
OSFIMotif™

Style Guide

OPEN SOFTWARE FOUNDATION

Open Software Foundation

OSF I MotifTM
Style Guide

Revision 1.2

(For OSF/Motif Release 1.2)

ii P T R Prentice Hall, Englewood Cliffs, New Jersey 07632

Cover design
and cover illustration: BETH FAGAN

This book was formatted with troff

Published by P T R Prentice-Hall, Inc.
A Simon & Schu~ter Company
Englewood Cliffs, New Jersey 07632

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in connection
with the furnishing, performance, or use of this material.

Motif licensees who have executed OSF's Master Software License Terms and Conditions have been granted
the right and license to modify and/or prepare derivative works from this document subject to (i) inclusion
of the following disclaimer in any such modification or derivative work:

''Although portions of this document use text excerpted and/or derived from the OSF/Motif Style
Guide, by Open Software Foundation, Inc.™ (OSFTM), with the permission of OSF, this text is not, and
does not represent, such OSF /Motif Style Guide;'

and (ii) not using any name or destination that is confusingly similar to OSF/Motif Style Guide.

All rights are reserved. No part of this publication may be photocopied, reproduced, or translated into another
language without the prior written consent of the Open Software Foundation, Inc.

• © Copyright 1989, 1990,1993 Open Software Foundation, Inc.

This document and the software to which it relates are derived in part and from materials supplied by the following:

• © Copyright 1989 Digital Equipment Corporation

• © Copyright 1987, 1988, 1989, Hewlett-Packard Company

• © Copyright 1988 Massachusetts Institute of Technology

• © Copyright 1988 Microsoft Corporation

All rights reserved. Printed in U.S.A.

Printed in the United States of America
ill 9 8 7 6 5 4 3 2 1

ISBN 0-13-643123-2

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hail do Brasil, Ltda., Rio de Janeiro

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A
LICENSE, AND MAY BE USED AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH
LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE TO AND
OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS LICENSORS.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE
ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of,
this computer software, the rights of the Government regarding its use, reproduction and disclosure are
as set forth in Section 52.227-19 of the FARS Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraph (b)(3)(B) of the Rights in Technical Data and Computer Software clause in DAR
7-104.9(a). This computer software is submitted with "restricted rights:' Use, duplication or disclosure is
subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985):' If the contract contains the Clause at 18-52.227-74 "Rights in
Data General" then the "Alternate III" Clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Open Software Foundation, OSF, the OSF logo, OSF/l, OSF/Motif, and Motif are trademarks of the Open
Software Foundation, Inc.

DEC and DIGITAL are registered trademarks of Digital Equipment Corporation.

Hewlett-Packard and HP are trademarks of Hewlett-Packard Company.

Microsoft is a registered trademark of Microsoft Corporation.

Presentation Manager is a trademark of International Business Machines Corporation.

X Window System is a trademark of the Massachusetts Institute of Technology.

Contents

Preface .

Audience

Applicability

Purpose .

Document Usage

Related Documents

Typographic and Keying Conventions •
Keyboard Conventions
Mouse Conventions

Compliance Conventions .

Style Guide Support Level Process
AES Support Levels •
Full Use
Trial Use
Proposed Usage Levels •
Global Usage Level for Revision 1.2

Problem Reporting

Chapter 1. User Interface Design Principles •

1.1 Adopt the User's Perspective

1.2 Give the User Control •
1.2.1 Keep Interfaces Flexible
1.2.2 Use Progressive Disclosure .

1.3 Use Real-World Metaphors
1.3.1 Allow Direct Manipulation .
1.3.2 Provide Rapid Response
1.3.3 Provide Output as Input .

1.4 Keep Interfaces Natural
1.4.1 Make Navigation Easy
1.4.2 Provide Natural Shades and Colors

1.5 Keep Interfaces Consistent

xi

xii

xii

xiii

xiii

xiv

xiv
xv

xvii

xvii

xviii
xix
xix
xx
xx

xxii

xxii

1-1

1-2

1-3
1-3
1-4

1-4
1-4
1-5
1-5

1-6
1-6
1-7

1-7

OSF/Motif Style Guide

ii

1.6 Communicate Application Actions to the User
1.6.1 Give the User Feedback .
1.6.2 Anticipate Errors. .
1.6.3 Use Explicit Destruction

1. 7 Avoid Common Design Pitfalls .

Chapter 2. Input Models .

2.1 The Keyboard Focus Model •
2.1.1 Implicit Focus
2.1.2 Explicit Focus

2.2 The Input Device Model .
2.2.1 Pointing Devices •
2.2.2 Pointer Shapes
2.2.3 Gain and Acceleration
2.2.4 Warp Pointer Only If Explicitly

Enabled

Chapter 3. Navigation

3.1 Mouse-Based Navigation

3.2 Keyboard-Based Navigation .
3.2.1 Location Cursor
3.2.2 Window Navigation .
3.2.3 Component Navigation .

3.3 Menu Traversal

3.4 Scrollable Component Navigation .

Chapter 4. Selection .

4.1 ,Selection Models
4.1.1 Mouse-Based Single Selection .
4.1.2 Mouse-Based Browse Selection
4.1.3 Mouse-Based Multiple Selection
4.1.4 Mouse-Based Range Selection .
4.1.5 Mouse-Based Discontiguous Selection
4.1.6 Keyboard Selection
4.1.7 Canceling a Selection
4.1.8 Autoscrolling and Selection
4.1.9 Selecting and Deselecting All Elements .
4.1.10 Using Mnemonics for Elements

4.2 Selection Actions .
4.2.1 Destination Component •
4.2.2 Operation Targets
4.2.3 Selection Operations

4.3 Transfer Models
4.3.1 Clipboard Transfer

1-9
1-9

1-10
1-10

1-11

2-1

2-2
2-2
2-3

2-4
2-4
2-7

2-10

2-10

3-1

3-1

3-4
3-4
3-8
3-8

3-14

3-17

4-1

4-2
4-4
4-4
4-5
4-5
4-7
4-9

4-12
4-12
4-12
4-13

4-13
4-14
4-14
4-16

4-18
4-20

4.3.2
4.3.3
4.3.4
4.3.5

Primary Transfer • . • • • •
Quick Transfer
Drag Transfer •
Integrating Selection and Transfer

Chapter 5. Component Activation •

5.1 Basic Activation

5.2 Accelerators

5.3 Mnemonics
5.4 TearOff Activation

5.5 Help Activation

5.6 Default Activation •

5.7 Expert Activation .
5.8 Previewing and Autorepeat

5.9 Cancel Activation .
Chapter 6. Application Design Principles

6.1 Choosing Components •••••. •
6.1.1 Guidelines for Choosing a Main Component

Group . .
6.1.2 Guidelines for Choosing Interactive

Methods . • . •

6.2 Layout •.
6.2.1 Common Client Areas
6.2.2 Grouping Components
6.2.3 Menu Design •
6.2.4 DialogBox Design
6.2.5 Designing Drag and Drop

6.3 Interaction
6.3.1 Supplying Indications of Actions .
6.3.2 Providing Feedback . . • .
6.3.3 Allowing User Flexibility

6.4 Component Design • • • .

Chapter 7. Window Manager Design Principles .

7.1 Configurability •

7.2 Window Support
7.2.1 Primary Window . • .
7.2.2 Secondary Windows (Dialog) • .
7.2.3 Menu Windows

7.3 Window Decorations .

Contents

4-21
4-23
4-24
4-29

5-1

5-2

5-3

5-3

5-4

5-4

5-5

5-6

5-7

5-7

6-1

6-2

6-6

6-8

6-11
6-12
6-38
6-40
6-45
6-50

6-54
6-54
6-59
6-61

6-61

7-1

7-2

7-2
7-4
7-4
7-5

7-6

iii

OSF/Motif Style Guide

iv

7.3.1 Client Area
7.3.2 Title Area • . • . • . .
7.3.3 Maximize Button •
7.3.4 Minimize Button •
7.3.5 Other Buttons . •
7.3.6 Resize Borders
7.3.7 Window Menu

7.4 Window Navigation

7.5 Icons .
7.5.1 Icon Decoration
7.5.2 Icon Menu .
7.5.3 Icon Box

Chapter 8. Designing for International Markets .

8.1 Internationalized Text Input • .
8.1.1 Locating the Pre-Edit Area
8.1.2 Displaying Status .••.
8.1.3 Converting Pre-Edit Characters to Final

Characters •

8.2 Collating Sequences .•••

8.3 Country-Specific Data Formats .
8.3.1 Thousands Separators
8.3.2 Decimal Separators . • • .
8.3.3 Grouping Separators •
8.3.4 Positive and Negative Values
8.3.5 Currency
8.3.6 Date Formats .
8.3.7 Time Formats •
8.3.8 Telephone Numbers .
8.3.9 Proper Names and Addresses

8.4 Icons, Symbols, and Pointer Shapes

8.5 Scanning Direction . . • .

8.6 Designing Modularized Software

8.7 Translating Screen Text .

Chapter 9. Controls, Groups, and Models Reference Pages

Accelerators

Activation

Basic Controls •

Basic Groups

Canvas

7-8
7-8
7-9
7-9

7-10
7-10
7-11

7-13

7-14
7-14
7-15
7-15

8-1

8-2
8-3
8-3

8-4

8-4

8-5
8-5
8-6
8-6
8-6
8-6
8-7
8-7
8-8
8-8

8-9

8-10

8-10

8-11

9-1

9-4

9-5

9-8

9-10

9-11

Contents

CascadeB utton 9-12
CheckButton 9-14

CommandBox · 9-17

CommandDialog 9-19
Composition 9-20
Default Activation . · 9-21

DialogBox 9-23
Drag and Drop 9-26
Edit Menu 9-28

ErrorDialog . · · . 9-33

Field Controls · 9-34
File Menu 9-36
FileSelectionBox 9-39

FileSelectionDialog 9-42

Focus 9-44

Frame 9-46

Framing Groups 9-47

Help Menu 9-48

Icon Menu 9-52

lconBox 9-53

Icons . . · · 9-56

InformationDialog . 9-58
Input Devices 9-59
Label 9-62

Layout Groups · · · 9-63
List 9-64
MainWindow 9-67

MenuBar 9-69

Menus 9-73
MessageDialogs 9-75

Mnemonics . 9-76

Navigation . 9-77

v

OSF/Motif Style Guide

OptionButton

PanedWindow .

Panel. • •

Pointer Shapes

Popup Menus

Primary Selection •

PromptDialog

PushButton • . .

QuestionDialog

Quick Transfer • .

RadioB utton

Sash • • .

Scale. • .

ScrollBar

ScrolledWindow

Selection

SelectionBox

SelectionDialog

Separator . • • . . • . • .

TearOffButton • .•••

Text • . .

ToggleButton

WarningDialog

Window Menu • .

W orkingDialog

Appendix A. OSFlMotif Widgets and Components
Correspondence . • • . • • . •

Appendix B. OSFlMotif Level One Certification Checklist .

vi

B.l Preface . • • • . . • . •

B.2 Input Models . . . • • • •
B.2.1 The Keyboard Focus Model
B .2.2 The Input Device Model

B .3 Navigation • • . . • • • •

9-83

9-85

9-87

9-88

9-91

9-95

9-97

9-99

9-101

9-103

9-105

9-108

9-111

9-114

9-117

9-119

9-121

9-123

9-125

9-126

9-128

9-133

9-134

9-135

9-138

A-I

B-1

B-2

B-2
B-2
B-3

B-5

Glossary

Index

B.3.1 Mouse-Based Navigation
B.3.2 Keyboard-Based Navigation
B.3.3 Menu Traversal
B.304 Scrollable Component Navigation

B A Selection
Bo4.1 Selection Models .
Bo4.2 Selection Actions
BA.3 Transfer Models .

B.S Component Activation
B.S.1 Basic Activation .
B.S.2 Accelerators
B.S.3 Mnemonics
B.So4 TearOff Activation
B.S.S Help Activation
B.S.6 Default Activation
B.S.7 Expert Activation .
B.S.8 Previewing and Autorepeat .
B.S.9 Cancel Activation

B.6 Application Design Principles
B.6.1 Layout .
B.6.2 Interaction .

B.7 Controls, Groups, and Models
B.7.1 CheckButton
B.7.2 CommandBox.
B.7.3 FileSelectionBox
B.704 List .
B.7.S OptionButton .
B.7.6 PanedWindow
B.7.7 Panel
B.7.8 PushButton
B.7.9 RadioButton
B.7.10 Sash
B.7.11 Scale
B.7.12 ScrollBar
B.7.13 SelectionBox .
B.7.14 Text

Contents

B-S
B-9

B-13
B-18

B-19
B-19
B-31
B-33

B-41
B-41
B-42
B-43
B-44
B-44
B-4S
B-46
B-46
B-47

B-48
B-48
B-61

B-62
B-62
B-63
B-64
B-67
B-68
B-69
B-70
B-70
B-71
B-72
B-73
B-7S
B-77
B-78

GL-1

Index-1

vii

OSF/Motif Style Guide

List of Figures

Figure 3-1. A Box Style Location Cursor .

Figure 3-2. An Outline Highlight Style Location Cursor

Figure 3-3. Text Cursor Shapes •

Figure 3-4. A Text Cursor Style Location Cursor

Figure 3-5. An Item Cursor Style Location Cursor

Figure 3-6. A Fill Style Location Cursor

Figure 4-1. Drag Icons

Figure 6-1. A Typical Main Window and Its Common Client Areas

Figure 6-2. The File Menu and Its Selections •

Figure 6-3. The Edit Menu and Its Selections

Figure 6-4. The Help Menu and Its Selections (First Model)

Figure 6-5. The Help Menu and Its Selections (Second Model)

Figure 6-6. A CommandDialog •

Figure 6-7. A FileSelectionDialog •

Figure 6-8. A PromptDialog .

Figure 6-9. A SelectionDialog

Figure 6-10. An ErrorDialog .

Figure 6-11. An InformationDialog •

Figure 6-12. A QuestionDialog

Figure 6-13. A WamingDialog

Figure 6-14. A WorkingDialog

Figure 6-15. Drag Icons

Figure 6-16. A Default PushButton .

Figure 6-17. A Disabled Menu Element •

viii

3-5

3-5

3-6

3-6

3-7

3-7

4-26

6-13

6-18

6-20

6-24

6-25

6-31

6-32

6-33

6-34

6-35

6-36

6-36

6-37

6-37

6-51

6-57

6-58

Figure 7-1. A Typical OSFIMotif User Environment

Figure 7-2. A Typical OSFIMotif Window Layout

Figure 7-3. The Window Menu Button with Menu Pulled Down •

Figure 7-4. A Typical OSFIMotif Icon. •

Figure 7-5. A Typical OSFIMotif Icon Box

Contents

7-3

7-7
7-11

7-14
7-16

ix

OSF/Motif Style Guide

List of Tables

Table 6-1. Suggested Window Types

Table 6-2. Edit Menu Accelerators, Modell

Table 6-3. Edit Menu Accelerators, Model 2 .

Table 9-1. Edit Menu Accelerators, Modell.

Table 9-2. Edit Menu Accelerators, Model 2

Table A-I. Component to Widget Correspondence

Table B-1. Edit Menu Accelerators, Modell. .

Table B-2. Edit Menu Accelerators, Model 2 . . .

x

6-8

6-23

6-23

9-30
9-31
A-I

B-54

B-54

Preface

The aSF/Motif Style Guide provides a framework of behavior specifications
to guide application developers, widget developers, user interface system
developers, and window manager developers in the desi§:n and
implementation of new products consistent with the aSF/Motif M user
interface. This aSF/Motif Style Guide is also closely consistent with
Microsoft Windows, Presentation Manager, and Common User Access
(CUA).

The aSF/Motif Style Guide establishes a consistent behavior among new
products by drawing out the common elements from a variety of current
behavioral models. The aSF/Motif Style Guide anticipates the evolution of
graphical user interfaces as new technology becomes available and as the
use of the Motif™ user interface spreads. Behavioral guidelines will be
added over time as they become stable.

For specific details of coding the implementation into an application
program, widget, or window manager, see the other volumes of the
aSF/Motif documentation set.

xi

OSF/Motif Style Guide

Audience

This document is written for four audiences. The following text suggests
the sections in this guide that are relevant to each audience. We recommend
that you read through the entire aSF/Motif Style Guide once to familiarize
yourself with all user interface design concepts and to ensure that you do not
miss anything.

• Application Designers

Should be familiar with the contents of Chapters 1, 6, and 8, and
Appendixes A and B.

• Widget Designers

Should be familiar with the contents of Chapters 1 through 6, 8, and 9,
and Appendixes A and B.

• User Interface System Designers

Should be familiar with the entire contents of this guide.

• Window Manager Designers

Should be familiar with the contents of Chapters 1, 6, 7, and 8, and
Appendix A.

Applicability

xii

This is Revision 1.2 of this document. It applies to Release 1.2 of the
aSP/Motif software system.

Purpose

Preface

The purpose of this guide is to explain how to create aSF/Motif compliant
applications, window managers, controls, and systems.

Document Usage

This document is organized into nine chapters and two appendixes.

• Chapter 1 provides general user interface design principles. Everyone
should read this chapter.

• Chapter 2 describes the input model. New widget designers and user
interface system designers should read this chapter.

• Chapter 3 describes the navigation model. New widget designers and
user interface system designers should read this chapter.

• Chapter 4 describes the selection model. New widget designers and user
interface system designers should read this chapter.

• Chapter 5 describes the activation model. New widget designers and
user interface system designers should read this chapter.

• Chapter 6 describes user interface component choices, layout, and
interaction. Everyone should read this chapter.

• Chapter 7 describes window manager design. Window manager
designers and user interface system designers should read this chapter.

• Chapter 8 introduces and briefly describes internationalization and
localization concepts and issues as they relate to user interface design.
Everyone should read this chapter.

• Chapter 9 provides reference information for concepts described in
earlier chapters, and provides detailed information about components.
This chapter should be read by new widget designers and can by used as
a reference by everyone.

• Appendix A shows the correspondence between aSF/Motif widgets and
components described in this guide.

• Appendix B contains the Level One Certification Checklist, which is
based on this guide.

xiii

OSF/Motif Style Guide

Related Documents

For additional information about aSF/Motif, refer to the following
documents:

• The Application Environment Specification - User Environment
Volume defines a stable set of routines for creating user interface
applications.

• The OSFIMotij User's Guide explains how to interact with aSF/Motif
based applications.

• The OSFIMotij Programmer's Guide explains how to write applications
using the aSF/Motif widget set.

• The OSFIMotij Programmer's Reference provides detailed reference
information for programmers writing Motif applications.

Typographic and Keying Conventions

xiv

This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that you
must use literally, such as commands, flags, and pathnames.
Bold words also indicate the first use of a term included in the
glossary.

Italic Italic words or characters represent variable values that you
must supply.

< > Angle brackets enclose the name of a key on the keyboard.

Components of the user interface are represented by capital letters on each
major word in the name of the component, such as PushButton.

See Compliance Conventions later in this Preface for an explanation of the
asterisks (*) that appear in the margins.

Preface

Keyboard Conventions

Since not all keyboards are the same, it is difficult to give style guidelines
that are correct for every manufacturer's keyboard. To solve this problem,
this guide describes keys using a model keyboard mechanism. Wherever
keyboard input is specified, the keys are indicated by the engraving they
have on the aSF/Motif model keyboard. The model keyboard does not
correspond directly to any existing keyboard, rather it assumes a keyboard
with an ideal set of keys.

In addition to the standard letter, number, and character keys, the aSF/Motif
model keyboard is composed of the following special keys:

• The special printing characters <I>, <\>, and <!>

• The standard modifier keys <Ctrl>, <Alt>, and <Shift>

• Ten function keys <FI> through <FlO>

• The arrow keys <-1>, <f-->, <--7>, and <I>

• <Backspace>

• <Cancel>

• <Delete>

• <End>

• <Escape>

• <Help>

• <Home>, <Begin>, or both

• <Insert>

• <Menu>

• <PageDown>

• <PageUp>

• <Return>

• <Space>

• <Tab>

xv

OSF/Motif Style Guide

xvi

The aSP/Motif model keyboard also contains the following optional keys,
which, although useful, are either not necessary or may be created by
combinations of other keys:

• <CapsLock>

• <Copy>

• <Cut>

• <Enter>

• <ModeSwitch>

• <NumLock>

• <PageL eft>

• <PageRight>

• <Paste>

• <Scroll Lock>

• <Select>

• <Undo>

Throughout this guide, behavior is described in terms of model keyboard
keys. When a behavior takes advantage of an optional key from the model
keyboard, it is also described in terms of the required special keys. Each of *
the keys described on the aSP/Motif model keyboard must be available *
either as specified or using other keys or key combinations if the specified *
key is unavailable. A few of the more important alternative key bindings
are described here for your convenience.

• If <Cancel> does not exist, <Escape> can be used in its place.

• If <Help> does not exist, <Fl> can be used in its place.

• If <Menu> does not exist, <Shift> <FlO> can be used in its place.

• If <FlO> does not exist, <Shift> <Menu> can be used in its place.

• If <Home> or <Begin> does not exist, <Alt> <f-> can be used in its
place.

• If <End> does not exist, <AIt> <~> can be used in its place

• Wherever <Select> and <Space> can be used for a selection action,
<Ctrl> <Space> can be used as well.

Preface

• Wherever <Enter> and <Return> can be used for activation, <Ctrl>
<Return> can be used as well.

Mouse Conventions

Mouse buttons are described in this guide using a virtual button
mechanism to better describe behavior independent from the number of
buttons on the mouse. This guide assumes a 3-button mouse. On a 3-button
mouse, the leftmost mouse button is usually defined as BSelect, the middle
mouse button is usually defined as BTransfer, and the rightmost mouse
button is usually defined as BMenu. Details about how virtual mouse
buttons are usually defined are given in Section 2.2.

Compliance Conventions

Throughout the guide "must," "should," and "can" have special meanings.
Guidelines with "must" in them are requirements for OSFIMotif Style Guide
compliance. Any guideline with "must" is included in the "OSF/Motif
Level One Certification Checklist" for OSFIMotif Style Guide compliance.
Guidelines with "must" are marked in the margin with an asterisk (*).
Guidelines with "should" in them are recommendations. We consider them
important for interapplication consistency, but we do not require them for
compliance. You should follow them as closely as you are able. Guidelines
with "can" in them indicate optional elements of user interface sty Ie.

The process for how OSFIMotif Style Guide elements migrate from options
to requirements is described in the "OSF/Motif Level One Certification
Checklist" (see Appendix B).

Note that by default this guide assumes your application is being designed
for a left-to-right language direction environment, and that the application is
written in English. Many of these guidelines can, and in fact should, be
modified based on both language and scanning direction.

xvii

OSF/Motif Style Guide

Style Guide Support Level Process

xviii

As of the 1.2 release, regions of this guide are designated with a support
level. This support level system, which closely parallels the current
Application Environment Specification - User Environment Volume support
level system, specifies the commitment aSF makes to the guidelines in that
region. The higher the support level, the longer the warning period required
before aSF can delete the guidelines, or make an incompatible change in
the guidelines. (An incompatible change is one that might require
compliant applications to be rewritten.) Support levels, therefore, serve as
advisories for application developers because they indicate the length of
time that a guideline is guaranteed to remain stable.

During the aSP/Motif Style Guide development process, aSF staff members
propose support levels for guidelines, based on criteria defined later in this
Preface. aSF members review and comment on these support levels and the
rest of the document.

In general, membership review proceeds as follows:

1. aSF prepares a list of proposed changes to the aSP/Motif Style Guide,
and circulates it to aSF members. This review period may last from
one to several months.

2. Members submit comments.

3. aSF responds to members' comments in the next version of the
document, or in a discussion that takes place in an electronic news
group or at a meeting.

aSF considers all review comments during the development of the
aSP/Motif Style Guide and brings important or controversial issues up for
further discussion. However, the review process is not a voting process, and
aSF does not wait for consensus among the membership before adding new
interfaces to the aSP/Motif Style Guide or making other technical decisions.

Preface

AES Support Levels

Full Use

This section defines the support levels assigned to the guidelines. As
previously mentioned, support levels define asF's commitment to interface
definitions by indicating the warning period required to make an
incompatibie modification or deletion of the guideline. New OSFIMotij
Style Guide revisions may introduce upwardly compatible changes at any
time, regardless of the support level.

The support levels are as follows:

• Full use

• Trial use

The following sections explain each support level, and how guidelines move
from proposed status (in drafts) to final status (in published versions).

A full-use guideline has the highest support level, so it is the most protected
from incompatible modification or deletion.

aSF assigns a support level of full use to guidelines for the following
reasons:

• The guideline already exists in an approved de jure standard. (A de jure
standard is one that is set by an official standards body.)

• The guideline as specified in the OSFIMotif Style Guide is considered
stable and already in widespread use in applications.

• The guideline has been upgraded to full-use status after a period of
trial-use status in an earlier OSFIMotif Style Guide revision.

There should rarely be a need to remove a full-use guideline, or make
incompatible modifications to it. However, if this ever becomes necessary,
a full-use guideline keeps its full-use status, but we will publish a warning
describing the proposed future change in at least two successive revisions of
the OSFIM otif Style Guide before we make the change. This provides time
for applications to be altered to deal with a different guideline, and for
implementations to prepare for the change.

xix

OSF/Motif Style Guide

Trial Use

For example, suppose it becomes necessary to modify a full-use guideline
that appeared in Release 1.2 of the OSFIM atif Style Guide. The draft for
Release 1.3 shows the guideline as "proposed-for-modificationlremoval."
Assuming the review concludes that this change is appropriate, the
guideline in Release 1.3 still has full-use status, but is accompanied by a
warning. The warning states that the guideline is scheduled for modification
after Release 1.4, and describes the modified behavior. Application
developers can now allow for either the original or the modified guideline.
Release 1.4 contains the same warning. Release 1.5 provides the modified
definition only.

A trial-use guideline is easier to modify or delete than a full-use guideline.
There are several reasons why OSF classifies guidelines as trial use instead
of full use. A guideline may be under consideration for inclusion in a de
jure standard and so may possibly change as a result of the standards
process. Or, OSF may perceive that the guideline is new compared to other
included guidelines and, therefore, the implementation and use of the
guideline may suggest revisions in its definition.

If it becomes necessary to modify or delete a trial-use guideline, it keeps its
trial-use status, with warnings about its removal or incompatible change, for
one full revision of the OSFIM ati! Style Guide. In the preceding example, if
the guideline to be modified were a trial-use guideline, Release 1.3 would
include the unmodified definition with a warning and description of the
change, and Release 1.4 would include the modified definition only.

Proposed Usage Levels

xx

Draft versions of the OSFIMatif Style Guide give newly added or changed
guidelines a "proposed-for-level" status, where level is full- or trial-use. In
final versions, these guidelines move from "proposed-for-level" status to
level status. Most existing guidelines retain their support level from the
previous revision. A few may carry a proposed-for-change status (described
as follows). New guidelines carry a proposed-for-level status.

Preface

The following list defines more exactly the AES proposed-for-inclusion and
proposed for-change levels.

Proposed-for-level-use
A review level leading to level-use inclusion on acceptance, and no
change in status otherwise. This status may be used to propose a new
guideline for level-use, or to move an existing guideline to a higher
status.

Proposed-for-modificationlremoval
A review level for existing guidelines that OSF proposes to make an
incompatible modification in or remove from the OSFIM oti! Style
Guide. If this proposal is accepted during the review process, a full­
use guideline remains as is, with a warning, for two revisions; a trial­
use or temporary-use guideline remains as is with a warning, for one
revision. If the proposal is rejected, the guideline remains as is.

Proposed-for-correction
A review level for guidelines of any support level in which OSF
wishes to correct a specification error. OSF will propose correcting a
guideline if a definition was obviously wrong (and implementations
and applications could never follow the specification as it is written),
if clarification of an unclear section is required, or if an error makes a
definition clearly internally inconsistent or inappropriate. Guidelines
proposed for correction return to their original status, in corrected
form, on acceptance of the correction. They return to their original
status in uncorrected form on rejection of the correction. (Proposal
for correction is not required for OSF to fix a typographical error.)

Proposed-for-enhancement
A review level for guidelines in which OSF wants to make an
upwardly compatible change in definition. If accepted, the definition
change is effective in the published revision after the draft in which
the proposal for enhancement occurred.

xxi

OSF/Motif Style Guide

Global Usage Level for Revision 1.2

To avoid confusion when reading this guide, the entire guide has a global
usage level. Each guideline in this guide has this global usage level unless
specifically set out differently. To initiate this usage level process, in this
version of the aSP/Motif Style Guide all the guidelines have a usage level of
trial-use.

Problem Reporting

xxii

If you have any problems with the software or documention, please contact
your software vendor's customer service department.

Chapter 1

User Interface Design Principles

A user interface is simply the interface between an application and the user
of an application. The primary goal of a user interface is to help user
interface designers easily create applications that increase user
effectiveness and satisfaction. By following the guidelines presented in this
OSFIM atif Style Guide, you can create applications that are well designed
and easy to use. These guidelines pertain to all sorts of applications, from
spreadsheets and word processors to CAD tools.

To be effective, a user interface allows a user to interact with an application
simply and naturally. Successful user interface designers keep the user in
mind while designing an application. Keep the user in mind by following
these two principles:

• Know the user.

• Empower the user.

The user of an application, above all, wants to get the job done. A user
interface needs to be designed so the user can quickly and easily complete
the tasks. Users want mastery over an application. Make it simple for the
user to master the basics of your application. At the same time, you can
include advanced methods of interaction with the application, shortcuts for
the user. Users are curious and exploratory. They will find these shortcuts
as they use and master the application. Such shortcuts need not be as
intuitive as the regular methods of interaction.

1-1

OSF/Motif Style Guide

This chapter discusses the following guidelines for creating user interfaces
that are consistent and easy to use. Because of the particular nature of your
client application, component, or window manager, or in response to
customers' needs, you may not be able to apply all of these principles all of
the time.

• Adopt the user's perspective.

• Give the user control.

• Use real-world metaphors.

• Keep interfaces natural.

• Keep interfaces consistent.

• Communicate application actions to the user.

• Avoid common design pitfalls.

1.1 Adopt the User's Perspective

1-2

Effective design starts with adopting the user's point of view, which is often
difficult to do. Application designers tend to see an application as the
implementation of functions. In contrast, the user sees an application in
terms of its interface.

Good design is rooted in an understanding of the user's work. A well­
designed application solves users' problems, makes their work easier, and
offers them new capabilities. The two most effective ways to understand the
user's work are to involve users in the design and to be a user yourself.

Input from users can help determine both appropriate functions and methods
for presenting them. Involve users as early as possible in the design process
because, as the design progresses and the schedule closes in, the
possibilities for design change decrease.

You do not need a working prototype to involve users. In fact, you can even
involve users while you are writing specifications. At this stage, you can
watch users work in order to understand the environment in which your
application will be used. Talk to these users about their work, their current
tools, and their goals for new tools.

User Interface Design Principles

For example, if you are designing software to create and display charts and
graphs during meetings, you might attend meetings at various customer
sites, see how charts and graphs are currently used in meetings, and
interview meeting participants to learn what they would like to see in a new
tool. Once you have a working prototype of your application, invite users to
test it to see if your interface meets the goals you established for it.

Try to use your application in real situations. Using an application can
provide critical insights into user interface problems. Acquiring experience
with the application can be difficult and time consuming, but it is a
worthwhile exercise. Before you even create the interface for your
application, you can use similar applications, even competitive products, to
help you understand the user's tasks.

1.2 Give the User Control

Users want and need to be in control of the tools they use to perform their
work. The user can be in control when an application is flexible and uses
progressive disclosure.

1.2.1 Keep Interfaces Flexible

Providing multiple ways for users to access application functions and
accomplish their tasks increases their sense of control. Flexibility enables
users to select the best method of accessing a function based on the criteria
they choose: experience level, personal preference, unique situation, or
simply habit. For example, a user can access a function through a Pulldown
Menu, direct manipulation of an object, a mnemonic key press, or a
keyboard accelerator.

Your application should also be configurable. Allowing users to configure
settings and select personal preferences enhances their sense of control and
encourages them to take an active role in understanding your product and
how it works. To be effective, the configurability of your application needs
to be easily accessible.

1-3

OSF/Motif Style Guide

1.2.2 Use Progressive Disclosure

Design your application so that the necessary and common functions are
presented first and in a logical order. Make the more sophisticated and less
frequently used functions hidden from immediate view, but still available.
For example, use a DialogBox to hide settings that are not accessed often.

Decisions about the placement of functions are not easy to make. From the
implementation standpoint, all functions are important. Often, however, a
relatively small number of functions account for the majority of use. Make
sure that these important functions are prominently featured in the
presentation of the interface. Also remember that they can be prominent
only if other functions are hidden.

1.3 Use Real-World Metaphors

A good user interface allows the user to transfer skills from real-world
experiences. For example, PushButtons push, and Scales slide. This makes
it easier for the user to infer how to use an application. When you design a
new component, consider how a similar real-world control performs to
incorporate the metaphor into the new component. Real-world metaphors
can extend to groups of components as well, especially when making a
computer-based user interface to replace a mechanical user interface.

1.3.1 Allow Direct Manipulation

1-4

Users need to be able to directly manipulate elements of the user interface
and their applications. For example, the user needs to be able to directly
scroll Text with a ScrollBar, rather than using a keyboard-driven command.
Direct manipulation simulates the real world where the user employs tools
to perform tasks on physical objects. Users control applications by directly
manipulating graphical components similar to real-world controls, rather
than entering a command on a command line. Direct manipulation reduces
the amount of information the user needs to memorize.

Direct manipulation connects an action to an observable response from a
component. Using direct manipulation, the user gets an immediate visible
result from each action.

User Interface Design Principles

The direct manipulation model is an object-action model. That is, you first
select an object or group of objects, then you perform an action on the
selected objects. An object-action model allows the user to see what
elements will be acted on before performing an action. It also allows
multiple actions to be performed successively on the selected elements.

Although it is important to allow direct manipulation of the objects in your
application, you must also support methods for interacting with your *
application by keyboard-only users. These methods can also be used by
advanced users to perform some tasks more quickly.

1.3.2 Provide Rapid Response

Make your application respond to input as rapidly as possible. The
immediacy of the visual response is crucial to the experience of direct
manipulation. When using components, provide the application's response
immediately and in proportion to the component's actions. The application *
must also have a consistent speed of response. Delays, disproportionate
responses, or inconsistent responses can render an otherwise well-designed
application unusable. Performance problems make it difficult for the user to
concentrate on the task at hand.

1.3.3 Provide Output as Input

Another feature of direct manipulation is that the output of one part of an
application or the output of the application itself is also available as input.
For example, if one action produces a list of filenames, another action can
select them for use elsewhere.

The user manipulates objects by locating them and clicking on them rather
than typing in their names. Design so that the only time the user needs to
type a name is to create an object. A well-designed application reduces the
amount of information the user needs to memorize to perform tasks.

1-5

OSF/Motif Style Guide

1.4 Keep Interfaces Natural

You can extend the concepts of giving the user control and using real-world
metaphors to arrange your application so that tasks flow naturally. Users
need to be able to anticipate the natural progression of each task; through
this anticipation, they are able to complete tasks more quickly.

Each screen object needs to have a distinct appearance that the user can
easily recognize and quickly understand. At the same time, the style of the
interface needs to graphically unify these elements and ensure a consistent
and attractive appearance at any screen resolution.

1.4.1 Make Navigation Easy

1-6

Make navigation easy by providing a straightforward presentation of the
overall work area and the mechanisms for moving through it. Moving easily
and quickly within the work area gives the user a sense of mastery over the
application. For example, ScrollBars are an effective way to indicate the
position of the current view in relation to an area as a whole. In addition to
providing positional feedback, ScrollBars allow the user to move through
the area.

Arrange elements on the screen according to their use; an optimal
arrangement assists the user's decision-making processes and reduces the
possibility of errors. The best approach for arranging screen elements
according to use is to involve users in the arrangement process. Present
screen objects in an orderly, simple, and uncluttered manner.

Reduce mouse movement to simplify the actions of the user. For example,
place secondary DialogBoxes near their parent DialogBox so that when the
secondary DialogBox appears, the mouse pointer is over the default
PushButton, unless the user needs to see the contents of the original
DialogBox. Reducing mouse movement helps make an interface natural
because, from the user's point of view, work involves a stream of thoughts,
intentions, and tasks (some predefined and some that become apparent
during the process) that all relate to some desired outcome or
accomplishment. This stream of thought is disrupted when the user has to
make unnecessary mouse movements, open and close DialogBoxes, or
search for commands.

User Interface Design Principles

1.4.2 Provide Natural Shades and Colors

Minimize the contrast between screen objects in order to direct the user's
attention. Appropriate use of contrast helps the user distinguish screen
objects against the background of a window. Very dark screen objects on a
light background, very bright objects on a dark background, and bright
colors all command the user's attention. If there are many objects with
strong contrast or bright colors on the screen, the user will have difficulty
knowing where to look first because all these objects compete equally for
attention.

Use color as a redundant aspect of the interface; that is, use it to provide
additional differentiation among screen objects. Differentiation also comes
from the shape and size of the screen objects. For example, in many parts of
the world, stop signs are red octagons. You recognize the stop sign by both
its shape and color.

1.5 Keep Interfaces Consistent

The main purpose of the aSF/Motif Style Guide is to ensure consistency.
Consistency is important both among applications and within a single
application. Consistency helps the user transfer familiar skills to new
situations. The user can apply the knowledge learned from one application
to another application, reducing the amount of learning and subsequent
recall. Consistency within applications facilitates exploration of new
functions. When components work in a manner that is consistent with other
components, the user will be less afraid to try new functions. The new
functions will seem familiar, comfortable, and appropriate. The guidelines
in the aSF/M otif Style Guide allow you to create applications that are
consistent in a diverse market and that help your applications succeed in the
marketplace.

Intraapplication consistency means the following:

• Similar components operate similarly and have similar uses.

For example, because Pulldown, Popup, and Option Menus are similar
components, their operation and use should be similar. Choosing the
proper component is described in Section 6.1. Component interaction is
described in the reference section for each component and also in
Section 6.3.

1-7

OSF/Motif Style Guide

1-8

• The same action should always have the same result.

For example, pushing the top arrow in a ScrollBar should always move
the ScrollBar up. Interaction is described in Section 6.3.

• The function of components should not change based on context.

For example, clicking a button should always perform the same action.
Note that even though the action is the same, the result of the action can
depend on context. A button in a file editor can begin editing one of a
number of files. The button need not always edit the same file; rather, its
consistent action is to edit the selected file. Interaction is described in
Section 6.3.

• The position of components should not change based on context.

Components should not generally be added and removed as needed.
This makes it difficult to quickly find the desired component. Instead,
you should make unneeded components nonfunctional and indicate this
by deemphasizing (graying out) their labels. Component layout is
described in Section 6.2.

• The position of the mouse pointer should not warp.

The location of the mouse pointer should be determined by direct
manipulation and should not be positioned arbitrarily by the application.
Positioning the mouse pointer by the application causes the user to lose
track of the pointer. Warping the pointer also causes problems with
tablet style pointing devices that rely on absolute pointer positioning.
The input model is described in Chapter 2.

Consistency among applications increases the user's sense of mastery.
Experience with one application can be readily applied to another
application, creating a positive transfer of knowledge. The task at hand,
rather than learning a new application, becomes the focus of a computer
session. When applications work in a manner that is consistent with other
applications, users enjoy a feeling of immediate confidence in their ability
to master the new program. Also, they are pleasantly surprised when trying
new functions because, although new, the functions seem familiar.

Interapplication consistency means the following:

• Components look familiar.

This does not mean that components look exactly the same, but that the
internal layout of components should be the same. Elements of
appearance such as color, size, and thickness of beveled edges are less

User Interface Design Principles

important to application interoperability. Component design and layout
are described in the reference section for each component and also in
Section 6.4.

• Interaction is familiar.

When interaction is different among applications, it confuses the user
and makes it difficult to concentrate on the task of the application. This
applies to the behavior of components, input methods, selection models,
and keyboard navigation. Interaction is described in Section 6.3.

• Components are organized in a familiar manner.

The user needs to be able to quickly find the proper component for each
task. Organizing the components according to consistent guidelines
helps the user do this. Application layout guidelines are described in
Section 6.2.

1.6 Communicate Application Actions to the User

Effective applications let the user know what is happening with the
application, but without revealing implementation details. Proper
communication between the user and the application increases user
satisfaction. There are three guidelines for communicating from the
application to the user: provide feedback, anticipate errors, and provide
warnings.

1.6.1 Give the User Feedback

Feedback lets users know that the computer has received their input. Give
users feedback whenever they have selected a component or Menu item by
highlighting the component or Menu item in some way. In addition, if
certain operations take more than a few seconds, you should let the user
know that the computer is working on that operation by providing a message
or by changing the pointer to a working pointer.

1-9

OSF/Motif Style Guide

1.6.2 Anticipate Errors

Anticipate the errors that are likely to occur. By anticipating errors, you can
avoid them in your design, enable the support of recovery attempts, and
provide messages informing the user of the proper corrective action. For
example, one technique for avoiding excessive error messages is to dim
interface components when they cannot be used.

Context-sensitive help aids understanding, reduces errors, and eases
recovery efforts. Help information text needs to be clear, concise, and
written in everyday language. Help information needs to be readily
accessible and just as readily removable.

Many users are most comfortable with learning how to use software
applications when they use a natural, trial-and-error method. An undo
function supports learning by trial and error by minimizing the cost of
errors. An undo function allows the user to retract previous actions, and
fosters a spirit of exploration and experimentation that is essential.

1.6.3 Use Explicit Destruction

1-10

Explicit destruction means that, when an action has irreversible negative
consequences, it should require the user to take an explicit action to perform
it. For example, while a worksheet can be saved simply by clicking on a
Save PushButton, erasing the worksheet should require clicking on an Erase
PushButton and answering a warning question like "Are you sure you
want to erase this worksheet?" with a button click in the warning
DialogBox.

Warnings protect the user from inadvertent destructive operations, yet allow
the user to remain in control of the application. Warnings also encourage
the user to experiment without fear of loss. Operations that can cause a
serious or unrecoverable loss of data should warn the user of the
consequences and request explicit confirmation.

User Interface Design Principles

1.7 Avoid Common Design Pitfalls

The process of achieving good design presents many challenges and
potential pitfalls. The following guidelines can help you avoid common
pitfalls:

• Pay attention to details.

The details of an application express the sense of craft that you applied
to the application. The details of an elegantly designed interface both
please users and facilitate their work. For example, aligning the
PushButtons of two related and overlapping DialogBoxes makes it easier
for the user to activate new settings in an apparently seamless operation.
Consistent capitalization of Menu items and DialogBox labels is a
design detail that reduces textual distractions for the user.

• Do not finish prematurely.

A common design pitfall is assuming too early that a design is complete.
This tendency is aggravated by schedule pressures and difficulty in
pinpointing the inadequacies of a design. While it is important to begin
designing early, it is also important to allow for redesigning for as long
as possible. The first design of an application is not a solution but a
fresh perspective from which to view interface design problems.

• Design iteratively.

Interface design is best done iteratively. The development cycle of
implementation, feedback, evaluation, and change avoids errors by
allowing for early recognition and correction of unproductive designs.

• Start with a fresh perspective.

A void the temptation to convert existing software by simply translating
it to a new style of interface. Because direct manipulation changes the
way the user works, a simple one-to-one translation is unlikely to be
successful. Command line applications that are converted to direct
manipulation need to be extensively reconsidered and revised. The
structure of the function hierarchy and presentation needs to be
completely redesigned.

1-11

OSF/Motif Style Guide

1-12

• Hide implementation details.

User interfaces need to hide the underlying software and present a
consistent interface to the user. A good user interface does not allow
implementation details of the application to show through; it frees the
user from focusing on the mechanics of an application.

Chapter 2

Input Models

Consistent models increase the user's sense of control of a system. By
implementing consistent models across systems and applications, you
encourage that sense of control. This chapter describes the models
aSP/Motif uses to interact with the components:

• The keyboard focus model, which determines which component on the
screen receives keyboard events.

• The input device model, which describes how different input devices,
such as the keyboard and the mouse, interact with applications.

The navigation, activation, and selection models, also important for system
and application consistency, are described in Chapters 3,4, and 5.

2-1

OSF/Motif Style Guide

2.1 The Keyboard Focus Model

A typical workspace can contain many windows. Each window will receive
input from the keyboard, the mouse, or both. The window that receives
keyboard events has the input focus. Indeed, when keyboard input is
directed to a window, it is actually received by some control within the
window. The keyboard focus model determines which window in the
workspace and which component within that window gets each keyboard
input. The keyboard focus may also be referred to as the input focus.

In order to avoid conflicts, the window manager must allow only one *
window to have the keyboard focus at a time. The window with the *
keyboard focus must be highlighted in some way, usually by a change in *
shade or color to the window border. Each application must allow only one *
component at a time to have the keyboard focus within the window that has *
the keyboard focus.

The keyboard focus model is defined by a focus policy. A focus policy is a
specific mechanism for moving the focus among windows and components.
The focus policy can be different between windows than it is within
windows. This section only attempts to describe the focus policies;
however, their impact on window managers, applications, and components
is described in detail where it applies. It is sufficient at this point to note *
that window managers, applications, and new components must support both *
explicit and implicit focus policies. Chapter 7 describes in detail how to
move the focus among windows that use explicit and implicit focus policies.

2.1.1 Implicit Focus

2-2

In the implicit focus policy, the keyboard focus tracks the mouse pointer.
No explicit action (other than mouse motion) is performed to set the
keyboard focus in the implicit focus model. When an implicit focus policy
is used at the window level, keyboard events are sent to the window that the
mouse pointer is in. When an implicit focus policy is used within a window,
keyboard events are sent to the component that the mouse pointer is in. In
implicit mode, the keyboard focus tracks the mouse pointer. Because of
this, there is no way to move the keyboard focus from the keyboard using
implicit mode. Implicit focus is sometimes referred to as pointer, track
pointer, or track listener policy, or as being real-estate driven. In this focus
policy, the location cursor for keyboard events does not need to be shown

Input Models

except in components like Text, in which keyboard input is common;
however, the application can show it.

2.1.2 Explicit Focus

The explicit focus policy requires the user to explicitly select which
window or component receives the keyboard focus. In explicit focus mode
at the window level, a user moves the keyboard focus to a window by
pressing BSelect while the mouse pointer is over the window. Simply
moving the mouse pointer over a window does not give the window the
keyboard focus. Because of this, explicit mode is often called click-to-type.
In explicit mode within a window, a user generally moves the keyboard
focus to a specific component within a window by pressing BSelect over the
component. Pressing BSelect must not move focus to a component that is *
not traversable or does not accept input. Pressing BSelect in a component
that is used only to change the visible portion of another component, such as
a ScrollBar or Sash, should act on that component but should not move
focus to it. In this focus policy, the location of keyboard focus must be *
shown by a location cursor.

In explicit mode, focus can also be moved among windows by the keyboard
using <AU> <F6>, <AU> <Tab>, <AU> <Shift> <Tab>, and <AU> <Shift>
<F6>.

In explicit mode, keyboard focus moves explicitly among the components in
a window as well as among the windows. Moving the keyboard focus
among components in a window using the keyboard is called component
navigation. Keyboard events go to the component in the window with the
keyboard focus. Keyboard focus is moved among components using <Tab>,
<Ctrl> <Tab>, <Shift> <Tab>, <Ctrl> <Shift> <Tab>, <FlO>, <Menu>,
<-1->, <f->, <~>, and <I>. Internal window navigation is described in
detail in Chapter 3.

If the focus policy is implicit, an implementation can still enable keyboard­
based operations that explicitly move the location cursor. It must at least *
implement the special cases for Menu traversal as described in Chapter 3.
<FlO> (or <Shift> <Menu> if <FlO> is not available) moves the cursor to
the MenuBar. <Menu> (or <Shift> <FlO> if <Menu> is not available)
pops up a Popup Menu.

2-3

OSF/Motif Style Guide

2.2 The Input Device Model

User interface applications can take input from both pointing devices and
keyboards. For whatever reason, a user may prefer to interact with an
application by using either a keyboard or a pointing device. Some users
may even be restricted to using only a keyboard. Because of these
preferences and possible restrictions, all application functionality must be *
available from the keyboard alone.

Design your application so that the user can control it using a pomtIng
device, the keyboard, or both. Although you can decide to make the
pointing device the primary means of control, you must provide the user *
with keyboard methods to control the application. Designing applications
for dual accessibility enables users to choose the input device they find best
suited to their particular work situation and personal preferences.

Certain disabled users are unable to keep modifier keys pressed whilec typing
another key. Underlying window systems should provide a mode in which a
typed modifier key acts as if it remains pressed until the next nonmodifier
key is typed.

2.2.1 Pointing Devices

2-4

A pointing device is a tool that lets the user move a pointer around on the
screen. A pointing device also has some means of activating the object
under the pointer. A pointing device allows the user to directly manipulate
screen objects. Rather than entering a keyboard command for each action, a
user can point to an object and. directly manipulate it using the pointing
device.

The most typical pointing device is a mouse, although a graphics tablet,
track ball, joystick, and other tools also work as pointing devices.
Throughout this guide we use the term mouse to refer to all pointing
devices. You can use any pointing device in place of a mouse.

With a mouse, objects on the screen can be manipulated by combining the
mouse pointer with the mouse buttons. This guide assumes that a mouse, or
any pointing device, has three buttons:

BSelect Used for selection, activation, and setting the location cursor. *
This button must be the leftmost button, except for left-handed *
users where it can be the rightmost button.

Input Models

BTransfer Used for moving and copying elements. This button must be *
the middle mouse button, unless dragging is integrated with *
selection. Details about the effects of integrating BTransfer
with BSelect are described in Section 4.3.5.

BMenu U sed for popping up Menus. This button must be the rightmost *
button, except for left-handed users, where it can be the *
leftmost button.

If your pointing device only has two buttons, BSelect still must be bound to *
the leftmost button. There are a number of alternatives to properly binding
BTransfer and BMenu:

• The mouse can be treated as a 3-button mouse if chording the two
buttons is treated as the third button. Chording buttons means to press,
click, or release two or more buttons simultaneously. The chorded
buttons can be treated as the second or third button on a 3-button mouse,
in which case the unchorded buttons are treated as the first and third, or
first and second buttons, respectively.

• Alternatively, BTransfer can be bound to the rightmost button, and
BMenu is then bound to <Alt> BSelect.

• Finally, BMenu can be bound to the rightmost button, and BTransfer is
then integrated with the selection button.

As with a 3-button mouse, the actions of the rightmost and leftmost mouse
buttons can be switched for left-handed users.

If your mouse has only one button, BSelect must be bound to it, BTransfer *
can be integrated with BSelect, and BMenu must be bound to <Alt> *
BSelect. Mouse-based primary and quick transfer mechanisms are
unavailable using a 1-button mouse.

If your mouse has more than three buttons, the first three correspond to those
on a 3-button mouse.

Users can combine mouse button press and release actions along with mouse
movements to activate elements of applications and components.

2-5

OSF/Motif Style Guide

2-6

Various mouse button actions are described as follows, along with this
guide's usage conventions:

Press Indicates pressing a mouse button without releasing it. This
mouse action is often used to select an object for action. This
guide uses BSelect Press to indicate a press on the first
mouse button.

Release Indicates releasing a mouse button after pressing it. This
mouse action is often used to perform the action initiated by a
press or a drag. This guide uses BSelect Release to indicate
a release on the first mouse button.

Click Indicates pressing and releasing a mouse button without
moving the pointer. This mouse action is used to select an
object or perform an action. The activation action actually
occurs on the release of the mouse button. This guide uses
BSelect Click to indicate a click on the first mouse button.

Motion Indicates pressing a mouse button without releasing it and
then moving the position of the pointer. The action of a drag
operation tracks the position of the mouse pointer. The drag
action ends with a release action. This mouse action is
commonly used to select a range of objects, or move a
selected object. This guide uses BSelect Motion to indicate
a drag using the first mouse button.

MultiClick Indicates a number of clicks in quick succession.
MultiClicks are often referred to by the actual number of
clicks, as in double-click or triple-click. A double-click is
often used to perform the default action of an object. This
guide uses BSelect Click 2 to indicate a double-click on the
first mouse button, BSelect Click 3 to indicate a triple-click,
and so on. This guide uses BSelect Click 2+ to indicate two
or more clicks on the first mouse button.

MultiPress Indicates a number of clicks in quick succession without a
final release. As in MultiClick, MultiPresses are often
referred to by the actual number of presses. This guide uses
BSelect Press 2 and the variations mentioned in MultiClick
to indicate MultiPress actions on the first mouse button.

Input Models

MultiMotion Indicates a MultiPress action followed by moving the
position of the pointer. The action of a MultiMotion
operation tracks the position of the mouse pointer. The
MultiMotion action ends with a release action. As in
MultiClick, MultiMotions are often referred to by the actual
number of presses. This guide uses BSelect Motion 2 and the
variations mentioned in MultiClick to indicate MultiMotion
actions using the first mouse button.

2.2.2 Pointer Shapes

The shape of the mouse pointer provides the user with an important visual
cue, indicating the functionality of the area in which the mouse pointer is
currently located. You should not create new mouse pointer shapes for
functions that already have mouse pointer shapes associated with them,
except for localization, but you can create new mouse pointer shapes for
functions not already associated with a pointer shape. You should not use a
predefined shape to symbolize a function that it was not designed to
represent.

A list of the defined pointer shapes follows, along with their usage and
hotspots. A pointer's hotspot is the actual position on the pointer that tracks
the movements of the mouse. As the pointer changes from one shape to *
another, the location of the hotspot must not move on the screen. The
hotspot is the precise location on the pointer where mouse actions occur.

tt The upper-left pointing arrow pointer is a general-purpose
pointer. It is used in most window areas for single-object
selection and activation. The hotspot for the arrow pointer
should be in the point of the arrow.

I You can optionally use an I -beam pointer in any Text component.
It is used to change the location of the text insertion cursor and to
perform actions on text. If the I -beam is used, it can be hidden
during the time between any keyboard action and a mouse
movement. This helps the user distinguish the I-beam pointer
from the text insertion cursor, which can also be an I-beam. The
hotspot for the I-beam pointer should be on the vertical bar of the
I-beam about one-third up from the bottom.

2-7

OSF/Motif Style Guide

2-8

x

~:r?il
If- -71
I!;.'±'~

The X pointer can indicate when the pointer is outside of any
application area. The hotspot for the X pointer should be where
the lines intersect.

The resize pointers indicate positions for area resize, and they
remain during a resize operation. The direction of the arrow in
the pointer indicates the direction of increasing size. The
horizontal and vertical pointers indicate resize in either the
horizontal or vertical direction. The diagonal pointers indicate
resize in both the horizontal and vertical directions
simultaneously. The hotspot for the resizing pointers should be
on the elbow or the line at the position pointed to by the arrow.

The hourglass pointer, a working pointer, indicates that an action
is in progress in the area, and that the pointer has no effect in the
area. While the hourglass pointer is active, all mouse button and
keyboard events are ignored in the area. The hotspot for the
hourglass pointer should be located at the center of the hourglass,
although it should not be used for activation. The hourglass
pointer can be used interchangeably with the watch pointer.

The watch pointer, a working pointer, indicates that an action is
in progress in the area, and that the pointer has no effect in the
area. While the watch pointer is active, all mouse button and
keyboard events are ignored in the area. The hotspot for the
watch pointer should be located at the top of the watch, although
it should not be used for activation. The watch pointer can be
used interchangeably with the hourglass pointer.

+- The 4-directional arrow pointer indicates a move operation is in
progress, or a resize operation before the resize direction has
been determined. During a move operation, the object, or an
outline of the object should move to track the location of the
pointer. During a resize operation, the pointer is used to indicate
a direction for resizing. The 4-directional arrow pointer should
change to the appropriate resize arrow when the resize direction
is determined, either by crossing an object boundary with the
pointer or by pressing a keyboard direction key. The hotspot for
the 4-directional arrow pointer should be at the spot where the
arrows intersect.

Input Models

+ The sighting pointer is used to make fine position selections. For
example, in a drawing program it can be used to indicate a pixel
to fill or the connecting points of lines. The hotspot for the
sighting pointer should be at the spot where the lines intersect.

The caution pointer is used to indicate that action is expected in
another area before input can be given to the current area, and
that the pointer has no effect in the area. While the caution
pointer is active, all mouse button and keyboard events are
ignored in the area. The hotspot for the caution pointer should be
located at the center of the caution symbol, although it should not
be used for activation.

The question pointer is used to request an input posItIOn or
component from the user. This is often used to input an object
for interactive help. The user requests interactive help, then the
question pointer is displayed to allow the user to indicate what
position or component help is requested for. The hotspot for the
question pointer should be at the bottom of the question mark.

You can optionally use an arrow pointing to the upper-right
corner to indicate a pending Menu action. This shape indicates
that a Menu is popped up or pulled down and waiting for a Menu
item to be activated or the Menu to be removed. The hotspot for
this arrow pointer should be in the point of the arrow.

If you need to design a new mouse pointer shape, keep the following in
mind:

• The shape of the pointer should give a hint to its purpose.

• The hotspot should be easy to locate, and obvious.

• The shape should be easy to see.

• The shape should not create visual clutter.

2-9

OSF/Motif Style Guide

2.2.3 Gain and Acceleration

The details of how the pointer tracks the motion of the mouse are not
handled at the level of the application, but they are worth noting here.
There are two concepts that define how the pointer tracks the motion of the
mouse: gain and acceleration.

Gain refers to the ratio of the distance the pointer moves to the distance the
mouse moves. If the gain is increased, the mouse pointer moves farther for a
given mouse movement. The gain should not change across the
environment. Instead, if your application requires finer motion, it should
include a zoom feature. A zoom feature changes the relative size of an area
of your application. Zooming in on an area allows the user to make finer
adjustments than normal. Zooming out from an area allows the user to
move through the application more quickly.

Acceleration is a temporary change in the gain. It is commonly used to
change the gain, based on the speed of the mouse movements. The
acceleration could be set so that, if the mouse moves slowly, the gain is
reduced to allow for finer adjustments of pointer position or, if the mouse
moves quickly, the gain is increased to allow quicker screen movement.
This can be very confusing to new users. Gain and acceleration are handled
on a global scale in the system, outside of the application. Applications
should not change the gain and acceleration characteristics of mouse
movement.

2.2.4 Warp Pointer Only If Explicitly Enabled

2-10

The pointer position is intended only as input to applications. It is not
intended as an output mechanism for applications. Changing the location of
the mouse pointer is known as warping the pointer. Your application must *
not warp the pointer, unless you provide the user with a means of disabling *
this behavior.

Warping the pointer is confusing to users, and reduces their sense of control.
Also, warping the pointer can cause problems for users of absolute location
pointing devices (like graphics tablets). Graphics tablets map pointer
device locations to absolute screen locations; so, if the pointer is warped,
the pointer loses synchronization with the pointing device, making some
screen locations impossible to reach. Note that for these types of devices,
accelerating the pointer has the same effect as warping the pointer, but this
can be handled by the pointer driver software.

Chapter 3

Navigation

Regardless of whether they use a mouse, a keyboard, or both, users need to
move the location cursor to new positions. That is, they will need to
navigate around the workspace. The model is simple for mouse users, and
more complicated for keyboard users. This chapter describes the general
navigation model for mouse and keyboard users, describes the more
complicated Menu navigation model, and then describes navigation within
scrollable components.

3.1 Mouse-Based Navigation

In mouse-based navigation, the mouse is used to move the focus among
controls. If an implicit focus policy is in use, the keyboard focus simply
follows the mouse pointer, and no other explicit action is required to change
the focus.

With an explicit focus policy, pressing BSelect on a component must move *
focus to it, except for components that are used to adjust the size and *
location of other elements, such as ScrollBars. Pressing BSelect on these
components need not move the focus. If not, after the mouse has acted on
the component, the focus should remain on the component that previously

3-1

OSF/Motif Style Guide

3-2

had it. Pressing BSelect will also generally perform some selection or
activation operation. Clicking <Ctrl> BSelect on an activatable component
can move focus to it without any other effect.

The only exception to the simple model of pointer navigation is a Menu
system because Menus are not available on the screen until activated.
Activating a Menu causes it to be shown on the screen. There are three
types of Menus: Pull down Menus, Popup Menus, and Option Menus. The
MenuBar is also a special kind of Menu. A Menu system consists of all the
Menus cascading from a single CascadeButton, OptionButton, or Popup
Menu. The MenuBar system consists of the MenuBar and all of its
associated Menus.

A Pulldown Menu is generally activated by pressing BSelect on a
CascadeButton, which displays the Pulldown Menu. A Popup Menu is
generally activated by pressing BMenu in an area with a Popup Menu,
which displays the Popup Menu. An Option Menu is generally activated by
pressing BSelect on an OptionButton, which displays the Option Menu. A
Pull down Menu pulled down from a CascadeButton within a Pulldown,
Popup, or Option Menu is called a Cascade Menu. A MenuBar is generally
activated by moving the input focus to the MenuBar. Since a MenuBar is
always visible, activating the MenuBar does not change its appearance.
Navigating to a Menu is equivalent to activating a Menu.

Menus are activated in one of two ways: spring-loaded or posted. Spring­
loaded means that the Menu is removed when the mouse button that
activated it is released. Posted means that the Menu is not removed when
the mouse button that activated it is released, but must be explicitly
removed by another user action.

