouah the second paine. and enclinl at the third poinL A circle is an arc
with the ant and third points coincident. One way to draw a circle is thus:

-Ate < renam>
< positio1l cursor> < sp >
< pottlfoa cursor> < sp>
so <remm>
<retana>

1.J [dJdat ObjtcrJ

2.1.1 ..4ddnuing obj«a. An object is addresHcl by poinans to one of its htzndks. AU objects
bave an obj«t-Ittzndw. Usually the objla-handle is the first point entered wben the object was
createcL The obj.cu command ~ the lacaUol1 of each object·handle with an O. Type

-objects -y <ret1lrD>
to see the handles of all the objedS 011 the screen.
Some objecu, Linn ror example, also have point-Irtlndk,. Typically cact! of tbe poinu entered
when an object is COn5U'Ucted becomes a point-bandle. (Yea. an object-h&l1d1e is also a point.
handle.) The poina commmcl marks each of the point·banclles.

A baDdle is pointee! to by inc1udinl il within & ~d-4J'ttl. :\ deftnecl-area is generated eicber
with a command line opcioa or interac:ively usial the &r3phic C\USOt. As III example. try
cleleanl one of the obj«a you have crealed on the screen.

• Delete < rewm>
< positloa cursor> < Sf >
< POSitioD C1U'SOr> <sp>
<renam>
<teC1mI>

(above mel to the left of some object-handle)
(below and to the nih' of the object-handle)
(the deftnec1-area shou14 incluele the object-handle)
(it all is well. deie1l the objla)

The defined-area is oudined with do"ed lines. The reason ror the seeminaly extra < retlU'1l>
at the enel or the 1A •• commancl is to live you an opponunity to SlOp the command (usinl
< nllboaC » if' the cleAned-area is DO' quite nshr. Every command that acceptS a definec1-area
wiD wail Cor a conf!rmiD1 <reaam> . Use the fItT'II commanel to leI a Cresh copy of the
remainiQI objects.

Sotice thal c1e4ae4-area are en&erecl as poina in the same way that obj«a are createeL
Actually. a c1efblcdo uu ma, be pnented by &ivins anywhere from zero to 30 points.
Iupuninl zero poillCS is penic:ularl, useful to point ttJ & sinale lwldle. It (';feateS a small
c1er.w.ed~ueil. abOut me localiOl1 or the teraUfi"ldq <~I1> . UsiDI a zero point defined-area.
the DfIllUJ (;f7m.mAtKt woulcl be:

-Delete < retanl >
<positioa eusor>
<rehml>
<retDnl>

(CeDcer che crossbairs 011 the object-baIldle)
(termUwe che dehed-area)
(delete che objecl)

7

A defined-area can also be liven as a command line option. For example. 10 delele everythina
in Ibe display bu1fer live the Diverse option IOChe ~Ie. command. NOIe the cWference
between Ibe commands Delete -g and erase.

2.1.2 CJumging the locatio,. o/an ObJecL Objects are moved us1na the Mow command. Create a
circle usins Arc. then move it as follows:

-Move <ret&ml>
< posltlo11 cursor> <rehIrD >
<retnm>
<posltioD cursor> <rehInl>

(centered on the object-bandle)
(this establishes a JIiYot. marked with aD asterisk)
(this establishes a t/atiNl,;on)

The basic move operation relocates every point in each object addressed by the distance from
the piVOt to the destination. In this case we chose che pivot 10 be the object-haDdle. so
eft'ec:tively we moved che object-handle to the destinatioll poinL

2.1.1 ehtzngi", the sluJpe 0/ an objecL The BOJC command is a special case of ,eneratin, lines.
Given two points it creates a rectangle such that the two points are at opposite comers. The
sides of the rectangle lie parallel to the edaes of the screen. Draw a box:

-Box < fetum >
<positioD cursor> <sp>
< position CIlnor> < ret1Inl >

Box lenerates point-handles at each vertex of the rectangle. Use the points command to mark
the point-haDdles. The sbape of an object can be altered by movins point-handles. The Dext
example iUusuates one way to double the heiabt of a box.

-Move -p+ <rehU'll>
< posltloD cursor> < sp >
<positioD cursor> <mum>
<positloD cursor> <retanl>
<positioD cursor> <retqm>

(len of the box, betweeD the top and bottom edges)
(riabt of the box, below the·bollOm ed&e)
(oa the lOp edle)
(direCtly below on the bottom ed&e)

a

Fteue 5. Growina a box

Since the poinu flal is true. the operation is applied to each point-handle adciress.d. In this
case each pouu-handle widWl the cleaned-area is moved the distance (rom the pivot to the
destiDauon. If p were (alst oaly m. object·baDd1e would have been addressed.

1.J." Clrangi". eM sa. 0/ QIf obj«t. lb. size of aD object CaD ~ chaDaec1 usins the Scal4
command. Scal4 sales objecu by c:han8iaa the distanca (rom each haadh: of the object to a
pivot by a (actor. Put a line of text ora the screen and try the (oUowina Scak commands:

oScYe ··.,.t200 <nturD> ((adar is in p.erce.n&)
<posidoa C1USOr> <ret1lnl> (poim to object-bandle)
< pesldoa maor> <lItmI> . (set pivot to riabunost ch.atacler)
<1'rti!rn>

.. Scale fSO <retunl>
• <fltQna>
< positi"a eursor> < reftU'1I >
<raUlI'D>

(re{erence the previous deAned-area)
(set pivot above a character neat the middle)

,

1I-------pJvcu 'Ot" 5=_1 • ..,50

llpre 6. Scalin& text

A useful insisht into the behavior oC scalinl is to Dote that the positiOD of the pivot does Dot
chanae. Also observe that the defined-area is scaled to preserv\,} its relationship to the Jl'Bphical
objects.

The size of objects can also be cbaDled by moviDa poinl-baDdles. Generate a circle, tbis time
usinl the Circle command:

.Cin:le < renal'll >
< position cursor> < sp > (specify the center)
< position carsor> < return > (speciCy I point OD the drcle)

Circle cenerates an arc with the first and third point at the point specified on tbe circle. The
second point of the arc is located 180- around the circle. One way to chanle the size of the
circle is to move one of the point-handles (usml Move -pl.
The size of text cbaracters can be cbanled via a third mechanism. Character beisht is a
property of a line of text. The Edit command allows you to cbanle character beisht u follows:

-Edit -bheight <ret1inl> (height is in universe units. see Section 2.4)
<position cursor> <retum> (point to the object-handle)
<return>

2.J.$ ChDnging the orientation 0/ Gil object.. The orientation of III object can be altered usinl
RotIJte. ROlilte rotates eacb point of an object about a pivot by III aqle. Try the (oUowiq
rotations on a line of tett

-llotate -890 <retlU'D>
< position cursor> < retlml >
< position cursor> < return >
<return>

-Rotate - a-90 < return >
• <returD>
<position cursor> <return>
< retum >

(anale is in dearces)
(point to object-handle)
(set pivot to rishtmost character)

(reference previous defined-area)
(set pivot to I character near the middle)

10

I!!
~
\II .

~L~ a: T'£XT i P1 '9'0\ 'er Ro\",\. -.-;(]

i

Ftpn 7. RotatinS text

2.J.6 Chdlfgin, tM SlY~ 0' width o/Iina. In the currellt editor objectS ean be drawa (rom lines
ill any of ave styles (SGlicl., dashed. clot-4ash~ clottecl. lonl-dasbed) anel three widths (narrow,
medium. bold). Style is coauoUecl by the s option. width by w.

• Lines - W1I.sdo < ret1U1I >
<position cursor> <sp>
<position cursor> <sp>
<remm>

creates a. narrow width dotted tiae.

a Edit - wb.oSdd < ret1U1l>
< position cursor> <lIt1InI>
<ferma>

chanles the liDe to bolel dot-dashed.

1.4 VIew Ctl~.mana

(point to object-handle of the line)

All of the objectS we have ciraVitl lie wichin a Cutesian plane, 65,534 W1its on each axis,
mown as the wri"'J2. Thus (ar we have clisplayed oo1y a small portion of the wUverse on the
display screen. The command

-Yiew -a <teturil> .
displays the entire universe.

1.4.1 Windowing. A mappinl of a ponion of the universe onto the c1isplay scr=ea is called a
willdow. "[be extent or maSDiflcation of a window is altered usina the :00", commanc1. To bui14
a wind.ow that includes all of the objectS you have c1rawu type .

• ~ <rehlnl>
< pGSitioQ cursor> < sp>
<poslttoll CJU'S4r> <ret1Inl>
<rem.m> .

(above and to the left of my object)
(below and to the ri&hl, also euel poilltS)
(verify)

ZOO\'l'JifiI em be either ill or out. Zooming in, u with a C~fllen t~ ~ the masniAcatio.D .
of WI! window. The area Ot.UliJ.lc4 b}' poina is e:tl'a..,d~ to fill the screen. Zootl'liuS OUI

r
11

decreases masnification. "the current wiDdow is slvunk so that it fits within the debecl-uea.
The direction or the zoom is controned by the seD$C or the out fIac; • true IDUZIS zoom OUL

The location of a window is altered usina .,iew. View moves the window so that a liveli point. ill
the universe lies at & Jiven location on the screen.

onew < returD >
<posltlo. cunor> <retarD>
<posltioD eanor> <retana>

(locate a point ill the universe)
(locate a point on the scnen)

View also provides access to several predeflDed windows. We have already seen Tiew -g. Yiew
-b displays the home-window. The home-window is the window that circumscribes ill of the
objects in the universe. The result is similar to that of the example usUll zoo", liVeD earlier.

Lastly, usinl view you may select to window on a panicu1ar ,.,io,," The UDiverse is partitioned
into 25 equal sized resions. Regions are numbered from 1 to 2S bqinn;nl at the lower left and
proceedinl toward the upper ri&ht. Resion 13, the center of the universe, is used as the default
resion by drawiJll commands such as plot and vroc (see [1]).

l.! Other CoauDlUlds

2.S.1 Intmlaing with Jiles. To save the contents of the display buff'er copy it to a file usiDa the
write command:

.. write jilelUlme < return >
The contents of jileMme will be a GPS, thus it can be displayed usinl any of the device filters
(e.a., III [1]) or read back into g,d.

A GPS is read into the editor using the read command:

"read jilename <retum>

The GPS from jileMme is appended to the display buft'er and then displayed. Because I'ItId does
not chanae the current w,indow only some or none of the objectS read may be visible. A useful
command sequence to view everythiDi read is

-read -e- filename < retum >
-view -b <retum>

The display function of read is inhibited by setting the echo flac to false. Tiew -Is windows on
and displays the fuD display bu1fer.

The read command may also be used to input text files. The form is:

read [- oplio,,(s) 1 jiJeMme < retarn >
followed by a sinlle point to locate the first line 'of text. A text object is created for each line
of text from jiklUlme. Options to read are the same as those for the Text commanl1.

2.S.2 uavingMe edilor. Use the quit command to terminate an eI1itinl sessio~. As with the
text editor td, quit responds with! if the internal buffer has been modiflel1 since the last write.
A second fllit forces exit.

1.6 Other Usefal1'Jllq1 to how.

2.6.1 O"e Un, UNIX actlpe. As in ed, ! provides a temporary escape to the SMIL

2.6.2 Typing ahead. Most prozrams unl1er UNIX allow you to type input before the prosram is
ready to receive it. In leneral this is not the case with get!; characters tYPed before the
appropriate prompt are lost.

12

1.60J $,. .. , rhillP up. DisplayiDa the COIltcts or the dlspla, bd'er caa be time coasumiDa.
.. panicu1ad, it mw:ll teXlis bivalved. n. wise use of two fJap to ccmual wbat aets displa,eel

CIIl make liCe more plelSlllc tile echo Baa caatrals tehoiDs of aew additioas to the displa,
. buffer; the teD Oq coauals wh.ther text will be oudlDed or clraWIL

. 3. COMl'lfAl.~D SU'M:MUy

. III the sumr.aary, characEers actually typed are priDted ill boldface. Commlllc1 staaes are printed
ill iCllics. AlIUm.alS surroUDded bJ bna:kets are opc1oaai. Pueameses surrounc1lDa araumeats
seoamecI by "or" means that exactlJ oae ot the aquments must be aivea. For example. the
Dfll,. coUUDlllCl (Sect.ioa 3.2) accepts the aquments -uiv~, -new. md poilla.

3.1 Coa&ncl a :

An: [-cho,Jt7Ie, lri4th1 poilllJ

Box (-teho, .. tyle, 'lli4th) poilllJ

CIrcle [-tdlo,5t7le,lridlh] JIO/IIIJ

Hardwar.

LiDes

Ten

[-echo) _ /ItIllla

[-echo.Jtyie, wtc1th) poiIIIJ

[-aqle.echo.heipt,JIIi~ahcpoiDC.t.n.lriclthl tDI poilla

3.1 Edit a.m :

Delete (- (1IIIiverse or ~ew) or JIO/IIIS)

Edit (-aqle,echo,Jaeipc._le.wklIhJ (- (uivetSe or new) or poilla)

Kopy (-cho.DOiAts,xl PIIIJ piWIIdctt,.IiOll

~ve [-teho,JQild:uJ pollia piYoI darilUUiGlt

louie [-alle,echo,kapy,xJ PIID",., dGlllIIIIIOII

. Scale [-teha.taccor ,kopy ,x) pollia Ii'IOf dalhuJrtoll

J.J VI,,, commaads:

caoftIiDares poilllS

erase
Dew

objecr.s (- (1IIIiverse or Yiew) or poilllS)

poUlCl (- (~CI or lllliverse or new> or poilla >
Yin (- (!lame or aalverse or resioa)· or (-s) JIiYOt datilflltioll)

S (-.riew) JIOilla

zoom [--I poilllJ
3.4 01_ a_ :

quit

ra4 [-aqIe,tdlo.,JaeiPt.miclpoiDl.lialUPoiAl,Ien,lricltll) fiM~ (darilfGtiOIlJ

SIt [-UIle,edlo,lacuw ,laeishl,kapJ ,JII.idI'oiDl,JOiD~abqJOiDl,style.rext. trictth.lI:)

. writa If""'"

13

3.5 OpttODS:

Options specif'y parameters used' to COIlSU'UCt, edit. and view paphical objects. It. parameter
used by • command is not specited as aD optio". the deCault value Cor the parameter will be
~Theromwmcommmd~~mis

- optio" (,option]

wbere aption is key~tter{ wilwJ. Flap take on the 11Glws oC true or false indicated by + and -
respectively. It DO 'ltJ1w is liven with a fla&. true is assumed.

Object options:

male"

echo

factor"

beiaht"

kopy

midpoint

out

points

rishtpojot

styletypt

Specit'y an anale of n dearees.

When true. chanses to the display buffer will be echoed on the screen.

Specify a scale factor of n pe~nL .

. Specify heiaht of tal to be " universe-units (0 < ,,< 1280).

The commands Sallt and ROllltl can be used to either create new objects or
to alter old ones. When the kopy f1a& is true. new objects are created.

When trUe. use the midpoint of a text stria, to locate the strilll.

When true. reduce maanification durina room.

When true, operate on points otherw~eoperate on objects.

When true, use the rightmost point o(a text striaa to locate the striaa.

Specify line style to be one of foUowin, typU:
so solid
da duhed
dd dot-dashed
do dotted
Id 10Dl-dashed

text Most text is drawn as, a sequence of lines. This can sometimes be pajnf'uIly
slow. When the text flag is false, text strinp are outlined rather than drawn.

wiclthO'pt Specify line width to be one of foilowina types:

Area options:

home

relionn

universe

,;ew

D narrow
Dl medium
b bold

One way to find the center of a recWllular area is to draw the diaaonals of
the rectanale. When the s f1a& is true, defined-areas are drawn with their
diaaooals.

Reference the home-window.

Reference region fl.

Reference the universe-window.

Reference those objects currently in view.

14

.t. AC1"fOWUDGEMlYfS

GO barrows freel, (rom the icteas and cade of the za prcsram by D. J. Jackowski. The first
versiOD or '" was wriuea by D. E. Pinksloa. .

s. unu..~CES.
HI Feuer, A. I.; -PWBICirapbics Overview"; nt i9-3782-1. Juae 11. 1979.

(2) PWBlUN1X Uw'$.'4a,,1I4l Release 2.0, Bell Laboratories, 1979.

r

r

APPENDIX: SOME EXAMPLES or WHAT CAN BE DONE

1. Test C •• tered WltbJa I Circle

-Circle <cr> < positioa cunor> <., >
<posltioa cunar> <c,>
-Text -ID <cr>
solDe text <cr>
5.0 <cr>
<er>

(establish center)
(establish radius)
(text is to be centered)

(first point (rom previous set. i.e .• circle center)

some text

16

1. !KaJWll ~otes oa. Plot

-! au I plot -, >A <cr>

-read -e- A <cr>
-.iew -11 <c:r>
-Lines -sdo <c:r>
<POSiUOD cursor> <s,>
<POSiUOD eunor> <s,>
<pasitiOD ClU'SOr> <s,>

(11I1Ira&e a plo~ put it in Ble A)

(iapue tbe plot, but do aotdisplay it)
(window oa lhe plod
(draw doccect Uaes)

<cr> (eDel oC Lines)
·set -hUO,...,. <c:r> (sec lext blisht to 150, line widlh to narrow)
aText -r <cr> (riabcjusUf'y text)
threshold beyoad whleb aotbia. maners < cr>
<posiUo" cunor> <cr> (se& nshe point of text)
-Text -&-90 <c:r> (rotaUllext aeplive 90 desrees)
thresbo •• "YOD. wblcb Dotblal IUlten < cr>
< posidoD cursor> < cr> (set top ead of text)
-x <c:r> (find eeater of plod.
<POSitioD cursor> <sp> (top left of plod
<positiOD cursor> <cr> (bouom nsht)
-Text -bJOO,wm.m <u> (builel tiele: heisht 300, weishl medium. centered)

. SOME XlND Of PLOT < cr>
< POSiCtoD cursor> <cr> (sec tiele ccaterecl above ploc)

SOME KIND OF PLOT
lt~--~

r 3. Ie. pq. La,.... wlda Drawtap ... Text

-! rud -ll,D100 I dtle -., I-I qsort I backet I hlst -ril >A <cr>
(put a bistosram. reaiOD 12, or 100 nmdom numbers into me A)

-! raIld -ll,al00 I dtl. -., %·1 cason Iltacket I hist -r13 >1 <cr>
(put aaother histoIram, rqion 13, iDto61e B)

-! ed <cr> (create a file of text usina the text editor)
• <cr>
OD thls pale are two histOlJ'Ulls < er>
from. series of 40 <cr>
desqDd to Wuttst. the weakDess < cr >
oC mwtipllcadn coasnaeadal rudom Dllmber aeaeraton. <cr>
.pI \Dblla <cr> (mark end of pase)
• <cr>
we <cr> (put the text iDto file C)
156
q <cr>
-! Drof C I roo C <cr> (format C, leave the output in C)

-"iew -g <cr> (window OD the universe)
-read A <cr>
-read B <cr>

17

-read -h300.WD.m C <cr>
<position earsor> <cr>
-.,iew -h <cr>

(text heiaht 300. liDe weisht narrow, text centered)
(center text over two plots)
(window on the resultant drawins)

la

JtImI4IY 1980

• • • · : : • • • · • • • • • · i • : · i • :

i
ci

i
ci

: -, -... • d .
• -... loA • S ...

~

• · • · 0
• · • ..

t • ci
• • · : • • ! • i · · • • • • • • 0
• • · • I • • : • · • 'f • • · : ~ : :

• · • . • · • : • · · · •
...
2 .' 0 • • • • d

: · • : • · · • : i ' . •

...
;
ci

• I -i · · • • · : • • · • :

...
c:j

;!

! · • :

'" ci

I =-... • · · • • · • • • t • · • ! • : • · • ·
d -sa · Ii • · · · · • • : ! • ·
•
~ · i • • • •
0

• · • : · · • · • • · : I : ·
-~ •

1 Introduction.

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratories

Mu"ay Hill. New Jersey 07974

Lex helpS write programs whose control flow is directed by instances of regular expressions in the in­
put stream~. 't is well suited for editor-script type transformations and for segmenting input in prepara­
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and partitioning the
input into strings which match the given expressions. As each such string is recognized the correspond~
ing program r~agment is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments written by the user are executed in the ord­
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
match possible at each input point. If necessary, substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free­
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au­
tomatically to portable Fortran. It is available on the PDP-II UNIX, Honeywell OCOS, and IBM OS
systems. Lex is designed to simplify interfacing with Vace, for those with access to this compiler­
compiler system.

Table of Contents

1. Introduction. 1
2. Lex Source. 3
3. Lex Regular Expressions. 3
4. Lex Actions. 5
5. Ambiguous Source Rules. 7
6. Lex Source Definitions. 8
7. Usage. 8
8. Lex and Yacc. 9
9. Examples. 10

10. Left Context Sensitivity. 11
11. Character Set. 12
12. Summary of Source Format. 12
13. Caveats and Bugs. 13
14. Acknowledgments. 13
IS. References. 13

Lex is a program generator designed for lexical process­
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match­
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu­
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog­
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro­
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.

The user supplies the additional code beyond expres­
sion matching needed to complete his tasks, possibly in­
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
p\1rpose programming language employed for the user's
program fragments. Thus,a high level expression
language is provided to write the string expressions to be
matched while the user's freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to

Source - Lex - yylex

Input - I yylex I - Output

An overview or Lex

Fiaure 1

write processing programs in the same and often inap­
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, called "host
languages." Just as general purpose languages can pro­
duce code to run on different computer hardware, Lex
can write code in different host languages. The host
language is used for the output code generated. by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica­
tion may be directed to the combination of hardware and
host language appropriate to the task, the user's back­
ground, and the properties of local implementations. At
present there are only two host languages, cm and For­
tran (in the form of the Ratfor language [2]) . 'Lex itself
exists on UNIX, GCOS, and OS/370; but the code gen­
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user's expressions and actions (called
source in this memo) into the host general-purpose
language; the generated program is named yylex. The
yylex program will recognize expressions in a stream
(called input in this memo) and perform the specified ac­
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
[\tl+S

is all that is required. The program contains a %% delim­
iter to mark the beginning of the rules, and one rule.

lexical
rules

1
Lex

1

LEX-2

This rule contains a regular expression which matches
one or more instances of the characters blank or tab
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and
tab; the + indicates "one or more ; and the $ indi­
cates "end of line," as in QED. No action is specified, so
the program generated by. Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\tl +$
[\tl + printf(" ");

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, .and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or
for analysis and statistics gathering on a iexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Vacc (3). Lex programs recognize only regular
expressions; Vacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Vacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as­
signs structure to the resulting pieces. The flow of con­
trol in such a case (which might be the first half of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Vacc users will
realize that the name yylex is what Vacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4J. The automaton is
interpreted, rather than compiled, in order to save !opace.
The result is still a fast analyzer. In particular, the time

grammar
rules

1
Yace

Input- I yylex I-I yyparse I - Parsed input

Lex with Yace

Figure 2

taken by a Lex program to recognize and partition an in­
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in­
clude forward context require a significant amount of re­
scanning. What does increase with the number and com­
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user's fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun­
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac­
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcde/g, and the input stream is abcdejh, Lex will recog­
nize ab and leave the input pointer just before cd. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.

The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often
omitted. The second %% is optional, but the first is re­
quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules
represent the user's control decisions; they are a table, in
which the left column contains regular expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog­
nized. Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print
the message "found keyword INT" whenever it appears.
In this example the host procedural language is C and the
C library function print! is used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com­
pound, or takes more than a line, it should be enclosed in

LEX-3

braces. As a slightly more useful example, suppose it is
desired to change a number of words from British. to
American spelling. Lex rules such as

colour
mechanise
petrol

printf("color");
printf("mechanize");
printf("gas");

would be a start. These rules are not quite enough, since
the word petroleum would become gaseum; a way of deal­
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular expressions are very similar
to those in QED [5]. A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of
the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex­
pression

a57D

looks for the string a57D.
Operators. The operator characters are

,,\[]A_,?_+I()$/{}%< >

and if they are to be used as text characters. an escape
should be used. The quotation mark operator (") indi­
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz"++"

matches the string xyz+ + when it appears. Note that a
part of a string may be quoted. It is harmless but un­
necessary to quote an ordinary text character; the expres­
sion

"xyz++"

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac­
ter. the user can avoid remembering the list above of
current operator characters. and is safe should further ex­
tensions to Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is another. less readable, equivalent of the above

expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not
contained within [) (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an expression, \n must be used;
it is not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al­
ways a text character.

a.aNlCter cltusa. Oasses of characters can be
specified using the operator pair [). The construction
{ab} matches a single character, which may be ", b, or c.
Within square brackets, moitoperator meanings are ig­
nored; Only three characters are special: these are \ -
and A. The - character indicates ranges. For example,

[a-z0-9<> J

indicates the character class containing all the lower case
letters, the digitS, the angle brackets, and underline.
Ranges may be given in either order. Using - between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple­
mentation dependent and will· get a warning message.
(E.g., [O-z) in ASCII is many more characters than it is in
EBCDIC). If it is desired to include the character - in a
character class, it should be first or last; thus

(-+0-9)

matches all the digits and the two signs.
In character classes, the A operator must appear as the

first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

rabc)

matches all characters except a, b, or c, including all spe­
cial or control characters; or

ra-zA-Z)

is any character which is not a letter. The \ character pro­
vides the usual escapes within character class brackets.

Arbl""", character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

l\40-\176)

matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 176 (tilde).

Optlona' expressions. The operator 'I indicates an op­
tional element of an expression. Thus

LEX-4

ab?c

matches either ac or abc.
Repeated expressions. Repetitions of classes are indicat­

ed by the operators * and +.

is any number of consecutive a characters, including zero;
while

a+

is one or more instances of a. For example,

[a-z] +

is all strings of lower case letters. And

(A-Za-z] (A-Za-z0-9].

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages. •

Alter,."tlon and Grouping. The operator ! indicates
alternation:

(ab!ed)

matches either ab or cd. Note that parentheses are used
for grouping, although they are not necessary on the out­
side level;

would have sufficed. Parentheses can be used for more
complex expressions:

(ab!ed+)?(ef)*

matches such strings as abe/e/, efefe/, cde/, or cddd; but
not abe, abed, or abedef,

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are A and $. If the first character of an expression is
A, the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of A, complementation of character classes, since
that only applies within the [J operators. If the very last
character is $, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the loperator char­
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cd. Thus

is the same as

ab/\n

Left context is bandied in Lex b; ,1II,t conditio", as ex­
plained i.n s~tion 10. If It fUl~ Is only to be executed
when the Le.x a"'tom~tol'l intetpfeter is in start condition
x, the rule should be prefixed by .

<x:?,

using the angle bracket oper.tortharllcters. If we con­
sidered "being at the beginning of a line" to be start con­
dition ONE. then the • oI'QratorwQuld be equivalent to

<ONE>

Start conditions are explainc;dmore fu11y later.
Repelitlan, an(l ~Ji"'II()n'. The operators {} specify ei­

ther repetitions (if they enclO$enumbers) or definition
expansion (if they enclose a mtMe). For example

(digltl

looks fQr a prcxleftned string named di,tt and inserts it at
that p(lint in the expression. The definitions are given in
the first part of the Lex inpul. before the rules. In con­
tfMt.

!l(1,sl

looks for 1 to S oceurrenc~ of a.
Finally. initial "is special, being the separator for Lex

source segments.

4 Le~ A,.lons.

When !In expression written as above is matched, Lex
executes the corresponding aetion. This section describes
some fe\ltures of Lex which, aid in writing actions. Note
that there is a defaultacti6n, which consists of copying
the ,npulto the output. This is performed on all strings
not oth~rwise matched. Tilusthe Lex user who wishes to
absorb the entire illPut. without producing any output,
must provide rules to match everything. When Lex is be­
ing used with Vacc. this is the normal situation. One may
consider that actions are· what is done instead of cOPYing
the input to the output~ thUS, in· general, a rule which
merely copies can be omitted. Also. a character. combina­
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at­
tention to the gap in the rules.

One of the simplest things that ~n be done is to ignore
tile input. Specifying a C null statement, : as an action
causes this result. A frequent rule is

(\t\n]

LEX-S

which causes the three spacing characters (blank, tab. and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character L which indicates that the !lclion for this rule is
the action for the next rule. The previous example could
also have been written

. "
"\t"
"\n"

with the same result. although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
£a-zJ+. Lex leaves this text in an external character ar­
ray named yytext. Thus, to print the name found, a rule
like

[a-z] + printf("%s", yytext)~

will print the string in yytext. The C function p,lnf! ac­
cepts a format argument and data to be printed~ in this
case, the format is "print string" (% indicating data
conversion, and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-zJ + ECHO~

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac­
tion'? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches ,ead it will normally match
the instances of ,ead contained in b,r.ead or ,eatQust. to
avoid this, a rule of the form £a-zJ+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
yyien, of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a-zA-Z)+ {words++; chars += yyleng;\

which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext [yyleng-l]

in C or

yytext (yyleng)

in Ratfor.

LEX-6

Occasionally. a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou­
tines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input ex­
pression recognized is to be tacked, on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (11) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now. "
The argument 11 indicates the number of characters in
yytext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the 1 operator, but in a
different form.

Example: Consider ,a language which defines a string as
a set of characters between quotation (") marks, and pro­
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some­
what confusing, so that it might be preferable to write

\"r"]· (
if (yytext (yyleng- 11 '\ \ ')

yymoreO;
else

'" normal user processing
}

which will, when faced with a string such as "a~·d'"
first match the five characters "ab4.\; then .thecall to
yymore() will cause the next part of the string, "def, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled "nor­
mal processing".

The 'function »lessO might be used to reprocess text in
various circumstances. Consider the C problem of distin­
guishing the ,ambiguity of "--a". Suppose it is desired
to treat this as "=- a" but print a message. A rule
might be

.... - [a-zA-Z] (
printf("Operator (.... _) ambiguous\n");
yyless(yyledg-l);
... action for =- ...
}

which prints a message, returns the letter after the opera­
tor to the input stream, and treats the operator as "--".
Alternatively it might be desired to treat this as "= -a".
To do this, just return the ,minus sign as well as the letter
to the input:

=- [a-zA-Z] (
printf("Opetator (=-) ambiguous\n");
yyless(yyleng-2);
... action for =- ...
}

will perform the other interpretation. Note that the ex­
pressions for the two cases might more easily be writtel\

=-1 [A-Za-z]

in the first case and

=I-[A-Za-z]

in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole

'identifier, to observe the ambiguity. The possibility of
"==-3", however, makes

=-/r\t\n]

a still better rule.
In 'addition to these routineS,' Lex 'also permits access to

the I/O routines it uses. They are:

1) illput() which return~ the next input character;

2) output(c) which writes the character c on the out­
put; and

3) Ullput(C) pushes the charactercback onto the in-
put stream to be read later by input().

By default these routines are provided as, macro
definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named lexslif, .which is described below under
"Character Set". These routines define the relationship
between external files and internal: characters, and, must
all be retained or mo(lifiedconsistently., They may, be

, redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the ch,racter set used must be consistent in
all routines; a value of zero returned by input must mean
end of file; and th.e relationship between unput and input
must be retained or Jhe Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + • ? or $ or containing / implies
lookahead. Lookahead is also necessary to match 'an ex­
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on
backup.

Another Lex library routine" that the user will· some­
times want to redefine is yywrapO which is called wheh­
ever Lex reaches an end-of-file. If yjwrap returns a I,
Lex continues with the norm'al wrapup on end of input.
Sometimes, however, it is convenient to arrange for more
'input to active from a new source. ,In 'this case, the user
should provide Ii yywrap which arranges for :new input
and returns O. This instruttsLex td continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Notethat it is
not possible to write a normal rule which recognizes end­
of-file; the only aCCess to this condition is through
yywrap. In fact, unless a private version of input() is sup­
plied a file containing Ilulls cannot be handled, since a
value of 0 returned by input is taken to be end-of-file.

In Ratfor all of the standard I/O library routines, input,

r
LEX-7

output, unput, yywrap, and lexshl. are defined as integer
functions. This requires Input and »wrap to be called
with arguments. One dummy argument is supplied and
ignored.

S Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows:

n The longest match is preferred.

2) Among rules which matched the same number of
characters, the rule given first is preferred.

Thus, suppose the rules

integer
[a-z] +

keyword action ... ;
identifier action ... ;

to be given in that order. If the input is Integers, it is tak­
en as an identifier, because {a-zl + matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. tnt) will
not match the expression Integer and so the identifier in­
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .* dangerous. For exam­
ple,

'.*'

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is
of the form

which, on the above input, will stop after 'first~ The
consequences of errors like this are mitigated by the fact
that the. operator will not match newline. Thus expres­
sions like .- stop on the current line. Don't try to defeat
this with expressions like £.\nJ+ or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and he in an input text. Some

Lex rules to do this might be

she s++;
he h++;
\n I

where the last two rules ignore everything besides he and
she. Remember that ; does not include newline. Since
she includes he, Lex will normally nol recognize the in­
stances of he included in she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means "go do the next alternative."
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she (s+ +; REJECT;)
he (h++; REJECT;)
\n I

these rules are one way of changing the previous example
to do just that. After counting each expression, it is re­
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes he but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char­
acters were in both classes.

Consider the two rules

a[bc] +
a[cd]+

I ... ; REJECT;)
I ... ; REJECT;)

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string accb matches
the first rule for four characters and then the second rule
for three characters. In contrast, the input aced agrees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di­
gram to be incremented. the appropriate source is

%%
[a-z][a-z] (digram [yytext [0)) [yytext (1)) + +; REJECT;)
\n

where the REJECT is necessary to pick up a letter pair
beginning at every character. rather than at every other
character.

6 Lex Source Definitions.

Remember the format of the Lex source:

(definitions)
%%
(rules)
%%
(user routines}

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei­
ther in the definitions section or in the rules section.

Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the gen­
erated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and· should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which c'ontai" a com­
ment, are passed through to the generated pro­
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con­
vention.

2) Anything included between lines containing only
%(and %) is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor statements that must begin in
column 1, or copying lines that do not look like
programs.

3) Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out­
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %(and %), and begining in column 1, is as­
sumed to define Lex substitution strings. The format of
such lines is

name translation

and it causes the string given as a translation to be associ­
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the (name) syntax in a rule. Using (D) for the digits
and (E) for an exponent field, for example, might abbre­
viate rules to recognize numbers:

LEX-8

D
E
%%
(D)+
(D) +"."(D)*«(E»?
(D)." ."(D) + «(E)'1
(D) +(E)

[0-9J
[TEdeJ [- + J ?(D) +

printf ("integer");
I
I

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35. EQ. 1, which does not
contain a real number, a context-sensitive rule such as

[0-9J +I"."EQ printf("integer");

could be used in addition to the normal rule for integers.
The definitions section may also contain other com­

mands, including the selection of a host language, a char­
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed below
under "Summary of Source Format:" section 12.

7 Usage.

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li­
brary of Lex subroutines. The generated program is on a
file named lex.yy.e for a C host language source and
lex.yy.r for a Ratfor host environment. There are two
110 libraries, one for C defined in terms of the C stan­
dard library (6J, and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file ,,"R.

The C ptograms generated by Lex are slightly different
on OS/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli­
citly requested by making the first line of the source file
%C.

The Ratfor generated by Lex is the same on all sys­
tems, but can not be compiled directly on TSO. See
below for instructions. The Ratfor 110 library, however,
varies slightly because the different Fortrans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor 110 li­
brary, dependent on Fortran character 110, is quite slow.
In particular it reads all input lines as 80AI format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version of ~
input removes the padding (including any trailing blanks'
from the original input) before processing. Each source

file using a Ratfor host should begin with the "%R" com­
mand.

UNIX. The libraries are accessed by the loader flags
-llefor C and -lIr for Ratfor; the C name may be abbrevi­
ated to -II. So an appropriate set of commands is

C Host Ratfor Host

lex source lex source
cc lex.yy.c -11 -IS rc -2 lex.yy.r -llr

The resulting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex 110 routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input, output and unput are given, the
library can be avoided. Note the "-2" option in the Rat­
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands ~m GCOS are stored in the
"." library. The appropriate command sequences are:

C Host Ratfor Host

.Ilex source .Ilex source

.Icc lex.yy.c .Ilexclib h= .Irc a= lex.yy.r .Ilexrlib h=

The resulting program is placed on the usual file .program
for later execution (as indicated by the "h=" option); it
may be copied to a permanent file if desired. Note the
"a =" option in the Ratfor compile command; this indi­
cates that the Fortran compiler is to run in ASCII mode.

TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its
output make it rather inconvenient. To use the C ver­
sion, type

exec 'dot.lex.clistOex)' 'sourcename'
exec 'dot.lex.clist(cload)' 1ibraryname membername'

The first command analyzes the source file and writes a C
program on file lex.yy.text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on 'hr289.lcl.load') placing the object
program in your file Iibraryname.LOAD(membername) as
a completely linked load module. The compiling com­
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C­
compiled Lex programs on the OS system. Even so, al­
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro­
grams, leaving a file lex.yy.rat instead of lex.yy.text in
your directory. The Ratfor program must be edited, how­
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

exec 'dot.lex.clistOex)' 'sourcename'

LEX-9

exec 'dot.!ex.clist(rload)' 1ibraryname membername'

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes to
operate.

The steps involved in processing the generated Ratfor
program are:

a. Edit the Ratfor program.

1. Remove all tabs.

2. Change all lower case letters to upper case letters.

3. . Convert the file to an 80-column card image file.

b. Process the Ratfor through the Ratfor preproces­
sor to get Fortran code.

c. Compile the Fortran.

d. Load with the libraries· 'hr289.lrl.load' and
'sys1.fortlib'.

The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

8 Lex and Yacc •

If you want to use lex with Yacc, note that what Lex
writes is a program named yylex(), the name required by
Yacc for its analyzer. Normally, the default main pro­
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
yylex(). In this case each Lex rule should end with

return (token);

where the appropriate token value is returned. An easy
way to get access to Yacc'snames for tokens is to compile
the Lex output file as part of the Yacc output file by plac­
ing the line

include "Iex.yy.c"

in the last section of Yacc input. Supposing the grammar
to be named "good" and the lexical rules to be named
"better" the UNIX command sequence can ju~t be:

yacc good
lex better
cc y.tab.c -Iy -11 -IS

The Yacc library (-ly) should be loaded before the Lex li­
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.

As a trivial problem, consider copying an input file
while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

LEX-tO

%%
int k;

[0-9] + (
scanf(-I, yytext, "%d", &k);
if (k%7 0)

printf("%d", k+3);
else

printf("%d" ,k);

to do just that. The rule [0-9] + recognizes strings of di­
gits; scatU converts the digits to binary and. stores the
result in k. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

%%

-?[O-9] +

-?[0-9.] +

int k;
(
scanf(-I, yytext, "%d", &k);
printf("%d", k%7 === 0 ? k+3 : k);
}
ECHO;

[A-Za-z] [A-Za-z0-9] + ECHO;

Numerical strings containing a "." or preceded by a letter
will be picked up by one of the last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a ?b:c means "if a
then b else ~'.

For an example of statistics gatilering, here is a pro­
gram which histograms the lengths of words, where a
word is defined as a string of letters.

%%
[a-z) +

\n
%%
yywrapO
(
int i;

int lengs[lOO];

lengs [yyleng) + +;
I

printf("Length No. words\n");
for(j=O; i<IOO; i++)

if Oengsfil > 0)
printf("%5d% t Od\n" ,i,lengs [i));

return (I);
}

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement return(J); indicates that Lex is to per­
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con­
tinue reading and processing. To provide a yywrap that

never returns true causes an infinite loop.
As a larger example, here are some parts of a program

written by N. L. Schryer to convert double precision For­
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a [aA]
b [bB]
c [cC]

z [zZ]

An additional class recognizes white space:

W [\t]*

The first rule changes "double precision" to "real", or
"DOUBLE PRECISION" to "REAL".

(d) (o}(u}(b}(I} Ie} {WI {pI {r}{e}{c} {i} Is} {i}{o}{n} (
printf(yytext [0] = = 'd'? "real" : "REAL");
}

Care is taken throughout this progrtlm to preserve the
case (upper or lower) of the original program. The condi­
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica­
tions to avoid confusing them with constants:

'T 0] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as "beginning of line, then five blanks,
then anything but blank or zero." Note the two different

. meanings of A. There follow some rules to change double
precision constants to ordinary floating constants.

[0-9) + (W}{d)(W)[+-] ?(W)[0-9) + I
[0-9] + {W}"."{W}{d}{Wj [+-]?{W} [0-9] + I
"." {W)[0-9] + {W}{d)(W}[+-] ?{W}[0-9l+ (

/* convert constants */
for(p=yytext; *p!= 0; p++)

{
if (*p == 'd'l*p == '0')

*p= + 'e'- 'd';
ECHO;
}

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or D. The
program than adds e'- 'ti', which converts it to the next
letter of the alphabet. The modified constant, now
singJe-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long
list is given here).

r

r

LEX-II

{d}{sHi}{n}
{d}{c}{o}{s}
{d} Is} {q} {r} It}
{d}{a} It} {a} In}

{d}{f}{l}{o} {alit} printf("%s" ,yytext + 0;

Another list of names must have initial d changed to ini­
tial a:

{d}{I}{o}{g}
{d}{I}{0}{g}10
{d} {m} Ii} In} I
{d} {m} {a} {x} I

I
I
I
{
yytext[O] = + 'a' - 'd';
ECHO;
}

And one routine must have initial d changed to initial r.

{d} l{m}{a}{c}{h} {yytext [0] = + 'r' - 'd';

To avoid such names as dsinx being detected as instances
of dSin, some final rules pick up longer words as
identifiers and copy some surviving characters:

[A-Za-z] [A-Za-z0-9]*
[0-9]+
\n

I
I
I
ECHO;

Note that this program is not complete; it does not deal
with the spacing problems in Fortran or with the use of
keywords as identifiers.

10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex­
ample, a compiler preprocessor might distinguish prepro­
cessor statements and analyze them differently from ordi­
nary statements. This requires sensitivity to prior con­
text, and there are several ways of handling such prob­
lems. The A operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa­
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con­
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user's action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat­
ed with a start condition. It will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter c.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
Aa {flag = 'a'; ECHO;}
Ab {flag = 'h'; ECHO;}
"c {flag = 'c'; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)
(
case 'a': printf("first"); break;
case 'h': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;
}
}

should be adequate.
To handle the same problem with start conditions, each

start condition must be introduced to Lex in the
definitions section with a line reading

%Start name I name2 ...

where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The conditions
may be referenced at the head of a rule with the < >
brackets:

< name I> expression

is a rule which is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume
the normal state,

LEX-12

BEGIN 0;

resets the initial condition of the Lex automaton inter­
preter. A rule may be active in several start conditions:

< name l,name2,name3 >

is a legal prefix. Any rule not beginning with the < >
prefix operator is always active.

The same example as before can be written:

%START AA BB CC
%%
Aa
Ab
AC

\n
<AA>magic
<BB>magic
<CC>magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN O;}
printf("first");
printf("second");
printf("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user's code.

11 Character Set.

The programs generated by Lex handle character 110
only through the routines Input, output, and un put. Thus
the character representation provided in these ,routines is
accepted by Lex and employed to return values in yytext.
For internal use a character is represented as a small in­
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the 110 rou­
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-acljusted characters; thus
the routine lexs/if is called to change the representation
delivered by Input into a right-adjusted integer. If the
user changes the 110 library, the routine lexs/if should
also be changed to a compatible version. The Ratfor li­
brary 1/0 system is arranged to represent the letter a as
in the Fortran value IHa while in C the letter a is
represented as the character constant 'a'. If this interpre­
tation is changed, by providing 1/0 routines wh~ch
translate the characters, Lex must be told about it, by gIV­

ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con­
taining only "%T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.
Thus the next example maps the lower-and upper case
letters together into the integers 1 through 26, newline
into 27 + and - into 28 and 29, and the digits into 30
throush 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T
1 Aa
2 Bb

26 'l:L
27 \n
28 +
29
30 0
31 1

39 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char­
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac­
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou­
tines for input and output run almost unmodified on
UNIX, GCOS, and OS/370, they are not really machine
independent, and would not work with CDC or Bur- .~
roughs Fortran compilers. The user is of course welcome)
to replace Input. output, unput and lexs/if but to replace
them by completely portable Fortran routines is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave Input and output as routines that read
with 80AI format, but replace lexs/if by a table lookup
routine.

11 Summary of Source Format.

The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1) Definitions, in the form "name space transla­
tion" .

2) Included code, in the form "space code".

3) Included code, in the form

%{
code
%}

r

LEX-13

4) Start conditions, given in the form

%S namel name2 ...

5) Character set tables, in the form

%T
number space character-string

%T

6) A language specifier, which must also precede any
rules or included code, in the form "%C" for C
or "%R" for Ratfor.

7) Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an ar­
ray size and x selects the parameter as follows:

Letter
p
n
e
a
k

Parameter
positions
states
tree nodes
transitions
packed character classes

o output array size

Lines in the rules section have the form "expression ac­
tion" where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

x
"x"
\x .
[xy]
[x-z]
("x]

'x
<y>x
x$
x?
x*
x+
x~
(x)
xly
/xx)
x/m,n}

the character "x"
an "x", even if x is an operator.
an "x", even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from the definitions section.
m through n occurrences of x

13 Caveats and Bugs.

There are pathological expressions which produce ex­
ponential growth of the tables when converted to deter­
ministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used unput to change
the characters forthcoming from the input stream. This is
the only restriction on the user's ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non­
supported features are REJECT, start conditions, or vari­
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outside of
Lex is patterned on Yacc and the inside on Aho's string
matching routines. Therefore, both S. C. Johnson and A.
V. Aho are really originators of much. of Lex, as well as
debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

IS References.

1. B. W. Kernighan and D. M. Ritchie, The C Pro­
gramming Language, Prentice-Hall, N. J. (1978).

2. B. W. Kernighan, Rat/or: A Preprocessor for a
Rational Fortran, Software - Practice and Experi­
ence, 5, pp. 395-496 (1975).

3. S. C. Johnson, facc: Yet Another Compiler Com­
piler, Computing Science Technical Report No.
32, 1975, Bell Laboratories, Murray Hill, NJ
07974.

4. A. V. Aho and M. J. Corasick, F;fficient String
Matching: An Aid to Bibliographic Search, Comm.
ACM 18, 333-340 (1975).

5. B. W. Kernighan, D. M. Ritchie and K. L.
Thompson, QED Text Editor, Computing Science
Technical Report No.5, 1972, Bell Laboratories,
Murray Hill, NJ 07974.

6. D. M. Ritchie, private communication. See also
M. E. Lesk, The Portable C Library, Computing
Science Technical Report No. 31, Bell Labora­
tories, Murray Hill, NJ 07974.

r

r

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

M4 is a macro processor available on UNIXt and GCOS. Its primary use
has been as a front end for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited for functional languages like Fortran,
PLII and C since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro proces-
sors, including

• arguments
• condition testing

• arithmetic capabilities

• string and substring functions

• file manipulation

This paper is a user's manual for M4.

July 1, 1977

tUNIX is a Trademark of Bell Laboratories.

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor -
replacement of text by other text.

The M4 macro processor is an exten­
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [1].
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric "token" (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it
is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari­
ous useful operations; in addition, the user

can define new macros. Built-ins and user­
defined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

Usage

On UNIX, use

m4 (files)

Each argument file is processed in order; if
there are no arguments, or if an argument is
'- " the standard input is read at that point.
The processed text is written on the stan­
dard output, which may be captured for sub­
sequent processing with

m4 (files) > outputfile

On GCOS, usage is identical, but the pro­
gram is called ./m4.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff. name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter). stuff
is any text that contains balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,

define(N, 100)

if (i > N)

defines N to be 100, and uses this "symbolic

constant" in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define
has arguments. If a macro or built-in name
is not followed immediately by '(', it is
assumed to have no arguments. This is the
situation for N above; it is actually a macro
with no arguments, and thus when it is used
there need be no C ..) following it.

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For
example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con­
tains a lot of N's.

Things may be defined in terms of
other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefuied? Or,
to say it another way, is M defined as N or
as 100? In M4, the latter is true - M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 100; it's just as if
you had said

define(M, 100)

in the first place.

If this isn't what you really want, there
are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define(M, N)
define(N,100)

Now M is defined to be the .string N, so
when you ask for M later, you'll always get
the value of N at that time (because the M
will be replaced by N which will be replaced
by 100).

- 2 -

Quoting

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes ' and ' is not expanded
immediately, but has the quotes stripped otT.
If you say

define(N, 100)
define(M, 'N')

the quotes around the N are stripped otT as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips otT one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out­
put, you have to quote it in the input, as in

'define' = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it's seen;
that is, it is replaced by 100, so it's as if you
had written

define(100, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn't have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)

define('N', 200)

In M4, it is often wise to quote the first
argument of a macro.

If ' and' are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote([, »
makes the new quote characters the left and
right brackets. You can restore the original
characters with just

changequote

There are two additional built-ins
related to define. undefine removes the
definition of some macro or built-in:

undefine{'N')

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefine (' define')

but once you remove one, you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys­
tems, so you can tell which one you're
using:

ifdef{'unix', 'define(wordsize,16Y)
ifdef{'gcos', 'define(wordsize,36Y)

makes a definition appropriate for the partic­
ular machine. Don't forget the quotes!

ifdef actually permits three arguments;
if the name is undefined, the value of ifdef
is then the third argument, as in

ifdef('unix', on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing - replacing one
string by another (fixed) string. User­
defined macros may also have arguments. so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, $1 == $1 + 1)

generates code to increment its argument by
1:

bump(x)

is

x==x+l

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro

- 3 -

name itself is $0, although that is less com­
monly used.) Arguments that are· not sup­
plied are replaced by null strings, so we can
define a macro cat which simply concaten­
ates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no correspond­
ing arguments were provided.

Leading unquoted blanks, tabs, or
newlines that occur during argument collec­
tion are discarded. All other white space is
retained. Thus

define (a, b c)

defines a to beb c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma "protected" by parentheses does not
terminate an argument. That is, in

define(a, (b,c»

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is incr, which increments its
numeric argument by 1. Thus to handle the
common programming situation where you
want a variable to be defined as "one more
than N", write

define(N, 100)
define(Nl, 'incr(N)')

Then Nl is defined as one more than the
current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)

unary + and-
** or (exponentiation)
* I % (modulus)
+ -
== !=
!
&or&&
lor II

< <- > >=
(not)
(logical and)
(logical or)

Parentheses may be used to group opera­
tions where needed. All the operands of an
expression given to eval must ultimately be
numeric. The numeric value of a true rela­
tion (like 1 >0) is 1, and false is O. The
precision in eval is 32 bits on UNIX and 36
bits on GCOS.

As a simple example, suppose we want
M to be 2**N + 1. Then

define(N, 3)
define(M, 'evaI(2**N + 1)')

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

File Manipulation
You can include a new file in the input

at any time by the built-in function include:

include (filename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value
of include (that is, its replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude ("silent
include") says nothing and continues if it
can't access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com­
mand. M4 maintains nine of these diver­
sions, numbered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert com-

- 4 -

mand; in particular, divert or divert (0)
resumes the normal output process;

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of undivert is not the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the
number of the currently active div.ersion.
This is zero during normal processing.

System Command
You can run any program in the local

operating system with the syscmd built-in.
For example,

syscmd (date)

on UNIX runs the date command. Normally
syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func­
tion mktemp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

Conditionals
There is a built-in called ifelse which

enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string ~ oth­
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns "yes" or "no" if they
are the same or different.

define(compare, 'ifelse($I, $2, yes, no)')

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the
input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the
result is c. Otherwise, if d is the same as e,
the result is f. Otherwise the result is g. If
the final argument is omitted, the result is
null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of
the string that makes up its argument. Thus

len (abcdef}

is 6, and len«a,b» is 5.

The built-in substr can be used to pro­
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero), and is n charac­
ters long. If n is omitted, the rest of the
string is return~d, so

substrCnow is the time', 1)

is

ow is the time

If i or n are out of range, various sensible
things happen.

index(sl, s2) returns the index (posi­
tion) in sl where the string s2 occurs, or
-1 if it doesn't occur. As with substr, the
origin for strings is O.

The built-in translit performs charac­
ter transliteration.

translit<s, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit (s, aeiou, 12345)

- 5 -

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don't have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit (s, aeiou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it up
to and including the next newline; it is use­
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not
part of the definition, so it is copied into the
Qutput, where it may not be wanted. If you
add dnl to each of these lines, the newlines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert(-l)
define(. ..)

divert

Printing

The built-in errprint writes its argu­
ments out on the standard error file. Thus
you can say

errprint ('fatal error')

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don't forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the page
number where it is described.

3 changequote (L, R)
1 define (name, replacement)
4 divert (number)
4 divnum
5 dnl
5 dumpdef('name', 'name', ...)
5 errprint(s, s, .. .)
4 eval (numeric expression)

- 6 -

3 ifdef('name', this if true, this if false)
5 ifelse(a, b, c, d)
4 include (file)
3 incr(number)
5 index (s 1, s2)
5 len (string)
4 maketemp(. .. XXXXX ...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefine('name')
4 undivert(number,number, ...)

Acknowledgements

We are indebted to Rick Becker, 'John
Chambers, Doug McIlroy, aI1d especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve­
ments. We are also deeply grateful to
Weythman for several substantial contribu­
tions to the code.

References

[I] B. W. Kernighan and P. J. Plauger,
Software Tools. Addison-Wesley, Inc.,
1976.

r

r

1. PREFACE

UNIX Remote Job Entry User's Guide

A. L. Sabsevitz
K. A. Ke//aman

Bell Laboratories
Piscataway, New Jersey 08854

A set of background processes running under UNIX· support remote job entry to IBM System/360
and 1370 host computers. RJE is the communal name for this subsystem. *. UNIX communicates
with IBM's Job Entry Subsystem by mimicking an IBM 360 remote multileaving work station. The
UNIX User's Manual page rje(8) summarizes its design and operation. The manual also
contains a description of the send(1) command, which is the user's primary method of
submitting jobs to RJE, and rjestat(1), which allows the user to monitor the status of RJE and to
send operator commands to the host system. This guide is a tutorial overview of RJE and is
addressed to the user who needs to know how to use the system, but does not need to know
details of its implementation. The two following sections constitute an introduction to RJE.

2. PIRELIMINARIES

To become a UNIX user, you must receive a login name that identifies you to the UNIX system.
You should also get a copy of the UNIX User's Manual. This contains a fairly complete
description of the system and includes the section How to Get Started, which introduces you to
UNIX; you should read that section before proceeding with this guide.

In order to begin using RJE, you need only become familiar with a subset of basic commands.
You must understand the directory structure of the file system, and you should know something
about the attributes of files: see cd(1), chmod(1), chown(1), cp(1), In(1), Is(1), mkdir(1), mv(1),
rm(1). You must know how to enter, edit, and examine text files: see cat(1), ed(1), pr(1). You
should know how to communicate with other users and with the system: see mail(1), mesg(1),
who(1), write(1). And, finally, you might have to know how to describe your terminal to the
system: see ascii(5), stty(1), tabs (1).

3. BASIC RJE

Let's suppose that you have used the editor, ed(1), to create the file, joblOle, that contains your
job control statements (JeL) and input data. This file should look exactly like a card deck,
except that for convenience alphabetiC characters may be in either upper or lower case. Here is
an example:

• UNIX is a Trademark of Bell Laboratories.

.. In this paper, RJE refers to the UNIX facilities and not to the Remote Job Entry feature of IBM's HASP or JES
subsystems.

2 Remote Job Entry User's Guide

$ cat jobfile
Ilgener job (9999,r740),pgmrname,class=x usr=(mylogin,myplace)
Iistep exec pgm=iebgener
Iisysprint dd sysout=a
Iisysin dd dummy
Ilsysut2 dd sysout=a
Iisysut1 dd •

fi rst card of data

last card of data
I.

To submit this job for execution, you must invoke the send(1) command:

$ send jobfile

The system will reply:

10 cards
Queued as lusr/rje/rd3125

Note that send tells you the number of cards it submitted and reports the file name that contains
your job in the queue of all jobs waiting to be transmitted to the host system. Until the
transmission of the job actually begins, you can prevent the job from being transmitted by doing
a chmod 0 on the queued file to make it unreadable. For our example, you could say:

chmod 0/usr/rje/rd3125

When your job is accepted by the host system, a job number will be assigned to it, and an
acknowledgement message will be generated. This indicates that your job has been scheduled
on the host system. Later, after the job has executed, its output will be returned to the UNIX
system. You will be notified automatically of both of these events: if you are logged in when RJE
detects these events, and if you are permitting messages to be sent to your terminal (see
mesg(1». The following two messages will be sent to you (still using the example above) when
the job is scheduled and when the output is returned, respectively:

Two bells
12:18:42 gener job 384 _. rd3125 acknowledged

Two bells
12:21:54 gener job 384 -- la1/user/rje/prntO ready

Two bells, with an interval of one second between them, precede each message. They should
be interpreted as a warning to stop typing on your terminal, so that the imminent message is not
interspersed with your typing.

If you are not logged in when one of these events occurs, or if you do not allow messages to be
sent to your terminal, then the notification will be posted to you via the mail(1) command. You
can prevent messages directly by executing the mesg(1) command, or indirectly by executing
another command, such as pr(1), which prohibits messages for as long as it is active. You may
inspect (by invoking the mail command) your mail file (/usr/mailllogname) at any time for
messages that have been diverted. Setting your MAIL variable to the name of your mail file will
cause the shell to notify you when mail arrives. For this example, the mail might look as follows:

r
\

r

Remote Job Entry User's Guide 3

$ mail
From rje Mon Aug 1 12:20:361977
12:18:42 gener job 384 -- rd3125 acknowledged

?d
From rje Mon Aug 1 12:21 :55 1977
12:21 :54 gener job 384 -- /a1/user/rje/prntO ready

?d

The job acknowledgement message performs two functions. First, it confirms the fact that your
job has been scheduled for eventual execution. Second, it assigns a number to the job in such
a way that the number and the name together will uniquely identify the job for some period of
time.

The output ready message provides the name of a UNIX file into which output has been written
and identifies the job to which the output belongs (see Is(1»:

$ Is -I prntO
-r--r-xr-- 1 rje 1184 Aug 1 12:21 prntO

Note that rje retains ownership of the output and allows you only read access to it. It is intended
that you will inspect the file, perhaps extract some information from it, and then promptly delete
it (see rm(1»:

$ rm -f prntO

The retention of machine-generated files, such as RJE output, is discouraged. It is your
responsibility to remove files from your RJE directory. RJE output files may be truncated if the
output exceeds a set limit. This limit is tunable by the system administrator. Output beyond the
current limit will be discarded, with no provision for retrieval. If the output were truncated in the
previous example, the second notification message would have been:

Two bells
12:21 :54 gener job 384 -- /a 1 /user/rje/prntO ready (truncated)

The user should also be aware that RJE attempts to keep a set number of blocks free on any file
system it uses. This number is also tunable by the system administrator. Warning messages or·
suspension of certain functions will occur as this limit is approached.

The most elementary way to examine your output is to cat it to your terminal. The Appendix of
this document shows the result of listing the output of our sample job in this way. Because UNIX
has no high volume printing capability, you should route to the host's printer any large listings of
which you desire a hard copy.

The structure of an output listing will generally conform to the following sequence:

HASP log
jcl information
data sets
HASP end

Normally burst pages will not be present. Single, double, and triple spacing is reflected in the
output file, but other forms controls, such as the skip to the top of a new page, are suppressed.
Page boundaries are indicated by the presence of a blank (space character) at the end of the
last line of each page.

The big file scanner bfs(1) or the context editor ed(1) provide a more flexible method than
cat(1) for examining printed output; bfs can handle files of any size and is more efficient than ed
for scanning files.

RJE is also capable of receiving punched output as formatted files (see pnch(5)); this format
allows an exact representation of an arbitrary card deck to be stored on the UNIX machine.

4 Remote Job Entry User's Guide

However, there are few commands that can be used to manipulate these files. You will probably
want to route your 'punched output to one of the host's output devices.

4. SEND COMMAND

The send(1) command is capable of more general processing than has been indicated in the
previous section. In the first place, it will concatenate a sequence of files to create a single job
stream. This allows files of JCL and files of data to be maintained separately on the UNIX
machine. In addition, it recognizes any line of an input file that begins with the character N as
being a control line that can call for the inclusion, inside the current file, of some other file. This
allows you to send a top level skeleton that "pulls" in subordinate files as needed. Some of
these may be "virtual" files that actually consist of the output of UNIX commands or Shell
procedures. Furthermore, the send command is able to collect input directly from a terminal,
and can be instructed to prompt for required information.

Each source of input can contain a format specification that determines such things as how to
expand tabs and how long can an input line be. The manual page for fspec(5) explains how to
define such formats. When properly instructed, send will also replace arbitrarily defined
keywords by other text strings or by EBCDIC character codes. (These two substitution facilities
are useful in other applications besides RJE; for that reason, send may be invoked under the
name gath to produce standard output without submitting an RJE jOb.)

Two options of send that everyone should be acquainted with are: the ability to specify to which
host computer the job is to be submitted, and a flag that guarantees that a job will be
transmitted to the host computer in order of submission (relative to other jobs submitted with the
same flag). To run our sample job on a host machine known to RJE as A, we would issue the
command:

$ send A jobfile

When no host is explicitly cited, send makes a reasonable choice.

To insure that a job will be transmitted in order of submission, set the -x flag:

$ send -x jobfile

This flag should be used sparingly. The complete list of arguments and flags that control the
execution of send can be found in send(1).

5. JOB STREAM

It is assumed that the job stream submitted as the result of a single execution of send consists
of a single pb, i.e., the file that is queued for transmission should contain one JOB card near the
beginning and no others. A priority control card may legitimately precede the JOB card. The
JOB card must conform to the local installation's standard. At BISP, it has the following
structure:

Iiname job (acct[, .•.]),pgmrname[,keywds=?] [usr= •.. J

6. USER SPECIFICATION

A "usr" specification is required on print or punch output that is to be delivered to a UNIX user.

usr=(login,place,[level])

where login is the UNIX login name of the user, level is the desired level of notification (see end
of this section for an explanation), and place is as follows:

A. If place is the name of a directory (writable by others), then the output file is placed there
as a unique prnt or pl"lch file. The mode of the file will be 454.

B. If place is the name of an existing, writable (by others), non-executable (by others) file,
then the output file replaces it. The mode of the file will be 454.

r

r

Remote Job Entry User's Guide 5

C. If place is the name of a non-existent file in a writable (by others) directory, then the
output file is placed there. The mode of the file will be 454.

O. If place is the name of an executable (by others) file, then the RJE output is set up as
standard input to place, and place is executed. Five string arguments are passed to
place. For example, if place is a shell procedure, the following arguments are passed as
$1 000 $5:

1. Flag indicating whether file space is scarce in the file system where place resides. A
o indicates that space is not scarce, while 1 indicates that it is.

2. Job name.
3. Programmer's name.
4. Job number.
5. Login name from the "usr=o 0 ." specification.

A ":" is passed if a value is not present. The current directory for the execution of place
will be set to the directory containing place. The environment (see environ (7)) will contain
values for LOGNAME and HOME based on the login name from the "usr=. 0 0" specification,
and a value for TZ. Since the login name supplied on the "usr=.o 0" specification cannot
be believed for security purposes, the UIO will be set to a reserved value.

E. In all other cases, the output will be thrown away.

The place value must not be a full pathname, unless it refers to an executable file (see 0
above). For cases A, B, and C above (and case 0, if a full pathname is not supplied), the name
of the user's login directory will be used to form a full pathname.

The "usr=o 0 0" field may occur anywhere within the first 100 card images sent and within the
first 200 output images received by the UNIX system. The only restriction is that it be contained
completely on a single line or card image. Therefore, the "usr=o 0 0" field may be placed on a
JOB card or comment card. It may also be passed as data.

For redirection of output by the host, a "usr=o .. " card, if not already present, must be supplied
by the user. This can be done by placing a job step that creates this card before your output
steps.

Messages generated by RJE or passed on from the host are assigned a level of importance
ranging from 1 to 9. The levels currently in use are:

3 transmittal assurance
5 job acknowledgement
6 output ready message

The optional level field of the "usr=o 0 0" specification must be a one or tWO-digit code of the
form mw. A message from the host with importance x (where x comes from the above list) is
compared with each of the two decimal digits in level. If x:2:w and if the user is logged in and is
accepting messages, the message will be written to his or her terminal. Otherwise, if x>m, the
message will be mailed to the user. In all other cases, the message will be discarded. The
default level is 54. You should specify level 1 if you want to receive complete notification, and
level 59 to divert the last three messages in the above list to your mailbox.

7. MONITORING RJE

RJE is designed to be an autonomous facility that does not require manual supervision. RJE is
initiated automatically by the UNIX reboot procedures and continues in execution until the
system is shut down. Experience has shown RJE to be reasonably robust, although it is
vulnerable to system crashes and reconfigurations.

Users have a right to assume that when the UNIX system is up for production use, RJE will also
be up. This implies more than an ability to execute the send(1) command, which should be
available at all times; it means that queued jobs should be submitted to the host for execution

6 Remote Job Entry User's Guide

and their output returned to the UNIX system. If a user cannot obtain any throughput from RJE,
he or she should so advise the UNIX operators.

The rpstat(1) command, invoked with no arguments will report the status of all RJE links for
which a given UNIX system is configured. It may sometimes also print a message of the day
from RJE.

$ rjestat
RJE to B operating normally.
RJE to A down, reason: IBM not responding.

A host machine may be reported to be not responding to RJE because it is down, or because of
its operator's failure to initialize the associated line, or because of a communications hardware
failure.

Rpstat also has the ability to send operator commands to the host machine and retrieve the
responses generated by the commands. Refer to the rpstat(1) manual page for a complete
description of this command.

Remote Job Entry User's Guide

Appendix-Sample JES2 Output Usting

$ cat rje/prntO
14.40.31 JOB 384 $HASP373 GENER STARTED - INIT 26 - CLASS X - SYS RRMA
14.40.32 JOB 384 $HASP395 GENER ENDED

------ JES2 JOB STATISTICS ------

1 AUG 77 JOB EXECUTION DATE

54 CARDS READ

76 SYSOUT PRINT RECORDS

o SYSOUT PUNCH RECORDS

0.01 MINUTES EXECUTION TIME
1 IIGENER JOB (9999,R740),PGMRNAME,CLASS=X JOB 384

••• USR=(MYLOGIN,MYPLACE)
2 IIIEBGENER EXEC PGM=IEBGENER
3 I/SYSPRINT DO DUMMY
4 IISYSIN DO DUMMY
5 IISYSUT2 DO SYSOUT =A
6 IISYSUT1 DO •

II
IEF2361 ALLOC. FOR GENER IEBGENER
IEF2371 DMY ALLOCATED TO SYSPRINT
IEF2371 DMY ALLOCATED TO SYSIN
IEF2371 JES ALLOCATED TO SYSUT2
IEF2371 JES ALLOCATED TO SYSUT1
IEF1421 GENER IEBGENER - STEP WAS EXECUTED - COND CODE 0000
IEF2851 JES2.JOB0384.SOO102 SYSOUT
IEF2851 JES2.JOB0384.510101 SYSIN
IEF3731 STEP IIEBGENERI START 77242.1440

7

IEF3741 STEP IIEBGENERI STOP 77242.1440 CPU OMIN 00.13SEC SRB OMIN 00.01SEC VIRT 36K SYS 188K

....... SERVICE UNITS=0000174 SERVICE RATE=0000268 SERVICE UNITs/SECOND

........ PERFORMANCE GROUP=005

....... EXCP COUNT BY UNIT ADDRESS
IEF3751 JOB iGENER I START 77242.1440
IEF3761 JOB /GENER I STOP 77242.1440 CPU OM IN 00.13SEC SRB OM IN 00.01SEC

••• 0. .. SERVICE UNITS=0000174 SERVICE RATE=0000268 SERVICE UNITS/SECOND
........ APPROXIMATE PROCESSING TIME= .01 MINUTES
****... EXCPS=OOOOOOOOO
** PROJECTED CHARGES= .01

first line of data

last line of data

.OSNS2 REL 3.7 JES2. END JOBNAME=GENER

.OSIVS2 REL 3.7 JES2. END JOBNAME=GENER

.OSIVS2 REL 3.7 JES2. END JOBNAME=GENER
$ rm -f rje/prntO

BIN=R740
BIN=R740
BIN=R740

JOB #=384 PGMRNAME
JOB #=384 PGMRNAME
JOB #=384 PGMRNAME

RJE Administrative Guide 1

UNIX Remote Job Entry Administrative Guide

1. INTRODUCTION

This document reflects the Plexus implementation of RJE, and is based on the Remote Job
Entry Administrative Guide from Bell Laboratories, by M. J. Fitton.

1.1 Purpose

This document is intended to augment the existing body of documentation on the design and
operation of UNIX* IBM RJE1. The reader should be familiar with rje(8), and the UNIX Remote
Job Entry User's Guide, April 1, 1980. There will be assumptions made concerning allocation of
responsibilities between UNIX and IBM operations, hardware configuration, etc. Although these
assumptions may not fully apply to your location, they should not interfere with the intent of this
document.

The major topics discussed in this paper are as follows:

• SETTING UP - hardware requirements and RJE generation on the IBM and UNIX systems.

• DIRECTORY STRUCTURES - the controlling RJE directory structure and a typical RJE
subsystem directory structure.

• RJE PROGRAMS - programs that make up an RJE subsystem.

• UTILITY PROGRAMS - utility programs that are available for debugging or tracing.

• RJE ACCOUNTING - the accounting of jobs done by RJE, and some methods for using this
accounting data.

• TROUBLE SHOOTING - error recovery and procedures for identifying and fixing RJE problems.

1.2 Facilities

Discussions will focus on a hypothetical RJE connection between a UNIX system, pwba, and an
IBM 370/168, referred to as B. We also assume that pwba is connected to an IBM 3701158,
referred to as C. The UNIX machine emulates an IBM System/360 remote multi-leaving work
station. For more information on the multi-leaving protocol, see Appendix B of OSIVS MVS
JES2 Logic (SY24-6000-1).

2. SETTING UP

2. ~ Hardware

To use RJE on a Plexus Sys3 UNIX system, one Intelligent Communications Processor (ICP) is
needed per remote line to drive the RJE line.

2.2 IBM Generation

The following applies to the host IBM system. The remote line to the UNIX machine should be
described as a System/360 remote work station. The following parameters must be initialized
and must agree with their counterparts on the UNIX machine:

• Number of printers (NUMPR) - the number of logical printers (up to 7)

• UNIX is a Trademark of AT&T Bell Laboratories.

1. In this document, RJE refers to the UNIX facilities of rje(8) and not to the Remote Job Entry feature of IBM's HASP or
JES2 subsystems.

2 RJE Administrative Guide

• Number of punches (NUMPU) - the number of logical punches (up to 7)

• Number of readers (NUMRD) - the number of logical readers (up to 7)

The JES2 parameters for our hypothetical connection to IBM system B are as follows:

RMTS S/360,LlNE=S,CONSOLE,MULTI,TRANSP,NUMPR=S,
NUMPU = 1 ,NUMRD=S,ROUTECDE=S

RS.PR1 PRWIDTH=132
RS.PR2 PRWIDTH = 132
RS.PR3 PRWIDTH=132
RS.PR4 PRWIDTH=132
RS.PRS PRWIDTH=132
RS.PU1 NOSUSPND
RS.RD1 PRIOINC=O,PRIOLlM= 14
RS.RD2 PRIOINC=O,PRIOLlM=14
RS.RD3 PRIOINC=O,PRIOLlM=14
RS.RD4 PRIOINC=O,PRIOLlM=14
RS.RDS PRIOINC=O,PRIOLlM=14

System pwba is referenced by line S (UNE=S), remote S (RMT5). It is defined as having a
console, for the rjestat(1) command, five printers, one punch, and five readers. Although you
may have up to seven printers or punches, the total number of printers and punches may not
exceed eight. The line is described as a transparent (TRANSP), multi-leaving (MULTI) line. The
remaining information describes attributes associated with the printers, punches and readers.

