
OSF/Motif™

Programmer's Reference

OPEN SOFTWARE FOUNDATION

OSF I MotifTM
Programmer's Reference

Revision 1.2

(For aSF/Motif Release 1.2)

Open Software Foundation

• P T R Prentice Hall, Englewood Cliffs, New Jersey 07632

Cover design
and cover illustration: BETH FAGAN

This book was formatted with troff

• Published by P T R Prentice-Hall, Inc.
- A Simon & Schuster Company
== Englewood Cliffs, New Jersey 07632

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein or for incidental consequential damages in connection
with the furnishing, performance, or use of this material.

All rights are reserved. No part of this publication may be photocopied, reproduced, or translated into another
language without the prior written consent of the Open Software Foundation, Inc.

• © Copyright 1989,1990,1993 Open Software Foundation, Inc.

• © Copyright 1989 Digital Equipment Corporation

• © Copyright 1987,1988,1989,1992 Hewlett-Packard Company

• © Copyright 1988 Massachusetts Institute of Technology

• © Copyright 1988 Microsoft Corporation

All rights reserved. Printed in U.S.A.

Printed in the United States of America
ill 987 6 ~ 4 3 2 1

ISBN 0-13-643115-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE
ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of,
this computer software, the rights of the Government regarding its use, reproduction and disclosure are
as set forth in Section 52.227-19 of the FARS Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions
as set forth in paragraph (b)(3)(B) of the Rights in Technical Data and Computer Software clause in DAR
7-104.9(a). This computer software is submitted with "restricted rights." Use, duplication or disclosure is
subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985):' If the contract contains the Clause at 18-52.227-74 "Rights in
Data General" then the "Alternate III" Clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open
Software Foundation, Inc.

DEC and DIGITAL are registered trademarks of Digital Equipment Corporation.

Hewlett-Packard and HP are trademarks of Hewlett-Packard Company.

Microsoft is a registered trademark of Microsoft Corporation.

Presentation Manager is a trademark of International Business Machines Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the U.S. and other countries.

X Window System is a trademark of the Massachusetts Institute of Technology.

Contents

Preface .

Audience

Applicability

Purpose

Document Usage
Reference Page Format

Related Documents .

Typographic and Keying Conventions
Keyboard Conventions
Mouse Conventions .

Problem Reporting

Chapter 1. Reference Pages •
mwm
uil •
xmbind
ApplicationShell
Composite
Constraint
Core
MrmCloseHierarchy
MrmFetchBitmapLiteral
MrmFetchColorLiteral •
MrmFetchIconLiteral
MrmFetchLiteral
MrmFetchSet Values
MrmFetch Widget
MrmFetch WidgetOverride
MrmInitialize
MrmOpenHierarchy
MrmOpenHierarchyPerDisplay
MrmRe gisterClass
MrmRegisterNames
MrmRegisterNamesInHierarchy
Object

xi

xi

xii

xii

xii
xiii

XIV

xiv
xv
xv

xvi

1-1
1-2

1-48
1-50
1-51
1-59
1-64
1-67
1-72
1-73
1-75
1-77
1-79
1-81
1-83
1-85
1-87
1-88
1-92
1-96
1-98

1-100
1-102

OSF/Motif Programmer's Reference

ii

OverrideS hell
RectObj • . • .
Shell • • . • . . . • . . • .
TopLevelShell • . . • . .
TransientShell • . • • .
Uil • . .
UilDumpSymbolTable . • • • . . • • •
VendorS hell . • . • • • • . •
VirtualBindings • • • • • . • • . .
WMShell • • •• •.....•.
XmActi vateProtocol •
XmActi vate WMProtocol . • •
XmAddProtocolCallback. ..•••.••.
XmAddProtocols • • • • • • • .
XmAddTabGroup • • .
XmAddWMProtocolCallback. . . • . . • .
XmAddWMProtocols . . • . •
XmArrowButton. . . . • • . • • .
XmArrowButtonGadget . • • . .
XmBulletinBoard . • • . •
XmCascadeButton • • • • • . • . . . • .
XmCascadeButtonGadget .
XmCascadeButtonGadgetHighlight •
XmCascadeButtonHighlight
XmChangeColor • • . .
XmClipboardCancelCopy . • •
XmClipboardCopy • . . •
XmClipboardCopyByName
XmClipboardEndCopy . . •
XmClipboardEndRetrieve • • . . . • •
XmClipboardInquireCount ••••...•.•.
XmClipboardInquireFormat . • . • . . • • .
XmClipboardInquireLength • . . • . .
XmClipboardInquirePendingItems . • . .
XmClipboardLock • . . . • • • .
XmClipboardRegisterFormat • . . • .
XmClipboardRetrieve • . •
XmClipboardStartCopy
XmClipboardStartRetrieve ••......
XmClipboardUndoCopy . • • . • • .
XmClipboardUnlock • • . • .
XmClipboardWithdrawFormat • . • . .
XmCommand .•• . • • . • . .
XmCommandAppendValue • • . .
XmCommandError • • . • • . . . •
XmCommandGetChild. • . •
XmCommandSetValue. . • • .

1-103
1-107
1-110
1-115
1-123
1-131
1-136
1-138
1-151
1-160
1-170
1-171
1-172
1-173
1-174
1-175
1-176
1-177
1-185
1-192
1-204
1-216
1-225
1-226
1-227
1-228
1-230
1-232
1-234
1-236
1-237
1-239
1-241
1-243
1-245
1-247
1-249
1-251
1-254
1-256
1-257
1-259
1-260
1-273
1-274
1-275
1-276

XmConvertUnits •
XmCreateArrowButton .
XmCreateArrow ButtonGadget
XmCreateBulletinBoard •
XmCreateBulletinBoardDialog
XmCreateCascadeButton • •
XmCreateCascadeButtonGadget •
XmCreateCommand
XmCreateDialogShell •
XmCreateDragIcon .
XmCreateDrawingArea
XmCreateDrawnButton
XmCreateErrorDialog .
XmCreateFileSelectionBox
XmCreateFileSelectionDialog
XmCreateForm
XmCreateFormDialog •
XmCreateFrame .
XmCreateInformationDialog .
XmCreateLabel .
XmCreateLabelGadget •
XmCreateList
XmCreateMain Window
XmCreateMenuBar .
XmCreateMenuShell
XmCreateMessageBox •
XmCreateMessageDialog .
XmCreateOptionMenu .
XmCreatePanedWindow
XmCreatePopupMenu .
XmCreatePromptDialog
XmCreatePulldownMenu .
XmCreatePushButton • •
XmCreatePushButtonGadget •
XmCreateQuestionDialog •
XmCreateRadioBox
XmCreateRowColumn •
XmCreateScale
XmCreateScrollBar •
XmCreateScrolledList •
XmCreateScrolledText .
XmCreateScrolledWindow
XmCreateSelectionBox .
XmCreateSelectionDialog •
XmCreateSeparator •
XmCreateSeparatorGadget
XmCreateSimpleCheckBox

Contents

1-277
1-279
1-280
1-281
1-282
1-283
1-284
1-285
1-286
1-287
1-288
1-289
1-290
1-291
1-293
1-295
1-296
1-297
1-298
1-299
1-300
1-301
1-302
1-303
1-305
1-306
1-307
1-308
1-310
1-311
1-313
1-314
1-316
1-317
1-318
1-319
1-321
1-323
1-324
1-325
1-327
1-329
1-330
1-331
1-333
1-334
1-335

iii

OSF/Motif Programmer's Reference

iv

XmCreateSimpleMenuBar
XmCreateSimpleOptionMenu
XmCreateSimplePopupMenu . •
XmCreateSimplePulldownMenu .
XmCreateSimpleRadioBox
XmCreateTe~plateDialog •
XmCreateText
XmCreateTextFie1d .
XmCreateToggleButton
XmCreateToggleButtonGadget
XmCreateWamingDialog .
XmCreate W orkArea .
XmCreate W orkingDialog .
XmCvtCTToXmString .
XmCvtStringToUnitType .
XmCvtXmStringToCT .
XmDeacti vateProtocol .
XmDeacti vate WMProtocol
XmDestroyPixmap •
XmDialogShell
XmDisplay
XmDragCancel
XmDragContext .
XmDragIcon .
XmDragStart .
XmDrawingArea
XmDrawnButton
XmDropSite . . .
XmDropSiteConfigureStackingOrder
XmDropSiteEndUpdate
XmDropSiteQueryStackingOrder
XmDropSiteRegister
XmDropSiteRetrieve
XmDropSiteStart Update
XmDropSiteUnregister .
XmDrojJSiteUpdate .
XmDropTransfer
XmDropTransferAdd
XmDropTransferStart
XmFileSelectionBox
XmFileSelectionBoxGetChild
XmFileSelectionDoSearch
XmFontList
XmFontListAdd .
XmFontListAppendEntry .
XmFontListCopy
XmFontListCreate

1-336
1-337
1-339
1-341
1-343
1-344
1-345
1-346
1-347
1-348
1-349
1-350
1-351
1-352
1-353
1-354
1-356
1-357
1-358
1-359
1-367
1-372
1-373
1-396
1-401
1-402
1-410
1-421
1-431
1-432
1-433
1-434
1-435
1-436
1-437
1-438
1-439
1-442
1-443
1-444
1-467
1-469
1-470
1-472
1-473
1-474
1-475

XmFontListEntryCreate
XmFontListEntryFree .
XmFontListEntryGetFont •
XmFontListEntryGetTag
XmFontListEntryLoad • •
XmFontListFree .
XmFontListFreeFontContext • .
XmFontListGetN extFont
XmFontListInitFontContext
XmFontListNextEntry .
XmFontListRemoveEntry .
XmForm .
XmFrame •
XmGadget
XmGetAtomName .
XmGetCo1orCa1cu1ation
XmGetCo1ors ..
XmGetDestination .
XmGetDragContext
XmGetFocus Widget
XmGetMenuCursor •
XmGetPixmap .
XmGetPixmapBy Depth
XmGetPostedFrom Widget •
XmGetSecondaryResourceData
XmGetTabGrQup
XmGetTearOffContro1 .
XmGetVisibi1ity •
XmGetXmDisp1ay
XmGetXmScreen
XmInstallImage .
XmInternAtom
XmIsMotifWMRunning
XmIsTraversab1e
XmLabe1 .
XmLabe1Gadget • •
XmList
XmListAddItem . . .
XmListAddItem Unse1ected
XmListAddItems
XmListAddItems U nse1ected
XmListDe1eteAllItems .
XmListDe1eteItem .
XmListDe1eteItems .
XmListDe1eteItemsPos .
XmListDe1etePos
XmListDe1etePositions •

Contents

1-476
1-477
1-478
1-479
1-480
1-482
1-483
1-484
1-485
1-486
1-487
1-488
1-509
1-518
1-524
1-525
1-526
1-527
1-528
1-529
1-530
1-531
1-534
1-537
1-538
1-540
1-541
1-542
1-543
1-544
1-545
1-547
1-548
1-549
1-550
1-564
1-577
1-602
1-603
1-604
1-605
1-606
1-607
1-608
1-609
1-610
1-611

v

OSF/Motif Programmer's Reference

XmListDeselectAllItems · · · · 1-612
XmListDeselectItem · 1-613
XmListDeselectPos · · · · 1-614
XmListGetKbdItemPos 1-615
XmListGetMatchPos · · 1-616
XmListGetSelectedPos . · · · · · 1-617
XmListltemExists · · · · · 1-618
XmListltemPos · · · 1-619
XmListPosSelected · · · · · · · 1-620
XmListPosToBounds 1-621
XmListReplaceltems · · · · 1-622
XmListReplaceltemsPos · · · · 1-623
XmListReplaceltemsPos U nselected · · · 1-624
XmListReplaceltems U nselected · · · 1-625
XmListReplacePositions · · · · 1-626
XmListSelectItem · · 1-627
XmListSelectPos · · · · · · · · 1-628
XmListSetAddMode · · · 1-629
XmListSetBottomltem · · · 1-630
XrnListSetBottomPos · · · 1-631
XmListSetHorizpos • · · · · 1-632
XmListSetltem · · · 1-633
XmListSetKbdltemPos . 1-634
XmListSetPos 1-635
XmListUpdateSelectedList · · · · 1-636
XmListYToPos · · · · 1-637
XmMain Window · · · · 1-638
XmMain WindowSep 1 · · · · · 1-646
XmMain WindowSep2 · · · 1-647
XmMain WindowSep3 · 1-648
XmMain WindowSetAreas 1-649
XmManager · · · · 1-651
XmMapSegmentEncoding • 1-664
XmMenuPosition · · · 1-665
XmMenuShell · · 1-666
XmMessageBox · · · · · 1-673
XmMessageBoxGetChild · · · · · · · 1-685
XmOptionButtonGadget · · · 1-686
XmOptionLabelGadget 1-687
XmPanedWindow · 1-688
XmPrimiti ve . · · 1-698
XmProcessTra versal · · · 1-708
XmPushButton · · · 1-711
XmPushButtonGadget · · · 1-724
XmRegisterSegmentEncoding · · · 1-736
XmRemoveProtocol Callback 1-737
XmRemoveProtocols · · · · · · 1-738

vi

XmRemoveTabGroup •
XmRemove WMProtocolCallback
XmRemove WMProtocols .
XmRepTypeAddReverse
XmRepTypeGetld
XmRepTypeGetN ameList .
XmRepTypeGetRecord
XmRepTypeGetRegistered
XmRepTypeInstallTearOffModelConverter
XmRepTypeRegister
XmRepType ValidValue
XmResol veAllPartOffsets .
XmResolvePartOffsets .
XmRowColumn .
XmScale .
XmScaleGetValue
XmScaleSet Value
XmScreen
XmScrollBar •
XmScrollBarGet Values
XmScrollBarSet Values
XmScrollVisible
XmScrolledWindow
XmScrolledWindowSetAreas
XmSelectionBox
XmSelectionBoxGetChild .
XmSeparator •
XmSeparatorGadget
XmSetColorCa1culation
XmSetFontUnit .
XmSetFontUnits .
XmSetMenuCursor .
XmSetProtocolHooks •
XmSetWMProtocolHooks •
XmString .
XmStringBaseline
XmStringByteCompare
XmStringCompare •
XmStringConcat .
XmStringCopy
XmStringCreate .
XmStringCreateLocalized •
XmStringCreateLtoR
XmStringCreateSimple
XmStringDirection •
XmStringDirectionCreate .
XmStringDraw

Contents

1-739
1-740
1-741
1-742
1-743
1-744
1-745
1-747
1-749
1-750
1-752
1-753
1-756
1-759
1-788
1-800
1-801
1-802
1-810
1-824
1-825
1-827
1-828
1-840
1-842
1-857
1-859
1-865
1-870
1-872
1-873
1-874
1-875
1-877
1-878
1-879
1-880
1-881
1-882
1-883
1-884
1-886
1-887
1-888
1-889
1-890
1-891

vii

OSF/Motif Programmer's Reference

viii

XmStringDrawImage
XmStringDrawUnderline
XmStringEmpty . . .
XmStringExtent • .
XmStringFree
XmStringFreeContext .
XmStringGetLtoR .•.•
XmStringGetNextComponent .•..
XmStringGetNextSegment
XmStringHasSubstring .
XmStringHeight. • .
XmStringInitContext
XmStringLength. .
XmStringLineCount
XmStringNConcat
XmStringNCopy. . . •
XmStringPeekNextComponent
XmStringSegmentCreate
XmStringSeparatorCreate . • • . • .
XmStringTable
XmStringWidth . . • . . . • •
XmTargetsAreCompatible. .
XmText . . • • .
XmTextClearSelection .
XmTextCopy. • . • •
XmTextCut . . • . . • • • •
XmTextDisableRedisplay . .
XmTextEnableRedisplay
XmTextField. . •
XmTextFieldClearSelection .•.•
XmTextFieldCopy • . • . • . .
XmTextFieldCut
XmTextFieldGetBaseline . . . • • . .
XmTextFieldGetEditable . .
XmTextFieldGetInsertionPosition
XmTextFieldGetLastPosition. • .
XmTextFieldGetMaxLength • • .
XmTextFieldGetSelection. • . . .
XmTextFieldGetSelectionPosition
XmTextFieldGetSelection W cs
XmTextFieldGetString. • .
XmTextFieldGetStringWcs . • . •
XmTextFieldGetSubstring. .
XmTextFieldGetSubstringW cs
XmTextFieldInsert • •
XmTextFieldInsertWcs .•
XmTextFieldPaste • . . • .

1-893
1-895
1-897
1-898
1-899
1-900
1-901
1-902
1-904
1-905
1-906
1-907
1-908
1-909
1-910
1-911
1-912
1-913
1-914
1-915
1-916
1-917
1-918
1-951
1-952
1-953
1-954
1-955
1-956
1-979
1-980
1-981
1-982
1-983
1-984
1-985
1-986
1-987
1-988
1-989
1-990
1-991
1-992
1-994
1-996
1-997
1-998

XmTextFieldPosToXY. • • . • •
XmTextFieldRemove
XmTextFieldReplace . • • . • •
XmTextFieldReplace W cs •
XmTextFieldSetAddMode. • . • •
XmTextFieldSetEditable
XmTextFieldSetHighlight. • . • • • •
XmTextFieldSetInsertionPosition
XmTextFieldSetMaxLength • . • • • . • . • • •
XmTextFieldSetSelection • . . • • .
XmTextFieldSetString .. ••••
XmTextFieldSetStringWcs ..•..•
XmTextFieldShowPosition • • • •
XmTextFieldXYToPos . • • • • . • . •
XmTextFindString . • • . • • . .
XmTextFindStringW cs. • •
XmTextGetBaseline
XmTextGetEditable
XmTextGetInsertionPosition .
XmTextGetLastPosition
XmTextGetMaxLength
XmTextGetSelection
XmTextGetSelectionPosition .
XmTextGetSelectionWcs •
XmTextGetSource .
XmTextGetString
XmTextGetStringWcs . •
XmTextGetSubstring . . . • .
XmTextGetSubstringW cs • • • • .
XmTextGetTopCharacter • . • . . . • . • • . •
XmTextInsert •••..••.
XmTextInsertWcs
XmTextPaste. • • . • . • .
XmTextPosToXY . • • .
XmTextPosition. • . • . • • .
XmTextRemove . • . . • • •
XmTextReplace .• .••.
XmTextReplace W cs . . • •
XmTextScroll . • . • . . • •
XmTextSetAddMode . . • • . • • . . •
XmTextSetEditable
XmTextSetHighlight • . • • • • • . • • . • •
XmTextSetInsertionPosition . • . • .
XmTextSetMaxLength. • • • • • .
XmTextSetSelection
XmTextSetSource
XmTextSetString

Contents

1-999
1-1000
1-1001
1-1002
1-1003
1-1004
1-1005
1-1006
1-1007
1-1008
1-1009
1-1010
1-1011
1-1012
1-1013
1-1015
1-1017
1-1018
1-1019
1-1020
1-1021
1-1022
1-1023
1-1024
1-1025
1-1026
1-1027
1-1028
1-1030
1-1032
1-1033
1-1034
1-1035
1-1036
1-1037
1-1038
1-1039
1-1040
1-1041
1-1042
1-1043
1-1044
1-1045
1-1046
1-1047
1-1048
1-1049

ix

OSF/Motif Programmer's Reference

XmTextSetStringW cs
XmTextSetTopCharacter
XmTextShowPosition • •
XmTextXYToPos
XmToggleButton
XmToggleButtonGadget
XmToggleButtonGadgetGetState
XmToggleButtonGadgetSetState •
XmToggleButtonGetState. . . • • • •
XmToggleButtonSetState •
XmTrackingEvent
XmTrackingLocate . • • • •
XmTranslateKey
XmUninstallImage . . • • .
XmUpdateDisplay
Xm V aCreateSimpleCheckBox . • • • •
Xm VaCreateSimpleMenuBar. . . . • • .
Xm VaCreateSimpleOptionMenu. . • • .
Xm VaCreateSimplePopupMenu •
Xm VaCreateSimplePulldownMenu . . • • .
Xm VaCreateSimpleRadioBox
Xm WidgetGetBaselines • . . • . . • .
Xm WidgetGetDisplayRect
UIL ..••••.
WML • • .

Appendix A. Constraint Arguments and Automatically Created
Children . • • • . • . • .

Appendix B. UIL Built-In Tables • . .

Appendix C. UIL Arguments •

Index

x

1-1050
1-1051
1-1052
1-1053
1-1054
1-1068
1-1080
1-1081
1-1082
1-1083
1-1084
1-1085
1-1086
1-1087
1-1088
1-1089
1-1092
1-1094
1-1097
1-1101
1-1106
1-1109
1-1110
1-1111
1-1142

A-I

B-1

C-1

Index-1

Preface

The OSFIMotij Programmer's Reference contains the reference pages for
OSFlMotif™ commands and functions, including toolkit, window manager,
and user interface language commands and functions.

Audience

This document is written for programmers who want to write applications
using Motif ™ interfaces.

This document assumes that the reader is familiar with the American
National Standards Institute (ANSI) C programming language. It also
assumes that the reader has a general understanding of the X Window
System, the Xlib library, and the X Toolkit Intrinsics (Xt).

xi

OSF/Motif Programmer's Reference

Applicability

Purpose

This is Revision 1.2 of this document. It applies to Release 1.2 of the
OSPlMotif software system.

The purpose of this reference is to provide detailed descriptions of the Motif
commands and functions.

Document Usage

xii

This document is organized into one chapter and three appendixes:

• Chapter 1 contains all the reference pages for the Motif commands and
functions.

• Appendix A contains a list of the constraint arguments and
automatically created children for widgets available within UIL.

• Appendix B contains a list of the reasons and controls, or children, that
UIL supports for each Motif Toolkit object.

• Appendix C contains a list of the UIL arguments and their data types.

Preface

Reference Page Format

The reference pages in this volume use the following format:

Purpose

Synopsis

This section gives a short description of the interface.

This section describes the appropriate syntax for using the
interface.

Description
This section describes the behavior of the interface. On widget
reference pages there are tables of resource values in the
descriptions. These tables have the following headings:

Name

Class

Type

Contains the name of the resource. Each new resource
is described following the new resources table.

Contains the class of the resource.

Contains the type of the resource.

Default Contains the default value of the resource.

Access Contains the access permissions for the resource. A C
in this column means the resource can be set at widget
creation time. An S means the resource can be set
anytime. A G means the resource's value can be
retrieved.

Examples
This sections gives practical examples for using the interface.

Return Value

Errors

This section lists the values returned by function interfaces.

This section describes the error conditions associated with using
this interface.

Related Information
This section provides cross-references to related interfaces and
header files described within this document.

xiii

OSF/Motif Programmer's Reference

Related Documents

For additional information about aSFIMotif, refer to the following
documents:

• The Application Environment Specification - User Environment
Volume defines a stable set of routines for creating user interface
applications.

• The OSFIMoti[Style Guide explains the principles of user interface
design for application developers.

• The OSFIMoti[User's Guide explains how to interact with aSF/Motif
applications.

For additional information about Xlib and Xt, refer to the following X
Window System documents:

• Xlib-C Language X Interface is the specification for Xlib.

• X Toolkit Intrinsics-C Language Interface is the specification for Xt.

Typographic and Keying Conventions

xiv

This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that an
application or user must use literally, such as functions, data
types, commands, flags, and pathnames. Bold words also
indicate the first use of a term included in the glossary.

Italic Italic words or characters represent variable values and
arguments that an application or user must supply.

Constant width
Examples and information that the system displays appear in
this typeface.

< > Angle brackets enclose the name of a key on the keyboard.

ComponentName
Components of the user interface are represented by uppercase
letters for each major word in the name of the component,

Preface

such as PushButton.

Keyboard Conventions

Because not all keyboards are the same, it is difficult to specify keys that are
correct for every manufacturer's keyboard. To solve this problem, this
reference describes keys using a virtual key mechanism. The term virtual
implies that the keys as described do not necessarily correspond to a fixed
set of actual keys. Instead, virtual keys are linked to actual keys by means
of virtual bindings. A given virtual key may be bound to different physical
keys for different keyboards.

See the OSFIMotif Programmer's Guide for information on the mechanism
for binding virtual keys to actual keys. For details see the
VirtuaIBindings(3X) reference page in this document.

Mouse Conventions

Mouse buttons are described in this reference using a virtual button
mechanism to better describe behavior independent from the number of
buttons on the mouse. This guide assumes a 3-button mouse. On a 3-button
mouse, the leftmost mouse button is usually defined as BSelect, the middle
mouse button is usually defined as BTransfer, and the rightmost mouse
button is usually defined as BMenu. For details about how virtual mouse
buttons are usually defined, see the VirtuaIBindings(3X) reference page in
this document.

xv

OSF/Motif Programmer's Reference

Problem Reporting

xvi

If you have any problems with the software or documentation, please
contact your software vendor's customer service department.

Chapter 1

Reference Pages

This chapter contains the reference pages for the OSFIMotif Programmer's
Reference.

1-1

OSF/Motif Programmer's Reference

mwm(1X)

Synopsis

Description

mwm-The Motif Window Manager

mwm [options]

mwm is an X Window System client that provides window management
functionality and some session management functionality. It provides functions
that facilitate control (by the user and the programmer) of elements of window
state such as placement, size, icon/normal display, and input-focus ownership. It
also provides session management functions such as stopping a client.

Options

1-2

-display display
This option specifies the display to use; see XCI).

-xrm resourcestring
This option specifies a resource string to use.

-multiscreen
This option causes mwm to manage all screens on the display. The
default is to manage only a single screen.

-name name
This option causes mwm to retrieve its resources using the specified
name, as in name *resource .

-screens name [name [... JJ

Appearance

This option specifies the resource names to use for the screens managed
by mwm. If mwm is managing a single screen, only the first name in
the list is used. If mwm is managing multiple screens, the names are
assigned to the screens in order, starting with screen O. Screen 0 gets
the first name, screen 1 the second name, and so on.

The following sections describe the basic default behaviors of windows, icons, the
icon box, input focus, and window stacking. The appearance and behavior of the
window manager can be altered by changing the configuration of specific
resources. Resources are defined under the heading "X DEFAULTS."

Reference Pages

mwm(1X)

Screens
By default, mwm manages only the single screen specified by the -display option
or the DISPLAY environment variable (by default, screen 0). If the -multiscreen
option is specified or if the multiScreen resource is True, mwm tries to manage all
the screens on the display.

When mwm is managing multiple screens, the -screens option can be used to give
each screen a unique resource name. The names are separated by blanks, for
example, -screens mwmO mwml. If there are more screens than names, resources
for the remaining screens will be retrieved using the first name. By default, the
screen number is used for the screen name.

Windows
Default mwm window frames have distinct components with associated functions:

Title Area
In addition to displaying the client's title, the title area is used to move
the window. To move the window, place the pointer over the title area,
pressing button 1 and dragging the window to a new location. By
default, a wire frame is moved during the drag to indicate the new
location. When the button is released, the window is moved to the new
location.

Title Bar The title bar includes the title area, the minimize button, the maximize
button, and the window menu button. In shaped windows, such as
round windows, the title bar floats above the window.

Minimize Button
To tum the window into an icon, click button 1 on the minimize button
(the frame box with a small square in it).

Maximize Button
To make the window fill the screen (or enlarge to the largest size
allowed by the configuration files), click button 1 on the maximize
button (the frame box with a large square in it).

