OSF/Motif”™

OPEN SOFTWAI FOUNBATION

~

OSF/Motif™

Programmer’s Reference

Revision 1.2
(For OSF/Motif Release 1.2)

Open Software Foundation

o

P T R Prentice Hall, Englewood Cliffs, New Jersey 07632

Cover design
and cover illustration: BETH FAGAN

This book was formatted with troff

Published by P T R Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in connection
with the furnishing, performance, or use of this material.

All rights are reserved. No part of this publication may be photocopied, reproduced, or translated into another
language without the prior written consent of the Open Software Foundation, Inc.

o © Copyright 1989, 1990, 1993 Open Software Foundation, Inc.

¢ © Copyright 1989 Digital Equipment Corporation

o © Copyright 1987, 1988, 1989, 1992 Hewlett-Packard Company

¢ © Copyright 1988 Massachusetts Institute of Technology

¢ © Copyright 1988 Microsoft Corporation

All rights reserved. Printed in U.S.A.

Printed in the United States of America
0 9 8 7 6 5 4 3 21

ISBN 0-13-b43115-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE
ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of,
this computer software, the rights of the Government regarding its use, reproduction and disclosure are
as set forth in Section 52.227-19 of the FARS Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraph (b)(3)(B) of the Rights in Technical Data and Computer Software clause in DAR
7-104.9(a). This computer software is submitted with “restricted rights.” Use, duplication or disclosure is
subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) “Commercial Computer
Software-Restricted Rights (April 1985)” If the contract contains the Clause at 18-52.227-74 “Rights in
Data General” then the “Alternate III” Clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open
Software Foundation, Inc.

DEC and DIGITAL are registered trademarks of Digital Equipment Corporation.

Hewlett-Packard and HP are trademarks of Hewlett-Packard Company.

Microsoft is a registered trademark of Microsoft Corporation.

Presentation Manager is a trademark of International Business Machines Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S. and other countries.

X Window System is a trademark of the Massachusetts Institute of Technology.

Contents

Preface

Chapter 1.

Audience
Applicability .
Purpose

Document Usage .
Reference Page Format .

Related Documents .

Typographic and Keying Conventions

Keyboard Conventions
Mouse Conventions

Problem Reporting

Reference Pages .

mwm

uil

xmbind .
App11cat10nShell
Composite

Constraint

Core .
MrmCloseHlerarchy
MrmFetchBitmapLiteral
MrmFetchColorLiteral .
MrmPFetchlconLiteral
MrmPFetchLiteral
MrmPFetchSetValues
MrmFetchWidget . .
MrmFetchW1dgetOverr1de
Mrmlnitialize .
MrmOpenHierarchy .
MrmOpenHlerarchyPerDlsplay
MrmRegisterClass .
MrmRegisterNames
MrmReg1sterNamesInHlerarchy
Object .

xi
X1
Xii
xii
Xii
xiii
X1iv

Xiv

OSF/Motif Programmer’s Reference

OverrideShell
RectObj
Shell . .
TopLevelShell
TransientShell
uil .

U11Dum1.)SymbolTable

VendorShell
VirtualBindings
WMShell
XmActlvateProtocol

XmActivate WMProtocol
XmAddProtocolCallback

XmAddProtocols
XmAddTabGroup

XmAddWMProtocoléall.back

XmAddWMProtocols
XmArrowButton .

XmArrowButtonGadget

XmBulletinBoard
XmCascadeButton

XmCascadeButtonGadget .
XmCascadeButtonGadgetHi ghllght
XmCascadeButtonHighlight

XmChangeColor

XmChpboardCancelC.Op;/

XmClipboardCopy

XmChpboardCopyByName
XmClipboardEndCopy .
XmClipboardEndRetrieve .
XmClipboardInquireCount
XmClipboardInquireFormat
XmClipboardInquireLength .
XmC11pboardInqu1rePend1ngItems

XmClipboardLock

XmChpboardReglsterFormat

XmClipboardRetrieve
XmClipboardStartCopy

XmClipboardStartRetrieve
XmClipboardUndoCopy

XmClipboardUnlock

XmChpboardW1thdrawFormat

XmCommand

XmCommandAppendValue

XmCommandError

XmCommandGetChild .
XmCommandSetValue .

1-103
1-107
1-110
1-115
1-123
1-131
1-136
1-138
1-151
1-160
1-170
1-171
1-172
1-173
1-174
1-175
1-176
1-177
1-185
1-192
1-204
1-216
1-225
1-226
1-227
1-228
1-230
1-232
1-234
1-236
1-237
1-239
1-241
1-243
1-245
1-247
1-249
1-251
1-254
1-256
1-257
1-259
1-260
1-273
1-274
1-275
1-276

Contents

XmConvertUnits

XmCreate ArrowButton .
XmCreateArrowButtonGadget
XmCreateBulletinBoard . .
XmCreateBulletinBoardDialog
XmCreateCascadeButton

XmCreateCascadeButtonGadgét

XmCreateCommand
XmCreateDialogShell
XmCreateDraglcon .
XmCreateDrawingArea
XmCreateDrawnButton
XmCreateErrorDialog
XmCreateFileSelectionBox
XmCreateFileSelectionDialog

XmCreateForm
XmCreateFormDialog
XmCreateFrame
XmCreateInformationDialog
XmCreateLabel . e
XmCreateLabelGadget .
XmCreateList

XmCreateMainWindow
XmCreateMenuBar .
XmCreateMenuShell
XmCreateMessageBox .
XmCreateMessageDialog
XmCreateOptionMenu .
XmCreatePanedWindow
XmCreatePopupMenu
XmCreatePromptDialog
XmCreatePulldownMenu
XmCreatePushButton . .
XmCreatePushButtonGadget
XmCreateQuestionDialog .
XmCreateRadioBox
XmCreateRowColumn .
XmCreateScale
XmCreateScrollBar .
XmCreateScrolledList
XmCreateScrolledText .
XmCreateScrolledWindow
XmCreateSelectionBox
XmCreateSelectionDialog .
XmCreateSeparator . . .
XmCreateSeparatorGadget
XmCreateSimpleCheckBox

1-277
1-279
1-280
1-281
1-282
1-283
1-284
1-285
1-286
1-287
1-288
1-289
1-290
1-291
1-293
1-295
1-296
1-297
1-298
1-299
1-300
1-301
1-302
1-303
1-305
1-306
1-307
1-308
1-310
1-311
1-313
1-314
1-316
1-317
1-318
1-319
1-321
1-323
1-324
1-325
1-327
1-329
1-330
1-331
1-333
1-334
1-335

OSF/Motif Programmer’s Reference

XmCreateSimpleMenuBar
XmCreateSimpleOptionMenu
XmCreateSimplePopupMenu . .
XmCreateSimplePulldownMenu .
XmCreateSimpleRadioBox
XmCreateTemplateDlalog
XmCreateText . .
XmCreateTextField .
XmCreateToggleButton
XmCreateToggleButtonGadget
XmCreateWarningDialog
XmCreateWorkArea
XmCreateWorkingDialog
XmCvtCTToXmString .
XmCvtStringToUnitType
XmCvtXmStringToCT .
XmDeactivateProtocol .
XmDeactivateWMProtocol
XmDestroyPixmap
XmbDialogShell

XmbDisplay

XmDragCancel
XmDragContext .
XmDraglcon .

XmDragStart .
XmDrawingArea
XmDrawnButton
XmDropSite

XmDropSneCo.nﬁ.gureStacklngOrder .

XmDropSiteEndUpdate
XmDropS1teQueryStack1ngOrder
XmDropSiteRegister .
XmbDropSiteRetrieve
XmDropSiteStartUpdate
XmDropSiteUnregister .
XmDropSiteUpdate .
XmDropTransfer .
XmDropTransferAdd
XmDropTransferStart
XmPFileSelectionBox .
XmFlleSelecuonBoxGetChlld
XmPFileSelectionDoSearch
XmFontList .
XmFontListAdd .
XmFontLlstAppendEntry
XmFontListCopy
XmFontListCreate

Contents

XmFontListEntryCreate
XmFontListEntryFree
XmFontListEntryGetFont
XmFontListEntryGetTag
XmFontListEntryLoad .
XmFontListFree .
XmFontL1stFreeFontContext
XmFontListGetNextFont
XmFontListInitFontContext
XmFontListNextEntry
XmFontLlstRemoveEntry
XmForm .
XmFrame .

XmGadget
XmGetAtomName .
XmGetColorCalculation
XmGetColors
XmGetDestination
XmGetDragContext
XmGetFocusWidget
XmGetMenuCursor .
XmGetPixmap .
XmGetPlxmapByDepth
XmGetPostedFromWidget .
XmGetSecondaryResourceData
XmGetTabGroup . . .
XmGetTearOffControl .
XmGetVisibility .
XmGetXmbDisplay
XmGetXmScreen
Xmlnstalllmage .
XminternAtom
XmIsMotlfWMRunnmg
XmlsTraversable
XmLabel . . .
XmLabelGadget .

XmlList . e .
XmListAddItem . .
XlestAddItemUnselected
XmListAddItems .
XlestAddItemsUnselected
XmlListDelete Allltems .
XmListDeleteItem
XmlListDeleteltems .
XmlListDeleteItemsPos .
XmlListDeletePos
XmListDeletePositions .

OSF/Motif Programmer’s Reference

XmListDeselectAllltems
XmListDeselectltem
XmListDeselectPos . .
XmListGetKbdItemPos
XmlListGetMatchPos
XmListGetSelectedPos . . .
XmListItemExists
XmlListItemPos .
XmListPosSelected .
XmListPosToBounds
XmListReplaceltems
XmlListReplaceltemsPos

XmL1stReplaceItemsPosUnéelected

XmListReplaceltemsUnselected .
XmlListReplacePositions
XmlListSelectItem
XmlListSelectPos .
XmListSetAddMode
XmlListSetBottomItem .
XmListSetBottomPos
XmListSetHorizPos .
XmListSetltem .
XmListSetKbdItemPos .
XmListSetPos . .
XlestUpdateSelectedLlst
XmListYToPos .
XmMainWindow .
XmMainWindowSepl .
XmMainWindowSep2 . . .
XmMainWindowSep3 .
XmMainWindowSetAreas .
XmManager . . .
XmMapSegmentEncodmg .
XmMenuPosition
XmMenuShell
XmMessageBox . .
XmMessageBoxGetChlld
XmOptionButtonGadget
XmOptionLabelGadget
XmPanedWindow
XmPrimitive .
XmProcessTraversal
XmPushButton
XmPushButtonGadget . . .
XmReglsterSegmentEncodlng
XmRemoveProtocolCallback .
XmRemoveProtocols

Vi

1-612
1-613
1-614
1-615
1-616
1-617
1-618
1-619
1-620
1-621
1-622
1-623
1-624
1-625
1-626
1-627
1-628
1-629
1-630
1-631
1-632
1-633
1-634
1-635
1-636
1-637
1-638
1-646
1-647
1-648
1-649
1-651
1-664
1-665
1-666
1-673
1-685
1-686
1-687
1-688
1-698
1-708
1-711
1-724
1-736
1-737
1-738

Contents

XmRemoveTabGroup . e e e e e e e e 1-739
XmRemoveWMProtocolCallback e e e e e e e s 1-740
XmRemoveWMProtocols 1-741
XmRepTypeAddReverse « 1-742
XmRepTypeGetld« « . .« . o . . 1-743
XmRepTypeGetNameList 1-744
XmRepTypeGetRecord « . . . 1-745

XmRepTypeGetRegistered . e e e e e 1-747
XmRepTypeInstallTearOffModelConverter c e e e e 1-749
XmRepTypeRegister . . e e e e e e 1-750

XmRepTypeValidvaluee 1-752
XmResolveAllPartOffsets 1-753
XmResolvePartOffsets « .« « « « .« « .« . 1-756
XmRowColumn . . « « v o « ¢ o o o e e e 1-759
XmScale . . e e e e e e e e e e e e e 1-788
XmScaleGetValue e e e e e e e e e e e e e 1-800
XmScaleSetValue« « ¢ ¢ <« « < . 1-801
XmScreen e e e e e e e e e e e e e e e 1-802
XmScrollBar . . e e e e e e e e e e e 1-810
XmScrollBarGetValues e e e e e e e e e e e 1-824
XmScrollBarSetValues e e e e e e e e e e e 1-825
XmScroll Visible e e e e e e e e e e e e e 1-827
XmScrolledWindow . e e e e e e e e e e 1-828
XmScrolledWmdowSetAreas e e e e e e e e e e 1-840
XmSelectionBox . e e e e e e e e e e 1-842
XmSelectlonBoxGetChﬂd e e e e e e e e e e e 1-857
XmSeparator v+ 4 e e e e e e e . 1-859
XmSeparatorGadget+ o« 1-865
XmSetColorCalculation . . .« « « « « « « « « 1-870
XmSetFontUnit« « « « « « « « « o« 1-872
XmSetFontUnits . . < « o « « « « « « « o« . 1-873
XmSetMenuCursor . .« « « ¢« o« e 4 e e e e 1-874
XmSetProtocolHooks . . . « + « « +« « « « .+ . 1-875
XmSetWMProtocolHooks« .+ . « .« . . 1-877
XmString . . . e e e e e e e e e e e 1-878
XmStrmgBasellne e e e e e e e e e e e e e 1-879
XmStringByteCompare e e e e e e e e e e e 1-880
XmStringCompare . . .« +« « « « o e e e . . 1-881
XmStringConcat+ « .+« . 4 4 e e e . . 1-882
XmStringCopy + + + v v 4 v v e e e e e e . 1-883
XmStringCreate . . .« « « ¢« ¢« 4 e e e e . . 1-884
XmStringCreateLocalized 1-886
XmStringCreateLtoR « . . . + . . 1-887
XmStringCreateSimple e e e e e e e e e e e 1-888
XmStringDirection ¢+ ¢ o« o 1-889
XmStringDirectionCreate« .« . . 1-890
XmStringDraw o 0 0 e v e e e . . 1-891

vii

OSF/Motif Programmer’s Reference

XmStringDrawlmage 1-893
XmStringDrawUnderline 1-895
XmStringEmpty o 0 . 0 0 e .. 1-897
XmStringExtent o 1-898
XmStringFree 0 0 ... 1-899
XmStringFreeContext « .+ .« « .+ .+ . . 1-900
XmStringGetLtoR . . e e e e e e e e e e 1-901
XmStrmgGetNextComponent e e e e e e e e e e 1-902
XmStringGetNextSegment« . . 1-904
XmStringHasSubstring 1-905
XmStringHeight o o o .. 1-906
XmStringlnitContext« « + « « .+ « .+ . . 1-907
XmStringlength o o 1-908
XmStringLineCount+ . o . . 1-909
XmStringNConcat + +« « « + o+ o« o« . . 1-910
XmStringNCopy . . e e e e e e e e e 1-911
XmStnngPeekNextComponent e e e e e e e e e 1-912
XmStringSegmentCreate« +« + + « + .+ . 1-913
XmStringSeparatorCreate+ 1-914
XmStringTable« « .+ . . . 1-915
XmStringWidth . . C e e e e e e e e e e 1-916
XmTargetsAreCompatlble e e e e e e e e e e 1-917
XmText . . e e e e e e e e e e e e 1-918
XmTextClearSelectlon e e e e e e e e e e e e 1-951
XmTextCopy « « v v v v v 4 v v e e e e e 1-952
XmTextCut . e e e e e e e e e e e 1-953
XmTextDlsableRedlsplay e e e e e e e e e e e 1-954
XmTextEnableRedisplay 1-955
XmTextField . . e e e e e e e e e e 1-956
XmTextFleldCIearSelectlon e e e e e e e e e e 1-979
XmTextFieldCopy « « « + .« .+ . 1-980
XmTextFieldCut« « « « + .« . 1-981
XmTextFieldGetBaseline 1-982
XmTextFieldGetEditable 1-983
XmTextFieldGetlnsertionPosition 1-984
XmTextFieldGetLastPosition 1-985
XmTextFieldGetMaxLength 1-986
XmTextFieldGetSelection 1-987
XmTextFieldGetSelectionPosition 1-988
XmTextFieldGetSelectionWes 1-989
XmTextFieldGetString « « . . 1-990
XmTextFieldGetStringWes« . . 1-991
XmTextFieldGetSubstring« 1-992
XmTextFieldGetSubstringWes 1-994
XmTextFieldlnsert « . + . . 1-996
XmTextFieldInsertWcs e e e e e e e e e e e 1-997
XmTextFieldPaste « « « « + « . 1-998

viii

Contents

XmTextFieldPosToXY . . . « v « « v « « « « 1-999
XmTextFieldRemove . .« « « « « « « « « « « . 1-1000
XmTextFieldReplace 1-1001
XmTextFieldReplaceWes 1-1002
XmTextFieldSetAddMode « .« + « . . 1-1003
XmTextFieldSetEditable« . .« . . 1-1004
XmTextFieldSetHighlight « . . 1-1005
XmTextFieldSetInsertionPosition . . « .+« « « « . . 1-1006
XmTextFieldSetMaxLength 1-1007
XmTextFieldSetSelection « « « . . 1-1008
XmTextFieldSetString 1-1009
XmTextFieldSetStringWes 1-1010
XmTextFieldShowPosition e e e e e e e e e e 1-1011
XmTextFieldXYToPos « « « « « « + . 1-1012
XmTextFindString « 1-1013
XmTextFindStringWes « « 1-1015
XmTextGetBaseline e e e e e e e e e e e e 1-1017
XmTextGetEditable e e e e e e e e e e e e 1-1018
XmTextGetlnsertionPosition . . .« « « « « « « + . 1-1019
XmTextGetLastPosition . . « +« + « « « « o« o« 1-1020
XmTextGetMaxLength P e LA
XmTextGetSelection . . . ¢ v o ¢ « « o « o . 1-1022
XmTextGetSelectionPosition . . .« « +« « « « « .+ . 1-1023
XmTextGetSelectionWes « ¢ v ¢ ¢ o o ¢ o o« . 1-1024
XmTextGetSource . .« « v o v « o« e e e . 1-1025
XmTextGetString . .« . . + « « « « « « « . . 1-1026
XmTextGetStringWes « . &« « « « .« .« o« o« . . 121027
XmTextGetSubstring 1-1028
XmTextGetSubstringWes 1-1030
XmTextGetTopCharacter 1-1032
XmTextInsert e e e e e e e e e e e e e e 1-1033
XmTextInsertWes .« « v ¢+« + ¢ 4 e e e 1-1034
XmTextPaste . . .« < « o « « ¢ v ¢ 4 e e e 1-1035
XmTextPosToXY . . .« « ¢ v o v ¢ « o « « . 1-1036
XmTextPosition « .« . « « « v ¢ « ¢ « e+ . 1-1037
XmTextRemove . . .« v v ¢ v ¢« ¢ « o « e o . 1-1038
XmTextReplace+« « « « « « « « « « « 1-1039
XmTextReplaceWes 1-1040
XmTextScroll e e e e e e e e e e e e e e 1-1041
XmTextSetAddMode « « v « o « « o« . 1-1042
XmTextSetEditable « « .+ . . 1-1043
XmTextSetHighlight « . « .+ . . . 1-1044
XmTextSetInsertionPosition « « + .+ . 1-1045
XmTextSetMaxLength 1-1046
XmTextSetSelection . . .+« « ¢ ¢« « ¢ « ¢ o« o« . 1-1047
XmTextSetSource . .+ ¢« o « « ¢« ¢ e e e e 1-1048
XmTextSetString . . . + « . +« « + « .+ .+ .« . 1-1049

OSF/Motif Programmer’s Reference

Appendix A.