Normally, separator pages are transmitted with IBM print files. UNIX RJE does not remove
separator pages. To prevent transmission of separator pages on printer 1 of the previous
example, its attributes would be: ~

RS.PR1 PRWIDTH=132,NOSEP

NOSEP should be included for all printers when separator pages are not desired. Most IBM
systems can also be told via a console command to cancel transmission of separator pages on
printers. This can be done from the IBM system console, or from the remote UNIX machine via
rjestat. For example, the following JES2 command would cancel separator page transmission on
printer 1:

$TRS.PR1,S=N

2.3 UNIX Generation

If the RJE remote dialing facility is to be used, the administrator must make sure that the
definition for RJECU in the file lusr/include/rje.h is the device to be used for remote dialing.
RJECU is defined to be Idev/dn2 when distributed. To compile and install RJE, the normal
make(1) procedures are used (see Setting up UNIX). Once an RJE subsystem has been
installed, the remote line must be described in the configuration file lusr/rje/lines. This file as it
exists on our hypothetical system pwba is as follows:

B pwba /usr/rje1 rje1 vpmO S:S:1 1200:S12:y
C pwba /usr/rje2 rje2 vpm1 1:1:1 1200:S12

lusr/rje/lines is accessed by all components of RJE. Each line of the table (maximum of 8)
defines an RJE connection. Its seven columns may be labeled host, system, directory, prefix,
device, peripherals, and parameters. These columns are described as follows:

• host - The IBM System name, e.g., A, B, C. This string can be up to S characters long.

• system - The UNIX System name (see uname(1)).

• directory - the directory name of the servicing RJE subsystem (e.g., lusr/rje2).

RJE Administrative Guide 3

• prefix - the string prepended to most files and programs in the directory (i.e., rje2).

• device - the name of the controlling Virtual Protocol Machine (VPM) device, with /dev/
excised. In order to specify a VPM device, all VPM software must be installed, and the proper
special files must be made (see vpm(4) and mknod(1M».

• peripherals - information on the logical devices (readers, printers, punches) used by RJE.
There are three subfields. Each subfield is separated by ":" and is described as follows:

1. Number of logical readers.

2. Number of logical printers.

3. Number of logical punches.

Note: the number of peripherals specified for an RJE SUbsystem must agree with the number
of peripherals that have been described on the remote machine for that line.

• parameters - this field contains information on the type of connection to make. Each
subfield is separated by ":". Any or all fields may be omitted; however, the fields are
positional. All but trailing delimiters must be present. For example, in

1200:512: ::9-555-1212

subfields 3 and 4 are missing, but the delimiters are present. Each subfield is defined as
follows:

1. space - this subfield specifies the amount of space (5) in blocks that RJE tries to
maintain on file systems it touches. The default is 0 blocks. Send(1) will not submit
jobs and rjeinit issues a warning when less than 1.55 blocks are available; rjerecv
stops accepting output from the host when the capacity falls to 5 blocks; RJE becomes
dormant, until conditions improve. If the space on the file system specified by the user
on the "usr=" card would be depleted to a point below 5, the file will be put in the job
subdirectory of the connection's home directory rather than in the place that the user
requested.

2. size - this subfield specifies the size in blocks of the largest file that can be accepted
from the host without truncation taking place. The default is no truncation. Note that
UNIX has a default one Mega-byte file size limit.

3. badjobs - this subfield specifies what to do with undeliverable returning jobs. If an
output file is undeliverable for any reason other than file system space limitations (e.g.,
missing or invalid "usr=" card) and this subfield contains the letter y, the output will be
retained in the job subdirectory of the home directory, and login rje is notified via
mail(1). If this subfield has any other value, undeliverable output will be discarded.
The default is n.

4. console - this subfield specifies the status of the interactive status terminal for this
line. If the subfield contains an i, the status console facilities of rjestat will be inhibited.
In all cases, the normal non-interactive uses of rjestat will continue to function. The
default is y.

When multiple readers have been specified, jobs that are submitted for transmission to IBM are
assigned to the reader with the fewest cards on it. Each reader gets an equal amount of
service. This prevents smaller jobs from having to wait for a previously submitted large job to be
transmitted. When multiple printers or punches have been specified, returning jobs get aSSigned
to free printers (or punches) allowing smaller output files to bypass large output files.

Deciding how many peripherals to specify depends on the use of that RJE subsystem. If an RJE
subsystem is heavily used for off-line printing (i.e., output does not return to the UNIX machine),
the administrator would want to specify multiple readers, but would not have a need for multiple
printers or punches.

4 RJE Administrative Guide

3. DIRECTORY STRUCTURES

3.1 Controlling Directory

The controlling directory used by RJE is lusr/rje. This directory contains RJE programs for use
by separate RJE SUbsystems (e.g., rje1, rja2, rja3), and the shell queuer's directory. Most RJE
programs existing here have been compiled such that each RJE subsystem shares the text of
these programs. A snapshot of this directory on our hypothetical machine is as follows:

-rwxr-xr-x 2 rje rje 4068 Mar 4 10:42 cvt
-rw-r--r-- 1 rje rje 42 Apr 10 09:52 lines
-rwxr-xr-x 2 rje rje 15096 Apr 10 13:01 rjedisp
-rwxr-xr-x 2 rje rje 2328 Mar 4 10:21 rjehalt
-rwxr-xr-x 2 rje rje 10396 Apr 15 10:07 rjeinit
-r-x------ 2 rje rje 785 Apr 8 09:00 rjeload
-rwsr-xr-x 2 rje rje 5040 Mar 27 09:28 rjeqer
-rwxr-xr-x 2 rje rje 4072 Apr 1 15:40 rjerecv
-rwxr-xr-x 2 rje rje 3888 Mar 27 09:35 rjexmit
-rwsr-xr-x 1 root rje 2696 Mar 27 14:42 shqer
-rwxr-xr-x 2 rje rje 5920 Apr 2 15:47 snoop
drwxr-xr-x 2 rje rje 80 Mar 25 13:26 sque

RJE subsystems are generated in their own directory by linking the program names in this
directory to the appropriate names in the subsystem directory. The programs are described in
Section 4. The file lines is the configuration file used by all RJE subsystems. The directory
sque is used by the Shell queuer (shqer). This directory contains:

-rw-r--r-- 1 rje rje 0 Feb 14 14:04 errors
-rw-r--r-- 1 rje rje 0 Feb 14 14:04 log ~

When shqer has work to do, the files log and errors will be of non-zero length, and temporary
files (tmp*) will also appear here. For a complete description of shqer and these files. see
Section 4.8.

3.2 Subsystem Directory

The RJE subsystem described in this section maintains the connection between pwba and IBM
B, and will be referred to as rje1. The first line of lusr/rje/lines (see Section 2.3) describes rje1.
As noted in this file, rje1 runs in the directory lusr/rje1. A snapshot of this directory is as
follows:

~

RJE Administrative Guide 5

-rw-r--r-- 1 rje rje 4990 Apr 15 08:30 acctlog
-rwxr-xr-x 2 rje rje 4068 Mar 4 10:42 cvt
-rw-r--r-- 1 rje rje 0 Apr 15 04:02 err log
drwxrwxrwx 2 rje rje 192 Apr 10 09:51 job
-rw-r--r-- 1 rje rje 194 Apr 15 08:11 joblog
-rw-r--r-- 1 rje rje 0 Apr 15 08:11 resp
-rwxr-xr-x 2 rje rje 15096 Apr 10 13:01 rje1disp
-rwxr-xr-x 2 rje rje 2328 Mar 4 10:21 rje1halt
-rwxr-xr-x 2 rje rje 10396 Apr 15 10:07 rje1init
-r-x------ 2 rje rje 785 Apr 8 09:00 rje1load
-rwsr-xr-x 2 rje rje 5040 Mar 27 09:28 rje1qer
-rwxr-xr-x 2 rje rje 4072 Apr 1 15:40 rje1recv
-rwxr-xr-x 2 rje rje 3888 Mar 27 09:35 rje1xmit
drwxr-xr-x 2 rje rje 144 Apr 15 08:30 rpool
-rwxr-xr-x 2 rje rje 5920 Apr 2 15:47 snoopO
drwxrwxrwx 2 rje rje 176 Apr 10 13:03 spool
drwxr-xr-x 2 rje rje 224 Apr 10 13:56 squeue
-rw-r--r-- 1 rje rje 0 Apr 15 10:30 stop
-rw-r--r-- 1 rje rje 274 Mar 7 20:25 test job

The programs rjeh, evt, and snoopO are linked to the corresponding programs in /usr/rje, and
are described in detail in Section 4. The remaining files and their uses are as follows:

• acctlog - accounting data is stored in this file, if it exists. This file is the responsibility of the
RJE administrator. For a discussion of its uses, see Section 5.

• err log - used by rjel to log errors. It can be useful for debugging rje1 problems.

• joblog - used by rjelqer and rjestat to notify rje1xmit that a job (or console request) has
been submitted. It also contains the process-group number of the rjel processes. The
program evt can be used to convert this file to a readable form.

• resp - contains console messages received from IBM B. These messages can be
responses for rjestat, or IBM responses to submitted jobs (Le., on reader messages). This
file is truncated if it grows to a size greater than 70,000 bytes.

• stop - indicates that rje 1 halt has been executed. The existence of this file indicates to
rjestat that rjel has been halted by the operator.

• test job - a sample job that can be submitted to test the rje1 subsystem. Originally, the job
control statements may have to be changed to suit your IBM system.

When rje1 terminates abnormally, the file dead should appear in this directory. This file contains
a short message indicating why rje 1 is not operating, and is used by rjestat to report the
problem. The remaining directories and their uses are as follows:

• job - used to save undeliverable jobs, if the proper parameter has been specified in
lusr/rje/lines. The sample job described above is also delivered to this directory. This
directory should be mode 777.

• rpool - contains temporary files used to gather output from the remote machine. These files
are named pr* (for print output files), and pu* (for punch output files). Once a complete file
has been received, the file is dispatched in the proper way by rjeldisp.

• spool - used by send to store temporary files to be submitted to the remote machine. This
directory must be mode 777.

• squeue - used by rjel to store submitted files until they are transmitted. The program
rje1qer is used by send to move the temporary files in the spool directory to this directory.

6 RJE Administrative Guide

4. RJE PROGRAMS

All programs described below, with the exception of rjestat, exist in lusr/rje. These programs
are "shared text" and are linked (except shqer) to the proper names in each subsystem
directory. The names described below are generic; the programs in the rje2 directory would be
rje2qer, rje2init, etc.

Each available RJE subsystem occupies three process slots. The slots are used for rje?xmit,
the transmitter; rje?recv, the receiver; and rje?disp, the dispatcher. One additional process slot
is used for shqer, regardless of how many subsystems are available.

Each RJE subsystem tries to be self-sustaining, and logs any errors encountered during normal
operation in its errlog file.

4.1 Rjeqer

This program is used by send to queue files for transmission. When invoked, it performs the
following steps:

1. Moves the temporary pnch(5) format file in the spool directory to the squeue directory.

2. Writes an entry at the end of the file joblog containing:

• the name of the file to be transmitted

• the submitter's user-id

• the number of card images in the file

• the message level for this job

The file job log is used to notify rjexmit of work to be done.

3. Notifies user that file has been queued.

Send determines which host system is desired, and invokes the proper rje?qer by getting the
prefix from the lines file (e.g., if sending to IBM C from our machine, rje2qer would be invoked).

4.2 Rjeload

This program is used to start an RJE subsystem. Its prefix determines which subsystem to start
(e.g., rje2/oad starts rje2). To start the RJE subsystems on our machine, the following
commands are executed in letc/rc when changing to init state 2 (multi-user):

rm -f lusr/rje/sque/log
su rje -{; "/usr/rje1 Irje110ad icO"
su rje -{; "/usr/rje2/rje210ad ic1"

The file lusr/rje/sque/log is removed to ensure the correct operation of shqer. When invoked,
rje/oad performs the following steps:

1. Finds the proper ICP device by using the minor device number of the corresponding VPM

device (the first two bits).

2. Uses dn/d(1) to perform the following:

• reset the ICP

• load the VPM script (letc/rjeproto)

• start the ICP running

3. Executes rje?init to start the rje? processes (e.g., rje2/oad executes rje2init).

4.3 Rjehalt

This program is used to halt an RJE subsystem. To halt rje2 on our machine, lusr/rje2lrje2halt
is executed. This should be done in the shutdown procedure for your machine to ensure

r

RJE Administrative Guide 7

graceful termination of RJE. Rjehalt will allow only those users with permission to halt an RJE
subsystem. Rjehalt uses the header on the file joblog to get the process-group of the RJE
subsystem processes. This group is signaled to terminate. When a/l processes have
terminated, rjehalt sends a "signoff" record to the host machine. This signoff record is taken
from the file signoff (ASCII text), if it exists, otherwise a "/*signoff" record is sent. On
completion, rjehalt creates the file stop in the subsystem directory, that causes rjestat to report
that RJE to the corresponding host has been stopped by the operator.

4.4 Rjeinit

This program initializes an RJE subsystem. It is used by rje/oad, and can be used to restart a
subsystem if the VPM script has previously been started. Rjeinit should only be executed by
user rje. Rjeinit failS if there are less than 100 blocks or 10 inodes free in the file system. It
issues a warning if there are less than 1.5X blocks, (where X is the first field in the parameters
for that line), or 100 inodes free in the file system. If rjeinit fails, the reason for the failure is
reported, and the file dead is created containing "Init failed". This will be reported by rjestat until
a subsequent rjeinit succeeds. Rjeinit performs the following functions:

1.

2.

3.

4.

5.

6.

7.

8.

Truncates the console response file resp.

Sends a signon record to the host. The signon record is taken from the file signon (ASCII
text), if it exists, otherwise rjeinit sends a blank record as a signon.

Sets up pipes for process communication.

Resets process-group for RJE subsystem and restarts error logging.

Rebuilds the joblog file from jobs queued for transmission.

Notifies rjedisp (via a pipe) of any returned files still remaining in the rpool directory.

Starts the appropriate background processes (rje?xmit, rje?recv, and rje?disp).

Reports started or not started.

If failure occurs in a background process, it is reported by that process (error logging). The
failing process will normally attempt to reboot the subsystem by executing rje?init with a + as its
argument (see Section 7). When rjeinit is executed with + as its argument, this indicates an
attempted reboot, and rjeinit will behave differently (No re-dialing is done to remote hosts, errors
are logged rather than printed, etc.).

4.5 Rjexmit

This program writes data to the VPM device. Rjexmit is started by rjeinit and runs in the
background. When running, rjexmit performs the following processing:

1. Checks the joblog file for files to be transmitted. This is done every 5 seconds when not
transmitting data. When transmitting data, the joblog is checked after transmitting 1 block
from each active reader2, and the console3•

2. Queues files from the joblog according to the first two characters of the file name:

• rd* - these files are queued on the reader with the fewest cards. Normal use of the
send command creates these files .

• sq* - these files are queued on the last available reader to assure sequential
transmission. Using the -x option to the send command creates these files.

2. Reader refers to the logical readers used by RJE.

3. Console refers to the RJE logical console, which is distinct from the logical readers.

8 RJE Administrative Guide

• co* - these files are queued on the console. The rjestat command creates these files.

All files described above contain EBCDIC data.

3. Sends information to rjedisp (via a pipe) for use in user notification of job status (see
Section 4.7).

4. Builds blocks for transmission from active readers and the console. These blocks are built
according to the multi-leaving protocol.

5. Performs the following peripheral control:

• Sends requests to open readers when jobs have been assigned to them. These
readers are not active until a grant is received from rjerecv (via a pipe).

• Halts and activates readers when waits or starts (respectively) are received from
rjerecv.

• Sends printer or punch grants when an open request is received from rjerecv.

6. Notifies rjedisp that a file has been transmitted, and unlinks the file.

If rjexmit encounters fatal errors, it creates the dead file with an appropriate message, and
signals the other background processes to exit. If possible, rjexmit will attempt to reboot the
RJE subsystem by executing rjeinit.

4.6 Rjerecv

This program reads data from the VPM device. Rjerecv is started by rjeinit and runs in the
background. When running, rjerecv performs the following processing:

1. Reads blocks of data received from the host system.

2. Handles data received according to its type. The two types of data are:

• Control information - rjerecv performs the following peripheral device control:

a. Notifies rjexmit of grants to its requests to open readers.

b. Passes wait and start reader information to rjexmit.

c. Passes open requests (for printers and punches) from the host to rjexmit.

• User Information - the three major types of user information received are:

a. Console responses and job status messages. This data is appended to the resp
file for use by rjestat and rjedisp.

b. The printer output from user jobs. This data is collected in temporary files (pr*) in
the rpool directory. When a complete print job has been received, rjerecv
notifies rjedisp (via a pipe) that the file is to be dispatched.

c. The punch output from user jobs. This data is handled the same as printer output
except that the rpool files are named pu*.

3. If the console response file resp exceeds 70,000 characters, rjerecv truncates the file.

4. Rjerecv stops accepting output from the remote machine if the number of free blocks in
the file system falls below space blocks (space is described in Section 2.3).

5. Rjerecv truncates files to size blocks if a received file exceeds this value (size is
described in Section 2.3).

If rjerecv encounters fatal errors, it creates the dead file with an appropriate error message,
signals the other background processes to exit, and reboots the RJE subsystem.

RJE Administrative Guide 9

4.7 Rjedisp

This program dispatches user information. Rjedisp is started by rjeinit and runs in the
background. When running, rjedisp performs the following processing:

1. Dispatches output; the two types of output are printer and punch output. After receiving
notification of output ready from rjerecv, rjedisp searches for a "usr=" line in the received
file. The format of a "usr=" line is as follows:

usr= (user,place,level)

Rjedisp dispatches the output according to the place field. See UNIX Remote Job Entry
User's Guide for a detailed description of the user specification.

2. Dispatches messages. The three types of messages are as follows:

• Job transmitted - this message is sent to the submitting user when rjedisp reads this
event notice from the rjexmit pipe.

• Job acknowledgement - rjedisp dispatches IBM acknowledgement messages to
submitting users. If a job is not acknowledged properly or within a reasonable amount
of time, a "Job not acknowledged" message is dispatched.

• Output processing - rjedisp dispatches job output messages according to the options
specified on the "usr=" card. A normal output message indicates the returned file
name is ready.

Messages can be masked by using the level on the "usr =" card.

3. Whenever output is to be handled by shqer, rjedisp checks that shqer is running. This is
done by looking for the shqer log file. If this file does not exist, rjedisp starts shqer.

4.8 Shqer

This program executes user programs when they appear in the place field of the "usr=" line in a
returned output file (print or punch). Shqer is started by rjedisp when the first output file using
this feature is returned. Subsequent files using this feature are logged for execution by rjedisp.
When started, shqer performs the following processing:

1. Builds the log file from file names in the lusr/rje/sque directory. Each log entry is the
name of a file (tmp?) that contains the following information:

• the name of the file to be executed

• the name of the input file (file returned from IBM)

• the name of the IBM job

• the programmer name

o the IBM job number

• the user's name from the "usr=" line

• the user's login directory

• the minimum file system space

2. Shqer uses two parameters. The first is the delay time between log file reads. The
second is a nice (2) factor which is applied to any programs spawned by shqer. These
values are defined in lusr/include/rje.h (QDELAY and QNICE).

3. When each log entry is read, the appropriate program is spawned with the following
characteristics:

• The returned RJE file is the standard input to the program.

10 RJE Administrative Guide

• The standard and diagnostic outputs are /dev/null.

• The LOGNAME, HOME, and TZ variables are set to the appropriate values.

• The arguments to the spawned program, in order, are:

a. a numerical value indicating that the file system free space is equal or above (0)
or below (1) space blocks (see Section 2.3).

b. the IBM job name.

c. the programmer name.

d. the IBM job number.

e. the user's login name.

4. After executing each program, the tmp? file and the returned RJE file are removed.

5. UTILITY PROGRAMS

5.1 Snoop

Snoop is the generic name of a program that can be used to trace the state of a VPM device
and its associated communications line. Snoop depends on the trace (4) driver for its
information. It reads trace entries from /dey/trace and converts them into a readable form that
is printed on the standard output.

The usable name of snoop for a particular RJE subsystem is snoopN, where N is the low order
three bits from the VPM minor device number. If VPM device names adhere to the vpmO, vpm1,
ypmn naming convention, each snoop name corresponds to its VPM device. In our hypothetical
system, ypmO is used by the rje1 subsystem, and vpm1 is used by the rje2 subsystem (see
Section 2.3). Therefore, /usr/rje1/snoopO and /usr/rje2lsnoop1 are linked to /usr/rje/snoop.

Each snoop prints trace entries for its associated VPM device. Trace entries are printed in the
following form:

sequence

where

type information

• sequence specifies the order of trace occurences. It is a value between 0 and 99.

• type specifies the action being traced (e.g., transfers, driver activity).

• information describes data being transferred and driver activity.

The following table explains the meaning of trace types and their associated information.

type information meaning

CL Closed The VPM device has been closed.

CL Clean The VPM driver is cleaning up for this device.

OP Opened The VPM has been successfully opened.

OP Failed(open) The open failed because the device was already open.

OP Failed(dev) The open failed because the device number was out of
range.

OP Failed(set) The open failed because the ICP could not be reset.

RJE Administrative Guide

RR Buf

RX Buf

RD num bytes

SC Exit(num)

ST Startup

ST Stopped

TR Started

TR R-ACK

TR S-ACK

TR R-NAK

TR S-NAK

TR R-ENQ

TR S-ENQ

TR.. R-WAIT

TR R-OKBLK

The VPM script has returned a receive buffer to the VPM
driver.

The VPM script has returned a transmit buffer to the
VPM driver.

Num bytes were read from the VPM device by rjerecv.

The VPM script has terminated. The VPM exit code is
num. Exit codes are defined in vpm(4).

The lep has been started.

The VPM script has been stopped.

The script has started tracing.

A two byte acknowledgement (ACK) string has been
received from the remote system. This indicates that
the previous transmission was properly received.

A two byte acknowledgement (ACK) string has been
transmitted to the remote system.

A "not-acknowledged" (NAK) character has been
received from the remote system. This indicates that
the previous transmission was not properly received.

A "not-acknowledged" (NAK) character has been
transmitted to the remote system.

A enquiry (ENQ) character has been received from. the
remote system.

A enquiry (ENQ) character has been transmitted to the
remote system.

The remote machine has requested that no data be
transmitted to it.

A valid data block was received from the remote
machine.

TR R-ERRBLK An invalid Cyclic Redundancy Check (CRG) was
received with a data block.

TR R-SEQERR The block sequence count on a received data block was
invalid.

TR R-JUNK

TR TIMEOUT

An invalid data block was received from the remote
system.

The remote machine did not respond within 3 seconds.

11

12

TR S-BLK

WR num bytes

RJE Administrative Guide

A data block has been transmitted to the remote
system.

Num bytes were written to the VPM device by rjexmit.

Trace entries of type TR are traces from the VPM script. Section 7.5 describes required
responses to events and shows examples of typical snoop output.

5.2 Rjestat

This program is supplied as a user command. The program's two functions are to describe the
status of the RJE subsystems and to provide a remote IBM status console. The remainder of this
section describes these two functions.

5.2.1 RJE Status

When invoked, rjestat reports the status of the RJE subsystems. If remote system (host) names
are specified, only those statuses are reported. Rjestat uses the following rules to report the
status of a subsystem:

• Rjestat prints the contents of the file status if it exists in the subsystem directory. This file
can contain any message the administrator wishes to have printed when users use rjestat.

• If the file dead exists in the subsystem's directory, the subsystem is not operating and the
reason is contained in the file. Rjestat reports that RJE to host is down and prints the
contents of the dead file as the reason.

• If the file stop exists in the subsystems directory, the rjehalt program has been used to
inhibit that RJE subsystem. Rjestat reports that RJE to host has been stopped by the "
operator.

• If neither the dead nor the stop file exists, rjestat reports that RJE to host is operating
normally.

Rjestat is supplied as the user's vehicle for checking the status of RJE. It is not meant to be an
administrative tool; however, the reason for failure can be used to track the problem.

5.2.2 Status Console

To use rjestat as a status console, the -shost argument is used. Rjestat prints the status of the
subsystem, then prompts with host: if the subsystem is up. Each console request is submitted
to the RJE processes for transmission, and output is handled as specified. Rjestat checks the
status prior to submitting each request, and will tell the user to try later if the subsystem goes
down. Rjestat allows the rje or super-user logins to submit other than display requests. For a
complete description of how to use the status console features, see rjestat(1).

5.3 Cvt

This program converts any subsystem's joblog file to readable form. The first line printed is the
process group number of the subsystem processes. The remaining output consists of entries in
the following form:

file user-id records level

Where file is the name of the submitted file, user-id is the submitters user number, records is
the number of "card" images, and level is the message level. The records and level fields are
not used if the file name is co* (console request submitted by rjestat).

6. RJE ACCOUNTING

Each RJE subsystem will store accounting information in the acctlog file, if it exists. It is the
responsibility of the RJE administrator to create and maintain this file in the subsystem's

RJE Administrative Guide 13

directory. Entries in this file describe RJE line use and are of the following form:

day time file user records

Each field is delimited by a tab character. The meanings of each field is as follows:

1. day - The day of occurrence in the form mm/dd.

2. time - The time of occurrence in the form hh:mm:ss.

3. file - The name of the UNIX file. The first two characters identify its type as follows:

• rd/sq - the file was transmitted to the remote system

• pr - the print output file was received from the remote system

• pu - the punch output file was received from the remote system

4. user - The user-id of the user responsible for the transfer.

5. records - The number of records (card images) transferred for this file.

Since acctlog data is not used by RJE, it should not be allowed to grow too large. This can be
accomplished by moving or processing the file during a system reboot (Le., in letc/rc before the
RJE subsystems are started).

The following list describes some of the reports that could be generated from the acctlog data.
Implementation of a program to produce accounting reports is the responsibility of the
administrator.

• Periodic Reports - by using the day and time fields in the data, periodic usage reports can
be produced.

• By User Reports - by using the user field in the data, usage-by-user reports can be
produced.

• By Subsystem Reports - by using the lusr/rje/lines file information and each acctlog file, a
usage-by-subsystem (or remote system) report can be produced.

Other reports can be produced using the type of file, size of jobs, etc.

7. Trouble Shooting

This section deals with RJE problems, and some methods for resolving them. The topics
discussed in this section are as follows:

• Automatic Error Recovery

• Manual Error Recovery

• RJE Problems

• ICP/vPM Problems

• Trace Interpretation

7.1 Automatic Error Recovery

RJE attempts to be self-sustaining with respect to its availability. In general, if problems occur
on the communications line or the remote machine (e.g., a crash) RJE will continually try to
restart itself (this action will be referred to as a "reboot"'). For example, if an RJE subsystem is
started using rje/oad, but the IBM system is not available, a fatal error will occur. The process
that detects this error (usually rjexmit or rjerecv) will reboot the subsystem by executing rjeinit
with a + as its argument. When rjeinit detects a + argument, it waits one minute before
attempting to bring up the subsystem.

The rjeha/t program can be used to prevent an RJE subsystem from rebooting itself when the
remote system is not available for a known period of time. When the remote system is made

14

available, the subsystem may be started in the normal way.

7.2 Manual Error Recovery

RJE Administrative Guide

In order to manually recover from errors, one must know how to start and stop an RJE
subsystem. There are two ways to start an RJE subsystem:

• rje?/oad - this program loads and starts the VPM script, and executes rje?init .

• rje?init - this program starts the rje? subsystem. In order to use this program, the VPM
script must be loaded and started.

To stop the rje? subsystem, the rje?ha/t program should be executed. This stops the
subsystem gracefully and will prevent a reboot.

The rje/oad program must be used to start RJE for the first time (after a UNIX system reboot).
Subsequently, as long as the script is running, execution sequences of rjeha/t and rjeinit will
stop and start RJE.

Manually starting and stopping RJE can be useful in tracking down problems. For example, if
user jobs are not being submitted to the host machine, the following sequence can ease
identification of the problem:

1. Halt the ailing subsystem.

2. Start a snoop process in the background with its output redirected to a file.

3. Restart the subsystem.

4. Scan the snoop output to determine where the problem is.

The snoop program is the most useful software tool for identifying RJE problems. Its uses are
described in Section 7.5.

7.3 RJE Problems

This section describes problems that can occur in an RJE subsystem. These problems generally
occur when the subsystem has not been set up properly. The following is a list of things to
check to ensure that an RJE subsystem has been set up properly.

1. IBM description - the description of the remote UNIX machine must be consistent with the
description in Section 2.2.

2. UNIX description - the file lusr/rje/lines must be set up properly. Section 2.3 describes
this file in detail.

3. ICP!VPM setup - the VPM software must be installed and the proper VPM and ICP devices
made. Each VPM device must correspond to the proper ICP device; see vpm(4).

4. Free space - as a general rule, all file systems must have a reasonable amount of free
space. File systems containing RJE subsystems must have sufficient free space as
described in Section 2.3 to ensure proper RJE operation.

5. Directories - each subsystem's directory and the controlling directory should be checked
for the following:

• All needed files exist.

• The proper prefix is on each applicable RJE program.

• The link count is correct for files that are linked.

• All file and directory modes are correct.

A sample subsystem directory and the controlling directory are shown in Section 3.

6. Initialization - peripherals information must be consistent on both systems (see Section
2.3). The line must be started on the IBM system, proper hardware connections made, etc.

RJE Administrative Guide 15

Problems with a subsystem are indicated by error messages. Rjeinit checks for obstacles in
bringing up RJE. If an obstacle is found, an error message indicating the obstacle is printed on
the error output. If a problem is encountered during normal operation, the message is logged in
the errlog file. This file, error messages, the output from snoop, and the checklist above should
be used to determine and fix any SUbsystem problems. Generally, if a subsystem is set up
properly but will not operate, the problem is the way the VPM or ICP has been set up, the remote
system, or the hardware.

7.4 ICPIVPM Problems

This section describes the ICP and VPM uses, and problems that can occur. After installing ICP
hardware and making ICP devices, all VPM software and devices must be made. See vpm(4).
The following is a snapshot of the ICP and VPM devices used on our hypothetical machine:

crw-r--r-- 1 rje rje 9, 0 Apr 16 07:04 /dev/icO
crw-r--r-- 1 rje rje 15, 0 Apr 16 10:51 /dev/vpmO

crw-r--r-­
crw-r--r--

1 rje
1 rje

rje
rje

9, 1 Apr 10 08: 21 /dev/icl
15, 41 Apr 7 13:25 /dev/vpml

where Idev/ic? corresponds to Idev/vpm? (?=O,1). The VPM minor device number determines
which VPM and ICP devices are used. See vpm(4) to determine VPM minor device numbers.
The program rjeload prints the devices being used by the corresponding RJE subsystem.

The following is a list of items to check when problems occur:

1. Proper hardware - the line unit must be compatible with the modem and have the proper
settings (see Section 2.1). Be sure that the ICP address and interrupt vector are correct.

2. Proper Devices - the major and minor device numbers for both the ICP and VPM must be
correct. It should also be verified that the RJE subsystem is using the correct ICP and VPM
device names.

3. Script runs - verify that the VPM script is able to run. This is done by tracing the proper
VPM with the proper snoop program. Snoop will print "started" entries for both the ICP and
VPM script (see Section 5.1). If no output appears from snoop when rjeload is executed,
either the ICP is not working properly, or the ICP or VPM has not been set up properly (see
items 1 and 2). Output of any other type from snoop should indicate where the problem is
occurring.

7.S Trace Interpretation

This section describes how to interpret trace output from the snoop program, and gives several
examples. Section 5.1 describes the format and meaning of trace output lines, and should be
read before this section.

Lines with type TR are traces from the VPM script. All others are driver traces and indicate the
following:

• CL - activity occurring when the device has been closed.

• OP - activity occurring when the device has been opened.

• RD - read from device occurred.

• WR - write to device occurred.

• RR - a receive buffer has been returned.

• RX - a transmit buffer has been returned.

• ST - start or stop activity.

• SC - script exit type, exit value is given.

16 RJE Administrative Guide

Section 5.1 enumerates all possible trace lines for each type, and describes the event. The
remainder of this section consists of example trace output and its interpretation. Comments
describing events will appear after the "*" in trace output. If more than one VPM were running,
sequence numbers might not appear in order. For clarity, example sequences will be in order.

7.5.1 Normal RJE startup

The following is an example of trace output when RJE has been started up. In this case the
remote machine responds to the enquiry byte (ENO). The RJE subsystem signs on to the
machine, then follows the handshaking protocol (exchanging ACKs).

Tracing vpmO
0 ST Startup * ICP started
1 TR Started * Script started
2 TR S-ENQ * Enquiry byte sent
3 ST Start * VPM Driver start
4 OP Opened * VPM Device open
5 TR R-ACK * Received acknowledgement
6 TR S-ACK * Handshaking
7 WR 84 bytes * Signon record written
8 TR R-ACK * Handshaking
9 TR S-BLK * Sent signon block
10 TR R-ACK * Block acknowledged
11 RX Buf * Transmit buffer returned
12 TR S-ACK * Handshaking
13 TR R-ACK *
14 TR S-ACK *
15 TR R-ACK *
16 TR S-ACK *
17 TR R-ACK *
18 TR S-ACK *
19 TR R-ACK *
20 TR S-ACK * Handshaking

If any jobs had been submitted via the send command, or jobs were waiting to be returned, the
traces would reflect the transfers rather than handshaking (see Section 7.5.3).

7.5.2 RJE startup -IBM not responding

This example shows trace output when RJE has been started, but does not receive a response
from the remote machine. In general, the RJE script will timeout if a response is not received
from the remote machine within 3 seconds of the last transmission. When a timeout is detected
while starting up, the enquiry byte (ENO) is retransmitted. This is repeated 6 times before the
script gives up. Other timeout responses will be discussed later.

Tracing vpmO
86 ST
87 TR
88 TR
89 ST
90 OP
91 WR
92 TR
93 TR
94 TR
95 TR
96 TR

Startup
Started
S-ENQ
Start
Opened
84 bytes
TIMEOUT
S-ENQ
TIMEOUT
S-ENQ
TIMEOUT

* ICP started
* Script started
* Enquiry byte sent
* VPM Driver start
* VPM device open
* Signon record written
* No response to enquiry
* Enquiry byte sent
* No response
* Enquiry byte sent
* No response

r

~

RJE Administrative Guide 17

97 TR S-ENQ * Enquiry byte sent
98 TR TIMEOUT * No response
99 TR S-ENQ * Enquiry byte sent
0 TR TIMEOUT * No response
1 TR S-ENQ * Enquiry byte sent
2 TR TIMEOUT * No response
3 RR Buf * Receive buffer returned
4 RD 1 bytes * 1 byte read (error)
5 SC Exit(O) * Script exits normally
6 CL Clean * Cleanup done
7 ST Stopped * ICP stopped
8 CL Closed * VP M device closed

The above sequence will be repeated approximately every minute until a positive response is
received from the host. During that minute the RJE subsystem is dormant, and the rjestat
command will report that IBM is not responding. When this occurs, either the IBM machine is not
available, down, line not started, etc., or there is a communications problem somewhere from
where the lep transmits data to where it receives data. The RJE administrator should first verify
that the IBM machine is up, and the communications line has been started. If so, a hardware
trace of the communications line should be done to aid in detecting the problem.

7.5.3 Transmitting and Receiving

This example shows trace output from the start of job transmission through its return. For
simplicity, only one job is being transmitted and returned.

Tracing vpmO
94 TR R-ACK * Handshaking
95 TR S-ACK *
96 TR R-ACK *
97 TR S-ACK * Handshaking
98 WR 4 bytes * Open reader request written
99 TR R-ACK * Handshaking
0 TR S-BLK * Sent open request block
1 TR R-OKBLK * Received block (grant)
2 RX Buf * Transmit buffer returned
3 RR Buf * Receive buffer returned
4 TR S-ACK * Block acknowledged
5 RD 7 bytes * Read 7 bytes (grant)
6 TR R-ACK * Handshaking
7 TR S-ACK * Handshaking
8 WR 481 bytes * First block written
9 WR 470 bytes * Second block written
10 TR R-ACK * Handshaking
11 TR S-BLK * First block sent
12 TR R-ACK * Block acknowledged
13 RX Buf * Transmit buffer returned
14 WR 470 bytes * Third block written
15 TR S-BLK * Second block sent
16 TR R-OKBLK * Received block (on reader msg)
17 RX Buf * Transmit buffer returned
18 RR Buf * Receive buffer returned
19 WR 470 bytes * Fourth block written
20 RD 66 bytes * Read 66 bytes (on reader msg)
21 TR S-BLK * Third block sent
22 TR R-ACK * Block acknowledged

18 RJE Administrative Guide

23 RX Buf * Transmit buffer returned
24 WR 147 bytes * Fifth block written
25 TR S-BLK * Fourth block sent
26 TR R-ACK * Block acknowledged
27 RX Buf * Transmit buffer returned

*
* More of the same

*
93 TR R-ACK * Handshaking
94 TR S-ACK * Handshaking
95 TR R-OKBLK * Received block (request)
96 RR Buf * Receive buffer returned
97 TR S-ACK * Block acknowledged
98 RD 7 bytes * Read open printer request
99 TR R-ACK * Handshaking
0 TR S-ACK *
1 TR R-ACK *
2 TR S-ACK *
3 TR R-ACK *
4 TR S-ACK * Handshaking
5 WR 4 bytes * Printer grant written
6 TR R-ACK * Handshaking
7 TR S-BLK * Block sent (grant)
8 TR R-OKBLK * First block received
9 RX Buf * Transmit buffer returned
10 RR Buf * Receive buffer returned

~ 11 TR S-ACK * Block acknowledged
12 RD 64 bytes * Read first block
13 TR R-OKBLK * Second block received
14 RR Buf * Receive buffer returned
15 TR S-ACK * Block acknowledged
16 RD 505 bytes * Read second block
17 TR R-OKBLK * Third block received
18 RR Buf * Receive buffer returned
19 TR S-ACK * Block acknowledged
20 TR R-OKBLK * Fourth block received
21 RR Buf * Receive buffer returned
22 TR S-ACK * Block acknowledged
23 TR R-ACK * Handshaking
24 TR S-ACK *
25 TR R-ACK *
26 TR S-ACK * Handshaking
27 RD 470 bytes * Read third block
28 RD 494 bytes * Read fourth block
29 TR R-ACK * Handshaking
30 TR S-ACK * Handshaking

*
* And so on

*

Requests and grants are part of the multi-leaving protocol. Appendix B of OS/VS MVS JES2
Logic (SY24-6000-1) describes this protocol in detail. When jobs are being transmitted and
received simultaneously, as in a busier RJE subsystem, much less handshaking is involved.
Rather than acknowledging blocks with ACKs, the protocol allows a block to be returned (this
implies acknowledgement of the received block). The following example shows trace output at a

RJE Administrative Guide 19

r' busy time:

tracing vpmO
41 TR R-OKBLK * Received block
42 RX But *
43 RR But *
44 TR S-BLK * Sent block
45 WR 493 bytes *
46 RD 496 bytes *
47 TR R-OKBLK * Received block
48 RX But *
49 RR But *
50 RD 65 bytes *
51 WR 4 bytes *
52 TR S-BLK * Sent block
53 TR R-OKBLK * Received block
54 RX But *
55 RR But *
56 TR S-BLK * Sent block
57 WR 493 bytes *
58 RD 7 bytes *
59 TR R-OKBLK * Received block
60 RX But *
61 RR But *
62 WR 493 bytes *
63 RD 496 bytes *
64 TR S-BLK * Sent block
65 TR R-OKBLK * Received block

Notice that since there is work to be done on both sides, acknowledgements are implied.

7.5.4 Timeout Error Recovery

This example shows activity resulting trom timeouts occurring during normal operation. These
timeouts were caused because the remote JES3 system has performance problems, and
occasionally does not respond in the required three seconds.

Tracing vpm1
27 TR S-ACK * Handshaking
28 TR R-ACK *
29 TR S-ACK *
30 TR TIMEOUT * No response
31 TR S-NAK * Not acknowledged
32 TR TIMEOUT * No response
33 TR S-NAK * Not acknowledged
34 TR R-ACK * Response
35 TR S-ACK * Handshaking
36 TR R-ACK *

*
*
*

54 TR R-ACK * r 55 TR S-ACK * Handshaking
56 TR TIMEOUT * No response
57 TR S-NAK * Not acknowledged
58 TR R-ACK * Response

20 RJE Administrative Guide

59 TR S-ACK *~Handshaking

The response to these timeouts are NAKs (not acknowledged). RJE will respond this way up to
six times before giving up and attempting a reboot. At this time rjestat would report that there
are "Line Errors". NAK is a request to retransmit the previous response.

7.5.5 Communication Une Errors

This example shows trace output from an RJE subsystem that uses a dial-up connection. The
phone line is noisy and is prone to dropping.

Tracing vpm1
63 TR S-ACK * Handshaking
64 TR R-ACK *
65 TR S-ACK *
66 TR R-JUNK * Noise on the line
67 TR S-NAK * Not acknowledged
68 TR R-ACK * Recovery
69 TR S-ACK *
70 TR R-ACK *
71 TR S-ACK *
72 TR TIMEOUT * Line has dropped
73 TR S-NAK * Attempting to recover
74 TR TIMEOUT *
75 TR S-NAK *
76 TR TIMEOUT *
77 TR S-NAK *
78 TR TIMEOUT *
79 TR S-NAK *
80 TR TIMEOUT *
81 TR S-NAK *
82 TR TIMEOUT *
83 TR S-NAK *
84 RR Buf * Receive buffer returned
85 RD 1 bytes * 1 byte read (error)
86 SC Exit(O) * Script exits
87 CL Clean * Cleanup
88 ST Stopped * ICP Stopped
89 CL Closed * VPM device closed

The error read in the above sequence causes RJE to reboot and rjestat to report line errors. If
this type of thing were to occur frequently, a different method of communication should be used.

7.5.6 Error Responses

As seen in the sections above, the response to most errors is to send a NAK. The only
exception is when starting up (see Section 7.5.2). Whenever a NAK is received on either side, it
indicates that the previous transmission was not properly received. This should be followed by
retransmission of the previous data. Generally, NAKs should not occur frequently, and should be
followed by recovery. If errors occur frequently or NAKs do not cause recovery, the line should
be checked for problems.

On some IBM systems, (e.g., JES2), an I/O error is printed at the system console whenever a
NAK is received. These I/O errors can also be helpful in detecting the problem; however, they
will not be discussed here as they vary with the system. It is assumed that someone in IBM

RJE Administrative Guide 21

support can assist if needed.

~I

SED - A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-interactive context editor that runs on the UNIXt operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too

complicated to be comfortably typed in interactive mode.
3) To perform multiple 'global' editing functions efficiently in one pass

through the input.

This memorandum constitutes a manual for users of sed.

August 15, 1978

tUNIX is a Trademark of Bell Laboratories.

Introduction

SED - A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing;
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in interactive mode;
3) To perform multiple 'global' editing functions efficiently in one pass through the

input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. 'For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compareti to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac­
tive and non-interactive operation, considerable changes have been made between ed and sed;
even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem­
blance between the two editors is in the class of patterns ('regular expressions') they recognize;
the code for matching patterns is copied almost verbatim from the code for ed, and the descrip­
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer's ManuaHll. (Both code and description were written by Dennis M. Ritchie.)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line; see Section 1.1 below.

The general format of an editing command is:

[addressl,address2] [function] [arguments]

One or both addresses may be omitted; the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present; the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given; again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.

r

- 2 -

1.1. Command-line Flags
Three flags are recognized on the command line:

-In: tells sed not to copy all lines, but only those specified by p functions or p flags after
sfunctions (see Section 3.3);

-e: tells sed to take the next argument as an editing command;
-f: tells sed to take the next argument as a file name; the file should contain editing

commands, one to a line.

1.2. Order of Application of Editing Commands
Before any editing is done (in fact, before any input file is even opened), all the editing com­
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com­
piled in the order in which they are encountered; this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time; the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of­
control commands, t and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ­
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6.>.

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge.)

Example:

The command

2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces ('{ j')(Sec. 3.6,).

- 3 -

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches (selects) the input line which causes the inter­
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

As a special case, the character. $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes ('/'). The regular
expressions recognized by sed are constructed as follows:

1) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex ,A, at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign '$' at the end of a regular expression matches the null character at the
end of a line.

4) The characters '\n' match an imbedded newline character, but not the newline at the
end of the pattern space.

5) A period '.' matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk ,.' matches any number (including 0)

of adjacent occurrences of the regular expression it follows.
7) A string of characters in square brackets ,[]' matches any character in the string,

and no others. If, however, the first character of the string is circumflex 'A',
the regular expression matches any character except the characters in the string
and the terminal newline of the pattern spate.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences '\ (' and '\)' is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) The expression '\d'means the same string of characters matched by an expression
enclosed in '\ (' and '\)' earlier in the same pattern. Here d is a single digit; the
string specified is that beginning with the dth occurrence of '\ (' counting from
the left. For example, the expression 'A\ <.*\)\1' matches a line beginning with
two repeated occurrences of the same string.

11) The null regular expression standing alone (e.g., '/ /') is equivalent to the last reg-
ular expression compiled.

To use one of the special characters r $. • [] \ /) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash '\'.

For a context address to 'match' the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. Number of Addresses
The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addr~sses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,

- 4 -

and the process is repeated.

Two addresses are separated by a comma.

Examples:

lanl
lan."'anl
ranI

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines

1.1 matches all lines
1\.1 matches line 5
Ir"'anl
1\(an\).*\11

matches lines 1,3, 4 (number = zero!)
matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func­
tion name, possible arguments enclosed in angles « », an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are 110t part of the argument, and should not be typed in actual editing
commands.

3.1. Whole-line Oriented Functions

(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines. matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line~ as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2) n -- next line

(Oa\

The 11 function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

< text> -- append lines

(l)j\

The a function causes the argument < text> to be written to the output after
the line matched by its address. The a command is inherently multi-line; a
must appear at the end of a line, and < text> may contain any number of
lines. To preserve the one-command-to-a-Iine fiction, the interior newlines
must be hidden by a backslash character ('\') immediately preceding the new­
line. The < text> argument is terminated by the first unhidden newline {the
first one not immediately preceded by backslash).

Once an a function is successfully executed, < text> will be written to the out­
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely; < text> will still be written to the out­
put.

The < text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

< text> -- insert lines

(2)c\

- 5 -

The i function behaves identically to the a function, except that < text> is
written to the output before the matched line. All other comments about the a
function apply to the i function as well.

< text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them
with the lines in < text>. Like a and i, c must be followed by a newline hid­
den by a backslash; and interior new lines in < text> must be hidden by
backslashes.

The c command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of < text> is
written to the output, not one copy per line deleted. As with a and i, < text>
is not scanned for address matches, and no editing commands are 'attempted on
it. It does not change the line-number counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed before the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap­
pear, as always in sed commands. To get leading blanks and tabs into the output,. precede the
first desired blank or tab by a backslash; the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXX X
Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com­
mand lists:

n
i\
XXXX
d

n
c\
XXXX

3.2. Substitute Function

One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by < pattern» with < replace­
ment>. It can best be read:

Substitute for <pattern>, <replacement>

- 6 -

The <pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between <pattern> and a con­
text address is that the context address must be delimited by slash ('f') charac­
ters; < pattern> may be delimited by any character other than space or new­
line.

By default, only the first string matched by < pattern> is replaced, but see the
g flag below.

The <replacement> argument begins immediately after the second delimiting
character of < pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in < replacement> . Instead, other char­
acters are special:

& is replaced by the string matched by < pattern >

\d (where d is a single digit) is replaced by the ath substring matched
by parts of < pattern> enclosed in '\ (' and '\)'. If nested sub­
strings occur in < pattern>, the ath is determined by counting
opening delimiters ('\ (').

As in patterns, special characters may be made literal by
preceding them with backslash ('\ ').

The <flags> argument may contain the following flags:

g -- substitute <replacement> for at! (non-overlapping) instances of
< pattern> in the line. After a successful substitution, the
scan for the next instance of < pattern> begins just after the
end of the inserted characters; characters put into the line from
<replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub­
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub­
stitute in the same input line, multiple copies of the line will be
written to the output: one for each successful substitution.

w <filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by < filename>. If
< filename> exists before sed is run, it is overwritten~ if not, it
is created.

A single space must separate wand <filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.

- 7 -

Examples:

The following command, applied to our standard input,

sltolby Iw changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file 'changes':

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:Jrp&*/gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P, * the sacred river*P,* ran
Down to a sunless sea*P.*

Finally, to illustrate the effect of the g flag, the command:

IXlslanl AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

IXlslanl AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions
(2)p -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by <filename>.
If the file previously existed, it is overwritten; if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the wand < filename> .

A maximum of ten different files may be mentioned in write functions and w
flags after sfuf)ctions, combined.

(Or <filename> -- read the contents of a file

The read function reads the contents of <filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If rand Q functions are executed on the same line, the text from the Q

r

- 8 -

functions and the r functions is written to the output in the order that the func­
tions are executed.

Exactly one space must separate the rand < filename> . If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags; that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples

Assume that the file 'notel' has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:

IKubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces contammg
imbedded newlines; they are intended principally to provide pattern matches across lines in the
input.

(2}N -- Next line

The next input line is appended to the current line in the pattern space: the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2) D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the list of edit­
ing commands again from its beginning.

(2}P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

- 9-

3.S. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2)h -- hold pattern space

The h functions copies the contents of the pattern space into a hold area (des­
troying the previous contents of the hold area).

(2)H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area; the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (des­
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space; the former and new contents are separated by a newline.

(2)x -- exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example

The commands

Ih
lsI did""
1x
G
sl\nl :1

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-of-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

(2)! -- Don't

The Don't command causes the next cc;>mmand (written on the same line), to
be applied to all and only those input lines not selected by the adress part.

(2) { -- Grouping

The grouping command '{' causes the next set of commands to be applied (or
not applied) 'as a block to the input lines selected by the addresses of the group­
ing command. The first of the commands under control of the grouping may
appear on the same line as the '{' or on the next line.

- 10 -

The group of commands is terminated by a matching '}' standing on a line by
itself.

Groups can be nested.

(O):<label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by band t functions. The < label> may be any sequence of eight
or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same <label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com­
piled, a compile time diagnostic is produced, and no execution is attempted.

A b function with no < label> is taken to be a branch to the end of the list of
editing commands; whatever should be done with the current input line is
done, and another input line is read; the list of editing commands is restarted
from the beginning on the new line.

(2h < label> -- test substitutions

The t function tests whether any successful substitutions have been made on
the current input line; if so, it branches to < label>; if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line, or
2) executing a t function.

3.7. Miscellaneous Functions

(1) = -- equals

The = function writes to the standard output the line number of the line
matched by its address.

(l)q -- quit

Reference

The q function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual. Bell Labora­
tories, 1978.

'.~ .. """."
-. "

Source Code Control System User's Guide

ABSTRACT

The Source Code Control System (sees) is a system for contrOlling changes to files of text
(typically, the source code and documentation of software systems). It provides facilities for
storing, updating, and retrieving any version of a file of text, for controlling updating privileges to
that file, for identifying the version of a retrieved file, and for recording who made each change,
when and where it was made, and why. Sees is a collection of programs that run under the
UNIX™ based PWB (Programmer's Workbench) time-sharing system.

This document, together with relevant portions of [1], is a complete user's guide to sees, and
supersedes all previous versions. The following topics are covered:

• How to get started with sees.
• The scheme used to identify versions of text kept in an sees file.
• Basic information needed for day-to-day use of sees commands, including a discussion of

the more useful arguments.
• Protection and auditing of sees files, including the differences between the use of sees by

individual users on one hand, and groups of users on the other.

Neither the implementation of sees nor the installation procedure for sees are described here.

" I :, ~

r Source Code Control System
User's Guide

1. INTRODUCTION . • . .

2. SCCS FOR BEGINNERS
2.1 Terminology 1
2.2 Creating an SCCS File-The "admin" Command 2
2.3 Retrieving a File-The "get" Command 2
2.4 Recording Changes-The "delta" Command 3
2.5 More about the "get" Command 4
2.6 The "help" Command 5

3. HOW DELTAS ARE NUMBERED .

4. SCCS COMMAND CONVENTIONS

5. SCCS COMMANDS ..
5.1 get 9

5.1.1 10 Keywords 10
5.1.2 Retrieval of Different Versions 10
5.1.3 Retrieval with Intent to Make a Delta 12
5.1.4 Concurrent Edits of Different SIOS 13
5.1.5 Concurrent Edits of the Same SIO 14
5.1 .6 Keyletters That Affect Output 15

5.2 delta 16
5.3 admin 18

5.3.1 Creation of Sees Files 18
5.3.2 Inserting Commentary for the Initial Delta 19
5.3.3 Initialization and Modification of Sees File Parameters 19

5.4 prs 20
5.5 help 21
5.6 rmdel 22
5.7 cdc 23
5.8 what 23
5.9 sccsdiff 24
5.10 comb 24
5.11 val 24

6. SCCS FILES . .
6.1 Protection 25
6.2 Format 26
6.3 Auditing 26

REFERENCES . . .

- i -

1

1

5

7

8

25

27

LIST OF FIGURES

Figure 1. Evolution of an Sees File ••••

Figure 2. Tree Structure with Branch Deltas

Figure 3. Extending the Branching Concept.

- ii -

5

6

7

"*,,
~

TABLE 1. Determination of New SID

January 1980

LIST OF TABLES

14

- iii -

--- --- -------- ~-~~~-

!~

sees User's Guide

1. INTRODUCTION

The Source Code Control System (sees) is a collection of PWB commands that help individuals
or projects control and account for changes to files of text (typically, the source code and
documentation of software systems). It is convenient to conceive of sees as a custodian of files;
it allows retrieval of particular versions of the files, administers changes to them, controls
updating privileges to them, and records who made each change, when and where it was made,
and why. This is important in environments in which programs and documentation undergo
frequent changes (because of maintenance and/or enhancement work), inasmuch as it is
sometimes desirable to regenerate the version of a program or document as it was before
changes were applied to it. Obviously, this could be done by keeping copies (on paper or other
media), but this quickly becomes unmanageable and wasteful as the number of programs and
documents increases. Sees provides an attractive solution because it stores on disk the original
file and, whenever changes are made to it, stores only the changes; each set of changes is
called a "delta."

This document, together with relevant portions of [1], is a complete user's guide to sees. This
manual contains the following sections:

• Sees for Beginners: How to make an sees file, how to update it, and how to retrieve a
version thereof.

• How Deltas Are Numbered: How versions of sees files are numbered and named.
• Sees Command Conventions: Conventions and rules generally applicable to all sees

commands.
• Sees Commands: Explanation of all sees commands, with discussions of the more useful

arguments.
• Sees Files: Protection, format, and auditing of sees files, including a discussion of the

differences between using sees as an individual and using it as a member of a group or
project. The role of a "project sees administrator" is introduced.

2. SCCS FOR BEGINNERS

It is assumed that the reader knows how to log onto a PWB system, create files, and use the text
editor [1]. A number of terminal-session fragments are presented below. All of them should be
tried: the best way to learn sees is to use it.

To supplement the material in this manual, the detailed sees command descriptions (appearing
in [1]) should be consulted. Section 5 below contains a list of all the sees commands. For the
time being, however, only basic concepts will be discussed.

2.1 Terminology

Each sees file is composed of one or more sets of changes applied to the null (empty) version of
the file, with each set of changes usually depending on all previous sets. Each set of changes is
called a "delta" and is assigned a name, called the Sees ID entification string (SID), composed of
at most four components, only the first two of which will concern us for now; these are the
"release" and "level" numbers, separated by a period. Hence, the first delta is called "1.1", the
second "1.2", the third "1.3", etc. The release number can also be changed allowing, for
example, deltas "2.1 ", "3.19", etc. The change in the release number usually indicates a major
change to the file.

Each delta of an sees file defines a particular version of the file. For example, delta 1.5 defines
version 1.5 of the sees file, obtained by applying to the null (empty) version of the file the
changes that constitute deltas 1.1, 1.2, etc., up to and including delta 1.5 itself, in that order.

2 sees User's Guide

2.2 Creating an SCCS File-The "admin" Command

Consider, for example, a file called "lang" that contains a list of programming languages:

c
pili
fortran
cobol
algol

We wish to give custody of this file to sees. The following admin command (which is used to
administer sees files) creates an sees file and initializes delta 1.1 from the file "lang":

admin -ilang s.lang

All sees files must have names that begin with "s.", hence, "s.lang". The -i keyletter, together
with its value "lang", indicates that admin is to create a new sees file and initialize it with the
contents of the file "lang". This initial version is a set of changes applied to the null sees file; it
is delta 1.1.

The admin command replies:

No id keywords (cm 7)

This is a warning message (which may also be issued by other sees commands) that is to be
ignored for the purposes of this section. Its significance is described in Section 5.1 below. In
the following examples, this warning message is not shown, although it may actually be issued
by the various command.

The file "lang" should be removed (because it can be easily reconstructed by using the get
command, below):

rm lang

2.3 Retrieving a File-The "get" Command

The command:

get s.lang

causes the creation (retrieval) of the latest version of file "s.lang", and prints the following
messages:

1.1
5 lines

This means that get retrieved version 1.1 of the file, which is made up of 5 lines of text. The
retrieved text is placed in a file whose name is formed by deleting the "s." prefix from the name
of the sees file; hence, the file "lang" is created.

The above get command simply creates the file "lang" read-only, and keeps no information
whatsoever regarding its creation. On the other hand, in order to be able to subsequently apply
changes to an sees file with the delta command (see below), the get command must be
informed of your intention to do so. This is done as follows:

get -e s.lang

sees User's Guide 3

The -e keyletter causes get to create a file "lang" for both reading and writing (so that it may
be edited) and places certain information about the sees file in another new file, called the p-file,
that will be read by the delta command. The get command prints the same messages as
before, except that the SID of the version to be created through the use of delta is also issued.
For example:

get -e s.lang
1.1
new delta 1.2
5 lines

The file "lang" may now be changed, for example, by:

ed lang
27
$a
snobol
ratfor

w
41
q

2.4 Recording Changes-The "delta" Command

In order to record within the sees file the changes that have been applied to "lang", execute:

delta s.lang

Delta prompts with:

comments?

the response to which should be a description of why the changes were made; for example:

comments? added more languages

Delta then reads the p-file, and determines what changes were made to the file "lang". It does
this by doing its own get to retrieve the original version, and by applying diff (1) 1 to the original
version and the edited version.

When this process is complete, at which point the changes to "lang" have been stored in
"s.lang", delta outputs:

1.2
2 inserted
o deleted
5 unchanged

The number "1.2" is the name of the delta just created, and the next three lines of output refer
to the number of lines in the file "s.lang".

1. All references of the form name (N) refer to item name in command writeuP section N of (1).

4

2.5 More about the "get" Command

As we have seen:

get s.lang

sees User's Guide

retrieves the latest version (now 1.2) of the file "s.lang". This is done by starting with the original
version of the file and successively applying deltas (the changes) in order, until all have been
applied.

For our example, the following commands are all equivalent:

get s.lang

get -r1 s.lang

get -r1.2 s.lang

The numbers following the -r key letter are SIDS (see Section 2.1 above). Note that omitting the
level number of the SID (as in the second example above) is equivalent to specifying the highest
level number that exists within the specified release. Thus, the second command requests the
retrieval of the latest version in release 1, namely 1.2. The third command specifically requests
the retrieval of a particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually
indicated by changing the release number (first component of the SID) of the delta being made.
Since normal, automatic, numbering of deltas proceeds by incrementing the level number
(second component of the SID), we must indicate to sees that we wish to change the release
number. This is done with the get command:

get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version before release 2; it also
interprets this as a request to change the release number of the delta we wish to create to 2,
thereby causing it to be named 2.1, rather than 1.3. This information is conveyed to delta via
the p-fi/e. Get then outputs:

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the version delta will create.
If the file is now edited, for example, by:

ed lang
41
/cobol/d
w
35
q

sees User's Guide

and delta executed:

delta s.lang
comments? deleted cobol from list of languages

we wi" see, by delta's output, that version 2.1 is indeed created:

2.1
o inserted
1 deleted
6 unchanged

5

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be
created in a similar manner. This process may be continued as desired.

2.6 The "help" Command

If the command:

get abc

is executed, the following message will be output:

ERROR [abc]: not an sees file (c01)

The string "c01" is a code for the diagnostic message, and may be used to obtain a fuller
explanation of that message by use of the help command:

help c01

This produces the following output:

co1:
"not an sees file"
A file that you think is an sees file
does not begin with the characters "s. ".

Thus, help is a useful command to use whenever there is any doubt about the meaning of an
sees message. Fuller explanations of almost all sees messages may be found in this manner.

3. HOW DELTAS ARE NUMBERED

It is convenient to conceive of the deltas applied to an sees file as the nodes of a tree, in which
the root is the initial version of the file. The root delta (node) is normally named "1.1" and
successor deltas (nodes) are named "1.2", "1.3", etc. The components of the names of the
deltas are called the "release" and the "level" numbers. respectively. Thus, normal naming of
successor deltas proceeds by incrementing the level number, which is performed automatically
by sees whenever a delta is made. In addition, the user may wish to change the release
number when making a delta, to indicate that a major change is being made. When this is done,
the release number also applies to all successor deltas, unless specifically changed again.
Thus, the evolution of a particular file may be represented as in Figure 1.

O~Ot-------fOt------tOI--~O'---~O
1.1 1.2 1.3 1.4 2.1 2.2

.. ETU" .. 1 AllUM I
Figure 1. Evolution of an Sees File

Such a structure may be termed the "trunk" of the sees tree. It represents the normal
sequential development of an sees file, in which changes that are part of any given delta are
dependent upon aI/ the preceding deltas.

6 sees User's Guide

However, there are situations in which it is necessary to cause a branching in the tree, in that
changes applied as part of a given delta are not dependent upon all previous deltas. As an
example, consider a program which is in production use at version 1.3, and for which
development work on release 2 is already in progress. Thus, release 2 may already have some
deltas, precisely as shown in Figure 1. Assume that a production user reports a problem in
version 1.3, and that the nature of the problem is such that it cannot wait to be repaired in
release 2. The changes necessary to repair the trouble will be applied as a delta to version 1.3
(the version in production use). This creates a new version that will then be released to the
user, but will not affect the changes being applied for release 2 (i.e., deltas 1.4, 2.1, 2.2, etc.).

The new delta is a node on a "branch" of the tree, and its name consists of four components,
namely, the release and level numbers, as with trunk deltas, plus the "branch" and "sequence"
numbers, as follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a descendant of a particular trunk delta,
with the first such branch being 1, the next one 2, and so on. The sequence number is
assigned, in order, to each delta on a particular branch. Thus, 1.3.1.2 identifies the second
delta of the first branch that derives from delta 1.3. This is shown in Figure 2.

1.1 1.2 1.1 1 •• 1.1 u

Figure 2. Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming of the resulting
deltas proceeds in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the names of trunk
deltas contain exactly two components, and the names of branch deltas contain exactly four
components. Second, the first two components of the name of branch deltas are always those

. of the ancestral trunk delta, and the branch component is assigned in the order of creation of the
branch, independently of its location relative to the trunk delta. Thus, a branch delta may always
be identified as such from its name. Although the ancestral trunk delta may be identified from
the branch delta's name, it is not possible to determine the entire path leading from the trunk
delta to the branch delta. For example, if delta 1.3 has one branch emanating from it, all deltas
on that branch will be named 1.3.1.n. If a delta on this branch then has another branch
emanating from it, all deltas on the new branch will be named 1.3.2.n (see Figure 3). The only
information that may be derived from the name of delta 1.3.2.2 is that it is the chronologically
second delta on the chronologically second branch whose trunk ancestor is delta 1.3. In
particular, it is not possible to determine from the name of delta 1.3.2.2 all of the deltas between
it and its trunk ancestor (1.3).

sees User's Guide 7

..,,11111

2.1 2.2

Figure 3. Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree
structures. Although this capability has been provided for certain specialized uses, it is strongly
recommended that the sees tree be kept as simple as possible, because comprehension of its
structure becomes extremely difficult as the tree becomes more complex.

4. SCCS COMMAND CONVENTIONS

This section discusses the conventions and rules that apply to sees commands. These rules
and conventions are generally applicable to all sees commands, except as indicated below.
Sees commands accept two types of arguments: keyletter arguments and file arguments.

Keyletter arguments (hereafter called simply "keyletters") begin with a minus sign (-), followed
by a lower-case alphabetic character, and, in some cases, followed by a value. These key letters
control the execution of the command to which they are supplied.

File arguments (which may be names of files and/or directories) specify the file(s) that the given
sees command is to process; naming a directory is equivalent to naming all the sees files within
the directory. Non-sees files and unreadable2 files in the named directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the name "_" (a lone
minus sign) is specified as an argument to a command, the command reads the standard input
for lines and takes each line as the name of an sees file to be processed. The standard input is
read until end-of-file. This feature is often used in pipelines [1) with, for example, the find (1) or
Is (1) commands. Again, names of non-sees files and of unreadable files are silently ignored.

All key letters specified for a given command apply to all file arguments of that command. All
keyletters are processed before any file arguments, with the result that the placement of
key letters is arbitrary (Le., key letters may be interspersed with file arguments). File arguments,
however, are processed left to right.

Somewhat different argument conventions apply to the help, what, sccsdiff, and val commands
(see Sections 5.5, 5.8, 5.9, and 5.11).

Certain actions of various sees commands are controlled by flags appearing in sees files. Some
of these flags are discussed below. For a complete description of all such flags, see admin (1).

The distinction between the real user (see passwd(1)) and the effective user of a PWB system is
of concern in discussing various actions of sees commands. For the present, it is assumed that
both the real user and the effective user are one and the same (Le., the user who is logged into
a PWB system); this subject is further discussed in Section 6.1.

2. Because of Permission modes (see chmod(1)).

8 sees User's Guide

All sees commands that modify an sees file do so by writing a temporary copy, called the x-file,
which ensures that the sees file will not be damaged should processing terminate abnormally.
The name of the x-file is formed by replacing the "s." of the sees file name with "x.". When
processing is complete, the old sees file is removed and the x-file is renamed to be the sees file.
The x-file is created in the directory containing the sees file, is given the same mode (see
chmod(1» as the sees file, and is owned by the effective user.

To prevent simultaneous updates to an sees file, commands that modify sees files create a
lock-file, called the z-file, whose name is formed by replacing the "s." of the sees file name with
"z.". The z-file contains the process number [1] of the command that creates it, and its
existence is an indication to other commands that that sees file is being updated. Thus, other
commands that modify sees files will not process an sees file if the corresponding z-file exists.
The z-file is created with mode 444 (read-only) in the directory containing the sees file, and is
owned by the effective user. This file exists only for the duration of the execution of the
command that creates it. In general, users can ignore x-files and z-files; they may be useful in
the event of system crashes or similar situations.

Sees commands produce diagnostics (on the diagnostic output [1]) of the form:

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to the help command (see Section 5.5)
to obtain a further explanation of the diagnostic message.

Detection of a fatal error during the processing of a file causes the sees command to terminate
processing of that file and to proceed with the next file, in order, if more than one file has been
named.

5. sees COMMANDS

This section describes the major features of all the sees commands. Detailed descriptions of
the commands and of all their arguments are given in the PWB User's Manual, and should be
consulted for further information. The discussion below covers only the more common
arguments of the various sees commands.

Because the commands get and delta are the most frequently used, they are presented first.
The other commands follow in approximate order of importance.

sees User's Guide 9

r" The following is a summary of all the sees commands and of their major functions:

get Retrieves versions of sees files.

delta Applies changes (deltas) to the text of sees files, i.e., creates new versions.

admin Creates sees files and applies changes to parameters of sees files.

prs Prints portions of an sees file in user specified format.

help Gives explanations of diagnostic messages.

rmdel Removes a delta from an sees file; allows the removal of deltas that were created
by mistake.

cdc Changes the commentary associated with a delta.

what Searches any PWB file(s) for all occurrences of a special pattern and prints out
what follows it; is useful in finding identifying information inserted by the get
command.

sccsdiff Shows the differences between any two versions of an sees file.

comb Combines two or more consecutive deltas of an sees file into a single delta; often
reduces the size of the sees file.

val Validates an sees file.

5.1 get
The get command creates a text file that contains a particular version of an sees file. The
particular version is retrieved by beginning with the initial version, and then applying deltas, in
order, until the desired version is obtained. The created file is called the g-fiIe; its name is
formed by removing the "s." from the sees file name. The g-file is created in the current
directory [1 J and is owned by the real user. The mode assigned to the g-fi/e depends on how
the get command is invoked, as discussed below.

The most common invocation of get is:

get s.abc

which normally retrieves the latest version on the trunk of the sees file tree, and produces (for
example) on the standard output [1J:

1.3
67 lines
No id keywords (cm 7)

which indicates that:

1. Version 1.3 of file "s.abc" was retrieved (1.3 is the latest trunk delta).
2. This version has 67 lines of text.
3. No ID keywords were substituted in the file (see Section 5.1.1 for a discussion of ID

keywords).

The generated g-file (file "abc") is given mode 444 (read-only), since this particular way of
invoking get is intended to produce g-files only for inspection, compilation, etc., and not for
editing (Le., not for making deltas).

10 sees User's Guide

In the case of several file arguments (or directory-name arguments), similar information is given ~
for each file processed, but the sees file name precedes it. For example:

get s.abc s.def

produces:

s.abc:
1.3
67 lines
No id keywords (cm7)

s.def:
1.7
85 lines
No id keywords (cm7)

5.1.1 ID Keywords

In generating a g-file to be used for compilation, it is useful and informative to record the date
and time of creation, the version retrieved, the module's name, etc., within the g-file, so as to
have this information appear in a load module when one is eventually created. Sees provides a
convenient mechanism for doing this automatically. Identification (ID) keywords appearing
anywhere in the generated file are replaced by appropriate values according to the definitions of
these 10 keywords. The format of an 10 keyword is an upper-case letter enclosed by percent
signs (%). For example:

%1%

is defined as the 10 keyword that is replaced by the SID of the retrieved version of a file.
Similarly, %HO/o is defined as the 10 keyword for the current date (in the form "mm/dd/yy"), and
%U% is defined as the name of the g-file. Thus, executing get on an sees file that contains the
PUI declaration:

OCl 10 CHAR(100) VAR INITC%M% %1% %H% ');

gives (for example) the following:

OCl 10 CHAR(100) VAR INITCMOONAME 2.3 07/07/77');

When no 10 keywords are substituted by get, the following message is issued:

No id keywords (cm7)

This message is normally treated as a warning by get, although the presence of the i flag in the
sees file causes it to be treated as an error (see Section 5.2 for further information).

For a complete list of the approximately twenty 10 keywords provided, see get(1).

5.1.2 Retrieval of Different Versions

Various key letters are provided to allow the retrieval of other than the default version of an sees
file. Normally, the default version is the most recent delta of the highest-numbered release on
the trunk of the sees file tree. However, if the sees file being processed has a d (default SID)

flag, the SID specified as the value of this flag is used as a default. The default SID is interpreted
in exactly the same way as the value supplied with the -r key letter of get.

The -r keyletter is used to specify an SID to be retrieved, in which case the d (default SID) flag
(if any) is ignored. For example:

get -r1.3 s.abc

sees User's Guide

".... retrieves version 1.3 of file "s.abc", and produces (for example) on the standard output:

1.3
64 lines

A branch delta may be retrieved similarly:

get -r1.5.2.3 s.abc

which produces (for example) on the standard output:

1.5.2.3
234 lines

11

When a two- or four-component SID is specified as a value for the -r keyletter (as above) and
the particular version does not exist in the sees file, an error message results. Omission of the
level number, as in:

get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the given release, if the
given release exists. Thus, the above command might output:

3.7
213 lines

If the given release does not exist, get' retrieves the trunk delta with the highest level number
within the highest-numbered existing release that is lower than the given release. For example,
assuming release 9 does not exist in file "s.abc", and that release 7 is actually the highest­
numbered release below 9, execution of:

get -r9 s.abc

might produce:

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file "s.abc" below release 9. Similarly,
omission of the sequence number, as in:

get -r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the given
branch, if it exists. (If the given branch does not exist, an error message results.) This might
result in the following output:

4.3.2.8
89 lines

The -t key letter is used to retrieve the latest ("top") version in a particular release (i.e., when
no -r keyletter is supplied, or when its value is simply a release number). The latest version is
defined as that delta which was produced most recently, independent of its location on the sees
file tree. Thus, if the most reCent delta in release 3 is 3.5,

get -r3 -t s.abc

might produce:

3.5
59 lines

12 sees User's Guide

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same
command might produce:

3.2.1.5
46 lines

5.1.3 Retrieval with Intent to Make a Delta

Specification of the -e keyletter to the get command is an indication of the intent to make a
delta, and, as such, its use is restricted. The presence of this keyletter causes get to check:

1. The user list (which is the list of login names and/or group IDS of users allowed to make
deltas (see Section 6.2» to determine if the login name or group 10 of the user executing
get is on that list. Note that a null (empty) user list behaves as if it contained all possible
login names.

2. That the release (R) of the version being retrieved satisfies the relation:

floor :5 R :5 ceiling

to determine if the release being accessed is a protected release. The floor and ceiling
are specified as flags in the sees file.