Window Menu Button
The window menu button is the frame box with a horizontal bar in it.
To pull down the window menu, press button 1. While pressing, drag
the pointer on the menu to your selection, then release the button when
your selection is highlighted. Pressing button 3 in the title bar or resize
border handles also posts the window menu.

1-3

OSF/Motif Programmer's Reference

mwm(1X)

Icons

1-4

Alternately, you can click button 1 to pull down the menu and keep it
posted; then position the pointer and select. You can also post the
window menu by pressing <Shift> <Esc> or <Alt> <Space>. Double­
clicking button 1 with the pointer on the window menu button closes the
window. The following table lists the contents of the window menu.

Default Window Menu

Selection Accelerator Descri ption

Restore <Alt> <FS>

Restores the window to
its size
before minimizing or
maximizing

Move <Alb <F7> Allows the window to be moved
with keys or mouse

Size <Alb <F8> Allows the window to be resized

Minimize <Alb <F9> Turns the window into an icon

Maximize <Alb <F10> Makes the window fill the screen

Lower <Alb <F3> Moves window to bottom of
window stack

Close <Alb <F4> Causes client to terminate

Resize Border Handles

Matte

To change the size of a window, move the pointer over a resize border
handle (the cursor changes), press button 1, and drag the window to a
new size. When the button is released, the window is resized. While
dragging is being done, a rubber-band outline is displayed to indicate
the new window size.

An optional matte decoration can be added between the client area and
the window frame. A matte is not actually part of the window frame.
There is no functionality associated with a matte.

Icons are small graphic representations of windows. A window can be minimized
(iconified) using the minimize button on the window frame. Icons provide a way to
reduce clutter on the screen.

Pressing mouse button 1 when the pointer is over an icon causes the icon's window
menu to pop up. Releasing the button (press and release without moving mouse
equals a click) causes the menu to stay posted. The menu contains the selections
described in the following table.

Reference Pages

mwm(1X)

,-----

Icon Window Menu
~------------

Selection Accelerator Description
~--

Restore <Alt> <FS> Opens the associated window
c----- --

Move <Alb <F7> Allows the icon to be moved with keys
r----

Size <Alb <F8> Inactive (not an option for icons)
--

Minimize <Alb <F9> Inactive (not an option for icons)
J--------------- ------c------ --

Maximize <Alb <F10> Opens the associated window and
makes it fill the screen

r---
Lower <Alt> <F3> Moves icon to bottom of icon stack

f------------
Close <Alb <F4> Removes client from mwm management

--

Note that pressing button 3 over an icon also causes the icon's window menu to pop
up. To make a menu selection, drag the pointer over the menu and release button 3
when the desired item is highlighted.

Double-clicking button 1 on an icon invokes the f.restore_and_raise function and
restores the icon's associated window to its previous state. For example, if a
maximized window is iconified, then double-clicking button 1 restores it to its
maximized state. (In general, double-clicking a mouse button is a quick way to
perform a function.) Pressing <Shift> <Esc> or <Menu> (the pop-up menu key)
causes the icon window menu of the currently selected icon to pop up.

Icon Box
When icons begin to clutter the screen, they can be packed into an icon box. (To
use an icon box, mwm must be started with the icon box configuration already set.)
The icon box is an mwm window that holds client icons. It includes one or more
scroll bars when there are more window icons than the icon box can show at the
same time. Double-clicking button 1 on the icon box's icon opens the icon box and
allows access to the contained icons.

Icons in the icon box can be manipulated with the mouse. The following table
summarizes the behavior of this interface. Button actions apply whenever the
pointer is on any part of the icon. Note that double-clicking an icon in the icon box
invokes the f.restore_and_raise function.

1-5

OSF/Motif Programmer's Reference

mwm(1X)

Button Action Description

Button 1 click Selects the icon

Button 1 double-click Normalizes (opens) the associated
window
Raises an already open window to the
top of the stack

Button 1 drag Moves the icon

Button 3 press Causes the menu for that icon to pop up

Button 3 drag Highlights items as the pointer moves
across the menu

Icon Menu for the Icon Box

Selection Accelerator Description

Restore <Alb <FS> Opens the associated window (if not already open)

Move <Alb <F7> Allows the icon to be moved with keys

Size <Alb <F8> Inactive

Minimize <Alb <F9> Inactive

Maximize <Alb <F10> Opens the associated window (if not already open)
and maximizes its size

Lower <Alb <F3> Inactive

Close <Alb <F4> Removes client from mwm management

To pull down the window menu for the icon box itself, press button 1 with the
pointer over the menu button for the icon box. The window menu of the icon box
differs from the window menu of a client window: The "Close" selection is
replaced with the "PackIcons" <Shift> <Alt> <F7> selection. When selected,
PackIcons packs the icons in the box to achieve neat rows with no empty slots.

You can also post the window menu by pressing <Shift> <Esc> or <Alt>
<Space>. Pressing <Menu> (the pop-up menu key) causes the icon window menu
of the currently selected icon to pop up.

Input Focus

1-6

mwm supports (by default) a keyboard input focus policy of explicit selection.
This means when a window is selected to get keyboard input, it continues to get
keyboard input until the window is withdrawn from window management, another
window is explicitly selected to get keyboard input, or the window is iconified.
Several resources control the input focus. The client window with the keyboard
input focus has the active window appearance with a visually distinct window
frame.

Reference Pages

mwm(1X)

The following tables summarize the keyboard input focus selection behavior.

Button Action Object Function Description

Button 1 press Window / window frame Keyboard focus selection

Button 1 press Icon Keyboard focus selection

Key Action Function Description

<All> <Tab> Move input focus to next window
in window stack (available only
in explicit focus mode)

<All> <Shift> <Tab> Move input focus to previous
window in window stack
(available only in explicit focus
mode)

Window Stacking
There are two types of window stacks: global window stacks and an application's
local family window stack.

The global stacking order of windows may be changed as a result of setting the
keyboard input focus, iconifying a window, or performing a window manager
window stacking function. When keyboard focus policy is explicit, the default
value of the focusAutoRaise resource is True. This causes a window to be raised
to the top of the stack when it receives input focus, for example, when button 1 is
pressed on the title bar. The key actions defined in the previous table will thus
raise the window receiving focus to the top of the stack.

In pointer mode, the default value of focusAutoRaise is False; that is, the window
stacking order is not changed when a window receives keyboard input focus. The
following key actions can be used to cycle through the global window stack.

Key Action Function Description

<All> <Esc> Place top window on bottom of stack

<All> <Shift> <Esc> Place bottom window on top of stack

By default, a window's icon is placed on the bottom of the stack when the window
is iconified; however, the default can be changed by the lowerOnIconify resource.

Transient windows (secondary windows such as dialog boxes) stay above their
parent windows by default. However, an application's local family stacking order
may be changed to allow a transient window to be placed below its parent top-level
window.

1-7

OSF/Motif Programmer's Reference

mwm(1X)

The following parameters show the modification of the stacking order for the
f.lower function:

f.lower Lowers the transient window within the family (staying above the
parent) and lowers the family in the global window stack.

f.lower [within]
Lowers the transient window within the family (staying above the
parent), but does not lower the family in the global window stack.

f.lower [freeFamily]
Lowers the window free from its family stack (below the parent), but
does not lower the family in the global window stack.

The parameters within and freeFamily can also be used with f.raise and
f.raise_lower.

X Defaults

1-8

mwm is configured from its resource database. This database is built from the
following sources. They are listed in order of precedence, low to high:

• lusrllihlXll/app-defaultslMwm

• $HOMElMwm

• RESOURCE_MANAGER root window property or $HOME/.Xdefaults

• XENVIRONMENT variable or $HOME/.Xdefaults-host

• mwm command line options

The filenames lusrllihlXll/app-defaultslMwm and $HOMElMwm represent
customary locations for these files. The actual location of the system-wide class
resource file may depend on the XFILESEARCHPATH environment variable and
the current language environment. The actual location of the user-specific class
resource file may depend on the XUSERFILESEARCHPATH and XAPPLRESDIR
environment variables and the current language environment.

Entries in the resource database may refer to other resource files for specific types
of resources. These include files that contain bitmaps, fonts, and mwm specific
resources, such as menus and behavior specifications (for example, button and key
bindings).

Mwm is the resource class name of mwm, and mwm is the default resource name
used by mwm to look up resources. The -screens command line option specifies
resource names, such as mwm_h+w and mwm_color. In the following discussion
of resource specification, Mwm and mwm (and the aliased mwm resource names)
can be used interchangeably, but mwm takes precedence over Mwm.

Reference Pages

mwm(1X)

mwm uses the following types of resources:

Component Appearance Resources
These resources specify appearance attributes of window manager user
interface components. They can be applied to the appearance of
window manager menus, feedback windows (for example, the window
reconfiguration feedback window), client window frames, and icons.

General Appearance and Behavior Resources
These resources specify mwm appearance and behavior (for example,
window management policies). They are not set separately for different
mwm user interface components.

Client Specific Resources

These mwm resources can be set for a particular client window or class
of client window. They specify client-specific icon and client window
frame appearance and behavior.

Resource identifiers can be either a resource name (for example,
foreground) or a resource class (for example, Foreground). If the value
of a resource is a filename and if the filename is prefixed by -/ (tilde,
slash), then it is relative to the path contained in the HOME
environment variable (generally the user's home directory).

Component Appearance Resources
The syntax for specifying component appearance resources that apply to window
manager icons, menus, and client window frames is

~wm*resource_id

For example, ~wm*foreground is used to specify the foreground color for mwm
menus, icons, client window frames, and feedback dialogs.

The syntax for specifying component appearance resources that apply to a
particular mwm component is

~wm * [menuliconlclientlfeedback] * resource _id

If menu is specified, the resource is applied only to mwm menus; if icon is
specified, the resource is applied to icons; and if client is specified, the resource is
applied to client window frames. For example, ~wm*icon*foreground is used to
specify the foreground color for mwm icons, ~wm*menu*foreground specifies
the foreground color for mwm menus, and ~wm*client*foreground is used to
specify the foreground color for mwm client window frames.

1-9

OSF/Motif Programmer's Reference

mwm(1X)

1-10

The appearance of the title area of a client window frame (including window
management buttons) can be separately configured. The syntax for configuring the
title area of a client window frame is

Mwm*client*title*resource_id

For example, Mwm*client*title*foreground specifies the foreground color for
the title area. Defaults for title area resources are based on the values of the
corresponding client window frame resources.

The appearance of menus can be configured based on the name of the menu. The
syntax for specifying menu appearance by name is

Mwm*menu* menu_name * resource_id

For example, Mwm*menu*my _menu*foreground specifies the foreground color
for the menu named my_menu. The user can also specify resources for window
manager menu components, that is, the gadgets that make up the menu. These may
include for example, a menu title, title separator, one or more buttons, and
separators. If a menu contains more than one instance of a class, such as mUltiple
PushButtonGadgets, the name of the first instance is PushButtonGadgetl, the
second is PushButtonGadget2, and so on. The following list identifies the naming
convention used for window manager menu components:

Menu Title LabelGadget

Menu Title SeparatorGadget

CascadeButtonGadget

PushB uttonGadget

SeparatorGadget

TitleName

TitleSeparator

CascadeButtonGadgetn

PushButtonGadgetn

SeparatorGadgetn

Refer to the reference page for each class for a list of resources that can be
specified.

The following component appearance resources that apply to all window manager
parts can be specified.

Reference Pages

mwm(1X)

Component Appearance Resources-All Window Manager Parts

Name Class Value Type

background Background color

backgroundPixmap BackgroundPixmap string2

bottomShadowColor Foreground color

bottomShadowPixmap BottomShadowPixmap string2

fontList FontList string3

foreground Foreground color

saveUnder SaveUnder T/F

topShadowColor Background color

topShadowPixmap TopShadowPixmap string2

1 The default is chosen based on the visual type of the screen.
2Image name. See XmInstallImage(3X).
3Xll X Logical Font Description.

background (class Background)

Default

varies1

varies1

varies1

varies1

"fixed"

varies1

F

varies1

varies1

This resource specifies the background color. Any legal X color may be
specified. The default value is chosen based on the visual type of the
screen.

backgroundPixmap (class BackgroundPixmap)
This resource specifies the background pixmap of the mwm decoration
when the window is inactive (does not have the keyboard focus). The
default value is chosen based on the visual type of the screen.

bottomShadowColor (class Foreground)
This resource specifies the bottom shadow color. This color is used for
the lower and right bevels of the window manager decoration. Any
legal X color may be specified. The default value is chosen based on
the visual type of the screen.

bottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap. This pixmap is used
for the lower and right bevels of the window manager decoration. The
default is chosen based on the visual type of the screen.

fontList (class FontList)
This resource specifies the font used in the window manager decoration.
The character encoding of the font should match the character encoding
of the strings that are used. The default is "fixed."

1-11

OSF/Motif Programmer's Reference

mwm(1X)

1-12

foreground (class Foreground)
This resource specifies the foreground color. The default is chosen
based on the visual type of the screen.

saveUnder (class SaveUnder)
This is used to indicate whether "save unders" are used for mwm
components. For this to have any effect, save unders must be
implemented by the X server. If save unders are implemented, the X
server saves the contents of windows obscured by windows that have
the save under attribute set. If the saveUnder resource is True, mwm
will set the save under attribute on the window manager frame of any
client that has it set. If saveUnder is False, save unders will not be used
on any window manager frames. The default value is False.

topShadowColor (class Background)
This resource specifies the top shadow color. This color is used for the
upper and left bevels of the window manager decoration. The default is
chosen based on the visual type of the screen.

topShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap. This pixmap is used for
the upper and left bevels of the window manager decoration. The
default is chosen based on the visual type of the screen.

The following component appearance resources that apply to frame and icons can
be specified.

Frame and Icon Components

Name Class Value Type

activeBackground Background color

activeBackgroundPixmap BackgroundPixmap string2

activeBottomShadowColor Foreground color

activeBottomShadowPixmap BottomShadowPixmap string2

active Foreground Foreground color

activeTopShadowColor Background color

activeTopShadowPixmap TopShadowPixmap string2

1 The default is chosen based on the visual type of the screen.
2See Xmlnstalllmage(3X).

Default

varies1

varies1

varies1

varies1

varies1

varies1

varies1

Reference Pages

mwm(1X)

activeBackground (class Background)
This resource specifies the background color of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

activeBackgroundPixmap (class ActiveBackgroundPixmap)
This resource specifies the background pixmap of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

activeBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

activeBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap of the mwm
decoration when the window is active (has the keyboard focus). The
default is chosen based on the visual type of the screen.

activeForeground (class Foreground)
This resource specifies the foreground color of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

activeTopShadowCoior (class Background)
This resource specifies the top shadow color of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

activeTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap of the mwm decoration
when the window is active (has the keyboard focus). The default is
chosen based on the visual type of the screen.

General Appearance and Behavior Resources
The syntax for specifying general appearance and behavior resources is

~wm*resource_id

For example, ~wm*keyboardFocusPolicy specifies the window manager policy
for setting the keyboard focus to a particular client window.

The following general appearance and behavior resources can be specified.

1-13

OSF/Motif Programmer's Reference

mwm(1X)

General Appearance and Behavior Resources

Name Class Value Type Default

auto Key Focus AutoKeyFocus T/F T

autoRaiseDelay AutoRaiseDelay millisec 500

bitmapDirectory BitmapDirectory directory lusr/include/\
X11/bitmaps

button Bindings ButtonBindings string DefaultBut\
ton Bindings

cleanText CleanText T/F T

clientAutoPlace ClientAutoPlace T/F T

colormapFocusPolicy ColormapFocusPolicy string keyboard

configFile ConfigFile file .mwmrc

deiconifyKeyFocus DeiconifyKeyFocus T/F T

doubleClickTime DoubleClickTime millisec. multi-click
time

enableWarp enableWarp T/F T

enforceKeyFocus EnforceKeyFocus T/F T

fadeNormallcon FadeNormalicon T/F F

feedbackGeometry FeedbackGeometry string center on
screen

frameBorderWidth FrameBorderWidth pixels varies

iconAutoPlace IconAutoPlace T/F T

iconBoxGeometry IconBoxGeometry string 6x1+0-0

iconBoxName IconBoxName string iconbox

iconBoxSBDisplayPolicy IconBoxSBDisplayPolicy string all

iconBoxTitle IconBoxTitle XmString Icons

iconClick IconClick T/F T

icon Decoration Icon Decoration string varies

iconlmageMaximum IconlmageMaximum wxh 50x50

iconlmageMinimum IconlmageMinimum wxh 16x16

icon Placement Icon Placement string left bottom

iconPlacementMargin IconPlacementMargin pixels varies

interactivePlacement I nteractivePlacement T/F F

1-14

Reference Pages

mwm(1X)

General Appearance and Behavior Resources

Name Class Value Type Default

keyBindings KeyBindings string "DefaultKey\
Bindings"

keyboardFocusPolicy KeyboardFocusPolicy string explicit

limitResize LimitResize T/F T

lowerOnlconify LowerOn Iconify T/F T

maximum Maximum Size MaximumMaximumSize wxh (pixels) 2X screen
w&h

moveThreshold MoveThreshold pixels 4

moveOpaque MoveOpaque T/F F

multiScreen MultiScreen T/F F

pass Buttons Pass Buttons T/F F

passSelectButton PassSelectButton T/F T

position IsFrame PositionlsFrame T/F T

positionOnScreen PositionOnScreen T/F T

quitTimeout QuitTimeout millisec. 1000

raiseKeyFocus RaiseKeyFocus T/F F

resizeBorderWidth ResizeBorderWidth pixels varies

resizeCursors ResizeCursors T/F T

screens Screens string varies

show Feedback ShowFeedback string all

startupKeyFocus StartupKeyFocus T/F T

transient Decoration TransientDecoration string menu
title

transientFunctions TransientFunctions string -minimize
-maximize

uselconBox UselconBox T/F F

wMenuButtonClick WMenuButtonClick T/F T

wMenuButtonClick2 WMenuButtonClick2 T/F T

autoKeyFocus (class AutoKeyFocus)
This resource is available only when the keyboard input focus policy is
explicit. If autoKeyFocus is given a value of True, then when a
window with the keyboard input focus is withdrawn from window
management or is iconified, the focus is set to the previous window that
had the focus. If the value given is False, there is no automatic setting

1-15

OSF/Motif Programmer's Reference

mwm(1X)

1-16

of the keyboard input focus. It is recommended that both autoKeyFocus
and startupKeyFocus be True to work with tear off menus. The default
value is True.

autoRaiseDelay (class AutoRaiseDelay)
This resource is available only when the focusAutoRaise resource is
True and the keyboard focus policy is pointer. The autoRaiseDelay
resource specifies the amount of time (in milliseconds) that mwm will
wait before raising a window after it gets the keyboard focus. The
default value of this resource is 500 (ms).

bitmapDirectory (class BitmapDirectory)
This resource identifies a directory to be searched for bitmaps
referenced by mwm resources. This directory is searched if a bitmap is
specified without an absolute pathname. The default value for this
resource is lusr/inciudelXlllbitmaps. The directory
lusr/inciudelXlllbitmaps represents the customary locations for this
directory. The actual location of this directory may vary on some
systems. If the bitmap is not found in the specified directory,
XBMLANGPATH is searched.

buttonBindings (class ButtonBindings)
This resource identifies the set of button bindings for window
management functions. The named set of button bindings is specified in
the mwm resource description file. These button bindings are merged
with the built-in default bindings. The default value for this resource is
DefaultButtonBindings.

cleanText (class CleanText)
This resource controls the display of window manager text in the client
title and feedback windows. If the default value of True is used, the text
is drawn with a clear (no stipple) background. This makes text easier to
read on monochrome systems where a background pixmap is specified.
Only the stippling in the area immediately around the text is cleared. If
False, the text is drawn directly on top of the existing background.

clientAutoPlace (class ClientAutoPlace)
This resource determines the position of a window when the window
has not been given a program- or user-specified position. With a value
of True, windows are positioned with the top left corners of the frames
offset horizontally and vertically. A value of False causes the currently
configured position of the window to be used. In either case, mwm will
attempt to place the windows totally on-screen. The default value is
True.

Reference Pages

mwm(1X)

colormapFocusPolicy (class ColormapFocusPolicy)
This resource indicates the colormap focus policy that is to be used. If
the resource value is explicit, a colormap selection action is done on a
client window to set the colormap focus to that window. If the value is
pointer, the client window containing the pointer has the colormap
focus. If the value is keyboard, the client window that has the keyboard
input focus has the colormap focus. The default value for this resource
is keyboard.

configFile (class ConfigFile)
The resource value is the pathname for an mwm resource description
file.

If the pathname begins with -I (tilde, slash), mwm considers it to be
relative to the user's home directory (as specified by the HOME
environment variable). If the LANG environment variable is set, mwm
looks for $HOME/$LANGlconjigFile. If that file does not exist or if
LANG is not set, mwm looks for $HOMElconjigFiie.

If the configFile pathname does not begin with -I, mwm considers it to
be relative to the current working directory.

If the configFile resource is not specified or if that file does not exist,
mwm uses several default paths to find a configuration file. If the
LANG environment variable is set, mwm looks for the configuration
file first in $HOME/$LANG/.mwmrc. If that file does not exist or if
LANG is not set, mwm looks for $HOME/.mwmrc. If that file does
not exist and if LANG is set, mwm next looks for the file
system.mwmrc in the $LANG subdirectory of an implementation­
dependent directory. (The default for this directory, if not changed by
the implementation, is lusrllib/xll.) If that file does not exist or if
LANG is not set, mwm looks for the file system.mwmrc in the same
implementation-dependent directory.

deiconifyKeyFocus (class DeiconifyKeyFocus)
This resource applies only when the keyboard input focus policy is
explicit. If a value of True is used, a window receives the keyboard
input focus when it is normalized (deiconified). True is the default
value.

dou bleClickTime (class DoubleClickTime)
This resource is used to set the maximum time (in ms) between the
clicks (button presses) that make up a double-click. The default value
of this resource is the display's multiclick time.

1-17

OSF/Motif Programmer's Reference
mwm(1X)

1-18

enable Warp (class Enable Warp)
The default value of this resource, True, causes mwm to warp the
pointer to the center of the selected window during keyboard-controlled
resize and move operations. Setting the value to False causes mwm to
leave the pointer at its original place on the screen, unless the user
explicitly moves it with the cursor keys or pointing device.

enforceKeyFocus (class EnforceKeyFocus)
If this resource is given a value of True, the keyboard input focus is
always explicitly set to selected windows even if there is an indication
that they are "globally active" input windows. (An example of a
globally active window is a scroll bar that can be operated without
setting the focus to that client.) If the resource is False, the keyboard
input focus is not explicitly set to globally active windows. The default
value is True.

fadeNormalIcon (class FadeNormalIcon)
If this resource is given a value of True, an icon is grayed out whenever
it has been normalized (its window has been opened). The default value
is False.

feedback Geometry (class FeedbackGeometry)
This resource sets the position of the move and resize feedback window.
If this resource is not specified, the default is to place the feedback
window at the center of the screen. The value of the resource is a
standard window geometry string with the following syntax:

[=] { +- } xoffset { +- } yoffset]

frameBorderWidth (class FrameBorderWidth)
This resource specifies the width (in pixels) of a client window frame
border without resize handles. The border width includes the 3-D
shadows. The default value is based on the size and resolution of the
screen.

iconAutoPlace (class IconAutoPlace)
This resource indicates whether the window manager arranges icons in
a particular area of the screen or places each icon where the window
was when it was iconified. The value True indicates that icons are
arranged in a particular area of the screen, determined by the
iconPlacement resource. The value False indicates that an icon is
placed at the location of the window when it is iconified. The default is
True.

Reference Pages

mwm(1X)

iconBoxGeometry (class IconBoxGeometry)
This resource indicates the initial position and size of the icon box. The
value of the resource is a standard window geometry string with the
following syntax:

[=][widthxheight][{ +- }xoffset{+- }yoffset]

If the offsets are not provided, the iconPlacement policy is used to
determine the initial placement. The units for width and height are
columns and rows.

The actual screen size of the icon box window depends on the
iconImageMaximum (size) and iconDecoration resources. The
default value for size is (6 * iconWidth + padding) wide by (1 *
iconHeight + padding) high. The default value of the location is +0 -0.

iconBoxName (class IconBoxName)
This resource specifies the name that is used to look up icon box
resources. The default name is iconbox.

iconBoxSBDisplayPolicy (class IconBoxSBDisplayPolicy)
This resource specifies the scroll bar display policy of the window
manager in the icon box. The resource has three possible values: all,
vertical, and horizontal. The default value, all, causes both vertical
and horizontal scroll bars always to appear. The value vertical causes a
single vertical scroll bar to appear in the icon box and sets the
orientation of the icon box to horizontal (regardless of the
iconBoxGeometry specification). The value horizontal causes a
single horizontal scroll bar to appear in the icon box and sets the
orientation of the icon box to vertical (regardless of the
iconBoxGeometry specification).

iconBoxTitle (class IconBoxTitle)
This resource specifies the name that is used in the title area of the icon
box frame. The default value is Icons.

icon Click (class IconClick)
When this resource is given the value of True, the system menu is
posted and left posted when an icon is clicked. The default value is
True.

iconDecoration (class IconDecoration)
This resource specifies the general icon decoration. The resource value
is label (only the label part is displayed) or image (only the image part
is displayed) or label image (both the label and image parts are

1-19

OSF/Motif Programmer's Reference

mwm(1X)

1-20

displayed). A value of activelabel can also be specified to get a label
(not truncated to the width of the icon) when the icon is selected. The
default icon decoration for icon box icons is that each icon has a label
part and an image part (label image). The default icon decoration for
standalone icons is that each icon has an active label part, a label part,
and an image part (activelabellabel image).

iconImageMaximum (class IconImageMaximum)
This resource specifies the maximum size of the icon image. The
resource value is widthxheight (for example, 64x64). The maximum
supported size is 128x128. The default value of this resource is 50x50.

iconImageMinimum (class IconImageMinimum)
This resource specifies the minimum size of the icon image. The
resource value is widthxheight (for example, 32x50). The minimum
supported size is 16x16. The default value of this resource is 16x16.

iconPlacement (class IconPlacement)
This resource specifies the icon placement scheme to be used. The
resource value has the following syntax:

primary _layout secondary _layout [tight J
The layout values are one of the following:

Value Descri ption

top Lay the icons out top to bottom.

bottom Lay the icons out bottom to top.

left Lay the icons out left to right.

right Lay the icons out right to left.

A horizontal (vertical) layout value should not be used for both the
primary_layout and the secondary_layout (for example, do not use top for
the primary_layout and bottom for the secondary_layout). The
primary_layout indicates whether, when an icon placement is done, the
icon is placed in a row or a column and the direction of placement. The
secondary _layout indicates where to place new rows or columns. For
example, top right indicates that icons should be placed top to bottom on
the screen and that columns should be added from right to left on the
'screen. The default placement is left bottom (icons are placed left to right
on the screen, with the first row on the bottom of the screen, and new rows
added from the bottom of the screen to the top of the screen). A tight value
places icons with zero spacing in between icons. This value is useful for
aesthetic reasons, as well as X -terminals with small screens.