BSelect Press with the pointer on a Menu must activate the Menu in a *
spring-loaded manner. If the pointer is in an element with an inactive Popup *
Menu and the context of the element allows a Popup Menu to be displayed, *
BMenu Press must post (activate) the Menu in a spring-loaded manner.
Note that the availability and contents of the Popup Menu can depend on the
location of the pointer within the element, the contents of the element, or
the selection state of the element. In the case where a Popup Menu can be *
posted by both an element and an element contained within it, the Popup *
Menu of the internal element must be posted.

Once a Popup Menu is posted, BMenu must behave just as BSelect is *
described for any Menu system. BSelect must also be available from within *
a posted Popup Menu system, and must behave just as in any Menu system. *
BSelect Release within a spring-loaded Menu system must activate the *

Navigation

button under the pointer at the time of the release. If the release is on a *
CascadeButton or OptionButton and the associated Cascade Menu was *
already posted at the time BSelect was pressed, it should be unposted; *
otherwise, the associated Cascade Menu must be posted.

Whenever any Menu is popped up or pulled down, the location cursor must *
be placed on the Menu's default entry, or on the first entry in the Menu if *
there is no default entry. Support for default entries in Menus is optional.

A spring-loaded Menu must be removed when the mouse button that *
activated it is released, except when the button is released on a *
CascadeButton in the Menu hierarchy. While a spring-loaded Menu system *
is popped up or pulled down, moving the pointer within the Menu system *
must move the location cursor to track the pointer. If the pointer rests on a *
CascadeButton, the Menu must be pulled down and must also become *
traversable. The Menu must be removed, possibly after a short delay, once *
the pointer moves to a Menu item outside of the Menu or its CascadeButton. *
If the Menu system is part of a MenuBar, moving the pointer to any other *
element on the MenuBar must unpost the current Menu system and post the *
Pulldown Menu associated with the new element. Releasing the button *
must activate any component in the Menu system, including a *
CascadeButton. Note that releasing the mouse button during a spring­
loaded Menu operation in a CascadeButton, even a CascadeButton in the
MenuBar, causes the associated Menu to remain posted.

BMenu Click with the pointer in an area with a Popup Menu that was not *
previously posted must activate the Menu in a posted manner. BMenu
Release with the pointer in an area with a Popup Menu that was posted prior
to the associated BMenu Press should unpost the Menu.

A posted Menu remains visible until explicitly unposted. The keyboard
focus model is forced to explicit, and the Menu system can be traversed
using the keyboard as described later in this section.

If a mouse button is pressed outside of the Menu to unpost the Menu, the
button press can also be treated as follows:

• The button press can have no effect other than to unpost the Menu.

• The button press can be passed to the underlying component, either
always or only if some condition is met. For example, it can be passed
to the underlying component only if the component is in the same
window as the Menu system.

3-3

OSF/Motif Style Guide

• Whether or not the button press is passed to the underlying component, it
can have some other effect. For example, it can raise and give focus to
the underlying window.

If the button press that unposts a Menu is not also passed to the underlying *
component, subsequent events up to and including the button release must *
not be passed to the underlying component.

Once a Pulldown or Option Menu is posted, BSelect Press in the Menu *
system must cause the Menu to behave as a spring-loaded Menu. Once a *
Popup Menu is posted, BSelect Press or BMenu Press in the Menu system *
must cause the Menu to behave as a spring-loaded Menu. Because of this,
the pointer-driven activation behavior of spring-loaded Menus fully
describes pointer-driven activation behavior in Menus.

3.2 Keyboard-Based Navigation

The navigation model for keyboard users is more complicated than the
pointer navigation model. As described earlier, keyboard navigation is only
required when the focus policy is explicit. Since window managers, *
applications, and components must support the explicit focus policy, they *
must also support keyboard navigation. The keyboard navigation model is
composed of the following:

• A focus identifier (the location cursor)

• Navigating among windows

• Navigating within windows

3.2.1 Location Cursor

3-4

The window with the focus is identified by highlighting the window border
as described in Chapter 7. Within the window with the focus, the
component with the keyboard focus is identified by the location cursor. The
term location cursor refers to any visual element that indicates the location
where keyboard events are sent. The location cursor is not strictly a cursor.
The name cursor simply refers to its use as indicating the location of input.

Navigation

The location cursor is shown in a number of ways, depending on the type of
component with the keyboard focus. Possible location cursor types and their
uses are described in the following text. When designing new components,
you should try to use one of the existing styles of location cursor, but you
can create your own if it is appropriate.

Box The box cursor should be the default location cursor. It is shown as
a box drawn around the object. Figure 3-1 shows the first
ToggleButton in a group with a box style location cursor.

Figure 3-1. A Box Style Location Cursor

Outline Highlight
This cursor style is similar to the box style cursor. The outline is
shown of a component whose outline is not normally shown. This
form of location cursor is commonly used within Menu systems to
show the Menu item with the location cursor. Figure 3-2 shows a
Menu with an outline highlight style location cursor.

Figure 3-2. An Outline Highlight Style Location Cursor

Text Cursor
In Text components, the text cursor acts as the location cursor to
indicate that the Text component has the keyboard focus. Figure
3-3 shows possible text cursor shapes.

3-5

OSF/Motif Style Guide

Figure 3-3. Text Cursor Shapes

Inser"tion Overs"trike

Ac"tive I • 01' -
Irlac"tive I I 01'

.~

A text cursor must be shown differently when the Text does and *
does not have the keyboard focus. This can be done by

• Darkening the cursor when the Text has focus and graying the
cursor when the Text does not have focus

• Using a blinking cursor when the Text has focus and a static
cursor when the Text does not have focus

• Showing the cursor when the Text has focus and hiding the
cursor when the Text does not have focus

If the text cursor is hidden when the Text component does not have *
the focus and if the component gets the focus, the text cursor must *
reappear at the same position it had when the component lost focus.
A Text component can optionally include an outline highlight style
location cursor to reinforce the location of the keyboard focus.
Figure 3-4 shows a Text component with the keyboard focus.

Figure 3-4. A Text Cursor Style Location Cursor

3-6

Item Cursor
A component that manages groups of elements, like a List, should
indicate that it has the keyboard focus with an item cursor style
location cursor. An item cursor highlights a single element, or
group of elements, that the component acts on. In the case of a List,
the item cursor should be a box around an element. In the case of a

Navigation

Drawing area, it could be a box with resize handles around a drawn
element. Components that use an item cursor to indicate keyboard
focus can optionally include an outline highlight style location
cursor to reinforce the location of the keyboard focus. Figure 3-5
shows a List component with the keyboard focus.

Figure 3-5. An Item Cursor Style Location Cursor

Fill Some very small components, like a Sash for resizing Panes, should
indicate the keyboard focus by filling. Where this is the case, there *
must be no other meaning associated with the filled state. Filling
avoids the problem caused by other styles of location cursor that
make the small component too large. Figure 3-6 shows the first of
two Sashes with the keyboard focus.

Figure 3-6. A Fill Style Location Cursor

Components must be designed and positioned within applications so that *
adding and removing the component's location cursor does not change the *
amount of space that the component takes up on the screen; that is, there is
always room for the location cursor.

3-7

OSF/Motif Style Guide

3.2.2 Window Navigation

A typical environment has several applications in operation simultaneously.
Each application typically has a main or primary window that displays data
and in which the user carries on primary interaction with the application.
Applications can have additional windows to communicate context-specific
interactions with the user of the application. These additional windows are
called secondary windows, or transient windows. DialogBoxes are often
used to create secondary windows.

The window navigation model can be divided into two levels:

• Moving among window families (among primary windows)

• Moving within a window family (among secondary windows)

A window family consists of a single primary window and all of its
associated secondary windows. <A It> <F6> and <Alt> <Shift> <F6> move
the focus among windows in a window family. <Alt> <Tab> and <A It>
<Shift> <Tab> move the focus among window families. Window
navigation is described in more detail in Chapter 7.

3.2.3 Component Navigation

3-8

Component navigation moves the location cursor, and therefore the
keyboard focus, among components in a window. The window is divided
into fields, and operations that use the <Tab> key move the cursor from one
field to another. For this reason, fields are also known as tab groups. The
directional keys <-1->, <I>, <~>, and <~> are used for navigation within a
field.

Menu systems, including the MenuBar, follow a different traversal model,
described in Section 3.3.

A field can be an individual control, such as a Text control. In this case, the
directional keys are used for internal navigation within the control.
Alternately, a field can consist of a group of controls such as a RadioBox,
which holds a group of RadioButtons. In this case, the directional keys are
used to navigate among the component controls of the group.

The fields in a window are ordered. <Tab> generally moves the location
cursor to the next field, and <Shift> <Tab> moves the location cursor to the
previous field. However, a field can use <Tab> and <Shift> <Tab> for

Navigation

internal navigation. For example, within a multiline Text control, <Tab> is
used to tab within the text. Consequently, <Ctrl> <Tab> must always *
navigate to the next field, and <Ctrl> <Shift> <Tab> must always navigate *
to the previous field.

<Tab> (if not used for internal navigation) and <Ctrl> <Tab> must move *
the location cursor forward through fields according to the following rules:

• If the next field is a control, <Tab> (if not used for internal navigation) *
and <Ctrl> <Tab> must move the location cursor to that control.

• If the next field is a group, <Tab> (if not used for internal navigation) *
and <Ctrl> <Tab> must move the location cursor to a traversable *
component within the group. If the field contains a button that currently
shows default highlighting, the location cursor should be placed on that
button; otherwise, the first control in the field (the top-leftmost one in a
left-to-right language environment) should get focus.

If the next field contains no traversable components, <Tab> (if not used for *
internal navigation) and <Ctrl> <Tab> must skip the field. Note that
Separators and Labels should not be traversable. The ScrollBars of
ScrolledWindows also should not be traversable, particularly if a
<ScroIlLock> key is available on the keyboard.

<Shift> <Tab> (if not used for internal navigation) and <Ctrl> <Shift> *
<Tab> must move the location cursor backward through fields in the order *
opposite to that of <Tab> (if not used for internal navigation) and <Ctrl> *
<Tab>.

When a window acquires focus, the location cursor must be placed on the *
control that last had focus in the window, providing that all the following *
conditions are met: *

• The window uses an explicit keyboard focus policy. *
• The window acquires the focus through keyboard navigation or through *

a button press other than within the client area of the window. *
• The window had the focus at some time in the past.

• The control that last had focus in the window is still traversable.

If the component that last had focus is no longer traversable, or if the
window has not previously had the focus, the location cursor should be
placed on the component with which the user is most likely to want to
interact. In a DialogBox, this is often a text control or a default button. If
no such control exists, the location cursor should be placed in the first field

3-9

*
*

OSF/Motif Style Guide

3-10

in the window-in a left-to-right language environment, the top-leftmost
field.

Developers should follow these general rules for field navigation:

• Fields should be traversed from the upper left to the lower right in a
left-to-right language environment. In a right-to-Ieft language
environment, fields should be traversed from the upper right to the lower
left.

• Field navigation must wrap between the first and last fields of the *
window.

• In a PanedWindow, each Pane should consist of one or more fields, and
each Sash should be a field. Fields in a PanedWindow should be
traversed in the following order:

1. All fields in the topmost Pane

2. The topmost Sash

3. All fields in the next Pane toward the bottom

4. The next Sash toward the bottom

and so on, to the bottom of the PanedWindow.

Directional keys are used both for component navigation within a field and
for internal purposes, including internal navigation, within a control.

When <~> and <I> are used for component navigation within a field, they *
must behave in the following way: *

• In a left-to-right language environment, <~> must move the location *
cursor through all traversable controls in the field, starting at the upper *
left and ending at the lower right, then wrapping to the upper left. If the *
controls are aligned in a matrix-like arrangement, <~> must first *
traverse one column from top to bottom, then traverse the column to its *
right, and so on. In a right-to-Ieft language environment, <-!,> must *
move the location cursor through all traversable controls, starting at the *
upper right and ending at the lower left. *

• <I> must move the location cursor through all traversable controls in *
the field in the order opposite to that of <~>. *

Navigation

When <~> and <~> are used for component navigation within a field, they *
must behave in the following way: *

• In a left-to-right language environment, <~> must move the location *
cursor through all traversable controls in the field, starting at the upper *
left and ending at the lower right, then wrapping to the upper left. If the *
controls are aligned in a matrix-like arrangement, <~> must first *
traverse one row from left to right, then traverse the row below it, and so *
on. In a right-to-Ieft language environment, <~> must move the *
location cursor through all traversable controls, starting at the lower left *
and ending at the upper right. *

• <~> must move the location cursor through all traversable controls in *
the field in the order opposite to that of <~>. *

Controls that use directional keys internally -such as Text, List, Canvas,
Sash, ScrollBar, and Scale-should be fields. If a control that uses *
directional keys internally does not act like a field, the directional keys must *
be used for both internal purposes and component navigation.

In particular, controls can use directional keys in one dimension for internal
purposes and in another dimension for component navigation. For example,
a vertically organized group of single-line Text controls can be grouped
together as a single field. <J,> and <I> navigate among the single-line Text
controls in the field. <~>, <Ctrl> <~>, <~>, and <Ctrl> <~> navigate
among characters and words within an individual single-line Text control.

The directional keys modified with <Ctrl> can also be used for component
navigation, following the same rules specified above. If the directional keys
modified with <Ctrl> are used for component navigation, the unmodified
directional keys can be used for internal purposes.

For example, a table can consist of an array of single-word Text controls,
with <I> and <J,> used to navigate up and down a column. <~> and <~>
can navigate among characters within an individual single-word Text
control, while <Ctrl> <~> and <Ctrl> <~> navigate horizontally among
the Text components in a row.

Within a control, the directional keys can be used in a variety of ways. In
list-like controls, or in graphics-like controls in which the elements are laid
out in a matrix-like arrangement, internal navigation using the directional
keys should move the cursor among elements using the same rules followed
for component navigation. However, if the control is scrollable, directional
navigation should not wrap between the first and last elements of the

3-11

OSF/Motif Style Guide

3-12

control; a directional key that would otherwise cause wrapping should have
no effect at the first or last element.

Additional internal navigation techniques may be needed in situations not
covered by this guide, such as the following:

• Graphics-like controls in which the elements are densely populated or
are organized into layers

• Applications that use 3-dimensional navigation

• Applications that organize elements hierarchically

In such cases, navigation models should not deviate unnecessarily from the
standard navigation models.

Rather than move the cursor among elements, a graphics-like control can
use a positional cursor. In this case, <~>, <i>, <~>, and <~> must *
internally navigate by moving the cursor one unit (for example, one pixel) at *
a time in the direction indicated by the key. In this model, the cursor is
sometimes on an element and sometimes in the background of the control.

The use of the directional keys for internal navigation in text-like controls is
described in the Text reference page in Chapter 9. In a control that displays
a value, the directional keys can increment or decrement that value.

When the directional keys cause changes that are based on some unit, the
directional keys modified by <Ctrl> can cause changes based on a larger
unit. For example:

• In Text, <~> moves the cursor a character to the right, and <Ctrl> <~>
moves the cursor a word to the right.

• In a Canvas, <~> can move a positional cursor one pixel to the right,
and <Ctrl> <~> can move the cursor some number of pixels to the
right.

• In a Scale, <~> can increment the Scale value by one unit indicated by
minor tick marks, and <Ctrl> <~> can increment the Scale value by an
amount corresponding to the distance between major tick marks.

If a control uses <~> and <~> for internal navigation, it must support the *
following behavior: *
<Begin> In a left-to-right language environment, this action *

must move the location cursor to the leftmost edge *
of the data or the leftmost element. In a right-to- *
left language environment, this action must move *

<End>

Navigation

the location cursor to the rightmost edge of the data *
or the rightmost element. *
In a left-to-right language environment, this action *
must move the location cursor to the rightmost edge *
of the data or the rightmost element. In a right-to- *
left language environment, this action must move *
the location cursor to the leftmost edge of the data *
or the leftmost element. *

If a control uses <I> and <t> for internal navigation, it must support the *
following behavior: *
<Ctrl> <Begin>

<Ctrl> <End>

This action must move the location cursor to one of *
the following: *

• The first element *
• The topmost edge of the data *
• In a left-to-right language environment, the *

topmost left edge of the data; in a right-to-Ieft *
language environment, the topmost right edge *
of the data *

This action must move the location cursor to one of *
the following: *

• The last element *
• The bottommost edge of the data *
• In a left-to-right language environment, the *

bottommost right edge of the data; in aright - *
to-left language environment, the bottommost *
left edge of the data *

Groups that are fields can also use <Begin>, <End>, <Ctrl> <Begin>, and
<Ctrl> <End> to move the location cursor to appropriate controls within
the group.

3-13

OSF/Motif Style Guide

3.3 Menu Traversal

3-14

The Menu traversal model is different from the field traversal model. This
allows Menus to be traversable even when the focus policy is implicit. If a *
Menu is traversed to while the focus policy in the application is implicit, the *
focus policy must temporarily change to explicit. The focus policy must *
revert to implicit whenever the user traverses out of the Menu system.

Traversing to a Menu system is the same as activating the Menu system. If *
the MenuBar is inactive, <FlO> must traverse to, or activate, the MenuBar *
system. The location cursor must be placed on the first traversable *
CascadeButton in the MenuBar. If there are no traversable CascadeButtons *
in the MenuBar, <FlO> must do nothing. Note that <Shift> <Menu> is
used on systems where <FlO> is not available.

If the keyboard focus is on an element with an inactive Popup Menu and the *
context of the element allows a Popup Menu to be displayed, <Menu> must *
post (activate) the Popup Menu. The location cursor must be placed on the *
default item of the Menu, or the first traversable item if there is no default *
item. Note that the availability of the Popup Menu can depend on the
location of the cursor within the element, the contents of the element, or the
selection state of the element. Menus popped up from the keyboard should
be in the context of the insertion position of the element with the location
cursor. If there are no traversable items in the Popup Menu, it is up to the
system and the application whether to post the Menu or not. Note that
<Shift> <FlO> is used on systems where <Menu> is not available.

If the keyboard focus is in an OptionButton, <Select> or <Space> must post *
the Option Menu. The location cursor must be placed on the previously *
selected item in the Option Menu. If the Option Menu is pulled down for *
the first time, the location cursor must be placed on the default item in the *
Menu. If there are no traversable items in the Option Menu, the application
should decide whether to post the Menu or not. If there is an active Option *
Menu, <Enter>, <Return>, <Select>, or <Space> must select the current *
item in the Option Menu, unpost the active Option Menu system, and return *
the location cursor to the OptionButton.

Once a Menu system is posted, the Menu items can be traversed using <J..>,
<f->, <~>, and <I>. A posted Menu system behaves somewhat like a
field, with the addition of traversing among Menus in the system. When a *
Menu traversal action traverses to the next or previous component in a *
Menu or MenuBar, the order of traversal and the wrapping behavior must be *

Navigation

the same as that of the corresponding component navigation action within a *
field, as described in Section 3.2.3.

Two-dimensional Menus must not contain CascadeButtons. *
The following Menu traversal behavior must be supported: *
<-1-> This action must do the following: *

<f->

• If the component is in a vertical or 2-dimensional Menu, *
traverse down to the next traversable component, *
wrapping within the Menu if necessary. *

• If the component is in a MenuBar, and the component *
with the keyboard focus is a CascadeButton, post its *
associated Pulldown Menu and traverse to the default *
entry in the Menu or, if the Menu has no default, to the *
first traversable entry in the Menu. *

If the component is in a vertical or 2-dimensional Menu, this *
action must traverse up to the previous traversable *
component, wrapping within the Menu if necessary, and *
proceeding in the order opposite to that of <1.>.

This action must do the following: *
• If the component is in a MenuBar or 2-dimensional Menu, *

but not at the left edge, traverse left to the previous *
traversable component. *

• If the component is at the left edge of a MenuBar, wrap *
within the MenuBar. *

• If the component is at the left edge of a vertical or 2- *
dimensional Menu that is the child of a vertical or 2- *
dimensional Menu, unpost the current Menu and traverse *
to the parent CascadeButton. *

• If the component is at the left edge of a vertical or 2- *
dimensional Menu that is the child of a MenuBar, unpost *
the current Menu and traverse left to the previous *
traversable entry in the MenuBar. If that entry is a *
CascadeButton, post its associated Pulldown Menu and *
traverse to the default entry in the Menu or, if the Menu *
has no default, to the first traversable entry in the Menu. *

3-15

OSF/Motif Style Guide

3-16

<~> This action must do the following: *
• If the component is a CascadeButton in a vertical Menu, *

post its associated Pulldown Menu and traverse to the *
default entry in the Menu or, if the Menu has no default, *
to the first traversable entry in the Menu. *

• If the component is in a MenuBar or 2-dimensional Menu, *
but not at the right edge, traverse right to the next *
traversable component. *

• If the component is at the right edge of a MenuBar, wrap *
within the MenuBar. *

• If the component is not a CascadeB utton and is at the *
right edge of a vertical or 2-dimensional Menu, and if the *
current Menu has an ancestor CascadeButton (typically in *
a MenuBar) from which <J.-> posts its associated *
Pulldown Menu, unpost the Menu system pulled down *
from the nearest such ancestor CascadeButton and *
traverse right from that CascadeButton to the next *
traversable component. If that component is a *
CascadeButton, post its associated Pulldown Menu and *
traverse to the default entry in the Menu or, if the Menu *
has no default, to the first traversable entry in the Menu. *

For all Menu traversal actions, when the Menu is first posted, traversal
should go to the second traversable entry in the Menu if the Menu has no
default and the first traversable entry is a TearOffButton. Subsequent *
traversal actions must traverse to the TearOffButton in the same way as for *
other Menu entries.

The user can use keyboard actions to exit a Menu or a Menu system in the
following way:

• When a MenuBar system is active, <FlO> should unpost the entire
Menu system.

• When a Popup Menu system is active, <Menu> should unpost the entire
Menu system. *

• In a Pulldown Menu, <Cancel> must either dismiss the Menu and move *
the location cursor to the CascadeButton used to pull down the Menu, or *
unpost the entire Menu system. *

Navigation

• In a Popup Menu, Option Menu, TearOff Menu, or MenuBar, <Cancel> *
must unpost the Menu system. *

• When <FlO>, <Menu>, or <Cancel> is used to unpost an entire Menu *
system and an explicit focus policy is in use, the location cursor must be *
moved back to the component that had it before the Menu system was *
posted.

3.4 Scrollable Component Navigation

Certain components, such as List and Text, have built-in support for
scrolling. However, any component or group of components can be
associated with scrolling components or placed inside a ScrolledWindow
and made scrollable.

A scrollable component generally has ScrollBars or some other type of
scrolling component associated with it. When a component does not have a
scrolling component associated with it, it generally should not be scroll able;
however, components whose visible contents alone indicate that additional
items exist beyond the bounds of the visible area, like Text, can be
scrollable even if they do not have an associated scrolling component.

Any scrollable component must support the appropriate navigation and *
scrolling operations. You must use the page navigation keys <PageUp>, *
<PageDown>, <PageLeft> or <Ctrl> <PageUp>, and <Page Right> or *
<Ctrl> <PageDown> for scrolling the visible region by a page increment. *
A page is the portion of data that is visible, not any underlying structure of *
the data. When scrolling by a page, you must leave at least one unit of *
overlap between the old and new pages; for example, a line in a Text
component.

If the location cursor can be made visible, it must be. It should be moved *
within the component so that it remains as near as possible to its original
location in the viewport. However, if a navigation key (including
directional and page navigation keys) is pressed while the <ScroIlLock>
key is down, the navigation key should be interpreted as specified for an
associated ScrollBar-that is, it causes scrolling, while leaving the position
of the cursor within the scrollable component unchanged. See the ScrollBar
reference page in Chapter 9.

3-17

OSF/Motif Style Guide

3-18

You should use the directional keys <I>, <-1>, <f->, and <~> for moving
the location cursor among elements, moving the location cursor by
increments, or scrolling the visible region by regular increments. In general,
keyboard operations should traverse through the entire scrollable
component, not just through the visible portion.

When a mouse button is pressed initiating a selection operation within a
scrollable component, and the pointer is then dragged outside of the
scrollable component, the component should scroll toward the pointer. This
is called autoscrolling. Drag and drop operations should produce similar
scrolling behavior within scrollable components that force dragged elements
to remain within the component. Releasing the button outside of the *
component must not do any transfer in these cases. Parking the cursor on
the edge of the scrollable component during the drag and drop operation
should scroll the component toward the pointer.

When the location cursor is within a scrollable component, scrolling can
move the cursor out of view; however, any keyboard operation that moves *
the cursor to or in the component, or that inserts, deletes, or modifies items *
at the cursor location must scroll the component so that the cursor is visible *
when the operation is complete. When scrolling using the mouse, the
location cursor can be allowed to scroll out of the visible region. When *
scrolling using the keyboard, the location cursor must be moved so that it *
remains within the visible region, if that is possible.

If a mouse-based scrolling action is in progress, <Cancel> must cancel the *
scrolling action and return the slider to its position prior to the start of the *
scrolling operation.

Chapter 4

Selection

The selection model determines how elements are selected from a group of
elements. This chapter describes the selection models that are used by the
various components of an application. OSF/Motif compliant applications
use an object-action selection model. In an object-action selection model,
the user first selects an object and then performs an action on it. The
object-action selection model mimics real life, so it is a familiar process to
the user and increases the user's sense of control over applications.

Objects include not only recognizable objects like windows, PushButtons,
and List elements, but also component elements that are not always
recognized as discrete objects, like individual letters of a text file.
Applications can also treat a group of elements as a single element, either in
a contiguous range or as a noncontiguous group. This chapter describes the
following topics:

• Selection models, which determine how elements in a collection are
selected for later action.

• Selection actions, which perform actions directly on a selection, such as
cut, copy, and paste.

4-1

OSF/Motif Style Guide

4.1 Selection Models

4-2

Selection is used to mark one or more of a group of elements simply for
highlighting the elements, or so they can be moved, copied, or otherwise
manipulated by the application.

Groups of elements can be organized into the following three types of
collections:

• List-like collections

• Text-like collections

• Graphics-like collections

In list-like collections, when the pointer or location cursor is in the
collection, the pointer or location cursor is considered to be on an element.

In text-like collections, when the pointer or location cursor is in the
collection, the pointer or location cursor is considered to be between two
elements. The name "text-like" refers to Text components in insert mode
where the insertion cursor is always between two letters. List-like and text­
like collections are usually ordered as linear collections; that is, the
collections are treated as if the elements were connected as a series of
elements in one dimension.

In graphics-like collections, the pointer and location cursor can be either on
or between elements. Graphics-like collections are usually ordered as 2-
dimensional collections. That is, the ordering of elements in the collection
depends on both the horizontal and vertical position of the element within
each collection.

The notion of "on" depends on the manipulation model presented by the
control. For example, "on" can mean that the cursor is within the bounds of
the element, or it can mean that the cursor is on the boundary of the element,
or the element can have handles, and "on" means that the cursor is on one of
the handles.

aSF/Motif compliant systems must support the five different selection *
models. Each model is used where appropriate in applications to limit the
type of selections the user can make. For example, a List can limit selection
to a single element where the user is only allowed to make one choice.

Selection

The five selection models are as follows:

Single Selection
U sed to select a single element in a collection. Clicking BSelect
on an element selects it and deselects the previously selected
element in the collection. Single selection is described in Section
4.1.1.

Browse Selection
Used to allow browsing through single selection collections.
Browse selection is also used to select a single element of a
collection. Browse selection allows the user to browse through the
elements by dragging BSelect through the elements in the
collection. Browse selection highlights each element as it is
traversed, and gives the application an opportunity to provide
information about each element as it is highlighted. Releasing
BSelect on an element selects it and deselects the previously
selected element. Browse selection is described in Section 4.1.2.

Multiple Selection
U sed to select or deselect multiple elements of a collection.
Clicking BSelect on an unselected element adds that element to the
current selection. Clicking BSelect on a selected element removes
that element from the current selection. Multiple selection is
described in Section 4.1.3.

Range Selection
U sed to select a contiguous range of elements in a collection.
Clicking BSelect on an element selects the single element and
deselects any previous selection. BSelect Motion over a range of
elements selects all the elements within the range and deselects any
previous selection. Range selection is described in Section 4.1.4.

Discontiguous Selection
U sed for selecting multiple discontiguous ranges of elements in a
collection. Clicking or dragging BSelect operates just as for range
selection. Discontiguous selection also allows <Ctrl> BSelect to
be used to add or remove selection ranges. Discontiguous selection
is described in Section 4.1.5.

The choice of the selection model should be made on a collection-by­
collection basis. Some components, like Text, enforce a selection model.
Other components, like a List, allow the application or the user to determine
the selection model.

4-3

OSF/Motif Style Guide

Variants of these selection models may be needed for collections that are
especially dense, when elements are organized in layers, when 3-
dimensional selection is needed, when elements are hierarchically
organized, or in other situations not covered by this guide. Selection models
for such cases should not deviate unnecessarily from the standard selection
models.

In all selection models, the selected element or group of elements should be
visually highlighted in some way. Highlighting the selection can be done in
the following ways:

• Using anyone of the location cursor mechanisms

• Inverting the colors of the selection

• Drawing a solid or dashed box around the elements of the selection

The selection can also be an empty selection; that is, it is possible for no
items to be selected in a collection. This commonly occurs in text-like
collections where the location cursor is between two elements, or when the
user has deselected all the elements.

4.1.1 Mouse-Based Single Selection

The single selection model is the simplest selection model. In the single *
selection model, when BSelect is clicked in a deselected element, the *
location cursor must move to that element, that element must be selected, *
and any other selection in the collection must be deselected.

4.1.2 Mouse-Based Browse Selection

4-4

The browse selection model is very similar to the single selection model. In
browse selection, like single selection, only a single element is selected at a
time. In the browse selection model, when BSelect is released in a *
selectable element, that element must be selected, and any other selection in *
the collection must be deselected. As BSelect is dragged through selectable *
elements, each element under the pointer must be selected, and the *
previously selected element must be deselected. The selection must remain *
on the element where BSelect is released, and the location cursor must be *
moved there. *

Selection

The browse selection model gives the application an opportunity to provide
information about each element as it is highlighted.

4.1.3 Mouse-Based Multiple Selection

Multiple selection allows the user to select or deselect multiple single
elements of a collection. Clicking BSelect on an unselected element must *
add that element to the current selection in the collection. Clicking BSelect *
on a selected element must remove that element from the current selection *
in the collection. Clicking BSelect on an element must move the location *
cursor to that element.

With multiple selection, the user can select any group of elements in a
collection, including discontiguous groups, all the elements, or none of the
elements. Because multiple selection requires one mouse click for each
element selected, although a simple model, it is not well-suited for selecting
large groups of elements. BSelect Motion can optionally toggle a range of
elements. (See Section 4.1.5 for a description of range toggling.)

4.1.4 Mouse-Based Range Selection

The range selection model allows the user to select multiple contiguous
elements of a collection. The description of this selection model assumes
that drag and drop is not integrated with selection. Integrating dragging and
selection is described in Section 4.3.

In the range selection model, pressing BSelect must set an anchor on the *
element, or at the position where BSelect was pressed, and must deselect all *
elements in the collection. The anchor and the current position of the *
pointer determine the current range. As BSelect is dragged through the *
collection, the current range must be highlighted. When BSelect is *
released, the anchor must not move, and all the elements within the current *
range must be selected.

In text-like collections, elements are ordered linearly, and a text pointer is
always considered to be between elements at a point near the actual pointer
position. The anchor point must be the text pointer position when BSelect is *
pressed, and the current range must consist of all elements between the *
anchor point and the current text pointer position.

4-5

OSF/Motif Style Guide

4-6

In graphics-like and list-like collections, a marquee, or highlighted
rectangle, is typically used to indicate the current range of the selection. *
The current range must consist of those elements that fall completely within *
the marquee. If a marquee selection is started when the pointer is on an
element, that element can be used as an anchor element, and should be used
as an anchor element if the collection is arranged as a list or matrix. If there *
is an anchor element, the marquee must always be made large enough to *
completely enclose it. Otherwise, an anchor point is used, which must be *
the point at which BSelect was pressed, and must determine one corner of *
the marquee. If the collection is arranged as a list or matrix, and the pointer
is on an element, the marquee should be extended to completely enclose the
element under the pointer. Otherwise, the marquee must be extended to the *
pointer position.

Marquee selection can be implemented so that it is used only when BSelect
is pressed in the background; other selection models, not described in this
style guide, can be used when BSelect is pressed on an element. If marquee *
selection is used, even if only when started in the background, clicking *
BSelect on a selectable element must make it an anchor element, select it, *
and deselect all other elements.

The user can extend the range selection using <Shift> BSelect. When *
<Shift> BSelect is pressed, the anchor remains unchanged, and an extended *
range for the selection is determined, based on one of the following *
extension models:

Reselect The extended range must be determined by the anchor *
and the current pointer position, in exactly the same *
manner as when the selection was initially made. *

Enlarge Only The selection can only be enlarged. The extended range *
is determined by the anchor and the current pointer *
position, but then must be enlarged to include the current *
selection. *

Balance Beam A balance point is defined at the midpoint of the current
selection. When <Shift> BSelect is pressed on the *
opposite side of the balance point from the anchor, this *
model must work exactly like the reselect model. When *
<Shift> BSelect is pressed, or a navigation action *
modified by <Shift> is started on the same side of the *
balance point as the anchor, this model must move the *
anchor to the opposite end of the selection, and then must *
work exactly like the reselect model. In graphics-like

Selection

collections, balancing the anchor is done separately in
each dimension.

As <Shift> BSelect is dragged through the collection, the extended range
should be highlighted, and selected elements outside of it should be
dehighlighted. When BSelect is released, the anchor must not move, all the *
elements within the extended range must be selected, and all the elements *
outside of it must be deselected.

Text-like collections should use the balance beam model. The extension
model used by other collections depends on the purpose of the collection.

In the range selection model, clicking <Ctrl> BSelect should move the
location cursor to the position of the pointer without affecting the current
selection.

4.1.5 Mouse-Based Discontiguous Selection

The discontiguous selection mechanism allows the user to make multiple
simultaneous range selections. It is an extension of the range selection
model. The description of this selection model assumes that drag and drop
is not integrated with selection. Integrating dragging and selection is
described in Section 4.3.

The behavior of BSelect in the discontiguous selection model must be *
exactly the same as in the range selection model, and after setting the *
anchor with BSelect, <Shift> BSelect must work exactly as in the range *
selection model.

The primary difference between the range selection model and the
discontiguous selection model is the use of <Ctrl> BSelect. In the range
selection model, <Ctrl> BSelect is only used to move the position of the
location cursor without disrupting the current selection. In the
discontiguous model, <Ctrl> BSelect is used to toggle the selection state of
an element or a range of elements.

If the current selection is empty, <Ctrl> BSelect Click can simply move the
location cursor, but leave the anchor alone and leave all elements
deselected. Otherwise, if <Ctrl> BSelect is clicked, the anchor and *
location cursor must move to that point, and if <Ctrl> BSelect is clicked on *
an element, the selection state of that element must be toggled, and that *
element must become the anchor element.

4-7

OSF/Motif Style Guide

4-8

<Ctrl> BSelect Motion must be used to toggle the selection state of a range *
of elements. The range itself must be determined exactly as for BSelect *
Motion. Releasing <Ctrl> BSelect must toggle the selection state of the *
elements in the range according to one of two models:

Anchor Toggle Toggling is based upon an anchor element. If the *
range is anchored by a point, and is not empty, the *
anchor element must be set to the element within the *
range that is nearest to the anchor point. Toggling *
must set the selection state of all elements in the *
range to the inverse of the initial state of the anchor *
element. This is the model recommended for
toggling.

FoIl Toggle The selection state of each element in the extended *
range must be toggled.

As <Ctrl> BSelect is dragged through the collection, highlighting should be
used to indicate the current range and the selection state of each element
that would result from releasing <Ctrl> BSelect at the current position.

After using <Ctrl> BSelect to toggle a selection, <Shift> BSelect or *
<Ctrl> <Shift> BSelect must be able to be used to extend the range of *
toggled elements. The extended range must be determined in exactly the *
same way as when <Shift> BSelect is used to extend a range selection.

When <Ctrl> <Shift> BSelect is released, the selection state of elements *
added to the range must be determined by the toggle model as previously *
described. If elements are removed from the range, they must either revert *
to their state prior to the last use of <Ctrl> BSeiect, or change to the state *
opposite from the elements remaining within the extended range.

As <Shift> BSelect or <Ctrl> <Shift> BSelect is dragged through the
collection, highlighting should be used to indicate the current range and the
selection state of each element that would result from releasing <Shift>
BSelect or <Ctrl> <Shift> BSelect at the current position.

Selection

4.1.6 Keyboard Selection

Selections can be made by using the keyboard as well as the mouse. Two
keyboard selection models are available: normal mode and add mode.

Normal mode is used for making simple contiguous selections from the
keyboard. Normal mode is a navigation/selection mode where the location
cursor is never disjoint from the current selection. In collections where the
location cursor is on an element, the element with the location cursor is
ordinarily selected; if it is not, pressing <Select> or <Space> moves the
selection to the cursored element.

Add mode is used for making more complex and possibly disjoint
selections. Add mode is a navigation/selection mode where the location
cursor can move independent of the current selection. Even in collections
that do not support discontiguous selections, add mode allows the selection
to be unaffected by keyboard navigation.

Browse selections must only support normal mode. Single and multiple *
selections must only support add mode. Range selection must support *
normal mode and can also support add mode. Discontiguous selections *
must support both modes. The default mode for range and discontiguous *
selections must be normal mode. <Shift> <F8> must switch between add *
mode and normal mode if both modes are supported. When switching from
normal to add mode, if the cursored element is the only element selected in
the collection, it should be deselected. Mouse-based selection must not *
change based on the keyboard selection mode.

In editable components, add mode is a temporary mode that must be exited *
when an operation is performed on the selection or when the selection is *
deselected.

4.1.6.1 Keyboard-Based Single Selection

Collections using the single selection model must use add mode. In add *
mode, the navigation keys for the collection must move the location cursor *
independent from the selected element. If <Select> or <Space> is pressed *
on an unselected element, it must select the element with the location *
cursor, and it must deselect any previous selection in the collection.

4-9

OSF/Motif Style Guide

4-10

4.1.6.2 Keyboard-Based Browse Selection

Collections using the browse selection model must use normal mode. The *
navigation keys must move the location cursor and select the cursored *
element, deselecting any other element. If the application has deselected all *
elements or if the cursor is left disjoint from the selection, <Select> or *
<Space> must select the cursored element and deselect any other element.

4.1.6.3 Keyboard-Based Multiple Selection

Collections using the multiple selection model must use add mode. The *
navigation keys for the collection must move the location cursor *
independent from the current selection. <Select> or <Space> on an *
unselected element must add the element to the current selection. <Select> *
or <Space> on a selected element must remove the element from the current *
selection.

4.1.6.4 Keyboard-Based Range Selection

Collections using the range selection model must initially use normal mode. *
This allows a keyboard-based behavior similar to dragging with the mouse.

In normal mode, navigation keys must move the location cursor and deselect *
the current selection. If the cursor is on an element, it must be selected. *
The anchor must move with the location cursor. However, in text-like *
collections, a different model can be used in which the anchor must instead *
remain at its current location, except that, if the current selection is not *
empty, it must be deselected and the anchor must be moved to the location *
of the cursor prior to navigation.

<Select> or <Space> (except in a Text component) must move the anchor to *
the cursor, deselect the current selection, and, if the cursor is on an element, *
select the element. Unless the anchor is on a deselected item, <Shift> *
<Select> or <Shift> <Space> (except in Text) must extend the selection *
from the anchor to the cursor, based on the extension model used by <Shift> *
BSelect.

Selection

U sing <Shift> in conjunction with the navigation keys must extend the *
selection, based on the extension model used by <Shift> BSelect. If the *
current selection is empty, the anchor must first be moved to the cursor. The *
cursor must then be moved according to the navigation keys, and the *
selection must be extended based on the extension model used by <Shift> *
BSelect.

In add mode, <Select>, <Space>, <Shift> <Select>, and <Shift> <Space> *
must work exactly as in normal mode. However, ordinary navigation must *
simply move the location cursor, but must leave the anchor unchanged. *
Shifted navigation must move the location cursor according to the *
navigation keys, and the selection must be extended based on the extension *
model used by <Shift> BSelect. *
In Text, both <Space> and <Shift> <Space> must insert a space character.

4.1.6.5 Keyboard-Based Discontiguous Selection

Collections using the discontiguous selection model must initially use *
normal mode. In the discontiguous selection model, add mode is not only a
separate model of interaction but also an extension to the range selection
model that allows the user to select discontiguous elements.

In normal mode, all keyboard operations must have the same effect as in the *
range selection model. In normal mode, discontiguous selections cannot be
made using the keyboard.

In add mode, <Select> or <Space> must move the anchor to the location *
cursor and initiate toggling. If the location cursor is on an element, the *
selection state of that element must be toggled, but the selection state of all *
other elements must remain unchanged. <Shift> <Select> or <Shift> *
<Space> and shifted navigation operations must extend the selection *
between the anchor and the location cursor, based on the toggle mechanism *
used by <Ctrl> BSelect.

4-11

OSF/Motif Style Guide

4.1.7 Canceling a Selection

<Cancel> must cancel or undo any incomplete motion operation used for *
selection. Once <Cancel> is pressed to cancel a motion operation, the *
application must ignore subsequent key and button releases until after all *
buttons and keys are released. <Cancel> during a range selection should
leave all elements, except possibly for the cursored element, deselected. *
<Cancel> while extending or toggling must leave the selection state of all *
elements as they were prior to the button press.

4.1.8 Autoscrolling and Selection

If the user drags the pointer out of a scrollable collection during a motion- *
based selection operation, autoscrolling must be used to scroll the collection *
in the direction of the pointer. If the user presses <Cancel> with BSelect *
pressed, the selection operation must be canceled as described in Section *
4.1.7.

4.1.9 Selecting and Deselecting All Elements

4-12

There are two special keyboard-based selection mechanisms for selecting
(via <Ctrl> <I>) and deselecting (via <Ctrl> <\>) all the elements in a
collection. <Ctrl> <I> in a collection using multiple, range, or *
discontiguous selection must select all the elements in a collection, place *
the anchor at the beginning of the collection, and leave the location cursor *
at its previous position.

Deselection differs between add mode and normal mode. In add mode, *
<Ctrl> <\> must deselect all the elements in a collection. In normal mode, *
<Ctrl> <\> must deselect all the elements in a collection, except the *
element with the location cursor if the location cursor is being displayed. In *
either case, it must leave the location cursor at its current location and move *
the anchor to the location cursor. An application can deselect all elements
in a collection regardless of the state of add mode or the selection model.

Selection

4.1.10 Using Mnemonics for Elements

Collections can also support mnemonics associated with its elements if the
elements have labels. Pressing a mnemonic key while the collection has the *
keyboard focus must be equivalent to moving the location cursor to the *
element and pressing <Select> or <Space>.

4.2 Selection Actions

Each collection maintains its own selection. A selection need not contain
any elements, in which case it is said to be an empty selection. At any time,
there is one selection called the primary selection, which is the last
selection explicitly started by the user.

Clicking BSelect or <Ctrl> BSelect moves the primary selection to a
collection only when it results in making a selection that is not empty.
When <Shift> BSelect is clicked, an implementation can move the primary
selection to the component even if the resulting selection is empty. *
Dragging BSelect, <Shift> BSelect, or <Ctrl> BSelect must move the *
primary selection to the component if a button release during the pointer *
motion could have potentially selected any element.

A selection is said to be persistent if it is highlighted even when it is not the
primary selection.

Persistent
There are two variants of persistent selections: persistent always, in
which the current selection is always highlighted, and persistent on
focus, in which the current selection is only highlighted when it is the
primary selection or when the collection has the keyboard focus. In
either case, stronger highlighting should be used when the current
selection is also the primary selection. When focus is in the
collection, <Alt> <Insert> can be used to promote the current
selection to the primary selection.

4-13

OSF/Motif Style Guide

Nonpersistent
The collection only highlights a primary selection. When the primary
selection is lost to another collection, the current selection is set to
empty. When focus is in the collection, and it does not have the
primary selection, <Alt> <Insert> can be used to restore the previous
selection and make it the primary selection.

Collections that are never editable (such as noneditable Lists) should always
use persistent selections. Collections that are editable can use either
persistent or non-persistent selections.

When the user makes or changes a selection, the application can display
information about the selection, but it should not perform any other action
that uses the selected elements. For example, selecting a file from a List of
files should not automatically open the file. Such actions should require
additional user interaction.

4.2.1 Destination Component

The destination component is used to identify the component on which
certain operations, primarily data transfer operations, act. There is only one
destination component at a time. When using an explicit focus policy, the *
destination component must be the editable component that last had focus. *
When using a pointer focus policy, the destination component must be the *
editable component that last received mouse button or keyboard input.

Special highlighting should be used to identify the destination component.
In Text, a solid insertion cursor can be shown.

4.2.2 Operation Targets

4-14

Once a selection is made, the elements of the selection can be acted on
using selection actions. Some common selection actions are delete, cut,
copy, and paste, although your application is not limited to these. This
section and the following one describe the way many selection operations
work. Operations that transfer data are described in greater detail in Section
4.3.

Selection

The user may invoke an operation that can act on a selection in some
component. A keyboard operation can be used, or a control can be
activated, which performs the operation. There can be a number of
components in a window to which the action could be applied, and it may
not be clear which component is the target. This could be the case, for
example, when selecting Copy from the Edit Menu, or when typing <Ctrl>
<Insert>, the accelerator for Copy. For operations that act on selections,
use the following hierarchy of rules to determine which component's
selection to act on:

1. If the keyboard focus is in a component (or a Popup Menu of a *
component) that supports selections, the action must act on that *
component.

2. Otherwise, if the keyboard focus is in a window (or a Menu of a
window) with a main component that has a persistent selection, it
should act on the main component.

3. Otherwise, if the keyboard focus is in the window (or a Menu of the
window) that has the destination component, and the destination
component contains a persistent selection that is not empty, it should
act on the destination component.

4. Otherwise, if the keyboard focus is in the same window (or a Menu of
the window) that has the primary selection, it should act on the
component with the primary selection.

5. Otherwise, if the keyboard focus is in a window (or a Menu of a
window) that has only one editable component with a persistent
selection, then it can act on that component.

6. Otherwise, invoking the action should have no effect, except to signal
an error or post a DialogBox.

Similarly, the user may invoke an operation that transfers data to a
component or otherwise uses a component in some way, and, again, it may
not be clear which component should be used. This could be the case, for
example, when selecting Paste from the Edit Menu, or when typing <Shift>
<Insert>, the accelerator for Paste. For operations that do not act on
selections, use the following hierarchy of rules:

1. If the keyboard focus is in a component (or a Popup Menu of a *
component) that supports the action, the action must be applied to that *
component.

4-15

OSF/Motif Style Guide

2. Otherwise, if the keyboard focus is in a window (or a Menu of a
window) with a main component that supports the action, it should be
applied to the main component.

3. Otherwise, if the keyboard focus is in the window (or a Menu of the
window) that has the destination component, and the destination
component supports the action, it should be applied to the destination
component.

4. Otherwise, invoking the action should have no effect, except to signal
an error or post a DialogBox.

4.2.3 Selection Operations

4-16

This subsection describes some of the standard operations available through
the Edit Menu and through standard keyboard bindings that operate on
selections.

A collection can either enable or disable pending delete, which controls the
circumstances under which the selection is deleted. By default, pending
delete should be enabled.

Inserting or pasting elements into a selection, except for a primary transfer *
operation at the bounds of the primary selection, must first delete the *
selection if pending delete is enabled.

In normal mode, inserting or pasting elements disjoint from the selection *
must also deselect the selection, except for primary transfer operations *
whose source and destination are in the same collection. In add mode, the *
selection must not be deselected.

In editable list-like and graphics-like collections, <Delete> must delete the *
selected elements. In editable text-like collections, <Delete> and *
<BackSpace> must behave as follows:

• If the selection is not empty and the control is in normal mode, the *
selection must be deleted.

• If the selection is not empty, the control is in add mode, and the cursor is *
not disjoint from the selection, the selection must be deleted.

• If the selection is not empty and the control is in add mode, but the *
cursor is disj oint from the selection, <Delete> must delete one character *
forward, and <BackSpace> must delete one character backward.

Selection

• If the selection is empty, <Delete> must delete one character forward, *
and <BackSpace> must delete one character backward.

More generally, any operation that deletes a region (for example, a word or
line) behaves as follows:

• If the selection is not empty and the control is in normal mode, the *
selection must be deleted.

• If selection is not empty, the control is in add mode, and the cursor is not *
disjoint from the selection, the selection must be deleted.

• If the selection is not empty and the control is in add mode, but the *
cursor is disjoint from the selection, the operation must delete the *
region.

• If the selection is empty, the operation must delete the region. *
If the region deleted (in add mode) partially overlaps the selection, then the *
overlapped part of the selection must be deleted.

Generally, whenever an action causes data to be removed from a
component, what to do with the space left by the data is up to the
component. In cases where the surrounding data can be reformatted to fill in
the space left by the removed data (such as in Text components), the delete
action should cause this reformatting. In this case, a clear action should
delete the data without reformatting any surrounding data. In Text
components, the clear action deletes the selected text and replaces it with
white space. In cases where the surrounding data cannot be reformatted to
fill in the space left by the removed data (such as in bitmap graphics), the
delete action should remove the data but not cause any reformatting. The
Cut entry from the Edit Menu should behave like the delete action.

In cases where an action adds data to a component, the effect the new data
has on the surrounding data depends on the component. In cases where the
surrounding data can be reformatted to allow the new data to fit in (such as
in Text components), insert actions should cause this reformatting. The
Paste entry from the Edit Menu should behave like insert actions.

<Undo> or <A It> <BackSpace> should undo the last operation on a
selection.

4-17

OSF/Motif Style Guide

4.3 Transfer Models

This section describes the four techniques available for transferring data:

Clipboard Transfer
This technique transfers a selection from a source to the clipboard,
and then subsequently from the clipboard to a destination.

Primary Transfer
This technique transfers the primary selection directly to a destination
without using the clipboard for intermediate storage of the data.

Quick Transfer
This technique allows the user to indicate a range of elements (called
a secondary selection) that are then transferred to the destination
component.

Drag Transfer or Drag and Drop
This technique allows the user to drag a selection or an unselected
element from a source to a destination.

Clipboard and primary transfer operations can be invoked from Pulldown or
Popup Menus and have standard keyboard bindings as well. Primary, quick,
and drag transfer operations can also be invoked using BTransfer.

There are three transfer operations generally available:

• Copy, which copies elements from the source to the destination.

• Move, which moves elements from the source to the destination.

• Link, which inserts a link in the destination to elements in the source.

The default operation for primary and quick transfer using BTransfer is
copy. The default operation for drag transfer is generally move, though it
depends on the characteristics of the source and the destination. Modifiers
can be used to force an operation different from the default:

• <Ctrl> must force a copy.

• <Shift> must force a move.

• <Ctrl> <Shift> must force a link.

*
*
*
*

If the move, copy, or link operation the user requests is not available, the *
transfer operation must fail.

4-18

Selection

When data is moved or copied, it can change its appearance or
representation. The destination can determine the representation of the
transferred data as it chooses. For example, if a graphic element
representing a file is transferred to a Text component, the name of the file (or
possibly the contents, if it is a text file) can be inserted. If possible, the *
source must transfer the format that the destination requests. Otherwise, the
destination can use any heuristic to determine the best format to transfer the
data in. That heuristic can even be, if the source cannot transfer in the
preferred format, fail. If the destination decides that a transfer in its chosen
format could possibly cause a loss of data between the source and the
destination, the destination should notify the user of the possible loss of data
and confirm the action before proceeding.

If there is a choice of the exact representation of data to be inserted, there
should be some visual means that clearly indicates to the user which
representation the application will use. If there is no such indication, then
when the user performs the transfer operation, the application can post a
Popup Menu or a DialogBox to allow the user to choose the representation.

A transfer can also cause the destination to take related actions. For
example, transferring an element to a printer icon can cause the element to
be printed.

The insertion position is the position in the destination at which transferred
data is placed. The insertion position is determined in the following way:

• Some collections have a fixed insertion point (as in append-only text) or
keep the elements in the collection ordered in a specific way. In those
cases, the collection can determine where to place the data.

• If the collection does not have a fixed insertion point or keep elements *
ordered in a specific way, the insertion position for BTransfer-based *
primary and drag transfer operations must be the position at which the *
user releases BTransfer.

• If the collection does not have a fixed insertion point or keep elements
ordered in a specific way, the insertion position for other transfer
operations, including keyboard-based transfer operations, is determined
as follows:

- In text-like collections, the insertion position must be the location *
cursor, and the data must be pasted before it.

In list -like collections, the insertion position must be the element *
with the location cursor, and the data must be pasted before it.

4-19

OSF/Motif Style Guide

- In graphics-like collections, the insertion position should be at the
location cursor, but the exact placement of the data with respect to
the location cursor is unspecified.

4.3.1 Clipboard Transfer

4-20

The clipboard transfer operations Cut, Copy, and Paste, are usually
performed using the Edit Menu of an application. They also have standard *
keyboard bindings that must be available in every editable collection. *
<Cut> or <Shift> <Delete> and the Cut entry of the Edit Menu must cut *
selected elements of the target component to the clipboard. *
<Copy> or <Ctrl> <Insert> and the Copy entry of the Edit Menu must *
copy selected elements of the target component to the clipboard and can *
mark the selection for subsequent use with Paste Link.

A Copy Link entry of the Edit Menu can be used to place a link in the
clipboard to selected elements of the target component so that the link can
be placed in a destination by subsequent use of Paste or Paste Link.

See the rules for operations that act on selections in Section 4.2.2 for
determining which component in a window is targeted by a Cut, Copy, or
Copy Link operation.

<Paste> or <Shift> <Insert> and the Paste entry of the Edit Menu must *
paste the contents of the clipboard at the insertion position of the target *
component.

The Paste Link entry of the Edit Menu can place a link at the insertion
position of the target component to the selection last marked by a Copy or
Copy Link operation.

See the rules for operations that do not act on selections in Section 4.2.2 for
determining which collection in a window is targeted by a Paste or Paste
Link operation.

If the last data cut was the primary selection, pasting it can make it the
primary selection if there is no current primary selection. Otherwise,
pasting data should not select it. However, if the collection is in normal
mode, the anchor and the cursor should be placed at opposite ends of the
pasted data so that subsequent use of <Shift> <Select> or <Shift> <Space>
can be used to select it.

Selection

If Paste or Paste Link is invoked using a component's Popup Menu, the data *
must be pasted at the insertion position of the component. However, if the *
Popup Menu is popped up over a selection, the selection must first be *
deleted, even if pending delete is disabled, and the pasted data must replace *
it, if possible.

If Paste or Paste Link is invoked from the Edit Menu or by a keyboard *
operation, and the insertion position in the target component is not disjoint *
from a selection, the pasted data must replace the selection contents if *
pending delete is enabled.

4.3.2 Primary Transfer

Primary transfer can be invoked by clicking BTransfer or through standard
keyboard bindings. There are three primary transfer operations:

Primary Copy
In an editable collection, BTransfer Click, <Ctrl> BTransfer Click, *
<AIt> <Copy>, and <AIt> <Ctrl> <Insert> must copy the primary *
selection to the insertion position, as defined in Section 4.3. (Note *
that the insertion position is usually different for mouse and keyboard *
operations.)

Primary Move
In an editable collection, <Shift> BTransfer Click, <AIt> <Cut>, *
and <Alt> <Shift> <Delete> must move the primary selection to the *
insertion position, as defined in Section 4.3. (Note that the insertion *
position is usually different for mouse and keyboard operations.)

Primary Link
In an editable collection, <Ctrl> <Shift> BTransfer Click must *
place a link to the primary selection at the insertion position, as *
defined in Section 4.3.

Transferring data to the destination by a Primary Copy or Primary Link *
must not select it. However, if the source and the destination components
are different, and if the collection is in normal mode, the anchor and the
cursor should be placed at opposite ends of the transferred data, so that
subsequent use of <Shift> <Select> or <Shift> <Space> can be used to
select it.

4-21

OSF/Motif Style Guide

4-22

A Primary Move must move the primary selection as well as the elements *
selected; that is, the element moved to the destination must become selected *
as the primary selection.

If a primary transfer operation is invoked using a component's Popup Menu, *
the data must be transferred to the insertion position of the component. *
However, if the Popup Menu is popped up over a persistent nonprimary *
selection, the selection must first be deleted, even if pending delete is *
disabled, and the transferred data must replace it. When a primary transfer *
transfers data into a nonprimary selection, the transferred data must replace *
the selection contents if pending delete is enabled.

When a Primary Copy or Primary Link is invoked by using BTransfer
with the pointer at the edge of the primary selection, by popping up a Popup
Menu at the edge of a primary selection, or by a keyboard operation when
the insertion position is at the edge of the primary selection, the data should
be transferred, and the selection should be left unchanged, even if pending
delete is enabled. If a Primary Copy or Primary Link is invoked inside
the primary selection, the operation should have no effect.

If BTransfer is pressed outside a primary selection, but at a position both
where a drag can be initiated and where data can be pasted by a primary
transfer, a user-settable timeout and motion threshold should be used in the
following way to distinguish drag initiation from primary transfer:

• If BTransfer Motion exceeding the motion threshold occurs following
the BTransfer Press, a drag should be initiated.

• Otherwise, if the BTransfer Release follows the BTransfer Press
within the timeout period, a primary transfer should be done.

• Otherwise, when the timeout period expires, a drag should be initiated.
However, if BTransfer Release is then done without motion exceeding
the threshold, the drag should be canceled.

If BTransfer is pressed within a draggable primary selection, the drag
should be initiated on the BTransfer Press.

Selection

4.3.3 Quick Transfer
Quick transfer is used to make a temporary (or secondary) selection and
then immediately copy, move, or link that selection to the insertion position
of the destination component. Quick transfer is implemented using <AU>
BTransfer Motion, with the standard modifiers used to force the various
transfer operations.

Text components must support quick transfer.

There are three quick transfer operations:

Quick Copy

*

If a component supports quick transfer, <AU> BTransfer Motion or *
<AU> <Ctrl> BTransfer Motion must temporarily select elements in *
the specified range and, on release, must copy them to the insertion *
position of the destination component.

Quick Cut
If a component supports quick transfer, <AU> <Shift> BTransfer *
Motion must temporarily select elements in the specified range and, *
on release, must move them to the insertion position of the destination *
component.

Quick Link
If a component supports quick transfer, <AU> <Ctrl> <Shift> *
BTransfer Motion must temporarily select elements in the specified *
range and, on release, must place a link to them at the insertion *
position of the destination component.

The range of the temporary selection must be determined by using exactly *
the same model used when BSelect Motion determines the range of a *
primary selection.

If the insertion position of the destination component is not disjoint from the *
selection, the transferred data must replace the selection contents if pending *
delete is enabled. Transferring data to the destination component by a quick *
transfer must not select it. However, if the destination component is in
normal mode, the anchor and the cursor should be placed at opposite ends of
the transferred data so that subsequent use of <Shift> <Select> or <Shift>
<Space> can be used to select it.

Quick transfer can be used to transfer static text or graphics that are not
ordinarily selectable. For example, a portion of the text label of a
PushButton is not ordinarily selectable, since BSelect Click, <Select> or
<Space> activate the PushButton instead.

4-23

OSF/Motif Style Guide

While dragging out the quick selection, the range should be highlighted in
some way. The highlighting mechanism should be different from that used
for the primary selection. In text, the highlight should be underlining.

If the pointer is dragged out of a scrollable collection while making the *
temporary selection, autoscrolling must be used to scroll the collection in *
the direction of the pointer. If BTransfer is released with the pointer *
outside of the collection, or if <Cancel> is pressed with BTransfer pressed, *
the highlighting must be removed and a transfer must not be performed.

4.3.4 Drag Transfer

4-24

Drag transfer, also known as drag and drop, provides a quick and simple
model for transferring data within and between applications. Depending on
where it is initiated, drag transfer can be used to transfer the selected
elements of a collection, a single unselected element, an entire collection,
and even unselectable static textual and graphics labels.

A user performs a drag transfer by pressing BTransfer in the source, moving
the pointer to the destination (called the drop site), and releasing BTransfer.
This transfers the data from the source to the destination. The usual
modifier keys can be used to force a copy, move, or link:

• <Ctrl> BTransfer Motion must force a drag copy.

• <Shift> BTransfer Motion must force a drag move.

• <Ctrl> <Shift> BTransfer Motion must force a drag link.

If no modifier key is chosen, the default operation should be a move,
although it depends on the characteristics of the source and the destination.
In particular, the default should be copy if the source is not editable, or if the
destination is a copying or transformation device; for example, if the drop
occurs over an icon for a printer or a compiler.

When a drag move moves the primary selection, the primary selection
should move to the destination, as well as the elements selected; that is, the
element moved to the destination should become selected as the primary
selection.

*
*
*

When a drag move moves a selection within the same component, the *
selection must move along with the elements selected.

Selection

In other cases, data transferred by a drag transfer must not become selected *
at the destination. However, if the destination is in normal mode, then
except when drag copy and drag link transfer a selection within the same
component, the anchor and the cursor should be placed at opposite ends of
the transferred data so that subsequent use of <Shift> <Select> or <Shift>
<Space> can be used to select it.

Within a collection, drag transfer can be used to either drag a selected set of
elements, a single un selected element, or the entire collection. This is
determined in the following way:

• In text-like collections, initiating a drag in a selected region must drag *
the text selection (including all pieces if it is discontiguous).

• In list-like and graphics-like collections, initiating a drag on a selected *
element must drag the entire selection.

• In list-like and graphics-like collections, InItIatmg a drag on an *
un selected element must drag just that element. If the collection *
contains a selection, the selection must not be affected (except if the *
drop occurs in the same collection).