3. That the release (R) is not locked against editing. The lock is specified as a flag in the
sees file.

4. Whether or not multiple concurrent edits are allowed for the sees file as specified by the j
flag in the sees file (multiple concurrent edits are described in Section 5.1.5).

A failure of any of the first three conditions causes the processing of the corresponding sees file
to terminate.

If the above checks succeed, the -e key letter causes the creation of a g-fi/e in the current
directory with mode 644 (readable by everyone, writable only by the owner) owned by the real
user. If a writable g-file already exists, get terminates with an error. This is to prevent
inadvertent destruction of a g-file that already exists and is being edited for the purpose of
making a delta.

Any 10 keywords appearing in the g-fi/e are not substituted by get when the -e keyletter is
specified, because the generated g-file is to be subsequently used to create another delta. and
replacement of 10 keywords would cause them to be permanently changed within the sees file.
In view of this, get does not need to check for the presence of 10 keywords within the g-file, so
that the message:

No id keywords (cm7)

is never output when get is invoked with the -e keyletter.

In addition, the -e keyletter causes the creation (or updating) of a p-fi/e, which is used to pass
information to the delta command (see Section 5.1.4).

The following is an example of the use of the -e keyletter:

get -e s.abc

which produces (for example) on the standard output:

1.3
new delta 1.4
67 lines

If the -r and/or -t key letters are used together with the --e key letter, the version retrieved for
editing is as specified by the -r and/or -t key letters.

The keyletters -i and -x may be used to specify a list (see get (1) for the syntax of such a list)
of deltas to be included and excluded, respectively, by get. Including a delta means forcing the
changes that constitute the particular delta to be included in the retrieved version. This is useful

sees User's Guide 13

if one wants to apply the same changes to more than one version of the sees file. Excluding a
delta means forcing it to be not applied. This may be used to undo, in the version of the sees
file to be created, the effects of a previous delta. Whenever deltas are included or excluded, get
checks for possible interference between such deltas and those deltas that are normally used in
retrieving the particular version of the sees file. (Two deltas can interfere, for example, when
each one changes the same line of the retrieved g-file.) Any interference is indicated by a
warning that shows the range of lines within the retrieved g-file in which the problem may exist.
The user is expected to examine the g-fi/e to determine whether a problem actually exists, and
to take whatever corrective measures (if any) are deemed necessary (e.g., edit the file).

.. The -i and -x keyletters should be used with extreme care.

The -k keyletter is provided to facilitate regeneration of a g-file that may have been accidentally
removed or ruined subsequent to the execution of get with the -e keyletter, or to simply
generate a g-file in which the replacement of 10 keywords has been suppressed. Thus, a g-fi/e
generated by the -k key letter is identical to one produced by get executed with the --e
key letter. However, no processing related to the p-fi/e takes place.

5.1.4 Concurrent Edits of Different SIDS

The ability to retrieve different versions of an sees file allows a number of deltas to be "in
progress" at any given time. This means that a number of get commands with the -e key letter
may be executed on the same file, provided that no two executions retrieve the same version
(unless multiple concurrent edits are allowed, see Section S.1.5).

The p-file (which is created by the get command invoked with the -e key letter) is named by
replacing the "s." in the sees file name with "p.". It is created in the directory containing the
sees file, is given mode 644 (readable by everyone, writable only by the owner), and is owned
by the effective user. The p-file contains the following information for each delta that is still "in
progress":3

• The SID of the retrieved version.
• The SID that will be given to the new delta when it is created.
• The login name of the real user executing get.

The first execution of "get -e" causes the creation of the p-fi/e for the corresponding sees file.
Subsequent executions only update the p-file by inserting a line containing the above
information. Before inserting this line, however, get checks that no entry already in the p-fi/e
specifies as already retrieved the SID of the version to be retrieved, unless multiple concurrent
edits are allowed.

If both checks succeed, the user is informed that other deltas are in progress, and processing
continues. If either check fails, an error message results. It is important to note that the various
executions of get should be carried out from different directories. Otherwise, only the first
execution will succeed, since subsequent executions would attempt to over-write a writable g­
file, which is an sees error condition. In practice, such multiple executions are performed by
different users,4 so that this problem does not arise, since each user normally has a different
working directory [1].

Table 1 shows, for the most useful cases, what version of an sees file is retrieved by get, as
well as the SID of the version to be eventually created by delta, as a function of the SID specified
to get.

3. Other information may be there also. but is not of concern here. See get(1) for further discussion.
4. See Section 6.1 for a discussion of how different users are Permitted to use sees commands on the same files.

14 sees User's Guide

TABLE 1. Determination of New SID

Cue
SID -b Kellletter

Specified- Uaedt
Other SID SID of Delta

Co nditiona Retrieved to be Created
1. none:/: no R defaults to mR mR.mL mR.(mL+l)
2. nonet yes R defaults to mR mR.mL mR.mL.(mB + 1).1
3. R no R > mR mR.mL R.l§
4. R no R=mR mR.mL mR.(mL+l)
5. R yes R > mR mR.mL mR.mL.(mB + 1).1
6. R yes R=mR mR.mL mR.mL.(mB +1).1

7. R
R < mR and hR.mLu hR.mL.(mB + 1).1 R does not exist
Trunk successor

8. R in release > R R.mL R.mL.(mB+l).1
and R exists

9. R.L no No trunk successor R.L R.(L+l)
10. R.L yes No trunk successor R.L R.L.(mB+l).1

11. R.L
Trunk successor

R.L R.L.(mB+l).1 in release 2: R
12. R.L.B no No branch successor R.L.B.mS R.L.B.(mS +1)
13. R.L.B yes No branch successor R.L.B.mS R.L.(mB + 1).1
14. R.L.B.S no No branch successor R.L.B.S R.L.B.(S + 1)
15. R.L.B.S yes No branch successor R.L.B.S R.L.(mB + 1).1
16. R.L.B.S Branch successor R.L.B.S R.L.(mB +1).1

* "R", "L", "B", and "S" are the "release", "level", "branch", and "sequence" components of the SID,
respectively; "m" means "maximum". Thus, for example, "R.mL" means "the maximum level number
within release R"; "R.L.(mB+L).L" means "the first sequence number on the new branch (i.e., maximum
branch number plus L) of level L within release R". Note that if the SID specified is of the form "R.L",
"R.L.B", or "R.L.B.S", each of the specified components must exist.

t The -b keyletter is effective only if the b flag (see admin(L).l is present in the file. In this table, an entry
of "-" means "irrelevant".

* This case applies if the d (default SID). flag is not present in the file. If the d flag is present in the file,
then the SID obtained from the d flag is interpreted as if it had been specified on the command line.
Thus, one of the other cases in this table applies.

§ This case is used to force the creation of the Nrst delta in a new release .

• * "hR" is the highest existing release that is lower than the specified, nonexistent, release R.

5.1.5 Concurrent Edits of the Same SID

Under normal conditions, gets for editing (-e key letter is specified) based on the same SID are
not permitted to occur concurrently. That is, delta must be executed before a subsequent get
for editing is executed at the same SID as the previous get. However, multiple concurrent edits
(defined lo be two or more successive executions of get for editing based on the same retrieved

sees User's Guide

r SID) are allowed if the j flag is set in the sees file. Thus:

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by:

get -e s.abc
1.1
new delta 1.1.1.1
5 lines

15

without an intervening execution of delta. In this case, a delta command corresponding to the
first get produces delta 1.2 (assuming 1.1 is the latest (most recent) trunk delta), and the delta
command corresponding to the second get produces delta 1.1.1.1.

5.1.6 Key/etters That Affect Output

Specification of the -p key letter causes get to write the retrieved text to the standard output,
rather than to a g-file. In addition, all output normally directed to the standard output (such as
the SID of the version retrieved and the number of lines retrieved) is directed instead to the
diagnostic output. This may be used, for example, to create g-files with arbitrary names:

get -p s.abc > arbitrary-filename

The -p keyletter is particularly useful when used with the "!" or "$" arguments of the PWB
send(1) command. For example:

send MOD=s.abc REL=3 compile

if file "compile" contains:

Ilplicomp job job-card-information
Iistep1 exec plickc
Ilpli.sysin dd *
-s

-! get -p -rREL MOD

/*
II

will send the highest level of release 3 of file "s.abc". Note that the line ,,--s", which causes
send (1) to make 10 keyword substitutions before detecting and interpreting control lines, is
necessary if send(1) is to substitute "s.abc" for MOO and "3" for REL in the line "-!get -p
-rREL MOO".

The -5 keyletter suppresses all output that is normally directed to the standard output. Thus,
the SID of the retrieved version, the number of lines retrieved, etc., are not output. This does
not, however, affect messages to the diagnostic output. This keyletter is used to prevent non­
diagnostic messages from appearing on the user's terminal, and is often used in conjunction with
the -p key letter to "pipe" the output of get, as in:

get -p -s s.abc I nrolf

The ~ key letter is supplied to suppress the actual retrieval of the text of a version of the sees
file. This may be useful in a number of ways. For example, to verify the existence of a
particular SID in an sees file, one may execute:

get -g -r4.3 s.abc

This outputs the given SID if it exists in the sees file, or it generates an error message, if it does
not. Another use of the -g key letter is in regenerating a p-file that may have been aCCidentally
destroyed:

16 sees User's Guide

get -e -g s.abc

The -I keyletter causes the creation of an I-file, which is named by replacing the "s." of the
sees file name with "I.". This file is created in the current directory, with mode 444 (read-only),
and is owned by the real user. It contains a table (whose format is described in get(1» showing
which deltas were used in constructing a particular version of the sees file. For example:

get -r2.3 -I s.abc

generates an I-file showing which deltas were applied to retrieve version 2.3 of the sees file.
Specifying a value of "p" with the -I keyletter, as in:

get -Ip -r2.3 s.abc

causes the generated output to be written to the standard output rather than to the I-file. Note
that the --g keyletter may be used with the -I key letter to suppress the actual retrieval of the
text.

The -m key letter is of use in identifying, line by line, the changes applied to an sees file.
Specification of this keyletter causes each line of the generated g-file to be preceded by the SID

of the delta that caused that line to be inserted. The SID is separated from the text of the line by
a tab character.

The -n keyletter causes each line of the generated g-file to be preceded by the value of the
%M% 10 keyword (see Section 5.1.1) and a tab character. The -n keyletter is most often used
in a pipeline with grep (1). For example, to find all lines that match a given pattern in the latest
version of each sees file in a directory, the following may be executed:

get -p -n -s directory I grep pattern

If both the -m and -n key letters are specified, each line of the generated g-file is preceded by
the value of the %M% 10 keyword and a tab (this is the effect of the -Ill keyletter), followed by
the line in the format produced by the -m key letter. Because use of the -m key letter and/or
the -n keyletter causes the contents of the g-file to be modified, such a g-file must not be used
for creating a delta. Therefore, neither the -m key letter nor the -in keyletter may be specified
together with the -e keyletter.

See get (1) for a full description of additional get keyletters.

5.2 delta

The delta command is used to incorporate the changes made to a g-file into the corresponding
sees file, i.e., to create a delta, and, therefore, a new version of the file.

Invocation of the delta command requires the existence of a p-file (see Sections 5.1.3 and
5.1.4). Delta examines the p-file to verify the presence of an entry containing the user's login
name. If none is found, an error message results. Delta also performs the same permission
checks that get performs when invoked with the --e keyletter. If all checks are successful, delta
determines what has been changed in the g-file, by comparing it (via diff (1» with its own,
temporary copy of the g-file as it was before editing. This temporary copy of the g-file is called
the d-file (its name is formed by replacing the "s." of the sees file name with "d.") and is
obtained by performing an internal get at the SID specified in the p-file entry.

The required p-file entry is the one containing the login name of the user executing delta,
because the user who retrieved the g-file must be the one who will create the delta. However, if
the login name of the user appears in more than one entry (i.e., the sanie user executed get
with the --e key letter more than once on the same sees file), the -r key letter must be used
with delta to specify an SID that uniquely identifies the p-file entry5. This entry is the one used to

r

r

sees User's Guide

obtain the SID of the delta to be created.

In practice, the most common invocation of delta is:

delta s.abc

which prompts on the standard output (but only if it is a terminal):

comments?

17

to which the user replies with a description of why the delta is being made, terminating the reply
with a newline character. The user's response may be up to 512 characters long, with newlines
not intended to terminate the response escaped by ',\".

If the sees file has a v flag, delta first prompts with:

MRs?

on the standard output. (Again, this prompt is printed only if the standard output is a terminal.)
The standard input is then read for MR6 numbers, separated by blanks and/or tabs, terminated
in the same manner as the response to the prompt "comments?".

The -y and/or -m key letters are used to supply the commentary (comments and MR
numbers, respectively) on the command line, rather than through the standard input. For
example:

delta -Y"descriptive comment" -m"mrnum1 mrnum2" s.abc

In this case, the corresponding prompts are not printed, and the standard input is not read. The
-m key letter is allowed only if the sees file has a v flag. These keyletters are useful when delta
is executed from within a Shell procedure (see sh (1)).

The commentary (comments and/or MR numbers), whether solicited by delta or supplied via
key letters , is recorded as part of the entry for the delta being created, and applies to all sees
files processed by the same invocation of delta. This implies that if delta is invoked with more
than one file argument, and the first file named has a v flag, all files named must have this flag.
Similarly, if the first file named does not have this flag, then none of the files named may have it.
Any file that does not conform to these rules is not processed.

When processing is complete, delta outputs (on the standard output) the SID of the created delta
(obtained from the p-file entry) and the counts of lines inserted, deleted, and left unchanged by
the delta. Thus, a typical output might be:

1.4
14 inserted
7 deleted
345 unchanged

It is possible that the counts of lines reported as inserted, deleted, or unchanged by delta do not
agree with the user's perception of the changes applied to the g-file. The reason for this is that
there usually are a number of ways to describe a set of such changes, especially if lines are
moved around in the g-file, and delta is likely to find a description that differs from the user's
perception. However, the total number of lines of the new delta (the number inserted plus the
number left unchanged) should agree with the number of lines in the edited g-file.

6. The SID specified may be either the SlD retrieved by get, or the SID delta is to create.

6. In a tightly controlled environment, it is expected that deltas are created only as a result of some trouble
report, change request, trouble ticket, etc. (collectively called here Modification Requests, or MRs) and that
it is desirable or necessary to record such MR number(s) within each delta.

18 sees User's Guide

If, in the process of making a delta, delta finds no 10 keywords in the edited g-file, the message:

No id keywords (cm7)

is issued after the prompts for commentary, but before any other output. This indicates that any
10 keywords that may have existed in the sees file have been replaced by their values, or
deleted during the editing process. This could be caused by creating a delta from a g-flle that
was created by a get without the -it keyletter (recall that 10 keywords are replaced by get in
that case), or by accidentally deleting or changing the 10 keywords during the editing of the g-file.
Another possibility is that the file may never have had any 10 keywords. In any case, it is left up
to the user to determine what remedial action is necessary, but the delta is made, unless there
is an i flag in the sees file, indicating that this should be treated as a fatal error. In this last
case, the delta is not created.

After processing of an sees file is complete, the corresponding p-tile entry is removed from the
p-tile. 7 If there is only one entry in the p-file, then the p-tile itself is removed.

In addition, delta removes the edited g-tlle, unless the -n keyletter is specified. Thus:

delta -n s.abc

will keep the g-file upon completion of processing.

The -s ("silent") keyletter suppresses all output that is normally directed to the standard output,
other than the prompts "comments?" and "MRs?". Thus, use of the -8 key letter together with
the -y keyletter (and possibly, the -rn keyletter) causes delta neither to read the standard
input nor to write the standard output.

The differences between the g-tile and the d-file (see above), which constitute the delta, may be
printed on the standard output by using the -p keyletter. The format of this output is similar to
that produced by diff (1).

5.3 admln

The admin command is used to administer sees files, that is, to create new sees files and to
change parameters of existing ones. When an sees file is created, its parameters are initialized
by use of keyletters or are assigned default values if no key letters are supplied. The same
keyletters are used to change the parameters of existing files.

Two keyletters are supplied for use in conjunction with detecting and correcting "corrupted" sees
files, and are discussed in Section 6.3 below.

Newly-created sees files are given mode 444 (read-only) and are owned by the effective user.

Only a user with write permission in the directory containing the sees file may use the admin
command upon that file.

5.3.1 Creation at Sees Files

An sees file may be created by executing the command:

admin -ifirst s.abc

in which the value ("first") of the -i keyletter specifies the name of a file from which the text of
the initial delta of the sees file "s.abc" is to be taken. Omission of the value of the -i key letter

7. .All updates to the p-fi/e are made to a temporary copy, the q-fi/e, whose use is similar to the use of the x­
file, which is described in Section 4 above.

sees User's Guide 19

indicates that admin is to read the standard input for the text of the initial delta. Thus, the
command:

admin -i s.abc < first

is equivalent to the previous example. If the text of the initial delta does not contain 10 keywords,
the message:

No id keywords (cm7)

is issued by admin as a warning. However, if the same invocation of the command also sets the
i flag (not to be confused with the -i keyletter), the message is treated as an error and the sees
file is not created. Only one sees file may be created at a time using the -i keyletter.

When an sees file is created, the release number assigned to its first delta is normally "1 ", and
its level number is always "1 ". Thus, the first delta of an sees file is normally "1.1". The-r
key letter is used to specify the release number to be assigned to the first delta. Thus:

admin -ifirst -r3 s.abc

indicates that the first delta should be named "3.1" rather than "1.1". Because this keyletter is
only meaningful in creating the first delta, its use is only permitted with the -i keyletter.

5.3.2 Inserting Commentary for the Initial Delta

When an sees file is created, the user may choose to supply commentary stating the reason for
creation of the file. This is done by supplying comments (-y keyletter) and/or MR numbers8

(-m keyletter) in exactly the same manner as for delta. If comments (-y key letter) are
omitted, a comment line of the form:

date and time created YY /MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (-m keyletter), the v flag must also be set (using the -f
key letter described below). The v flag simply determines whether or not MR numbers must be
supplied when using any sees command that modifies a delta commentary (see sccsfile (5)) in
the sees file. Thus:

admin -ifirst -mmrnuml -fv s.abc

Note that the -y and -m keyletters are only effective if a new sees file is being created.

5.3.3 Initialization and Modification of Sees File Parameters

The portion of the sees file reserved for descriptive text (see Section 6.2) may be initialized or
changed through the use of the -t key letter. The descriptive text is intended as a summary of
the contents and purpose of the sees file, although its contents may be arbitrary, and it may be
arbitrarily long.

When an sees file is being created and the -t keyletter is supplied, it must be followed by the
name of a file from which the descriptive text is to be taken. For example, the command:

admin -Hirst -tdesc s.abc

specifies that the descriptive text is to be taken from file "desc".

r 8. The creation of an sees file may sometimes be the direct result of an MR.

20 sees User's Guide

When processing an existing sees file, the -t keyletter specifies that the descriptive text (if any)
currently in the file is to be replaced with the text in the named file. Thus:

admin -tdese s.abe

specifies that the descriptive text of the sees file is to be replaced by the contents of "desc";
omission of the file name after the -t keyletter as in:

admin -t s.abe

causes the removal of the descriptive text from the sees file.

The flags (see Section 6.2) of an sees file may be initialized and changed, or deleted through
the use of the -f and -d keyletters, respectively. The flags of an sees file are used to direct
certain actions of the various commands. See admin (1) for a description of all the flags. For
example, the i flag specifies that the warning message stating there are no 10 keywords
contained in the sees file should be treated as an error, and the d (default SID) flag specifies the
default version of the sees file to be retrieved by the get command. The -f keyletter is used to
set a flag and, possibly, to set its value. For example:

admin -Hirst -6. -fmmodname s.abc

sets the i flag and the m (module name) flag. The value "modname" specified for the m flag is
the value that the get command will use to replace the %M% 10 keyword. (In the absence of the
m flag, the name of the g-file is used as the replacement for the %M% 10 keyword.) Note that
several -f keyletters may be supplied on a single invocation of admin, and that -f keyletters
may be supplied whether the command is creating a new sees file or processing an existing
one.

The -d keyletter is used to delete a flag from an sees file, and may only be specified when
processing an existing file. As an example, the command:

admin -dm s.abc

removes the m flag from the sees file. Several -d key letters may be supplied on a single
invocation of admin, and may be intermixed with -f keyletters.

Sees files contain a list (user list) of login names and/or group IDS of users who are allowed to
create deltas (see Sections 5.1.3 and 6.2). This list is empty by default, which implies that
anyone may create deltas. To add login names and/or group IDS to the list, the -a keyletter is
used. For example:

admin -axyz -awql -a1234 s.abc

adds the login names "xyz" and "wql" and the group 10 "1234" to the list. The -8 keyletter may
be used whether admin is creating a new sees file or processing an existing one, and may
appear several times. The -e key letter is used in an analogous manner if one wishes to
remove ("erase") login names or group IDS from the list.

5.4 prs

Prs is used to print on the standard output all or parts of an sees file (see Section 6.2) in a
format, called the output data specification, supplied by the user via the -d key letter. The data
specification is a string consisting of sees file data keywords9 interspersed with optional user
text.

9. Not to be confused with get 10 keywords.

sees User's Guide 21

r Data keywords are replaced by appropriate values according to their definitions. For example:

:1:

is defined as the data keyword that is replaced by the SID of a specified delta. Similarly, :F: is
defined as the data keyword for the sees file name currently being processed, and :C: is defined
as the comment line associated with a specified delta. All parts of an sees file have an
associated data keyword. For a complete list of the data keywords, see prs (1).

There is no limit to the number of times a data keyword may appear in a data specification.
Thus, for example:

prs -d":I: this is the top delta for :F: :1:" s.abc

may produce on the standard output:

2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the SID of that delta using the -r
keyletter. For example:

prs -d":F:: :1: comment line is: :C:" -r1.4 s.abc

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If the -r keyletter is not specified, the value of the SID defaults to the most recently created
delta.

In addition, information from a range of deltas may be obtained by specifying the -lor -e
keyletters. The -e keyletter substitutes data keywords for the SID designated via the -r
key letter and all deltas created earlier. The -I key letter substitutes data keywords for the SID

designated via the -r keyletter and all deltas created later. Thus, the command:

prs -d:I: -r1.4 -e s.abc

may output:

1.4
1.3
1.2.1.1
1.2
1.1

and the command:

prs -d:I: -r1.4 -I s.abc

may produce:

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the sees file may be obtained by specifying both
the -e and -I keyletters.

5.5 help

The help command prints explanations of sees commands and of messages that these
commands may print. Arguments to help, zero or more of which may be supplied, are simply

22 sees User's Guide

the names of sees commands or the code numbers that appear in parentheses after sees
messages. If no argument is given, help prompts for one. Help has no concept of keyletter
arguments or file arguments. Explanatory information related to an argument, if it exists, is
printed on the standard output. If no information is found, an error message is printed. Note
that each argument is processed independently, and an error resulting from one argument will
not terminate the processing of the other arguments.

Explanatory information related to a command is a synopsis of the command. For example:

help ge5 rmdel

produces:

ge5:
"nonexistent sid"
The specified sid does not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID name ..•

5.6 rmdel

The ,mdel command is provided to allow removal of a delta from an sees file, though its use
should be reserved for those cases in which incorrect, global changes were made a part of the
delta to be removed.

The delta to be removed must be a "leaf" delta. That is, it must be the latest (most recently
created) delta on its branch or on the trunk of the sees file tree. In Figure 3, only deltas 1.3.1.2,
1.3.2.2, and 2.2 can be removed; once they are removed, then deltas 1.3.2.1 and 2.1 can be
removed, and so on.

To be allowed to remove a delta, the effective user must have write permission in the directory
containing the sees file. In addition, the real user must either be the one who created the delta
being removed, or be the owner of the sees tile and its directory.

The -r key letter, which is mandatory, is used to specify the complete SID of the delta to be
removed (i.e., it must have two components tor a trunk delta, and four components for a branch
delta). Thus:

rmdel -r2.3 s.abc

specifies the removal of (trunk) delta "2.3" of the sees file. Before removal of the delta, rmdel
checks that the release number (R) of the given SID satisfies the relation:

floor :s; R :s; ceiling

Rmdel also checks that the SID specified is not that of a version for which a get for editing has
been executed and whose associated delta has not yet been made. In addition, the login name
or group 10 of the user must appear in the file's user list, or the user list must be empty. Also,
the release specified can not be locked against editing (i.e., if the I flag is set (see admin (1)),
the release specified must not be contained in the list). If these conditions are not satisfied,
processing is terminated, and the delta is not removed. After the specified delta has been
removed, its type indicator in the delta table of the sees file (see Section 6.2) is changed from

sees User's Guide

~. "0" (for "delta") to "R" (for "removed").

5.7 cdc

23

The cdc command is used to change a delta's commentary that was supplied when that delta
was created. Its invocation is analogous to that of the rmdel command, except that the delta to
be processed is not required to be a leaf delta. For example:

cdc -r3.4 s.abc

specifies that the commentary of delta "3.4" of the sees file is to be changed.

The new commentary is solicited by cdc in the same manner as that of delta. The old
commentary associated with the specified delta is kept, but it is preceded by a comment line
indicating that it has been changed (i.e., superseded), and the new commentary is entered
ahead of this comment line. The "inserted" comment line records the login name of the user
executing cdc and the time of its execution.

Cdc also allows for the deletion of selected MR numbers associated with the specified delta.
This is specified by preceding the selected MR numbers by the character "'''. Thus:

cdc -r1.4 s.abc
MRs? mrnum3 !mrnum1
comments? deleted wrong MR number and inserted correct MR number

inserts "mrnum3" and deletes "mrnum1" for delta 1.4.

5.8 what

The what command is used to find identifying information within any PWB file whose name is
given as an argument to what. Directory names and a name of "-" (a lone minus sign) are not
treated specially, as they are by other sees commands, and no key/etters are accepted by the
command.

What searches the given file(s) for all occurrences of the string "@(#)", which is the replacement
for the %Z% 10 keyword (see get (1)), and prints (on the standard output) what follows that string
until the first double quote ("), greater than (», backslash (\), newline, or (non-printing) NUL
character. Thus, for example, if the sees file "s.prog.c" (which is a C program), contains the
following line (the %M% and %1% 10 keywords were defined in Section 5.1.1):

char id[] "%Z%%M%:%I%";

and then the command:

get -r3.4 s.prog.c

is executed, and finally the resulting g-file is compiled to produce "prog.o" and "a.out", then the
command:

what prog.c prog.o a.out

produces:

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what need not be inserted via an 10 keyword of get; it may be
inserted in any convenient manner.

24 sees User's Guide

5.9 sccsdlff

The sccsdiff command determines (and prints on the standard output) the differences between
two specified versions of one or more sees files. The versions to be compared are specified by
using the -r keyletter, whose format is the same as for the get command. The two versions
must be specified as the first two arguments to this command in the order in which they were
created, i.e., the older version is specified first. Any following keyletters are interpreted as
arguments to the pr(1) command (which actually prints the differences) and must appear before
any file names. Sees files to be processed are named last. Directory names and a name of
"-" (a lone minus sign) are not acceptable to sccsdiff.

The differences are printed in the form generated by diff (1). The following is an example of the
invocation of sccsdiff:

sccsdiff -r3.4 -rS.6 s.abc

5.10 comb

Comb generates a Shell procedure (see sh (1)) which attempts to reconstruct the named sees
files so that the reconstructed files are smaller than the originals. The generated Shell
procedure is written on the standard output.

Named sees files are reconstructed by discarding unwanted deltas and combining specified
other deltas. The intended use is for those sees files that contain deltas that are so old that they
are no longer useful. It is not recommended that comb be used as a matter of routine; its use
should be restricted to a very small number of times in the life of an sees file.

In the absence of any keyletters, comb preserves only leaf deltas and the minimum number of
ancestor deltas necessary to preserve the "shape" of the sees file tree. The effect of this is to
eliminate "middle" deltas on the trunk and on all branches of the tree. Thus, in Figure 3, deltas
1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated. Some of the keyletters are summarized as
follows:

The -p keyletter specifies the oldest delta that is to be preserved in the reconstruction. All
older deltas are discarded.

The -c keyletter specifies a list (see get(1) for the syntax of such a list) of deltas to be
preserved. All other deltas are discarded.

The -5 keyletter causes the generation of a Shell procedure, which, when run, produces only a
report summarizing the percentage space (if any) to be saved by reconstructing each named
sees file. It is recommended that comb be run with this key letter (in addition to any others
desired) before any actual reconstructions.

It should be noted that the Shell procedure generated by comb is not guaranteed to save any
space. In fact, it is possible for the reconstructed file to be larger than the original. Note, too,
that the shape of the sees file tree may be altered by the reconstruction process.

5.11 val

Val is used to determine if a file is an sees tile meeting the characteristics specitied by an
optional list of keyletter arguments. Any characteristics not met are considered errors.

Val checks for the existence of a particular delta when the SID for that delta is explicitly specified
via the -r key letter. The string following the -y or -m key letter is used to check the value set
by the t or m flag respectively (see admin (1) for a description of the flags).

Val treats the special argument "-" differently from other sees commands (see Section 4). This
argument allows val to read the argument list from the standard input as opposed to obtaining it
from the command line. The standard input is read until end-ot-file. This capability allows for

sees User's Guide 25

r" one invocation of val with different values for the key letter and file arguments. For example:

val -
-yc -mabc s.abc
-mxyz -ypl1 s.xyz

first checks if file "s.abc" has a value "c" for its type flag and value "abc" for the module name
flag. Once processing of the first file is completed, val then processes the remaining files, in this
case "s.xyz", to determine if they meet the characteristics specified by the key letter arguments
associated with them.

Val returns an 8-bit code which is a disjunction of the possible errors detected. That is, each bit
set indicates the occurrence of a specific error (see va/(1) for a description of the possible errors
and their codes). In addition, an appropriate diagnostic is printed unless suppressed by the-8
keyletter. A return code of "0" indicates all named files met the characteristics specified.

6. sees FILES

This section discusses several topics that must be considered before extensive use is made of
sees. These topics deal with the protection mechanisms relied upon by sees, the format of
sees files, and the recommended procedures for auditing sees files.

6.1 Protection

Sees relies on the capabilities of the PWB operating system for most of the protection
mechanisms required to prevent unauthorized changes to sees files (i.e., changes made by
non-sees commands). The only protection features provided directly by sees are the release
lock flag, the release floor and ceiling flags, and the user list (see Section 5.1.3).

New sees files created by the admin command are given mode 444 (read only). It is
recommended that this mode not be changed, as it prevents any direct modification of the files
by non-sees commands. It is further recommended that the directories containing sees files be
given mode 755, which allows only the owner of the directory to modify its contents.

Sees files should be kept in directories that contain only sees files and any temporary files
created by sees commands. This simplifies protection and auditing of sees files (see Section
6.3). The contents of directories should correspond to convenient logical groupings, e.g., sub­
systems of a large project.

Sees files must have only one link (name). The reason for this is that those commands that
modify sees files do so by creating a temporary copy of the file (called the x-file, see Section 4)
and, upon completion of processing, remove the old file and rename the x-file. If the old file has
more than one link, removing it and renaming the x-file would break the link. Rather than
process such files, sees commands produce an error message. All sees files must have names
that begin with "s.".

When only one user uses sees, the real and effective user IDS are the same, and that user 10

owns the directories containing sees files 10. Therefore, sees may be used directly without any
preliminary preparation.

However, in those situations in which several users with unique user IDS are assigned
responsibility for one sees file (for example, in large software development projects), one user
(equivalently, one user 10) must be chosen as the "owner" of the sees files and be the one who

10. Previously. the OPerating System under which sees executed allowed for only 256 unique user IDs. This
Presented the situation in which several users needed to share user IDs (and thus shared identical file

~ Permissions). The OPerating System currently in use (Version 7 of UNIX) allows for 65.536 unique user IDs. and it
C· is recommended that each user have a unique user 10.

26 sees User's Guide

will "administer" them (e.g., by using the admin command). This user is termed the sees
administrator for that project. Because other users of sees do not have the same privileges and
permissions as the sees administrator, they are not able to execute directly those commands
that require write permission in the directory containing the sees files. Therefore, a project­
dependent program is required to provide an interface to the get, delta, and, if desired, rmdel
and cdc commands.

The interface program must be owned by the sees administrator, and must have the
set user ID on execution bit on (see chmod (1», so that the effective user 10 is the user 10 of the
administrator. This program's function is to invoke the desired sees command and to cause it to
inherit the privileges of the interface program for the duration of that command's execution. In
this manner, the owner of an sees file can modify it at will. Other users whose login names or
group IDS are in the user list for that file (but who are not its owners) are given the necessary
permissions only for the duration of the execution of the interface program, and are thus able to
modify the sees files only through the use of delta and, possibly, rmdel and cdc. The project­
dependent interface program, as its name implies, must be custom-built for each project.

6.2 Format

Sees files are composed of lines of ASCII text 11 arranged in six parts, as follows:

Checksum A line containing the "logical" sum of all the characters of the file (not
including this checksum itself).

Delta Table

User Names

Flags

Information about each delta, such as its type, its SID, date and time of
creation, and commentary.

List of login names and/or group IDS of users who are allowed to modify
the file by adding or removing deltas.

Indicators that control certain actions of various sees commands.

Descriptive Text Arbitrary text provided by the user; usually a summary of the contents and
purpose of the file.

Body Actual text that is being administered by sees. intermixed with internal
sees control lines.

Detailed information about the contents of the various sections of the file may be found in
sccsfile (5); the checksum is the only portion of the file which is of interest below.

It is important to note that because sees files are ASCII files, they may be processed by various
PWB commands, such as ed (1), grep (1), and cat (1). This is very convenient in those instances
in which an sees file must be modified manually (e.g., when the time and date of a delta was
recorded incorrectly because the system clock was set incorrectly). or when it is desired to
simply "look" at the file .

.,. Extreme care should be exercised when modifying sees files with non-sees commands.

6.3 Auditing

On rare occasions, perhaps due to an operating ~ystem or hardware malfunction, an sees file. or
portions of it (Le., one or more "blocks") can be destroyed. Sees commands (like most PWB
commands) issue an error message when a file qoes not exist. In addition. sees commands use
the checksu~ stored in the sees file to determin@ whether a file has been corrupted since it was
last accessed (pOSSibly by having lost one or more blocks, or by having been modified with, for

11. Previous versions of sees uP to and including Version 3 used non-ASCII files. Therefore. files created by earlier
versiOnS of sees are incomPatible with the current version of sees.

sees User's Guide 27

example, ed (1)). No sees command will process a corrupted sees file except the admin
command with the -h or -z keyletters, as described below.

It is recommended that sees files be audited (checked) for possible corruptions on a regular
basis. The simplest and fastest way to perform an audit is to execute the admin command with
the -h keyletter on all sees files:

admin -h s.file1 s.file2 ..•
or

admin -h directory1 directory2

If the new checksum of any file is not equal to the checksum in the first line of that file, the
message:

corrupted file (c06)

is produced for that file. This process continues until all the files have been examined. When
examining directories (as in the second example above), the process just described will not
detect missing files. A simple way to detect whether any files are missing from a directory is to
periodically execute the Is (1) command on that directory, and compare the outputs of the most
current and the previous executions. Any file whose name appears in the previous output but
not in the current one has been removed by some means.

Whenever a file has been corrupted, the manner in which the file is restored depends upon the
extent of the corruption. If damage is extensive, the best solution is to contact the local PWB

operations group to request a restoral of the file from a backup copy. In the case of minor
damage, repair through use of the editor ed (1) may be possible. In the latter case, after such
repair, the following command must be executed:

admin -z s.file

The purpose of this is to recompute the checksum to bring it into agreement with the actual
contents of the file. After this command is executed on a file, any corruption which may have
existed in that file will no longer be detectable.

REFERENCES
[1] Bell Laboratories, Documents for Use with the PWB Time-Sharing System.

I
I
I
I
I
I
I
I

/~ \
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~ II

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

~ II

I
I
I
I
I
I
I

sees User's Guide

ADDENDUM

The following changes to the Source Code Control System are effective with the UNIX
SYSTEM m release.

1. Modified Commands

Three SCCS commands have been modified:

1. comb

2. get

3. sccsditT

Modifications to each of these commands are described below.

1.1 comb

• enhancement

Comb generates a shell procedure that, when executed, reduces the size of an
SCCS file. Because of temporary file naming conventions, two or more comb­
generated shell procedures could not be executed concurrently. Temporary files
are now uniquely named so that simultaneous execution is possible.

1.2 get

• enhancement

Previously the -i and -x keyletters (for forced inclusion or exclusion of deltas to
produce the generated file) would imply the -k keyletter. That is, the generated
file would be created with mode 644 and identification keyword replacement
would be suppressed. The -i and -k keyletters no longer imply the -k keyletter.

• coding error correction

Under certain circumstances, temporary files that should only have existed for the
duration of the execution of get would not be removed when get terminated.
Temporary files are now properly removed.

1.3 sccsditT

• new capability

A new keyletter (-s), which takes a numeric argument, allows the user to specify
the file segmentation size that bditT(1) (used by sccsditT) will pass to ditT(1). This
can be useful when a high system load causes ditT to fail due to lack of space.

• change

The output of sccsdiff is no longer piped through pre 1) by default. A new
keyletter (-n) specifies that the output is to be piped through pr but arguments
cannot be passed to pr as was the previous case. This alleviates sccsditT knowing
anything about pro

sees User's Guide

2. New Commands

Two new commands have been added to sees:
sad print current sees file editing activity.

uoget undo the effect opf a previous get for editing of an sees file.

The manual entries for these commands are provided in the Plexus Sys3 UNIX
Programmer's Manual-- Volume 1.

2

sees Interface Program

Function and Use of an sees Interface Program

ABSTRACT

This memorandum discusses the use of a Source Code Control System Interface Program to
allow more than one user to use sees commands upon the same set of files.

1. Introduction

In order to permit UNIX* users with different user identification numbers (user IDs) to use sees
commands upon the same files, an sees interface program is provided to temporarily grant the
necessary file access permissions to these users. This memorandum discusses the creation
and use of such an interface program. This memorandum replaces an earlier version dated
March 1, 1978.

2. Function

When only one user uses sees, the real and effective user IDs are the same, and that user 10
owns the directories containing sees files. However, there are situations (for example, in large
software development projects) in which it is practical to allow more than one user to make
changes to the same set of sees files. In these cases, one user must be chosen as the
"owner" of the sees files and be the one who will "administer" them (e.g., by using the admin
command). This user is termed the sees administrator for that project. Since other users of
sees do not have the same privileges and permissions as the sees administrator, they are not
able to execute directly those commands that require write permission in the directory containing
the sees files. Therefore, a project-dependent program is required to provide an interface to the
get, delta, and, if desired, rmde/, cdc, and unget commands. 1

The interface program must be owned by the sees administrator, must be executable by non­
owners, and must have the set user 10 on execution bit on (see chmod (1)2), so that, when
executed, the effective user 10 is the user 10 of the administrator. This program's function is to
invoke the desired sees command and to cause it to inherit the privileges of the sees
administrator for the duration of that command's execution. In this manner, the owner of an
sees file (the administrator) can modify it at will. Other users whose login names are in the
user Iist3 for that file (but who are not its owners) are given the necessary permissions only for
the duration of the execution of the interface program, and are thus able to modify the sees files
only through the use of delta and, possibly, rmdel and cdc.

3. A Basic Program

When a UNIX program is executed it is passed (as argument 0) the name by which it is invoked,
followed by any additional user-supplied arguments. Thus, if a program is given a number of
links (names), it may alter its processing depending upon which link is used to invoke it. This
mechanism is used by an sees interface program to determine which sees command it should
subsequently invoke (see exec(2)).

• UNIX is a Trademark of Bell Laboratories.

1. Other SCCS commands either do not require write Permission in the directory containing SCCS files or are
(generally) reserved for use only by the administrator.

2. All references of the form name (N) refer to item name in section N of the UNIX User's Manual.
3. This is the list of login names of users who are allowed to modify an sces file by adding or removing deltas. The

login names are sPecified using the admin(1) command.

2 sees Interface Program

A generic interface program ("inter.c", written in C) is shown in Attachment I. Note the
reference to the (unsupplied) function "filearg". This is intended to demonstrate that the
interface program may also be used as a pre-processor to sees commands. For example,
function "filearg" could be used to modify file arguments to be passed to the sees command by
supplying the full pathname of a file, thus avoiding extraneous typing by the user. Also, the
program could supply any additional (default) keyletter arguments desired.

4. Linking and Use

In general, the following demonstrates the steps to be performed by the sees administrator to
create the sees interface program. It is assumed, for the purposes of the discussion, that the
interface program "inter.c" resides in directory "/x1/xyz/sccs". Thus, the command sequence:

cd Ix1/xyz/sccs
cc ••• inter.c -0 inter •••

compiles "inter.c" to produce the executable module "inter" (the ellipses represent other
arguments that may be required). The proper mode and the set user 10 on execution bit are set
by executing:

chmod 4755 inter

Finally, new links are created, by (for example):4

In inter get
In inter delta
In inter rmdel

Subsequently, any user whose shell parameter PATH (see sh(1)) specifies directory
"/x1/xyz/sccs" as the one to be searched first for executable commands, may execute, for
example:

get -e Ix1/xyz/sccs/s.abc

from any directory to invoke the interface program (via its link "get"). The interface program
then executes "/usr/bin/get" (the actual sees get command) upon the named file. As previously
mentioned, the interface program could be used to supply the pathname "/x1/xyz/sccs", so that
the user would only have to specify:

get -e s.abc

to achieve the same results.

5. Conclusion

An sees interface program is used to permit users having different user IDs to use sees
commands upon the same files. Although this is its primary purpose, such a program may also
be used as a pre-processor to sees commands since it can perform operations upon its
arguments.

4. The names of the links may be arbitrary. Provided the interface Program is able to determine from them the names
of sees commands to be invoked.

Attachment I
sees Interface Program

sees Interface Program "inter.c"

main(argc, argv)
int argc;
char *argv[];
{

}

register int i;
char cmdstr[LENGTH]

/*
Process file arguments (those that don't begin with '-').

for (i = 1; i < argc; i ++)
if (argv[i][O] != '-')

argv[i] = filearg(argv[i]);

/*
Get 'simple name' of name used to invoke this program
(i.e., strip off directory-name prefix, if any).
*f
argv[O] = sname(argv[O));

/*
Invoke actual sees command, passing arguments.
*f
sprintf(cmdstr, "fusrfbinf%s", argv[O));
execv(cmdstr, argv);

Apr;11980

3

/~

r

A Dial-Up Network of UNIX Systems

D. A. Nowitz

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

A network of over eighty UNIXt computer systems has been established
using the telephone system as its primary communication medium. The net­
work was designed to meet the growing demands for software distribution and
exchange. Some advantages of our design are:

1. Purpose

The startup cost is low. A system needs only a dial-up port, but systems
with automatic calling units have much more flexibility.

No operating system changes are required to install or use the system.

The communication is basically over dial-up lines, however, hardwired
communication lines can be used to increase speed.

The command for sending/receiving files is simple to use.

The widespread use of the UNIX system1 within Bell Laboratories has produced problems
of software distribution and maintenance. A conventional mechanism was set up to distribute
the operating system and associated programs from a central site to the various users. How­
ever this mechanism alone does not meet all software distribution needs. Remote sites gen­
erate much software and must transmit it to other sites. Some UNIX systems are themselves
central sites for redistribution of a particular specialized utility, such as the Switching Control
Center System. Other sites have particular, often long-distance needs for software exchange;
switching research, for example, is carried on in New Jersey, Illinois, Ohio, and Colorado. In
addition, general purpose utility programs are written at all UNIX system sites. The UNIX system
is modified and enhanced by many people in many places and it would be very constricting to
deliver new software in a one-way stream without any alternative for the user sites to respond
with changes of their own.

Straightforward software distribution is only part of the problem. A large project may
exceed the capacity of a single computer and several machines may be used by the one group
of people. It then becomes necessary for them to pass messages, data and other information
back an forth between computers.

Several groups with similar problems, both inside and outside of Bell Laboratories, have
constructed networks built of hardwired connections only.2.3 Our network, however, uses both
dial-up and hardwired connections so that service can be provided to as many sites as possible.

tUNIX is a Trademark of Bell Laboratories.

2 UUCP Network

2. Design Goals

Although some of our machines are connected directly, others can only communicate over
low-speed dial-up lines. Since the dial-up lines are often unavailable and file transfers may take
considerable time, we spool all work and transmit in the background. We also had to adapt to a
community of systems which are independently operated and resistant to suggestions that they
should all buy particular hardware or install particular operating system modifications. There­
fore, we make minimal demands on the local sites in the network. Our implementation requires
no operating system changes; in fact, the transfer programs look like any other user entering the
system through the normal dial-up login ports, and obeying all local protection rules.

We distinguish "active" and "passive" systems on the network. Active systems have an
automatic calling unit or a hardwired line to another system, and can initiate a connection. Pas­
sive systems do not have the hardware to initiate a connection. However; an active system can
be assigned the job of calling passive systems and executing work found there; this makes a
passive system the functional equivalent of an active system, except for an additional delay
while it waits to be polled. Also, people frequently log into active systems and request copying
from one passive system to another. This requires two telephone calls, but even so, it is faster
than mailing tapes.

Where convenient: we use hardwired communication lines. These permit much faster
transmission and multiplexing of the communications link. Dial-up connections are made at
either 300 or 1200 baud; hardwired connections are asynchronous up to 9600 baud and might
run even faster on special-purpose communications hardware.45 Thus, systems typically join
our network first as passive systems and when they find the service more important, they
acquire automatic calling units and become active systems; eventually, they may install high­
speed links to particular machines with which they handle a great deal of traffic. At no pOint,
however, must users change their programs or procedures.

The basic operation of the network is very simple. Each participating system has a spool
directory, in which work to be done (files to be moved, or commands to be executed remotely) is
stored. A standard program, uucico, performs all transfers. This program starts by identifying a
particular communication channel to a remote system with which it will hold a conversation.
Uucico then selects a device and establishes the connection, logs onto the remote machine and
starts the uucico program on the remote machine. Once two of these programs are connected,
they first agree on a line protocol, and then start exchanging work. Each program in turn, begin­
ning with the calling (active system) program, transmits everything it needs, and then asks the
other what it wants done. Eventually neither has any more work, and both exit.

In this way, all services are available from all sites; passive sites, however, must wait until
called. A variety of protocols may be used; this . conforms to the real, non-standard world. As
long as the caller and called programs have a protocol in common, they can communicate.
Furthermore, each caller knows the hours when each destination system should be called. If a
destination is unavailable, the data intended for it remain in the spool directory until the destina­
tion machine can be reached.

The implementation of this Bell Laboratories network between independent sites, all of
which store proprietary programs and data, illustratives the pervasive need for security and
administrative controls over file access. Each site, in configuring its programs and system files,
limits and monitors transmission. In order to access a file a user needs access permission for
the machine that contains the file and access permission for the file itself. This is achieved by
first requiring the user to use his password to log into his local machine and then his local
machine logs into the remote machine whose files are to be accessed. In addition, records are
kept identifying all files that are moved into and out of the local system, and how the requester
of such accesses identified himself. Some sites may arrange to permit users only to call up and
request work to be done; the calling users are then called back before the work is actually done.
It is then possible to verify that the request is legitimate from the standpoint of the target sys­
tem, as well as the originating system. Furthermore, because of the call-back, no site can
masquerade as another even if it knows all the necessary passwords.

r

UUCP Network 3

Each machine can optionally maintain a sequence count for conversations with other
machines and require a verification of the count at the start of each conversation. Thus, even if
call back is not in use, a successful masquerade requires the calling party to present the correct
sequence number. A would-be impersonator must not just steal the correct phone number, user
name, and password, but also the sequence count, and must call in sufficiently promptly to pre­
cede the next legitimate request from either side. Even a successful masquerade will be
detected on the next correct conversation.

3. Processing

The user has two commands which set up communications, uucp to set up file copying,
and uux to set up command execution where some of the required resources (system and/or
files) are not on the local machine. Each of these commands will put work and data files into
the spool directory for execution by uucp daemons. Figure 1 shows the major blocks of the file
transfer process.

File Copy

The uucico program is used to perform all communications between the two systems. It
performs the following functions:

- Scan the spool directory for work.

- Place a call to a remote system.

- Negotiate a line protocol to be used.

- Start program uucico on the remote system.

- Execute all requests from both systems.

- Log work requests and work completions.

Uucico may be started in several ways;

a) by a system daemon,

b) by one of the uucp or uux programs,

c) by a remote system.

Scan For Work

The file names in the spool directory are constructed to allow the daemon programs
(uucico, uuxqt) to determine the files they should look at, the remote machines they should call
and the order in which the files for a particular remote machine should be processed.

Call Remote System

The call is made using information from several files which reside in the uucp program
directory. At the start of the call process, a lock is set on the system being called so that
another call will not be attempted at the same time.

is:
The system name is found in a "systems" file. The information contained for each system

[1] system name,

[2] times to call the system (days-ot-week and times-ot-day),

[3] device or device type to be used for call,

[4] line speed,

[5] phone number,

4 UUCP Network

[6] login information (multiple fields).

The time field is checked against the present time to see if the call should be made. The
phone number may contain abbreviations (e.g. "nyc", "boston") which get translated into dial
sequences using a "dial-codes" file. This permits the same "phone number" to be stored at
every site, despite local variations in telephone services and dialing conventions.

A "devices" file is scanned using fields [3] and [4] from the "systems" file to find an avail­
able device for the connection. The program will try all devices which satisfy [3] and [4] until a
connection is made, or no more devices can be tried. If a non-multiplexable device is success­
fully opened, a lock file is created so that another copy of uucico will not try to use it. If the
connection is complete, the login information is used to log into the remote system. Then a
command is sent to the remote system to start the uucico program. The conversation between
the two uucico programs begins with a handshake started by the called, SLAVE, system. The
SLAVE sends a message to let the MASTER know it is ready to receive the system identifica­
tion and conversation sequence number. The response from the MASTER is verified by the
SLAVE and if acceptable, protocol selection begins.

Line Protocol Selection
The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol. The calling program
checks the proto-list for a letter corresponding to an available line protocol and returns a use­
protocol message. The use-protocol message is

Ucode

where code is either a one character protocol letter or a N which means there is no common
protocol.

Greg Chesson designed and implemented the standard line protocol used by the uucp
transmission program. Other protocols may be added by individual installations.

Work Processing
During processing, one program is the MASTER and the other is SLAVE. Initially, the cal­

ling program is the MASTER. These roles may switch one or more times during the conversa­
tion.

There are four messages used during the work processing, each specified by the first
character of the message. They are

S send a file,
R receive a file,
C copy complete,
H hangup.

The MASTER will send R or S messages until all work from the spool directory is complete, at
which point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN. HY. HN,
corresponding to yes or no for each request.

The send and receive replies are based on permission to access the requested
fileidirectory. After each file is copied into the spool directory of the receiving system, a copy­
complete message is sent by the receiver of the file. The message CY will be sent if the UNIX

cp command, used to copy from the spool directory, is successful. Otherwise, a CN message
is sent. The requests and results are logged on both systems, and, if requested, mail is sent to
the user reporting completion (or the user can request status information from the log program
at any time).

The hangup response is determined by the SLAVE program by a work scan of the spool
directory. If work for the remote system exists in the SLAVE's spool directory, a HN message

r

r

r

UUCP Network 5

is sent and the programs switch roles. If no work exists, an HY response is sent.

A sample conversation is shown in Figure 2.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the
protocols are turned off. Each program sends a final "00" message to the other.

4. Present Uses

One application of this software is remote mail. Normally, a UNIX system user writes "mail
dan" to send mail to user "dan". By writing "mail usg!dan" the mail is sent to user "dan" on
system "usg".

The primary uses of our network to date have been in software maintenance. Relatively
few of the bytes passed between systems are intended for people to read. Instead, new pro­
grams (or new versions of programs) are sent to users, and potential bugs are returned to
authors. Aaron Cohen has implemented a "stockroom" which allows remote users to call in and
request software. He keeps a "stock list" of available programs, and new bug fixes and utilities
are added regularly. In this way, users can always obtain the latest version of anything without
bothering the authors of the programs. Although the stock list is maintained on a particular sys·
tem, the items in the stockroom may be warehoused in many places; typically each program is
distributed from the home site of its author. Where necessary, uucp does remote-to-remote
copies.

We also routinely retrieve test cases from other systems to determine whether errors on
remote systems are caused by local misconfigurations or old versions of software, or whether
they are bugs that must be fixed at the home site. This helps identify errors rapidly. For one
set of test programs maintained by us, over 70% of the bugs reported from remote sites were
due to old software, and were fixed merely by distributing the current version.

Another application of the network for software maintenance is to compare files on two dif·
ferent machines. A very useful utility on one machine has been Doug Mcilroy's "diff" program
which compares two text files and indicates the differences, line by line, between them.6 Only
lines which are not identical are printed. Similarly, the program "uudiff" compares files (or direc­
tories) on two machines. One of these directories may be on a passive system. The "uudiff"
program is set up to work similarly to the inter-system mail, but it is slightly more complicated.

To avoid moving large numbers of usually identical files, uudiff computes file checksums
on each side, and only moves files that are different for detailed comparison. For large files,
this process can be iterated; checksums can be computed for each line, and only those lines
that are different actually moved.

The "uux" command has been useful for providing remote output. There are some
machines which do not have hard-copy devices, but which are connected over 9600 baud com­
munication lines to machines with printers. The uux command allows the formatting of the prin­
tout on the local machine and printing on the remote machine using standard UNIX command
programs.

5. Performance

Throughput, of course, is primarily dependent on transmission speed. The table below
shows the real throughput of characters on communication links of different speeds. These
numbers represent actual data transferred; they do not include bytes used by the line protocol
for data validation such as checksums and messages. At the higher speeds, contention for the
processors on both ends prevents the network from driving the line full speed. The range of
speeds represents the difference between light and heavy loads on the two systems. If desired,
operating system modifications can be installed that permit full use of even very fast links.

6

Nominal speed
300 baud

1200 baud
9600 baud

Characters/sec.
27

100-110
200-850

UUCP Network

In addition to the transfer time, there is some overhead for making the connection and logging in
ranging from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte source
program can be transferred in four minutes instead of the 2 days that might be required to mail
a tape.

Traffic between systems is variable. Between two closely related systems, we observed
20 files moved and 5 remote commands executed in a typical day. A more normal traffic out of
a single system would be around a dozen files per day.

The total number of sites at present in the main network is 82, which includes most of the
Bell Laboratories full-size machines which run the UNIX operating system. Geographically, the
machines range from Andover, Massachusetts to Denver, Colorado.

Uucp has also been used to set up another network which connects a group of systems in
operational sites with the home site. The two networks touch at one Bell Labs computer.

6. Further Goals

Eventually, we would like to develop a full system of remote software maintenance. Con­
ventional maintenance (a support group which mails tapes) has many well-known disadvan­
tages'? There are distribution errors and delays, resulting in old software running at remote sites
and old bugs continually reappearing. These difficulties are aggravated when there are 100 dif­
ferent small systems, instead of a few large ones.

The availability of file transfer on a network of compatible operating systems makes it pos­
sible just to send programs directly to the end user who wants them. This avoids the bottleneck
of negotiation and packaging in the central support group. The "stockroom" serves this function
for new utilities and fixes to old utilities. However, it is still likely that distributions will not be
sent and installed as often as needed. Users are justifiably suspicious of the "latest version"
that has just arrived; all too often it features the "latest bug." What is needed is to address both
problems simultaneously:

1. Send distributions whenever programs change.

2. Have sufficient quality control so that users will install them.

To do this, we recommend systematic regression testing both on the distributing and receiving
systems. Acceptance testing on the receiving systems can be automated and permits the local
system to ensure that its essential work can continue despite the constant installation of
changes sent from elsewhere. The work of writing the test sequences should be recovered in
lower counseling and distribution costs.

Some slow-speed network services are also being implemented. We now have inter­
system "mail" and "diff," plus the many implied commands represented by "uux." However, we
still need inter-system "write" (real-time inter-user communication) and "who" (list of people
logged in on different systems). A slow-speed network of this sort may be very useful for
speeding up counseling and education, even if not fast enough for the distributed data base
applications that attract many users to networks. Effective use of remote execution over slow­
speed lines, however, must await the general installation of multiplexable channels so that long
file transfers do not lock out short inquiries.

7. Lessons
The following is a summary of the lessons we learned in building these programs.

("

UUCP Network 7

1. By starting your network in a way that requires no hardware· or major operating system
-changes, you can get going quickly.

2. Support will follow use. Since the network existed and was being used, system main­
tainers were easily persuaded to help keep it operating, including purchasing additional
hardware to speed traffic.

3. Make the network commands look like local commands. Our users have a resistance to
learning anything new: all the inter-system commands look very similar to standard UNIX
system commands so that little training cost is involved.

4. An initial error was not coordinating enough with existing communications projects: thus,
the first version of this network was restricted to dial-up, since it did not support the vari­
ous hardware links between systems. This has been fixed in the current system.

Acknowledgements

We thank G. L. Chesson for his design and implementation of the packet driver and proto­
col, and A. S. Cohen, J. Lions, and P. F. Long for their suggestions and assistance.

References

1. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Bell Sys. Tech. J.

2.

3.

4.

5.
6.

7.

57(6), pp.1905-1929 (1978).

T. A. Dolotta, R. C. Haight, and J. R. Mashey, "UNIX Time-Sharing System: The
Programmer's Workbench," Bell Sys. Tech. J. 57(6), pp.2177-2200 (1978).

G. L. Chesson, "The Network UNIX System," Operating Systems Review 9(5), pp.60-66
(1975). Also in Proc. 5th Symp. on Operating Systems Principles, 1975.

A. G. Fraser, "Spider - An Experimental Data Communications System," Proc. IEEE
Cont. on Communications, p.21F (June 1974). IEEE Cat. No. 74CH0859-9-CSCB.

A. G. Fraser, "A Virtual Channel Network," Datamation, pp.51-56 (February 1975).

J. W. Hunt and M. D. Mcilroy, "An Algorithm for Differential File Comparison," Compo Sci.
Tech. Rep. No. 41, Bell Laboratories, Murray Hill, New Jersey (D).

F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading, Mass. (1975).

January 1980

i". , l

r

Uucp Implementation Description

D. A. Nowitz

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Uucp is a series of programs designed to permit communication between
UNIXt systems using either dial-up or hardwired communication lines. This
document gives a detailed implementation description of the current implemen­
tation of uucp. Is is designed for use by an administrator/installer of the system.
It is not meant as a user's guide.

Introduction
Uucp is a series of programs designed to permit communication between UNIX systems using
either dial-up or hardwired communication lines. It can be used for file transfers and remote
command execution. The first version of the system was designed and implemented by M. E.
Lesk.1 This paper describes the current (second) implementation of the system.

Uucp is a batch operation. Files are created in a spool directory for processing by the uucp
demons. There are three types of files used for the execution of work. Data files contain data
for transfer to remote systems. Work files contain directions for file transfers between systems.
Execute files are scripts for UNIX commands that involve the resources of one or more systems.

There are four primary programs:

uucp

uux

uucico

uuxqt

builds work files and gathers data files in the spool directory for data transmis­
sion.

creates work files, execute files, and gathers data files for the remote execu­
tion of UNIX commands.

executes the work files for data transmission.

executes the scripts for UNIX command execution.

There are a couple of administrative programs:

uulog gathers temporary log files that may occur due to lockout of the uucp log file
and reports some information such as copy requests and completion status.

uuclean removes old files from the spool directory.

The remainder of this paper will describe the operation of each program, the installation of the
system, the security aspects of the system, the files required for execution, and the administra­
tion of the system.

tUNIX is a Trademark of Bell Laboratories.
1. M. E. Lesk and A. S. Cohen. UNIX Software Distribution by Communication Link. private communication.

2 UUGP Implementation

1. Uucp-UNIX to UNIX File Copy

The uucp command is the user's primary interface with the system. The command is designed
to look like cp to the user. The syntax is

uucp [option] ... source... destination

where the source and destination may contain the prefix system-name! , which indicates the
system where the file or files reside or where they will be copied.

Uucp has several options:

-d Make directories when necessary for copying the file.

-c Don't copy source files to the spool directory, but use the specified source
when the actual transfer takes place.

-esys Send this job to system sys to execute. (Note that this will only work when the
system sys allows uuxqt to execute a uucp command. See the "Uuxqt" and
"Security" sections.)

-g/etter Put letter in as the grade in the name of the work file. (This can be used to
change the order of work for a particular machine.)

-m Send mail to the requester on completion of the work.

-nuser Notify user on the remote machine that a file has been sent.

There are several options available for debugging:

-r Queue the job but do not start uucico program.

-xnum Num is a level number between 1 and 9; higher numbers give more debugging
output.

The destination may be a directory name, in which case the file name is taken from the last part
of the source's name. If the directory exists, it must be writable by everybody. (Note that if the
destination is a directory name and the "_d" option is specified to create the directory, the direc­
tory name must be followed by "/".) The source name may contain special shell characters such
as "?*[]". These will be expanded on the appropriate system.

The command

uucp * ,c usg !/usr/dan

will set up the transfer of all files whose names end with II .c" to the "/usr/dan" directory on
the"usg" machine.

The source and/or destination names may also contain a N user prefix. This translates to the
login directory of user on the specified system. File names beginning with "N/" translate into the
public directory (usually /usrlspool/uucppublic) on the remote system. For names with partial
path-names, the current directory is prepended to the file name. File names with •. 1 are not
permitted for security reasons.

The command

uucp usg! N danl* . h N dan

will set up the transfer of files whose names end with ". h" in dan's login directory on system .
"usg" to dan's local login directory.

For each source file, the program will check the source and destination file-names, the system­
part of each argument, and the options to classify the work into several types:

[1] Copy source to destination on local system.

[2] Receive files from other systems.

[3] Send files to a remote system.

r

UUCP Implementation 3

[4] Send files from remote systems to another remote system.

[5] Receive files from remote systems when the source contains special shell characters
as mentioned above.

[6] Request that the uucp command be executed by a remote system.

After the work has been set up in the spool directory. the uucico program is started to try to
contact the other machine and execute the work (unless the -r option was specified).

Type 1 - local copy

The copy is done locally. The -m and -n options are not honored in this case.

Type 2 - receive files

A work file is created or appended with a one line entry for each request. The upper limit to the
number of files per work file is set in uucp.h. (The default setting is 20.) After the limit has been
reached, a new work file is created. (All work files and execute files use a blank as the field
separator.) The fields for these entries are given below.

[1) R

[2) The full path-name of the source or a Nsomething/path-name. The ~something part
will be expanded on the remote system.

[3] The full path-name of the destination file. If the Nsomething notation is used, it will
be immediately expanded.

[4) The user's login name.

[5) A "-" followed by an option list. The options -m and -d may appear.

Type 3 - send files
Each source file is copied into a data file in the spool directory. (A "_c" option on the uucp
command will prevent the data file from being made. In this case, the file will be transmitted
from the indicated source.) The fields for these entries are given below.

[1) S
[2) The full-path name of the source file.

[3) The full-path name of the destination or ~somethinglfile-name.

[4) The user's login name.
[5) A "-" followed by an option list. The options -d, om, and -n may appear.

[6] The name of the data file in the spool directory. A dummy name, "0.0" is used
when the -c option is specified.

[7) The file mode bits of the source file in octal print format (e.g., 0666).

[8] The user on the remote system to be notified upon completion of the file copy when
the "-n" option is specified.

Type 4 and Type 5 - remote uucp required

Uucp generates a uucp command and sends it to the remote machine; the remote uucico exe­
cutes the uucp command.

Type 6 - remote execution
This occurs when the "-e" option is used. In this case, the uux facility is used to create and
send the request. This requires that the remote uuxqt program allows the uucp command.

4 UUCP Implementation

2. Uux-UNIX To UNIX Execution

The uux command is used to set up the execution of a UNIX command where the execution
machine and/or some of the files are remote. The syntax of the uux command is

uux [- I [option I ... command-string

where the command-string is made up of one or more arguments. All special shell characters
such as U < > r" must be quoted either by quoting the entire command-string or quoting the
character as a separate argument. Within the command-string, the command and file names
may contain a system-name! prefix. All arguments that do not contain a u'" will not be treated
as files. (They will not be copied to the execution machine.) An argument that contains a u'" but
is not to be treated as a file at the present time, can be escaped by using "0" around the argu­
ment. (Note that the "0" symbols must usually be escaped with a U\" symbol.) The "-" is used
to indicate that the standard input for command-string should be inherited from the standard
input of the uux command. The following options are available for debugging:

-r Don't start uucico or uuxqt after queuing the job.

-xnum Num is a level number between 1 and 9; higher numbers give more debugging
output.

The command

pr abc I uux - usg !lpr

will set up the output of upr abc" as standard input to an Ipr command to be executed on system
uusg".

Uux generates an execute file that contains the names of the files required for execution
(including standard input), the user's login name, the destination of the standard output, and the
command to be executed. This file is either put in the spool directory for local execution or sent
to the remote system using a send command (type 3 above).

For required files that are not on the execution machine, uux will generate receive command
files (type 2 above). These command-files will be put on the execution machine for execution
by the uucico program.

The execute file contains a script that will be processed by the uuxqt program. It is made up of
several lines, each of which contains an identification character and one or more arguments.
The lines are described below.

User Line

U user system

where the user and system are the requester's login name and system.

Required File Line

F file-name real-name

where the file-name is a unique name used for file transmission and real-name is the last
part of the actual file name (contains no path information). Zero or more of these lines
may be present. The uuxqt program will check for the existence of all these files before
the command is executed.

Standard Input Line

I file-name

The standard input is either specified by a "<" in the command-string or inherited from
the standard input of the uux command if the "-" option is used. If a standard input is not
specified, "/dev/null" is used. (Note that if there is a standard input specified, it will also
appear in an "F" line.)

r

r

UUCP Implementation 5

Standard Output Line

o file-name system-name

The standard output is specified by a ">" within the command-string. If a standard output
is not specified. "/dev/null" is used. (Note that the use of "> >" is not implemented.)

Command Line

C command [arguments] ...

The arguments are those specified in the command-string. The standard input and stan­
dard output will not appear on this line. All required files will be moved to the execution
directory (usually lusr/lib/uucp/.XQTDIR) and the UNIX command is executed using the
shell specified in the uucp.h header file. In addition. a shell "PATH" statement is
prepended to the command line as specified in the uuxqt program. (Note that a check is
made to see that the command is allowed as specified in the uuxqt program.) After execu­
tion. the standard output is copied or sent to the proper place.

3. Uucico-Copy In, Copy Out

The uucico program will perform several major functions:

Scan the spool directory for work.

Place a call to a remote system.

Negotiate a line protocol to be used.

Execute all requests from both systems.

Log work requests and work completions.

Uucico may be started in several ways:

a) by a system demon specified in a crontab entry.

b) by one of the uucp. uux, uuxqt or uucico programs.

c) directly by the user (this is usually for testing).

d) by a remote system. (The uucico program should be specified as the "shell" field in
the "/etc/passwd" file for the logins used by remote systems to access uucp.)

When started by method a, b or c, the program is considered to be in MASTER mode. In this
mode. a connection will be made to a remote system. If started by a remote system (method d),
the program is considered to be in SLAVE mode.

The MASTER mode will operate in one of two ways. If no system name is specified (-s option
not specified) the program will scan the spool directory for systems to call. If a system name is
specified, that system will be called, and work will only be done for that system.

Uucico is generally started by another program. There are several options used for execution:

-r1 Start the program in MASTER mode. This is used when uucico is started by a
program or "cron" shell.

-ssys Do work only for system sys. If -s is specified, a call to the specified system
will be made even if there is no work for system sys in the spool directory.
This is useful for polling systems that do not have the hardware to initiate a
connection.

The following options are used primarily for debugging:

-ddir Use directory dir for the spool directory.

-xnum Num is a level number between 1 and 9; higher numbers give more debugging
output.

The next part of this section will describe the major steps within the uucico program.

6

Scan For Work

The names of the work related files in the spool directory have format

type • system-name grade number

where

UUCP Implementation

type is an upper case letter (C - copy command file, D - data file, X - execute file),

system-name is the remote system,

grade is a character,

number is a four digit, zero padded sequence number.

The file

C.res45n0031

would be a work file for a file transfer between the local machine and the "res45" machine.

The scan for work is done by looking through the spool directory for work files (files with prefix
"C. "). A list is made of all systems to be called. Uucico will then call each system and process
all work files.

Call Remote System
The call is made using information from several files that reside in the uucp program directory
(usually lusr/lib/uucp). At the start of the call process, a lock is set to forbid multiple conversa­
tions between the same two systems.

The L.sys file contains information required to make the remote connection:

[1] system name,

[2] times to call the system (days-of-week and times-of-day) and the minimum time
delay before retry,

[3] device or device type to be used for call,

[4] line class (this is the line speed on almost all systems),

[5] phone number if field [3] is ACU or the device if not ACU,

[6] login information (zero or more fields),

The time field is checked against the present time to see if the call should be made. The phone
number may contain abbreviations (e.g., mh, py, boston) that get translated into dial sequences
using the L-dialcodes file.

The L-devices file is scanned using fields [3] and [4] from the L.sys file to find an available
device for the call. The program will try each devices that satisfy [3] and [4] until a call is made,
or no more devices can be tried. If a device is successfully opened, a lock file is created. If the
call is completed, the login information (field [6] of L.sys) is used to login.

The conversation between the two uucico programs begins with a handshake started by the
called, SLAVE, system. The SLAVE sends a message to let the MASTER know it is ready to
receive the system identification and conversation sequence number. The response from the
MASTER is verified by the SLAVE and if acceptable, protocol selection begins. The SLAVE
can also reply with a "call-back required" message in which case, the current conversation is
terminated.

Line Protocol Selection

The remote system sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol.

The calling program checks proto-list for a letter corresponding to an available line protocol and
returns a use-protocol message. The use-protocol message is

r

r

UUCP Implementation 7

Ucode

where code is either a one character protocol letter or "N", which means there is no common
protocol.

Work Processing

The MASTER program does a work search similar to the one used in the "Scan For Work" sec­
tion. (The MASTER has been specified by the "-r1" uucico option.) Each message used during
the work processing is specified by the first character of the message:

S send a file,

R receive a file,

C copy complete,

X execute a uucp command,

H hangup.

The MASTER will send R, S or X messages until all work for the remote system is complete, at
which point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY, HN,
XY, or XN, correspondi ng to yes or no for each request.

The send and receive replies are based on permission to access the requested file/directory
using the USERFILE and read/write permissions of the file/directory. After each file is copied
into the spool directory of the receiving system, a copy-complete message is sent by the
receiver of the file. The message CY will be sent if the file has successfully been moved from
the spool directory to the destination. Otherwise, a CN message is sent. (In this case, the file
is put in the public directory, usually lusrlspool/uucppublic, and the requester is notified by mail.)
The requests and results are logged on both systems.

The hangup response is determined by a work scan of the SLAVE's spool directory. If work for
the remote system exists an HN message is sent and the programs switch roles. If no work
exists, an HY response is sent.

Conversation Termination

When a HY message is received by the MASTER it is echoed back to the SLAVE and the pro­
tocols are turned off. Each program sends a final "00" message to the other. The original
SLAVE program will clean up and terminate. The MASTER will proceed to call other systems
unless a "-s" option was specified.

4. Uuxqt-Uucp Command Execution

The uuxqt program is used to execute scripts generated by uux. The uuxqt program may be
started by either the uucico or uux programs or a demon specified by a crontab entry. The
program scans the spool directory for execute files (prefix "X. "). Each one is checked to see if
all the required files are available and if so, the command line is verified and executed.

The execute file is described in the "Uux" section above.

The execution is accomplished by executing a "sh ·c" of the command line after appropriate
standard input and standard output have been opened. If a standard output is specified, the
program will create a send command or copy the output file as appropriate.

S. Uulog-Uucp Log Inquiry

When a uucp program can not make a log entry directly into the LOGFILE an individual log file
is created: a file with prefix LOG. This will sometimes occur when more than one uucp process
is running. Periodically, uulog may be executed to append these files to the LOGFILE.

The uulog program may also be used to request the output of LOG FILE entries. The request is
specified by the use of the options:

8 UUCP Implementation

-ssys Print entries where sys is the remote system name,

-uuser Print entries for user user.

The intersection of lines satisfying the two options is output. A null sys or user means all sys­
tem names or users respectively.

6. Uuclean-Uucp Spool Directory Cleanup

This program is typically started by the uucp daily demon. Its function is to remove files from
the spool directory that are more than 3 days old. These are usually files for work that can not
be completed. The requester of this work is notified that the files have been deleted.

There are several options:

-ddir The directory to be scanned is dir.