Reference Pages
mwm(1X)

iconPlacementMargin (class IconPlacementMargin)
This resource sets the distance between the edge of the screen and the
icons that are placed along the edge of the screen. The value should be
greater than or equal to O. A default value (see below) is used if the
value specified is invalid. The default value for this resource is equal to
the space between icons as they are placed on the screen (this space is
based on maximizing the number of icons in each row and column).

interactivePlacement (class InteractivePlacement)
This resource controls the initial placement of new windows on the
screen. If the value is True, the pointer shape changes before a new
window is placed on the screen to indicate to the user that a position
should be selected for the upper left comer of the window. If the value
is False, windows are placed according to the initial window
configuration attributes. The default value of this resource is False.

keyBindings (class KeyBindings)
This resource identifies the set of key bindings for window management
functions. If specified, these key bindings replace the built-in default
bindings. The named set of key bindings is specified in the mwm
resource description file. The default value for this resource is
DefaultKeyBindings.

keyboardFocusPolicy (class KeyboardFocusPolicy)
If set to pointer, the keyboard focus policy is to have the keyboard focus
set to the client window that contains the pointer (the pointer could also
be in the client window decoration that mwm adds). If set to explicit,
the policy is to have the keyboard focus set to a client window when the
user presses button 1 with the pointer on the client window or any part
of the associated mwm decoration. The default value for this resource
is explicit.

IimitResize (class LimitResize)
If this resource is True, the user is not allowed to resize a window to
greater than the maximum size. The default value for this resource is
True.

lowerOnlconify (class LowerOnlconify)
If this resource is given the default value of True, a window's icon
appears on the bottom of the window stack when the window is
minimized (iconified). A value of False places the icon in the stacking
order at the same place as its associated window. The default value of
this resource is True.

1-21

OSF/Motif Programmer's Reference

mwm(1X)

1-22

maximumMaximumSize (class MaximumMaximumSize)
This resource is used to limit the maximum size of a client window as
set by the user or client. The resource value is widthxheight (for
example, I024xl024) where the width and height are in pixels. The
default value of this resource is twice the screen width and height.

moveOpaque (class MoveOpaque)
This resource controls whether the actual window is moved or a
rectangular outline of the window is moved. A default value of False
displays a rectangular outline on moves.

moveThreshold (class MoveThreshold)
This resource is used to control the sensitivity of dragging operations
that move windows and icons. The value of this resource is the number
of pixels that the locator is moved with a button down before the move
operation is initiated. This is used to prevent window/icon movement
when you click or double-click and there is unintentional pointer
movement with the button down. The default value of this resource is 4
(pixels).

multiScreen (class MultiScreen)
This resource, if True, causes mwm to manage all the screens on the
display. If False, mwm manages only a single screen. The default
value is False.

passButtons (class PassButtons)
This resource indicates whether or not button press events are passed to
clients after they are used to do a window manager function in the client
context. If the resource value is False, the button press is not passed to
the client. If the value is True, the button press is passed to the client
window. The window manager function is done in either case. The
default value for this resource is False.

passSelectButton (class PassSelectButton)
This resource indicates whether or not to pass the select button press
events to clients after they are used to do a window manager function in
the client context. If the resource value is False, then the button press
will not be passed to the client. If the value is True, the button press is
passed to the client window. The window manager function is done in
either case. The default value for this resource is True.

positionIsFrame (class PositionIsFrame)
This resource indicates how client window position information (from
the WM_NORMAL_HINTS property and from configuration requests)
is to be interpreted. If the resource value is True, the information is

Reference Pages

mwm(1X)

interpreted as the position of the MWM client window frame. If the
value is False, it is interpreted as being the position of the client area of
the window. The default value of this resource is True.

positionOnScreen (class PositionOnScreen)
This resource is used to indicate that windows should initially be placed
(if possible) so that they are not clipped by the edge of the screen (if the
resource value is True). If a window is larger than the size of the
screen, at least the upper left comer of the window is on-screen. If the
resource value is False, windows are placed in the requested position
even if totally off-screen. The default value of this resource is True.

quitTimeout (class QuitTimeout)
This resource specifies the amount of time (in milliseconds) that mwm
will wait for a client to update the WM_COMMAND property after
mwm has sent the WM_SAVE_ YOURSELF message. The default
value of this resource is 1000 (ms). (Refer to the f.kill function
description for additional information.)

raiseKeyFocus (class RaiseKeyFocus)
This resource is available only when the keyboard input focus policy is
explicit. When set to True, this resource specifies that a window raised
by means of the f.normalize_and_raise function also receives the input
focus. The default value of this resource is False.

resizeBorderWidth (class ResizeBorderWidth)
This resource specifies the width (in pixels) of a client window frame
border with resize handles. The specified border width includes the 3-D
shadows. The default value is based on the size and resolution of the
screen.

resize Cursors (class ResizeCursors)
This resource is used to indicate whether the resize cursors are always
displayed when the pointer is in the window size border. If True, the
cursors are shown, otherwise the window manager cursor is shown. The
default value is True.

screens (class Screens)
This resource specifies the resource names to use for the screens
managed by mwm. If mwm is managing a single screen, only the first
name in the list is used. If mwm is managing multiple screens, the
names are assigned to the screens in order, starting with screen O.
Screen 0 gets the first name, screen 1 the second name, and so on. The
default screen names are 0, 1, and so on.

1-23

OSF/Motif Programmer's Reference

mwm(1X)

1-24

showFeedback (class ShowFeedback)
This resource controls whether or not feedback windows or
confirmation dialogs are displayed. A feedback window shows a client
window's initial placement and shows position and size during move
and resize operations. Confirmation dialogs can be displayed for
certain operations.

The value for this resource is a list of names of the feedback options to
be enabled or disabled; the names must be separated by a space. If an
option is preceded by a minus sign, that option is excluded from the list.
The sign of the first item in the list determines the initial set of options.
If the sign of the first option is minus, mwm assumes all options are
present and starts subtracting from that set. If the sign of the first
decoration is plus (or not specified), mwm starts with no options and
builds up a list from the resource.

The names of the feedback options are shown in the following table.

Name Description

all Show all feedback (Default value)

behavior Confirm behavior switch

kill Confirm on receipt of KILL signal

move Show position during move
none Show no feedback

placement Show position and size during initial placement

quit Confirm quitting mwm

resize Show size during resize

restart Confirm mwm restart

The following sample command line illustrates the syntax for
showFeedback:

Mwm*showFeedback: placement resize behavior restart

This resource specification provides feedback for initial client
placement and resize, and enables the dialog boxes to confirm the
restart and set behavior functions. It disables feedback for the move
function. The default value for this resource is all.

startupKeyFocus (class StartupKeyFocus)
This resource is available only when the keyboard input focus policy is
explicit. When given the default value of True, a window gets the

Reference Pages

mwm{1X)

keyboard input focus when the window is mapped (that is, initially
managed by the window manager). It is recommended that both
autoKeyFocus and startupKeyFocus be True to work with tear off
menus. The default value is True.

transientDecoration (class TransientDecoration)
This controls the amount of decoration that mwm puts on transient
windows. The decoration specification is exactly the same as for the
clientDecoration (client specific) resource. Transient windows are
identified by the WM_TRANSIENT_FOR property, which is added by
the client to indicate a relatively temporary window. The default value
for this resource is menu title (that is, transient windows have frame
borders and a titlebar with a window menu button).

An application can also specify which decorations mwm should apply
to its windows. If it does so, mwm applies only those decorations
indicated by both the application and the transientDecoration
resource. Otherwise, mwm applies the decorations indicated by the
transientDecoration resource. For more information, see the
description of XmNmwmDecorations on the VendorShell(3X)
reference page.

transientFunctions (class TransientFunctions)
This resource is used to indicate which window management functions
are applicable (or not applicable) to transient windows. The function
specification is exactly the same as for the clientFunctions (client
specific) resource. The default value for this resource is -minimize
-maximize.

An application can also specify which functions mwm should apply to
its windows. If it does so, mwm applies only those functions indicated
by both the application and the transientFunctions resource.
Otherwise, mwm applies the functions indicated by the
transientFunctions resource. For more information, see the
description of XmNmwmFunctions on the VendorShell(3X) reference
page.

uselconBox (class UselconBox)
If this resource is given a value of True, icons are placed in an icon box.
When an icon box is not used, the icons are placed on the root window
(default value).

1-25

OSF/Motif Programmer's Reference

mwm(1X)

wMenuButtonClick (class WMenuButtonClick)
This resource indicates whether a click of the mouse when the pointer is
over the window menu button posts and leaves posted the window
menu. If the value given this resource is True, the menu remains posted.
True is the default value for this resource.

wMenuButtonClick2 (class WMenuButtonClick2)
When this resource is given the default value of True, a double-click
action on the window menu button does an f.kill function.

Client Specific Resources

1-26

The syntax for specifying client specific resources is

Mwm*cliencname_or _class*resource_id

For example, Mwm*mterm*windowMenu is used to specify the window menu to
be used with mterm clients. The syntax for specifying client specific resources for
all classes of clients is

Mwm*resource_id

Specific client specifications take precedence over the specifications for all clients.
For example, Mwm*windowMenu is used to specify the window menu to be used
for all classes of clients that do not have a window menu specified.

The syntax for specifying resource values for windows that have an unknown name
and class (that is, windows that do not have a WM_CLASS property associated
with them) is

Mwm*defaults*resource_id

For example, Mwm*defaults*iconImage is used to specify the icon image to be
used for windows that have an unknown name and class.

The following client specific resources can be specified.

Reference Pages

mwm(1X)

Client Specific Resources

Name Class Value Type Default

client Decoration Client Decoration string all

clientFunctions ClientFunctions string all

focusAutoRaise FocusAutoRaise T/F varies

iconlmage Iconlmage pathname (image)

icon I mageBackground Background color icon
background

iconlmageBottomShadowColor Foreground color icon bottom
shadow

iconlmageBottomShadowPixmap BottomShadow- color icon bottom
Pixmap shadow

pixmap

iconlmageForeground Foreground color varies

iconlmageTopShadowColor Background color icon top
shadow
color

iconlmageTopShadowPixmap TopShadow- color icon top
Pixmap shadow

pixmap

matteBackground Background color background

matteBottomShadowColor Foreground color bottom
shadow
color

matteBottomShadowPixmap Bottom Shadow- color bottom
Pixmap shadow

pixmap

m atteForeg round Foreground color foreground

matteTopShadowColor Background color top shadow
color

matteTopShadowPixmap TopShadow- color top shadow
Pixmap pixmap

matteWidth MatteWidth pixels 0

1-27

OSF/Motif Programmer's Reference

mwm(1X)

1-28

Client Specific Resources

Name Class Value Type Default

maximumClientSize MaximumClientSize wxh fill the
vertical screen
horizontal

useClientlcon UseClientlcon T/F F

usePPosition UsePPosition string nonzero

windowMenu WindowMenu string "Oefault-
Window-
Menu"

clientDecoration (class ClientDecoration)
This resource controls the amount of window frame decoration. The
resource is specified as a list of decorations to specify their inclusion in
the frame. If a decoration is preceded by a minus sign, that decoration
is excluded from the frame. The sign of the first item in the list
determines the initial amount of decoration. If the sign of the first
decoration is minus, mwm assumes all decorations are present and
starts subtracting from that set. If the sign of the first decoration is plus
(or not specified), then mwm starts with no decoration and builds up a
list from the resource.

An application can also specify which decorations mwm should apply
to its windows. If it does so, mwm applies only those decorations
indicated by both the application and the clientDecoration resource.
Otherwise, mwm applies the decorations indicated by the
clientDecoration resource. For more information, see the description
of XmNmwmDecorations on the VendorShell(3X) reference page.

Reference Pages

mwm(1X)

Name Description

all Include all decorations (default value)

border Window border
~-~----

maximize Maximize button (includes title bar)

minimize Minimize button (includes title bar)

none No decorations

resizeh Border resize handles (includes border)
--

menu Window menu button (includes title bar)
.-

title Title bar (includes border)
--

Examples:

Mwm*XClock.c1ientDecoration: -resizeh -maximize

This removes the resize handles and maximize button from XClock
windows.

Mwm*XClock.c1ientDecoration: menu minimize border

This does the same thing as above. Note that either menu or minimize
implies title.

clientFunctions (class ClientFunctions)
This resource is used to indicate which mwm functions are applicable
(or not applicable) to the client window. The value for the resource is a
list of functions. If the first function in the list has a minus sign in front
of it, then mwm starts with all functions and subtracts from that set. If
the first function in the list has a plus sign in front of it, then mwm starts
with no functions and builds up a list. Each function in the list must be
preceded by the appropriate plus or minus sign and separated from the
next function by a space.

An application can also specify which functions mwm should apply to
its windows. If it does so, mwm applies only those functions indicated
by both the application and the c1ientFunctions resource. Otherwise,
mwm applies the functions indicated by the clientFunctions resource.
For more information, see the description of XmNmwmFunctions on
the VendorShell(3X) reference page.

1-29

OSF/Motif Programmer's Reference

mwm(1X)

1-30

The following table lists the functions available for this resource.

Name Description

all Include all functions (default value)

none No functions

resize f.resize

move f.move

minimize f.minimize

maximize f.maximize

close f.kill

focusAutoRaise (class FocusAutoRaise)
When the value of this resource is True, clients are raised when they get
the keyboard input focus. If the value is False, the stacking of windows
on the display is not changed when a window gets the keyboard input
focus. The default value is True when the keyboardFocusPolicy is
explicit and False when the keyboardFocusPolicy is pointer.

iconImage (class IconImage)
This resource can be used to specify an icon image for a client (for
example, Mwm*myclock*iconImage). The resource value is a
pathname for a bitmap file. The value of the (client specific)
useClientIcon resource is used to determine whether or not user
supplied icon images are used instead of client supplied icon images.
The default value is to display a built-in window manager icon image.

iconImageBackground (class Background)
This resource specifies the background color of the icon image that is
displayed in the image part of an icon. The default value of this
resource is the icon background color (that is, specified by
Mwm*background or Mwm*icon*background).

iconImageBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the icon image that
is displayed in the image part of an icon. The default value of this
resource is the icon bottom shadow color (that is, specified by
Mwm*icon*bottomShadowColor).

iconImageBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap of the icon image
that is displayed in the image part of an icon. The default value of this
resource is the icon bottom shadow pixmap (that is, specified by
Mwm*icon*bottomShadowPixmap).

Reference Pages

mwm(1X)

iconImageForeground (class Foreground)
This resource specifies the foreground color of the icon image that is
displayed in the image part of an icon. The default value of this
resource varies depending on the icon background.

iconImageTopShadowColor (class Background)
This resource specifies the top shadow color of the icon image that is
displayed in the image part of an icon. The default value of this
resource is the icon top shadow color (that is, specified by
Mwm*icon*topShadowColor).

iconImageTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap of the icon image that is
displayed in the image part of an icon. The default value of this
resource is the icon top shadow pixmap (that is, specified by
Mwm*icon*topShadowPixmap).

matteBackground (class Background)
This resource specifies the background color of the matte, when
matteWidth is positive. The default value of this resource is the client
background color (that is, specified by Mwm*background or
Mwm *c1ient*background).

matteBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the matte, when
matteWidth is positive. The default value of this resource is the client
bottom shadow color (that is, specified by Mwm*bottomShadowColor
or Mwm*client*bottomShadowColor).

matteBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap of the matte, when
matteWidth is positive. The default value is the client bottom shadow
pixmap (that is, specified by Mwm*bottomShadowPixmap or
Mwm *client*bottomShadowPixmap).

matteForeground (class Foreground)
This resource specifies the foreground color of the matte, when
matteWidth is positive. The default value of this resource is the client
foreground color (that is, specified by Mwm*foreground or
Mwm*client*foreground).

1-31

OSF/Motif Programmer's Reference

mwm(1X)

1-32

matteTopShadowColor (class Background)
This resource specifies the top shadow color of the matte, when
matteWidth is positive. The default value of this resource is the client
top shadow color (that is, specified by Mwm*topShadowColor or
Mwm*client*topShadowColor).

matteTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap of the matte, when
matteWidth is positive. The default value of this resource is the client
top shadow pixmap (that is, specified by Mwm*topShadowPixmap or
Mwm*client*topShadowPixmap).

matteWidth (class MatteWidth)
This resource specifies the width of the optional matte. The default
value is 0, which effectively disables the matte.

maximum ClientSize (class MaximumClientSize)
This resource is either a size specification or a direction that indicates
how a client window is to be maximized. The resource value can be
specified as a size specification widthxheight. The width and height are
interpreted in the units that the client uses (for example, for terminal
emulators this is generally characters). Alternately, vertical or
horizontal can be specified to indicate the direction in which the client
maximizes.

If this resource is not specified, the maximum size from the
WM_NORMAL_HINTS property is used if set. Otherwise the default
value is the size where the client window with window management
borders fills the screen. When the maximum client size is not
determined by the maximumClientSize resource, the
maximumMaximumSize resource value is used as a constraint on the
maximum size.

useClientIcon (class UseClientIcon)
If the value given for this resource is True, a client-supplied icon image
takes precedence over a user-supplied icon image. The default value is
False, giving the user-supplied icon image higher precedence than the
client-supplied icon image.

usePPosition (class UsePPosition)
This resource specifies whether MWM honors the program specified
position PPosition specified in the WM_NORMAL_HINTS property in

Reference Pages

mwm(1X)

the absence of a user specified position. Setting this resource to on
causes mwm to always honor program specified position. Setting this
resource to off causes mwm to always ignore program specified
position. Setting this resource to the default value of nonzero causes
mwm to honor program specified position other than (0,0).

windowMenu (class WindowMenu)
This resource indicates the name of the menu pane that is posted when
the window menu is popped up (usually by pressing button I on the
window menu button on the client window frame). Menu panes are
specified in the MWM resource description file. Window menus can be
customized on a client class basis by specifying resources of the form
Mwm*clienCname_or _class*windowMenu (see "Mwm Resource
Description File Syntax"). The default value of this resource is
"DefaultWindowMenu".

Resource Description File

The MWM resource description file is a supplementary resource file that contains
resource descriptions that are referred to by entries in the defaults files (.Xdefaults,
app-defaults/Mwm). It contains descriptions of resources that are to be used by
mwm, and that cannot be easily encoded in the defaults files (a bitmap file is an
analogous type of resource description file). A particular mwm resource
description file can be selected using the configFile resource.

The following types of resources can be described in the mwm resource
description file:

Buttons Window manager functions can be bound (associated) with button
events.

Keys Window manager functions can be bound (associated) with key press
events.

Menus Menu panes can be used for the window menu and other menus posted
with key bindings and button bindings.

1-33

OSF/Motif Programmer's Reference

mwm(1X)

mwm Resource Description File Syntax

1-34

The mwm resource description file is a standard text file that contains items of
information separated by blanks, tabs, and newline characters. Blank lines are
ignored. Items or characters can be quoted to avoid special interpretation (for
example, the comment character can be quoted to prevent it from being interpreted
as the comment character). A quoted item can be contained in double quotes (").
Single characters can be quoted by preceding them with the \ (backslash). All text
from an unquoted # (pound sign) to the end of the line is regarded as a comment
and is not interpreted as part of a resource description. If! (exclamation point) is
the first character in a line, the line is regarded as a comment. If a line ends in \,
the next line is considered a continuation of that line.

Window manager functions can be accessed with button and key bindings, and
with window manager menus. Functions are indicated as part of the specifications
for button and key binding sets, and menu panes. The function specification has
the following syntax:

junction = function_name rtunction_args]
function_name = window manager function
function_args = {quoted_item I unquoted_item}

The following functions are supported. If a function is specified that is not one of
the supported functions, then it is interpreted by mwm as f.nop.

f.beep This function causes a beep.

f.circle_down [icon I window]
This function causes the window or icon that is on the top of the
window stack to be put on the bottom of the window stack (so that it no
longer obscures any other window or icon). This function affects only
those windows and icons that obscure other windows and icons, or that
are obscured by other windows and icons. Secondary windows (that is,
transient windows) are restacked with their associated primary window.
Secondary windows always stay on top of the associated primary
window and there can be no other primary windows between the
secondary windows and their primary window. If an icon function
argument is specified, the function applies only to icons. If a window
function argument is specified, the function applies only to windows.

f.circle_up [icon I window J
This function raises the window or icon on the bottom of the window
stack (so that it is not obscured by any other windows). This function
affects only those windows and icons that obscure other windows and
icons, or that are obscured by other windows and icons. Secondary
windows (that is, transient windows) are restacked with their associated
primary window. If an icon function argument is specified, the function

f.exec or!

Reference Pages

mwm(1X)

applies only to icons. If a window function argument is specified, the
function applies only to windows.

This function causes command to be executed (using the value of the
MWMSHELL environment variable if it is set, otherwise the value of
the SHELL environment variable if it is set, otherwise Ihinlsh). The!
notation can be used in place of the f.exec function name.

f.focus_color
This function sets the colormap focus to a client window. If this
function is done in a root context, the default colormap (set up by the X
Window System for the screen where MWM is running) is installed and
there is no specific client window colormap focus. This function is
treated as f.nop if colormapFocusPolicy is not explicit.

f.focus_key
This function sets the keyboard input focus to a client window or icon.
This function is treated as f.nop if keyboardFocusPolicy is not explicit
or the function is executed in a root context.

f.kill This function is used to terminate a client. If the
WM_DELETE_ WINDOW protocol is set up, the client is sent a client
message event, indicating that the client window should be deleted. If
the WM_SAVE_ YOURSELF protocol is set up, the client is sent a
client message event, indicating that the client needs to prepare to be
terminated. If the client does not have the WM_DELETE_ WINDOW
or WM_SAVE_ YOURSELF protocol set up, this function causes a
client's X connection to be terminated (usually resulting in termination
of the client). Refer to the description of the quitTimeout resource and
the WM_PROTOCOLS property.

f.lower [-client I within I freeFamily]
This function lowers a primary window to the bottom of the global
window stack (where it obscures no other window) and lowers the
secondary window (transient window or dialog box) within the client
family. The arguments to this function are mutually exclusive.

The client argument indicates the name or class of a client to lower. If
the client argument is not specified, the context that the function was
invoked in indicates the window or icon to lower.

1-35

OSF/Motif Programmer's Reference

mwm(1X)

1-36

Specifying within lowers the secondary window within the family
(staying above the parent) but does not lower the client family in the
global window stack.

Specifying free Family lowers the window to the bottom of the global
windows stack from its local family stack.

f.maximize
This function causes a client window to be displayed with its maximum
size.

f.menu This function associates a cascading (pull-right) menu with a menu pane
entry or a menu with a button or key binding. The menu_name function
argument identifies the menu to be used.

f.minimize

f.move

This function causes a client window to be minimized (iconified).
When a window is minimized when no icon box is used, its icon is
placed on the bottom of the window stack (so that it obscures no other
window). If an icon box is used, the client's icon changes to its
iconified form inside the icon box. Secondary windows (that is,
transient windows) are minimized with their associated primary
window. There is only one icon for a primary window and all its
secondary windows.

This function causes a client window to be interactively moved.

f.nexCcmap
This function installs the next colormap in the list of colormaps for the
window with the colormap focus.

f.nexCkey [icon I window I transient]
This function sets the keyboard input focus to the next window/icon in
the set of windows/icons managed by the window manager (the
ordering of this set is based on the stacking of windows on the screen).
This function is treated as f.nop if keyboardFocusPolicy is not explicit.
The keyboard input focus is moved only to windows that do not have an
associated secondary window that is application modal. If the transient
argument is specified, transient (secondary) windows are traversed
(otherwise, if only window is specified, traversal is done only to the
window that last had focus in a transient group). If an icon function
argument is specified, the function applies only to icons. If a window
function argument is specified, the function applies only to windows.

f.nop This function does nothing.

Reference Pages

mwm(1X)

f.normalize
This function causes a client window to be displayed with its normal
size. Secondary windows (that is, transient windows) are placed in their
normal state along with their associated primary window.

f.normalize_and_raise
This function causes the corresponding client window to be displayed
with its normal size and raised to the top of the window stack.
Secondary windows (that is, transient windows) are placed in their
normal state along with their associated primary window.

f.pack_icons
This function is used to re-Iayout icons (based on the layout policy
being used) on the root window or in the icon box. In general this
causes icons to be "packed" into the icon grid.

f.pass_keys
This function is used to enable/disable (toggle) processing of key
bindings for window manager functions. When it disables key binding
processing, all keys are passed on to the window with the keyboard
input focus and no window manager functions are invoked. If the
f.pass_keys function is invoked with a key binding to disable key­
binding processing, the same key binding can be used to enable key­
binding processing.

f.pose wmenu
This function is used to post the window menu. If a key is used to post
the window menu and a window menu button is present, the window
menu is automatically placed with its top-left comer at the bottom-left
comer of the window menu button for the client window. If no window
menu button is present, the window menu is placed at the top-left
comer of the client window.

f.prev _cmap
This function installs the previous colormap in the list of colormaps for
the window with the colormap focus.

f.prev _key [icon I window I transient]
This function sets the keyboard input focus to the previous window/icon
in the set of windows/icons managed by the window manager (the
ordering of this set is based on the stacking of windows on the screen).
This function is treated as f.nop if keyboardFocusPolicy is not explicit.
The keyboard input focus is moved only to windows that do not have an
associated secondary window that is application modal. If the transient
argument is specified, transient (secondary) windows are ~raversed

(otherwise, if only window is specified, traversal is done only to the last

1-37

OSF/Motif Programmer's Reference

mwm(1X)

1-38

focused window in a transient group). If an icon function argument is
specified, the function applies only to icons. If an window function
argument is specified, the function applies only to windows.

f.quiCmwm
This function terminates mwm (but not the X window system).

f.raise [-client I within I freeFamily]
This function raises a primary window to the top of the global window
stack (where it is obscured by no other window) and raises the
secondary window (transient window or dialog box) within the client
family. The arguments to this function are mutually exclusive.

The client argument indicates the name or class of a client to lower. If
the client is not specified, the context that the function was invoked in
indicates the window or icon to lower.

Specifying within raises the secondary window within the family but
does not raise the client family in the global window stack.

Specifying freeFamily raises the window to the top of its local family
stack and raises the family to the top of the global window stack.

f.raise_lower [within I freeFamily]
This function raises a primary window to the top of the global window
stack if it is partially obscured by another window; otherwise, it lowers
the window to the bottom of the window stack. The arguments to this
function are mutually exclusive.

Specifying within raises a secondary window within the family (staying
above the parent window), if it is partially obscured by another window
in the application's family; otherwise, it lowers the window to the
bottom of the family stack. It has no effect on the global window
stacking order.

Specifying freeFamily raises the window to the top of its local family
stack, if obscured by another window, and raises the family to the top of
the global window stack; otherwise, it lowers the window to the bottom
of its local family stack and lowers the family to the bottom of the
global window stack.

f.refresh This function causes all windows to be redrawn.

f.refresh_ win
This function causes a client window to be redrawn.

f.resize This function causes a client window to be interactively resized.