Appendix B.
Appendix C.

Index

XmTextSetStringWcs
XmTextSetTopCharacter
XmTextShowPosition
XmTextXYToPos
XmToggleButton
XmToggleButtonGadget

XmToggleButtonGadgetGetState .
XmToggleButtonGadgetSetState .

XmToggleButtonGetState .
XmToggleButtonSetState
XmTrackingEvent
XmTrackinglLocate .
XmTranslateKey
XmUninstalllmage
XmUpdateDisplay . .
XmVaCreate81mpleCheckBox
XmVaCreateSimpleMenuBar .

XmVaCreateSimpleOptionMenu

XmVaCreateSimplePopupMenu

XmVaCreateSimplePulldownMenu

XmVaCreateSimpleRadioBox
XmWidgetGetBaselines
XledgetGetDlsplayRect
vl . . .
WML

Constraint Arguments and Automatically Created

Children .
UIL Built-In Tables .
UIL Arguments

1-1050
1-1051
1-1052
1-1053
1-1054
1-1068
1-1080
1-1081
1-1082
1-1083
1-1084
1-1085
1-1086
1-1087
1-1088
1-1089
1-1092
1-1094
1-1097
1-1101
1-1106
1-1109
1-1110
1-1111
1-1142

A-1
B-1
C-1
Index-1

Preface

The OSF/Motif Programmer’s Reference contains the reference pages for
OSF/Motif ™ commands and functions, including toolkit, window manager,
and user interface language commands and functions.

Audience

This document is written for programmers who want to write applications
using Motif ™ interfaces.

This document assumes that the reader is familiar with the American
National Standards Institute (ANSI) C programming language. It also
assumes that the reader has a general understanding of the X Window
System, the Xlib library, and the X Toolkit Intrinsics (Xt).

Xi

OSF/Motif Programmer’s Reference

Applicability

This is Revision 1.2 of this document. It applies to Release 1.2 of the
OSF/Motif software system.

Purpose

The purpose of this reference is to provide detailed descriptions of the Motif
commands and functions.

Document Usage

This document is organized into one chapter and three appendixes:

» Chapter 1 contains all the reference pages for the Motif commands and
functions.

e Appendix A contains a list of the constraint arguments and
automatically created children for widgets available within UIL.

o Appendix B contains a list of the reasons and controls, or children, that
UIL supports for each Motif Toolkit object.

» Appendix C contains a list of the UIL arguments and their data types.

Xii

Preface

Reference Page Format

The reference pages in this volume use the following format:

Purpose
This section gives a short description of the interface.

Synopsis
This section describes the appropriate syntax for using the
interface.

Description

This section describes the behavior of the interface. On widget

reference pages there are tables of resource values in the

descriptions. These tables have the following headings:

Name Contains the name of the resource. Each new resource
is described following the new resources table.

Class Contains the class of the resource.

Type Contains the type of the resource.

Default Contains the default value of the resource.

Access Contains the access permissions for the resource. A C
in this column means the resource can be set at widget
creation time. An S means the resource can be set
anytime. A G means the resource’s value can be
retrieved.

Examples

This sections gives practical examples for using the interface.

Return Value
This section lists the values returned by function interfaces.

Errors
This section describes the error conditions associated with using
this interface.

Related Information
This section provides cross-references to related interfaces and
header files described within this document.

Xiii

OSF/Motif Programmer’s Reference

Related Documents

For additional information about OSF/Motif, refer to the following

documents:

e The Application Environment Specification — User Environment
Volume defines a stable set of routines for creating user interface
applications.

o The OSF/Motif Style Guide explains the principles of user interface
design for application developers.

o The OSF/Motif User’s Guide explains how to interact with OSF/Motif
applications.

For additional information about Xlib and Xt, refer to the following X
Window System documents:

e Xlib—C Language X Interface is the specification for Xlib.

o X Toolkit Intrinsics—C Language Interface is the specification for Xt.

Typographic and Keying Conventions

This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that an
application or user must use literally, such as functions, data
types, commands, flags, and pathnames. Bold words also
indicate the first use of a term included in the glossary.

Italic Italic words or characters represent variable values and
arguments that an application or user must supply.

Constant width
Examples and information that the system displays appear in
this typeface.

<> Angle brackets enclose the name of a key on the keyboard.

ComponentName
Components of the user interface are represented by uppercase
letters for each major word in the name of the component,

Xiv

Preface

such as PushButton.

Keyboard Conventions

Because not all keyboards are the same, it is difficult to specify keys that are
correct for every manufacturer’s keyboard. To solve this problem, this
reference describes keys using a virtual key mechanism. The term virtual
implies that the keys as described do not necessarily correspond to a fixed
set of actual keys. Instead, virtual keys are linked to actual keys by means
of virtual bindings. A given virtual key may be bound to different physical
keys for different keyboards.

See the OSF/Motif Programmer’s Guide for information on the mechanism
for binding virtual keys to actual keys. For details see the
VirtualBindings(3X) reference page in this document.

Mouse Conventions

Mouse buttons are described in this reference using a virtual button
mechanism to better describe behavior independent from the number of
buttons on the mouse. This guide assumes a 3-button mouse. On a 3-button
mouse, the leftmost mouse button is usually defined as BSelect, the middle
mouse button is usually defined as BTransfer, and the rightmost mouse
button is usually defined as BMenu. For details about how virtual mouse
buttons are usually defined, see the VirtualBindings(3X) reference page in
this document.

XV

OSF/Motif Programmer’s Reference

Problem Reporting

If you have any problems with the software or documentation, please
contact your software vendor’s customer service department.

XVi

Chapter 1

Reference Pages

This chapter contains the reference pages for the OSF/Motif Programmer’s
Reference.

1-1

OSF/Motif Programmer’s Reference

mwm(1X)
mwm—The Motif Window Manager
Synopsis mwm [options]
Description
mwm is an X Window System client that provides window management
functionality and some session management functionality. It provides functions
that facilitate control (by the user and the programmer) of elements of window
state such as placement, size, icon/normal display, and input-focus ownership. It
also provides session management functions such as stopping a client.
Options
-display display
This option specifies the display to use; see X(1).
-XIrm resourcestring
This option specifies a resource string to use.
-multiscreen
This option causes mwm to manage all screens on the display. The
default is to manage only a single screen.
-name rname
This option causes mwm to retrieve its resources using the specified
name, as in name *resource.
-screens name [name [...]]
This option specifies the resource names to use for the screens managed
by mwm. If mwm is managing a single screen, only the first name in
the list is used. If mwm is managing multiple screens, the names are
assigned to the screens in order, starting with screen 0. Screen O gets
the first name, screen 1 the second name, and so on.
Appearance

The following sections describe the basic default behaviors of windows, icons, the
icon box, input focus, and window stacking. The appearance and behavior of the
window manager can be altered by changing the configuration of specific
resources. Resources are defined under the heading "X DEFAULTS."

Reference Pages

mwm(1X)

Screens
By default, mwm manages only the single screen specified by the -display option
or the DISPLAY environment variable (by default, screen 0). If the -multiscreen
option is specified or if the multiScreen resource is True, mwm tries to manage all
the screens on the display.

When mwm is managing multiple screens, the -screens option can be used to give
each screen a unique resource name. The names are separated by blanks, for
example, -screens mwm(mwml. If there are more screens than names, resources
for the remaining screens will be retrieved using the first name. By default, the
screen number is used for the screen name.

Windows
Default mwm window frames have distinct components with associated functions:

Title Area
In addition to displaying the client’s title, the title area is used to move
the window. To move the window, place the pointer over the title area,
pressing button 1 and dragging the window to a new location. By
default, a wire frame is moved during the drag to indicate the new
location. When the button is released, the window is moved to the new
location.

Title Bar The title bar includes the title area, the minimize button, the maximize
button, and the window menu button. In shaped windows, such as
round windows, the title bar floats above the window.

Minimize Button
To turn the window into an icon, click button 1 on the minimize button
(the frame box with a small square in it).

Maximize Button
To make the window fill the screen (or enlarge to the largest size
allowed by the configuration files), click button 1 on the maximize
button (the frame box with a large square in it).

Window Menu Button
The window menu button is the frame box with a horizontal bar in it.
To pull down the window menu, press button 1. While pressing, drag
the pointer on the menu to your selection, then release the button when
your selection is highlighted. Pressing button 3 in the title bar or resize
border handles also posts the window menu.

OSF/Motif Programmer’s Reference

mwm(1X)

Icons

Alternately, you can click button 1 to pull down the menu and keep it
posted; then position the pointer and select. You can also post the
window menu by pressing <Shift> <Esc> or <Alt> <Space>. Double-
clicking button 1 with the pointer on the window menu button closes the
window. The following table lists the contents of the window menu.

B Default Window Menu
Selection | Accelerator Description
Restore <Alt> <F5>
Restores the window to
its size
before minimizing or
maximizing
Move <Alt> <F7> Allows the window to be moved
with keys or mouse
Size <Alt> <F8> Allows the window to be resized
Minimize <Alt> <F9> Turns the window into an icon
Maximize | <Alt> <F10> Makes the window fill the screen
Lower <Alt> <F3> Moves window to bottom of
window stack
Close <Alt> <F4> Causes client to terminate

Resize Border Handles

Matte

To change the size of a window, move the pointer over a resize border
handle (the cursor changes), press button 1, and drag the window to a
new size. When the button is released, the window is resized. While
dragging is being done, a rubber-band outline is displayed to indicate
the new window size.

An optional matte decoration can be added between the client area and
the window frame. A matte is not actually part of the window frame.
There is no functionality associated with a matte.

Icons are small graphic representations of windows. A window can be minimized
(iconified) using the minimize button on the window frame. Icons provide a way to
reduce clutter on the screen.

Pressing mouse button 1 when the pointer is over an icon causes the icon’s window
menu to pop up. Releasing the button (press and release without moving mouse
equals a click) causes the menu to stay posted. The menu contains the selections
described in the following table.

Reference Pages

mwm(1X)
Icon Window Menu
Selection | Accelerator | Description
Restore <Alt> <F5> Opens the associated window
Move <Alt> <F7> Allows the icon to be moved with keys
Size <Alt> <F8> Inactive (not an option for icons)

PMinimize <Alt> <F9> Inactive (not an option for icons)

Maximize | <Alt><F10> | Opens the associated window and
makes it fill the screen

Lower <Alt> <F3> Moves icon to bottom of icon stack

Close <Alt> <F4> Removes client from mwm management

Note that pressing button 3 over an icon also causes the icon’s window menu to pop
up. To make a menu selection, drag the pointer over the menu and release button 3
when the desired item is highlighted.

Double-clicking button 1 on an icon invokes the f.restore_and_raise function and
restores the icon’s associated window to its previous state. For example, if a
maximized window is iconified, then double-clicking button 1 restores it to its
maximized state. (In general, double-clicking a mouse button is a quick way to
perform a function.) Pressing <Shift> <Esc> or <Menu> (the pop-up menu key)
causes the icon window menu of the currently selected icon to pop up.

Icon Box

When icons begin to clutter the screen, they can be packed into an icon box. (To
use an icon box, mwm must be started with the icon box configuration already set.)
The icon box is an mwm window that holds client icons. It includes one or more
scroll bars when there are more window icons than the icon box can show at the
same time. Double-clicking button 1 on the icon box’s icon opens the icon box and
allows access to the contained icons.

Icons in the icon box can be manipulated with the mouse. The following table
summarizes the behavior of this interface. Button actions apply whenever the
pointer is on any part of the icon. Note that double-clicking an icon in the icon box
invokes the f.restore_and_raise function.

OSF/Motif Programmers Reference

mwm(1X)
Button Action Description
Button 1 click Selects the icon
Button 1 double-click | Normalizes (opens) the associated
window
Raises an already open window to the
top of the stack
Button 1 drag Moves the icon
Button 3 press Causes the menu for that icon to pop up
Button 3 drag Highlights items as the pointer moves
across the menu
Icon Menu for the lcon Box
Selection | Accelerator | Description
Restore <Alt> <F5> Opens the associated window (if not already open)
Move <Alt> <F7> Allows the icon to be moved with keys
Size <Alt> <F8> Inactive
Minimize <Alt> <F9> Inactive
Maximize | <Alt><F10> | Opens the associated window (if not already open)
and maximizes its size
Lower <Alt> <F3> Inactive
Close <Alt> <F4> Removes client from mwm management
To pull down the window menu for the icon box itself, press button 1 with the
pointer over the menu button for the icon box. The window menu of the icon box
differs from the window menu of a client window: The "Close" selection is
replaced with the "Packlcons" <Shift> <Alt> <F7> selection. When selected,
PackIcons packs the icons in the box to achieve neat rows with no empty slots.
You can also post the window menu by pressing <Shift> <Esc> or <Alt>
<Space>. Pressing <Menu> (the pop-up menu key) causes the icon window menu
of the currently selected icon to pop up.
Input Focus

mwm supports (by default) a keyboard input focus policy of explicit selection.
This means when a window is selected to get keyboard input, it continues to get
keyboard input until the window is withdrawn from window management, another
window is explicitly selected to get keyboard input, or the window is iconified.
Several resources control the input focus. The client window with the keyboard
input focus has the active window appearance with a visually distinct window
frame.

Reference Pages

mwm(1X)

The following tables summarize the keyboard input focus selection behavior.

Button Action | Object Function Description
Button 1 press | Window / window frame | Keyboard focus selection
Button 1 press | Icon Keyboard focus selection
Key Action Function Description
<Alt> <Tab> Move input focus to next window

in window stack (available only
in explicit focus mode)

<Alt> <Shift> <Tab> | Move input focus to previous
window in window stack
(available only in explicit focus
mode)

Window Stacking

There are two types of window stacks: global window stacks and an application’s
local family window stack.

The global stacking order of windows may be changed as a result of setting the
keyboard input focus, iconifying a window, or performing a window manager
window stacking function. When keyboard focus policy is explicit, the default
value of the focusAutoRaise resource is True. This causes a window to be raised
to the top of the stack when it receives input focus, for example, when button 1 is
pressed on the title bar. The key actions defined in the previous table will thus
raise the window receiving focus to the top of the stack.

In pointer mode, the default value of focusAutoRaise is False; that is, the window
stacking order is not changed when a window receives keyboard input focus. The
following key actions can be used to cycle through the global window stack.

Key Action Function Description

<Alt> <Esc> Place top window on bottom of stack
<Alt> <Shift> <Esc> | Place bottom window on top of stack

By default, a window’s icon is placed on the bottom of the stack when the window
is iconified; however, the default can be changed by the lowerOnlcenify resource.

Transient windows (secondary windows such as dialog boxes) stay above their
parent windows by default. However, an application’s local family stacking order
may be changed to allow a transient window to be placed below its parent top-level
window.

1-7

OSF/Motif Programmer's Reference

mwm(1X)

The following parameters show the modification of the stacking order for the

f.lower function:

flower Lowers the transient window within the family (staying above the
parent) and lowers the family in the global window stack.

f.lower [within]
Lowers the transient window within the family (staying above the
parent), but does not lower the family in the global window stack.

f.lower [freeFamily]
Lowers the window free from its family stack (below the parent), but
does not lower the family in the global window stack.

The parameters within and freeFamily can also be used with f.raise and

f.raise_lower.

X Defaults

1-8

mwm is configured from its resource database. This database is built from the
following sources. They are listed in order of precedence, low to high:

e /usr/lib/X11/app-defaults/Mwm

+ $HOME/Mwm

¢ RESOURCE_MANAGER root window property or SHOME/.Xdefaults
¢ XENVIRONMENT variable or SHOME/.Xdefaults-host

e mwm command line options

The filenames /usr/lib/X11/app-defaultsyMwm and $SHOME/Mwm represent
customary locations for these files. The actual location of the system-wide class
resource file may depend on the XFILESEARCHPATH environment variable and
the current language environment. The actual location of the user-specific class
resource file may depend on the XUSERFILESEARCHPATH and XAPPLRESDIR
environment variables and the current language environment.

Entries in the resource database may refer to other resource files for specific types
of resources. These include files that contain bitmaps, fonts, and mwm specific
resources, such as menus and behavior specifications (for example, button and key
bindings).

Mwm is the resource class name of mwm, and mwm is the default resource name
used by mwm to look up resources. The -screens command line option specifies
resource names, such as mwm_b+w and mwm_color. In the following discussion
of resource specification, Mwm and mwm (and the aliased mwm resource names)
can be used interchangeably, but mwm takes precedence over Mwm.

Reference Pages

mwm(1X)

mwm uses the following types of resources:

Component Appearance Resources
These resources specify appearance attributes of window manager user
interface components. They can be applied to the appearance of
window manager menus, feedback windows (for example, the window
reconfiguration feedback window), client window frames, and icons.

General Appearance and Behavior Resources
These resources specify mwm appearance and behavior (for example,
window management policies). They are not set separately for different
mwm user interface components.

Client Specific Resources

These mwm resources can be set for a particular client window or class
of client window. They specify client-specific icon and client window
frame appearance and behavior.

Resource identifiers can be either a resource name (for example,
foreground) or a resource class (for example, Foreground). If the value
of a resource is a filename and if the filename is prefixed by 7/ (tilde,
slash), then it is relative to the path contained in the HOME
environment variable (generally the user’s home directory).

Component Appearance Resources

The syntax for specifying component appearance resources that apply to window
manager icons, menus, and client window frames is

Mwm*resource_id

For example, Mwm*foreground is used to specify the foreground color for mwm
menus, icons, client window frames, and feedback dialogs.

The syntax for specifying component appearance resources that apply to a
particular mwm component is

Mwm*[menuliconiclientifeedback | *resource_id

If menu is specified, the resource is applied only to mwm menus; if icon is
specified, the resource is applied to icons; and if client is specified, the resource is
applied to client window frames. For example, Mwm*icon*foreground is used to
specify the foreground color for mwm icons, Mwm*menu*foreground specifies
the foreground color for mwm menus, and Mwm#*client*foreground is used to
specify the foreground color for mwm client window frames.

1-9

OSF/Motif Programmer’s Reference

mwm(1X)

The appearance of the title area of a client window frame (including window
management buttons) can be separately configured. The syntax for configuring the
title area of a client window frame is

Mwm*client*title*resource_id

For example, Mwm#*client*title*foreground specifies the foreground color for
the title area. Defaults for title area resources are based on the values of the
corresponding client window frame resources.

The appearance of menus can be configured based on the name of the menu. The
syntax for specifying menu appearance by name is

Mwm*menu*menu_name*resource_id

For example, Mwm*menu*my_menu*foreground specifies the foreground color
for the menu named my_menu. The user can also specify resources for window
manager menu components, that is, the gadgets that make up the menu. These may
include for example, a menu title, title separator, one or more buttons, and
separators. If a menu contains more than one instance of a class, such as multiple
PushButtonGadgets, the name of the first instance is PushButtonGadgetl, the
second is PushButtonGadget2, and so on. The following list identifies the naming
convention used for window manager menu components:

Menu Title LabelGadget TitleName

Menu Title SeparatorGadget TitleSeparator

CascadeButtonGadget CascadeButtonGadgetn
PushButtonGadget PushButtonGadgetn
SeparatorGadget SeparatorGadgetn

Refer to the reference page for each class for a list of resources that can be
specified.