-m Send mail to the owner of each file being removed. (Note that most files put
into the spool directory will be owned by the owner of the uucp programs since
the setuid bit will be set on these programs. This mail is sometimes useful for
administration.)

-nhours Change the aging time from 72 hours to hours hours.

-ppre Examine files with prefix pre for deletion. (Up to 10 of these options may be
specified.)

-xnum This is the level of debugging output desired.

7. Security

IIr The uucp system, left unrestricted, will let any outside user execute any commands and
copy out/in any file that is readable/writable by a uucp login user. It is up to the individual
sites to be aware of this and apply the protections that they feel are necessary.

There are several security features available aside from the normal file mode protections.
These must be set up by the administrator of the uucp system.

- The login for uucp does not get a standard shell. Instead, the uucico program is started so
that all work is done through uucico .

- The owner of the uucp programs should be an administrative login. It should not be one of
the logins used for remote system access to uucp.

- A path check is done on file names that are to be sent or received. The USER FILE supplies
the information for these checks. The USERFILE can also be set up to require call-back for
certain login-ids. (See the "Files Required For Execution" section for the file description.)

- A conversation sequence count can be set up so that the called system can be more confi­
dent of the caller's identity.

- The uuxqt program comes with a list of commands that it will execute. A "PATH" shell
statement is prepended to the command line as specified in the uuxqt program. The
installer may modify the list or remove the restrictions as desired.

- The L.sys file should be owned by the uucp administrative login and have mode 0400 to
protect the phone numbers and login information for remote sites.

The programs uucp, uucico, uux, uuxqt, uulog, and uuclean should be owned by the uucp
administrative login, have the setuid bit set, and have only execute permissions.

8. Uucp Installation

It is assumed that the login name used by a remote computer to call into a local computer is not
the same as the login name of a normal user or the uucp administrative login. However, several
remote computers may use the same login name.

Each computer should be given a unique system name that is transmitted at the start of each
call. This name identifies the calling machine to the called machine. The login/system names

r

r

UUCP Implementation 9

are used for security as described later in the USERFILE section.

There are several source modifications that may be required before the system programs are
compiled. These relate to the directories, local system name, and attributes of the local environ­
ment.

There are several directories used by the uucp system:

lib (Jusrlsrc/cmd/uucp) - This directory contains the uucp system source files.

program

spool

xqtdir

(Jusr/lib/uucp) - This is the directory used for some of the executable system
programs and the system files. Some of the programs reside in "/usr/bin".

(/usrlspool/uucp) - This is the uucp system spool directory.

(/usr/lib/uucp/.XQTDIR) - This directory is used during execution of the uux
scripts.

The names in parentheses above are the default values for the directories. The italicized names
lib, program, xqtdir, and spool will be used in the following text to represent the appropriate
directory names.

There are two files that may require modification, the makefile file and the uucp. h file. (On
some systems, the makefile is named uucp.mk.) In addition, the "uuxqt.c" program may be
modified as indicated in the "Security" section above. The following paragraphs describe the
modifications.

uucp.h modification

Several manifests in "uucp.h" may need modification for the local system environment:

UNAME should be defined if the "uname" function is available.

MYNAME should be modified to the name of the local system if UNAME is notdefined.

ACULAST is the character required by the ACU as the last character. For most sys-
tems, it is a "-",

DATAKIT should be defined if the system is on a datakit network.

DIALOUT should be defined if the "C" library routine "dialout" is available.

makefile modification

There are several make variable definitions that may need modification:

INSDIR is the program directory (e,g., INSDIR=/usr/lib/uucp). This parameter is used
if "make cp" or "make install" is used,

10CTL is required to be set if the "ioctl" routine is not available in the standard "C"
library; the statement "IOCTL=ioctl.o" is required in this case.

PUBDIR is a public directory for remote access, This is also the login directory for
remote uucp users. It should be the same as that defined in "uucp.h".

SPOOL is the uucp spool directory. This should be the same as that defined in
"uucp.h".

XQTDIR is the directory for uuxqt to use for command execution. It is also defined in
"uucp.h",

OWNER is the administrative login for uucp.

Compile the system

The command

make install

will make the required directories, compile all programs, set the proper file modes, and copy the
programs to the proper directories. This command should be run as root. The command

10 UUCP Implementation

make

will compile the entire system.

The programs UUCp, uux, and uulog should be put in "/usr/bin". The programs uuxqt, uucico,
and uuclean should be put in the program directory.

Files Required For Execution

There are four files that are required for execution. They should reside in the program direc­
tory. The field separator for all files is a space.

L-devices

This file contains call-unit device and hardwired connection information. The special device files
are assumed to be in the /dev directory. The format for each entry is

type line call-unit speed

where

type

line

call-unit

speed

The line

is a device type such as ACU or DIR. The field can also be used to specify
particular ACUs for some calls by using a suffix on the ACU field, e.g.,
ACU3. This names should be used in L.sys.
is the device for the line (e.g., cuIO).

is the automatic call unit associated with line (e.g., cuaO). Hardwired lines
have a number "0" in this field.

is the line speed.

ACU culO cuaO 300

would be set up for a system that has device "/dev/cuIO" wired to a call-unit "/dev/cuaO" for use
at 300 baud.

L-dialcodes

This file contains the dialcode abbreviations used in the L.sys file (e.g., py, mh, boston). The
entry format is

abb dial-seq

where

abb

dial-seq

The line

is the abbreviation,

is the dial sequence to call that location.

py 165-

would be set up so that entry py7777 would send 165-7777 to the dial-unit.

USERFILE

This file contains user accessibility information. It specifies four types of constraint:

[1] which files can be accessed by a normal user of the local machine,

[2] which files can be accessed from a remote computer,

[3] which login name is used by a particular remote computer,

[4] whether a remote computer should be called back in order to confirm its identity.

Each line in the file has the format

r

UUCP Implementation 11

login,sys [c) path-name [path-name]

where

login is the login name for a user or the remote computer,

sys is the system name for a remote computer,

c is the optional call-back required flag,

path-name is a path-name prefix that is acceptable for sys .

The constraints are implemented as follows.

[1] When the program is obeying a command stored on the local machine, MASTER
mode, the path-names allowed are those given on the first line in the USERFILE that
has the login name of the user who entered the command. If no such line is found,
the first line with a null login name is used.

[2] When the program is responding to a command from a remote machine, SLAVE
mode, the path-names allowed are those given on the first line in the file that has the
system name that matches the remote machine. If no such line is found, the first
one with a null system name is used.

[3] When a remote computer logs in, the login name that it uses must appear in the
USERFILE. There may be several lines with the same login name but one of them
must either have the name of the remote system or must contain a null system
name.

[4] If the line matched in ([3]) contains a "c", the remote machine is called back before
any transactions take place.

The line

u,m lusr/xyz

allows machine m to login with name u and request the transfer of files whose names start with
"/usr/xyz" .

The line

dan, lusr/dan

allows the ordinary user dan to issue commands for files whose name starts with ",'usr'dan".
(Note that this type restriction is seldom used.)

The lines

u,m lusr/xyz lusrlspool
u, /usr/spool

allows any remote machine to login with name u. If its system name is not m, it can only ask to
transfer files whose names start with "/usrlspool". If it is system m, it can send files from paths
"/usr/xyz" as well as "/usrlspool".

The lines

root, /
, /usr

allow any user to transfer files beginning with "!usr" but the user with login root can transfer any
file. (Note that any file that is to be transferred must be readable by anybody.)

L.sys
Each entry in this file represents one system that can be called by the local uucp programs.
More than one line may be present for a particular system. In this case, the additional lines
represent alternative communication paths that will be tried in sequential order. The fields are
described below.

12 UUCP Implementation

system name

The name of the remote system.

time

This is a string that indicates the days-of-week and times-of-day when the system should
be called (e.g., MoTuTh0800-1730).

The day portion may be a list containing some of

Su Mo Tu We Th Fr Sa

or it may be Wk for any week-day or Any for any day.

The time should be a range of times (e.g., 0800-1230). If no time portion is specified, any
time of day is assumed to be okay for the call. Note that a time range that spans 0000 is
permitted, for example, 0800-0600 means all times are ok other than times between 6 and
8am.

An optional subfield is available to indicate the minimum time (minutes) before a retry fol­
lowing a failed attempt. The subfield separator is a ",". (e.g., Any,9 means call any time
but wait at least 9 minutes after a failure has occurred.)

device

This is either ACU or the hardwired device to be used for the call. For the hardwired
case, the last part of the special file name is used (e.g., ttyO).

class

This is usually the line speed for the call (e.g., 300). The exception is when the "e" library
routine "dialout" is available in which case this is the dialout class.

phone

The phone number is made up of an optional alphabetic abbreviation and a numeric part.
The abbreviation should be one that appears in the L-dia/codes file (e.g., mh5900, bos­
ton995-9980). For the hardwired devices, this field contains the same string as used for
the device field.

login

The login information is given as a series of fields and subfields in the format

[expect send] ...

where expect is the string expected to be read and send is the string to be sent when the
expect string is received.

The expect field may be made up of subfields of the form

expect[-send-expect] ...

where the send is sent if the prior expect is not successfully read and the expect follow­
ing the send is the next expected string. (e.g., login--Iogin will expect login; if it gets it,
the program will go on to the next field; if it does not get /ogin, it will send null followed by
a new line, then expect login again.)

There are two special names available to be sent during the login sequence. The string
EOT will send an EOT character and the string BREAK will try to send a BREAK charac­
ter. (The BREAK character is simulated using line speed changes and null characters and
may not work on all devices and/or systems.) A number from 1 to 9 may follow the
BREAK for example, BREAK1 will send 1 null character instead of the default of 3. Note
that BREAK1 usually works best for 300/1200 baud lines.

r

UUCP Implementation 13

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm match all or part of the input string as illustrated in the password field
above.

9. Administration

This section indicates some events and files that must be administered for the uucp system.
Some administration can be accomplished by shell files initiated by crontab entries. Others will
require manual intervention. Some sample shell files are given toward the end of this section.

SQFILE - sequence check file

This file is set up in the program directory and contains an entry for each remote system with
which you agree to perform conversation sequence checks. The initial entry is just the system
name of the remote system. The first conversation will add the conversation count and the
date/time of the most resent conversation. These items will be updated with each conversation.
If a sequence check fails, the entry will have to be adjusted manually.

TM - temporary data files

These files are created in the spool directory while a file is being copied from a remote
machine. Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number starting at zero. After the
entire file is received, the TM file is moved/copied to the requested destination. If processing is
abnormally terminated the file will remain in the spool directory. The leftover files should be
periodically removed; the uuclean program is useful in this regard. The command

program luuclean -pTM

will remove all TM files older than three days.

LOG - log entry files

During execution, log information is appended to the LOGFILE. If this file is locked by another
process, the log information is placed in individual log files which will have prefix LOG. These
files should be combined into the LOGFILE by using the uulog program. This program will
append the LOGFILE with the individual log files. The command

uulog

will accomplish the merge. Options are available to print some or all the log entries after the
files are merged. The LOGFILE should be removed periodically.

The LOG. files are created initially with mode 0222. If the program that creates the file ter­
minates normally, it changes the mode to 0666. Aborted runs may leave the files with mode
0222 and the uulog program will not read or remove them. To remove them, either use rm,
uuclean, or change the mode to 0666 and let uulog merge them into the LOGFILE.

STST - system status files

These files are created in the spool directory by the uucico program. They contain information
such as login, dialup or sequence check failures or will contain a TALKING status when two
machines are conversing. The form of the file name is

STST.sys

where sys is the remote system name.

For ordinary failures, such as dialup or login, the file will prevent repeated tries for about 55
minutes. This is the default time; it can be changed on an individual system basis by a subfield
of the time field in the L.sys file. For sequence check failures, the file must be removed before

14 UUCP Implementation

any future attempts to converse with that remote system.

LCK - lock files
Lock files are created for each device in use (e.g., automatic calling unit) and each system
conversing. This prevents duplicate conversations and multiple attempts to use the same dev­
ice. The form of the lock file name is

LCK •• str

where str is either a device or system name. The files may be left in the spool directory if runs
abort (usually only on system crashes). They will be ignored (reused) after 1.5 hours. When
runs abort and calls are desired before the time limit, the lock files should be removed.

ERRLOG - uucp system error file
This file is created in the spool directory to record uucp system errors. Entries in this file should
be rare. The messages come from the ASSERT statements in the various programs. Wrong
modes on files or directories, missing files, and read/write system call failures on the transmis­
sion channel may cause entries in the ERRLOG file.

Shell Files
The uucp program will spool work and attempt to start the uucico program, but uucico will not
always be able to execute the request immediately. Therefore, the uucico program should be
periodically started. The command to start uucico can be put in a "shell" file with a command
to merge LOG. files and started by a crontab entry on an hourly basis. The file could contain
the commands

/usr/bin/uulog
program /uucico -r1 -sinter
program /uucico -r1

The "-r1" option is required to start the uucico program in MASTER mode. The "-s" option can
be used for polling as illustrated in the second line where machine inter is being polled. The
third line will process all other spooled work.

Another shell file may be set up on a daily basis to remove TM, ST and LCK files and C. or D.
files for work that can not be accomplished for reasons like bad phone number, login changes
etc. A shell file containing commands like

program /uuclean -p TM -pC. -pO.
program luuclean -pST -pLCK -n12

can be used. Note that the "-n12" option causes the ST and LCK files older than 12 hours to
be deleted. The absence of the "-n" option will use a three day time limit.

A daily or weekly shell should also be created to remove or save old LOGFILEs. A shell like

cp SpoOllLOGFILE spoo/lo.LOGFILE
rm spool iLOGFILE

can be used.

Login Entry
Two or more logins should be set up for uucp. One should be an administrative login: the
owner of all the uucp programs, directories and files. All others are used by remote systems to
access the uucp system. Each of the ":etcipasswd" entries for the access logins should have
"program/uucico" as the shell to be executed. The login directory should be the public directory
(usually /usrlspool/uucppublic). The various access login names are used in the USERFILE to
restrict file access.

r

UUCP Implementation 15

File Modes

The programs uucp, uux, uucico, uulog, uuclean and uuxqt should be owned by the uucp
administrative login with the "setuid" bit set and only execute permissions (e.g., mode 04111).
The L.sys, SQFILE and the USERFILE, which are put in the program directory should be
owned by the uucp administrative login and set with mode 0400. The mode of spool should be
"0755". The mode of xqtdlr should be "0777". The L-dia/codes and the L-devices files should
have mode 0444.

January 1980

r

Yaee: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every com­
puter program that does input can be thought of as defining an "input
language" which it accepts. An input language may be as complex as a pro­
gramming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about check­
ing their inputs for validity.

Yacc provides a general tool for describing the input to a computer pro­
gram. The Yacc user specifies the structures of his input, together with cod~ to
be invoked as each such structure is recognized. Yacc turns such a specification
into a subroutine that handles the input process; frequently, it is convenient
and appropriate to have most of the flow of control in the user's application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or in terms of higher level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a
very general one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also
been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
Fortran debugging system.

July 31, 1978

Yaee: Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program.
The Yacc user prepares a specification of the input process; this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of these rules has been recognized,
then user code supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C1 and the actions, and output subroutine, are in C
as well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day': year ;

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma"," is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4. 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream. recognizing the l(lwer 1~"\·",1 structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nonterminal sym­
bol. To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month name 'J' 'a' 'n'
month name : 'F' 'e' 'b' ;

month name : 'D" e' 'c' ;

might be used in the above example. The lexical analyzer would only need to recognize indivi­
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc's ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a

r

- 2 -

month_name was seen; in this case, month_name would be a token.

Literal characters such as "," must also be passed through the lexical analyzer, and are
also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the
rule

date : month'/, day , /' year ;

allowing

7 / 4/ 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the input specifications, per­
mits the reentry of bad data, or the continuation of the input process after skipping over the
bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; moreover, the constructions which are difficult
for Yacc to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input revealed
errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere. 2,3,4 Yacc has been extensively
used in numerous practical applications, including lint,S the Portable C Compiler, 6 and a sy<;tem
for typesetting mathematics. 7

The next several sections describe the basic process of preparing a Yacc specification; Sec­
tion 1 describes the preparation of grammar rules, Section 2 the preparation of the user sup­
plied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Sec­
tion 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may
be unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe­
cial features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced
topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appen­
dix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax
no longer actively supported, but provided for historical continuity with older versions of Yacc.

1: Basic Specifications .
Names refer to either tokens or nonterminal symbols. Yacc requires token names to be

declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections: the declarations, (grammar)

- 3 -

rules, and programs. The sections are separated by double percent "%%" marks. (The percent
"%" is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also: thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in / * ... */, as in C and PLII.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ".", underscore
"_", and non-initial digits. Upper and lower case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes "'''. As in C, the backslash "\"
is an escape character within literals, and all the C escapes are recognized. Thus

'\n' newline
'\r' return
'\ " single quote ,,'"
'\ \' backslash "\"
'\t' tab
'\b' backspace
'\f form feed
'\xxx' "xxx" in octal

For a number of technical reasons, the NUL character ('\0' or 0) should never be used in gram­
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar "I" can
be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A
A
A

can be given to Yacc as

A

BCD
E F
G

BCD
E F
G

r

r

r

- 4 -

It is not necessary that all grammar rules with the same left side appear together in the gram­
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

empty: ;

Names representing tokens must be declared; this is most simply done by writing

%token name I name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact
desirable, to declare the start symbol explicitly in the declarations section using the %start key­
word:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If
the tokens up to, but not including, the endmarker form a structure which matches the start
symbol, the parser function returns to its caller after the endmarker is seen; iLaccepts the input.
If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropri­
ate; see section 3, below. Usually the endmarker represents some reasonably obvious 110
status, such as "end-of-file" or "end-of-record".

2: Actions

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro­
grams, and alter external vectors and variables. An action is specified by one or more state­
ments, enclosed in curly braces" {" and "I". For example,

A

and

xxx

'r B T
{

YYY ZZZ
{

are grammar rules with actions.

hello(1, "abc"); I

printf("a message\n");
flag = 25; I

To facilitate easy communication between the actions and the parser, the action state­
ments are altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For
example, an action that does nothing but return the value 1 is

- 5 -

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may
use the pseudo-variables $1, $2, ... , which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

A BCD ;

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

expr '(' expr ')' ;

The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by

expr '(' expr ')' { $$ = $2; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar
rules of the form

A B

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

A B
{ $$ = 1; }

C
{ x = $2; y = $3;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The inte­
rior action is the action triggered off by recognizing this added rule. Yacc actually treats the
above example as if it had been written:

$ACT /* empty */
{ $$ = 1; }

A B $ACT C
{ x = $2; y = $3; I

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before out­
put is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node, written
so that the call

node(L, nl, n2)

creates a node with label L, and descendants nl and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

- 6 -

expr expr '+' expr
{ $$ = node (' +', $1, $3);

in the specification.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks "% {" and "%}".
These declarations and definitions have global scope, so they are known to the action state­
ments and the lexical analyzer. For example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
found in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yyl­
val.

The parser and the lexical analyzer must agree on these token numbers in order for com­
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the "# define" mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has
been defined in the declarations section of the Yacc specification file. The relevant portion of
the lexical analyzer might look fike:

yylexO{
extern int yylval;
int c~

c = getchar 0 ~

switch(c) {

case '0':
case '1':

case '9':
yylval = c-'O';
return (DIGIT);

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear. easily modified lexical analyzers~ the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error

- 7 -

handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user: In the
default situation, the numbers are chosen by Yacc. The default token number for a literal char­
acter is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token
name or literal in the declarations section can be immedi~tely followed by a nonnegative integer.
This integer is taken to be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return
o or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by
Mike Lesk. 8 These lexical analyzers are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,
however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input token (called the lookahead token).
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A
move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the. stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to decide whether to reduce, but usu­
ally it is not; in fact, the default action (represented by a ".") is often a reduce action.

r

- 8 -

Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce action depends on the left hand symbol (A in this case), and the number of sym­
bols on the right hand side (three in this case). To reduce, first pop off the top three states
from the stack (In general, the number of states popped equals the number of symbols on the
right side of the rule). In effect, these states were the ones put on the stack while recognizing
x, y, and z, and no longer serve any useful purpose. After popping these states, a state is
uncovered which was the state the parser was in before beginning to process the rule. Using
this uncovered state, and the symbol on the left side of the rule, perform what is in effect a
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. There are
significant differences between the processing of the left hand symbol and an ordinary shift of a
token, however, so this action is called a goto action. In particular, the lookahead token is
cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an
entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter­
nal variable yylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the gOlo action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the lookahead token is the endmarker, and indicates that the parser has successfully
done its job. The error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything that would result in a legal input.
The parser reports an error, and attempts to recover the situation and resume parsing: the error
recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

%token DING DONG DELL
%%
rhyme sound place

sound

place

DING DONG

DELL

- 9 -

When Yacc is invoked with the -v option, a file called y.output is produced, with a
human-readable description of the parser. The y.output file corresponding to the above gram­
mar (with some statistics stripped off the end) is:

r

r

- 10 -

state 0
$accept : Jhyme Send

DING shift 3
· error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_Send

Send accept
· error

state 2
rhyme sound_place

DELL shift 5
· error

place goto 4

state 3
sound DING DONG

DONG shift 6
· error

state 4
rhyme: sound place_ 0)

reduce 1

state 5
place : DELL - (3)

reduce 3

state 6
sound DING DONG (2) -

reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and what
is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state O. The parser needs to refer to the input in order to
decide between the actions available in state 0, so the first token, DING, is read, becoming the
lookahead token. The action in state 0 on DING is is "shift 3", so state 3 is pushed onto the
stack, and the lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG is

- 11 -

"shift 6", so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by
rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped off,
uncovering state ° again. In state 0, there is a goto on rhyme causing the parser to enter state
1. In state 1, the input is read; the endmarker is obtained, indicated by "Send" in the y.output
file. The action in state 1 when the endmarker is seen is to accept, successfully ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

expr expr ' -' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram­
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).
Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to

consider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by apply­
ing this rule; after applying the rule; the input is reduced to expr(the left side of the rule). The
parser would then read the final part of the input:

- 12 -

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta­
tion. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a shift / reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce / reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of disambiguating rules is inap­
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna­
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider a fragment from a program­
ming language involving an "if-then-else" construction:

stat IF '(' cond ')' stat
IF '(' cond ')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the simple-ifrule, and the second the if-else rule.

- 13 -

These two rules form an ambiguous construction, since input of the form

IF (Cl) IF (C2) SI ELSE S2

can be structured according to these rules in two ways:

or

IF (Cl) {
IF (C2) SI
}

ELSE S2

IF (Cl) {
IF (C2) SI
ELSE S2
}

The second interpretation is the one given in most programming languages having this con­
struct. Each ELSEis associated with the last preceding "un-ELSE'd" IF. In this example, con­
sider the situation where the parser has seen

IF (Cl) IF (C2) SI

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (Cl) stat

and then read the remaining input,

ELSE S2

and reduce

IF (Cl) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (CI) IF (C2) S1 ELSE S2

can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which leads to the
desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF (C 1) IF (C2) S 1

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (-v) option
output file. For example, the output corresponding to the above conflict state might be:

r

- 14 -

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF (cond) stat_ (I 8)
stat IF (cond) stat ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ".", is to be done if the input symbol is not mentioned explicitly.in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF 'r cond T stat

Once again, notice that the numbers following "shift" commands refer to other states, while
the numbers following "reduce" commands refer to grammar rule numbers. In the y.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough ·;:ases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references2, 3, 4 might be consulted; the ser­
vices of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con­
structions for arithmetic expressions can be naturally described by the notion of precedence lev­
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr

and

expr : UNARY. expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and

- 15 -

construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations· section.
This is done by a series of lines beginning with a Yacc keyword: %Ieft, %right, or %nonassoc,
followed by a list of tokens. All of the tokens on the same line are assumed to have the same
precedence level and associativity~ the lines are listed in order of increasing precedence or bind­
ing strength. Thus,

%Ieft '+' '-'
%Ieft '*' '/'

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an· operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right '='
%Ieft '+' '-'
%Ieft ' '/'

%%

, ,
expr expr = expr

expr ' +' expr
expr expr
expr ' expr
expr 'i' expr
NAME

might be used to structure the input

a = b = c*d - e - f*g

as follows:

a = (b = («c*d) -e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some­
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary' -'; unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence level associated with a particular
grammar rule. %prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre­
cedence of the grammar rule to become that of the following token name or literal. For exam­
ple, to make unary minus have the same precedence as multiplication the rules might resemble:

%left '+' '-'
%left '.' 'f'

%%

expr expr '+' expr
expr '-' expr
expr '. expr
expr 'f' expr

- 16 -

, -' expr %prec' *'
NAME

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc­
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre­
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre­
cedences, and use them in an essentially "cookbook" fashion, until some experience has been
gained. The y.output file is very useful in deciding whether the parser is actually doing what was
intended.

7: Error Handling
Error handling is an extremely difficult area, and many of the problems are semantic ones.

When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser "restarted" after an error. A general class of algorithms to do this involves discard­
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
general, feature. The token name "error" is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters a state where the token "error" is

- 17 -

legal. It then behaves as if the token "error" were the current lookahead token, and performs
the action encountered. The lookahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser,. after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is
Quietly deleted.

As an example, a rule of the form

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state­
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini­
tialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as

stat error ';'

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ';'. All tokens after the ~rror and before the next ';' cannot be shifted, and
are discarded. When the ';' is seen, this rule will be reduced, and any "cleanup" action associ­
ated with it performed.

Another form of error rul~ arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input error '\n' (printf("Reenter last line: "); } input
{ $$ = $4; }

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronized after the error. If the reen­
tered line contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can
be used to force the parser to believe that an error has been fully recovered from. The state­
ment·

yyerrok ;

in an action resets the parser to its normal mode. The last example is better written

input error '\n'
(yyerrok;

printf("Reenter last line: ");
input

$$ = $4; }

As mentioned above, the token seen immediately after the "error" symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might.take upon itself the job of finding the correct place to resume input.
In this case, the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some

r

~
\

r

- 18 -

sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. Mter this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille­
gal token must be discarded, and the error state reset. This could be done by a rule like

stat error
resynchO;
yyerrok;
yyclearin;

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.e on most systems (due to local file system conventions, the names may differ from instal­
lation to installation). The function produced by Yacc is called yyparse; it is an integer valued
function. When it is called, it in tum repeatedly calls yyiex, the lexical analyzer supplied by the
user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in which
case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns
the endmarker token and the parser accepts. In this case, yyparse returns the \Talue O.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini­
tial effort of using Yacc, a library has been provided with default versions of main and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a -Iy
argument to the loader. To show the triviality of these default programs, the source is given
below:

and

mainO{
return (yyparse 0);
)

include <stdio.h>

yyerror(s) char *s; (
fprintf(stderr, "%s\n", s);
)

The argument to yyerror is a string containing an error message, usually the string "syntax
error". The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yyehar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ­
ment, it may be possible to set this variable by using a debugging system.

- 19 -

9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of "knowing who to blame when things go wrong."

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text
of this paper (where space permits). The user must make up his own mind about these stylistic
questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called "left recursive" grammar
rules: rules of the form

name

These rules frequently arise when writing specifications of sequences and lists:

list item
list ' , item ,

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:

r

seq /* empty */
seq item

- 20-

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn't seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara­
tions, followed by 0 or more statements. Consider:

%{
int dflag;

%}
other declarations ...

%%

prog decls stats

decls /* empty */
{ dflag = 1;

decls declaration

stats /* empty */
{ dflag = 0;

stats statement

other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words
Some programming languages permit the user to use words like "if', which are normally

reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Yacc; it is difficult to pass information to the lexical analyzer telling it "this instance of 'if is
a keyword, and that instance is a variable". The user can make a stab at it, using the mechan­
ism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be reserved; that is, be forbidden for use as variable names. There are

- 21 -

powerful stylistic reasons for preferring this, anyway.

10: Advanced Topics

This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YY ACCEPT and YYERROR. YY ACCEPT causes yyparse to return the value 0; YYERROR
causes the parser to behave as if the current input symbol had been a syntax error; yyerror is
called, and error recovery takes place. These mechanisms can be used to simulate parsers with
multiple endmarkers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in
this case the digit may be 0 or negative. Consider

sent adj noun verb adj noun
{ look at the sentence . ..

adj THE
YOUNG

noun DOG
{

CRONE
{

$$ == THE; }
$$ == YOUNG;

$$ == DOG; }

if($0 == == YOUNG) {
printf("what?\n");
}

$$ = CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types
By default, the values returned by actions and the lexical analyzer are integers. Yacc can

also support values of other types, including structures. In addition, Yacc keeps track of the
types, and inserts appropriate union member names so that the resulting parser will be strictly
type checked. The Yacc value stack (see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and associates union member names to
each token and nonterminal symbol having a value. When the value is referenced through a $$
or $n construction, Yacc will automatically insert the appropriate union name, so that no
unwanted conversions will take place. In addition, type checking commands such as LintS will
be far more silent.

r

r

- 22 -

There are three mechanisms used to provide for this typing. First, there is a way of
defining the union; this must be done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ­
ing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union ...
}

This declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yacc was invoked with the -d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTVPE;

The header file must be included in the declarations section, by use of %{ and %}.

Once YYSTVPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

< name>

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left <optype> '+' '-'
will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type < nodetype > expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, reference
to left context values (such as $0 - see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this usage is

rule aaa { $<intval>$ = 3; } bbb
(fun($<intval> 2, $<other>O);

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will turn on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of $n or $$ to
refer to something with no defined type is diagnosed. If these facilities are not triggered, the
Yacc value stack is used to hold int's, as was true historically.

- 23 -

11: Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond
my inclination, and frequently beyond my ability, in their endless search for "one more
feature". Their irritating unwillingness to learn how to do things my way has usually led to my
doing things their way; most of the time, they have been right. B. W. Kernighan, P. 1. Plauger,
S. I. Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M.
Ritchie, B. W. Kernighan, and M. O. Harris helped translate this document into English. Al
Aho also deserves special credit for bringing the mountain to Mohammed, and other favors.

- 24-

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle­
wood Oiffs, New Jersey (1978).

2. A. V. Abo and S. C. Johnson, "LR Parsing," Compo Surveys 6(2) pp. 99-124 (June 1974).

3. A. V. Abo, S. C. Johnson, and 1. D. Ullman, "Deterministic Parsing of Ambiguous
Grammars," Comm. Assoc. Compo Mach. 18(8) pp. 441-452 (August 1975).

4. A. V. Abo and 1. D. Ullman, Principles of Compiler DeSign, Addison-Wesley, Reading,
Mass. (1977).

5. S. C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No. 65 (December
1977).

6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, (January 1978).

7. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics," Comm.
Assoc. Compo Mach. 18 pp. 151-157 (March 1975).

8. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975).

- 25 -

Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk
calculator has 26 registers, labeled "a" through "z", and accepts arithmetic expressions made
up of the operators +, -, *, /, % (mod operator), & (bitwise and), I (bitwise or), and assign­
ment. If an expression at the top level is an assignment~ the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of show­
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli­
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%(
inClude <stdio.h>
inClude <ctype.h>

int regs [26];
int base;

%}

%start list

%token DIGIT LETTER

%Ieft '"
%left '&'
%Ieft '+'
%Ieft '. '/' '%'
%left UMINUS /* supplies precedence for unary minus */

%% / * beginning of rules section */

list

stat

expr

/* empty */
list stat '\n'
list error '\n'

{ yyerrok; }

expr
(

LETTER
(

'(' expr ')'
{

expr ' +' expr
{

, ,
expr - expr

(

printf("%d\n", $1);
expr
regs[$I] = $3; }

$$ $2; }

$$ $1 + $3;

$$ $1 $3;

1

r
- 26-

expr '. expr
{ SS == SI * S3;

expr 'I' expr
{ SS == SI / S3; }

~xpr '%' expr
{ SS == SI % S3; }

expr ' &' expr
{ SS == SI & S3;

expr 'I' expr
{ SS = SI , S3; , - ,

expr %prec UMINUS
{ SS == - S2; }

LEITER
{ SS == regs [SI]; }

number

number: DIGIT
{ ss == SI; base == (SI == ==0) ? 8 10;}

number DIGIT
{ SS == base * SI + S2; }

%% /* start of programs */

yylexO (/* lexical analysis routine */
/* returns LEITER for a lower case letter, yylval == 0 through 2S */
/* return DIGIT for a digit, yylval == 0 through 9 */
/* all other characters are returned immediately */

int c;

while ((c==getchar0) = == ") {/* skip blanks */ }

/* c is now nonblank */

if{ islower{ c)) {
yylval == c - 'a';
return (LETTER);
}

if{ isdigit (c)) (
yylval == c - '0';
return{ DIGIT);
}

return{ c);
}

- 27 -

Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con­
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR (2) grammar; the sticky part comes when an identifier is seen
in a rule, immediately following an action. If this identifier is followed by a colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.) is a
colon. If so, it returns the token C IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C IDENTIFIERs.

%token
%token
%token

1* grammar for the input to Yacc *1

1 * basic entities
IDENTIFIER
C IDENTIFIER
NUMBER

*1
1* includes identifiers and literals *1
1* identifier (but not literal) followed by colon

1* [0-9] + *1

1* reserved words: %type = > TYPE, %left = > LEFI', etc. *1

%token LEFI' RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK 1* the %% mark *1
%token LCURL 1* the %{ mark *1
%token RCURL 1* the %} mark *1

1 * ascii character literals stand for themselves *1

%start spec

%%

spec

tail

defs

def

rword

defs MARK rules tail

MARK { In this action, eat up the rest of the file
1* empty: the second MARK is optional *1

1* empty *1
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

TOKEN
LEFI'
RIGHT

tag

ntist

nmno

rules

rule

rhody

act

prec

r

NONASSOC
TYPE

- 28 -

1* empty: union tag is optional *1
, <' IDENTIFIER '>'

nmno
nlist nmno
nlist .: nmno

IDENTIFIER 1* NOTE: literal illegal with %type *1
IDENTIFIER NUMBER 1* NOTE: illegal with %type *1

1* rules section *1

C IDENTIFIER rhody prec
rules rule

C IDENTIFIER rhody prec
'I' rhody prec

1* empty' *1
rhody IDENTIFIER
rbody act

'{' { Copy action, translate $$, etc. } T

1* empty *1
PREC IDENTIFIER
PREC IDENTIFIER act
prec ';'

- 29 -

Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features dis­
cussed in Section 10. The desk calculator example in Appendix A is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator understands floating point
constants, the arithmetic operations +, -, *, /, unary -, and = (assignment), and has 26
floating point variables, "a" through "z". Moreover, it also understands intervals, written

(x, y)

where x is less than or equal to y. There are 26 interval valued variables" A" through "Z"
that may also be used. The usage is similar to that in Appendix A; assignments return no
value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double's.
This structure is given a type name, INTERVAL, by using typedej. The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari­
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throwaway the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the "," is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the ·rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C library routine ato/is used to do the actual conversion from a
character string to a double precision value. If the lexical analyzer detects an error, it responds
by returning a token that is illegal in the grammar, provoking a ~yntax error in the parser, and
thence error recovery.

r

%{

include < stdio.h >
include <ctype.h>

typedef struct interval
double 10, hi;
} INTERVAL;

INTERVAL vmulO, vdivO;

double atofO;

double dreg[26 1;
INTERVAL vreg[26 1;

%}

%start lines

%union
int ivai;
double dval;
INTER V AL vval;
}

%token <ivai> DREG VREG

%token < dval > CONST

- 30-

/* indices into dreg, vreg arrays */

/* floating point constant */

%type < dval > dexp /* expression */

%type < vval > vexp /* interval expression */

/* precedence information about the operators */

%Ieft '+"-'
%Ieft '. '/'
%Ieft UMINUS /* precedence for unary minus */

%%

lines /* empty */
lines line

line dexp '\n'
(printf("%IS.8f\n", SI); }

vexp '\n'
{ printf("(%IS.8f , %IS.8f)\n" , S1.Io, Sl.hi); }

DREG ' =' dexp '\n'
(dreg[Sl1 = S3;)

VREG ' =' vexp '\n'

- 31 -

{ vreg[$l] = $3; }
error '\n'

{ yyerrok; }

dexp CONST
DREG

{ $$ = dreg [$1]; }
dexp '+' dexp

{ $$ = $1 + $3;
dexp '-' dexp

{ $$ == $1 - $3;
dexp '",' dexp

{ $$ = $1 '" $3; }
dexp '/' dexp

{ $$ = $1 / $3;
'-' dexp Ofoprec UMINUS

{ $$ = - $2; }
'(' dexp ')'

{ $$ == $2; }

vexp dexp
{ $$.hi = $$.10 = $1; }

'(' dexp ',' dexp ')'
(
$$.10 == $2;
$$.hi =$4;
if($$.10 > $$.hi)(

}
VREG

printf("interval out of order\n");
YYERROR;
}

{ $$ = vreg[$I]; }
vexp '+' vexp

{ $$.hi == $1.hi + $3.hi;
$$.10 = $1.10 + $3.10;

dexp '+' vexp
{ $$.hi = $1 + $3.hi;

$$.10 $1 + $3.10; }
vexp '-' vexp

{ $$.hi = $1.hi - $3.10;
$$.10 $1.10 - $3.hi;

dexp '-' vexp
{ $$.hi = $1 - $3.10;

$$.10 $1 - $3.hi; }
vexp '. vexp

($$ = vmul($1.10, $l.hi, $3); }
dexp '. vexp

($$ = vmul($1, $1, $3); }
vexp '/' vexp

(if(dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3); }

%%

- 32-

dexp '/' vexp
(if(dcheck($3)) YYERROR;

vexp
{

, (' vexp ')'
{

$$ = vdiv($1, $1, $3); }
%prec UMINUS
$$.hi = - $2.10; $$.10 = - $2.hi;

$$ = $2; }

define BSZ 50 / * buffer size for floating point numbers */

yylexO{

/* lexical analysis */

register c;

while ((c=getchar0) = = ")(/* skip over blanks */ }

if(isupper(c)) {
yylval.ival = c - 'A';
return (VREG);
}

if(islower(c))(
yylval.ival = c - 'a';
return{ DREG); ,
}

if(isdigit(c) II c= =':)(
/ * gobble up digits, points, exponents */

char buf[BSZ+ 1], *cp = buf;
int dot = 0, exp = 0;

for(; (cp-buf)<BSZ ++cp,c=getcharO){

*cp = c;
if(isdigit (c)) continue;
if(c = = ':)(

if(dot + + II exp) return (
continue;
)

if(c = = ' e')(

); /* will cause syntax error */

if(exp+ +) return('e'); /* will cause syntax error */
continue;
}

/* end of number */
break;
}

*cp = '\0';
if((cp-buf) > = BSZ) printf("constant too long: truncated\n");

- 33 -

else ungetc(c, stdin); /* push back last char read */
yylval.dval = atof(buf);
return(CONST);
}

return(c);
}

INTERV AL hilo(a, b, c, d) double a, b, c, d; (
/ * returns the smallest interval containing a, b, c, and d */
/* used by *, / routines */

. INTER V AL v;

if(a>b) (v.hi
else { v.hi = b;

if(c>d) (

= a; v.lo = b; }
v.lo = a;

if(c>v.hi) v.hi = c;
if(d<v.lo) v.lo = d;
}

else (
if(d>v.hi) v.hi = d;
if(c<v.lo) v.lo = c;
}

return(v);
}

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; (
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));
}

dcheck(v) INTERVAL v;{
if(v.hi > == O. && v.lo < == O.){

printf("divisor interval contains O.\n");
return(1);
}

return(0);
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; (
return{ hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

- 34-

Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical con­
tinuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes ''''''.

2. Literals may be more than one character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular, \\ is the same as
%%, \left the same as %left, etc.

4. There are a number of other synonyms:

% < is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
% = is the same as %prec

5. Actions may also have the form

=(...)

and the curly braces can be dropped if the action is a single C statement.

6. C code between %(and %) used to be permitted at the head of the rules section, as well
as in the declaration section.

r

Plexus Release 1.0/3.0 of the UNIX Virtual Protocol Machine

This document draws heavily from the memorandum on VPM supplied in the Programmer's
Manual for UNIX System 11/, Volume 2B (October 1981).

Changes have been made to reflect the Plexus implementation of VPM.

Plexus release 1.0 of VPM is for Z8000-based Plexus computer systems (P/2S and P/40);
release 3.0 is for MCS8000-based Plexus computer systems (P/3S, P/SO, PISS, and P/7S).

ABSTRACT

This document describes the initial release of the Virtual Protocol Machine
(VPM), a UNIX· synChronous communication subsystem, as implemented
on a Plexus computer system. The Plexus release of VPM is built around
the Intelligent Communications Processor (ICP), a Z8000 based
microcomputer that connects to the MULTI BUS of a Plexus computer.
The VPM is a software construct for implementing link protocols on the
ICP in a high-level language.

A compiler, vpmc, is provided to translate a high-level description of a
protocol (protocol script) into the instruction set of the virtual machine.
Vpmc supports C-like control-flow constructs, a modest subset of C-like
statements and expressions, and a set of communication primitives that
permit implementation of byte-oriented protocols such as BISYNC.
(Primitives that support bit-oriented protocols such as HDLC have been
defined and will be available in a later release of VPM.) An interpreter is
provided that runs in the ICP and interprets the virtual machine instruction
set. A UNIX driver provides the interface between the user process's
open, close, read, and write calls and the protocol script being executed
by the interpreter. Besides providing the benefits of a high-level language
implementaton of protocols, the VPM approach permits portable protocol
implementations.

The VPM software consists of five components:

1. vpmc: a UNIX compiler for the protocol description language.

2. VPM interpreter: the ICP program that controls the overall operation
of the ICP and interprets the protocol script.

3. si.c: the UNIX driver that provides the interface to the VPM. This
source is not available for distribution.

4. vpmstart: a UNIX command that copies a load module into the ICP
and starts it.

5. vpmtrace: a UNIX command that prints an event trace for
debugging while the protocol is running.

The procedures for installation and use of the VPM commands and the
VPM driver are described; the pertinent manual entries are attached.

• UNIX is a trademark of Bell Laboratories.

2 Plexus VPM Release 1.0/3.0

INTRODUCTION

The Virtual Protocol Machine (VPM) is a UNIX synchronous communications subsystem built
around the ICP microcomputer.

The VPM is a software construct for implementing link protocols on the ICP using a high-level
language. A compiler, vpmc, is provided to translate a high-level description of a protocol
(protocol script) into the instruction set of the virtual machine. Vpmc uses a variant of Rattor' as
a front end to provide control-flow constructs such as if-else, for, while, switch, and repeat-until,
as well as other benefits. Vpmc supports a modest subset of C-like statements and expressions,
plus a set of communications primitives that permit succinct and easily-understood
implementations of byte-oriented protocols such as BISYNC. These primitives allow the protocol
scripts to reflect the essential structure of the protocol, while hiding details that arise from a
particular hardware-software environment. (Primitives that support bit-oriented protocols such as
HOLC have been defined and will be available in a later release of VPM.) An interpreter is
provided that runs in the ICP and interprets the virtual machine instruction set. This program
also controls the communications line(s) and provides the interface to the UNIX host machine.
The compiled protocol script is loaded with the interpreter into the ICP. A UNIX driver provides
the interface between the user process's open, close, read, and write calls and the protocol
script executed by the interpreter in the ICP.

Besides providing the benefits of a high-level language implementations of protocols, such as
ease of programming and maintainability, the VPM approach permits portable protocol
implementations. Portability can be achieved in several ways. First, because the interpreter and
the compiled protocol script execute in the ICP, they are the same regardless of the software
running in the main CPU or, for that matter, regardless of the CPU itself. More general forms of
portability are also possible. The instruction set of the virtual machine can be translated into
almost any assembly language using one of the UNIX macro processors, such as m42• This
does not require that the assembler for the target machine have a macro expansion capability.
Another possibility for portability because RaUor is used as a front-end: by limiting a protocol
script to a statement and expression syntax acceptable to a Fortran compiler, the protocol is
portable to machines that support Fortran in a suitable real-time environment. Finally, minor
changes to a protocol script will yield a C implementation of the protocol. With any of these
methods, the functions provided by the primitives (including the interfacing with communication
devices and the execution environment) must be supplied by suitable library routines or system
calls.

PLEXUS RELEASE 1.0/3.0

Plexus release 1.0 of VPM is restricted to byte-oriented half-duplex protocols such as BISYNC.
Plexus release 3.0 includes bit-oriented, full-duplex protocols such as HOLC.

This release of the VPM software is intended for use with UNIX Sys3. Operation with other
versions of UNIX has not been tested. The VPM software consists of five components:

1. vpmc: a UNIX compiler for the protocol description language.

2. VPM interpreter: the ICP program that controls the overall operation of the ICP and
interprets the protocol script.

1. B. W. Kernighan, RATFOR - A Preprocessor for a Rational Fortran, Bell Laboratories.

2. B. W. Kernighan, The M4 Macro Processor, Bell Laboratories.

Plexus VPM Release 1.0/3.0 3

3. si.c: the UNIX driver that provides the interface to the VPM. This source is not available
for distribution.

4. vpmstart: a UNIX command that copies a load module into the ICP and starts it.

5. vpmtrace: a UNIX command that prints an event trace for debugging while the protocol is
running.

A release tape containing the VPM software is available from Plexus Computers. Installation
procedures are described in the Plexus VPM Rev. 3.0 Release Notice, Plexus publication
number 98-40058.

Plexus Release 2.0 of the UNIX Virtual Protocol Machine

The following document is based on the Bell Laboratories memorandum and adds appropriate
changes for the Plexus implementation of VPM.

The Bell UNIX documentation refers to Release 1.0 and 2.0 of VPM. This maps to the Plexus
versions as follows:

Bell Plexus
VPM 1.0 Plexus VPM 1.0 for Z8000-based computers (P/25, P/40)

Plexus VPM 3.0 for MC68000-based computers (P/35, P/60, Pi65, P/75)

VPM 2.0 Plexus VPM 3.0 for MC68000 based systems only (P/35, P/60, P/65, P/75)

ABSTRACT

This document describes the second release of the UNIX Virtual Protocol
Machine (VPM). VPM is a general-purpose synchronous UNIX
communications interface that allows link-level protocols such as BISYNC
and HOLC to be implemented on the Intelligent Communications
Processor (ICP) in a high-level language. The VPM software consists of
a protocol compiler, a UNIX driver, an interpreter that executes in the ICP,
and several utility programs.

The first release of VPM supports a class of byte-oriented half-duplex
protocols collectively known as BISYNC. The present release adds
support for bit-oriented, full-duplex protocols such as the international
standard High-Level Data Link Control (HDLC). Other features of
Release 2.0 include:

1. an increase in the number of buffers that the interpreter can accept
at one time;

2. additional debugging facilities;

3. provisions for interprocess communication between the protocol
script and a UNIX driver or a user process; and

4. a cleaner separation of functions in the UNIX driver to facilitate
tailoring of VPM to particular applications.

The procedures for adding VPM Release 2.0 to a Plexus Sys3 UNIX 3.2
system and testing it to ensure proper operation are given.

2 Plexus Release 2.0 of VPM

Introduction

This document describes the second release of the UNIX· Virtual Protocol Machine (VPM). The
first release was described in the publication Plexus VPM Release 1.0, which should be read as
background for this memorandum.

VPM is a general-purpose UNIX interface for synchronous communications lines. VPM allows
link-level protocols such as BISYNC and HOLC to be inplemented on the Plexus ICP
microcomputer in a high-level language. The hardware required to support VPM is a Plexus host
computer, and an ICP. The link-level communications protocol is excuted by the VPM interpreter
running in the ICP Plexus ICP. This implementation technique leads to a portable protocol
representation and efficient protocol execution.

The VPM software consists of a protocol compiler, a UNIX driver, an interpreter that executes in
the Plexus ICP, and several utility programs. The compiler, which executes in the host
computer, translates a protocol described in a high-level language into a load module for the
ICP. The load module contains the VPM interpreter and a compiled representation of the
protocol. The interpreter executes the protocol, communicates with the UNIX driver in the host
computer, and controls the communications line interface.

The first release of VPM supported a large class of protocols collectively known as BISYNC.
These protocols are distinguished by the use of control characters to provide framing and
transparency. At the frame level, these protocols operate in a half-duplex manner, although they
sometimes use full-duplex communications facilities to reduce the time required to reverse the
direction of transmission.

Release of 2.0 of VPM adds support for bit-oriented, full-duplex protocols. This class of protocols
includes IBM's Synchronous Oata Link Control (SOLC) and the international standard High-Level
Oata Link Control (HOLC). LAPB, a subset of HOLC which is the link-level protocol specified in
the BX.25 Bell System Standard, has been implemented using VPM and is available with this
release (2.3). The interpreter used for bit-oriented protocols is different from that used for
character-oriented (BISYNC) protocols. The appropriate interpreter is selected by means of a
compiler option.

Other features of Release 2.0 include:

1. an increase in the number of transmit and receive buffers which the interpreter can accept
at one time.

2. additional debugging facilities.

3. provisions for interprocess communication between the protocol script and a UNIX driver or
a user process, and

4. a cleaner separation of functions in the UNIX driver to facilitate tailoring of VPM to
particular applications.

Support for Bit-Oriented Protocols

The capability to use bit-oriented protocols such as HOLC is provided by a new set of
communications primitives. These primitives are frame-oriented and non-blocking, whereas the
BISYNC primitives are character-oriented and blocking. The new primitives are fully described in
the attached manual entry for vpmc(1 C). An overview of these primitives follows.

• UNIX is a trademark of AT&T Bell laboratories

Plexus Release 2.0 of VPM 3

The VPM interpreter maintains a set of queues for transmit buffers. When a transmit buffer is
passed to the ICP by the UNIX driver, the buffer is appended to the unopened-transmit-buffer
queue. The protocol script in the ICP obtains a transmit buffer from the unopened-transmit­
buffer queue by means of the getxfrm primitive; the buffer is then said to be open. In order to
get (open) a transmit buffer, the script must provide a transmit-sequence number. This sequence
number must be distinct from the sequence number currently assigned to every other currently­
open transmit buffer. This sequence number is used to identify the buffer for subsequent calls
to the xmtfrm and rtnxfrm primitives. The xmtfrm primitive initiates transmission of the specified
buffer, using the control information specified by a previous setetl primitive. Transmission
proceeds asynchronously. The script can test for completion of an output transfer by means of
the xmtbusy primitive. Open transmit buffers can be transmitted any number of times. When the
script decides that a buffer has successfully been received at the destination, it notifies the
interpreter by means of the rtnxfrm primitive. This causes the buffer to be placed on the
transmit-buffer-return queue; the buffer is then no longer considered to be open and the
sequence number can be reused. The driver is notified as soon as possible that the buffer has
been closed. The buffer is then removed from the transmit-buffer-return queue.

When a receive buffer is passed to the ICP by the driver, the buffer is placed on the empty­
receive-buffer queue. When the first byte of a new frame arrives, an empty receive buffer is
obtained from the empty-receive-buffer queue and the incoming characters are placed into the
buffer as they arrive. An incoming frame will be discarded if the frame is too short (less than four
bytes including CRC), if the frame is too long to fit in the receive buffer, or if the CRC is
incorrect. If a frame is received successfully, the buffer is placed on the completed-receive frame
queue, otherwise the buffer is returned to the empty-receive-buffer queue. When the script
executes a revfrm primitive, the buffer at the head of the completed-receive-frame queue is
removed from that queue and becomes the current receive buffer. If the script subsequently
executes a rtnrfrm primitive before executing another revfrm primitive, the current receive buffer
is placed on the receive-buffer-return queue. If the script executes a revfrm primitive before
executing a rtnrfrm primitive, the current receive buffer, if any, is returned to the empty-receive­
frame queue. Buffers on the receive-buffer-return queue are returned to the driver at the first
opportunity. If the empty-receive-buffer queue is empty when the first byte of a new frame is
rceived, the first five bytes of the frame are retained in a staging area and the remainder of the
frame is discarded. This allows a protocol script to receive a control frame (up to seven bytes
including CRC) when no data buffer is available. When the next revfrm primitive is executed, the
script will receive the information in the staging area along with an indication that the remainder
of the frame has been discarded. If another frame arrives while the staging area is thus
occupied, the new frame is discarded entirely.

A count is kept of the number of frames discarded for each reason. These counters may be read
and reset from the host computer.

The VPM Split Driver

Since the VPM interpreter and a protocol script generally use most of the memory of the ICP
any higher levels of protocol that are required must be executed by the host CPU. The purpose
of the VPM split driver is to provide a framework in which higher-level protocols can be
implemented conveniently using low-level routines in the VPM driver to communicate with the
interpreter in the ICP.

A set of functions has been written that provides a general-purpose interface to the link-level
protocol being executed by the interpreter in the ICP. Their capabilities include a means to
queue transmit and empty receive buffers for use by the protocol script in the ICP, to start and
stop the script, and to send commands to and receive reports from the script. A means of
getting a copy of and resetting the VPM interpreter's error counters is also provided. These
functions will be referred to as interface functions or collectively as the interface module.
Appendix I contains a description of each of these routines.

4 Plexus Release 2.0 of VPM

To implement higher levels of a protocol as a UNIX device driver, a set of routines must be
written to implement the standard UNIX system calls: open, close, read, write, and ioctl as well
as the required protocol. These routines will be referred to as protocol functions or collectively as
a protocol module. The standard VPM driver does not implement a higher-level protocol but
instead provides a transparent user interface that can be used by applications that supply their
own higher levels of protocol. This driver can be used as an example for those interested in
writing a different protocol module. Appendix 2 contains a description of these routines.

At lease two other protocol modules have been written thus far. They are the Synchronous
Terminal Interface [4, st(4)], and the BANCS THP Interface.

Release 2.0 of VPM allows up to four different VPM protocol modules to be executing
simultaneously. One ICP and one interface-module minor device* is required for each protocol
being executed. Any number of protocol modules may be implemented, but no more than four
can be in use at anyone time since no more than four ICPs are supported. In general, each
protocol module can have up to 256 minor devices. The VPM Release· 2.0 protocol module,
however, can have at most 16 minor devices; this restriction is due to the fact that the minor
device number of the VPM protocol module is used not only to specify the VPM minor device but
also to specify the interface-module minor device and the ICP minor device. The low-order four
bits of the protocol-module minor devie number determine the protocol-module minor device; the
next two bits determine the interface-module minor device; the next two bits determine the ICP
minor device.

Transmit buffers and receive buffers are passed between the VPM interpreter, the interface
module, and the protocol module by means of pOinters to data structures known as buffer
descriptors. The buffer-descriptor structure is defined as follows:

~~{ ~
short c_ct; /* Buffer size *1 J
short d_adres; /* Low-order 16 bits of buffer address *1
char d_hbits; /* High-order 2 bits of buffer address *1
char d_sta; /* Protocol-dependent *1
char d_type; /* Protocol-dependent *1
char d_dev; 1* Protocol-dependent *1
struct buf *d_buf; /* Pointer to system buffer descriptor *1
int d_bos; /* Index of next byte in buffer *1
int d_vpmtdev; /* Minor device number *1

}

For empty receive buffers, c_ct must be equal to the buffer size in bytes; for transmit buffers,
c_ct must be equal to the number of bytes to be transmitted. When a receive buffer is returned
to the protocol module, c_ct is equal to the number of data bytes in the buffer. D_adres and
d_hbits must contain an IS-bit MULTIBUS-mapped buffer address; the low-order 16 bits must be
in d_adres and the high-order two bits must be in the low-order two bits of id_hbits. D_type,
d_sta, and d_dev are protocol-dependent; when using the BISYNC interpreter these three bytes
may be read and modified by the protocol script. See the discussion of getxbuf, getrbuf, rtnxbuf,
and rtnrbuf in vpmc(1C). D_buf contains a pointer to a system buffer descripter; this is used to
return the buffer to the system buffer pool. D_bos is the index of the first byte in the buffer not
yet returned to the user. D_vpmdev is the minor device number of the protocol-module minor
device to which the buffer is allocated.

The Trace Driver

The trace driver provides a means by which a user program can receive trace information
generated by the VPM driver and the protocol script to aid in debugging new protocol modules
and protocol scripts. It may also be used to debug other drivers or system code not related to
the VPM driver. This driver can be configured to have a number of minor devices. Each minor
device provides a means by which a user program can read data generated by functions within

Plexus Release 2.0 of VPM 5

the operating system. This data is recorded by calls to trsave as described in Appendix 3. Each
call to trsave generates a unit of data known as an event record which consists of a channel
number (one byte), a count (one byte) and count bytes of data. The channel number can be
used to multiplex up to 16 data streams on each minor device.

Associated with each minor device of the trace driver is a clist queue, which is used to save
event records provided a user program has that minor device open and has enabled the channel
to which the event records were written. Channels may be enabled in any combination, using the
ioctl command VPMTRCO. See the manual entry for trace(4). While a minor device read queue
is full, event records for that minor device are discarded. Appendix 3 contains a description of
each trace-driver routine.

Minor device 0 of the trace driver is used by the VPM driver to record a variety of debugging
information generated within the VPM driver and also to record the data generated by the trace
primitive in a protocol script. Minor device 1 of the trace driver is used to record the information
generated by the snap primitive in a protocol script. The vpmtrace and vmpsnap commands are
available for reading and formatting the data passed via these two minor devices. These two
commands are described in the attached manual entry for vpmstart(IC). Appendix 4 contains a
description of the VPM driver event trace.

Miscellaneous Improvements

Two new primitives have been added to the protocol language to allow communication between
the link-level protocol script in the ICP and a higher-level protocol implemented in a user
program or a VPM protocol module. The getcmd primitive allows the script to receive a four-byte
command from a user program or a protocol module. The standard VPM protocol module allows
a user program to pass a command to the script via an ioctl system call. Other VPM protocol
modules can pass a command to the script by calling the vpmcmd routine in the VPM interface
module. The rtnrpt primitive allows the script in the ICP to send a four-byte report to a protocol
module or to a user program. The standard VPM protocol module allows a user program to
receive a script report by means of an ioctl system call. A protocol module can receive reports
from the interface module by calling the vpmrpt routine of the VPM interface module.

The trace primitive of the protocol language has been augmented to allow two arguments. The
form with one argument is still supported; if only one argument is given, the second argument is
assumed to be zero. A snap primitive has been added. This primitive causes four bytes of data
from the script followed by a four-byte time stamp to be placed on the read queue for trace
driver minor device 1.

The timeout primitive provided in Release 1.0 has been supplemented by a new time primitive
that allows a script to initialize a timer or test its current value. If the argument to timer is non­
zero, the timer is initialized with the value of the argument. The timer is decremented ten times a
second until it reaches zero. If the timer primitive is called with an argument of zero, it returns
the current value of the timer. This value is zero if the timer has expired, otherwise non-zero.

In release 1.0 of VPM, the interpreter would accept at most one transmit buffer and one receive
buffer at any given time. In Release 2.0 the interpreter will accept up to four transmit buffers
and four receive buffers at a time. This applies to the bit-oriented (HOLC) interpreter only.

Appendix 5 contains detailed instructions for adding VPM Release 2.0 to a Plexus Sys3 UNIX
3.2 system. Appendix 6 decribes a number of test programs and procedures that may be used
to check the VPM hardware and software and to gain familiarity with the system.

6 Plexus Release 2.0 of VPM

Appendix 1

The VPM Interface Module

The VPM interface functions provide a general-purpose interface between a higher-level protocol
implemented in a VPM protocol module and the link-level protocol script executed by the VPM
interpreter in the ICP. The ICP driver is used by the interface functions to pass commands to
and receive reports from the VPM interpreter. When reports are received by the interface
module that must be passed on to the protocol module, the protocol module's receive-interrupt
routine (vpmtrint in the case of the standard VPM protocol module) is called.

This appendix describes each interface function. Dev is an argument to many of the interface
functions and has the same meaning for all but two of them; the low-order four bits of the
argument are not used by the interface functions; the next two bits determine the interface
module minor device number; the next two bits determine the ICP minor device. Although dev is
declared as an int, only the low-order eight bits are meaningful at this time. In calls to the
vpmtrace and vpmsnap routines, dev need not be a minor device number since it is just saved
as part of the event record. The definition of dev will not be repeated for each function.

vpmcmd (dev, cmd)
int dey;
char *cmd:

This function passes a command to the script. Cmd is the address of a four-byte array. The four
bytes are passed to the VPM interpreter, which saves them until the protocol script executes a
getcmd primitive. Only the most recent four bytes passed by a vpmcmd call are saved by the
VPM interpreter.

struct vpmbd *vpmdeq (clp)
struct clist *clp:

This function removes the buffer-descriptor pOinter at the head of the queue pointed to by clp
and returns it to the caller. If the queue is empty, a null pointer is returned.

vpmemptq (dev, bdp)
int dey;
struct vpmdb *bdp;

This function is used to pass an empty receive buffer for use by the interpreter in the ICP. 8dp
is a pOinter to a buffer descriptor or null. If bdp is not a null pointer, the buffer decriptor is
appended to the empty-receive-buffer queue for the interface module specified by dev. If the
VPM interpreter currently has room for another empty receive buffer, the buffer at the head of
the queue is removed and passed to the ICP. The sum of the number of buffers on the empty­
receive buffer queue and the number of receive buffers the VPM interpreter has in its queues is
returned to the caller. If bdp is a null pointer, the above sum is returned and nothing else is
done.

vpmenq (bdp, clp)
struct vpmbd*bdp;
struct clist *clp;

If bdp is a null pOinter, the number of buffer-descriptor pOinters on the clist queue pointed to by
clp is returned. If bdp is a not a null pOinter, the buffer descriptor pOinted to by bdp is
appended to the clist queue pointed to by clp and the number of pOinters currently on that
queue is passed as the return value.

char *vpmerrs (dev, n)
int dey, n;

This function is used to read and reset error counters in the VPM interpreter. The function
passes a GETECMD command to the VPM interpreter and blocks until the interpreter responds;

Plexus Release 2.0 of VPM 7

this command causes the interpreter to copy its error counters to an array in the interface
module and send a completion report to the driver. After the copy operation is completed, a
pointer to the error-count array is passed to the caller as the return value. The second argument
is not currently used.

char *ypmrpt(dey)
int dey;

This function is used to receive a script report from the ICP. When the protocol script executes a
rtnrpt primitive, four bytes of data are passed to the interface module. If a rtnrpt has been
executed by the protocol script since the last call to vpmrpt, a pointer to the four bytes passed
by the most recent rtnrpt primitive is returned; otherwise zero is returned.

ypmsaye (type, dey, word1, word2)
char type, dey;
short word1, word2;

This function creates an event record with the following structure:

struct {
short c_sequn;
char c_type;
char c_dev;
short c_word1;
short c_word2;

/* Sequence number */
/* Argument type */
j* Argument dev * /

/* Argument word1 */
i* Argument word2 */

This event record is passed to the trace driver using trsave.

ypmsnap (type, dey, word1, word2)
char type, dey;
short word 1 , word2;

This function is similar to vpmsave. The only difference is that a time stamp (long s_lbolt) is
added to the event record after word2. A protocol script may generate a time-stamped event
record by executing the snap primitive.

ypmstart (deY, type,rint)
int dey, type;
int (*rint)();

This function must be called on the first open of the protocol-module minor device associated
with the interface-module minor device and ICP identified by dev. Type is a number that
identifies the program running in the ICP and must agree with the value specified when the ICP
load module was loaded into the ICP. For VPM interpreters, type is conventionally 6. Rint is the
name of a protocol-module routine to be called by the interface module when it needs to return a
transmit buffer, a receive buffer, a script report, or an error-termination code. See the description
of vpmtrint in appendix 2 for an example of such a routine. Vpmstart sends a RUN command to
the VPM interpreter which causes it to begin execution of the protocol script. If the interface
module identified by dev is not configured, ENXIO is returned. If the module is already running,
i.e., vpmstart has been called and fpmstop has not been called, or if the ICP is not running or
was loaded using a different magic number, EACCESS is returned. A return value of zero
indicates a normal completion.

ypmstop (dey)
int dey;

This routine is called to halt the execution of the protocol script by the interpreter. The routine
waits until the last transmit buffer has been returned by the protocol script, or until fiye seconds
have elapsed, and then sends a HALT command to the VPM interpreter, which causes the

8 Plexus Release 2.0 of VPM

interpreter to stop executing the protocol script. When the interpreter acknowledges the HALT
command, or after five seconds, any transmit or receive buffers still enqueued on the interface
module's transmit-and-empty-buffer queues are returned to the protocol module. This does not
include buffers contained in the interpreter's queues. Generally, when the protocol script is
halted normally, the interpreter will have one or more empty receive buffers. If the interpreter or
protocol script terminates in error, some transmit buffers may also remain unaccounted for. The
upshot of this is that a protocol module must keep a record of all buffers in use for each
particular minor device, so that these buffers can be returned to the pool of available buffers
when that minor device is closed.

1 ,-

Plexus Release 2.0 of VPM 9

Appendix 2

The VPM Protocol Module

This appendix gives a detailed description of the functions that make up the standard VPM
protocol module. The description may be useful as a guide in writing other VPM protocol
modules. The dev argument to the following routines is declared as an int; however, only the
low-order eight bits are meaningful at this time. The low-order four bits are used to determine the
minor device of the protocol module; the next two bits determine the minor device of the
interface module; the next two bits determine the ICP minor device.

ypmopen (dey, flag)
int dey, flag;

This function opens the protocol-module minor device specified by the low-order four bits of dev.
Flag contains the option bits specified on the open system call. Exclusive or non-exclusive
opens are permitted. If the driver is opened for both reading-and-writing, the open is exclusive,
Le., no further opens are permitted. If the driver is opened for both reading only or for writing
only, the open is non-exclusive and subsequent opens for reading only or writing only are
permitted. If this device is not open when this function is called, it obtains a number of non­
addressable system buffers to be used as receive buffers and passes them to the VPM
interpreter using the interface routine vpmemptq. Vpmopen also calls the interface routine
vpmstart if the minor device was not already open.

ypmclose (dey)
int dey;

This function closes the minor device specified by the low-order four bits of dev. It calls the
interface routine vpmstop, flushes the receive queue for the specified minor device, releases its
buffers, and reinitializes its data structure.

ypmwrite (dey)
int dey;

This function implements the write system call. If the transmit queue is not full, the function
obtains a non-addressable system buffer, copies up to 512 bytes of the user's write data into it,
and enqueues the buffer on the level 2 transmit queue using the interface function vpmxmtq.
These steps are repeated until all of the user's write data has been copied. If the transmit
queue is full when this function is called or if it becomes full while the function is executing, the
calling process is blocked until there is room in the queue for more transmit buffers.

ypmread (dey)
int dey;

This function implements the read system call. When it is called, the calling process is blocked
until the receive queue is non-empty. As data is received by the VPM interpreter, it is placed into
an empty receive buffer. When the protocol script decides that the data contained in a particular
buffer is valid, it executes a rtnbuf (BISNYC) or rtnfrm (HOLC) primitive, which causes the buffer
descriptor pOinter to be passed to the interface module's interrupt routine. The interface module
then passes the buffer descriptor pOinter to the protocol module by calling the protocol module's
interrupt routine. The protocol module enqueues the buffer descriptor pOinter on the receive
queue and wakes up (unblocks) the reader(s). The number of bytes requested, or the data in
one buffer, whichever is less, is copied to the user process; the number of bytes copied is
passed as the return value. Any bytes remaining in a buffer are used to satisfy subsequent read
requests.

10 Plexus Release 2.0 of VPM

vpmioctl (dev, cmd, arg, mode)
int dey, cmd, modej
char *argj

This function implements the ioetl system call. Cmd determines the function to be performed as
follows:

VPMCMO - Pass a command to the protocol script. The first four bytes of the array
pOinted to by arg are passed to the VPM interpreter which saves them and passes
them to the protocol script the next time it executes a getemd primitive.

VPMERRS - Get and reset the VPM interpreter's error counters. The eight-byte array
containing the VPM interpreter's error counters is copied to the user array pointed to by
argo The interpreter's copy of the error counters is then set to zero.

VPMRPT - Get a report from the protocol script. If the protocol script has executed a
rtnrpt primitive since the last time this ioet/ command was issued, the script report (four
bytes) is copied to the user array pointed to by arg and one is passed as the return
value; otherwise, zero is passed as the returned value.

The inode argument is not used. The values for VPMCMO, VPMERRS, and VPMRPT are
defined in file lusrlineludelsys/vpm.h.

vpmtrint (dev, code, bdp)
int dey, codej
struct vpmbd *bdpj

The address of this function is passed to the protocol module using the vpmstart function
described in Appendix 1. This routine is called from the interface module to return transmit
buffers, receive buffers, script reports, or error termination codes. It is usually called at interrupt
priority and therfore must not sleep or do unnecessary work. Code identifies the purpose of the
call and determines the meaning of bdp as follows:

RRTNXBUF - Bdp is a pOinter to the buffer descriptor for a transmit buffer. This call is
made when the protocol script executes a rtnxbuf (BISYNC) or a rtnxfrm (HOLC).

RRTNRBUF - Bdp is a pointer to the buffer descriptor for a receive buffer. This call is
made when the protocol script executes a rtnbuf (BISYNC) or a rtnfrm (HOLC).

RRTNEBUF - Bdt is a pointer to the buffer descriptor for an empty receive buffer. This
call is used to return empty receive buffers when the interface module is stopped by
calling vpmstop.

ERRTERM - Bdp is the error-termination code passed to the interface module by the
VPM interpreter when it halts the protocol script because of an error condition. The
meaning of these error codes is given in the attached manual entry for vmp(4).

The values for RRTNXBUF, RRTNRBUF, RRTNEBUF, and ERRITERM are defined in the
lusrlinelude/syslvpm.h.

Plexus Release 2.0 ot VPM 11

Appendix 3

The Trace Driver

The trace driver provides a means by which a user program can receive trace information
generated by the VPM driver, a protocol script, or some other driver. See the attached manual
entry for trace(4).

A description of each routine of the trace driver follows.

tropen (dey)
int dey;

This function opens the minor device specified by dev exclusively.

trclose (dey)
int dey;

This function closes the minor device specified by dev. It discards any data on the read queue
and initializes the data structure associated with the minor device.

trread (dey)
int dey;

This function implements the read system call; it sleeps until at least until at least one event
record is available on the read queue associated with dev. It then copies records to the user
until the user's read count is less than the number of bytes in the next event record or until the
read queue is empty. The number of bytes copied is passed as the return value.

trioctl (dey, cmd, arg, mode)
int dey, cmd, arg, mode;

This function implements the ioct/ system call. Cmd indicates the operation to be performed. The
driver has one command:

VPMTRO - Enable a trace channel. In order for data to be saved on the read queue for
minor device dev, the device must be open and the channel to which it is written must
be enabled. This command enables channel arg, which must be in the range 0 to 15.
Any combination of channels may be enabled by repeatedly calling this function with
different values of argo All channels are disabled when the minor device is closed.

trsaye (dey, chno, buf, ct)
char dey, chno, *buf, ct;

If minor device dev of the trace driver is open and channel chno of that minor device is currently
enabled then chno and ct, followed by ct bytes starting at address but, are copied onto the read
queue associated with dev, provided the read queue for that device has room for the complete
event record. If there is not room for the complete event record, the record is discarded.

12 Plexus Release 2.0 of VPM

Appendix 4

The VPM Event Trace

Calls to the interface routine vpmsave have been placed strategically throughout the standard
VPM protocol module (vpmt.c) and the VPM interface module (vpmb.c) to provide an event
trace for debugging new protocol modules and/or protocol scripts. A protocol script may
generate an event record by executing a trace primitive. All such event records are discarded
unless some user program has opened minor device a of the trace driver and enabled channel a
of that minor device. The command vpmtrace(1 C) opens this device and enables channel a,
then reads event records and prints them on the standard output as they are received. Each
kind of event record that is generated by the VPM driver will be described by giving the vpmsave
function call as it appears in vpmt.c or vpmb.c, followed by an example of the line printed by
vpmtrace as a result of this call. Following this, the context of the vpmsave call and the
definition of the parameters passed will be given. The definition of a parameter that appears in
more than one call will not be repeated. The first five calls to vpmsave occur in the source file
vpmt.c; the remaining calls occur in vpmb.c.

vpmsave('p', dev, ec, 0)

243 P 100 15 a
Called if vpmstart returns an error code. The first field of the printed record contains a sequence
number assigned by vpmsave. The remaining four fields contain the four remaining arguments
to vpmsave in the same order as they appear in the call to vpmsave. The first argument to
vpmsave, in this case a 'pi, identifies the record type. Dev is the minor device number as
defined earlier; ec is the value returned by vpmstart.

ypmsaye('O', dey, yp->YCstate, 0)

2440100 I a
Called just before the normal return point of vpmopen. The variable, vp->vCstate, contains the
state bits for the protocol module. Refer to the source file, vpmt.c, for the definitions of the state
bits.

ypmsaye ('c', dey, yp->YCstate, 0)

245 ciaO 13 a

Called from vpmclose just before the state bits are initialized.

ypmsaye ('w', dey, ct, dp)

246 w 100 1000

Called just before putting a buffer-descriptor pointer on the transmit queue in vpmwrite. Ct is the
number of bytes in the buffer. When executing on a PDP11, dp is the pointer to the buffer
descriptor; dp is not meaningful when executing on a VAX because pointers are four bytes on a
VAX and the argument corresponding to dp is declared as a short.

ypmsaye ('r', dey, ent, dp->d_bos)

247 r 100 500 500

Called from vpmread just after cnt bytes have been moved to the user's read buffer. The
parameter dp->d_bos is the number of bytes remaining in the current receive buffer.