Reference Pages

mwm(1X)

f.restore This function restores the previous state of an icon's associated window.
If a maximized window is iconified, then f.restore restores it to its
maximized state. If a normal window is iconified, then f.restore
restores it to its normalized state.

f.restore_and_raise
This function restores the previous state of an icon's associated window
and raises the window to the top of the window stack. If a maximized
window is iconified, then f.restore_and_raise restores it to its
maximized state and raises it to the top of the window stack. If a
normal window is iconified, then f.restore_and_raise restores it to its
normalized state and raises it to the top of the window stack.

f.restart This function causes mwm to be restarted (effectively terminated and
re-executed).

f.screen [next I prev I back screen_number]
This function causes the pointer to warp to a specific screen number or
to the next, previous, or last visited (back) screen. The arguments to
this function are mutually exclusive.

The screen_number argument indicates the screen number that the
pointer is to warp to. Screens are numbered starting from screen O.

Specifying next cause the pointer to warp to the next managed screen
(skipping over any unmanaged screens).

Specifying prev cause the pointer to warp to the previous managed
screen (skipping over any unmanaged screens).

Specifying back cause the pointer to warp to the last visited screen.

f.send_msg message_number
This function sends a client message of the type
_MOTIF _ WM_MESSAGES with the message_type indicated by the
message_number function argument. The client message is sent only if
message_number is included in the client's
_MOTIF _ WM_MESSAGES property. A menu item label is grayed out
if the menu item is used to do an f.send_msg of a message that is not
included in the client's _MOTIF _ WM_MESSAGES property.

f.separator
This function causes a menu separator to be put in the menu pane at the
specified location (the label is ignored).

1-39

OSF/Motif Programmer's Reference

mwm(1X)

1-40

f.seCbehavior

f.title

This function causes the window manager to restart with the default
behavior (if a custom behavior is configured) or revert to the custom
behavior. By default this is bound to <Shift> <Ctrl> <Meta> <Key>!.

This function inserts a title in the menu pane at the specified location.

Each function may be constrained as to which resource types can specify the
function (for example, menu pane) and also what context the function can be used
in (for example, the function is done to the selected client window). Function
contexts are

root No client window or icon has been selected as an object for the
function.

window A client window has been selected as an object for the function. This
includes the window's title bar and frame. Some functions are applied
only when the window is in its normalized state (for example,
f.maximize) or its maximized state (for example, f.normalize).

icon An icon has been selected as an object for the function.

If a function's context has been specified as iconlwindow and the function is
invoked in an icon box, the function applies to the icon box, not to the icons inside.

If a function is specified in a type of resource where it is not supported or is
invoked in a context that does not apply, the function is treated as f.nop. The
following table indicates the resource types and function contexts in which window
manager functions apply.

Reference Pages

mwm(1X)

Function Contexts Resources

f.beep root, icon, window button, key, menu

f.circle_down root, icon, window button, key, menu

f.circle_up root, icon, window button, key, menu

f.exec root, icon, window button, key, menu

Uocus_color root, icon, window button, key, menu

f.focus_key root, icon, window button, key, menu

f.kill icon, window button, key, menu

f.lower icon, window button, key, menu

f.maximize icon, window(normal) button, key, menu

f.menu root, icon, window button, key, menu

f.minimize window button, key, menu

f.move icon, window button, key, menu

f.next_cmap root, icon, window button, key, menu

f.next_key root, icon, window button, key, menu

f.nop root, icon, window button, key, menu

f.normalize icon, window(maximized) button, key, menu

f. normalize_and_raise icon, window button, key, menu

f.pack_icons root, icon, window button, key, menu

f.pass_keys root, icon, window button, key, menu

f.post_wmenu root, icon, window button,key

f.prev_cmap root, icon, window button, key, menu

f.prev_key root, icon, window button, key, menu

f.quiCmwm root, icon, window button, key, menu (root only)

f.raise icon, window button, key, menu

f.raise_lower icon, window button, key, menu

f.refresh root, icon, window button, key, menu

f.refresh_win window button, key, menu

f.resize window button, key, menu

f.restore icon, window button, key, menu

1-41

OSF/Motif Programmer's Reference
mwm(1X)

Function Contexts Resources

f. restore _and_raise icon, window button, key, menu

f.restart root, icon, window button, key, menu (root only)

f.screen root, icon, window button, key, menu

f.send_msg icon, window button, key, menu

f.separator root, icon, window menu

f .seCbehavior root, icon, window button, key, menu

f.title root, icon, window menu

Window Manager Event Specification

1-42

Events are indicated as part of the specifications for button and key-binding sets,
and menu panes.

Button events have the following syntax:

button = [modifier _list] <button_evencname>
modifier_list = modifier_name {modifier_name}

All modifiers specified are interpreted as being exclusive (this means that only the
specified modifiers can be present when the button event occurs). The following
table indicates the values that can be used for modifier_name. The <AIt> key is
frequently labeled <Extend> or <Meta>. <AIt> and <Meta> can be used
interchangeably in event specification.

Modifier Description

<Ctrl> Control Key

<Shift> Shift Key

<Alt> AIVMeta Key

<Meta> Meta! Alt Key

<Lock> Lock Key

<Mod1> Modifier1

<Mod2> Modifier2

<Mod3> Modifier3

<Mod4> Modifier4

<ModS> ModifierS

Reference Pages

mwm(1X)

The following table indicates the values that can be used for button_evenCname.

Button Description

Btn1Down Button 1 Press

Btn1 Up Button 1 Release

Btn1 Click Button 1 Press and Release

Btn1Click2 Button 1 Double-Click

Btn2Down Button 2 Press

Btn2Up Button 2 Release

Btn2Click Button 2 Press and Release

Btn2Click2 Button 2 Double-Click

Btn3Down Button 3 Press

Btn3Up Button 3 Release

Btn3Click Button 3 Press and Release

Btn3Click2 Button 3 Double-Click

Btn4Down Button 4 Press

Btn4Up Button 4 Release

Btn4Click Button 4 Press and Release

Btn4Click2 Button 4 Double-Click

Btn5Down Button 5 Press

Btn5Up Button 5 Release

Btn5Click Button 5 Press and Release

Btn5Click2 Button 5 Double-Click

Key events that are used by the window manager for menu mnemonics and for
binding to window manager functions are single key presses; key releases are
ignored. Key events have the following syntax:

key = [modifier _list] <key>key_name
modifier_list = modifier_name {modifier_name}

All modifiers specified are interpreted as being exclusive (this means that only the
specified modifiers can be present when the key event occurs). Modifiers for keys
are the same as those that apply to buttons. The key_name is an XII keysym name.
Keysym names can be found in the keysymdef.h file (remove the XK_ prefix).

1-43

OSF/Motif Programmer's Reference

mwm(1X)

1-44

Button Bindings
The buttonBindings resource value is the name of a set of button bindings that are
used to configure window manager behavior. A window manager function can be
done when a button press occurs with the pointer over a framed client window, an
icon, or the root window. The context for indicating where the button press applies
is also the context for invoking the window manager function when the button
press is done (significant for functions that are context sensitive).

The button binding syntax is

Buttons bindings_seCname
{

button context function
button context function

button context function

The syntax for the context specification is

context = object[I context]
object = root I icon I window I title I frame I border lapp

The context specification indicates where the pointer must be for the button
binding to be effective. For example, a context of window indicates that the
pointer must be over a client window or window management frame for the button
binding to be effective. The frame context is for the window management frame
around a client window (including the border and titlebar), the border context is
for the border part of the window management frame (not including the titlebar),
the title context is for the title area of the window management frame, and the app
context is for the application window (not including the window management
frame).

If an f.nop function is specified for a button binding, the button binding is not done.

Key Bindings
The keyBindings resource value is the name of a set of key bindings that are used
to configure window manager behavior. A window manager function can be done
when a particular key is pressed. The context in which the key binding applies is
indicated in the key binding specification. The valid contexts are the same as those
that apply to button bindings.

The key binding syntax is

Keys bindings_secname
{

key context function
key context function

key context function

Reference Pages

mwm(1X)

If an f.nop function is specified for a key binding, the key binding is not done. If
an f.posC wmenu or f.menu function is bound to a key, mwm will automatically
use the same key for removing the menu from the screen after it has been popped
up.

The context specification syntax is the same as for button bindings. For key
bindings, the frame, title, border, and app contexts are equivalent to the window
context. The context for a key event is the window or icon that has the keyboard
input focus (root if no window or icon has the keyboard input focus).

Menu Panes
Menus can be popped up using the f.posC wmenu and f.menu window manager
functions. The context for window manager functions that are done from a menu is
root, icon or window depending on how the menu was popped up. In the case of
the window menu or menus popped up with a key binding, the location of the
keyboard input focus indicates the context. For menus popped up using a button
binding, the context of the button binding is the context of the menu.

The menu pane specification syntax is

Menu menu_name
{

}

label [mnemonic] [accelerator] function
label [mnemonic] [accelerator] function

label [mnemonic] [accelerator] function

Each line in the Menu specification identifies the label for a menu item and the
function to be done if the menu item is selected. Optionally a menu button
mnemonic and a menu button keyboard accelerator may be specified. Mnemonics
are functional only when the menu is posted and keyboard traversal applies.

1-45

OSF/Motif Programmer's Reference

mwm(1X)

The label may be a string or a bitmap file. The label specification has the following
syntax:

label = text I bitmapJile
bitmapJile = @file_name
text = quoted_item I unquoted_item

The string encoding for labels must be compatible with the menu font that is used.
Labels are greyed out for menu items that do the f.nop function or an invalid
function or a function that does not apply in the current context.

A mnemonic specification has the following syntax

mnemonic = _character

The first matching character in the label is underlined. If there is no matching
character in the label, no mnemonic is registered with the window manager for that
label. Although the character must exactly match a character in the label, the
mnemonic does not execute if any modifier (such as Shift) is pressed with the
character key.

The accelerator specification is a key event specification with the same syntax as
is used for key bindings to window manager functions.

Environment

1-46

mwm uses the environment variable HOME for specifying the user's home
directory.

mwm uses the environment variable LANG for specifying the user's choice of
language for the mwm message catalog and the mwm resource description file.

mwm uses the environment variables XFILESEARCHPATH,
XUSERFILESEARCHPATH, XAPPLRESDIR, XENVIRONMENT, LANG, and
HOME in determining search paths for resource defaults files. mwm may also use
XBMLANGPATH to search for bitmap files.

mwm reads the $HOME/.motifbind file if it exists to install a virtual key bindings
property on the root window. For more information on the content of the
.motifbind file, see VirtuaIBindings(3X).

mwm uses the environment variable MWMSHELL (or SHELL, if MWMSHELL is
not set), for specifying the shell to use when executing commands with the f.exec
function.

Files lusrllibIXlll$LANG/system.mwmrc
lusrllibIXll/system.mwmrc
lusrllibIXlllapp-defaultsIM wm
$HOMEIMwm
$HOME/.Xdefaults
$HOME/$LANG/.mwmrc
$HOME/.mwmrc
$HOME/.motifbind

Related Information

Reference Pages

mwm(1X)

VendorShell(3X), VirtuaIBindings(3X), X(l), and XmInstallImage(3X).

1-47

OSF/Motif Programmer's Reference

uil(1X)

Synopsis

Description

1-48

uil-The user interface language compiler

uil [options] file

The uil command invokes the UIL compiler. The User Interface Language (UIL)
is a specification language for describing the initial state of a user interface for a
Motif application. The specification describes the objects (menus, dialog boxes,
labels, push buttons, and so on) used in the interface and specifies the routines to be
called when the interface changes state as a result of user interaction.

file Specifies the file to be compiled through the UIL compiler.

options Specifies one or more of the following options:

-Ipathname

-m

-0 file

-s

-v file

This option causes the compiler to look for include files in
the directory specified if the include files have not been
found in the paths that already were searched. Specify this
option followed by a pathname, with no intervening spaces.

Machine code is listed. This directs the compiler to place in
the listing file a description of the records that it added to the
User Interface Database (UID). This helps you isolate
errors. The default is no machine code.

Directs the compiler to produce a UID. By default, UIL
creates a UID with the name a.uid. The file specifies the
filename for the UID. No UID is produced if the compiler
issues any diagnostics categorized as error or severe.

Directs the compiler to set the locale before compiling any
files. The locale is set in an implementation-dependent
manner. On ANSI C-based systems, the locale is usually set
by calling setlocale(LC_ALL, ""). If this option is not
specified, the compiler does not set the locale.

Directs the compiler to generate a listing. The file specifies
the filename for the listing. If the -v option is not present, no
listing is generated by the compiler. The default is no listing.

Reference Pages

uil(1X)

-w Specifies that the compiler suppress all warning and
informational messages. If this option is not present, all
messages are generated, regardless of the severity.

-wmd file Specifies a binary widget meta-language description file to
be used in place of the default WML description.

For more information about UIL syntax, see the OSFIMotif Programmer's Guide.

Related Information
X(lX) and Uil(3X).

1-49

OSF/Motif Programmer's Reference

xmbind(1X)

Synopsis

Description

xmbind-Configures virtual key bindings

xmbind [options] rJile]

xmbind is an X Window System client that configures the virtual key bindings for
Motif applications. This action is performed by mwm at its startup, so the xmbind
client is only needed when mwm is not in use, or when you want to change
bindings without restarting mwm. If a file is specified, its contents are used as the
virtual key bindings. If a file is not specified, the file .motifbind in the user's home
directory is used. If this file is not found, xmbind loads the default virtual key
bindings, as described in VirtuaIBindings(3X).

Options

-display This option specifies the display to use; see X(l).

Related Information
VirtuaIBindings(3X) and X(lX).

1-50

Synopsis

Description

Classes

ApplicationShell-The ApplicationShell widget class

#include <XmlXm.h>
#include <Xll/Shell.h>

Reference Pages

ApplicationShel1 (3X)

ApplicationShell is used as the main top-level window for an application. An
application should have more than one ApplicationShell only if it implements
multiple logical applications.

ApplicationShell inherits behavior and resources from Core, Composite, Shell,
WMShell, VendorShell, and TopLevelShell.

The class pointer is applicationShellWidgetClass.

The class name is ApplicationShell.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

ApplicationShell Resource Set

Name Default Access
Class Type

XmNargc 0 CSG
XmCArgc int

XmNargv NULL CSG
XmCArgv String *

1-51

OSF/Motif Programmer's Reference

ApplicationShe!1 (aX)

1-52

XmNargc Specifies the number of arguments given in the XmNargv resource.
The function XtInitialize sets this resource on the shell widget instance
it creates by using its parameters as the values.

XmNargv Specifies the argument list required by a session manager to restart the
application if it is killed. This list should be updated at appropriate
points by the application if a new state has been reached that can be
directly restarted. The function XtInitialize sets this resource on the
shell widget instance it creates by using its parameters as the values.

Inherited Resources
ApplicationShell inherits behavior and resources from the following superc1asses.
For a complete description of each resource, refer to the reference page for that
superc1ass. '

TopLevelShell Resource Set

Name Default Access
Class Type

XmNiconic False CSG
XmClconic Boolean

XmNiconName NULL CSG
XmClconName String

XmNiconNameEncoding dynamic CSG
XmClconNameEncoding Atom

Reference Pages

Appl icationShell (3X)

VendorShell Resource Set

Name Default Access
Class Type

XmNaudibleWarning XmBELL CSG
XmCAudibleWarning unsigned char

XmNbuttonFontList dynamic CSG
XmCButtonFontList XmFontList

Xm NdefaultFontList dynamic CG
XmCDefaultFontList XmFontList

Xm NdeleteResponse XmDESTROY CSG
XmCDeleteResponse unsigned char

XmNinputMethod NULL CSG
XmClnputMethod String

XmNkeyboardFocusPolicy XmEXPLICIT CSG
XmCKeyboardFocusPolicy unsigned char

Xm NlabelFontList dynamic CSG
XmCLabelFontList XmFontList

XmNmwm Decorations -1 CSG
XmCMwm Decorations int

XmNmwm Functions -1 CSG
XmCMwmFunctions int

XmNmwmlnputMode -1 CSG
XmCMwmlnputMode int

XmNmwmMenu NULL CSG
XmCMwmMenu String

XmNpreeditType dynamic CSG
XmCPreeditType String

Xm NshellUnitType XmPIXELS CSG
XmCShellUnitType unsigned char

Xm NtextFontList dynamic CSG
XmCTextFontList XmFontList

Xm NuseAsyncGeometry False CSG
XmCUseAsyncGeometry Boolean

1-53

OSF/Mbtif Programmer's Reference

ApplicationShell (aX)

WMShell Resource Set

Name Default Access
Class Type

XmNbaseHeight XtU nspecifiedShell1 nt CSG
XmCBaseHeight int

XmNbaseWidth XtUnspecifiedShell1 nt CSG
XmCBaseWidth int

XmNheightlnc XtUnspecifiedShelllnt CSG
XmCHeightlnc int

XmNiconMask NULL CSG
XmClconMask Pixmap

XmNiconPixmap NULL CSG
XmClconPixmap Pixmap

XmNiconWindow NULL CSG
XmClconWindow Window

XmNiconX -1 CSG
XmClconX int

XmNiconY -1 CSG
XmClconY int

Xm NinitialState NormalState CSG
XmClnitialState int

XmNinput True CSG
XmClnput Boolean

XmNmaxAspectX XtU nspecifiedShell1 nt CSG
XmCMaxAspectX int

XmNmaxAspectY XtUnspecifiedShell1 nt CSG
XmCMaxAspectY int

XmNmaxHeight XtUnspecifiedShell1 nt CSG
XmCMaxHeight int

XmNmaxWidth XtUnspecifiedShell1 nt CSG
XmCMaxWidth int

XmNminAspectX XtU nspecifiedShell1 nt CSG
XmCMinAspectX int

1-54

Reference Pages

ApplicationShel1 (3X)

Name Default Access
Class Type

XmNminAspectY XtU nspecifiedShell1 nt CSG
XmCMinAspectY int

XmNminHeight XtU nspecifiedShell1 nt CSG
XmCMinHeight int

XmNminWidth XtUnspecifiedShelllnt CSG
XmCMinWidth int

XmNtitle dynamic CSG
XmCTitle String

Xm NtitleEncoding dynamic CSG
XmCTitleEncoding Atom

XmNtransient False CSG
XmCTransient Boolean

XmNwaitForWm True CSG
XmCWaitForWm Boolean

XmNwidthlnc XtUnspecifiedShelllnt CSG
XmCWidthlnc int

XmNwindowGroup dynamic CSG
XmCWindowGroup Window

XmNwinGravity dynamic CSG
XmCWinGravity int

XmNwmTimeout 5000 ms CSG
XmCWmTimeout int

1-55

OSF/Motif Programmer's Reference

Appl icationShel1 (3X)

Shell Resource Set

Name Default Access
Class Type

XmNaliowSheliResize False CG
XmCAllowSheliResize Boolean

Xm NcreatePopupChild Proc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChildProc

XmNgeometry NULL CSG
XmCGeometry String

XmNoverrideRedirect False CSG
XmCOverrideRedirect Boolean

XmNpopdownCallback NULL C
XmCCaliback XtCalibackList

XmNpopupCaliback NULL C
XmCCaliback XtCalibackList

XmNsaveUnder False CSG
XmCSaveUnder Boolean

XmNvisual CopyFromParent CSG
XmCVisual Visual *

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmCI nsertPosition XtOrderProc

Xm NnumChildren 0 G
XmCReadOnly Cardinal

1-56

Reference Pages

ApplicationShell (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCallback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-57

OSF/Motif Programmer's Reference

ApplicationSheli (3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for ApplicationShell.

Related Information
Composite(3X), Core(3X), Shell(3X), WMShell(3X), VendorShell(3X), and
TopLeveIShell(3X) .

1-58

Synopsis

Description

Reference Pages

Composite (3X)

Composite-The Composite widget class

#include <XmIXm.h>

Composite widgets are intended to be containers for other widgets and can have an
arbitrary number of children. Their responsibilities (implemented either directly
by the widget class or indirectly by Intrinsics functions) include:

• Overall management of children from creation to destruction.

• Destruction of descendants when the composite widget is destroyed.

• Physical arrangement (geometry management) of a displayable subset of
managed children.

• Mapping and unmapping of a subset of the managed children. Instances of
composite widgets need to specify the order in which their children are
kept. For example, an application may want a set of command buttons in
some logical order grouped by function, and it may want buttons that
represent filenames to be kept in alphabetical order.

Classes
Composite inherits behavior and resources from Core.

The class pointer is composite WidgetClass.

The class name is Composite.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-59

OSF/Motif Programmer's Reference

Composite(3X)

1-60

Composite Resource Set

Name Default Access
Class Type

XmNchiidren NULL G
XmCReadOnly WidgetList

Xm NinsertPosition NULL CSG
XmCI nsertPosition XtOrderProc

XmNnumChiidren 0 G
XmCReadOnly Cardinal

XmNchiidren
A read-only list of the children of the widget.

XmNinsertPosition
Points to the XtOrderProc function described below.

XmNnumChiidren
A read-only resource specifying the length of the list of children in
XmNchiidren.

The following procedure pointer in a composite widget instance is of type
XtOrderProc:

Cardinal (* XtOrderProc) (widget)
Widget w;

w Specifies the widget.

Composite widgets that allow clients to order their children (usually homogeneous
boxes) can call their widget instance's insert_position procedure from the class's
inserCchiid procedure to determine where a new child should go in its children
array. Thus, a client of a composite class can apply different sorting criteria to
widget instances of the class, passing in a different inserCposition procedure
when it creates each composite widget instance.

Reference Pages

Composite (3X)

The return value of the inserCposition procedure indicates how many children
should go before the widget. A value of 0 (zero) indicates that the widget should
go before all other children; returning num_children indicates that it should go
after all other children. The default insert_position function returns
num_children and can be overridden by a specific composite widget's resource
list or by the argument list provided when the composite widget is created.

Inherited Resources
Composite inherits behavior and resources from the superc1ass described in the
following table. For a complete description of each resource, refer to the reference
page for that superc1ass.

1-61

OSF/Motif Programmer's Reference

Composite(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECI FIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-62

Name Default
Class Type

Xm Ntranslations dynamic
XmCTranslations XtTranslations

XmNwidth dynamic
XmCWidth Dimension

XmNx 0
XmCPosition Position

XmNy 0
XmCPosition Position

Translations
There are no translations for Composite.

Related Information
Core(3X).

Reference Pages

Composite(3X)

Access

CSG

CSG

CSG

CSG

1-63

OSF/Motif Programmer's Reference

Constraint(3X)

Synopsis

Description

Classes

Constraint-The Constraint widget class

#include <XmlXm.h>

Constraint widgets maintain additional state data for each child. For example,
client-defined constraints on the child's geometry may be specified.

When a constrained composite widget defines constraint resources, all of that
widget's children inherit all of those resources as their own. These constraint
resources are set and read just the same as any other resources defined for the
child. This resource inheritance extends exactly one generation down, which
means only the first -generation children of a constrained composite widget inherit
the parent widget's constraint resources.

Because constraint resources are defined by the parent widgets and not the
children, the child widgets never directly use the constraint resource data. Instead,
the parents use constraint resource data to attach child-specific data to children.

Constraint inherits behavior and resources from Composite and Core.

The class pointer is constraintWidgetClass.

The class name is Constraint.

New Resources

1-64

Constraint defines no new resources.

Inherited Resources
Constraint inherits behavior and resources from Composite and Core. The
following table defines a set of widget resources used by the programmer to specify
data. The programmer can also set the resource values for the inherited classes to
set attributes for this widget. To reference a resource by name or by class in a
.Xdefaults file, remove the XmN or XmC prefix and use the remaining letters. To
specify one of the defined values for a resource in a .Xdefaults file, remove the
Xm prefix and use the remaining letters (in either lowercase or uppercase, but
include any underscores between words). The codes in the access column indicate
if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

Constraint (ax)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

Xm Ninitial ResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-65

OSF/Motif Programmer's Reference

Constraint (3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for Constraint.

Related Information
Composite(3X) and Core(3X).

1-66

Synopsis

Description

Classes

Reference Pages

Core(3X)

Core-The Core widget class

#include <XmlXm.h>

Core is the Xt Intrinsic base class for windowed widgets. The Object and
RectObj classes provide support for windowless widgets.

All widgets are built from Core.

The class pointer is widgetClass.

The class name is Core.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-67

OSF/Motif Programmer's Reference

Core(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators X tAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-68

Reference Pages

Core(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

--

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

XmNaccelerators
Specifies a translation table that is bound with its actions in the context
of a particular widget. The accelerator table can then be installed on
some destination widget.

XmNancestorSensitive
Specifies whether the immediate parent of the widget receives input
events. Use the function XtSetSensitive to change the argument to
preserve data integrity (see XmNsensitive). For shells, the default is
copied from the parent's XmNancestorSensitive resource if there is a
parent; otherwise, it is True. For other widgets, the default is the bitwise
AND of the parent's XmNsensitive and XmNancestorSensitive
resources.

XmNbackground
Specifies the background color for the widget.

XmNbackgroundPixmap
Specifies a pixmap for tiling the background. The first tile is placed at
the upper left comer of the widget's window.

XmNborderColor
Specifies the color of the border in a pixel value.

XmNborderPixmap
Specifies a pixmap to be used for tiling the border. The first tile is
placed at the upper left comer of the border.

XmNborderWidth
Specifies the width of the border that surrounds the widget's window on
all four sides. The width is specified in pixels. A width of zero means
that no border shows.

1-69

OSF/Motif Programmer's Reference
Core(3X)

1-70

XmNcolormap
Specifies the colormap that is used for conversions to the type Pixel for
this widget instance. When this resource is changed, previously
generated pixel values are not affected, but newly generated values are
in the new colormap. For shells without parents, the default is the
default colormap of the widget's screen. Otherwise, the default is
copied from the parent.

XmNdepth
Specifies the number of bits that can be used for each pixel in the
widget's window. Applications should not change or set the value of
this resource as it is set by the Xt Intrinsics when the widget is created.
For shells without parents, the default is the default depth of the
widget's screen. Otherwise, the default is copied from the parent.

XmNdestroyCallback
Specifies a list of callbacks that is called when the widget is destroyed.

XmNheight
Specifies the inside height (excluding the border) of the widget's
window.

XmNinitialResourcesPersistent
Specifies whether or not resources are reference counted. If the value is
True when the widget is created, the resources referenced by the widget
are not reference counted, regardless of how the resource type
converter is registered. An application that expects to destroy the
widget and wants to have resources deallocated should specify a value
of False. The default is True, implying an assumption that the widget
will not be destroyed during the life of the application.

XmNmappedWhenManaged
If this resource is set to True, it maps the widget (makes it visible) as
soon as it is both realized and managed. If this resource is set to False,
the client is responsible for mapping and unmapping the widget. If the
value is changed from True to False after the widget has been realized
and managed, the widget is unmapped.

XmNscreen
Specifies the screen on which a widget instance resides. It is read only.
When the Toolkit is initialized, the top-level widget obtains its default
value from the default screen of the display. Otherwise, the default is
copied from the parent.

Reference Pages

Core(3X)

XmNsensitive
Determines whether a widget receives input events. If a widget is
sensitive, the Xt Intrinsics' Event Manager dispatches to the widget all
keyboard, mouse button, motion, window enter/leave, and focus events.
Insensitive widgets do not receive these events. Use the function
XtSetSensitive to change the sensitivity argument. Using
XtSetSensitive ensures that if a parent widget has XmNsensitive set to
False, the ancestor-sensitive flag of all its children is appropriately set.

XmNtranslations
Points to a translations list. A translations list is a list of events and
actions that are to be performed when the events occur.