The following component appearance resources that apply to all window manager
parts can be specified.

Reference Pages

mwm(1X)
Component Appearance Resources—All Window Manager Parts

Name Class Value Type | Default
background Background color varies'
backgroundPixmap BackgroundPixmap string? varies'
bottomShadowColor Foreground color varies’
bottomShadowPixmap | BottomShadowPixmap | string? varies!
fontList FontList string® "fixed"
foreground Foreground color varies'
saveUnder SaveUnder T/F F
topShadowColor Background color varies'
topShadowPixmap TopShadowPixmap string? varies'

IThe default is chosen based on the visual type of the screen.
2Image name. See XmlInstalllmage(3X).
3X11 X Logical Font Description.

background (class Background)
This resource specifies the background color. Any legal X color may be
specified. The default value is chosen based on the visual type of the
screen.

backgroundPixmap (class BackgroundPixmap)
This resource specifies the background pixmap of the mwm decoration
when the window is inactive (does not have the keyboard focus). The
default value is chosen based on the visual type of the screen.

bottomShadowColor (class Foreground)
This resource specifies the bottom shadow color. This color is used for
the lower and right bevels of the window manager decoration. Any
legal X color may be specified. The default value is chosen based on
the visual type of the screen.

bottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap. This pixmap is used
for the lower and right bevels of the window manager decoration. The
default is chosen based on the visual type of the screen.

fontList (class FontList)
This resource specifies the font used in the window manager decoration.
The character encoding of the font should match the character encoding
of the strings that are used. The default is "fixed."

1-11

OSF/Motif Programmer’'s Reference
mwm(1X)

foreground (class Foreground)
This resource specifies the foreground color. The default is chosen
based on the visual type of the screen.

saveUnder (class SaveUnder)

This is used to indicate whether "save unders” are used for mwm
components. For this to have any effect, save unders must be
implemented by the X server. If save unders are implemented, the X
server saves the contents of windows obscured by windows that have
the save under attribute set. If the saveUnder resource is True, mwm
will set the save under attribute on the window manager frame of any
client that has it set. If saveUnder is False, save unders will not be used
on any window manager frames. The default value is False.

topShadowColor (class Background)
This resource specifies the top shadow color. This color is used for the
upper and left bevels of the window manager decoration. The default is
chosen based on the visual type of the screen.

topShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap. This pixmap is used for
the upper and left bevels of the window manager decoration. The
default is chosen based on the visual type of the screen.

The following component appearance resources that apply to frame and icons can

be specified.
Frame and Icon Components
Name Class Value Type | Default
activeBackground Background color varies'
activeBackgroundPixmap BackgroundPixmap string? varies’
activeBottomShadowColor Foreground color varies'
activeBottomShadowPixmap | BottomShadowPixmap | string? varies!
activeForeground Foreground color varies!
activeTopShadowColor Background color varies'
activeTopShadowPixmap TopShadowPixmap string? varies'

IThe default is chosen based on the visual type of the screen.
2See XmInstalllmage(3X).

Reference Pages

mwm{(1X)

activeBackground (class Background)
This resource specifies the background color of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

activeBackgroundPixmap (class ActiveBackgroundPixmap)
This resource specifies the background pixmap of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

activeBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

activeBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap of the mwm
decoration when the window is active (has the keyboard focus). The
default is chosen based on the visual type of the screen.

activeForeground (class Foreground)
This resource specifies the foreground color of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

activeTopShadowColor (class Background)
This resource specifies the top shadow color of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

activeTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

General Appearance and Behavior Resources
The syntax for specifying general appearance and behavior resources is

Mwm*resource_id
For example, Mwm*keyboardFocusPolicy specifies the window manager policy
for setting the keyboard focus to a particular client window.

The following general appearance and behavior resources can be specified.

OSF/Motif Programmer’s Reference

mwm(1X)
General Appearance and Behavior Resources
Name Class Value Type | Default
autoKeyFocus AutoKeyFocus T/F T
autoRaiseDelay AutoRaiseDelay millisec 500
bitmapDirectory BitmapDirectory directory Jusr/include/\
X11/bitmaps
buttonBindings ButtonBindings string DefaultBut\
tonBindings
cleanText CleanText T/F T
clientAutoPlace ClientAutoPlace T/F T
colormapFocusPolicy ColormapFocusPolicy string keyboard
configFile ConfigFile file .mwmrc
deiconifyKeyFocus DeiconifyKeyFocus T/F T
doubleClickTime DoubleClickTime millisec. multi-click
time
enableWarp enableWarp T/F T
enforceKeyFocus EnforceKeyFocus T/F T
fadeNormalicon FadeNormalicon T/F F
feedbackGeometry FeedbackGeometry string center on
screen
frameBorderWidth FrameBorderWidth pixels varies
iconAutoPlace IconAutoPlace TF T
iconBoxGeometry IconBoxGeometry string 6x1+0-0
iconBoxName IconBoxName string iconbox
iconBoxSBDisplayPolicy | lconBoxSBDisplayPolicy | string alt
iconBoxTitle IconBoxTitle XmString Icons
iconClick IconClick T/F T
iconDecoration IconDecoration string varies
iconlmageMaximum IconimageMaximum wxh 50x50
iconlmageMinimum IconimageMinimum wxh 16x16
iconPlacement IconPlacement string left bottom
iconPlacementMargin IconPlacementMargin pixels varies
interactivePlacement InteractivePlacement T/F F

Reference Pages

mwm(1X)
General Appearance and Behavior Resources

Name Class Value Type | Default
keyBindings KeyBindings string "DefaultKey\

Bindings"
keyboardFocusPolicy KeyboardFocusPolicy string explicit
limitResize LimitResize T/F T
lowerOnlconify LowerOnlconify T/F T
maximumMaximumSize | MaximumMaximumSize | wxh (pixels) | 2X screen

wé&h
moveThreshold MoveThreshold pixels 4
moveOpaque MoveOpaque T/F F
multiScreen MultiScreen T/F F
passButtons PassButtons T/F F
passSelectButton PassSelectButton T/F T
positionlsFrame PositionlsFrame T/F T
positionOnScreen PositionOnScreen T/F T
quitTimeout QuitTimeout millisec. 1000
raiseKeyFocus RaiseKeyFocus T/F F
resizeBorderWidth ResizeBorderWidth pixels varies
resizeCursors ResizeCursors T/F T
screens Screens string varies
showFeedback ShowFeedback string all
startupKeyFocus StartupKeyFocus TF T
transientDecoration TransientDecoration string menu

title
transientFunctions TransientFunctions string -minimize

-maximize
uselconBox UselconBox T/F F
wMenuButtonClick WMenuButtonClick T/F T
wMenuButtonClick2 WMenuButtonClick2 T/F T

autoKeyFocus (class AutoKeyFocus)

This resource is available only when the keyboard input focus policy is
explicit. If autoKeyFocus is given a value of True, then when a
window with the keyboard input focus is withdrawn from window
management or is iconified, the focus is set to the previous window that
had the focus. If the value given is False, there is no automatic setting

OSF/Motif Programmer's Reference

mwm(1X)

of the keyboard input focus. It is recommended that both autoKeyFocus
and startupKeyFocus be True to work with tear off menus. The default
value is True.

autoRaiseDelay (class AutoRaiseDelay)

This resource is available only when the focusAutoRaise resource is
True and the keyboard focus policy is pointer. The autoRaiseDelay
resource specifies the amount of time (in milliseconds) that mwm will
wait before raising a window after it gets the keyboard focus. The
default value of this resource is 500 (ms).

bitmapDirectory (class BitmapDirectory)

This resource identifies a directory to be searched for bitmaps
referenced by mwm resources. This directory is searched if a bitmap is
specified without an absolute pathname. The default value for this
resource is /usr/include/X11/bitmaps. The directory
/usr/include/X11/bitmaps represents the customary locations for this
directory. The actual location of this directory may vary on some
systems. If the bitmap is not found in the specified directory,
XBMLANGPATH is searched.

buttonBindings (class ButtonBindings)

This resource identifies the set of button bindings for window
management functions. The named set of button bindings is specified in
the mwm resource description file. These button bindings are merged
with the built-in default bindings. The default value for this resource is
DefaultButtonBindings.

cleanText (class CleanText)

This resource controls the display of window manager text in the client
title and feedback windows. If the default value of True is used, the text
is drawn with a clear (no stipple) background. This makes text easier to
read on monochrome systems where a background pixmap is specified.
Only the stippling in the area immediately around the text is cleared. If
False, the text is drawn directly on top of the existing background.

clientAutoPlace (class ClientAutoPlace)

This resource determines the position of a window when the window
has not been given a program- or user-specified position. With a value
of True, windows are positioned with the top left corners of the frames
offset horizontally and vertically. A value of False causes the currently
configured position of the window to be used. In either case, mwm will
attempt to place the windows totally on-screen. The default value is
True.

Reference Pages

mwm (1X)

colormapFocusPolicy (class ColormapFocusPolicy)

This resource indicates the colormap focus policy that is to be used. If
the resource value is explicit, a colormap selection action is done on a
client window to set the colormap focus to that window. If the value is
pointer, the client window containing the pointer has the colormap
focus. If the value is keyboard, the client window that has the keyboard
input focus has the colormap focus. The default value for this resource
is keyboard.

configFile (class ConfigFile)
The resource value is the pathname for an mwm resource description
file.

If the pathname begins with */ (tilde, slash), mwm considers it to be
relative to the user’s home directory (as specified by the HOME
environment variable). If the LANG environment variable is set, mwm
looks for $SHOME/$LANG/configFile. If that file does not exist or if
LANG is not set, mwm looks for SHOME/configFile.

If the configFile pathname does not begin with “/, mwm considers it to
be relative to the current working directory.

If the configFile resource is not specified or if that file does not exist,
mwm uses several default paths to find a configuration file. If the
LANG environment variable is set, mwm looks for the configuration
file first in SHOME/$LANG/.mwmrec. If that file does not exist or if
LANG is not set, mwm looks for SHOME/mwmre. If that file does
not exist and if LANG is set, mwm next looks for the file
system.mwmrc in the $LANG subdirectory of an implementation-
dependent directory. (The default for this directory, if not changed by
the implementation, is /usr/lib/X11.) If that file does not exist or if
LANG is not set, mwm looks for the file system.mwmrc in the same
implementation-dependent directory.

deiconifyKeyFocus (class DeiconifyKeyFocus)
This resource applies only when the keyboard input focus policy is
explicit. If a value of True is used, a window receives the keyboard
input focus when it is normalized (deiconified). True is the default
value.

doubleClickTime (class DoubleClickTime)
This resource is used to set the maximum time (in ms) between the
clicks (button presses) that make up a double-click. The default value
of this resource is the display’s multiclick time.

OSF/Motif Programmer’s Reference

mwm(1X)

enableWarp (class EnableWarp)
The default value of this resource, True, causes mwm to warp the
pointer to the center of the selected window during keyboard-controlled
resize and move operations. Setting the value to False causes mwm to
leave the pointer at its original place on the screen, unless the user
explicitly moves it with the cursor keys or pointing device.

enforceKeyFocus (class EnforceKeyFocus)

If this resource is given a value of True, the keyboard input focus is
always explicitly set to selected windows even if there is an indication
that they are "globally - active" input windows. (An example of a
globally active window is a scroll bar that can be operated without
setting the focus to that client.) If the resource is False, the keyboard
input focus is not explicitly set to globally active windows. The default
value is True.

fadeNormallcon (class FadeNormallcon)
If this resource is given a value of True, an icon is grayed out whenever
it has been normalized (its window has been opened). The default value
is False.

feedbackGeometry (class FeedbackGeometry)
This resource sets the position of the move and resize feedback window.
If this resource is not specified, the default is to place the feedback
window at the center of the screen. The value of the resource is a
standard window geometry string with the following syntax:

[=1{+- }xoffset{+-}yoffset]

frameBorderWidth (class FrameBorderWidth)
This resource specifies the width (in pixels) of a client window frame
border without resize handles. The border width includes the 3-D
shadows. The default value is based on the size and resolution of the
screen.

iconAutoPlace (class IconAutoPlace)

This resource indicates whether the window manager arranges icons in
a particular area of the screen or places each icon where the window
was when it was iconified. The value True indicates that icons are
arranged in a particular area of the screen, determined by the
iconPlacement resource. The value False indicates that an icon is
placed at the location of the window when it is iconified. The default is
True.

Reference Pages

mwm (1X)

iconBoxGeometry (class IconBoxGeometry)
This resource indicates the initial position and size of the icon box. The
value of the resource is a standard window geometry string with the
following syntax:

[=][widthxheight][{+- }xoffset{+- } yoffset]

If the offsets are not provided, the iconPlacement policy is used to
determine the initial placement. The units for width and height are
columns and rows.

The actual screen size of the icon box window depends on the
iconImageMaximum (size) and iconDecoration resources. The
default value for size is (6 * iconWidth + padding) wide by (1 *
iconHeight + padding) high. The default value of the location is +0 -0.

iconBoxName (class IconBoxName)
This resource specifies the name that is used to look up icon box
resources. The default name is iconbox.

iconBoxSBDisplayPolicy (class IconBoxSBDisplayPolicy)

This resource specifies the scroll bar display policy of the window
manager in the icon box. The resource has three possible values: all,
vertical, and horizontal. The default value, all, causes both vertical
and horizontal scroll bars always to appear. The value vertical causes a
single vertical scroll bar to appear in the icon box and sets the
orientation of the icon box to horizontal (regardless of the
iconBoxGeometry specification). The value horizontal causes a
single horizontal scroll bar to appear in the icon box and sets the
orientation of the icon box to vertical (regardless of the
iconBoxGeometry specification).

iconBoxTitle (class IconBoxTitle)
This resource specifies the name that is used in the title area of the icon
box frame. The default value is Icons.

iconClick (class IconClick)
When this resource is given the value of True, the system menu is
posted and left posted when an icon is clicked. The default value is
True.

iconDecoration (class IconDecoration)
This resource specifies the general icon decoration. The resource value
is label (only the label part is displayed) or image (only the image part
is displayed) or label image (both the label and image parts are

OSF/Motif Programmer's Reference

mwm(1X)

1-20

displayed). A value of activelabel can also be specified to get a label
(not truncated to the width of the icon) when the icon is selected. The
default icon decoration for icon box icons is that each icon has a label
part and an image part (label image). The default icon decoration for
standalone icons is that each icon has an active label part, a label part,
and an image part (activelabel label image).

iconImageMaximum (class IconImageMaximum)

This resource specifies the maximum size of the icon image. The
resource value is widthxheight (for example, 64x64). The maximum
supported size is 128x128. The default value of this resource is 50x50.

iconImageMinimum (class IconImageMinimum)

This resource specifies the minimum size of the icon image. The
resource value is widthxheight (for example, 32x50). The minimum
supported size is 16x16. The default value of this resource is 16x16.

iconPlacement (class IconPlacement)

This resource specifies the icon placement scheme to be used. The
resource value has the following syntax:

primary_layout secondary_layout [tight]

The layout values are one of the following:

Value Description

top Lay the icons out top to bottom.
bottom | Lay the icons out bottom to top.
left Lay the icons out left to right.

right Lay the icons out right to left.

A horizontal (vertical) layout value should not be used for both the
primary_layout and the secondary_layout (for example, do not use top for
the primary_layout and bottom for the secondary_layout). The
primary_layout indicates whether, when an icon placement is done, the
icon is placed in a row or a column and the direction of placement. The
secondary_layout indicates where to place new rows or columns. For
example, top right indicates that icons should be placed top to bottom on
the screen and that columns should be added from right to left on the
screen. The default placement is left bottom (icons are placed left to right
on the screen, with the first row on the bottom of the screen, and new rows
added from the bottom of the screen to the top of the screen). A tight value
places icons with zero spacing in between icons. This value is useful for
aesthetic reasons, as well as X-terminals with small screens.

Reference Pages

mwm(1X)

iconPlacementMargin (class IconPlacementMargin)
This resource sets the distance between the edge of the screen and the
icons that are placed along the edge of the screen. The value should be
greater than or equal to 0. A default value (see below) is used if the
value specified is invalid. The default value for this resource is equal to
the space between icons as they are placed on the screen (this space is
based on maximizing the number of icons in each row and column).

interactivePlacement (class InteractivePlacement)
This resource controls the initial placement of new windows on the
screen. If the value is True, the pointer shape changes before a new
window is placed on the screen to indicate to the user that a position
should be selected for the upper left corner of the window. If the value
is False, windows are placed according to the initial window
configuration attributes. The default value of this resource is False.

keyBindings (class KeyBindings)
This resource identifies the set of key bindings for window management
functions. If specified, these key bindings replace the built-in default
bindings. The named set of key bindings is specified in the mwm
resource description file. The default value for this resource is
DefaultKeyBindings.

keyboardFocusPolicy (class KeyboardFocusPolicy)

If set to pointer, the keyboard focus policy is to have the keyboard focus
set to the client window that contains the pointer (the pointer could also
be in the client window decoration that mwm adds). If set to explicit,
the policy is to have the keyboard focus set to a client window when the
user presses button 1 with the pointer on the client window or any part
of the associated mwm decoration. The default value for this resource
is explicit.

limitResize (class LimitResize)
If this resource is True, the user is not allowed to resize a window to
greater than the maximum size. The default value for this resource is
True.

lowerOnlconify (class LowerOnlconify)
If this resource is given the default value of True, a window’s icon
appears on the bottom of the window stack when the window is
minimized (iconified). A value of False places the icon in the stacking
order at the same place as its associated window. The default value of
this resource is True.