Plexus Release 2.0 of VPM 13

ypmsaye ('s', dey, vp->ybstate, 0)

248 s 100 401 0

Called just before the normal return from vpmstart. The parameter vp->vb_state contains the
state bits for the interface module. For the definitions of the state bits, refer to the source file
vpmb.c.

ypmsaye ('t', dey, yp->yb_state, yp->yb_xbkmc)

249 t 100 0 0

Called just before the normal return from vpmstop. The parameter vp->vb_xbkmc is the
number of transmit buffers currently held by the VPM interpreter. It can be non-zero if the
protocol script or interpreter terminates in error.

ypmsaye ('X', dey, yp->yb_xbkmc, 0)

250 X 100 10

Called from vpmbrint. the interface module's receive-interrupt routine, each time the VPM
interpreter returns a transmit buffer.

ypmsaye ('R', dey, vp->vb_vrkmc, 0)

251 R 100 10

Called from vpmbrint each time the VPM interpreter returns a receive buffer. The parameter vp­
>vbJbkmc contains the number of receive buffers currently held by the interpreter.

ypmsaye ('T', dey, sel4, sel6)

252 T 100 370 21 34

Called from vpmbrint when a trace report is received from the interpreter. This occurs when the
protocol script executes a trace primitive. Sel4 contains the value of the script location counter
(plus two) at the time the trace primitive was executed. By referring to the assembly-language
listing of the protocol script generated by the -I option of vpmc, the point in the protocol script at
which the trace was executed can be determined. The value of the location counter is two
greater than the location of the trace instruction as shown in the assembley-Ianguage listing.
Se/6 contains the byte or bytes passed by the trace primitive. Vpmtrace prints these two bytes
in separate fields.

ypmsaye ('E', dey, sel4, sel6)

253 E 24421

Called from vpmbrint when an error-termination report is received from the interpreter. Sel4
contains the script location counter at the time execution of the script was terminated. Sel6
contains the termination code. For an explanation of these codes see the attached manual entry
for vpm(4).

ypmsaye (,P', dey, sel4, sel6)

254 P 10021051055

Called from vpmbrint when a script report is received from the interpreter. This occurs when the
protocol script executes a rtnrpt primitive. Sel4 and sel6 contain the four bytes transferred by
this primitive.

ypmsaye ('F', dey, sel4, sel6)

255 F 100 3 0

14 Plexus Release 2.0 of VPM

Called form vpmbrint when an error-count report is received from the interpreter. 8el4 and sel6
do not contain any meaningful data for this event type.

vpmsave ('S', dey, sel4, sel6)

256 S 100 401 0

Called from vpmbrint when a start-up report is received from the interpreter. The low-order eight
bits of se/4 contain a parameter defining the maximum number of transmit buffers the interpreter
can accept; the high-order eight bits contain a parameter defining the maximum number of
receive buffers. 8el6 contains the options supported by the interpreter.

vpmsave ('C', dey, vp-vb_state, bp->xbkmc)

257 C 100 I 0

Called from vpmclean just before the data structure associated with dev is initialized.

Plexus Release 2.0 of VPM 15

Appendix 5

Adding VPM to a UNIX Release 3.0 System

The UNIX Releae 3.0 distribution tapes contain VPM Release 2.0. This includes the compiler.
drivers, interpreters. utility commands. protocol scripts. and test programs.

The makefile vpm.mk found in lusrlsrclcmdlvpm may b used to make and install all VPM
commands.

To add the VPM and trace drivers to an UNIX 3.0 system. do the following:

1. Make sure that the following two lines appear in the file letc/master:

vpm 0 37
trace 0 35

206 vpm
206 tr

o
o

o
o

15
16

16
4

4
I

2. Add the following Iii'" to the file lusrlsrc/uts/*/cf/cfigpa (or its equivalent):

vpm 0 0 o 0

where n is the number of minor devices required. The * represents either pdp11 or vax.

3. To the same file add the following line for each trace minor device:

trace 0 0 o 0

where n is the number of minor devices required. Minor device 0 is used by the vpmtrace
command and minor device 1 is used by vpmsnap.

4. If ICPs are being added to the system. add the following line to the same file for each ICP:

icp vector address priority

where vector is the interrupt vector location (octal). address is the device address (octal).
and priority is the bus request level (normally 5).

A special file must be created in dev for each ICP. VPM. and trace device. To make these
special files. use mknod(1 M) as follows:

For ICPs:

letclmknod Idevlic? c X ?
where X is the major device number of the ICP driver as printed by config -t (see the manual
entry for config(1M)[4] and? is the minor device number. which must be in the range 0 to 3.

For VPMs:

letc/mknod devlvpm c Y Z

where vpm is a unique device name; Y is the major device number whose binary representation
is defined as follows: the low-order four bits specify one of up to 16 minor devices of the standard
VPM protocol module; the next two bits specify one of up to four VPM interface-module minor
devices; the next two bits specify the minor device number of the ICP to be used for this speCial
file.

For trace devices:

16

/etc/mknod /devltrace c Y 0
/etc/mknod /dev/snap c Y I

where Y is the major device number of the trace driver.

Plexus Release 2.0 of VPM

Plexus Release 2.0 of VPM 17

Appendix 6

Testing VPM

During the course of developing and testing VPM, a number of programs and test procedures
have evolved that may prove useful to those adding VPM to a system or using VPM for the first
time. These programs and procedures will help to check the correct installation and operation of
the hardware and software as well as help a new user of VPM to gain familiarity with the
package. These programs may be found in lusrlsrclcmd/vpmldemo and
lusrlsrclcmdlvpmlscri pts.

Tset

Tset is a C program that opens a particular vpm device (/dev/vpmO) and writes a string of
characters to it. It then reads the same device and compares the string of characters received to
the string sent. If the two strings match, the program prints the string followed by the message
"It worked!!!!!!" This program will work only when a loopback script such as loop.r has been
loaded into the ICP. To run this test:

1. Compile tset.c:

cc -0 tset tset. c

2. Compile loop.r:

vpmc -0 loop.o loop.r

3. Load loop.o into the ICP:

letc/vpmstart Idev/icp? 6 loop.o

4. If testing the VPM event-tracing capability, execute vpmtrace:

letc/vpmtrace > t&

5. Execute tset:

tset

6. Print t:

cat t

Sr

Sr opens IdevlvpmO and forks to create a send process and a receive process. The send
process reads up to 512 bytes from its standard input and writes them to IdevlvpmO. The
receive process reads IdevlvpmO and writes the received data to its standard output. This
program may be used with the protocol script loop.r. The procedure for running sr is similar to
that used with tset. Steps 2, 3, and 4 need to be repeated if the interpreter and vpmtrace are
still running.

To execute sr:

sr < infile> outfile

The send process exits after it has read and transmitted the last data block of the file. The
receive process goes into a loop that sets an alarm and reads IdevlvpmO. If the alarm goes off
before the read completes, the process exits.

Tcmd

Tcmd.c when used with the protocol script tcmd.r tests several new features of Release 2.0 of
VPM: communications between a user program or a protocol module and the protocol script,

18 Plexus Release 2.0 of VPM

reading and resetting the interpreter's error counters, and the time-stamped tracing capability. To ~
execute tcmd, follow the procedures given for the first test using tcmd.c and tcmd.r in place of
tset.c and loop.r. Execute vpmsnap instead of or in addition to vpmtrace.

Lapb.r

Lapb.r is the protocol script for BX.2S Level 2. To install this script in a particular ICP, refer to
the Plexus Sys3 3.2 Release Notice (98-40081).

Testing a script requires two ICPs, which may be on different host computers. The ICPs must be
connected by a pair of full-duplex synchronous modems or by a full-duplex synchronous null
modem-. Sr should be executed simultaneously on both machines to read and write the VPM
device associated with each ICP. If both ICPs are on the same host machine, it will be
necessary to edit and compile a copy of sr.c so that it opens Idevlvpm 1 instead of Idev/vpmO.
The original and modified versions of sr can then be executed simultaneously to exercise the
two ICPs.

To obtain maximum efficiency from a script, it may be necessary to modify the values of some of
the parameters in the canst file. The appropriate values for these parameters depend on the
link speed and maximum frame size.

Lapbt.r

This script is identical to lapb.r except for some additional trace statements. It may be tested in
the same manner as lapb.r. Vpmtrace may be used to display the trace information.

Itr.r

Itu is a simplified version of lapb.r. Unlike lapb.r and lapbt.r, this script can be exercised in a
loop-back mode. Compile itr.r and load the resulting a.out into the ICP using the procedure
described above for lapb.r, substituting itr for lapb. A loop-back test can then be run using tset
or sr.

• A suitable null modem is the Avanti 300. which is manufactured by Avanti Communications CorPoration. NewPort.
AI.

r

Setting Up UNIX

R. C. Haight
T. J. Kowalski
M. J. Petrella

L. A. Wehr

Bell Laboratories
. Murray Hill, New Jersey 07974

1. INTRODUCTION

1.1 Prerequisites

Before attempting to generate. a UNIXt system, you should understand that a considerable
knowledge of the related documentation is required and assumed. In particular, you should be
very familiar with the following documents:

• The UNIX Time-Sharing System
• UNIX User's Manual
• C Reference Manual
• Administrative Advice for UNIX

A complete set of pertinent documentation is contained in Documents for UNIX. Throughout this
document, each reference of the form name(N), where N is a Arabic number, refers to entry
name in Section N of the UNIX User's Manual.

You must have a basic understanding of the operation of the hardware. This includes the
console panel, the tape drives, and the disk drives, all of which are assumed to have standard
UNIX addresses and interrupt vectors. It is also assumed that the hardware works and has been
completely installed. All appropriate DEC diagnostics and the Equipment Test Package should
have been run to test the configuration, and you must have a detailed description of the
hardware, including device addresses, interrupt vectors, and bus levels. This information is
necessary to generate the UNIX system.

See Attachment 1 for a list of supported CPUs and devices.

1.2 Procedure

UNIX is distributed on a single, multi-file magnetic tape, recorded in 9-track format at 800 bpi.
Distribution tapes will be marked either "PDP-11" or "VAX"; be sure you have the correct tape
for your machine.

The initial load program will copy a file system from tape (VAX: TE1S; PDP-11: either a TU10 or a
TU1S) to disk (VAX: APOS; PDP-11: either an AP03, an AK05, an AL01, or an APOS). In this
document, we consider AP04 and AP05 drives to be equivalent to APOS drives; any differences
will be noted explicitly. Once the root file system has been successfully loaded to disk, UNIX
may be booted and the available utility programs may then be used to complete the installation.

The remaining files on the tape contain source text and supplemental commands. These files
contain essential information to generate a new system that will match your particular hardware
and software envi ronment.

In order for any of the update procedures to work correctly, you must be running UNIXITS or
PWB/UNIX Edition 2.0. Older versions of UNIX cannot be correctly updated with a UNIX system.
The cpio(1) program will not replace any file if its replacement has a modification time that is

t UNIX Is a Trademark of AT&T Bell Laboratories.

2 Setting Up UNIX

less than (Le., earlier than) the modification time of the original file. This can be due to local
modifications. Furthermore, certain administrative files (e.g., letclpasswd, lusrlliblcrontab) are
sent with a modification time of January 1, 1970 to ensure that they do not replace their
counterparts during updates. Any file not copied will cause cpio(1) to print a message to that
effect. These messages should always be investigated to ensure that any files not copied were
of that type. However, note that, depending on respective modification times, a locally-modified
file may get updated, thus destroying the local modifications.

There are several difficulties that can arise when installing a UNIX system. One of the most
common problems is running out of disk space when performing an update. Should this occur,
the original contents of the file system should be restored from a backup copy and the contents
of the update tape should be read into a spare file system using the cpio(1) program.
Unwanted material can then be removed and the original file system can be updated from this
new file system using the -p option of cpio(1). Modification times of files should also be
preserved using the -m option of cpio(1).

This document is not strictly linear. Read it thoroughly, from start to finish, and then read it
again. Also, remove the write-protect ring, if present, from the distribution tape to guard against
accidental erasure.

2. LOAD PROCEDURES

2.1 Distribution Tape Format

The eight files are: a loader, a physical copy of the root file system, the cpio(1) program, a
cpio(1) structured copy of the root file system, and three files (cpio) that make up lusr. Root
refers to the directory "/", which is the root of all the directory trees. The format of this tape is
as follows:

record 0:
record 1:
remainder of file 1:

end-of-flle

file 2:

end-of -'file

file 3:
end-of-file .

file 4:

end-of-file
file 5:

end-of -file
file 6:

end-of-file
file 7:

end-of-file
file 8:

end-of-file

Tape boot loader-512-bytes;
Tape boot loader-512-bytes;
Initial load program-several 512-byte records;

root file system (physical)-several 5,120-byte records (blocking factor
10);

cpio program (latest version)-several 512-byte records;

root file system (structured in cpio format)-several 5,120-byte records
(to be used only for updating an earlier UNIX);

lusr file system except src and man (cpio).

lusrlsrc part 1.

/usr/src part 2.

lusrlman.

The root (/) file system contains the following directories:

bck:
bin:

dev:

Directory used to mount a backup file system for file restoring.
Public commands; most of what is described in Section 1 of the UNIX User's
Manual.
Special files, all the devices on the system.

Setting Up UNIX

etc:
lib:
mnt:
lost+found:
stand:
tmp:

Administrative programs and tables.
Public libraries, parts of the assembler, C compiler.
Directory used to mount a file system.
Directory used by fsck(1 M) for disconnected files.
Stand-alone programs.
Directory used for temporary files; should be cleaned at reboot.

3

usr: Directory used to mount the lusr file system; user directories often kept here
also.

2.2 Initial Load of root

Mount the distribution tape on drive 0 and position it at the load point.

2.2. 1 PDP-11

Bootstrap the tape by reading either record 0 or record 1 into memory starting at address 0 and
start execution at address O. This may be accomplished by using a standard DEC ROM
bootstrap loader, a special ROM, or some manual procedure; see romboot(8), tapeboot(8), and
70boot(8).

2.2.2 VAX

See "Installation Boot Procedures" under vaxops(8). This UNIX User's Manual entry describes
initial tape booting, and modification of the console floppy disk to simplify UNIX administration.

2.3 Common to PDP-11 and VAX

The tape boot loader will then type "UNIX tape boot loader" on the console terminal and read in
and execute the initial load program. The program will then type detailed instructions about the
operation of the program on the console terminal. First, it will ask what type of CPU you have.
Second, the program will ask what type of disk drive you have and which drive you plan to use
for the copy. The disk controller used must be at the standard DEC address indicated by the
program. However, other disk controllers on your system may be at non-standard addresses.
You must mount a formatted, ECC flag-free pack on the drive you have indicated. If necessary,
use the appropriate DEC diagnostic program to format the pack. Note that the pack will be
written on. Third, the program will ask what type of tape drive you have and which drive
contains the tape. Normally, this will be drive 0, but the program will work with other drives.
Note that the tape is currently positioned correctly after the end-of-file between the initial load
program and the root file system. When everything is ready, the program will copy the file
system from the tape to disk and give instructions for booting UNIX. After the copy is complete
and you have booted the basic version of UNIX, check (using fsck(1 M» the root file system and
browse through it.

2.3.1 PDP-11170 Only

The file Istandlmmtest is a stand-alone memory mapping diagnostiC program for the PDP-11/70.
It should be booted and run (20 minutes) if you are not absolutely sure that DEC FCO (field
change order) M8140-R002 has been applied to your PDP-11/70 CPU.

2.4 Update of root

It is very important that the system be running in single-user mode during the update phase. To
update an already existing root file system, files three and four will be used. It is necessary to
first make a copy of your root file system using volcopy(1 M) and then update this copy. The
copy should be made on a separate disk pack using the same section number as your root file
system (always section 0). Also, after the update is completed, check if any of your local
administrative files in the directory letc need modification. Most of these are mentioned in
Section 4 below.

4 Setting Up UNIX

Mount the tape on drive 0 and position it at the load point. We assume that disk drive 1 is
available for making the copy, and that the root file system is on IdevlrpO. This shell procedure
will be different for RK05 and RL01 disk drives. The following procedure will first make a copy of
the root file system, and then update this copy. Note that Idevlmt4 refers to tape drive 0 but
has the side effect of spacing forward to the next end-of-file (no rewind option). The B option of
cpio specifies that input is in 5,120-byte records:

volcopy root Idev/rrpO pkname1 Idev/rrp10 pkname2
mount Idev/rp10 Ibck
The 2 echoes will move the tape to file 3
echo </dev/mt4
echo </dev/mt4
cp Idev/mt4 Ibck/bin/cpio
chmod 755 Ibck/bin/cpio
chown bin Ibck/bin/cpio
cd Ibck
Ibck/bin/cpio -idmB </dev/rmtO
cd I
umount Idev/rp10

Pkname1 and pkname2 are the volume names of the source and destination disk packs,
respectively. If the new copy is satisfactory, shut down and halt the system, change disk packs,
and reboot the system using the new root.

2.5 Files 5, 6, 7, and 8 (/usr) Format

File 5 contains the lusr file system in cpio(1) format (5,120-byte records). The lusr file system
contains commands and files that must be available (mounted) when the system is in mUlti-user
mode. The tape contains the following directories:

adm: Miscellaneous administrative command and data files, including the

bin:
dict:
games:
include:
lib:

mail:
man:
lost+found:
news:
pub:
spool:
src:
tmp:

connect-time accounting filewtmp and the process accounting file pacct.
Public commands; an overflow for Ibin.
Dictionaries for word processing programs.
Various demonstration and instructional programs.
Public C language #include files.
Archive libraries, including the text processing macros; also contains data
files for various programs, such as spell(1) and cron(1M).
Mail directory.
Source for the UNIX User's Manual; see man(1).
Directory used by fsck(1 M) for disconnected files.
Place for all the various system news.
Handy public information, e.g., table of ASCII characters.
Spool directory for daemons.
Source for commands, libraries, the system, etc.
Directory for temporary files; should be cleaned at reboot.

A table of contents of this tape may be obtained by using the cpio(1) options -itB. Also, after
installation, files and directories deemed useless by the local administrator may be easily
removed. Alternately, only parts of the tape may be extracted using the pattern matching capa­
bilities of cpio(1).

2.6 Initial Load of lusr

Mount a file system (device) as lusr. The ultimate size and location of this file system on a
device is an administrative decision; initially, the following procedure will suffice:

Setting Up UNIX

The 4 echoes will move the tape to file 5
(mt4 is the no-rewind device)
echo </dev/mt4
echo </dev/mt4
echo </dev/mt4
echo </dev/mt4
cd /
mkfs /dev/rrp1 35000 7 418
The magic numbers "7 418" above refer to free-list ordering:
(rotational angle of 7 and 418 blocks/cylinder for RP04/5/6/s)
If you have RL01 drives, use mkfs /dev/rrI1 10240 13 20
If you have RK05 drives, use mkfs /dev/rrk1 4872 3 24
labelit /dev/rrp1 usr pkname
mount /dev/rp1 /usr
cd /usr
cpio -idmB </dev/rmt4 # file 5: /usr except /src and /man
cd /usr/src
cpio -idmB </dev/rmt4 # file 6: 1st part of /usr/src
cpio -idmB </dev/rmt4 # file 7: last of /usr/src
cd /usr/man
cpio -idmB </dev/rmtO # file 8: /usr/man
If you have RL01 or RK05 drives, you will have to use separate
packs for files 5-8.

Pkname is the volume name of the pack (e.g., "pO001").

5

Because lusr must be mounted when the system is in multi-user mode, the file /etc/rc must be
changed to include the command lines to mount and unmount the file systems in single-user
and multi-user mode. These lines must be inserted at the appropriate places in /etc/rc, as
indicated by comments in the prototype file. Next the file /etc/checklist should be changed to
include /devlrrp1, Idevlrrl1, or /dev/rrk1; see also fsck(1 M), labelit(1 M), mkfs(1 M), mount(1 M),
and checklist(5).

2.7 Update of lusr

It is advisable that the system be running in single-user mode during the update phase. It is
also wise to first make a copy of your /usr file system for backup purposes. Next, mount the
distribution tape on drive 0 and position it at file 5. The lusr file system must also be mounted.
The following procedure will perform the update:

cd /usr
cpio -idmB <idevirmt4
cpio -idmB <idevirmt4
cpio -idmB <idev/rmt4
cpio -idmB </dev/rmtO

3. CONFIGURATION PLANNING

3.1 UNIX Configuration

The basic UNIX operating system supplied supports only the console, a disk controller (disk
drive 0). and a tape controller (tape drive 0). The actual configuration of your system must be
described by you. All of the UNIX operating system source code and object libraries are in
/usr/src/uts. All of the configuration information is kept in the directory /usr/src/uts/./cf. There
are only two files that must be changed to reflect your system configuration, low.s and conf.c;
the program config(1 M) should be used to make these changes.

6 Setting Up UNIX

Config requires a system description file and produces the two needed files. The first part of
the system description file lists all of the hardware devices on your system. Next, various
system information is listed. A brief explanation of this information follows; for more details of
syntax and structure, see config(1 M) and the associated master(5); TABLE I lists the values and
sizes of the various parameters for the different CPUs.

TABLE I. UNIX Configuration Parameters

Item
PDP-11/34, /23

Value Size
nswap 1000 -
buffers 15-20 26t
sabufs 4-6 538
inodes 30-50 74
files 30-50 8
mounts 3-5 8
coremap 50-100 4
swapmap 50-100 4
calls 15-30 6
procs 30-50 30
texts 10-15 12
clists 10-20 28
maxup 15 -

t Plus 512 bytes outside system space.
* 127 buffers is the system maximum.

PDP-11/45, /70
Value Size

3000 -
25-60 26t
10-15 538

100-250 74
100-250 8

8-16 8
50-100 4
50-100 4
30-60 6

50-200 30
25-50 12

100-300 28
15 -

VAX-11/780
Value Size

9000 -
50-120* 560

- -
100-250 76
100-250 12

8-16 16
- -

50-100 4
30-60 12

50-200 52
25-50 16

100-300 32
25 -

• root-Specifies the device where the root file system is to be found. The device must be a
block device with read/write capability because this device will be mounted read/write as "I".
Thus, a tape can not be mounted as the root, but can be mounted as some read-only file
system. Normally, root is disk drive 0, section 0.

• pipe-Specifies where pipes are to be allocated (must be a file system-the root file system is
normally used).

• dump-Specifies the device to be used to dump memory after a system crash. Currently only
the TU10 and TU16ITE16 tape drives are supported for this purpose.

• swap-Specifies the device and blocks that will be used for swapping. Swplo is the first
block number used and nswap indicates how many blocks, starting at swplo, to use. Care
must be taken that the swap area specified does not overlap any file system. For example, if
section ° is 8,000 blocks long, the root file system could occupy the first 6,000 blocks and
swap the remaining 2,000 by specifying:

root rp06 0
swap rp06 0 6000 2000

The VAX release is set up for a root of 7,000 blocks and a swap of 9,000 blocks.
• buffers-Specifies how many system buffers to allocate. Real time response improves as

more buffers are allocated. UNIX buffers form a "data cache". Improvement in the hit rate of
this cache tends to fall as the number of buffers is increased.

• sabufs-PDP-11 only: specifies how many system addressable buffers to allocate. One
buffer is needed for every mounted file system. Certain 1/0 drivers need such buffers.

• inodes-Specifies how many inode table entries to allocate. Each entry represents a unique
open inode. When the table overflows, the warning message "Inode table overflow" will be
printed on the console. The table size should be increased if this happens regularly. The
number of entries used depends on the number of active processes, texts, and mounts.

• files-Specifies how many open-file table entries to allocate. Each entry represents an open
file. When the table overflows, the warning message "no file" will be printed on the console.
The table size should be increased if this happens regularly.

Setting Up UNIX 7

• mounts -Specifies how many mount table entries to allocate. Each entry represents a
mounted file system. The root (/) will always be the first entry. When full, the mount(2)
system call will return the error EBUSY.

• coremap-PDP-11 only: specifies how many entries to allocate to the list of free memory.
Each entry represents a contiguous group of 64-byte blocks of free memory. When the list
overflows, due to excessive fragmentation, the system will undoubtedly crash in an
unpredictable manner. The number of entries used depends on the number of processes
active, their sizes, and the amount of memory available.

• swapmap-Specifies how many entries to allocate to the list of free swap blocks. Exactly like
the coremap, except it represents free blocks in the swap area, in S12-byte units.

• calls-Specifies how many call-out table entries to allocate. Each entry represents a function
to be invoked at a later time by the clock handler. The time unit is 1/60 of a second. The
call-out table is used by the terminal handlers to provide terminal delays and by various
other I/O handlers. When the table overflows, the system will crash and print the panic
message "Timeout table overflow" on the console.

• procs-Specifies how many process table entries to allocate. Each entry represents an
active process. The scheduler is always the first entry and init(8) is always the second entry.
The number of entries depends on the number of terminal lines available and the number of
processes spawned by each user. The average number of processes per user is in the
range of 2-5. When full, the fork(2) system call will return the error EAGAIN.

• texts-Specifies how many text table entries to allocate. Each entry represents an active
read-only text segment. Such programs are created by using the -i or -n option of the loader
Id(1). When the table overflows, the warning message "out of text" is printed on the
console.

• clists-Specifies how many character list buffers to allocate. Each buffer contains up to 24
bytes. The buffers are dynamically linked together to form input and output queues for the
terminal lines and various other slow-speed devices. The average number of buffers needed
per terminal line is in the range of 5-10. When full, input characters from terminals will be
lost and not echoed.

• maxup-Specifies how many concurrent processes a user is allowed to run.
• power-Specifies whether to attempt restart after a power failure. A value 0 (default)

indicates no restart, a value of 1 attempts power-fail restart. On restart, device drivers are
called and process 1 (Le., init) is sent a hangup signal; see init(8). VAX power-fail is
provided for experimental use only in UNIX 3.0.

3.1 UNIX Generation

TO generate a new UNIX operating system, make sure that the directories under lusr/src/uts are
up-to-date. Follow the procedure below:

cd lusrlsrcluts
ed dfile
a

w
q

[information as described above]

make -f uts.mk VER=ver SYS=sys CONFIG=dfile TYPE=type NODE=uucpname

Dfile is the complete path name or the path name relative to lusr/srcluts/.lcf of the file
containing the configuration information, sys is a system name, ver is normally mmdd (month
and day). The resulting operating system executable file name is the result of concatenating
sys and ver (Le., "utsa0513"). The uucpname is for network identification. Type is the CPU
type: i is used for PDP-11 123 and /34, vax is used for VAX, and id is used for other CPUs. The
procedure will compile low.s (univec.c on the VAX) and conf.c, and load them together with the
object libraries into a file called name.

8 . Setting Up UNIX

The PDP-11 system has a relatively small address space, so that if table sizes or the number of
device types are too large, various error messages will result and the above procedure will only
create an a.out file. In particular, the maximum available data space is 49,152 bytes (57,344
bytes on the PDP-11/23 and the 134). The actual data space requested can be found by using
size(1) on a.out and adding the data, bss, and, for PDP-11/23 and 134, text segment sizes.
One then reduces the specified values for the various system entries until it all fits. The amount
of space in the bss segment used for each entry is indicated in Section 3.1 above.

When you are satisfied with the new system, you can test it by the following procedure:

cd lusrlsrcluts
cp sysver 1
cdl
rm lunix
In Isysver lunix
sync

#: sysver as above

Then halt the processor and reboot the system. Note that this procedure results in two names
for the operating system object, the generic lunix, and the actual name, say lutsa0501. An old
system may be booted by referring to the actual name, but remember that many programs use
the generic name lunix to obtain the name-list of the system.

If the new system does not work, verify that the correct device addresses and interrupt vectors
have been specified. If the wrong interrupt vector and the correct device address have been
specified for a device, the operating system will print the error message "stray interrupt at XXX"
when the device is accessed, where XXX is the correct interrupt vector. If the wrong device
address is specified, the system will crash with a panic trap of type 0 (indicating a timeout)
when the device is accessed.

3.2 Special Files

A special file must be made for every device on your system. Normally, all special files are
located in the directory Idev. Initially, this directory will contain:

console
error
mem, kmem, null
tty
rp[O-7J, rrp[0-7]
rl[0-1], rrl[0-1]
rk[O-1], rrk[O-1]
mtO, rmtO
mt4, rmt4

console terminal
see err(4)
see mem(4)
see tty(4)
disk drive 0, sections 0-7
disk drives 0 and 1
disk drives 0 and 1
tape drive 0 (800 bpi)
tape drive 0 (800 bpi, no rewind).

There are two types of special files, block and character. This is indicated by the character b or
c in the listing produced by Is(1) with the -I flag.

In addition, each special file has a major device number and a minor device number. The major
device number refers to the device type and is used as an index into either the bdevsw or
cdevsw table in the configuration file conf.c. The minor device number refers to a particular
unit of the device type and is used only by the driver for that type. The config program with the
-t option will list major device numbers.

The program mknod(1M) creates special files. For example, the following would create part of
the initially-supplied Idev directory:

r

Setting Up UNIX

cd Idev
mknod console cOO
mknod error c 20 0
mknod mem c 2 0; mknod kmem c 2 1; mknod null c 2 2
mknod tty c 13 0
mknod rpO bOO; mknod rrpO c 7 0
mknod mtO b 1 0; mknod rmtO c 6 0
mknod mt4 b 1 4; mknod rmt4 c 6 4

9

After the special files have been made, their access modes should be changed to appropriate
values by chmod(1). For example:

cd Idev
chmod 622 console
chmod 444 error
chmod 644 mem kmem
chmod 666 null
chmod 666 tty
chmod 400 rpO rrpO
chmod 666 mtO rmtO
chmod 666 mt4 rmt4

Note that file names have no meaning to the operating system itself; only the major and minor
device numbers are important. However, many programs expect that a particular file is a
certain device. Thus, by convention, special files are named as follows:

block device conf.c Idev
RP03 disk rp rp.
RP04/5/6 disk hp rp.
RS03/4 fixed head disk hs rs.
RK05 disk rk rk.
Rl01 disk rl rl.
TU10 tape tm mt.
TEITU16 tape ht mt.

character device conf.c Idev
Dl11 asynch. line kl tty., console
DH11 asynch. line mux dh tty.
DMC11 sync. unit dmc dmc.
OZ11 asynch. line mux dz tty.
ON 11 auto call unit dn dn.
OU11 synch. line du 00.
KMC11 micro kmc kmc.
OZ11/KMC11 assist dza,dzb tty.
lP11 line printer Ip Ip.
RP03 disk rp rrp.
RP04/5i6 disk hp rrp.
RS03/4 fixed head disk hs rrs.
TU10 tape tm rmt.
TEITU 16 tape ht rmt.
error err error
memory mm mem, kmem, null
terminal sy tty

For those devices with a Idev name ending in *, this character is replaced by a string of digits
representing the minor device number. For example:

10

mknod Idev/mt1 b 1 1
mknod Idev/rp24 b 0 024

Setting Up UNIX

Note that for disks, an octal number scheme is maintained because each drive is split eight
ways. Thus, Idevlrp24 refers to section 4 of physical drive 2. There is also a special file,
Idevlswap, that is used by the program ps(1). This file must reflect what device is used for
swapping and must be readable. For example:

rm Idev/swap
mknod Idev/swap bOO
chmod 440 Idev/swap

3.3 File Systems

Each physical pack is split into eight logical sections. This split is defined in the operating
system by a table with eight entries. Each table entry is two words long. The first specifies hOw
many blocks are in the section, the second specifies the starting cylinder; see hp(4) (RP04/S/6)
and rp(4) (RP03) for default cylinder and block assignments.

These values are described to the system in the header file lusrlinclude/syslio.h which may be
changed by using the editor ed(1). After such a change, the system must be made again (see
Section 3.2 above).

A file system starts at block 0 of a section of the disk and may be as large as the size of that
section; if it is smaller than the size of a section, the remainder of that section is unused. Note
that the sections themselves may overlap physical areas of the pack, but the file systems must
never overlap.

The program mkfs(1M) is used to initialize a section of the disk to be a file system. Next, the
program labelit(1 M) is used to label the file system with its name and the name of the pack.
Finally, the file system may be checked for consistency by using fsck(1 M). The file system may
then be mounted using mount(1 M).

3.4 DZ11 software with KMC11 assist

KMC microprocessors may be used to control DZ11 asynchronous multiplexers, thus off-loading
terminal-oriented functions from the main CPU. The software is distributed in two forms. The
KMC11-A version does DMA output of data, character translations, tab expansions, etc. The
KMC11-B version does these output functions in addition to. doing DMA input of data. Each
KMC11 can control up to four DZ11 multiplexers for a total of thirty-two asynchronous lines.
Each system can support up to four KMC11 microprocessors. Up to sixty-four DZ11 lines can be
controlled by KMC11 microprocessors.

3.4. 1 Installation

1. Generate a system (see Section 3.2 above) by including each DZ11 to be controlled by a
KMC11 in the configuration file. For example:

#: For the KMC11-A
dza X Y Z

#: For the KMC11-B
dzb X Y Z

where X is the vector address, Y is the UNIBUS address, and Z is the bus request priority.
Also include the KMC11 microprocessors in the configuration file:

kmcXYZ

2. Install the KMC11 microcode in Ilib:

Setting Up UNIX

For the KMC11-A
cd lusrlsrc/uts/* lup/dzaidzkload
Ilib/cpp dza.s I kas -0 Ilib/dzkmc.o

For the KMC11-B
cd lusrlsrc/uts/* lup/dzb/dzkload
Ilib/cpp main.s I kasb -0 Ilib/dzkmc.o

3. Copy dzkload into lete:

For the KMC11-A
cp lusrlsrc/uts/*/up/dzaidzkload letc

For the KMC11-B
cp lusrlsrc/uts/*/up/dzb/dzkload letc

11

4. Update letelre to execute dzkload for multi-user and power-fail init states. Each KMC11
used to control a DZ11 must be loaded with microcode. For each KMC11 used to control a
DZ11 include:

letc/dzkload Idev/kmc?

where? is the minor device number of that KMC11.

5. Special files (see Section 3.3 above) must be created for each KMC11 and DZ11 line:

Example
letc/mknod Idev/kmc? c X ?
/etc/mknod Idev/tty?? c Y Z

X is the major device number of the KMC11 and? is the minor device number of the
KMC11 controlling the DZ11 multiplexers, i.e., the KMC11 loaded with microcode in step 4.
Y is the major device number of the dzaldzb device as is supplied by eonfig(1 M). Z is the
minor device number for a particular line on a DZ11. This number is composed of three
fields. The low-order three bits are the line number relative to a DZ11. The next three bits
contain the minor device number of the DZ11 controlling these lines. Note that this
number is the absolute DZ11 number, not the number relative to the KMC11. The high­
order two bits are the minor device number of the KMC11 controlling this DZ11. For
example:

mknod Idev/tty?? c Y 0241

specifies the second line (0 through 7) on the fifth DZ11 to be controlled by the KMC11 with
minor device number 2. The DZ11 number is specified by the order of appearance in the
configuration file. The first four DZ11 multiplexers must be associated with one KMC11 and
the next four must be associated with another KMC11. The order in which the KMC11
microprocessors are specified is not significant.

4. ADMINISTRATIVE FILES

4.1 fetc/motd

This file contains the message-of-the-day. It is printed by lete/profile after every successful
login.

4.2 fetcfrc

On the transition between init states, letelinit invokes Ibinlsh to run letelre (must have
executable modes). So that letelre can properly handle the removal of temporary files and the
mounting and unmounting of file systems, it is invoked with three arguments: new state, number
of times this state has been entered, previous state. When the system is initially booted, /etc/re
is invoked with arguments "1 0 1"; when state two(multi-user) is subsequently entered, the

12 Setting Up UNIX

arguments are "2 0 1".

Daemons may be invoked either by letclrc or by including lines for them in letclinittab.

The letclrc file is also used to initialize KMC11 microprocessors (see letcldzkload
and/etclvpmload below).

This file must be edited to suit local conditions; see init(8).

4.3 /etclinittab

This file indicates to letclinit which processes to create in each init state. By convention, state 1
is single-user and state 2 is multi-user. For example, the following line creates the single-user
environment:

1 :co:c:env HOME=/ PATH=/bin:/etc:/usr/bin /bin/sh </dev/console\
>/dev/console 2 >/dev/console

1 :xx:k:/etc/getty console ! 0

This indicates that for state 1 a process with the arbitrary unique identifier co should be created.
The program invoked for this process should be the shell and when it exits it should be
reinvoked (c flag).

To attach a login process to the console in the multi-user state, add the line:

2:co:c:/etclgetty console 4

and for line /dev/ttyOO for use by 300/150/110 baud terminals, add the following line:

2:00:c:/etc/getty ttyOO 0 60

The arguments to getty are the device, speed table, and number of seconds to allow before
hanging up the line.

Again, this file must be edited for local conditions; see getty(8), init(8), and inittab(5).

4.4 /etc/dzkload

This file is invoked as a command by letc/rc. It contains instructions for initializing a KMC11
microprocessor which is to function as a controller for one or more OZ11 communications
multiplexers (see Section 3.5 above). This file must be edited to suit the configuration.

4.5 /etc/passwd

This file is used to describe each user to the system. You must add a new line for each new
user. Each line has seven fields separated by colons:

1. Login name: normally 1-6 characters, first character alphabetic, the remainder
alphanumeric, no upper-case characters.

2. Encrypted password: initially null, filled in by passwd(1). The encrypted password
contains 13 bytes, while the actual password is limited to a maximum of 8 bytes. The
encrypted password may be followed by a comma and up to 4 more bytes of password
"age" information.

3. User 10: a number between 0 and 65,535; 0 indicates the super-user. These other IDs are
reserved:

bin::2: software administration;
sys::3: system operation;
adm::4: system administration;
uucp::5: UNlx-to-UNIX file copy;
rje::68: remote job entry administration;
games::196: miscellaneous; never a real user.

4. Group 10: the default is group 1 (one).

~
!

Setting Up UNIX 13

5. Accounting information: this field is used by various accounting programs. It usually
contains the user name, department number, and account number.

6. Login directory: full path-name (keep them reasonably short).
7. Program name: if null, Ibinlsh is invoked after a successful login. If present, the named

program is invoked in place of Ibinlsh.

For example:

ghh::38:1 :6824-G.H.Hurtz(4357):/usr/ghh:
grk::44:1 :6510-S.P.LeName(4466):/usr/grk:/bin/rsh

See also passwd(5), login (1), passwd(1).

4.6 tete/group

This file is used to describe each group to the system. You must add a new line for each new
group. Each line has four fields separated by colons:

1. Group name: normally 1-6 characters, first character alphabetic, rest alphanumeric, no
upper -case characters.

2. Encrypted password: initially null, filled in by passwd(1). The encrypted password
contains 13 bytes, while the actual password is limited to a maximum of 8 bytes.

3. Group ID: a number between 0 and 65,535.
4. Login names: list of all login names in the group, separated by commas.

We strongly discourage group passwords. See also group(5).

4.7 lete/proflle

When the shell is executed and is the leader of a process group, as is the case when it is
invoked by login, it will read and execute the commands in letclprofile before executing
commands in the user's .profile file. This allows the system administrator to set up a standard
environment for all users (e.g., executing umask, setting shell variables, etc.) and take care of
other housekeeping details (such as news ·n).

4.8 lete/eheckllst

This file contains a list of default devices to be checked for consistency by the fsck(1 M)
program. The devices normally correspond to those mounted when the system is in multi-user
mode. For example, a sample checklist would be:

Idev/rpO
Idev/rrp1

4.9 lete/shutdown

This file contains procedures to gracefully shut down the system in preparation for file-save or
scheduled down-time.

4.10 lete/filesave.?

This file contains the detailed procedures for the local file-save.

4.11 lusr/adm/paeet

This file contains the process accounting information; see acct(1 M).

4.12 lusr/adm/wtmp

This file is the log of login processes.

5. REGENERATING SYSTEM SOFTWARE

System source is issued under the directory lusrlsrc. The sub-directories are named cmd
(commands), lib (libraries), uts (the operating system), head (header files), and util (utilities);

14 Setting Up UNIX

see mk(8) for details on how to remake system software.

A couple of anomalies: the accounting routine that deals with holidays and the prime/non-prime
time split must be recompiled at the end of each year (it is currently correct for BTL-Murray Hill
in 1980). The file is /usrlsrclcmdlacct//iblpnpsp!it.c. A reminder is sent to
lusrladmlacctlnitellog, the standard place for such messages, starting a week before year-end
and continuing until pnpsp!it.c is recompiled.

5.1 PDP-11 Command Regeneration

The distributed object code has been compiled for machines without separate "lID" space and
without floating-point hardware. If your system has separate lID space (i.e., is a PDP-11/70 or
PDP-11/45), you should mkcmd adb, awk, bs, cc, cpio, dc, du, dump, efl, f77, fgrep, find, fsck,
lex, make, mkfs, nm, pcat, restor, spell, spline, tbl, tplot, trott, units, unpack, uucp, volcopy, and
yacc. If your configuration has an FP11-[ABC] floating-point processor (or the compatible 11/23
chip), you should mkcmd acct, adb, awk, bs, cc, pack, spline, tplot, typo, and units. If your
configuration has both separate 110 space and floating point, you should mkcmd acct, adb, awk,
bs, cc, cpio, dc, du, dump, efl, t77, fgrep, find, fsck, lex, make, mkfs, nm, pack, pcat, restor,
spell, spline, tbl, tplot, trott, typo, units, unpack, uucp, volcopy, and yacc.

6. FILE SYSTEM CONVERSION TO UNIX (VAX)

Procedures have been developed for converting UNIX file systems from PDP-11/UNIX (including
UNIXfTS, PWB Edition 2.0, and Research Version 7) to VAX UNIX. Direct conversion from other
systems (Le., Version 6-based or UNIx/RT) is also possible, but the administrator should get
help.

The following UNIX commands are referenced in this section: cpio(1), find(1), fsck(1 M),
fscv(1 M), mkdir(1), mkfs(1 M), mount(1 M), and umount(1 M). The reader is assumed to be
familiar with them.

Unless you have repealed Murphy's Law, you should allow plenty of time for the conversion. As
a lower bound, it takes about two hours to convert each 65K of file system space.

6.1 Preliminaries

Obviously, the new system should be generated and decently tested before conversion is
attempted. Source for local commands and libraries should be moved to the VAX and compiled
and tested. Your users may also reasonably require time to develop conversion programs for
data files that contain binary information.

6.1.1 The Old System

The file systems should be pruned of marginal files. The following shell sequence will get rid of
all executables:

For each user file system:
find lusr-fs-list -type f -print I xargs file I \

sed -n -e ·s/\«(:]*\):. *executable/\ 1/p' >/usr/tmp/exfiles
You may want to look this tile over before the next step.
xargs rm -f </usr/tmp/exfiles
rm /usr/tmp/exfiles

6.1.2 Spare Packs

Do not convert without spare packs-that is courting disaster. It is best to keep the old packs for
several days, and to make backup tapes as well.

r

~
\
\

r

Setting Up UNIX 15

6.2 Converting the Hard Way

Using find and cpio takes much longer, but you will have optimized converted user file systems
when you are finished (compacted inodes and directories, file and free-list blocks arranged for
fastest access).

6.2.1 Copying from the Old System

The following steps should be executed by the super-user on an idle, stand-alone (old) system:

For each user file system:
cd /file-system-name
find • -cpio /dev/rmt1

The -cpio option of find produces ten-block records on physical tape in cpio format. Unless
there are a great many linked files, a 1,SOO-bpi, 2,400-foot reel should hold about SSK file
system blocks. If you have larger file systems, the easiest (fastest, safest) thing to do is to use
a raw disk pack in place of the tape (Le., /dev/rrp?? in place of the Idev/rmt1 above). In our
tests, multi-reel find/cpio tapes have worked. Find can also be used to pick up parts of file
systems that can be combined later as described below.

6.2.2 Under the New System

Re-create each file system as follows:

mkdir /file-system-name
mkfs Idev/rrp? blocks :inodes 7 418
The magic numbers "7 418" above refer to free-list ordering:
(rotational angle of 7 and 418 blocks/cylinder for RP04/S/Ss)
labelit /dev/rrp? file-system-name pack-num
mount Idev/rp? /file-system-name
cd Ifile-system-name
Mount tape created during step 3
cpio -idmB </dev/rmt1
If you are combining the smaller file systems,
you may copy-in more than one tape per new file system
(but make sure that first-level directory names are unique)

After the tapes have been copied in, the new file systems should be unmounted and checked
(using fsck(1 M)).

6.3 Converting the Easy Way

The fscv(1 M) command has been provided for fast conversion between PDP-11 and VAX file
systems.

Note that fscv will not convert "special files" (user file systems only). Fscv source will compile
and run on either system. It was designed primarily for use in computer labs where there are a
mixture of PDP-11 and VAX systems.

Example 1:

Converting PDP-11 to VAX:
Make sure that file system cylinder boundaries agree!
fscv -v /dev/rrp21 Idev/rrp31

16

Example 2:

Converting "in place" to the PDP-11:
Anyone who does this without making a copy first deserves
whatever bad (plenty) that can happen!
fscv -p Idev/rrp12 Idev/rrp12

See the fscv(1 M) manual entry.

6.4 A Rnal Precaution

Setting Up UNIX

It is only sensible to do another complete file system backup under the new operating system
(using another set of tapes or packs).

r

r

Administrative Advice for UNIX

R. C. Haight

Bell Laboratories
Murray Hill, New Jersey 07974

The material presented here is based on the author's experiences and opinions. Nevertheless,
it may prove useful. The material on phototypesetting was contributed by D. W. Smith.

1. ADMINISTRATOR'S ROAD MAP

Getting started as a UNlxt system administrator is hard work. There are no real shortcuts to a
working knowledge of the system. You will need time for reading, study and hands-on
experimenting. Don't commit yourself to "going live" with your system until you have had two
weeks to teach yourself your job, and get the initial hardware quirks ironed-out.

Don't consign the Setting Up UNIX document to oblivion after your initial system "gen". In
addition to needing it again whenever you add/change eqUipment, you will find that it contains
valuable material about system tuning (buffers, clists, etc.) that appears nowhere else.

As an administrator, you should be familiar with a lot of the distributed documentation. The
Internals, Operations, and Administration papers from Documents for UNIX should all be
studied, as well as the Introduction, How to Get Started, and most of the entries of the UNIX
User's Manual. In that manual, you should pay special attention to: acct*(1 M), chmod(1),
chown(1), config(1 M), cpio(1), date (1), df(1), du(1), ed(1), env(1), find(1), fsck(1 M), kil/(1),
mai/(1), mkdir(1), mkfs(1M), ncheck(1M), ps(1), rm(1), rmdir(1), shutdown(1M), stty(1), su(1),
sync(1M), time(1), volcopy(1M), wal/(1M), who(1), and write(1) in Section 1; all of Section 4;
acct(S) in Section 5; and crash(8) and vaxops(8) in Section 8.

2. SYSTEM CAPACITY

The figures below are approximations based on our experience over several years:

Number of
Hardware Configuration Simultaneous

Users
PDP-11/23; 2S6K-byte memory; 2 RL01 disks· 4
PDP-11/34; 2S6K-byte memory with cache;

2 RL01 disks· 8
PDP-11/4S; 248K-byte memory; RP03 disk· 16
Above with RP06 (RP04, RPOS) disk· 20
Above with memory cache 25
PDP-11i70; S12K-byte memory;

RP06 (RP04, RPOS) disks·
(2 or more drives) 32

Above with 768K-byte memory and
a disk drive (or fixed-head disk)
set aside for the root file system 40

VAX-11/780; 1 M-byte memory;
at least 3 RP06 disks· 48

• Or equivalent.

t UNIX is a Trademark of Bell Laboratories.

2 Administrative Advice for UNIX

See Setting Up UNIX for the list of supported hardware options.

3. DISK FREE SPACE

Making files is easy under UNIX. It has been said that the only standard thing about all UNIX
systems is the message-of-the-day telling users to clean up their files. Administratively, both
free disk blocks and free inodes (UNIX talk for file headers) can be a problem. If the free inode
count falls below 100, the system spends most of its time rebuilding the free inode array. If a
file system runs out of space, the system prints "no-space" messages and does little else. To
avoid problems, the following start-of-day free counts should be maintained:

• The file system containing Itmp (temporary files):
- 16-user system: 1,500 free blocks.
- 40-user system: 3,000 free blocks.

• The file system containing lusr:
- 3,000 to 6,000 free blocks, depending on load.

• Other user file systems:
- 6% to 10% free, depending on user habits (3,000 blocks minimum).

This brings up an associated problem: how big should file systems be? Our preference is to set
aside space on each drive for a copy of root/swap and use the rest of the pack for a single file
system. However, if you have user groups that fight over disk space, it may be better to split
them up arbitrarily (Le., divide a pack into more than one file system). Warning: if you set up
different disk drives with differing cylinder partitions between file systems, it will probably lead to
an operations goof someday.

4. A VERY FEW WORDS ABOUT SYSTEM TUNING

• As shipped, UNIX has no programs with the text-bit mode set (see chmod(1». The top
contenders for the t -bit are nroff and troff followed (generally) by the larger phases of the C
compiler (including the assembler and loader). The t-bit is only meaningful with pure text
programs (/d(1) options -i or on). Don't overdo it, and keep t-bit programs in the root file
system.

• File system reorganization (described below) can help throughput, but at the expense of
down time. If you do it when your users are all asleep, it can help.

• If you use normal shutdown and fi/esave.u procedures, the file system check program
(fsck(1 M), -S option) will help keep the disk free list in reasonable order.

• Try to keep disk drive usage balanced. If you have over 20 users, the root file system (Ibin,
Itmp, letc, and swap) deserves a drive of its own.

• If you have a noisy modem (poorly executed do-it-yourself null-modem) or a disconnected
modem cable, UNIX will spend a lot of CPU time trying to get it logged in. A random check of
systems uncovers a lot of this going on.

5. WHY YOU MUST HAVE A SPARE DISK DRIVE

• Without a spare disk drive, the system will be down when a drive is down.
• Without a spare drive, it is difficult to reorganize file systems or to restore user files.

6. DISK PACKS

• Buy only fully ECC correctable packs and test them.
• If a pack develops uncorrectable errors, recondition it, or get rid of it.

AP06 disk packs used with UNIX need not be totally error-free, but must be ·'flag-free". The
term flag-free means that there should be no unrecoverable ECC (Error Correcting Code) errors.
Technically, proper ECC handling can recover from 11-bit error bursts. However, we hear that
the length of bursts can grow as a pack ages. We recommend that no pack that has more than
8-bit error bursts be accepted. For the PDP-11, the following explanation may help

Administrative Advice for UNIX 3

r (paraphrased from a DEC source).

In reading the formatter printout, ECC correctable errors are identified by the headings "DATA
ERROR DURING WRITE CHECK." Error-register values are printed below the message. The two
registers of interest are RPER1 and RPEC2. A RPER1 value of 1000000 indicates ECC (no other
bits on). The RPEC2 register describes the bit span of the error. For example, RPEC2=003774
means that there was an unacceptable 9-bit (binary 0000011111111100) error burst;
RPEC2=000240 is an acceptable 3-bit span (0000000010100000-there may be zero bits mixed
in). If such acceptable errors account for all "unrecoverable" errors reported (and there aren't
too many of them), then you have a flag-free pack.

On the VAX, even this scant information was not available, so we have written our own formatter
(it tells its tale in English); see rp6fmt(8). We plan to make this program available in the future
(along with other UNix-oriented diagnostics) for the PDP-11 as well.

7. PROTECTING USER FILES

Users, especially inexperienced ones, occasionally remove their own files. Open files are
sometimes lost when the system crashes. Once in a great while, an entire file system will be
destroyed (picture a disk controller that goes bad and writes when it should read). Here is a
suggested file backup procedure:

• Each day, copy all user file systems to backup packs. Keep these packs 3 to 5 days before
re-using them.

• Once a week, copy each file system to tape. Keep weekly tapes for 8 weeks.
• Keep bi-monthly tapes "forever" (they should be re-copied once a year).

The most recent weekly tapes should be kept off premises. The other tapes should be in a fire­
proof safe, if you can afford one.

When UNIX goes down, active files can get scrambled. Your users will not want to start the day
over every time your system fails. In addition to good backup, you must have file-system
patching expertise available (on-site or on-call). If you ever re-boot the system for general use
without checking out the file systems, terrible things will happen (we once had five duplicate
entries on a file-system free list-this ruined over 100 new files in just three days). Study
fsck(1M) and crash(8), as well as FSCK-The UNIX/TS Fi/e System Check Program.

8. UNIX FILE SYSTEM BACKUP PROGRAMS

The following backup programs are distributed:

• Dump/restor: This is a familiar tape-based system that has been used for several years.
Full dumps are usually taken when the dump program warns that an incremental dump will
run to more than one reel.

• Find/cpio: UNIX is distributed in cpio format. The -cpio option of the find command has
made it time-competitive with dump/restor. However, it does not produce a "perfect" restore
from a full dump plus incremental dump (new and changed files are OK, but file removal
information is lost). Because of this, full dumps should be taken fairly often (weekly/bi­
weekly). Cpio is the only program listed here that makes system-independent copies. It can
be used to move files between various versions of UNIx/RT and UNIX, and can be used in
system conversion.

• Volcopy: physical file system copying to disk or tape. For those who can afford a spare
drive, vo/copy to disk provides convenient file restore and quick recovery from disk disasters
(remember the spare drive). Tape vo/copy provides good long-term backup because the file
system can be read-in fairly quickly, mounted, and browsed over. Disk and tape vo/copy are

~ generally used together for short- and long-term backup. Vo/copy can also be used for full
\ dumps with either dump/restor or cpio/find.

4 Administrative Advice for UNIX

The table below summarizes attributes of these programs. The file system size is 65.500 blocks
in all cases; times are in minutes; judgements are subjective.

dump/restor find/cpio vo/copy (disk) vo/copy (tape)
Full dump time 40 40 2 15
Incremental dump time 6 7
Full restore time 40(?) 80 2 15
Incremental restore time 8 10
Ease of restoring:

one file fair fair good fair
a directory poor fair good . good
scattered files poor poor good good
full restore fair fair very good good

Needs tape drive yes yes no yes
Needs spare file system

(only when restoring) no no yes
Needs spare disk drive

(two CPUs can share) yes
Maintains pack/tape labels no no yes yes
Handles multi-reel tape yes yes yes
512 blocks per record 1.10 1.10 88 10
Interactive

(Le .• ties up console) no(?) yes yes yes
May require separate

I/O space no no no· no
• Blocks per record are cut to 22 without separate 110 space.

We strongly recommend the spare disk drive: as explained in Section 5 above. the speed and
convenience of vo/copy are by no means the only advantage of a spare drive.

9. CONTROLLING DISK USAGE

If your UNIX system is a success. you will soon run out of disk space:

• During the considerable delay before you can get more drives. you will need to control
usage:
- Try to maintain the start-of-day counts recommended above. Watch usage during the

day by executing the df command regularly.
- The du(1) command should be executed (after hours) regularly (e.g .• daily) and the

output kept (in an accessible file) for later comparison. In this way you can spot users
who are rapidly increasing their disk usage.

- The find(1) can be used to locate inactive (or large) files. Example:

find / -mtime +90 -atime +90 -print >somefile

. records in "somefile" the names of files neither written nor accessed in the last 90 days.
Of course. this works best if you are super-user.

• You will also have to balance usage between file systems. To do this you will have to move
user directories. Users should be taught to accept file system name changes (and to
program around them-preferably ahead of time). The user's login directory name (available
in the shell variable HOME) should be utilized to minimize path name dependenCies. User
groups with more extensive file system structures should set up a shell variable to refer to
the file system name (e.g.: FS).

• The find(1) and cpio(1) commands can be used to move user directories and to manipulate
the file system tree. The following sequence is useful (it moves, via magnetic tape, the
directory trees userx and usery from file system fi/esysl to file system fi/esys2 where.
presumably, more space is available):

r
Administrative Advice for UNIX

cd Ifilesys1
. find userx usery -epio Idev/rmtO
cd Ifilesys2
mkdir userx userY
chown userx userx
chown usery usery
epio -idmB </dev/rmtO
Make sure new copy is OK
Change userx and usery login directories in the lete/passwd file
rm -rf Ifilesys1/us~rx Ifilesys1/usery

When moving more than one user in this way:
- Keep users with common interests in the same file system (they may have linked files).

5

- Move groups of users who may have linked files with a single cpio (otherwise linked files
will be unlinked and duplicated).

10. REORGANIZING FILE SYSTEMS

The procedure for moving users described above can be expanded to provide a way to
reorganize whole file systems. Reorganization can improve system response time. This is
particularly true of the root file system (which must be reorganized with all other file systems
unmounted) and lusr. Unfortunately. reorganization of large file systems is slow.

11. KEEPING DIRECTORY FILES SMALL

Directories larger than 5K bytes (320 entries) are very inefficient because of file system
indirection. A UNIX user once complained that it took the system ten minutes to complete the
login process; it turned out that his login directory was 25K bytes long. and the login program
spent that time fruitlessly looking for a non-existent .profile file. A large lusrlmail or
lusrlspoolluucp directory can also really slow the system down. The following will ferret out
such directories:

find I -type d -size +10 -print

Removing files from directories does not make the directories get smaller (the empty directory
entries are available for reuse). The following will "compact" lusrlmail (or any other directory):

mv lusr/mail lusr/omail
mkdir lusr/mail
chmod 777 iusr/mail
cd lusr/omail
find. -print I cpio -plm •. /mail
cd .•
rm -rf omail

12. ADMINISTRATIVE USE OF "CRON"

The program cron(1 M) is useful in the administration of the system; it can be used to:

• Turn off the programs in directory lusrlgames during prime time .
• Run programs off-hours:

- accounting;
- file system administration;
- long-running. user-written shell procedures (using the su(1) command). for example:

su - userx userx_shell arg ...

6 Administrative Advice for UNIX

13. WATCH OUT FOR FILES AND DIRECTORIES THAT GROW

• Accounting files:
- /usr/adm/wtmp-Iogin information;
- /usr/adm/pacct-process accounting; gets big quickly.

• Other files:
- /usr//ib/cronlog-status log of commands executed by cron(1 M);
- /usr/spool-spooling directory for line printers, uucp(1 C), etc., and whose sub-directories

should be compacted as described aboye.

14. ALLOCATING RESOURCES TO USERS

A prospective user should obtain connect-time and file-space authorization through appropriate
channels. Once this is done, the user should apply for a login by providing the following
information to the "system administrator":

• User's name.
• Suggested login name (not more than 8 characters, beginning with a lower-case letter).
• Relationships to other users (this influences the choice of the file system).
• Estimate of required file space (this also influences the choice of the file system).

Users should be forced to have passwords (not more than 8 characters long. but more than 5,
and not in Webster's Unabridged); passwd(5) explains how to do that.

15. THE MATTER OF ACCOUNTING AND USAGE

You should run the accounting programs even if you do not "bill" for service. Otherwise, your
users' habits (especially bad habits) will be a mystery to you. Accounting information can also
help you find performance bottlenecks, unused logins, bad phone lines, etc.

16. DIAL LINE UTILIZATION

If prime-time dial line utilization gets much over 70%, users will start to encounter busy signals
when dialing in. This, in turn, will lead to "line hogging". The only solutions are to get a larger
(another) machine, or to get rid of users. Manual policing will help some, but "automatic"
policing will be invariably subverted by users.

17. "BIRD-DOGGING"

When the system is busy (lines busy and/or slow response), someone should determine why
this is so. The who(1) command lists the people logged in. The ps(1) command shows what
they are doing. (The ietclwhodo command combines the output of who and ps.) Unfortunately,
ps operates from heuristics that can consistently fail to report certain processes in a busy
system. That is. one must be careful about hanging up an apparently inactive line. The
acctcom(1 M) command can read the shell accounting file lusr/adm/pacct backwards from the
most recent entry. It will print entries for selected lines or login names.

18. 300l1,200-BAUD TERMINALS

Don't use upper-case-only terminals. Get full-duplex, full-ASCII terminals. Hardware horizontal
tabbing is very desirable, because it increases output speed and lowers system overhead. A
fair proportion of your terminals should provide for correspondence-quality hard-copy output to
take advantage of the UNIX word-processing capabilities; see term(7).

19. LINE PRINTERS

Most line printers are troublesome and impose considerable overhead on the system. Most also
lack hardware tabs, character overstrike capability, etc. A printer that will work over an
asynchronous link (DC1/DC3 protocol required) may be the best bet.

r

Administrative Advice for UNIX 7

20. SECURITY

The current UNIX is not tamper-proof. You can't keep people from "breaking" the system, but
you can usually detect that they have done so. The following command will mail (to root) a list
of all "set user 10" programs owned by root (super-user):

find I -user root -perm -4100 -exec Is -I {} \; I mail root

Any surprises in root's mail should be investigated. Related advice:

• Change the super-user password regularly. Don't pick obvious passwords (choose 6-to-8
character nonsense strings that combine alphabetics with digits or special characters).

• If you have dial ports and do not require passwords, you are courting trouble.
• The chroot(1 M) ans su(1) commands are inherently dangerous, as are group passwords;

consider removing them from "production" systems.
• Login directories, .profile tiles, and files in Ibin, lusrlbin, IIbin, and letc that are writable by

others than their respective owners are security weak spots; police your system regularly
against them.

• Remember, no time-sharing system with dial ports is really secure. Don't keep top-secret
stuff on the system.

21. COMMUNICATING WITH YOUR USERS

The directory lusrlnews and the news(1) command are provided as a way to get brief
announcements to your users. More pressing items (one-liners) can be entered in the
letclmotd (message of the day) file; motd and (new to the user) news are announced at login
time.

To reach users who are already logged in, use the wall(1 M) (write all) command. Don't use wall
while logged-in as super-user, except in emergencies.

The lusrlnews directory should be cleaned out every few weeks so that nothing older than, say,
three months is ever found there. The motd file should be cleaned out daily.

We have found that, on most systems, a file in lusrlnews will reach 50% of the users within a
day and over 80% of the users within a week.

22. TROUBLESHOOTING

It would be easy to write a book on this topiC. The following are some of the key items:

a. Dealing with the hardware service contractor:

• Before you take out a hardware service contract (with DEC or with someone else), be
sure that the contractor agrees to get along with the UNIX software ("It's the hardware,"
says you; "It's the software," says the hardware service contractor).

• Keep on top of problems. For instance, DEC has a problem-aging priority scheme.
Find out about any such scheme that your contractor may have, and make them prove
that it is being followed. Remember that an unreported problem is getting no priority at
all. If a problem persists, escalate it up your contractor's local management chain; it
may also be effective to complain to your contractor's sales representative.

• If you are serious about service to your users, you should have an extended-period
service contract (e.g., 16 hours/day, 6 days/week). Arrange for preventive
maintenance, non-critical repair, and add-on installation work to be done before or after
prime time.

• If you have a service contract, learn the details. In particular, make sure that
preventive maintenance is scheduled in advance and that it is completed.

• Ask the hardware service contractor to provide and maintain a "site log". You will have
to work on the log, as well.

• Make sure that your hardware vendor (as well as your hardware service contractor, if

8 Administrative Advice for UNIX

the two are different) agrees to the presence of non-DEC equipment on your system ~
(even if you have none to start with). .,

• Run error logging. Keep console sheets. Make sure error messages are shown to
your contractor's Customer Engineers.

• Take core dumps after system crashes and interpret results for Customer Engineers.
• Keep down-time records and make sure that your hardware service contractor knows

about them.

b. Dealing with the telephone services vendor:

You are most apt to have telephone problems when you rearrange or add equipment. You
may also have occasional central office, trunking, and modem failures:

• Be specific with repair operators: tell them that the trouble involves data equipment.
• If your first call fails to get results, ask for the "supervisor" on the second call, and, if

necessary, escalate further to get the problem solved.

c. Some obvious problem areas:

• Disk Drives-Over 50% of your problems are likely to be related to the disk subsystem.
As mentioned earlier, the way to keep your system up is to have a spare disk drive.
Remember:
- Preventive maintenance of disk drives is very important.
- Make sure that the Customer Engineers who service your hardware see the error-

logging printouts and console error messages produced by UNIX (and that they
understand them).

- Disk failure can ruin a UNIX file system. The only defense is to make a complete,
daily file backup! (See Protecting User Files above.)

- Many administrators believe the the RP04 disk drives fail more often than RP06s and
take longer to fix.

• Dial Ports-In this area, as well as in the area of synchronous data interfaces, there is
room for finger-pointing among all your vendors. Check for obvious things:
- Is the system in "multi-user" mode?
- Is the letclinittab file OK?
- Are any cables loose (both ends)?
- In some telephone offices, trunk-hunting is based on 10-number groups. Hunting

between such groups can fail independently of anything else.
The possibilities for trouble are many. The "decision table" below attempts to describe
some alternatives; it is meant primarily for users of DH11/DZ11 asynchronous devices.
If you are unfamiliar with the format, (vertical) Rule 3 reads: "If line rings and ring light
shows and computer does not answer and switching the modem solves the problem,
then it is likely to be a telephone company problem; also, busy out that line."

• Early experience with the DZ11 has been poor. Several different problems have
cropped up including bad line units and a stuck interrupt bit that crashes the system.
Don't install DZs without giving them the full diagnostic treatment.

• Synchronous Ports-High-speed synchronous interface devices are even more trouble
than dial equipment. The following is a list of potential trouble spots:
- Your UNIX software.
- Your interface device (e.g;, DOS11 B).
- Cable to your modem.
- Your modem.
- The communications line.
- Other modem.
- Other cable.
- Other interface device. ~
- Other system's software.
Think of the finger-pointing possibilities. The best defense is a good line monitor.

r

Administrative Advice for UNIX 9

• Power Supply Modules-There are a lot of them, and they do fail, more or less regularly.
Hard failure cali be detected at the console; voltage drift is tougher. Failure of the FP11
(floating-point lfnit) power supply can be slow to fix, because Customer Engineers are
likely to work back from the far end of the "bus·', taking a long time to find the problem.

Asynchronous Une Problems
Rules:

Condition:

Line rings
Ring light shows on telephone console

Computer answers
Login message received on terminal

Switching modem solves problem
User can logi n

Telephone console shows data received
Problem affects whole DH/DZ (up to 16 lines)

Diagnosis and/or Action:

No problem
PDP-11 hardware problem likely

Telephone problem likely
May be a problem with user's terminal

Busy out bad Ii nee s)

23. OAT ASET OPTIONS

The following dataset options seem to work with UNIX:

The 801 C-L 1 (Auto-Call Unit):
Jumpers:

E2 to E3
E6 to E5

Options:
Y, X, T, B,
ZG, ZP, G,
R, ZT

1 2 3 4 5 678 9 0

NYYYYYYYYY
- NYYYYYYYY
- - NNYYYYYY
- - - - NNYYYY
- - YNYN - - - -
- - - - - - NNNY
- - - - - - Y Y N -
- - - - - - YN - -

- - - - - - - - - X
- - - X - XX - - -
X X X - X - - - X -
- - - - - - - X - -
XXXXXXX - X -

Switches (0 = open, 1 = closed, i.e., side next to number is down):
S1 = 1000[1] (Bracketed switches are missing on some models.)
S2 = 0101
S3 = 11010
S4 = 11[00]

The 212A-L1 (1 t 200-baud full-duplex):
Options:

E, ZF, YF, yet
YG, YJ, YK,
S, V, A, T, ZH,
W, YP, YR

Switches:
S1 = [0]001
S2 = 110001000
S3 = 11110000
S5 = 00

10 Administrative Advice for UNIX

24. NULL MODEM WIRING

Improperly wired null modems can cause spurious interrupts, especially at higher baud rates. A
single bad modem on a 9,600-baud line can waste 15% of your CPU power. The following
(symmetrical) wiring plan will prevent such problems:

pin 1 to 1
pin 2 to 3
pin 3 to 2
strap pin 4 to 5 in the same plug
pin 6 to 20
pin 7 to 7
pin 8 to 20
pin 20 to 6 and 8
ground unused pins

25. 113D,103J DATA SET PROBLEMS

The DH11 and DJ11 multiplexers normally have a jumper connecting pin 25 to pin 4 (request to
send), thus asserting pin 25 when the line is opened. This jumper should be removed for any
lines connected to 1130s or 103Js (also applies to 103Js with 801s).

26. PHOTOTYPESETTING EQUIPMENT AND SUPPLIES

Read this section if you plan to use the phototypesetting software of UNIX.

Phototypesetter. The phototypesetter and fonts currently supported by UNIX are manufactured
by:

Wang Graphic Systems, Inc.
Executive Drive
Hudson, NH 03051 (603-889-8550)

The phototypesetter is an on-line C/AlT System 1 with a high-speed turret. The external paper
tape reader on the typesetter is not needed, because the typesetter is connected to the PDP-11
CPU via a DR11C.

PDP 11/45 Only. The following modification (developed by DEC Field Service) should be made
to the DR11 C (without this modification, the system may crash when the typesetter is powered
down): "Add two 390-ohm resistors-from E-18 pin 6 to ground, and from E-18 pin 3 to ground.
Put a piece of insulating tubing over the leads so that they do not short out the 'etch' runs that
they cross."

Fonts. There are eight fonts that are normally used, as shown in the table below. The first
three of the these provide the most-often used (serif) typeface. The last three are used when a
sans-serif typeface is desired. The fourth font contains a number of Greek characters and
mathematical symbols; see NROFFITROFF User's Manual by J. F. Ossanna. The fifth font is
useful for typesetting text that you wish to look like terminal or printer output, e.g., for examples
of programs. Wang Graphic Systems, Inc. offers a variety of other fonts. For troff to be able to
use these fonts, corresponding font tables must be built and compiled into the directory
/usrlliblfont.

r

Administrative Advice for UNIX

Name Part Number Troff Name
BT Times Roman 802-016A R
Times Italic 802-013A I
Times Bold 802-014A B
BT PI Font #4 Special Characters 829-021B S
BT PI Font #6 Constant Width 829-046A CW
Geneva (Helvetica) Regular 803-032B G or H
Geneva (Helvetica) Regular Italic 803-033B GI or HI
Geneva (Helvetica) Medium 803-034B GM or HM

Other fonts for which the source font tables are supplied are:

Name Troff Name
Boston Condensed
News Condensed
Century Schoolbook Expanded
Century Schoolbook Italic
Century Bold Italic
Century Schoolbook
Futura (Utica) Demibold
Text Greek
Geneva Light
Geneva Light Italic
Palatino
Palatino Bold
Palatino Italic
Stymie Bold
Stymie Medium Italic
Stymie Medium

BC
C

CE
CI
CK
CS

FD or UD
GR
L
LI
PA
PB
PI
SB
SI
SM

11

Paper and Chemicals. The phototypesetter "prints" onto photo-mechanical paper, which can
be obtained from a photographic supply house and is specified as:

• Kodak Ektamatic Paper, Grade S, Type 2250, 8 in. X 150 ft., Spec. 175 (or equivalent).

Also obtainable from such a supply house are the chemicals for the developing process:

• Kodak Ektamatic A10 Activator (or equivalent).
• Kodak Ektamatic S40 Stabilizer (or equivalent).

These chemicals should be ordered in 9.5-liter (2.5-gallon) containers for the circulator.

Developer. A Kodak Ektamatic Processor Model 214K (or equivalent) is used to process the
paper from the typesetter. A light-proof box attached to the 214K (to hold the output cassette
from the typesetter) is called an "Autofeeder" and can be obtained from:

Peripheral Graphics, Inc.
Andover I ndustri al Center
York Street
Andover, MA 01810 (617 -475-9005)

Circulator and Dryer. A circulator and a paper dryer, as well as a shelf for the dryer can be
obtai ned from:

Mohr Enterprises
8015 North Ridgeway Ave.
Skokie, IL 60076

The needed parts are:

(312-674-8890)

12 Administrative Advice for UNIX

• ME-8 Mohrtlow: circulator to increase the usability of the chemicals.
• ME-S Mohrdry: dryer for the photo-mechanical paper.
• Dryer Extension: shelf to support the dryer; it connects to the circulator cabinet.