XmNwidth

XmNx

XmNy

Translations

Specifies the inside width (excluding the border) of the widget's
window.

Specifies the x-coordinate of the upper left outside comer of the
widget's window. The value is relative to the upper left inside comer of
the parent window.

Specifies the y-coordinate of the upper left outside comer of the
widget's window. The value is relative to the upper left inside comer of
the parent window.

There are no translations for Core.

Related Information
Object(3X) and RectObj(3X).

1-71

OSF/Motif Programmer's Reference

MrmCloseHierarchy (3X)

MrmCloseHierarchy-Closes a DID hierarchy

Synopsis #include <MrmIMrmPublic.h>

Description

Cardinal MrmCloseHierarchy(hierarchy _id)
MrmHierarchy hierarchy _id;

The MrmCloseHierarchy function closes a DID hierarchy previously opened by
MrmOpenHierarchyPerDisplay. All files associated with the hierarchy are
closed by the Motif Resource Manager (MRM) and all associated memory is
returned.

hierarchy_id Specifies the ID of a previously opened DID hierarchy. The
hierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

Return Value
This function returns one of these status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmFAILURE The function failed.

Related Information
MrmOpenHierarchyPerDisplay(3X).

1-72

Synopsis

Description

Reference Pages

MrmFetchBitmapLiteral (3X)

MrmFetchBitmapLiteral-Fetches a bitmap literal from a hierarchy

#include <MrmlMrmPublic.h>

Cardinal MrmFetchBitmapLiteral(hierarchy_id, index, screen, display, pixmap_return,
width, height)

MrmHierarchy hierarchy _id;
String index;
Screen
Display
Pixmap
Dimension
Dimension

*screen;
*display;
*pixmap _return;
*width;
*height;

The MrmFetchBitmapLiteral function fetches a bitmap literal from an MRM
hierarchy, and converts the bitmap literal to an X pixmap of depth 1. The function
returns this pixmap and its width and height.

hierarchy _id

index

screen

display

Specifies the ID of the UID hierarchy that contains the specified icon
literal. The value of hierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

Specifies the UIL name of the bitmap literal to fetch.

Specifies the screen used for the pixmap. The screen argument
specifies a pointer to the Xlib structure Screen which contains the
information about that screen and is linked to the Display structure. For
more information on the Display and Screen structures, see the Xlib
function XOpenDisplay and the associated screen information macros.

Specifies the display used for the pixmap. The display argument
specifies the connection to the X server. For more information on the
Display structure, see the Xlib function XOpenDisplay.

pixmap _return

width

height

Returns the resulting X pixmap value.

Specifies a pointer to the width of the pixmap.

Specifies a pointer to the height of the pixmap.

1-73

OSF/Motif Programmer's Reference

MrmFetchBitmapLiteral{3X)

Return Value
This function returns one of the following status return constants:

MrmSUCCESS
The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND
The bitmap literal was not found in the hierarchy.

MrmWRONG_TYPE
The caller tried to fetch a literal of a type not supported by this function.

MrmFAILURE
The function failed.

Related Information
MrmFetchlconLiteral(3X), MrmFetchLiteral(3X), and XOpenDisplay(3X).

1-74

Synopsis

Description

Reference Pages

MrmFetchColorLiteral (ax)

MrmFetchColorLiteral-Fetches a named color literal from a UID file

#include <MrmIMrmPublic.h>

int MrmFetchColorLiteral(hierarchy_id, index, display, colormap_id, pixel)
MrmHierarchy hierarchy _id;
String index;
Display *display;
Colormap colormap_id;
Pixel *pixel;

The MrmFetchColorLiteral function fetches a named color literal from aUlD
file, and converts the color literal to a pixel color value.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified
literal. The value of hierarchy _id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

index

display

Specifies the UIL name of the color literal to fetch. You must define
this name in UIL as an exported value.

Specifies the display used for the pixmap. The display argument
specifies the connection to the X server. For more information on
the Display structure, see the Xlib function XOpenDisplay.

colormap_id Specifies the ID of the color map. If colormap_id is NULL, the
default color map is used.

pixel Returns the ID of the color literal.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND The color literal was not found in the UIL file.

1-75

OSF/Motif Programmer's Reference

MrmFetchColorLiteral (3X)

MrmWRONG_TYPE

MrmFAILURE

The caller tried to fetch a literal of a type not supported by
this function.

The function failed.

Related Information

1-76

MrmFetchBitmapLiteral(3X), MrmOpenHierarchyPerDisplay(3X),
MrmFetchlconLiteral(3X), MrmFetchLiteral(3X), and XOpenDisplay(3X).

Synopsis

Description

Reference Pages

MrmFetchlconLiteral(3X)

MrmFetchIconLiteral-Fetches an icon literal from a hierarchy

#include <MrmlMrmPublic.h>

int MrmFetchlconLiteral(hierarchy _id, index, screen, display, fgpix, bgpix, pixmap)
MrmHierarchy hierarchy _id;
String index;
Screen *screen;
Display *display;
Pixel fgpix;
Pixel bgpix;
Pixmap *pixmap;

The MrmFetchIconLiteral function fetches an icon literal from an MRM
hierarchy, and converts the icon literal to an X pixmap.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified
icon literal. The hierarchy _id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

index

screen

display

fgpix

bgpix

pixmap

Specifies the UIL name of the icon literal to fetch.

Specifies the screen used for the pixmap. The screen argument
specifies a pointer to the Xlib structure Screen, which contains the
information about that screen and is linked to the Display structure.
For more information on the Display and Screen structures, see the
Xlib function XOpenDisplay and the associated screen information
macros.

Specifies the display used for the pixmap. The display argument
specifies the connection to the X server. For more information on
the Display structure, see the Xlib function XOpenDisplay.

Specifies the foreground color for the pixmap.

Specifies the background color for the pixmap.

Returns the resulting X pixmap value.

1-77

OSF/Motif Programmer's Reference

MrmFetchlconLiteral(3X)

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD _HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND The icon literal was not found in the hierarchy.

MrmWRONG_TYPE

MrmFAILURE

The caller tried to fetch a literal of a type not supported by
this function.

The function failed.

Related Information

1-78

MrmFetchBitmapLiteral(3X), MrmOpenHierarchyPerDisplay(3X),
MrmFetchLiteral(3X), MrmFetchC;olorLiteral(3X), and XOpenDisplay(3X).

Synopsis

Description

Reference Pages

MrmFetchLiteral (3X)

MrmFetchLiteral-Fetches a literal from a UID file

#include <MrmlMrmPublic.h>

int MrmFetchLiteral(hierarchy_id, index, display, value, type)
MrmHierarchy hierarchy _id;
String index;
Display *display;
XtPointer *value;
MrmCode *type;

The MrmFetchLiteral function reads and returns the value and type of a literal
(named value) that is stored as a public resource in a single UID file. This function
returns a pointer to the value of the literal. For example, an integer is always
returned as a pointer to an integer, and a string is always returned as a pointer to a
string.

Applications should not use MrmFetchLiteral for fetching icon or color literals.
If this is attempted, MrmFetchLiteral returns an error.

hierarchy _id Specifies the ID of the UID hierarchy that contains the specified
literal. The value of hierarchy_id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

index

display

value

type

Specifies the UIL name of the literal (pixmap) to fetch. You must
define this name in UIL as an exported value.

Specifies the display used for the pixmap. The display argument
specifies the connection to the X server. For more information on
the Display structure, see the Xlib function XOpenDisplay.

Returns the ID of the named literal's value.

Returns the named literal's data type. Types are defined in the
include file MrmIMrmPublic.h.

Return Value
This function returns one of these status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

1-79

OSF/Motif Programmer's Reference

MrmFetchLiteral (aX)

MrmNOT_FOUND The literal was not found in the UIL file.

MrmWRONG_TYPE

MrmFAILURE

The caller tried to fetch a literal of a type not supported by
this function.

The function failed.

Related Information

1-80

MrmFetchBitmapLiteral(3X), MrmOpenHierarchyPerDisplay(3X),
MrmFetchlconLiteral(3X), MrmFetchColorLiteral(3X), and
XOpenDisplay(3X).

Synopsis

Description

Reference Pages

MrmFetchSetValues (3X)

MrmFetchSetValues-Fetches the values to be set from literals stored in
UID files

#include <MrmlMrmPublic.h>

Cardinal MrmFetchSetValues(hierarchy_id, widget, args, num_args)
MrmHierarchy hierarchy _id;
Widget widget;
ArgList args;
Cardinal num_args;

The MrmFetchSetValues function is similar to XtSetValues, except that the
values to be set are defined by the UIL named values that are stored in the UID
hierarchy. MrmFetchSetValues fetches the values to be set from literals stored in
UID files.

hierarchy_id Specifies the ID of the UID hierarchy that contains the specified
literal. The value of hierarchy _id was returned in a previous call to
MrmOpenHierarchyPerDisplay.

widget

args

Specifies the widget that is modified.

Specifies an argument list that identifies the widget arguments to be
modified as well as the index (UIL name) of the literal that defines
the value for that argument. The name part of each argument
(args[nJ.name) must begin with the string XmN followed by the
name that uniquely identifies this attribute tag. For example,
XmNwidth is the attribute name associated with the core argument
width. The value part (args[n}.value) must be a string that gives the
index CUlL name) of the literal. You must define all literals in UIL
as exported values.

Specifies the number of entries in args.

This function sets the values on a widget, evaluating the values as public literal
resource references resolvable from a UID hierarchy. Each literal is fetched from
the hierarchy, and its value is modified and converted as required. This value is
then placed in the argument list and used as the actual value for an XtSetValues
call. MrmFetchSetValues allows a widget to be modified after creation using
UID file values the same way creation values are used in MrmFetch Widget.

As in MrmFetch Widget, each argument whose value can be evaluated from the
UID hierarchy is set in the widget. Values that are not found or values in which
conversion errors occur are not modified.

1-81

OSF/Motif Programmer's Reference

MrmFetchSetValues(3X)

Each entry in the argument list identifies an argument to be modified in the widget.
The name part identifies the tag, which begins with XmN. The value part must be
a string whose value is the index of the literal. Thus, the following code would
modify the label resource of the widget to have the value of the literal accessed by
the index OK_button_label in the hierarchy:

args[n] .name = XmNlabel;
args [n] . value = "OK_button_label";

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmPARTIAL_SUCCESS
At least one literal was successfully fetched.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmFAILURE The function failed.

Related Information
MrmOpenHierarchy Per Display(3X), XtSet Values(3X).

1-82

Synopsis

Description

Reference Pages

MrmFetchWidget(3X)

MrmFetch Widget-Fetches and creates an indexed (UIL named) application
widgets and its children

#include <MrmIMrmPublic.h>

Cardinal MrmFetchWidget(hierarchy_id, index, parencwidget, widget, class)
MrmHierarchy hierarchy _id;
String index;
Widget parencwidget;
Widget *widget;
MrmType *class;

The MrmFetch Widget function fetches and creates an indexed application widget
and its children. The indexed application widget is any widget that is named in
UIL. In fetch operations, the fetched widget's subtree is also fetched and created.
This widget must not appear as the child of a widget within its own subtree.
MrmFetchWidget does not execute XtManageChild for the newly created
widget.

hierarchy_id Specifies the ID of the UID hierarchy that contains the interface
definition. The value of hierarchy _id was returned in a previous
call to MrmOpenHierarchyPerDisplay.

index Specifies the UIL name of the widget to fetch.

parenCwidget

widget

class

Specifies the parent widget ID.

Returns the widget ID of the created widget.

Returns the class code identifying MRM's widget class. The widget
class code for the main window widget, for example, is
MRMwcMainWindow. Literals identifying MRM widget class
codes are defined in Mrm.h.

An application can fetch any named widget in the UID hierarchy using
MrmFetch Widget. MrmFetch Widget can be called at any time to fetch a widget
that was not fetched at application startup. MrmFetch Widget can be used to defer
fetching pop-up widgets until they are first referenced (presumably in a callback),
and then used to fetch them once.

1-83

OSF/Motif Programmer's Reference

MrniFe~chWidget (3X)

MrmFetchWidget can also create multiple instances of a widget (and its subtree).
In this case, the UID definition functions as a template; a widget definition can be
fetched any number of times. An application can use this template to make
multiple instances of a widget, for example, in a dialog box box or menu.

The index (UIL name) that identifies the widget must be known to the application.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND The widget was not found in UID hierarchy.

MrmFAILURE The function failed.

Related Information
MrmOpenHierarchyPerDisplay(3X), MrmFetchWidgetOverride(3X).

1-84

Synopsis

Description

Reference Pages

MrmFetchWidgetOverride(3X)

MrmFetchWidgetOverride-Fetches any indexed (UIL named) application
widget. It overrides the arguments specified for this application widget in UIL

#include <MrmIMrmPublic.h>

Cardinal MrmFetchWidgetOverride(hierarchy_id, index, parencwidget,
override_name, override_args, override_num_args, widget, class)

MrmHierarchy hierarchy _id;
String index;
Widget parencwidget;
String override_name;
ArgList override_args;
Cardinal override_num_args;
Widget *widget;
MrmType *class;

The MrmFetch WidgetOverride function is the extended version of
MrmFetch Widget. It is identical to MrmFetch Widget, except that it allows the
caller to override the widget's name and any arguments that MrmFetch Widget
would otherwise retrieve from the UID file or one of the defaulting mechanisms.
That is, the override argument list is not limited to those arguments in the UID file.

The override arguments apply only to the widget fetched and returned by this
function. Its children (subtree) do not receive any override parameters.

hierarchy_id Specifies the ID of the UID hierarchy that contains the interface
definition. The value of hierarchy_id was returned in a previous
call to MrmOpenHierarchyPerDisplay.

index Specifies the UIL name of the widget to fetch.

parenCwidget
Specifies the parent widget ID.

ove rride _name
Specifies the name to override the widget name. Use a NULL value
if you do not want to override the widget name.

override_args Specifies the override argument list, exactly as given to
XtCreateWidget (conversion complete and so forth). Use a NULL
value if you do not want to override the argument list.

override_num_args
Specifies the number of arguments in override_args.

1-85

OSF/Motif Programmer's Reference

MrmFetchWidgetOverride(3X)

widget

class

Returns the widget ID of the created widget.

Returns the class code identifying MRM's widget class. Literals
identifying MRM widget class codes are defined in the include file
MrmIMrmPublic.h.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmBAD_HIERARCHY
The hierarchy ID was invalid.

MrmNOT_FOUND The widget was not found in UID hierarchy.

MrmFAILURE The function failed.

Related Information
MrmOpenHierarchyPerDispiay(3X), MrmFetch Widget(3X).

1-86

Synopsis

Description

Reference Pages

Mrmlnitialize(ax)

Mrmlnitialize-Prepares an application to use MRM widget-fetching facilities

void MrmlnitializeO

The Mrmlnitialize function must be called to prepare an application to use MRM
widget-fetching facilities. You must call this function prior to fetching a widget.
However, it is good programming practice to call Mrmlnitialize prior to
performing any MRM operations.

Mrmlnitialize initializes the internal data structures that MRM needs to
successfully perform type conversion on arguments and to successfully access
widget creation facilities. An application must call Mrmlnitialize before it uses
other MRM functions.

1-87

OSF/Motif Programmer's Reference

MrmOpenHierarchy(3X)

Synopsis

Description

1-88

MrmOpenHierarchy-Allocates a hierarchy ID and opens all the UID files in
the hierarchy

#include <MrmlMrmPubIic.h>

Cardinal MrmOpenHierarchy(num-files, file_names_list, ancillary _structures_list,
hierarchy _id)

MrmCount num-files;
file_names _list[]; String

MrmOsOpenParamPtr *ancillary _structures_list;
* hierarchy _id; MrmHierarchy

This routine is obsolete and exists for compatibility with previous releases. It is
replaced by MrmOpenHierarchyPerDisplay. MrmOpenHierarchy is identical
to MrmOpenHierarchyPerDisplay except that MrmOpenHierarchy does not
take a display argument.

numJiles Specifies the number of files in the name list.

file _name s _list
Specifies an array of character strings that identify the UID files.

ancillary _structures_list
A list of operating-system-dependent ancillary structures
corresponding to items such as filenames, clobber flags, and so forth.
This argument should be NULL for most operations. If you need to
reference this structure, see the definition of
MrmOsOpenParamPtr in the MrmPublic.h header file for more
information.

hierarchy_id Returns the search hierarchy ID. The search hierarchy ID identifies
the list of UID files that MRM searches (in order) when performing
subsequent fetch calls.

Each UID file string in file_names_list can specify either a full pathname or a
filename. If a UID file string has a leading slash (/), it specifies a full pathname,
and MRM opens the file as specified. Otherwise, the UID file string specifies a
filename. In this case, MRM looks for the file along a search path specified by the
UIDPATH environment variable or by a default search path, which varies
depending on whether or not the XAPPLRESDIR environment variable is set.

The UIDPATH environment variable specifies a search path and naming
conventions associated with UID files. It can contain the substitution field % U,
where the UID file string from the file_names_list argument to

Reference Pages

MrmOpenHierarchy(3X)

MrmOpenHierarchyPerDisplay is substituted for % U. It can also contain the
substitution fields accepted by XtResolvePathname. The substitution field % T is
always mapped to uid. The entire path is first searched with %S mapped to .uid.
If no file is found, is searched again with % S mapped to NULL.

If no display is set prior to calling this function, the result of this function's call to
XtResolvePathname is undefined.

For example, the following UIDPATH value and MrmOpenHierarchy call cause
MRM to open two separate UID files:

UIDPATH=/uidlib/%L/%U.uid:/uidlib/%U/%L
static char *uid_files[] = {"/usr/users/me/test.uid", Itest2"};
MrmHierarchy *Hierarchy_id;
MrmOpenHierarchy((MrmCount)2,uid_files, NULL, Hierarchy_id)

MRM opens the first file, lusr/users/me/test.uid, as specified in the file_names_list
argument to MrmOpenHierarchy, because the UID file string in the
file_names_list argument specifies a full pathname. MRM looks for the second file,
test2, first as luidlib/%L/test2.uid and second as luidlib/test2/%L, where the
display's language string is substituted for %L.

After MrmOpenHierarchy opens the UID hierarchy, you should not delete or
modify the UID files until you close the UID hierarchy by calling
MrmCloseHierarchy.

If UIDPATH is not set but the environment variable XAPPLRESDIR is set, MRM
searches the following pathnames:

• %U%S

• $XAPPLRESDIR/%L/uid/%N/%U%S

• $XAPPLRESDIR/%lIuidl%N/%U%S

• $XAPPLRESDIR/uidl%N/% U%S

• $XAPPLRESDIR/%L/uid/% U%S

• $XAPPLRESDIR/%lIuidl%U%S

• $XAPPLRESDIR/uidl%U%S

• $HOME/uidl% U%S

• $HOME/%U%S

• lusr/lib/Xll1%L/uid/%N/%U%S

• lusr/lib/Xll1%l/uidl%N/%U%S

1-89

OSF/Motif Programmer's Reference

MrmOpenHierarchy(3X)

1-90

• /usrllib/Xll1uid/%N/%U%S

• /usrllib/Xll1%L/uidl% U%S

• /usrllib/Xll1%l/uid/%U%S

• /usrllib/Xll/uid/%U%S

• /usr/include/Xll1uidl%U%S

If neither UIDPATH nor XAPPLRESDIR is set, MRM searches the following
pathnames:

• %U%S

• HOME/%L/uidl%N/%U%S

• HOME/%l/uid/%N/%U%S

• $HOME/uid/%N/% U%S

• $HOME/%L/uidl% U%S

• $HOME/%l/uid/%U%S

• $HOME/uid/%U%S

• $HOME/% U%S

• /usrllib/Xll1%L/uid/%N/%U%S

• /usrllib/Xll1%l/uid/%N/%U%S

• /usrllib/Xll1uid/%N/%U%S

• /usrllib/Xll/%L/uidl%U%S

• /usrllib/Xll1%l/uid/%U%S

• /usrllib/Xll1uid/%U%S

• /usr/includelXll1uidl%U%S

These paths are defaults that vendors may change. For example, a vendor may use
different directories for lusr/liblXll and lusr/includelXll.

The following substitutions are used in these paths:

% U The UID file string, from the file_names_list argument.

% N The class name of the application.

Reference Pages

MrmOpenHierarchy(3X)

%L The display's language string.

%1 The language component of the display's language string.

% S The suffix to the filename. The entire path is first searched with a
suffix of .uil. If no file is found, it is searched again with a NULL
suffix.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmNOT_FOUND File not found.

MrmFAILURE The function failed.

Related Information
MrmOpenHierarchyPerDisplay(3X) and MrmCloseHierarchy(3X).

1-91

OSF/Motif Programmer's Reference

MrmOpenHierarchyPerDisplay(3X)

Synopsis

Description

1-92

MrmOpenHierarchyPerDisplay-Allocates a hierarchy ID and opens all the
DID files in the hierarchy

#include <MrmIMrmPublic.h>

Cardinal MrmOpenHierarchyPerDisplay (display, numJiles, file_names_list,
ancillary _structures_list, hierarchy _id)

Display *display;
MrmCount numJiles;
String file_names_list[];
MrmOsOpenParamPtr *ancillary _structures_list;
MrmHierarchy *hierarchy_id;

MrmOpenHierarchyPerDisplay allows you to specify the list of DID files that
MRM searches in subsequent fetch operations. All subsequent fetch operations
return the first occurrence of the named item encountered while traversing the DID
hierarchy from the first list element (DID file specification) to the last list element.
This function also allocates a hierarchy ID and opens all the DID files in the
hierarchy. It initializes the optimized search lists in the hierarchy. If
MrmOpenHierarchyPerDisplay encounters any errors during its execution, any
files that were opened are closed.

The application must call XtApplnitialize before calling
MrmOpenHierarchyPerDisplay.

display

numJiles

Specifies the connection to the X server and the value to pass to
XtResolvePathname. For more information on the Display
structure, see the Xlib function XOpenDisplay.

Specifies the number of files in the name list.

file_names_list
Specifies an array of character strings that identify the DID files.

ancillary _structures_list
A list of operating-system-dependent ancillary structures
corresponding to items such as filenames, clobber flags, and so forth.
This argument should be NDLL for most operations. If you need to
reference this structure, see the definition of
MrmOsOpenParamPtr in the MrmPublic.h header file for more
information.

Reference Pages

MrmOpenHierarchyPerDisplay (3X)

hierarchy_id Returns the search hierarchy ID. The search hierarchy ID identifies
the list of UID files that MRM searches (in order) when performing
subsequent fetch calls.

Each UID file string in file_names_list can specify either a full pathname or a
filename. If a UID file string has a leading I (slash), it specifies a full pathname,
and MRM opens the file as specified. Otherwise, the UID file string specifies a
filename. In this case MRM looks for the file along a search path specified by the
UIDPATH environment variable or by a default search path, which varies
depending on whether or not the XAPPLRESDIR environment variable is set.

The UIDPATH environment variable specifies a search path and naming
conventions associated with UID files. It can contain the substitution field % U,
where the UID file string from the file_names_list argument to
MrmOpenHierarchyPerDisplay is substituted for % U. It can also contain the
substitution fields accepted by XtResolvePatbname. The substitution field % T is
always mapped to uid. The entire path is searched first with % S mapped to .uid.
If no file is found, it is searched again with %S mapped to NULL. For example, the
following UIDPATH value and MrmOpenHierarcbyPerDisplay call cause
MRM to open two separate UID files:

UIDPATH=/uidlib/%L/%U.uid:/uidlib/%U/%L
static char *uid_files[] = {"/usr/users/me/test.uid", "test2"};
MrmHierarchy *Hierarchy_id;
MrmOpenHierarchyPerDisplay((MrmCount)2,uid_files, NULL, Hierarchy_id)

MRM opens the first file, lusr/users/me/test.uid, as specified in the file_names_list
argument to MrmOpenHierarcbyPerDisplay, because the UID file string in the
file_names_list argument specifies a full pathname. MRM looks for the second file,
test2, first as luidlib/%L/test2.uid and second as luidlib/test2/%L, where the
display's language string is substituted for %L.

After MrmOpenHierarcbyPerDisplay opens the UID hierarchy, you should not
delete or modify the UID files until you close the UID hierarchy by calling
MrmCloseHierarcby.

If UIDPATH is not set, but the environment variable XAPPLRESDIR is set,
MRM searches the following pathnames:

• %U%S

• $XAPPLRESDIR/%L/uidl%N/% U%S

• $XAPPLRESDIR/%lIuidl%N/%U%S

• $XAPPLRESDIR/uidl%N/%U%S

1-93

OSF/Motif Programmer's Reference

MrmOpenHierarchyPerDisplay(3X)

1-94

• $XAPPLRESDIR/%L/uidl% U%S

• $XAPPLRESDIR/%l/uidl% U%S

• $XAPPLRESDIR/uid/% U%S

• $HOME/uid/% U%S

• $HOME/% U%S

• lusrllib/Xll1%L/uidl%N/%U%S

• lusrllib/Xll1%l/uid/%N/%U%S

• lusrllib/Xll1uidl%N/%U%S

• lusrlliblXlll%L/uidl%U%S

• lusrllib/Xll1%l/uidl%U%S

• lusrllib/Xll1uidl%U%S

• lusr/includelXll1uidl%U%S

If neither UIDPATH nor XAPPLRESDIR is set, MRM searches the following
pathnames:

• %U%S

• $HOME/%L/uidl%N/% U%S

• $HOME/%l/uidl%N/%U%S

• $HOME/uidl%N/%U%S

• $HOME/%L/uidl%U%S

• $HOME/%l/uidl% U%S

• $HOME/uidl%U%S

• $HOME/% U%S

• lusrllib/Xll/%L/uidl%N/%U%S

• lusrllib/Xll1%l/uid/%N/%U%S

• lusrlliblXll1uid/%N/%U%S

• lusrlliblXll1%L/uidl%U%S

Reference Pages

MrmOpenHierarchyPerDisplay (3X)

• lusr/lib/Xll1%l/uid/%U%S

• lusr/lib/Xll1uid/%U%S

• lusr/include/xll1uid/%U%S

These paths are defaults that vendors may change. For example, a vendor may use
different directories for lusr/lib/Xll and lusr/include/Xl1.

The following substitutions are used in these paths:

% U The UID file string, from the file_names_list argument.

% N The class name of the application.

%L The display's language string.

%1 The language component of the display's language string.

% S The suffix to the filename. The entire path is first searched with a
suffix of .uil. If no file is found, it is searched again with a NULL
suffix.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS The function executed successfully.

MrmNOT_FOUND File not found.

MrmFAILURE The function failed.

Related Information
MrmCloseHierarchy(3X).

1-95

OSF/Motif Programmer's Reference

MrmRegisterClass (3X)

Synopsis

Description

1-96

MrmRegisterClass-Saves the information needed for MRM to access the widget
creation function for user-defined widgets

#include <MrmlMrmPublic.h>

Cardinal MrmRegisterClass(class_code, class_name, create_name, create-proc,
class_record)

MrmType
String
String
Widget

create_name;
(*create-proc) 0;

WidgetClass class_record;

The MrmRegisterClass function allows MRM to access user-defined widget
classes. This function registers the necessary information for MRM to create
widgets of this class. You must call MrmRegisterClass prior to fetching any
user-defined class widget.