1-21

OSF/Motif Programmer's Reference

mwm(1X)

1-22

maximumMaximumsSize (class MaximumMaximumSize)

This resource is used to limit the maximum size of a client window as
set by the user or client. The resource value is widthxheight (for
example, 1024x1024) where the width and height are in pixels. The
default value of this resource is twice the screen width and height.

moveOpaque (class MoveOpaque)

This resource controls whether the actual window is moved or a
rectangular outline of the window is moved. A default value of False
displays a rectangular outline on moves.

moveThreshold (class MoveThreshold)

This resource is used to control the sensitivity of dragging operations
that move windows and icons. The value of this resource is the number
of pixels that the locator is moved with a button down before the move
operation is initiated. This is used to prevent window/icon movement
when you click or double-click and there is unintentional pointer
movement with the button down. The default value of this resource is 4
(pixels).

multiScreen (class MultiScreen)

This resource, if True, causes mwm to manage all the screens on the
display. If False, mwm manages only a single screen. The default
value is False.

passButtons (class PassButtons)

This resource indicates whether or not button press events are passed to
clients after they are used to do a window manager function in the client
context. If the resource value is False, the button press is not passed to
the client. If the value is True, the button press is passed to the client
window. The window manager function is done in either case. The
default value for this resource is False.

passSelectButton (class PassSelectButton)

This resource indicates whether or not to pass the select button press
events to clients after they are used to do a window manager function in
the client context. If the resource value is False, then the button press
will not be passed to the client. If the value is True, the button press is
passed to the client window. The window manager function is done in
either case. The default value for this resource is True.

positionIsFrame (class PositionIsFrame)

This resource indicates how client window position information (from
the WM_NORMAL_HINTS property and from configuration requests)
is to be interpreted. If the resource value is True, the information is

Reference Pages

mwm(1X)

interpreted as the position of the MWM client window frame. If the
value is False, it is interpreted as being the position of the client area of
the window. The default value of this resource is True.

positionOnScreen (class PositionOnScreen)
This resource is used to indicate that windows should initially be placed
(if possible) so that they are not clipped by the edge of the screen (if the
resource value is True). If a window is larger than the size of the
screen, at least the upper left corner of the window is on-screen. If the
resource value is False, windows are placed in the requested position
even if totally off-screen. The default value of this resource is True.

quitTimeout (class QuitTimeout)
This resource specifies the amount of time (in milliseconds) that mwm
will wait for a client to update the WM_COMMAND property after
mwm has sent the WM_SAVE_YOURSELF message. The default
value of this resource is 1000 (ms). (Refer to the fkill function
description for additional information.)

raiseKeyFocus (class RaiseKeyFocus)
This resource is available only when the keyboard input focus policy is
explicit. When set to True, this resource specifies that a window raised
by means of the f.normalize_and_raise function also receives the input
focus. The default value of this resource is False.

resizeBorderWidth (class ResizeBorderWidth)
This resource specifies the width (in pixels) of a client window frame
border with resize handles. The specified border width includes the 3-D
shadows. The default value is based on the size and resolution of the
screen.

resizeCursors (class ResizeCursors)
This resource is used to indicate whether the resize cursors are always
displayed when the pointer is in the window size border. If True, the
cursors are shown, otherwise the window manager cursor is shown. The
default value is True.

screens (class Screens)
This resource specifies the resource names to use for the screens
managed by mwm. If mwm is managing a single screen, only the first
name in the list is used. If mwm is managing multiple screens, the
names are assigned to the screens in order, starting with screen 0.
Screen 0 gets the first name, screen 1 the second name, and so on. The
default screen names are 0, 1, and so on.

1-23

OSF/Motif Programmer’s Reference

mwm(1X)

1-24

showFeedback (class ShowFeedback)

This resource controls whether or not feedback windows or
confirmation dialogs are displayed. A feedback window shows a client
window’s initial placement and shows position and size during move
and resize operations. Confirmation dialogs can be displayed for
certain operations.

The value for this resource is a list of names of the feedback options to
be enabled or disabled; the names must be separated by a space. If an
option is preceded by a minus sign, that option is excluded from the list.
The sign of the first item in the list determines the initial set of options.
If the sign of the first option is minus, mwm assumes all options are
present and starts subtracting from that set. If the sign of the first
decoration is plus (or not specified), mwm starts with no options and
builds up a list from the resource.

The names of the feedback options are shown in the following table.

Name Description

all Show all feedback (Default value)

behavior Confirm behavior switch

kill Confirm on receipt of KILL signal

move Show position during move

none Show no feedback

placement | Show position and size during initial placement
quit Confirm quitting mwm

resize Show size during resize

restart Confirm mwm restart

The following sample command line illustrates the syntax for
showFeedback:

Mwm*showFeedback: placement resize behavior restart

This resource specification provides feedback for initial client
placement and resize, and enables the dialog boxes to confirm the
restart and set behavior functions. It disables feedback for the move
function. The default value for this resource is all.

startupKeyFocus (class StartupKeyFocus)

This resource is available only when the keyboard input focus policy is
explicit. When given the default value of True, a window gets the

Reference Pages

mwm(1X)

keyboard input focus when the window is mapped (that is, initially
managed by the window manager). It is recommended that both
autoKeyFocus and startupKeyFocus be True to work with tear off
menus. The default value is True.

transientDecoration (class TransientDecoration)

This controls the amount of decoration that mwm puts on transient
windows. The decoration specification is exactly the same as for the
clientDecoration (client specific) resource. Transient windows are
identified by the WM_TRANSIENT_FOR property, which is added by
the client to indicate a relatively temporary window. The default value
for this resource is menu title (that is, transient windows have frame
borders and a titlebar with a window menu button).

An application can also specify which decorations mwm should apply
to its windows. If it does so, mwm applies only those decorations
indicated by both the application and the transientDecoration
resource. Otherwise, mwm applies the decorations indicated by the
transientDecoration resource. For more information, see the
description of XmNmwmDecorations on the VendorShell(3X)
reference page.

transientFunctions (class TransientFunctions)
This resource is used to indicate which window management functions
are applicable (or not applicable) to transient windows. The function
specification is exactly the same as for the clientFunctions (client
specific) resource. The default value for this resource is -minimize
-maximize.

An application can also specify which functions mwm should apply to
its windows. If it does so, mwm applies only those functions indicated
by both the application and the transientFunctions resource.
Otherwise, mwm applies the functions indicated by the
transientFunctions resource. For more information, see the
description of XmNmwmFunctions on the VendorShell(3X) reference

page.
uselconBox (class UselconBox)
If this resource is given a value of True, icons are placed in an icon box.

When an icon box is not used, the icons are placed on the root window
(default value).

1-25

OSF/Motif Programmer’s Reference

mwm(1X)

wMenuButtonClick (class WMenuButtonClick)
This resource indicates whether a click of the mouse when the pointer is
over the window menu button posts and leaves posted the window
menu. If the value given this resource is True, the menu remains posted.
True is the default value for this resource.

wMenuButtonClick2 (class WMenuButtonClick2)
When this resource is given the default value of True, a double-click
action on the window menu button does an f.kill function.

Client Specific Resources

The syntax for specifying client specific resources is
Mwm*client_name_or_class*resource_id
For example, Mwm*mterm*windowMenu is used to specify the window menu to

be used with mterm clients. The syntax for specifying client specific resources for
all classes of clients is

Mwm*resource_id
Specific client specifications take precedence over the specifications for all clients.

For example, Mwm*windowMenu is used to specify the window menu to be used
for all classes of clients that do not have a window menu specified.

The syntax for specifying resource values for windows that have an unknown name
and class (that is, windows that do not have a WM_CLASS property associated
with them) is

Mwm*defaults*resource_id
For example, Mwm*defaults*iconImage is used to specify the icon image to be
used for windows that have an unknown name and class.

The following client specific resources can be specified.

Reference Pages

mwm(1X)
Client Specific Resources
Name Class Value Type | Default
clientDecoration ClientDecoration | string all
clientFunctions ClientFunctions string all
focusAutoRaise FocusAutoRaise | T/F varies
iconlmage Iconimage pathname (image)
iconimageBackground Background color icon
background
iconlmageBottomShadowColor Foreground color icon bottom
shadow
iconimageBottomShadowPixmap | BottomShadow- | color icon bottom
Pixmap shadow
pixmap
iconlmageForeground Foreground color varies
iconimageTopShadowColor Background color icon top
shadow
_ color
iconimageTopShadowPixmap TopShadow- color icon top
Pixmap shadow
pixmap
matteBackground Background color background
matteBottomShadowColor Foreground color bottom
shadow
color
matteBottomShadowPixmap BottomShadow- | color bottom
Pixmap shadow
pixmap
matteForeground Foreground color foreground
matteTopShadowColor Background color top shadow
color
matteTopShadowPixmap TopShadow- color top shadow
Pixmap pixmap
matteWidth MatteWidth pixels 0

1-27

OSF/Motif Programmer's Reference

mwm(1X)

1-28

Client Specific Resources
Name Class Value Type | Default
maximumClientSize MaximumClientSize | wxh fill the
vertical screen
horizontal
useClientlcon UseClientlcon T/F F
usePPosition UsePPosition string nonzero
windowMenu WindowMenu string "Default-
Window-
Menu"

clientDecoration (class ClientDecoration)

This resource controls the amount of window frame decoration. The
resource is specified as a list of decorations to specify their inclusion in
the frame. If a decoration is preceded by a minus sign, that decoration
is excluded from the frame. The sign of the first item in the list
determines the initial amount of decoration. If the sign of the first
decoration is minus, mwm assumes all decorations are present and
starts subtracting from that set. If the sign of the first decoration is plus
(or not specified), then mwm starts with no decoration and builds up a
list from the resource.

An application can also specify which decorations mwm should apply
to its windows. If it does so, mwm applies only those decorations
indicated by both the application and the clientDecoration resource.
Otherwise, mwm applies the decorations indicated by the
clientDecoration resource. For more information, see the description
of XmNmwmbDecorations on the VendorShell(3X) reference page.

Reference Pages

mwm (1X)

Name Description
all Include all decorations (default value)
border Window border]
maximize | Maximize button (includes title bar)
minimize | Minimize button (includes title bar)
none No decorations
resizeh Border resize handles (includes border)
menu Window menu button (includes title bar)
title Title bar (includes border)

Examples:

Mwm*XClock.clientDecoration: -resizeh -maximize

This removes the resize handles and maximize button from XClock
windows.

Mwm*XClock.clientDecoration: menu minimize border

This does the same thing as above. Note that either menu or minimize
implies title.

clientFunctions (class ClientFunctions)

This resource is used to indicate which mwm functions are applicable
(or not applicable) to the client window. The value for the resource is a
list of functions. If the first function in the list has a minus sign in front
of it, then mwm starts with all functions and subtracts from that set. If
the first function in the list has a plus sign in front of it, then mwm starts
with no functions and builds up a list. Each function in the list must be
preceded by the appropriate plus or minus sign and separated from the
next function by a space.

An application can also specify which functions mwm should apply to
its windows. If it does so, mwm applies only those functions indicated
by both the application and the clientFunctions resource. Otherwise,
mwm applies the functions indicated by the clientFunctions resource.
For more information, see the description of XmNmwmFunctions on
the VendorShell(3X) reference page.

1-29

OSF/Motif Programmer's Reference

mwm(1X)

The following table lists the functions available for this resource.

Name Description

all Include all functions (default value)
none No functions

resize f.resize

move f.move

minimize | f.minimize
maximize | f.maximize
close f.kill

focusAutoRaise (class FocusAutoRaise)
When the value of this resource is True, clients are raised when they get
the keyboard input focus. If the value is False, the stacking of windows
on the display is not changed when a window gets the keyboard input
focus. The default value is True when the keyboardFocusPolicy is
explicit and False when the keyboardFocusPolicy is pointer.

iconImage (class IconImage)
This resource can be used to specify an icon image for a client (for
example, Mwm*myclock*iconImage). The resource value is a
pathname for a bitmap file. The value of the (client specific)
useClientIcon resource is used to determine whether or not user
supplied icon images are used instead of client supplied icon images.
The default value is to display a built-in window manager icon image.

iconImageBackground (class Background)
This resource specifies the background color of the icon image that is
displayed in the image part of an icon. The default value of this
resource is the icon background color (that is, specified by
Mwm*background or Mwm*icon*background).

iconImageBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the icon image that
is displayed in the image part of an icon. The default value of this
resource is the icon bottom shadow color (that is, specified by
Mwm*icon*bottomShadowColor).

iconImageBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap of the icon image
that is displayed in the image part of an icon. The default value of this
resource is the icon bottom shadow pixmap (that is, specified by
Mwm*icon*bottomShadewPixmap).

Reference Pages

mwm(1X)

iconImageForeground (class Foreground)
This resource specifies the foreground color of the icon image that is
displayed in the image part of an icon. The default value of this
resource varies depending on the icon background.

iconlmageTopShadowColor (class Background)
This resource specifies the top shadow color of the icon image that is
displayed in the image part of an icon. The default value of this
resource is the icon top shadow color (that is, specified by
Mwm*icon*topShadowColor).

iconImageTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap of the icon image that is
displayed in the image part of an icon. The default value of this
resource is the icon top shadow pixmap (that is, specified by
Mwm*icon*topShadowPixmap).

matteBackground (class Background)
This resource specifies the background color of the matte, when
matteWidth is positive. The default value of this resource is the client
background color (that is, specified by Mwm*background or
Mwm*client*background).

matteBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the matte, when
matteWidth is positive. The default value of this resource is the client
bottom shadow color (that is, specified by Mwm*bottomShadowColor
or Mwm*client*bottomShadowColor).

matteBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap of the matte, when
matteWidth is positive. The default value is the client bottom shadow
pixmap (that 1is, specified by Mwm*bottomShadowPixmap or
Mwm*client*bottornShadowPixmap).

matteForeground (class Foreground)
This resource specifies the foreground color of the matte, when
matteWidth is positive. The default value of this resource is the client
foreground color (that is, specified by Mwm*foreground or
Mwm*client*foreground).

OSF/Motif Programmer’s Reference
mwm(1X)

matteTopShadowColor (class Background)
This resource specifies the top shadow color of the matte, when
matteWidth is positive. The default value of this resource is the client
top shadow color (that is, specified by Mwm*topShadowColor or
Mwm*client*topShadowColor).

matteTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap of the matte, when
matteWidth is positive. The default value of this resource is the client
top shadow pixmap (that is, specified by Mwm*topShadowPixmap or
Mwm*client*topShadowPixmap).

matteWidth (class MatteWidth)
This resource specifies the width of the optional matte. The default
value is 0, which effectively disables the matte.

maximumClientSize (class MaximumClientSize)

This resource is either a size specification or a direction that indicates
how a client window is to be maximized. The resource value can be
specified as a size specification widthxheight. The width and height are
interpreted in the units that the client uses (for example, for terminal
emulators this is generally characters). Alternately, vertical or
horizontal can be specified to indicate the direction in which the client
maximizes.

If this resource is not specified, the maximum size from the
WM_NORMAL_HINTS property is used if set. Otherwise the default
value is the size where the client window with window management
borders fills the screen. When the maximum client size is not
determined by the maximumClientSize resource, the
maximumMaximumSize resource value is used as a constraint on the
maximum size.

useClientIcon (class UseClientIcon)
If the value given for this resource is True, a client-supplied icon image
takes precedence over a user-supplied icon image. The default value is
False, giving the user-supplied icon image higher precedence than the
client-supplied icon image.

usePPosition (class UsePPosition)
This resource specifies whether MWM honors the program specified
position PPosition specified in the WM_NORMAL_HINTS property in

1-32

Reference Pages

mwm(1X)

the absence of a user specified position. Setting this resource to on
causes mwm to always honor program specified position. Setting this
resource to off causes mwm to always ignore program specified
position. Setting this resource to the default value of nonzero causes
mwm to honor program specified position other than (0,0).

windowMenu (class WindowMenu)

This resource indicates the name of the menu pane that is posted when
the window menu is popped up (usually by pressing button 1 on the
window menu button on the client window frame). Menu panes are
specified in the MWM resource description file. Window menus can be
customized on a client class basis by specifying resources of the form
Mwm*client_name_or_class*windowMenu (see "Mwm Resource
Description File Syntax"). The default value of this resource is
"DefaultWindowMenu'".

Resource Description File

The MWM resource description file is a supplementary resource file that contains
resource descriptions that are referred to by entries in the defaults files (.Xdefaults,
app-defaults/Mwm). It contains descriptions of resources that are to be used by
mwm, and that cannot be easily encoded in the defaults files (a bitmap file is an
analogous type of resource description file). A particular mwm resource
description file can be selected using the configFile resource.

The following types of resources can be described in the mwm resource
description file:

Buttons Window manager functions can be bound (associated) with button
events.

Keys Window manager functions can be bound (associated) with key press
events.

Menus Menu panes can be used for the window menu and other menus posted
with key bindings and button bindings.

1-33

OSF/Motif Programmer’s Reference

mwm(1X)

mwm Resource Description File Syntax

The mwm resource description file is a standard text file that contains items of
information separated by blanks, tabs, and newline characters. Blank lines are
ignored. Items or characters can be quoted to avoid special interpretation (for
example, the comment character can be quoted to prevent it from being interpreted
as the comment character). A quoted item can be contained in double quotes (").
Single characters can be quoted by preceding them with the \ (backslash). All text
from an unquoted # (pound sign) to the end of the line is regarded as a comment
and is not interpreted as part of a resource description. If ! (exclamation point) is
the first character in a line, the line is regarded as a comment. If a line ends in \,
the next line is considered a continuation of that line.

Window manager functions can be accessed with button and key bindings, and
with window manager menus. Functions are indicated as part of the specifications
for button and key binding sets, and menu panes. The function specification has
the following syntax:

Sfunction = function_name [function_args)
Jfunction_name = window manager function
Junction_args = {quoted_item | unquoted_item}

The following functions are supported. If a function is specified that is not one of
the supported functions, then it is interpreted by mwm as f.nop.

f.beep This function causes a beep.

f.circle_down [icon | window]

This function causes the window or icon that is on the top of the
window stack to be put on the bottom of the window stack (so that it no
longer obscures any other window or icon). This function affects only
those windows and icons that obscure other windows and icons, or that
are obscured by other windows and icons. Secondary windows (that is,
transient windows) are restacked with their associated primary window.
Secondary windows always stay on top of the associated primary
window and there can be no other primary windows between the
secondary windows and their primary window. If an icon function
argument is specified, the function applies only to icons. If a window
function argument is specified, the function applies only to windows.

f.circle_up [icon | window]
This function raises the window or icon on the bottom of the window
stack (so that it is not obscured by any other windows). This function
affects only those windows and icons that obscure other windows and
icons, or that are obscured by other windows and icons. Secondary
windows (that is, transient windows) are restacked with their associated
primary window. If an icon function argument is specified, the function

Reference Pages

f.exec or!

mwm(1X)

applies only to icons. If a window function argument is specified, the
function applies only to windows.

This function causes command to be executed (using the value of the
MWMSHELL environment variable if it is set, otherwise the value of
the SHELL environment variable if it is set, otherwise /bin/sh). The !
notation can be used in place of the f.exec function name.

f.focus_color

This function sets the colormap focus to a client window. If this
function is done in a root context, the default colormap (set up by the X
Window System for the screen where MWM is running) is installed and
there is no specific client window colormap focus. This function is
treated as f.nop if colormapFocusPolicy is not explicit.

f.focus_key

f.kill

This function sets the keyboard input focus to a client window or icon.
This function is treated as f.nop if keyboardFocusPolicy is not explicit
or the function is executed in a root context.

This function is wused to terminate a client. If the
WM_DELETE_WINDOW protocol is set up, the client is sent a client
message event, indicating that the client window should be deleted. If
the WM_SAVE_YOURSELF protocol is set up, the client is sent a
client message event, indicating that the client needs to prepare to be
terminated. If the client does not have the WM_DELETE_WINDOW
or WM_SAVE_YOURSELF protocol set up, this function causes a
client’s X connection to be terminated (usually resulting in termination
of the client). Refer to the description of the quitTimeout resource and
the WM_PROTOCOLS property.

flower [-client | within | freeFamily]

This function lowers a primary window to the bottom of the global
window stack (where it obscures no other window) and lowers the
secondary window (transient window or dialog box) within the client
family. The arguments to this function are mutually exclusive.

The client argument indicates the name or class of a client to lower. If
the client argument is not specified, the context that the function was
invoked in indicates the window or icon to lower.

1-35

OSF/Motif Programmer’s Reference

mwm(1X)

1-36

Specifying within lowers the secondary window within the family
(staying above the parent) but does not lower the client family in the
global window stack.

Specifying freeFamily lowers the window to the bottom of the global
windows stack from its local family stack.

f.maximize

f.menu

This function causes a client window to be displayed with its maximum
size.