• In graphics-like collections, initiating a drag in the background of a
contiguous selected region can drag the selection. Otherwise,
BTransfer Motion beginning in the background of a collection can drag
the entire collection or, if the collection is scrollable, can be used to pan
the collection.

If a drag is initiated in an un selected region and the pointer is over two *
possible draggable elements, the drag must occur on the highest draggable *
element in the stacking order. This also implies that with nested draggable
elements, the drag occurs on the smallest draggable element under the
pointer.

All col1ections should support drag transfer and should allow elements to be
dragged to or from other collections, including those in different
applications. A collection can support only drag (particularly if it is not
editable) or only drop.

If a collection only allows elements dragged from it to be dropped in the
same collection, then, during the drag, it can prevent the pointer from
moving outside of the collection. If so, and if the collection is scrollable,
holding the pointer at the edge of the collection should cause autoscrolling.

4-25

OSF/Motif Style Guide

4.3.4.1 Drag Icons

When a drag operation is started, the pointer must be replaced with a drag *
icon. A drag icon provides visual feedback that a drag is in progress. It can
be composed of three parts:

• A source indicator

• An operation indicator

• A state indicator

Figure 4-1 shows move, copy, and link drag icons for graphical and textual
information. The bulk of the icon is the source indicator. When defining
new drag icons, you should follow the same rules as for defining new
pointers described in Section 2.2.2.

Figure 4-1. Drag Icons

4-26

All drag icons must include a source indicator. A source indicator should *
give a visual representation of the type of elements being dragged; for
example, horizontal lines in a rectangle for representing text. The source
indicator can include a fragment of the actual data being dragged, such as
the first few characters of some text.

An operation indicator shows whether the drag operation will result in a
move, copy, or link operation. Most drag icons should include an operation
indicator. An operation indicator can be shown either as a separate element
of the drag icon or as a variation of a graphic used for the source indicator.

The source of the dragged elements can also provide visual indications of
the result of a drop. For example, if the default operation for the dragged
elements is a move, the source can be hidden or deemphasized; or if the
default operation of the dragged elements is a link, a line can be drawn from
the source to the pointer.

Selection

A state indicator shows whether the current pointer location is over a valid
drop site for the dragged elements. All drag icons can include a state
indicator. A state indicator should be coincident with the hotspot of the
pointer.

4.3.4.2 During a Drag

Systems should provide help operations during drag and drop. If a system
provides drag and drop help, pressing <Help> (followed by releasing
BTransfer) during a drag and drop operation should allow the posting of a
DialogBox with the help information and the possible choices for
concluding the drag and drop operation. The DialogBox should allow for
canceling the drag and drop operation or for dropping the elements at the
current location as a move, copy, or link.

Pressing <Cancel> during a drag operation must cancel the current drag *
operation and return the system to the state prior to the start of the drag *
operation.

It can be difficult during a drag and drop operation to make both the drag
source and drop site visible to the user at the same time. A system can
alleviate this problem by making it possible to navigate to drop sites that
were not visibly available at the start of the drag operation. For example, a
system can scroll a scrollable region when the pointer rests on the edge of
that scrollable region. A system can open an icon view when the pointer
rests on that icon. A system can also raise a window when the pointer rests
in that window.

During a drag and drop interaction, the system should indicate dynamically
whether the current pointer location is a possible valid drop site for the data
that the user is dragging. This is done using drag-over effects, and drag­
under effects. A drag-over effect is a change in the visual state of the drag
icon. This change is usually represented in the drag icon's state indicator. If
a drag icon has a state indicator, it should be coincident with the pointer's
hotspot. The state indicator should be emphasized for valid drop sites and
deemphasized for invalid drops sites. The state indicator can also indicate
that there is no drop site under the pointer.

A drag-under effect is a change to the visual state of a possible valid drop
site when the drag icon pointer is over the drop site. All drop sites should
use some kind of drag-under effect. Drop sites can use a solid line around

4-27

OSF/Motif Style Guide

4-28

the site, or a raised or lowered beveled edge around the drop site as a drag­
under effect. Drop sites can also change any visual component of the drop
site, or even animate those changes, as a drag-under effect. For example, an
icon representing a folder might show an animated image of the folder
opening as a user drags a file onto it. Drop sites can also use other media
(for example, audio effects) to provide feedback.

4.3.4.3 Ending a Drag

Releasing BTransfer (or BSelect when transfer and selection are *
integrated) must end a drag and drop operation. In addition, as mentioned in *
the previous section, pressing <Cancel> must also end a drag and drop *
operation by canceling the drag in progress. When a user releases *
BTransfer, the drop operation must occur at the location of the hotspot of *
the drag icon pointer. The drop must occur into the highest drop site in the *
stacking order. This also implies that in a group of nested drop sites the
drop occurs into the smallest drop site under the pointer.

However, if a drop occurs within a selection at any level, the transferred *
data must replace the contents of the entire selection if pending delete is *
enabled.

4.3.4.4 Drop Results

Every drop operation, even when there was a visual indication of a valid
drop site, can result in either success, failure, or partial failure (in the case
of dragging multiple elements). While the transfer is in progress, that is *
until the drop site determines the success of the drag and drop operation, the *
data must not leave the source. While the transfer is in progress, a transfer
icon representing the type of data being transferred should appear at the
drop site.

After a successful transfer, the data must be placed in the drop site and the *
transfer icon must be removed. The removal of the transfer icon can be
accompanied by an animation that shows the icon transforming into the drop
site. For example, the transfer icon can melt into the drop site.

Selection

After a failed transfer, the data must remain at the drag source, the data must *
not be placed in the drop site, and the transfer icon must be removed. The
removal of the transfer icon should be accompanied by an animation that
shows the icon returning to the source location. For example, the transfer
icon can snap back to the location of the drag source.

When multiple elements are involved in a drag and drop operation, the
success or failure of the operation can be determined for the group as a
whole or for each individual element in the group. If the group is
transferred as a whole, there should only be one transfer icon at the drop site
while the transfer is in progress. If the elements in the group succeed or fail
individually, there can either be a transfer icon for each element or one
transfer icon for the whole group. In either case, if partial success or failure
is allowed, the drop site should post a message for each individual failure or
otherwise indicate which transfers succeeded or failed.

4.3.5 Integrating Selection and Transfer

Instead of using BTransfer, transfer operations can be integrated with
BSelect. When BSelect is used for dragging operations, its use partially
supersedes the use of BSelect Motion in the selection models described in
Section 4.1. The following rules are designed to make the integration of
selection and transfer less restrictive:

• In text-like collections, BSelect Motion starting in a selected region *
must drag the text selection; starting outside the selected region, it must *
be used for making selections.

• In list-like and graphics-like collections, BSelect Motion starting on a *
selected element must drag the entire selection.

• In dense list-like or graphics-like collections, in which background *
space around elements is not generally available and in which BSelect *
Motion is used for browsing or for selecting or toggling a range of *
elements, BSelect Motion starting on an unselected element must be *
used for making selections.

4-29

OSF/Motif Style Guide

4-30

• In less dense list-like or graphics-like collections, BSelect Motion in the *
background must be used for making marquee selections; if they are not *
supported, BSelect Motion can be used to drag the entire collection, or *
to pan if the collection is scrollable .

• BSelect Click must always be used for selection. *
When BSelect is used for dragging, the <Ctrl> and <Shift> modifiers must *
be used to force the transfer operation as for BTransfer. When BSelect is *
only used for selection, the <Ctrl> and <Shift> modifiers have their usual *
selection-specific meanings. *
If BMenu is not available for Popup Menus, <AU> BSelect must be used *
instead.

If BMenu is available, then when transfer is integrated with selection,
<AU> BSelect Click should be used for primary transfer, and <AU>
BSelect Motion should be used for quick transfer, with <Ctrl> and <Shift>
forcing the transfer operation as usual.

Chapter 5

Component Activation

This chapter describes the component activation model, which determines
how to act upon previously selected elements.

Once users select an object, they can perform an action on it by using the
components available in the application, or by using one of the selection
actions described in Chapter 4. Using components to perform actions on a
selection is called activation.

Components are used to send information to the underlying application. For
example, a Text component is used to send complicated information to the
application, but most components (for example, PushButtons) are simply
used to start an application process. In fact, even a complicated component
like Text may need to tell the application that the user is finished entering
information.

Components that start some application process are used following the
activation model, which this chapter divides into the following areas:

• Basic activation

• Accelerators

• Mnemonics

• TearOff activation

5-1

OSF/Motif Style Guide

• Help activation

• Default activation

• Expert activation

• Previewing and autorepeat

• Cancel activation

5.1 Basic Activation

5-2

The basic activation model mimics real-life button activation in that
pressing on a button activates it. The user selects a button with the location
cursor, which can be moved among components following the navigation
model described in Chapter 3.

• Clicking BSelect on the button must activate the button. *
• <Select> or <Space> on a button with the focus must activate the *

button.

• <Select>, <Space>, <Enter>, or <Return> on an activatable Menu *
entry with the focus must activate the entry.

When BSelect is pressed over a button, the appearance of the button must *
change to indicate that releasing BSelect activates the button. If, while *
BSelect is pressed, the pointer is moved outside of the button, the visual *
state must be restored. If, while BSelect is still pressed, the pointer is *
moved back inside of the button, the visual state must again be changed to *
indicate the pending activation. If BSelect is pressed and released within a *
button, the button must be activated, regardless of whether the pointer has *
moved out of the button while it was pressed.

An implementation can allow BSelect Click 2+ (multiple mouse button
clicks) to be treated as a single mouse button click on a per-component
basis; that is, all clicks except the first are discarded. In an application
where double-clicks are used heavily, this can help prevent the user from
unintentionally activating a button twice.

A selectable element of a collection can be activatable; for example, a link
icon, or an audio annotation in Text. If so, BSelect Click, <Select>, and *
<Space> (except in Text) must select it. BSelect Click 2 must select and *
activate it.

Component Activation

5.2 Accelerators

An accelerator is a key or key combination that invokes the action of some
component regardless of the position of the location cursor when the
accelerator is pressed. Accelerators are most commonly used to activate
Menu items without first posting the Menu.

If the button with the accelerator is within a primary or secondary window, *
or within a Pulldown Menu system from its MenuBar, it must be acti vatable *
whenever the input focus is in the window or the MenuBar system. If the *
button with the accelerator is within a Popup Menu system, it must be *
activatable whenever the focus is in the Popup Menu system or the *
component with the Popup Menu.

Applications can provide accelerators for any button component. *
Implementations must support accelerators in PushButtons and *
ToggleButtons that are in Menus. If a button has an accelerator, the *
accelerator must be shown following the label of the button.

5.3 Mnemonics

A mnemonic is a single character that can be associated with any
component that contains a text label. The label must contain the character, *
and the character must be underlined within the label, except in language *
environments in which underlining is unavailable. If a label does not *
naturally contain the character of the mnemonic, the mnemonic must be *
placed in parentheses following the label. Labels can also be sequentially
numbered, and the number can serve as the mnemonic. Labels that are
duplicated within an application should be given the same mnemonic. *
Mnemonics must be case insensitive for activation. Either an uppercase or
lowercase letter can be underlined in the label.

When the location cursor is within a Menu or a MenuBar, pressing the *
mnemonic key of a component within that Menu or MenuBar must move the *
location cursor to the component and activate it. If a mnemonic is used for *
an OptionButton or for a CascadeButton in a MenuBar, pressing <A It> and *
the mnemonic anywhere in the window or its Menus must move the cursor *
to the component with that mnemonic and activate it. Implementation must *
support mnemonics for OptionButtons, PushButtons in a Menu, *
ToggleButtons in a Menu, and CascadeButtons in a Menu or MenuBar.

5-3

OSF/Motif Style Guide

Mnemonics can also be used to select and deselect elements within a
component as described in Section 4.1.10.

5.4 TearOff Activation

Some Menus have TearOffButtons as their first elements. A TearOffButton
is like a PushButton with the special interaction of converting a Menu into a
DialogBox; that is, tearing off the Menu from its CascadeButton. *
TearOffButtons must follow the rules for the basic activation model *
described in Section 5.1. For example, pressing and releasing BSelect in a
TearOffButton tears off the Menu and transforms it into a DialogBox.

TearOffButtons also have a second activation mechanism. Once a Menu *
with a TearOffButton is posted, pressing BTransfer in the TearOffButton *
must start a TearOff action. As long as BTransfer is held, a representation *
of the Menu must follow the movements of the pointer. Releasing *
BTransfer must end the TearOff action by unposting the Menu system, *
creating a new window at the current pointer location with the contents of *
the Menu, and give focus to the new window in explicit pointer mode. The
contents of the new window should not include the TearOffButton.

Pulling down or popping up a Menu that is currently torn off should not
affect the torn off Menu. If the same Menu is torn off again, using either
basic activation or TearOff activation, the existing torn off window should
be removed prior to the creation of the new window. A torn off Menu is
closed by pressing <Cancel> while focus is in the window or by using the
TearOff Menu's window Menu.

5.5 Help Activation

5-4

Help is generally invoked from selections in the Help Menu of the
MenuBar. In addition, <Help> on a component must invoke any context- *
sensitive help for the component or its nearest ancestor with context- *
sensitive help available. Within DialogBoxes, applications should provide
context-sensitive help for the DialogBox as a whole.

Component Activation

<Shift> <Help> should switch into context-sensitive help mode if it is
available. In the context-sensitive help mode, the pointer shape changes to
show the mode, and help is provided for the next component that the user
selects, after which context-sensitive help mode is exited.

5.6 Default Activation

Any window can have a default action, although default actions are most
frequently used in DialogBoxes. A DialogBox should have a default action
associated with it. The default action in a window can change depending
upon which component has the focus. The current default action should
correspond to the action of some PushButton, called the current default
PushButton of the window.

The current default PushButton must be highlighted in some way, usually by *
displaying a border around it. When the focus is on a PushButton, its action *
must be the default action, and the PushButton must show default *
highlighting. If the default action in a window varies, some PushButton *
must always have default highlighting, except when there is no current *
default action.

In a DialogBox, default PushButtons should be in the bottom area of
PushButtons of the DialogBox. However, if a particular default action is
associated with a cluster of controls in a window, the corresponding default
PushButton can be located adjacent to the cluster.

When an explicit focus policy is in use, and the focus is outside the window,
default highlighting should be placed on the PushButton whose action
corresponds to the default action that would result from moving the focus to
the window by using keyboard navigation among windows.

The default action of a DialogBox is activated according to the following
rules:

• If the focus is in a window, <Enter> and <Ctrl> <Return> must invoke *
the default action, and, if the focus is in a component in a window other *
than multiline Text, <Return> must invoke the default action. These *
actions must have no other effect on the component with the focus, *
unless the default action has some effect.

5-5

OSF/Motif Style Guide

• In list-like and graphics-like collections, when the location cursor is not
on an activatable element, BSelect Click 2 should act like BSelect
Click, followed by invocation of the default action.

• When the focus is on a ToggleButton not used for expert activation,
BSelect Click 2 should activate the ToggleButton and then perform the
default action.

Except in the middle of a button motion operation, <Cancel> anywhere in a *
DialogBox must be equivalent to activating the Cancel PushButton in the *
DialogBox.

5.7 Expert Activation

5-6

Some activatable elements, usually PushButtons and ToggleButtons, can
have expert activation actions associated with them. BSelect Click 2 (that
is, double-clicking the element) should activate any expert action for the
element. Expert actions should only be available in a Panel of PushButtons
or in a Panel of RadioButtons where one of the RadioButtons is always on. *
When the focus is on a button used for expert activation, there must be no *
default action available, unless the default and expert actions are the same.

The expert action should include the regular action of the component in a
more global manner. For example, a Panel of RadioButtons in a drawing
application could include a tool for turning on the erase cursor. Selecting
the RadioButton turns on the erase cursor. Double-clicking the RadioButton
could erase the drawing area.

If a component with an expert action is selectable, activating the expert *
action must first select the component and then perform the expert action.

To support new users and keyboard-only users, expert actions must only be *
shortcuts to application features available elsewhere.

Component Activation

5.8 Previewing and Autorepeat

Two special actions can be used with activation: previewing and autorepeat.
When BSelect is pressed and held over a PushButton or ToggleButton, the
application can present information in some way that describes the effect of
activating the button. This is called previewing. The information must be *
removed when the user releases BSelect. Applications should provide a
means to disable previewing for experienced users.

PushButtons can also autorepeat; that is, when BSelect is pressed and held,
the PushButton activates and continues to activate at regular intervals until
the PushButton is released. Autorepeating buttons should continue to repeat
even when the pointer moves outside the button while the button is pressed;
however, applications can suspend the activation of the button until the
pointer is moved back inside of the button. While the button is active, it
should be drawn in the active state.

5.9 Cancel Activation

<Cancel> is available in most contexts to stop or cancel the current
interaction. <Cancel> has an impact on the following contexts:

• Pressing <Cancel> during a mouse-based selection or drag operation *
must cancel the operation.

• Pressing <Cancel> during a mouse-based scrolling operation must *
cancel the scrolling action and return the system to its state prior to the *
start of the scrolling operation.

• Pressing <Cancel> anywhere in a DialogBox must be equivalent to *
activating the Cancel PushButton, if one exists, except during a mouse- *
based selection or drag operation, in which case it should cancel the *
operation.

• Pressing <Cancel> in a Pulldown Menu must either dismiss the Menu *
and move the location cursor to the CascadeButton used to pull it down *
or unpost the entire Menu system. <Cancel> in a Popup Menu, Option *
Menu, TearOff Menu, or MenuBar must unpost the Menu system.

• Pressing <Cancel> while the focus is in a torn off Menu window must *
close the tom off Menu window.

5-7

Chapter 6

Application Design Principles

This chapter is directed at application designers, rather than the people who
write the algorithms of an application, although they are often one in the
same. Application designers are the people who design the interface
between the application algorithms and the user. In designing user
interfaces, an application designer chooses the proper controls or groups of
controls, or components, to pass data between the base application and the
user, lays out those components naturally, and ensures that user interaction
with the components and the layout are easy to use.

This chapter describes the three elements of application user interface
design, as well as the principles for designing new user interface
components. The four major sections of this chapter are as follows:

• Choosing components

• Layout

• Interaction

• Component design

6-1

OSF/Motif Style Guide

6.1 Choosing Components

6-2

The user interface of an application is made up of components that perform
two simple functions: presenting the application information to the user,
and allowing the user to enter data for the application. Components can be
divided into six types: basic controls, field controls, basic groups, layout
groups, framing groups, and DialogBox groups. The groups are containers
for controls and groups of controls. Groups can be nested.

The component types that should be available in a user interface toolkit are
described in the following lists. The details of these components are
described in the reference section in Chapter 9 of this guide. The
correspondence of these components to widgets available in the aSF/Motif
toolkit is described in Appendix A.

• Basic Controls

Separator

Label

PushButton

CascadeB utton

Draws a separating line within windows, between
Menu items, and between Panes of a
PanedWindow. A Separator does not allow
application interaction.

Displays static text and images. A Label presents
application information to the user.

A button used to activate an operation. A
PushButton contains a Label that indicates the
operation of the button. The Label can contain text
or an image.

A button used to display a Pulldown Menu. A
CascadeButton contains a Label that indicates the
Menu to be displayed. CascadeButtons can also
contain an arrow graphic after the Label to
distinguish it from PushButtons and to indicate the
direction of the cascading Menu.

OptionButton

ToggleButton

CheckButton

RadioButton

TearOffButton

Application Design Principles

A button used to display an Option Menu. An
Option Menu allows for a one-of-many selection.
An OptionButton contains a Label that indicates
the current state of the Option Menu and a bar
graphic to distinguish it from a PushButton.

A button with two states: on and off. A
ToggleButton contains a Label that indicates the
active state. Normally, preceding the Label is a
graphic indicator of the state of the ToggleButton.

A ToggleButton in a group of ToggleButtons where
any number of the ToggleButtons can be on at a
time. The graphic indicator for a CheckButton is
usually a filled square to indicate the on state or an
empty square to indicate the off state. On color
systems, the filled color can be distinct from
general application colors to visually distinguish
the on state.

A ToggleButton in a group of ToggleButtons where
only one of the ToggleButtons can be on at a time.
The graphic indicator for a RadioButton is usually a
filled diamond or circle to indicate the on state or
an empty diamond or circle to indicate the off state.
On color systems, the filled color can be distinct
from general application colors to visually
distinguish the on state.

A button used for tearing off a Menu to create a
dialog representation of the Menu contents. A
TearOffButton tears off a Menu in place when
activated, or is dragged to tear off and move in one
action. A TearOffButton usually contains a dashed
line graphic representing perforations.

6-3

OSF/Motif Style Guide

6-4

• Field Controls

Sash

Scale

ScrollBar

List

Text

U sed to set the boundary between two components.
A Sash is usually a small square on the boundary
between two components. The separated
components are called Panes, and a group of Panes,
Separators, and Sashes is called a PanedWindow.

U sed to set or display a value in a range. A Scale is
usually composed of a slider, moving within an
element that indicates the size of the range, and a
Label that indicates the current value. The position
of the slider indicates the value relative to the
range. The slider is moved directly by using the
mouse pointer or by using the arrow keys. A Scale
can also have buttons with arrow graphics for
moving the slider with the mouse.

U sed to scroll the visible area of a component. A
ScrollBar is usually composed of a slider, moving
within an element that indicates the full size of the
component, and buttons with arrow graphics for
moving the slider with the mouse. The slider
indicates the relative position and size of the
visible area of the component. The slider is moved
directly by using the mouse pointer or by using the
arrow keys.

U sed for selecting elements from a list of elements.
A List can allow multiple items to be selected or
can be constrained to only allow one item to be
selected at a time. A List is usually composed of a
vertical list of items. A List can also have both
horizontal and vertical ScrollBars for scrolling the
visible portion of the list of items.

U sed for displaying, entering, and modifying text.
There are single line and multiple line variants.
Multiline Text can have both horizontal and
vertical ScrollBars for scrolling the visible portion
of the text area.

Canvas

• Basic Groups

Panel

Menu

MenuBar

• Layout Groups

Composition

PanedWindow

• Framing Groups

Frame

ScrolledWindow

MainWindow

Application Design Principles

U sed for displaying, entering, and modifying
graphics. A Canvas can have both horizontal and
vertical ScrollBars for scrolling the visible portion
of the drawing area.

Organizes a collection of components in a
horizontal, vertical, or 2-dimensional layout. A
Panel is usually composed of just one type of
button.

Organizes a collection of buttons, Labels, and
Separators in a horizontal, vertical, or 2-
dimensional layout within a separate Menu
window. There are three types of Menus:
Pulldown, Popup, and Option. A Menu is only
available while it is pulled down or popped up.

Organizes a collections of CascadeButtons in a
horizontal layout at the top of a Main Window.

Organizes a collection of components in an
arbitrary layout.

A linear grouping of components, Separators, and
Sashes. Sashes are used to set the boundary
between two components. The separated
components are called Panes and can contain any
components.

Draws framing decorations around a component.

Frames a component and adds ScrollBars for
scrolling the visible area of the component.

Organizes the contents of a primary window. A
Main Window frames the client area and can
optionally include ScrollBars, a MenuBar, a
command area, and a message area.

6-5

OSF/Motif Style Guide

• DialogBox Groups

A DialogBox group can either be nested within another group or
organizes the contents of a secondary window. Although a DialogBox
can contain any component, a simple DialogBox is composed of a Label
and a Panel of PushButtons for supplying a response to the DialogBox.
The aSF/Motif toolkit provides a number of ready-designed
DialogBoxes for common uses: CommandDialog, FileSelectionDialog,
MessageDialog, PromptDialog, and SelectionDialog. Several types of
MessageDialog are available: ErrorDialog, InformationDialog,
QuestionDialog, WorkingDialog, and WarningDialog.

6.1.1 Guidelines for Choosing a Main Component Group

6-6

At the highest level, components are organized into Main Windows, Menus,
and DialogBoxes. Correctly deciding which component group to use for
which parts of an application is one of the most important tasks of an
application designer.

Every application must contain at least one MainWindow. The *
Main Window can contain a MenuBar, ScrollBars, a command area, a
message area, and the client area. The client area of the Main Window
contains the framework of an application. The client area should contain all
the components needed to perform the primary actions of the applications.
For example, in a text editor application, the Main Window usually contains
a text editing area; in a graphics editor application, the Main Window
usually contains a graphics editing area and the components for changing
drawing functions. Components that are used constantly throughout the
application should be contained in the MainWindow's client area.
Components that are used intermittently or infrequently should be placed in
Menus or DialogBoxes.

The advantages of Menus are that they are readily available, quickly
accessed and dismissed, and easy to browse through. The most commonly
used Menus should be placed in the MenuBar in the Main Window to
increase these advantages. Because Menus are readily available, and
quickly accessed and dismissed, they should be used for components that
are frequently used. The time delays of bringing up a DialogBox for
frequently used components can greatly reduce user productivity. Because
Menus are easy to browse through, they should also be used for components
that are commonly accessed by most users.

Application Design Principles

The advantages of Menus also cause some disadvantages. A Menu is a very
short-lived component group. It is displayed only while the user makes a
selection. Once the user makes a selection, the Menu disappears. So a
Menu is not well-suited for making several selections at once.

Adding a TearOffButton to a Menu can allow that Menu to remain available
even after a user selection. By activating a TearOffButton, the user changes
the current Menu into a simple DialogBox with the same contents as the
Menu. A Menu with a TearOffButton allows the user to make multiple
selections because the user can cause it to stay posted after a selection. A
TearOffButton is useful when it is unclear whether you should include a set
of buttons in a Menu or DialogBox.

Menus, other than TearOff Menus, are also modal; that is, while a Menu is
posted, the user cannot interact with other elements of the application.
Because of this, unless a Menu can be torn off, it should not be used for
components that the user may want to have available while interacting with
other elements of the application.

The other disadvantage of Menus is they can only contain buttons and
Labels. Menus should be used for performing simple actions and setting
values, but are not suitable for more complicated functions like text entry.

DialogBoxes are used for two general purposes: to present information to
the user and to take user input. Applications should use DialogBoxes to
present transient information to the user, like warnings, cautions, or
conformations to actions. DialogBoxes that present information to the user
are called Message DialogBoxes. Message DialogBoxes are often placed
on the screen by applications without a request from the user. Because
Message DialogBoxes can disrupt a user's work, applications should present
constantly updated information in the client area of the Main Window. Also,
applications can present minor cautions, incidental notes, and simple help in
the message area of the Main Window.

The advantages of using DialogBoxes to take user input are that they are
long-lived and can contain any components. Because they are long-lived,
they can be used to perform more than one action at a time and can remain
available while the user interacts with other parts of the application.
Applications should use user-input DialogBoxes like small applications.
DialogBoxes should be used to perform tasks ancillary to the application,
where the user can take more than one action before dismissing the
DialogBox. Applications should also use DialogBoxes where the task
requires more complicated interaction than is available in a Menu, like file
selection.

6-7

OSF/Motif Style Guide

Table 6-1 summarizes the suggested uses for Main Windows, Menus, and
DialogBoxes.

Table 6-1. Suggested Window Types

Use This Main Component Group

For These Cases MainWindow Menu DialogBox

Primary application actions X - -
Ancillary application actions - - X
Components used intermittently - X -
Components used frequently X X -
Components used seldomly - - X
Components accessed by most users - X -
Simple actions X X -
Complex actions X - X
Presenting transient information - - X
Presenting updating information X - -
Presenting minor information X - -

6.1.2 Guidelines for Choosing Interactive Methods

6-8

Choosing the correct components for a task is usually simple. In most cases,
a task seems to naturally belong to a component; for instance, scrolling a
region with a ScrollBar or choosing a value from a range with a Scale. Each
component's general purpose is described in Section 6.1, as well as in the
reference section in Chapter 9. In some cases, though, it is difficult to
decide between two controls or groups of controls that could perform the
same task. The following subsections give some guidelines for choosing
among some common similar components:

• Choosing a single-choice component

• Choosing a multiple-choice component

• Choosing among Menus and Panels

• Choosing between Text or Canvas, and a Label

Application Design Principles

6.1.2.1 Choosing a Single-Choice Component

A single-choice component allows the user to select a single item from a
group of items. Applications should use a single-choice component to limit
the user to one choice; for example, choosing among available pen widths in
a drawing program. The available single-choice components are as follows:

• RadioBox

• OptionButton

• List

You should choose a single-choice component based on the number of items
to choose among, the space available for the selection area, and the
permanence of the selection. For a small number of items, the best
component is a RadioBox or an OptionButton. RadioBoxes should usually
contain no more than 5 or 6 items. Option Menus, which are connected to
OptionButtons, should usually contain no more than 10 to 12 items. If there
is very little space available in your application, you should use an
OptionButton over a RadioBox, since the OptionButton takes up very little
space.

When the number of items to choose from gets larger than a RadioBox or
OptionButton can easily handle, you should use a List. You should also use
a List when the items to choose from can change. For application
consistency, the choices in a RadioBox or OptionButton should not change,
but, if they do, you should use an OptionButton over a RadioBox. If a
RadioBox or OptionButton choice becomes unavailable, it should be
disabled rather than removed. Section 6.3.1.6 describes disabling
components in detail.

6.1.2.2 Choosing a Multiple-Choice Component

A multiple-choice control or group of controls allows the user to
simultaneously choose multiple items from a group of items. Applications
should use multiple-choice components, rather than a series of single-choice
actions, where the user may want to select more than one item from a group.

6-9

OSF/Motif Style Guide

6-10

The available multiple-choice components are as follows:

• CheckBox

• List

As with single-choice components, the main factor when choosing which
one to use is the number of items in the group. For small groups of fewer
than seven static elements, applications should use a CheckBox.
Applications should otherwise use a List. Note that a List component can
be used as a single-choice or multiple-choice component.

6.1.2.3 Choosing Among Menus and Panels

Popup Menus should only be considered as shortcuts to application features
because they are hidden in the application. Features hidden in Popup Menus
are difficult to find for beginning users of an application because they
provide no cue to their existence; however, they can provide rapid access to
frequently used functionality once the user learns their contents.
Applications should use Popup Menus to allow users to remain focused on
their work areas and when there is not enough space in the client area for a
Panel of buttons.

Popup Menus contain a set of buttons that can be used in the same way as a
Panel of buttons or a Pulldown Menu. The primary difference is
availability. A Popup Menu is only visible when requested by the user. At
all other times it is hidden, providing no cue to its existence. When the user
requests a Popup Menu, the application displays it at the location of the
pointer. Buttons and Pulldown Menus, on the other hand, are always visible,
but users need to move the focus away from their main work to activate
them. Another difference is that buttons take up screen space while Popup
Menus do not. Pulldown Menus provide a good compromise in space and
availability versus Popup Menus and Panels.

Applications should use a Panel of buttons when the user makes frequent or
multiple selections and when space in the client area allows. Whenever the
choice between Popup Menus and Panels is difficult, applications should
favor Panels.

A good compromise solution to these problems is a TearOff Menu. A
TearOff Menu is a Pulldown Menu until the user wants it torn off into a
DialogBox. After the Menu is torn off, the user can position it and use it in
the same way as a Panel. TearOff Menus are especially useful because they

Application Design Principles

contain a set of PushButtons that are not part of the main function of an
application, allowing the user to activate the PushButtons multiple times in
a row; for example, a font size Menu in a text editing application. In this
case, the user can use the Pull down Menu to change the font size of a single
selected word or tear off the Menu into a Panel to perform a number of font
size changes in the document. After finishing the font size changes, the user
can dismiss the font size Panel.

6.1.2.4 Choosing Between Text or Canvas, and a Label

A Label is a simple mechanism for displaying text or graphics. A Label
does not have any mechanisms for the user to edit its contents, or the
overhead required for editing. Applications should use a Label for
displaying text or graphics that do not need user editing. Applications
should use a Text or Canvas when the text or graphics needs to be edited.
On some systems, the contents of a Label are not selectable. If the user
needs to select the contents of some noneditable text or graphics,
applications should use a Text or Canvas and disable editing rather than
using a Label.

6.2 Layout

The previous section described the components that are available for
building an application. This section describes how to combine those
components into a coherent application that encourages a user's sense of
control. The guidelines presented in this section will help you create
applications that are both consistent within themselves and with other
OSF/Motif compliant applications.

This section discusses the following client area design topics:

• Common client areas

• Grouping components

• Menu design

• DialogBox design

• Designing drag and drop

6-11

OSF/Motif Style Guide

Design the layout of your application windows according to the natural use
order and the natural scanning order of the people who will be using your
application.

First design for the natural use order. Consider the tasks that the user will
perform with your application. The components should be positioned so
that moving among the components is simple and quick while performing
the most common tasks-the less pointer movement, the better. This is also
true for keyboard traversal-the fewer keystrokes required to perform a
task, the better.

The natural scanning order is most important when arranging small groups
of components to help the user find the correct component for the task. You
should put the most important and most used commands first. In most cases,
this order is from left to right and from top to bottom. For users in right-to­
left language environments, the natural scanning direction is from right to
left and from top to bottom.

6.2.1 Common Client Areas

6-12

Your application is presented in windows. The windows can be either
Main Windows, DialogBoxes, or Menus. The contents of these windows are
the application client areas. Some of these client areas have common
features that are described in this section. The following subsections
describe in detail the contents of the Main Window and the common
Main Window areas:

• Command area

• Message area

• ScrollBars

• MenuBar

Following this is a description of some common Popup Menus and
DialogBoxes. These common client areas provide a familiar base for users
new to your application to begin working.

Application Design Principles

6.2.1.1 MainWindow

Figure 6-1 shows a MainWindow with its client areas.

Figure 6-1. A Typical MainWindow and Its Common Client Areas

MainWindows contain the framework for your application. The principal
component of a Main Window is typically a scrollable work area. The
application can also provide a group of useful controls, arranging these
along the top, bottom, or side of the work area.

In a text editing application, a MainWindow usually contains the text. In a
spreadsheet application, a Main Window usually contains the spreadsheet.
In a mail browsing application, a Main Window usually contains a list of
mail messages and an area for viewing a message. Every application must *
have at least one Main Window.

Some applications may want more than one Main Window; for example,
applications with more than one primary function, like the query and update
features of a database, and applications with more than one instance of the
same primary function, like a graphics editor working on multiple figures.
When an application has multiple Main Windows that serve the same
primary function, each window should be treated as a separate application. *
Each window must close and iconify separately. When an application has *

6-13

OSF/Motif Style Guide

6-14

multiple Main Windows that serve different primary functions, each window *
must be iconifiable separately, but it is up to the application to decide *
whether each closes separately or whether closing one window closes the *
entire application. You should take special care to identify, using the
window manager title bar or a prominent internal Label, which DialogBoxes
belong to each MainWindow.

6.2.1.2 Command Area

Even though user interface applications are oriented toward direct
manipulation of graphical elements, your application can provide an area for
a user to enter a typed command. This can be particularly useful when
updating an existing command-based application to an application based on
a graphical user interface.

If your application includes a command area, it should run from border to
border across the Main Window. If the Main Window includes a message
area at the bottom, the command area should be placed just above the
message area; otherwise, it should be placed at the bottom of the
MainWindow.

The command area often consists of one or both of the following
components:

• A command entry area, consisting of a command entry field or a
CommandBox

• A group of PushButtons for common window actions

6.2.1.3 Message Area

Your application can provide a message area in the Main Window for
presenting application messages. Your application should not use a message
area for warnings or messages requiring immediate action. These should be
displayed in a DialogBox.

The message area can be used to provide brief help, either in response to a
request from the user or, as the focus changes, to indicate the purpose of the
component with the focus.

Application Design Principles

If your application includes a message area, it should run from border to
border across the bottom of the MainWindow, below any ScrollBars or the
command area. Your application can display and remove the message area
as needed.

6.2.1.4 ScrollBars

An application can use ScrollBars in its Main Window to provide a means
for viewing an area larger than the MainWindow. Your application defaults
should place ScrollBars on the bottom and right sides of the application.
(ScrollBar placement can be a user preference.) You should place
ScrollBars below the MenuBar and above any command or message area.
ScrollBars should not scroll the MenuBar, command area, or message area.
The ScrollBars can be displayed and removed as needed.

6.2.1.5 MenuBar

A MenuBar is a basic group that organizes the most common features of an
application. The MenuBar must be a horizontal bar at the top edge of the *
application just below the title area of the window frame. The MenuBar
contains a list of Menu topics in CascadeButtons with Pulldown Menus
connected to them. A MenuBar must contain only CascadeButtons, because *
other buttons inhibit Menu browsing. Each Menu topic should have a
single-letter mnemonic indicated by underlining.

The following Pulldown Menus provide general functions common to most
applications. Remember that these Menu guidelines, like all the guidelines
in this OSFIMotij Style Guide, apply only in a left-to-right language
environment in an English-language locale. You need to make the
appropriate changes for other locales .

.Eile The File Menu should contain components for performing
actions on the files, such as opening, saving, closing, and
printing. It should also contain components for performing
actions on the application as a whole, such as quitting. If the
Label File is not appropriate to the context of your application,
you can choose a different, more appropriate Label. The File
Menu should have a mnemonic of F.

6-15

OSF/Motif Style Guide

6-16

Selected The Selected Menu should contain components for performing
actions on the objects represented by the current selection of the
application, such as opening or printing a selected item. This
Menu is often similar to the File Menu, except that it acts on
the objects denoted by the current selection. For example, in a
directory browser, Open in the File Menu could (using a
DialogBox) prompt the user for the name of a directory to open
for browsing, while Open in the Selected Menu opens the file
whose icon is currently selected in the browser. The Selected
Menu should not contain editing functions normally found in
the Edit Menu. The Selected Menu should have a mnemonic of
S.

Edit The Edit Menu should contain components for performing
actions on the current data of the application, such as an undo
action or making global substitutions in a block of text. It
should also include components for interacting with the system
clipboard, such as cut, copy, and paste. The Edit Menu should
have a mnemonic of E.

Yiew The View Menu should contain components for changing the
user's view on the data. Components in the View Menu should
not actually change the data. The exact contents of the View
Menu are application specific but can include components that
change the appearance of the data, the amount of data that is
displayed, or the order in which the data is displayed. The
View Menu should have a mnemonic of V.

Qptions The Options Menu should contain components for a user to
customize the application. The exact contents of the Options
Menu are application specific. The Options Menu should have
a mnemonic of O.

Help The Help Menu should contain components that provide user
help facilities. The components in the Help Menu usually bring
up a DialogBox with help information. Every application
should have a Help Menu. The Help Menu should have a
mnemonic of H.

While we recommend that you include the common Menus in the MenuBar
of your application, your choice of Menu titles and items depends on the
nature of your application. If your application requires it, you should design
more relevant titles and selections, but do not change the meanings of items
used in the common Menus.

Application Design Principles

If any of the common Menus are present, they must be arranged in the *
following order with respect to each other, ranging from left to right across *
the MenuBar in a left-to-right language environment: *

File Menu *
Selected Menu *
Edit Menu *
View Menu *
Options Menu *
Help Menu *

You can omit any of these Menus if they are not relevant to the application.
You can also intersperse other, application-specific, Menus among these
Menus. However, if a File Menu is present, it must be the first Menu and *
must be placed at the far left of the MenuBar. If a Help Menu is present, it *
must be the last Menu and must be placed at the far right of the MenuBar.

The recommended contents of the File, Edit, and Help Menus follow. The
contents of the Selected, View, and Options Menus are application specific
and are not specified here. Each of these common Menus can contain a
TearOffB utton.

6.2.1.5.1 File Menu Contents

Figure 6-2 shows a sample File Menu. The common Menu contents are
described following the figure. Note that you should only include those
functions actually supported by your application. The File Menu can
contain a TearOffButton.

6-17

OSF/Motif Style Guide

Figure 6-2. The File Menu and Its Selections

6-18

New Must create a new file. This operation must clear existing *
data from the client area. If completion of the operation *
will obliterate current changes to the file, you must display *
a DialogBox, asking the user about saving changes. This *
action must have the mnemonic N.

Qpen . . . Must open an existing file. This operation must prompt the *
user for the name of the file with a DialogBox. The title bar
should be updated with the name of the newly opened file. *
If completion of the operation will obliterate current *
changes to the file, you must display a DialogBox, asking *
the user about saving changes. This DialogBox should be
displayed after the user selects a new file. This action must *
have the mnemonic O.

Save Must save the currently opened file without removing the *
existing contents of the client area. If the currently opened *
file has no name, Save must prompt for a filename with a *
DialogBox. This action must have the mnemonic S.

Save As... Must save the currently opened file under a new name *
without removing the existing contents of the client area. *
This operation must prompt for the name of the file with a *

rrint

Close

Exit

Application Design Principles

DialogBox. If the user tries to save the new file under an *
existing name, Save As must alert the user with a *
DialogBox if a possible loss of data would occur. This *
action must have the mnemonic A.

Must schedule a file for printing. If your application *
requires specific printing information before printing, the *
operation must first request that information with a *
DialogBox, and the entry title must be followed by an *
ellipsis. Printing information can also be specified for the
application in the Options Menu. This action must have *
the mnemonic P.

Can be supplied in applications that have multiple
independent primary windows. This action must not be *
supplied in applications with a single primary window or *
multiple dependent primary windows. This action must *
only close the current primary window and its associated *
secondary windows; that is, the window family. This action *
must have the mnemonic C. You can include this action
even though it is similar to the Close action in the window
Menu. This ensures that users have a way to close the
primary window even if they are not running a compliant
window manager. Applications must prompt the user to *
save any unsaved changes if the action would cause loss of *
data.

Must end the current application and all windows *
associated with it. This action is equivalent to closing all
primary windows of the application. This action must have *
the mnemonic X. You should include this action even
though it is similar to the Close action in the window Menu.
This ensures that users have a way to end the application
even if they are not running a compliant window manager. *
Applications must prompt the user to save any unsaved *
changes if the action would cause loss of data. If your
application does not have a File Menu, put Exit at the end
of the first Pulldown Menu.

You should include Menu items in the order described. If you add new
Menu items, you should insert them near similar elements.

6-19

OSF/Motif Style Guide

6.2.1.5.2 Edit Menu Contents

Figure 6-3 shows a sample Edit Menu. The common Menu contents are
described following the figure. Note that you should only include those
functions actually supported by your application. The Edit Menu can
contain a TearOffButton.

Figure 6-3. The Edit Menu and Its Selections

6-20

Undo Alt+Backspace
Must reverse the most recently executed action. To provide a *
visual cue to the user, the Undo selection title should be
dynamically modified to indicate what is being undone. For
example, if the most recently executed action was a paste, the
action name would be Undo paste. Your application should
be able to undo all of the actions in the Edit Menu. This *
action must have the mnemonic U.

Cut Shift+Del
Must remove the selected portion of data from the client area *
to the clipboard. This action must choose the component to *
act on by following the rules in Section 4.2.2 for operations *
that act on selections. This action must have the mnemonic T.

Application Design Principles

Copy Ctri+lns

Copy Link

Must copy the selected portion of data to the clipboard without *
removing the original data from the client area. This action *
must choose the component to act on by following the rules in *
Section 4.2.2 for operations that act on selections. This action *
must have the mnemonic C.

Must copy a link of the selected portion of data to the *
clipboard without removing the original data from the client *
area. This action must choose the component to act on by *
following the rules in Section 4.2.2 for operations that act on *
selections. This action must have the mnemonic K.

raste Shift+lns

Paste Link

Delete

Must paste the contents of the clipboard into a client area. *
This action must choose the component to act on by following *
the rules in Section 4.2.2 for operations that do not act on *
selections. This action must have the mnemonic P.

Must paste a link of the data represented by the contents of the *
clipboard into a client area. This action must choose the *
component to act on by following the rules in Section 4.2.2 for *
operations that do not act on selections. This action must have *
the mnemonic L.

Must remove a selected portion of data from the client area *
without copying it to the clipboard. The remaining data is not
compressed to fill the space that was occupied by the cleared
data. This action must choose the component to act on by *
following the rules in Section 4.2.2 for operations that act on *
selections. This action must have the mnemonic E.

Must remove a selected portion of data from the client area *
without copying it to the clipboard. This action must choose *
the component to act on by following the rules in Section 4.2.2 *
for operations that act on selections. This action must have *
the mnemonic D.

Select All Ctri+/
Must make the primary selection consist of all the elements in *
a component of the client area. This action must choose the *
component to act on by following the rules in Section 4.2.2 for *

6-21

OSF/Motif Style Guide

6-22

operations that do not act on selections. If the action uses an
accelerator, it should be <Ctrl> <I>.

Deselect All Ctrl+\
Must remove from the primary selection all the elements in a *
component of the client area. This action must choose the *
component to act on by following the rules in Section 4.2.2 for *
operations that do not act on selections. If the action uses an
accelerator, it should be <Ctrl> <\>.

Select Pasted
Must make the primary selection consist of the last element or *
elements pasted into a component of the client area. This *
action must choose the component to act on by following the *
rules in Section 4.2.2 for operations that do not act on *
selections.

Reselect AIt+Insert
Must make the primary selection consist of the last selected *
element or elements in a component of the client area. This *
action must choose the component to act on by following the *
rules in Section 4.2.2 for operations that do not act on *
selections. The action must be available only in components *
that do not support persistent selections and only when the *
current selection is empty. If the action uses an accelerator, it
should be <A It> <Insert>.

Promote AIt+Insert
Must promote to the primary selection the current selection of *
a component of the client area. This action must choose the *
component to act on by following the rules in Section 4.2.2 for *
operations that act on selections. This action must only be *
available for components that support persistent selections. If
the action uses an accelerator, it should be <Alt> <Insert>.

You should include Menu items in the order described. If you add new
Menu items, you should insert them near similar elements.

If you use accelerators for Undo, Cut, Copy, and Paste, you must use either *
one or both of the models presented in the following two tables.

Application Design Principles

Table 6-2. Edit Menu Accelerators, Model 1

Edit Menu Item Accelerator

Undo <Alt> <BackSpace>
Cut <Shift> <Delete>
Copy <Ctrl> <Insert>
Paste <Shift> <Insert>

Table 6-3. Edit Menu Accelerators, Model 2

Edit Menu Item Accelerator

Undo <Ctrl> <Z>
Cut <Ctrl> <x>
Copy <Ctrl> <C>
Paste <Ctrl> <v>

In addition, if your keyboard has <Undo>, <Cut>, <Copy>, and <Paste>
keys, these should be supported as accelerators for the corresponding Menu
items as well.

6.2.1.5.3 Help Menu Contents

There are two acceptable models for the contents of the Help Menu. This
guide allows either model.

Figure 6-4 shows a sample of the first model for the Help Menu. The
common Menu contents for this model are described following the figure.
Note that you should only include those functions actually supported by
your application. The Help Menu can contain a TearOffButton.

6-23

OSF/Motif Style Guide

Figure 6-4. The Help Menu and Its Selections (First Model)

6-24

On Context Shift+Help
Must initiate context-sensItIve help by changing the *
shape of the pointer to the question pointer described in *
Section 2.2.2. When the user moves the pointer to the *
component help is wanted on and presses BSelect, any *
available context-sensitive help for the component must *
be presented, and the pointer reverts from the question *
pointer. This action must have the mnemonic C. If the *
action uses an accelerator, it must be <Shift> <Help>.

On Help Must provide information on how to use the *
application's help facility. This action must have the *
mnemonic H.

On Window Must provide general information about the window *
from which help was requested. This action must have *
the mnemonic W.

On Keys Must provide information about the application's use of *
function keys, mnemonics, and keyboard accelerators. *
This action must have the mnemonic K.

Index Must provide an index for all help information in the *
application. This action must have the mnemonic I.

Tutorial

On Yersion

Application Design Principles

The index can provide search capabilities.

Must provide access to the application's tutorial. This *
action must have the mnemonic T.

Must provide the name and version of the application. *
This action must have the mnemonic V. It can provide
other information as well.

Figure 6-5 shows a sample of the second model for the Help Menu. The
common Menu contents in the model are described following the figure.
Note that you should only include those functions actually supported by
your application. The Help Menu can contain a TearOffButton.

Figure 6-5. The Help Menu and Its Selections (Second Model)

Context-Sensitive Help Shift+Help
Must initiate context-sensitive help by changing the *
shape of the pointer to the question pointer described *
in Section 2.2.2. When the user moves the pointer to *
the component help is wanted on and presses BSelect, *
any available context-sensitive help for the *
component must be presented, and the pointer reverts *
from the question pointer. This action should be *
followed by a separator. This action must have the *
mnemonic C. If the action uses an accelerator, it must *
be <Shift> <Help>.

6-25

OSF/Motif Style Guide

6-26

Overview

Index

Keyboard

Tutorial

Using lJelp

Must provide general information about the *
application window from which help was requested. *
This action must have the mnemonic O.

Must provide an index for all help information in the *
application. This action must have the mnemonic I.
The index can provide search capabilities.

Must provide information about the application's use *
of function keys, mnemonics, and keyboard *
accelerators. This action must have the mnemonic K.

Must provide access to the application's tutorial. This *
action must have the mnemonic T.

Must provide information on how to use the *
application's help facility. This action must have the *
mnemonic H.

~roduct Information
Must provide the name and version of the application. *
This action must have the mnemonic P. It can provide
other information as well.

Applications should place additional Help Menu items between Index and
Using Help.

Help is usually provided in DialogBoxes but can also appear in the message
area. You should include Menu items in the order described. If you add
new Menu items, you should insert them near similar elements.

6.2.1.6 Popup Menus

A Popup Menu is a Menu that is associated with another element. It is
usually hidden from the user and is posted using BMenu and <Menu>. It is
used to organize actions that are specific to its associated element, but it
should not be the only place in an application where those actions are
available; that is, Popup Menus should be a redundant element of a user
interface whose main purpose is to provide the experienced user with a
quick way to perform common tasks on individual elements.

The following common actions provide general functions common to Popup
Menus in many applications. While we recommend that you include these

Application Design Principles

common actions in your Popup Menus consistently with the descriptions
here, your choice of items depends on the nature of your application. If your
application requires it, you should design more relevant titles and selections,
but do not change the meanings of items used in the common Popup Menus.

Even within a single control, such as a Canvas, the contents of a Popup
Menu can depend on the position within the control, or the state of the
elements at that position, such as whether the Menu is popped up from
within a selected range of elements. When BMenu is used to pop up the
Menu, the location of the pointer when BMenu is pressed is what matters.
When <Menu> is used to pop up the Menu, what matters is the position of
the location cursor within the control.

Note that you should include only those functions actually supported by
your application. Remember that these Menu guidelines, like all the
guidelines in this guide, apply only in a left-to-right language environment
in an English-language locale. You need to make the appropriate changes
for other locales.

Propertie£
Must display a properties DialogBox that the user can use to *
set the properties of the component. If the Menu is popped up
over a selection, it can display the properties of the selection.
If the Menu is popped up over an un selected item, it can
display the properties of that item. If the Menu is popped up
over the background, it should display the properties of the
collection, except over a part of the background considered to
be in the selection. This action should have the mnemonic S.

Undo Alt+Backspace
Must reverse the most recently executed action. To provide a *
visual cue to the user, the Undo selection title should be
dynamically modified to indicate what is being undone. For
example, if the most recently executed action was a paste, the
action name would be Undo paste. This action should have
the mnemonic U. This action should have the same
accelerator as the corresponding entry in the Edit Menu.

Primary Move Alt+Shift+Delete
Must move the contents of the primary selection to the *
component. This action must only be used in an editable *
component. If the action uses an accelerator, it should be
<Alt> <Shift> <Delete>, <Alt> <Ctrl> <X>, or both. In
addition, if the keyboard has a <Cut> key, this action should

6-27

OSF/Motif Style Guide

6-28

support <AIt> <Cut> as an accelerator. If more than one
format can be moved from the primary selection, Primary
Copy can cascade a Menu of possible transfer formats, in
which case it should not have an accelerator.

Primary Copy AIt+Ctrl+Insert
Must copy the contents of the primary selection to the *
component. This action must only be used in an editable *
component. If the action uses an accelerator, it should be
<AIt> <Ctrl> <Insert>, <Alt> <Ctrl> <C>, or both. In
addition, if the keyboard has a <Copy> key, this action should
support <A It> <Copy> as an accelerator. If more than one
format can be copied from the primary selection, Primary
Copy can cascade a Menu of possible transfer formats, in
which case it should not have an accelerator.

Primary Link
Must place a link to the primary selection in the component. *
This action must only be used in an editable component. If the
link can be viewed in more than one way, Primary Link can
cascade a Menu of possible viewing representations.

Cul Must cut elements to the clipboard and can mark them for use *
in a subsequent Paste Link operation. If the Menu is popped *
up in a selection, the entire selection must be cut. If the Menu

Copy

Copy Link

is popped up over an unselected element, just that element
should be cut. If the Menu is popped up in the background, the
entire collection can be cut. This action should have the
mnemonic T.

Must copy elements to the clipboard and can mark them for *
use in a subsequent Paste Link operation. If the Menu is *
popped up in a selection, the entire selection must be copied.
If the Menu is popped up over an unselected element, just that
element should be copied. If the Menu is popped up in the
background, the entire collection can be copied. This action
should have the mnemonic C.

Must copy a link of elements to the clipboard and can mark *
them for use in a subsequent Paste Link operation. If the *
Menu is popped up in a selection, a link to the entire selection *
must be copied. If the Menu is popped up over an unselected
element, a link to just that element should be copied. If the

Application Design Principles

Menu is popped up in the background, a link to the entire
collection can be copied. This action should have the
mnemonic K.

easte Shift + Insert

Paste Link

CI~ar

Delete

Must paste the contents of the clipboard to the component. *
This action must only be used in an editable component. This
action should have the mnemonic P. This action should have
the same accelerator as the corresponding entry in the Edit
Menu.

Must paste a link of the contents of the clipboard to the *
component. This action must only be used in an editable *
component. This action should have the mnemonic L.

Must remove a selected portion of data from the client area *
without copying it to the clipboard. If the Menu is popped up *
in a selection, it must delete the selection. If the Menu is
popped up over an unselected element, it should delete that
element. If the Menu is popped up over the background,
except over a part of the background considered to be in the
selection, it can delete all the elements. The remaining data is
not compressed to fill the space that was occupied by the
cleared data. This action should have the mnemonic E.

Must remove a selected portion of data from the client area *
without copying it to the clipboard. If the Menu is popped up *
in a selection, it must delete the selection. If the Menu is
popped up over an unselected element, it should delete that
element. If the Menu is popped up over the background,
except over a part of the background considered to be in the
selection, it can delete all the elements. This action should
have the mnemonic D.

Select All Ctrl+/
Must make the primary selection consist of all the elements in *
the collection with the Popup Menu. If the action uses an
accelerator, it should be <Ctrl> <I>.

Deselect All Ctrl+\
Must deselect the current selection in the collection with the *
Popup Menu. If the action uses an accelerator, it should be
<Ctrl> <\>.

6-29

OSF/Motif Style Guide

6-30

Select Pasted
Must make the primary selection consist of the last element or *
elements pasted into the collection with the Popup Menu.

Reselect Alt+Insert
Must make the primary selection consist of the last selected *
element or elements in the component with the Popup Menu. *
The action must be available only in components that do not *
support persistent selections and only when the current *
selection is empty. If the action uses an accelerator, it should
be <Alt> <Insert>.

Promote Alt+Insert
Must promote the current selection to the primary selection. *
This action must only be available in components that support *
persistent selections. If the action uses an accelerator, it
should be <Alt> <Insert>.

If an action invoked from a Popup Menu, such as Primary Copy, inserts or *
pastes data in a collection, the data must be pasted at the insertion position *
of the component. However, if the Popup Menu is popped up over a *
selection of an editable collection, the selection must first be deleted, even *
if pending delete is disabled, and the pasted data must replace it.

If an action invoked from a Popup Menu acts on a group of elements, it *
behaves according to the following rules:

• If the Menu is popped up in a selection, it must act on the entire *
selection.

• If the Menu is popped up on an unselected element of a list or graphics
collection, it should act on just that element.

• If the Menu is popped up in the background, except in a part of the
background considered in the selection, it can act on the entire
collection. However, if the operation is destructive, it must first prompt *
for verification.

Appropriate words, such as Selection or words denoting the type of a single
element of the collection as a whole, should be added to a Label to specify
which elements are affected. For example, if a Popup Menu contains the
entry Copy Selection, the current selection is copied to the clipboard
regardless of where in the collection the Menu is popped up.

A Popup Menu item should have an accelerator only if the result of typing
the accelerator would be equivalent to popping up the Menu by pressing

Application Design Principles

<Menu> and then selecting the Menu item. If Cut Selection is included in
a Popup Menu, it should use the same accelerators as Cut in the Edit Menu.
If Copy Selection is included in a Popup Menu, it should use the same
accelerators as Copy in the Edit Menu.

6.2.1.7 DialogBoxes

Applications use DialogBoxes to interact with the user about application
details not directly related to the primary purpose of the application.
Applications display DialogBoxes only when needed to convey a message
to the user, or when the user requests it to provide input to the application.
They follow the same general layout guidelines as a Main Window.
Additional guidelines for DialogBox design are given in Section 6.2.4, as
well as in the reference section in Chapter 9.

The following DialogBoxes provide general functions common to many
applications.

6.2.1.7.1 CommandDialog

A CommandDialog should be used to enter keyboard commands. It should
not interrupt the user's interaction with the application; that is, it should not
be modal. It should include a CommandBox as shown in Figure 6-6.

Figure 6-6. A CommandDialog

6-31

OSF/Motif Style Guide

6.2.1.7.2 FileSelectionDialog

A FileSelectionDialog should be used to enter the name of a file for
processing. It should not interrupt the user's interaction with the
application; that is, it should not be modal. It should include a
FileSelectionBox as shown in Figure 6-7.

Figure 6-7. A FileSelectionDialog

6-32

Application Design Principles

6.2.1. 7.3 PromptDialog

A PromptDialog should be used to prompt the user for input. It can interrupt
the user's interaction with the application; that is, it can be application
modal. It should include a message, a text input area, and one of the
following button arrangements as shown in Figure 6-8.

OK Cancel
OK Cancel Help
OK Apply Cancel
OK Apply Cancel Help
OK Apply Reset Cancel
OK Apply Reset Cancel Help

Figure 6-8. A PromptDialog

6.2.1. 7.4 SelectionDialog

A SelectionDialog should be used to allow a user to make a selection from a
list of choices. It can interrupt the user's interaction with the application;
that is, it can be application modal. It should contain a SelectionBox as
shown in Figure 6-9.

6-33

OSF/Motif Style Guide

Figure 6-9. A SelectionDialog

6-34

6.2.1.7.5 MessageDialog

A MessageDialog should be used to convey a message to the user. It should
include a message and one of the following button arrangements:

OK
OK Help
OK Cancel
OK Cancel Help
Yes No
Yes No Help
Yes No Cancel
Yes No Cancel Help
Cancel
Cancel Help
Retry Cancel
Retry Cancel Help

Application Design Principles

There are a number of different types of MessageDialogs: ErrorDialog,
InformationDialog, QuestionDialog, WorkingDialog, and WarningDialog.

An ErrorDialog should be used to convey a message about a user error. It
should stop user interaction with the application until it is dismissed; that is,
it should be application modal. It should include an error symbol, a
message, and one of the following button arrangements as shown in Figure
6-10:

OK Cancel
OK Cancel Help

Figure 6-10. An ErrorDialog

An InformationDialog should be used to convey information to the user. It *
must not interrupt the user's interaction with the application; that is, it must *
not be modal. It should include an information symbol, a message, and one
of the following button arrangements as shown in Figure 6-11:

OK
OK Help

6-35

OSF/Motif Style Guide

Figure 6-11. An InformationDialog

A QuestionDialog should be used to get a user response to a question. It
should interrupt the user's interaction with the application; that is, it should
be application modal. It should include a question symbol, a message, and
one of the following button arrangements as as shown in Figure 6-12:

Yes No
Yes No Help
Yes No Cancel
Yes No Cancel Help

Figure 6-12. A QuestionDialog

6-36

A WarningDialog should be used to alert the user to a possible danger. It
should interrupt the user's interaction with the application; that is, it should
be application modal. It should contain a warning symbol, a message, and
one of the following button arrangements as shown in Figure 6-13:

Yes No
Yes No Help
OK Cancel
OK Cancel Help

Figure 6-13. A WarningDialog

Application Design Principles

A WorkingDialog should be used to show work in progress and give the user
an opportunity to cancel the operation. It should not interrupt the user's
interaction with the application; that is, it should not be modal. It should
contain a working symbol, a message, and any of the following sets of
buttons in order as shown in Figure 6-14:

Close
Cancel or Stop
Pause Resume
Help

A WorkingDialog should also include a progress indicator if that
information is available.

Figure 6-14. A WorkingDialog

6-37

OSF/Motif Style Guide

6.2.2 Grouping Components

6-38

The following subsections describe how you should group components by
using the group components described in Section 6.1:

• Grouping similar components

• Arranging components for fixed layout

• Arranging components for resizing layout

• Arranging components for aligned layout

• Arranging components in PanedWindows

Separators are a good tool for visually separating groups of components.
You should use Separators in your application any place where the border
between two groups of components is not obvious by some other means,
such as for a significant change in component types, framing, or a division
by space.

6.2.2.1 Grouping Similar Components

Components similar in appearance and function group together naturally.
You should organize similar components together. Similar PushButtons, as
in a Menu, and a Panel of CheckButtons, as in a list of options, are good
examples of where grouping is important. Without grouping, related actions
are difficult to find. One of the most important cases is a Panel of
RadioButtons. Without grouping, when you turned on one RadioButton, you
might not see the previous button turn off. You can also associate a title
with a group of components to better associate the group and its purpose.