MrmRegisterClass saves the information needed to access the widget creation
function and to do type conversion of argument lists by using the information in
MRM databases.

class_code This argument is ignored; it is present for compatibility with
previous releases.

class_name This argument is ignored; it is present for compatibility with
previous releases.

create_name Specifies the case-sensitive name of the low-level widget creation
function for the class. An example from the Motif Toolkit is
XmCreateLabel. Arguments are parencwidget, name,
override_argUst, and override_argcount.

For user-defined widgets, create_name is the creation procedure in
the UIL that defines this widget.

create-proc Specifies the address of the creation function that you named in
create_name.

class_record Specifies a pointer to the class record.

Reference Pages

MrmRegisterClass (3X)

Return Value
This function returns one of the following status return constants:

MrmSUCCESS

MrmFAILURE

The function executed successfully.

The function failed.

1-97

OSF/Motif Programmer's Reference

MrmRegisterNames(3X)

Synopsis

Description

1-98

MrmRegisterNames-Registers the values associated with the names referenced
in UIL (for example, UIL callback function names or UIL identifier names)

#include <MrmlMrmPublic.h>

Cardinal MrmRegisterNames(register _list, register_count)
MrmRegisterArglist register_list;
MrmCount register_count;

The MrmRegisterNames function registers a vector of names and associated
values for access in MRM. The values can be callback functions, pointers to user­
defined data, or any other values. The information provided is used to resolve
symbolic references occurring in UID files to their run-time values. For callbacks,
this information provides the procedure address required by the Motif Toolkit. For
names used as identifiers in UIL, this information provides any run-time mapping
the application needs.

This function is similar to MrmRegisterNamesInHierarchy, except that the scope
of the names registered by MrmRegisterNamesInHierarchy is limited to the
hierarchy specified in the call to that function, whereas the names registered by
MrmRegisterNames have global scope. When MRM looks up a name, it first tries
to find the name among those registered for the given hierarchy. If that lookup
fails, it tries to find the name among those registered globally.

register _list Specifies a list of name/value pairs for the names to be registered.

register_count

Each name is a case-sensitive, NULL-terminated ASCII string.
Each value is a 32-bit quantity, interpreted as a procedure address if
the name is a callback function, and uninterpreted otherwise.

Specifies the number of entries in register_list.

The names in the list are case-sensitive. The list can be either ordered or
unordered.

Callback functions registered through MrmRegisterNames can be either regular
or creation callbacks. Regular callbacks have declarations determined by Motif
Toolkit and user requirements. Creation callbacks have the same format as any
other callback:

void CallBackProc(widgecid, tag, callback_data)
Widget *widgeCid;
Opaque tag
XmAnyCallbackStruct *callback_data;

widgeCid

tag

Reference Pages

MrmRegisterNames (3X)

Specifies the widget ID associated with the widget performing the
callback (as in any callback function).

Specifies the tag value (as in any callback function).

callback_data Specifies a widget-specific data structure. This data structure has a
minimum of two members: event and reason. The reason member is
always set to MrmCR_ CREATE.

Note that the widget name and parent are available from the widget record
accessible through widgecid.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS

MrmFAILURE

The function executed successfully.

The function failed.

1-99

OSF/Motif Programmer's Reference

MrmRegisterNameslnHierarchy(3X)

Synopsis

Description

1-100

MrmRegisterNameslnHierarchy-Registers the values associated with the
names referenced in UIL within a single hierarchy (for example, UIL callback
function names or UIL identifier names)

#include <MrmlMrmPublic.h>

Cardinal MrmRegisterNameslnHierarchy(hierarchy_id, register _list, register_count)
MrmHierarchy hierarchy _id;
MrmRegisterArglist register_list;
MrmCount register_count;

The MrmRegisterNameslnHierarchy function registers a vector of names and
associated values for access in MRM. The values can be callback functions,
pointers to user-defined data, or any other values. The information provided is
used to resolve symbolic references occurring in UID files to their run-time
values.For callbacks, this information provides the procedure address required by
the Motif Toolkit. For names used as identifiers in UIL, this information provides
any run-time mapping the application needs.

This function is similar to MrmRegisterNames, except that the scope of the names
registered by MrmRegisterNameslnHierarchy is limited to the hierarchy
specified by hierarchy_id, whereas the names registered by MrmRegisterNames
have global scope. When MRM looks up a name, it first tries to find the name
among those registered for the given hierarchy. If that lookup fails, it tries to find
the name among those registered globally.

hierarchy_id Specifies the hierarchy with which the names are to be associated.

register _list Specifies a list of name/value pairs for the names to be registered.

register_count

Each name is a case-sensitive, NULL-terminated ASCII string.
Each value is a 32-bit quantity, interpreted as a procedure address if
the name is a callback function, and uninterpreted otherwise.

Specifies the number of entries in register_list.

The names in the list are case-sensitive. The list can be either ordered or
unordered.

Callback functions registered through MrmRegisterNameslnHierarchy can be
either regular or creation callbacks. Regular callbacks have declarations
determined by Motif Toolkit and user requirements.

Reference Pages

MrmRegisterNameslnHierarchy(3X)

Creation callbacks have the same format as any other callback:

void CallBackProc(widgeCid, tag, callback_data}
Widget *widgeCid;
Opaque tag;
XmAnyCallbackStruct *callback_data;

widgeCid Specifies the widget ID associated with the widget performing the
callback (as in any callback function).

tag Specifies the tag value (as in any callback function).

Specifies a widget-specific data structure. This data structure has a
minimum of two members: event and reason. The reason member is
always set to MrmCR_ CREATE.

Note that the widget name and parent are available from the widget record
accessible through widgeCid.

Return Value
This function returns one of the following status return constants:

MrmSUCCESS

MrmFAILURE

The function executed successfully.

The function failed.

1-101

OSF/Motif Programmer's Reference

Object(3X)

Synopsis

Description

Classes

Object-The Object widget class

#include <XmlXm.h>

Object is never instantiated. Its sole purpose is as a supporting superclass for other
widget classes.

The class pointer is objectClass.

The class name is Object.

New Resources

1-102

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Object Resource Set

Name Default Access
Class Type

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNdestroyCallback
Specifies a list of callbacks that is called when the gadget is
destroyed.

Translations
There are no translation for Object.

Synopsis

Description

Classes

OverrideShell-The OverrideS hell widget class

#include <XmlXm.h>
#include <Xll/Shell.h>

Reference Pages

OverrideS hell (3X)

OverrideS hell is used for shell windows that completely bypass the window
manager, for example, PopupMenu shells.

OverrideS hell inherits behavior and resources from Core, Composite, and Shell.

The class pointer is overrideShellWidgetClass.

The class name is OverrideShell.

New Resources
OverrideS hell defines no new resources, but overrides the XmNoverrideRedirect
and XmNsaveUnder resources in the Shell class.

Inherited Resources
OverrideShell inherits behavior and resources from the following superclasses. For
a complete description of each resource, refer to the reference page for that
superclass.

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-103

OSF/Motif Programmer's Reference

OverrideShel1 (3X)

Shell Resource Set

Name Default Access
Class Type

XmNallowSheliResize False CG
XmCAllowShellResize Boolean

XmNcreatePopupChiidProc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChildProc

XmNgeometry NULL CSG
XmCGeometry String

XmNoverrideRedirect True CSG
XmCOverrideRedirect Boolean

XmNpopdownCaliback NULL C
XmCCaliback XtCalibackList

XmNpopupCallback NULL C
XmCCaliback XtCalibackList

XmNsaveUnder True CSG
XmCSaveUnder Boolean

XmNvisual CopyFromParent CSG
XmCVisual Visual *

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

Xm NinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-104

Reference Pages

OverrideS hell (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED - PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-105

OSF/Motif Programmer's Reference

OverrideShell(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for OverrideS hell.

Related Information
Composite(3X), Core(3X), and Sbell(3X).

1-106

Synopsis

Description

Classes

Reference Pages
RectObj (3X)

RectObj-The RectObj widget class

#include <XmlXm.h>

RectObj is never instantiated. Its sole purpose is as a supporting superclass for
other widget classes.

RectObj inherits behavior and a resource from Object.

The class pointer is rectObjClass.

The class name is RectObj.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-107

OSF/Motif Programmer's Reference

RectObj (3X)

1-108

RectObj Resource Set

Name Default Access
Class Type

XmNancestorSensitive dynamic G
XmCSensitive Boolean

Xm NborderWidth 1 CSG
XmCBorderWidth Dimension

XmNheight dynamic CSG
XmCHeight Dimension

XmNsensitive True CSG
XmCSensitive Boolean

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

XmNancestorSensitive
Specifies whether the immediate parent of the gadget receives input
events. Use the function XtSetSensitive if you are changing the
argument to preserve data integrity (see XmNsensitive). The
default is the bitwise AND of the parent's XmNsensitive and
XmNancestorSensitive resources.

XmNborderWidth
Specifies the width of the border placed around the RectObj's
rectangular display area.

XmNheight Specifies the inside height (excluding the border) of the RectObj's
rectangular display area.

XmNsensitive
Determines whether a RectObj receives input events. If a RectObj
is sensitive, the parent dispatches to the gadget all keyboard, mouse
button, motion, window enterlleave, and focus events. Insensitive
gadgets do not receive these events. Use the function
XtSetSensitive to change the sensitivity argument. Using
XtSetSensitive ensures that if a parent widget has XmNsensitive
set to False, the ancestor-sensitive flag of all its children is
appropriately set.

Reference Pages

RectObj (3X)

XmNwidth Specifies the inside width (excluding the border) of the RectObj's
rectangular display area.

XmNx Specifies the x-coordinate of the upper left outside corner of the
RectObj's rectangular display area. The value is relative to the
upper left inside corner of the parent window.

XmNy Specifies the y-coordinate of the upper left outside corner of the
RectObj's rectangular display area. The value is relative to the
upper left inside corner of the parent window.

Inherited Resources
RectObj inherits behavior and a resource from Object. For a description of this
resource, refer to the Object reference page.

Object Resource Set

Name
Class

Xm NdestroyCallback
XmCCaliback

Translations
There are no translations for RectObj.

Related Information
Object(3X).

Default
Type

NULL
XtCalibackList

Access

C

1-109

OSF/Motif Programmer's Reference

Shell(3X)

Synopsis

Description

Classes

Shell-The Shell widget class

#include <XmIXm.h>
#include <Xll/Shell.h>

Shell is a top-level widget (with only one managed child) that encapsulates the
interaction with the window manager.

At the time the shell's child is managed, the child's width is used for both widgets
if the shell is unrealized and no width has been specified for the shell. Otherwise,
the shell's width is used for both widgets. The same relations hold for the height of
the shell and its child.

Shell inherits behavior and resources from Composite and Core.

The class pointer is shellWidgetClass.

The class name is Shell.

New Resources

1-110

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

Shell(3X)

Shell Resource Set

Name Default Access
Class Type

XmNallowSheliResize False CG
XmCAliowSheliResize Boolean

Xm NcreatePopupChildProc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChildProc

XmNgeometry NULL CSG
XmCGeometry String

Xm NoverrideRedirect False CSG
XmCOverrideRedirect Boolean

XmNpopdownCallback NULL C
XmCCaliback X tCali backList

XmNpopupCaliback NULL C
XmCCaliback XtCalibackList

XmNsaveUnder False CSG
XmCSaveUnder Boolean

XmNvisual Copy From Parent CSG
XmCVisual Visual *

XmNallowShellResize
Specifies that if this resource is False, the Shell widget instance
returns XtGeometryNo to all geometry requests from its children.

XmNcreatePopupChiidProc
Specifies the pointer to a function that is called when the Shell
widget instance is popped up by XtPopup. The function creates the
child widget when the shell is popped up instead of when the
application starts up. This can be used if the child needs to be
reconfigured each time the shell is popped up. The function takes
one argument, the popup shell, and returns no result. It is called
after the popup callbacks specified by XmNpopupCallback.

XmNgeometry
Specifies the desired geometry for the widget instance. This
resource is examined only when the widget instance is unrealized
and the number of its managed children is changed. It is used to
change the values of the XmNx, XmNy, XmNwidth, and
XmNheight resources.

1-111

OSF/Motif Programmer's Reference

Shell(3X)

XmNoverrideRedirect
If True, specifies that the widget instance is a temporary window
which should be ignored by the window manager. Applications and
users should not normally alter this resource.

XmNpopdownCallback
Specifies a list of callbacks that is called when the widget instance is
popped down by XtPopdown.

XmNpopupCallback
Specifies a list of callbacks that is called when the widget instance is
popped up by XtPopup.

XmNsaveUnder
If True, specifies that iit is desirable to save the contents of the
screen beneath this widget instance, avoiding expose events when
the instance is unmapped. This is a hint, and an implementation
may save contents whenever it desires, including always or never.

XmNvisual Specifies the visual used in creating the widget.

Inherited Resources

1-112

Shell inherits behavior and resources from the superclass described in the
following table. For a complete description of each resource, refer to the reference
page for that superclass.

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmCI nsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

Reference Pages

Shell(3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CSG
XmCAccelerators XtAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap Xm UNSPECI FI ED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-113

OSF/Motif Programmer's Reference

Shell{3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for Shell.

Related Information
Composite(3X) and Core(3X).

1-114

Synopsis

Description

Classes

TopLevelShell-The TopLevelShell widget class

#include <XmlXm.h>
#include <Xll/Shell.h>

Reference Pages

TopLevelShell (3X)

TopLevelShell is used for normal top-level windows such as any additional top­
level widgets an application needs.

TopLevelShell inherits behavior and resources from Core, Composite, Shell,
WMShell, and VendorShell.

The class pointer is topLevelShellWidgetClass.

The class name is TopLevelShell.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of tlle defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

TopLevelShell Resource Set

Name Default Access
Class Type

XmNiconic False CSG
XmClconic Boolean

XmNiconName NULL CSG
XmClconName String

XmNiconNameEncoding dynamic CSG
XmClconNameEncoding Atom

XmNiconic If True when the widget instance is realized, specifies that the
widget instance indicates to the window manager that the
application wishes to start as an icon, regardless of the
XmNinitialState resource.

1-115

OSF/Motif Programmer's Reference
TopLeveIShell(3X)

1-116

XmNiconName
Specifies the short form of the application name to be displayed by
the window manager when the application is iconified.

XmNiconNameEncoding

Inherited Resources

Specifies a property type that represents the encoding of the
XmNiconName string. If a language procedure has been set, the
default is None; otherwise, the default is XA_STRING. When the
widget is realized, if the value is None, the corresponding name is
assumed to be in the current locale. The name is passed to
XmbTextListToTextProperty with an encoding style of
XStdICCTextStyle. The resulting encoding is STRING if the name
is fully convertible to STRING, otherwise COMPOUND_TEXT.
The values of the encoding resources are not changed; they remain
None.

TopLevelShell inherits behavior and resources from the following superc1asses.
For a complete description of each resource, refer to the reference page for that
superc1ass.

Reference Pages

TopLevelShell (3X)

VendorShell Resource Set

Name Default Access
Class Type

XmNaudibleWarning XmBELL CSG
XmCAudibleWarning unsigned char

Xm Nbutton FontList dynamic CSG
XmCButtonFontList XmFontList

XmNdefaultFontList dynamic CG
XmCDefaultFontList XmFontList

Xm NdeleteResponse XmDESTROY CSG
XmCDeleteResponse unsigned char

XmNinputMethod NULL CSG
XmCI nputMethod String

Xm NkeyboardFocusPolicy XmEXPLICIT CSG
XmCKeyboardFocusPolicy unsigned char

Xm NlabelFontList dynamic CSG
XmCLabel FontList XmFontList

XmNmwmDecorations -1 CSG
XmCMwm Decorations int

XmNmwmFunctions -1 CSG
XmCMwmFunctions int

XmNmwmlnputMode -1 CSG
XmCMwmlnputMode int

XmNmwmMenu NULL CSG
XmCMwmMenu String

Xm NpreeditType dynamic CSG
XmCPreeditType String

XmNsheliUnitType XmPIXELS CSG
XmCSheliUnitType unsigned char

Xm NtextFontList dynamic CSG
XmCTextFontList XmFontList

XmNuseAsyncGeometry False CSG
XmCUseAsyncGeometry Boolean

1-117

OSF/Motif Programmer's Reference

TopLevelShel1 (3X)

WMShell Resource Set

Name Default Access
Class Type

XmNbaseHeight XtUnspecifiedShell1 nt CSG
XmCBaseHeight int

XmNbaseWidth XtUnspecifiedShelllnt CSG
XmCBaseWidth int

XmNheightlnc XtUnspecifiedShelllnt CSG
XmCHeightlnc int

XmNiconMask NULL CSG
XmClconMask Pixmap

XmNiconPixmap NULL CSG
XmClconPixmap Pixmap

XmNiconWindow NULL CSG
XmClconWindow Window

XmNiconX -1 CSG
XmClconX int

XmNiconY -1 CSG
XmClconY int

XmNinitialState NormalState CSG
XmClnitialState int

XmNinput True CSG
XmClnput Boolean

XmNmaxAspectX XtUnspecifiedShelllnt CSG
XmCMaxAspectX int

XmNmaxAspectY XtUnspecifiedShell1 nt CSG
XmCMaxAspectY int

XmNmaxHeight XtU nspecifiedShell1 nt CSG
XmCMaxHeight int

Xm NmaxWidth XtU nspecifiedShelll nt CSG
XmCMaxWidth int

XmNminAspectX XtUnspecifiedShell1 nt CSG
XmCMinAspectX int

1-118

Reference Pages

TopLevelSheli (3X)

Name Default Access
Class Type

XmNminAspectY XtUnspecifiedShell1 nt CSG
XmCMinAspectY int

XmNminHeight XtUnspecifiedShell1 nt CSG
XmCMinHeight int

XmNminWidth XtUnspecifiedShell1 nt CSG
XmCMinWidth int

XmNtitie dynamic CSG
XmCTitle String

XmNtitleEncoding dynamic CSG
XmCTitleEncoding Atom

XmNtransient False CSG
XmCTransient Boolean

XmNwaitForWm True CSG
XmCWaitForWm Boolean

XmNwidthlnc XtUnspecifiedShelllnt CSG
XmCWidthlnc int

XmNwindowGroup dynamic CSG
XmCWindowGroup Window

XmNwinGravity dynamic CSG
XmCWinGravity int

XmNwmTimeout 5000 ms CSG
XmCWmTimeout int

1-119

OSF/Motif Programmer's Reference

TopLevelShell (3X)

Shell Resource Set

Name Default Access
Class Type

XmNaliowSheliResize False CG
XmCAllowShellResize Boolean

XmNcreatePopupChildProc NULL CSG
XmCCreatePopupChiidProc XtCreatePopupChildProc

XmNgeometry NULL CSG
XmCGeometry String

Xm NoverrideRedirect False CSG
XmCOverrideRedirect Boolean

XmNpopdownCallback NULL C
XmCCallback XtCallbackList

XmNpopupCallback NULL C
XmCCallback XtCallbackList

XmNsaveUnder False CSG
XmCSaveUnder Boolean

XmNvisual Copy From Parent CSG
XmCVisual Visual *

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-120

Reference Pages

TopLevelShell (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

Xm NbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-121

OSF/Motif Programmer's Reference

TopLevelShel1 (3X)

Name Default Access
Class Type

XmNtranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for TopLevelShell.

Related Information
Composite(3X), Core(3X), Shell(3X), WMShell(3X), and VendorShell(3X).

1-122

Synopsis

Description

TransientShell-The TransientShell widget class

#include <XmlXm.h>
#include <Xll1Shell.h>

Reference Pages

TransientShel1 (3X)

TransientShell is used for shell windows that can be manipulated by the window
manager, but are not allowed to be iconified separately. For example, DialogBoxes
make no sense without their associated application. They are iconified by the
window manager only if the main application shell is iconified.

Classes
TransientShell inherits behavior and resources from Core, Composite, Shell,
WMShell, and VendorShell.

The class pointer is transientShellWidgetClass.

The class name is TransientShel1.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (0), or is not applicable (N/A).

In addition to these new resources, TransientShell overrides the XmNsaveUnder
resource in Shell and the XmNtransient resource in WMShell.

TransientShell Resource Set

Name Default Access
Class Type

XmNtransientFor NULL CSG
XmCTransientFor Widget

XmNtransientFor
Specifies a widget that the shell acts as a pop-up for. If this resource
is NULL or is a widget that has not been realized, the
XmNwindowGroup is used instead.

1-123

OSF/Motif Programmer's Reference
TransientShell (aX)

1-124

Inherited Resources
TransientShell inherits behavior and resources from the superclasses described in
the following tables, which define sets of widget resources used by the programmer
to specify data. For a complete description of each resource, refer to the reference
page for that superclass.

The programmer can also set the resource values for the inherited classes to set
attributes for this widget. To reference a resource by name or by class in a
.Xdefaults file, remove the XmN or XmC prefix and use the remaining letters. To
specify one of the defined values for a resource in a .Xdefaults file, remove the
Xm prefix and use the remaining letters (in either lowercase or uppercase, but
include any underscores between words). The codes in the access column indicate
if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

TransientShell (3X)

VendorS hell Resource Set

Name Default Access
Class Type

XmNaudibleWarning XmBELL CSG
XmCAudibleWarning unsigned char

Xm NbuttonFontList dynamic CSG
XmCButtonFontList XmFontList

Xm NdefaultFontList dynamic CG
XmCDefaultFontList XmFontList

Xm NdeleteResponse XmDESTROY CSG
XmCDeleteResponse unsigned char

XmNinputMethod NULL CSG
XmClnputMethod String

Xm N keyboard Focus Policy XmEXPLICIT CSG
XmCKeyboardFocusPolicy unsigned char

Xm NlabelFontList dynamic CSG
XmCLabelFontList XmFontList

XmNmwmDecorations -1 CSG
XmCMwmDecorations int

XmNmwmFunctions -1 CSG
XmCMwmFunctions int

XmNmwm InputMode -1 CSG
XmCMwmlnputMode int

XmNmwmMenu NULL CSG
XmCMwmMenu String

XmNpreeditType dynamic CSG
XmCPreeditType String

XmNsheliUnitType XmPIXELS CSG
XmCSheliUnitType unsigned char

Xm NtextFontList dynamic CSG
Xm CTextFontList XmFontList

Xm NuseAsyncGeometry False CSG
XmCUseAsyncGeometry Boolean

1-125

OSF/Motif Programmer's Reference

TransientShell (3X)

WMShell Resource Set

Name Default Access
Class Type

XmNbaseHeight XtUnspecifiedSheli1 nt CSG
XmCBaseHeight int

XmNbaseWidth XtUnspecifiedSheli1 nt CSG
XmCBaseWidth int

XmNheightlnc XtUnspecifiedShelllnt CSG
XmCHeightlnc int

XmNiconMask NULL CSG
XmClconMask Pixmap

XmNiconPixmap NULL CSG
XmClconPixmap Pixmap

XmNiconWindow NULL CSG
XmClconWindow Window

XmNiconX -1 CSG
XmClconX int

XmNiconY -1 CSG
XmClconY int

Xm NinitialState NormalState CSG
XmClnitialState int

XmNinput True CSG
XmClnput Boolean

XmNmaxAspectX XtUnspecifiedSheli1 nt CSG
XmCMaxAspectX int

XmNmaxAspectY XtUnspecifiedShelllnt CSG
XmCMaxAspectY int

XmNmaxHeight XtUnspecifiedShell1 nt CSG
XmCMaxHeight int

XmNmaxWidth XtUnspecifiedShelllnt CSG
XmCMaxWidth int

XmNminAspectX XtUnspecifiedShelllnt CSG
XmCMinAspectX int

1-126

Reference Pages

TransientShell (3X)

Name Default Access
Class Type

XmNminAspectY XtUnspecifiedShelllnt CSG
XmCMinAspectY int

XmNminHeight XtUnspecifiedShelllnt CSG
XmCMinHeight int

XmNminWidth XtUnspecifiedSheli1 nt CSG
XmCMinWidth int

XmNtitle dynamic CSG
XmCTitle String

Xm NtitleEncoding dynamic CSG
XmCTitleEncoding Atom

XmNtransient True CSG
XmCTransient Boolean

XmNwaitForWm True CSG
XmCWaitForWm Boolean

XmNwidthlnc XtUnspecifiedShell1 nt CSG
XmCWidthlnc int

XmNwindowGroup dynamic CSG
XmCWindowGroup Window

XmNwinGravity dynamic CSG
XmCWinGravity int

XmNwmTimeout 5000 ms CSG
XmCWmTimeout int

1-127

OSF/Motif Programmer's Reference

TransientShel1 (3X)

Shell Resource Set
Name Default Access

Class Type

XmNaliowSheliResize False CG
XmCAllowShellResize Boolean

XmNcreatePopupChildProc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChildProc

XmNgeometry NULL CSG
XmCGeometry String

XmNoverrideRedirect False CSG
XmCOverrideRedirect Boolean

XmNpopdownCaliback NULL C
XmCCallback XtCalibackList

XmNpopupCallback NULL C
XmCCaliback XtCalibackList

XmNsaveUnder True CSG
XmCSaveUnder Boolean

XmNvisual CopyFrom Parent CSG
XmCVisual Visual *

Composite Resource Set
Name Default Access

Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

Xm NinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-128

Reference Pages

TransientShell (3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECI FI ED _PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmCI nitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-129

OSF/Motif Programmer's Reference

TransientShell (aX)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for TransientShell.

Related Information
Composite(3X), Core(3X), Shell(3X), VendorShell(3X), and WMShell(3X).

1-130

Synopsis

Description

Reference Pages

Uil{3X)

Uil-Invokes the UIL compiler from within an application

#include <uiVUiIDef.h>

UiI_status_type UiI (command_desc, compile_desc, message_cb, message_data,
status_cb, status_data)

UiI_command_type
UiCcompiIe_desc_type
UiI_ continue_type
char
UiCcontinue_type
char

*command_desc;
*compile_desc;
(*message_cb) 0;
*message_data;
(*status_cb) 0;
*status_data;

The Uil function provides a callable entry point for the UIL compiler. The Uil
callable interface can be used to process a UIL source file and to generate UID
files, as well as return a detailed description of the UIL source module in the form
of a symbol table (parse tree).

command_desc
Specifies the uil command line.

compile_desc Returns the results of the compilation.

message_cb Specifies a callback function that is called when the compiler
encounters errors in the UIL source.

message_data
Specifies user data that is passed to the message callback function
(message_cb). Note that this argument is not interpreted by UIL, and
is used exclusively by the calling application.

status_cb Specifies a callback function that is called to allow X applications to
service X events such as updating the screen. This function is called
at various check points, which have been hard coded into the UIL
compiler. The status_update_delay argument in command_desc
specifies the number of check points to be passed before the
status_cb function is invoked.

status_data Specifies user data that is passed to the status callback function
(status_cb). Note that this argument is not interpreted by the UIL
compiler and is used exclusively by the calling application.