This function associates a cascading (pull-right) menu with a menu pane
entry or a menu with a button or key binding. The menu_name function
argument identifies the menu to be used.

f.minimize

f.move

This function causes a client window to be minimized (iconified).
When a window is minimized when no icon box is used, its icon is
placed on the bottom of the window stack (so that it obscures no other
window). If an icon box is used, the client’s icon changes to its
iconified form inside the icon box. Secondary windows (that is,
transient windows) are minimized with their associated primary
window. There is only one icon for a primary window and all its
secondary windows.

This function causes a client window to be interactively moved.

f.next_cmap

This function installs the next colormap in the list of colormaps for the
window with the colormap focus.

f.next_key [icon | window | transient]

f.nop

This function sets the keyboard input focus to the next window/icon in
the set of windows/icons managed by the window manager (the
ordering of this set is based on the stacking of windows on the screen).
This function is treated as f.nop if keyboardFocusPolicy is not explicit.
The keyboard input focus is moved only to windows that do not have an
associated secondary window that is application modal. If the transient
argument is specified, transient (secondary) windows are traversed
(otherwise, if only window is specified, traversal is done only to the
window that last had focus in a transient group). If an icon function
argument is specified, the function applies only to icons. If a window
function argument is specified, the function applies only to windows.

This function does nothing.

Reference Pages

mwm (1X)

f.normalize
This function causes a client window to be displayed with its normal
size. Secondary windows (that is, transient windows) are placed in their
normal state along with their associated primary window.

f.normalize_and_raise
This function causes the corresponding client window to be displayed
with its normal size and raised to the top of the window stack.
Secondary windows (that is, transient windows) are placed in their
normal state along with their associated primary window.

f.pack_icons
This function is used to re-layout icons (based on the layout policy
being used) on the root window or in the icon box. In general this
causes icons to be "packed" into the icon grid.

f.pass_keys

This function is used to enable/disable (toggle) processing of key
bindings for window manager functions. When it disables key binding
processing, all keys are passed on to the window with the keyboard
input focus and no window manager functions are invoked. If the
f.pass_keys function is invoked with a key binding to disable key-
binding processing, the same key binding can be used to enable key-
binding processing.

f.post_wmenu
This function is used to post the window menu. If a key is used to post
the window menu and a window menu button is present, the window
menu is automatically placed with its top-left corner at the bottom-left
corner of the window menu button for the client window. If no window
menu button is present, the window menu is placed at the top-left
corner of the client window.

f.prev_cmap
This function installs the previous colormap in the list of colormaps for
the window with the colormap focus.

f.prev_key [icon | window | transient]
This function sets the keyboard input focus to the previous window/icon
in the set of windows/icons managed by the window manager (the
ordering of this set is based on the stacking of windows on the screen).
This function is treated as f.nop if keyboardFocusPolicy is not explicit.
The keyboard input focus is moved only to windows that do not have an
associated secondary window that is application modal. If the transient
argument is specified, transient (secondary) windows are traversed
(otherwise, if only window is specified, traversal is done only to the last

1-37

OSF/Motif Programmer's Reference

mwm(1X)

1-38

focused window in a transient group). If an icon function argument is
specified, the function applies only to icons. If an window function
argument is specified, the function applies only to windows.

f.quit_mwm

This function terminates mwm (but not the X window system).

f.raise [-client | within | freeFamily]

This function raises a primary window to the top of the global window
stack (where it is obscured by no other window) and raises the
secondary window (transient window or dialog box) within the client
family. The arguments to this function are mutually exclusive.

The client argument indicates the name or class of a client to lower. If
the client is not specified, the context that the function was invoked in
indicates the window or icon to lower.

Specifying within raises the secondary window within the family but
does not raise the client family in the global window stack.

Specifying freeFamily raises the window to the top of its local family
stack and raises the family to the top of the global window stack.

f.raise_lower [within | freeFamily]

This function raises a primary window to the top of the global window
stack if it is partially obscured by another window; otherwise, it lowers
the window to the bottom of the window stack. The arguments to this
function are mutually exclusive.

Specifying within raises a secondary window within the family (staying
above the parent window), if it is partially obscured by another window
in the application’s family; otherwise, it lowers the window to the
bottom of the family stack. It has no effect on the global window
stacking order.

Specifying freeFamily raises the window to the top of its local family
stack, if obscured by another window, and raises the family to the top of
the global window stack; otherwise, it lowers the window to the bottom
of its local family stack and lowers the family to the bottom of the
global window stack.

f.refresh This function causes all windows to be redrawn.

f.refresh_win

f.resize

This function causes a client window to be redrawn.

This function causes a client window to be interactively resized.

Reference Pages

mwm(1X)

f.restore This function restores the previous state of an icon’s associated window.

If a maximized window is iconified, then f.restore restores it to its
maximized state. If a normal window is iconified, then f.restore
restores it to its normalized state.

f.restore_and_raise

f.restart

This function restores the previous state of an icon’s associated window
and raises the window to the top of the window stack. If a maximized
window 1is iconified, then f.restore_and_raise restores it to its
maximized state and raises it to the top of the window stack. If a
normal window is iconified, then f.restore_and_raise restores it to its
normalized state and raises it to the top of the window stack.

This function causes mwm to be restarted (effectively terminated and
re-executed).

f.screen [next | prev | back screen_number)

This function causes the pointer to warp to a specific screen number or
to the next, previous, or last visited (back) screen. The arguments to
this function are mutually exclusive.

The screen_number argument indicates the screen number that the
pointer is to warp to. Screens are numbered starting from screen 0.

Specifying next cause the pointer to warp to the next managed screen
(skipping over any unmanaged screens).

Specifying prev cause the pointer to warp to the previous managed
screen (skipping over any unmanaged screens).

Specifying back cause the pointer to warp to the last visited screen.

f.send_msg message_number

This function sends a client message of the type
_MOTIF_WM_MESSAGES with the message_type indicated by the
message_number function argument. The client message is sent only if
message_number is included in the client’s
_MOTIF_WM_MESSAGES property. A menu item label is grayed out
if the menu item is used to do an f.send_msg of a message that is not
included in the client’s _MOTIF_WM_MESSAGES property.

f.separator

This function causes a menu separator to be put in the menu pane at the
specified location (the label is ignored).

1-39

OSF/Motif Programmer's Reference

mwm(1X)

1-40

f.set_behavior

f.title

This function causes the window manager to restart with the default
behavior (if a custom behavior is configured) or revert to the custom
behavior. By default this is bound to <Shift> <Ctrl> <Meta> <Key>!.

This function inserts a title in the menu pane at the specified location.

Each function may be constrained as to which resource types can specify the
function (for example, menu pane) and also what context the function can be used
in (for example, the function is done to the selected client window). Function
contexts are

root

window

icon

No client window or icon has been selected as an object for the
function.

A client window has been selected as an object for the function. This
includes the window’s title bar and frame. Some functions are applied
only when the window is in its normalized state (for example,
f.maximize) or its maximized state (for example, f.normalize).

An icon has been selected as an object for the function.

If a function’s context has been specified as iconlwindow and the function is
invoked in an icon box, the function applies to the icon box, not to the icons inside.

If a function is specified in a type of resource where it is not supported or is
invoked in a context that does not apply, the function is treated as f.nop. The
following table indicates the resource types and function contexts in which window
manager functions apply.

Reference Pages

mwm{(1X)

Function Contexts Resources
f.beep root, icon, window button, key, menu
f.circle_down root, icon, window button, key, menu
f.circle_up root, icon, window button, key, menu
f.exec root, icon, window button, key, menu
f.focus_color root, icon, window button, key, menu |
f.focus_key root, icon, window button, key, menu
f.kill icon, window button, key, menu
f.lower icon, window button, key, menu
f.maximize icon, window(normal}) button, key, menu
f.menu root, icon, window button, key, menu
f.minimize window button, key, menu
f.move icon, window button, key, menu
f.next_cmap root, icon, window button, key, menu
f.next_key root, icon, window button, key, menu
f.nop root, icon, window button, key, menu
f.normalize icon, window(maximized) | button, key, menu

f.normalize_and_raise

icon, window

button, key, menu

f.pack_icons root, icon, window button, key, menu
f.pass_keys root, icon, window button, key, menu
f.post_wmenu root, icon, window button, key

f.prev_cmap root, icon, window button, key, menu
f.prev_key root, icon, window button, key, menu
f.quit_mwm root, icon, window button, key, menu (root only)
f.raise icon, window button, key, menu
f.raise_lower icon, window button, key, menu

f.refresh

root, icon, window

button, key, menu

f.refresh_win window button, key, menu
f.resize window button, key, menu
f.restore icon, window button, key, menu

1-41

OSF/Motif Programmer’s Reference

mwm (1X)

Function

Contexts

Resources

f.restore_and_raise

icon, window

button, key, menu

f.restart root, icon, window | button, key, menu (root only)
f.screen root, icon, window | button, key, menu
f.send_msg icon, window button, key, menu
f.separator root, icon, window | menu

f.set_behavior root, icon, window | button, key, menu

f.title root, icon, window | menu

Window Manager Event Specification
Events are indicated as part of the specifications for button and key-binding sets,
and menu panes.

Button events have the following syntax:

button = [modifier_list]<button_event_name>
modifier_list = modifier_name {modifier_name}

All modifiers specified are interpreted as being exclusive (this means that only the
specified modifiers can be present when the button event occurs). The following
table indicates the values that can be used for modifier_name. The <Alt> key is
frequently labeled <Extend> or <Meta>. <Alt> and <Meta> can be used
interchangeably in event specification.

Modifier | Description
<Ctrl> Control Key
<Shift> Shift Key
<Alt> Alt/Meta Key
<Meta> Meta/Alt Key
<Lock> Lock Key
<Mod1> | Modifier1
<Mod2> | Modifier2
<Mod3> | Modifier3
<Mod4> | Modifier4
<Mod5> | Modifiers

1-42

Reference Pages

mwm(1X)

The following table indicates the values that can be used for button_event_name.

Button

Description

Btn1Down

Button 1 Press

Btn1Up

Button 1 Release

Btn1Click

Button 1 Press and Release

Btn1Click2

Button 1 Double-Click

Btn2Down

Button 2 Press

Btn2Up

Button 2 Release

Btn2Click

Button 2 Press and Release

Btn2Click2

Button 2 Double-Click

Btn3Down

Button 3 Press

Btn3Up

Button 3 Release

Btn3Click

Button 3 Press and Release

Btn3Click2

Button 3 Double-Click

Btn4Down

Button 4 Press

Btn4Up

Button 4 Release

Btn4Click

Button 4 Press and Release

Btn4Click2

Button 4 Double-Click

Btn5Down

Button 5 Press

Btn5Up

Button 5 Release

Btn5Click

Button 5 Press and Release

Btn5Click2

Button 5 Double-Click

Key events that are used by the window manager for menu mnemonics and for
binding to window manager functions are single key presses; key releases are
ignored. Key events have the following syntax:

key = [modifier_listl<key>key_name
modifier_list = modifier_name {modifier_name}

All modifiers specified are interpreted as being exclusive (this means that only the
specified modifiers can be present when the key event occurs). Modifiers for keys
are the same as those that apply to buttons. The key_name is an X11 keysym name.
Keysym names can be found in the keysymdef.h file (remove the XK_ prefix).

1-43

OSF/Motif Programmer's Reference

mwm(1X)

Button Bindings

The buttonBindings resource value is the name of a set of button bindings that are
used to configure window manager behavior. A window manager function can be
done when a button press occurs with the pointer over a framed client window, an
icon, or the root window. The context for indicating where the button press applies
is also the context for invoking the window manager function when the button
press is done (significant for functions that are context sensitive).

The button binding syntax is

Buttons bindings_set_name
{

button context function
button context function

button context function

}

The syntax for the context specification is

context = object[| context)
object = root | icon | window | title | frame | border | app

The context specification indicates where the pointer must be for the button
binding to be effective. For example, a context of window indicates that the
pointer must be over a client window or window management frame for the button
binding to be effective. The frame context is for the window management frame
around a client window (including the border and titlebar), the border context is
for the border part of the window management frame (not including the titlebar),
the title context is for the title area of the window management frame, and the app
context is for the application window (not including the window management
frame).

If an f.nop function is specified for a button binding, the button binding is not done.

Key Bindings

1-44

The keyBindings resource value is the name of a set of key bindings that are used
to configure window manager behavior. A window manager function can be done
when a particular key is pressed. The context in which the key binding applies is
indicated in the key binding specification. The valid contexts are the same as those
that apply to button bindings.

Reference Pages

mwm(1X)

The key binding syntax is

Keys bindings_set_name
{

key context function
key context function

key context function

}

If an f.nop function is specified for a key binding, the key binding is not done. If
an f.post_wmenu or f.menu function is bound to a key, mwm will automatically
use the same key for removing the menu from the screen after it has been popped
up.

The context specification syntax is the same as for button bindings. For key
bindings, the frame, title, border, and app contexts are equivalent to the window
context. The context for a key event is the window or icon that has the keyboard
input focus (root if no window or icon has the keyboard input focus).

Menu Panes
Menus can be popped up using the f.post wmenu and f.menu window manager
functions. The context for window manager functions that are done from a menu is
root, icon or window depending on how the menu was popped up. In the case of
the window menu or menus popped up with a key binding, the location of the
keyboard input focus indicates the context. For menus popped up using a button
binding, the context of the button binding is the context of the menu.

The menu pane specification syntax is

Menu menu_name

{
label [mnemonic) [accelerator] function
label [mnemonic] [accelerator] function

label [mnemonic] [accelerator] function

}

Each line in the Menu specification identifies the label for a menu item and the
function to be done if the menu item is selected. Optionally a menu button
mnemonic and a menu button keyboard accelerator may be specified. Mnemonics
are functional only when the menu is posted and keyboard traversal applies.

1-45

OSF/Motif Programmer's Reference

mwm(1X)
The label may be a string or a bitmap file. The label specification has the following
syntax:
label = text | bitmap_file
bitmap_file = @file_name
text = quoted_item | unquoted_item
The string encoding for labels must be compatible with the menu font that is used.
Labels are greyed out for menu items that do the f.nop function or an invalid
function or a function that does not apply in the current context.
A mnemonic specification has the following syntax
mnemonic = _character
The first matching character in the label is underlined. If there is no matching
character in the label, no mnemonic is registered with the window manager for that
label. Although the character must exactly match a character in the label, the
mnemonic does not execute if any modifier (such as Shift) is pressed with the
character key.
The accelerator specification is a key event specification with the same syntax as
is used for key bindings to window manager functions.

Environment

mwm uses the environment variable HOME for specifying the user’s home
directory.

mwm uses the environment variable LANG for specifying the user’s choice of
language for the mwm message catalog and the mwm resource description file.

mwm uses the environment variables XFILESEARCHPATH,
XUSERFILESEARCHPATH, XAPPLRESDIR, XENVIRONMENT, LANG, and
HOME in determining search paths for resource defaults files. mwm may also use
XBMLANGPATH to search for bitmap files.

mwm reads the SHOME/.motifbind file if it exists to install a virtual key bindings
property on the root window. For more information on the content of the
.motifbind file, see VirtualBindings(3X).

mwm uses the environment variable MWMSHELL (or SHELL, if MWMSHELL is
not set), for specifying the shell to use when executing commands with the f.exec
function.

Reference Pages
mwm(1X)

Files fusr/lib/X11/$LANG/system.mwmrc
fusr/lib/X11/system.mwmrc
fusr/lib/X11/app-defaults/Mwm
$HOME/Mwm
$HOME/.Xdefaults
$HOME/SLANG/.mwmrc
$HOME/mwmrc
$HOME/.motifbind

Related Information
VendorShell(3X), VirtualBindings(3X), X(1), and XmInstalllmage(3X).

OSF/Motif Programmer's Reference

uil(1X)

uil—The user interface language compiler

Synopsis il [options] file

Description

The uil command invokes the UIL compiler. The User Interface Language (UIL)
is a specification language for describing the initial state of a user interface for a
Motif application. The specification describes the objects (menus, dialog boxes,
labels, push buttons, and so on) used in the interface and specifies the routines to be
called when the interface changes state as a result of user interaction.

file Specifies the file to be compiled through the UIL compiler.

options Specifies one or more of the following options:

-Ipathname

-m

-0 file

-v file

1-48

This option causes the compiler to look for include files in
the directory specified if the include files have not been
found in the paths that already were searched. Specify this
option followed by a pathname, with no intervening spaces.

Machine code is listed. This directs the compiler to place in
the listing file a description of the records that it added to the
User Interface Database (UID). This helps you isolate
errors. The default is no machine code.

Directs the compiler to produce a UID. By default, UIL
creates a UID with the name a.uid. The file specifies the
filename for the UID. No UID is produced if the compiler
issues any diagnostics categorized as error or severe.

Directs the compiler to set the locale before compiling any
files. The locale is set in an implementation-dependent
manner. On ANSI C-based systems, the locale is usually set
by calling setlocale(LC_ALL, ""). If this option is not
specified, the compiler does not set the locale.

Directs the compiler to generate a listing. The file specifies
the filename for the listing. If the -v option is not present, no
listing is generated by the compiler. The default is no listing.

Reference Pages
uil (1X)

-w Specifies that the compiler suppress all warning and
informational messages. If this option is not present, all
messages are generated, regardless of the severity.

-wmd file Specifies a binary widget meta-language description file to
be used in place of the default WML description.

For more information about UIL syntax, see the OSF/Motif Programmer’s Guide.

Related Information
X(1X) and Uil(3X).

1-49

OSF/Motif Programmer's Reference
xmbind(1X)

xmbind—Configures virtual key bindings

Synopsis xmbind [options] [file]

Description

xmbind is an X Window System client that configures the virtual key bindings for
Motif applications. This action is performed by mwim at its startup, so the xmbind
client is only needed when mwm is not in use, or when you want to change
bindings without restarting mwm. If a file is specified, its contents are used as the
virtual key bindings. If a file is not specified, the file .motifbind in the user’s home
directory is used. If this file is not found, xmbind loads the default virtual key
bindings, as described in VirtualBindings(3X).

Options

-display This option specifies the display to use; see X(1).

Related Information
VirtualBindings(3X) and X(1X).

1-50

Reference Pages
ApplicationShell (3X)

ApplicationShell—The ApplicationShell widget class

Synopsis #include <Xm/Xm.h>
#include <X11/Shell.h>

Description
ApplicationShell is used as the main top-level window for an application. An
application should have more than one ApplicationShell only if it implements
multiple logical applications.

Classes

ApplicationShell inherits behavior and resources from Core, Composite, Shell,
WMShell, VendorShell, and TopLevelShell.

The class pointer is applicationShellWidgetClass.
The class name is ApplicationShell.

New Resources

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

ApplicationShell Resource Set

Name Default Access
Class Type

XmNargc 0 CSG
XmCArgc int

XmNargv NULL CsG
XmCArgv -~ String*

OSF/Motif Programmer’s Reference
ApplicationShell(3X)

XmNarge Specifies the number of arguments given in the XmNargv resource.
The function XtInitialize sets this resource on the shell widget instance
it creates by using its parameters as the values.

XmNargv Specifies the argument list required by a session manager to restart the
application if it is killed. This list should be updated at appropriate
points by the application if a new state has been reached that can be
directly restarted. The function XtInitialize sets this resource on the
shell widget instance it creates by using its parameters as the values.