6.2.2.2 Arranging Components for Fixed Layout

Components that are grouped using a Composition group component can be
positioned as they best fit, both physically and visually. This is often the
case in the Main Window client area, and is also useful when the layout of
the components is important to the application.

When you layout components in this manner, remember that your
application can be resized by the user. This can be compensated for in a

Application Design Principles

number of ways. If the area has a fixed size and is not appropriate to scroll,
like a control panel, you can either clip the area or tum off resizing. If the
area has a fixed size and is appropriate to scroll, you should include
ScrollBars for scrolling the viewable area.

6.2.2.3 Arranging Components for Resizing Layout

Composition component groups can also be positioned so that the position
and size of each component is relative to the Composition component group
or other components in the group. This style of layout permits the
components to change size proportionally to any change in the size of the
Composition component.

Sometimes a window is resized too small to be useful. Your application can
either simply ignore this, clip the region once all the components are at their
minimum size, remove less useful components to make room for more
shrinking, or replace all the components with a message that indicates that
the minimum size is reached, stating that the user needs to enlarge the
window to continue working in it.

6.2.2.4 Arranging Components for Aligned Layout

Panels can arrange components aligned horizontally, vertically, or in two
dimensions. Buttons are usually aligned in Panels horizontally along the
bottom of the client area, either in a Main Window or in a DialogBox.
ToggleButtons should be arranged in vertical Panels so the graphics align
and look neat. A common use of Panels is in building Menus or
RadioBoxes; that is, a set of RadioButtons. Two-dimensional Panels are
commonly used in graphics programs to present drawing styles and in
spreadsheets to contain cells.

Your application should use Panels to provide the best organization for large
groups of similar components. Panels should be placed in a Composition
component group to allow for proper user resizing either by using ScrollBars
or by resizing the elements of the Panel.

6-39

OSF/Motif Style Guide

6.2.2.5 Arranging Components in PanedWindows

PanedWindows provide a way for the user to simply adjust the size of
components relative to one another. You should use PanedWindows to
separate user tasks in an application with limited space. This allows the
user to ignore elements of the application that are unused.

PanedWindows can also be used to present two simultaneous views of the
same data. For example, a text editor can use multiple Panes, with a
separate Text component in each Pane to allow the user to write in one
section of a document while looking at another. The user can then resize the
Panes to show more or less of either block of text.

PanedWindows can be composed of either vertical (one on top of the other)
or horizontal (side by side) sets of Panes, Separators, and Sashes. Users can
resize Panes by dragging the boundary between them. Making one Pane
bigger makes the other Pane smaller, while the overall size of the window
remains the same.

6.2.3 Menu Design

6-40

Menus are the primary means of orgamzmg most of an application's
features. Because of screen size limitation and visual simplicity, Menus
organize components used frequently by users and components used in most
application sessions.

There are four types of Menus:

• Pulldown Menus

• TearOff Menus

• Popup Menus

• Option Menus

Pulldown Menus are pulled down from a CascadeButton. CascadeButtons
should always be available in the context that they are needed. Menus can
also contain CascadeButtons so that Menus can be nested. The MenuBar is
a horizontal collection of CascadeButtons.

TearOff Menus are a combination of a TearOffButton and another Menu,
usually a Pulldown Menu. A TearOffButton contains a dashed line graphic
representing perforations. TearOffButtons must be the first element within a *

Application Design Principles

Menu. When the TearOffButton is activated, the Menu changes into a
DialogBox. A TearOff Menu is useful when you do not want the Menu to
disappear after a Menu selection.

Popup Menus are context sensitive, but give no cue to their existence. They
are popped up when the user presses BMenu over a component with an
associated Popup Menu. Popup Menus should only be used to provide
shortcuts, since new users of an application may not realize or remember
that they exist. Even within a single control, such as a Canvas, the contents
of a Popup Menu can depend on the position within the control, or the state
of the elements at that position, such as whether the Menu is popped up
from within a selected range of elements.

Option Menus provide a means of selecting from a set of choices while
taking up very little space. An Option Menu is popped up from an
OptionButton, which is distinguished by a bar graphic on the right side of
the button.

Menus are composed of titles, elements, mnemonics, and accelerators. A
Menu's title should be unique to avoid confusion. The title should clearly
indicate the purpose of the Menu.

• A Pulldown Menu's title is taken from the Label in the CascadeButton.

• A Popup Menu's title should be placed at the top of the Popup Menu and
separated from the Menu elements by a Separator.

• An Option Menu's title is usually a Label to the left of the OptionButton,
but it can be at the top of the Option Menu itself.

Most basic controls can be Menu elements including Labels, Separators,
PushButtons, ToggleButtons, and CascadeButtons. The elements can be
identified by either a text label or a graphic. A Menu must be wide enough *
to accommodate its widest element.

A mnemonic provides a quick way to access Menu elements from the
keyboard. While the location cursor is in a Menu or MenuBar, pressing the
mnemonic letter of an element activates that element. The MenuBar's and
any Option Menu's mnemonics can be used by pressing <Alt> with the
mnemonic letter. An element's mnemonic should be the first character of
the element's Label. If that character conflicts with another mnemonic in
the Menu, another character in the Label should be used. The mnemonic of
an element should be underlined in the element's Label. When the
appropriate mnemonic letter does not appear in the element's Label, it
should appear in parentheses after the Label.

6-41

OSF/Motif Style Guide

6-42

An accelerator provides a way to access Menu elements from the keyboard
without posting the Menu. Accelerators are useful to the experienced user
for saving time when using frequently used components. You should
provide accelerators primarily as a matter of utility, not design conformity.

If a keyboard accelerator exists for a Menu entry, it should appear following
the Menu's Label, justified on the same line. The accelerator and the
selection should be separated by enough space to make them visually
distinct.

You should use the following guidelines when designing Menus and Menu
systems:

• Keep Menu structures simple.

• Group like Menu elements together.

• List Menu selections by frequency of use.

• List Menu selections by order of use.

• Separate destructive actions.

• Provide mnemonics and accelerators.

• Use TearOffButtons in frequently used Menus.

6.2.3.1 Keeping Menu Structures Simple

Applications should keep Menu structures simple. One of the primary
benefits of Menus is the ease of access to the elements of the Menu. While
cascading submenus help the application and the user organize Menu
elements, each level of a submenu reduces the ease of access to the Menu
elements. Multiple levels of cascading submenus can also quickly create
visual clutter. Whenever you consider using a cascading submenu, you
should consider using a DialogBox or more Pulldown Menus instead.

Application Design Principles

6.2.3.2 Grouping Like Menu Elements Together

Applications should group Menu elements into logical groups. This helps
the user locate specific Menu elements. You should first try to place a new
Menu element into the common Menu groups described in Section 6.2.1.5.
If that is not appropriate, you should group new Menu elements according to
function, with the more frequently used element appearing first. You should
also use Separators between logical groups of elements.

6.2.3.3 Listing Menu Selections by Frequency of Use

As in other client areas, applications should order Menu elements according
to the frequency of usage, positioning the most frequently used elements
near the top of the Menu.

6.2.3.4 Listing Menu Selections by Order of Use

More important to Menu design than the frequency of use is the order of use.
Applications should order Menu elements according to the order of usage.
For example, the Copy element should be placed before Paste. This helps
the user's interactions flow smoothly.

6.2.3.5 Separating Destructive Actions

Applications should separate destructive actions from frequently chosen
selections. This is to avoid accidental selection of the destructive element.
Destructive elements, like Delete or Clear, should be placed at the end of a
Pulldown Menu and separated from other elements by a Separator.

6-43

OSF/Motif Style Guide

6-44

6.2.3.6 Providing Mnemonics and Accelerators

Applications should provide mnemonics and accelerators to Menu elements.
Try to choose mnemonics and accelerators that are easy to remember by
using letters from the element's title. Note that mnemonics and accelerators
only add to the utility of your applications. They never detract from the
basic ability of a new user.

Applications should provide accelerators for frequently used Menu items.
In general, accelerators should not be assigned for every Menu item in an
application. It is preferable to assign accelerators that have some mnemonic
value, although accelerators that use function keys are acceptable.

Applications should not use accelerators that are a combination of the
modifier <Alt> and letter keys to avoid conflicts with mnemonics. For
example, <AU> <E> as an accelerator for Exit conflicts with the use of
<AU> <E> to pull down the Edit Menu since it is the mnemonic for the
Edit CascadeButton in the MenuBar.

Similarly, applications that involve text entry should not use accelerators
that are combinations of the modifier <Shift> and letter keys to avoid
conflict with the text entry commands. Applications that expect field
controls to have bindings that include combinations of the modifier <Ctrl>
and letter keys, such as text editors, should also avoid these combinations.

Accelerator bindings that use only one modifier are preferable to bindings
that use two or more modifier keys.

6.2.3.7 Using TearOffButtons

Applications should use TearOffButtons in Menus whose elements are used
many times in a row. If the semantics of the entries in a Popup Menu
depend on where in a component it is popped up, the Menu should not
include a TearOffButton, unless context-sensitive entries are disabled when
the Menu is torn off. Menu entries in a torn off Menu should be enabled or
disabled as appropriate when the state of the application changes.

After a user tears off a Menu, the Menu elements are placed in a DialogBox
that is titled with the Menu title, and the Menu is unposted. The
TearOffButton should be removed from the DialogBox, but, if it remains, it
can be used to close the DialogBox.

Application Design Principles

6.2.4 DialogBox Design

When designing a DialogBox, you should follow all the same layout
principles as for other applications areas. DialogBoxes are usually
transitory. The user usually wants to simply respond and get back to the
primary tasks of the application. To help the user respond quickly, there are
a number of common DialogBox actions. By using and ordering these
actions consistently, you provide the user with cues to quickly respond to
each DialogBox.

When a DialogBox is displayed, all components within the DialogBox
should reflect the current state of the application. For example, if the
DialogBox is used for changing the current font in a text editor, the
DialogBox should be initially displayed with the current font. If the
DialogBox is modeless, then any changes to the application should be
updated in the DialogBox.

DialogBoxes can limit how a user can interact with other windows in order
to force the order of interaction. These limitations, which are called modes,
are described in the following text.

Modeless

Primary modal

Allows interaction with the secondary window and all
other windows.

Does not allow interaction with any ancestor of the
window.

Application modal Does not allow interaction with any window created
by the same application even if the application has
multiple primary windows.

System modal Does not allow interaction with any window on the
screen. This includes windows from all other
applications and any icon box. To indicate a system
modal secondary window, the pointer should change
shape to a caution pointer whenever it leaves the
system modal secondary window.

Remember that the guidelines presented in this section, like all the
guidelines in this guide, apply only in a left-to-right language environment
in an English-language locale. You need to make the appropriate changes
for other locales.

6-45

OSF/Motif Style Guide

6-46

6.2.4.1 Common DialogBox Actions

While your application can sometimes require special DialogBox actions,
most share common actions. The common actions provide a consistent
means for the user to quickly respond to DialogBoxes and get back to the
primary application tasks. The common actions should be presented in a
horizontal collection of PushButtons at the bottom of the DialogBox,
separated from the rest of the DialogBox by a Separator.

No DialogBox will contain all of the common actions in the following list.
You should use the ones appropriate to your application or determine new
actions so they do not conflict with the common actions listed. If you create
a new action, you should give it an active-voice label that indicates its
purpose. An active-voice label describes the action that pressing the button
causes. The actions are listed in the approximate sequence in which they
should appear in DialogBoxes as follows:

Yes Must indicate an affirmative response to a question posed in the *
DialogBox and then close the window. While Yes is not an
active-voice label, it implies a positive response to a question in a
QuestionDialog or a WamingDialog. Only use Yes if it is a clear
answer to the question.

No Must indicate a negative response to a question posed in the *
DialogBox and then close the window. While No is not an
active-voice label, it implies a negative response to a question in

OK

Close

a QuestionDialog. Only use No if it is a clear answer to the
question.

Must cause the application to apply any changes and perform *
related actions specified by the components in the DialogBox and *
then dismiss the DialogBox. While OK is not an active-voice
label, its usage is too common to change.

Should cause the current DialogBox to be closed without
performing any of the actions specified by the components in the
DialogBox. This action is usually only available in a DialogBox
that provides status information, such as a WorkingDialog. This
Label can also be used if the actions in the DialogBox cannot be
reversed, in which case this Label replaces Cancel after the first
irreversible action is performed.

Application Design Principles

Apply Must apply any changes and perform related actions specified by *
the components in the DialogBox.

Retry Must cause the task in progress to be attempted again. This action *
is commonly found in message boxes that report an error.

Stop Must end the task in progress at the next possible breaking point. *
This action is commonly found in a WorkingDialog.

Pause Must cause the task in progress to pause. This action is *
commonly found in a WorkingDialog and should be used in
combination with Resume.

Resume Must cause a task that has previously paused to resume. This *
action is commonly found in a WorkingDialog and should be used
in combination with Pause.

Reset Must cancel any user changes that have not been applied to the *
application. It must also reset the status of the DialogBox to the *
state since the last time the DialogBox action was applied or to *
the initial state of the DialogBox.

Cancel Must close the DialogBox without performing any DialogBox *
actions not yet applied to the application. Pressing <Cancel> *
anywhere in the DialogBox, except during a cancelable drag *
operation, must perform the action of this button.

Help Must provide any help for the DialogBox.

If a DialogBox action causes an error, the DialogBox should not be
dismissed before the error is displayed. Instead, the DialogBox should
remain available after the error is dismissed to give the user a chance to
correct the error and reuse the DialogBox. If the actions to be performed by
OK or Apply depend on the state, then these Labels should be replaced by
ones that indicate the action to be performed.

6.2.4.2 Arranging Common Actions

You should arrange PushButton actions in DialogBoxes in the same way you
arrange other PushButtons, according to order and frequency of use. The
common action PushButtons should be ordered as presented in the previous
section. Positive responses to the DialogBox should be presented first,
followed by negative responses, and canceling responses. Help should
always be the last action on the right.

6-47

*

OSF/Motif Style Guide

6-48

The following rules should be used when determining what default buttons
to place in a DialogBox:

• Modal DialogBoxes should use one of the following button
arrangements unless superseded by another rule:

OK Cancel
OK Cancel Help

• Modeless DialogBoxes should use one of the following button
arrangements unless superseded by another rule:

OK Apply Cancel
OK Apply Cancel Help
OK Apply Reset Cancel
OK Apply Reset Cancel Help

• Information DialogBoxes should use one of the following button
arrangements:

OK
OK Help

• Question DialogBoxes should use one of the following button
arrangements:

Yes No
Yes No Help

It is possible that both the Yes and No actions of a Question DialogBox
will perform an action. If this is the case, the Question DialogBox
should use one of the following button arrangements:

Yes No Cancel
Yes No Cancel Help

• Warning DialogBoxes should use one of the following button
arrangements:

Yes No
Yes No Help
OK Cancel
OK Cancel Help

Application Design Principles

• Working DialogBoxes should contain any of the following sets of
buttons in order:

Close
Cancel or Stop
Pause Resume
Help

6.2.4.3 Determining DialogBox Location and Size

Your application determines the size and location of its DialogBoxes. You
should size and place DialogBoxes so that they do not obscure important
information in other windows of your application. The initial size of a
DialogBox should be large enough to contain the dialog components
without crowding or visual confusion, but otherwise should be as small as
possible. DialogBoxes should follow the same rules for resizing as a
Main Window as described in Section 6.2.2.3.

You should place DialogBoxes on the screen so they are completely visible.

In general, you should place DialogBoxes close to either the component that
caused it to be displayed, the current action, or the information needed to
respond to it. When a DialogBox relates to an item in an underlying
window, you should position the DialogBox to the right of the item. If there
is not enough room to the right of the item, try to position the DialogBox to
the left, below or above the item, in that order, depending on screen space
available. You should only obscure related information as a last resort.

If a DialogBox does not relate to items in the underlying windows, the
DialogBox should be placed centered in the application's work area.

If two DialogBoxes need to overlap, you should offset the top DialogBox to
the right and below the title of the lower DialogBox. Use your best
judgement, knowing that the screen area for DialogBoxes is limited.

While the previous suggestions seem simple enough, they cannot always be
followed completely. Therefore, DialogBoxes, once displayed, should be
movable so that the user can relocate them as needed to see information in
underlying windows.

6-49

OSF/Motif Style Guide

6.2.5 Designing Drag and Drop

6-50

By default, applications allow the user to drag text from just about
everywhere and drop it into any writable Text component. If you want to
use the features of drag and drop to and from other components in your
application, you need to design these features into your application.

The most important decision you need to make in designing drag and drop
into your applications is which elements you want to make draggable and
which components you want to allow drops onto. When making this
decision, keep in mind that drag and drop not only transfers data within an
application but also between applications. Therefore you need to consider
the impact of unfamiliar data being dropped into your application, and in
which formats you want to allow your own application's data to be
transferred out. The following subsections discuss the following other
application considerations when designing drag and drop into your
application:

• Drag icon design

• Drag source effects

• Drag-under effects

• Providing help on drop sites

• Determining transfer formats

• Indicating drop failure

6.2.5.1 Drag Icon Design

At the start of a drag operation, the pointer is replaced with a drag icon. The
drag icon is defined by the application for each draggable element and can
be composed of the following:

• A source indicator

• An operation indicator

• A state indicator

The source indicator should give a visual representation of the primary data
type of the draggable element; for example, horizontal lines in a rectangle

Application Design Principles

for representing text or a color palette for representing a color tool. All drag *
icons must include a source indicator. Figure 6-15 shows move, copy, and
link drag icons for graphics and textual information.

Figure 6-15. Drag Icons

The operation indicator shows whether a drop will result in a move, copy, or
link of the transferred data. Most drag icons should include an operation
indicator, but an operation indicator should only be included in the drag icon
when the result of the drop operation is a data transfer. The operation
indicator can be shown either as a separate element of the drag icon or as a
variation of the graphic used for the source indicator.

The state indicator shows whether the current pointer location is over a
valid drop site for the dragged elements. The state indicator can show three
different states:

• Valid drop site - The hotspot of the drag icon is over a valid drop site
for the data the user is dragging. A drop at this point usually results in a
successful transfer.

• Invalid drop site - The hotspot of the drag icon is over a drop site, but
the data the user is dragging is not compatible with the drop site. A drop
at this point results in a failed transfer.

• No drop site - The hotspot of the drag icon is not over a drop site. A
drop at this point results in a failed transfer.

All drag icons can include a state indicator. The state indicator should be
coincident with the hotspot of the pointer. The state indicator can be a
separate element in the drag icon or a change in the visual representation of
the drag source.

When defining new drag icons for your application, you should follow the
same rules as for defining any other new pointers described in Section 2.2.2.

6-51

OSF/Motif Style Guide

6-52

6.2.5.2 Drag Source Effects

The source of the dragged elements can also provide visual indications of
the result of a drop. For example, if the default operation for the dragged
elements is a move, the source can be hidden or deemphasized; or, if the
default operation of the dragged elements is a link, a line can be drawn from
the source to the pointer.

6.2.5.3 Drag-Under Effects

A drag-under effect is a change to the visual state of a possible valid drop
site when the drag icon pointer is over the drop site. All drop sites should
use some kind of drag-under effect. Drop sites can use a solid line around
the site, or a raised or lowered beveled edge around the drop site, as a drag­
under effect. Drop sites can also change any visual component of the drop
site, or even animate those changes, as a drag-under effect. For example, an
icon representing a folder might show an animated image of the folder
opening as a user drags a file onto it.

6.2.5.4 Providing Help on Drop Sites

Help on drag and drop operations should be provided by the drop site under
the drag icon pointer at the time help is requested. If a drop site gets a help
request during a drag and drop operation, the drop site application should
post a DialogBox with help information about the results of a drop at that
location and the choices for the completion of the drag and drop operation.
The DialogBox should allow for canceling the drag and drop operation or
dropping the elements at the current location as a move, copy, or link.

The drag and drop help DialogBox should be an Information DialogBox
with a message describing the possible results of a drop at that location.
The first button in the row of buttons at the bottom of the DialogBox should
contain the default transfer option (Move, Copy, or Link) or OK for the
single transfer action described in the text of the DialogBox.

Application Design Principles

If the user has not specified a transfer option using modifier keys, and more
than one is possible, then:

• If there is a valid move transfer option, the DialogBox should contain
the move transfer option on a button labeled Move.

• If there is a valid copy transfer option, the DialogBox should contain the
copy transfer option on a button labeled Copy.

• If there is a valid link transfer option, the DialogBox should contain the
link transfer option on a button labeled Link.

• The DialogBox should not include an OK button.

Drag and drop help DialogBoxes must contain a Cancel button for *
canceling the drag and drop operation in progress. The DialogBox can
contain a Help button for providing further help on the DialogBox actions.

6.2.5.5 Determining Transfer Formats

After a drop operation, the application containing the drop site determines
the best format to use to transfer the data, based on the data types that the
drag source can send. The drop site can use any heuristic to determine this
format.

If multiple transfer formats (in the case of links, multiple view formats) are
acceptable in the drop site, the drop site application should let the user
choose the correct transfer format either through a customization feature or
through a DialogBox that lists the possible choices. The DialogBox should
be a Question DialogBox asking the user to choose the best transfer format. *
The DialogBox must provide a choice of available transfer formats. The
choice can be provided as a row of buttons along the bottom of the
DialogBox, or in a RadioBox within the QuestionDialog. U sing either *
method, there must be a Cancel button in the bottom row of buttons in the *
DialogBox. The DialogBox can also include a Help button that provides
help on the results of a drop at the current location. If the DialogBox uses a
RadioBox to present the format choices, the most likely format should be
first and initially selected, formats that are currently invalid should be set
insensitive, and the DialogBox must include an OK button in the bottom *
row of buttons for accepting the RadioBox choice. A Popup Menu can be
used instead of a DialogBox to let the user choose the format.

6-53

OSF/Motif Style Guide

6.2.5.6 Indicating Drop Failures

In most cases, the system indicates drop failure automatically. If your
application allows partial success on transfers, it should post messages
about partial failure that provide enough information for the user to recover
from the failures.

6.3 Interaction

This section gives guidelines for creating applications with consistent
interactions. When an application behaves as expected and the user is not
surprised by the results of the actions, the user can complete tasks quicker.
The following subsections present the following guidelines for good
application interaction:

• Suppling indications of actions

• Providing feedback

• Allowing user flexibility

6.3.1 Supplying Indications of Actions

6-54

The first step to consistent interaction is to provide cues to the result of
every action. This means that actions of components should be indicated by
the component's shape, label, and graphics. It also means that the actions
and interactions of components should remain consistent, so the user always
knows what to expect.

Lastly, it means that interactions should be simple. As interactions become
complicated, it also becomes difficult to visually represent the interaction.
Complicated interactions and components create the possibility for more
errors. Even the most complicated concepts can be clarified by careful
organization, so, if your application's interactions seem complicated,
consider reorganizing them for simplicity.

Application Design Principles

6.3.1.1 Using Common Components

Users expect components to behave consistently across all applications.
PushButtons always perform an action. OptionButtons always provide
selections. Because of this, when users want to perform an action, they look
for a PushButton, usually in a Menu. They do not look for an OptionButton.
You should use the components that are provided when appropriate, rather
than create new ones. You should not alter the look of a component so
drastically that its type is unrecognizable.

6.3.1.2 Using Intuitive Labels

One of the best indicators of the action of a component is its Label. The
Label can be either text or a graphic. You should choose your Labels
carefully to indicate the action of each component.

Components that perform actions should be labeled with active verbs.
Components that present options should be labeled with nouns. You should
also label component groups, including Panels, with nouns to indicate the
contents of the group.

Consider the use of graphics as Labels with two cautions. Graphic Labels
cannot be nouns or active verbs, so choose a graphic whose meaning is clear
in the context of the component. Also remember that, while graphic
symbols are very language independent, they can be highly culture specific.
In some cultures, a mailbox graphic can indicate a mailer action; but, since
mailboxes are not common in all cultures, an envelope graphic may be
better, or you can provide a mechanism for changing the graphic based on
the locale.

6.3 .1.3 Using Graphics to Show Action

Many components also include a small graphic symbol following the Label
to indicate the action of the component. CascadeButtons should use an
arrow graphic that points in the direction the cascading Menu will appear.
OptionButtons should use a rectangle graphic to distinguish them from
PushButtons.

6-55

OSF/Motif Style Guide

6-56

Any component that needs more information to complete its action should
include an ellipsis following the Label. This additional information should
be requested in a DialogBox. The ellipsis should not be used to indicate that
the component will post a DialogBox. The ellipsis should be included only
if the purpose of the DialogBox is to gather more information needed to
complete the requested task. For example, the Menu choice Print would
use an ellipsis if a DialogBox is posted requesting print characteristics prior
to the printing action, but the Menu choice Help would not use an ellipsis
even though the help information is presented in a DialogBox.

All previously mentioned graphics should follow the text or graphic of the
Label. In left-to-right language environments, the graphic should be on the
right. In right-to-Ieft language environments, the graphic should be on the
left. Note that the graphic indicating the state of a ToggleButton precedes
the Label in a left-to-right language environment.

6.3.1.4 Showing Default Actions

Your application should use default values for common settings or obvious
selections. Default values should be shown in the on state. For example,
the default value for a Text area should be in the Text area in the selected
state whenever text entry is requested; the default selection in a List should
be set in the selected state whenever a list selection is requested; or the
default RadioButton should be filled in a Panel at application start-up time.
In any case, once the state is changed, the new state should take the place of
the default until the state is reset. Your application can decide whether to
save its state after being closed.

Groups of controls, such as a DialogBox, can also have a default action.
The default action is usually activated by pressing <Enter> or <Return>.
The default action of a component group should be distinguished from the
other selections by an extra border as shown in Figure 6-16.

Application Design Principles

Figure 6-16. A Default PushButton

The OK PushButton should be the default PushButton in modal
DialogBoxes and modeless DialogBoxes that are transient. The Apply
PushButton should be the default PushButton in a modeless DialogBox that
is likely to be displayed for multiple actions.

U sing the keyboard to navigate through the PushButtons, the button with the
location cursor should become the default PushButton. This ensures that
pressing <Enter> or <Return> over a PushButton invokes the correct
PushButton. When the location cursor leaves the PushButtons, the original
default button should once again become the default.

6.3.1.5 Avoiding Component Modes

A component has modes when its action changes based on some previous
action or the state of the application. This is very confusing to the user, who
was expecting the original action of the component. Components in your
application should not have modes. Your application should use multiple
components rather than modal components.

6.3.1.6 Showing Unavailable Components

As the state of your application changes, certain components become
inappropriate. For example, the Minimize selection in a window Menu is
inappropriate when the window is already minimized. In such cases, you
should make the inappropriate components unavailable. This is also called
disabling the components. Disabled components should be visually
deemphasized, usually by graying the Label of the component.

6-57

OSF/Motif Style Guide

You should not remove unavailable components from the application client
areas. The components should remain visible to remind the user of their
existence and to ensure application consistency. Figure 6-17 shows a
disabled Menu element.

Figure 6-17. A Disabled Menu Element

6-58

You should disable Menu items and components to help avoid errors. In
general, you should disable the lowest level component that results in an
irreversible error state. For example, consider a graphics editor that has a
DialogBox that is used for aligning selected graphics objects. If the user
might want to see the choices in the DialogBox even if the choices are not
available, this DialogBox should be displayable at all times; its Menu item
should not be disabled. If there are no graphics objects to align, the
DialogBox should still be displayed, but its OK and Apply buttons should
be disabled. Once graphics objects are selected, the OK and Apply buttons
should become enabled.

Menu items that are inappropriate and that result in error messages should
be disabled. Some examples are the Edit Menu's Cut and Copy actions
when nothing is selected. The Edit Menu's Undo entry should be disabled
if the last operation cannot be undone.

Menu items that perform no action need not be disabled. For example, the
New entry in the File Menu need not be disabled immediately after it is
invoked. It can be selectable repeatedly, even though it performs no new
action, because it does not result in an error state.

Application Design Principles

A Menu item that displays a modal DialogBox should be disabled if it
would cause an error either on display of the box, or on clicking the OK or
Apply buttons in the DialogBox. Since the DialogBox is modal, nothing
can be changed in the application to correct the error until the box is
dismissed, and it should not be displayable until the application is in a state
that makes the action of the DialogBox possible.

Menu items that display modeless DialogBoxes should never be disabled. If
a box is modeless, the user can change the state of the application at any
time to make the DialogBox useful. If the action cannot be completed
because some necessary information is not yet available, then the OK and
Apply buttons should be disabled.

After a TearOff Menu is torn off, an application can disable elements that
are not appropriate in the torn off state. Elements in a torn off Menu can be
disabled in the same manner as elements in any other Menu or DialogBox.

You should avoid frequently disabling and enabling components in
situations where the state change would cause a distracting flashing. For
example, editing a Text component in a DialogBox can cause some buttons
to be inappropriate at each invalid text value. In this case, you should
display an error message if the OK or Apply button is clicked for an
inappropriate text value. Of course, the error message should explain the
valid text values.

6.3.2 Providing Feedback

Another important element to user interaction is providing feedback about
the current state of the application. This is done, as described in the
previous section, by using labels and graphics and by keeping the interface
consistent. Your application should also dynamically indicate the state of
the application's actions. For example, the mouse pointer shape changes to
indicate when and where special actions can occur. Chapter 2 describes
mouse pointer shapes in detail. Other ways to provide the user feedback are
described in the following subsections.

6-59

OSF/Motif Style Guide

6-60

6.3.2.1 Showing Progress

If an action takes a long time to complete, the user may mistake the delay to
mean that the system or the application stopped working. For actions that
take a long time to complete, your application should indicate that there will
be a delay with a WorkingDialog. If your application can track the progress
of long actions, it should try to update the WorkingDialog with the progress
of the action.

6.3.2.2 Providing Warnings

Certain actions can cause destructive results, such as closing an application
before saving changes in the current file. Applications should not disallow
such destructive actions; instead, they should warn the user of the
consequences with a WarningDialog. The WarningDialog must allow the *
user to cancel the destructive action. Note that too many WarningDialogs
can be disruptive to the user's main task. WamingDialogs should be
reserved for truly destructive actions. For destructive actions that can easily
be recovered, applications should provide undo actions to reverse them; for
example, the Undo element of the Edit Pulldown Menu.

6.3.2.3 Providing Help

Even in the most intuitive application, the purpose of a component or the
way to do a task can be hard to figure out for a new user. Your application
should provide a help mechanism for all of its aspects. Sections 6.2.1.5 and
6.2.1.5.3 describe the most common base for a help mechanism, the Help
Pulldown Menu on the MenuBar. Context-sensitive help should also be
available by using <Help>.

Application Design Principles

6.3.3 Allowing User Flexibility

Good user-application interaction should also allow user flexibility. No
matter how well your application is designed, some users will not like parts
of it. They will want to change some elements of it; for example, from
simple elements like the colors and fonts to complicated elements like the
default values. You should allow users to adjust elements of your
applications because it increases their sense of control over the applications.
You should consider the following attributes of your applications for user
customization:

• Application parameters

• Colors

• Fonts

• Default values

• Key bindings

• Labels

• Messages

• Help information

The exact list of attributes you should allow the user to customize depends
on your application.

6.4 Component Design

For consistency with other applications, you should always try to use
existing components for your application tasks, but there are cases where
new components are needed. In designing new components, you should
follow the same rules as application designers follow. You should think of
components as small applications. They perform a task, present information
to the user, and take information from the user. New components must *
follow the guidelines for designing applications.

The first step to designing a new component is to compare its features with
those of the other components. If the new component has a feature that is
the same as another component, the mechanisms for using the feature,
layout, key bindings, graphics, and so on, should be the same in the new

6-61

OSF/Motif Style Guide

6-62

component. You should also try to match the appearance style of
components on your system. Most aSF/Motif compliant systems use a 3-
dimensional beveled presentation style. Appearance is not specified as a
matter of component style in this guide; however, any new components will
assimilate better with existing components if they are designed to conform
to the implied appearance style for the system on which they will be used.

Chapter 7

Window Manager Design Principles

A window manager is a specialized application. In designing a window *
manager, you must follow the same principles as for any other application. *
A window manager must also follow the style guidelines for input, *
navigation, selection, and activation models as set forth in Chapters 2 *
through 5.

There are a few elements of user interface design that are specific to
window managers. This chapter discusses the following elements:

• Configurability

• Window support

• Window decorations

• Window navigation

• Icons

7-1

OSF/Motif Style Guide

7.1 Configurability

This chapter describes only those elements of window manager design that
help create a consistent user interface. A window manager can supply a
mechanism that allows the user to configure the window manager. The
window manager can make any element user-configurable, including key
bindings, Menu contents, default window decorations, or any other rules and
elements defined in this guide. Any window manager that supplies a *
configuration mechanism must also include support for toggling between the *
current user configuration and the default configuration as mandated by this *
guide. The configuration toggle key press, <AU> <Shift> <Ctrl> <!>, must *
initiate a configuration toggle. When the user issues a request to toggle the
configuration, the window manager should request user verification before
proceeding.

7.2 Window Support

7-2

Users communicate with applications by using windows. A window is an
area of the screen (usually rectangular) that provides the user with the
functional means to communicate with an application and through which an
application can communicate with the user.

A typical environment has several applications in operation simultaneously.
Each application typically has a main or primary window that displays data
and in which the user carries on primary interaction with the application.
Applications can have additional windows to communicate context-specific
interactions with the user of the application. These additional windows are
called secondary windows, or transient windows. DialogBoxes are often
used to create secondary windows. Figure 7-1 illustrates a typical
aSF/Motif environment.

Window Manager Design Principles

Figure 7-1. A Typical OSF/Motif User Environment

While each application can be made up of many windows, each window is
one of only three basic types:

• A primary window, the main application window

• A secondary window, a window that provides secondary and transient
interaction with the user

• A Menu window, a temporary window for displaying a Menu of choices
for the user

A window manager must support multiple applications, each with one or
more primary windows. The window manager must also recognize and
support secondary windows. Also, it must associate each secondary window
with a primary window or another secondary window.

7-3

*
*
*

OSF/Motif Style Guide

7.2.1 Primary Window

A primary window is the window from which all the other windows used by
an application are generated. The window manager must support one or *
more primary windows for each windowing application. When an
application has multiple primary windows, the window manager should
treat each primary window as if it were an independent application.

When a primary window is iconized (minimized), the window and all of its *
associated secondary windows must be removed from the display and *
replaced with a single icon representing the primary window. Iconizing a *
window must not automatically suspend any processes of the window.
However, a client can notice that a primary window has been unmapped and
adjust its processing accordingly. When the icon of the window is opened, *
the primary window and all the current associated secondary windows must *
be restored. The window manager should try to place the windows in the
same position from which they were iconified.

When a primary window is closed, the window and its icon must be *
removed from the display. All secondary windows associated with the *
primary window must also be closed. If the last primary window of an *
application is closed, the application must also be closed. When an explicit
focus policy is in use, any secondary windows holding a TearOff Menu can
be removed from the display, except when another window of the
application has the focus.

7.2.2 Secondary Windows (Dialog)

7-4

Applications use secondary windows to conduct context-specific dialog with
the user. Such context-specific dialogs are usually transitory, and the
secondary windows can be removed when they are no longer needed. When *
a secondary window is closed, its parent must not be affected, and any *
secondary windows that are children of it must also be closed.

Secondary windows are always related to a parent window. Sometimes the
parent is a primary window, sometimes another secondary window. Any
window can have any number of secondary window children.

Secondary windows are not constrained to be clipped within their parent *
window, but they must always appear on top of that parent window in the *
window hierarchy. In a layered window manager, you can think of a

Window Manager Design Principles

primary window and its associated secondary windows as occupying one
layer in the window hierarchy. Whenever one window is moved in the *
hierarchy, all of the associated windows must move accordingly. Thus, *
lowering a window must move that window and all associated windows to *
the bottom of the window hierarchy. Giving a window the focus must raise *
that window and all of the associated windows to the top of the hierarchy.

Secondary windows can limit how a user can interact with windows in order
to force the order of interaction. A window manager must support the *
following four types, known as modes, of interaction with secondary *
windows: *
Modeless

Primary modal

Allows interaction with the secondary window and all *
other windows. *
Does not allow interaction with any ancestor of the *
window. *

Application modal Does not allow interaction with any window created *
by the same application, even if the application has *
multiple primary windows. *

System modal Does not allow interaction with any window on the *
screen. This includes windows from all other *
applications and any icon box. To indicate a system *
modal secondary window, the pointer should change *
shape to a caution pointer whenever it leaves the *
system modal secondary window. *

A window manager must not allow the focus to be given to any window that *
is not allowed to accept input because of the modality of a DialogBox.

7.2.3 Menu Windows

Menu windows are used to present Menus. They are not specifically created
by applications but by the components used to create the application. Menu
windows are always related to a parent window. The parent can be either a
primary window, secondary window, or another Menu window. A window
can only have one Menu window child at a time.

7-5

OSF/Motif Style Guide

A Menu window is very short lived. It is only available to a client while no
mouse or button actions are being performed elsewhere on the screen. Once *
interaction starts in another window on the screen, except a child Menu *
window, the Menu window must be removed.

Some Menus have a special behavior that allows a user to convert them into
a secondary window. These Menus are called TearOff Menus. TearOff
Menus can either be torn off in place or torn off and moved simultaneously.
The window's title should be the name of the Menu entry that was torn off. *
The window manager must allow TearOff Menu transformations from Menu *
window to secondary window.

Menu windows are not constrained to be clipped within their parent
window, but they must always appear on top of that parent window in the *
window hierarchy. The window manager must not supply any window *
decoration to Menu windows.

7.3 Window Decorations

7-6

A window manager can provide windows with a window frame that contains
components called decorations. The window decorations allow user
interaction with the window manager. Along with the frame components, a
window manager contains a client area. The client area is the display area
for an application. Figure 7-2 shows a typical window and its decorations.

Window Manager Design Principles

Figure 7-2. A Typical OSF/Motif Window Layout

Resize
Border

+-- eli ent Area-+

Res i ze ---II!!{I
Bor er

A window manager can support any number of window decorations, but it *
must support the client area and the window frame. A window manager *
must support the following window frame components: *

• Title area *
• Maximize button *
• Minimize button *
• Resize border *
• Window Menu button *

Each window must have a client area. A window manager must allow each *
window to choose which combination of decorations to include, except that *
a window must not have any buttons without a title area. A primary window *
must by default have all the decorations: window Menu button, maximize *
button, minimize button, title area, and resize border. A secondary window *
must by default have a window Menu button and title area. *

7-7

OSF/Motif Style Guide

In a secondary window, resize borders and a maXImIze button can be *
provided if there is a reason to resize the window.

Clicking BSelect on the window frame should give the window focus and
raise the window to the top of the window hierarchy, except when dialog
modality disallows focus to be set in the window.

7.3.1 Client Area

The client area is the portion of the window in which the user performs most
application-level tasks. For example, if the user is working with a graphics
editor or a text editor, the client area contains the figure or document being
edited. The client area is inside the window frame and can be composed of
multiple work areas. Figure 7-2 shows the client area in a typical window.

7.3.2 Title Area

7-8

The title area, also called the title bar, supplies a place to identify the
window. If a window includes a title area, it must be a horizontal bar at the *
top of the window. It must be just above the client area and lie horizontally *
between the window Menu (or other buttons) on the left and the window *
control buttons on the right. Figure 7-2 shows the title area in a typical
window.

The title area should contain a short string called the title that labels the
contents of the window. The title must be settable at window startup both *
by the user and by the application. For applications with a single primary
window, the title should be the name of the application. For applications
with multiple primary windows, the title should indicate the purpose of the
window. The title in secondary windows should indicate the purpose of the
window. The title can also contain other useful information, such as the
machine on which the application is running, the current directory, or
similar relatively static information.

Besides supplying a location for a label, the title area also acts as a position,
or handle, for moving a window. Pressing BSelect or BTransfer in the title *
area and dragging the pointer must move the window relative to the moving *
pointer.

Window Manager Design Principles

7.3.3 Maximize Button

The maximize button provides mouse users with a shortcut to the Maximize
entry in the window Menu. If a window includes a maximize button, it must *
be just above the client area and its right border must align with the right *
border of the client area. Figure 7-2 shows the maximize button in a typical
window. Primary windows should have a maximize button. Secondary
windows generally do not have a maximize button.

The graphic in the maximize button should be a large square or an up arrow.
If the maximize button uses an up arrow as its graphic, a maximized window
should use a double-headed arrow to indicate that it is maximized. If the
maximized button uses a large square as its graphic, a maximized window
can show the graphic in a different state. Activating the maximize button *
must increase the size of the window to the maximum allowable size. As a *
shortcut for mouse users to the Restore entry in the window Menu, *
activating the maximize button of a maximized window must restore the *
window to its size and location before being maximized.

7.3.4 Minimize Button

The minimize button provides mouse users with a shortcut to the Minimize
entry in the window Menu. If a window includes a minimize button, it must *
be just above the client area and directly to the left of the maximize button.
Figure 7-2 shows the minimize button in a typical window. Primary
windows should have a minimize button. Secondary windows must not *
have a minimize button.

The graphic in the minimize button should be a small square or a down
arrow. Activating the minimize button must iconify the window unless the *
window family contains a system modal DialogBox.

7-9

OSF/Motif Style Guide

7.3.5 Other Buttons

You can bind additional window manager functions to buttons on the
window frame. Any additional buttons must be placed directly to the left of *
the minimize button or directly to the right of the window Menu button and *
above the client area. Each button action must correspond to a entry in the *
window Menu.

7.3.6 Resize Borders

7-10

Applications can suggest the initial size of their windows to the window
manager. Window sizes can vary according to the work performed in them.
At any time, a user should be able to alter the size of most windows. The
Size entry in the window Menu provides a method for the user to alter the
size of windows. The resize borders provide a shortcut for mouse users for
the Size entry in the window Menu. Resize borders are not generally
provided on secondary windows.

The resize borders are the outermost components of the window manager
frame. They are made up of two components: the corner handles and the
edge handles. If a window includes resize borders, there must be one comer *
handle in each corner of the window at its extremes, and one edge handle *
between each pair of corner handles. There must be no window components *
outside the boundary formed by the resize borders. Figure 7-2 shows resize
borders in a typical window.

Pressing BSelect or BTransfer in a corner handle and dragging the pointer *
must change the height and width of the window relative to the moving *
pointer without changing the position of the opposite corner. Pressing *
BSelect or BTransfer in a top or bottom edge handle and dragging the *
pointer must change the height of the window relative to the moving pointer *
without changing the width or the position of the opposite edge. Pressing *
BSelect or BTransfer in a side edge handle and dragging the pointer must *
change the width of the window relative to the moving pointer without *
changing the height or the position of the opposite edge.

Window Manager Design Principles

7.3.7 Window Menu

The window Menu, sometimes called the system Menu or control Menu, is
used to display the list of window actions. All actions possible for a
window should be displayed in the window Menu because keyboard-only
users interact with the window manager through this Menu. Because of this,
it is rare that a window does not need a window Menu. The window Menu
can be configured out by the application or by the user, but it should not be
removed by the window manager.

If a window includes a window Menu, the window Menu button must be *
located just above the client area, the left edge of the button must align with *
the left edge of the client area, and the button must be just to the left of the *
title area, unless other buttons are included between the window Menu *
button and the title area.

Double-clicking the window Menu button can be used to close the window,
unless focus is disallowed in the window. A user must be able to activate *
the window Menu button for the window with the focus by using <Shift> *
<Escape> or <AU> <Space>.

Figure 7-3 shows a typical window Menu.

Figure 7-3. The Window Menu Button with Menu Pulled Down

A primary window Menu must have the following entries in the order listed: *
Restore Alt+FS Restores a minimized or maximized window to the *

previous size and location of the window. This *
entry must be deemphasized (grayed out) when the *

7-11

OSF/Motif Style Guide

7-12

Move Alt+F7

Size Alt+FS

Minimize Alt+ F9

Ma~imize Alt+FIO

Lower Alt+F3

Close Alt+F4

window is in its normal state. This action must *
have the mnemonic R. If this action has an *
accelerator, it must be <Alt> <FS> if <FS> is *
available. *
Moves a window around the workspace. This *
action must have the mnemonic M. If this action *
has an accelerator, it must be <Alt> <F7> if <F7> *
is available. *
Changes the height and width of the window in the *
direction indicated by the pointer. This action must *
have the mnemonic S. If this action has an *
accelerator, it must be <Alt> <FS> if <FS> is *
available. *
Changes a window into an icon. This action must *
have the mnemonic N. If this action has an *
accelerator, it must be <Alt> <F9> if <F9> is *
available. *
Enlarges a window to its maximum size. This *
action must have the mnemonic X. If this action *
has an accelerator, it must be <Alt> <FlO> if *
<FlO> is available. *
Moves a window to the bottom of the window *
hierarchy. This action can be omitted. This action *
must have the mnemonic L. If this action has an *
accelerator, it must be <Alt> <F3> if <F3> is *
available. *
Closes a window and removes it from the *
workspace. This action must have the mnemonic *
C. If this action has an accelerator, it must be *
<Alt> <F4> if <F4> is available. Applications *
should prompt the user to save any unsaved *
changes when a window is closed. *

A secondary window Menu must have the following entries in the order *
listed: Move, Size, and Close. A secondary window Menu can include
Restore above Move, Maximize below Size, and Lower above Close, but
the lower option on a secondary window lowers all the windows secondary
to that window's primary window.

Window Manager Design Principles

A secondary window Menu should not include Restore if it does not include
Maximize. A secondary window must not include an entry for Minimize. *
A secondary window resulting from a Menu being torn off must have the *
following entries in the order listed: Move, Lower, and Close. It must not *
include entries for Restore, Size, Minimize, or Maximize.

Additional Menu items can be added to the window Menus of both primary
and secondary windows according to the guidelines for Menus described in
Chapter 6.

7.4 Window Navigation

Moving the focus among windows using the keyboard is called window
navigation. Because applications should not warp the mouse pointer, a
window manager need not support window navigation when the focus
policy is in pointer mode. Window managers must support window *
navigation when the focus policy is in explicit mode.

The window navigation model can be divided into two levels:

1. Moving among window families (among primary windows)

2. Moving within a window family (among secondary windows)

A window family consists of a single primary window and all of its
associated secondary windows. A window manager must support moving *
the keyboard focus among windows in a window family using the <AU> *
<}"'6> key. A window manager can support moving the keyboard focus in
the opposite direction from <AU> <F6> using the <AU> <Shift> <F6> key.

Moving the focus between window families must be done using <Alt> *
<Tab> and <AU> <Shift> <Tab>. <Alt> <Shift> <Tab> should move the
focus among the windows in the opposite direction from <AU> <Tab>. If *
there is no icon box, <Alt> <Tab> and <AU> <Shift> <Tab> must move *
among the icons as well as the windows. When focus moves into a window
family, the focus should go to the window in the window family that last
had the focus. If no window in the family has ever had the focus, it should
go to the most recently opened secondary window.

7-13

OSF/Motif Style Guide

7.5 Icons

An icon is a stylized representation of an object. A window icon is a
minimized representation of a window or window family that can help
organize windows and tasks in the display. Iconifying a window is also
known as minimizing a window. The window manager must iconify all *
windows of a window family together. It must not iconify any single *
window, primary or secondary, from a window family without also *
iconifying all the other windows in the window family. The iconic
representation of a window family should not change any state in the
windows, except the visual representation of the window. The application *
running inside of a window must continue running even when the *
application is iconified. The application can adjust its own state when it is
iconified.

7.5.1 Icon Decoration

An icon is made up of an image and a label. Figure 7-4 shows a typical
Motif icon.

Figure 7-4. A Typical OSF/Motif Icon

7-14

The image should be surrounded by a border that indicates when the icon
has the keyboard focus. The image area can contain text or a bitmap. The
label should be located just below the image and its border. The label can
also indicate when the icon has the keyboard focus by highlighting with the
image area.

Window Manager Design Principles

The label should contain the same text as the title area of the corresponding
primary window, or an abbreviated form of it. When the icon does not have *
the keyboard focus, the width of the label must be the same as the width of *
the image area and its border, truncating text if necessary. When the icon
has the keyboard focus, the width of the label can expand to display the
entire text.

7.5.2 Icon Menu

Clicking BSelect in an icon must give the icon the keyboard focus and post *
the icon Menu. The icon Menu must be the same Menu as the window *
Menu for the associated primary window. Size should not be available from
the icon Menu. Navigating to the icon must also give the icon the keyboard *
focus and should post the icon Menu.

Double-clicking BSelect anywhere in the icon must restore the window *
family, just as the icon Menu item Restore does. If the window is currently *
minimized, but its previous state was maximized, double-clicking BSelect *
returns it to the maximized state. Selecting Maximize from the icon Menu *
always maximizes the corresponding window. If the window is minimized, *
Minimize must not be available in the icon Menu; otherwise, selecting it *
minimizes the window family. Pressing BSelect or BTransfer anywhere in *
the icon and dragging the mouse pointer must move the icon to track the *
pointer, just as the icon Menu item Move does.

If the window manager has been customized by the user so that the icon *
Menu does not pop up when the icon gets the focus, <Shift> <Escape>, *
<Alt> <Space>, <Menu>, and BMenu must pop up the icon Menu.

7.5.3 Icon Box

An icon box is a specialized window that acts as a storage location for
icons. An icon box acts like a typical window in the sense that it has a
window frame and frame components. The client area of an icon box must *
have an area for holding icons and can have horizontal and vertical scroll *
bars for moving around the icon area. Figure 7-5 shows a typical icon box.

7-15

OSF/Motif Style Guide

Figure 7 -S. A Typical OSF/Motif Icon Box

7-16

The icon box must have all the same components as any other primary *
window. Like other windows it can be sized, moved, minimized,
maximized, restored, and lowered. However, the window manager must not *
allow the icon box to be closed. The system Menu action Close must be *
replaced with the system Menu action Pack Icons in an icon box. Double- *
clicking BSelect in the icon box system Menu must only open the icon box *
system Menu. It must not close the icon box. Pack Icons arranges the icons
as close as possible together in the visible icon area if possible. Pack Icons *
must have the mnemonic P. If Pack Icons has an accelerator, it should be
<Alt> <F12> if <F12> is available. When the input focus is in the icon box, *
<Shift> <Escape> or <AU> <Space> must pop up the icon box system *
Menu if the Menu is unposted. If the Menu is already posted, <Shift> *
<Escape> or <AU> <Space> must unpost the Menu.

The icon box can contain an icon for each window family, even if it is
active. The icon for minimized window families must be the same as the *
icon would be outside of the icon box. The icon for an active window
family should be similar to the minimized icon, deemphasized somehow.

Clicking BSelect in an icon must give the icon keyboard focus and post the *
icon Menu. The icon Menu must be the same Menu as the window Menu *
for the associated primary window. If the icon represents an active window *
family, Restore and Size must not be available from the icon Menu. If the *
icon represents a minimized window family, Size must not be available *
from the icon Menu. If the window manager is customized so that the icon *
with the focus does not have its window Menu automatically posted, *
BMenu or <Menu> must post its Menu.

Window Manager Design Principles

Double-clicking BSelect anywhere in an icon that represents a minimized *
window family must restore the window family, just as the icon Menu item *
Restore does. Double-clicking BSelect anywhere in an icon that represents *
an active window family must raise the window family to the top of the *
window hierarchy. If the window is currently minimized, but its previous *
state was maximized, double-clicking BSelect returns it to the maximized *
state. Selecting Maximize from the icon Menu always maximizes the *
corresponding window. If the window is minimized, Minimize must not be *
available in the icon Menu; otherwise, selecting it minimizes the window *
family. Pressing BSelect or BTransfer anywhere in the icon and dragging *
the mouse pointer must move the icon within the icon area to track the *
pointer, just as the icon Menu item Move does.

The directional keys <-1>, <I>, <-7>, and <f-> must navigate among the *
icons in the icon box. Icon navigation must behave as described in the *
following text. Note that <-1> and <-7> do not need to traverse icons in the
same order.

<f->

<-7>

In a left-to-right language environment, this key must move the *
location cursor through the icons in the icon box, starting at the *
upper-left icon and ending at the lower-right icon, then wrapping *
back up to the upper left. In a right-to-Ieft language environment,
the location cursor can move, starting at the upper right and
moving to the lower left.

This key must move the location cursor through the icons in the *
opposite direction of <-7>.

In a left-to-right language environment, this key must move the *
location cursor through the icons in the icon box, starting at the *
upper-left icon and ending at the lower-right icon, then wrapping *
back up to the upper left. In a right-to-Ieft language environment,
the location cursor can move, starting at the upper right and
moving to the lower left.

This key must move the location cursor through the icons in the *
opposite direction of <-1>.

7-17

Chapter 8

Designing for International Markets

This chapter provides basic guidelines for producing applications for
international markets. Internationalization is the process of generalizing
programs or systems so that they can handle a variety of languages,
character sets, and national customs. Localization is the process of
providing language-specific or country-specific information or support for
programs.

In general, internationalization issues are handled by tools available to
programmers on their system. For example, the ANSI C standard (ANS
X3.159-1989) and POSIX 1003.1 have defined internationalization in terms
of locale. The locale can then be set as part of the user's environment,
allowing the program to access locale-speci fic information, such as data
formats, collating sequences, and system messages, from system-specific or
application-specific databases. You should use any internationalization
tools available on your system to support internationalization in your
application.

Following are some of the issues that need to be addressed in an
internationalized application. In most cases, these issues are addressed by
the internationalization tools available on your system. They are provided
here primarily to increase your awareness of issues that can affect your
programming. In a few cases, you may need to adjust your program to allow
for size and layout changes of data in different locales.

8-1

OSF/Motif Style Guide

• Internationalized text input

• Collating sequences

• Country-specific data fonnats

• Icons, symbols, and pointer shapes

• Scanning direction

• Designing modularized software

• Translating screen text

8.1 Internationalized Text Input

8-2

Ideally, text is input from a keyboard that can directly produce all the
characters needed for that language. It is sometimes the case, however, that
text input requires a pre-edit step, whereby text is typed into a pre-edit area
using a set of characters, later converted to another set of characters, and
passed to the application. An input method is used to convert keyboard
input to an encoding suitable for a Text control.

Fortunately, application developers do not need to worry about the input
method as long as the Text controls in the application support the display
and input of text in the writing system supported by the underlying system.
Furthermore, defining how keyboard actions convert into characters suitable
for text input and the display is the responsibility of the underlying system.

Designers of Text controls should create Text controls that support display
and input of text in any writing system supported by the underlying system.
Text controls can also support input and display of multiple writing systems.

System designers need to create input methods that address the following
issues of internationalized text input:

• Locating the pre-edit area

• Displaying status

• Converting pre-edit characters to final characters

The following subsections describe these issues and provide some
guidelines for addressing them, but there is currently too much variation in
systems, and the field is too new for this guide to make many firm
recommendations about these issues.

Designing for International Markets

8.1.1 Locating the Pre-Edit Area

The trend over time is for pre-edit areas to move closer to the location of the
final text. Ideally, pre-edit should occur in place in the Text control being
edited (known as an on-the-spot input method). This is technically difficult
to do without fully integrating the Text control with the input method. In
the absence of an on-the-spot input method, systems should use an over­
the-spot input method. An over-the-spot input method places the pre-edit
area above but separate from the Text control. In the absence of on-the-spot
or over-the-spot input methods, systems can create input methods where the
pre-edit area is separate on the display from the Text control that it sends
input to. These models are know as off-the-spot input methods. In these
input methods, a single pre-edit area can apply to a single Text control, a
group of Text controls, an entire application window, or the whole screen.
An input method where a single pre-edit area is responsible for all the Text
controls on a screen is known as a root window input method.

Systems should support in-place or per-window input methods. They can
support per-control, per-group, or per-screen input methods.

When using an off-the-spot input method, converted text obviously goes to
the Text control with the input focus. The pre-edit area itself does not get
the input focus. It only acts as an intermediary for the Text control. The
contents of the pre-edit area prior to conversion can be maintained
separately for each Text control; that is, when moving the focus from one
Text control to another, the unconverted text from the pre-edit area can be
maintained in the first Text control and any existing unconverted pre-edit
text for the second Text control can be restored to the pre-edit area.

8.1.2 Displaying Status

After a block of text is input to the pre-edit area, the user performs some
action, usually a key sequence, that causes the system to convert the pre-edit
text into the final characters and pass it to Text control. Using an in-place
input method, it is important to show the user which text is pre-edit text and
which text has already been converted; that is, the system should give the
user some idea of the status of input. In an in-place input method, this status
is usually provided by some visual effect such as a font or color difference.

8-3

OSF/Motif Style Guide

Using any input method including an in-place input method, the method can
include an additional off-the-spot status area that displays input method
status information such as input and output text formats.

8.1.3 Converting Pre-Edit Characters to Final Characters

When the user requests that the pre-edit text be converted to the final text
format, the system may still not have enough information to unambiguously
convert the text. In this case, the next step of the conversion depends on the
system, the pre-edit format, and the final text format. The conversion can
either fail, prompt for more pre-edit text, or present a list of possible choices
and let the user pick one. An input method can present conversion choices
to the user in a number of ways including the following:

• Listing the choices in a DialogBox

• Presenting the choices in an Option Menu

• Presenting the choices in a Popup Menu

• Allowing the user to cycle through choices using key sequences

8.2 Collating Sequences

8-4

To produce an alphanumeric list, printable characters are sorted according to
a collating sequence. Printable characters include letters possibly with
accents, numbers, punctuation characters, and other symbols such as an *
(asterisk) or & (ampersand). The collating sequence defines the value and
position of a character relative to the other characters.

Many applications make frequent use of collating sequences to produce
alphanumeric lists. Examples of alphanumeric lists include the following:

• A directory listing of filenames

• The output from a sorting utility

• An index produced by a text-processing application

• The lists produced by a database application, such as lists of names or
addresses

Designing for International Markets

8.3 Country-Specific Data Formats

Country-specific data formats include the following:

• Thousands separators

• Decimal separators (or, radix characters)

• Grouping separators

• Positive and negative values

• Currency

• Date formats

• Time formats

• Time zones

• Telephone numbers

• Proper names and addresses

8.3.1 Thousands Separators

The comma, period, space, and apostrophe are examples of valid separators
for units of thousands as shown in the following examples:

1 234567
1.234.567
1 '234'567
1,234,567

8-5

OSF/Motif Style Guide

8.3.2 Decimal Separators

The period, comma, and the center dot are examples of valid separators for
decimal fractions as shown in the following examples:

5,324
5.324
5324
5·324

8.3.3 Grouping Separators

Grouping may not be restricted to thousands separators as shown in the
following examples:

400,001.00
40,0001,00

8.3.4 Positive and Negative Values

Various countries indicate positive and negative values differently. The
symbols + (plus) and - (minus) can appear either before or after the number.
Negative numbers can be enclosed in parentheses in applications such as a
spreadsheet.

8.3.5 Currency

8-6

Currency formats differ among various countries. The comma, period, and
colon are examples of valid separators for currency. There can be one or no
space between the currency symbol and the amount. The currency symbol
can be up to four characters.

Designing for International Markets

The following example shows valid currency values:

Sch3.50
SFr. 5.-
3.50FIM
25 c
3F50
760 Ptas
Esc. 3.50
kr.3,50

8.3.6 Date Formats

Most countries use the Gregorian calendar, but some do not. Dates can be
formatted differently based on the locale. Separators can be different in
different locales or left out altogether. The hyphen, comma, period, space,
and slash are all examples of valid separators for the day, month, and year.
In numeric date formats, the month and day fields can be reversed, and, in
some cases, the year field can come first. For example, the 4th of August
1992 can be written as either 4/8/92 or 8/4/92 depending on locale. In
addition, users in other countries sometimes place the year first, so June 11,
1992 could be 920611 or 921106.

8.3.7 Time Formats

Time formats can change based on locale. The colon, period, and space are
examples of valid separators for hours, minutes, and seconds. The letter h
can separate hours and minutes. There is both 12-hour or 24-hour notation.
For 12-hour notation, a.m. or p.m. can appear after the time, separated by a
space.

8-7

OSF/Motif Style Guide

The following example shows a number of valid time formats:

1830
18:30
0456
08h15
11.45 a.m.
11.45 p.m.
13:07:31.30
13:07:31

8.3.8 Telephone Numbers

Telephone numbers can contain blanks, commas, hyphens, periods, and
brackets as valid separators, for example. Telephone numbers can be
displayed in local, national, and international formats. Local formats vary
widely. National formats can have an area code in parentheses, while the
international format can drop the parentheses but add a + (plus sign) at the
beginning of the number to indicate the country code. The following
examples show valid telephone number formats:

(038) 473589
+44 (038) 473549
617.555.2199
(617) 555-2199
1 (617) 555-5525
(1) 617 555 5525
911
1-800-0RDERME

8.3.9 Proper Names and Addresses

8-8

Addresses can vary from two to six lines long and can include any character
used in the locale's character set. The post code (zip code) can be in various
positions in the address and can include alphabetic characters and separators
as well as numbers.

Designing for International Markets

8.4 Icons, Symbols, and Pointer Shapes

It may not always be possible to design an icon, pointer shape, or other
graphical symbol that adequately represents the same object or function in
different countries. Culture is inherent even in seemingly universal
symbols. For example, sending and receiving mail is a commonly
understood function, but representing that function with an icon of a mail
box can be inappropriate because the appearance of mail boxes varies
widely among countries. Therefore, an envelope may be a more appropriate
icon. You should make sure that graphical symbols are localizable.

When used correctly, graphical symbols offer the following advantages:

• They are language independent and do not need to be translated. In
some cases, you may not be able to avoid changing an icon or symbol for
a culture that is vastly different. However, design icons and symbols
with the entire user population in mind so that you can try to avoid
redesigning.