1-131

OSF/Motif Programmer's Reference

Uil(3X)

1-132

Following are the data
Uil_compile_desc_type:

typedef struct Uil_corrmand_type
char *source_file;

structures

/* single source to compile */
char *resource_file; /* name of output file */
char *listing_file; /* name of listing file */
unsigned int *include_dir_count;

/* number of dirs. in include_dir */
char *((*include_dir) []);

/* dire to search for include files */
unsigned listing_file_flag: 1;

/* produce a listing */
unsigned resource_file_flag: 1;

/* generate UID output */
unsigned machine_code_flag: 1;

/* generate machine code */
unsigned report_info_msg_flag: 1;

/* report info messages */
unsigned report_warn_msg_flag: 1;

/* report warnings */
unsigned parse_tree_flag: 1;

/* generate parse tree */
unsigned int status_update_delay;

/* number of times a status point is */
/* passed before calling status_cb */
/* function 0 means called every time */

char *database;
/* name of database file */

unsigned database_flag: 1;
/* read a new database file */

unsigned use_setlocale_flag: 1;
/* enable calls to setlocale */

} ;

and

typedef struct Uil_compile_desc_type
unsigned int compiler_version;

/* version number of compiler */
unsigned int data_version;

/* version number of structures */
char *parse_tree_root; /* parse tree output */
unsigned int message_count [Uil_k_max_status+l1;
/* array of severity counts */
} ;

Reference Pages

Uil(3X)

Following is a description of the message callback function specified by
message_cb:

Uil_continue_type (*message_cb) (message_data, message_number, severity, msg_buffer,
src_buffer, ptr _buffer, loc_buffer, message_count)

char *message_data;
int
int
char
char
int

message_number;
severity;
*msg_buffer, *src_buffer;
*ptr _buffer, *loc_buffer;
message_count[];

This function specifies a callback function that UIL invokes instead of printing an
error message when the compiler encounters an error in the UIL source. The
callback should return one of the following values:

UiI_k_terminate
Terminate processing of the source file

UiCk_continue
Continue processing the source file

The arguments are

message_data
Data supplied by the application as the message_data argument to
the Uil function. UIL does not interpret this data in any way; it just
passes it to the callback.

message_number

severity

An index into a table of error messages and severities for internal
use by UIL.

An integer that indicates the severity of the error. The possible
values are the status constants returned by the Uil function. See
Return Value for more information.

1-133

OSF/Motif Programmer's Reference

Uil(3X)

1-134

msg_buffer A string that describes the error.

src_buffer A string consisting of the source line where the error occurred. This
string is not always available. In this case, the argument is NULL.

ptr _buffer A string consisting of whitespace and a printing character in the
character position corresponding to the column of the source line
where the error occurred. This string may be printed beneath the
source line to provide a visual indication of the column where the
error occurred. This string is not always available. In this case, the
argument is NULL.

loc_buffer A string identifying the line number and file of the source line where
the error occurred. This is not always available; the argument is
then NULL.

message_count
An array of integers containing the number of diagnostic messages
issued thus far for each severity level. To find the number of
messages issued for the current severity level, use the severity
argument as the index into this array.

Following is a description of the status callback function specified by status_cb:

UiCcontinue_type (*status_cb) (status_data, percenccomplete,
lines-IJrocessed, currentJile, message_count)

char *status_data;
int percenccomplete;
int lines-IJrocessed;
char *currentJile;
int message_count[];

This function specifies a callback function that is invoked to allow X applications
to service X events such as updating the screen. The callback should return one of
the following values:

Uil_k_terminate
Terminate processing of the source file

Uil_k_continue
Continue processing the source file

Reference Pages

Uil(3X)

The arguments are

Data supplied by the application as the status_data argument to the
Uil function. UIL does not interpret this data in any way; it just
passes it to the callback.

percenCcomplete
An integer indicating what percentage of the current source file has
been processed so far.

lines-processed
An integer indicating how many lines of the current source file have
been read so far.

currentJile A string containing the pathname of the current source file.

message _count

Return Value

An array of integers containing the number of diagnostic messages
issued thus far for each severity level. To find the number of
messages issued for a given severity level, use the severity level as
the index into this array. The possible severity levels are the status
constants returned by the Uil function. See Return Value for more
information.

This function returns one of the following status return constants:

The operation succeeded.

UiCk_info_status The operation succeeded. An informational message is
returned.

UiI_k_ warnin!Lstatus
The operation succeeded. A warning message is returned.

UiCk_error_status The operation failed due to an error.

UiCk_severe_status The operation failed due to an error.

Related Information
UilDumpSymboITable(3X) and uil(lX).

1-135

OSF/Motif Programmer's Reference

Uil DumpSymbolTable(3X)

Synopsis

Description

1-136

UilDumpSymbolTable-Dumps the contents of a named UIL symbol table to
standard output

#include <uiVUilDef.h>

void UilDumpSymbolTable (root-ptr)
sym_entry _type *root-ptr;

The UilDumpSymbolTable function dumps the contents of a UIL symbol table
pointer to standard output.

root-ptr Specifies a pointer to the the symbol table root entry. This value can
be taken from the parse_tree_root part of the
UiI_compile_desc_type data structure returned by Uil.

By following the link from the root entry, you can traverse the entire parse tree.
Symbol table entries are in the following format:

hex. address
symbol. type
symbol. data
prev.source.position
source .position
modification. record

where:

hex. address Specifies the hexadecimal address of this entry in the symbol table.

symbol. type Specifies the type of this symbol table entry. Some possible types
are root, module, value, procedure, and widget.

symbol. data Specifies data for the symbol table entry. The data varies with the
type of the entry. Often it contains pointers to other symbol table
entries, or the actual data for the data type.

prev.source.position
Specifies the end point in the source code for the previous source
item.

source.position
Specifies the range of positions in the source code for this symbol.

Reference Pages

UilDumpSymboITable(3X)

The exact data structures for each symbol type are defined in the include file
UilSymDef.h. Note that this file is automatically included when an application
includes the file UilDef.h.

Related Information
Uil(3X)

1-137

OSF/Motif Programmer's Reference

VendorShel1 (3X)

Synopsis

Description

1-138

VendorShell-The VendorS hell widget class

#include <XmlXm.h>
#include <Xll1Shell.h>

VendorS hell is a Motif widget class used as a supporting superclass for all shell
classes that are visible to the window manager and that are not override redirect. It
contains resources that describe the MWM-specific look and feel. It also manages
the MWM-specific communication needed by all VendorS hell subclasses. See the
mwm reference page for more information.

If an application uses the XmNmwmDecorations, XmNmwmFunctions, or
XmNmwmlnputMode resource, it should include the file XmlMwmUtil.h.

Setting XmNheight, XmNwidth, or XmNborderWidth for either a VendorS hell
or its managed child usually sets that resource to the same value in both the parent
and the child. When an off-the-spot input method exists, the height and width of
the shell may be greater than those of the managed child in order to accommodate
the input method. In this case, setting XmNheight or XmNwidth for the shell does
not necessarily set that resource to the same value in the managed child, and setting
XmNheight or XmNwidth for the child does not necessarily set that resource to
the same value in the shell.

For the managed child of a VendorS hell, regardless of the value of the shell's
XmNallowShellResize, setting XmNx or XmNy sets the corresponding resource
of the parent but does not change the child's position relative to the parent.
XtGetValues for the child's XmNx or XmNy yields the value of the corresponding
resource in the parent. The x and y-coordinates of the child's upper left outside
comer relative to the parent's upper left inside comer are both 0 (zero) minus the
value of XmNborderWidth.

Note that the Inter-Client Communication Conventions Manual (ICCM) allows a
window manager to change or control the border width of a reparented top-level
window.

Classes

Reference Pages

VendorS hell (3X)

VendorS hell inherits behavior and resources from the Core, Composite, Shell, and
WMShell classes.

The class pointer is vendorShellWidgetClass.

The class name is VendorShell.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a subresource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a subresource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given subresource can be set at creation time (C), set by
using XtSetValues (S), retrieved by using XtGetValues (0), or is not applicable
(N/A).

1-139

OSF/Motif Programmer's Reference

VendorShel1 (3X)

VendorS hell Resource Set

Name Default Access
Class Type

XmNaudibleWarning XmBELL CSG
XmCAudibleWarning unsigned char

Xm Nbutton FontList dynamic CSG
XmCButton Font List XmFontList

Xm NdefaultFontList dynamic CG
XmCDefaultFontList XmFontList

XmNdeleteResponse XmDESTROY CSG
XmCDeleteResponse unsigned char

XmNinputMethod NULL CSG
XmClnputMethod String

XmNkeyboardFocusPolicy XmEXPLICIT CSG
XmCKeyboardFocusPolicy unsigned char

XmNlabelFontList dynamic CSG
XmCLabel FontList XmFontList

XmNmwmDecorations -1 CSG
XmCMwmDecorations int

XmNmwmFunctions -1 CSG
XmCMwm Functions int

XmNmwmlnputMode -1 CSG
XmCMwmlnputMode int

XmNmwmMenu NULL CSG
XmCMwmMenu String

XmNpreeditType dynamic CSG
XmCPreeditType String

XmNsheliUnitType XmPIXELS CSG
XmCSheliUnitType unsigned char

Xm NtextFontList dynamic CSG
XmCTextFontList XmFontList

Xm NuseAsyncGeometry False CSG
XmCUseAsyncGeometry Boolean

XmNaudibleWarning
Determines whether an action activates its associated audible cue.
The possible values are XmBELL and XmNONE.

1-140

Reference Pages

VendorShel1 (3X)

XmNbuttonFontList
Specifies the font list used for VendorShell's button descendants. If
this value is NULL at initialization and if the value of
XmNdefaultFontList is not NULL, XmNbuttonFontList is
initialized to the value of XmNdefaultFontList. If the value of
XmNdefaultFontList is NULL, the parent hierarchy of the widget
is searched for an ancestor that is a subclass of the BulletinBoard,
VendorS hell, or MenuShell widget class. If such an ancestor is
found, XmNbuttonFontList is initialized to the
XmNbuttonFontList of the ancestor widget. If no such ancestor is
found, the default is implementation dependent.

XmNdefaultFontList
Specifies a default font list for VendorShell's descendants. This
resource is obsolete and exists for compatibility with earlier
releases. It has been replaced by XmNbuttonFontList,
XmNlabelFontList, and XmNtextFontList.

XmNdeleteResponse
Determines what action the shell takes in response to a
WM_DELETE_ WINDOW message. The setting can be one of
three values: XmDESTROY, XmUNMAP, and
XmDO_NOTHING. The resource is scanned, and the appropriate
action is taken after the WM_DELETE_ WINDOW callback list (if
any) that is registered with the Protocol manager has been called.

XmNinputMethod
Specifies the string that sets the locale modifier for the input
method.

XmNkeyboardFocusPolicy
Determines allocation of keyboard focus within the widget
hierarchy rooted at this shell. The X keyboard focus must be
directed to somewhere in the hierarchy for this client-side focus
management to take effect. Possible values are XmEXPLICIT,
specifying a click-to-type policy, and XmPOINTER, specifying a
pointer-driven policy.

XmNlabelFontList
Specifies the font list used for VendorShell's label descendants
(Labels and LabeIGadgets). If this value is NULL at initialization
and if the value of XmNdefaultFontList is not NULL,
XmNlabelFontList is initialized to the value of
XmNdefaultFontList. If the value of XmNdefaultFontList is
NULL, the parent hierarchy of the widget is searched for an
ancestor that is a subclass of the XmBulletinBoard, VendorShell, or

1-141

OSF/Motif Programmer's Reference

VendorShel1 (3X)

1-142

XmMenuShell widget class. If such an ancestor is found,
XmNlabelFontList is initialized to the XmNlabelFontList of the
ancestor widget. If no such ancestor is found, the default is
implementation dependent.

XmNmwmDecorations
Specifies the decoration flags (specific decorations to add or remove
from the window manager frame) for the _MOTIF _ WM_HINTS
property. If any decoration flags are specified by the
_MOTIF _ WM_HINTS property, only decorations indicated by
both that property and the MWM clientDecoration and
transientDecoration resources are displayed. If no decoration flags
are specified by the _MOTIF _ WM_HINTS property, decorations
indicated by the MWM clientDecoration and transientDecoration
resources are displayed. The default for the XmNmwmDecorations
resource is not to specify any decoration flags for the
_MOTIF _ WM_HINTS property.

The value of this resource is the bitwise inclusive OR of one or
more flag bits. The possible flag bit constants, defined in the include
file XmlMwmUtil.h, are

MWM_DECOR_ALL
All decorations except those specified by
other flag bits that are set

MWM_DECOR_BORDER
Client window border

MWM_DECOR_RESIZEH
Resize frame handles

MWM_DECOR_TITLE
Title bar

MWM_DECOR_MENU
Window menu button

MWM_DECOR_MINIMIZE
Minimize window button

MWM_DECOR_MAXIMIZE
Maximize window button

XmNmwmFunctions
Specifies the function flags (specific window manager functions to
apply or not apply to the client window) for the

Reference Pages

VendorShel1 (3X)

_MOTIF _ WM_HINTS property. If any function flags are
specified by the _MOTIF _ WM_HINTS property, only functions
indicated by both that property and the MWM clientFunctions and
transientFunctions resources are applied. If no function flags are
specified by the _MOTIF _ WM_HINTS property, functions
indicated by the MWM clientFunctions and transientFunctions
resources are applied. The default for the XmNmwmFunctions
resource is not to specify any function flags for the
_MOTIF _ WM_HINTS property.

The value of this resource is the bitwise inclusive OR of one or
more flag bits. The possible flag bit constants, defined in the include
file XmlMwmUtil.h, are

MWM_FUNC_RESIZE

MWM_FUNC_MOVE

MWM_FUNC_MINIMIZE

MWM_FUNC_MAXIMIZE

MWM_FUNC_CLOSE

XmNmwmInputMode

All functions except those
specified by other flag bits that
are set

f.resize

f.move

f.minimize

f.maximize

f.kill

Specifies the input mode flag (application modal or system modal
input constraints) for the _MOTIF _ WM_HINTS property. If no
input mode flag is specified by the _MOTIF _ WM_HINTS
property, no input constraints are applied, and input goes to any
window. The default for the XmNmwmInputMode resource is not
to specify any input mode flag for the _MOTIF _ WM_HINTS
property.

An application that sets input constraints on a dialog usually uses
the BulletinBoard's XmNdialogStyle resource rather than the
parent DialogShell's XmNmwmInputMode resource.

1-143

OSF/Motif Programmer's Reference
VendorS hell (aX)

1-144

The possible values for this resource, defined in the include file
XmlMwmUtil.h, are

MWM_INPUT_MODELESS
Input goes to any window.

MWM_INPUT _PRIMARY_APPLICATION_MODAL
Input does not go to ancestors of this window.

MWM_INPUT_SYSTEM_MODAL
Input goes only to this window.

MWM_INPUT _FULL_APPLICATION_MODAL

XmNmwmMenu

Input does not go to other windows in this
application.

Specifies the menu items that the Motif window manager should add
to the end of the window menu. The string contains a list of items
separated by \n with the following format:

label [mnemonic] [accelerator] function

If more than one item is specified, the items should be separated by
a newline character.

XmNpreeditType
Specifies the input method style or styles available to the input
manager. The syntax, possible values, and default value are
implementation dependent.

XmNshellUnitType
Determines geometric resource interpretation. The following values
are allowed:

XmPIXELS All values provided to the widget are treated as
normal pixel values.

XmlOOTH_MILLIMETERS
All values provided to the widget are treated as 111 00
of a millimeter.

XmlOOOTH_INCHES
All values provided to the widget are treated as
111000 of an inch.

Reference Pages

VendorS hell (3X)

XmlOOTH_POINTS
All values provided to the widget are treated as 11100
of a point. A point is a unit used in text processing
applications and is defined as 1172 inch.

XmlOOTH_FONT_UNITS
All values provided to the widget are treated as 11100
of a font unit. A font unit has horizontal and vertical
components. These are the values of the XmScreen
resources XmNhorizontalF()ntUnit and
XmNverticalFontUnit.

XmNtextFontList
Specifies the font list used for VendorShell's Text and List
descendants. If this value is NULL at initialization and if the value
of XmNdefaultFontList is not NULL, XmNtextFontList is
initialized to the value of XmNdefaultFontList. If the value of
XmNdefaultFontList is NULL, the parent hierarchy of the widget
is searched for an ancestor that is a subclass of the BulletinBoard or
VendorS hell widget class. If such an ancestor is found,
XmNtextFontList is initialized to the XmNtextFontList of the
ancestor widget. If no such ancestor is found, the default is
implementation dependent.

XmNuseAsyncGeometry

Inherited Resources

Specifies whether the geometry manager should wait for
confirmation of a geometry request to the window manager. When
the value of this resource is True, the geometry manager forces
XmNwaitForWm to False and XmNwmTimeout to 0, and it relies
on asynchronous notification. When the value of this resource is
False, XmNwaitForWm and XmNwmTimeout are unaffected.
The default is False.

VendorS hell inherits behavior and resources from the superclasses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superc1ass.

1-145

OSF/Motif Programmer's Reference
VendorShell (3X)

WMShell Resource Set

Name Default Access
Class Type

XmNbaseHeight XtUnspecifiedShelllnt CSG
XmCBaseHeight int

Xm NbaseWidth XtUnspecifiedShelllnt CSG
XmCBaseWidth int

XmNheightlnc XtUnspecifiedShelllnt CSG
XmCHeightlnc int

XmNiconMask NULL CSG
XmClconMask Pixmap

XmNiconPixmap NULL CSG
XmClconPixmap Pixmap

XmNiconWindow NULL CSG
XmClconWindow Window

XmNiconX -1 CSG
XmClconX int

XmNiconY -1 CSG
XmClconY int

Xm NinitialState NormalState CSG
XmClnitialState int

XmNinput True CSG
XmClnput Boolean

XmNmaxAspectX XtUnspecifiedShelllnt CSG
XmCMaxAspectX int

XmNmaxAspectY XtUnspecifiedShell1 nt CSG
XmCMaxAspectY int

XmNmaxHeight XtUnspecifiedShelllnt CSG
XmCMaxHeight int

XmNmaxWidth XtUnspecifiedShell1 nt CSG
XmCMaxWidth int

XmNminAspectX XtUnspecifiedShell1 nt CSG
XmCMinAspectX int

1-146

Reference Pages

VendorS hell (3X)

Name Default Access
Class Type

XmNminAspectY XtUnspecifiedShelllnt CSG
XmCMinAspectY int

XmNminHeight XtU nspecifiedShell1 nt CSG
XmCMinHeight int

XmNminWidth XtUnspecifiedShell1 nt CSG
XmCMinWidth int

XmNtitle dynamic CSG
XmCTitle String

Xm NtitleEncoding dynamic CSG
XmCTitleEncoding Atom

XmNtransient False CSG
XmCTransient Boolean

XmNwaitForWm True CSG
XmCWaitForWm Boolean

XmNwidthlnc XtUnspecifiedShell1 nt CSG
XmCWidthlnc int

Xm NwindowGroup dynamic CSG
XmCWindowGroup Window

XmNwinGravity dynamic CSG
XmCWinGravity int

XmNwmTimeout 5000 ms CSG
XmCWmTimeout int

1-147

OSF/Motif Programmer's Reference

VendorS hell (3X)

Shell Resource Set

Name Default Access
Class Type

XmNallowShellResize False CG
XmCAllowShellResize Boolean

Xm NcreatePopupChiidProc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChildProc

XmNgeometry NULL CSG
XmCGeometry String

XmNoverrideRedirect False CSG
XmCOverrideRedirect Boolean

XmNpopdownCallback NULL C
XmCCallback XtCallbackList

XmNpopupCallback NULL C
XmCCallback XtCallbackList

XmNsaveUnder False CSG
XmCSaveUnder Boolean

XmNvisual CopyFrom Parent CSG
XmCVisual Visual *

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

Xm N insertPosition NULL CSG
XmCI nsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-148

Reference Pages

VendorS hell (3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CSG
XmCAccelerators XtAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCPixmap Pixmap

XmNbbrderColor XtDefaultForeg round CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-149

OSF/Motif Programmer's Reference

VendorS hell (3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for VendorShell.

Related Information

1-150

Composite(3X), Core(3X), mwm(lX), Shell(3X), WMShell(3X),
XmActivateProtocol(3X), XmActivateWMProtocol(3X),
XmAddProtocoICallback(3X), XmAddWMProtocoICallback(3X),
XmAddProtocols(3X), XmAddWMProtocols(3X), XmDeactivateProtocol(3X),
XmDeactivate WMProtocol(3X), XmGetAtomName(3X), XmlnternAtom(3X),
XmIsMotifWMRunning(3X), XmRemoveProtocoICallback(3X),
XmRemove WMProtocoICallback(3X), XmRemoveProtocols(3X),
XmRemove WMProtocols(3X), XmScreen(3X), XmSetProtocolHooks(3X), and
XmSetWMProtocolHooks(3X).

Description

Reference Pages

VirtuaIBindings(3X)

VirtualBindings-Bindings for virtual mouse and key events

The OSFlMotif reference pages describe translations in terms of virtual bindings,
based on those described in the OSFIMotij Style Guide. Mouse events are
described in terms of virtual buttons, and key events are described in terms of
virtual keys. The term virtual implies that the events as described do not
necessarily correspond to a fixed set of X Window System events. Instead, virtual
buttons and keys are linked to actual events by means of virtual bindings.

Virtual Modifiers
Both virtual buttons and virtual keys may contain virtual modifiers. Each virtual
modifier corresponds to one or more actual modifiers. The following table lists the
bindings of virtual modifiers to actual modifiers in OSFlMotif.

Virtual Modifier Bindings

Virtual Modifier Actual Modifiers

MAlt <Mod1>

MCopy <Ctrl>

MCtrl <Ctrl>

MLink <Ctrl> <Shift>

MMove <Shift>

MShift <Shift>

ModI refers to the first modifier key. OSFlMotif requires that it correspond to
either <AIt> or <Meta>.

The virtual modifier MAny indicates that any modifier can be used. If MAny is
not specified and the user presses an actual modifier that is not explicitly included
in a translation, that modifier may prevent the translation from being matched.

Virtual Buttons
Each virtual button corresponds to one or more actual button event descriptions.
Each button event description contains a button name and possibly modifiers.
These button event descriptions, appropriately ordered and possibly further
modified, are used in translation tables. The following table lists the bindings of
virtual buttons to actual button event descriptions in OSFlMotif.

1-151

OSF/Motif Programmer's Reference
VirtualBindings(3X)

1-152

Virtual Button Bindings

Virtual Button Actual Button Events

BCustom Btn3

BTransfer Btn2

BExtend <ShifbBtn1

BMenu Btn3

BSelect Btn1

BToggle <Ctrl>Btn1

Virtual Keys
Each virtual key corresponds to one or more actual key event descriptions. Each
key event description contains a keysym name and possibly modifiers. These key
event descriptions, appropriately ordered and possibly further modified, are used in
translation tables. The following table lists the bindings of virtual keys to actual
key event descriptions in OSFlMotif.

Reference Pages

VirtualBindings (3X)

Virtual Key Bindings

Virtual Key Actual Key Events

KActivate <Key><Return>
<Ctrl><Key><Return>
< Key>osf Activate

KAddMode < Key>osf Add Mode

KBackSpace < Key>osfBackSpace

KBackTab <Shift><Key><Tab>

KBeginData <Ctrl><Key>osfBeginLine

KBeginLine < Key>osfBeg in Li ne

KCancel < Key>osf Cancel

KClear < Key>osf Clear

KCopy < Key>osf Copy
<Ctrl><Key>osflnsert

KCut < Key>osf Cut
<Shift><Key>osfDelete

KDelete < Key>osf Delete

KDeselectAl1 <Ctrl><Key>backslash

KDown < Key>osfDown

KEndData <Ctrl><Key>osfEndLine

KEndLine <Key>osfEndLine

KEnter <Key><Return>

KEscape <Key><Escape>

KExtend <Ctrl> <Shift><Key>space
<Shift><Key>osfSelect

KHeip < Key>osf Help

Klnsert <Key>osflnsert

KLeft < Key>osf Left

1-153

OSF/Motif Programmer's Reference

Virtual Bindings (aX)

Virtual Key Bindings

Virtual Key Actual Key Events

KMenu < Key>osf Menu

KMenuBar <Key>osfMenuBar

KNextField <Key><Tab>
<Ctrl><Key><Tab>

KNextMenu <Ctrl><Key>osfDown
<Ctrl><Key>osfRight

KPageDown < Key>osfPageDown

KPageLeft <Ctrl><Key>osfPageUp
<Key>osfPageLeft

KPageRight <Ctrl><Key>osfPageDown
<Key>osfPageRight

KPageUp <Key>osfPageUp

KPaste < Key>osfPaste
<Shift><Key>osflnsert

KPrevField <Shift><Key><Tab>
<Ctrl> <Shift><Key><Tab>

KPrevMenu <Ctrl><Key>osfUp
<Ctrl><Key>osfLeft

KPrimaryCopy <Ctrl><Key>osfPrimaryPaste
Mod1 < Key>osf Copy
Mod1 <Ctrl><Key>osflnsert

KPrimaryCut Mod1 <Key>osfPrimaryPaste
Mod1 < Key>osf Cut
Mod1 <Shift><Key>osfDelete

KPrimaryPaste <Key>osfPrimaryPaste

1-154

Reference Pages

VirtuaIBindings(3X)

Virtual Key Bindings

Virtual Key Actual Key Events

KQuickCopy <Ctrl><Key>osfQu ickPaste

KQuickCut Mod1 <Key>osfQuickPaste

KQuickExtend <Shift><Key>osfQuickPaste

KQuickPaste <Key>osfQuickPaste

KReselect <Ctrl> <Shift><Key>osfSelect

KRestore <Ctrl> <Shift><Key>osflnsert

KRight <Key>osfRight

KSelect < Key>space
<Ctrl><Key>space
< Key>osf Select

KSelectAl1 <Ctrl><Key>slash

KSpace <Key>space

KTab <Key><Tab>

KUndo <Key>osfUndo
Mod1 <Key>osfBackSpace

KUp < Key>osfUp

KAny <Key>

Bindings for osf Keysyms
Keysym strings that begin with osf are not part of the X server's keyboard
mapping. Instead, these keysyms are produced on the client side at run time. They
are interpreted by the routine XmTranslateKey, and are used by the translation
manager when the server delivers an actual key event. For each application, a
mapping is maintained between osf keysyms and keysyms that correspond to actual
keys. This mapping is based on information obtained at application startup from
one of the following sources, listed in order of precedence:

• A defaultVirtualBindings application resource in the resource database.

• A property on the root window, which can be set by mwm on startup, or by
the xmbind client, or on prior startup of a Motif application.

1-155

OSF/Motif Programmer's Reference

VirtualBindings(3X)

1-156

• The file .motifbind in the user's home directory.

• A set of bindings based on the vendor string and optionally the vendor
release of the X server. Motif searches for these bindings in the following
steps:

1. If the file xmbind.alias exists in the user's home directory, Motif
searches this file for a pathname associated with the vendor string or
with the vendor string and vendor release. If it finds such a
pathname and if that file exists, Motif loads the bindings contained
in that file.

2. If it has found no bindings, Motif next looks for the file
xmbind.alias in the directory specified by the environment variable
XMBINDDIR, if XMBINDDIR is set, or in the directory
/usrllib/Xmlbindings if XMBINDDIR is not set. If this file exists
Motif searches it for a pathname associated with the vendor string or
with the vendor string and vendor release. If it finds such a
pathname and if that file exists, Motif loads the bindings contained
in that file.