Also obtainable from Mohr Enterprises are cleaners for the developer and circulator. Such
cleaning is needed every 2 to 4 weeks, depending on the volume of work:

• R-S3 Mohrchem Activator Cleaner Concentrate.
• R: .. S7 Mohrchem Stabifizer Cleaner Concentrate.

Each quart bottle makes 9.S liters (2.5 gallons) of reusable cleaner to clean the tubing, rollers,
and tray of the developer and circulator. Equivalent cleaners can also be obtained elsewhere.

June 1980

.. ~

The PWB/UNIX Accounting System

Henry S. McCreary

Bell Laboratories
Piscataway, New Jersey 08854

ABSTRACT

The PWB/UNIX· Accounting System provides methods to collect per-process resource utilization
data, record connect sessions, monitor disk utilization, and charge fees to specific lagins. A set
of C programs and shell procedures is provided to reduce this accounting data into summary
files and reports. This memorandum describes the structure, implementation, and management
of this accounting system.

• UNIX is a Trademark of AT&T Bell Laboratories.

/~

r

r

1. Introduction

The PWB/UNIX Accounting System

Henry S. McCreary

Bell Laboratories
Piscataway, New Jersey 08854

The PWB/UNIX* accounting system was originally designed by John Mashey. Several
modifications and additions have been made to make the system easier to manage, and to
make it less susceptible to corrupted data or system errors. The following list is a synopsis of
the actions of the accounting system:

• At process termination the UNIX Kernal writes one record per process in lusr/adm/pacct in
the form of acct.h. 1

• The login and init programs record connect sessions by writing records into lusr/adm/wtmp.
Date changes, reboots, and shutdowns are also recorded in this file.

• The disk utilization program acetdusg, breaks down disk usage by login.

• Fees for file restores, etc, can be charged to specific logins with the ehargefee shell
procedure.

• Each day the runacet shell procedure is executed via eron to reduce accounting data,
produce summary files and reports.2

• The monacet procedure can be executed on a monthly or fiscal period basis. It saves and
restarts summary files, generates a report, and cleans up the sum directory. These saved
summary files could be used to charge users for UNIX usage.

2. Files and Directories

The lusrllib/acct directory contains all of the C programs and shell procedures necessary to run
the accounting system. The adm login (UID 4) is used by the accounting system and has the
following directory structure:

lusr/adm

I
acct

I

I I I
nite sum fiscal

The /usr/adm directory contains the active data collection flles.3 The nite directory contains files
that are re-used daily by the runaeet procedure. The sum directory contains the cumulative
summary files updated by runacct. The fiscal directory contains periodic summary files created
by monacct.

• UNIX is a Trademark of Bell Laboratories.
1. See Attachment 2 for a description of data files
2. See Attachment 3 for a sample report output.
3. For a complete explanation of the files used by the accounting system. see Attachment 1.

2 The PWBIUNIX Accounting System

3. Daily Operation

When UNIX is switched into mUlti-user mode, lusr/lib/acctlstartup is executed which does the
following:

1. The acctwtmp program adds a "boot" record to lusr/adm/wtmp. This record is signified
by using the system name as the login name in the wtmp record.

2. Process accounting is started via turnacct. Turnacct on executes the accton program with
the argument lusr/adm/pacct.

3. The remove shell procedure is executed to cleanup the saved pacct and wtmp files left in
the sum directory by runacct.

The ckpacct procedure is run via cron every hour of the day to check the size of
lusr/adm/pacct. If the file grows past 1000 blocks (default), turnacct switch is executed. While
ckpacct is not absolutely necessary, the advantage of having several smaller pacct files
becomes apparent when trying to restart runacct after a failure processing these records.

The chargefee program can be used to bill users for file restores, etc. It adds records to
lusr/adrnlfee which are picked up and processed by the next execution of runacct and merged
into the total accounting records.

Runacct is executed via cron each night. It processes the active accounting files,
lusr/adm/pacct?, lusr/adm/wtmp, lusr/adm/acctlnite/disktacct, and /usr!admlfee. It
produces command summaries and usage summaries by login.

When the system is shut down using shutdown, the shutacct shell procedure is executed. It
writes a shutdown reason record into lusr/adm/wtmp and turns process accounting off.

After the first re-boot each morning, the computer operator is instructed by /etc/rc to execute
lusr/lib/acct/prdaily to print the previous day's accounting report.

4. Setting up the Accounting System

In order to automate the operation of this accounting system, several things need to be done:

1. If not already present, add this line to the letc/rc file in the state 2 section:
Ibin/su - adm -c lusrllib/acctlstartup

2. If not already present, add this line to letc/shutdown to turn off the accounting before the
system is brought down:
lusrllib/acct/shutacct

3. Three entries should be made in lusrllib/crontab so that cron will automatically start some
shell procedures.
04' • 1-6 ;bin,su - adm -c "/usr/libiacctJ'runacct 2> lusr1adm/acctlniteifd2log"

02' • 4 ;binlsu - adm -c "/usr/lib/acctlsdlsk"

5 •••• !binisu - adm -c "'usrtllb/acct/ckpacct"

4. The PATH shell variable in adm's .profile should be set to:
PATH=/usr/lib/acct:/bin:/usr/bin

5. Runacct

Runacct is the main daily accounting shell procedure. It is normally initiated via cron during
non-prime time hours. Runacct processes connect, fee, disk, and process accounting files. It
also prepares daily and cumulative summary files for use by prdai/y or for billing purposes. The
following files produced by runacct are of particular interest.

nite/lineuse Produced by acctcon1, which reads the wtmp file, and produces usage
statistics for each terminal line on the system. This report is especially
useful for detecting bad lines. If the ratio between the number of logoffs

r

r

The PWBIUNIX Accounting System 3

to logins exceeds about 3/1, there is a good possibility that the line is
failing.

nite/daytacct This file is the total accounting file for the previous day in taeet.h format.

sum/tacct This file is the accumulation of each day's nite/daytacct, which can be
used for billing purposes. It is restarted each month or fiscal by the
monaeet procedure.

sum/daycms Produced by the aeetems program, it contains the daily command
summary. The ASCII version of this file is nite/daycms.

sum/cms The accumulation of each day's command summaries. It is restarted by
the execution of monaeet. The ASCII version is nite/cms.

sum/loginlog Produced by the lastlogin shell procedure, it maintains a record of the last
time each login was used.

sum/rprt.MMDD Each execution of runaeet saves a copy of the output of prdaily.

Runaeet takes care not to damage files in the event of errors. A series of protection
mechanisms are used that attempt to recognize an error, provide intelligent diagnostics, and
terminate processing in such a way that runacet can be restarted with minimal intervention. It
records its progress by writing descriptive messages into the file active.4 All diagnostic output
during the execution of runaeet is written into fd210g. To prevent multiple invocations, in the
event of two crons or other problems, runaeet will complain if the files lock and lock1 exist
when invoked. The lastdate file contains the month and day runaeet was last invoked, and is
used to prevent more than one execution per day. If runaeet detects an error, a message is
written to /dev/console, mail is sent to root and adm, the locks are removed, diagnostic files
are saved, and execution is terminated.

In order to allow runaeet to be restartable, processing is broken down into separate reentrant
states. This is accomplished by using a case statement inside an endless while loop. Each
state is one case of the case statement. A file is used to remember the last state completed.
When each state completes, statefile is updated to reflect the next state. In the next loop
through the while, statefile is read and the case falls through to the next state. When runaeet
reaches the CLEANUP state, it removes the locks and terminates. States are executed in the
following order:

SETUP

WTMPFIX

CONNECT1

CONNECT2

The command tumacct switch is executed. The process accounting
files, lusr/adm/pacct?, are moved to lusr/adm/Spacct?MMDD. The
lusr/adm/wtmp file is moved to lusr/adm/acctlnite/wtmp.MMDD with the
current time added on the end.

The wtmp file in the nite directory is checked for correctness by the
wtmpfix program. Some date changes will cause aeeteon1 to fail, so
wtmpfix attempts to adjust the time stamps in the wtmp file if a date
change record appears.

Connect session records are written to ctmp in the form of etmp.h. The
lineuse file is created, and the reboots file is created showing all of the
boot records found in the wtmp file.

Ctmp is converted to ctacct.MMDD which are connect accounting
records.5

4. Ales used by runaeet are assumed to be in the nite directory unless otherwise noted.
5. Accounting records are in taeet.h format.

4

PROCESS

MERGE

FEES

DISK

MERGETACCT

CMS

USER EXIT

CLEANUP

The PWB!UNIX Accounting System

The aeetpre1 and aeetpre2 programs are used to convert the process
accounting files, lusr/adm/Spacct?MMDD, into total accounting records
in ptacct?MMDD. The Spacct and ptacct files are correlated by number
so that if runaeet fails, the unnecessary reprocessing of Spacct files will
not occur. One precaution should be noted; when restarting runaeet in
this state, remove the last ptacct file because it will not be complete.

Merge the process accounting records with the connect accounting
records to form daytacct.

merge in any ASCII taeet records from the fi Ie fee into daytacct.

On the day after the sdisk procedure runs, merge disktacct with
daytacct.

Merge daytacct with sum/tacct, the cumulative total accounting file.
Each day, daytacct is saved in sum/tacctMMDD, so that sum/tacct can
be recreated in the event it becomes corrupted or lost.

Merge in tOOay's command summary with the cumulative command
summary file sum/cms. Produce ASCII and internal format command
summary files.

Any installation dependent (local) accounting programs can be included
here.

Clean up temporary files, run prdai/y and save its output in
sumlrprtMMDD, remove the locks, then exit.

6. Recovering from failure

The runaeet procedure can fail for a variety of reasons; usually due to a system crash, /usr
running out of space, or a corrupted wtmp file. If the activeMMDD file exists, check it first for
error messages. If the active file and lock files exist, check fd210g for any mysterious
messages. The following are error messages produced by runaeet, and the recommended
recovery actions:

ERROR: locks found, run aborted
The files lock and lock1 were found. These files must be removed before runaeet can restart.

ERROR: acctg already run for date: check /usr/adm/acctlnite/lastdate
The date in lastdate and tOOay's date are the same. Remove lastdate.

ERROR: tumacct switch returned rc=?
Check the integrity of turnaeet and aeeton. The aecton program must be owned by root, and
have the setuid bit set.

ERROR: Spacct?MMDD already exists
file setups probably already run
Check status of files, then run setups manually.

ERROR: lusr/adm/acctinite/wtmp.MMDD already exists, run setup manually
Self -explanatory.

ERROR: wtmpfix errors see lusr/adm/acctlnite/wtmperror
Wtmpfix detected a corrupted wtmp file. Use fwtmp to correct the corrupted file.

ERROR: connect acctg failed: check lusr/admiacctlnite/log
The aeeteon1 program encountered a bad wtmp file. Use fwtmp to correct the bad file.

The PWBIUNIX Accounting System 5

ERROR: Invalid state, check lusr/adm/acctlnite/active
The file, statefile, is probably corrupted. Check statefile and read active before restarting.

7. Restarting runacct

Runacct called without arguments assumes that this is the first invocation of the day. The
argument MMDD is necessary if runacct is being restarted, and specifies the month and day for
which runacct will rerun the accounting. The entry point for processing is based on the contents
of statefile. To override statefile, include the desired state on the command line.
Examples:

To start runacct:
nohup runacct 2> lusr/adm/acct/nite/fd2log&

To restart runacct:
nohup runacct 0601 2> lusr/adm/acctlnite/fd2log&

To restart runacct at a specific state:
nohup runacct 0601 WTMPFIX 2> lusr/adm/acctlnite/fd2log&

8. Fixing corrupted files

Unfortunately, this accounting system is not entirely fool proof. Occasionally a file will become
corrupted, or lost. Some of the files can simply be ignored or restored from the filesave backup.
However, certain files must be fixed! in order to maintain the integrity of the accounting system.

The wtmp files seem to cause the most problems in the day to day operation of the accounting
system. When the date is changed when UNIX is in multi-user mode, a set of date change
records is written into lusr/adm/wtmp. The wtmpfix program is deSigned to adjust the time
stamps in the wtmp records when a date change is encountered. Some combinations of date
changes and reboots, however, will slip through wtmpfix and cause acctcon1 to fail. The
following steps show how to patch up a wtmp file.

cd lusr/adm/acctlnite
fwtmp < wtmp.MMDD > xwtmp
ed xwtmp

delete corrupted records or
delete all records from the beginning up to the date change

fwtmp -ic < xwtmp > wtmp.MMDD

If the wtmp file is beyond repair, create a null wtmp file. This will prevent any charging of
connect time. Acctprc1 won't be able to determine which login owned a particular process, but
it will be charged to the login that is first in the password file for that userid.

If the installation is using the accounting system to charge users for system resources, the
integrity of sum/tacct is quite important. Occasionally, mysterious tacct records will appear
with negative numbers, duplicate userids, or a userid of 65535. First check sum/tacctprev with
prtacct. If it looks ok, the latest sum/tacct.MMDD should be patched up, then sum/tacct
recreated. A simple patchup procedure would be:

cd lusr/adm/acctlsum
acctmerg -v < tacct.MMDD > xtacct
ed xtacct

remove the bad records
write duplicate uid records to another file

acctmerg -i < xtacct > tacct.MMDD

6 The PWB!UNIX Accounting System

acctmerg tacctprev < tacct.MMDD > tacct

Remember that the monacct procedure removes a" the tacct.MMDD files; therefore, sum/tacct
can be recreated by merging these files together.

9. Recompiling pnpsplit

The pnpsplit subroutine is used by acctcon1 and acctprc1 to determine the difference between
prime and non-prime time. Prime time is defined as 9 a.m. to 5 p.m. Monday through Friday,
holidays excluded. Every year on the day after Christmas, the following message will appear in
log:

*** RECOMPILE pnpsplit WITH NEW HOLIDAYS ***

Unfortunately. this will cause runacct· to fail until pnpsplit, acctcon1, and acctprc1 are
recompiled. The following steps should be taken to successfully recompile these programs.

1. Edit pnpsplit.c to change the thisyear variable to the new year. Update the holidays
array to reflect the new holidays. Pnpsplit.c is in lusrlsrc/cmd/acctllib.

2. Recompile the accounting library a.a, acctprc1, and acctcon1 by:

10. Summary

super-user to root
cd lusrlsrc
ARGS="library acctcon1 acctprc1" ./:mkcmd acct

The PWB/UNIX accounting system was designed from a UNIX system administrator's point of
view. Every possible precaution has been taken to ensure that the system will run smoothly and
without error. It is important to become familiar with the C programs and she" procedures. The
manual pages should be studied, and it is advisable to keep a printed copy of the she"
procedures handy. This accounting system should be easy to maintain, provide valuable
information for the administrator, and provide accurate breakdowns of the usage of system
resources for charging purposes.

r

Attachment 1

Files in the /usr/adm directory

diskdiag

dtmp

fee

pacct

diagnostic output during the execution of disk accounting programs

output from the acctdusg program

output from the chargefee program, ASCII tacct records

active process accounting file

pacct? process accounting files switched via turnaeet

Spacct?MMDD process accounting files for MMDD during execution of runaect

wtmp active wtmp file for recording connect sessions

Files in the /usr/adm/acctlnite directory

active

cms

ctacct.MMDD

ctmp

daycms

daytacct

disktacct

fd210g

lastdate

lock lock1

lineuse

log

10gMMDD

reboots

statefile

tmpwtmp

wtmperror

used by runacct to record progress and print warning and error
messages. activeMMDD same as active after runaeet detects an error

ASCII total command summary used by prdaily

connect accounting records in tacet.h format

output of aeeteon1 program, connect session records in etmp.h format

ASCII daily command summary used by prdaily

total accounting records for one day in taeet.h format

disk accounting records in taeet.h format, created by dodisk procedure

diagnostic output during execution of runacct
(see cron entry)

last day runaeet executed in date +%m%d format

used to control serial use of runaeet

tty line usage report used by prdaily

diagnostic output from aeeteon1

same as log after runacet detects an error

contains beginning and ending dates from wtmp, and a listing of reboots

used to record current state during execution of runaect

wtmp file corrected by wtmpfix

place for wtmpfix error messages

wtmperrorMMDD same as wtmperror after runaeet detects an error

wtmp.MMDD previous day's wtmp file

Files in the lusr!admiacctlsum directory

cms

cmsprev

daycms

loginlog

pacct.MMDD

total command summary file for current fiscal in internal summary format

command summary file without latest update

command summary file for yesterday in internal summary format

created by lastlogin

concatenated version of all pacct files for MMDD, removed after reboot by
remove procedure

2

rprt.MMDD

tacct

tacctprev

tacct.MMDD

wtmp.MMDD

Attachment 1

saved output of prdaily program

cumulative total accounting file for current fiscal

same as tacct without latest update

total accounting file for MMDD

saved copy of wtmp file for MMDD, removed after reboot by remove
procedure

Files in the /usr/adm/acctlfiscal directory

cms? total command summary file for fiscal? in internal summary format

fiscrpt? report similar to prdai/y for fiscal?

tacct? total accounting file for fiscal?

The PWBIUNIX Accounting System

Format of wtmp flies (utmp.h)

1*

Attachment 2

* Format of letc/utmp and lusr/adm/wtmp

*1

struct utmp {
char
char
long

};

uUine[8];
ut_name[8];
uUime;

Definitions (acctdef .h)

1*

I * tty name .1
1* user id *1

1* time on .1

* defines, typedefs, etc. used by acct programs
*1

1*
* following taken from (or modified versions of) <sys/types.h>
*1

typedef unsigned short dev _t;
typedef unsigned int ino_t;
typedef long ofU;
typedef long time_t;

I.
* acct only typedefs
*1

typedef unsigned short uid_t;

#define LSZ 8
#define NSZ 8
#define P 0
#define NP 1

1*

1* sizeof line name *1
I. sizeof login name *1
1* prime time .1
1* nonprime time *1

* limits which may have to be increased if systems get larger
*1

#define SSIZE 1000
#define TSIZE 100
#define USIZE 500

1* max number of sessions in 1 acct run *1
i* max number of line names in 1 acct run .1
i* max number of distinct login names in 1 acct run *1

#define EQN(s1, s2) (strncmp(s1, s2, sizeof(s1» == 0)
#define CPYN(s1, s2) strncpy(s1, s2, sizeof(s1»

#define SECS(tics) «double) tics)/60.
#define MINS(secs) «double) secs)/60.
#define MINT(tics) «double) tics)/3600.
#define KCORE(clicks) «double) clicksi16)
#define SECSINDAY 86400L

2

Format of pacct files (aect.h)

1*
* Accounting structures
*1

Attachment 2 The PWB/UNIX Accounting System

typedef unsigned short comp_t; 1* "floating point" *1

struct acct
{

};

char ac_flag;
char ac_stat;
short ac_uid;
short aC.j}id;
dev _t ac_tty;
time_t ac_btime;
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
comp_t ac_mem;
comp_t acjo;
comp_t ac_rw;
char ac_comm[8];

extern struct acct acctbuf;
extern struct inode *acctp;

#defineAFORK 01
#defineASU 02
#defineACCTF 0300

Format of tacct flies (tacct.h)

1*

1* Accounting flag *1
I * Exit status *1

1* Accounting user 10 *1
1* Accounting group 10 *1
I * control typewriter *1
1* Beginning time *1
1* Accounting usertime *1
1* Accounting system time *1
1* Accounting elapsed time *1

I * memory usage *1

/ * command name *1

1* i node of accou nti ng file *1

I * has executed fork. but no exec *1
1* used super-user privileges *1
/ * record type: 00 = acct *1

* total accounting (for acct period). also for day

struct tacct {

};

uid_t ta_uid;
char ta_name[8];
float ta_cpu[2];
float ta_kcore[2];
float ta_con[2];
float ta_du;
long ta_pc;
unsigned short ta_sc;
unsigned short ta_dc;
unsigned short ta_fee;

Format of ctmp file (ctmp.h)

1* userid *1
1* logi n name *1
1* cum. cpu time. p/np (mins) */
1* cum kcore-minutes. p/np */
1* cum. connect time. ptnp. mins */
1* cum. disk usage *1
i* count of processes *1
i* count of login sessions */
I * count of disk samples */
/ * fee for special services */

The PWBIUNIX Accounting System Attachment 2

*
*1

connect time record (various intermediate files)

struct ctmp {
dev_t
uid_t
char
long
time_t

};

cctty;
cCuid;
cCname[8];
cCcon[2];
ct_start;

1* major minor *1
1* userid *1
1* login name *1
1* connect time (p/np) secs *1

1* session start time *1

3

r
Attachment 3

Jun 804:141979 DAILY REPORT FOR pwba Page 1

from Thu Jun 706:00:481979
to Fri Jun 804:00:281979
2 shutdown
2 pwba

TOTAL DURATION IS 1320 MINUTES
LINE MINUTES PERCENT I/: SESS
tty04 479 36 9
tty47 341 26 4
tty44 298 23 3
tty46 336 25 9
console 1100 83 14
tty05 448 34 3
tty06 439 33 9
ttYQ7 421 32 6
tty42 53 4 5
ttYQ9 385 29 11
tty 1 0 336 25 10
tty08 464 35 2
tty26 544 41 6
tty12 252 19 5
tty13 258 20 3
tty14 156 12 6
tty17 145 11 1
tty18 39 3 5
tty15 228 17 5
tty25 704 53 6
tty21 0 0 0
tty19 10 1 1
tty20 25 2 2
tty22 0 0 0
~3 0 0 0
tty24 0 0 0
tty27 481 36 3
tty28 426 32 5
tty29 302 23 6
~O 257 20 11
tty40 380 29 5
tty41 343 26 3
tty45 0 0 0
tty11 365 28 7
tty43 3 0 1
tty16 213 16 3
tty31 250 19 4
ttl[02 62 5 1
TOTALS 10544 174

I/: ON
9
4
3
9

14
3
9
6
5

11
10
2
6
5
3
6
1
5
5
6
o
1
2
o
o o
3
5
6

11
5
3 o
7
1

~
1

174

I/: OFF
30
33
29
33
21
22
31
24
20
33
31
19
24
25
21
26
16
24
25
25
16
17
18
15
15
16
20
24
25
28
21
21
15
25
17
20
18
3

846

2 Attachment 3

Jun 804:14 1979 DAILY USAGE REPORT FOR pwba Page 1

LOGIN CPU (MINSl KCORE-MINS CONNECT ~INS~ DISK ~OF ~OF t. DISK FEE
UID NAME PRIME NPRME PRIME NPRIME PRIME N RIM BLOCKS ROCS ESS AMPLES
0 TOTAL 388 103 12414 2934 9251 1056 0 16164 174 0 0
0 root 47 41 1003 924 67 30 0 2360 8 0 0
4 adm 7 19 48 652 0 0 0 842 0 0 0
19 games 0 0 4 0 0 0 0 28 0 0 0
22 mhb 0 0 1 1 1 1 0 14 2 0 0
37 abs 0 0 4 0 0 0 0 3 0 0 0
37 ~bsjrk 14 0 284 0 423 0 0 1588 4 0 0
68 ge 3 3 24 21 0 0 0 179 0 0 0
71 0 0 0 0 0 0 0 12 0 0 0
150 ,C 7 0 156 5 281 2 0 510 13 0 0
173 0 0 0 0 0 0 0 16 0 0 0
180 ? 0 0 0 0 0 0 0 4 0 0 0
185 ? 0 0 0 0 0 0 0 2 0 0 0
217 denise 0 0 2 0 31 0 O. 32 3 0 0
217 kot 0 0 2 0 1 0 0 7 1 0 0
219 ? 0 0 0 0 0 0 0 12 0 0 0
1001 hsm 5 0 189 0 179 0 0 92 2 0 0
2001 systst 0 1 5 28 476 64 0 99 5 0 0
2002 mfp 1 0 7 5 270 62 0 93 3 0 0
2003 als 1 0 23 0 100 0 0 99 3 0 0
2005 eric 0 0 3 0 13 0 0 21 1 0 0
2006 hoot 0 0 2 0 16 0 0 8 1 0 0
2009 agp 47 0 2040 0 444 0 0 492 2 0 0
2009 tsrep1 2 0 60 0 36 0 0 95 1 0 0
2011 pdw 0 0 1 0 4 0 0 11 1 0 0
2012 pwbst 0 0 1 0 28 0 0 9 1 0 0
2014 cath 0 0 1 0 1 0 0 7 1 0 0
2022 rem 32 1 1227 91 576 4 0 226 3 0 0
2025 tid 55 23 2176 862 336 98 0 750 7 0 0
2027 krb 14 2 365 51 547 24 0 372 8 0 0
2028 text 0 0 1 0 3 0 0 13 1 0 0
2030 art 8 0 288 0 317 0 0 315 3 0 0
2031 dp 12 0 4~g 3 459 6 0 220 6 0 0
2032 grat 2 0 0 23 0 0 118 1 0 0
2033 ecp 3 0 74 0 355 0 0 115 4 0 0
2040 leap 15 0 308 0 513 1 0 505 2 0 0
2041 dan 3 0 93 3 149 2 0 117 8 0 0
2051 ds52 2 2 19 40 375 601 0 611 8 0 0
2055 nuucp 0 0 15 9 17 1 0 10 3 0 0
2057 ech 1 0 28 0 63 0 0 68 2 0 0
2061 jcVi 4 3 99 70 37 34 0 869 4 0 0
2064 mlr 18 0 443 0 176 0 0 2065 3 0 0
2065 rrr 0 0 6 0 7 0 0 23 1 0 0
2068 trc 0 0 7 0 10 0 0 29 1 0 0
2075 herb 29 0 1178 1 384 2 0 249 5 0 0
2086 paul 1 0 14 0 152 0 0 28 1 0 0
2087 pris 0 0 0 10 0 2 0 13 1 0 0
2111 p'wbcs 2 3 60 85 64 86 0 185 4 0 0
2116 rbJ 1 0 16 0 408 0 0 222 1 0 0
2121 teach 0 0 3 0 53 0 0 50 2 0 0
2123 msb 0 0 3 0 5 0 0 24 1 0 0
2124 rnt 2 0 42 0 66 0 0 260 3 0 0
2126 dal 0 0 5 0 121 0 0 17 1 0 0
2127" m2 15 0 495 11 390 2 0 602 10 0 0

Jun 804:141979 DAILY USAGE REPORT FOR pwba Page 2

2128 jel 14 0 492 9 422 14 0 523 8 0 0
2130 s1 0 0 5 1 16 0 0 42 2 0 0
2130 s3 0 0 0 0 0 2 0 9 1 0 0
2135 ~n 0 1 0 12 0 11 0 33 2 0 0
2136 m2class 0 0 5 0 2 0 0 18 1 0 0
2140 star 4 0 213 12 90 3 0 170 7 0 0
2141 reg 5 0 245 25 470 4 0 181 1 0 0
2199 IIc 0 0 1 0 10 0 0 7 1 0 0
2999 stock 0 0 1 0 1 0 0 17 1 0 0
3001 whm 5 0 93 0 253 0 0 414 3 0 0
3332 v~ 0 0 4 0 8 0 0 39 1 0 0

Attachment 3 3

r Jun 8 04:07 1979 DAILY COMMAND SUMMARY Page 1

COMMAND NUMBER TOTAL TOTAL TOTAL MEAN MEAN HOG CHARS BLOCKS
NAME CMOS KCOREMIN CPU-MIN REAL-MIN SIZE-K CPU-MIN FACTOR TRNSFD READ

TOTALS 16164 15332.89 490.72 37463.98 31.25 0.03 0.01 322183844 1097670

nroff 119 3958.68 93.21 569.83 42.47 0.78 0.16 67070052 130284
troff 26 2483.38 51.63 342.70 48.10 1.99 0.15 37869304 48989
xnroff 20 732.03 16.74 111.05 43.73 0.84 0.15 13885248 22659
a.out 31 623.53 10.52 142.77 59.26 0.34 0.07 382435 2758
elJlep 185 574.83 13.96 34.53 41.18 0.08 0.40 170625 8249
m find 232 555.79 9.93 155.11 55.96 0.04 0.06 6155937 30994
c1 150 519.04 13.57 48.89 38.25 0.09 0.28 4285724 16032
cO 165 413.10 9.19 35.16 44.93 0.06 0.26 3827309 12170
m2edit 33 340.92 4.63 148.27 73.62 0.14 0.03 1074914 14492
Id 87 317.38 7.94 38.48 39.97 0.09 0.21 17640896 45797
acctcms 17 294.75 6.49 14.15 45.41 0.38 0.46 2525427 5515
c2 112 289.69 9.13 34.61 31.72 0.08 0.26 3667050 9681
sh 1834 276.98 26.77 20444.24 10.35 0.01 0.00 3496613 71979
ed 524 253.13 14.46 2029,89 17.50 0.03 0.01 18058108 56039
acctprc1 3 231.28 6.67 19.45 34.67 2.22 0.34 2577344 2926
du 145 219.35 19.91 39.08 11.02 0.14 0.51 716389 23695
diff 49 175.53 6.04 25.78 29.05 0.12 0.23 3740887 11351
get 151 152.96 4.28 25.23 35.74 0.03 0.17 3634042 24917
adb 22 148.10 4.07 202.35 36.37 0.19 0.02 2313718 9813
tbl 24 143.43 2.44 210.65 58.71 0.10 0.01 1536210 3433
dd 9 139.24 10.15 51.05 13.72 1.13 0.20 26006848 294
as2 155 129.33 9.82 42.25 13.17 0.06 0.23 10500835 30165
sed 597 115.46 4.19 36.23 27.57 0.01 0.12 783825 24497
ps 51 109.69 5.92 41.55 18.54 0.12 0.14 2278056 8310
make 89 102.94 2.87 203.32 35.81 0.03 0.01 1018461 8664
delta 25 90.23 2.27 17.80 39.70 0.09 0.13 2909269 9321

~ 172 89.37 2.69 11.32 33.19 0.02 0.24 3519054 12155
16 86.94 1.30 10.57 66.85 0.08 0.12 27671849 2927

find 52 86.64 5.05 63.87 17.15 0.10 0.08 565125 11161
Is 706 82.47 5.78 62.85 14.26 0.01 0.09 1811882 29659
xck 2 79.44 10.49 47.89 7.57 5.25 0.22 198016 21995
awk 22 78.83 1.37 5.24 57.72 0.06 0.26 355466 3769
uucico 60 75.55 1.42 632.50 53.27 0.02 0.00 398693 6377
acctcom 9 75.21 2.81 11.49 26.75 0.31 0.24 1283776 3771
echo 2814 66.10 7.08 91.80 9.33 0.00 0.08 168651 24253
~~d 3 57.27 0.82 7.51 70.16 0.27 0.11 51832 426

284 56.92 2.42 9.43 23.48 0.01 0.26 15283 20329
450 7 48.03 6.80 84.45 7.06 0.97 0.08 279451 1700 r cat 749 45.49 5.69 478.54 8.00 0.01 0.01 8959500 27903
ntd 6 41.52 1.55 7.55 26.87 0.26 0.20 59888 478
mail 202 39.95 2.05 532.98 19.53 0.01 0.00 427217 14377
acctprc2 3 38.95 1.43 19.45 27.24 0.48 0.07 587336 87
sort 94 38.72 1.09 9.73 35.41 0.01 0.11 375876 4433

~~spmain 104 34.89 2.47 214.50 14.10 0.02 0.01 1060989 6572
7 33.20 528 1244.54 6.29 0.75 0.00 63064 36635

ex 17 31.69 0.62 41.04 50.97 0.04 0.02 514624 3593
grep 213 28.73 2.98 21.01 9.64 0.01 0.14 2100229 14297

r

4 Attachment 3

Jun 804:071979 MONTHLY TOTAL COMMAND SUMMARY Page 1

~ COMMAND NUMBER TOTAL TOTAL TOTAL MEAN MEAN HOG CHARS BLOCKS NAME CMOS KCOREMIN CPU-MIN REAL-MIN SIZE-K CPU-MIN FACTOR TRNSFD READ

TOTALS 553286 297698.78 10916.09 742924.94 27.27 0.02 0.01 820472546 26253312

nroff 1687 44681.55 995.92 5737.25 44.86 0.59 0.17 613403153 1089180
troff 1351 25692.15 583.69 4356.05 44.02 0.43 0.13 413163589 646243
sp'ell~ro 6466 17298.41 294.16 1893.79 58.81 0.05 0.16 334572640 853901 m2ei:J1t 654 13526.69 164.62 4238.58 82.17 0.25 ·0.04 54940426 427924
xnroff 397 10408.44 203.72 1496.32 51.09 0.51 0.14 215221419 301967
sort 7983 9292.34 226.01 2298.05 41.11 0.03 0.10 80108304 355963 c1 6139 8949.86 236.45 861.09 37.85 0.04 0.27 79897995 489661 Id 3244 8852.96 223.19 1128.09 39.67 0.07 0.20 493701995 1278119
sed 53134 8126.71 313.85 ·2241.78 25.89 0.01 0.14 23035033 1692990
m2flnd 2982 7984.45 140.18 1698.25 56.96 0.05 0.08 111330040 449604
cO 6586 7866.42 185.16 725.47 42.49 0.03 0.26 72595655 389426
ed 20083 7822.78 425.90 41898.18 18.37 0.02 0.01 483425634 1541326
tbl 660 7766.69 113.95 2458.55 68.16 0.17 0.05 50760094 83887
sh 40476 7499.67 635.00 383786.53 11.81 0.02 0.00 70525236 1421194
du 1941 6730.54 553.04 1128.44 12.17 0.28 0.49 20848359 628324
a.out 1483 5658.46 126.87 1868.87 44.60 0.09 0.07 16158675 80260

"R{rp 4801 5573.51 139.86 460.25 39.85 0.03 0.30 6823696 237298
793 5325.66 71.23 425.67 74.76 0.09 0.17 9599001 131592

cat 21170 4657.53 236.59 4354.24 19.69 0.01 0.05 239180412 1023965
acctpr'c1 42 3837.84 110.88 291.34 34.61 2.64 0.38 43954136 61123
c2 4067 3807.25 144.86 477.28 26.28 0.04 0.30 57519376 213521
grep 21212 3204.86 300.44 2727.87 10.67 0.01 0.11 139340583 899415
cp~ 7469 3060.72 94.12 647.79 32.52 0.01 0.15 91471956 459882

35556 2948.71 853.53 101107.45 3.45 0.02 0.01 34704751 263866 ~\edltD 83 2707.27 28.79 361.84 94.02 0.35 0.08 2852202 33949
as2 6454 2698 .. 74 218.96 910.59 12.33 0.03 0.24 213336016 705690
make 1858 2449.10 64.69 4388.86 37.86 0.03 0.01 24116259 175544
ps 1034 2384.14 128.29 1207.87 18.58 0.12 0.11 54873792 204172
acotcms 294 22 8.36 51.99 116.06 44.01 0.18 0.45 36124940 80523
uuclco 815 2226.75 40.42 11729.01 55.08 0.05 0.00 11086105 162558
Is 18876 2170.01 152.76 1538.09 14.20 0.01 0.10 32418106 691028
find 1705 2114.18 114.35 920.75 18.49 0.07 0.12 94631199 338600
ged 72 2026.43 28.54 317.21 71.01 0.40 0.09 1648636 10374
echo 84710 2018.23 190.14 1138.49 10.61 0.00 0.17 2926992 649200
cpio 127 1956.60 77.03 391.45 25.40 0.61 0.20 190822346 296302
maze 8 1620.42 44.80 128.25 36.17 5.60 0.35 120399 212
mall· 4735 1474.38 76.92 14262.62 19.17 0.02 0.01 25719618 463748
get 1085 1358.03 37.59 234.97 36.13 0.03 0.16 31540008 178623
acctcom 165 1253.99 47.06 339.34 26.64 0.29 0.14 57405662 68949

~ yacc 58 1187.17 15.36 36.90 77.31 0.26 0.42 4096070 12093
col 638 1064.40 49.01 2199.00 21.72 0.08 0.02 23835395 16903
line 27184 1036.03 93.14 1941.33 11.12 0.00 0.05 925447 296142
nroff1.2 29 909.83 17.71 56.97 51.38 0.61 0.31 11459920 18802
delta 264 904.54 23.07 254.06 39.21 0.09 0.09 24219141 87164
td 175 886.19 25.74 159.73 34.43 0.15 0.16 1990177 15792
ar 1434 872.65 61.87 309.07 14.11 0.04 0.20 189858731 428871
m2flndD 144 864.29 12.54 344.13 68.94 0.09 0.04 1184947 28576
rm 15319 857.97 85.65 754.20 10.02 0.01 0.11 453479 433903
acctdu~ 1 819.77 39.30 170.10 20.86 39.30 0.23 1812480 39744
mpass 155 779.13 7.97 29.09 97.70 0.05 0.27 990027 34702
dlff 786 767.31 32.77 260.27 23.41 0.04 0.13 22940094 97214

~

r Jun 8 04:07 1979 LAST LOGIN Page 1

00-00-00 dii
00-00-00 absadm
00-00-00 absafr
00-00-00 abscas
00-00-00 absjcw
00-00-00 abspvg
00-00-00 abstbm
00-00-00 adm94
00-00-00 apb
00-00-00 archive
00-00-00 ase
00-00-00 baclt
00-00-00 btb
00-00-00 bvl
00-00-00 bwk
00-00-00 chicken
00-00-00 class
00-00-00 cleary
00-00-00 cs
00-00-00 dbs
00-00-00 deby
00-00-00 dec
00-00-00 demo
00-00-00 dlt
00-00-00 dmr
00-00-00 docs
00-00-00 dug
00-00-00 ellie
00-00-00 fsrep2
00-00-00 gas
00-00-00 graphics
00-00-00 fljog
00-00-00 ho
00-00-00 inst

88:88:88 1m'
00-00-00 ken
00-00-00 Ico
00-00-00 learn
00-00-00 Ip'p'dw
00-00-00 Irtib
00 00 00 maj
00 00 00 mar
00 00 00 mash
00 00 00 meq
00 00 00 mifi
00 00 00 mlc
00 00 00 mmr
00 00 00 mpt
00 00 00 plan
00 00 00 plum
00 00 00 pvg
00 00 00 ral<esh
00 00 00 rtg
00 00 00 ric
00 00 00 rrc
79 06 08 whm

January 1980

00-00-00 rudd
00-00-00 s10
00-00-00 s2
00-00-00 s4
00-00-00 s5
00-00-00 s6
00-00-00 sa
00-00-00 s9
00-00-00 scbsa
00-00-00 sjm
00-00-00 sit)
00-00-00 sys
00-00-00 tgp
00-00-00 tl(:l
00-00-00 ussc
00-00-00 uucpa
00-00-00 uvac
00-00-00 vav
00-00-00 wdr
00-00-00 willa
00-00-00 zooma
79-06-04 dws
79-06-04 ewb
79-06-04 kas
79-06-04 satz
79-06-04 uucp
79-06-05 bcm
79-06-05 Ip'rem
79-06-05 s7
79-06-05 sccs
79-06-06 conv
79-06-06 dck
79-06-06 dmt
79-06-06 emp
79-06-06 pan
79-06-06 sync
79-06-06 tad
79-06-07 ams
79-06-07 bin
79-06-07 dgd
79-06-07 haight
79 06 07 hasp
79 06 07 jogwb 79 06 07 e
79 06 07 Ijk
79 06 07 mep
79 06 07 nhg
79 06 07 nws
79 06 07 qtroff
79 06 07 tbm
79 06 07 train
79 06 07 whr
79 06 07 wwe
790608?
79 06 08 abs
79 06 08 absjrk

Attachment 3

79-06-08 adm
79-06-08 aap
79-06-08 alS
79-06-08 art
79-06-08 cath
79-06-08 dal
79-06-08 dan
79-06-08 denise
79-06-08 dp
79-06-08 ds52
79-06-08 ech
79-06-08 ecp
79-06-08 eric
79-06-08 tid
79-06-08 tsrep1
79-06-08 games
79-06-08 graf
79-06-08 flerb
79-06-08 hoot
79-06-08 hsm
79-06-08 jac
79-06-08 JCw

j§:8t8~ jf~
79-06-08 kof
79-06-08 krb
79-06-08 leap
79-06-08 IIc
79-06-08 m2
79-06-08 m2class
79-06-08 mfP.
79-06-08 mnb
79-06-08 mjr
79-06-08 msb
79-06-08 nuucp
79-06-08 paul
79-06-08 pdw
79-06-08 pris
79-06-08 pwbcs
79-06-08 p'wbst
79-06-08 it)j
79 06 08 reg
79 06 08 rem
79 06 08 rje
79 06 08 mt
79 06 08 root
79 06 08 rrr
79 06 08 s1
79 06 08 s3
79 06 08 star
79
79 06 08 systst
79 06 08 teach
79
79 06 08 trc
79 06 08 vjf

5

r

r

1. INTRODUCTION

FSCK-The UNIXITS File System Check Program

T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974

When a UNIXfTS operating system is brought up, a consistency check of the file systems should
always be performed. This precautionary measure helps to insure a reliable environment for file
storage on disk. If an inconsistency is discovered, corrective action must be taken. No
changes are made to any file system by fsck without prior operator approval.

The purpose of this memo is to dispel the mystique surrounding file system inconsistencies. It
first describes the updating of the file system (the calm before the storm) and then describes file
system corruption (the storm). Finally, the set of heuristically sound corrective actions used by
fsck (the Coast Guard to the rescue) is presented.

2. UPDATE OF THE FILE SYSTEM

Every working day hundreds of files are created, modified, and removed. Every time a file is
modified, the UNIX operating system performs a series of file system updates. These updates,
when written on disk, yield a consistent file system. To understand what happens in the event
of a permanent interruption in this sequence, it is important to understand the order in which the
update requests were probably being honored. Knowing which pieces of information were
probably written to the file system first, heuristic procedures can be developed to repair a
corrupted file system.

There are five types of file system updates. These involve the super-block, inodes, indirect
blocks, data blocks (directories and files), and free-list blocks.

2.1 Super-Block

The super-block contains information about the size of the file system, the size of the inode list,
part of the free-block list, the count of free blocks, the count of free inodes, and part of the free­
inode list.

The super-block of a mounted file system (the root file system is always mounted) is written to
the file system whenever the file system is unmounted or a sync command is issued.

2.2 Inodes

An inode contains information about the type of inode (directory, data, or special), the number of
directory entries linked to the inode, the list of blocks claimed by the inode, and the size of the
inode.

An inode is written to the file system upon closure1 of the file associated with the inode.

2.3 Indirect Blocks

There are three types of indirect blocks: single-indirect, double-indirect and triple-indirect. A
single-indirect block contains a list of some of the block numbers claimed by an inode. Each
one of the 128 entries in an indirect block is a data-block number. A double-indirect block
contains a list of single-indirect block numbers. A triple-indirect block contains a list of double­
indirect block numbers.

Indirect blocks are written to the file system whenever they have been modified and released2

1. Allin core blocks are also written to the file system upon issue of a sync system call.
2. More precisely. they are queued for eventual writing. Physical 1;0 is deferred until the buffer is needed by

UNI)(;TS or a sync command is issued.

2

by the operating system.

2.4 Data Blocks

FSCK

A data block may contain file information or directory entries. Each directory entry consists of a
file name and an inode number.

Data blocks are written to the file system whenever they have been modified and released by
the operating system.

2.5 First Free-List Block

The super-block contains the first free-list block. The free-list blocks are a list of all blocks that
are not allocated to the super-block, inodes, indirect blocks, or data blocks. Each free-list block
contains a count of the number of entries in this free-list block, a pOinter to the next free-list
block, and a partial list of free blocks in the file system.

Free-list blocks are written to the file system whenever they have been modified and released
by the operating system.

3. CORRUPTION OF THE FILE SYSTEM

A file system can become corrupted in a variety of ways. The most common of these ways are
improper shutdown procedures and hardware failures.

3.1 Improper System Shutdown and Startup

File systems may become corrupted when proper shutdown procedures are not observed, e.g.,
forgetting to sync the system prior to halting the CPU, physically write-protecting a mounted file
system, or taking a mounted file system off-line.

File systems may become further corrupted if proper startup procedures are not observed, e.g.,
not checking a file system for inconsistencies, and not repairing inconsistencies. Allowing a
corrupted file system to be used (and, thus, to be modified further) can be disastrous.

3.2 Hardware Failure

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a disk
pack, or as blatant as a non-functional disk-controller.

4. DETECTION AND CORRECTION OF CORRUPTION

A quiescent3 file system may be checked for structural integrity by performing consistency
checks on the redundant data intrinsic to a file system. The redundant data is either read from
the file system or computed from other known values. A quiescent state is important during the
checking of a file system because of the multi-pass nature of the fsck program.

When an inconsistency is discovered fsck reports the inconsistency for the operator to chose a
corrective action.

Discussed in this section are how to discover inconsistencies and possible corrective actions for
the super-block, the inodes, the indirect blocks, the data blocks containing directory entries, and
the free-list blocks. These corrective actions can be performed interactively by the fsck
command under control of the operator.

4.1 Super-Block

One of the most common corrupted items is the super-block. The super-block is prone to
corruption because every change to the file system's blocks or inodes modifies the super-block.

3. I.e., unmounted and not being written on.

FSCK 3

The super-block and its associated parts are most often corrupted when the computer is halted
and the last command involving output to the file system was not a sync command.

The super-block can be checked for inconsistencies involving file-system size, inode-list size,
free-block list, free-block count, and the free-inode count.

4.1.1 File-System Size and Inode-Ust Size. The file-system size must be larger than the
number of blocks used by the super-block and the number of blocks used by the list of inodes.
The number of inodes must be less than 65,535. The file-system size and inode-list size are
critical pieces of information to the fsck program. While there is no way to actually check these
sizes, fsck can check for them being within reasonable bounds. All other checks of the file
system depend on the correctness of these sizes.

4.1.2 Free-Block Ust. The free-block list starts in the super-block and continues through the
free-list blocks of the file system. Each free-list block can be checked for a list count out of
range, for block numbers out of range, and for blocks already allocated within the file system. A
check is made to see that all the blocks in the file system were found.

The first free-block list is in the super-block. Fsck checks the list count for a value of less than
zero or greater than fifty. It also checks each block number for a value of less than the first data
block in the file system or greater than the last block in the file system. Then it compares each
block number to a list of already allocated blocks. If the free-list block pointer is non-zero, the
next free-list block is read in and the process is repeated.

When all the blocks have been accounted for, a check is made to see if the number of blocks
used by the free-block list plus the number of blocks claimed by the inodes equals the total
number of blocks in the file system.

If anything is wrong with the free-block list, then fsck may rebuild it, excluding all blocks in the
list of allocated blocks. .

4.1.3 Free-Block Count. The super-block contains a count of the total number of free blocks
within the file system. Fsck compares this count to the number of blocks it found free within the
file system. If they don't agree, then fsck may replace the count in the super-block by the
actual free-block count.

4.1.4 Free-Inode Count. The super-block contains a count of the total number of free inodes
within the file system. Fsck compares this count to the number of inodes it found free within the
file system. If they don't agree, then fsck may replace the count in the super-block by the
actual free-inode count.

4.2 Inodes

An individual inode is not as likely to be corrupted as the super-block. However, because of the
great number of active inodes, there is almost as likely a chance for corruption in the inode list
as in the super-block.

The list of inodes is checked sequentially starting with inode 1 (there is no inode 0) and going to
the last inode in the file system. Each inode can be checked for inconsistencies involving
format and type, link count, duplicate blocks, bad blocks, and inode size.

4.2.1 Format and Type. Each inode contains a mode word. This mode word describes the
type and state of the inode. Inodes may be one of four types: regular inode, directory inode,
special block inode, and special character inode. If an inode is not one of these types, then the
inode has an illegal type. Inodes may be found in one of three states: unallocated, allocated,
and neither unallocated nor allocated. This last state indicates an incorrectly formatted inode.
An inode can get in this state if bad data is written into the inode list through, for example, a
hardware failure. The only possible corrective action is for fsck is to clear the inode.

4 FSCK

4.2.2 Unk Count. Contained in each inode is a count of the total number of directory entries
linked to the inode.

Fsck verifies the link count of each inode by traversing down the total directory structure,
starting from the root directory, calculating an actual link count for each inode.

If the stored link count is non-zero and the actual link count is zero, it means that no directory
entry appears for the inode. If the stored and actual link counts are non-zero and unequal, a
directory entry may have been added or removed without the inode being updated.

If the stored link count is non-zero and the actual link count is zero, fsck may link the
disconnected file to the lost+found directory. If the stored and actual link counts are non-zero
and unequal, fsck may replace the stored link count by the actual link count.

4.2.3 Duplicate Blocks. Contained in each inode is a list or pointers to lists (indirect blocks) of
all the blocks claimed by the inode.

Fsck compares each block number claimed by an inode to a list of already allocated blocks. If a
block number is already claimed by another inode, the block number is added to a list of
duplicate blocks. Otherwise, the list of allocated blocks is updated to include the block number.
If there are any duplicate blocks, fsck will make a partial second pass of the inode list to find the
inode of the duplicated block, because without examining the files associated with these inodes
for correct content, there is not enough information available to decide which inode is corrupted
and should be cleared. Most times, the inode with the earliest modify time is incorrect, and
should be cleared.

This condition can occur by using a file system with blocks claimed by both the free-block list
and by other parts of th~ file system.

If there is a large number of duplicate blocks in an inode, this may be due to an indirect block
not being written to the file system.

Fsck will prompt the operator to clear both inodes.

4.2.4 Bad Blocks. Contained in each inode is a list or pointer to lists of all the blocks claimed
by the inode.

Fsck checks each block number claimed by an inode for a value lower than that of the first data
block, or greater than the last block in the file system. If the block number is outside this range,
the block number is a bad block number.

If there is a large number of bad blocks in an inode, this may be due to an indirect block not
being written to the file system.

Fsck will prompt the operator to clear both inodes.

4.2.5 Size Checks. Each inode contains a thirty-two bit (four-byte) size field. This size
indicates the number of characters in the file associated with the inode. This size can be
checked for inconsistencies, e.g., directory sizes that are not a multiple of sixteen characters, or
the number of blocks actually used not matching that indicated by the inode size.

A directory inode within the UNIX file system has the directory bit on in the inode mode word.
The directory size must be a multiple of sixteen because a directory entry contains sixteen bytes
of information (two bytes for the inode number and fourteen bytes for the file or directory name).

Fsck will warn of such directory misalignment. This is only a warning because not enough
information can be gathered to correct the misalignment.

A rough check of the consistency of the size field of an inode can be performed by computing
from the size field the number of blocks that should be associated with the inode and comparing
it to the actual number of blocks claimed by the inode.

Fsck calculates the number of blocks that there should be in an inode by dividing the number of
characters in a inode by the number of characters per block (512) and rounding up. Fsck adds

r

FSCK 5

one block for each indirect block associated with the inode. If the actual number of blocks does
not match the computed number of blocks. fsck will warn of a possible file-size error. This is
only a warning because UNIXfTS does not fill in blocks in files created in random order.

4.3 Indirect Blocks

Indirect blocks are owned by an inode. Therefore. inconsistencies in indirect blocks directly
affect the inode that owns it.

Inconsistencies that can be checked are blocks already claimed by another inode and block
numbers outside the range of the file system.

For a discussion of detection and correction of the inconsistencies associated with indirect
blocks. apply iteratively Sections 4.2.3 and 4.2.4 to each level of indirect blocks.

4.4 Data Blocks

The two types of data blocks are plain data blocks and directory data blocks. Plain data blocks
contain the information stored in a file. Directory data blocks contain directory entries. Fsck
does not attempt to check the validity of the contents of a plain data block.

Each directory data block can be checked for inconsistencies involving directory inode numbers
pointing to unallocated inodes. directory inode numbers greater than the number of inodes in the
file system. incorrect directory inode numbers for "." and ". and directories which are
disconnected from the file system.

If a directory entry inode number points to an unallocated inode. then fsck may remove that
directory entry. This condition probably occurred because the data blocks containing the
directory entries were modified and written to the file system while the inode was not yet written
out.

If a directory entry inode number is pointing beyond the end of the inode list. fsck may remove
that directory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for "." should be the first entry in the directory data block. Its
value should be equal to the inode number for the directory data block.

The directory inode number entry for " should be the second entry in the directory data block.
Its value should be equal to the inode number for the parent of the directory entry (or the inode
number of the directory data block if the directory is the root directory).

If the directory inode numbers are incorrect. fsck may replace them by the correct values.

Fsck checks the general connectivity of the file system. If directories are found not to be linked
into the file system, fsck will link the directory back into the file system in the /ost+found
directory. This condition can be caused by inodes being written to the file system with the
corresponding directory data blocks not being written to the file system.

4.5 Free-list Blocks

Free-list blocks are owned by the super-block. Therefore, inconsistencies in free-list blocks
directly affect the super-block.

Inconsistencies that can be checked are a list count outside of range, block numbers outside of
range, and blocks already associated with the file system.

For a discussion of detection and correction of the inconsistencies associated with free-list
blocks see Section 4.1.2.

ACKNOWLEDGEMENT

I would like to thank Larry A. Wehr for advice that lead to the first version of fsck and Rick B.
Brandt for adapting fsck to UNIXfTS.

6 FSCK

REFERENCES

[1] Ritchie, D. M., and Thompson, K., The UNIX Time-Sharing System, The Bell System
Technical Journal 57,6 (July-August 1978, Part 2), pp. 1905-29.

[2] Dolotta, T. A, and Olsson, S. B. eels., UNIXITS User's Manual, Edition 1.1 (January
1978).

[3] Thompson, K., UNIX Implementation, The Bell System Technical Journal 57, 6 (July­
August 1978, Part 2), pp. 1931-46.

FSCK 7

Appendix-FSCK ERROR CONDITIONS

1. CONVENTIONS

Fsck is a multi-pass file system check program. Each file system pass invokes a different
Phase of the fsck program. After the initial setup, fsck performs successive Phases over each
file system, checking blocks and sizes, path-names, connectivity, reference counts, and the
free-block list (possibly rebuilding it), and performs some cleanup.

When an inconsistency is detected, fsck reports the error condition to the operator. If a
response is required, fsck prints a prompt message and waits for a response. This appendix
explains the meaning of each error condition, the possible responses, and the related error
conditions.

The error conditions are organized by the Phase of the fsck program in which they can occur.
The error conditions that may occur in more than one Phase will be discussed in initialization.

2. INITIALIZATION

Before a file system check can be performed, certain tables have to be set up and certain files
opened. This section concerns itself with the opening of files and the initialization of tables.
This section lists error conditions resulting from command line options, memory requests,
opening of files, status of files, file system size checks, and creation of the scratch file.

C option?

C is not a legal option to fsck; legal options are -y, -n, -s, ·S, and -t. Fsck terminates on this
error condition. See the fsck(1 M) manual entry for further detail. r Bad -t option

r

The -t option is not followed by a file name. Fsck terminates on this error condition. See the
fsck(1 M) manual entry for further detail.

Invalid -s argument, defaults assumed

The -s option is not suffixed by 3, 4, or blocks-per-cylinder:blocks-to-skip. Fsck assumes a
default value of 400 blocks-per-cylinder and 9 blocks-to-skip. See the fsck(1 M) manual entry
for more details.

Incompatible options: -n and -s

It is not possible to salvage the free-block list without modifying the file system. Fsck
terminates on this error condition. See the fsck(1 M) manual entry for further detail.

Can't get memory

Fsck's request for memory for its virtual memory tables failed. This should never happen. Fsck
terminates on this error condition. See a guru.

Can't open checklist file: F

The default file system checklist file F (usually letclchecklist) can not be opened for reading.
Fsck terminates on this error condition. Check access modes of F.

Can't stat root

Fsck's request for statistics about the root directory "/" failed. This should never happen. Fsck
terminates on this error condition. See a guru.

8 FSCK

Can't stat F

Fsck's request for statistics about the file system F failed. It ignores this file system and
continues checking the next file system given. Check access modes of F.

F Is not a block or character device

You have given fsck a regular file name by mistake. It ignores this file system and continues
checking the next file system given. Check file type of F.

Can't open F

The file system F can not be opened for reading. It ignores this file system and continues
checking the next file system given. Check access modes of F.

Size check: 'size X isize Y

More blocks are used for the inode list Y than there are blocks in the file system X, or there are
more than 65,535 inodes in the file system. It ignores this file system and continues checking
the next file system given. See Section 4.1.1.

Can't create F

Fsck's request to create a scratch file F failed. It ignores this file system and continues
checking the next file system given. Check access modes of F.

CAN NOT SEEK: BlK B (CONTINUE)

Fsck's request for moving to a specified block number B in the file system failed. This should
never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however the problem will
persist. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system. If the block was part
of the virtual memory buffer cache, fsck will terminate with the message "Fatal 1/0
error".

NO terminate the program.

CAN NOT READ: BlK B (CONTINUE)

Fsck's request for reading a specified block number B in the file system failed. This should
never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will
persiSt. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system. If the block was part
of the virtual memory buffer cache, fsck will terminate with the message "Fatal I/O
error".

NO terminate the program.

r

FSCK 9

CAN NOT WRITE: BLK B (CONTINUE)

Fsck's request for writing a specified block number B in the file system failed. The disk is
write-protected. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will
persist. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system. If the block was part
of the virtual memory buffer cache, fsck will terminate with the message "Fatal 1/0
error".

NO terminate the program.

3. PHASE 1: CHECK BLOCKS AND SIZES

This phase concerns itself with the inode list. This section lists error conditions resulting from
checking inode types, setting up the zero-link-count table, examining inode block numbers for
bad or duplicate blocks, checking inode size, and checking inode format.

UNKNOWN FILE TYPE 1=1 (CLEAR)

The mode word of the inode I indicates that the inode is not a special character inode, special
character inode, regular inode. or directory inode. See Section 4.2.1.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents. This will always invoke the
UNALLOCATED error condition in Phase 2 for each directory entry pointing to this
inode.

NO ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)

An internal table for fsck containing allocated inodes with a link count of zero has no more
room. Recompile fsck with a larger value of MAXLNCNT.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the
file system. A second run of fsck should be made to re-check this file system. If
another allocated inode with a zero link count is found. this error condition is
repeated.

NO terminate the program.

B BAD 1=1

Inode I contains block number B with a number lower than the number of the first data block in
the file system or greater than the number of the last block in the file system. This error
condition may invoke the EXCESSIVE BAD BLKS error condition in Phase 1 if inode I has too
many block numbers outside the file system range. This error condition will always invoke the
BAO/OUP error condition in Phase 2 and Phase 4. See Section 4.2.4.

10 FSCK

EXCESSIVE BAD BlKS 1=1 (CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a number lower than the
number of the first data block in the file system or greater than the number of last block in the
file system associated with inode I. See Section 4;2.4.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode
in the file system. This error condition will not allow a complete check of the file
system. A second run of fsck should be made to re-check this file system.

NO terminate the program.

B DUP 1=1

Inode 1 contains block number B which is already claimed by another inode. This error condition
may invoke the EXCESSIVE OUP BlKS error condition in Phase 1 if inode 1 has too many
block numbers claimed by other inodes. This error condition will always invoke Phase 1b and
the BA%UP error condition in Phase 2 and Phase 4. See Section 4.2.3.

EXCESSIVE DUP BlKS 1=1 (CONTINUE)

There is more than a tolerable number (usually 10) of blocks claimed by other inodes. See
Section 4.2.3.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the blocks in this inode and continue checking with the next inode
in the file system. This error condition will not allow a complete check of the file
system. A second run of fsck should be made to re-check this file system.

NO terminate the program.

DUP TABLE OVERFLOW (CONTINUE)

An internal table in fsck containing duplicate block numbers has no more room. Recompile fsck
with a larger value of DUPTBlSIZE.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of the
file system. A second run of fsck should be made to re-check this file system. If
another duplicate block is found, this error condition will repeat.

NO terminate the program.

POSSIBLE FilE SIZE ERROR 1=1

The inode 1 size does not match the actual number of blocks used by the inode. This is only a
warning. See Section 4.2.5.

DIRECTORY MISALIGNED 1=1

The size of a directory inode is not a multiple of the size of a directory entry (usually 16). This
is only a warning. See Section 4.2.5.

r

r

FSCK

PARTIALLY ALLOCATED INODE 1=1 (CLEAR)

Inode I is neither allocated nor unallocated. See Section 4.2.1.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

4. PHASE 1 B: RESCAN FOR MORE DUPS

11

When a duplicate block is found in the file system, the file system is rescanned to find the inode
which previously claimed that block. This section lists the error condition when the duplicate
block is found.

B DUP 1=1

Inode I contains block number B which is already claimed by another inode. This error condition
will always invoke the BAD/DUP error condition in Phase 2. You can determine which inodes
have overlapping blocks by examining this error condition and the DUP error condition in Phase
1. See Section 4.2.3.

5. PHASE 2: CHECK PATH-NAMES

This phase concerns itself with removing directory entries pointing to error conditioned inodes
from Phase 1 and Phase 1 b. This section lists error conditions resulting from root inode mode
and status, directory inode pointers in range, and directory entries pointing to bad inodes.

ROOT INODE UNALLOCATED. TERMINATING.

The root inode (usually inode number 2) has no allocate mode bits. This should never happen.
The program will terminate. See Section 4.2.1.

ROOT INODE NOT DIRECTORY (FIX)

The root inode (usually inode number 2) is not directory inode type. See Section 4.2.1.

Possible responses to the FIX prompt are:

YES replace the root inode's type to be a directory. If the root inode's data blocks are not
directory blocks, a VERY large number of error conditions will be produced.

NO terminate the program.

DUPS/BAD IN ROOT INODE (CONTINUE)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks in the root inode (usually inode
number 2) for the file system. See Section 4.2.3 and 4.2.4.

Possible responses to the CONTINUE prompt are:

YES ignore the DUPS/BAD error condition in the root inode and attempt to continue to run
the file system check. If the root inode is not correct, then this may result in a large
number of other error conditions.

NO terminate the program.

12 FSCK

lOUT OF RANGE 1=1 NAME=F (REMOVE)

A directory entry F has an inode number 1 which is greater than the end of the inode list. See
Section 4.4.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

UNALLOCATED 1=1 OWNER=O MODE=M SIZE=S MTIME=T NAME=F (REMOVE)

A directory entry F has an inode 1 without allocate mode bits. The owner 0, mode M, size S,
modify time T, and file name F are printed. See Section 4.4.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

DUP/BAD 1=1 OWNER=OMODE=M SIZE=S MTIME=T DIR=F (REMOVE)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with directory entry
F, directory inode I. The owner 0, mode M, size S, modify time T, and directory name Fare
printed. See Section 4.2.3 and 4.2.4.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

DUP/BAD 1=1 OWNER=O MODE=M SIZE=S MTIME= T FILE=F (REMOVE)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with directory entry
F, inode I. The owner 0, mode M, size S, modify time T, and file name F are printed. See
Section 4.2.3 and 4.2.4.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

r
FSCK 13

6. PHASE 3: CHECK CONNECTIVITY

This phase concerns itself with the directory connectivity seen in Phase 2. This section lists
error conditions resulting from unreferenced directories, and missing or full lost+found
directories.

UNREF DIR 1=1 OWNER=O MODE=M SIZE=S MTIME= T (RECONNECT)

The directory inode I was not connected to a directory entry when the file system was traversed.
The owner 0, mode M, size S, and modify time T of directory inode 1 are printed. See Section
4.4 and 4.2.2.

Possible responses to the RECONNECT prompt are:

YES reconnect directory inode 1 to the file system in the directory for lost files (usually
lost+found). This may invoke the lost+found error condition in Phase 3 if there are
problems connecting directory inode 1 to lost+found. This may also invoke the
CONNECTED error condition in Phase 3 if the link was successful.

NO ignore this error condition. This will always invoke the UNREF error condition in
Phase 4.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system; fsck ignores the request
to link a directory in lost+found. This will always invoke the UN REF error condition in Phase 4.
Check access modes of lost+found. See fsck(1 M} manual entry for further detail.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root directory of the
file system; fsck ignores the request to link a directory in lost+found. This will always invoke
the UNREF error condition in Phase 4. Clean out unnecessary entries in lost+found or make
lost+found larger. See fsck(1 M} manual entry for further detail.

DIR 1=11 CONNECTED. PARENT WAS 1=12

This is an advisory message indicating a directory inode 11 was successfully connected to the
lost+found directory. The parent inode 12 of the directory inode 11 is replaced by the inode
number of the lost+found directory. See Section 4.4 and 4.2.2.

14 FSCK

7. PHASE 4: CHECK REFERENCE COUNTS

This phase concerns itself with the link count information seen in Phase 2 and Phase 3. This
section lists error conditions resulting from unreferenced files, missing or full lost+found
directory, incorrect link counts for files, directories, or special files, unreferenced files and
directories, bad and duplicate blocks in files and directories, and incorrect total free-inode
counts.

UNREF FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT)

Inode I was not connected to a directory entry when the file system was traversed. The owner
0, mode M, size S, and modify time T of inode I are printed. See Section 4.2.2.

Possible responses to the RECONNECT prompt are:

YES reconnect inode I to the file system in the directory for lost files (usually lost+found).
This may invoke the lost+found error condition in Phase 4 if there are problems
connecting inode I to lost+found.

NO ignore this error condition. This will always invoke the CLEAR error condition in
Phase 4.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system; fsck ignores the request
to link a file in lost+found. This will always invoke the CLEAR error condition in Phase 4.
Check access modes of lost+found ..

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root directory of the
file system; fsck ignores the request to link a file in lost+found. This will always invoke the
CLEAR error condition in Phase 4. Check size and contents of lost+found.

(CLEAR)

The inode mentioned in the immediately previous error condition can not be reconnected. See
Section 4.2.2.

Possible responses to the CLEAR prompt are:

YES de-allocate the inode mentioned in the immediately previous error condition by
zeroing its contents.

NO ignore this error condition.

LINK COUNT FILE 1=1 OWNER=O MODE=M SIZE=S MTIME= T COUNT =X SHOULD BE V
(ADJUST)

The link count for inode I which is a file, is X but should be Y. The owner 0, mode M, size S,
and modify time T are printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:

YES replace the link count of file inode I with Y.
NO ignore this error condition.

r
FSCK 15

LINK COUNT DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T COUNT=X SHOULD BE V
(ADJUST)

The link count for inode 1 which is a directory, is X but should be Y. The owner 0, mode M, size
S, and modify time T of directory inode 1 are printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:

YES replace the link count of directory inode 1 with Y.
NO ignore this error condition.

LINK COUNT F 1=1 OWNER=O MODE=M SIZE=S MTIME=T COUNT=X SHOULD BE V
(ADJUST)

The link count for F inode 1 is X but should be Y. The name F, owner 0, mode M, size S, and
modify time T are printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:

YES replace the link count of inode 1 with Y.
NO ignore this error condition.

UNREF FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)

Inode 1 which is a file, was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inode 1 are printed. See
Section 4.2.2 and 4.4.

Possible responses to the CLEAR prompt are:

YES de-allocate inode 1 by zeroing its contents.
NO ignore this error condition.

UNREF DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)

Inode 1 which is a directory, was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inode 1 are printed. See
Section 4.2.2 and 4.4.

Possible responses to the CLEAR prompt are:

YES de-allocate inode 1 by zeroing its contents.
NO ignore this error condition.

BAD/DUP FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with file inode I.
The owner 0, mode M, size S, and modify time T of inode 1 are printed. See Section 4.2.3 and
4.2.4.

Possible responses to the CLEAR prompt are:

YES de-allocate inode 1 by zeroing its contents.
NO ignore this error condition.

16 FSCK

BAD/DUP DIR 1=1 OWNER=O MODE=M SIZE=S MTIME= T (CLEAR)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with directory inode
I. The owner 0, mode M, size S, and modify time T of inode I are printed. See Section 4.2.3
and 4.2.4.

Possible responses to the CLEAR prompt are:

YES de-allocate i node I by zeroi ng its contents.
NO ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK (FIX)

The actual count of the free inodes does not match the count in the super-block of the file
system. See Section 4.1.4.

Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count.
NO ignore this error condition.

8. PHASE 5: CHECK FREE LIST

This phase concerns itself with the free-block list. This section lists error conditions resulting
from bad blocks in the free-block list, bad free-blocks count, duplicate blocks in the free-block
list, unused blocks from the file system not in the free-block list, and the total free-block count
incorrect.

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of blocks with a value less
than the first data block in the file system or greater than the last block in the file system. See
Section 4.1.2 and 4.2.4.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block list and continue the execution of fsck. This error
condition will always invoke the BAD BlKS IN FREE LIST error condition in Phase 5.

NO terminate the program.

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of blocks claimed by
inodes or earlier parts of the free-block list. See Section 4.1.2 and 4.2.3.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block list and continue the execution of fsck. This error
condition will always invoke the DUP BlKS IN FREE LIST error condition in Phase 5.

NO terminate the program.

BAD FREEBlK COUNT

The count of free blocks in a free-list block is greater than 50 or less than zero. This error
condition will always invoke the BAD FREE LIST condition in Phase 5. See Section 4.1.2.

X BAD BlKS IN FREE LIST

X blocks in the free-block list have a block number lower than the first data block in the file
system or greater than the last block in the file system. This error condition will always invoke
the BAD FREE LIST condition in Phase 5. See Section 4.1.2 and 4.2.4.

r

FSCK 17

X DUP BlKS IN FREE LIST

X blocks claimed by inodes or earlier parts of the free-list block were found in the free-block list.
This error I"')ndition will always invoke the BAD FREE LIST condition in Phase 5. See Section
4.1.2 and 4.2.3.

X BlK(S) MISSING

X blocks unused by the file system were not found in the free-block list. This error condition will
always invoke the BAD FREE LIST condition in Phase 5. See Section 4.1.2.

FREE BlK COUNT WRONG IN SUPERBLOCK (FIX)

The actual count of free blocks does not match the count in the super-block of the file system.
See Section 4.1 .3.

Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count.
NO ignore this error condition.

BAD FREE LIST (SALVAGE)

Phase 5 has found bad blocks in the free-block list. duplicate blocks in the free-block list. or
blocks missing from the file system. See Section 4.1.2. 4.2.3. and 4.2.4.

Possible responses to the SALVAGE prompt are:

YES replace the actual free-block list with a new free-block list. The new free-block list
will be ordered to reduce time spent by the disk waiting for the disk to rotate into
position.

NO ignore this error condition.

9. PHASE 6: SALVAGE FREE LIST

This phase concerns itself with the free-block list reconstruction. This section lists error
conditions resulting from the blocks-to-skip and blocks-per-cylinder values.

Default free-block list spacing assumed

This is an advisory message indicating the blocks-to-skip is greater than the blocks-per­
cylinder. the blocks-to-skip is less than one. the blocks-per-cylinder is less than one. or the
blocks-per-cylinder is greater than 500. The default values of 9 blocks-to-skip and 400 blocks­
per-cylinder are used. See the fsck(1 M) manual entry for further detail.

10. CLEANUP

Once a file system has been checked. a few cleanup functions are performed. This section lists
advisory messages about the file system and modify status of the file system.

X files Y blocks Z free

This is an advisory message indicating that the file system checked contained X files using Y
blocks leaving Z blocks free in the file system.

***** BOOT UNIX (NO SYNC!) *****

This is an advisory message indicating that a mounted file system or the root file system has
been modified by fsck. If UNlXfTS is not rebooted immediately, the work done by fsck may be
undone by the in-core copies of tables UNIXfTS keeps.

18 FSCK

***** FILE SYSTEM WAS MODIFIED *****

This is an advisory message indicating that the current file system was modified by fsck. If this
file system is mounted or is the current root file system, fsck should be halted and UNlxrrS
rebooted. If UNlxrrS is not rebooted immediately, the work done by fsck may be undone by the
in-core copies of tables UNlxrrS keeps.