• They can be used instead of computer terms that have no national­
language equivalent.

• They may have more impact when used with text as warnings than the
text alone.

Here are a few guidelines to follow when creating icons, symbols, or pointer
shapes:

• Use an already existing international icon, if possible.

• Make your icons, symbols, or pointer shapes represent basic, concrete
concepts. The more abstract the icon, the more explanatory
documentation is needed.

• Check your icons and symbols for conflicts with existing icons or
symbols for that function.

• Do not incorporate text in icons because the text will need to be
translated. Translated text often expands and might no longer fit the
icon.

• Test and retest your symbols and icons in context with real users.

8-9

OSF/Motif Style Guide

8.5 Scanning Direction

Readers of Western languages scan from left to right across the page (or
display screen) and from top to bottom. In other languages, particularly
Eastern ones such as Hebrew and Arabic, this is not the case; readers scan
from right to left. The scanning direction of the country can have an impact
on the location of components in DialogBoxes, the order of selections in
Menus, and other areas.

If your application will be used in environments other than those that scan
from left to right, remember that the the scanning direction should match the
input direction.

8.6 Designing Modularized Software

8-10

Modularizing software allows for easier localization; that is, a properly
modularized application requires that fewer files be modified to localize the
application. Guidelines for designing modularized software are as follows:

• Create separate modules for text, code, and input/output components
that need to be changed to accommodate different markets.

• Separate all user interface text from the code that presents it.

• Use standard (registered) data formats, such as ISO and IEEE.

• Use standard processing algorithms for all processing, storage, and
interchange.

In general, you should modularize your application so that elements that
need to be translated to different languages are in separate files, and that
those files are the only files that will need changes for localization.
Furthermore, you should have a different set of language-dependent text
files for each locale that are read in at run time using the
internationalization tools available on your system.

Designing for International Markets

8.7 Translating Screen Text

Well-written screen text makes an application easier for users to understand.
It also makes translation easier.

Use the following guidelines to write screen text for translation:

• Write brief and simple sentences; they are easy to understand and
translate.

• Write affirmative statements; they are easier to understand than
negative statements. For example, use "Would you like to continue?"
rather than "Wouldn't you like to continue?"

• Use active voice; it is easier for both application users and application
translators to understand. For example, use "Press the Help button."
rather than "The Help button should be pressed."

• Use prepositions to clarify the relationship of nouns; avoid stringing
three or more nouns together.

• Use simple vocabulary; avoid using jargon unless it is a part of your
audience's working vocabulary.

• Allow space for text expansion. Text translated from English is likely to
expand 30% to 50%, or even more.

8-11

Chapter 9

Controls, Groups, and Models
Reference Pages

This chapter presents detailed information about components, user interface
models, and concepts in reference format. Each topic starts on a new page
and is organized alphabetically. Details on user interface models and
concepts are provided in the earlier chapters of this guide. The model and
concepts reference pages are provided here only as a quick reference to
information provided earlier and are not complete in every detail.
Therefore, they should not be used as the definitive source for information
about user interface models and concepts. This chapter includes the
following model and concepts reference pages:

Accelerators Focus Navigation
Activation Framing Groups Pointer Shapes
Basic Controls Help Menu Popup Menus
Basic Groups Icon Menu Primary Selection
Default Activation IconBox Quick Transfer
Drag and Drop Icons Selection
Edit Menu Input Devices Window Menu
Field Controls Layout Groups
File Menu Mnemonics

The reference pages for components are provided for designers to use when
implementing the components described in this guide or when creating new
components.

9-1

OSF/Motif Style Guide

9-2

Remember, when designing new components, you should follow the same
rules that application designers follow. As such, you should be familiar
with all the chapters of this guide, not just this reference-page section. New *
components must follow the guidelines for designing applications. This
chapter contains the following control and group reference pages:

Canvas List Scale
Cascade Button MainWindow ScroliBar
CheckButton MenuBar ScrolledWindow
CommandBox Menus Selection Box
CommandDialog MessageDialog Selection Dialog
Composition Option Button Separator
DialogBox PanedWindow TearOffButton
ErrorDialog Panel Text
FileSelectionBox PromptDialog ToggleButton
FileSelection Dialog PushButton WarningOialog
Frame Question Dialog WorkingOialog
I nformation Dialog RadioButton Label

When designing a new component, compare its features with those of other
components. If the new component has a feature that is the same as another *
component, the mechanisms for using the feature, layout, key bindings, *
graphics, and so on, must be similar to the existing component.

Controls, Groups, and Models Reference Pages

Each component reference page may contain the following information
about the component:

Description

Illustration

Navigation

A description of the use and appearance of each
component, group, or model.

An illustration of a typical component. The
illustrations in this guide use the aSF/Motif
reference appearance with 3-dimensional beveled
edges. Although it is important to be consistent in
the placement of the elements in a component, the
appearance, or rendering, of the component is not
an issue of aSF/M otif Style Guide compliance.

A description of the methods for navigating within
a component.

Other Operations A description of other operations available within
the component.

Common Bindings A list of the virtual keys used by this component
and the common substitutions for each virtual key.

Related Information A list of sections and related reference pages in this
aSF/Motif Style Guide with additional information.

9-3

OSF/Motif Style Guide

Accelerators

Accelerators

Description

9-4

An accelerator is a key or key combination that invokes the action of some
component without the location cursor being on the component when the
accelerator is pressed. Accelerators are most commonly used to activate
Menu items without first posting the Menu. You should provide accelerators
primarily as a matter of utility, not for design conformity.

If the button with the accelerator is within a primary or secondary window, *
or within a Pulldown Menu system from its MenuBar, it must be activatable *
whenever the input focus is in the window or the MenuBar system. If the *
button with the accelerator is within a Popup Menu system, it must be *
activatable whenever the focus is in the Popup Menu system or the *
component with the Popup Menu.

Applications can provide accelerators for any button component. *
Implementations must support accelerators in PushButtons and *
ToggleButtons that are in Menus. If a button has an accelerator, the *
accelerator must be shown following the label of the button.

Controls, Groups, and Models Reference Pages

Activation

Activation

Description

This reference page only provides a short description of the various types of
activation. Chapter 5 describes each type in detail.

Basic Activation
The basic activation model mimics real-life button activation in
that pressing on a button activates it. Clicking BSelect on the *
button must activate the button. <Select> or <Space> on a *
button with the focus must activate the button. <Enter> or *
<Return> on an activatable Menu entry with the focus must *
activate the entry. In explicit mode, clicking <Ctrl> BSelect
on a traversable component should move the focus to it. In
activatable components, it should have no other effect. In
collections, it can change the cursored element or the selection
as described in Section 4.1.

Accelerators
An accelerator is a key or key combination that invokes the
action of some component without the location cursor on the
component when the accelerator is pressed. Accelerators are
most commonly used to activate Menu items without first
posting the Menu.

Mnemonics
A mnemonic is a single character that can be associated with
any component that contains a text label. When the location *
cursor is on a component within a Menu, a MenuBar, or the *
same field as a component with a mnemonic, typing the *
mnemonic character must move the location cursor to the *
component and activate it. If a mnemonic is used for an *
OptionButton, for a CascadeButton in a MenuBar, or a *
PushButton that is not in a basic group (that is, not in a Panel, a *
Menu, or a MenuBar), pressing <AU> and the mnemonic *
anywhere in the window or its Menus must move the cursor to *
the component with that mnemonic and must activate it.

9-5

OSF/Motif Style Guide

Activation

9-6

TearOff Activation

Some Menus have TearOffButtons as their first elements. A
TearOffButton is like a PushButton with the special interaction
of converting a Menu into a DialogBox; that is, tearing off the
Menu from its CascadeButton. TearOffButtons must follow the *
basic activation model. TearOffButtons have a second
activation mechanism. Once a Menu with a TearOffButton is *
posted, pressing BTransfer in the TearOffButton must start a *
tear-off action. As long as BTransfer is held, a representation *
of the Menu must follow the movements of the pointer. *
Releasing BTransfer must end the tear-off action by unposting *
the Menu system, creating a new window at the current pointer *
location with the contents of the Menu, and in explicit pointer *
mode give focus to the new window.

Help Activation
Pressing <Help> on a component must invoke any context- *
sensitive help for the component or its nearest ancestor with *
context-sensitive help available. Within DialogBoxes,
context-sensitive help should provide help information on the
DialogBox as a whole. <Shift> <Help> should invoke the
context-sensitive help mode if it is available.

Popup Menu Activation
If the pointer is in an element with an inactive Popup Menu and *
the context of the element allows a Popup Menu to be *
displayed, BMenu Press must post (activate) the Menu in a *
spring-loaded manner, and clicking BMenu must post (activate) *
the Menu.

Default Activation
In a DialogBox, pressing <Enter> or <Return> (except in *
Text), or double-clicking BSelect must activate the default *
PushButton in the DialogBox. If the double-click is in a *
component used for making selections or choices, such as List *
or RadioBox, the element under the pointer must be selected or *
should be chosen before the default PushButton is activated.

Controls, Groups, and Models Reference Pages

Activation

Expert Activation
Some elements, usually PushButtons and ToggleButtons, can
have expert actions associated with them. BSelect Click 2 *
must activate any expert action for the element. Expert action
should only be available in a Panel, and the expert action of all
the buttons should be similar. The expert action should include
the regular action of the component in a more global manner.

Cancel Activation
<Cancel> is available in most context to stop the current
interaction, including canceling drag and drop operations,
unposting TearOff Menus, canceling DialogBoxes, unposting
Menu systems, and canceling scrolling operations.

Related Information

See Chapter 5 for more information about the activation model.

9-7

OSF/Motif Style Guide

Basic Controls

Basic Controls

Description

Basic controls are components that only take simple input. They are distinct
from field controls in that they are usually elements of navigation fields
rather than fields themselves. Basic controls must have no internal *
navigation. The following text describes the basic controls:

Separator

Label

PushButton

CascadeButton

OptionButton

ToggleButton

9-8

Draws a separating line within windows, between
Menu items, and between Panes of a PanedWindow. A
Separator allows no application interaction.

Displays static text and images. A Label presents
application information to users.

A button used to activate an operation. A PushButton
contains a Label that indicates the operation of the
button. The Label can contain text or an image.

A button used to display a Pulldown Menu. A
CascadeButton contains a Label that indicates the
Menu displayed. CascadeButtons can also contain an
arrow graphic after the Label to distinguish it from
PushButtons and to indicate the direction of the
cascading Menu.

A button used to display an Option Menu. An Option
Menu allows for a one-of-many selection. An
OptionButton contains a Label that indicates the
current state of the Option Menu, and a bar graphic to
distinguish it from a PushButton.

A button with two states: on and off. A ToggleButton
contains a Label that indicates the state of the
ToggleButton when it is set. Normally, preceding the
Label is a graphic indicator of the state of the
ToggleB utton.

CheckButton

RadioButton

TearOffButton

Controls, Groups, and Models Reference Pages

Basic Controls

A ToggleButton in a group of ToggleButtons where any
number of the ToggleButtons can be on at a time. The
graphic indicator for a CheckButton is usually a filled
square to indicate the on state or an empty square to
indicate the off state.

A ToggleButton in a group of ToggleButtons where
only one of the ToggleButtons can be on at a time. The
graphic indicator for a RadioButton is usually a filled
diamond or circle to indicate the on state or an empty
diamond or circle to indicate the off state.

A button used for tearing off a Menu to create a dialog
representation of the Menu contents. A TearOffButton
tears off a Menu in place when activated, or is dragged
to tear off and move in one action. A TearOffButton
usually contains a dashed line graphic representing
perforations.

A single-line Text control can be configured to act like a basic control.

Navigation

Basic controls must have no internal navigation.

Other Operations

Activatable basic controls follow the basic activation model described in
Section 5.1.

Related Information

For more information, see the reference pages for each basic control.

9-9

*

OSF/Motif Style Guide

Basic Groups

Basic Groups

Description

Basic groups of controls are used to organize groups of basic controls. The
following text describes the basic groups:

Panel

Menu

MenuBar

Organizes a collection of basic controls in a horizontal,
vertical, or 2-dimensional layout. A Panel is usually
composed of just one type of control.

Organizes a collection of buttons, labels, and
separators in a horizontal, vertical, or 2-dimensional
layout within a separate Menu window. There are
three types of Menus: Pulldown, Popup, and Option. A
Menu is only available while it is popped up or pulled
down.

Organizes a collection of CascadeButtons in a
horizontal layout at the top of a MainWindow.

Navigation

The <t>, <~>, <~>, and <I> direction keys must navigate within a basic *
group according to the navigation model described in Chapter 3.

Related Information

For more information, see the reference pages for each basic group.

9-10

Controls, Groups, and Models Reference Pages

Canvas

Canvas

Description

A Canvas is used to present and edit graphics.

Navigation

Canvas navigation is unspecified.

Other Operations

Most Canvas operations are unspecified. A description of the specified
Canvas operations follows:

<Help> Must provide any available help for the Canvas.

9-11

*

OSF/Motif Style Guide

Cascade Button

CascadeButton

Description

A CascadeButton should be used to post a Pulldown Menu. This component *
must be composed of a button, with either a text or graphics Label.
Following the Label, this component should also include an arrow graphic,
pointing in the direction that the Menu will be posted to distinguish it from a
PushButton. The graphic is usually not shown in a MenuBar.

Illustration

9-12

Controls, Groups, and Models Reference Pages

CascadeButton

Navigation

A CascadeButton must have no internal navigation.

Other Operations

CascadeButtons follow the Menu activation model described in Section 3.3.
The following text describes the other operations of this component:

<Help> Must provide any available help for the CascadeButton.

Related Information

For more information, see the reference pages for Menus.

9-13

*

*

OSF/Motif Style Guide

CheckButton

CheckButton

Description

A CheckButton should be used to set options in the application. A
CheckButton is a special case of a ToggleButton. Any number of
CheckButtons can be set at the same time.

This component must be composed of a text or graphic Label, and a graphic *
that indicates the state of the CheckButton. The graphic indicator for a
CheckButton is usually a filled square to indicate the on state or an empty
square to indicate the off state. On color systems, the on state color can be
distinct from general application colors to visually distinguish the on state.

Illustration

Navigation

CheckButtons must have no internal navigation. *

9-14

Controls, Groups, and Models Reference Pages

CheckButton

Other Operations

The following text describes the CheckButton operations:

BSelect Press
Must arm the CheckButton. If the CheckButton was previously *
unset, it must show the CheckButton in the set state. If the *
CheckButton was previously set, it must show the CheckButton *
in the unset state.

BSelect Release
If the release happens in the same CheckButton that the press *
occurred in: *

• If the CheckButton was previously unset, it must be set. *
• If the CheckButton was previously set, it must be unset. *

In all cases the CheckButton must be disarmed, and, if the *
CheckButton is in a Menu, the Menu must be unposted.

BSelect Release 2
If the CheckButton was previously unset, it should be set. If the
CheckButton was previously set, it should be unset. If the
CheckButton is in a window, the default action of the window
should be activated.

<Enter> or <Return>
If the CheckButton is in a window with a default action, the *
default action must be activated. If the CheckButton is in a *
Menu: *

• If the CheckButton was previously unset, it must be set. *
• If the CheckButton was previously set, it must be unset. *
• In both cases, the CheckButton must be disarmed, and the *

Menu must be unposted. *
<Select> or <Space>

If the CheckButton was previously unset, it must be set. If the *
CheckButton was previously set, it must be unset. In both *
cases, the CheckButton must be disarmed, and, if the *
CheckButton is in a Menu, the Menu must be unposted.

9-15

OSF/Motif Style Guide

CheckButton

<Help> Must provide any available help for the CheckButton.

Related Information

9-16

For more information, see the reference pages for RadioButton and
ToggleButton.

*

Controls, Groups, and Models Reference Pages

CommandBox

CommandBox

Description

A CommandBox is a special-purpose composite component for command
entry that provides a built-in command history mechanism. The *
CommandBox must be composed of a Text component with a command line *
prompt for command input, and a List component above the Text component *
for a command history area. The List must use either the single or browse *
selection model. When a List element is selected, its contents must be *
placed in the Text area. The default action of the CommandBox must be to *
pass the command in the Text area to the application for execution and to *
add the command to the end of the List. The List component can be
scrollable.

The List navigation actions <I>, <.t>, <Ctrl> <Begin>, and <Ctrl> <End> *
must be available from the Text component for moving the cursored element *
within the List and thus changing the contents of the Text. The List
navigation actions <PageUp> and <PageDown> should also be available
from the Text component for moving the cursored element within the List.

9-17

OSF/Motif Style Guide

CommandBox

Illustration

Related Information

For more information, see the reference page for CommandDialog.

9-18

Controls, Groups, and Models Reference Pages

CommandDialog

CommandDialog

Description

A CommandDialog should be used to enter commands for processing. It
should not interrupt the user's interaction with the application. It should
include a CommandBox.

Illustration

Related Information

For more information, see the reference page for DialogBox.

9-19

OSF/Motif Style Guide

Composition

Composition

Description

The Composition group should be used to organize components in an
arbitrary layout. The layout style can be either arbitrary, in even rows and
columns, or so that the position of components is relative to the
Composition component and the components it contains. This component is
composed of an area for organizing components.

Navigation

This group must follow the navigation model as described in Chapter 3.

Related Information

For more information, see the reference pages for each layout group.

9-20

*

\

Controls, Groups, and Models Reference Pages

Default Activation

Default Activation

Description

Any window can have a default action, although default actions are most
frequently used in DialogBoxes. A DialogBox should have a default action
associated with it. The default action in a window can change depending
upon which component has the focus. The current default action should
correspond to the action of some PushButton, called the current default
PushButton of the window.

The current default PushButton must be highlighted in some way, usually by *
displaying a border around it. When the focus is on a PushButton, its action *
must be the default action, and the PushButton must show default *
highlighting. If the default action in a window varies, some PushButton *
must always have default highlighting, except when there is no current *
default action.

In a DialogBox, default PushButtons should be in the bottom area of
PushButtons of the DialogBox. However, if a particular default action is
associated with a cluster of controls in a window, the corresponding default
PushButton can be located adjacent to the cluster.

When an explicit focus policy is in use, and the focus is outside the window,
default highlighting should be placed on the PushButton whose action
corresponds to the default action that would result from moving the focus to
the window by using keyboard navigation among windows.

The default action of a DialogBox is activated according to the following
rules:

• If the focus is in a window, <Enter> and <Ctrl> <Return> must invoke *
the default action, and, if the focus is in a component in a window other *
than multiline Text, <Return> must invoke the default action. These *
actions must have no other effect on the component with the focus, *
unless the default action has some effect.

9-21

-r'
I

OSF/Motif Style Guide

Default Activation

• In list-like and graphics-like collections, when the location cursor is not
on an activatable element, BSelect Click 2 should act like BSelect
Click, followed by invocation of the default action .

• When the focus is on a ToggleButton not used for expert activation,
BSelect Click 2 should activate the ToggleButton and then perform the
default action.

Except in the middle of a button motion operation, <Cancel> anywhere in a *
DialogBox must be equivalent to activating the Cancel PushButton in the *
DialogBox.

Related Information

9-22

See Chapter 5 for general information about the activation model and
default activation.

Controls, Groups, and Models Reference Pages

DialogBox

DialogBox

Description

A DialogBox should be used to group components in a window secondary to
the main tasks of the application. Although a DialogBox can contain any
components, a simple DialogBox is composed of a Label and PushButtons
for supplying a response to the DialogBox. The OSF/Motif toolkit provides
a number of ready-designed DialogBoxes for common uses:
CommandDialog, FileSelectionDialog, MessageDialog, PromptDialog, and
SelectionDialog. There are also a number of different types of
MessageDialogs: ErrorDialog, InformationDialog, QuestionDialog,
WorkingDialog, and WarningDialog. The illustration on this reference page
shows a typical DialogBox.

DialogBox PushButtons should use the following common labels and
actions. The actions are in the approximate sequence in which they should
appear in DialogBoxes.

Yes

No

OK

Close

Must indicate an affirmative response to a question posed in the *
DialogBox and then close the window. While Yes is not an
active-voice label, it implies a positive response to a question in a
QuestionDialog or a WarningDialog. Only use Yes if it is a clear
answer to the question.

Must indicate a negative response to a question posed in the *
DialogBox and then close the window. While No is not an
active-voice label, it implies a negative response to a question in
a QuestionDialog. Only use No if it is a clear answer to the
question.

Must cause the application to apply any changes and perform *
related actions specified by components in the DialogBox, and *
then dismiss the DialogBox. While OK is not an active-voice
label, its usage is too common to change.

Should cause the current DialogBox to be closed without
performing any of the actions specified by components in the
DialogBox. This action is usually only available in DialogBoxes

9-23

OSF/Motif Style Guide

DialogBox

9-24

that provide status information such as a Working DialogBox.
This label can also be used if the actions in the DialogBox cannot
be reversed, in which case this label replaces Cancel after the first
irreversible action is performed.

Apply Must apply any changes and perform the related actions specified *
by the components in the DialogBox.

Retry Must cause the task in progress to be attempted again. This action *
is commonly found in message boxes that report an error.

Stop Must end the task in progress at the next possible breaking point. *
This action is commonly found in a Working DialogBox.

Pause Must cause the task in progress to be paused. This action is *
commonly found in a Working DialogBox and should be used in *
combination with Resume.

Resume Must cause a previously paused task to resume. This action is *
commonly found in a Working DialogBox and should be used in *
combination with Pause.

Reset Must cancel any user changes that have not been applied to the *
application. It must also reset the status of the DialogBox to the *
state since the last time the DialogBox action was applied or to *
the initial state of the DialogBox.

Cancel Must close the DialogBox without performing any DialogBox *
actions not yet applied to the application. Pressing <Cancel> *
anywhere in the DialogBox, except during a cancelable drag *
operation, must perform the action of this button.

Help Must provide any help for the DialogBox.

You should arrange PushButton actions in DialogBoxes like other
PushButtons, according to order and frequency of use. The common action
PushButtons should be ordered as presented in the previous list. Positive
responses to the DialogBox should be presented first, followed by negative
responses and canceling responses. Help should always be the last action
on the right.

*

Controls, Groups, and Models Reference Pages

Dialog8ox

Illustration

Tex1: en1:ry box

Op1:ion menus Push bU1:1:ons

Navigation

A DialogBox must follow the navigation model described in Chapter 3.

Related Information

For more information, see the reference pages for CommandDialog,
ErrorDialog, FileSelectionDialog, InformationDialog, MessageDialog,
PromptDialog, QuestionDialog, SelectionDialog, WarningDialog, and
WorkingDialog.

9-25

*

OSF/Motif Style Guide

Drag and Drop

Drag and Drop

Description

9-26

Drag and drop provides a quick and simple model for transferring data
within and between applications. A drag and drop interaction is
accomplished in four steps:

1. The user selects elements to drag and grabs them with the pointer, or
grabs an unselected element.

2. The user drags elements to the drop location.

3. The user drops the elements on the drop location.

4. The component dropped on processes the drop action.

Pressing Transfer in a draggable element and moving the pointer must start *
a drag and drop interaction. If a drag is initiated in an unselected region and *
the pointer is over two possible draggable elements, the drag must occur on *
the highest draggable element in the stacking order. This also implies that
in nested draggable elements the drag occurs from the smallest draggable
element under the pointer.

When BSelect is used for dragging operations, its use must supersede the *
use of BSelect Motion in the selection models described in Section 4.1.

Any successful drag and drop transfer from a read-only component should *
by default result in a copy of the data, but it can result in a link. Transfers
from writable components can by default result in a copy, a link, or a move. *
<Shift> BTransfer Release must force a move operation if possible; *
otherwise, the operation must fail. <Ctrl> BTransfer Release must force a *
copy operation if possible; otherwise, the operation must fail. <Ctrl> *
<Shift> BTransfer Release must force a link operation if possible; *
otherwise, the operation must fail.

If a system provides drag and drop help, pressing <Help> during a drag and
drop operation should allow the posting of a DialogBox with the help
information and the possible choices for continuing the drag and drop
operation. Pressing <Cancel> during a drag operation must cancel the *

Controls, Groups, and Models Reference Pages

Drag and Drop

current drag operation and return the system to the state prior to the start of *
the drag operation.

Releasing BTransfer must end a drag and drop operation. When a user *
releases BTransfer, the drop operation must occur at the location of the *
hotspot of the drag icon pointer. The drop must occur into the highest drop *
site in the stacking order. This also implies that in a group of nested drop
sites the drop occurs into the smallest drop site under the pointer.

Related Information

See Section 4.3 for more information on the drag and drop model, and for
information on quick transfer and the selection models.

9-27

OSF/Motif Style Guide

Edit Menu

Edit Menu

Description

9-28

The common Edit Menu contents are described as follows. Note that you
should only include those functions actually supported by your application.
The Edit Menu can contain a TearOffButton. The illustration on this
reference page shows an Edit Menu.

Undo Alt+Backspace
Must reverse the most recently executed action. To provide a *
visual cue to the user, the Undo selection title should be
dynamically modified to indicate what is being undone. For
example, if the most recently executed action was a paste, the
action name would be Undo paste. Your application should be
able to undo all of the actions in the Edit Menu. This action must *
have the mnemonic U.

Cut Shift+Del
Must remove the selected portion of data from the client area to *
the clipboard. This action must choose the component to act on *
by following the rules in Section 4.2.2 for operations that act on *
selections. This action must have the mnemonic T.

Copy Ctrl+ Ins
Must copy the selected portion of data to the clipboard without *
removing the original data from the client area. This action must *
choose the component to act on by following the rules in Section *
4.2.2 for operations that act on selections. This action must have *
the mnemonic C.

Copy Link
Must copy a link of the selected portion of data to the clipboard *
without removing the original data from the client area. This *
action must choose the component to act on by following the rules *
in Section 4.2.2 for operations that act on selections. This action *
must have the mnemonic K.

Controls, Groups, and Models Reference Pages

Edit Menu

raste Shift+Ins
Must paste the contents of the clipboard into a client area. This *
action must choose the component to act on by following the rules *
in Section 4.2.2 for operations that do not act on selections. This *
action must have the mnemonic P.

Paste Link
Must paste a link of the data represented by the contents of the *
clipboard into a client area. This action must choose the *
component to act on by following the rules in Section 4.2.2 for *
operations that do not act on selections. This action must have *
the mnemonic L.

Cl~ar Must remove a selected portion of data from the client area *
without copying it to the clipboard. The remaining data is not
compressed to fill the space that was occupied by the cleared data. *
This action must choose the component to act on by following the *
rules in Section 4.2.2 for operations that act on selections. This *
action must have the mnemonic E.

Delete Must remove a selected portion of data from the client area *
without copying it to the clipboard. This action must choose the *
component to act on by following the rules in Section 4.2.2 for *
operations that act on selections. This action must have the *
mnemonic D.

Select All Ctri+/
Must make the primary selection consist of all the elements in a *
component of the client area. This action must choose the *
component to act on by following the rules in Section 4.2.2 for *
operations that do not act on selections. If the action uses an
accelerator, it should be <Ctrl> <I>.

Deselect All Ctri+\
Must remove from the primary selection all the elements in a *
component of the client area. This action must choose the *
component to act on by following the rules in Section 4.2.2 for *
operations that do not act on selections. If the action uses an
accelerator, it should be <Ctri> <\>.

9-29

OSF/Motif Style Guide

Edit Menu

Select Pasted
Must make the primary selection consist of the last element or *
elements pasted into a component of the client area. This action *
must choose the component to act on by following the rules in *
Section 4.2.2 for operations that do not act on selections.

Reselect AIt+Insert
Must make the primary selection consist of the last selected *
element or elements in a component of the client area. This *
action must choose the component to act on by following the rules *
in Section 4.2.2 for operations that do not act on selections. The *
action must be available only in components that do not support *
persistent selections and only when the current selection is empty.
If the action uses an accelerator, it should be <AIt> <Insert>.

Promote AIt+Insert
Must promote to the primary selection the current selection of a *
component of the client area. This action must choose the *
component to act on by following the rules in Section 4.2.2 for *
operations that act on selections. This action must only be *
available for components that support persistent selections. If the
action uses an accelerator, it should be <A It> <Insert>.

You should include Menu items in the order described. If you add new
Menu items, you should insert them near similar elements.

If you use accelerators for Undo, Cut, Copy, and Paste, you must use either *
one or both of the models presented in the following two tables.

Table 9-1. Edit Menu Accelerators, Model 1

Edit Menu Item Accelerator

Undo <Alt> <BackSpace>
Cut <Shift> <Delete>
Copy <Ctrl> <Insert>
Paste <Shift> <Insert>

9-30

Controls, Groups, and Models Reference Pages

Edit Menu

Table 9-2. Edit Menu Accelerators, Model 2

Edit Menu Item Accelerator

Undo <Ctrl> <Z>
Cut <Ctrl> <x>
Copy <Ctrl> <C>
Paste <Ctrl> <v>

In addition, if your keyboard has <Undo>, <Cut>, <Copy>, and <Paste>
keys, these should be supported as accelerators for the corresponding Menu
items as well.

Dlustration

9-31

OSF/Motif Style Guide

Edit Menu

Related Information

9-32

See Chapter 6 for more information on the MenuBar system and for general
information about Menu design.

Controls, Groups, and Models Reference Pages

ErrorDialog

ErrorDialog

Description

An ErrorDialog should be used to convey a message about a user error. It
should stop user interaction with the application until it is dismissed. It
should include an error symbol, a message, and one of the following button
arrangements:

OK Cancel
OK Cancel Help

Illustration

Related Information

For more information, see the reference page for DialogBox.

9-33

OSF/Motif Style Guide

Field Controls

Field Controls

Description

Field controls are components that use internal navigation controls. Field
controls should be navigation fields. The following text describes the field
controls:

Sash

Scale

ScrollBar

List

9-34

Used to set the boundary between two components. A Sash is
usually a small square on the boundary between two
components. The separated components are called Panes,
and a group of Panes, Separators, and Sashes is called a
PanedWindow.

Used to set or display a value in a range. A Scale is usually
composed of a slider, moving within an element that
indicates the size of the range, and a Label that indicates the
current value. The position of the slider indicates the value
relative to the range. The slider is moved directly by using
the mouse pointer or by using the arrow keys. A Scale can
also have buttons with arrow graphics for moving the slider
with the mouse.

U sed to scroll the visible area of a component. A ScrollBar is
usually composed of a slider, moving within an element that
indicates the full size of the component, and buttons with
arrow graphics for moving the slider with the mouse. The
slider indicates the relative position and size of the visible
area of the component. The slider is moved directly by using
the mouse pointer or by using the arrow keys.

Used for selecting elements from a list of elements. A List
can allow multiple items to be selected or can be constrained
to allow only one item to be selected at a time. A List is
usually composed of a vertical list of items. A List can also
have both horizontal and vertical ScrollBars for scrolling the
visible portion of the list of items.

Text

Canvas

Navigation

Controls, Groups, and Models Reference Pages

Field Controls

U sed for displaying, entering, and modifying text. There are
single-line and multiple-line variants. Multiline Text can
have both horizontal and vertical ScrollBars for scrolling the
visible portion of the text area.

Used for displaying, entering, and modifying graphics. A
Canvas can have both horizontal and vertical ScrollBars for
scrolling the visible portion of the drawing area.

Field controls have navigation that is specific to the component. See the
reference pages for each field control for information about its navigation.

Other Operations

Field controls have operations that are specific to the component. See the
reference pages for each field control for information about its operations.

Related Information

For more information, see the reference pages for each field control.

9-35

OSF/Motif Style Guide

File Menu

File Menu

Description

9-36

The common File Menu contents are described as follows. Note that you
should only include those functions actually supported by your application.
If the label File is not appropriate to the context of your application, you can
choose a different, more appropriate label. The File Menu can contain a
TearOffButton. The illustration on this reference page shows a File Menu.

New

Qpen ...

Must create a new file. The New operation must clear existing *
data from the client area. If completion of the operation will *
obliterate current changes to the file, you must display a *
DialogBox, asking the user about saving changes. This action *
must have the mnemonic N.

Must open an existing file. The Open operation must prompt *
the user for the name of the file with a DialogBox. The title
bar should be updated with the name of the newly opened file. *
If completion of the operation will obliterate current changes *
to the file, you must display a DialogBox, asking the user *
about saving changes. This DialogBox should be displayed
after the user selects a new file. This action must have the *
mnemonic O.

Save Must save the currently opened file without removing the *
existing contents of the client area. If the currently opened file *
has no name, Save must prompt for a filename with a *
DialogBox. This action must have the mnemonic S.

Save As . .. Must save the currently opened file under a new name without *
removing the existing contents of the client area. The Save As *
operation must prompt for the name of the file with a *
DialogBox. If the user tries to save the new file under an *
existing name, Save As must alert the user with a DialogBox *
of a possible loss of data. This action must have the *
mnemonic A.

rrint

Close

Exit

Controls, Groups, and Models Reference Pages

File Menu

Must schedule a file for printing. If your application requires *
specific printing information before printing, the operation *
must first request that information with a DialogBox, and the *
entry title must be followed by an ellipsis. Printing
information can also be specified for the application in the
Options Menu. This action must have the mnemonic P. *
Can be supplied in applications that have multiple
independent primary windows. This action must not be *
supplied in applications with a single primary window or *
multiple dependent primary windows. This action must only *
close the current primary window and its associated secondary *
windows; that is, the window family. This action must have *
the mnemonic C. You can include this action even though it is
similar to the Close action in the window Menu. This ensures
that users have a way to close the primary window even if they
are not running a compliant window manager. Applications
should prompt the user to save any unsaved changes if the
action would cause loss of data.

Must end the current application and all windows associated *
with it. This action is equivalent to closing all primary
windows of the application. If completion of the operation *
will obliterate current changes to the file, you must display a *
DialogBox, asking the user about saving changes. This action *
must have the mnemonic X. You should include this action
even though it is similar to the Close action in the window
Menu. This ensures that users have a way to end the
application even if they are not running a compliant window
manager. Applications should prompt the user to save any
unsaved changes if the action would cause loss of data. If your
application does not have a File Menu, put Exit at the end of
the first Pulldown Menu.

9-37

OSF/Motif Style Guide

File Menu

Illustration

Related Information

9-38

See Chapter 6 for more information on the MenuBar system and for general
information about Menu design.

Controls, Groups, and Models Reference Pages

FileSelectionBox

FileSelectionBox

Description

A FileSelectionBox is a special-purpose composite component for file
selection. It can be used to traverse through directories, view the files and
subdirectories in them, and then select files. The FileSelectionBox must be *
composed of at least the following components: *

• A Text component for displaying and editing a directory mask used to *
select the files to be displayed. The directory mask must be a string *
specifying the base directory to be examined and a search pattern. *

• A List component for displaying filenames. The file list should display *
all files and subdirectories in the base directory that match the search *
pattern. The List must use either the single or browse selection model. *

• A List component for displaying subdirectories. The directory list *
should display the subdirectories of the base directory, as well as the *
base directory itself and its parent directory. The List must use either *
the single or browse selection model. *

• A Text component for displaying and editing a filename. *
• A group of PusbButtons, labeled OK, Filter, Cancel, and Help. If the *

FileSelectionBox is used to perform a specific action to the selected *
files, OK can be replaced by a label describing the action to be done.

• Additional elements can be added by an application.

The user must be able to select a new directory to examine by scrolling *
through the list of directories and selecting the desired directory or by *
editing the directory mask. Selecting a new directory from the directory list *
must not change the search pattern. A user must be able to select a new *
search pattern by editing the directory mask.

The List navigation actions <i>, <i>, <Ctrl> <Begin>, and <Ctrl> <End> *
must be available from the Text components for moving the cursored *
element within each List and thus changing the contents of the Text. The
List navigation actions <PageUp> and <PageDown> should also be
available from the Text components for moving the cursored element within

9-39

OSF/Motif Style Guide

FileSelectionBox

9-40

each List. The contents of the directory Text must correspond to the *
contents of the directory List, and the contents of the filename Text must *
correspond to the contents of the filename List.

The user must be able to select a file by scrolling through the list of *
filenames and selecting the desired file or by entering the filename directly *
into the Text component. Selecting a file from the list causes that filename
to appear in the file selection Text component.

The user can select a new file as many times as desired. The application *
must not be notified until one of the following events occurs: *

• The user activates the OK PushButton. *
• The user presses <Enter> or <Return> while the filename Text *

component has the keyboard focus. *
• The user presses <Enter> or <Return> while the location cursor is on *

an item in the file List. *
• The user double-clicks BSelect on an item in the file List. *

The FileSelectionBox must initiate a directory and file search when any of *
the following occurs: *

• The FileSelectionBox is initialized. *
• The user activates the Filter PushButton. *
• The user double-clicks or presses <Enter> or <Return> on an item in *

the directory List. *
• The user presses <Enter> or <Return> while the directory mask Text *

edit area has the keyboard focus. *

Controls, Groups, and Models Reference Pages

FileSelectionBox

Illustration

Related Information

For more information, see the reference page for FileSelectionDialog.

9-41

OSF/Motif Style Guide

FileSelectionDialog

FileSelectionDialog

Description

9-42

A FileSelectionDialog should be used to enter the name of a file for
processing. It should not interrupt the user's interaction with the
application. It should include a FileSelectionBox.

Controls, Groups, and Models Reference Pages

FileSelectionDialog

Illustration

Related Information

For more information, see the reference page for DialogBox.

9-43

OSF/Motif Style Guide

Focus

Focus

Description

9-44

The keyboard focus model is defined by a focus policy. A focus policy is a
specific mechanism for moving the focus among windows and components. *
The implicit and explicit focus policies must be supported.

In the implicit focus policy, also called the pointer, real-estate driven, or
point-to-type policy, the keyboard focus moves to the window or component
into which a user moves the mouse pointer. No explicit action is performed
to set the keyboard focus in the implicit focus model. Keyboard events are
sent to the window or component that the mouse pointer is in, more
specifically to the component that the mouse pointer is in. In implicit mode,
the keyboard focus tracks the mouse pointer. Because of this, there is no
way to move the keyboard focus from the keyboard using implicit mode. In
this focus policy, the location cursor for keyboard events does not need to be
shown; however, the application can show it.

The explicit focus policy requires the user to explicitly select which window
or component receives the keyboard focus. In explicit focus mode at the
window level, a user moves the keyboard focus to a window by pressing
BSelect while the mouse pointer is over the window. Simply moving the
mouse pointer over a window does not give the window the keyboard focus.
Because of this, explicit mode is often called click-to-type. In explicit
mode within a window, a user generally moves the keyboard focus to a
specific component within a window by pressing BSelect over the
component. Pressing BSelect must not move focus to a component that is *
not traversable or does not accept input. Pressing BSelect in a component
that is used only to change the visible portion of another component, such as
a ScrollBar or Sash, should act on that component but should not move
focus to it. In this focus policy, the location of keyboard focus must be *
shown by a location cursor.

Controls, Groups, and Models Reference Pages

Focus

Related Information

See Chapter 2 for more information about the focus model.

9-45

OSF/Motif Style Guide

Frame

Frame

Description

A Frame should be used to frame other components. It simply provides a
decorative border.

Other Operations

This component can indicate the input focus.

9-46

Controls, Groups, and Models Reference Pages

Framing Groups

Framing Groups

Description

Framing groups are used to frame groups of components as the following
text describes:

Frame Draws framing decorations around a component.

ScrolledWindow Frames a component and adds ScrollBars for scrolling
the visible area of the component.

MainWindow Organizes the contents of a primary window. A
MainWindow frames the client area and can optionally
include ScrollBars, a MenuBar, a command area, and a
message area.

Navigation

These groups must follow the navigation model as described in Chapter 3.

Related Information

For more information, see the reference pages for each framing group.

9-47

*

OSF/Motif Style Guide

Help Menu

Help Menu

Description

9-48

There are two acceptable models for the contents of the Help Menu. The
OSFIMotif Style Guide allows either model.

The common Menu contents for this model are described in the following
text. Note that you should only include those functions actually supported
by your application. The Help Menu can contain a TearOffButton. The
illustration on this reference page shows this first model of a Help Menu.

On Context Shift+Help
Must initiate context-sensitive help by changing the *
shape of the pointer to the question pointer described in *
Section 2.2.2. When the user moves the pointer to the *
component help is wanted on and presses BSelect, any *
available context-sensitive help for the component must *
be presented, and the pointer reverts from the question *
pointer. This action must have the mnemonic C. If the
action uses an accelerator, it should be <Shift>
<Help>.

On Uelp Must provide information on how to use the *
application's help facility. This action must have the *
mnemonic H.

On Window Must provide general information about the window *
from which help was requested. This action must have *
the mnemonic W.

On Keys Must provide information about the application's use of *
function keys, mnemonics, and keyboard accelerators. *
This action must have the mnemonic K.

Index Must provide an index for all help information in the *
application. This action must have the mnemonic I.
The index can provide search capabilities.

Tutorial

On Yersion

Controls, Groups, and Models Reference Pages

Help Menu

Must provide access to the application's tutorial. This *
action must have the mnemonic T.

Must provide the name and version of the application. *
This action must have the mnemonic V. It can provide
other information as well.

The common Menu contents in the second model are described in the
following text. Note that you should only include those functions actually
supported by your application. The Help Menu can contain a
TearOffButton.

Context-Sensitive Help Shift+Help

Overview

Index

Keyboard

Tutorial

Using Uelp

Must initiate context-sensitive help by changing the *
shape of the pointer to the question pointer described in *
Section 2.2.2. When the user moves the pointer to the *
component help is wanted on and presses BSelect, any *
available context-sensitive help for the component must *
be presented, and the pointer reverts from the question *
pointer. This action should be followed by a separator. *
This action must have the mnemonic C. If the action
uses an accelerator, it should be <Shift> <Help>.

Must provide general information about the application *
window from which help was requested. This action *
must have the mnemonic O.

Must provide an index for all help information in the *
application. This action must have the mnemonic I.
The index can provide search capabilities.

Must provide information about the application's use of *
function keys, mnemonics, and keyboard accelerators. *
This action must have the mnemonic K.

Must provide access to the application's tutorial. This *
action must have the mnemonic T.

Must provide information on how to use the *
application's help facility. This action must have the *
mnemonic H.

9-49

OSF/Motif Style Guide

Help Menu

rroduct Information
Must provide the name and version of the application. *
This action must have the mnemonic P. It can provide
other information as well.

Applications should place additional Help Menu items between Index and
Using Help.

Help is usually provided in DialogBoxes but can also appear in the message
area. You should include Menu items in the order described. If you add
new Menu items, you should insert them near similar elements.

Illustration

9-50

Controls, Groups, and Models Reference Pages

Help Menu

Related Information

See Chapter 6 for more information on the MenuBar system and for general
information about Menu design.

9-51

OSF/Motif Style Guide

Icon Menu

Icon Menu

Description

Clicking BSelect in an icon must give the icon the keyboard focus and post *
the icon Menu. The icon Menu must be the same Menu as the window *
Menu for the associated primary window. Size should not be available from
the icon Menu. Navigating to the icon must also give the icon the keyboard *
focus and should post the icon Menu.

Double-clicking BSelect anywhere in the icon must restore the window *
family, just as the icon Menu item Restore does. If the window is currently *
minimized, but its previous state was maximized, double-clicking BSelect *
returns it to the maximized state. Selecting Maximize from the icon Menu *
always maximizes the corresponding window. If the window is minimized, *
Minimize must not be available in the icon Menu; otherwise, selecting it *
minimizes the window family. Pressing BSelect or BTransfer anywhere in *
the icon and dragging the mouse pointer must move the icon to track the *
pointer, just as the icon Menu item Move does.

If the window manager has been customized by the user so that the icon *
Menu does not pop up when the icon gets the focus, <Shift> <Escape>, *
<AU> <Space>, <Menu>, and BMenu must pop up the icon Menu.

Related Information

9-52

See Chapter 7 for more information on the icon Menu and the window
manager in general. See Chapter 6 for information about Menu design.

Controls, Groups, and Models Reference Pages

IconBox

IconBox

Description

An icon box is a specialized window that acts as a storage location for
icons. An icon box acts like a typical window in the sense that it has a
window frame and frame components. The client area of an icon box must *
have an area for holding icons and can have horizontal and vertical scroll *
bars for moving around the icon area.

The icon box must have all the same components as any other primary *
window. Like other windows it can be sized, moved, minimized,
maximized, restored, and lowered. However, the window manager must not *
allow the icon box to be closed. The system Menu action Close must be *
replaced with the system Menu action Pack Icons in an icon box. Double- *
clicking BSelect in the icon box system Menu must only open the icon box *
system Menu. It must not close the icon box. Pack Icons arranges the icons
as close as possible together in the visible icon area if possible. Pack Icons *
must have the mnemonic P. If Pack Icons has an accelerator, it should be
<AU> <F12> if <F12> is available. When the input focus is in the icon box, *
<Shift> <Escape> or <AU> <Space> must pop up the icon box system *
Menu if the Menu is unposted. If the Menu is already posted, <Shift> *
<Escape> or <AU> <Space> must unpost the Menu.

The icon box can contain an icon for each window family, even if it is
active. The icon for minimized window families must be the same as the *
icon would be outside of the icon box. The icon for an active window
family should be similar to the minimized icon, deemphasized somehow.

Clicking BSelect in an icon must give the icon keyboard focus and post the *
icon Menu. The icon Menu must be the same Menu as the window Menu *
for the associated primary window. If the icon represents an active window *
family, Restore and Size must not be available from the icon Menu. If the *
icon represents a minimized window family, Size must not be available *
from the icon Menu. If the window manager is customized so that the icon *
with the focus does not have its window Menu automatically posted, *
BMenu or <Menu> must post its Menu.

9-53

OSF/Motif Style Guide

IconBox

9-54

Double-clicking BSelect anywhere in an icon that represents a minimized *
window family must restore the window family, just as the icon Menu item *
Restore does. Double-clicking BSelect anywhere in an icon that represents *
an active window family must raise the window family to the top of the *
window hierarchy. If the window is currently minimized, but its previous *
state was maximized, double-clicking BSelect returns it to the maximized *
state. Selecting Maximize from the icon Menu always maximizes the *
corresponding window. If the window is minimized, Minimize must not be *
available in the icon Menu; otherwise, selecting it minimizes the window *
family. Pressing BSelect or BTransfer anywhere in the icon and dragging *
the mouse pointer must move the icon within the icon area to track the *
pointer, just as the icon Menu item Move does.

The <.t>, <I>, <~>, and <f-> directional keys must navigate among the *
icons in the icon box. Icon navigation must behave as described in the *
following text. Note that <.t> and <~> do not need to traverse icons in the
same order.

<.t> In a left-to-right language environment, this key must move the *
location cursor through the icons in the icon box, starting at the *
upper-left icon and ending at the lower-right icon, then wrapping *
back up to the upper left. In a right-to-Ieft language environment,
the location cursor can move, starting at the upper right and
moving to the lower left.

<f-> This key must move the location cursor through the icons in the *
opposite direction of <~>.

<~> In a left-to-right language environment, this key must move the *
location cursor through the icons in the icon box, starting at the *
upper-left icon and ending at the lower-right icon, then wrapping *
back up to the upper left. In a right-to-Ieft language environment,
the location cursor can move, starting at the upper right and
moving to the lower left.

<I> This key must move the location cursor through the icons in the *
opposite direction of <.t>.

Controls, Groups, and Models Reference Pages

IconBox

lliustration

Related Information

See Chapter 7 for more information about icons and the window manager.

9-55

OSF/Motif Style Guide

Icons

Icons

Description

9-56

An icon is a stylized representation of an object. A window icon is a
minimized representation of a window or window family that can help
organize windows and tasks in the display. Iconifying a window is also
known as minimizing a window. The window manager must iconify all *
windows of window family together. It must not iconify any single window, *
primary or secondary, from a window family without also iconifying all the *
other windows in the window family. The iconic representation of a
window family should not change any state in the windows, except the
visual representation of the window. The application running inside of a *
window must continue running even when the application is iconified. The
application can adjust its own state when it is iconified.

An icon is made up of an image and a label. The illustration on this
reference page shows a typical Motif icon.

The image should be surrounded by a border that indicates when the icon
has the keyboard focus. The image area can contain text or a bitmap. The
label should be located just below the image and its border. The label can
also indicate when the icon has the keyboard focus by highlighting with the
image area.

The label should contain the same text as the title area of the corresponding
primary window, or an abbreviated form of it. When the icon does not have *
the keyboard focus, the width of the label must be the same as the width of *
the image area and its border, truncating text if 1).ecessary. When the icon
has the keyboard focus, the width of the label can expand to display the
entire text.

Clicking BSelect in an icon must give the icon keyboard focus and should *
post the icon Menu. Navigating to the icon must also give the icon the *
keyboard focus and should post the icon Menu.

Double-clicking BSelect anywhere in the icon must restore the window *
family, just as the icon Menu item Restore does. If the window is currently *
minimized, but its previous state was maximized, double-clicking BSelect *

Controls, Groups, and Models Reference Pages

Icons

returns it to the maximized state. Selecting Maximize from the icon Menu *
always maximizes the corresponding window. If the window is minimized, *
Minimize must not be available in the icon Menu; otherwise, selecting it *
minimizes the window family. Pressing BSelect or BTransfer anywhere in *
the icon and dragging the mouse pointer must move the icon to track the *
pointer, just as the icon Menu item Move does.

If the window manager has been customized by the user so that the icon *
Menu does not pop up when the icon gets the focus, <Shift> <Escape>, *
<Alt> <Space>, <Menu>, and BMenu must pop up the icon Menu.

Illustration

Related Information

See Chapter 7 for more information about icons and the window manager.

9-57

OSF/Motif Style Guide

Information Dialog

lnformationDiaiog

Description

An lnformationDialog should be used to convey information to the user. It *
must not interrupt the user's interaction with the application. It should
include an information symbol, a message, and one of the following button
arrangements:

OK
OK Help

Dlustration

Related Information

For more information, see the reference page for DialogBox.

9-58

Controls, Groups, and Models Reference Pages

Input Devices

Input Devices

Description

The most typical pointing device is a mouse, although a graphics tablet,
track ball, joystick, and other tools also work as pointing devices. You can
use any pointing device in place of a mouse. This guide assumes that a
mouse, or any pointing device, has the following three buttons. Chapter 2
describes the button bindings for pointing devices that do not have three
buttons.

BSelect Used for selection, activation, and setting the location cursor. *
This button must be the leftmost button, except for left-handed *
users where it can be the rightmost button.

BTransfer Used for moving and copying elements. This button must be *
the middle mouse button, unless dragging is integrated with *
selection. Details about the effects of integrating BTransfer
with BSelect are described in Chapter 4.

BMenu Used for popping up Menus. This button must be the rightmost *
button, except for left-handed users where it can be the leftmost *
button.

Since not all keyboards are the same, it is difficult to give style guidelines
that are correct for every manufacturer's keyboard. To solve this problem,
this guide describes keys using a model keyboard mechanism. Wherever
keyboard input is specified, the keys are indicated by the engraving they
have on the aSF/Motif model keyboard. The model keyboard does not
correspond directly to any existing keyboard; rather, it assumes a keyboard
with an ideal set of keys.

In addition to the standard letter, number, and character keys, the aSF/Motif
model keyboard is composed of the following special keys:

• The special printing characters <.I>, <\>, and <!>

• The standard modifier keys <Ctrl>, <AU>, and <Shift>

• Ten function keys <Fl> through <FlO>

9-59

OSF/Motif Style Guide

Input Devices

9-60

• The arrow keys <t>, <f--->, <~>, and <I>

• <BackSpace>

• <Cancel>

• <Delete>

• <End>

• <Escape>

• <Help>

• <Home>

• <Insert>

• <Menu>

• <PageDown>

• <Page Up>

• <Return>

• <Space>

• <Tab>

The aSP/Motif model keyboard also contains the following optional keys,
which although useful, either are not necessary or can be replaced by
combinations of other keys:

• <CapsLock>

• <Copy>

• <Cut>

• <Enter>

• <ModeSwitch>

• <NumLock>

• <PageLeft>

• <PageRight>

• <Paste>

Controls, Groups, and Models Reference Pages

Input Devices

• <ScrollLock>

• <Select>

• <Undo>

Throughout this guide, behavior is described in terms of model keyboard
keys. When a behavior takes advantage of an optional key from the model
keyboard, it is also described in terms of the required special keys. Each of *
the nonoptional keys described on the aSF/Motif model keyboard must be *
available either as specified or by using other keys or key combinations if *
the specified key is unavailable.

Related Information

See Chapter 2 for a more information about input devices.

9-61

OSF/Motif Style Guide

Label

Label

Description

A Label should be used to display text or graphics that label other
components. This component must be composed of an area for displaying a *
text or graphics label.

Illustration

Navigation

A Label must have no internal navigation. *

9-62

Controls, Groups, and Models Reference Pages

Layout Groups

Layout Groups

Description

Layout groups are used for organizing components into groups as described
in the following text:

Composition

PanedWindow

Navigation

Organizes a collection of components, including
groups, in an arbitrary layout.

A linear grouping of components and Sashes. Sashes
are used to set the boundary between two components.
The separated components are called Panes and can
contain any components.

Layout groups must follow the navigation model as described in Chapter 3.

Related Information

For more information, see the reference pages for each layout group.

9-63

*

OSF/Motif Style Guide

List

List

Description

A List should be used to present a list of elements for selection. The List
elements can be selected using either the single selection model, the browse
selection model, the multiple selection model, or the discontiguous
selection model. This component must be composed of an area for *
presenting a list of text or graphics elements. It can optionally have vertical
and horizontal ScrollBars, which show different views of the List elements.

The location cursor in a List should differentiate between normal mode and
add mode. The location cursor should be a solid box in normal mode and a
dashed box in add mode.

Illustration

9-64

Controls, Groups, and Models Reference Pages

List

Navigation

The following text describes the navigation actions of this component:

<Ctrl> <Begin> Must move the location cursor to the first item in the List. *
<Ctrl> <End> Must move the location cursor to the last item in the List. *
<I> Must move the location cursor to the previous item in the *

<PageD own>

<PageUp>

Other Operations

List.

Must move the location cursor to the next item in the List. *
In a scrollable List, must move the location cursor to the *
item one page down in the List.

In a scrollable List, must move the location cursor to the *
item one page up in the List.

The following text describes the operations of this component:

BSelect Click 2 Must select the current List item and cause any default *
action for the window to occur.

<Begin>

<End>

<~>

In a scrollable List, must move the horizontal scroll *
region so that the leftmost edge of the List is visible.

In a scrollable List, must move the horizontal scroll *
region so that the rightmost edge of the List is visible.

In a scrollable List, must scroll the List one character to *
the left.

<PageLeft> or <Ctrl> <PageUp>
In a scrollable List, must scroll the List one page to the *
left.

In a scrollable List, must scroll the List one character to *
the right.

<PageRight> or <Ctrl> <PageDown>
In a scrollable List, must scroll the List one page to the *
right.

9-65

OSF/Motif Style Guide

List

<Help> Must provide any available help for the List.

Related Information

9-66

For more information on List element selection, see the description of the
selection models in Chapter 4. For more information about the ScrollBars,
see the reference page for ScrollBar.

*

Controls, Groups, and Models Reference Pages

MainWindow

MainWindow

Description

A Main Window should be used to organize the contents of a primary
window. A MainWindow must frame the client area and can optionally *
include ScrollBars, a MenuBar, a command area, and a message area.

Illustration

9-67

OSF/Motif Style Guide

MainWindow

Navigation

A Main Window must follow the navigation model described in Chapter 3.

Related Information

9-68

For more information about the components of the Main Window, see the
reference pages for MenuBar, ScrollBar, and Text.

*

Controls, Groups, and Models Reference Pages

MenuBar

MenuBar

Description

A MenuBar is a basic group that organizes the most common features of an
application. The MenuBar must be a horizontal bar at the top edge of the *
application just below the title area of the window frame. The MenuBar
contains a list of Menu topics in CascadeButtons with Pull down Menus
connected to them. A MenuBar must contain only CascadeButtons, because *
other buttons inhibit Menu browsing. Each Menu topic should have a
single-letter mnemonic indicated by underlining.

The following Pulldown Menus provide general functions common to most
applications. Remember that these Menu guidelines, like all the guidelines
in this OSFIMotij Style Guide, apply only in a left-to-right language
environment in an English-language locale. You need to make the
appropriate changes for other locales.

Eile The File Menu should contain components for performing
actions on the files, such as opening, saving, closing, and
printing. It should also contain components for performing
actions on the application as a whole, such as quitting. If the
Label File is not appropriate to the context of your application,
you can choose a different, more appropriate Label. The File
Menu should have a mnemonic ofF.

Selected The Selected Menu should contain components for performing
actions on the objects represented by the current selection of the
application, such as opening or printing a selected item. This
Menu is often similar to the File Menu, except that it acts on
the objects denoted by the current selection. For example, in a
directory browser, Open in the File Menu could (using a
DialogBox) prompt the user for the name of a directory to open
for browsing, while Open in the Selected Menu opens the file
whose icon is currently selected in the browser. The Selected
Menu should not contain editing functions normally found in
the Edit Menu. The Selected Menu should have a mnemonic of
S.

9-69

OSF/Motif Style Guide

MenuBar

9-70

Edit The Edit Menu should contain components for performing
actions on the current data of the application, such as an undo
action or making global substitutions in a block of text. It
should also include components for interacting with the system
clipboard, such as cut, copy, and paste. The Edit Menu should
have a mnemonic of E.

Yiew The View Menu should contain components for changing the
user's view on the data. Components in the View Menu should
not actually change the data. The exact contents of the View
Menu are application specific but can include components that
change the appearance of the data, the amount of data that is
displayed, or the order in which the data is displayed. The
View Menu should have a mnemonic of V.

Options The Options Menu should contain components for a user to
customize the application. The exact contents of the Options
Menu are application specific. The Options Menu should have
a mnemonic of o.

Help The Help Menu should contain components that provide user
help facilities. The components in the Help Menu usually bring
up a DialogBox with help information. Every application
should have a Help Menu. The Help Menu should have a
mnemonic of H.

While we recommend that you include the common Menus in the MenuBar
of your application, your choice of Menu titles and items depends on the
nature of your application. If your application requires it, you should design
more relevant titles and selections, but do not change the meanings of items
used in the common Menus.

If any of the common Menus are present, they must be arranged in the *
following order with respect to each other, ranging from left to right across *
the MenuBar in a left-to-right language environment: *

File Menu *
Selected Menu *
Edit Menu *
View Menu
Options Menu
Help Menu

*
*
*

Controls, Groups, and Models Reference Pages

MenuBar

You can omit any of these Menus if they are not relevant to the application.
You can also intersperse other, application-specific, Menus among these
Menus. However, if a File Menu is present, it must be the first Menu and *
must be placed at the far left of the MenuBar. If a Help Menu is present, it *
must be the last Menu and must be placed at the far right of the MenuBar.

The recommended contents of the File, Edit, and Help Menus are described
on their own reference pages. The contents of the View and Options Menus
are application specific and are not specified here. Each of these common
Menus can contain a TearOffButton.

Illustration

Navigation

The MenuBar follows the navigation model described in Chapter 3.

Other Operations

The following text describes the operations of this component:

<Help> Must provide any available help for the current CascadeButton.

9-71

*

OSF/Motif Style Guide

MenuBar

Related Information

9-72

For information about the suggested contents of these Menus, see the
reference pages for File Menu, Edit Menu, and Help Menu.

Controls, Groups, and Models Reference Pages

Menus

Menus

Description

Menus should be used to organize a collection of basic controls in a
horizontal, vertical, or 2-dimensional layout within a separate Menu
window. There are three types of Menus: Pulldown, Popup, and Option. A
Menu is only available while it is posted.

Illustration

---Curren1: SeleC1:ion

Accelera1:ors

9-73

OSF/Motif Style Guide

Menus

Navigation

Menus follow the navigation model described in Chapter 3.

Other Operations

The following text describes the operations of this component:

<Help> Must provide any available help for the Menu.

Related Information

9-74

For more information, see the reference pages for CascadeButton,
OptionButton, and MenuBar.

*

Controls, Groups, and Models Reference Pages

MessageOialogs

MessageDialogs

Description

MessageDialogs should be used to convey a message to the user. They must *
not interrupt the user's interaction with the application. They should
include a message and one of the following button arrangements:

OK
OK Help
OK Cancel
OK Cancel Help
Yes No
Yes No Help
Yes No Cancel
Yes No Cancel Help
Cancel
Cancel Help
Retry Cancel
Retry Cancel Help

There are a number of different types of MessageDialogs: ErrorDialog,
InformationDialog, QuestionDialog, WorkingDialog, and WamingDialog.

Related Information

For more information, see the reference pages for DialogBox, ErrorDialog,
InformationDialog, QuestionDialog, WorkingDialog, and WamingDialog.

9-75

OSF/Motif Style Guide

Mnemonics

Mnemonics

Description

9-76

A mnemonic is a single character that can be associated with any
component that contains a text label. The label must contain the character, *
and the character must be underlined within the label. The mnemonic
should be the first character of the label. If a label does not naturally *
contain the character of the mnemonic, the mnemonic must be placed in *
parentheses following the label. Labels can also be sequentially numbered,
and the number can serve as the mnemonic. Labels that are duplicated
within an application should be given the same mnemonic. Mnemonics *
must be case insensitive for activation. Either an uppercase or lowercase
letter can be underlined in the label.

When the location cursor is within a Menu, or a MenuBar, typing the *
mnemonic character of a component within that Menu or MenuBar must *
move the location cursor to the component and activate it. If a mnemonic is *
used for an OptionButton or for a CascadeButton in a MenuBar, pressing *
<AU> and the mnemonic anywhere in the window or its Menus must move *
the cursor to the component with that mnemonic and must activate it.