Inherited Resources
ApplicationShell inherits behavior and resources from the following superclasses.
For a complete description of each resource, refer to the reference page for that

superclass.
. TopLevelShell Resource Set

Name Default Access
Class Type

XmNiconic False CSG
XmCiconic Boolean

XmNiconName NULL CSG
XmClconName String

XmNiconNameEncoding dynamic CSG
XmClconNameEncoding Atom

Reference Pages

ApplicationShell(3X)

VendorShell Resource Set

Name Default Access
Class Type
XmNaudibleWarning XmBELL CSsG
XmCAudibleWarning unsigned char
XmNbuttonFontList dynamic CSG
XmCButtonFontList XmFontList
XmNdefaultFontList dynamic CG
XmCDefaultFontList XmFontList
XmNdeleteResponse XmDESTROY CSsG
XmCDeleteResponse unsigned char
XmNinputMethod NULL CSG
XmClnputMethod String
XmNkeyboardFocusPolicy XmEXPLICIT CsG
XmCKeyboardFocusPolicy unsigned char
XmNIlabelFontList dynamic CSG
XmCLabelFontList XmFontList
XmNmwmDecorations -1 CSG
XmCMwmDecorations int
XmNmwmFunctions -1 CSG
XmCMwmPFunctions int
XmNmwmInputMode -1 CsG
XmCMwmInputMode int
XmNmwmMenu NULL CsG
XmCMwmMenu String
XmNpreeditType dynamic CSG
XmCPreeditType String
XmNshellUnitType XmPIXELS CsG
XmCShellUnitType unsigned char
XmNtextFontList dynamic CSG
XmCTextFontList XmFontList
XmNuseAsyncGeometry False CsG
XmCUseAsyncGeometry Boolean

OSF/Motif Programmer’s Reference

ApplicationShell(3X)

WMShell Resource Set

Name Default Access
Class Type

XmNbaseHeight XtUnspecifiedShellint CSG
XmCBaseHeight int

XmNbaseWidth XtUnspecifiedShellint CSG
XmCBaseWidth int

XmNheightlnc XtUnspecifiedShellint CSG
XmCHeightinc int

XmNiconMask NULL CSG
XmClconMask Pixmap

XmNiconPixmap NULL CsG
XmClconPixmap Pixmap

XmNiconWindow NULL CSG
XmClconWindow Window

XmNiconX -1 CSG
XmClconX int

XmNiconY -1 CSG
XmClconY int

XmNinitialState NormalState CSG
XmCinitialState int

XmNinput True CSG
XmCinput Boolean

XmNmaxAspectX XtUnspecifiedShellint CSG
XmCMaxAspectX int

XmNmaxAspectY XtUnspecifiedShelllnt CSG
XmCMaxAspectY int

XmNmaxHeight XtUnspecifiedShellint CSG
XmCMaxHeight int

XmNmaxWidth XtUnspecifiedShellint CSG
XmCMaxWidth int

XmNminAspectX XtUnspecifiedShellint CSG
XmCMinAspectX int

Reference Pages

ApplicationShell (3X)

Name Default Access
Class Type

XmNminAspectY XtUnspecifiedShellint CSG
XmCMinAspectY int

XmNminHeight XtUnspecifiedShellint CSG
XmCMinHeight int

XmNminWidth XtUnspecifiedShellint CSG
XmCMinWidth int

XmNtitle dynamic CSG
XmCTitle String

XmNtitleEncoding dynamic CSG
XmCTitleEncoding Atom

XmNtransient False CSG
XmCTransient Boolean

XmNwaitForWWm True CSG
XmCWaitForWm Boolean

XmNwidthinc XtUnspecifiedShellint CSG
XmCWidthinc int

XmNwindowGroup dynamic CSG
XmCWindowGroup Window

XmNwinGravity dynamic CSG
XmCWinGravity int

XmNwmTimeout 5000 ms CSG
XmCWmTimeout int

OSF/Motif Programmer’s Reference

ApplicationShell(3X)

Shell Resource Set

Name Default Access
Class Type
XmNallowShellResize Faise CG
XmCAllowSheliResize Boolean
XmNcreatePopupChildProc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChildProc
XmNgeometry NULL CSG
XmCGeometry String
XmNoverrideRedirect False CSG
XmCOverrideRedirect Boolean
XmNpopdownCallback NULL C
XmCcCallback XtCallbackList
XmNpopupCallback NULL C
XmCCallback XtCallbackList
XmNsaveUnder False CSG
XmCSaveUnder Boolean
XmNvisual CopyFromParent CSG
XmCVisual Visual *
Composite Resource Set]
Name Default Access
| Class Type
XmNchildren NULL G
XmCReadOnly WidgetList
XmNinsertPosition NULL CSG
XmCinsertPosition XtOrderProc
XmNnumChildren 0 G
XmCReadOnly Cardinal

Reference Pages

ApplicationShell(3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CSG
XmCAccelerators XtAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCallback NULL C
XmCcCallback XtCallbackList

XmNheight dynamic CSsG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClinitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

OSF/Motif Programmer’s Reference

ApplicationShell(3X)

Name Default Access
Class Type

XmNtranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNXx 0 CSG
XmCPosition Position

XmNy 0] CsG
XmCPosition Position

Translations
There are no translations for ApplicationShell.

Related Information
Composite(3X), Core(3X), Shell(3X), WMShell(3X), VendorShell(3X), and
TopLevelShell(3X).

1-58

Reference Pages

Composite(3X)

Composite—The Composite widget class

Synopsis #include <Xm/Xm.h>

Description

Composite widgets are intended to be containers for other widgets and can have an
arbitrary number of children. Their responsibilities (implemented either directly
by the widget class or indirectly by Intrinsics functions) include:

Classes

Overall management of children from creation to destruction.
Destruction of descendants when the composite widget is destroyed.

Physical arrangement (geometry management) of a displayable subset of
managed children.

Mapping and unmapping of a subset of the managed children. Instances of
composite widgets need to specify the order in which their children are
kept. For example, an application may want a set of command buttons in
some logical order grouped by function, and it may want buttons that
represent filenames to be kept in alphabetical order.

Composite inherits behavior and resources from Core.

The class pointer is compositeWidgetClass.

The class name is Composite.

New Resources

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-59

OSF/Motif Programmer's Reference

Composite(3X)
Composite Resource Set
Name Default Access
Class Type
XmNchildren NULL G
XmCReadOnly WidgetList
XmNinsertPosition NULL CSG
XmClnsertPosition XtOrderProc
XmNnumChildren 0 G
XmCReadOnly Cardinal
XmNchildren
A read-only list of the children of the widget.
XmNinsertPosition
Points to the XtOrderProc function described below.
XmNnumChildren :
A read-only resource specifying the length of the list of children in
XmNchildren.
The following procedure pointer in a composite widget instance is of type
XtOrderProc:
Cardinal (* XtOrderProc) (widget)
Widget w;
w Specifies the widget.

Composite widgets that allow clients to order their children (usually homogeneous
boxes) can call their widget instance’s insert_position procedure from the class’s
insert_child procedure to determine where a new child should go in its children
array. Thus, a client of a composite class can apply different sorting criteria to
widget instances of the class, passing in a different insert_position procedure

when it creates each composite widget instance.

1-60

Reference Pages

Composite(3X)

The return value of the insert_position procedure indicates how many children
should go before the widget. A value of O (zero) indicates that the widget should
go before all other children; returning num_children indicates that it should go
after all other children. The default insert_position function returns
num_children and can be overridden by a specific composite widget’s resource
list or by the argument list provided when the composite widget is created.

Inherited Resources

Composite inherits behavior and resources from the superclass described in the
following table. For a complete description of each resource, refer to the reference
page for that superclass.

1-61

OSF/Motif Programmer’s Reference

Composite(3X)
Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CSsG
XmCAccelerators XtAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CsG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSsG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCaliback NULL C
XmCcCailback XtCallbackList

XmNheight dynamic CsG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmCinitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Booiean

1-62

Reference Pages

Translations

There are no translations for Composite.

Related Information
Core(3X).

Composite(3X)

Name Default Access
Class Type

XmNtranslations dynamic CsSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CsG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

OSF/Motif Programmer's Reference

Constraint(3X)

Synopsis

Description

Constraint—The Constraint widget class

#include <Xm/Xm.h>

Constraint widgets maintain additional state data for each child. For example,
client-defined constraints on the child’s geometry may be specified.

When a constrained composite widget defines constraint resources, all of that
widget’s children inherit all of those resources as their own. These constraint
resources are set and read just the same as any other resources defined for the
child. This resource inheritance extends exactly one generation down, which
means only the first-generation children of a constrained composite widget inherit
the parent widget’s constraint resources.

Because constraint resources are defined by the parent widgets and not the
children, the child widgets never directly use the constraint resource data. Instead,
the parents use constraint resource data to attach child-specific data to children.

Classes

Constraint inherits behavior and resources from Composite and Core.
The class pointer is constraintWidgetClass.

The class name is Constraint.

New Resources

Constraint defines no new resources.

Inherited Resources

Constraint inherits behavior and resources from Composite and Core. The
following table defines a set of widget resources used by the programmer to specify
data. The programmer can also set the resource values for the inherited classes to
set attributes for this widget. To reference a resource by name or by class in a
Xdefaults file, remove the XmN or XmC prefix and use the remaining letters. To
specify one of the defined values for a resource in a .Xdefaults file, remove the
Xm prefix and use the remaining letters (in either lowercase or uppercase, but
include any underscores between words). The codes in the access column indicate
if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

Constraint(3X)
Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CSG
XmCAccelerators XtAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-65

OSF/Motif Programmer's Reference

Constraint(3X)

Translations

Name Default Access
Class Type

XmNtranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNXx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

There are no translations for Constraint.

Related Information

Composite(3X) and Core(3X).

1-66

Reference Pages
Core(3X)

Core—The Core widget class

Synopsis #include <Xm/Xm.h>

Description

Core is the Xt Intrinsic base class for windowed widgets. The Object and
RectObj classes provide support for windowless widgets.

Classes
All widgets are built from Core.

The class pointer is widgetClass.
The class name is Core.

New Resources

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-67

OSF/Motif Programmer’s Reference

Core(3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CSG
XmCAccelerators XtAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

Reference Pages

Core(3X)

Name Default Access
Class Type

XmNtranslations dynamic CSsG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

XmNaccelerators

Specifies a translation table that is bound with its actions in the context
of a particular widget. The accelerator table can then be installed on
some destination widget.

XmNancestorSensitive

Specifies whether the immediate parent of the widget receives input
events. Use the function XtSetSensitive to change the argument to
preserve data integrity (sce XmNsensitive). For shells, the default is
copied from the parent’s XmNancestorSensitive resource if there is a
parent; otherwise, it is True. For other widgets, the default is the bitwise
AND of the parent’s XmNsensitive and XmNancestorSensitive
resources.

XmNbackground
Specifies the background color for the widget.

XmNbackgroundPixmap
Specifies a pixmap for tiling the background. The first tile is placed at
the upper left corner of the widget’s window.

XmNborderColor
Specifies the color of the border in a pixel value.

XmNborderPixmap
Specifies a pixmap to be used for tiling the border. The first tile is
placed at the upper left corner of the border.

XmNborderWidth
Specifies the width of the border that surrounds the widget’s window on
all four sides. The width is specified in pixels. A width of zero means
that no border shows.

OSF/Motif Programmer’s Reference

Core(3X)

1-70

XmNcolormap
Specifies the colormap that is used for conversions to the type Pixel for
this widget instance. When this resource is changed, previously
generated pixel values are not affected, but newly generated values are
in the new colormap. For shells without parents, the default is the
default colormap of the widget’s screen. Otherwise, the default is
copied from the parent.

XmNdepth
Specifies the number of bits that can be used for each pixel in the
widget’s window. Applications should not change or set the value of
this resource as it is set by the Xt Intrinsics when the widget is created.
For shells without parents, the default is the default depth of the
widget’s screen. Otherwise, the default is copied from the parent.

XmNdestroyCallback
Specifies a list of callbacks that is called when the widget is destroyed.

XmNheight
Specifies the inside height (excluding the border) of the widget’s
window.

XmNinitialResourcesPersistent

Specifies whether or not resources are reference counted. If the value is
True when the widget is created, the resources referenced by the widget
are not reference counted, regardless of how the resource type
converter is registered. An application that expects to destroy the
widget and wants to have resources deallocated should specify a value
of False. The default is True, implying an assumption that the widget
will not be destroyed during the life of the application.

XmNmappedWhenManaged
If this resource is set to True, it maps the widget (makes it visible) as
soon as it is both realized and managed. If this resource is set to False,
the client is responsible for mapping and unmapping the widget. If the
value is changed from True to False after the widget has been realized
and managed, the widget is unmapped.

XmNscreen
Specifies the screen on which a widget instance resides. It is read only.
When the Toolkit is initialized, the top-level widget obtains its default
value from the default screen of the display. Otherwise, the default is
copied from the parent.

Reference Pages

Core(3X)

XmNsensitive

Determines whether a widget receives input events. If a widget is
sensitive, the Xt Intrinsics’ Event Manager dispatches to the widget all
keyboard, mouse button, motion, window enter/leave, and focus events.
Insensitive widgets do not receive these events. Use the function
XtSetSensitive to change the sensitivity argument. Using
XtSetSensitive ensures that if a parent widget has XmNsensitive set to
False, the ancestor-sensitive flag of all its children is appropriately set.

XmNtranslations

Points to a translations list. A translations list is a list of events and
actions that are to be performed when the events occur.

XmNwidth

XmNx

XmNy

Translations

Specifies the inside width (excluding the border) of the widget’s
window.

Specifies the x-coordinate of the upper left outside corner of the
widget’s window. The value is relative to the upper left inside corner of
the parent window.

Specifies the y-coordinate of the upper left outside corner of the
widget’s window. The value is relative to the upper left inside corner of
the parent window.

There are no translations for Core.

Related Information

Object(3X) and RectObj(3X).

1-71

OSF/Motif Programmer’s Reference
MrmCloseHierarchy(3X)

MrmCloseHierarchy—Closes a UID hierarchy

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmCloseHierarchy(hierarchy_id)
MrmHierarchy hierarchy_id;

Description

The MrmCloseHierarchy function closes a UID hierarchy previously opened by
MrmOpenHierarchyPerDisplay. All files associated with the hierarchy are
closed by the Motif Resource Manager (MRM) and all associated memory is
returned.

hierarchy_id Specifies the ID of a previously opened UID hierarchy. The
hierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

Return Value
This function returns one of these status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmFAILURE The function failed.

Related Information
MrmOpenHierarchyPerDisplay(3X).

1-72

Reference Pages

MrmFetchBitmapLiteral (3X)

MrmFetchBitmapLiteral—Fetches a bitmap literal from a hierarchy

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmFetchBitmapLiteral(hierarchy_id, index, screen, display, pixmap_return,
width, height)

Description

MrmHierarchy hierarchy_id;

String index;

Screen *screen;
Display *display;
Pixmap *pixmap_return;
Dimension *width;

Dimension *height;

The MrmFetchBitmapLiteral function fetches a bitmap literal from an MRM
hierarchy, and converts the bitmap literal to an X pixmap of depth 1. The function
returns this pixmap and its width and height.

hierarchy_id

index

screen

display

Specifies the ID of the UID hierarchy that contains the specified icon
literal. The value of hierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

Specifies the UIL name of the bitmap literal to fetch.

Specifies the screen used for the pixmap. The screen argument
specifies a pointer to the Xlib structure Screen which contains the
information about that screen and is linked to the Display structure. For
more information on the Display and Screen structures, see the Xlib
function XOpenDisplay and the associated screen information macros.

Specifies the display used for the pixmap. The display argument
specifies the connection to the X server. For more information on the
Display structure, see the Xlib function XOpenDisplay.

pixmap_return

width
height

Returns the resulting X pixmap value.
Specifies a pointer to the width of the pixmap.

Specifies a pointer to the height of the pixmap.

OSF/Motif Programmer’s Reference

MrmFetchBitmapLiteral (3X)

Return Value
This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND
The bitmap literal was not found in the hierarchy.

MrmWRONG_TYPE
The caller tried to fetch a literal of a type not supported by this function.

MrmFAILURE
The function failed.

Related Information
MrmFetchIconLiteral(3X), MrmFetchLiteral(3X), and XOpenDisplay(3X).

1-74

Reference Pages
MrmFetchColorLiteral (3X)

MrmPFetchColerLiteral—Fetches a named color literal from a UID file

Synopsis #include <Mrm/MrmPublic.h>

int MrmFetchColorLiteral(hierarchy_id, index, display, colormap_id, pixel)
MrmHierarchy hierarchy_id;

String index;
Display *display;
Colormap colormap_id;
Pixel *pixel;

Description

The MrmFetchColorLiteral function fetches a named color literal from a UID
file, and converts the color literal to a pixel color value.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified
literal. The value of hierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

index Specifies the UIL name of the color literal to fetch. You must define
this name in UIL as an exported value.

display Specifies the display used for the pixmap. The display argument
specifies the connection to the X server. For more information on
the Display structure, see the Xlib function XOpenDisplay.

colormap_id Specifies the ID of the color map. If colormap_id is NULL, the
default color map is used.

pixel Returns the ID of the color literal.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND The color literal was not found in the UIL file.

1-75

OSF/Motif Programmer’s Reference
MrmFetchColorLiteral (3X)

MrmWRONG_TYPE
The caller tried to fetch a literal of a type not supported by
this function.

MrmFAILURE The function failed.

Related Information

MrmPFetchBitmapLiteral(3X), MrmOpenHierarchyPerDisplay(3X),
MrmFetchIconLiteral(3X), MrmFetchLiteral(3X), and XOpenDisplay(3X).

Reference Pages

MrmFetchiconLiteral(3X)

MrmPFetchIconLiteral—Fetches an icon literal from a hierarchy

Synopsis #include <Mrm/MrmPublic.h>

int MrmFetchlconLiteral(hierarchy_id, index, screen, display, fgpix, bgpix, pixmap)

Description

MrmHi
String
Screen
Display
Pixel
Pixel
Pixmap

erarchy hierarchy_id;
index;
*screen;
*display;
Jepix;
bgpix;
*pixmap;

The MrmFetchIconLiteral function fetches an icon literal from an MRM
hierarchy, and converts the icon literal to an X pixmap.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified

index

SCreen

display

fepix
bgpix

pixmap

icon literal. The hierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

Specifies the UIL name of the icon literal to fetch.

Specifies the screen used for the pixmap. The screen argument
specifies a pointer to the Xlib structure Screen, which contains the
information about that screen and is linked to the Display structure.
For more information on the Display and Screen structures, see the
Xlib function XOpenDisplay and the associated screen information
Macros.

Specifies the display used for the pixmap. The display argument
specifies the connection to the X server. For more information on
the Display structure, see the Xlib function XOpenDisplay.

Specifies the foreground color for the pixmap.
Specifies the background color for the pixmap.

Returns the resulting X pixmap value.

1-77

OSF/Motif Programmer’'s Reference ‘
MrmFetchiconLiteral (3X)

Return Value

This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND The icon literal was not found in the hierarchy.

MrmWRONG_TYPE
The caller tried to fetch a literal of a type not supported by
this function.

MrmFAILURE The function failed.

Related Information
MrmPFetchBitmapLiteral(3X), MrmOpenHierarchyPerDisplay(3X),
MrmPFetchLiteral(3X), MrmFetchColorLiteral(3X), and XOpenDisplay(3X).