May 1979

FSCK

INITIALIZATION

INDEX OF MESSAGES
(Alphabetically within each section)

19

C opt Ion? ...•... 7

Bad --t opt Ion•...•.......•......•.....•... 7

Invalid ~ argument. defau I ts assumed ... 7

I nCorJ1)a t i b I e op t ions: -f1 and ~•.................•.........•..........•.........•.•...............•.•.........•........•...........•.......•...• 7

can't get memory•..•••.........•... 7
can' t open check lis t f I Ie: F ... 7

can't stat root .. 7

can . t S tat F ... 8

F is not a block or character device ...•....... 8

can' t open F ... 8

Size check: fsize X islze Y ... 8
can't create F .. 8

CAN !lOT SEEK: BlK B (CXl'IfTI/IlJE) .. 8
CAN !lOT READ: BLK B (CXl'IfT I /IlJE) 8
CAN !lOT ~ I TE : BLK B (CXl'IfT 11IlJE) 9

PHASE 1: CHECK BLOCKS AND SIZES

IN<NlIIN FilE lYPE Id (CLEAR) .. 9

lll'll< CXlJIlT TABLE OtERFLON (CXlIITI/IlJE) ... 9

B BAD Id .. 9

EXCESS I VE BAD BLKS Id (CXl'IfT 11IlJE) 10

B CUP Id .. 10

EXCESSIVE OJP BLKS Id (CXl'IfTI/IlJE) ... 10

OJP TABLE CNERFLON (CXlIITIIIlJE) ... 10

Rl)5IBLE FilE SIZE ~ Id .. 10

DIREC:"TmY MISALIG'IIED Id ... 10

PARTIALLY ALlc:r.ATED 1/IDlE Id (Q.EAR) .. 10

PHASE 1 B: RESCAN FOR MORE DUPS

B OJP 1=1 .. 11

PHASE 2: CHECK PATH-NAMES

Fror IIIalE l..NALlc:r.ATED. TEFt.IIINATIIIG. 11

Fror IIIalE !lOT 0 I RECTmY (F I X) 11

DUPS! BAD IN Fror I t(X)E (CXlIIT 11IlJE) 11

I OJT OF RAN3E Id ~ (ABOIE) ... 11

l..NALlc:r.ATED Id OMIER::O M))E,.M SIZ6=S MrIM:i=T NPM;.F (R9.OIE) ... 12

[lJP/BAD Id Q/I.NER..O M)J6..M SIZ6=S MrIM:i=T DIR:F (Re.otE) .. 12

OUPiBAD Id QNo.IER..O M)J6..M SIZ5:S MrIM:i=T FllEi=F (ABOIE) .. 12

PHASE 3: CHECK CONNECTIVITY

lJIFIEF DIR 1=1 OMIER::O Ml)6.,M SIZ5:S MrIM:i=T (REOl'INECT) ... 12

s:JlRY. N::> lost+found DIRECTmY ... 12

s:JlRY. N::> SPACE IN lost+found DIREC:"TmY ... 13

DIR Id1 <Xl\IIIECTED. PARENT \/'IllS 1=12 .. 13

20 FSCK

PHASE 4: CHECK REFERENCE COUNTS ~
. lMEF FILE 1=::1 0iINER=0 ~ SIZ5::S MTI~T (REOlINECT) 13

SJ=RY. N) lost+found DIREC"Tt:Jr(.. . 13

SJ=RY. N) SPACE IN lost+found DIREC"Tt:Jr(.. . 13

(Q.EAR) 13

LIN< Cll..NT FILE 1=::1 0iINER=0 Ml)6,.M SIZE::S MTI~T Cll..NT=:X SKlJI..D BE Y (ADJUST) 14

LIN< Cll..NT DIR 1=::1 0iINER=0 Ml)6,.M SIZE::S MTI~T Cll..NT=:X StaJLD BE Y (ADJUST) 14

Lilli< Cll..NT F 1==1 ClIWERd) MDE=M SIZE::S MrI~T Cll..NT=:X SI-O.ILD BE Y (ADJUST) 14

lMEF FILE 1==1 ClIWERd) Ml)6,.M SIZ5:S MTI~T (a.EAR) .. . 14

lMEF DIR 1==1 ClIWERd) ~ SIZ5:S MrI~T (a.EAR) .. . 14

BAD/DUP FILE 1==1 ClIWERd) Ml)6,.M SIZ5:S MTI~T (a.EAR) : .. . 15

BAD/DUP DIR 1=::1 ClIWERd) Ml)6,.M SIZ5:S MrI~T (a.EAR) .. . 15

FREE 1!'mE Cll..NT \AfOIG IN SUPERBLK (F I X) 15

PHASE 5: CHECK FREE LIST

EXCESS I VE BAD BLKS I N FREE LIST (CCNT I NJE) 15

EXCESS I VE DUP BLKS I N FREE LIST (CCNT I NJE) 16

BAD FREEBLK Cll..NT 16

X BAD BLKS IN FREE LIST 17

X DUP BLKS IN FREE LIST 16

X BLK(S) MISSIIIG 16

FREE BLK Cll..NT \AfOIG IN SUPERBLcx:::K (F I X) 16

BAD FREE LIST (SALVN3E.) 16

PHASE 6: SALVAGE FREE LIST

Defaul t free-block list spacing assurred .. . 17

CLEANUP

X fi les Y blocks Z free 17

• • • •• B))T lJIIl X (N) S'l'N:!) ••••• 18
••••• FILE SYSTEM IMS MDI FlED····· 17

r

The UNIX I/O System

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

This paper gives an overview of the workings of the UNIXt I/O system. It was written
with an eye toward providing guidance to writers of device driver routines, and is oriented more
toward describing the environment and nature of device drivers than the implementation of
that part of the file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file sys­
tem as discussed in the paper "The UNIX Time-sharing System." A more detailed discussion
appears in "UNIX Implementation;" the current document restates parts of that one, but is
still more detailed. It is most useful in conjunction with a copy of the system code, since it is
basically an exegesis of that code.

Device Classes

There are two classes of device: block and character. The block interface is suitable for
devices like disks, tapes, and DECtape which work, or can work, with addressible 512-byte
blocks. Ordinary magnetic tape just barely fits in this category, since by use of forward and
backward spacing any block cah be read, even though blocks can be written only at the end of
the tape. Block devices can at least potentially contain a mounted file system. The interface to
block devices is very highly structured; the drivers for these devices share a great many rou­
tines as well as a pool of buffers.

Character-type devices have a much more straightforward interface, although more work
must be done by the driver itself.

Devices of both types are named by a major and a minor device number. These numbers
are generally stored as an integer with the minor device number in the low-order 8 bits and the
major device number in the next-higher 8 bits; macros major and minor are available to access
these numbers. The major device number selects which driver will deal with the device; the
minor device number is not used by the rest of the system but is passed to the driver at
appropriate times. Typically the minor number selects a subdevice attached to a given con­
troller, or one of several similar hardware interfaces.

The major device numbers for block and character devices are used as indices in separate
tables; they both start at 0 and therefore overlap.

Overview of I/O

The purpose of the open and creat system calls is to set up entries in three separate system
tables. The first of these is the u_ o.file table, which is stored in the system's per-process data
area u. This table is indexed by the file descriptor returned by the open or creat. and is accessed
during a read. write. or other operation on the open file. An entry contains only a pointer to the
corresponding entry of the .file table, which is a per-system data base. There is one entry in the
.file table' for each instance of open or creat. This table is per-system because the same instance
of an open file must be shared among the several processes which can result from forks after

tUNIX is a Trademark of Bell Laboratories.

- 2 -

the file is opened. A .file table entry contains flags which indicate whether the file was open for
reading or writing or is a pipe, and a count which is used to decide when all processes using the
entry have terminated or closed the file (so the entry can be abandoned). There is also a 32-bit
file offset which is used to indicate where in the file the next read or write will take place.
Finally, there is a pointer to the entry for the file in the inode table, which contains a copy of
the file's i-node.

Certain open files can be. designated "multiplexed" files, and several other flags apply to
such channels. In such a case, instead of an offset, there is a pointer to an associated multiplex
channel table. Multiplex channels will not be discussed here.

An entry in the .file table corresponds precisely to an instance of open or creat,' if the same
file is opened several times, it will have several entries in this table. However, there is at most
one entry in the inode ~able for a given file. Also, a file may enter the inode table not only
because it is open, but also because it is the current directory of some process or because it is a
special file containing a currently-mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on
the disk; the modified and accessed times are not stored, and the entry is augmented by a flag
word containing information about the entry, a count used to determine when it may be
allowed to disappear, and the device and i-number whence the entry came. Also, the several
block numbers that give addressing information for the file are expanded from the 3-byte,
compressed format used on the disk to full long quantities.

During the processing of an open or creat call for a special file, the system always calls the
device's open routine to allow for any special processing required (rewinding a tape, turning on
the data-terminal-ready lead of a modem, etc,). However, the close routine is called only when
the last process closes a file, that is, when the i-node table entry is being deallocated. Thus it is
not feasible for a device to maintain, or depend on, a. count of its users, although it is quite
possible to implement an exclusive-use device which cannot be reopened until it has been
closed.

When a read or write takes place, the user's arguments and the .file table ~ntry are used to
set up the variables u.u_base, u:u_count. and u.u_Q/ftet which respectively contain the (user)
address of the I/O target ·area, the byte-count for the transfer, and the current location in the
file. If the file referred to is a character-type special file, the appropriate read or write routine is
called; it is responsible for transferring data and updating the count and current location
appropriately as discussed below. Otherwise, the current location is used to calculate a logical
block number in the file. If the file is an ordinary file the logical block number must be
mapped (possibly using indirect blocks) to a physical block number; a block-type special file
need not be mapped. This mapping is performed by the bmap routine. In any event, the
resulting physical block number is used, as discussed below, to read or write the appropriate
device.

Character Device Drivers

The cdevsw table specifies the interface routines present for character devices. Each dev­
ice provides five routines: open, close, read, write, and special-function (to implement the ioctl
system call). Any of these may be missing. If a call on the routine should be ignored. (e.g.
open on non-exclusive devices that require no setup) the cdevsw entry can be given as l1ulldev; if
it should be considered an error, (e.g. write on read-only devices) l10dev is used. For terminals,
the cdevsw structure also contains a pointer to the tty structure associated with the terminal.

The open routine is called each time the file is opened with the full device number as
argument. The second argument is a flag which is non-zero only if the device is to be written
upon.

The close routine is called only when the file is closed for the last time, that is when the
very last process in which the file is open closes it. This means it is not possible for the driver
to maintain its own count of its users. The first argument is the device number; the second is a

r

- 3 -

flag which is non-zero if the file was open for writing in the process which performs the final
close,

When write is called, it is supplied the device as argument. The per-user variable
u.u_count has been set to the number of characters indicated by the user; for character devices,
this number may be 0 initially. u.u_base is the address supplied by the user from which to start
taking characters. The system may call the routine internally, so the flag u.u segfig is supplied
that indicates, if on. that u.u base refers to the system address space instead of the user's.

The write routine should copy up to u.u30unt characters from the user's buffer to the
device, decrementing u.u_count for each character passed. For most drivers, which work one
character at a time, the routine cpass() is used to pick up characters from the user's buffer.
Successive calls on it return the characters to be written until u.u_count goes to 0 or an error
occurs, when it returns -1. Cpass takes care of interrogating u.u_segfig and updating u.u_count.

Write routines which want to transfer a probably large number of characters into an inter­
nal buffer may also use the routine iomove(bujfer. offset, count. flag) which is faster when many
characters must be moved. lomove transfers up to count characters into the buffer starting offset
bytes from the start of the buffer; flag should be B_ WRITE (which is 0) in the write case. Cau­
tion: the caller is responsible for making sure the count is not too large and is non-zero. As an
efficiency note, iomove is much slower if any of bl4fer+offset. count or u.u base is odd.

The device's read routine is called under conditions similar to write. except that u.u count
is guaranteed to be non-zero. To return characters to the user, the routine passc(c) is available;
it takes care of housekeeping like cpass and returns -1 as the last character specified by
u.u_count is returned to the user; before that time, 0 is returned. lomove is also usable as with
write; the flag should be B_READ but the same cautions apply.

The "special-functions" routine is invoked by the sttyand gtty system calls as follows: (*p)
(dev. v) where p is a pointer to the device's routine, dev is the device number, and v is a vector.
In the gtty case, the device is supposed to place up to 3 words of status information into the
vector; this will be returned to the caller. In the stty case, v is 0; the device should take up to 3
words of control information from the array u.u arg[O ... 2].

Finally, each device should have appropriate interrupt·time routines. When an interrupt
occurs, it is turned into a C-compatible call on the devices's interrupt routine. The interrupt­
catching mechanism makes the low-order four bits of the "new PS" word in the trap vector for
the interrupt available to the interrupt handler. This is conventionally used by drivers which
deal with multiple similar devices to encode the minor device number. After the interrupt has
been processed, a return from the interrupt handler will return from the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most
of these handlers, for example, need a place to buffer characters in the internal interface
between their "top half' (read/write) and "bottom half' (interrupt) routines. For relatively
low data-rate devices, the best mechanism is the character queue maintained by the routines
getc and putc. A queue header has the structure

struct {
int
char
char

} queue;

c cc' - ,
*c cf' - ,
*c d' - ,

1* character count * /
1* first character * /
1* last character * /

A character is placed on the end of a queue by putc(c. &queue) where c is the character and
queue is the queue header. The routine returns -1 if there is no space to put the character, 0
otherwise. The first character on the queue may be retrieved by gelc(&queue) which returns
either the (non-negative>" character or -1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system
and in the standard system there are only some 600 character slots available. Thus device
handlers, especially write routines, must take care to avoid gobbling up excessive numbers of

- 4 -

characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The
call sleep (event, priority) causes the process to wait (allowing other processes to run) until the
event occurs; at that time, the process is marked ready-to-run and the call will return when
there is no process with higher priority.

The call wakeup(event} indicates that the event has happened, that is, causes processes
sleeping on the event to be awakened. The event is an arbitrary quantity agreed upon by the
sleeper and the waker-up. By convention, it is the address of some data area used by the
driver, which guarantees that events are unique.

Processes sleeping on an event should not assume that the event has really happened;
they should check that the conditions which caused them to sleep no longer hold.

Priorities can range from 0 to 127; a higher numerical value indicates a less-favored
scheduling situation. A distinction is made betwe~n processes sleeping at priority less than the
parameter PZERO and those at numerically larger priorities. The former cannot be interrupted
by signals, although it is conceivable that it may be swapped out. Thus it is a bad idea to sleep
with priority less than PZERO on an event which might never occur. On the other hand, calls
to sleep with larger priority may never return if the process is terminated by some signal in the
meantime. Incidentally, it is a gross error to call sleep in a routine called at interrupt time,
since the process which is running is almost certainly not the process which should go to sleep.
Likewise, none of the variables in the user area "u." should be touched, let alone changed, by
an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible
to supply a wakeup, (for example, a device going on-line, which does not generally cause an
interrupt), the call sleep(&lbolt, priority) may be given. Lbolt is an external cell whose address is
awakened once every 4 seconds by the clock interrupt routine.

The routines spl4(), spl5(), spl6(), spl7() are available to set the processor priority level
as indicated to avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, then timeout(fune. arg, interval) will be
useful. This routine arranges that after interval sixtieths of a second, the June will be called with
arg as argument, in the style (*!une)(arg). Timeouts are used, for example, to provide real­
time delays after function characters like new-line and tab in typewriter output, and to ter­
minate an attempt to read the 201 Dataphone dp if there is no response within a specified
number of seconds. Notice that the number of sixtieths of a second is limited to 32767, since
it must appear to be positive, and that only a bounded number of timeouts can be going on at
once. Also, the specified June is called at clock-interrupt time, so it should conform to the
requirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of
buffers containing the images of blocks of data on the various devices. The most important
purpose of these routines is to assure that several processes that access the same block of the
same device in multiprogrammed fashion maintain a consistent view of the data in the block.
A secondary but still important purpose is to increase the efficiency of the system by keeping
in-core copies of blocks that are being accessed frequently. The main data base for this
mechanism is the table of buffers buf. Each buffer header contains a pair of pointers (bJorw.
b back) which maintain a doubly-linked list of the buffers associated with a particular block
device, and a pair of pointers (av.Jorw. av_baekJ which generally maintain a doubly-linked list
of blocks which are "free," that is, eligible to be reallocated for another transaction. Buffers
that have 110 in progress or are busy for other purposes do not appear in this list. The buffer
header also contains the device and block number to which the buffer refers, and a pointer to
the actual storage associated with the buffer. There is a word count which is the negative of the
number o[words to be_ transferred to or from the buffer; there is also an error byte and a

- 5 -

residual word count used to communicate information from an 110 routine to its caller.
Finally, there is a flag word with bits indicating the status of the buffer. These flags will be dis­
cussed below.

Seven routines constitute the most important part of the interface with the rest of the sys­
tem. Given a device and block number, both bread and getblk return a pointer to a buffer
header for the block; the difference is that bread is guaranteed to return a buffer actually con­
taining the current data for the block, while getblk returns a buffer which contains the data in
the block only if it is already in core (whether it is or not is indicated by the B_DONE bit; see
below). In either case the buffer, and the corresponding device block, is made "busy," so that
other processes referring to it are obliged to wait until it becomes free. Getblk is used, for
example, when a block is about to be totally rewritten, so that its previous contents are not use­
ful; still, no other process can be allowed to refer to the block until the new data is placed into
it.

The bread a routine is used to implement read-ahead. it is logically similar to bread, but
takes as an additional argument the number of a block (on the same device) to be read asyn­
chronously after the specifically requested block is available.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other
processes. It is called, for example, after data has been extracted following a bread. There are
three subtly-different write routines, all of which take a buffer pointer as argument, and all of
which logically release the buffer for use by others and place it on the free list. Bwrite puts the
buffer on the appropriate device queue, waits for the write to be done, and sets the user's error
flag if required. Bawrite places the buffer on the device's queue, but does not wait for comple­
tion, so that errors cannot be reflected directly to the user. Bdwrite does not start any 110
operation at all, but merely marks the buffer so that if it happens to be grabbed from the free
list to contain data from some other block, the data in it will first be written out. .

Bwrite is used when one wants to be sure that 1/0 takes place correctly, and that errors are
reflected to the proper user; it is used, for example, when updating i-nodes. Bawrite is useful
when more overlap is desired (because no wait is required for 110 to finish) but when it is rea­
sonably certain that the write is really required. Bdwrite is used when there is doubt that the
write is needed at the moment. For example, bdwrite is called when the last byte of a write sys­
tem call falls short of the end of a block, on the assumption that another write will be given
soon which will re-use the same block. On the other hand, as the end of a block is passed,
bawrite is called, since probably the block will not be accessed again soon and one might as well
start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block exclusively
to the use of the caller, and make others wait, while one of brelse, bwrite, bawrite, or bdwrite
must eventually be called to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the
buffer. Since they provide one important channel for information between the drivers and the
block 110 system, it is important to understand these flags. The following names are manifest
constants which select the associated flag bits.

B_READ This bit is set when the buffer is handed to the device strategy routine (see below)
to indicate a read operation. The symbol B _ WRITE is defined as 0 and does not
define a flag; it is provided as a mnemonic convenience to callers of routines like
swap which have a separate argument which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is
turned on when the operation completes, whether normally as the result of an error.
It is also used as part of the return argument of getblk to indicate if 1 that the
returned buffer actually contains the data in the requested block.

- 6 -

B_ERROR This bit may be set to 1 when B_DONE is set to indicate that an 110 or other error
occurred. If it is set the b_error byte of the buffer header may contain an error code
if it is non-zero. If b_error is 0 the nature of the error is not specified. Actually no
driver at present sets b_error,' the latter is provided for a future improvement
whereby a more detailed error-reporting scheme may be implemented.

B BUSY This bit indicates that the buffer header is' not on the free list, i.e. is dedicated to
someone's exclusive use. The buffer still remains attached to the list of blocks asso­
ciated with its device, however. When getblk (or bread, which calls it) searches the
buffer list for a given device and finds the requested block with this bit on, it sleeps
until the bit clears.

B PHYS This bit is set for raw 110 transactions that need to allocate the Unibus map on an
11170.

B MAP This bit is set on buffers that have the Unibus map allocated, so that the iodone rou­
tine knows to deallocate the map.

B_ WANTEDThis flag is used in conjunction with the B_BUSY bit. Before sleeping as described
just above, getblk sets this flag. Conversely, when the block is freed and the busy bit
goes down (in brelse) a wakeup is given for the block header whenever B_WANTED
is on. This strategem avoids the overhead of having to call wakeup every time a
buffer is freed on the chance that someone might want it.

B AGE This bit may be set on buffers just before releasing them; if it is on, the buffer is
placed at the head of the free list, rather than at the tail. It is a performance heuris­
tic used when the caller judges that the same block will not soon be used again.

B_ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the buffer
should be released when the write has been finished, usually at interrupt time. The
difference between bwrite and bawrite is that the former starts 110, waits until it is
done, and frees the buffer. The latter merely sets this bit and starts 110. The bit
indicates that relse should be called for the buffer on completion.

B_DELWRIThis bit is set by bdwrite before releasing the buffer. When getblk, while searching
for a free block, discovers the bit is 1 in a buffer it would otherwise grab, it causes
the block to be written out before'reusing it.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for each
block device.

Just as for character devices, block device drivers may supply an open and a close routine
called respectively on each open and on the final close of the device. Instead of separate read
and write routines, each block device driver has a strategy routine which is called with a pointer
to a buffer header as argument. As discussed, the buffer header contains a read/write flag, the
core address, the block number, a (negative) word count, and the major and minor device
number. The role of the strategy routine is to carry out the operation as requested by the
information in the buffer header. When the transaction is complete the B_DONE (and possibly
the B ERROR) bits should be set. Then if the B ASYNC bit is set, brelse should be called;
otherwise, wakeup. In cases where the device is capable, under error-free operation, of
transferring fewer words than requested, the device's word-count register should be placed in
the residual count slot of the buffer header; otherwise, the residual count should be set to O.
This particular mechanism is really for the benefit of the magtape driver; when reading this
device records shorter than requested are quite normal, and the user should be told the actual
length of the record.

Although the most usual argument to the strategy routines is a genuine buffer header
allocated as discussed above, all that is actually required is that the argument be a pointer to a
place containing the appropriate information. For example the· swap routine, which manages
movement of core images to and from the swapping device, uses the strategy routine for this

- 7 -

device. Care has to be taken that no extraneous bits get turned on in the flag word .

. The device's table specified by bdevsw has a byte to contain an active flag and an error
count, a pair of links which constitute the head of the chain of buffers for the device (bJorw,
Ii_back), and a first and last pointer for a device queue. Of these things, all are used solely by
the device driver itself except for the buffer-chain pointers. Typically the flag encodes the state
of the device, and is used at a minimum to indicate that the device is currently engaged in
transferring information and no new command should be issued. The error count is useful for
counting retries when errors occur. The device queue is used to remember stacked requests; in
the simplest case it may be maintained as a first-in first-out list. Since buffers which have been
handed over to the strategy routines are never on the list of free buffers, the pointers in the
buffer which maintain the free list (avJorw, av_back) are also used to contain the pointers
which maintain the device queues.

A couple of routines are provided which are useful to block device drivers. iodone(bp)
arranges that the buffer to which bp points be released or awakened, as appropriate, when the
strategy module has finished with the buffer, either normally or after an error. (In the latter
case the B_ERROR bit has presumably been set.)

The routine geterror(bp) can be used to examine the error bit in a buffer header and
arrange that any error indication found therein is reflected to the user. It may be called only in
the non-interrupt part of a driver when 110 has completed (B_DONEhas been set).

Raw Block-device I/O

A scheme has been set up whereby block device drivers may provide the ability to
transfer information directly between the user's core image and the device without the use of
buffers and in blocks as large as the caller requests. The method involves setting up a
character-type special file corresponding to the raw device and providing read and write routines
which set up what is usually a private, non-shared buffer header with the appropriate informa­
tion and call the device's strategy routine. If desired, separate open and close routines may be
provided but this is usually unnecessary. A special-function routine might come in handy,
especially for magtape.

A great deal of work has to be done to generate the "appropriate information" to put in
the argument buffer for the strategy module; the worst part is to map relocated user addresses
to physical addresses. Most of this work is done by physio(strat, bp, de v, rw) whose arguments
are the name of the strategy routine strat, the buffer pointer bp, the device number dev, and a
read-write flag rw whose value is either B_READ or B_ WRITE. Physio makes sure that the
user's base address and count are even (because most devices work in words) and that the core
area affected is contiguous in physical space; it delays until the buffer is not busy, and makes it
busy while the operation is in progress; and it sets up user error return information.

UNIX Implementation

K. Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes in high-level terms the implementation of the
resident UNIXt kernel. This discussion is broken into three parts. The first part
describes how the UNIX system views processes, users, and programs. The
second part describes the I/O system. The last part describes the UNIX file sys­
tem.

1. INTRODUCTION

The UNIX kernel consists of about 10,000 lines of C code and about 1,000 lines of assem­
bly code. The assembly code can be further broken down into 200 lines inciu6ed for the sake
of efficiency (they could have been written in C) and 800 lines to perform hardware functions
not'possible in C.

This code represents 5 to 10 percent of what has been lumped into the broad expression
"the UNIX operating system." The kernel is the only UNIX code that cannot be substituted by a
user to his own liking. For this reason, the kernel should make as few real decisions as possi­
ble. This does not mean .to allow the user a million options to do the same thing. Rather, it
means to allow only one way to do one thing, but have that way be the least-common divisor of
all the options that might have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a
great power. It is a soap-box platform on "the way things should be done." Even so, if "the
way" is too radical, no one will follow it. Every important decision was weighed carefully.
Throughout, simplicity has been substituted for efficiency. Complex algorithms are used only if
their complexity can be localized.

2. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment called a user process.
When a system function is required, the user process calls the system as a subroutine. At some
point in this call, there is a distinct switch of environments. After this, the process is said to be
a system process. In the normal definition of processes, the user and system processes are
different phases of the same process (they never execute simultaneously). For protection, each
system process has its own stack.

The user process may execute from a read-only text segment, which is shared by all
processes executing the same code. There is no junctional benefit from shared-text segments.
An efficiency benefit comes from the fact that there is no need to swap read-only segments out
because the original copy on secondary memory is still current. This is a great benefit to
interactive programs that tend to be swapped while waiting for terminal input. Furthermore, if
two processes are executing simultaneously from the same copy of a read .. only segment, only
one copy needs to reside in primary memory. This is a secondary effect, because simultaneous

tUNIX is a Trademark of Bell Laboratories.

- 2 -

execution of a program is· not common. It is ironic that this effect, which reduces the use of
primary memory, only comes into play when there is an overabundance of primary memory,
that is, when there is enough memory to keep waiting processes loaded.

All cwrent read-only text segments in the system are maintained from the text table. A
text table entry holds the location of the text segment on secondary memory. If the segment is
loaded, that table also holds the primary memory . location and the count of the number of
processes sharing this entry. When this count is reduced to zero, the entry is freed along with
any primary and secondary memory holding the segment. When a process first executes a
shared-text segment, a text table entry is allocated and the segment is loaded onto secondary
memory. If a second process executes a text segment that is already allocated, the entry refer­
ence count is simply incremented.

A user process bas some strictly private read-write data contained in its data segment. As
far as possible, the system does not use the user's data segment to hold system data. In partic­
ular, there are no 110 buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the
system as a result of memory faults, is used for a stack. The second boundary is only grown
(or shrunk) by explicit requests. The contents of newly allocated primary memory is initialized
to zero.

Also associated and swapped· with a process is a small fixed-size system data segment.
This segment contains all the data about the process that the system needs only when the pro­
cess is active. Examples of the kind of data contained in the system data segment are: saved
central processor registers, open file descriptors, accounting information, scratch data area, and
the stack for the system phase of the process. The system data segment is not addressable from
the user process and is therefore protected.

Last, there is a process table with one entry per process. This entry contains all the data
needed by the system when the process is not active. Examples are the process's name, the
location of the other segments, and scheduling information. The process table entry is allo­
cated when the process is created, and freed when the process terminates. This process entry is
always directly addressable by the kernel.

Figure 1 shows the relationships between the various process control data. In a serise, the
process table is the definition of all processes, because all the data associated with a process may
be accessed starting from the process table entry.

PROCESS
TABLE
ENTRY

PROCESS TABLE TEXT TABLE

TEXT
TABLE
ENTRY

RESIDENT

SYSTEM
DATA
SEGMENT

.--_----, SWAPPABLE

USER
DATA
SEGMENT

r~~~~ESS
LSPACE ~--------'

USER
TEXT
SEGMENT

Fig. 1-Process control data structure.

- 3 -

2.1. Process creation and program execution

Processes are created by the system primitive fork. The newly created process (child) is a
copy of the original process (parent). There is no detectable sharing of primary memory
between the two processes. (Of course, if the parent process was executing from a read-only
text segment, the child will share the text segment.) Copies of all writable data segments are
made for the child process. Files that were open before the fork are truly shared after the fork.
The processes are informed as to their part in the relationship to allow them to select their own
(usually non-identical) destiny. The parent may wait for the termination of any of its children.

A process may exec a file. This consists of exchanging the current text and data segments
of the process for new text and data segments specified in the file. The old segments are lost.
Doing an exec does 110t change processes; the process that did the exec persists, but after the
exec it is executing a different program. Files that were open before the exec remain open after
the exec.

If a program, say the first pass of a compiler, wishes to overlay itself with another pro­
gram, say the second pass, then it simply execs the second program. This is analogous to a
"go to. " If a program wishes to regain control after execing a second program, it should fork a
child process, have the child exec the second program, and have the parent wait for the child.
This is analogous to a "call." Breaking up the call into a binding followed by a transfer is simi­
lar to the subroutine linkage in SL-S.I

2.2. Swapping

The major data associated with a process (the user data segment, th<! system data seg­
ment, and the text segment) are swapped to and from secondary memory. as needed. The user
data segment and the system data segment are kept in contiguous primary memory to reduce
swapping latency. (When low-latency devices, such as bubbles, CCDs, or scatter/gather
devices, are used, this decision will have to be reconsidered.) Allocation of both primary and
secondary memory is performed by the same simple first-fit algorithm. When a process grows,
a new piece of primary memory is allocated. The contents of the old memory is copied to the
new memory. The old memory is freed and the tables are updated. If there is not enough pri­
mary memory, secondary memory is allocated instead. The process is swapped out onto the
secondary memory, ready to be swapped in with its new size.

One separate process in the kernel, the swapping process, simply swaps the other
processes in and out of primary memory. It examines the process table looking for a process
that is swapped out and is ready to run. It allocates primary memory for that process and reads
its segments into primary memory, where that process competes for the central processor with
other loaded processes. If no primary memory is available, the swapping process makes
memory available by examining the process table for processes that can be swapped out. It
selects a process to swap out, writes it to secondary memory, frees the primary memory, and
then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly
many processes that are swapped out is to be swapped in'? This is decided by secondary storage
residence time. The one with the longest time out is swapped in first. There is a slight penalty
for larger processes. Which of the possibly many processes that are loaded is to be swapped
out? Processes that are waiting for slow events (j.e., not currently running or waiting for disk
110) are picked first, by age in primary memory, again with size penalties. The other processes
are examined by the same age algorithm, but are not taken out unless they are at least of some
age. This adds hysteresis to the swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system. With limited primary
memory. these algorithms cause total swapping. This is not bad in itself, because the swapping
does not impact the execution of the resident processes. However, if the swapping device must
also be used for file storage, the swapping traffic severely impacts the file system traffic. It is
exactly these small systems that tend to double usage of limited disk resources.

- 4 -

2.3. Synchronization and scheduling

Process synchronization is accomplished by having processes wait for events. Events are
represented by arbitrary integers. By convention, events are chosen to be addresses of tables
associated with those events. For example, a process that is waiting for any of its children to
terminate will wait for an event that is the address of its own process table entry. When a pro­
cess terminates, it signals the event represented.by its parent's process table entry. Signaling an
event on which no process i~ waiting has no effect. Similarly, signaling an event on which
many processes are waiting will wake all of them up. This differs considerably from Dijkstra's
P and V synchronization operations, 2 in that no memory is associated with events. Thus there
need be no allocation of events prior to their use. Events exist simply by being used.

On the negative side, because there is no memory associated with events, no notion of
"how much" can be signaled via the event mechanism. For example, processes that want
memory might wait on an event associated with memory allocation. When any amount of
memory becomes available, the event would be signaled. All the competing processes would
then wake up to fight over the new memory. (In reality, the swapping process is the only pro­
cess that waits for primary memory to become available.)

If an event occurs between the time a process decides to wait for that event and the time
that process enters the wait state, then the process will wait on an event that has already hap­
pened (and may never happen again). This race condition happens because there is no memory
associated with the event to indicate that the event has occurred; the only action of an event is
to change a set of processes from wait state to run state. This problem is relieved largely by the
fact that process switching can only occur in the kernel by explicit calls to the event-wait
mechanism. If the event in question is signaled by another process, then there is no problem.
But if the event is signaled by a hardware interrupt, then special care must be taken. These
synchronization races pose the biggest problem when UNIX is adapted to multiple-processor
configurations. 3

The event-wait code in the kernel is like a co-routine linkage. At any time, all but one of
the processes has called event-wait. The remaining process is the one currently executing.
When it calls event-wait, a process whose event has been signaled is selected and that process
returns from its call to event-wait.

Which of the runable processes is to run next? Associated with each process is a priority.
The priority of a system process is assigned by the code issuing the wait on an event. This is
roughly equivalent to the response that one would expect on such an event. Disk events have
high priority, teletype events are low, and time-of-day events are very low. (From observation,
the difference in system process priorities has little or no performance impact.) All user-process
priorities are lower than the lowest system priority. User-process priorities are assigned by an
algorithm based on the recent ratio of the amount of compute time to real time consumed by
the process. A process that has used a lot of compute time in the last real-time unit is assigned
a low user priority. Because interactive processes are characterized by low ratios of compute to
real time, interactive response is maintained without any special arrangements.

The scheduling algorithm simply picks the process with the highest priority, thus picking
all system processes first and user processes second. The compute-to-real-time ratio is updated
every second. Thus, all other things being equal, looping user processes will be scheduled
round-robin with a I-second quantum. A high-priority process waking up will preempt a run­
ning, low-priority process. The scheduling algorithm has a very desirable negative feedback
character. If a process uses its high priority to hog the computer, its priority will drop. At the
same time, if a low-priority process is ignored for a long time, its priority will rise.

3. 110 SYSTEM
The I/O system is broken into two completely separate systems: the block I/O system and

the character I/O system. In retrospect, the names should have been "structured I/O" and
"unstructured I/O," respectively; while the term "block I/O" has some meaning, "character

- 5 -

110" is a complete misnomer.

Devices are characterized by a mlijor device number, a minor device number, and a class
(block or character). For each class, there is an array of entry points into the device drivers.
The mlijor device number is used to index the array when calling the code for a particular
device driver. The minor device number is passed to the device driver as an argument. The
minor number has no significance other than that attributed to it by the driver. Usually, the
driver uses the minor number. to access one of several identical physical devices.

The use of the array of entry points (configuration table) as the only connection between
the system code and the device drivers is very important. Early versions of the system had a
much less formal connection with the drivers, so that it was extremely hard to handcraft
differently configured systems. Now it is possible to create new device drivers in an average of
a few hours. The configuration table in most cases is created automatically by a program that
reads the system's parts list.

3.1. Block 110 system

The model block 110 device consists of randomly addressed, secondary memory blocks of
512 bytes each. The blocks are uniformly addressed 0, 1, ... up to the size of the device. The
block device driver has the job of emulating this model on a physical device.

The block 110 devices are accessed through a layer of buffering software. The system
maintains a list of buffers (typically between 10 and 70) each assigned a'device name and a
device address. This buffer pool constitutes a data cache for the block devices. On a read
request, the cache is searched for the desired block. If the block is found, the data are made
available to the requester without any physical I/O. If the block is not in the cache, the least
recently used block in ~he cache is renamed, the correct device driver is called to fill up the
renamed buffer, and then the data are made available. Write requests are handled in an analo­
gous manner. The correct buffer is found and relabeled if necessary. The write is performed
simply by marking the buffer as "dirty." The physical 110 is then deferred until the buffer is
renamed.

The benefits in reduction of physical I/O of this scheme are substantial, especially consid­
ering the file system implementation. There are, however, some drawbacks. The asynchronous
nature of the algorithm makes error reporting and meaningful user error handling almost
impossible. The cavalier approach to 110 error handling in the UNIX system is partly due to the
asynchronous nature of the block 110 system. A second problem is in the delayed writes. If
the system stops unexpectedly, it is almost certain that there is a lot of logically complete, but
physically incomplete, 110 in the buffers. There is a system primitive to flush all outstanding
110 activity from the buffers. Periodic use of this primitive helps, but does not solve, the prob­
lem. Finally, the associativity in the buffers can alter the physical 110 sequence from that of
the logical 110 sequence. This means that there are times when data structures on disk are
inconsistent, even though the software is careful to perform 110 in the correct order. On non­
random devices, notably magnetic tape, the inversions of writes can be disastrous. The prob­
lem with magnetic tapes is "cured" by allowing only one outstanding write request per drive.

3.1. Character 110 system

The character 110 system consists of all devices that do not fall into the block 110 model.
This includes the "classical" character devices such as communications lines, paper tape, and.
line printers. It also includes magnetic tape and disks when they are not used in a stereotyped
way, for example, SO-byte physical records on tape and track-at-a-time disk copies. In short,
the character I/O interface means "everything other than block." I/O requests from the user
are sent to the device driver essentially unaltered. The implementation of these requests is, of
course, up to the device driver. There are guidelines and conventions to help the implementa­
tion of certain types of device drivers.

3.2.1. Disk drivers
Disk drivers are implemented with a queue of transaction records. Each record holds a

read/write flag, a primary memory address, a secondary mem·ory address, and a transfer byte
count. Swapping is accomplished by passing such a record to the swapping device driver. The
block I/O interface is implemented by passing such records with requests to fill and empty sys­
tem buffers. The character I/O interface to the disk drivers create a transaction record that
points directly into the user area. The routine that creates this record also insures that the user
is not swapped during this I/O transaction. Thus by implementing the general disk driver, it is
possible to use the disk as a block device, a character device, and a swap device. The only
really disk-specific code in normal disk drivers is the pre-sort of transactions to minimize
latency for a particular device, and the actual issuing of the I/O request.

3.2.2. Character lists
Real character-oriented devices may be implemented using the common code to handle

character lists. A character list is a queue of characters. One routine puts a character on a
queue. Another gets a character from a queue. It is also possible to ask how many characters
are currently on a queue. Storage for all queues in the system comes from a single common
pool. Putting a character on a queue will allocate space from the common pool and link the
character onto the data structure defining the queue. Getting a character from ·a queue returns
the corresponding space to the pool.

A typical character-output device (paper tape punch, for example) is implemented by
passing characters from the user onto a character queue until some maximum number of char­
acters is on the queue. The I/O is prodded to start as soon as there is anything on the queue
and, once started, it is sustained by hardware completion interrupts. Each time there is a com-

. pletion interrupt, the driver gets the next character from the queue and sends it to the
hardware. The number of characters on the queue is checked and, as the count falls through
some intermediate level, an event (the queue address) is signaled. The process that is passing
characters from the user to the queue can be waiting on the event, and refill the queue to its
maximum when the event occurs.

A typical character input device (for example, a paper tape reader) is handled in a very
similar manner.

Another class of character devices is the terminals. A terminal is represented by three
character queues. There are two input queues (raw and canonical) and an output queue. Char­
acters going to the output of a terminal are handled by common code exactly as described
above. The main difference is that there is also code to interpret the output stream as ASCII
characters and to perform some translations, e.g., escapes for deficient terminals. Another
common aspect of terminals is code to insert real-time delay after certain control characters.

Input on terminals is a little different. Characters are collected from the terminal and
placed on a raw input queue. Some device-dependent code conversion and escape interpreta­
tion is handled here. When a line is complete in the raw queue, an event is signaled. The code
catching this signal then copies a line from the raw queue toa canonical queue performing the
character erase and line kill editing. User read requests on terminals can be directed at either
the raw or canonical queues.

3.2.3. Other character devices
Finally, there are devices that fit no general category. These devices are set up as charac­

ter I/O drivers. An example is a driver that reads and writes unmapped primary memory as an
I/O device. Some devices are too fast to be treated a character at time, but do not fit the disk
I/O mold. Examples are fast communications lines and fast line printers. These devices either
have their own buffers or "borrow" block I/O buffers for a while and then give them back.

- 7 -

4. THE FILE SYSTEM
In the UNIX system, a file is a (one-dimensional) array of bytes. No other structure of

files is implied by the system. files are attached anywhere (and possibly multiply) onto a
hierarchy of directories. Directories are simply files that users cannot write. For a further dis­
cussion of the external view of files and directories, see Ref. 4.

The UNIX file system is a disk data structure accessed completely through the block I/O
system. As stated· before, the canonical view of a "disk" is a randomly addressable array of
512-byte blocks. A file system breaks the disk into four self-identifying regions. The first
block (address 0) is unused by the file system. It is left aside for booting procedures. The
second block (address 1) contains the so-called "super-block." This block, among other things,
contains the size of the disk and the boundaries of the other regions. Next comes the i-list, a
list of file definitions. Each file definition is a 64-byte structure, called an i-node. The offset of
a particular i-node within the i-list is called its i-number. The combination of device name
(major and minor numbers) and i-number serves to uniquely name a particular file. After the
i-list, and to the end of the disk, come free storage blocks that are available for the contents of
files.

The free space on a disk is maintained by a linked list of available disk blocks. Every
block in this chain contains a disk address of the next block in the chain. The remaining space
contains the address of up to 50 disk blocks that are also free. Thus with one I/O operation,
the system obtains 50 free blocks and a pointer where to find more. The disk allocation algo­
rithms are very straightforward. Since all allocation is in fixed-size block~ and there is strict
accounting of space, there is no need to compact or garbage collect. However, as disk space
becomes dispersed, latency gradually increases. Some installations choose to occasionally com­
pact disk space to reduce latency.

An i-node contains 13 disk addresses. The first 10 of these addresses point directly at the
first 10 blocks of a file'. If a file is larger than 10 blocks (5,120 bytes), then the eleventh
address points at a block that contains the addresses of the next 128 blocks of the file. If the
file is still larger than this (70,656 bytes), then the twelfth block points at up to 128 blocks,
each pointing to 128 blocks of the file. Files yet larger (8,459,264 bytes) use the thirteenth
address for a "triple indirect" address. The algorithm ends here with the maximum file size of
1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure simply by adding a new
type of file, the directory. A directory is accessed exactly as an ordinary file. It cont8ins 16-
byte entries consisting of a 14-byte name and an i-number. The root of the hierarchy is at a
known i-number (viz., 2). The file system structure allows an arbitrary, directed graph of direc­
tories with regular files linked in at arbitrary places in this graph. In fact, very early UNIX sys­
tems used such a structure. Administration of such a structure became so chaotic that later sys­
tems were restricted to a directory tree. Even now, with regular files linked multiply into arbi­
trary places in the tree, accounting for space has become a problem. It may become necessary
to restrict the entire structure to a tree, and allow a new form of linking that is subservient to
the tree structure.

The file system allows easy creation, easy removal, easy random accessing, and very easy
space allocation. With most physical addresses confined to a small contiguous section of disk, it
is also easy to dump, restore, and check the consistency of the file system. Large files suffer
from indirect addressing, but the cache prevents most of the implied physical I/O without
adding much· execution. The space overhead properties of this scheme are quite good. For
example, on one particular file system, there are 25,000 files containing 130M bytes of data-file
content. The overhead (i-node, indirect blocks, and last block breakage) is about II.5M bytes.
The directory structure to support these files has about 1,500 directories containing 0.6M bytes
of directory content and about 0.5M bytes of overhead in accessing the directories. Added up
any way, this comes out to less than a 10 percent overhead for actual stored data. Most sys­
tems have this much overhead in padded trailing blanks alone.

·8-

4.1. File system implementation

. Because the i-node defines a file, the implementation of the file system centers .around
access to the i-node. The system maintains a table of all active i-nodes. As a new file is
accessed, the system locates the corresponding i-node, allocates an i-node table entry, and reads
the i-node into primary memory. As in the buffer cache, the table entry is considered to be the
current version of the i-node. Modifications t9 the i-node are made to the table entry. When
the last access to the i-node gpes away, the table entry is copied back to the secondary store i­
list and the table entry is freed.

All I/O operations on files are carried out with the aid of the corresponding i-node table
entry. The accessing of a file is a straightforward implementation of the algorithms mentioned
previously. The user is not aware of i-nodes and i-numbers. References to the file system are
made in terms of path names of the directory tree. Converting a path name into an i-node
table entry is also straightforward. Starting at some known i-node (the root or the current
directory of some process), the next component of the path name is searched by reading the
directory. This gives an i-number and an implied device (that of the directory). Thus the next
i-node table entry can be accessed. If that was the last component of the path name, then this
i-node is the result. If not, this i-node is the directory needed to look up the next component
of the path name, and the algorithm is repeated.

The user process accesses the file system with certain primitives. The most common of
these are open, create, read, write, seek, and close. The data structures maintained are shown
in Fig. 2.

OPEN FILE
TABLE

PER·USER OPEN
FILE TABLE

ACTIVE I·NODE
TABLE

{
FILE }
MAPPING
ALGORITHMS

Fig. 2-File system data structure.

jSWAPPED
PERIUSER

}
RESIDENT
PER/SYSTEM

SECONDARY
STORAGE
PERI
FILE SYSTEM

In the system data segment associated with a user, there is room for some (usually between 10
and 50) open files. This open file table consists of pointers that can be used to access
corresponding i-node table entries. Associated with each of these open files is a current I/O
pointer. This is a byte offset of the next read/write operation on the file. The system treats
each read/write request as random with an implied seek to the I/O pointer. The user usually
thinks of the file as sequential with the 110 pointer automatically counting the number of bytes
that have been read/written from the file. The user may, of course. perform random 110 by
setting the 110 pointer before reads/writes.

With file sharing, it is necessary to allow related processes to share a common 110 pointer

- 9 -

and yet have separate I/O pointers for independent processes that access the same file. With
these two conditions, the I/O pointer cannot reside in the i-node table nor can it reside in the
list of open files for the process. A new table (the open file table) was invented for the sole
purpose of holding the I/O pointer. Processes that share the same open file (the result of
forks) share a common open file table entry. A separate open of the same file will only share
the i-node table entry, but will have distinct open file table entries.

The main file system pri.mitives are implemented as follows. open converts a file system
path name into an i-node table entry. A pointer to the i-node table entry is placed in a newly
created open file table entry. A pointer to the file table entry is placed.in the system data seg­
ment for the process. create first creates a new i-node entry, writes the i-number into a direc­
tory, and then builds the same structure as for an open. read and write just access the i-node
entry as described above. seek simply manipulates the I/O pointer. No physical seeking is
done. close just frees the structures built by open and create. Reference counts are kept on
the open file table entries and the i-node table entries to free these structures after the last
reference goes away. unlink simply decrements the count of the number of directories point­
ing at the given i-node. When the last reference to an i-node table entry goes away, if the i­
node has no directories pointing to it, then the file is removed and the i-node is freed. This
delayed removal of files prevents problems arising from removing active files. A file may be
removed while still open. The resulting unnamed file vanishes when the file is closed. This is
a method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of
implied seeks before each read or write in order to implement first-in-first-out. There are also
checks and synchronization to prevent the writer from grossly outproducing the reader and to
prevent the reader from overtaking the writer. .

4.2. Mounted file systems.
The file system of a UNIX system starts with some designated block device formatted as

described above to contain a hierarchy. The root of this structure is the root of the UNIX file
system. A second formatted block device may be mounted at any leaf of the current hierarchy.
This logically extends the current hierarchy. The implementation of mounting is trivial. A
mount table is maintained containing pairs of designated leaf i-nodes and block devices. When
converting a path name into an i-node, a check is made to see if the new i-node is a designated
leaf. If it is, the i-node of the root of the block device replaces it.

Allocation of space for a file is taken from the free pool on the device on which the file
lives. Thus a file system consisting of many mounted devices does not have a common pool of
free secondary storage space. This separation of space on different devices is necessary to allow
easy unmounting of a device.

4.3. Other system functions

There are some other things that the system does for the user-a little accounting, a little
tracing/debugging, and a little access protection. Most of these things are not very well
developed ·because our use of the system in computing science research does not need them.
There are some features that are missed in some applications, for example, better inter-process
communication.

The UNIX kernel is an I/O multiplexer more than a complete operating system. This is as
it should be. Because of this outlook, many features are found in most other operating systems
that are missing from the UNIX kernel. For example, the UNIX kernel does not support file
access methods, file disposition, file formats, file maximum size, spooling, command language,
logical records, physical records, assignment of logical file names, logical file names, more than
one character set, an operator's console, an operator, log-in, or log-out. Many of these things
are symptoms rather than features. Many of these things are implemented in user software
using the kernel as a tool. A good example of this is the command language.S Each user may
have his own command language. Maintenance of such code is as easy as maintaining user

- 10-

code. The idea of implementing "system" code with general user primitives comes directly
from MULTICS.6

References

1. R. E. Griswold and D. R. Hanson, "An Overview of SLS," SIGPLAN Notices 12(4) pp.
40-S0 (April 1977).

2. E. W. Dijkstra, "Cooperating Sequential Processes," pp. 43-112 in Programming
Languages, ed. F. Genuys,Academic Press, New York (968).

3. J. A. Hawley and W. B. Meyer, "MUNIX, A Multiprocessing Version of UNIX," M.S.
Thesis, Naval Postgraduate School, Monterey, Cal. (197S).

4. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Bell Sys. Tech. J.
57 (6) pp. 1905-1929 (1978).

S. S. R. Bourne, "UNIX Time-Sharing System: The UNIX Shell," Bell Sys. Tech. J. 57 (6) pp.
1971-1990 (978).

6. E. I. Organick, The MULTICS System, M.I.T. Press, Cambridge, Mass. (1972).

Introduction

A Tour Through the Portable C Compiler

s. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

A C compiler has been implemented that has proved to be quite portable, serving as the
basis for C compilers on roughly a dozen machines, including the Honeywell 6000, IBM 370,
and Interdata 8/32. The compiler is highly compatible with the C language standard. 1

Among the goals of this compiler are portability, high reliability, and the use of state-of­
the-art techniques and tools wherever practical. Although the efficiency of the compiling pro­
cess is not a primary goal, the compiler is efficient enough, and produces good enough code, to
serve as a production compiler.

The language implemented is highly compatible with the current PDP-ll version of C.
Moreover, roughly 75% of the compiler, including nearly all the syntactic and semantic rou­
tines, is machine independent. The compiler also serves as the major portion of the program
lint, described elsewhere.2

A number of earlier attempts to make portable compilers are worth noting. While on
CO-OP assignment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was
the basis of his Master's Thesis at M.I.T.3 This compiler was very slow and complicated, and
contained a number of rather serious implementation difficulties~ nevertheless, a number of
Snyder's ideas appear in this work.

Most earlier portable compilers, including Snyder's, have proceeded by defining an inter­
mediate language, perhaps based on three-address code or code for a stack machine, and writing
a machine independent program to translate from the source code to this intermediate code.
The intermediate code is then read by a second pass, and interpreted or compiled. This
approach is elegant, and has a number of advantages, especially if the target machine is far
removed from the host. It suffers from some disadvantages as well. Some constructions, like
initialization and subroutine prologs, are difficult or expensive to express in a machine indepen­
dent way that still allows them to be easily adapted to the target assemblers. Most of these
approaches require a symbol table to be constructed in the second (machine dependent) pass,
andlor require powerful target assemblers. Also, many conversion operators may be generated
that have no effect on a given machine, but may be needed on others (for example, pointer to
pointer conversions usually do nothistg in C, but must be generated because there are some
machines where they are significant>.

For these reasons, the first pass of the portable compiler is not entirely machine indepen­
dent. It contains some machine dependent features, such as initialization, subroutine prolog
and epilog, certain storage allocation functions, code for the switch statement, and code to
throw out unneeded conversion operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C
compiler has roughly ·600 machine dependent lines of source out of 4600 in Pass I, and 1000
out of 3400 in Pass 2. In total, 1600 out of 8000, or 20%, of the total source is machine depen­
dent (12% in Pass 1, 30% in Pass 2). These percentages can be expected to rise slightly as the
compiler is tuned. The percentage of machine-dependent code for the IBM is 22%, for the
Honeywell 25%. If the assembler format and structure were the same for all these machines,

- 2 -

perhaps another 5-10% of the code would become machine independent.

. These figures are sufficiently misleading as to be almost meaningless. A large fraction of
the machine dependent code can be converted in a straightforward, almost mechanical way. On
the other hand, a certain amount of the code requres hard intellectual effort to convert, since·
the algorithms embodied in this part of the code are typically complicated and machine depen­
dent.

To summarize, however; if you need a C compiler written for a machine with a reason­
able architecture, the compiler is already three quarters finished!

Overview

This paper discusses the structure and organization of the portable compiler. The intent is
to give the big picture, rather than discussing the details of a particular machine implementa­
tion. After a brief overview and a discussion of the source file structure, the paper describes
the major data structures, and then delves more closely into the two passes. Some of the
theoretical work on which the compiler is based, and its application to the compiler, is discussed
elsewhere.4 One of the' major design issues in any C compiler, the design of the calling
sequence and stack frame, is the subject of a separate memorandum.s

The compiler consists of two passes, pass/ and pass2, that together turn C source code
into assembler code for the target machine. The two passes are preceded by a preprocessor,
that handles the #define and #include statements, and related features (e.g., #ifdef, etc.). It
is a nearly machine independent program, and will not be further discussed here.

The output of the preprocessor is a text file that is read as the standard input of the first
pass. This produces as standard output another text file that becomes the standard input of the
second pass. The second pass produces, as standard output, the desired assembler language
source code. The preprocessor and the two passes all write error messages on the standard
error file. Thus the compiler itself makes few demands on the I/O library support, aiding in the
bootstrapping process.

Although the compiler is divided into two passes, this represents historical accident more
than deep necessity .. In fact, the compiler can optionally be loaded so that both passes operate
in the same program. This "one pass" operation eliminates the overhead of reading and writ­
ing the intermediate file, so the compiler operates about 30% faster in this mode. It also occu­
pies about 30% more space than the larger of the two component passes.

Because the compiler is fundamentally structured as two passes, even when loaded as one,
this document primarily describes the two pass version.

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also
constructs parse trees for expressions, and keeps track of the types of the nodes in these trees.
Additional code is devoted to initialization. Machine dependent portions of the first pass serve
to generate subroutine pro logs and epilogs, code for switches, and code for branches, label
definitions, alignment operations, changes of location counter, etc.

The intermediate file is a text file organized into lines. Lines beginning with a right
parenthesis are copied by the second pass directly to its output file, with the parenthesis
stripped off. Thus, when the first pass produces assembly code, such as subroutine pro logs,
etc., each line is prefaced with a right parenthesis; the second pass passes these lines to through
to the assembler.

The major job done by the second pass is generation of code for expressions. The expres­
sion parse trees produced in the first pass are written onto the intermediate file in Polish Prefix
form: first, there is a line beginning with a period, followed by the source file line number and
name on which the expression appeared (for debugging purposes). The successive lines
represent the nodes of the parse tree, one node per line. Each line contains the node number,
type, and any values (e.g., values of constants) that may appear in the node. Lines represent­
ing nodes with descendants are immediately followed by the left subtree of descendants, then
the right. Since the number of descendants of any node is completely determined by the node

r

- 3 -

number, there is no need to mark the end of the tree .

. There are only two other line types in the intermediate file. Lines beginning with a left
square bracket ('[') represent the beginning of blocks (delimited by (...) in the C source);
lines beginning with right square brackets (']') represent the end of blocks. The remainder of
these lines tell how much stack space, and how many register variables, are currently 111 use.

Thus, the second pass reads the intermediate files, copies the ')' lines, makes note of the
information in the '[' and ,]' lines, and devotes most of its effort to the '.' lines and their asso­
ciated expression trees, turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees that are built by the first pass
have been declared to have room for the second pass information as well. Instead of writing
the trees onto an intermediate file, each tree is transformed in place into an acceptable form for
the code generator. The code generator then writes the result of compiling this tree onto the
standard output. Instead of '[' ailld ']' lines in the intermediate file, the information is passed
directly to the second pass routines. Assembly code produced by the first pass is simply written
out, without the need for ')' at the head of each line.

The Source Files

The compiler source consists of 22 source files. Two files, manifrst and macdejs, are
header files included with all other files. Manifest has declarations for the node numbers, types,
storage classes, and other global data definitions. Macde/s has machine-dependent definitions,
such as the size and alignment of the various data representations. Two machine -independent
header files, mfilel and m/ile2, contain the data structure and manifest definitions for the first
and second passes, respectively. In the second pass, a machine· dependent header file,
mac2de/s, contains declarations of register names, etc.

There is a file, common, containing (machine independent> routines used in both passes.
These include routines for allocating and freeing trees, walking over trees, printing debugging
information, and printing error messages. There are two dummy files, comml.c and comm2.c,
that simply include common within the scope of the appropriate passl or pass2 header files.
When the compiler is loaded as a single pass, common only needs to be included once: comm2.c
is not needed.

Entire sections of this document are devoted to the detailed structure of the passes. For
the moment, we just give a brief description of the files. The first pass is obtained by compiling
and loading scan.c, cgram.c, xdejs.c, pftn.c, trees.c, optim.c, local.c, code.e, and eomml.c. Sean.c is
the lexical analyzer, which is used by cgram.c, the result of applying Yaech to the input grammar
egram.y. Xdejs.c is a short file of external definitions. Pftn.e maintains the symbol table, and
does initialization. Trees.e builds the expression trees, and computes the node types. Optim.e
does some machine independent optimizations on the expression trees. Comml.c includes com­
mon, that contains service routines common to the two passes of the compiler. All the above
files are machine independent. The files local.c and code.c contain machine dependent code for
generating subroutine prologs, switch cod~, and the like.

The second pass is produced by compiling and loading reader.c, allo.c, match-c, comml.c,
order.c, local.e, and table.c. Reader.c reads the intermediate file, and controls the major logic of
the code generation. A 1I0.c keeps track of busy and free registers. Match.c controls the match­
ing of code templates to subtrees of the expression tree to be compiled. Comm2.c includes the
file common, as in the first pass. The above files are machine independent. Order.c controls the
machine dependent details of the code generation strategy. Local2.c has many small machine
dependent routines, and tables of opcodes, register types, etc. Table.c has the code template
tables, which are also clearly machine dependent.

- 4 -

Data Structure Considerations.
This section discusses the node numbers, type words, and expression trees, used

throughout both passes of the compiler.

The file manifest defines those symbols used throughout both passes. The intent is to use
the same symbol name (e.g., MINUS) for the given operator throughout the lexical analysis,
parsing, tree building, and code generation phases; this requires some synchronization with the
Yacc input file, cgram.y, as well.

A token like MINUS may be seen in the lexical analyzer before it is known whether it is a
unary or binary operator; clearly, it is necessary to know this by the time the parse tree is con­
structed. Thus, an operator (really a macro) called UNARY is provided, so that MINUS and
UNARY MINUS are both distinct node numbers. Similarly, many binary operators exist in an
assignment form (for example, - =), and the operator ASG may be applied to such node
names to generate new ones, e.g. ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants), a unary
operator (one descendant) or a binary operator (two descendants). The macro optype(o) returns
one of the manifest constants L TYPE, UTYPE, or BITYPE, respectively, depending on the
node number o. Similarly, asgop(o) returns true if 0 is an assignment operator number (=,
+ =, etc.), and logop(o) returns true if 0 is a relational or logical (&&, II, or !) operator.

C has a rich typing structure, with a potentially infinite number of types. To begin with,
there are the basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as
UCHAR, USHORT, UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a
structure), UNIONTY, and ENUMTY. Then, there are three operators that can be applied to
types to make others: if t is a type, we may potentially have types pointer to t, function returning
t, and array of t's generated from t. Thus, an arbitrary type in C consists of a basic type, and
zero or more of these operators.

In the compiler, a type is represented by an unsigned integer; the rightmost four bits hold
the basic type, and the remaining bits are divided into two-bit fields, containing 0 (no opera­
tor), or one of the three operators described above. The modifiers are read right to left in the
word, starting with the two-bit field adjacent to the basic type, until a field with 0 in it is
reached. The macros PTR, FTN, and AR Y represent the pointer to, function returning, and array
of operators. The macro values are shifted so that they align with the first two-bit field; thus
PTR + INT represents the type for an integer pointer, and

ARY + (PTR < <2) + (FTN < <4) + DOUBLE

represents the type of an array of pointers to functions returning doubles.

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE(t) gives
the basic type. ISPTRft), ISAR Y(t), and ISFTN(t) ask if an object of this type is a pointer,
array, or a function, respectively. MODTYPE(t,b) sets the basic type of t to b. DECREF(t)
gives the type resulting from removing the first operator from t. Thus, if t is a pointer to t', a
function returning t', or an array of t', then DECREF(t) would equal t'. INCREF(t) gives the
type representing a pointer to t. Finally, there are operators for dealing with the unsigned
types. ISUNSIGNED(t) returns true if t is one of the four basic unsigned types; in this case,
DEUNSIGN(t) gives the associated 'signed' type. Similarly, UNSIGNABLE(t) returns true if I is
one of the four basic types that could become unsigned, and ENUNSIGN(f} returns the
unsigned analogue of t in this case.

The other important global data structure is that of expression trees. The actual shapes of
the nodes are given in mli/el and mli/e2. They are not the same in the two passes; the first pass
nodes contain dimension and size information, while the second pass nodes contain register
allocation information. Nevertheless, all nodes contain fields called op, containing the node
number, and type, containing the type word. A function called tal/ocO returns a pointer to a
new tree node. To free a node, its op field need merely be set to FREE. The other fields in
the node will remain intact at least until the next allocation.

- 5 -

Nodes representing binary operators contain fields, left and right, that contain pointers to
the left and right descendants. Unary operator nodes have the left field, and a value field called
rval Leaf nodes, with no descendants, have two value fields: Ivai and rval.

At appropriate times, the function tcheckO can be called, to check that there are no busy
nodes remaining. This is used as a compiler consistency check. The function tcopy(p) takes a
pointer p that points to an expression tree, and returns a pointer to a disjoint copy of the tree.
The function walkf{p,J} performs a postorder walk of the tree pointed to by p, and applies the
function Ito each node. The function fwalkfp,f,d) does a preorder walk of the tree pointed to
by p. At each node, it calls a function f, passing to it the node pointer, a value passed down
from its ancestor, and two pointers to values to be passed down to the left and right descen­
dants (if any). The value d is the value passed down to the root. Fwalk is used for a number
of tree labeling and debugging activities.

The other major data structure, the symbol table, exists only in pass one, and will be dis­
cussed later.

Pass One

The first pass does lexical analysis, parsing, symbol table maintenance, tree building,
optimization, and a number of machine dependent things. This pass is largely machine
independent, and the machine independent sections can be pretty successfully ignored. Thus,
they will be only sketched here.

Lexical Analysis

The lexical analyzer is a conceptually simple routine that reads the input and returns the
tokens of the C language as it encounters them: names, constants, operators, and keywords.
The conceptual simplicity of this job is confounded a bit by several other simple jobs that
unfortunately must go on simultaneously. These include

• Keeping track of the current filename and line number, and occasionally setting this infor­
mation as the result of preprocessor control lines.

• Skipping comments.

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well
as character strings.

To achieve speed, the program maintains several tables that are indexed into by character
value, to tell the lexical analyzer what to do next. To achieve portability, these tables must be
initialized each time the compiler is run, in order that the table entries reflect the local charac­
ter set values.

Parsing

As mentioned above, the parser is generated by Yacc from the grammar on file cgram.y.
The grammar is relatively readable, but contains some unusual features that are worth com­
ment.

Perhaps the strangest feature of the grammar is the treatment of declarations. The prob­
lem is to keep track of the basic type and the storage class while interpreting the various stars,
brackets, and parentheses that may surround a given name. The entire declaration mechanism
must be recursive, since declarations may appear within declarations of structures and unions,
or even within a sizeof construction inside a dimension in another declaration!

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to han­
dle constructions where a lot of left context information must be kept around. The problem is
that the original PDP-ll compiler is top-down in implementation, and some of the semantics of
C reflect this. In a top-down parser, the input rules are restricted somewhat, but one can natur­
ally associate temporary storage with a rule at a very early stage in the recognition of that rule.
In a botto!O_~l.IP parser, there is more freedom in the specification of rules, but it is more

- 6 -

difficult to know what rule is being matched until the entire rule is· seen. The parser described
by cgram.c makes effective use of the bottom-up parsing mechanism in some places (notably
the treatment of expressions), but struggles against the restrictions in others. The usual result
is that it is necessary to run a stack of values "on the side", independent of the Yacc value
stack, in order to be able to store and access information deep within inner constructions,
where the relationship of the rules being recognized to the total picture is not yet clear.

In the case of declarations, the attribute ihformation (type, etc,) for a declaration is care­
fully kept immediately to the left of the declarator (that part of the declaration involving the
name). In this way, when it is time to declare the name, the name and the type information
can be quickly brought together. The "$0" mechanism of Yacc is used to accomplish this.
The result is not pretty, but it works. The storage class information changes more slowly, so it
is kept in an external variable, and stacked if necessary. Some of the grammar could be consid­
erably cleaned up by using some more recent features of Yacc, notably actions within rules and
the ability to return multiple values for actions.

A stack is also used to keep track of the current location to be branched to when a break
or continue statement is processed.

This use of external stacks dates from the time when Yacc did not permit values to be
structures. Some, or most, of this use of external stacks could be eliminated by redoing the
grammar to use the mechanisms now provided. There are some areas, however, particularly
the processing of structure, union, and enum declarations, function pro logs, and switch state­
ment processing, when having all the affected data together in an array speeds later processing;
in this case, use of external storage seems essential.

The cgram.y file also contains some small functions used as utility functions in the parser.
These include routines for saving case values and labels in processing switches, and stacking
and popping values on the external stack described above.

Storage Classes

C has a finite, but fairly extensive, number of storage classes available. One of the com­
piler design decisions was to process the storage class information totally in the first pass; by the
second pass, this information must have been totally dealt with. This means that all of the
storage allocation must take place in the first pass, so that references to automatics and parame­
ters can be turned into references to cells lying a certain number of bytes offset from certain
machine registers. Much of this transformation is machine dependent, and strongly depends on
the storage class.

The classes include EXTERN (for externally declared, but not defined variables),
EXTDEF (for external definitions), and similar distinctions for UST A TIC and STATIC,
UFORTRAN and FORTRAN (for fortran functions) and ULABEL and LABEL. The storage
classes REGISTER and AUTO are obvious, as are STNAME, UNA ME, and ENAME (for
structure, union, and enumeration tags), and the associated MOS, MOU, and MOE (for the
members). TYPEDEF is treated as a storage class as well. There are two special storage
classes: PARAM and SNULL. SNULL is used to distinguish the case where no explicit storage
class has been given; before an entry is made in the symbol table the true storage class is
discovered. Similarly, PARAM is used for the temporary entry in the symbol table made
before the declaration of function parameters is completed.

The most complexity in the storage class process comes from bit fields. A separate
storage class is kept for each width bit field; a k bit bit field has storage class k plus FIELD.
This enables the size to be quickly recovered from the storage class.

r
- 7 -

Symbol Table Maintenance .

. The symbol table routines do far more than simply enter names into the symbol table;
considerable semantic processing and checking is done as well. For example, if a new declara­
tion comes in, it must be checked to see if there is a previous declaration of the sam~ symbol.
If there is, there are many cases. The declarations may agree and be compatible (for example,
an extern declaration can appear twice) in which case the new declaration is ignored. 'The new
declaration may add information (such as an explicit array dimension) to an already present
declaration. The new declaration may be different, but still correct (for example, an extern
declaration of something may be entered, and then later the definition may be seen). The new
declaration may be incompatible, but appear in an inner block; in this case, the old declaration
is carefully hidden away, and the new one comes into force until the block is left. Finally, the
declarations may be incompatible, and an error message must be produced.

A number of other factors make for additional complexity. The type declared by the user
is not always the type entered into the symbol table (for example, if an formal parameter to a
function is declared to be an array, C requires that this be changed into a pointer before entry
in the symbol table). Moreover, there are various kinds of illegal types that may be declared
which are difficult to check for syntactically (for example, a function returning an array).
Finally, there is a strange feature in C that requires structure tag names and member names for
structures and unions to be taken from a different logical symbol table than ordinary identifiers.
Keeping track of which kind of name is involved is a bit of struggle (consider typedef names
used within structure declarations, for example).

The symbol table handling routines have been rewritten a number of times to extend
features, improve performance, and fix bugs. They address the above problems with reasonable
effectiveness but a singular lack of grace.

When a name is read in the input, it is hashed, and the routine lookup is called, together
with a flag which tells· which symbol table should be searched (actually, both symbol tables are
stored in one, and a flag is used to distinguish individual entries). If the name is found, lookup
returns the index to the entry found; otherwise, it makes a new entry, marks it UNDEF
(undefined), and returns the index of the new entry. This index is stored in the rval field of a
NAME node.

When a declaration is being parsed, this NAME node is made part of a tree with UNARY
MUL nodes for each *, LB nodes for each array descriptor (the right descendant has the dimen­
sion), and UNARY CALL nodes for each function descriptor. This tree is passed to the rou­
tine tymerge, along with the attribute type of the whole declaration; this routine collapses the
tree to a single node, by calling tyreduce, and then modifies the type to reflect the overall type
of the declaration.

Dimension and size information is stored in a table called dimlab. To properly describe a
type in C, one needs not just the type information but also size information (for structures and
enums) and dimension information (for arrays). Sizes and offsets are dealt with in the com­
piler by giving the associated indices into dimtab. Tymerge and tyredllce call dstash to put the
discovered dimensions away into the dimtab array. Tymerge returns a pointer to a single node
that contains the symbol table index in its I"\'al field, and the size and dimension indices in fields
csiz and cdim, respectively. This information is properly considered part of the type in the first
pass, and is carried around at all times.

To enter an element into the symbol table, the routine de./id is called: it is handed a
storage class, and a pointer to the node produced by tymerge. De./id calls .lixtype, which adjusts
and checks the given type depending on the storage class, and converts null types appropriately.
It then calls .fixe/ass, which does a similar job for the storage class; it is here, for example, that
register declarations are either allowed or changed to auto.

The new declaration is now compared against an older one, if present, and several pages
of validity checks performed. If the definitions are compatible, with possibly some added infor­
mation, the processing is straightforward. If the definitions differ, the block levels of the

- 8 -

current and the old declaration are compared. The current block level is kept in blevel, an
external variable; the old declaration level is kept in the symbol table. Block level 0 is for
external declarations, 1 is for arguments to functions, and 2 and above are blocks within a func­
tion. If the current block level is the same as the old declaration, an error results. If the
current block level is higher, the new declaration overrides the old. This is done by marking
the old symbol table entry "hidden", and making a new entry, marked "hiding". Lookup will
skip over hidden entries. When a block is left, the symbol table is searched, and any entries
defined in that block are destroyed; if they hid other entries, the old entries are "unhidden".

This nice block structure is warped a bit because labels do not follow the block structure
rules (one can do a goto into a block, for example); default definitions of functions in inner
blocks also persist clear out to the outermost scope. This implies that cleaning up the symbol
table after block exit is more subtle than it might first seem.

For successful new definitions, d~fid also initializes a "general purpose" field, af!'set, in the
symbol table. It contains the stack offset for automatics and parameters, the register number
for register variables, the bit offset into the structure for structure members, and the internal
label number for static variables and labels. The offset field is set by folloc for bit fields, and
dc/strlfct for structures and unions.

The symbol table entry itself thus contains the name, type word, size and dimension
offsets, offset value, and declaration block level. It also has a field of flags, describing what
symbol table the name is in, and whether the entry is hidden, or hides another. Finally, a field
gives the line nlimber of the last use, or of the definition, of the name. This is used mainly for
diagnostics, but is useful to lim as well.

In some special cases, there is more than the above amount of information kept for the
use of the compiler. This is especially true with structures; for use in initialization, structure
declarations must have access to a list of the members of the structure. This list is also kept in
dimtob. Because a structure can be mentioned long before the members are known, it is neces­
sary to have another level of indirection in the table. The two words following the csiz entry in
dimtab are used to hold the alignment of the structure, and the index in dim tab of the list of
members. This list contains the symbol table indices for the structure members, terminated by
a -1.

Tree Building

The portable compiler transforms expressions into expression trees. As the parser recog­
nizes each rule making up an expression, it calls buildtree which is given an operator number,
and pointers to the left and right descendants. Buildtree first examines the left and right des­
cendants, and, if they are both constants, and the operator is appropriate, simply does the con­
stant computation at compile time, and returns the result as a constant. Otherwise, bllildtree
allocates a node for the head of the tree, attaches the descendants to it, and ensures that
conversion operators are generated if needed, and that the type of the new node is consistent
with the types of the operands. There is also a considerable amount of semantic complexity
here; many combinations of types afe illegal, and the portable compiler makes a strong effort to
check the legality of expression types completely. This is done both for lint purposes, and to
prevent such semantic errors from being passed through to the code generator.

The heart of buildtree is a large table, accessed by the routine opact, This routine maps
the types of the left and right operands into a rather smaller set of descriptors, and then
accesses a table (actually encoded in a switch statement> which for each operator and pair of
types causes an action to be returned. The actions are logical or's of a number of separate
actions, which may be car.ried out by bllildtree. These component actions may include checking
the left side to ensure that it is an Ivalue (can be stored into), applying a type conversion to the
left or right operand, setting the type of the new node to the type of the left or right operand,
calling various routines to balance the types of the left and right operands, and suppressing the
ordinary conversion of arrays and function operands to pointers. An important operation is
'OTHER, which causes some special code to be invoked in bUildtree, to handle issues which are

r

- 9 -

unique to a particular operator. Examples of this are structure and union reference (actually
handled by the routine stre/), the building of NAME, ICON, STRING and FCON (floating
point constant) nodes, unary * and &, structure assignment, and calls. In the case of unary *
and &, buildtree will cancel a * applied to a tree, the top node of which is &, and conversely.