Collections can also support mnemonics associated with its elements. *
Pressing a mnemonic key while the collection has the keyboard focus must *
be equivalent to moving the location cursor to the element and pressing *
<Select> or <Space>.

Controls, Groups, and Models Reference Pages

Navigation

Navigation

Description

U sing a mouse, navigation is a simple matter of moving the mouse pointer. *
Using the keyboard, the following component navigation actions must be *
available:

<Tab> or <Ctrl> <Tab>
<Tab> (if not used for internal navigation) and <Ctrl> *
<Tab> must move the location cursor forward through *
fields. If the next field is a control, <Tab> (if not used for *
internal navigation) and <Ctrl> <Tab> must move the *
location cursor to that control. If the next field is a group, *
<Tab> (if not used for internal navigation) and <Ctrl> *
<Tab> must move the location cursor to a traversable *
component within the group. If the field contains a button
that currently shows default highlighting, the location
cursor should be placed on that button; otherwise, the first
control in the field (the top-leftmost one in a left-to-right
language environment) should get focus. If the next field *
contains no traversable components, <Tab> (if not used *
for internal navigation) and <Ctrl> <Tab> must skip the *
field.

<Shift> <Tab> or <Ctrl> <Shift> <Tab>
<Shift> <Tab> (if not used for internal navigation) and *
<Ctrl> <Shift> <Tab> must move the location cursor *
backward through fields in the order opposite to that of *
<Tab> (if not used for internal navigation) and <Ctrl> *
<Tab>.

When used for component navigation within a field, in a *
left-to-right language environment, <J> must move the *
location cursor through all traversable controls in the *
field, starting at the upper left and ending at the lower *
right, then wrapping to the upper left. If the controls are *
aligned in a matrix-like arrangement, <J> must first *

9-77

OSF/Motif Style Guide

Navigation

<~>

9-78

traverse one column from top to bottom, then traverse the *
column to its right, and so on. In a right-to-Ieft language *
environment, <~> must move the location cursor through *
all traversable controls, starting at the upper right and *
ending at the lower left.

This key can also be used for internal purposes within a
component.

When used for component navigation within a field, <t> *
must move the location cursor through all traversable *
components or elements in the order opposite to that of *
<~>.

This key can also be used for internal purposes within a
component.

When used for component navigation within a field, in a *
left-to-right language environment, <~> must move the *
location cursor through all traversable controls in the *
field, starting at the upper left and ending at the lower *
right, then wrapping to the upper left. If the controls are *
aligned in a matrix-like arrangement, <~> must first *
traverse one row from left to right, then traverse the row *
below it, and so on. In a right-to-Ieft language *
environment, <~> must move the location cursor through *
all traversable controls, starting at the lower left and *
ending at the upper right.

This key can also be used for internal purposes within a
component.

When used for component navigation within a field, <~> *
must move the location cursor through all traversable *
components or elements in the order opposite to that of *
<~>.

This key can also be used for internal purposes within a
component.

<Ctrl> <.L.>

<Ctrl> <I>

<Ctrl> <--7>

<Ctrl> <~>

<Begin>

<End>

Controls, Groups, and Models Reference Pages

Navigation

This key can be used for component navigation within a
field, following the same rules as <.L.>. It can also be used
for internal purposes within a component. When <.L.>
causes a change that is based on some unit, <Ctrl> <.L.>
can cause a change based on a larger unit.

This key can be used for component navigation within a
field, following the same rules as <I>. It can also be used
for internal purposes within a component. When <I>
causes a change that is based on some unit, <Ctrl> <I>
can cause a change based on a larger unit.

This key can be used for component navigation within a
field, following the same rules as <--7>. It can also be
used for internal purposes within a component. When
<--7> causes a change that is based on some unit, <Ctrl>
<--7> can cause a change based on a larger unit.

This key can be used for component navigation within a
field, following the same rules as <~>. It can also be
used for internal purposes within a component. When
<~> causes a change that is based on some unit, <Ctrl>
<~> can cause a change based on a larger unit.

If a control uses <--7> and <~> for internal navigation, *
<Begin> must behave as follows: *
In a left-to-right language environment, this action must *
move the location cursor to the leftmost edge of the data *
or the leftmost element. In a right-to-Ieft language *
environment, this action must move the location cursor to *
the rightmost edge of the data or the rightmost element.

In a group that is a field, this key can move the location
cursor to an appropriate control within the group.

If a control uses <--7> and <~> for internal navigation, *
<End> must behave as follows: *
In a left-to-right language environment, this action must *
move the location cursor to the rightmost edge of the data *
or the rightmost element. In a right-to-Ieft language *
environment, this action must move the location cursor to *
the leftmost edge of the data or the leftmost element.

9-79

OSF/Motif Style Guide

Navigation

9-80

In a group that is a field, this key can move the location
cursor to an appropriate control within the group.

<Ctrl> <Begin> If a control uses <t> and <~> for internal navigation, *
<Ctrl> <Begin> must move the location cursor to one of *
the following: *

• The first element *
• The topmost edge of the data *
• In a left-to-right language environment, the topmost *

left edge of the data; in a right-to-Ieft language *
environment, the topmost right edge of the data *

In a group that is a field, this key can move the location
cursor to an appropriate control within the group.

<Ctrl> <End> If a control uses <t> and <~> for internal navigation, *
<Ctrl> <End> must move the location cursor to one of *
the following: *

<PageD own>

<Page Up>

• The last element *
• The bottommost edge of the data *
• In a left-to-right language environment, the *

bottommost right edge of the data; in a right-to-Ieft *
language environment, the bottommost left edge of *
the data *

In a group that is a field, this key can move the location
cursor to an appropriate control within the group.

In a vertically scrollable component, <PageDown> must *
scroll the visible region down by one page increment.

In a vertically scrollable component, <PageUp> must *
scroll the visible region up by one page increment.

<PageRight> or <Ctrl> <PageD own>
In a horizontally scrollable component, <Page Right> or *
<Ctrl> <PageDown> must scroll the visible region to the *
right by one page increment.

Controls, Groups, and Models Reference Pages

Navigation

<PageLeft> or <Ctrl> <PageUp>

<FlO>

<Menu>

<AIt> <F6>

In a horizontally scrollable component, <PageLeft> or *
<Ctrl> <PageUp> must scroll the visible region to the *
left by one page increment.

If the MenuBar is inactive, <FlO> must traverse to the *
MenuBar system. The location cursor must be placed on *
the first traversable CascadeButton in the MenuBar. If *
there are no traversable CascadeButtons in the MenuBar, *
<FlO> must do nothing. If the MenuBar system is active,
<FlO> should unpost all Menus in the MenuBar system. *
If <FlO> is used to unpost all Menus in the MenuBar *
system and if the focus policy is explicit, the location *
cursor must be moved back to the component that had it *
before the Menu system was posted. <Shift> <Menu> *
must replace <FlO> if <FlO> is not available.

If the keyboard focus is on an element with an inactive *
Popup Menu and the context of the element allows a *
Popup Menu to be displayed, <Menu> must post *
(acti vate) the Popup Menu. The location cursor must be *
placed on the default item of the Menu, or the first *
traversable item if there is no default item. Note that the
availability of the Popup Menu can depend on the
location of the cursor within the element, the contents of
the element, or the selection state of the element. If there
are no traversable items in the Popup Menu, it is up to the
system and the application whether to post the Menu or
not.

If there is an active Popup Menu, <Menu> should unpost
all Menus in the Popup Menu system. If <Menu> is used *
to unpost all Menus in the Popup Menu system and if the *
focus policy is explicit, the location cursor must be *
moved back to the component that had it before the Menu *
system was posted. <Shift> <FlO> must replace *
<Menu> if <Menu> is not available.

Must move the focus to the next window in the window *
family.

9-81

OSF/Motif Style Guide

Navigation

<AU> <Shift> <F6>

<AU> <Tab>

Can move the focus to the previous window in the
window family.

Must move the focus to the last window that had the input *
focus in the next window family in the window hierarchy.

<Alt> <Shift> <Tab>
Can move the focus to the previous window that had the
input focus in the next window family in the window
hierarchy.

Related Information

9-82

See Chapter 3 for more information about internal window navigation. See
Chapter 7 for more information about navigation among windows.

Controls, Groups, and Models Reference Pages

Option Button

OptionButton

Description

An OptionButton should be used to post an Option Menu.

This component must be composed of a button, with either a text or graphics *
Label. Following the Label, this component should also include a bar
graphic to distinguish it from a PushButton. The Label must be the last *
selection made from the OptionButton.

Illustration

Navigation

An OptionButton must have no internal navigation. *

9-83

OSF/Motif Style Guide

Option Button

Other Operations

The following text describes the operations of this component:

BSelect Press
Must post the associated Option Menu. *

BSelect Release
If the release is within the same OptionButton as the press:

• If the associated Option Menu was posted at the time of the
press, it should be unposted.

• If the associated Option Menu was not posted at the time of *
the press, it must be posted.

If the release is outside of the OptionButton, the associated *
Option Menu must be unposted.

<Select> or <Space>

<Cancel>

<Help>

Must post the associated Option Menu. *

Must unpost the last posted Menu in the Menu system without *
changing the value of the OptionButton.

Must provide any available help for the OptionButton. *

Related Information

For more information, see the reference page for Menus.

9-84

Controls, Groups, and Models Reference Pages

PanedWindow

PanedWindow

Description

A PanedWindow should be used to group components into Panes separated
by Sashes and Separators for adjusting the relative size of each Pane. This *
component must be composed of any number of groups of components, *
called Panes, each separated by a Sash and a Separator. The Panes, Sashes, *
and Separators must be grouped linearly, either horizontally or vertically. A *
Sash must be composed of a handle on the Separator between two Panes for *
adjusting the position of the Separator, and therefore the size of the Panes *
next to it.

As a Sash is moved, the Pane in the direction of the Sash movement must *
get smaller and the other Pane must get larger by an equal amount. If a Pane
is adjusted to its minimum size, adjustment should continue with the next
Pane in the direction of the Sash movement.

9-85

OSF/Motif Style Guide

PanedWindow

Illustration

Navigation

This component must follow the navigation model described in Chapter 3. *

Related Information

For information about activating a Sash, see the reference page for Sash.

9-86

Controls, Groups, and Models Reference Pages

Panel

Panel

Description

A Panel group should be used to organize a collection of basic controls in a
horizontal, vertical, or 2-dimensional layout. This component is usually
composed of just one type of basic control. This component is composed of
an area for organizing basic controls.

Illustration

Navigation

The <J,>, <~>, <--7>, and <i> direction keys must navigate among *
components in the Panel according to the navigation model described in *
Chapter 3.

9-87

OSF/Motif Style Guide

Pointer Shapes

Pointer Shapes

Description

9-88

You should not create new mouse pointer shapes for functions that already
have mouse pointer shapes associated with them, except for localization;
however, you can create new mouse pointer shapes for functions not already
associated with a pointer shape. You should not use a predefined shape to
symbolize a function it was not designed to represent.

A list of the defined pointer shapes follows, along with their usage and
hotspots. The hotspot of a pointer is the actual position on the pointer that
tracks the movements of the mouse. As the pointer changes from one shape *
to another, the location of the hotspot must not move on the screen. The
hotspot is the precise location on the pointer where mouse actions occur.

" The upper-left pointing arrow pointer is a general-purpose
pointer. It is used in most window areas for single-object
selection and activation. The hotspot for the arrow pointer
should be in the point of the arrow.

I You can optionally use an I -beam pointer in any Text component.
It is used to change the location of the text insertion cursor and to
perform actions on text. If the I-beam is used, it can be hidden
during the time between any keyboard action and a mouse
movement. This helps the user distinguish the I-beam pointer
from the text insertion cursor, which can also be an I-beam. The
hotspot for the I-beam pointer should be on the vertical bar of the
I-beam about one-third up from the bottom.

X The X pointer can indicate when the pointer is outside of any
application area. The hotspot for the X pointer should be where
the lines intersect.

~t7il
I+- ~I
~±.::!.I

Controls, Groups, and Models Reference Pages

Pointer Shapes

The resize pointers indicate positions for area resize, and they
remain during a resize operation. The direction of the arrow in
the pointer indicates the direction of increasing size. The
horizontal and vertical pointers indicate resize in either the
horizontal or vertical direction. The diagonal pointers indicate
resize in both the horizontal and vertical directions
simultaneously. The hotspot for the resizing pointers should be
on the elbow or the line at the position pointed to by the arrow.

The hourglass pointer, a working pointer, indicates that an action
is in progress in the area, and that the pointer has no effect in the
area. While the hourglass pointer is active, all mouse button and
keyboard events are ignored in the area. The hotspot for the
hourglass pointer should be located at the center of the hourglass,
although it should not be used for activation. The hourglass
pointer can be used interchangeably with the watch pointer.

The watch pointer, a working pointer, indicates that an action is
in progress in the area, and that the pointer has no effect in the
area. While the watch pointer is active, all mouse button and
keyboard events are ignored in the area. The hotspot for the
watch pointer should be located at the top of the watch, although
it should not be used for activation. The watch pointer can be
used interchangeably with the hourglass pointer.

+ The 4-directional arrow pointer indicates a move operation is in
progress, or a resize operation before the resize direction has
been determined. During a move operation, the object, or an
outline of the object should move to track the location of the
pointer. During a resize operation, the pointer is used to indicate
a direction for resizing. The 4-directional arrow pointer should
change to the appropriate resize arrow when the resize direction
is determined, either by crossing an object boundary with the
pointer or by pressing a keyboard direction key. The hotspot for
the 4-directional arrow pointer should be at the spot where the
arrows intersect.

9-89

OSF/Motif Style Guide

Pointer Shapes

+ The sighting pointer is used to make fine position selections. For
example, in a drawing program it can be used to indicate a pixel
to fill or the connecting points of lines. The hotspot for the
sighting pointer should be at the spot where the lines intersect.

The caution pointer is used to indicate that action is expected in
another area before input can be given to the current area, and
that the pointer has no effect in the area. While the caution
pointer is active, all mouse button and keyboard events are
ignored in the area. The hotspot for the caution pointer should be
located at the center of the caution symbol, although it should not
be used for activation.

The question pointer is used to request an input position or
component from the user. This is often used to input an object
for interactive help. The user requests interactive help, then the
question pointer is displayed to allow the user to indicate what
position or component help is requested for. The hotspot for the
question pointer should be at the bottom of the question mark.

You can optionally use an arrow pointing to the upper-right
corner to indicate a pending Menu action. This shape indicates
that a Menu is popped up or pulled down and waiting for a Menu
item to be activated or the Menu to be removed. The hotspot for
this arrow pointer should be in the point of the arrow.

Related Information

9-90

See Chapter 2 for information on the input device model and designing new
pointer shapes.

Controls, Groups, and Models Reference Pages

Popup Menus

Popup Menus

Description

The common Popup Menu contents are described as follows. Note that you
should only include those functions actually supported by your application.
The illustration on this reference page shows a Popup Menu.

Propertie!
Must display a properties DialogBox that the user can use to *
set the properties of the component. If the Menu is popped up
over a selection, it can display the properties of the selection.
If the Menu is popped up over an unselected item, it can
display the properties of that item. If the Menu is popped up
over the background, it should display the properties of the
collection, except over a part of the background considered to
be in the selection. This action should have the mnemonic S.

Undo Alt+Backspace
Must reverse the most recently executed action. To provide a *
visual cue to the user, the Undo selection title should be
dynamically modified to indicate what is being undone. For
example, if the most recently executed action was a paste, the
action name would be Undo paste. This action should have
the mnemonic U. This action should have the same
accelerator as the corresponding entry in the Edit Menu.

Primary Move Alt+Shift+Delete
Must move the contents of the primary selection to the *
component. This action must only be used in an editable *
component. If the action uses an accelerator, it should be
<Alt> <Shift> <Delete>, <Alt> <Ctrl> <X>, or both. In
addition, if the keyboard has a <Cut> key, this action should
support <Alt> <Cut> as an accelerator. If more than one
format can be moved from the primary selection, Primary
Copy can cascade a Menu of possible transfer formats, in
which case it should not have an accelerator.

9-91

OSF/Motif Style Guide

Popup Menus

9-92

Primary Copy Alt+Ctrl+Insert
Must copy the contents of the primary selection to the *
component. This action must only be used in an editable *
component. If the action uses an accelerator, it should be
<AIt> <Ctrl> <Insert>, <A It> <Ctrl> <C>, or both. In
addition, if the keyboard has a <Copy> key, this action should
support <Alt> <Copy> as an accelerator. If more than one
format can be copied from the primary selection, Primary
Copy can cascade a Menu of possible transfer formats, in
which case it should not have an accelerator.

Primary Link
Must place a link to the primary selection in the component. *
This action must only be used in an editable component. If the
link can be viewed in more than one way, Primary Link can
cascade a Menu of possible viewing representations.

Cul Must cut elements to the clipboard and can mark them for use *
in a subsequent Paste Link operation. If the Menu is popped *
up in a selection, the entire selection must be cut. If the Menu

Copy

Copy Link

is popped up over an unselected element, just that element
should be cut. If the Menu is popped up in the background, the
entire collection can be cut. This action should have the
mnemonic T.

Must copy elements to the clipboard and can mark them for *
use in a subsequent Paste Link operation. If the Menu is *
popped up in a selection, the entire selection must be copied.
If the Menu is popped up over an un selected element, just that
element should be copied. If the Menu is popped up in the
background, the entire collection can be copied. This action
should have the mnemonic C.

Must copy a link of elements to the clipboard and can mark *
them for use in a subsequent Paste Link operation. If the *
Menu is popped up in a selection, a link to the entire selection *
must be copied. If the Menu is popped up over an unselected
element, a link to just that element should be copied. If the
Menu is popped up in the background, a link to the entire
collection can be copied. This action should have the
mnemonic K.

Controls, Groups, and Models Reference Pages

Popup Menus

raste Shift+lnsert

Paste Link

CI~ar

Delete

Must paste the contents of the clipboard to the component. *
This action must only be used in an editable component. This
action should have the mnemonic P. This action should have
the same accelerator as the corresponding entry in the Edit
Menu.

Must paste a link of the contents of the clipboard to the *
component. This action must only be used in an editable *
component. This action should have the mnemonic L.

Must remove a selected portion of data from the client area *
without copying it to the clipboard. If the Menu is popped up *
in a selection, it must delete the selection. If the Menu is
popped up over an unselected element, it should delete that
element. If the Menu is popped up over the background,
except over a part of the background considered to be in the
selection, it can delete all the elements. The remaining data is
not compressed to fill the space that was occupied by the
cleared data. This action should have the mnemonic E.

Must remove a selected portion of data from the client area *
without copying it to the clipboard. If the Menu is popped up *
in a selection, it must delete the selection. If the Menu is
popped up over an un selected element, it should delete that
element. If the Menu is popped up over the background,
except over a part of the background considered to be in the
selection, it can delete all the elements. This action should
have the mnemonic D.

Select All Ctri+!
Must make the primary selection consist of all the elements in *
the collection with the Popup Menu. If the action uses an
accelerator, it should be <Ctrl> <I>.

Deselect All Ctri+\
Must deselect the current selection in the collection with the *
Popup Menu. If the action uses an accelerator, it should be
<Ctrl> <\>.

9-93

OSF/Motif Style Guide

Popup Menus

Select Pasted
Must make the primary selection consist of the last element or *
elements pasted into the collection with the Popup Menu.

Reselect Alt+Insert
Must make the primary selection consist of the last selected *
element or elements in the component with the Popup Menu. *
The action must be available only in components that do not *
support persistent selections and only when the current *
selection is empty. If the action uses an accelerator, it should
be <Alt> <Insert>.

Promote Alt+Insert
Must promote the current selection to the primary selection. *
This action must only be available in components that support *
persistent selections. If the action uses an accelerator, it
should be <Alt> <Insert>.

Appropriate words, such as Selection or words denoting the type of a single
element of the collection as a whole, should be added to a Label to specify
which elements are affected. For example, if a Popup Menu contains the
entry Copy Selection, the current selection is copied to the clipboard
regardless of where in the collection the Menu is popped up.

A Popup Menu item should only have an accelerator if the result of typing
the accelerator would be equivalent to popping up the Menu by typing
<Menu>, and then selecting the Menu item. If Cut Selection is included in
a Popup Menu, it should use the same accelerators as Cut in the Edit Menu.
If Copy Selection is included in a Popup Menu, it should use the same
accelerators as Copy in the Edit Menu.

Related Information

9-94

See Chapter 6 for more information on Popup Menus and for general
information about Menu design.

Controls, Groups, and Models Reference Pages

Primary Selection

Primary Selection

Description

Each collection maintains its own selection. A selection need not contain
any elements, in which case it is said to be an empty selection. At any time,
there is one selection called the primary selection, which is the last
selection explicitly started by the user.

Clicking BSelect or <Ctrl> BSelect only moves the primary selection to a
collection when it results in making a selection that is not empty. When
<Shift> BSelect is clicked, an implementation can move the primary
selection to the component even if the resulting selection is empty. *
Dragging BSelect, <Shift> BSelect, or <Ctrl> BSelect must move the *
primary selection to the component if a button release during the pointer *
motion could have potentially selected any element.

A selection is said to be persistent if it is highlighted even when it is not the
primary selection.

Persistent
There are two variants of persistent selections: persistent always, in
which the current selection is always highlighted, and persistent on
focus, in which the current selection is only highlighted when it is the
primary selection or when the collection has the keyboard focus. In
either case, stronger highlighting should be used when the current
selection is also the primary selection. When focus is in the
collection, <Alt> <Insert> can be used to promote the current
selection to the primary selection.

Nonpersistent
The collection only highlights a primary selection. When the primary
selection is lost to another collection, the current selection is set to
empty. When focus is in the collection, and it does not have the
primary selection, <Alt> <Insert> can be used to restore the previous
selection and make it the primary selection.

9-95

OSF/Motif Style Guide

Primary Selection

Collections that are never editable (such as noneditable Lists) should always
use persistent selections. Collections that are editable can either use
persistent or nonpersistent selections.

Primary transfer can be invoked by clicking BTransfer or through standard
keyboard bindings. There are three primary transfer operations:

Primary Copy
In an editable collection, BTransfer Click, <Ctrl> BTransfer Click, *
<Alt> <Copy>, and <A It> <Ctrl> <Insert> must copy the primary *
selection to the insertion position, as defined in Section 4.3. (Note *
that the insertion position is usually different for mouse and keyboard *
operations.)

Primary Move
In an editable collection, <Shift> BTransfer Click, <A1t> <Cut>, *
and <AIt> <Shift> <Delete> must move the primary selection to the *
insertion position, as defined in Section 4.3. (Note that the insertion *
position is usually different for mouse and keyboard operations.)

Primary Link
In an editable collection, <Ctrl> <Shift> BTransfer Click must *
place a link to the primary selection at the insertion position, as *
defined in Section 4.3.

Related Information

See Sections 4.2 and 4.3 for more information about the primary selection.

9-96

Controls, Groups, and Models Reference Pages

PromptDialog

PromptDiaiog

Description

A PrompDialog should be used to prompt the user for input. It can interrupt
the user's interaction with the application. It should include a message, a
text input area, and one of the following button arrangements:

OK Cancel
OK Cancel Help
OK Apply Cancel
OK Apply Cancel Help
OK Apply Reset Cancel
OK Apply Reset Cancel Help

Illustration

9-97

OSF/Motif Style Guide

PromptDialog

Related Information

For more information, see the reference page for DialogBox.

9-98

Controls, Groups, and Models Reference Pages

PushButton

PushButton

Description

A PushButton should be used to start an operation. A PushButton must *
contain either a text or graphic Label that indicates the operation of the *
button.

Illustration

Navigation

A PushButton must have no internal navigation. *

Other Operations

The following text describes the operations of this component:

BSelect Press
Must arm the PushButton. *

BSelect Release
If the release is within the same PushButton as the press, *
BSelect Release must disarm the PushButton and activate it. If *
the release is outside of the PushButton, BSelect Release must *
disarm the PushButton without activating it.

9-99

OSF/Motif Style Guide

PushButton

9-100

<Enter> or <Return>
If the PushButton is in a window with a default action, the *
PushButton must be activated. If the PushButton is in a Menu, *
this action must activate the PushButton and unpost the Menu.

<Select> or <Space>

<Help>

Must activate the PushButton. If the PushButton is in a Menu, *
the Menu must be unposted.

Must provide any available help for the PushButton. *

Controls, Groups, and Models Reference Pages

Question Dialog

QuestionDialog

Description

A QuestionDialog should be used to get a user response to a question. It
should interrupt the user's interaction with the application. It should include
a question symbol, a message, and one of the following button
arrangements:

Yes No
Yes No Help

It is possible that both the Yes and No actions of a Question DialogBox will
perform an action. If this is the case, the Question DialogBox should use
one of the following button arrangements:

Yes No Cancel
Yes No Cancel Help

Illustration

9-101

OSF/Motif Style Guide

QuestionDialog

Related Information

For more information, see the reference page for DialogBox.

9-102

Controls, Groups, and Models Reference Pages

Quick Transfer

Quick Transfer

Description

Quick transfer is used to make a temporary (or secondary) selection and
then immediately copy, move, or link that selection to the insertion position
of the destination component. Quick transfer is implemented using <Alt>
BTransfer Motion, with the standard modifiers used to force the various
transfer operations.

Text components must support quick transfer.

There are three quick transfer operations:

Quick Copy

*

If a component supports quick transfer, <Alt> BTransfer Motion or *
<Alt> <Ctrl> BTransfer Motion must temporarily select elements in *
the specified range and, on release, must copy them to the insertion *
position of the destination component.

Quick Cut
If a component supports quick transfer, <Alt> <Shift> BTransfer *
Motion must temporarily select elements in the specified range and, *
on release, must move them to the insertion position of the destination *
component.

Quick Link
If a component supports quick transfer, <Alt> <Ctrl> <Shift> *
BTransfer Motion must temporarily select elements in the specified *
range and, on release, must place a link to them at the insertion *
position of the destination component.

The range of the temporary selection must be determined by using exactly *
the same model used when BSelect Motion determines the range of a *
primary selection.

9-103

OSF/Motif Style Guide

Quick Transfer

Related Information

See Section 4.3 for more information about quick transfer.

9-104

Controls, Groups, and Models Reference Pages

RadioButton

RadioButton

Description

A RadioButton should be used to select one option from a number of
options. A RadioButton is a special case of a ToggleButton. Only one
RadioButton can be set at a time. This component must be composed of a *
text or graphic label, and a graphic that indicates the state of the *
RadioButton. The graphic indicator for a RadioButton is usually a filled
diamond or circle to indicate the on state or an empty diamond or circle to
indicate the off state. On color systems, the on state color can be distinct
from general application colors to visually distinguish the on state.

Illustration

9-105

OSF/Motif Style Guide

RadioButton

Navigation

RadioButtons must have no internal navigation. *

Other Operations

9-106

The following text describes the operations of this component:

BSelect Press
Must arm the RadioButton. If the RadioButton was previously *
unset, it must show the RadioButton in the set state.

BSelect Release
If the release happens in the same RadioB utton that the press *
occurred in and if the RadioButton was previously unset, it must *
be set, and any other RadioButton in the same Panel that was *
previously set must be unset. The RadioButton must be *
disarmed, and, if the RadioButton is in a Menu, the Menu must *
be unposted.

BSelect Release 2
If the RadioButton was previously unset, it should be set, and
any other RadioButton in the same Panel that was previously set
should be unset. If the RadioButton is in a window, the default
action of the window should be activated.

<Enter> or <Return>
If the RadioButton is in a window with a default action, the *
default action must be activated. If the RadioButton is in a *
Menu: *

• If the RadioButton was previously unset, it must be set, and *
any other RadioButton in the same Panel that was *
previously set must be unset. *

• The RadioButton must be disarmed, and the Menu must be *
unposted. *

Controls, Groups, and Models Reference Pages

RadioButton

<Select> or <Space>

<Help>

If the RadioButton was previously unset, it must be set, and any *
other RadioButton in the same Panel that was previously set *
must be unset. The RadioButton must be disarmed, and, if the *
RadioButton is in a Menu, the Menu must be unposted.

Must provide any available help for the RadioButton. *

Related Information

For more information, see the reference pages for CheckButton and
ToggleButton.

9-107

OSF/Motif Style Guide

Sash

Sash

Description

A Sash should be used to adjust the border between groups of components in
a PanedWindow. A Sash must be composed of a handle on the Separator *
between two Panes for adjusting the position of the Separator, and therefore *
the size of the Panes next to it.

As a Sash is moved, the Pane in the direction of the Sash movement must *
get smaller and the other Pane must get larger by an equal amount. If a Pane
is adjusted to its minimum size, adjustment should continue with the next
Pane in the direction of the Sash movement. The PanedWindow can
optionally support movement of the Pane in the initial direction of mouse
movement with the modifier <Shift> on button events, rather than resizing
the Pane.

Illustration

9-108

Controls, Groups, and Models Reference Pages

Sash

Navigation

A Sash must have no internal navigation. *

Other Operations

The following text describes the operations of this component:

BSelect or BTransfer Motion
Must cause the Sash to track the movement of the pointer. In a *
vertically oriented PanedWindow, the Sash must track the *
vertical position of the pointer. In a horizontally oriented *
PanedWindow, the Sash must track the horizontal position of *
the pointer.

BSelect or BTransfer Motion
Can cause the Pane in the initial direction of movement to track
the movement of the pointer. In a vertically oriented *
PanedWindow, the Pane must track the vertical position of the *
pointer. In a horizontally oriented PanedWindow, the Pane *
must track the horizontal position of the pointer.

<I> and <,1,>
For a Sash that can move vertically, must cause the Sash to *
move in the speci fied direction one increment.

<~>and<~>
For a Sash that can move horizontally, must cause the Sash to *
move in the specified direction one increment.

<Shift> <I> and <Shift> <,1,>
For a Sash that can move vertically, can cause the Pane in the
initial direction to move one increment in the specified
direction.

<Shift> <~> and <Shift> <~>
For a Sash that can move horizontally, can cause the Pane in the
initial direction to move one increment in the specified
direction.

9-109

OSF/Motif Style Guide

Sash

<Ctrl> <I> and <Ctrl> <.1>
For a Sash that can move vertically, must cause the Sash to *
move in the specified direction one large increment.

<Ctrl> <~> and <Ctrl> <f->
For a Sash that can move horizontally, must cause the Sash to *
move in the specified direction one large increment.

<Ctrl> <Shift> <I> and <Ctrl> <Shift> <.1>
For a Sash that can move vertically, can cause the Pane in the
initial direction to move one large increment in the specified
direction.

<Ctrl> <Shift> <~> and <Ctrl> <Shift> <f->

<Help>

For a Sash that can move horizontally, can cause the Pane in the
initial direction to move one large increment in the specified
direction.

Must provide any available help for the Sash. *

Related Information

For more information, see the reference page for PanedWindow.

9-110

Controls, Groups, and Models Reference Pages

Scale

Scale

Description

A Scale should be used to select a value from a range. This component
should be composed of a slider, moving within an element that indicates the
size of the range, called the trough, and a Label that indicates the current
value. The position of the slider indicates the value relative to the range. A
Scale can also have buttons with arrow graphics for moving the slider.

Illustration

Other Operations

The following text describes the operations of this component:

BSelect Press
In an arrow button, this action must move the slider one *
increment in the direction of the side of the slider on which the *
button was pressed, and autorepeat until the button is released.

In the trough, if the Scale has tick marks, BSelect Press must *
move the slider one major tick mark in the direction of the side *
of the slider on which the trough was pressed, and autorepeat *

9-111

OSF/Motif Style Guide

Scale

9-112

until the button is released. It can stop when the slider reaches
the position of the pointer. If the Scale does not have tick *
marks, BSelect Press in the trough must move the slider one *
large increment in the direction of the side of the slider on *
which the trough was pressed, and autorepeat until the button is *
released. It can stop when the slider reaches the position of the
pointer.

BSelect Motion
If the button is pressed in the slider, must cause the slider to *
track the position of the pointer. In a vertical Scale, the slider *
must track the vertical position of the pointer. In a horizontal *
Scale, the slider must track the horizontal position of the *
pointer.

<Ctrl> BSelect Press
In the slider trough or an arrow button, this action should move
the slider to the end of the Scale on which the button was
pressed.

BTransfer Press
In the trough, this action should directly position the slider to
the position of the button press.

BTransfer Motion
If the button is pressed in the slider or the trough, must directly *
position the slider to the point of the button press and then cause *
the slider to track the position of the pointer. In a vertical *
Scale, the slider must track the vertical position of the pointer. *
In a horizontal Scale, the slider must track the horizontal *
position of the pointer.

<Cancel> If a mouse-based sliding action is in progress, <Cancel> must *
cancel the sliding action and return the slider to its position *
prior to the start of the sliding operation.

<t> For vertical Scales, this action must move the slider one *
increment down.

<I> For vertical Scales, this action must move the slider one *
increment up.

<f-> For horizontal Scales, this action must move the slider one *
increment left.

Controls, Groups, and Models Reference Pages

Scale

<~> For horizontal Scales, this action must move the slider one *
increment right.

<Ctrl> <-I,.>

<Ctrl> <I>

For vertical Scales, this action must move the slider one large *
increment down.

For vertical Scales, this action must move the slider one large *
increment up.

<Ctrl> <~>
For horizontal Scales, this action must move the slider one large *
increment left.

<Ctrl> <~>
For horizontal Scales, this action must move the slider one large *
increment right.

<Begin> or <Ctrl> <Begin>
Must move the slider to the minimum value. *

<End> or <Ctrl> <End>
Must move the slider to the maximum value. *

<Help> Must provide any available help for the Scale. *

9-113

OSF/Motif Style Guide

ScrollBar

ScrollBar

Description

A ScrollBar should be used to scroll the visible area of another component.
A ScrollBar should be composed of a slider, moving within an element that
indicates the full size of the scrolled component, and two buttons with arrow
graphics for moving the slider. The slider indicates the relative position and
size of the visible area of the scrolled component.

Illustration

Other Operations

9-114

The following text describes the operations of this component:

BSelect Press
In an arrow button, this action must move the slider one *
increment in the direction of the side of the slider on which the *
button was pressed, and autorepeat until the button is released.

In the trough, this action must move the slider one page in the *
direction of the side of the slider on which the trough was *
pressed, and autorepeat until the button is released. It can stop
when the slider reaches the position of the pointer.

Controls, Groups, and Models Reference Pages

ScroliBar

BSelect Motion
If the button is pressed in the slider, must cause the slider to *
track the position of the pointer. In a vertical ScrollBar, the *
slider must track the vertical position of the pointer. In a *
horizontal ScrollBar, the slider must track the horizontal *
position of the pointer.

<Ctrl> BSelect Press
In the slider trough or an arrow button, this action should move
the slider to the end of the ScrollBar on which the button was
pressed.

<Shift> BSelect Press
Can scroll the view so that the cursor within that view is
positioned at the edge of the view region on the side of the
ScrollBar on which the button was pressed.

BTransfer Press
In the trough, this action can directly position the slider to the
position of the button press.

BTransfer Motion
If the button is pressed in the slider or the trough, must directly *
position the slider to the point of the button press and then cause *
the slider to track the position of the pointer. In a vertical *
ScrollBar, the slider must track the vertical position of the *
pointer. In a horizontal ScrollBar, the slider must track the *
horizontal position of the pointer.

<Cancel> If a mouse-based scrolling action is in progress, <Cancel> must *
cancel the scrolling action and return the slider to its position *
prior to the start of the scrolling operation.

<J,> For vertical ScrollBars, this action must move the slider one *
increment down.

<I> For vertical ScrollBars, this action must move the slider one *
increment up.

<f-> For horizontal ScrollBars, this action must move the slider one *
increment left.

9-115

OSF/Motif Style Guide

ScroliBar

9-116

<----;.> For horizontal ScrollBars, this action must move the slider one *
increment right.

<Ctrl> <~>

<Ctrl> <t>

For vertical ScrollBars, this action must move the slider one *
large increment down.

For vertical ScrollBars, this action must move the slider one *
large increment up.

<Ctrl><~>

For horizontal ScrollBars, this action must move the slider one *
large increment left.

<Ctrl> <----;.>
For horizontal ScrollBars, this action must move the slider one *
large increment right.

<PageD own>
For vertical ScrollBars, this action must move the slider one *
page down.

<Page Up> For vertical ScrollBars, this action must move the slider one *
page up.

<PageLeft> or <Ctrl> <Page Up>
For horizontal ScrollBars, this action must move the slider one *
page left.

<PageRight> or <Ctrl> <PageD own>
For horizontal ScrolIB ars, this action must move the slider one *
page right.

<Begin> or <Ctrl> <Begin>
Must move the slider to the minimum value. *

<End> or <Ctrl> <End>
Must move the slider to the maximum value. *

<Help> Must provide any available help for the ScrollBar. *

Controls, Groups, and Models Reference Pages

ScroliedWindow

ScrolledWindow

Description

A ScrolledWindow should be used to frame other components and to
provide ScrollBars as necessary to scroll the visible area of the framed
components. When the area framed by the ScrolledWindow is completely
displayed, the ScrollBars need not be displayed. When the area provided in *
the ScrolledWindow is too small to display the entire component area, the *
ScrollBars must be displayed and must then allow scrolling of the visible *
area.

Illustration

Navigation

A ScrolledWindow must follow the navigation model that is described in *
Chapter 3.

9-117

OSF/Motif Style Guide

ScrolledWindow

Related Information

9-118

For information about the activation of the ScrollBars, see the reference
page for ScrollBar. For more information about navigation within general
scrollable components, see Section 3.4.

Controls, Groups, and Models Reference Pages

Selection

Selection

Description

The selection model determines how elements are selected from a group of
elements. OSF/Motif compliant systems must support the five different *
selection models. The five selection models are as follows:

Single Selection
U sed to select a single element in a collection. Clicking BSelect
on a deselected element selects it and deselects the previously
selected element in the collection. Single selection is described in
Section 4.1.1.

Browse Selection
U sed to allow browsing through single selection collections.
Browse selection is also used to select a single element of a
collection. Browse selection works just like single selection, but
additionally allows the user to browse through the elements by
dragging BSelect through the elements in the collection. Browse
select highlights each element as it is traversed, and gives the
application an opportunity to provide information about each
element as it is highlighted. Releasing BSelect on an element
selects it and deselects the previously selected element. Browse
selection is described in Section 4.1.2.

Multiple Selection
Used to select or deselect multiple elements of a collection.
Clicking BSelect on an un selected element adds that element to
the current selection. Clicking BSelect on a selected element
removes that element from the current selection. Multiple
selection is described in Section 4.1.3.

9-119

*

*
*

*
*

OSF/Motif Style Guide

Selection

Range Selection
U sed to select a contiguous range of elements in a collection.
Clicking BSelect on an element selects the single element and
deselects any previous selection. BSelect Motion over a range of
elements selects all the elements within the range and deselects
any previous selection. Range selection is described in Section
4.1.4.

Discontiguous Selection
U sed for selecting multiple discontiguous ranges of elements in a
collection. Clicking or dragging BSelect operates the same as for
range selection. Discontiguous selection also allows <Ctrl>
BSelect to be used to add new selection ranges to or remove
selection ranges from the selection. Discontiguous selection is
described in Section 4.1.5.

Related Information

See Chapter 4 for more information about the selection models.

9-120

*

*
*

Controls, Groups, and Models Reference Pages

Selection Box

SelectionBox

Description

A SelectionBox is a special-purpose composite component for making
selections from a list of choices. The SelectionBox must be composed of at *
least a Text component for the selected alternative and a List component *
above the Text component for presenting the alternatives. Both the List and
Text components should have a Label above them. The List component can
be scrollable. The SelectionBox should also include one of the following
button arrangements:

OK Cancel Help
OK Cancel Apply Help

The List must use either the single or browse selection model. Selecting an *
element from the list must place the selected element in the Text *
component. Entering an item name into the Text component should make
that element visible in the List component. The List navigation actions *
<I>, <.t>, <Ctrl> <Begin>, and <Ctrl> <End> must be available from the *
Text component for moving the cursored element within the List and thus *
changing the contents of the Text. The List navigation actions <PageUp>
and <PageDown> should also be available from the Text component for
moving the cursored element within the List.

9-121

OSF/Motif Style Guide

Selection Box

Illustration

Related Information

For more information, see the reference page for SelectionDialog.

9-122

Controls, Groups, and Models Reference Pages

Selection Dialog

SelectionDialog

Description

A SelectionDialog should be used to allow a user to make a selection from a
list of choices. It can interrupt the user's interaction with the application. It
should contain a SelectionBox.

Illustration

9-123

OSF/Motif Style Guide

Selection Dialog

Related Information

For more information, see the reference page for DialogBox.

9-124

Controls, Groups, and Models Reference Pages

Separator

Separator

Description

A Separator should be used to separate elements of the application. It
should be composed of a vertical or horizontal line.

Illustration

Navigation

A Separator must have no internal navigation.

9-125

*

OSF/Motif Style Guide

TearOffButton

TearOflButton

Description

A TearOftButton should be used to tear off a Menu to create a dialog
representation of the Menu contents. A TearOftButton tears off a Menu in
place when activated, or it is dragged to tear off and move in one action. *
This component must be composed of a button with a graphic that indicates *
the tear-off action. The graphic should be a dashed line representing
perforations.

Illustration

Navigation

A TearOftButton must have no internal navigation. *

9-126

Controls, Groups, and Models Reference Pages

TearOffButton

Other Operations

The following text describes the operations of this component:

BSelect Press
Must arm the TearOffButton. *

BSelect Release
If the release is within the same TearOffButton as the press, *
BSelect Release must disarm the TearOffButton and activate it. *
If the release is outside of the TearOffButton, BSelect Release *
must disarm the TearOffButton without activating it.

BTransfer Press
Must activate the TearOffButton and cause the newly tom off *
Menu or its representation to start to track the position of the *
pointer.

BTransfer Motion
Must cause the newly torn off Menu or its representation to *
track the position of the pointer.

BTransfer Release
Must cause the newly torn off Menu or its representation to stop *
tracking the position of the pointer and become a torn off Menu.

<Enter> or <Return>
Must activate the TearOffButton.

<Select> or <Space>
Must activate the TearOffButton.

<Help> Must provide any available help for the TearOffButton.

Related Information

See Chapter 6 for more information on TearOff Menus and for general
information about Menu design.

9-127

*

*
*

OSF/Motif Style Guide

Text

Text

Description

A Text component should be used to display and enter text. A Text *
component must be composed of an area for displaying and entering text.
The text can be either a single line or multiple lines. Text must support the *
range selection model as described in Chapter 4 and can support the
discontiguous selection model.

Illustration

Navigation

9-128

The following text describes the navigation actions of this component:

<t> In multiline Text components, <t> must move the location *
cursor up one line. In single-line Text components, <t> must *
navigate upward to the previous component if the Text *
component is designed to act like a basic control.

<~> In multiline Text components, <~> must move the location *
cursor down one line. In single-line Text components, <~> *
must navigate downward to the next component if the Text *
component is designed to act like a basic control.

<f->

<~>

Controls, Groups, and Models Reference Pages

Must move the location cursor left one character.

Must move the location cursor right one character.

Text

*
*

<PageUp> In multiline Text components, <PageUp> must move the *
location cursor up one page.

<PageDown>
In multiline Text components, <PageD own> must move the *
location cursor down one page.

<PageLeft> or <Ctrl> <PageUp>
Must move the location cursor left one page. *

<PageRight> or <Ctrl> <PageD own>
Must move the location cursor right one page. *

<Ctrl> <~>
In a Text component used generally to hold multiple words, *
must move the location cursor to the right by a word. That is, *
<Ctrl> <~> must place the location cursor before the first *
character that is not a space, tab, or newline character after the *
next space, tab, or newline character. In short single-line Text
controls, <Ctrl> <~> can navigate rightward to the next
component if the Text is designed to act like a basic control.

<Ctrl> <f->

<Ctrl> <J->

<Ctrl> <I>

In a Text component used generally to hold multiple words, *
must move the location cursor to the left by a word. That is, *
<Ctrl> <f-> must place the location cursor after the first space, *
tab, or newline character preceding the first previous character *
that is not a space, tab, or newline. In short single-line Text
controls, <Ctrl> <f-> can navigate leftward to the next
component if the Text is designed to act like a basic control.

In multiline Text components, <Ctrl> <J-> can optionally move
the location cursor to the beginning of the next paragraph.

In multiline Text components, <Ctrl> <I> can optionally move
the location cursor to the beginning of the previous paragraph.

9-129

OSF/Motif Style Guide

Text

<Begin>

<End>

In a Text component used generally to hold multiple words, *
must move the location cursor to the beginning of the line.

In a Text component used generally to hold multiple words, *
must move the location cursor to the end of the line.

<Ctrl> <Begin>
In multiline Text components, <Ctrl> <Begin> must move the *
location cursor to the beginning of the file.

<Ctrl> <End>
In multiline Text components, <CtrI> <End> must move the *
location cursor to the end of the file.

Other Operations

9-130

The following text describes the operations of this component:

<Space> or <Shift> <Space>
Must insert a space. Modifying these with <Ctrl> must evoke *
its normal selection function.

<Return> In multiline Text components, <Return> must insert a carriage *
return.

<Ctrl> <Return> and <Enter>
Must invoke the default action. *

<Tab> and <Shift> <Tab>
In multiline Text, <Tab> must be used for tabbing (either *
inserting a tab or moving to the next tab stop). In single-line *
Text, <Tab> must be used either for tabbing or to move to the *
next field. If <Tab> is used for tabbing and the location cursor
is at the end of the text, <Tab> can optionally move to the next
field.

Controls, Groups, and Models Reference Pages

Text

<Shift> <Tab> must be used to move to the previous field if *
<Tab> is used to move to the next field. Otherwise, <Shift>
<Tab> should be used for tabbing backward. If <Shift> <Tab>
is used for tabbing backward and the location cursor is at the
beginning of the text, <Shift> <Tab> can optionally move to
the previous field.

Modifying <Tab> or <Shift> <Tab> with <Ctrl> must evoke *
the same field navigation function as <Tab> or <Shift> <Tab>.

<BackSpace>
When the selection is empty or when the component is in add *
mode with the cursor disjoint from the selection, <BackSpace> *
must delete one character backward. Otherwise, <BackSpace> *
must delete the selection.

<Delete> When the selection is empty or when the component is in add *
mode with the cursor disjoint from the selection, <Delete> must *
delete one character forward. Otherwise, <Delete> must delete *
the selection.

<Ctrl> <Delete>
When the selection is empty or when the component is in add
mode with the cursor disjoint from the selection, <Ctrl>
<Delete> can delete the character following the location cursor
to the end of the line. Otherwise, <Ctrl> <Delete> can delete
the selection.

<Insert> If the Text component supports replace mode, must toggle *
between insert mode and replace mode.

By default, Text components must start in insert mode, where *
the location cursor is between two characters. In insert mode, *
typing a character must insert the character at the position of *
the location cursor. Text components can also implement
replace mode, where the location cursor is on a character. In *
replace mode, typing a character must replace the current *
character with that newly entered character and move the *
location cursor to the next character, selecting it. Many of the
requirements for a text -like collection in this guide assume that
the collection is in insert mode and do not apply in replace
mode.

9-131

OSF/Motif Style Guide

Text

BSelect Click 2+
Selects text a block at a time. A double-click must select text a *
word at a time. A triple-click can optionally select text a line or
sentence at a time. Larger numbers of clicks can optionally
select increasingly larger blocks of text.

BSelect Motion 2+
Can drag out a new selection by blocks as described for BSelect
Click 2+.

<Shift> BSelect Click 2+
Can extend the selection to a block boundary as described for
BSelect Click 2+.

<Shift> BSelect Motion 2+
Can extend the selection by blocks as described for BSelect
Click 2+.

<CtrI> BSelect Click 2+
If the Text component supports discontiguous selection, this can
extend the discontiguous selection by blocks as described for
BSelect Click 2+.

<Ctrl> BSelect Motion 2+

<Help>

If the Text component supports discontiguous selection, this can
drag out the discontiguous selection by blocks as described for
BSelect Click 2+.

Must provide any available help for the Text control. *

Related Information

9-132

For more information on Text selection, see the description of the selection
models in Chapter 4.

Controls, Groups, and Models Reference Pages

ToggleButton

ToggleButton

Description

A ToggleButton should be used to select options in an application. When
the choice is one of many, the ToggleButton is called a RadioButton. When
the choice is any of many, the ToggleButton is called a CheckButton. The *
ToggleButton must be composed of a text or graphic label, and it can
contain a graphic that indicates the state of the ToggleButton. The graphic
should precede the label and should have two distinctive states that indicate
the set and unset states of the ToggleButton.

Illustration

Navigation

ToggleButtons must have no internal navigation.

Related Information

For a description of the activation of the two types of ToggleButtons, see the
reference pages for CheckButton and RadioButton.

9-133

*

OSF/Motif Style Guide

Warning Dialog

WarningDialog

Description

A WarningDialog should be used to alert the user to a possible danger. It
should interrupt the user's interaction with the application. It should contain
a warning symbol, a message, and one of the following button arrangements:

Yes No
Yes No Help
OK Cancel
OK Cancel Help

Illustration

Related Information

For more information, see the reference page for DialogBox.

9-134

Controls, Groups, and Models Reference Pages

Window Menu

Window Menu

Description

The window Menu, sometimes called the system Menu, is used to display
the list of window actions. All actions possible for a window should be
displayed in the window Menu, since keyboard-only users interact with the
window manager through this Menu.

The window Menu button must be located in the upper-left corner of the *
window. Double-clicking the window Menu button must close the window. *
Pressing <Shift> <Escape> or <Alt> <Space> must activate the window *
Menu button for the window with the focus. The illustration on this
reference page shows a posted window Menu.

A primary window Menu must have the following selections in the order *
listed: *
Restore Alt+FS

Move Alt+F7

Size Alt+FS

Restores a minimized or maximized window to the *
previous size and location of the window. This *
selection must be deemphasized (grayed out) when *
the window is in its normal state. This action must *
have the mnemonic R. If this action has an *
accelerator, it must be <A It> <FS> if <FS> is *
available. *
Moves a window around the workspace. This action *
must have the mnemonic M. If this action has an *
accelerator, it must be <AIt> <F7> if <F7> is *
available. *
Changes the height and width of the window in the *
direction indicated by the pointer. This action must *
have the mnemonic S. If this action has an *
accelerator, it must be <AIt> <FS> if <FS> is *
available. *

9-135

OSF/Motif Style Guide

Window Menu

9-136

Migimize Alt+F9 Changes a window into an icon. This action must *
have the mnemonic N. If this action has an *
accelerator, it must be <AU> <F9> if <F9> is *
available. *

Ma~imize Alt+FIO Enlarges a window to its maximum size. This action *
must have the mnemonic X. If this action has an *
accelerator, it must be <AU> <FlO> if <FlO> is *
available. *

Lower AU+F3

Close Alt+F4

Moves a window to the bottom of the window *
hierarchy. This action can be omitted. This action *
must have the mnemonic L. If this action has an *
accelerator, it must be <AU> <F3> if <F3> is *
available. *
Closes a window and removes it from the workspace. *
This action must have the mnemonic C. If this *
action has an accelerator, it must be <AU> <F4> if *
<F4> is available. *

A secondary window Menu must have the following selections in the order *
listed: Move, Size, and Close. A secondary window Menu can include
Restore above Move, Maximize below Size, and Lower above Close, but
the lower option on a secondary window lowers all the windows secondary
to that window's primary window. A secondary window Menu should not
include Restore if it does not include Maximize. A secondary window *
must not include an entry for Minimize.

A secondary window resulting from a Menu being torn off must have the *
following entries in the order listed: Move, Lower, and Close. It must not *
include entries for Restore, Size, Minimize, or Maximize.

Controls, Groups,.and Models Reference Pages

Window Menu

Illustration

Related Information

See Chapter 7 for more information on the window Menu and the window
manager in general. See Chapter 6 for information about Menu design.

9-137

OSF/Motif Style Guide

Working Dialog

WorkingDialog

Description

A WorkingDialog should be used to show work in progress and give the user
an opportunity to cancel the operation. It should not interrupt the user's
interaction with the application. It should contain a working symbol, a
message, and one of the following button arrangements:

OK Cancel
OK Cancel Help

Illustration

Related Information

For more information, see the reference page for DialogBox.

9-138

Appendix A

OSF/Motif Widgets and Components
Correspondence

This appendix shows how actual OSFlMotif widgets correspond to the
components described in this guide. Gadgets, which are essentially
performance-oriented versions of widgets, are not listed in this appendix but
correspond closely to their widget counterparts.

Table A-1. Component to Widget Correspondence

Components Motif Widgets

Basic Controls:

Separator XmSeparator
Label XmLabel
PushButton XmPushButton

XmArrowButton
XmDrawnButton

ToggleButton XmToggleButton
It can also be simulated by XmPushButton
and XmDrawnButton

CheckButton XmToggleButton with XmNindicatorType
set to XmN_OF _MANY

A-1

OSF/Motif Style Guide

Components Motif Widgets

RadioButton XmToggleButton with XmNindicatorType
set to XmONE_OF _MANY

Cascade Button XmCascadeButton
OptionButton An XmCascadeButton within an

XmRowColumn with XmNrowColumnType
set to XmMENU_OPTION

Field Controls:

ScroliBar XmScrollBar
Scale XmScale
Sash Private element of XmPanedWindow
Text XmText and XmTextField
Canvas XmDrawingArea (without children),

XmDrawnButton
List XmList

Basic Groups:

Panel XmRowColumn with XmNrowColumnType
set to XmWORK_AREA and composed of
basic controls

Menu XmRowColumn with XmNrowColumnType
set to XmMENU_PULLDOWN or
XmMENU_POPUP

MenuBar XmRowColumn with XmNrowColumnType
set to XmMENU_BAR

Layout Groups:

Composite XmBulietinBoard, XmDrawingArea (with
children), XmForm, XmRowColumn when
XmNrowColumnType is set to
XmWORK_AREA and it is not a basic group

PanedWindow XmPanedWindow

Framing Groups:

Frame XmFrame
ScroliedWindow XmScrol'edWindow
MainWindow XmMainWindow

A-2

OSF/Motif Widgets and Components Correspondence

Components Motif Widgets

DialogBoxes:

Command Dialog XmCommand
ErrorDialog XmMessageBox
FileSelection Dialog XmFileSelectionBox
InformationDialog XmMessageBox
MessageDialog XmMessageBox
PromptDialog XmSelectionBox
QuestionDialog XmMessageBox
Selection Dialog XmSelectionBox
Warn ing Dialog XmMessageBox
WorkingDialog XmMessageBox

A-3

Appendix B

aSP/Motif Level One Certification
Checklist

The OSFIMotif Level One Certification Checklist (Revision 1.2) provides
the list of requirements for aSF/Motif application-level certification. In
order for your application to be certified OSFIMotif Style Guide compliant,
it must behave according to these requirements. You certify your own
application by comparing its behavior with that specified in the Checklist.
For each Checklist item, check Yes only if your application performs
exactly as described for that item. If you have not implemented a specified
type of behavior in any manner anywhere in your application, you may mark
N/A (not applicable) for the items pertaining to that behavior.

The Checklist describes keys using a model keyboard mechanism.
Wherever keyboard input is specified, the keys are indicated by the
engravings that they have on the aSF/Motif model keyboard. Mouse
buttons are described using a virtual button mechanism to better describe
behavior independent from the number of buttons on the mouse. For more
information on the model keyboard and virtual button mechanisms, consult
the Preface and Section 2.2.1 of this guide.

By default, this Checklist assumes that your application is being designed
for a left-to-right language environment in an English-language locale.
Some sections of the Checklist may require appropriate changes for other
locales.

8-1

OSF/Motif Style Guide

As you compare the behavior of your application to the requirements in the
Checklist, we recommend that you follow along in the aSP/Motif Style
Guide (Revision 1.2). For each Checklist item, corresponding section
numbers in the guide have been provided for your convenience. Each item
in the Checklist is also followed by a brief explanation and/or justification.
If you do not understand a particular item, refer to the appropriate section in
the guide and check the glossary in the guide for any terms that are unclear.

B.I Preface

Yes N/A No

B.2 Input Models

1-1: Each of the nonoptional keys described on the
OSF/Motif model keyboard is available either as
specified or by using other keys or key
combinations if the specified key is unavailable
(Preface).

The model keyboard does not correspond directly
to any existing keyboard; rather, it assumes a
keyboard with an ideal set of keys. However, to
ensure consistency across applications, the
nonoptional keys or substitutes for them must
always be available.

B.2.1 The Keyboard Focus Model

Yes N/A No

8-2

2-1: Only one window at a time has the keyboard focus.
The window that has the focus is highlighted.
Within the window that has the keyboard focus,

OSF/Motif Level One Certification Checklist

only one component at a time has the focus
(Section 2.1).

The keyboard focus determines which component
on the screen receives keyboard events. This rule
prevents confusion about which window and
component have the focus.

- - - 2-2: When your application uses an explicit focus
policy, pressing BSelect does not move focus to a
component that is not traversable or does not accept
input (Section 2.1.2).

An explicit focus policy requires the user to
explicitly select which window or component
receives the keyboard focus. Generally, the user
gives the focus to a window or component by
pressing BSelect over it. However, this policy must
not allow the user to give focus to a component that
is not traversable or does not accept input.

- - - 2-3: When your application uses an explicit focus
policy, the component with the keyboard focus is
highlighted by a location cursor (Section 2.1.2).

The user needs to know the location of the keyboard
focus to be able to control an application.

B.2.2 The Input Device Model

Yes N/A No

2-4: Your application supports methods of interaction
for keyboard-only users. All features of your
application are available from the keyboard
(Section 2.2).

Some users may not have access to a pointing
device. These users need to be able to access the
full functionality of the application from the
keyboard. Additionally, advanced users will be
able to use the keyboard to perform some tasks
more quickly than with a pointing device.

B-3

OSF/Motif Style Guide

8-4

- - - 2-5: Your application uses the following bindings for
mouse buttons (Section 2.2.1):

• BSelect, used for selection, activation, and
setting the location cursor, is the leftmost
button, except for left-handed users, where it
can be the rightmost button.

• BTransfer, used for moving and copying
elements, is the middle mouse button, unless
dragging is integrated with selection or the
mouse has fewer than three buttons.

• BMenu, used for popping up Menus, is the
rightmost button, except for left -handed users,
where is can be the leftmost button, or unless
the mouse has fewer than three buttons. If the
mouse has one button, BMenu is bound to
<Alt> BSelect.

These bindings ensure a consistent interface for
using standard mouse-based operations across
applications.

- - - 2-6: Your application does not warp the pointer unless
you have given the user a means of disabling the
behavior (Section 2.2.4).

The pointer position is intended only as input to
applications, not as an output mechanism. An
application warps the pointer when it changes the
pointer's position. This practice is confusing to
users and reduces their sense of control over an
application. Warping the pointer can also cause
problems for users of absolute location pointing
devices.

OSF/Motif Level One Certification Checklist

B.3 Navigation

B.3.1 Mouse-Based Navigation

Yes N/A No

3-1: When the keyboard focus policy is explicit,
pressing BSelect on a component moves focus to it,
except for components, such as ScrollBars, that are
used to adjust the size and location of other
elements (Section 3.1).

BSelect provides a convenient mechanism for using
the mouse to move focus when the keyboard focus
policy is explicit.

- - - 3-2: When the pointer is on a Menu, your application
uses BSelect Press to acti vate the Menu in a
spring-loaded manner (Section 3.1).

A spring-loaded Menu is one that appears when the
user presses a mouse button, remains on the screen
for as long as the button is pressed, and disappears
when the user releases the button. BSelect, the first
mouse button, provides a means of activating
spring-loaded Menus that is consistent across
applications.

- - - 3-3: When the pointer is in an element with an inactive
Popup Menu and the context of the element allows
the Popup Menu to be displayed, your application
uses BMenu Press to activate the Popup Menu in a
spring-loaded manner (Section 3.1).

The availability of a Popup Menu can depend on
the location of the pointer within an element, the
contents of an element, or the selection state of an
element. BMenu, the third mouse button, provides
a consistent means of activating a spring-loaded
Popup Menu.

8-5

OSF/Motif Style Guide

8-6

- - - 3-4: If the user takes an action to post a Popup Menu,
and a Menu can be posted for both an inner element
and an outer element that contains the inner
element, the Popup Menu for the internal element is
posted (Section 3.1).

This specification ensures that the Popup Menu for
an internal element is always accessible.

- - - 3-5: Once a Popup Menu is posted, BMenu behaves just
as BSelect does for any Menu system (Section 3.1).

The specified operation of BMenu is for
manipulating Popup Menus.

- - - 3-6: BSelect is also available from within posted Popup
Menus and behaves just as in any Menu system
(Section 3.1).

Once a Popup Menu is posted, the user can select
an element from it using the standard selection
mechanism, BSelect.

- - - 3-7: When a Menu is popped up or pulled down in a
posted manner, your application places the location
cursor on the Menu's default entry, or on the first
entry in the Menu if there is no default entry
(Section 3.1).

A posted Menu remains visible until it is explicitly
unposted. Placing the location cursor on the
default entry allows the user to select the default
operation easily. When there is no default entry,
placing the location cursor on the first entry yields
uniform behavior across applications.

- - - 3-8: Your application removes a spring-loaded Menu
system when the mouse button that activated it is
released, except when the button is released on a
CascadeButton in the Menu hierarchy (Section 3.1).

The concept of a spring-loaded Menu system
requires that the Menu disappear when the mouse
button is released.

OSF/Motif Level One Certification Checklist

- - - 3-9: While a spring-loaded Menu system is popped up or
pulled down, moving the pointer within the Menu
system moves the location cursor to track the
pointer (Section 3.1).