1-78

Reference Pages
MrmFetchLiteral (3X)

MrmFetchLiteral—Fetches a literal from a UID file

Synopsis #include <Mrm/MrmPublic.h>

int MrmFetchLiteral(hierarchy_id, index, display, value, type)
MrmHierarchy hierarchy_id;

String index;
Display *display;
XtPointer *value;

MrmCode *type;

Description

The MrmFetchLiteral function reads and returns the value and type of a literal
(named value) that is stored as a public resource in a single UID file. This function
returns a pointer to the value of the literal. For example, an integer is always
returned as a pointer to an integer, and a string is always returned as a pointer to a
string.

Applications should not use MrmFetchLiteral for fetching icon or color literals.
If this is attempted, MrmFetchLiteral returns an error.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified
literal. The value of hierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

index Specifies the UIL name of the literal (pixmap) to fetch. You must
define this name in UIL as an exported value.

display Specifies the display used for the pixmap. The display argument
% P
specifies the connection to the X server. For more information on
the Display structure, see the Xlib function XOpenDisplay.

value Returns the ID of the named literal’s value.

type Returns the named literal’s data type. Types are defined in the
include file Mrm/MrmPublic.h.

Return Value
This function returns one of these status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

OSF/Motif Programmer’s Reference
MrmFetchLiteral (3X)

MrmNOT_FOUND The literal was not found in the UIL file.

MrmWRONG_TYPE
The caller tried to fetch a literal of a type not supported by
this function.

MrmFAILURE The function failed.

Related Information
MrmPFetchBitmapLiteral(3X), MrmOpenHierarchyPerDisplay(3X),
MrmFetchIconLiteral(3X), MrmFetchColorLiteral(3X), and
XOpenDisplay(3X).

1-80

Reference Pages

Synopsis

Description

MrmFetchSetValues(3X)

MrmPFetchSetValues—Fetches the values to be set from literals stored in
UID files

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchSetValues(ierarchy_id, widget, args, num_args)
MrmHierarchy hierarchy_id;

Widget widget;
ArgList args;
Cardinal num_args;

The MrmFetchSetValues function is similar to XtSetValues, except that the
values to be set are defined by the UIL named values that are stored in the UID
hierarchy. MrmFetchSetValues fetches the values to be set from literals stored in
UID files.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified
literal. The value of hierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

widget Specifies the widget that is modified.

args Specifies an argument list that identifies the widget arguments to be
modified as well as the index (UIL name) of the literal that defines
the value for that argument. The name part of each argument
(args[n].name) must begin with the string XmN followed by the
name that uniquely identifies this attribute tag. For example,
XmNwidth is the attribute name associated with the core argument
width. The value part (args[n].value) must be a string that gives the
index (UIL name) of the literal. You must define all literals in UIL
as exported values.

num_args Specifies the number of entries in args.

This function sets the values on a widget, evaluating the values as public literal
resource references resolvable from a UID hierarchy. Each literal is fetched from
the hierarchy, and its value is modified and converted as required. This value is
then placed in the argument list and used as the actual value for an XtSetValues
call. MrmPFetchSetValues allows a widget to be modified after creation using
UID file values the same way creation values are used in MrmFetchWidget.

As in MrmFetchWidget, each argument whose value can be evaluated from the
UID hierarchy is set in the widget. Values that are not found or values in which
conversion errors occur are not modified.

1-81

OSF/Motif Programmer’s Reference

MrmFetchSetValues(3X)

Each entry in the argument list identifies an argument to be modified in the widget.
The name part identifies the tag, which begins with XmN. The value part must be
a string whose value is the index of the literal. Thus, the following code would
modify the label resource of the widget to have the value of the literal accessed by
the index OK_button_label in the hierarchy:

args[n] .name = XmNlabel;
args[n].value = "OK_button_label”;

Return Value

This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmPARTIAL_SUCCESS
At least one literal was successfully fetched.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmFAILURE The function failed.

Related Information

MrmOpenHierarchyPerDisplay(3X), XtSetValues(3X).

Reference Pages

Synopsis

Description

MrmFetchWidget(3X)

MrmFetchWidget—Fetches and creates an indexed (UIL named) application
widgets and its children

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchWidget(hierarchy_id, index, parent_widget, widget, class)
MrmHierarchy hierarchy_id;

String index;
Widget parent_widget;
Widget *widget;

MrmType *class;

The MrmFetchWidget function fetches and creates an indexed application widget
and its children. The indexed application widget is any widget that is named in
UIL. In fetch operations, the fetched widget’s subtree is also fetched and created.
This widget must not appear as the child of a widget within its own subtree.
MrmFetchWidget does not execute XtManageChild for the newly created
widget.

hierarchy_id Specifies the ID of the UID hierarchy that contains the interface
definition. The value of hierarchy_id was returned in a previous
call to MrmOpenHierarchyPerDisplay.

index Specifies the UIL name of the widget to fetch.

parent_widget
Specifies the parent widget ID.

widget Returns the widget ID of the created widget.

class Returns the class code identifying MRM’s widget class. The widget
class code for the main window widget, for example, is
MRMwcMainWindow. Literals identifying MRM widget class
codes are defined in Mrm.h.

An application can fetch any named widget in the UID hierarchy using
MrmFetchWidget. MrmFetchWidget can be called at any time to fetch a widget
that was not fetched at application startup. MrmFetchWidget can be used to defer
fetching pop-up widgets until they are first referenced (presumably in a callback),
and then used to fetch them once.

OSF/Motif Programmer’s Reference

Mrm’Fch_hWidget(3X)

MrmFetchWidget can also create multiple instances of a widget (and its subtree).
In this case, the UID definition functions as a template; a widget definition can be
fetched any number of times. An application can use this template to make
multiple instances of a widget, for example, in a dialog box box or menu.

The index (UIL name) that identifies the widget must be known to the application.

Return Value

This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND The widget was not found in UID hierarchy.
MrmFAILURE The function failed.

Related Information

1-84

MrmOpenHierarchyPerDisplay(3X), MrmFetchWidgetOverride(3X).

Reference Pages

Synopsis

Description

MrmFetchWidgetOverride(3X)

MrmFetchWidgetOverride—Fetches any indexed (UIL named) application
widget. It overrides the arguments specified for this application widget in UIL

#include <Mrm/MrmPublic.h>

Cardinal MrmFetchWidgetOverride(hierarchy_id, index, parent_widget,
override_name, override_args, override_num_args, widget, class) '
MrmHierarchyhierarchy_id;

String index;

Widget parent_widget;
String override_name;
ArglList override_args;
Cardinal override_num_args;
Widget *widget;

MrmType *class;

The MrmFetchWidgetOverride function is the extended version of
MrmFetchWidget. It is identical to MrmFetchWidget, except that it allows the
caller to override the widget’s name and any arguments that MrmFetchWidget
would otherwise retrieve from the UID file or one of the defaulting mechanisms.
That is, the override argument list is not limited to those arguments in the UID file.

The override arguments apply only to the widget fetched and returned by this
function. Its children (subtree) do not receive any override parameters.

hierarchy_id Specifies the ID of the UID hierarchy that contains the interface
definition. The value of hierarchy_id was returned in a previous
call to MrmOpenHierarchyPerDisplay.

index Specifies the UIL name of the widget to fetch.

parent_widget
Specifies the parent widget ID.

override_name
Specifies the name to override the widget name. Use a NULL value
if you do not want to override the widget name.

override_args Specifies the override argument list, exactly as given to
XtCreateWidget (conversion complete and so forth). Use a NULL
value if you do not want to override the argument list.

override_num_args
Specifies the number of arguments in override_args.

OSF/Motif Programmer’s Reference
MrmFetchWidgetOverride(3X)

widget Returns the widget ID of the created widget.

class Returns the class code identifying MRM’s widget class. Literals
identifying MRM widget class codes are defined in the include file
Mrm/MrmPublic.h.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND The widget was not found in UID hierarchy.
MrmFAILURE The function failed.

Related Information
MrmOpenHierarchyPerDisplay(3X), MrmFetchWidget(3X).

Reference Pages
Mrminitialize(3X)

MrmlInitialize—Prepares an application to use MRM widget-fetching facilities

Synopsis void MrmInitialize()

Description
The MrmlInitialize function must be called to prepare an application to use MRM
widget-fetching facilities. You must call this function prior to fetching a widget.
However, it is good programming practice to call Mrmlnitialize prior to
performing any MRM operations.

Mrmlnitialize initializes the internal data structures that MRM needs to
successfully perform type conversion on arguments and to successfully access
widget creation facilities. An application must call MrmlInitialize before it uses
other MRM functions.

OSF/Motif Programmer's Reference

MrmOpenHierarchy(3X)

Synopsis

Description

MrmOpenHierarchy—Allocates a hierarchy ID and opens all the UID files in
the hierarchy

#include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchy(num_files, file_names_list, ancillary_structures_list,
hierarchy_id)

MrmCount num_filess

String file_names_list[];
MrmOsOpenParamPtr *ancillary_structures_list;
MrmHierarchy *hierarchy_id;

This routine is obsolete and exists for compatibility with previous releases. It is
replaced by MrmOpenHierarchyPerDisplay. MrmOpenHierarchy is identical
to MrmOpenHierarchyPerDisplay except that MrmOpenHierarchy does not
take a display argument.

num_files Specifies the number of files in the name list.

file_names_list
Specifies an array of character strings that identify the UID files.

ancillary_structures_list
A list of operating-system-dependent ancillary structures
corresponding to items such as filenames, clobber flags, and so forth.
This argument should be NULL for most operations. If you need to

reference this structure, see the definition of
MrmOsOpenParamPtr in the MrmPublic.h header file for more
information.

hierarchy_id Returns the search hierarchy ID. The search hierarchy ID identifies
the list of UID files that MRM searches (in order) when performing
subsequent fetch calls.

Each UID file string in file_names_list can specify either a full pathname or a
filename. If a UID file string has a leading slash (/), it specifies a full pathname,
and MRM opens the file as specified. Otherwise, the UID file string specifies a
filename. In this case, MRM looks for the file along a search path specified by the
UIDPATH environment variable or by a default search path, which varies
depending on whether or not the XAPPLRESDIR environment variable is set.

The UIDPATH environment variable specifies a search path and naming
conventions associated with UID files. It can contain the substitution field %U,
where the UID file string from the file_names_list argument to

Reference Pages

MrmOpenHierarchy(3X)

MrmOpenHierarchyPerDisplay is substituted for %U. It can also contain the
substitution fields accepted by XtResolvePathname. The substitution field %T is
always mapped to uid. The entire path is first searched with %S mapped to .uid.
If no file is found, is searched again with %S mapped to NULL.

If no display is set prior to calling this function, the result of this function’s call to
XtResolvePathname is undefined.

For example, the following UIDPATH value and MrmOpenHierarchy call cause
MRM to open two separate UID files:

UIDPATH=/uildlib/%L/%U.uid: /uidlib/%U/%L
static char *uid files[] = {"/usr/users/me/test.uid", "test2"};
MrmHierarchy *Hierarchy_id;
MrmOpenHierarchy ((MrmCount) 2,uid_files, NULL, Hierarchy id)

MRM opens the first file, /usr/users/me/test.uid, as specified in the file_names_list
argument to MrmOpenHierarchy, because the UID file string in the
file_names_list argument specifies a full pathname. MRM looks for the second file,
test2, first as /uidlib/%L/test2.uid and second as /uidlib/test2/%L, where the
display’s language string is substituted for %L.

After MrmOpenHierarchy opens the UID hierarchy, you should not delete or
modify the UID files until you close the UID hierarchy by calling
MrmCloseHierarchy.

If UIDPATH is not set but the environment variable XAPPLRESDIR is set, MRM
searches the following pathnames:

e %U%S

e $XAPPLRESDIR/%L/id/%N/%U %S
o $XAPPLRESDIR/%1/uid/%N/%U %S
o $XAPPLRESDIR/uid/%N/%U%S

o $XAPPLRESDIR/%L/id/%U%S

o $XAPPLRESDIR/%/uid/%U%S

o $XAPPLRESDIR/Aid/%U%S

o $HOMEAid/%U%S

o SHOME/%U%S

o /fust/lib/X11/%L/uid/%N/%U%S

o Just/lib/X11/%1/uid/%N/%U%S

1-89

OSF/Motif Programmer's Reference

MrmOpenHierarchy(3X)

fusr/lib/X11/uid/%N/%U %S
fust/lib/X11/%Lid/%U%S
fust/lib/X11/%1/0id/%U%S
fust/lib/X11/0id/%U%S
fusr/include/X11/id/%U %S

If neither UIDPATH nor XAPPLRESDIR is set, MRM searches the following
pathnames:

[

%U%S
HOME/%L/uid/%N/%U%S
HOME/%1/id/%N/%U %S
$HOME/uid/%N/%U%S
$HOME/%L/uid/%U%S
$HOME/%1/uid/%U%S
$HOMENid/%U%S
$HOME/%U%S

fusr/lib/X 1 1/%LAsid/%N/%U%S
fust/lib/X11/%]1/uid/%N/%U %S
fust/lib/X11/vid/%N/%U %S
fust/lib/X11/%Lid/%U %S
fust/lib/X11/%1/0id/%U%S
fust/lib/X11/vid/%U%S
/ust/include/X11/mid/%U%S

These paths are defaults that vendors may change. For example, a vendor may use
different directories for /usr/lib/X11 and /usr/include/X11.

The following substitutions are used in these paths:

% U
%N

The UID file string, from the file_names_list argument.

The class name of the application.

Reference Pages

MrmOpenHierarchy(3X)
%L The display’s language string.
%1 The language component of the display’s language string.
%S The suffix to the filename. The entire path is first searched with a
suffix of .uil. If no file is found, it is searched again with a NULL
suffix.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.
MrmNOT_FOUND File not found.
MrmFAILURE The function failed.

Related Information
MrmOpenHierarchyPerDisplay(3X) and MrmCloseHierarchy(3X).

1-91

OSF/Motif Programmer's Reference

MrmOpenHierarchyPerDisplay(3X)

Synopsis

Description

1-92

MrmOpenHierarchyPerDisplay—Allocates a hierarchy ID and opens all the
UID files in the hierarchy

#include <Mrm/MrmPublic.h>

Cardinal MrmOpenHierarchyPerDisplay (display, num_files, file_names_list,
ancillary _structures_list, hierarchy_id)

Display *display;

MrmCount num_files;

String file_names_list{[1;
MrmOsOpenParamPtr *ancillary_structures_list;
MrmHierarchy *hierarchy_id;

MrmOpenHierarchyPerDisplay allows you to specify the list of UID files that
MRM searches in subsequent fetch operations. All subsequent fetch operations
return the first occurrence of the named item encountered while traversing the UID
hierarchy from the first list element (UID file specification) to the last list element.
This function also allocates a hierarchy ID and opens all the UID files in the
hierarchy. It initializes the optimized search lists in the hierarchy. If
MrmOpenHierarchyPerDisplay encounters any errors during its execution, any
files that were opened are closed.

The application must call XtApplnitialize before calling
MrmOpenHierarchyPerDisplay.

display Specifies the connection to the X server and the value to pass to
XtResolvePathname. For more information on the Display
structure, see the Xlib function XOpenDisplay.

num_files Specifies the number of files in the name list.

file_names_list
Specifies an array of character strings that identify the UID files.

ancillary_structures_list
A list of operating-system-dependent ancillary structures
corresponding to items such as filenames, clobber flags, and so forth.
This argument should be NULL for most operations. If you need to

reference this structure, see the definition of
MrmOsOpenParamPtr in the MrmPublic.h header file for more
information.

Reference Pages

MrmOpenHierarchyPerDisplay(3X)

hierarchy_id Returns the search hierarchy ID. The search hierarchy ID identifies
the list of UID files that MRM searches (in order) when performing
subsequent fetch calls.

Each UID file string in file_names_list can specify either a full pathname or a
filename. If a UID file string has a leading / (slash), it specifies a full pathname,
and MRM opens the file as specified. Otherwise, the UID file string specifies a
filename. In this case MRM looks for the file along a search path specified by the
UIDPATH environment variable or by a default search path, which varies
depending on whether or not the XAPPLRESDIR environment variable is set.

The UIDPATH environment variable specifies a search path and naming
conventions associated with UID files. It can contain the substitution field %U,
where the UID file string from the file_names_list argument to
MrmOpenHierarchyPerDisplay is substituted for %U. It can also contain the
substitution fields accepted by XtResolvePathname. The substitution field %T is
always mapped to uid. The entire path is searched first with %S mapped to .uid.
If no file is found, it is searched again with %S mapped to NULL. For example, the
following UIDPATH value and MrmOpenHierarchyPerDisplay call cause
MRM to open two separate UID files:

UIDPATH=/uidlib/%L/%U.uid: /uidlib/%U/%L
static char *uid_files[] = {"/usr/users/me/test.uid", "test2"};
MrmHierarchy *Hierarchy id;
MrmOpenHierarchyPerDisplay ((MrmCount)2,uid_files, NULL, Hierarchy id)

MRM opens the first file, /usr/users/me/test.uid, as specified in the file_names_list
argument to MrmOpenHierarchyPerDisplay, because the UID file string in the
file_names_list argument specifies a full pathname. MRM looks for the second file,
test2, first as /uidlib/%L/test2.uid and second as /uidlib/test2/%L, where the
display’s language string is substituted for %L.

After MrmOpenHierarchyPerDisplay opens the UID hierarchy, you should not
delete or modify the UID files until you close the UID hierarchy by calling
MrmCloseHierarchy.

If UIDPATH is not set, but the environment variable XAPPLRESDIR is set,
MRM searches the following pathnames:

o %U%S

o $XAPPLRESDIR/%L/uid/%N/%U%S
e $XAPPLRESDIR/%)/uid/%N/%U%S
e $XAPPLRESDIRMid/%N/%U%S

1-93

OSF/Motif Programmer's Reference
MrmOpenHierarchyPerDisplay(3X)

¢ $XAPPLRESDIR/%L/uid/%U%S
o $XAPPLRESDIR/%1/uid/%U%S
e $XAPPLRESDIRNid/%U%S

o $HOMEMid/%U%S

e $HOME/%U%S

o Just/lib/X11/%LAid/%N/%U%S
o Just/lib/X11/%1/uid/%N/%U%S

o Just/lib/X11/uid/%N/%U%S

o /fusr/lib/X11/%L/id/%U%S

o /fust/lib/X11/%1/id/%U%S

o /ust/lib/X11/0id/%U%S

o /ust/include/X11/vid/%U%S

If neither UIDPATH nor XAPPLRESDIR is set, MRM searches the following
pathnames:

o %U%S

¢ SHOME/%L/uid/%N/%U%S

¢ SHOME/%]/vid/%N/%U%S

¢ S$HOME/id/%N/%U%S

o $HOME/%L/id/%U%S

e $HOME/%1/id/%U%S

o $HOME/uid/%U%S

¢ $HOME/%U%S

o Just/lib/X11/%L/uid/%N/%U%S
o /ust/lib/X11/%1/uid/%N/%U %S
e /ust/lib/X11/uid/%N/%U%S

e /ust/lib/X11/%L/id/%U%S

1-94

Reference Pages
MrmOpenHierarchyPerDisplay(3X)

o /ust/lib/X11/%1/id/%U%S
o /usr/lib/X11/uid/%U%S
o /fusr/include/X11/uid/%U%S

These paths are defaults that vendors may change. For example, a vendor may use
different directories for /usr/lib/X11 and /usr/include/X11.