Another special operation is PUN; this causes the compiler to check for type mismatches,
such as intermixing pointers and integers.

The treatment of conversion operators is still a rather strange area of the compiler (and of
CD. The recent introduction of type casts has only confounded this situation. Most of the
conversion operators are generated by calls to tymatch and ptmatch, both of which are given a
tree, and asked to make the operands agree in type. Ptmatch treats the case where one of the
operands is a pointer; tymatch treats all other cases. Where these routines have decided on the
proper type for an operand, they call makety, which is handed a tree, and a type word, dimen­
sion offset, and size offset. If necessary, it inserts a conversion operation to make the types
correct. Conversion operations are never inserted on the left side of assignment operators,
however. There are two conversion operators used; PCONV, if the conversion is to a non-basic
type (usually a pointer), and SCONV, if the conversion is to a basic type (scalar).

To allow for maximum flexibility, every node produced by buildtree is given to a machine
dependent routine, c1ocal, immediately after it is produced. This is to allow more or less
immediate rewriting of those nodes which must be adapted for the local machine. The conver­
sion operations are given to c10cal as well; on most machines, many of these conversions do
nothing, and should be thrown away (being careful to retain the type). If this operation is done
too early, however, later calls to buildtree may get confused about correct type of the subtrees;
thus clocal is given the conversion ops only after the entire tree is built. This topic will be dealt
with in more detail later.

Initialization
Initialization is one of the messier areas in the portable compiler. The only consolation is

that most of the mess takes place in the machine independent part, where it is may be safely
ignored by the implementor of the compiler for a particular machine.

The basic problem is that the semantics of initialization really calls for a co-routine struc­
ture; one collection of programs reading constants from the input stream, while another,
independent set of programs places these constants into the appropriate spots in memory. The
dramatic differences in the local assemblers also come to the fore here. The parsing problems
are dealt with by keeping a rather extensive stack containing the current state of the initializa­
tion; the assembler problems are dealt with by having a fair number of machine dependent rou­
tines.

The stack contains the symbol table number, type, dimension index, and size index for
the current identifier being initialized. Another entry has the offset, in bits, of the beginning of
the current identifier. Another entry keeps track of how many elements have been seen, if the
current identifier is an array. Still another entry keeps track of the current member of a struc­
ture being initialized. Finally, there is.an entry containing flags which keep track of the current
state of the initialization process (e.g., tell if a } has been seen for the current identifier,}

When an initialization begins, the routine beginit is called; it handles the alignment restric­
tions, if any, and calls instk to create the stack entry. This is done by first making an entry on
the top of the stack for the item being initialized. If the top entry is an array, another entry is
made on the stack for the first element. If the top entry is a structure, another entry is made
on the stack for the first member of the structure. This continues until the top element of the
stack is a scalar. I nstk then r~turns, and the parser begins collecting initializers.

When a constant is obtained, the routine doinit is called; it examines the stack, and does
whatever is necessary to assign the current constant to the scalar on the top of the stack. gots­
cal is then called, which rearranges the stack so that the next scalar to be initialized gets placed
on tOI? .of the stack. This process continues until the end of the initializers; endi"it cleans up. If

- 10 -

a (or) is encountered in the string of initializers, it is handled by calling ilbrace or irbrace,
respecti vely.

A central issue is the treatment of the "holes" that arise as a result of alignment restric­
tions or explicit requests for holes in bit fields. There is a global variable, ino./f, which contains
the current offset in the initialization (all offsets in the first pass of the compiler are in bits).
Doinit figures out from the top entry on the stack the expected bit offset of the next identifier;
it calls the machine dependent routine iriforce which, in a machine dependent way, forces the
assembler to set aside space if need be so that the next scalar seen will go into the appropriate
bit offset position. The scalar itself is passed to one of the machine dependent routines fincode
(for floating point initialization), incode (for fields, and other initializations less than an int in
size), and cinit (for all other initializations). The size is passed to' all these routines, and it is up
to the machine dependent routines to ensure that the initializer occupies exactly the right size.

Character strings represent a bit of an exception. If a character string is seen as the ini­
tializer for a pointer, the characters making up the string must be put out under a different
location counter. When the lexical analyzer sees the quote at the head of a character string, it
returns the token STRING, but does not do anything with the contents. The parser calls getstr,
which sets up the appropriate location counters and flags, and calls Ixstr to read and process the
contents of the string.

If the string is being used to initialize a character array, Ixstr calls putbyte, which in effect
simulates doinit for each character read. If the string is used to initialize a character pointer,
Ixstr calls a machine dependent routine, bycode, which stashes away each character. The pointer
to this string is then returned, and processed normally by doinit.

The null at the end of the string is treated as if it were read explicitly by Ixstr.

Statements
The first pass addresses four main areas; declarations, expressions, initialization, and

statements. The statement processing is relatively simple; most of it is carried out in the parser
directly. Most of the logic is concerned with. allocating label numbers, defining the labels, and
branching appropriately. An external symbol, reached, is 1 if a statement can be reached, 0
otherwise; this is used to do a bit of simple flow analysis as the program is being parsed, and
also to avoid generating the subroutine return sequence if the subroutine cannot "fall through"
the last statement.

Conditional branches are handled by generating an expression node, CBRANCH, whose
left descendant is the conditional expression and the right descendant is an ICON node contain­
ing the internal label number to be branched to. For efficiency, the semantics are that the label
is gone to if the condition is false.

The switch statement is compiled by collecting the case entries, and an indication as to
whether there is a default case; an internal label number is generated for each of these, and
remembered in a big array. The expression comprising the value to be switched on is compiled
when the switch keyword is encountered, but the expression tree is headed by a special node,
FORCE, which tells the code generator to put the expression value into a special distinguished
register (this same mechanism is used for processing the return statement). When the end of
the switch block is reached, the array containing the case values is sorted, and checked for
duplicate entries (an error); if all is correct, the machine dependent routine gens witch is called,
with this array of labels and values in increasing order. Genswitch can assume that the value to
be tested is already in the register which is the usual integer return value register.

Optimization
There is a machine independent file, optim.c, which contains a relatively short optimiza­

tion routine, optim. Actually the word optimization is something of a misnomer; the results are
not optimum, only improved, and the routine is in fact not optional; it must be called for
proper operation of the compiler.

- II -

Optim is called after an expression tree is built, but before the code generator is called.
The· essential part of its job is to call clocalon the conversion operators. On most machines,
the treatment of & is also essential: by this time in the processing, the only node which is a
legal descendant of & is NAME. (Possible descendants of * have been eliminated by buildtfee)
The address of a static name is, almost by definition, a constant, and can be represented by an
ICON node on most machines (provided that the loader has enough power). Unfortunately,
this is not universally true; on. some machine, such as the IBM 370, the issue of addressability
rears its ugly head; thus, before turning a NAME node into an ICON node, the machine depen­
dent function andable is called.

The optimization attempts of optim are currently quite limited. It is primarily concerned
with improving the behavior of the compiler with operations one of whose arguments is a con­
stant. In the simplest case, the constant is placed on the right if the operation is commutative.
The compiler also makes a limited search for expressions such as

(x+a)+b

where a and b are constants, and attempts to combine a and b at compile time. A number of
special cases are also examined; additions of 0 and multiplications by I are removed, although
the correct processing of these cases to get the type of the resulting tree correct is decidedly
nontrivial. In some cases, the addition or multiplication must be replaced by a conversion op to
keep the types from becoming fouled up. Finally, in cases where a relational operation is being
done, and one operand is a constant, the operands are permuted, and the operator altered, if
necessary, to put the constant on the right. Finally, multiplications by a power of 2 are changed
to shifts.

There are dozens of similar optimizations that can be, and should be, done. It seems
likely that this routine will be expanded in the relatively near future.

Machine Dependent Stuff

A number of the first pass machine dependent routines have been discussed above. In
general, the routines are short, and easy to adapt from machine to machine. The two excep­
tions to this general rule are clocal and the function prolog and epilog generation routines,
b.kode and e./Code.

Clocal has the job of rewriting, if appropriate and desirable, the nodes constructed by
buildtree. There are two major areas where this is important; NAME nodes and conversion
operations. In the case of NAME nodes, clocal must rewrite the NAME node to reflect the
actual physical location of the name in the machine. In effect, the NAME node must be exam­
ined, the symbol table entry found (through the ITa/ field of the node), and, based on the
storage class of the node, the tree must be rewritten. Automatic variables and parameters are
typically rewritten by treating the reference to the variable as a structure reference, off the
register which holds the stack or argument pointer; the stre./'routine is set up to be called in this
way, and to build the appropriate tree. In the most general case, the tree consists of a unary *
node, whose descendant is a + node, with the stack or argument register as left operand, and a
constant offset as right opel"dnd. In the case of LABEL and internal static nodes, the l"I'al field
is rewritten to be the negative of the internal label number; a negative l"I'al field is taken to be
an internal label number. Finally, a name of class REGISTER must be converted into a REG
node, and the rval field replaced by the register number. In fact, this part of the clocal routine
is nearly machine independent; only for machines with addressability problems (IBM 370
again!) does it have to be noticeably different,

The conversion operator treatment is rather tricky. It is necessary to handle the applica­
tion of conversion operators to constants in cloeal, in order that all constant expressions can
have their values known at compile time. In extreme cases, this may mean that some simula­
tion of the arithmetic of the target machine might have to be done in a cross-compiler. In the
most common case, conversions from pointer to pointer do nothing. For some machines, how­
ever, conversion from byte pointer to short or long pointer might require a shift or rotate

- 12 -

operation, which would have to be generated here.

The extension of the portable compiler to machines where the size of a pointer depends
on its type would be straightforward, but has not yet been done.

The other major machine dependent issue involves the subroutine prolog and epilog gen­
eration. The hard part here is the design of the stack frame and calling sequence; this design
issue is discussed elsewhere.s The routine ~/code is called with the number of arguments the
function is defined with, and. an array containing the symbol table indices of the declared
parameters. B./code must generate the code to establish the new stack frame, save the return
address and previous stack pointer value on the stack, and save whatever registers are to be
used for register variables. The stack size and the number of register variables is not known
when ~{code is called, so these numbers must be referred to by assembler constants, which are
defined when they are known (usually in the second pass, after all register variables, automat­
ics, and temporaries have been seen). The final job is to find those parameters which may have
been declared register, and generate the code to initialize the register with the value passed on
the stack. Once again, for most machines, the general logic of ~/i:od(' remains the same, but the
contents of the pr;lI(lcalls in it will change from machine to machine. £'./i:ode is rather simpler,
having just to generate the default return at the end of a function. This may be nontrivial in
the case of a function returning a structure or union, however.

There seems to be no really good place to discuss structures and unions, but this is as
good a place as any. The C language now supports structure assignment, and the passing of
structures as arguments to functions, and the receiving of structures back from functions. This
was added rather late to C, and thus to the portable compiler. Consequently, it fits in less well
than the older features. Moreover, most of the burden of making these features work is placed
on the machine dependent code.

There are both conceptual and practical problems. Conceptually, the compiler is struc­
tured around the idea that to compute something, you put it into a register and work on it.
This notion causes a bit of trouble on some machines (e.g., machines with 3-address opcodes),
but matches many machines quite well. Unfortunately, this notion breaks down with struc­
tures. The closest that one can come is to keep the addresses of the structures in registers.
The actual code sequences used to move structures vary from the trivial (a multiple byte move)
to the horrible (a function call), and are very machine dependent.

The practical problem is more painful. When a function returning a structure is called,
this function has to have some place to put the structure value. If it places it on the stack, it
has difficulty popping its stack frame. If it places the value in a static temporary, the routine
fails to be reentrant. The most logically consistent way of implementing this is for the caller to
pass in a pointer to a spot where the called function should put the value before returning.
This is relatively straightforward, although a bit tedious, to implement, but means that the
caller must have properly declared the function type, even if the value is never used. On some
machines, such as the Interdata 8/32, the return value simply overlays the argument region
(which on the 8/32 is part of the caller's stack frame>. The caller takes care of leaving enough
room if the returned value is larger than the arguments. This also assumes that the caller know
and declares the function properly.

The PDP-II and the V AX have stack hardware which is used in function calls and
returns; this makes it very inconvenient to use either of the above mechanisms. In these
machines, a static area within the called functionis allocated, and the function return value is
copied into it on return; the function returns the address of that region. This is simple to
implement, but is non-reentrant. However, the function can now be called as a subroutine
without being properly declared, without the disaster which would otherwise ensue. No matter
what choice is taken, the convention is that the function actually returns the address of the
return structure value.

In building expression trees, the portable compiler takes a bit for granted about structures.
It assumes that functions returning structures actually return a pointer to the structure, and it

- 13 -

assumes thaJ a reference to a structure is actually a reference to its address. The structure
assignment operator is rebuilt so that the left operand is the structure being assigned to, but the
right operand is the address of the structure being assigned; this makes it easier to deal with

a=b=c

and similar constructions.

There are four special tree nodes associated with these operations: ST ASG (structure
assignment>, ST ARG (structure argument to a function call), and STCALL and UNARY
STCALL (calls of a function with nonzero and zero arguments, respectively). These four
nodes are unique in that the size and alignment information, which can be determined by the
type for all other objects in C, must be known to carry out these operations; special fields are
set aside in these nodes to contain this information, and special intermediate code is used to
transmit this information.

First Pass Summary

There are may other issues which have been ignored here, partly to justify the title
"tour", and partially because they have seemed to cause little trouble. There are some debug­
ging flags which may be turned on, by giving the compiler's first pass the argument

-X [flags]

Some of the more interesting flags are - Xd for the defining and freeing of symbols, - Xi for
initialization comments, and - Xb for various comments about the building of trees. In many
cases, repeating the flag more than once gives more information; thUS, - Xddd gives more
information than - Xd. In the two pass version of the compiler, the flags should not be set
when the output is sent to the second pass, since the debugging output and the intermediate
code both go onto the standard output.

We turn now to consideration of the second pass.

Pass Two

Code generation is far less well understood than parsing or lexical analysis, and for this
reason the second pass is far harder to discuss in a file by file manner. A great deal of the
difficulty is in understanding the issues and the strategies employed to meet them. Any particu­
lar function is likely to be reasonably straightforward.

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy
in the code generator, and will not get too intimate with the details.

Overview.

It is difficult to organize a code generator to be flexible enough to generate code for a
large number of machines, and still be efficient for anyone of them. Flexibility is also impor­
tant when it comes time to tune the code generator to improve the output code quality. On the
other hand, too much flexibility can lead to semantically incorrect code, and potentially a com­
binatorial explosion in the number of cases to be considered in the compiler.

One goal of the code generator is to have a high degree of correctness. I t is very desirable
to have the compiler detect its own inability to generate correct code, rather than to produce
incorrect code. This goal is achieved by having a simple model of the job to be done (e.g., an
expression tree) and a simple model of the machine state (e.g., which registers are free). The
act of generating an instruction performs a transformation on the tree and the machine state;
hopefully, the tree eventually gets reduced to a single node. If each of these
instructionltransformation pairs is correct, and if the machine state model really represents the
actual machine, and if the transformations reduce the input tree to the desired single node,
then the output code will be correct.

- 14 -

For most real machines, there is no definitive theory of code generation that encompasses
all the C operators. Thus the selection of which instruction/transformations to generate, and in
what order, will have a heuristic flavor. If, for some expression tree, no transformation applies,
or, more seriously, if the heuristics select a sequence of instruction/transformations that do not
in fact reduce the tree, the compiler will report its inability to generate code, and abort.

A major part of the code generator is concerned with the model and the transformations,
- most of this is machine independent, or depends only on simple tables. The flexibility
comes from the heuristics that guide the transformations of the trees, the selection of subgoals,
and the ordering of the computation.

The Machine Model

The machine is assumed to have a number of registers, of at most two different types: A
and B. Within each register class, there may be scratch (temporary) registers and dedicated
registers (e.g., register variables, the stack pointer, etc.). Requests to allocate and free registers
involve only the temporary registers.

Each of the registers in the machine is given a name and a number in the mac2defs file;
the numbers are used as indices into various tables that describe the registers, so they should
be kept small. One such table is the rstatus table on file 10ca/2.c. This table is indexed by regis­
ter number, and contains expressions made up from manifest constants describing the register
types: SAREG for dedicated AREG's, SAREGISTAREG for scratch AREGS's, and SBREG
and SBREGISTBREG similarly for BREG's. There are macros that access this information:
isb,eg(,) returns true if register number, is a BREG, and ist,eg(,) returns true if register
number, is a temporary AREG or BREG. Another table, rnames, contains the register names;
this is used when putting out assembler code and diagnostics.

The usage of registers is kept track of by an array called busy. Busy!,] is the number of
uses of register , in the curreqt tree being processed. The allocation and freeing of registers
will be discussed later as part of the code generation algorithm.

General Organization

As mentioned above, the second pass reads lines from the intermediate file, copying
through to the output unchanged any lines that begin with a ')', and making note of the infor­
mation about stack usage and register allocation contained on lines beginning with ,]' and '['.
The expression trees, whose beginning is indicated by a line beginning with '.', are read and
rebuilt into trees. If the compiler is loaded as one pass, the expression trees are immediately
available to the code generator.

The actual code generation is done by a hierarchy of routines. The routine delay is first
given the tree; it attempts to delay some postfix + + and - - computations that might reason­
ably be done after the smoke clears. It also attempts to handle comma (,) operators by com­
puting the left side expression first, and then rewriting the tree to eliminate the operator. Delay
calls codgen to control the actual code generation process. Codgen takes as arguments a pointer
to the expression tree, and a seconq argument that, for socio-historical reasons, is called a
cookie. The cookie describes a set of goals that would be acceptable for the code generation:
these are assigned to individual bits, so they may be logically or'ed together to form a large
number of possible goals. Among the possible goals are FOREFF (compute for side effects
only; don't worry about the value), INTEMP (compute and store value into a temporary loca­
tion in memory), INAREG (compute. into an A register), INTAREG (compute into a scratch
A register), INBREG and INTBREG similarly, FORCC (compute for condition codes), and
FORARG (compute it as a function argument; e.g., stack it if appropriate).

Codgen first canonicaiizes the tree by calling canon. This routine looks for certain
transformations that might now be applicable to the tree. One, which is very common and very
powerful, is to fold together an indirection operator (UNARY MUL) and a register (REG); in
most machines, this combination is addressable directly, and so is similar to a NAME in its

- 15 -

behavior. The UNARY MUL and REG are folded together to make another node type called
OREG. In fact, in many machines it is possible to directly address not just the cell pointed to
by a register, but also cells differing by a constant offset from the cell pointed to by the register.
Canon also looks for such cases, calling the machine dependent rou tine notoff to decide if the
offset is acceptable (for example, in the IBM 370 the offset must be between 0 and 4095 bytes).
Another optimization is to replace bit field operations by shifts and masks if the operation
involves extracting the field. finally, a machine dependent routine, Sllcomp, is called that com­
putes the Sethi-Ullman numbers for the tree (see below).

After the tree is canonicalized, codgen calls the routine store whose job is to select a sub­
tree of the tree to be computed and (usually) stored before beginning the computation of the
full tree. Store must return a tree that can be computed without need for any temporary storage
locations. In effect, the only store operations generated while processing the subtree must be as
a response to explicit assignment operators in the tree. This division of the job marks one of
the more significant, and successful, departures from most other compilers. It means that the
code generator can operate under the assumption that there are enough registers to do its job,
without worrying about temporary storage. If a store into a temporary appears in the output, it
is always as a direct result of logic in the store routine; this makes debugging easier.

One consequence of this organization is that code is not generated by a treewalk. There
are theoretical results that support this decision.? It may be desirable to compute several sub­
trees and store them before tackling the whole tree; if a subtree is to be stored, this is known
before the code generation for the subtree is begun, and the subtree is computes:! when all
scratch registers are available.

The store routine decides what subtrees, if any, should be stored by making use of
numbers, called Sethi-Ullman numbers, that give, for each subtree of an expression tree, the
minimum number of scratch registers required to compile the subtree, without any stores into
temporaries.8 These numbers are computed by the machine-dependent routine sucomp, called
by canon. The basic notion is that, knowing the Sethi-Ullman numbers for the descendants of a
node, and knowing the operator of the node and some information about the machine, the
Sethi-Ullman number of the node itself can be computed. If the Sethi-Ullman number for a
tree exceeds the number of scratch registers available, some subtree must be stored. Unfor­
tunately, the theory behind the Sethi-Ullman numbers applies only to uselessly simple
machines and operators. For the rich set of C operators, and for machines with asymmetric
registers, register pairs, different kinds of registers, and exceptional forms of addressing, the
theory cannot be applied directly. The basic idea of estimation is a good one, however, and
well worth applying; the application, especially when the compiler comes to be tuned for high
code quality, goes beyond the park of theory into the swamp of heuristics. This topic will be
taken up again later, when more of the compiler structure has been described.

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored,
and returns the subtree and the associated cookie in the external variables stotree and stocook.
If a subtree has been selected, or if the whole tree is ready to be processed, the routine order is
called, with a tree and cookie. Order-generates code for trees that do not require temporary
locations. Order may make recursive calls on itself, and, in some cases, on codgen; for exam­
ple, when processing the operators &&, II, and comma (','), that have a left to right evaluation,
it is incorrect for store examine the right operand for subtrees to be stored. In these cases,
order will call codgen recursively when it is permissible to work on the right operand. A similar
issue arises with the? : operator.

The order routine works by matching the current tree with a set of code templates. If a
template is discovered that ·will match the current tree and cookie, the associated assembly
language statement or statements are generated. The tree is then rewritten, as specified by the
template, to represent the effect of the output instruction(s). If no template match is found,
first an attempt is made to find a match with a different cookie; for example, in order to com­
pute an expression with cookie INTEMP (store into a temporary storage location), it is usually
necessary to compute the expression into a scratch register first. If all attempts to match the

- 16 -

tree fail, the heuristic part of the algorithm becomes dominant. Control is typically given to
one of a number of machine-dependent routines that may in turn recursively call order to
achieve a subgoal of the computation (for example, one of the arguments may be computed
into a tempor~ry register). After this subgoal has been achieved, the process begins again with
the modified tree. If the machine-dependent heuristics are unable to reduce the tree further, a
number of default rewriting rules may be considered appropriate. For example, if the left
operand of a + is a scratch register, the + can be replaced by a + = operator~ the tree may
then match a template.

To close this introduction, we will discuss the steps in compiling code for the expression

a+= b

where a and b are static variables.

To begin with, the whole expression tree is examined with cookie FOREFF, and no match
is found. Search with other cookies is equally fruitless, so an attempt at rewriting is made.
Suppose we are dealing with the Interdata 8/32 for the moment. It is recognized that the left
hand and right hand sides of the + = operator are addressable, and in particular the left hand
side has no side effects, so it is permissible to rewrite this as

a=a+b

and this is done. No match is found on this tree either, so a machine dependent rewrite is
done~ it is recognized that the left hand side of the assignment is addressable, but the right
hand side is not in a register, so order is called recursively, being asked to put the right hand
side of the assignment into a register. This invocation of order searches the tree for a match,
and fails. The machine dependent rule for + notices that the right hand operand is address­
able~ it decides to put the left operand into a scratch register. Another recursive call to order is
made, with the tree consisting solely of the leaf a, and the cookie asking that the value be
placed into a scratch register. This now matches a template, and a load instruction is emitted.
The node consisting of a is rewritten in place to represent the register into which a is loaded,
and this third call to order returns. The second call to order now finds that it has the tree

reg + b

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a
+ = operator, since the left operand is a scratch register. When this is done, there is a match:
in fact,

reg += b

simply describes the effect of the add instruction on a typical machine. After the add is emit­
ted, the tree is rewritten to consist merely of the register node, since the result of the add is
now in the register. This agrees with the cookie passed to the second invocation of order, so
this invocation terminates, returning to the first level. The original tree has now become

a = reg

which matches a template for the store instruction. The store is output, and the tree rewritten
to become just a single register node. At this point, since the top level call to order was
interested only in side effects, the call to order returns, and the code generation is completed;
we have generated a load, add, and store, as might have been expected.

The effect of machine architecture on this is considerable. For example, on the
Honeywell 6000, the machine dependent heuristics recognize that there is an "add to storage"
instruction, so the strategy is quite different; b is loaded in to a register, and then an add to
storage instruction generated to add this register in to a. The transformations, involving as
they do the semantics of C, are largely machine independent. The decisions as to when to use
them, however, are almost totally machine dependent.

Having given a broad outline of the code generation process, we shall next consider the

r

- 17 -

heart of it: the templates. This leads naturally into discussions of template matching and regis­
ter allocation, and finally a discussion of the machine dependent interfaces and strategies.

The Templates

The templates describe the effect of the target machine instructions on the model of com­
putation around which the compiler is organized. In effect, each template has five logical sec­
tions, and represents an assertion of the form:

If we have a subtree of a given shape (1), and we have a goal (cookie) or goals to achieve
(2), and we have sufficient free resources (3), then we may emit an instruction or
instructions (4), and rewrite the subtree in a particular manner (5), and the rewritten tree
will achieve the desired goals.

These five sections will be discussed in more detail later. First, we give an example of a
template:

ASG PLUS, INAREG,
SAREG,
SNAME,

TINT,
TINT,
0, RLEFT,
" add AL,AR\n",

The top line specifies the operator (+ =) and the cookie (compute the value of the subtree into
an AREG). The second and third lines specify the left and right descendants, respectively, of
the + = operator. The left descendant must be a REG node, representing an A register, and
have integer type, while the right side must be a NAME node, and also have integer type. The
fourth line contains the resource requirements (no scratch registers or temporaries needed),
and the rewriting rule (replace the subtree by the left descendant>. Finally, the quoted string
on the last line represents the output to the assembler: lower case letters, tabs, spaces, etc. are
copied verbatim. to the output~ upper case letters trigger various macro-like expansions. Thus,
At would expand into the Address form of the Left operand - presumably the register
number. Similarly, AR would expand into the name of the right operand. The add instruction
of the last section might well be emitted by this template.

In principle, it would be possible to make separate templates for all legal combinations of
operators, cookies, types, and shapes. In practice, the number of combinations is very large.
Thus, a considerable amount of mechanism is present to permit a large number of subtrees to
be matched by a single template. Most of the shape and type specifiers are individual bits, and
can be logically or'ed together. There are a number of special descriptors for matching classes
of operators. The cookies can also be combined. As an example of the kind of template that
really arises in practice, the actual template for the Interdata 8/32 that subsumes the above
example is:

ASG OPSIMP, INAREGIFORCC,
SAREG, TINTITUNSIGNEDITPOINT,
SAREGISNAMEISOREGISCON, TINTITUNSIGNEDITPOINT,

0, RLEFTIRESCC,
" 01 AL,AR\n",

Here, OPSIMP represents the operators +, -, I, &, and A. The 01 macro in the output string
expands into the appropriate Integer Opcode for the operator. The left and right sides can be
integers, unsigned, or pointer types. The right side can be, in addition to a name, a register, a
memory location whose address is given by a register and displacement (OREG), or a constant.
Finally, these instructions 'Set the condition codes, and so can be used in condition contexts: the
cookie and rewriting rules reflect this.

- 18 -

The Template Matching Algorithm.

The heart of the second pass is the template matching algorithm, in the routine match.
Match is called with a tree and a cookie; it attempts to match the given tree against some tem­
plate that will transform it according to one of the goals given in the cookie. If a match is suc­
cessful, the transformation is applied; expand is called to generate the assembly code, and then
reclaim rewrites the tree, and reclaims the resources, such as registers, that might have become
free as a result of the generated code.

This part of the compiler is among the most time critical. There is a spectrum of imple­
mentation techniques available for doing this matching. The most naive algorithm simply looks
at the templates one by one. This can be considerably improved upon by restricting the search
for an acceptable template. It would be possible to do better than this if the templates were
given to a separate program that ate them and generated a template matching subroutine. This
would make maintenance of the compiler much more complicated, however, so this has not
been done.

The matching algorithm is actually carried out by restricting the range in the table that
must be searched for each opcode. This introduces a number of complications, however, and
needs a bit of sympathetic help by the person constructing the compiler in order to obtain best
results. The exact tuning of this algorithm continues; it is best to consult the code and com­
ments in match for the latest version.

In order to match a template to a tree, it is necessary to match not only the cookie and
the op of the root, but also the types and shapes of the left and right descendants (if any) of
the tree. A convention is established here that is carried out throughout the second pass of the
compiler. If a node represents a unary operator, the single descendant is always the "left" des­
cendant. If a node represents a unary operator or a leaf node (no descendants) the "right"
descendant is taken by convention to be the node itself. This enables templates to easily match
leaves and conversion operators, for example, without any additional mechanism in the match­
ing program.

The type matching is straightforward; it is possible to specify any combination of basic
types, general pointers, and' pointers to one or more of the basic types. The shape matching is
somewhat more complicated, but still pretty simple. Templates have a collection of possible
operand shapes on which the opcode might match. In the simplest case, an add operation
might be able to add to either a register variable or a scratch register, and might be able (with
appropriate help from the assembler) to add an integer constant (ICON), a static memory cell
(NAME), or a stack location (OREG).

It is usually attractive to specify a number of such shapes, and distinguish between them
when the assembler output is produced. It is possible to describe the union of many elemen­
tary shapes such as ICON, NAME, OREG, AREG or BREG (both scratch and register forms),
etc. To handle at least the simple forms of indirection, one can also match some more compli­
cated .forms of trees; ST ARNM and ST ARREG can match more complicated trees headed by
an indirection operator, and SFLO can match certain trees headed by a FLO operator: these
patterns call machine dependent routines that match the patterns of interest on a given
machine. The shape SWAOO may be used to recognize NAME or OREG nodes that lie on
word boundaries: this may be of some importance on word-addressed machines. Finally,
there are some special shapes: these may not be used in conjunction with the other shapes, but
may be defined and extended in machine dependent ways. The special shapes SZERO, SONE,
and SMONE are predefined and match constants 0, 1, and -1, respectively; others are easy to
add and match by using the machine dependent routine special

When a template has been found that matches the root of the tree, the cookie, and the
shapes and types of the descendants, there is still one bar to a total match: the template may
call for some resources (for example, a scratch register). The routine 0110 is called, and it
attempts to allocate the resources. If it cannot, the match fails; no resources are allocated. If
successful, the allocated resources are given numbers 1, 2, etc. for later reference when the

- 19 -

assembly code is generated. The routines expand and reclaim are then called. The match rou­
tine then returns a special value, MOONE. If no match was found, the value MNOPE is
returned; this is a signal to the caller to try more cookie values, or attempt a rewriting rule.
Match is also used to select rewriting rules, although the way of doing this is pretty straightfor­
ward. A special cookie, FORREW, is used to ask match to search for a rewriting rule. The
rewriting rules are keyed to various opcodes; most are carried out in order. Since the question
of when to rewrite is one of the key issues in code generation, it will be taken up again later.

Register Allocation.

The register allocation routines, and the allocation strategy, playa central role in the
correctness of the code generation algorithm. If there are bugs in the Sethi-Ullman computa­
tion that cause the number of needed registers to be underestimated, the compiler may run out
of scratch registers; it is essential that the allocator keep track of those registers that are free
and busy, in order to detect such conditions.

Allocation of registers takes place as the result of a template match; the routine 0110 is
called with a word describing the number of A registers, B registers, and temporary locations
needed. The allocation of temporary locations on the stack is relatively straightforward, and
will not be further .covered; the bookkeeping is a bit tricky, but conceptually trivial, and
requests for temporary space on the stack will never fail.

Register allocation is less straightforward. The two major complications are pairing and
sharing. In many machines, some operations (such as multiplication and division), and/or
some types (such as longs or double precision) require even/odd pairs of registers. Operations
of the first type are exceptionally difficult to deal with in the compiler; in fact, their theoretical
properties are rather bad as well.9 The second issue is dealt with rather more successfully; a
machine dependent function called szty(t) is called that returns 1 or 2, depending on the
number of A registers required to hold an object of type t. If szty returns 2, an even/odd pair
of A registers is allocated for each request.

The other issue, sharing, is more subtle, but important for good code quality. When
registers are allocated, it is ·possible to reuse registers that hold address information, and use
them to contain the values computed or accessed. For example, on the IBM 360, if register 2
has a pointer to an integer in it, we may load the integer into register 2 itself by saying:

L 2,0(2)

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing
the target register first, and then inserting the desired character:

SR
Ie

3,3
3,0(2)

In the first case, if register 3 were used as the target, it would lead to a larger number of regis­
ters used for the expression than were required; the compiler would generate inefficient code.
On the other hand, if register 2 were used as the target in the second case, the code would sim­
ply be wrong. In the first case, register 2 can be shared while in the second, it cannot.

In the specification of the register needs in the templates, it is possible to indicate whether
required scratch registers may be shared with possible registers on the left or the right of the
input tree. In order that a register be shared, it must be scratch, and it must be used only
once, on the appropriate side of the tree being compiled.

The 0110 routine thus has a bit more to do than meets the eye; it calls .freereg to obtain a
free register for each A and B register request. Freereg makes multiple calls on the routine
usable to decide if a given register can be used to satisfy a given need. Usable calls shareit if the
register is busy, but might be shared. Finally, shareit calls lIshare to decide if the desired regis­
ter is actually in the appropriate subtree, and can be shared.

Just to add additional complexity, on some machines (such as the IBM 370) it is possible

- 20 -

to have "double indexing" forms of addressing; these are represented by OREGS's with the
base and index registers encoded into the register field. While the register allocation and deal­
location per se is not made more difficult by this phenomenon, the code itself is somewhat more
complex.

Having allocated the registers and expanded the assembly language, it is time to reclaim
the resources; the routine reclaim does this. Many operations produce more than one result.
For example, many arithmetic operations may produce a value in a register, and also set the
condition codes. Assignment operations may leave results both in a register and in memory.
Reclaim is passed three parameters; the tree and cookie that were matched, and the rewriting
field of the template. The rewriting field allows the specification of possible results; the tree is
rewritten to reflect the results of the operation. If the tree was computed for side effects only
(FOREFF), the tree is freed, and all resources in it reclaimed. If the tree was computed for
condition codes, the resources are also freed, and the tree replaced by a special node type,
FORCC. Otherwise, the value may be found in the left argument of the root, the right argu­
ment of the root, or one of the temporary resources allocated. In these cases, first the
resources of the tree, and the newly allocated resources, are freed; then the resources needed
by the result are made busy again. The final result must always match the shape of the input
cookie; otherwise, the compiler error "cannot reclaim" is generated. There are some machine
dependent ways of preferring results in registers or memory when there are multiple results
matching multiple goals in the cookie.

The Machine Dependent Interface

The files order.c, 10ca/2.c, and table.c, as well as the header file mac2dejs, represent the
machine dependent portion of the second pass. The machine dependent portion can be roughly
divided into two: the easy portion lind the hard portion. The easy portion tells the compiler the
names of the registers, and arranges that the compiler generate the proper assembler formats,
opcode names, location counters', etc. The hard portion involves the Sethi - Ullman computa­
tion, the rewriting rules, and, to some extent, the templates. It is hard because there are no
real algorithms that apply; most of this portion is based on heuristics. This section discusses
the easy portion; the next several sections will discuss the hard portion.

If the compiler is adapted from a compiler for a machine of similar architecture, the easy
part is indeed easy. In mac2dejs, the register numbers are defined, as well as various parame­
ters for the stack frame, and various macros that describe the machine architecture. If double
indexing is to be permitted, for example, the symbol R2REGS is defined. Also, a number of
macros that are involved in function call processing, especially for unusual function call
mechanisms, are defined here.

In locaI2.c, a large number of simple functions are defined. These do things such as write
out opcodes, register names, and address forms for the assembler. Part of the function call
code is defined here; that is nontrivial to design, but typically rather straightforward to imple­
ment. Among the easy routines in order.c are routines for generating a created label, defining a
label, and generating the arguments of a function call.

These routines tend to have a local effect, and depend on a fairly straightforward way on
the target assembler and the design decisions already made about the compiler. Thus they will
not be further treated here.

The Rewriting Rules

When a tree fails to match any template, it becomes a candidate for rewriting. Before the
tree is rewritten, the machine dependent routine nextcook is called with the tree and the cookie;
it suggests another cookie tftat might be a better candidate for the matching of the tree. If all
else fails, the templates are searched with the cookie FORREW, to look for a rewriting rule.
The rewriting rules are of two kinds; for most of the common operators, there are machine
dependent rewriting rules that may be applied; these are handled by machine dependent func­
tions that are called and given the tree to be computed. These routines may recursively call

r

- 21 -

order or codgen to cause certain subgoals to be achieved; if they actually call for some alteration
of the tree, they return 1, and the code generation algorithm recanonicalizes and tries again. If
these routines choose not to deal with the tree, the default rewriting rules are applied.

The assignment ops, when rewritten, call the routine setasg. This is assumed to rewrite
the tree at least to the point where there are no side effects in the left hand side. If there is
still no template match, a default rewriting is done that causes an expression such as

a+=b

to be rewritten as

a=a+b

This is a useful default for certain mixtures of strange types (for example, when a is a bit field
and b an character) that otherwise might need separate table entries.

Simple assignment, structure assignment, and all forms of calls are handled completely by
the machine dependent routines. For historical reasons, the routines generating the calls return
1 on failure, 0 on success, unlike the other routines.

The machine dependent routine setbin handles binary operators; it too must do most of
the job. In particular, when it returns 0, it must do so with the left hand side in a temporary
register. The default rewriting rule in this case is to convert the binary operator into the associ­
ated assignment operator; since the left hand side is assumed to be a temporary register, this
preserves the semantics and often allows a considerable saving in the template table.

The increment and decrement operators may be dealt with with the machine dependent
routine setillCf. If this routine chooses not to deal with the tree, the rewriting rule replaces

x++

by

((x += J) - J)

which preserves the semantics. Once again, this is not too attractive for the most common
cases, but can generate close to optimal code when the type of x is unusual.

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The
machine dependent routine offstar is extremely important for the efficient generation of code.
ODstar is called with a tree that is the direct descendant of a UNARY MUL node; its job is to
transform this tree so that the combination of UN AR Y MUL with the transformed tree
becomes addressable. On most machines, aDstar can simply compute the tree into an A or B
register, depending on the architecture, and then canoll will make the resulting tree into an
OREG. On many machines, aDstar can profitably choose to do less work than computing its
entire argument into a register. For example, if the target machine supports OREGS with a
constant offset from a register, and aDstar is called with a tree of the form

expr + consf

where co list is a constant, then aDsfar need only compute expr into the appropriate form of
register. On machines that support double indexing, af/sfar may have even more choice as to
how to proceed. The proper tuning of af/star, which is not typically too difficult, should be one
of the first tries at optimization attempted by the compiler writer.

The Sethi-Ullman Computation

The heart of the -heuristics is the computation of the Sethi-Ullman numbers. This compu­
tation is closely linked with the rewriting rules and the templates. As mentioned before, the
Sethi-Ullman numbers are expected to estimate the number of scratch registers needed to com­
pute the subtrees without using any stores. However, the original theory does not apply to real
machines. For one thing, the theory assumes that all registers are interchangeable. Real
machines have general purpose, floating point, and index registers, register pairs, etc. The

- 22 -

theory also does not account for side effects; this rules out various forms of pathology that arise
from assignment and assignment ops. Condition codes are also undreamed of. Finally, the
influence of types, conversions, and the various addressability restrictions and extensions of
real machines are also ignored.

Nevertheless, for a "useless" theory, the basic insight of Sethi and Ullman is amazingly
useful in a real compiler. The notion that one should attempt to estimate the resource needs of
trees before starting the code generation provides 'a natural means of splitting the code genera­
tion problem, and provides a bit of redundancy and self checking in the compiler. Moreover, if
writing the Sethi-Ullman routines is hard, describing, writing, and debugging the alternative
(routines that attempt to free up registers by stores into temporaries "on the fly") is even
worse. Nevertheless, it should be clearly understood that these routines exist in a realm where
there is no "right" way to write them; it is an art, the realm of heuristics, and, consequently, a
major source of bugs in the compiler. Often, the early, crude versions of these routines give
little trouble; only after the compiler is actually working and the code quality is being improved
do serious problem have to be faced. Having a simple, regular machine architecture is worth
quite a lot at this time.

The major problems arise from asymmetries in the registers: register pairs, having
different kinds of registers, and the related problem of needing more than one register (fre­
quently a pair) to'store certain data types (such as longs or doubles). There appears to be no
general way of treating this problem; solutions have to be fudged for each machine where the
problem arises. On the Honeywell 66, for example, there are only two general purpose regis­
ters, so a need for a pair is the same as the need for two registers. On the IBM 370, the regis­
ter pair (0,1) is used to do multiplications and divisions; registers 0 and 1 are not generally con­
sidered part of the scratch registers, and so do not require allocation explicitly. On the Inter­
data 8/32, after much consideration, the decision was made not to try to deal with the register
pair issue; operations such as multiplication and division that required pairs were simply
assumed to take all of the scratch registers. Several weeks of effort had failed to produce an
algorithm that seemed to have much chance of running successfully without inordinate debug- .
ging effort. The difficulty of this issue should not be minimized; it represents one of the main
intellectual efforts in porting the compiler. Nevertheless, this problem has been fudged with a
degree of success on nearly a dozen machines, so the compiler writer should not abandon hope.

The Sethi-Ullman computations interact with the rest of the compiler in a number of
rather subtle ways. As already discussed, the store routine uses the Sethi-Ullman numbers to
decide which subtrees are too difficult to compute in registers, and must be stored. There are
also subtle interactions between the rewriting routines and the Sethi-Ullman numbers. Suppose
we have a tree such as

A-B

where A and B are expressions; suppose further that B takes two registers, and A one. It is
possib.le to compute the full expression in two registers by first computing B, and then, using
the scratch register used by B, but not containing the answer, compute A. The subtraction can
then be done, computing the expression. (Note that this assumes a number of things, not the
least of which are register-to-register subtraction operators and symmetric registers.) If the
machine dependent routine sethil/, however, is not prepared to recognize this case and compute
the more difficult side of the expression first, the Sethi-Ullman number must be set to three,
Thus, the Sethi-Ullman number for a tree should represent the code that the machine depen­
dent routines are actually willing to generate.

The interaction can go the other way. If we take an expression such as

*(,,+i)

where " is a pointer and i an integer, this can probably be done in one register on most
machines. Thus, its Sethi-Ullman number would probably be set to one. If double indexing is
possible in the machine, a possible way of computing the expression is to load both" and i into

- 23 -

registers,and then use double indexing. This would use two scratch registers; in such a case, it
is possible that the scratch registers might be unobtainable, or might make some other part of
the computation run out of registers. The usual solution is to cause QfJstar to ignore opportuni­
ties for double indexing that would tie up more scratch registers than the Sethi-Ullman number
had reserved.

In summary, the Sethi-Ullman computation represents much of the craftsmanship and
artistry in any application of the portable compiler. It is also a frequent source of bugs. Algo­
rithms are available that will produce nearly optimal code for specialized machines, but unfor­
tunately most existing machines are far removed from these ideals. The best way of proceeding
in practice is to start with a compiler for a similar machine to the target, and proceed very care­
fully.

Register Allocation

After the Sethi-Ullman numbers are computed, order calls a routine, rallo, that does regis­
ter allocation, if appropriate. This routine does relatively little, in general; this is especially true
if the target machine is fairly regular. There are a few cases where it is assumed that the result
of a computation takes place in a particular register; switch and function return are the two
major places. The expression tree has a field, roll, that may be filled with a register number;
this is taken to be a preferred register, and the first temporary register allocated by a template
match will be this preferred one, if it is free. If not, no particular action is taken; this is just a
heuristic. If no register preference is present, the field contains NOPREF. In some cases, the
result must be placed in a given register, no matter what. The register number is placed in roll,
and the mask MUSTDO is logically or'ed in with it. In this case, if the subtree is requested in
a register, and comes back in a register other than the demanded one, it is moved by calling the
routine rmove. If the target register for this move is busy, it is a compiler error.

Note that this mechanism is the only one that will ever cause a register-to-register move
between scratch registers (unless such a move is buried in the depths of some template). This
simplifies debugging. In some cases, there is a rather strange interaction between the register
allocation and the Sethi-Ullman number; if there is an operator or situation requiring a particu­
lar register, the allocator and the Sethi-Ullman computation must conspire to ensure that the
target register is not being used by some intermediate result of some far-removed computation.
This is most easily done by making the special operation take all of the free registers, prevent­
ing any other partially-computed results from cluttering up the works.

Compiler Bugs

The portable compiler has an excellent record of generating correct code. The require­
ment for reasonable cooperation between the register allocation, Sethi-Ullman computation,
rewriting rules, and templates builds quite a bit of redundancy into the compiling process. The
effect of this is that, in a surprisingly short time, the compiler will start generating correct code
for those programs that it can compile. The hard part of the job then becomes finding and
eliminating those situations where the compiler refuses to compile a program because it knows
it cannot do it right. For example, a template may simply be missing; this may either give a
compiler error of the form "no match for op ... " , or cause the compiler to go into an infinite
loop applying various rewriting rules. The compiler has a variable, I/I"eClIr, that is set to 0 at the
beginning of an expressions, and incremented at key spots in the compilation process; if this
parameter gets too large, the compiler decides that it is in a loop, and aborts. Loops are also
characteristic of botches in the machine-dependent rewriting rules. Bad Sethi-Ullman computa­
tions usually cause the scratch registers to run out; this often means that the Sethi-Ullman
number was underestima(ed, so store did not store something it should have; alternatively, it
can mean that the rewriting rules were not smart enough to find the sequence that sllcomp
assumed would be used.

The best approach when a compiler error is detected involves several stages. First, try to
get a small example program that steps on the bug. Second, turn on various debugging flags in

- 24 -

the code generator, and follow the tree through the process of being matched and rewritten.
Some flags of interest are -e, which prints the expression tree, -r, which gives information
about the allocation of registers, -a, which gives information about the performance of rallo,
and -0, which gives information about the behavior of order. This technique should allow
most bugs to be found relatively quickly.

Unfortunately, finding the bug is usually not enough; it must also be fixed! The difficulty
arises because a fix to the particular bug of interest tends to break other code that already
works. Regression tests, tests that compare the performance of a new compiler against the per­
formance of an older one, are very valuable in preventing major catastrophes.

Summary and Conclusion

The portable compiler has been a useful tool for providing C capability on a large number
of diverse machines, and for testing a number of theoretical constructs in a practical setting. It
has many blemishes, both in style and functionality. It has been applied to many more
machines than first anticipated, of a much wider range than originally dreamed of. Its use has
also spread much faster than expected, leaving parts of the compiler still somewhat raw in
shape.

On the theoretical side, there is some hope that the skeleton of the slicomp routine could
be generated for many machines directly from the templates; this would give a considerable
boost to the portability and correctness of the compiler, but might affect tunability and code
quality. There is also room for more optimization, both within optim and in the form of a port­
able "peephole" optimizer.

On the practical, development side, the compiler could probably be sped up and made
smaller without doing too much violence to its basic structure. Parts of the compiler deserve to
be rewritten; the initialization code, register allocation, and parser are prime candidates. It
might be that doing some or all of the parsing with a recursive descent parser might save
enough space and time to be worthwhile; it would certainly ease the problem of moving the
compiler to an environment where Yacc is not already present.

Finally, I would like .to thank the many people who have sympathetically, and even
enthusiastically, helped me grapple with what has been a frustrating program to write, test, and
install. D. M. Ritchie and E. N. Pinson provided needed early encouragement and philosophi­
cal guidance; M. E. Lesk, R. Muha, T. G. Peterson, G. Riddle, L. Rosier, R. W. Mitze, B. R.
Rowland, S. I. Feldman, and T. B. London have all contributed ideas, gripes, and all, at one
time or another, climbed "into the pits" with me to help debug. Without their help this effort
would have not been possible; with it, it was often kind of fun.

- 25 -

References

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle­
wood Cliffs, New Jersey (1978).

2. S. C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No. 65 (1978).

3. A. Snyder, A Portable Compiler for the Language C, Master's Thesis, M.I.T., Cambridge,
Mass. (1974).

4. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, pp. 97-104 (January 1978).

5. M. E. Lesk, S. C. Johnson, and D. M. Ritchie, The C Language Calling Sequence, Bell
Laboratories internal memorandum (1977).

6. S. C. Johnson, "Yacc - Yet Another Compiler-Compiler," Compo Sci. Tech. Rep. No.
32, Bell Laboratories, Murray Hill, New Jersey (July 1975).

7. A. V. Aho and S. C. Johnson, "Optimal Code Generation for Expression Trees," J.
Assoc. Compo Mach. 23(3) pp. 488-501 (1975). Also in Proc. ACM Symp. on Theory of
Computing, pp. 207-217, 1975.

8. R. Sethi and J. D. Ullman, "The Generation of Optimal Code for Arithmetic Expres­
sions," J. Assoc. Compo Mach. 17 (4) pp. 715-728 (October 1970). Reprinted as pp. 229-
247 in Compiler Techniques, ed. B. W. Pollack, Auerbach, Princeton NJ (1972).

9. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Code Generation for Machines with Mul­
tiregister Operations," Proc. 4th ACM Symp. on Principles of Programming Languages, pp.
21-28 (January 1977).

~ ...

'"", ~v

r

Password Security: A Case History

Robert Morris

Ken Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the history of the design of the password security
scheme on a remotely accessed time-sharing system. The present design was
the result of countering observed attempts to penetrate the system. The result
is a compromise between extreme security and ease of use.

April 3, 1978

INTRODUCTION

Password Security: A Case History

Robert Morris

Ken Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

Password security on the UNIxt time-sharing system [1J is provided by a collection of pro­
grams whose elaborate. and strange design is the outgrowth of many years of experience with
earlier versions. To help develop a secure system, we have had a continuing competition to
devise new ways to attack the security of the system (the bad guy) and, at the same time, to
devise new techniques to resist the new attacks (the good guy). This competition has been in
the same vein as the competition of long standing between manufacturers of armor plate and
those of armor-piercing shells. For this reason, the description that follows will trace the his­
tory of the password system rather than simply presenting the program in its current state .• In
this way, the reasons for the design will be made clearer, as the design cannot be understood
without also understanding the potential attacks.

An underlying goal has been to p'rovide password security at minimal inconvenience to
the users of the system. For example, those who want to run a completely open system
without passwords, or to have passwords only at the option of the individual users, are able to
do so, while those who require all of their users to have passwords gain a high degree of secu­
rity against penetration of the system by unauthorized users.

The password system must be able not only to prevent any access to the system by unau­
thorized users (i.e. prevent them from logging in at all), but it must also prevent users who are
already logged in from doing things that they are not authorized to do. The so called "super­
user" password, for example, is especially critical because the super-user has all sorts of per­
missions and has essentially unlimited access to all system resources.

Password security is of course only one component of overall system security, but it is an
essential component. Experience has shown that attempts to penetrate remote-access systems
have been astonishingly sophisticated.

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are
threats at the remote terminal, along the communications link, as well as at the computer itself.
Although the security of a password encryption algorithm is an interesting intellectual and
mathematical problem, it is only one tiny facet of a very large problem .. In practice, physical
security of the computer, ·communications security of the communications link, and physical
control of the computer itself loom as far more important issues. Perhaps most important of all
is control over the actions of ex-employees, since they are not under any direct control and
they may have intimate knowledge about the system, its resources, and methods of access.
Good system security involves realistic evaluation of the risks not only of deliberate attacks but
also of casual unauthorized access and accidental disclosure.

tUN IX is a Trademark of Bell Laboratories ..

r
- 2 -

PROLOGUE

. The UNIX system was first implemented with a password file that contained the actual
passwords of all the users, and for that reason the password file had to be heavily protected
against being either read or written. Although historically, this had been the technique used for
remote-access systems, it was completely unsatisfactory for s~veral reasons.

The technique is excessively vulnerable to lapses in security. Temporary loss of protec­
tion can occur when the password file is being edited or otherwise modified. There is no way to
prevent the making of copies by privileged users. Experience with several earlier remote-access
systems showed that such lapses occur with frightening frequency. Perhaps the most memor­
able such occasion occurred in the early 60's when a system adm.inistrator on the CTSS system
at MIT was editing the password file and another system administrator was editing the daily
message that is printed on everyone's terminal on login. Due to a software design error, the
temporary editor files of the two users were interchanged and thus, for a time, the password file
was printed on every terminal when it was logged in.

Once such a lapse in security has been discovered, everyone's password must be changed,
usually simultaneously, at a considerable administrative cost. This is not a great matter, but far
more serious is the high probability of such lapses going unnoticed by the system administra­
tors.

Security against unauthorized disclosure of the passwords was, in the last analysis, impos­
sible with this system because, for example, if the contents of the file system are put on to
magnetic tape for backup, as they must be, then anyone who has physical access to the tape can
read anything on it with no restriction.

Many programs must get information of various kinds about the users of the system, and
these programs in general should have no special permission to read the password file. The
information which should have been in the password file actually was distributed (or replicated)
into a number of files, all of which had to be updated whenever a user was added to or dropped
from the system.

THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all, and
it is not difficult to decide that this can be done by encrypting each user's password, putting
only the encrypted form in the password file, and throwing away his original password (the one
that he typed in). When the user later tries to log in to the system, the password that he types
is encrypted and compared with the encrypted version in the password file. If the two match,
his login attempt is accepted. Such a scheme was first described in [3, p.91ff.]. It also seemed
advisable to devise a system in which neither the password file nor the password program itself
needed to be protected against being read by anyone.

All that was needed to implement these ideas was to find a means of encryption that was
very difficult to invert, even when the encryption program is available. Most of the standard
encryption methods used (in the past) for encryption of messages are rather easy to invert. A
convenient and rather good encryption program happened to exist on the system at the time; it
simulated the M-209 cipher machine [4] used by the U.S. Army during World War II. It
turned out that the M-209 program was usable, but with a given key, the ciphers produced by
this program are trivial to invert. It is a much more difficult matter to find out the key given
the cleartext input and the enciphered output of the program. Therefore, the password was
used not as the text to be encrypted but as the key, and a constant was encrypted using this
key. The encrypted result was entered into the password file.

- 3 -

ATTACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and
the complete password file. Suppose also that he has substantial computing capacity at his
disposal.

One obvious approach to penetrating the password mechanism is to attempt to find a gen­
eral method of inverting the encryption algorithm. Very possibly this can be done, but few suc­
cessful results have come to light, despite substantial efforts extending over a period of more
than five years. The results have not proved to be very useful in penetrating systems.

Another approach to penetration is simply to keep trying potential passwords until one
succeeds; this is a general cryptanalytic approach called key search. Human beings being what
they are, there is a strong tendency for people to choose relatively short and simple passwords
that they can remember. Given free choice, most people will choose their passwords from a
restricted character set (e.g. all lower-case letters), and will often choose words or names. This
human habit makes the key search job a great deal easier.

The critical factor involved in key search is the amount of time needed to encrypt a
potential password and to check the result against an entry in the password file. The running
time to encrypt one trial password and check the result turned out to be approximately 1.25
milliseconds on a PDP-lInO when the encryption algorithm was recoded for maximum speed.
It is takes essentially no more time to test the encrypted trial password against all the passwords
in an entire password file, or for that matter, against any collection of encrypted passwords,
perhaps collected from many installations.

If we want to check all passwords of length n that consist entirely of lower-case letters, the
number of such passwords is 26". If we suppose that the password consists of printable charac­
ters only, then the number of possible passwords is somewhat less than 95". (The standard
system "character erase" and "Hne. kill" characters are, for example, not prime candidates.)
We can immediately estimate the running time of a program that will test every password of a
given length with all of its characters chosen from some set of characters. The following table
gives estimates of the running time required on a PDP-lInO to test all possible character
strings of length n chosen from various sets of characters: namely, all lower-case letters, all
lower-case letters plus digits, all alphanumeric characters, all 95 printable ASCII characters, and
finally all 128 ASCII characters.

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII
n letters and digits characters characters characters

1 30 msec. 40 msec. 80 msec. 120 msec. 160 msec.
2 800 msec. 2 sec. 5 sec. 11 sec. 20 sec.
3 22 sec. 58 sec. 5 min. 17 min. 43 min.
4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs.
5 4 hrs. 21 hrs. 318 hrs.
6 107 hrs.

One has to conclude that it is no great matter for someone with access to a PDP-II to test all
lower-case alphabetic strings up to length five and, given access to the machine for, say, several
weekends, to test all such strings up to six characters in length. By using such a program
against a collection of actual encrypted passwords, a substantial fraction of all the passwords will
be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or to
use a list of names. For -example, a large commercial dictionary contains typicallly about
250,000 words; these words can be checked in about five minutes. Again, a noticeable fraction
of any collection of passwords will be found. Improvements and extensions will be (and have
been) found by a determined bad guy. Some "good" things to try are:

- 4 -

The dictionary with the words spelled backwards.

A list of first names (best obtained from some mailing list). Last names, street names,
and city names also work well.

The above with initial upper-case letters.

All valid license plate numbers in your state. (This takes about five hours in New Jer­
sey.)

Room numbers, social security numbers, telephone numbers, and the like.

The authors have conducted experiments to try to determine typical users' habits in the
choice of passwords when no constraint is put on their choice. The results were disappointing,
except to the bad guy. In a collection of 3,289 passwords gathered from many users over a
long period of time;

15 were a single ASCII character;

72 were strings of two ASCII characters;

464 were strings of three ASCII characters;

477 were string of four alphamerics;

706 were five letters, all upper-case or all lower-case;

605 were six letters, all lower-case.

An additional 492 passwords appeared in various available dictionaries, name lists, and the like.
A total of 2,831, or 86% of this sample of passwords fell into one of these classes.

There was, of course, considerable overlap between the dictionary results and the charac­
ter string searches. The dictionary search alone, which required only five minutes to run, pro­
duced about one third of the passwords.

Users could be urged (or forced) to use either longer passwords or passwords chosen from
a larger character set, or the system could itself choose passwords for the users.

AN ANECDOTE

An entertaining and instructive example is the attempt made at one installation to force
users to use less predictable passwords. The users did not choose their own passwords; the sys­
tem s·upplied them. The supplied passwords were eight characters long and were taken from
the character set consisting of lower-case letters and digits. They were generated by a pseudo­
random number generator with only 215 starting values. The time required to search (again on
a PDP-11nO) through all character strings of length 8 from a 36-character alphabet is 112
years.

Unfortunately, only 215 of them need be looked at, because that is the number of possible
outputs of the random number generator. The bad guy did, in fact, generate and test each of
these strings and found everyone of the system-generated passwords using a total of only about
one minute of machine time.

IMPROVEMENTS TO THE FIRST APPROACH

1. Slower Encryption

Obviously, the first algorithm used was far too fast. The announcement of the DES
encryption algorithm [2] by the National Bureau of Standards was timely and fortunate. The
DES is, by design, hard to invert, but equally valuable is the fact that it is extremely slow when
implemented in software. The DES was implemented and used in the following way: The first
eight characters of the user's password are used as a key for the DES; then the algorithm is
used to encrypt a constant. Although this constant is zero at the moment, it is easily accessible
and can be made installation-dependent. Then the DES algorithm is iterated 25 times and the
resulting 64 bits are repacked to become a string of 11 printable characters.

- 5 -

2. Less Predictable Passwords

. The password entry program was modified so as to urge the user to use more obscure
passwords. If the user enters an alphabetic password (all upper-case or all lower-case) shorter
than six characters, or a password from a larger character set shorter than five characters, then
the program asks him to enter a longer password. This further reduces the efficacy of key
search.

These improvements make it exceedingly difficult to find any individual password. The
user is warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he
is not prevented from using his spouse's name if he wants to.

3. Salted Passwords

The key search technique is still likely to turn up a few passwords when it is used on a
large collection of passwords, and it seemed wise to make this task as difficult as possible. To
this end, when a password is first entered, the password program obtains a 12-bit random
number (by reading the real-time clock) and appends this to the password typed in by the user.
The concatenated string is encrypted and both the 12-bit random quantity (called the salt) and
the 64-bit result of the encryption are entered into the password file.

When the user later logs in to the system, the 12-bit quantity is extracted from the pass­
word file and appended to the typed password. The encrypted result is required, as before, to
be the same as the remaining 64 bits in the password file. This modification does no~ increase
the task of finding any individual password, starting from scratch, but now the work of testing a
given character string against a large collection of encrypted passwords has been multiplied by
4096 (212). The reason for this is that there are 4096 encrypted versions of each password and
one of them has been picked more or less at random by the system.

With this modification, it is likely that the bad guy can spend days of computer time try­
ing to find a password on a system with hundreds of passwords, and find none at all. More
important is the fact that it becomes impractical to prepare an encrypted dictionary in advance.
Such an encrypted dictionary could be used to crack new passwords in milliseconds when they
appear.

There is a (not inadvertent) side effect of this modification. It becomes nearly impossible
to find out whether a person with passwords on two or more systems has used the same pass­
word on all of them, unless you already know that.

4. The Threat of the DES Chip

Chips to perform the DES encryption are already commercially available and they are very
fast. The use of such a chip speeds up the process of password hunting by three orders of mag­
nitude. To avert this possibility, one of the internal tables of the DES algorithm (in particular,
the so-called E-table) is changed in a way that depends on the 12-bit random number. The E­
table is inseparably wired into the DES chip, so that the commercial chip cannot be used.
Obviously, the bad guy could have his own chip designed and built, but the cost would be
unthinkable.

5. A Subtle Point
To login successfully on the UNIX system, it is necessary after dialing in to type a valid

user name, and then the correct password for that user name. It is poor design to write the
login command in such a way that it tells an interloper when he has typed in a invalid user
name. The response to an invalid name should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done only
if the user name was valid, because otherwise th~re was no encrypted password to compare with
the supplied password. The result was that the response was delayed by about one-half second
if the name was valid, but was immediate if invalid. The bad guy could find out whether a par­
ticular user name was valid. The routine was modified to do the encryption in either case.

r

- 6 -

CONCLUSIONS

. On the issue of password security, UNIX is probably better than most systems. The use
of encrypted passwords appears reasonably secure in the absence of serious attention of experts
in the field.

It is also worth some effort to conceal even the encrypted passwords. Some UNIX sys­
tems have instituted what is called an "external security code" that must be typed when dialing
into the system, but before logging in. If this code is changed periodically, then someone with
an old password will likely be prevented from using it.

Whenever any security procedure is instituted that attempts to deny access to unauthor­
ized persons, it is wise to keep a record of both successful and unsuccessful attempts to get at
the secured resource. Just as an out-of-hours visitor to a computer center normally must not
only identify himself, but a record is usually also kept of his entry. Just so, it is a wise precau­
tion to make and keep a record of all attempts to log into a remote-access time-sharing system,
and certainly all unsuccessful attempts.

Bad guys fall on a spectrum whose one end is someone with ordinary access to a system
and whose goal is to find out a particular password (usually that of the super-user) and, at the
other end, someone who wishes to collect as much password information as possible from as
many systems as possible. Most of the work reported here serves to frustrate the latter type;
our experience indicates that the former type of bad guy never was very successful.

We recognize that a time-sharing system must operate in a hostile environment. We did
not attempt to hide the security aspects of the operating system, thereby playing the customary
make-believe game in which weaknesses of the system are not discussed no matter how
apparent. Rather we advertised the password algorithm and invited attack in the belief that this
approach would minimize future trouble. The approach has been successful.

References

[1] Ritchie, D.M. and Thompson, K. The UNIX Time-Sharing System. Comm. ACM 17
(July 1974), pp. 365-375.

[2] Proposed Federal Information Processing Data Enclyptiol1 Standard. Federal Register
(40FR 12134), March 17, 1975

[3] Wilkes, M. V. Time-Sharing Computer Systems. American Elsevier, New York, (1968),

[4] U. S. Patent Number 2,089,603.

.~.

,~
~., ..

On the Security of UNIX

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Recently there has been much interest in the security aspects of operating systems and
software. At issue is the ability to prevent undesired disclosure of information, destruction of
information, and harm to the functioning of the system. This paper discusses the degree of
security which can be provided under the 'UNIxt system and offers a number of hints on how to
improve security.

The first fact to face is that UNIX was not developed with security, in any realistic 'sense, in
mind; this fact alone guarantees a vast number of holes. (Actually the same statement can be
made with respect to most systems.) The area of security in which UNIX is theoretically weakest
is in protecting against crashing or at least crippling the operation of the system. The problem
here is not mainly in uncritical acceptance of bad parameters to system calls- there may be
bugs in this area, but none are known- but rather in lack of checks for excessive consumption
of resources. Most notably, there is no limit on the amount of disk storage used, either in total
space allocated or in the number of files or directories. Here is a particularly ghastly shell
sequence guaranteed to stop the system:

while: ; do
mkdir x
cd x

done

Either a panic will occur because all the i-nodes on the device are used up, or all the disk
blocks will be consumed, thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from creating more than a set number
of processes simultaneously, so unless users are in collusion it is unlikely that anyone can stop
the system altogether. However, creation of 20 or so CPU or disk-bound jobs leaves few
resources available for others. Also, if many large jobs are run simultaneously, swap space may
run out, causing a panic.

It should be evident that excessive consumption of disk space, files, swap space, and
processes can easily occur accidentally in malfunctioning programs as well as at command level.
In fact UNIX is essentially defenseless against this kind of abuse, nor is there any easy fix. The
best that can be said is that it is generally fairly easy to detect what has happened when disaster
strikes, to identify the user responsible, and take appropriate action. In practice, we have found
that difficulties in this area are rather rare, but we have not been faced with malicious users,
and enjoy a fairly generous supply of resources which have served to cushion us against
accidental overconsumption.

The picture is considerably brighter in the area of protection of information from unau­
thorized perusal and destruction. Here the degree of security seems (almost) adequate theoret­
ically, and the problems lie more in the necessity for care in the actual use of the system.

Each UNIX file has associated with it eleven bits of protection information together with a
user identification number and a user-group identification number (UID and GID). Nine of

fUNIX is a Trademark of Bell Laboratories.

- 2 -

the protection bits are used to specify independently permission to read, to write, and to exe­
cute the file to the user himself, to members of the user's group, and to all other users. Each
process generated by or for a user has associated with it an effective UID and a real UID, and
an effective and real OlD. When an attempt is made to access the file for reading, writing, or
execution, the user process's effective UID is compared against the file's UID; if a match is
obtained, access is granted provided the read, write, or execute bit respectively for the user
himself is present. If the UID for the file and for the process fail to match, but the OlD's do
match, the group bits are used; if the OlD's do not match, the bits for other users are tested.
The last two bits of each file's protection information, called the set-UID and set-OlD bits, are
used only when the file is executed as a program. If, in this case, the set-UID bit is on for the
file, the effective UID for the process is changed to the UID associated with the file; the change
persists until the process .terminates or until the UID changed again by another execution of a
set-UID file. Similarly the effective group ID of a process is changed to the OlD associated
with a file when that file is executed and has the set-OlD bit set. The real UID and OlD of a
process do not change when any file is executed, but only as the result of a privileged system
call.

The basic notion of the set-UID and set-OlD bits is that one may write a program which
is executable by others and which maintains files accessible to others only by that program.
The classical example is the game-playing program which maintains records of the scores of its
players. The program itself has to read and write the score file, but no one but the game's
sponsor can be allowed unrestricted access to the file lest they manipulate the game to their
own advantage. The solution is to turn on the set-UID bit of the game program. When, and
only when, it is invoked by players of the game, it may update the score file but ordinary pro­
grams executed by others cannot access the score.

There are a number of special cases involved in determining access permissions. Since
executing a directory as a program is a meaningless operation, the execute-permission bit, for
directories, is taken instead to mean permission to search the directory for a given file during
the scanning of a path name; thus if a directory has execute permission but no read permission
for a given user, he may access files with known names in the directory, but may not read (list)
the entire contents of the directory. Write permission on a directory is interpreted to mean that
the user may create and delete files in that directory; it is impossible for any user to write
directly into any directory.

Another, and from the point of view of security, much more serious special case is that
there is a "super user" who is able to read any file and write any non-directory. The super­
user is also able to change the protection mode and the owner UID and OlD of any file and to
invoke privileged system calls. It must be recognized that the mere notion of a super-user is a
theoretical, and usually practical, blemish on any protection scheme.

The first necessity for a secure system is of course arranging that all files and directories
have the proper protection modes. Traditionally, UNIX software has been exceedingly permis­
sive in this regard; essentially all commands create files readable and writable by everyone. In
the current version, this policy may be easily adjusted to suit the needs of the installation or the
individual user. Associated with each process and its descendants is a mask, which is in effect
and-ed with the mode of every file and directory created by that process. In this way, users
can arrange that, by default, all their files are no more accessible than they wish. The standard
mask, set by login, allows all permissions to the user himself and to his group, but disallows
writing by others.

To maintain both data privacy and data integrity, it is necessary, and largely sufficient, to
make one's files inaccessible to others. The lack of sufficiency could follow from the existence
of set-UID programs created by the user and the possibility of total breach of system security in
one of the ways discussed below (or one of the ways not discussed below). For greater protec­
tion, an encryption scheme is available. Since the editor is able to create encrypted documents,
and the crypt command can be used to pipe such documents into the other text-processing pro­
grams, the length of time during which clear text versions need be available is strictly limited.

- 3 -

The encryption scheme used is not one of the strongest known, but it is judged adequate, in
the sense that cryptanalysis is likely to require considerably more effort than more direct
methods of reading the encrypted files. For example, a user who stores data that he regards as
truly secret should be aware that he is implicitly trusting the system administrator not to install
a version of the crypt command that stores every typed password in a file.

Needless to say, the system administrators must be at least as careful as their most
demanding user to place the correct protection mode on the files under their control. In partic­
ular, it is necessary that special files be protected from writing, and probably reading, by ordi­
nary users when they store sensitive files belonging to other users. It is easy to write programs
that examine and change files by accessing the device on which the files live.

On the issue of password security, UNIX is probably better than most systems. Passwords
are stored in an encrypted form which, in the absence of serious attention from specialists in
the field, appears reasonably secure, provided its limitations are understood. In the current ver­
sion, it is based on a slightly defective version of the Federal DES; it is purposely defective so
that easily-available hardware is useless for attempts at exhaustive key-search. Since both the
encryption algorithm and the encrypted passwords are available, exhaustive enumeration of
potential passwords is still feasible up to a point. We have observed that users choose pass­
words that are easy to guess: they are short, or from a limited alphabet, or in a dictionary.
Passwords should be at least six characters long and randomly chosen from an alphabet which
includes digits and special characters.

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For
example: write a program which types out "login:" on the typewriter and copies whatever is
typed to a file of your own. Then invoke the command and go away until the victim arrives.

The set-UID (set-GID) notion must be used carefully if any security is to be maintained.
The first thing to keep in mind is that a writable set-UID file can have another program copied
onto it. For example, if the super-user (su) command is writable, anyone can copy the shell
onto it and get a password-free version of suo A more subtle problem can come from set-UID
programs which are not sufficiently careful of what is fed into them. To take an obsolete exam­
ple, the previous version of the mail command was set-UID and owned by the super-user.
This version sent mail to the recipient's own directory. The notion was that one should be able
to send mail to anyone even if they want to protect their directories from writing. The trouble
was that mail was rather dumb: anyone could mail someone else's private file to himself. Much
more serious is the following scenario: make a file with a line like one in the password file
which allows one to log in as the super-user. Then make a link named ".mail" to the password
file in some writable directory on the same device as the password file (say Itmp). Finally mail
the bogus login line to Itmp/.mail; You can then login as the super-user, clean up the incrim­
inating evidence, and have your will.

The fact that users can mount their own disks and t pes as file systems can be another
way of gaining super-user status. Once a disk pack is mounted, the system believes what is on
it. Thus one can take a blank disk pack, put on it anything desired, and mount it. There are
obvious and unfortunate consequences. For example: a mounted disk with garbage on it will
crash the system; one of the files on the mounted disk can easily be a password-free version of
su,' other files can be unprotected entries for special files. The only easy fix for this problem is
to forbid the use of mount to unprivileged users. A partial solution, not so restrictive, would
be to have the mount command examine the special file for bad data, set-UID programs owned
by others, and accessible special files, and balk at unprivileged invokers.

	Calculators
	Fortran
	Graphics
	LEX
	M4
	RJE
	SED
	SCCS
	UUCP
	YACC
	VPM
	Setting Up UNIX
	Administrative Advice
	Accounting
	FSCK
	I/O System
	Implementation
	C Compiler
	Security