Once a spring-loaded Menu system has appeared
on the screen, the user needs to be able to
maneuver the location cursor through the Menu
system using the mouse.

- - - 3-10: When a spring-loaded Menu system is popped up or
pulled down and the pointer rests on a
CascadeButton, the associated Menu is pulled
down and becomes traversable. The associated
Menu is removed, possibly after a short delay,
when the pointer moves to a Menu item outside of
the Menu or its CascadeButton (Section 3.1).

The user needs to be able to use the mouse to
access all of the associated Menus of a Menu
system. This feature allows the user to move
quickly to any Menu in a Menu system.

- - - 3-11: When a spring-loaded Menu system that is part of
the MenuBar is pulled down, moving the pointer to
any other element on the MenuBar unposts the
current Menu system and posts the Pulldown Menu
associated with the new element (Section 3.1).

This feature of a spring-loaded Menu system allows
the user to browse quickly through all of the Menus
attached to a M enuBar.

- - - 3-12: When a spring-loaded Menu system is popped up or
pulled down, and the button that activated the
Menu system is released within a component in the
Menu system, that component is activated. If the
release is on a CascadeButton or an OptionButton,
the associated Menu is activated in a posted
manner if it was not posted prior to the associated
button press (Section 3.1).

8-7

OSF/Motif Style Guide

8-8

Releasing the mouse button that activated a
spring-loaded Menu provides a means of activating
a Menu element that is consistent across
applications.

- - - 3-13: When the pointer is in an area with a Popup Menu,
your application uses BMenu Click to activate the
Menu in a posted manner if it was not posted prior
to the BMenu Click (Section 3.1).

BMenu Click provides a means of posting a Popup
Menu that is consistent across applications.

- - - 3-14: Once a Pulldown or Option Menu is posted,
BSelect Press in the Menu system causes the Menu
to behave as a spring-loaded Menu (Section 3.1).

This feature of a posted Pulldown or Option Menu
allows the user to switch easily between using a
posted Menu and a spring-loaded Menu.

- - - 3-15: If a button press unposts a Menu and that button
press is not also passed to the underlying
component, subsequent events up to and induding
the button release are not passed to the underlying
component (Section 3.1).

When a button press unposts a Menu, the press can
be passed to the underlying component. Whether
or not it is passed to the underlying component, the
press can have additional effects, such as raising
and giving focus to the underlying window. If the
press is not passed to the underlying component,
events up to and including the release must not be
passed to that component.

- - - 3-16: Once a Popup Menu is posted, BSelect Press or
BMenu Press in the Menu system causes the Menu
to behave as a spring-loaded Menu (Section 3.1).

This feature of a posted Popup Menu allows the
user to switch easily between using a posted Menu
and a spring-loaded Menu.

OSF/Motif Level One Certification Checklist

B.3.2 Keyboard-Based Navigation

Yes N/A No

- 3-17: In a Text component, the text cursor is shown
differently when the component does and does not
have the keyboard focus (Section 3.2.1).

In a Text component, the text cursor serves as the
location cursor and therefore must indicate
whether or not the component has keyboard focus.

- - - 3-18: If a Text component indicates that it has lost the
keyboard focus by hiding the text cursor and if the
component subsequently regains the focus, the
cursor reappears at the same position it had when
the component lost focus (Section 3.2.1).

To ensure predictability, it is important that the text
cursor not change position when a Text component
loses and then regains the keyboard focus.

- - - 3-19: If a small component, such as a Sash, indicates that
it has the keyboard focus by filling, no other
meaning is associated with the filled state (Section
3.2.1).

This rule reduces possible confusion about the
significance of filling in a small component.

- - - 3-20: All components are designed and positioned within
your application so that adding and removing each
component's location cursor do not change the
amount of space that the component takes up on the
screen (Section 3.2.1).

For visual consistency, the sizes and positions of
components should not change when keyboard
focus moves from one component to another.

- - - 3-21: <Ctrl> <Tab> moves the location cursor to the
next field, and <Ctrl> <Shift> <Tab> moves the
location cursor to the previous field. Unless <Tab>
and <Shift> <Tab> are used for internal navigation
within a field, <Tab> also moves the location

8-9

OSF/Motif Style Guide

8-10

cursor to the next field, and <Shift> <Tab> also
moves the location cursor to the previous field
(Section 3.2.3).

These keys provide a consistent means of
navigating among fields in a window.

- - - 3-22: <Tab> (if not used for internal navigation) and
<Ctrl> <Tab> move the location cursor forward
through fields in a window according to the
following rules (Section 3.2.3):

• If the next field is a control, <Tab> (if not used
for internal navigation) and <Ctrl> <Tab>
move the location cursor to that control.

• If the next field is a group, <Tab> (if not used
for internal navigation) and <Ctrl> <Tab>
move the location cursor to a traversable
component within the group.

• If the next field contains no traversable
components, <Tab> (if not used for internal
navigation) and <Ctrl> <Tab> skip the field.

These rules ensure the consistent operation of
<Tab> (if not used for internal navigation) and
<Ctrl> <Tab> across applications.

- - - 3-23: <Shift> <Tab> (if not used for internal navigation)
and <Ctrl> <Shift> <Tab> move the location
cursor backward through fields in the order opposite
to that of <Tab> (if not used for internal
navigation) and <Ctrl> <Tab> (Section 3.2.3).

These rules result in the uniform operation of
<Shift> <Tab> (if not used for internal navigation)
and <Ctrl> <Shift> <Tab> across applications.

- - - 3-24: When a window acquires focus, the location cursor
is placed on the control that last had focus in the
window, providing that all the following conditions
are met (Section 3.2.3):

• The window uses an explicit keyboard focus
policy.

OSF/Motif Level One Certification Checklist

• The window acquires the focus through
keyboard navigation or through a button press
other than within the client area of the window.

• The window had the focus at some time in the
past.

• The control that last had focus in the window is
still traversable.

This rule ensures that when the user returns to a
window after navigating away, the focus returns to
the component where the user left it.

- - - 3-25: Field navigation wraps between the first and last
fields in the window. (Section 3.2.3).

This feature of field navigation provides the user
with a convenient way to move through all of the
fields in a window.

- - - 3-26: When <J-> and <I> are used for component
navigation within a field, they behave according to
the following rules (Section 3.2.3):

• In a left-to-right language environment, <J->
moves the location cursor through all
traversable controls in the field, starting at the
upper left and ending at the lower right, then
wrapping to the upper left. If the controls are
aligned in a matrix-like arrangement, <J-> first
traverses one column from top to bottom, then
traverses the column to its right, and so on. In a
right-to-Ieft language environment, <J-> moves
the location cursor through all traversable
controls, starting at the upper right and ending
at the lower left.

• <I> moves the location cursor through all
traversable controls in the field in the order
opposite to that of <J->.

These rules ensure a consistent means of navigating
among components using the directional keys.

8-11

OSF/Motif Style Guide

8-12

- - - 3-27: When <~> and <f-> are used for component
navigation within a field, they behave according to
the following rules (Section 3.2.3):

• In a left-to-right language environment, <~>
moves the location cursor through all
traversable controls in the field, starting at the
upper left and ending at the lower right, then
wrapping to the upper left. If the controls are
aligned in a matrix-like arrangement, <~> first
traverses one row from left to right, then
traverses the row below it, and so on. In a
right-to-Ieft language environment, <---7> moves
the location cursor through all traversable
controls, starting at the lower left and ending at
the upper right.

• <f-> moves the location cursor through all
traversable controls in the field in the order
opposite to that of <~>.

These rules ensure a consistent means of navigating
among components using the directional keys.

- - - 3-28: If a control uses <~> and <f-> for internal
navigation, <Begin> moves the location cursor to
the leftmost edge of the data or the leftmost
element in a left-to-right language environment. In
a right-to-Ieft language environment, <Begin>
moves the location cursor to the rightmost edge of
the data or the rightmost element (Section 3.2.3).

This rule permits convenient navigation to the left
or right edge of the data or the left or right element
in a control.

- - - 3-29: If a control uses <~> and <f-> for internal
navigation, <End> moves the location cursor to the
rightmost edge of the data or the rightmost element
in a left-to-right language environment. In a right­
to-left language environment, <End> moves the
location cursor to the leftmost edge of the data or
the leftmost element (Section 3.2.3).

OSF/Motif Level One Certification Checklist

This rule permits convenient navigation to the left
or right edge of the data or the left or right element
in a control.

- - - 3-30: If a control uses <i> and <J.> for internal
navigation, <Ctrl> <Begin> moves the location
cursor to one of the following (Section 3.2.3):

• The first element

• The topmost edge of the data

• In a left-to-right language environment, the
topmost left edge of the data; in a right-to-Ieft
language environment, the topmost right edge
of the data

This rule permits convenient navigation to the
beginning of the data in a control.

- - - 3-31: If a control uses <i> and <J.> for internal
navigation, <Ctrl> <End> moves the location
cursor to one of the following (Section 3.2.3):

B.3.3 Menu Traversal

Yes N/A No

• The last element

• The bottommost edge of the data

• In a left-to-right language environment, the
bottommost right edge of the data; in a right­
to-left language environment, the bottommost
left edge of the data

This rule permits convenient navigation to the end
of the data in a control.

- 3-32: If the user traverses to a Menu while the keyboard
focus policy is implicit, the focus policy
temporarily changes to explicit and reverts to
implicit whenever the user traverses out of the
Menu system (Section 3.3).

8-13

OSF/Motif Style Guide

8-14

Menus must always be traversable, even when the
keyboard focus policy is generally implicit.

- - - 3-33: Your application uses <FlO> to activate the
MenuBar system if it is inactive. The location
cursor is placed on the first traversable
CascadeButton in the MenuBar. If there are no
traversable CascadeButtons, the key does nothing
(Section 3.3).

<FlO> provides a consistent means of traversing to
the MenuBar using the keyboard.

- - - 3-34: When the keyboard focus is in an element with an
inactive Popup Menu and the context of the
element allows the Popup Menu to be displayed,
your application uses <Menu> to activate the
Popup Menu. The location cursor is placed on the
default item of the Menu, or on the first traversable
item in the Popup Menu if there is no default item
(Section 3.3).

<Menu> provides a uniform way of activating a
Popup Menu from the keyboard.

- - - 3-35: When the keyboard focus is in an OptionButton,
your application uses <Select> or <Space> to post
the Option Menu. The location cursor is placed on
the previously selected item in the Option Menu;
or, if the Option Menu has been pulled down for the
first time, the location cursor is placed on the
default item in the Menu. If there is an active
Option Menu, <Enter>, <Return>, <Select>, or
<Space> selects the current item in the Option
Menu, unposts the Menu system, and returns the
location cursor to the OptionButton (Section 3.3).

These keys provide a means of posting an Option
Menu from the keyboard that is consistent across
applications.

- - - 3-36: Your application uses <,J,>, <0>, <~>, and <I> to
traverse through the items in a Menu system
(Section 3.3).

OSF/Motif Level One Certification Checklist

The <-1,>, <f->, <~>, and <I> directional keys
provide a consistent means of navigating among
items in a Menu system.

- - - 3-37: When a Menu traversal action traverses to the next
or previous component in a Menu or MenuBar, the
order of traversal and the wrapping behavior are the
same as that of the corresponding component
navigation action within a field, as described in
Section 3.2.3 (Section 3.3).

This specification provides consistency between
Menu traversal and component navigation within a
field.

- - - 3-38: If your application uses any 2-dimensional Menus,
they do not contain any CascadeButtons (Section
3.3).

CascadeButtons in a 2-dimensional Menu would
restrict the user's ability to navigate to all of the
elements of the Menu using the keyboard.

- - - 3-39: When focus is on a component in a Menu or
MenuBar system, <-1,> behaves in the following
way (Section 3.3):

• If the component is in a vertical or 2-
dimensional Menu, traverse down to the next
traversable component, wrapping within the
Menu if necessary .

• If the component is in a MenuBar, and the
component with the keyboard focus is a
CascadeButton, post its associated Pulldown
Menu and traverse to the default entry in the
Menu or, if the Menu has no default, to the first
traversable entry in the Menu.

This rule results in consistent operation of the
directional keys in a Menu or MenuBar system.

- - - 3-40: When focus is on a component in a Menu or
MenuBar system, <I> behaves in the following
way (Section 3.3):

8-15

OSF/Motif Style Guide

8-16

If the component is in a vertical or 2-dimensional
Menu, this action traverses up to the previous
traversable component, wrapping within the Menu
if necessary, and proceeding in the order opposite
to that of <.l->.

This rule results in consistent operation of the
directional keys in a Menu or MenuBar system.

- - - 3-41: When focus is on a component in a Menu or
MenuBar system, <~> behaves in the following
way (Section 3.3):

• If the component is in a MenuBar or 2-
dimensional Menu, but not at the left edge,
traverse left to the previous traversable
component.

• If the component is at the left edge of a
MenuBar, wrap within the MenuBar.

• If the component is at the left edge of a vertical
or 2-dimensional Menu that is the child of a
vertical or 2-dimensional Menu, unpost the
current Menu and traverse to the parent
CascadeB utton.

• If the component is at the left edge of a vertical
or 2-dimensional Menu that is the child of a
MenuBar, unpost the current Menu and traverse
left to the previous traversable entry in the
MenuBar. If that entry is a CascadeButton, post
its associated Pulldown Menu and traverse to
the default entry in the Menu or, if the Menu
has no default, to the first traversable entry in
the Menu.

This rule results in consistent operation of the
directional keys in a Menu or MenuBar system.

- - - 3-42: When focus is on a component in a Menu or
MenuBar system, <~> behaves in the following
way (Section 3.3):

• If the component is a CascadeButton in a
vertical Menu, post its associated Pulldown

OSF/Motif Level One Certification Checklist

Menu and traverse to the default entry in the
Menu or, if the Menu has no default, to the first
traversable entry in the Menu.

• If the component is in a MenuBar or 2-
dimensional Menu, but not at the right edge,
traverse right to the next traversable
component.

• If the component is at the right edge of a
MenuBar, wrap within the MenuBar.

• If the component is not a CascadeButton and is
at the right edge of a vertical or 2-dimensional
Menu, and if the current Menu has an ancestor
CascadeButton (typically in a MenuBar) from
which <-1,> posts its associated Pulldown Menu,
unpost the Menu system pulled down from the
nearest such ancestor CascadeButton and
traverse right from that CascadeButton to the
next traversable component. If that component
is a CascadeButton, post its associated
Pulldown Menu and traverse to the default entry
in the Menu or, if the Menu has no default, to
the first traversable entry in the Menu.

This rule results in consistent operation of the
directional keys in a Menu or MenuBar system.

- - - 3-43: All Menu traversal actions, with the exception of
Menu posting, traverse to TearOffButtons in the
same way as for other Menu entries (Section 3.3).

Traversal of TearOffButtons needs to be consistent
with traversal of other Menu items.

- - - 3-44: If your application uses <FlO>, <Menu>, or
<Cancel> to unpost an entire Menu system and an
explicit focus policy is in use, the location cursor is
moved back to the component that had it before the
Menu system was posted (Section 3.3).

Returning the location cursor to the component that
had it previously allows the user to resume a task
without disruption.

8-17

OSF/Motif Style Guide

B.3.4 Scrollable Component Navigation

8-18

Yes N/A No

- 3-45: Any scrollable components within your application
support the appropriate navigation and scrolling
operations. Your application uses the page
navigation keys <PageUp>, <PageDown>,
<PageLeft> or <Ctrl> <PageUp>, and
<Page Right> or <Ctrl> <PageD own> for scrolling
the visible region by a page increment (Section
3.4).

A user needs to be able to view and access the
entire contents of a scrollable component.

- - - 3-46: When scrolling by a page, your application leaves
at least one unit of overlap between the old and
new pages (Section 3.4).

The overlap between one page and the next yields
visual continuity for the user.

- - - 3-47: Any keyboard operation that moves the cursor to or
in the component, or that inserts, deletes, or
modifies items at the cursor location scrolls the
component so that the cursor is visible when the
operation is complete (Section 3.4).

The user needs to be able to see the results of
moving the location cursor or operating on the
contents of the scrollable component.

- - - 3-48: If a mouse-based scrolling action is in progress,
<Cancel> cancels the scrolling action and returns
the scrolling device to its state prior to the start of
the scrolling operation (Section 3.4).

<Cancel> provides a convenient way for the user
to cancel a scrolling operation.

B.4 Selection

B.4.1 Selection Models

Yes N/A No

OSF/Motif Level One Certification Checklist

4-1: Your system supports five selection models: single
selection, browse selection, multiple selection,
range selection, and discontiguous selection
(Section 4.1).

Each collection has one or more appropriate
selection models. The model limits the kinds of
choices the user can make in the collection. Some
collections enforce a selection model, while others
allow the user or application to change it.

B.4.1.1 Mouse-Based Single Selection

Yes N/A No

4-2: In a collection that uses single selection, when
BSelect is clicked in a deselected element, the
location cursor moves to that element, that element
is selected, and any other selection in the collection
is deselected (Section 4.1.1).

Single selection is the simplest selection model,
used to select a single element. BSelect, the first
mouse button, provides a consistent means of
selecting an object within a group using the mouse.

8-19

OSF/Motif Style Guide

8-20

B.4.1.2 Mouse-Based Browse Selection

Yes N/A No

4-3: In a collection that uses browse selection, when
BSelect is released in a selectable element, that
element is selected, and any other selection in the
collection is deselected. As BSelect is dragged
through selectable elements, each element under
the pointer is selected, and the previously selected
element is deselected. The selection remains on
the element where BSelect is released, and the
location cursor is moved there (Section 4.1.2).

Browse selection is used to select a single element.
It also allows the user to browse through the
collection by dragging BSelect.

B.4.1.3 Mouse-Based Multiple Selection

Yes N/A No

4-4: In a collection that uses multiple selection, clicking
BSelect on an unselected element adds that
element to the current selection in the collection.
Clicking BSelect on a selected element removes
that element from the current selection in the
collection. Clicking BSelect on an element moves
the location cursor to that element (Section 4.1.3).

Multiple selection allows the user to select or
deselect multiple elements of a collection, one at a
time, by using BSelect Click.

OSF/Motif Level One Certification Checklist

B.4.1.4 Mouse-Based Range Selection

Yes N/A No

4-5: In a collection that uses range selection, pressing
BSelect sets an anchor on the element, or at the
position where BSelect was pressed, and deselects
all elements in the collection. The anchor and the
current position of the pointer determine the current
range. As BSelect is dragged through the
collection, the current range is highlighted. When
BSelect is released, the anchor does not move, and
all the elements within the current range are
selected (Section 4.1.4).

Range selection allows the user to select multiple
contiguous elements of a collection by pressing and
dragging BSelect.

- - - 4-6: In a text-like collection that uses range selection,
the anchor point is the text pointer position when
BSelect is pressed, and the current range consists of
all elements between the anchor point and the
current text pointer position (Section 4.1.4).

In text-like collections, elements are ordered
linearly, and a text pointer is always considered to
be between elements at a point near the actual
pointer position.

- - - 4-7: In a graphics-like or list-like collection that uses a
marquee to indicate the range of a range selection,
the current range consists of those elements that
fall completely within the marquee. If there is an
anchor element, the marquee is always made large
enough to enclose it completely. Otherwise, an
anchor point is used and is the point at which
BSelect was pressed; the anchor point determines
one corner of the marquee. If the collection is not
arranged as a list or matrix, the marquee is
extended to the pointer position. If the collection is
arranged as a list or matrix, the marquee is either
extended to completely enclose the element under

8-21

OSF/Motif Style Guide

8-22

the pointer or extended to the pointer position.
Clicking BSelect on a selectable element makes it
an anchor element, selects it, and deselects all other
elements (Section 4.1.4).

A marquee, or highlighted rectangle, is often used
to indicate the range of a selection in graphics-like
and list-like collections.

- - - 4-8: In a collection that uses range selection, when the
user presses <Shift> BSelect, the anchor remains
unchanged, and an extended range for the selection
is determined, based on one of the following
extension models (Section 4.1.4):

Reselect
The extended range is determined by the
anchor and the current pointer position, in
exactly the same manner as when the
selection was initially made.

Enlarge Only
The selection can only be enlarged. The
extended range is determined by the
anchor and the current pointer position, but
then is enlarged to include the current
selection.

Balance Beam
A balance point is defined at the midpoint
of the current selection. When the user
presses <Shift> BSelect on the opposite
side of the balance point from the anchor,
this model works exactly like the Reselect
model. When the user presses <Shift>
BSelect or starts a navigation action
modified by <Shift> on the same side of
the balance point as the anchor, this model
moves the anchor to the opposite end of
the selection and then works exactly like
the Reselect model.

OSF/Motif Level One Certification Checklist

When the user releases BSelect, the anchor does
not move, all the elements within the extended
range are selected, and all the elements outside of it
are deselected (Section 4.1.4).

<Shift> BSelect provides a convenient means of
extending the range of a selection.

B .4.1.5 Mouse-Based Discontiguous Selection

Yes N/A No

4-9: In a collection that uses discontiguous selection,
the behavior of BSelect is exactly the same as in
the range selection model. After the user sets the
anchor with BSelect, <Shift> BSelect works
exactly as in the range selection model (Section
4.1.5).

Discontiguous selection is an extension of range
selection that allows the user to select multiple
discontiguous ranges of elements.

- - - 4-10: In a collection that uses discontiguous selection,
when the current selection is not empty and the user
clicks <Ctrl> BSelect, the anchor and location
cursor move to that point. If the current selection is
not empty and the user clicks <Ctrl> BSelect on an
element, the selection state of that element is
toggled, and that element becomes the anchor
element (Section 4.1.5).

In discontiguous selection, <Ctrl> BSelect Click
provides a convenient means of moving the anchor
and toggling the selection state of the element
under the pointer.

- - - 4-11: In a collection that uses discontiguous selection,
<Ctrl> BSelect Motion toggles the selection state
of a range of elements. The range itself is
determined exactly as for BSelect Motion.

8-23

OSF/Motif Style Guide

8-24

Releasing <Ctrl> BSelect toggles the selection
state of the elements in the range according to one
of two models (Section 4.1.5):

Anchor Toggle
Toggling is based on an anchor element. If
the range is anchored by a point, and is not
empty, the anchor element is set to the
element within the range that is nearest to
the anchor point. Toggling sets the
selection state of all elements in the range
to the inverse of the initial state of the
anchor element.

Full Toggle
The selection state of each element in the
extended range is toggled.

In discontiguous selection, <Ctrl> BSelect
provides a convenient means of toggling the
selection state of elements in a range.

- - - 4-12: In a collection that uses discontiguous selection,
after <Ctrl> BSelect toggles a selection, <Shift>
BSelect or <Ctrl> <Shift> BSelect extends the
range of toggled elements. The extended range is
determined in exactly the same way as when
<Shift> BSelect is used to extend a range selection.
When the user releases <Ctrl> <Shift> BSelect the
selection state of elements added to the range is
determined by the toggle model in use (either
Anchor Toggle or Full Toggle). If elements are
removed from the range, they either revert to their
state prior to the last use of <Ctrl> BSelect or
change to the state opposite that of the elements
remaining within the extended range (Section
4.1.5).

<Shift> BSelect and <Ctrl> <Shift> BSelect
provide a convenient means of extending the range
of toggled elements.

OSF/Motif Level One Certification Checklist

B .4.1.6 Keyboard Selection

Yes N/A No

- 4-13: The selection models support keyboard selection
modes according to the following rules (Section
4.1.6):

• Single selection supports only add mode.

• Browse selection supports only normal mode.

• Multiple selection supports only add mode.

• Range selection supports normal mode. If it
also supports add mode, normal mode is the
default.

• Discontiguous selection supports both normal
mode and add mode. Normal mode is the
default.

Selection must be available from the keyboard. In
normal mode, used for making simple contiguous
selections from the keyboard, the location cursor is
never disjoint from the current selection. In add
mode, used for making more complex and possibly
disjoint selections, the location cursor can move
independent of the current selection.

- - - 4-14: If a collection supports both normal mode and add
mode, <Shift> <F8> switches from one mode to the
other. Mouse-based selection does not change
when the keyboard selection mode changes. In
editable components, add mode is a temporary
mode that is exited when the user performs an
operation on the selection or deselects the selection
(Section 4.1.6).

<Shift> <F8> provides a convenient means of
switching between normal mode and add mode.

8-25

OSF/Motif Style Guide

8-26

B.4.1.6.1 Keyboard-Based Single Selection

Yes N/A No

- 4-15: In a collection that uses single selection, the
navigation keys move the location cursor
independent from the selected element. If the user
presses <Select> or <Space> on an unselected
element, the element with the location cursor is
selected, and any other selection in the collection is
deselected (Section 4.1.6.1).

Single selection supports only add mode. Pressing
<Select> or <Space> is similar to clicking BSelect.

B.4.1.6.2 Keyboard-Based Browse Selection

Yes N/A No

- 4-16: In a collection that uses browse selection, the
navigation keys move the location cursor and select
the cursored element, deselecting any other
element. If the application has deselected all
elements or if the cursor is left disjoint from the
selection, <Select> or <Space> selects the cursored
element and deselects any other element (Section
4.1.6.2).

Browse selection supports only normal mode. A
navigation operation is similar to dragging
BSelect.

B.4.1.6.3 Keyboard-Based Multiple Selection

Yes N/A No

- 4-17: In a collection that uses multiple selection, the
navigation keys move the location cursor
independent from the current selection. <Select>
or <Space> on an unselected element adds the

OSF/Motif Level One Certification Checklist

element to the current selection. <Select> or
<Space> on a selected element removes the
element from the current selection (Section
4.1.6.3).

Multiple selection supports only add mode.
Pressing <Select> or <Space> is similar to
clicking BSelect.

Bo4.1.604 Keyboard-Based Range Selection

Yes N/A No

- 4-18: In a collection that uses range selection and is in
normal mode, the navigation keys move the
location cursor and deselect the current selection.
If the cursor is on an element, it is selected. The
anchor moves with the location cursor.

Text-like collections can use a different model in
which the navigation keys leave the anchor at its
current location, except that, if the current selection
is not empty, it is deselected and the anchor is
moved to the location of the cursor prior to
navigation (Section 4.1.604).

Range selection supports normal mode, and, if the
collection also supports add mode, normal mode is
the default.

- - - 4-19: In a collection that uses range selection, whether in
normal mode or add mode, <Select> or <Space>
(except in a Text component) moves the anchor to
the cursor, deselects the current selection, and, if
the cursor is on an element, selects the element.
Unless the anchor is on a deselected item, <Shift>
<Select> or <Shift> <Space> (except in Text)
extends the selection from the anchor to the cursor,
based on the extension model used by <Shift>
BSelect (Res elect , Enlarge Only, or Balance
Beam) (Section 4.1.604).

8-27

OSF/Motif Style Guide

8-28

In range selection, pressing <Select> or <Space>
is similar to clicking BSelect, and pressing <Shift>
<Select> or <Shift> <Space> extends the range as
with <Shift> BSelect.

- - - 4-20: In a collection that uses range selection and is in
normal mode, using <Shift> in conjunction with
the navigation keys extends the selection, based on
the extension model used by <Shift> BSelect. If
the current selection is empty, the anchor is first
moved to the cursor. The cursor is then moved
according to the navigation keys, and the selection
is extended based on the extension model used by
<Shift> BSelect (Section 4.1.6.4).

In range selection, shifted navigation extends the
selection in a similar manner to dragging <Shift>
BSelect.

- - - 4-21: In a collection that uses range selection and is in
add mode, the navigation keys move the location
cursor but leave the anchor unchanged. Shifted
navigation moves the location cursor according to
the navigation keys, and the selection is extended
based on the extension model used by <Shift>
BSelect (Section 4.1.6.4).

Shifted navigation in add mode is similar to shifted
navigation in normal mode, except that when the
selection is empty the anchor does not move to the
cursor prior to navigation.

B .4.1.6.5 Keyboard-Based Discontiguous Selection

Yes N/A No

- 4-22: In a collection that uses discontiguous selection and
is in normal mode, all keyboard operations have the
same effect as in the range selection model (Section
4.1.6.5).

OSF/Motif Level One Certification Checklist

Normal mode does not permit multiple
discontiguous selections.

- - - 4-23: In a collection that uses discontiguous selection and
is in add mode, <Select> or <Space> moves the
anchor to the location cursor and initiates toggling.
If the cursor is on an element, the selection state of
that element is toggled, but the selection state of all
other elements remains unchanged. <Shift>
<Select> or <Shift> <Space> and shifted
navigation operations extend the selection between
the anchor and the location cursor, based on the
toggle mechanism used by <Ctrl> BSelect
(Anchor Toggle or Full Toggle) (Section 4.1.6.5).

Add mode permits use of the keyboard to make
multiple discontiguous selections.

B.4.1.7 Canceling a Selection

Yes N/A No

- 4-24: Your application uses <Cancel> to cancel or undo
any incomplete motion operation used for selection.
Once the user presses <Cancel> to cancel a motion
operation, the application ignores subsequent key
and button releases until after all buttons and keys
are released. <Cancel> while extending or
toggling leaves the selection state of all elements as
they were prior to the button press (Section 4.1.7).

<Cancel> allows the user to cancel an incomplete
selection operation quickly and consistently.

8-29

OSF/Motif Style Guide

8-30

B.4.1.8 Autoscrolling and Selection

Yes N/A No

- 4-25: If the user drags the pointer out of a scrollable
collection during a motion-based selection
operation, autoscrolling is used to scroll the
collection in the direction of the pointer. If the user
presses <Cancel> with BSelect pressed, the
selection operation is canceled as described in
Section 4.1.7 (Section 4.1.8).

Autoscrolling provides a convenient means of
extending a selection to elements outside the
viewport of a scrollable collection.

B.4.1.9 Selecting and Deselecting All Elements

Yes N/A No

- 4-26: In a collection that uses multiple, range, or
discontiguous selection, <Ctrl> <I> selects all the
elements in the collection, places the anchor at the
beginning of the collection, and leaves the location
cursor at its previous position (Section 4.1.9).

<Ctrl> <I> provides the user with a convenient
means of selecting all of the objects in a collection.

- - - 4-27: In a collection that is in add mode, <Ctrl> <\>
deselects all the elements in the collection. In a
collection that is in normal mode, <Ctrl> <\>
deselects all the elements in the collection, except
the element with the location cursor if the location
cursor is being displayed. In either mode, <Ctrl>
<\> leaves the location cursor at its current position
and moves the anchor to the location cursor
(Section 4.1.9).

<Ctrl> <\> allows the user to deselect all of the
selected objects quickly and uniformly.

OSF/Motif Level One Certification Checklist

B .4.1.1 0 Using Mnemonics for Elements

Yes N/A No

- 4-28: If your application supports mnemonics associated
with selectable elements, typing a mnemonic while
the collection has the keyboard focus is equivalent
to moving the location cursor to the element and
pressing <Select> or <Space> (Section 4.1.10).

B.4.2 Selection Actions

Yes N/A No

Mnemonics within a collection of selectable
elements provide an additional selection method.

- 4-29: When the keyboard focus policy is explicit, the
destination component is the editable component
that last had the keyboard focus. When the
keyboard focus policy is implicit, the destination
component is the editable component that last
received mouse button or keyboard input (Section
4.2.1).

The destination component is used to identify the
component on which certain operations, primarily
data transfer operations, act. There is only one
destination component at a time.

- - - 4-30: If the keyboard focus is in a component (or a Popup
Menu of a component) that supports selections,
operations that act on a selection act on the
selection in that component (Section 4.2.2).

A selection operation acts on the component that
has focus, if that component supports selections.

- - - 4-31: If the keyboard focus is in a component (or a Popup
Menu of a component) that supports some operation
that does not act on a selection, invoking the
operation acts on that component (Section 4.2.2).

8-31

OSF/Motif Style Guide

8-32

An operation that does not act on a selection acts
on the component that has focus, if that component
supports the operation.

- - - 4-32: Inserting or pasting elements into a selection,
except for a primary transfer operation at the
bounds of the primary selection, first deletes the
selection if pending delete is enabled (Section
4.2.3).

Pending delete controls the conditions under which
the selection is deleted. It is enabled by default.

- - - 4-33: In normal mode, inserting or pasting elements
disjoint from the selection also deselects the
selection, except for primary transfer operations
whose source and destination are in the same
collection. In add mode, the selection is not
deselected (Section 4.2.3).

In add mode, a transfer operation that is disjoint
from the selection does not affect the selection.

- - - 4-34: In editable list-like and graphics-like collections,
<Delete> deletes the selected elements (Section
4.2.3).

<Delete> provides a consistent means of deleting
the selection.

_0- _ _ 4-35: In editable text-like collections, <Delete> and
<BackSpace> behave as follows:

• If the selection is not empty and the control is in
normal mode, the selection is deleted.

• If the selection is not empty, the control is in
add mode, and the cursor is not disjoint from the
selection, the selection is deleted.

• If the selection is not empty and the control is in
add mode, but the cursor is disjoint from the
selection, <Delete> deletes one character
forward, and <BackSpace> deletes one
character backward.

B.4.3 Transfer Models

Yes N/A No

OSF/Motif Level One Certification Checklist

• If the selection is empty, <Delete> deletes one
character forward, and <BackSpace> deletes
one character backward.

In text, <Delete> and <BackSpace> provide a
convenient way to delete the entire selection or
single characters.

- 4-36: If the move, copy, or link operation the user
requests is not available, the transfer operation fails
(Section 4.3).

Three transfer operations are generally available:
copy, move, and link. The user requests one of
these operations by pressing the buttons or keys
appropriate for the type of transfer. In general, for
mouse-based operations, the modifier <Ctrl>
forces a copy, <Shift> forces a move, and <Ctrl>
<Shift> forces a link. However, any requested
transfer operation must fail if that operation is not
available.

- - - 4-37: If a collection does not have a fixed insertion point
or keep elements ordered in a specific way, the
insertion position for transferred data is determined
as follows (Section 4.3):

• For BTransfer-based primary and drag transfer
operations, the insertion position is the position
at which the user releases BTransfer.

• In a text-like collection, the insertion position
for other transfer operations is the location
cursor, and the data is pasted before it.

• In a list-like collection, the insertion posItIon
for other transfer operations is the element with
the location cursor, and the data is pasted before
it.

8-33

OSF/Motif Style Guide

8-34

The insertion posltwn is the posltwn in the
destination where transferred data is placed. Some
mouse-based transfer operations place data at the
pointer position if possible. Other operations,
including keyboard-based transfer, generally place
the data at the location cursor.

B.4.3.1 Clipboard Transfer

Yes N/A No

- 4-38: Keyboard-based clipboard selection actions are
available in every editable collection in your
application (Section 4.3.1).

Clipboard selection actions need to be available
from the keyboard.

- - - 4-39: Your application uses <Cut> or <Shift> <Delete>
and the Cut entry on the Edit Menu to cut the
selected elements from an editable component to
the clipboard (Section 4.3.1).

<Cut> or <Shift> <Delete> and the Cut entry on
the Edit Menu offer a consistent means of cutting
the selection to the clipboard from the keyboard.

- - - 4-40: Your application uses <Copy> or <Ctrl> <Insert>
and the Copy entry on the Edit Menu to copy the
selected elements to the clipboard (Section 4.3.1).

<Copy> or <Ctrl> <Insert> and the Copy entry on
the Edit Menu offer a consistent means of copying
the selection to the clipboard from the keyboard.

- - - 4-41: Your application uses <Paste> or <Shift> <Insert>
to paste the contents of the clipboard into an
editable component (Section 4.3.1).

<Paste> or <Shift> <Insert> offers a consistent
way of pasting the contents of the clipboard from
the keyboard.

OSF/Motif Level One Certification Checklist

- - - 4-42: If Paste or Paste Link is invoked using a
component's Popup Menu, the data is pasted at the
insertion position of the component. However, if
the Popup Menu is popped up over a selection, the
selection is first deleted, even if pending delete is
disabled, and the pasted data replaces it, if possible
(Section 4.3.1).

Popping up a Popup Menu over a selection
indicates that a Paste or Paste Link operation
should replace the selection.

- - - 4-43: If Paste or Paste Link is invoked from the Edit
Menu or by a keyboard operation, and the insertion
position in the target component is not disjoint from
a selection, the pasted data replaces the selection
contents if pending delete is enabled (Section
4.3.1).

B.4.3.2 Primary Transfer

Yes N/A No

Pending delete determines whether the selection is
deleted when the insertion position is not disjoint
from the selection and Paste or Paste Link is
invoked from the Edit Menu or by a keyboard
operation.

- 4-44: In an editable collection, BTransfer Click, <Ctrl>
BTransfer Click, <AU> <Copy>, and <AU>
<Ctrl> <Insert> copy the primary selection to the
insertion position, as defined in Section 4.3. (Note
that the insertion position is usually different for
mouse and keyboard operations.) (Section 4.3.2)

These operations provide a convenient way for the
user to force a copy operation.

- - - 4-45: In an editable collection, <Shift> BTransfer Click,
<AU> <Cut>, and <AU> <Shift> <Delete> move
the primary selection to the insertion position, as

8-35

OSF/Motif Style Guide

8-36

defined in Section 4.3. (Note that the insertion
position is usually different for mouse and keyboard
operations.) (Section 4.3.2)

These operations provide a convenient way for the
user to force a move operation.

- - - 4-46: In an editable collection, <Ctrl> <Shift>
BTransfer Click places a link to the primary
selection at the insertion position, as defined in
Section 4.3 (Section 4.3.2).

<Ctrl> <Shift> BTransfer provides a convenient
way for the user to force a link operation.

- - - 4-47: A Primary Move moves the primary selection as
well as the elements selected; that is, the element
moved to the destination becomes selected as the
primary selection. Primary Copy and Primary
Link do not select transferred data at the
destination (Section 4.3.2).

B.4.3.3 Quick Transfer

Yes N/A No

This rule provides the expected treatment of the
selection in move, copy, and link operation.

- 4-48: All Text components support quick transfer
(Section 4.3.3).

Quick transfer is used to make a temporary
selection and then immediately move, copy, or link
that selection to the insertion position of the
destination component. In Text quick transfer
provides a convenient way to move, copy, or link
text without disturbing the primary selection.

- - - 4-49: If a component supports quick transfer, <Alt>
BTransfer Motion or <AU> <Ctrl> BTransfer
Motion temporarily selects elements in the
specified range and, on release, copies them to the

OSF/Motif Level One Certification Checklist

insertion posItIon of the destination component
(Section 4.3.3).

These operations provide a convenient way to
perform a quick copy.

- - - 4-50: If a component supports quick transfer, <Alt>
<Shift> BTransfer Motion temporarily selects
elements in the specified range and, on release,
moves them to the insertion position of the
destination component (Section 4.3.3).

This operation provides a convenient way to
perform a quick cut.

- - - 4-51: If a component supports quick transfer, <Alt>
<Ctrl> <Shift> BTransfer Motion temporarily
selects elements in the specified range and, on
release, places a link to them at the insertion
position of the destination component (Section
4.3.3).

This operation provides a convenient way to
perform a quick link.

- - - 4-52: Quick transfer does not disturb the primary
selection or affect the clipboard, except when the
destination of the transfer is within or on the
boundaries of the primary selection and pending
delete is enabled. In this case, quick transfer
deletes the contents of the primary selection,
leaving an empty primary selection, before pasting
the transferred elements (Section 4.3.3).

Quick transfer is a secondary selection mechanism,
so it cannot disrupt the primary selection. When
the destination of the transfer is in the primary
selection, quick transfer replaces the primary
selection with the secondary selection.

- - - 4-53: With quick transfer, the range of the temporary
selection is determined by using the same model as
when BSelect Motion determines the range of a
primary selection (Section 4.3.3).

B-37

OSF/Motif Style Guide

8-38

This rule provides consistency between primary
selection and quick transfer operations.

- - - 4-54: If the user drags the pointer out of a scrollable
collection while making the temporary selection,
autoscrolling is used to scroll the collection in the
direction of the pointer. If the user releases
BTransfer with the pointer outside of the
collection, or if the user presses <Cancel> with
BTransfer pressed, the highlighting is removed and
a transfer is not performed (Section 4.3.3).

B.4.3.4 Drag Transfer

Yes N/A No

Autoscrolling provides a convenient means of
extending a temporary selection to elements
outside the viewport of a scrollable collection.

- 4-55: In a collection that supports selection, <Shift>
BTransfer Release forces a drag move operation.
If a move is not possible, the operation fails
(Section 4.3.4).

This mechanism offers a convenient way for the
user to force a move operation.

- - - 4-56: In a collection that supports selection, <Ctrl>
BTransfer Release forces a drag copy operation. If
a copy is not possible, the operation fails (Section
4.3.4).

This mechanism offers a convenient way for the
user to force a copy operation.

- - - 4-57: In a collection that supports selection, <Ctrl>
<Shift> BTransfer Release forces a drag link
operation. If a link is not possible, the operation
fails (Section 4.3.4).

This mechanism offers a convenient way for the
user to force a link operation.

OSF/Motif Level One Certification Checklist

- - - 4-58: When a drag move operation moves a selection
within the same component, the selection moves
along with the elements selected (Section 4.3.4).

This mechanism offers a convenient way to move
the selection within a component.

- - - 4-59: In text-like collections, initiating a drag within a
selected region drags the entire text selection
(Sections 4.3.4 and 4.3.5).

To be consistent, drag and drop actions need to
operate on the entire selection.

- - - 4-60: In list-like and graphics-like collections, initiating
a drag on a selected element drags the entire
selection (Sections 4.3.4 and 4.3.5).

To be consistent, drag and drop actions need to
operate on the entire selection.

- - - 4-61: In list-like and graphics-like collections, initiating
a drag with BTransfer on an unselected element
drags just that element and leaves the selection
unaffected (Section 4.3.4).

Unselected elements can be dragged without
affecting the selection.

- - - 4-62: When a drag is initiated in an unselected region and
the pointer is over two possible draggable elements,
the drag uses the highest draggable element in the
stacking order (Section 4.3.4).

This guideline ensures the consistency of drag
operations.

- - - 4-63: When your application starts a drag operation, the
pointer is replaced with a drag icon (Section
4.3.4.1).

A drag icon provides visual feedback that a drag
operation is in progress.

- - - 4-64: All drag icons used by your application include a
source indicator (Section 4.3.4.1).

8-39

OSF/Motif Style Guide

8-40

A source indicator gives a visual representation of
the elements being dragged.

- - - 4-65: Pressing <Cancel> ends a drag and drop operation
by canceling the drag in progress (Section 4.3.4.2).

<Cancel> provides a consistent way for the user to
cancel a drag operation.

- - - 4-66: Releasing BTransfer ends a drag and drop
operation (Section 4.3.4.3).

Releasing BTransfer offers a consistent means of
ending a drag operation.

- - - 4-67: When BTransfer is released, the drop operation
ordinarily occurs at the location of the hotspot of
the drag icon pointer and into the highest drop site
in the stacking order. However, if a drop occurs
within a selection and pending delete is enabled,
the transferred data replaces the contents of the
entire selection (Section 4.3.4.3).

This rule provides consistency in the treatment of
mouse-based transfer operations.

- - - 4-68: After a successful transfer, the data is placed in the
drop site, and any transfer icon used by your
application is removed (Section 4.3.4.4).

A transfer icon can be used to represent the type of
data being transferred during a drop operation. A
successful drop operation results in the transfer of
data.

- - - 4-69: After a failed transfer, the data remains at the drag
source and is not placed in the drop site. Any
transfer icon used by your application is removed
(Section 4.3.4.4).

A failed drop operation does not result in the
transfer of data.

OSF/Motif Level One Certification Checklist

B.5 Component Activation

B.S.t Basic Activation

Yes N/A No

5-1: Your application uses BSelect to activate a button
(Section 5.1).

BSelect, the first mouse button, provides a
consistent means of activating a button using the
mouse.

- - - 5-2: When a button has the focus, your application uses
<Select> or <Space> to acti vate the button
(Section 5.1).

<Select> and <Space> provide a uniform way of
selecting a button. Selecting a button is equivalent
to activating the button.

- - - 5-3: When an activatable Menu entry has the focus, your
application uses <Select>, <Space>, <Enter>, or
<Return> to activate the entry (Section 5.1).

<Select>, <Space>, <Enter>, and <Return> offer
a consistent means of activating a Menu entry using
the key board.

- - - 5-4: When BSelect is pressed over a button, the
appearance of the button changes to indicate that
releasing BSelect will activate the button. If while
BSelect is pressed the pointer is moved outside of
the button, the visual state is restored. If while
BSelect is still pressed the pointer is moved back
inside of the button, the visual state is again
changed to indicate the pending activation. If
BSelect is pressed and released within a button, the
button is activated, regardless of whether the
pointer has moved out of the button while it was
pressed (Section 5.1).

8-41

OSF/Motif Style Guide

The visual state of a button offers a cue to the user
about whether or not the button will be activated
when the mouse button is released.

- - - 5-5: If a selectable element of a collection is
activatable, BSelect Click, <Select>, and <Space>
(except in Text) select it. BSelect Click 2 selects
and activates it (Section 5.1).

This rule provides for consistent integration of
activation and selection in a collection where
elements can be both selected and activated.

B.S.2 Accelerators

8-42

Yes N/A No

5-6: If your application uses accelerators, the
component with the accelerator displays the
accelerator key or key combination following the
Label of the component (Section 5.2).

An accelerator is a key or key combination that
invokes the action of some component regardless of
the position of the location cursor when the
accelerator is pressed. So that the user knows that
there is an accelerator associated with a
component, the accelerator needs to be displayed.

- - - 5-7: If a button with an accelerator is within a primary
or secondary window, or within a Pulldown Menu
system from its MenuBar, it is activatable
whenever the input focus is in the window or the
MenuBar system. If a button with an accelerator is
within a Popup Menu system, it is activatable
whenever the focus is in the Popup Menu system or
the component with the Popup Menu (Section 5.2).

An accelerator must be activatable from the
window or component associated with the
accelerator.

B.S.3 Mnemonics

Yes N/A No

OSF/Motif Level One Certification Checklist

5-8: If your application uses mnemonics, the Label for
the component with the mnemonic contains the
character that is its mnemonic. If the Label does
not naturally contain the character, the mnemonic
is placed in parentheses following the Label
(Section 5.3).

A mnemonic is a single character that can be
associated with any component that contains a text
Label. Mnemonics provide a fast way of selecting a
component from the keyboard. So that the user
knows that there is a mnemonic associated with a
selection, the mnemonic is underlined in the Label
of the selection by the toolkit. In order for a
mnemonic to be underlined, the Label for a
selection needs to contain the mnemonic character.
Putting the mnemonic in parentheses following the
Label provides visual consistency.

- - - 5-9: All mnemonics are case insensitive for activation
(Section 5.3).

The user must be able to activate a mnemonic by
pressing either the lowercase or the uppercase
variant of the mnemonic key.

- - - 5-10: When the location cursor is within a Menu or a
MenuBar, pressing the mnemonic key of a
component within that Menu or MenuBar moves
the location cursor to the component and activates
it. If a mnemonic is used for an OptionButton or
for a CascadeButton in a MenuBar, pressing <Alt>
and the mnemonic anywhere in the window or its
Menus moves the cursor to the component with that
mnemonic and activates it (Section 5.3).

A mnemonic is generally activatable when the
location cursor is within the component that
contains the mnemonic. Pressing <Alt> and the
mnemonic provides a way to activate a visible

8-43

OSF/Motif Style Guide

mnemonic when the location cursor is within the
window that contains the mnemonic.

B.S.4 TearOff Activation

Yes N/A No

- 5-11: Activating a TearOffButton tears off the Menu that
contains the button (Section 5.4).

A TearOffButton is like a PushButton with the
special interaction of tearing off the Menu from its
CascadeButton. TearOffButtons use the same basic
activation as other buttons.

- - - 5-12: When a Menu with a TearOffButton is posted,
pressing BTransfer in the TearOffButton starts a
TearOff action. As long as BTransfer is held, a
representation of the Menu follows the movement
of the pointer. Releasing BTransfer ends the
TearOff action by unposting the Menu system,
creating a new window at the current pointer
location that contains the contents of the Menu, and
giving focus to the new window in explicit pointer
mode (Section 5.4).

BTransfer, the second mouse button, provides a
consistent means of activating a TearOffButton.

B.S.S Help Activation

8-44

Yes N/A No

- 5-13: Your application uses <Help> on a component to
invoke any context-sensItIve help for the
component or its nearest ancestor with context­
sensitive help available (Section 5.5).

<Help> offers the user a consistent mechanism for
invoking context-sensitive help.

OSF/Motif Level One Certification Checklist

B.5.6 Default Activation

Yes N/A No

- 5-14: If your application uses default PushButtons in a
window, the current default PushButton is
highlighted. When the focus is on a PushButton, its
action is the default action, and the PushButton
shows default highlighting. If the default action in
a window varies, some PushButton always has
default highlighting, except when there is no
current default action (Section 5.6).

Placing emphasis on the default PushButton in a
DialogBox provides the user with a visual cue
about the expected reply to the dialog.

- - - 5-15: When focus is in a window with a default action,
<Enter> and <Ctrl> <Return> invoke the default
action. If focus is in a component other than
multiline Text, <Return> also invokes the default
action. These actions have no other effect on the
component with the focus, unless the default action
has some effect on that component (Section 5.6).

These rules ensure that the means of invoking a
default action are consistent across applications.

- - - 5-16: Except in the middle of a button motion operation,
<Cancel> anywhere in a DialogBox is equivalent
to activating the Cancel PushButton in the
DialogBox (Section 5.6).

<Cancel> provides a uniform means of canceling a
DialogBox from the keyboard.

B-45

OSF/Motif Style Guide

B.S.7 Expert Activation

Yes N/A No

- 5-17: If your application supports expert activation,
expert actions exist only as shortcuts to application
features that are available through another
mechanism (Section 5.7).

Expert activation, using mouse double-clicking on
buttons, provides a convenient way for experienced
users to perform certain tasks quickly. However,
new users and keyboard-only users need to be able
to perform the same tasks.

- - - 5-18: When the focus is on a button used for expert
activation, no default action is available, unless the
default and expert actions are the same (Section
5.7).

This rule minimizes possible confusion between
default and expert activation.

- - - 5-19: If a component with an expert action is selectable,
activating the expert action first selects the
component and then performs the expert action
(Section 5.7).

A user needs to be able to select a component, even
if it has an expert action associated with it.

B.S.8 Previewing and Autorepeat

8-46

Yes N/A No

- 5-20: If your application supports activation preview
using BSelect, the previewing information is
removed when the user releases BSelect (Section
5.8).

Activation preview presents the user with
additional information that describes the effect of

B.5.9 Cancel Activation

Yes N/A No

OSF/Motif Level One Certification Checklist

activating a button. This information cannot
interfere with the normal operation of the
application.

- 5-21: Pressing <Cancel> stops the current interaction in
the following contexts (Section 5.9):

• During a mouse-based selection or drag
operation, it cancels the operation.

• During a mouse-based scrolling operation, it
cancels the scrolling action and returns the
system to its state prior to the start of the
scrolling operation.

• Anywhere in a DialogBox that has a Cancel
PushButton, it is equivalent to activating that
PushButton, except during a mouse-based
selection or drag operation.

• In a Pulldown Menu, it either dismisses the
Menu and moves the location cursor to the
CascadeButton used to pull it down, or unposts
the entire Menu system. In a Popup Menu,
Option Menu, TearOff Menu, or MenuBar, it
unposts the Menu system.

• When the focus is in a torn off Menu window, it
closes the torn off Menu window.

These guidelines for <Cancel> ensure the
consistent operation of the key across applications.

8-47

OSF/Motif Style Guide

B.6 Application Design Principles

B.6.1 Layout

8-48

B.6.1.1 MainWindow

Yes N/A No

6-1: Your application has at least one Main Window
(Section 6.2.1.1).

A MainWindow contains a client area and,
optionally, a MenuBar, a command area, a message
area, and ScrollBars. The client area contains the
framework of the application. The use of a
MainWindow ensures interapplication consistency.

- - - 6-2: If your application has multiple MainWindows that
serve the same primary function, each window
closes and iconifies separately (Section 6.2.1.1).

For example, a text editor might allow the user to
edit multiple documents, each in its own
MainWindow. Each window is then treated as a
separate application and can be closed or iconified
when it is not being used.

- - - 6-3: If your application has multiple Main Windows that
serve different primary functions, each window
iconifies separately (Section 6.2.1.1).

For example, a debugger might provide separate
Main Windows for editing source code, examining
data values, and viewing results. Each window can
be iconified when it is not being used, but it is up to
the application to decide whether each window
closes separately or whether closing one window
closes the entire application.

OSF/Motif Level One Certification Checklist

B.6.1.2 MenuBar

Note: These requirements apply only in a left-to-right language
environment in an English-language locale. You need to
make the appropriate changes for other locales.

Yes N/A No

6-4: If your application has a MenuBar, it is a horizontal
bar at the top edge of the application, just below
the title area of the window frame, if present
(Section 6.2.1.5).

A MenuBar organizes the most common features of
an application. It contains a list of Menu topics in
CascadeButtons; each button is associated with a
distinct Pulldown Menu containing commands that
are grouped by common functionality. The use of a
MenuBar yields consistency across applications.

- - - 6-5: The MenuBar for your application contains only
CascadeButtons (Section 6.2.1.5).

When other buttons are included as topics in a
MenuBar, they inhibit Menu browsing.

- - - 6-6: If any of the common Menus are present in the
MenuBar, they are arranged in the following order
with respect to each other, ranging from left to
right across the MenuBar (Section 6.2.1.5):

File Menu
Selected Menu
Edit Menu
View Menu
Options Menu
Help Menu

If a File Menu is present, it is the first Menu and is
placed at the far left of the MenuBar. If a Help
Menu is present, it is the last Menu and is placed at
the far right of the MenuBar.

The ordering of common Menus in the MenuBar
ensures consistency among applications. You can

8-49

OSF/Motif Style Guide

8-50

omit any of these Menus if they are not relevant to
the application. You can also intersperse other,
application-specific, Menus among these Menus.

B.6.1.2.1 File Menu Contents

Note: These requirements apply only in a left-to-right language
environment in an English-language locale. You need to
make the appropriate changes for other locales.

Yes N/A No

6-7: If your application uses a File Menu, it contains the
following choices, with the specified functionality,
when the actions are actually supported by your
application (Section 6.2.1.5.1).

New Creates a new file. If the current client
area will be used to display the new file,
your application clears the existing data
from the client area. If changes made to
the current file will be lost, your
application displays a DialogBox, asking
the user about saving changes. Has the
mnemonic N.

Qpen... Opens an existing file by prompting the
user for a filename with a DialogBox. If
changes made to the current file will be
lost, your application displays a
DialogBox asking the user about saving
changes. Has the mnemonic O.

Save Saves the currently opened file without
removing the existing contents of the
client area. If the file has no name, your
application displays a DialogBox,
prompting the user to enter a filename.
Has the mnemonic S.

B.6.1.2.2 Edit Menu Contents

OSF/Motif Level One Certification Checklist

Save As ...
Saves the currently opened file under a
new name by prompting the user for a
filename with a DialogBox. If the user
tries to save the file using an existing
name, your application displays a
DialogBox that warns the user about a
possible loss of data. Does not remove the
existing contents of the client area. Has
the mnemonic A.

Print Schedules a file for printing. If your
application needs specific information in
order to print, it displays a DialogBox,
requesting the information from the user.
In this case, the Menu entry is followed by
an ellipsis (Print ••.). Has the mnemonic P.

Close Closes the current primary window and its
associated secondary windows. If your
application uses only a single primary
window or multiple dependent primary
windows, this action is not supplied. Has
the mnemonic C.

Exit Ends the current application and all
windows associated with it. If changes
made to the current file will be lost, your
application displays a DialogBox, asking
the user about saving changes. Has the
mnemonic x.

The use of a File Menu with these common file
operations yields consistency across applications.

Note: These requirements apply only in a left-to-right language
environment in an English-language locale. You need to
make the appropriate changes for other locales.

8-51

OSF/Motif Style Guide

Yes N/A No

6-8:

8-52

If your application uses an Edit Menu, it contains
the following choices, with the specified
functionality, when the actions are actually
supported by your application (Section 6.2.1.5.2):

Undo Reverses the most recently executed
action. Has the mnemonic U.

Cut Removes the selected portion of data from
the client area and puts it on the clipboard.
Has the mnemonic T.

~opy Copies the selected portion of data from
the client area and puts it on the clipboard.
Has the mnemonic C.

Copy Lin~
Copies a link of the selected portion of
data from the client area and puts it on the
clipboard. Has the mnemonic K.

Paste Pastes the contents of the clipboard into
the client area. Has the mnemonic P.

Paste Link
Pastes a link of the data represented by the
contents of the clipboard into the client
area. Has the mnemonic L.

Clear Removes a selected portion of data from
the client area without copying it to the
clipboard and does not compress the
remaining data. Has the mnemonic E.

Delete Removes a selected portion of data from
the client area without copying it to the
clipboard. Has the mnemonic D.

Select All
Sets the primary selection to be all the
elements in a component of the client
area.

OSF/Motif Level One Certification Checklist

Deselect All
Removes from the primary selection all
the elements in a component of the client
area.

Select Pasted
Sets the primary selection to the last
element or elements pasted into a
component of the client area.

Reselect
Sets the primary selection to the last
selected element or elements in a
component of the client area. This action
is available only in components that do
not support persistent selections and only
when the current selection is empty.

Promote
Promotes to the primary selection the
current selection of a component of the
client area. This action is available only
for components that support persistent
selections.

The use of an Edit Menu with these common
editing operations yields consistency across
applications.

- - - 6-9: If your application uses accelerators for Undo,
Cut, Copy, and Paste in an Edit Menu, it uses
either one or both of the models presented in the
following two tables (Section 6.2.1.5.2).

8-53

OSF/Motif Style Guide

Table 8-1. Edit Menu Accelerators, Model 1

Edit Menu Item Accelerator

Undo <Alt> <BackSpace>
Cut <Shift> <Delete>
Copy <Ctrl> <Insert>
Paste <Shift> <Insert>

Table 8-2. Edit Menu Accelerators, Model 2

8-54

B.6.1.2.3 Help Menu Contents

Edit Menu Item Accelerator

Undo <Ctrl> <Z>
Cut <Ctrl> <X>
Copy <Ctrl> <C>
Paste <Ctrl> <v>

These models provide consistent sets of
accelerators for common editing operations in an
Edit Menu.

Note: These requirements apply only in a left-to-right language
environment in an English-language locale. You need to
make the appropriate changes for other locales.

Yes N/A No

6-10: If your application uses a Help Menu, it contains
either of the following two sets of choices, with
the specified functionality, when the actions are
actually supported by your application (Section
6.2.1.5.3):

On Context
Initiates context-sensItIve help by
changing the shape of the pointer to the
question pointer, described in Section
2.2.2. When the user moves the pointer to
a component and presses BSelect, any

OSF/Motif Level One Certification Checklist

available context-sensitive help for the
component is presented, and the pointer
returns to its original shape. Has the
mnemonic C. If this action uses an
accelerator, it is <Shift> <Help>.

On Belp
Provides information on how to use your
application's help facility. Has the
mnemonic H.

On Window
Provides general information about the
window from which help was requested.
Has the mnemonic W.

On Keys
Provides information about your
application's use of function keys,
mnemonics, and keyboard accelerators.
Has the mnemonic K.

Index Provides an index for all help information
in your application. Has the mnemonic I.

Tutorial
Provides access to your application's
tutorial. Has the mnemonic T.

On Yersion
Provides at least the name and version of
your application. Has the mnemonic V.

If your application uses a Help Menu, and it does
not use the previous set of choices, the Help Menu
contains the following choices, with the specified
functionality, when the actions are actually
supported by your application (Section 6.2.1.5.3):

Context-Sensitive Help
Initiates context-sensItIve help by
changing the shape of the pointer to the
question pointer, described in Section
2.2.2. When the user moves the pointer to
a component and presses BSelect, any

8-55

OSF/Motif Style Guide

8-56

available context-sensitive help for the
component is presented and the pointer
returns to its original shape. Has the
mnemonic C. If this action uses an
accelerator, it is <Shift> <Help>.

Qverview
Provides general information about the
application window from which help was
requested. Has the mnemonic O.

Index Provides an index for all help information
in your application. Has the mnemonic I.

Keyboard
Provides information about your
application's use of function keys,
mnemonics, and keyboard accelerators.
Has the mnemonic K.

Tutorial
Provides access to your application's
tutorial. Has the mnemonic T.

UsinglJelp
Provides information on how to use your
application's help facility. Has the
mnemonic H.

rroduct Information
Provides at least the name and version of
your application. Has the mnemonic P.

The use of a Help Menu with these common help
operations yields consistency across applications.

OSF/Motif Level One Certification Checklist

B.6.1.3 Popup Menus

Note: These requirements apply only in a left-to-right language
environment in an English-language locale. You need to
make the appropriate changes for other locales.

Yes N/A No

6-11: If your application uses any of the common Popup
Menu actions, the actions function according to
the following specifications (Section 6.2.1.6):

Properties
Displays a properties DialogBox that the
user can use to set the properties of the
component.

Undo Reverses the most recently executed
action.

Primary Move
Moves the contents of the primary
selection to the component. This action is
available only in editable components.

Primary Copy
Copies the contents of the primary
selection to the component. This action is
available only in editable components.

Primary Link
Places a link to the primary selection in
the component. This action is available
only in editable components.

Cut Cuts elements to the clipboard. If the
Menu is popped up in a selection, cuts the
entire selection to the clipboard.

Copy Copies elements to the clipboard. If the
Menu is popped up in a selection, copies
the entire selection to the clipboard.