The following substitutions are used in these paths:

% U The UID file string, from the file_names_list argument.

%N The class name of the application.

%L The display’s language string.

%01 The language component of the display’s language string.

%S The suffix to the filename. The entire path is first searched with a
suffix of .uil. If no file is found, it is searched again with a NULL
suffix.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.
MrmNOT_FOUND File not found.
MrmFAILURE The function failed.

Related Information
MrmCiloseHierarchy(3X).

1-95

OSF/Motif Programmer’s Reference

MrmRegisterClass(3X)

Synopsis

Description

1-96

MrmRegisterClass—Saves the information needed for MRM to access the widget
creation function for user-defined widgets

#include <Mrm/MrmPublic.h>

Cardinal MrmRegisterClass(class_code, class_name, create_name, create_proc,

class_record)

MrmType class_code;

String
String
Widget

class_name;
create_name;
(*create_proc) ();

WidgetClass class_record;

The MrmRegisterClass function allows MRM to access user-defined widget

classes. This

function registers the necessary information for MRM to create

widgets of this class. You must call MrmRegisterClass prior to fetching any
user-defined class widget.

MrmRegisterClass saves the information needed to access the widget creation

function and to do type conversion of argument lists by using the information in
MRM databases.

class_code

class_name

create_name

create_proc

class_record

This argument is ignored; it is present for compatibility with
previous releases.

This argument is ignored; it is present for compatibility with
previous releases.

Specifies the case-sensitive name of the low-level widget creation
function for the class. An example from the Motif Toolkit is
XmCreateLabel. Arguments are parent_widget, name,
override_arglist, and override_argcount.

For user-defined widgets, create_name is the creation procedure in
the UIL that defines this widget.

Specifies the address of the creation function that you named in
create_name.

Specifies a pointer to the class record.

Reference Pages
MrmRegisterClass(3X)

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.
MrmFAILURE The function failed.

1-97

OSF/Motif Programmer’s Reference

MrmRegisterNames(3X)

Synopsis

Description

1-98

MrmRegisterNames—Registers the values associated with the names referenced
in UIL (for example, UIL callback function names or UIL identifier names)

#include <Mrm/MrmPublic.h>

Cardinal MrmRegisterNames(register_list, register_count)
MrmRegister Arglist register_list;
MrmCount register_count;

The MrmRegisterNames function registers a vector of names and associated
values for access in MRM. The values can be callback functions, pointers to user-
defined data, or any other values. The information provided is used to resolve
symbolic references occurring in UID files to their run-time values. For callbacks,
this information provides the procedure address required by the Motif Toolkit. For
names used as identifiers in UIL, this information provides any run-time mapping
the application needs.

This function is similar to MrmRegisterNamesInHierarchy, except that the scope
of the names registered by MrmRegisterNamesInHierarchy is limited to the
hierarchy specified in the call to that function, whereas the names registered by
MrmRegisterNames have global scope. When MRM looks up a name, it first tries
to find the name among those registered for the given hierarchy. If that lookup
fails, it tries to find the name among those registered globally.

register_list Specifies a list of name/value pairs for the names to be registered.
Each name is a case-sensitive, NULL-terminated ASCII string.
Each value is a 32-bit quantity, interpreted as a procedure address if
the name is a callback function, and uninterpreted otherwise.

register_count
Specifies the number of entries in register_list.

The names in the list are case-sensitive. The list can be either ordered or
unordered.

Callback functions registered through MrmRegisterNames can be either regular
or creation callbacks. Regular callbacks have declarations determined by Motif
Toolkit and user requirements. Creation callbacks have the same format as any
other callback:

void CallBackProc(widget_id, tag, callback_data)

Widget *widget_id;
Opaque tag
XmAnyCallbackStruct *callback_data;

Reference Pages
MrmRegisterNames(3X)

widget_id Specifies the widget ID associated with the widget performing the
callback (as in any callback function).

tag Specifies the tag value (as in any callback function).

callback_data Specifies a widget-specific data structure. This data structure has a
minimum of two members: event and reason. The reason member is
always set to MrmCR_CREATE.

Note that the widget name and parent are available from the widget record
accessible through widget_id.
Return Value

This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.
MrmFAILURE The function failed.

1-99

OSF/Motif Programmer’s Reference
MrmRegisterNamesinHierarchy(3X)

MrmRegisterNamesInHierarchy—Registers the values associated with the
names referenced in UIL within a single hierarchy (for example, UIL callback
function names or UIL identifier names)

Synopsis #include <Mrm/MrmPublic.h>

Cardinal MrmRegisterNamesInHierarchy(hierarchy_id, register_list, register_count)

MrmHierarchy hierarchy_id;
MrmRegister Arglist register_list;
MrmCount register_count;

Description

The MrmRegisterNamesInHierarchy function registers a vector of names and
associated values for access in MRM. The values can be callback functions,
pointers to user-defined data, or any other values. The information provided is
used to resolve symbolic references occurring in UID files to their run-time
values.For callbacks, this information provides the procedure address required by
the Motif Toolkit. For names used as identifiers in UIL, this information provides
any run-time mapping the application needs.

This function is similar to MrmRegisterNames, except that the scope of the names
registered by MrmRegisterNamesInHierarchy is limited to the hierarchy
specified by hierarchy_id, whereas the names registered by MrmRegisterNames
have global scope. When MRM looks up a name, it first tries to find the name
among those registered for the given hierarchy. If that lookup fails, it tries to find
the name among those registered globally.

hierarchy_id Specifies the hierarchy with which the names are to be associated.

register_list Specifies a list of name/value pairs for the names to be registered.
Each name is a case-sensitive, NULL-terminated ASCII string.
Each value is a 32-bit quantity, interpreted as a procedure address if
the name is a callback function, and uninterpreted otherwise.

register_count
Specifies the number of entries in register_list.

The names in the list are case-sensitive. The list can be either ordered or
unordered.

Callback functions registered through MrmRegisterNamesInHierarchy can be
either regular or creation callbacks. Regular callbacks have declarations
determined by Motif Toolkit and user requirements.

1-100

Reference Pages

MrmRegisterNamesInHierarchy(3X)

Creation callbacks have the same format as any other callback:
void CallBackProc(widget_id, tag, callback_data)

Widget *widget_id;
Opaque tags
XmAnyCallbackStruct *callback_data;

widget_id Specifies the widget ID associated with the widget performing the
callback (as in any callback function).

tag Specifies the tag value (as in any callback function).

callback_data
Specifies a widget-specific data structure. This data structure has a

minimum of two members: event and reason. The reason member is
always set to MrmCR_CREATE.

Note that the widget name and parent are available from the widget record
accessible through widget_id.

Return Value

This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.
MrmFAILURE The function failed.

1-101

OSF/Motif Programmer’s Reference

Object(3X)

Object—The Object widget class

Synopsis #include <Xm/Xm.h>

Description

1-102

Object is never instantiated. Its sole purpose is as a supporting superclass for other

widget classes.

Classes

The class pointer is objectClass.

The class name is Object.

New Resources

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Object Resource Set

Name Default Access
Class Type
XmNdestroyCallback NULL C
XmCcCallback XtCallbackList
XmNdestroyCallback

Specifies a list of callbacks that is called when the gadget is

destroyed.

Translations

There are no translation for Object.

Reference Pages
OverrideShell(3X)

OverrideShell—The OverrideShell widget class

Synopsis #include <Xm/Xm.h>
#include <X11/Shell.h>

Description

OverrideShell is used for shell windows that completely bypass the window
manager, for example, PopupMenu shells.

Classes
OverrideShell inherits behavior and resources from Core, Compeosite, and Shell.

The class pointer is overrideShellWidgetClass.
The class name is OverrideShell.

New Resources

OverrideShell defines no new resources, but overrides the XmNoverrideRedirect
and XmNsaveUnder resources in the Shell class.

Inherited Resources

OverrideShell inherits behavior and resources from the following superclasses. For
a complete description of each resource, refer to the reference page for that
superclass.

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-103

OSF/Motif Programmer’s Reference

OverrideShell(3X)

1-104

Shell Resource Set

Name Default Access
Class Type
XmNallowSheliResize False CG
XmCAllowShellResize Boolean
XmNcreatePopupChildProc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChildProc
XmNgeometry NULL CSG
XmCGeometry String
XmNoverrideRedirect True CSG
XmCOverrideRedirect Boolean
XmNpopdownCallback NULL C
XmCcCallback XtCallbackList
XmNpopupCallback NULL C
XmCCallback XtCallbackList
XmNsaveUnder True CSG
XmCSaveUnder Boolean
XmNvisual CopyFromParent CsG
XmCVisual Visual *
L
Composite Resource Set
Name Default Access
Class Type
XmNchildren NULL G
XmCReadOnly WidgetList
XmNinsertPosition NULL CSG
XmCinsertPosition XtOrderProc
XmNnumChildren 0 G
XmCReadOnly Cardinal

Reference Pages

OverrideShell (3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CSG
XmCAccelerators XtAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmCinitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-105

OSF/Motif Programmer’'s Reference

OverrideShell(3X)

Name Default Access
Class Type

XmNtranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CsaG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations

There are no translations for OverrideShell.

Related Information

Composite(3X), Core(3X), and Shell(3X).

1-106

Reference Pages
RectObj(3X)

RectObj—The RectObj widget class

Synopsis #include <Xm/Xm.h>

Description

RectObj is never instantiated. Its sole purpose is as a supporting superclass for
other widget classes.

Classes
RectObj inherits behavior and a resource from Object.

The class pointer is rectObjClass.
The class name is RectObj.

New Resources

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-107

OSF/Motif Programmer’s Reference

RectObj(3X)

XmNancestorSensitive

RectObj Resource Set

Name Default Access

Class Type
XmNancestorSensitive dynamic G

XmCSensitive Boolean
XmNborderWidth 1 CsG

XmCBorderWidth Dimension
XmNheight dynamic CSG

XmCHeight Dimension
XmNsensitive True CsG

XmCSensitive Boolean
XmNwidth dynamic CsG

XmCWidth Dimension
XmNx 0 CSG

XmCPosition Position
XmNy 0 CsSG

XmCPosition Position
Specifies whether the immediate parent of the gadget receives input
events. Use the function XtSetSensitive if you are changing the
argument to preserve data integrity (see XmNsensitive). The
default is the bitwise AND of the parent’s XmNsensitive and
XmNancestorSensitive resources.

XmNborderWidth

Specifies the width of the border placed around the RectObj’s
rectangular display area.

XmNheight Specifies the inside height (excluding the border) of the RectObj’s

rectangular display area.

XmNsensitive

1-108

Determines whether a RectObj receives input events. If a RectObj
is sensitive, the parent dispatches to the gadget all keyboard, mouse
button, motion, window enter/leave, and focus events. Insensitive
gadgets do not receive these events. Use the function
XtSetSensitive to change the sensitivity argument. Using
XtSetSensitive ensures that if a parent widget has XmNsensitive
set to False, the ancestor-sensitive flag of all its children is
appropriately set.

Reference Pages
RectObj(3X)

XmNwidth Specifies the inside width (excluding the border) of the RectObj’s
rectangular display area.

XmNx Specifies the x-coordinate of the upper left outside corner of the
RectObj’s rectangular display area. The value is relative to the
upper left inside corner of the parent window.

XmNy Specifies the y-coordinate of the upper left outside corner of the
RectObj’s rectangular display area. The value is relative to the
upper left inside corner of the parent window.

Inherited Resources

RectObj inherits behavior and a resource from Object. For a description of this
resource, refer to the Object reference page.

Object Resource Set

Name Default Access
Class Type

XmNdestroyCallback NULL C
XmCcCallback XtCallbackList

Translations
There are no translations for RectObj.

Related Information
Object(3X).

1-109

OSF/Motif Programmer’s Reference

Shell(3X)

Synopsis

Description

Shell—The Shell widget class

#include <Xm/Xm.h>
#include <X11/Shell.h>

Shell is a top-level widget (with only one managed child) that encapsulates the
interaction with the window manager.

At the time the shell’s child is managed, the child’s width is used for both widgets
if the shell is unrealized and no width has been specified for the shell. Otherwise,
the shell’s width is used for both widgets. The same relations hold for the height of
the shell and its child.

Classes

Shell inherits behavior and resources from Composite and Core.
The class pointer is shellWidgetClass.

The class name is Shell.

New Resources

1-110

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

Shell(3X)
Shell Resource Set

Name Default Access
Class Type

XmNallowShellResize False CG
XmCAllowShellResize Boolean

XmNcreatePopupChildProc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChildProc

XmNgeometry NULL CSG
XmCGeometry String

XmNoverrideRedirect False CsG
XmCOverrideRedirect Boolean

XmNpopdownCallback NULL C
XmCcCallback XtCallbackList

XmNpopupCallback NULL C
XmCCallback XtCallbackList

XmNsaveUnder False CsG
XmCSaveUnder Boolean

XmNvisual CopyFromParent CSG
XmCVisual Visual *

XmNallowShellResize

Specifies that if this resource is False, the Shell widget instance
returns XtGeometryNo to all geometry requests from its children.

XmNcreatePopupChildProc

Specifies the pointer to a function that is called when the Shell
widget instance is popped up by XtPopup. The function creates the
child widget when the shell is popped up instead of when the
application starts up. This can be used if the child needs to be
reconfigured each time the shell is popped up. The function takes
one argument, the popup shell, and returns no result. It is called
after the popup callbacks specified by XmNpopupCallback.

XmNgeometry

Specifies the desired geometry for the widget instance. This
resource is examined only when the widget instance is unrealized
and the number of its managed children is changed. It is used to
change the values of the XmNx, XmNy, XmNwidth, and
XmNheight resources.

1-111

OSF/Motif Programmer's Reference
Shell(3X)

XmNoverrideRedirect
If True, specifies that the widget instance is a temporary window
which should be ignored by the window manager. Applications and
users should not normally alter this resource.

XmNpopdownCallback
Specifies a list of callbacks that is called when the widget instance is
popped down by XtPopdown.

XmNpopupCallback
Specifies a list of callbacks that is called when the widget instance is
popped up by XtPopup.

XmNsaveUnder
If True, specifies that iit is desirable to save the contents of the
screen beneath this widget instance, avoiding expose events when
the instance is unmapped. This is a hint, and an implementation
may save contents whenever it desires, including always or never.

XmNvisual Specifies the visual used in creating the widget.

Inherited Resources
Shell inherits behavior and resources from the superclass described in the
following table. For a complete description of each resource, refer to the reference
page for that superclass.

Composite Resource Set
Name Default Access
Class Type
XmNchildren NULL G
XmCReadOnly WidgetList
XmNinsertPosition NULL CSG
XmClnsertPosition XtOrderProc
XmNnumChildren 0 G
XmCReadOnly Cardinal

1-112

Reference Pages

Shell(3X)
Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CsG
XmCAccelerators XtAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSsG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClinitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-113

OSF/Motif Programmer’s Reference

Shell(3X)

Name Default Access
Class Type

XmNtranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNXx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for Shell.

Related Information
Composite(3X) and Core(3X).

1-114

Reference Pages
TopLevelShell(3X)

TopLevelShell—The TopLevelShell widget class

Synopsis #include <Xm/Xm.h>
#include <X11/Shell.h>

Description
TopLevelShell is used for normal top-level windows such as any additional top-
level widgets an application needs.

Classes

TopLevelShell inherits behavior and resources from Core, Composite, Shell,
WMShell, and VendorShell.

The class pointer is topLevelShellWidgetClass.
The class name is TopLevelShell.

New Resources

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

]7 TopLevelShell Resource Set

Name Default Access
Class Type

XmNiconic False CsG
XmClconic Boolean

XmNiconName NULL CsG
XmCiconName String

XmNiconNameEncoding dynamic CSG
XmClconNameEncoding Atom

‘ XmNiconic If True when the widget instance is realized, specifies that the

! widget instance indicates to the window manager that the

i application wishes to start as an icon, regardless of the
XmNinitialState resource.

1-115

OSF/Motif Programmer's Reference

TopLeveISheII(3X)

1-116

Inherited Resources
TopLevelShell inherits behavior and resources from the following superclasses.
For a complete description of each resource, refer to the reference page for that

XmNiconName

Specifies the short form of the application name to be displayed by
the window manager when the application is iconified.

XmNiconNameEncoding

Specifies a property type that represents the encoding of the
XmNiconName string. If a language procedure has been set, the
default is None; otherwise, the default is XA_STRING. When the
widget is realized, if the value is None, the corresponding name is
assumed to be in the current locale. The name is passed to
XmbTextListToTextProperty with an encoding style of
XStdICCTextStyle. The resulting encoding is STRING if the name
is fully convertible to STRING, otherwise COMPOUND_TEXT.
The values of the encoding resources are not changed; they remain
None.

Reference Pagés

TopLevelShell (3X)

VendorShell Resource Set

Name Default Access
Class Type
XmNaudibleWarning XmBELL CSG
XmCAudibleWarning unsigned char
XmNbuttonFontList dynamic CsG
XmCButtonFontList XmPFontList
XmNdefaultFontList dynamic CG
XmCDefaultFontList XmFontList
XmNdeleteResponse XmDESTROY CsG
XmCDeleteResponse unsigned char
XmNinputMethod NULL CSG
XmCinputMethod String
XmNkeyboardFocusPolicy XmEXPLICIT CsG
XmCKeyboardFocusPolicy unsigned char
XmNIlabelFontList dynamic CSG
XmCLabelFontList XmFontList
XmNmwmDecorations -1 CsG
XmCMwmDecorations int
XmNmwmFunctions -1 CsG
XmCMwmPFunctions int
XmNmwminputMode -1 CsG
XmCMwmlinputMode int
XmNmwmMenu NULL CSG
XmCMwmMenu String
XmNpreeditType dynamic CsG
XmCPreeditType String
XmNshellUnitType XmPIXELS CSG
XmCSheliUnitType unsigned char
XmNtextFontList dynamic CsG
XmCTextFontList XmPFontList
XmNuseAsyncGeometry False CsG
XmCUseAsyncGeometry Boolean

1-117

OSF/Motif Programmer’s Reference

TopLevelShell(3X)

1-118

WMShell Resource Set

Name Default Access
Class Type

XmNbaseHeight XtUnspecifiedShellint CSG
XmCBaseHeight int

XmNbaseWidth XtUnspecifiedShellint CSG

| XmCBaseWidth int

XmNheightinc XtUnspecifiedShellint CSG
XmCHeightinc int

XmNiconMask NULL CSG
XmClconMask Pixmap

XmNiconPixmap NULL CSG
XmClconPixmap Pixmap

XmNiconWindow NULL CSG
XmClconWindow Window

XmNiconX -1 CSG
XmCiconX int

XmNiconY -1 CSG
XmClconY int

XmNinitialState NormalState CSG
XmClnitialState int

XmNinput True CSG
XmClnput Boolean

XmNmaxAspectX XtUnspecifiedShellint CSG
XmCMaxAspectX int

XmNmaxAspectY XtUnspecifiedShellint CSG
XmCMaxAspectY int

XmNmaxHeight XtUnspecifiedShellint CSG
XmCMaxHeight int

XmNmaxWidth XtUnspecifiedShellint CSG
XmCMaxWidth int

XmNminAspectX