Copy Link
Copies a link of elements to the clipboard.
If the Menu is popped up in a selection,

8-57

OSF/Motif Style Guide

8-58

copies a link to the entire selection to the
clipboard.

Paste Pastes the contents of the clipboard to the
component. This action is available only
in editable components.

Paste Link
Pastes a link of the contents of the
clipboard to the component. This action
is available only in editable components.

Clear Removes a selected portion of data from
the client area without copying it to the
clipboard. If the Menu is popped up in a
selection, deletes the selection.

Delete
Removes a selected portion of data from
the client area without copying it to the
clipboard. If the Menu is popped up in a
selection, deletes the selection.

Select All
Sets the primary selection to be all of the
elements in the collection with the Popup
Menu.

Deselect All
Deselects the current selection in the
collection with the Popup Menu.

Select Pasted
Sets the primary selection to be the last
element or elements pasted into the
collection with the Popup Menu.

Reselect
Sets the primary selection to be the last
selected element or elements in the
component with the Popup Menu. This
action is available only in components
that do not support persistent selections
and only when the current selection is
empty.

OSF/Motif Level One Certification Checklist

Promote
Promotes the current selection to the
primary selection. It is available only in
components that support persistent
selections.

The use of Popup Menus with these common
actions yields consistency across applications.

- - - 6-12: When a Popup Menu is popped up in the context of
a selection, any action that acts on elements acts
on the entire selection (Section 6.2.1.6).

B .6.1.4 DialogBoxes

Yes N/A No

In the context of a selection, Popup Menu actions
affect the entire selection.

- 6-13: InformationDialogs do not interrupt the user's
interaction with your application (Section
6.2.1. 7 .5).

B.6.1.5 Menu Design

Yes N/A No

An InformationDialog conveys information to the
user that does not require immediate attention, so
it does not need to be modal.

- 6-14: If your application uses a TearOffButton in a
Menu, the TearOffButton is the first element in the
Menu (Section 6.2.3).

When a TearOffButton is activated, the Menu
changes into a DialogBox. The TearOffButton
needs to be the first item in the Menu so that the
entire contents of the Menu are torn off.

8-59

OSF/Motif Style Guide

8-60

- - - 6-15: All Menus are wide enough to accommodate their
widest elements (Section 6.2.3).

The ability to see the full Label of each Menu
element allows the user to browse through a Menu.

B.6.1.6 DialogBox Design

Note: These requirements apply only in a left-to-right language
environment in an English-language locale. You need to
make the appropriate changes for other locales.

Yes N/A No

6-16: If your application uses common DialogBox
actions, the actions have the following specified
functionality (Section 6.2.4.1):

Yes

No

OK

Apply

Retry

Stop

Indicates an affirmative response to a
question posed in the DialogBox.

Indicates a negative response to a
question posed in the DialogBox.

Applies any changes made to
components in the DialogBox and
dismisses the DialogBox.

Applies any changes made to
components in the DialogBox.

Causes the task in progress to be
attempted again.

Ends the task in progress at the next
possible breaking point.

Pause Causes the task in progress to pause.

Resume Causes a task that has paused to
resume.

Reset Cancels any user changes that have
not been applied to your application.
Resets the status of the DialogBox to

Cancel

Help

OSF/Motif Level One Certification Checklist

the state since the last time the
DialogBox action was applied or to
the initial state of the DialogBox.

Closes the DialogBox without
performing any DialogBox actions not
yet applied to your application.
Pressing <Cancel> anywhere in the
DialogBox, except during a
cancelable drag operation, also
performs the action of this button.

Provides any help for the DialogBox.

The use of common actions provides a consistent
way for the user to respond quickly to
DialogBoxes and get back to primary application
tasks.

B.6.1.7 Designing Drag and Drop

Yes N/A No

B.6.2 Interaction

- 6-17: If your application provides any drag and drop
help DialogBoxes, they contain a Cancel button
for canceling the drag and drop operation in
progress (Section 6.2.5.4).

The Cancel button in the help DialogBox provides
a convenient way for the user to cancel a drag and
drop operation.

Yes N/A No

- 6-18: A WamingDialog allows the user to cancel the
destructive action about which it is providing a
warning (Section 6.3.2.2).

8-61

OSF/Motif Style Guide

The user needs to have a way to cancel an
operation that can cause destructive results.

B.7 Controls, Groups, and Models

B.7.1 CheckButton

8-62

Yes N/A No

7-1: If your application uses CheckButtons, each
button graphically indicates its state (Chapter 9).

A CheckButton is used to select settings that are
not mutually exclusive. The user needs to know
whether the button is set or not.

- - - 7-2: When the user presses BSelect in a CheckButton,
the CheckButton is armed. If the CheckButton
was previously unset, it is shown in the set state.
If the CheckButton was previously set, it is shown
in the unset state (Chapter 9).

BSelect Press arms a CheckButton and shows the
result of activating it by releasing BSelect.

- - - 7 -3: When the user releases BSelect in the same
CheckButton that the press occurred in:

• If the CheckButton was previously unset, it is
set.

• If the CheckButton was previously set, it is
unset.

In all cases the CheckButton is disarmed, and, if
the CheckButton is in a Menu, the Menu is
unposted (Chapter 9).

BSelect Release activates a CheckButton.

OS F/Motif Level One Certification Checklist

- - - 7-4: When the user presses <Enter> or <Return> in a
CheckButton, if the CheckButton is in a window
with a default action, the default action is
activated. If the CheckButton is in a Menu:

• If the CheckButton was previously unset, it is
set.

• If the CheckButton was previously set, it is
unset.

• In both cases, the CheckButton is disarmed,
and the Menu is unposted (Chapter 9).

<Enter> and <Return> perform the default
action of a window or activate a CheckButton in a
Menu.

- - - 7-5: When the user presses <Select> or <Space> in a
CheckButton, if the CheckButton was previously
unset, it is set. If the CheckButton was previously
set, it is unset. In both cases, the CheckButton is
disarmed, and, if the CheckButton is in a Menu,
the Menu is unposted (Chapter 9).

B.7.2 CommandBox

Yes N/A No

<Select> and <Space> activate a CheckButton.

7 -6: If your application uses a CommandBox, it is
composed of a Text component with a command
line prompt for text input and a List component for
a command history area. The List uses either the
single selection or browse selection model
(Chapter 9).

This specification ensures the consistent
appearance and operation of a CommandBox
across applications.

8-63

OSF/Motif Style Guide

- - - 7 -7: When an element of a CommandBox List is
selected, its contents are placed in the Text area
(Chapter 9).

This specification provides a convenient way of
selecting a previously entered command.

- - - 7-8: The List navigation actions <I>, <J,>, <CtrI>
<Begin>, and <Ctrl> <End> are available from
the Text component for moving the cursored
element within the List and thus changing the
contents of the Text (Chapter 9).

These actions provide a convenient way to choose
a command from the List while focus remains in
the Text component.

- - - 7-9: The default action of the CommandBox passes the
command in the Text area to the application for
execution and adds the command to the end of the
List (Chapter 9).

Maintaining a history of commands provides a
convenient means of entering often-used
commands.

B.7.3 FileSelectionBox

8-64

Yes N/A No

- 7-10: If your application uses a FileSelectionBox, it is
composed of at least the following components
(Chapter 9):

• A Text component for displaying and editing a
directory mask used to select files to be
displayed. The directory mask is a string
specifying the base directory to be examined
and a search pattern.

• A List component for displaying filenames.
The List uses either the single selection or
browse selection model.

OSF/Motif Level One Certification Checklist

• A List component for displaying
subdirectories. The List uses either the single
selection or browse selection model.

• A Text component for displaying and editing a
filename.

• A group of PushButtons, labeled OK, Filter,
Cancel, and Help.

This specification ensures the uniform appearance
of a FileSelectionBox across applications.

- - - 7-11: Your application allows the user to select a new
directory to examine by scrolling through the List
of directories and selecting the desired directory
or by editing the directory mask. Selecting a new
directory from the directory List does not change
the search pattern (Chapter 9).

The method for selecting a new directory to
examine needs to be consistent across
applications.

- - - 7-12: Your application allows the user to select a new
search pattern by editing the directory mask
(Chapter 9).

The method for specifying a new search pattern
needs to be uniform across applications.

- - -7-13: The List navigation actions <I>, <t>, <Ctrl>
<Begin>, and <Ctrl> <End> are available from
the Text components for moving the cursored
element within each List and thus changing the
contents of the Text. The contents of the directory
Text correspond to the contents of the directory
List, and the contents of the filename Text
correspond to the contents of the filename List
(Chapter 9).

These actions provide a convenient way to choose
a directory or filename from the corresponding
List while focus remains in the Text component.

8-65

OSF/Motif Style Guide

8-66

- - - 7-14: The FileSelectionBox initiates a directory and file
search when any of the following occurs (Chapter
9):

• The FileSe1ectionBox is initialized.

• The user activates the Filter PushButton.

• The user double-clicks or presses <Enter> or
<Return> on an item in the directory List.

• The user presses <Enter> or <Return> while
the directory mask Text edit area has the
keyboard focus.

The method for initiating a search needs to be
uniform across applications.

- - - 7-15: Your application allows the user to select a file by
scrolling through the List of filenames and
selecting the desired file or by entering the
filename directly into the file selection Text
component. Selecting a file from the List causes
that filename to appear in the file selection Text
area (Chapter 9).

The method for selecting a file needs to be
consistent across applications.

- - - 7-16: Your application allows the user to select a new
file as many times as desired. Your application
does not make use of the selection until one of the
following occurs (Chapter 9):

• The user activates the OK PushButton.

• The user presses <Enter> or <Return> while
the filename Text component has the keyboard
focus.

• The user presses <Enter> or <Return> while
the location cursor is on an item in the file
List.

• The user double-clicks BSelect on an item in
the file List.

B.7.4 List

OSF/Motif Level One Certification Checklist

This specification results in the uniform operation
of a FileSelectionBox across applications.

- - - 7-17: The FileSelectionBox initiates a directory and file
search when the FileSelectionBox is initialized,
the user activates the Filter PushButton, the user
double-clicks BSelect or presses <Enter> or
<Return> on an item in the directory List, or the
user presses <Enter> or <Return> while the
directory mask Text edit area has the keyboard
focus (Chapter 9).

Yes N/A No

This specification ensures the consistent operation
of a directory and file search in a
FileSelectionBox.

- 7-18: Within a List component, your application uses
< I > to move the location cursor to the previous
item in the List and <.1> to move the location
cursor to the next item in the List. In a scrollable
List, <~> scrolls the List one character to the left,
and <~> scrolls the List one character to the right
(Chapter 9).

The arrow keys provide a consistent means of
moving the location cursor within a List
component.

- - - 7-19: Within a List component, your application uses
<Ctrl> <Begin> to move the location cursor to
the first item in the List and <Ctrl> <End> to
move the location cursor to the last item in the
List. In a scrollable List, <Begin> moves the
horizontal scroll region so that the leftmost edge
of the List is visible, and <End> moves the
horizontal scroll region so that the rightmost edge
of the List is visible (Chapter 9).

8-67

OSF/Motif Style Guide

These keys offer a convenient mechanism for
moving the location cursor quickly through a List.

- - - 7-20: Within a scrollable List, <PageUp> moves the
location cursor to the item one page up in the List,
and <PageDown> moves the location cursor to the
item one page down in the List. In a scrollable
list, <PageLeft> or <Ctrl> <PageUp> scrolls the
List one page to the left, and <PageRight> or
<Ctrl> <PageDown> scrolls the List one page to
the right (Chapter 9).

These keys offer a convenient mechanism for
paging through a List.

- - - 7-21: Within a List component, your application uses
BSelect Click 2 to select the item that was
double-clicked and then initiate any default action
for the window (Chapter 9).

Double-clicking using BSelect provides a
consistent way of activating the default action for
a List.

B.7.5 OptionButton

8-68

Yes N/A No

- 7-22: If your application uses OptionButtons, the Label
for the button is the last selection made from the
OptionButton (Chapter 9).

An OptionButton is used to post an Option Menu
which allows the user to select from a number of
choices. The Label of an OptionButton needs to
display the most recent selection from the
associated Option Menu.

- - - 7-23: When the user presses BSelect in an
OptionButton, the associated Option Menu is
posted (Chapter 9).

OSF/Motif Level One Certification Checklist

BSelect Press is a consistent way of activating an
OptionButton.

- - - 7-24: When the user releases BSelect within the same
OptionButton that the press occurred in, the
associated Option Menu is posted if it was not
posted at the time of the press. When the user
releases BSelect outside of the OptionButton, the
associated Option Menu is unposted (Chapter 9).

BSelect Release posts or unposts an Option Menu,
depending on whether the release occurs inside
the OptionButton and whether the Option Menu
was posted at the time of the press.

- - - 7-25: When the user presses <Select> or <Space> in an
OptionButton, the associated Option Menu is
posted (Chapter 9).

B.7.6 PanedWindow

Yes N/A No

<Select> or <Space> posts an Option Menu from
the key board.

- 7-26: If your application uses PanedWindows, they are
composed of any number of groups of components,
called Panes, each separated by a Sash and a
Separator. The Panes, Sashes, and Separators are
grouped linearly, either horizontally or vertically.
A Sash is the handle on a Separator between two
Panes that is used to adjust the position of the
Separator (Chapter 9).

This specification ensures the consistent
appearance of a PanedWindow across
applications.

8-69

OSF/Motif Style Guide

B.7.7 Panel

Yes N/A No

- 7-27: The <..1,>, <~>, <~>, and <I> directional keys
navigate among components in a Panel (Chapter
9).

A Panel group organizes a collection of basic
controls in a horizontal, vertical, or 2-dimensional
layout. The directional keys are used to navigate
among the controls.

B.7.8 PushButton

8-70

Yes N/A No

- 7-28: When the user presses BSelect in a PushButton,
the PushButton is armed. When the user releases
BSelect in the same PushButton that the press
occurred in, the PushButton is disarmed and
activated. When the user releases BSelect outside
the PushButton, the PushButton is disarmed but
not activated (Chapter 9).

BSelect provides a consistent means of activating
a PushButton.

- - - 7-29: When the user presses <Enter> or <Return> in a
PushButton that is in a window with a default
action, the PushButton is activated. When the user
presses <Enter> or <Return> in a PushButton in
a Menu, the PushButton is activated and the Menu
is unposted (Chapter 9).

<Enter> and <Return> activate a DialogBox or a
PushButton in a Menu.

- - - 7-30: When the user presses <Select> or <Space> in a
PushButton, the PushButton is activated.

B.7.9 RadioButton

OSF/Motif Level One Certification Checklist

If the PushButton is in a Menu, the Menu is
unposted (Chapter 9).

<Select> and <Space> activate a PushButton.

Yes N/A No

- 7-31: If your application uses RadioButtons, each button
graphically indicates its state (Chapter 9).

RadioButtons are used to represent a panel of
mutually exclusive selections. The user needs to
know which button in the panel is set.

- - - 7-32: When the user presses BSelect in a RadioButton,
the RadioButton is armed. If the RadioButton was
previously unset, it is shown in the set state
(Chapter 9).

BSelect Press arms a RadioButton and shows the
result of activating it by releasing BSelect.

- - -7-33: When the user releases BSelect in the same
RadioButton that the press occurred in and the
RadioButton was previously unset, it is set, and
any other RadioButton in the same Panel that was
previously set is unset. The RadioButton is
disarmed, and, if the RadioButton is in a Menu,
the Menu is unposted (Chapter 9).

BSelect Release activates a RadioButton.

- - -7-34: When the user presses <Enter> or <Return> in a
RadioButton, if the RadioButton is in a window
with a default action, the default action is
activated. If the RadioButton is in a Menu
(Chapter 9):

• If the RadioButton was previously unset, it is
set, and any other RadioButton in the same
Panel that was previously set is unset.

8-71

OSF/Motif Style Guide

• The RadioButton is disarmed, and the Menu is
unposted.

<Enter> and <Return> perform the default
action of a window or activate a RadioButton in a
Menu.

- - - 7-35: When the user presses <Select> or <Space> in a
RadioButton, if the RadioButton was previously
unset, it is set, and any other RadioButton in the
same Panel that was previously set is unset. The
RadioButton is disarmed, and, if the RadioButton
is in a Menu, the Menu is unposted (Chapter 9).

<Select> and <Space> activate a RadioButton.

B.7.10 Sash

8-72

Yes N/A No

- 7-36: Within a PanedWindow, your application uses a
Sash to adjust the position of a Separator, which
adjusts the sizes of the Panes next to it. As a Sash
is moved, the Pane in the direction of the Sash
movement gets smaller and the opposite Pane gets
larger by an equal amount (Chapter 9).

This specification results in the uniform operation
of a PanedWindow across applications.

- - - 7-37: Within a Sash, BSelect Motion or BTransfer
Motion causes the Sash to track the movement of
the pointer. In a vertically oriented
PanedWindow, the Sash tracks the vertical
position of the pointer. In a horizontally oriented
PanedWindow, the Pane tracks the horizontal
position of the pointer (Chapter 9).

BSelect, the first mouse button, and BTransfer,
the second mouse button, provide a consistent
means of moving a Sash in a PanedWindow using
the mouse.

OSF/Motif Level One Certification Checklist

- - - 7-38: <I> and <J-> (for a Sash that can move vertically)
and <f-> and <~> (for a Sash that can move
horizontally) move the Sash one increment in the
specified direction (Chapter 9).

The arrow keys offer a uniform means of moving a
Sash in a PanedWindow.

- - - 7-39: <Ctrl> <I> and <Ctrl> <.,1,> (for a Sash that can
move vertically) and <Ctrl> <f-> and <Ctrl>
<~> (for a Sash that can move horizontally) move
the Sash one large increment in the specified
direction (Chapter 9).

B.7.11 Scale

These keys provide a convenient way of moving a
Sash quickly in a PanedWindow.

Yes N/A No

- 7-40: If a Scale has arrow buttons, your application uses
BSelect Press in an arrow button to move the
slider one increment in the direction of the side of
the slider on which the button was pressed and
autorepeats until the button is released (Chapter
9).

BSelect Press provides a consistent means of
adjusting a Scale component using the mouse.

- - - 7-41: In a Scale trough, if the Scale has tick marks,
BSelect Press moves the slider one major tick
mark in the direction of the side of the slider on
which the trough was pressed and autorepeats
until the button is released. If the Scale does not
have tick marks, BSelect Press in the trough
moves the slider one large increment in the
direction of the side of the slider on which the
trough was pressed and autorepeats until the
button is released (Chapter 9).

8-73

OSF/Motif Style Guide

8-74

BSelect Press provides a consistent means of
adjusting a Scale component using the mouse.

- - - 7-42: Within a Scale slider, BSelect Motion causes the
slider to track the position of the pointer. In a
vertical Scale, the slider tracks the vertical
position of the pointer. In a horizontal Scale, the
slider tracks the horizontal position of the pointer
(Chapter 9).

BSelect Motion offers a convenient way to adjust
a Scale component precisely using the mouse.

- - - 7-43: Within a Scale slider or trough, BTransfer
Motion positions the slider to the point of the
button press and then causes the slider to track the
position of the pointer. In a vertical Scale, the
slider tracks the vertical position of the pointer. In
a horizontal Scale, the slider tracks the horizontal
position of the pointer (Chapter 9).

BTransfer Motion provides another convenient
way to adjust a Scale component precisely using
the mouse.

- - - 7-44: If a mouse-based sliding action is in progress,
<Cancel> cancels the sliding action and returns
the slider to its position prior to the start of the
sliding operation (Chapter 9).

<Cancel> provides a consistent way for the user
to cancel a mouse-based sliding action.

- - - 7-45: In a vertical Scale, <I> and <-1-> move the slider
one increment in the specified direction. In a
horizontal Scale, <f-> and <~> move the slider
one increment in the specified direction (Chapter
9).

The arrow keys provide a uniform way of
adjusting the slider in a Scale component using
the keyboard.

- - -7-46: In a vertical Scale, <Ctrl> <I> and <Ctrl> <-1->
move the slider one large increment in the
specified direction. In a horizontal Scale, <Ctrl>

OSF/Motif Level One Certification Checklist

<f-> and <Ctrl> <~> move the slider one large
increment in the specified direction (Chapter 9).

These keys provide a convenient way of adjusting
the slider in a Scale component quickly using the
keyboard.

- - - 7-47: Your application uses <Begin> or <Ctrl>
<Begin> to move the slider to its minimum value.
<End> or <Ctrl> <End> moves the slider to its
maximum value (Chapter 9).

B.7.12 ScrollBar

These keys provide a convenient mechanism for
setting a Scale to its minimum or maximum value
using the keyboard.

Yes N/A No

- 7-48: Within a ScrollBar, your application uses BSelect
Press in an arrow button to move the slider one
increment in the direction of the side of the slider
on which the button was pressed and autorepeats
until the button is released (Chapter 9).

BSelect Press provides a consistent means of
adjusting a ScrollBar using the mouse.

- - - 7-49: In the trough of a ScrollBar, BSelect Press moves
the slider one page in the direction of the side of
the slider on which the trough was pressed and
autorepeats until the button is released (Chapter
9).

BSelect Press provides a consistent means of
adjusting a ScrollBar using the mouse.

- - - 7-50: Within a ScrollBar slider, BSelect Motion causes
the slider to track the position of the pointer. In a
vertical ScrollBar, the slider tracks the vertical
position of the pointer. In a horizontal ScrollBar,

8-75

OSF/Motif Style Guide

8-76

the slider tracks the horizontal position of the
pointer (Chapter 9).

BSelect Motion offers a convenient way to adjust
a ScrollBar precisely using the mouse.

- - - 7-51: Within a ScrollBar slider or trough, BTransfer
Motion posi~ions the slider to the point of the
button press and then causes the slider to track the
position of the pointer. In a vertical ScrollBar, the
slider tracks the vertical position of the pointer. In
a horizontal ScrollBar, the slider tracks the
horizontal position of the pointer (Chapter 9).

BTransfer Motion offers another convenient way
to adjust a ScrollBar precisely using the mouse.

- - - 7-52: If a mouse-based scrolling action is in progress,
<Cancel> cancels the scrolling action and returns
the slider to its position prior to the start of the
scrolling operation (Chapter 9).

<Cancel> provides a consistent way for the user
to cancel a mouse-based scrolling action.

- - - 7-53: In a vertical ScrollBar, <I> and <-1-> move the
slider one increment in the specified direction. In
a horizontal ScrollBar, <f--> and <~> move the
slider one increment in the specified direction
(Chapter 9).

The arrow keys provide a uniform means of
adjusting a ScrollBar using the keyboard.

- - -7-54: In a vertical ScrollBar, <Ctrl> <I> and <Ctrl>
<-1-> move the slider one large increment in the
specified direction. <Ctrl> <f--> and <Ctrl>
<~> move the slider one large increment in the
specified direction (Chapter 9).

These keys provide a convenient way of adjusting
a ScrollBar quickly using the keyboard.

- - - 7-55: Your application uses <PageUp> and
<PageDown> to move the slider in a vertical
ScrollBar one page in the specified direction.

OSF/Motif Level One Certification Checklist

<PageLeft> or <Ctrl> <Page Up> and
<PageRight> or <Ctrl> <PageD own> move the
slider in a horizontal ScrollBar one page in the
specified direction (Chapter 9).

These keys allow for the convenient movement of
the slider in a ScrollBar using the keyboard.

- - - 7-56: Your application uses <Begin> or <Ctrl>
<Begin> to move the slider to the minimum value.
<End> or <Ctrl> <End> moves the slider to the
maximum value (Chapter 9).

B.7.13 SelectionBox

Yes N/A No

These keys offer a convenient mechanism for
setting a ScrollBar to its minimum or maximum
value using the keyboard.

- 7-57: If your application uses a SelectionBox, it is
composed of at least a Text component for the
selected alternative and a List component above
the Text component for presenting alternatives.
The List uses either the single selection or browse
selection model. Selecting an element from the
List places the selected element in the Text
component (Chapter 9).

This specification ensures the consistent
appearance and operation of a SelectionBox
across applications.

- - - 7-58: The List navigation actions <I>, <.J,.>, <Ctrl>
<Begin>, and <Ctrl> <End> are available from
the Text component for moving the cursored
element within the List and thus changing the
contents of the Text (Chapter 9).

These actions provide a convenient way to choose
an element from the List while focus remains in
the Text component.

8-77

OSF/Motif Style Guide

B.7.14 Text

8-78

Yes N/A No

- 7-59: In a multiline Text component, <I> moves the
location cursor up one line, and <.1.> moves the
location cursor down one line. In a single-line
Text component, <I> navigates upward to the
previous component, and <.1.> navigates
downward to the next component, if the Text
component is designed to act like a basic control
(Chapter 9).

The up and down arrow keys provide a uniform
means of navigation within Text components.

- - - 7-60: <f-> moves the location cursor left one character,
and <~> moves the location cursor right one
character (Chapter 9).

The left and right arrow keys offer a consistent
way of navigating within Text components.

- - - 7-61: In a Text component used generally to hold
multiple words, <Ctrl> <~> moves the location
cursor to the right by a word, and <Ctrl> <f->
moves the location cursor to the left by a word
(Chapter 9).

<Ctrl> <~> and <Ctrl> <f-> provide a uniform
way of navigating by words in a Text component.
Moving right by a word means that the location
cursor is placed before the first character that is
not a space, tab, or newline character after the
next space, tab, or newline. Moving left by a word
means that the location cursor is placed after the
first space, tab, or newline character preceding
the first previous character that is not a space, tab,
or newline.

- - - 7-62: In a Text component used generally to hold
multiple words, <Begin> moves the location
cursor to the beginning of the line, and <End>

OSF/Motif Level One Certification Checklist

moves the location cursor to the end of the line
(Chapter 9).

These keys allow the user to move quickly to the
beginning or end of a line of text in a Text
component.

- - - 7-63: In a multiline Text component, <Ctrl> <Begin>
moves the location cursor to the beginning of the
file, and <Ctrl> <End> moves the location cursor
to the end of the file (Chapter 9).

These keys permit the user to move quickly to the
beginning or end of a file in a Text component.

- - - 7-64: Your application uses <Space> or <Shift>
<Space> to insert a space in a Text component.
Modifying these with <Ctrl> invokes the normal
selection function (Chapter 9).

This specification ensures that selection is
available from the keyboard in a Text component.

- - - 7-65: <Return> in a multiline Text component inserts a
carriage return. <Enter> or <Ctrl> <Return>
invokes the default action (Chapter 9).

This specification ensures that activation is
available from the keyboard in a Text component.

- - - 7-66: In a multiline Text component, <Tab> is used for
tabbing. In a single-line Text component, <Tab>
is used either for tabbing or to move to the next
field (Chapter 9).

<Tab> is used for tabbing in multiline Text.

- - - 7-67: If a Text component supports replace mode,
<Insert> toggles between insert mode and replace
mode.

By default, the component starts in insert mode,
where the location cursor is between two
characters. In insert mode, typing a character
inserts the character at the position of the location
cursor.

8-79

OSF/Motif Style Guide

8-80

In replace mode, the location cursor is on a
character. Typing a character replaces the current
character with that newly entered character and
moves the location cursor to the next character,
selecting it (Chapter 9).

These rules ensure the uniform operation of a Text
component with a replace mode.

- - - 7-68: Your application uses BSelect Click 2 to select
text a word at a time (Chapter 9).

Double clicking with the first mouse button
provides a convenient mechanism for selecting
words in a Text component.

Glossary

acceleration

accelerator

activation

anchor

A temporary change in the mouse pointer gain.

A key or sequence of keys (typically a modifier key and some
other key) that provides a shortcut, immediately accessing a
program function.

Invocation of a component's primary action. For example, the
user activates a PushButton by pressing BSelect on the
PushButton.

A position in a collection of selectable objects that marks one
endpoint of an extended selection range.

GL-1

OSF/Motif Style Guide

GL-2

application modal

apply

autorepeat

A state of a window in which interaction is limited to that
window and windows outside of that window's application.

A label given to a PushButton in some DialogBoxes that
performs the action of applying the current changes in the
DialogBox without closing the DialogBox.

A means of PushButton activation where a mouse button is
pressed and held on a PushButton and the PushButton
continues to activate at regular intervals until the mouse
button is released.

browse selection

button

cancel

A selection model that allows browsing through single
selection collections.

A button on a mouse pointing device; mouse buttons can be
mapped to the keyboard. A graphical component on a window
frame or in a DialogBox that works by pressing it.

A label given to a PushButton in some DialogBoxes that
performs the action of closing the DialogBox without
implementing any changes.

cascading Menu

A submenu that provides selections that amplify the parent
selection on a Pulldown or Popup Menu.

CheckButton

A component used to select settings that are not mutually
exclusive. The visual cue to the selection is frequently that
the button is filled in or checked.

click

client area

clipboard

close

Glossary

To press and release a mouse button. The term comes from
the fact that pressing and releasing most mouse buttons makes
a clicking sound.

The area within the borders of a primary window's frame that
is controlled by an application.

Any device used to store text or graphics during cut-and-paste
operations.

A label given to a PushButton in some DialogBoxes that
performs the action of closing the DialogBox. Close is also
used as a selection in Menus to close the window associated
with the Menu.

control panel

cursor

desktop

destination

DialogBox

An area of a window, similar to the control panels in real life,
that is used to hold PushButtons and other graphical
components.

A graphical image, usually a pipe (I) or block, that shows the
location where text will appear on the screen when keys on the
keyboard are pressed or where a selection can be made.

See workspace.

The location at which transfer actions place data.

A secondary window that the user can display and that
contains application components.

GL-3

OSF/Motif Style Guide

GL-4

dimmed selection

A selection that is not currently available.

discontiguous selection

double-click

A selection model that allows multiple discontiguous
selections.

To press and release a mouse button twice in rapid succession.

drag and drop

drag icon

A transfer mechanism where data is dragged from a source to
a drop site using mouse motion.

A graphic that is generated using pixmaps and is moved during
a drag operation. The drag icon is composed of a source
pixmap, a state cursor, and an operation cursor.

drag transfer

See drag and drop.

drop site

An area of the screen on which the user can drop a drag icon.

expert activation

A means of activation where double-clicking on a PushButton
activates a different action from clicking the PushButton.

explicit focus

focus

A keyboard focus model that sends keyboard events to the
window or component that was specified explicitly with a
mouse button or a keyboard event.

A state of the system that indicates which component receives
keyboard events. A component is said to have the focus if
keyboard events are sent to that component.

focus policy

gain

Glossary

The model by which keyboard focus is moved among
components. See also explicit focus, implicit focus.

The ratio of the distance the pointer moves to the distance the
mouse moves.

grayed selection

help

highlight

hotspot

hourglass

I-beam

A Menu selection that is not currently available and so has
been dimmed.

A label given to a PushButton in some DialogBoxes that
performs the action of providing help for the DialogBox.

A graphic technique used to provide a visual cue to the current
selection or to the current location of the input focus.
Highlighting is frequently accomplished by reversing the
video of the selection.

The area of a graphical image used as a pointer or cursor that
is defined as the point of the pointer or cursor.

A graphical image used to symbolize the passage of time and
provide a visual cue that the application is currently
performing an operation.

A graphical image used to represent the location of the mouse
pointer in a text entry box and providing a visual cue that text
can be entered in an area.

GL-5

OSF/Motif Style Guide

GL-6

icon

icon box

A small graphical image used to represent a window.
Windows can be turned into icons or minimized to save room
or unc1utter the workspace.

A window for organizing icons.

implicit focus

A keyboard focus model that sends keyboard events to the
window or component that the mouse pointer is over.

insertion cursor

keyboard

The graphical symbol that provides the visual cue to the
location of the insertion point.

An input device consisting of various keys that allows the user
to input data, control cursor and pointer locations, and to
control the dialog with the workstation.

keyboard focus

Label

list box

Indicates the window or component within a window that
receives keyboard input. It is sometimes called the input
focus.

The text part of an icon or graphical component.

A component that provides users with a scrollable list of
options from which to choose.

location cursor

A graphical symbol that marks the current location of the
keyboard input focus for selection. Typically, this symbol is a
box that surrounds the current object.

lower

maximize

Glossary

To move a window to the bottom of the window stack on the
workspace.

To enlarge a window to its maximum size.

maximize button

Menu

A control button placed on a window manager window frame
and used to initiate the maximize function.

A list of available selections from which a user chooses.

Menu system

A collection of Menus cascading from a single
CascadeB utton.

Menu window

MenuBar

An application window used to contain a Menu. Menu
windows are transitory.

A rectangular area at the top of the client area of a window
that contains the titles of the standard Pulldown Menus for that
application.

MenuBar system

MessageBox

A collection of Menus associated with a MenuBar and the
MenuBar itself.

The generic name for any DialogBox that provides
information, gives the current state of a work in progress, asks
a question, issues a warning, or draws attention to an error.

minimize (iconify)

To turn a window into an icon.

GL-7

OSF/Motif Style Guide

GL-8

minimize button

mnemonic

A control button placed on a window manager window frame
and used to initiate the minimize function.

A single character (frequently the initial character) of a Menu
selection. When the Menu is displayed and the user presses
the key that corresponds to that character, the Menu selection
is chosen.

model keyboard

modifier key

motion

mouse

A fictional keyboard that contains the keys and key labels
described by this guide.

A key that, when pressed with another key, changes the
meaning of the other key. <Ctrl>, <AU>, and <Shift> are
modifier keys.

Movement of the mouse.

A pomtmg device commonly used in conjunction with a
keyboard in point-and-click, object-oriented user interfaces.

mouse button

multiclick

multimotion

A button on a mouse pointing device. Mouse buttons can be
pressed, released, moved, clicked, and double-clicked.

To click a mouse button multiple times without moving the
pointer.

To press a mouse button multiple times without moving the
pointer and then move the mouse pointer.

Glossary

multiple selection

multipress

A selection model that allows multiple single selections.

To press a mouse button multiple times without moving the
pointer.

navigation (traversal)

no

OK

open

paste

pause

pointer

An action that causes the focus to move to another component.

A label given to a PushButton in some DialogBoxes that
performs the action of answering "no" and closing the
DialogBox.

A label given to a PushButton in some DialogBoxes that
performs the action of answering "OK" and closing the
DialogBox without implementing any changes.

To start an action or begin working with a text, data, or
graphics file.

Inserting data into an area. Pasting is commonly used in
reference to text files where a block of text is cut from one
area and pasted into another area.

A label given to a PushButton in some DialogBoxes that
performs the action of pausing the action of the DialogBox.

The graphical image that appears on the workspace and
represents the current location of a mouse or other pointing
device.

GL-9

OSF/Motif Style Guide

GL-10

pointing device

Popup Menu

posted

press

previewing

A device such as a mouse, trackball, or graphics tablet that
allows users to move a pointer about on the workspace and
point to graphical objects.

A Menu that provides no visual cue to its presence, but simply
pops up when a user performs a particular action. Popup
Menus are associated with a particular area of the workspace,
such as the client area of an application, and a user must
memorize where these areas are.

A state of a Menu where it remains in a visible state even
though a mouse button is not being held down. See also
spring-loaded.

To hold down a mouse button or a key.

A means of PushButton activation where information about
the impending action of a button release is displayed on the
button press action.

primary modal

A state of a window in which interaction is limited to that
window and windows that are not ancestors of that window.

primary transfer

A transfer mechanism where the primary selection is
transferred to the destination.

primary window

A top-level window of an application. Primary windows can
be minimized.

Glossary

Pulldown Menu

PushButton

A Menu that is pulled down from a client application's title
bar.

A graphic component that simulates a real-life push button.
When a user pushes the PushButton, by pressing a key or a
mouse button, an action takes place.

quick transfer

A transfer mechanism where selected data is immediately
transferred to the destination.

RadioButton

A graphic component that simulates the buttons on a real-life
car radio. Each button represents a mutually exclusive
selection. RadioButtons are typically used for setting states or
modes.

range selection

release

reset

resize

A selection model that allows selection of a range of elements.

To let up on a mouse button or key that has been pressed.
Sometimes it is the press that initiates the action; sometimes it
is the release.

A label given to a PushButton in some DialogBoxes that
performs the action of resetting the initial state of the
DialogBox.

To change the height or width of a window.

resize border

The window manager window frame part that surrounds the
client area of an application and that is used to change the
height or width of the window.

GL-11

OSF/Motif Style Guide

GL-12

restore

resume

retry

save

ScroIlBar

To return an icon or maximized window to its normal size.

A label given to a PushButton in some DialogBoxes that
performs the action of resuming the action of a DialogBox
previously paused.

A label given to a PushButton in some DialogBoxes that
performs the action of retrying the action whose failure posted
the DialogBox.

To write changes to a data file to a storage device for
safekeeping.

A graphical device used to change a user's view of the
contents of a window. A ScrollBar consists of a slider, a
trough, and scroll arrows. A user changes the view by sliding
the slider up or down in the scroll area or by pressing one of
the scroll arrows. These actions cause the view to scroll up or
down in the window adjacent to the ScrollBar.

secondary window

select

selection

A child window of a primary window.

To choose an object to be acted upon or an action to be
performed.

The object or action that is selected. Menus are composed of
selection items. DialogBoxes contain components, each of
which represents a selection.

single selection

A selection model that allows selection of a single element.

slider

Glossary

One of the graphical components of a ScrollBar or Scale. The
slider is the object that is dragged along the scroll area to
cause a change.

spring-loaded

stop

submenu

A state of a Menu where it remains only as long as a mouse
button is being held down. See also posted.

A label given to a PushButton in some DialogBoxes that
performs the action of stopping the work in progress indicated
by the DialogBox.

A cascading Menu.

system Menu

See window Menu.

system modal

text cursor

title area

title bar

A state of a window in which interaction is limited to that
window.

See insertion cursor.

The area at the top of the window frame immediately beneath
the resize border. The title bar has two functions: it contains a
title or name that identifies the window, and it can be grabbed
and dragged to relocate the window.

The bar across the top of a window manager window that
consists of the window Menu button, the title area, and the
window-control buttons.

GL-13

OSF/Motif Style Guide

GL-14

transient window

traversal

A window of short duration such as a DialogBox. The window
is displayed for only a short time, usually just long enough to
convey some information or get some operational directions.

See navigation.

virtual button

window

A model, used by this style guide, which defines mouse button
bindings independent of the actual number of buttons on the
mouse.

A data structure that represents all or part of the display
screen. Visually, a window is represented as a subarea of the
display screen.

window decoration

The frame and window-control buttons that surround windows
managed by the window manager.

window frame

The area surrounding a window. A window frame can consist
of a resize border, a window Menu button, a title bar, and
window-control buttons.

window manager

A program that controls the size, placement, and operation of
windows on the workspace. The window manager includes
the functional window frames that surround each window
object and may include a separate Menu for the workspace.

window Menu

The Menu that appears when the window Menu button is
pressed. The window Menu typically contains selections for
restoring, moving, sizing, minimizing, maximizing, and
closing the window.

Glossary

window Menu button

The graphical control button that appears at the left side of the
title bar in the window frame.

window navigation

workspace

yes

Moving the keyboard focus among windows.

The CRT screen. The area on which the windows of a user's
environment appear. The workspace is sometimes called the
desk, desktop, or root window.

A label given to a PushButton in some DialogBoxes that
performs the action of answering "yes" and closing the
DialogBox.

GL-15

Index

A
acceleration, 2-10
accelerators, 5-3,6-42,6-44, 9-4,

9-5
actions, DialogBox, 6-46
activation, 5-1,5-3,5-4,5-5,

5-6,5-7,9-5,9-21
basic, 5-2,5-7,9-5
cancel, 9-7
component, 5-1
expert, 9-7
help, 9-6
Menu system, 3-14
TearOff, 9-6

active voice, 8-11
active window, 2-2
acts requiring actions, 1-10
add mode, 4-9
addresses, 8-8
affirmative statements, 8-11
alignment

horizontal, 6-39
vertical, 6-39

alphanumeric date formats, 8-7
alphanumeric lists, 8-4
anchor, 4-5,4-7,4-10
ANS X3.159-1989, 8-1
ANSIC, 8-1

application design, 6-1
application modal, 6-45, 7-5
application title, 7-8
Apply, 6-47,9-24
arrow pointer, 2-7, 2-9, 9-88,

9-90
four-directional, 2-8, 9-89

autorepeat, 5-7

B
Balance Beam, 4-6
base, 8-1
basic activation, 5-2, 9-5
basic controls, 6-2, 6-9

Cascade Button, 6-2
CheckButton, 6-3
Label, 6-2
OptionButton, 6-3
PushButton, 6-2
RadioButton, 6-3
Separator, 6-2
TearOffButton, 6-3
ToggleButton, 6-3

basic groups, 6-2, 6-5, A-I
Menu, 6-5
MenuBar, 6-5

Index-1

OSF/Motif Style Guide

Panel, 6-5
B11enu, 2-4, 2-5, 9-59
box, icon, 7-15,9-53
browse selections, 4-3,4-4,4-10,

9-119
BSelect, 2-4,2-5, 5-2, 9-5, 9-59
BTransfer, 2-4,2-5,9-59
buttons, 7-9

c

system 11enu, 7-11
window 11enu, 7-11

Cancel, 6-47, 9-24
cancel activation, 5-7,9-7
canceling a selection, 4-12
Canvas, 6-5, 6-8, 6-11, 9-11,

9-35, A-I
CascadeButton, 3-2, 6-2, 9-8,

9-12, A-I
caution pointer, 2-9,9-90
CheckBox, 6-9
CheckButton, 6-3,9-9,9-14,

9-133, A-I
choosing components, 6-2
Clear, 6-21,6-29, 9-29, 9-93
Click, 2-5
click-to-type, 2-3, 9-44
client areas, 6-12, 7-8
clipboard selection actions, 4-20

copy, 4-20
copy link, 4-20
cut, 4-20
paste, 4-20

Index-2

paste link, 4-20
clipboard transfer, 4-20

copy, 4-20
copy link, 4-20
cut, 4-20
paste, 4-20
paste link, 4-20

Close, 6-19,6-46,7-12,9-23,
9-37,9-136

collating sequences, 8-4
collections

graphics-like, 4-2
list-like, 4-2
text -like, 4-2

colors, 1-7
columns, aligning, 6-39
command area, 6-12, 6-14
Command DialogBox, 6-31, 9-19
CommandBox, 9-17
common actions, 9-23
common DialogBox actions, 6-46
component activation, 5-1, 5-2,

5-3,5-4,5-5,5-6,5-7,
9-21

component navigation, 3-8
components

arranging, 6-38
choosing, 6-2
design, 6-61, 9-2
grouping, 6-38
interactive, 6-8
modal, 6-57
multiple-choice, 6-8, 6-9
scrollable, 3-1
simple, 6-57
single-choice, 6-8, 6-9
text, 9-128

window, 7-6
Composite, A-I
Composition, 6-5,9-20,9-63
configurability, 7-2
consistency, 1-7

interapplication, 1-8
context-sensitive help, 1-10
Context-Sensitive Help, 6-25,

9-49
contrast, screen objects, 1-7
control panel, 6-38
controls, 9-1
Copy, 6-21, 6-28,9-28,9-92
copy, 4-20,4-21,4-23,9-96,

9-103
copy link, 4-20
Copy Link, 6-21, 6-28, 9-28, 9-92
comer handles, 7-10
country-specific data formats, 8-5
currency, 8-6
cursor, 3-4

item, 3-6
location, 2-2, 2-3, 3-1,

3-4,3-5,3-8,4-9
text insertion, 2-2, 3-5

Cut, 6-20,6-28, 9-28,9-92
cut, 4-20,4-23,9-103

D
data formats

country-specific, 8-5, 8-6
currency, 8-6

date formats, 8-7

decimal separators, 8-6
decoration, windows, 7-6

Index

default action, selecting, 5-5,9-6,
9-21

default PushButton, 6-56
defaults, 6-56
delay, 6-60
Delete, 6-21, 6-29, 9-29, 9-93
Deselect All, 6-22,6-29,9-29,

9-93
deselecting, 4-12
Design, 1-1
design

applications, 6-1
components, 6-61, 9-2
DialogBox, 6-45
graphical symbols, 8-9
icons, 8-9
pointer shapes, 2-7, 8-9,

9-88
window manager, 7-1

destructive actions, 6-43
DialogBox, 3-8, 6-7, 6-12, 6-31,

6-42, 7-2, 9-23, A-I
actions, 6-46
Command, 6-31, 9-19
designing, 6-45
Error, 6-35, 9-33
FileSelection, 6-32,9-42
groups, 6-2
Information, 6-35, 9-58
location, 6-49
Message, 6-34,9-75
Prompt, 6-33,9-97
Question, 6-36, 9-101
Selection, 6-33,9-123
size, 6-49
Waming, 6-36, 9-134

Index-3

OSF/Motif Style Guide

Working, 6-37, 9-138
DialogBox groups, 6-6
direct manipulation, 1-4, 1-5, 2-4
disabling components, 6-57
discontiguous selection, 4-3,4-7,

4-11,9-120
double-clicking, 5-6, 9-7
drag and drop, 4-24, 9-26
drag and drop model, 9-26
drag transfer, 4-24

E
edge handles, 7-10
Edit Menu, 6-16,6-20,9-28, 9-70
Enlarge Only, 4-6
Error DialogBox, 6-35,9-33
ErrorDialog, 9-75
errors, 1-10
Exit, 6-19,9-37
expert action, 5-6, 9-7
expert activation, 5-6, 9-7
explicit destruction, 1-10
explicit focus, 2-3, 9-44
extension models, 4-6, 4-7

F
feedback, 1-9,6-54,6-59
field controls, 6-2, 6-4, 6-5, 9-34,

A-I

Index-4

Canvas, 9-35
List, 9-34

Sash, 9-34
Scale, 9-34
ScrollBar, 9-34
text, 9-35

field navigation, 3-8
fields, 3-8
File Menu, 6-15,6-17,9-36,9-69
FileSelection DialogBox, 6-32,

9-42
FileSelectionBox, 9-39, A-I
fill,3-7
fixed layout, 6-38
flexibility, 1-3, 6-61
focus

explicit, 2-2,2-3,9-44
implicit, 2-2,2-3,9-44
keyboard,2-1,2-2,2-3

focus policies, 2-2,2-3,9-44
formats

addresses, 8-8
data, 8-5
dates, 8-7
messages, 8-11
telephone numbers, 8-8
time, 8-7

four-directional arrow pointer, 2-8,
9-89

Frame, 6-5, 9-46, 9-47, A-I
framing groups, 6-2, 6-5, 9-47,

A-I
Frame, 6-5
MainWindow, 6-5
ScrolledWindow, 6-5

G
gain, 2-10
graphics, 6-55
graphics tablet, 2-4, 9-59
graphics-like collections, 4-2
group reference, 9-1
grouping

H

components, 6-38
Menu selections, 6-43
separators, 8-6

handles, 7-10
Help, 6-47,6-60,9-24

help
Menu, 6-16, 6-23,9-70

activation, 5-4
application overview, 6-26,

9-49
context-sensitive, 1-10,

6-24,6-25,6-60,
9-48,9-49

index, 6-24, 6-26, 9-48,
9-49

key bindings, 6-26, 9-49
product information, 6-26,

9-50
tutorial, 6-25,6-26, 9-49
using help, 6-26,9-49
version, 6-25, 9-49

help activation, 9-6
Help Menu, 9-48

horizontal alignment, 6-39
hot key, 7-2
hotspot, 2-7,2-9,9-88
hourglass pointer, 2-8, 9-89

I
I-beam pointer, 2-7,9-88
icon box, 7-15, 9-53
icon Menu, 7-15,9-52
iconized window, 7-4

Index

icons, 7-4, 7-14,8-9,9-56
immediacy of response, 1-5
implicit focus, 2-2, 2-3, 9-44
Index, 6-24, 6-26,9-48,9-49
Information DialogBox, 6-35
InformationDialog, 9-58, 9-75
input, keyboard, 9-59
input devices, 2-1, 2-4, 9-59
input focus, 2-2
interactions, 6-54
interactive methods, 6-8
interapplication, consistency, 1-8
internal window navigation, 2-3
internationalization, 8-1,8-6, 8-9,

8-11
collating sequences, 8-4
conversion, 8-4
data formats, 8-5
date formats, 8-7
numbers, 8-8
pre-edit, 8-3
status, 8-3
telephone numbers, 8-8

Index-5

OSF/Motif Style Guide

text input, 8-2
intraapplication consistency, 1-7
item cursor, 3-6

J
joystick, 2-4,9-59

K
Keyboard, 6-26,9-49
keyboard, 3-1

events, 2-2
focus, 2-1,2-2,3-8,9-44
input, 2-2, 2-4, 9-59
model, 9-59
navigation, 3-1, 9-77, 9-81,

9-82
keyboard-based operations, 2-3
keyboards, 9-59

L
Label, 6-2, 6-8, 6-11, 9-8, 9-62,

A-I
language independent, 8-9
layout, 6-11

fixed, 6-38

Index-6

resizing, 6-39
layout groups, 6-2, 6-5, 9-63, A-I
link, 4-21, 4-23, 9-96, 9-103
List, 6-4, 6-9, 9-34, 9-64, A-I
list-like collections, 4-2
localization, 8-1
location cursor, 2-2, 2-3, 3-1, 3-4,

3-5,3-8,4-9
Lower, 7-12, 9-136

M
main component groups, 6-6
main windows, 3-8, 7-2, 7-4
MainWindow, 6-5,6-6,6-7,

6-12,6-13,9-47,9-67,
A-I

manipulation, 1-4
direct, 1-5

marquee selection, 4-6
Maximize, 7-12,9-136
maximize button, 7-7, 7-9
Menu, 6-5, 6-6, 6-7, 6-8, 6-10,

6-12, 9-10, 9-73, A-I
Menu system, activation, 3-14
Menu traversal, 3-14
MenuBar, 3-2, 3-14, 6-5, 6-12,

6-15, 9-10, 9-69, A-I
Menus, 7-11, 9-73

designing, 6-40
Edit, 6-16, 6-20, 9-28,

9-70
File, 6-15,6-17,9-36,

9-69
Help, 6-16, 6-23,9-48,

9-70

icon, 7-15, 9-52
navigation, 3-1,3-2
Option, 9-73, 9-83
Options, 6-16, 9-70
Popup, 6-26, 9-73, 9-91
Pulldown, 9-73
Selected, 6-16, 9-69
selections, 6-43
structures, 6-42
system, 9-135, 9-136
View, 6-16, 9-70
window, 7-3, 7-5, 7-11,

9-135,9-136
message area, 6-12, 6-14
Message DialogBox, 6-34,9-75
MessageBox, A-I
messages, 8-11
metaphors, real world, 1-4
Minimize, 7-12, 9-136
minimize button, 7-7, 7-9
minimized window, 7-4
mnemonics, 4-13,5-3,6-41,

6-44,9-5,9-76
model keyboard, 9-59
modeless, 6-45, 7-5
models, 9-1

input, 2-1
selection, 4-1

modes, 6-57
Motion, 2-5
mouse, 2-2, 2-4, 3-1, 9-59
mouse input, 2-4
mouse pointer, 2-2,2-3
mouse pointer shapes, 2-7, 9-88
mouse-based navigation, 3-1
Move, 7-12, 9-135
move, 4-21, 9-96

MultiClick, 2-5
MultiMotion, 2-5

Index

multiple cascading submenus,
6-42

multiple Main Windows, 6-13
multiple selection, 4-3,4-5,4-10
multiple selections, 9-119
multiple windows, 7-8
multiple-choice components, 6-8,

6-9
MultiPress, 2-5

N
national numbers, 8-8
navigation, 1-6

components, 3-8
field,3-8
keyboard,9-77,9-81,9-82
model, 3-1
mouse-based, 3-1
scrollable components, 3-17
window, 2-3,7-13

New, 6-18,9-36
No, 6-46, 9-23
normal mode, 4-9
numbers, positive and negative,

8-6
numeric date formats, 8-7

Index-7

OSF/Motif Style Guide

a
object-action selection model, 4-1
OK, 6-46, 9-23
On Context, 6-24, 9-48
On Help, 6-24,9-48
On Keys, 6-24, 9-48
On Version, 6-25,9-49
On Window, 6-24, 9-48
Open, 6-18,9-36
operation

keyboard only, 2-4, 9-59
keyboard-based,2-3
mouse only, 2-4, 9-59

Option Menus, 6-40
OptionButton, 6-3,6-9, 9-8, 9-83,

A-I
Options Menu, 3-2, 6-16, 9-70,

9-73,9-83
ordering

functions, 1-4
Menu selections, 6-43

ordering Menu selections, 6-43
outline highlight, 3-5
Overview, 6-26, 9-49

p
Pack Icons, 7-16, 9-53
PanedWindow, 6-4,6-5,6-40,

9-63,9-85,9-108,A-l
Panel, 6-5,6-8, 6-10, 9-10, 9-87,

A-I
panels, control, 6-38

Index-8

Panes,6-4,6-40,9-63,9-85
parent windows, 7-4
parts, window, 7-6
Paste, 6-21,6-29, 9-29,9-93
paste, 4-20
paste link, 4-20
Paste Link, 6-21,6-29, 9-29, 9-93
Pause, 6-47, 9-24
pointer navigation, 3-2
pointer shapes, 2-7, 8-9, 9-88
pointers, 2-2,2-4

arrow, 2-7, 9-88
caution, 2-9,9-90
designing, 2-9
four-directional, 2-8, 9-89
hourglass, 2-8, 9-89
I -beam, 2-7, 9-88
mouse, 2-2, 2-3
question, 2-9,9-90
resize, 2-8,9-89
sighting, 2-9,9-90
track, 2-2
warping, 2-10
watch, 2-8, 9-89
X, 2-8, 9-88

pointing devices, 2-4, 9-59
Popup Menus, 3-2, 6-10, 6-26,

6-40,9-6,9-73,9-91
positive and negative values, 8-6
POSIX 1003.1, 8-1
pre-edit area, 8-3

conversion, 8-4
off-the-spot, 8-3
on-the-spot, 8-3
over-the-spot, 8-3

Press, 2-5
previewing, 5-7

Primary Copy, 6-28, 9-92
Primary Link, 6-28,9-92
primary modal, 6-45,7-5
Primary Move, 6-27, 9-91
primary selection, 4-21,9-95,

9-96
copy, 4-21,9-96
focus-based, 4-21,9-96
link, 4-21, 9-96
move, 4-21, 9-96

primary transfer, 4-21,9-95,9-96
copy, 4-21, 9-96
link, 4-21, 9-96
move, 4-21, 9-96

primary windows, 3-8,7-2,7-3,
7-4

Print, 6-19,9-37
Product Information, 6-26,9-50
progress, 6-60
progressive disclosure, 1-4
Promote, 6-22, 6-30, 9-30, 9-94
Prompt DialogBox, 6-33, 9-97
PromptBox, A-I
proper names, 8-8
Properties, 6-27, 9-91
prototypes, 1-2
Pulldown, 9-73
Pulldown Menu, 6-15, 9-69
Pulldown Menus, 3-2, 6-10, 6-40
PushButton, 6-2,9-8,9-99, A-I

Q
Question DialogBox, 6-36,9-101

question pointer, 2-9,9-90
QuestionDialog, 9-75
quick selection, 4-23,9-103

copy,4-23,9-103
cut, 4-23, 9-103
link, 4-23, 9-103

quick transfer, 4-23, 9-103
copy, 4-23, 9-103
cut, 4-23, 9-103
link, 4-23,9-103

R
RadioBox, 6-9

Index

RadioButton, 6-3,9-9,9-105,
9-133, A-I

range selection, 4-3,4-5,4-10,
9-120

reading direction, 8-1 °
real world metaphors, 1-4
real-estate driven, 2-2
reference pages, 9-1
related items, 6-43
Release, 2-5
Reselect, 4-6,6-22,6-30,9-30,

9-94
Reset, 6-47, 9-24
resize border, 7-7, 7-10
resize pointer, 2-8,9-89
resizing layout, 6-39
response immediacy, 1-5
Restore, 7-11,9-135
restore, 7-9
Resume, 6-47, 9-24
Retry, 6-47, 9-24

Index-9

OSF/Motif Style Guide

s
Sash, 6-4, 9-34, 9-85,9-108, A-I
Save, 6-18,9-36
Save As, 6-18, 9-36
Scale, 6-4,9-34,9-111, A-I
scanning direction, 8-10
scrollable component navigation,

3-1,3-17
ScrollBar, 6-4,6-12,6-15,9-34,

9-114, A-I
ScrolledWindow, 6-5, 9-47,

9-117, A-I
scrolling, 3-17
secondary selection, 4-23
secondary windows, 3-8, 7-2, 7-3,

7-4
application modal, 7-5
interaction, 7-5
modeless, 7-5
modes, 7-5
primary modal, 7-5
system modal, 7-5

Select All, 6-21, 6-29, 9-29, 9-93
Select Pasted, 6-22,6-30,9-30,

9-94
SelectAll, 4-12
Selected Menu, 6-16, 9-69
selection, 6-43

Index-10

browse, 4-3,4-4,4-10,
9-119

canceling, 4-12
deselecting, 4-12
discontiguous, 4-3, 4-7,

4-11,9-120
keyboard, 4-9
marquee, 4-6
mnemonics, 4-13
model, 9-119

multiple, 4-3,4-5,4-10,
9-119

primary, 4-21, 9-95, 9-96
quick, 4-23, 9-103
range, 4-3, 4-5, 4-10,

9-120
secondary, 4-23
single, 4-3,4-4,4-9,9-119
undoing, 4-12

selection actions, clipboard, 4-20
Selection DialogBox, 6-33, 9-123
selection model, 4-1, 4-2, 4-3
SelectionBox, 9-121, A-I
Separator, 6-2, 9-8, 9-125, A-I
separators

decimal, 8-6
grouping, 8-6
thousands, 8-5

sequences, collating, 8-4
shapes, pointer, 2-7,9-88
sighting pointer, 2-9,9-90
single selection, 4-3,4-4,4-9,

9-119
single-choice components, 6-8,

6-9
Size, 7-12,9-135
spring-loaded, 3-2
status area, 8-3
Stop, 6-47, 9-24
structures, Menu, 6-42
submenus, multiple cascading,

6-42
system Menu button, 7-11
system Menus, 9-135, 9-136
system modal, 6-45, 7-5

T
tab groups, 3-8
TearOff, activation, 5-4
TearOff activation, 9-6
TearOffMenu, 6-8, 6-10
TearOff Menus, 6-7, 6-10, 6-40,

6-44, 7-5
TearOffButton, 6-3, 6-8,6-10,

9-9,9-126
TearOffButtons, 6-44
telephone numbers, 8-8
Text, 6-4,6-8,6-11,9-35, A-I

component, 9-128
text

cursor, 3-5
insertion cursor, 2-2
translation, 8-11

text pointer, 4-5
text-like collections, 4-2
thousands separators, 8-5
time formats, 8-7
title area, 7-7, 7-8
title bar, 7-8
toggle models, 4-7
ToggleButton, 6-3, 9-8, 9-14,

9-105,9-133, A-I
track ball, 2-4,9-59
track listener, 2-2
track pointer, 2-2
transfer, clipboard, 4-20
transient windows, 3-8, 7-2, 7-3
translating text, 8-11
traversal, keyboard, 2-4
Tutorial, 6-25,6-26, 9-49
types of windows, 7-2

u
Undo,6-20,6-27,9-28,9-91
undo, 1-10,4-12
U sing Help, 6-26, 9-49

v

Index

values, positive and negative, 8-6
vertical alignment, 6-39
vertical panes, 6-40
View Menu, 6-16, 9-70
visual cue, 2-2

w
Warning DialogBox, 6-36,9-134
warnings, 1-10, 6-60
warping, 2-1 °
watch pointer, 2-8, 9-89
window control buttons, 7-10
window family, 3-8
window manager

design, 7-1
functions, 7-6, 7-1 °

window Menu button, 7-7, 7-11
window Menus, 9-135, 9-136
window navigation, 3-8
window panes, 9-63,9-85,9-108
windows

active, 2-2
components, 7-6
decoration, 7-6

Index-11

OSF/Motif Style Guide

frame components, 7-9
iconized, 7-4
main, 3-8,7-2, 7-4,9-67
Menu, 7-3
MenuBar, 6-15
minimized, 7-4
modes, 7-5
multiple, 7-8
navigation, 2-3,7-13,9-81,

9-82
navigation of, 9-82
Panes, 6-40
parent, 7-4
primary, 3-8,7-2,7-3,7-4,

9-67
resize border, 7-10
secondary, 3-8, 7-2, 7-3,

7-4
transient, 3-8, 7-2, 7-3
types, 7-2

Working DialogBox, 6-37,9-138
WorkingDialog, 9-75

x
X pointer, 2-8, 9-88

y
Yes, 6-46, 9-23

Index-12

z
zoom feature, 2-10

OPEN SOFfWARE FOUNDATIONTM

INFORMATION REQUEST FORM

Please send me the following:

OSF Membership Information

(OSF/Moti(fM License Materials

OSF/Moti(fM Training Information

Contact Name

Company Name

Street Address

Mail Stop

City

Phone

Electronic Mail

MAIL TO:

------State ------Zip -----

-----------FAX-----------------

Open Software Foundation
11 Cambridge Center

Cambridge, MA 02142

Attn: OSF/Moti(fM

For more information about OSF/Moti(fM call 617621 7300.

OSF/Motif™ Release 1.2

Style Guide
TITLES IN THE OSF/Motif SERIES:

OSF/ Motif Programmer's Guide

OSF/ Motif Programmer's Reference

OSF/ Motif Style Guide

OSF/ Motif User's Guide

Application Environment Specification (AES)
User Environment Volume

Printed in U.S.A.

ISBN 0-13-643123-2

Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142

Prentice-Hall, Inc.

90000

978013643123