3. If it still has found no bindings, Motif loads a set of hard-coded
fallback bindings.

The xmbind.alias file contains zero or more lines of the following form:

"vendor _string[vendor_release] "bindingsJile

where vendor _string is the X server vendor name as returned by the X client
xdpyinfo or the Xlib function XServerVendor, and must appear in double quotes.
If vendor _release is included, it is the X server vendor release number as returned
by the X client xdpyinfo or the Xlib function XVendorReiease, and must also be
contained within the double quotes separated by one space from vendor_string.
The vendor _release argument is provided to allow support of changes in keyboard
hardware from a vendor, assuming that the vendor increments the release number
to flag such changes. Alternatively, the vendor may simply use a unique vendor
string for each different keyboard.

The bindingsJile argument is the pathname of the file containing the bindings
themselves. It can be a relative or absolute pathname. If it it is a relative
pathname, it is relative to the location of the xmbind.alias file.

Reference Pages

VirtuaIBindings(3X)

Comment lines in the xmbind.alias file begin with! (exclamation point).

The bindings found in either the .motifbind file or the vendor mapping are placed
in a property on the root window. This property is used to determine the bindings
for subsequent Motif applications.

On startup mwm attempts to load the file .motifbind in the user's home directory.
If this is unsuccessful, it loads the vendor bindings as described previously. It
places the bindings it loads in a property on the root window for use by subsequent
Motif applications.

The xmbind function loads bindings from a file if that file is specified on the
command line. If no file is specified on the command line, it attempts to load the
file .motifbind in the user's home directory. If this fails, it loads the vendor
bindings as described previously. It places the bindings it loads in a property on
the root window for use by subsequent Motif applications.

The format of the specification for mapping osf keysyms to actual keysyms is
similar to that of a specification for an event translation. The syntax is specified
here in EBNF notation using the following conventions:

[a]
{a}

Means either nothing or a
Means zero or more occurrences of a

Terminals are enclosed in double quotation marks.

The syntax of an osf keysym binding specification is as follows:

binding_spec
line
key_event
virtuaCkeysym
actuaCkeysym
keysym

= {line "\n"} [line]
= virtual_keysym ":" key_event

{modifier_name} "<Key>" actuaCkeysym
= keysym
= keysym
= A valid XII keysym name that is

mapped by XStringToKeysym

As with event translations, more specific event descriptions must precede less
specific descriptions. For example, an event description for a key with a modifier
must precede a description for the same key without the same modifier.

1-157

OSF/Motif Programmer's Reference

VirtualBindings(3X)

1-158

Following is an example of a specification for the defaultVirtualBindings
resource in a resource file:

*defaultVirtualBindings: \
osfBackSpace
osflnsert

<Key>BackSpace \n\
<Key>InsertChar\n\

osfDelete <Key>DeleteChar

The format of a .motifbind file or of a file containing vendor bindings is the same,
except that the binding specification for each keysym is placed on a separate line.
The previous example specification appears as follows in a .motifbind or vendor
bindings file:

osfBackSpace
osflnsert

osfDelete

<Key>BackSpace
<Key>InsertChar

<Key>DeleteChar

The following table lists the fixed fallback default bindings for osf keysyms.

Related Information
xmhind(lX)

Reference Pages

VirtuaIBindings(3X)

Fallback Default Bindings for osf Keysyms

osf Keysym Fallback Default Binding

osfActivate <unbound>

osfAddMode <Shift> Fa

osfBackSpace Backspace

osfBeginLine Home

osfClear Clear

osfCopy unbound

osfCut unbound

osfDelete Delete

osfDown Down

osfEndLine End

osfCancel <Escape>

osfHelp F1

osflnsert Insert

osfLeft Left

osfMenu F4

osfMenuBar F10

osfPageDown Next

osfPageLeft unbound

osfPageRight unbound

osfPageUp Prior

osfPaste unbound

osfPrimaryPaste unbound

osfQuickPaste unbound

osfRight Right

osfSelect Select

osfUndo Undo

osfUp Up

1-159

OSF/Motif Programmer's Reference

WMShell (3X)

Synopsis

Description

Classes

WMShell-The WMShell widget class

#include <XmlXm.h>
#include <Xll/Shell.h>

WMShell is a top-level widget that encapsulates the interaction with the window
manager.

WMShell inherits behavior and resources from the Core, Composite, and Shell
classes.

The class pointer is wmShellWidgetClass.

The class name is WMShell.

New Resources

1-160

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

WMShell (3X)

WMShell Resource Set

Name Default Access
Class Type

XmNbaseHeight XtUnspecifiedSheli1 nt CSG
XmCBaseHeight int

XmNbaseWidth XtUnspecifiedShelllnt CSG
XmCBaseWidth int

XmNheightlnc XtU nspecifiedSheli1 nt CSG
XmCHeightlnc int

XmNiconMask NULL CSG
XmClconMask Pixmap

XmNiconPixmap NULL CSG
XmClconPixmap Pixmap

XmNiconWindow NULL CSG
XmClconWindow Window

XmNiconX -1 CSG
XmClconX int

XmNiconY -1 CSG
XmClconY int

XmNinitialState NormalState CSG
XmClnitialState int

XmNinput False CSG
XmClnput Boolean

XmNmaxAspectX XtUnspecifiedSheli1 nt CSG
XmCMaxAspectX int

XmNmaxAspectY XtU nspecifiedShelllnt CSG
XmCMaxAspectY int

XmNmaxHeight XtU nspecifiedShell1 nt CSG
XmCMaxHeight int

XmNmaxWidth XtUnspecifiedShell1 nt CSG
XmCMaxWidth int

XmNminAspectX XtUnspecifiedShelllnt CSG
XmCMinAspectX int

1-161

OSF/Motif Programmer's Reference

WMShell(3X)

1-162

Name Default Access
Class Type

XmNminAspectY XtUnspecifiedShelllnt CSG
XmCMinAspectY int

XmNminHeight XtUnspecifiedShelllnt CSG
XmCMinHeight int

XmNminWidth XtUnspecifiedShelllnt CSG
XmCMinWidth int

XmNtitle dynamic CSG
XmCTitle String

XmNtitleEncoding dynamic CSG
XmCTitleEncoding Atom

XmNtransient False CSG
XmCTransient Boolean

XmNwaitForWm True CSG
XmCWaitForWm Boolean

XmNwidthlnc XtUnspecifiedShelllnt CSG
XmCWidthlnc int

XmNwindowGroup dynamic CSG
XmCWindowGroup Window

XmNwinGravity dynamic CSG
XmCWinGravity int

XmNwmTimeout 5000ms CSG
XmCWmTimeout int

XmNbaseHeight
Specifies the base for a progression of preferred heights for the
window manager to use in sizing the widget. The preferred heights
are XmNbaseHeight plus integral multiples of XmNheightInc,
with a minimum of XmNminHeight and a maximum of
XmNmaxHeight. If an initial value is not supplied for
XmNbaseHeight but is supplied for XmNbaseWidth, the value of
XmNbaseHeight is set to 0 (zero) when the widget is realized.

XmNbaseWidth
Specifies the base for a progression of preferred widths for the
window manager to use in sizing the widget. The preferred widths
are XmNbase Width plus integral multiples of XmNwidthlnc, with
a minimum of XmNmin Width and a maximum of XmNmaxWidth.
If an initial value is not supplied for XmNbase Width but is supplied

Reference Pages

WMShell{3X)

for XmNbaseHeight, the value ofXmNbaseWidth is set to 0 (zero)
when the widget is realized.

XmNheightInc
Specifies the increment for a progression of preferred heights for the
window manager to use in sizing the widget. The preferred heights
are XmNbaseHeight plus integral multiples of XmNheightInc,
with a minimum of XmNminHeight and a maximum of
XmNmaxHeight. If an initial value is not supplied for
XmNheightInc but is supplied for XmNwidthlnc, the value of
XmNheightInc is set to 1 when the widget is realized.

XmNiconMask
Specifies a bitmap that could be used by the window manager to clip
the XmNiconPixmap bitmap to make the icon nonrectangular.

XmNiconPixmap
Specifies a bitmap that could be used by the window manager as the
application's icon.

XmNiconWindow
Specifies the ID of a window that could be used by the window
manager as the application's icon.

XmNiconX Specifies a suitable place to put the application's icon; this is a hint
to the window manager in root window coordinates. Because the
window manager controls icon placement policy, this resource may
be ignored. If no initial value is specified, the value is set to -1
when the widget is realized.

XmNiconY Specifies a suitable place to put the application's icon; this is a hint
to the window manager in root window coordinates. Because the
window manager controls icon placement policy, this resource may
be ignored. If no initial value is specified, the value is set to -1
when the widget is realized.

XmNinitialState
Specifies the state the application wants the widget instance to start
in. It must be one of the constants NormalState or IconicState.

1-163

OSF/Motif Programmer's Reference

WMShell(3X)

1-164

XmNinput Specifies the application's input model for this widget and its
descendants. The meaning of a True or False value for this resource
depends on the presence or absence of a WM_ TAKE_FOCUS atom
in the WM_PROTOCOLS property:

Input Model XmNinput WM_ TAKE_FOCUS

No input False Absent

Passive True Absent

Locally active True Present

Globally active False Present

For more information on input models, see the X Consortium
Standard Inter-Client Communication Conventions Manual
(lCCM).

XmNmaxAspectX
Specifies the numerator of the maximum aspect ratio (X/Y) that the
application wants the widget instance to have.

XmNmaxAspectY
Specifies the denominator of the maximum aspect ratio (X/Y) that
the application wants the widget instance to have.

XmNmaxHeight
Specifies the maximum height that the application wants the widget
instance to have. If an initial value is not supplied for
XmNmaxHeight but is supplied for XmNmaxWidth, the value of
XmNmaxHeight is set to 32767 when the widget is realized.

XmNmaxWidth
Specifies the maximum width that the application wants the widget
instance to have. If an initial value is not supplied for
XmNmaxWidth but is supplied for XmNmaxHeight, the value of
XmNmaxWidth is set to 32767 when the widget is realized.

XmNminAspectX
Specifies the numerator of the minimum aspect ratio (X/Y) that the
application wants the widget instance to have.

XmNminAspectY
Specifies the denominator of the minimum aspect ratio (X/Y) that
the application wants the widget instance to have.

Reference Pages

WMShell(3X)

XmNminHeight
Specifies the minimum height that the application wants the widget
instance to have. If an initial value is not supplied for
XmNminHeight but is supplied for XmNminWidth, the value of
XmNminHeight is set to 1 when the widget is realized.

XmNminWidth

XmNtitle

Specifies the minimum width that the application wants the widget
instance to have. If an initial value is not supplied for
XmNmin Width but is supplied for XmNminHeight, the value of
XmNmin Width is set to 1 when the widget is realized.

Specifies the application name to be displayed by the window
manager. The default is the icon name, if specified; otherwise, it is
the name of the application.

XmNtitleEncoding
Specifies a property type that represents the encoding of the
XmNtitle string. If a language procedure has been set, the default is
None; otherwise, the default is XA_STRING. When the widget is
realized, if the value is None, the corresponding name is assumed to
be in the current locale. The name is passed to
XmbTextListToTextProperty with an encoding style of
XStdICCTextStyle. The resulting encoding is STRING if the name
is fully convertible to STRING, otherwise COMPOUND_TEXT.
The values of the encoding resources are not changed; they remain
None.

XmNtransient
Specifies a Boolean value that is True if the widget instance is
transient, typically a popup on behalf of another widget. The
window manager may treat a transient widget's window differently
from other windows. For example, a window manager may not
iconify a transient window separately from its associated
application. Applications and users should not normally alter this
resource.

XmNwaitForWm
When True, specifies that the Intrinsics waits the length of time
given by the XmNwmTimeout resource for the window manager to
respond to certain actions before assuming that there is no window
manager present. This resource is altered by the Intrinsics as it
receives, or fails to receive, responses from the window manager.

1-165

OSF/Motif Programmer's Reference
WMShell (3X)

1-166

XmNwidthlnc
Specifies the base for a progression of preferred widths for the
window manager to use in sizing the widget. The preferred widths
are XmNbaseWidth plus integral multiples of XmNwidthlnc, with
a minimum of XmNminWidth and a maximum of XmNmaxWidth.
If an initial value is not supplied for XmNwidthlnc but is supplied
for XmNheightInc, the value of XmNwidthlnc is set to 1 when the
widget is realized.

XmNwindowGroup
Specifies the ID of a window with which this widget instance is
associated. By convention, this window is the "leader" of a group of
windows. A window manager may treat all windows in a group in
some way; for example, it may always move or iconify them
together.

If no initial value is specified, the value is set to the window of the
first realized ancestor widget in the parent hierarchy when the
widget is realized. If a value of XtUnspecifiedWindowGroup is
specified, no window group is set.

XmNwinGravity
Specifies the window gravity for use by the window manager in
positioning the widget. If no initial value is specified, the value is
set when the widget is realized. If XmNgeometry is not NULL,
XmNwinGravity is set to the window gravity returned by
XWMGeometry. Otherwise, XmNwinGravity is set to
North WestGravity.

XmNwmTimeout

Inherited Resources

Specifies the length of time that the Intrinsics waits for the window
manager to respond to certain actions before assuming that there is
no window manager present. The value is in milliseconds and must
not be negative.

WMShell inherits behavior and resources from the superc1asses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superc1ass.

Reference Pages

WMShell (3X)

Shell Resource Set

Name Default Access
Class Type

XmNaliowSheliResize False CG
XmCAllowSheliResize Boolean

Xm NcreatePopupChiidProc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChiid Proc

XmNgeometry NULL CSG
XmCGeometry String

XmNoverrideRedirect False CSG
XmCOverrideRedirect Boolean

XmNpopdownCaliback NULL C
XmCCaliback XtCalibackList

XmNpopupCaliback NULL C
XmCCaliback XtCalibackList

XmNsaveUnder False CSG
XmCSaveUnder Boolean

XmNvisual CopyFrom Parent CSG
XmCVisual Visual *

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

Xm N insertPosition NULL CSG
XmCI nsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-167

OSF/Motif Programmer's Reference

WMShell (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-168

Reference Pages

WMShell(3X)

Name Default Access
Class Type

XmNtranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for WMShell.

Related Information
Composite(3X), Core(3X), and Shell(3X).

1-169

OSF/Motif Programmer's Reference
XmActivateProtocol (3X)

Synopsis

Description

XmActivateProtocol-A VendorShell function that activates a protocol

#include <XmlXm.h>
#include <XmlProtocols.h>

void XmActivateProtocol (shell, property, protocol)
Widget shell;
Atom property;
Atom protocol;

void XmActivateWMProtocol (shell, protocol)
Widget shell;
Atom protocol;

XmActivateProtocol activates a protocol. It updates the handlers and the property
if the shell is realized. It is sometimes useful to allow a protocol's state
information (callback lists, and so on) to persist, even though the client may choose
to temporarily resign from the interaction. This is supported by allowing a protocol
to be in one of two states: active or inactive. If the protocol is active and the shell
is realized, the property contains the protocol Atom. If the protocol is inactive, the
Atom is not present in the property.

XmActivateWMProtocol is a convenience interface. It calls
XmActivateProtocol with the property value set to the atom returned by interning
WM_PROTOCOLS.

shell

property

protocol

Specifies the widget with which the protocol property is associated

Specifies the protocol property

Specifies the protocol Atom (or an int type cast to Atom)

For a complete definition of VendorShell and its associated resources, see
VendorShell(3X) .

Related Information
VendorShell(3X), XmActivate WMProtocol(3X) and XmlnternAtom(3X).

1-170

Synopsis

Description

Reference Pages

XmActivateWMProtocol (3X)

XmActivateWMProtocol-A VendorShell convenience interface that activates a
protocol

#include <XmlXm.h>
#include <XmlProtocols.h>

void XmActivateWMProtocol (shell, protocol)
Widget shell;
Atom protocol;

XmActivateWMProtocol is a convenience interface. It calls
XmActivateProtocol with the property value set to the atom returned by interning
WM_PROTOCOLS.

shell

protocol

Specifies the widget with which the protocol property is associated

Specifies the protocol Atom (or an int type cast to Atom)

For a complete definition of VendorShell and its associated resources, see
VendorShell(3X).

Related Information
VendorShell(3X), XmActivateProtocol(3X), and XmInternAtom(3X).

1-171

OSF/Motif Programmer's Reference

XmAddProtocoICallback(3X)

Synopsis

Description

XmAddProtocolCallback-A VendorS hell function that adds client callbacks for
a protocol

#include <XmlXm.h>
#include <XmlProtocols.h>

void XmAddProtocolCallback (shell, property, protocol, callback, closure)
Widget shell;
Atom property;
Atom
XtCallbackProc
XtPointer

protocol;
callback;
closure;

void XmAddWMProtocolCallback (shell, protocol, callback, closure)
Widget shell;
Atom protocol;
XtCallbackProc callback;
XtPointer closure;

XmAddProtocolCallback adds client callbacks for a protocol. It checks if the
protocol is registered, and if it is not, calls XmAddProtocols. It then adds the
callback to the internal list. These callbacks are called when the corresponding
client message is received.

XmAddWMProtocolCallback is a convenience interface. It calls
XmAddProtocolCallback with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell

property

protocol

callback

closure

Specifies the widget with which the protocol property is associated

Specifies the protocol property

Specifies the protocol Atom (or an int type cast to Atom)

Specifies the procedure to call when a protocol message is received

Specifies the client data to be passed to the callback when it is
invoked

For a complete definition of VendorShell and its associated resources, see
VendorShell(3X).

Related Information

1-172

VendorShell(3X), XmAddProtocols(3X), XmAddWMProtocoICallback(3X),
and XmInternAtom(3X).

Synopsis

Description

Reference Pages

XmAddProtocols(3X)

XmAddProtocols-A VendorS hell function that adds the protocols to the protocol
manager and allocates the internal tables

#include <XmlXm.h>
#include <XmlProtocols.h>

void XmAddProtocols (shell, property, protocols, num-protocols)
Widget shell;
Atom property;
Atom
Cardinal

* protocols;
num-protocols;

void XmAddWMProtocols (shell, protocols, num-protocols)
Widget shell;
Atom * protocols;
Cardinal num-protocols;

XmAddProtocols adds the protocols to the protocol manager and allocates the
internal tables.

XmAddWMProtocols is a convenience interface. It calls XmAddProtocols with
the property value set to the atom returned by interning WM_PROTOCOLS.

shell

property

protocols

numJJrotocols

Specifies the widget with which the protocol property is associated

Specifies the protocol property

Specifies the protocol Atoms (or int types cast to Atom)

Specifies the number of elements in protocols

For a complete definition of VendorS hell and its associated resources, see
VendorShell(3X).

Related Information
VendorShell(3X), XmAddWMProtoco)s(3X), and XmlnternAtom(3X).

1-173

OSF/Motif Programmer's Reference

XmAddTabGroup{ 3X)

Synopsis

Description

XmAddTabGroup-A function that adds a manager or a primitive widget to the
list of tab groups

#include <XmlXm.h>

void XmAddTabGroup (tab~roup)
VVidget tab~roup;

This function is obsolete and its behavior is replaced by setting
XmNnavigationType to XmEXCLUSIVE_TAB_GROUP. When using the
keyboard to traverse through a widget hierarchy, primitive or manager widgets are
grouped together into what are known as tab groups. Any manager or primitive
widget can be a tab group. Within a tab group, move the focus to the next widget
within the tab group by using the arrow keys. To move to another tab group, use
KNextField or KPrevField.

Tab groups are ordinarily specified by the XmNnavigationType resource.
XmAddTabGroup is called to control the order of traversal of tab groups. The
widget specified by tabJ5roup is appended to the list of tab groups to be traversed,
and the widget's XmNnavigationType is set to XmEXCLUSIVE_TAB_GROUP.

tabJ5roup Specifies the manager or primitive widget ID

Related Information

1-174

XmManager(3X), XmGetTabGroup(3X), XmPrimitive(3X), and
XmRemoveTabGroup(3X).

Synopsis

Description

Reference Pages
XmAddWMProtocolCaliback(3X)

XmAddWMProtocolCallback-A VendorS hell convenience interface that adds
client callbacks for a protocol

#include <XmlXm.h>
#include <XmlProtocols.h>

void XmAddWMProtocolCallback (shell, protocol, callback, closure)
Widget shell;
Atom protocol;
XtCallbackProc callback;
XtPointer closure;

XmAddWMProtocolCallback is a convenience interface. It calls
XmAddProtocolCallback with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell

protocol

callback

closure

Specifies the widget with which the protocol property is associated

Specifies the protocol Atom (or an int type cast to Atom)

Specifies the procedure to call when a protocol message is received

Specifies the client data to be passed to the callback when it is
invoked

For a complete definition of VendorS hell and its associated resources, see
VendorShell(3X).

Related Information
VendorShell(3X), XmAddProtocoICallback(3X), and XmlnternAtom(3X).

1-175

OSF/Motif Programmer's Reference
XmAddWMProtocols(3X)

XmAddWMProtocols-A VendorShell convenience interface that adds the
protocols to the protocol manager and allocates the internal tables

Synopsis #include <XmlXm.h>
#include <XmlProtocols.h>

Description

void XmAddWMProtocols (shell, protocols, num-iJrotocols)
Widget shell;
Atom * protocols;
Cardinal num-iJrotocols;

XmAddWMProtocols is a convenience interface. It calls XmAddProtocols with
the property value set to the atom returned by interning WM_PROTOCOLS.

shell

protocols

num..,protocols

Specifies the widget with which the protocol property is associated

Specifies the protocol Atoms (or int types cast to Atom)

Specifies the number of elements in protocols

For a complete definition of VendorS hell and its associated resources, see
VendorShell(3X) .

Related Information
VendorShell(3X), XmAddProtocols(3X), and XmlnternAtom(3X).

1-176

Synopsis

Description

Classes

Reference Pages

XmArrowButton (3X)

XmArrowButton-The ArrowButton widget class

#include <XmlArrowB.h>

ArrowButton consists of a directional arrow surrounded by a border shadow.
When it is selected, the shadow changes to give the appearance that the
ArrowButton has been pressed in. When the ArrowButton is unselected, the
shadow reverts to give the appearance that the ArrowButton is released, or out.

ArrowButton inherits behavior and resources from the Core and XmPrimitive
classes.

The class pointer is xmArrowButtonWidgetClass.

The class name is XmArrowButton.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-177

OSF/Motif Programmer's Reference

XmArrowButton (3X)

1-178

XmArrowButton Resource Set

Name Default Access
Class Type

Xm NactivateCaliback NULL C
XmCCaliback XtCalibackList

XmNarmCaliback NULL C
XmCCaliback XtCalibackList

XmNarrowDirection XmARROW_UP CSG
XmCArrowDirection unsigned char

Xm NdisarmCaliback NULL C
XmCCaliback XtCalibackList

XmNmultiClick dynamic CSG
XmCMultiClick unsigned char

XmNactivateCallback
Specifies a list of callbacks that is called when the ArrowButton is
acti vated. To activate the button, press and release BSelect while
the pointer is inside the ArrowButton widget. Activating the
ArrowButton also disarms it. The reason sent by this callback is
XmCR_ACTIVATE.

XmNarmCallback
Specifies a list of callbacks that is called when the ArrowButton is
armed. To arm this widget, press BSelect while the pointer is inside
the ArrowButton. The reason sent by this callback is
XmCR_ARM.

XmNarrowDirection
Sets the arrow direction. The values for this resource are

• XmARROW_UP

• XmARROW _DOWN

• XmARROW _LEFT

• XmARROW _RIGHT

Reference Pages

XmArrowButton (3X)

XmNdisarmCallback
Specifies a list of callbacks that is called when the ArrowButton is
disarmed. To disarm this widget, press and release BSelect while
the pointer is inside the ArrowButton. The reason for this callback
is XmCR_DISARM.

XmNmultiClick

Inherited Resources

If a button click is followed by another button click within the time
span specified by the display's multiclick time, and this resource is
set to XmMULTICLICK_DISCARD, the second click. is not
processed. If this resource is set to XmMULTICLICK_KEEP, the
event is processed and click_count is incremented in the callback
structure. When the button is not in a menu, the default value is
XmMULTICLICK_KEEP.

ArrowButton inherits behavior and resources from the superclasses described in
the following table. For a complete description of each resource, refer to the
reference page for that superclass.

1-179

OSF/Motif Programmer's Reference

XmArrowButton (3X)

XmPrimitive Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCallback NULL C
XmCCallback XtCallbackList

Xm NhighlightColor dynamic CSG
XmCH ighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNhighlightThickness 2 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType XmNavigationType

Xm NshadowThickness 2 CSG
XmCShadowThickness Dimension

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

Xm NtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-180

Reference Pages

XmArrowButton (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-181

OSF/Motif Programmer's Reference

XmArrowButton (3X)

1-182

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
int click_count;

} XmArrowButtonCallbackStruct;

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback.

click_count This value is valid only when the reason is XmCR_ACTIVATE. It
contains the number of clicks in the last multi click sequence if the
XmNmultiClick resource is set to XmMULTICLICK_KEEP;
otherwise it contains 1. The activate callback is invoked for each
click if XmNmultiClick is set to XmMULTICLICK_KEEP.

Reference Pages

XmArrowButton (3X)

Translations
XmArrowButton includes translations for XmPrimitive. The following list
describes additional XmArrowButton translations. These translations may not
directly correspond to a translation table.

BSelect Press: ArmO

BSelect Click: ActivateO

DisarmO

BSelect Release: Activate 0

DisarmO

BSelect Press 2+: MultiArmO

BSelect Release 2+: MultiActivateO

KSelect: ArmAndActivateO

KHelp: Help 0

Action Routines
The XmArrowButton action routines are

ActivateO: Draws the shadow in the unselected state. If the pointer is within
the ArrowButton, calls the callbacks for XmNactivateCallback.

ArmO: Draws the shadow in the selected state and calls the callbacks for
XmNarmCallback.

ArmAndActivateO:

DisarmO:

HelpO:

Draws the shadow in the selected state and calls the callbacks for
XmNarmCallback. Arranges for the shadow to be drawn in the
un selected state and the callbacks for XmNactivateCallback and
XmNdisarmCallback to be called, either immediately or at a later
time.

Draws the shadow in the unselected state and calls the callbacks for
XmNdisarmCallback.

Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

1-183

OSF/Motif Programmer's Reference

XmArrowButton (3X)

MultiActivate():
If XmNmultiClick is XmMULTICLICK_DISCARD, this action
does nothing.

If XmNmultiClick is XmMULTICLICK_KEEP, this action
increments click_count in the callback structure and draws the
shadow in the unselected state. If the pointer is within the
ArrowButton, this action calls the callbacks for
XmNactivateCallback and XmNdisarmCallback.

MultiArmO: If XmNmultiClick is XmMULTICLICK_DISCARD, this action
does nothing. If XmNmultiClick is XmMULTICLICK_KEEP,
this action draws the shadow in the selected state and calls the
callbacks for XmNarmCallback.

Additional Behavior
This widget has the following additional behavior:

<EnterWindow>:
Draws the ArrowButton shadow in its selected state if the pointer
leaves and re-enters the window while BSelect is pressed.

<Leave Window>:

Virtual Bindings

Draws the ArrowButton shadow in its un selected state if the pointer
leaves the window while BSelect is pressed.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Core(3X), XmCreateArrowButton(3X), and XmPrimitive(3X).

1-184

Synopsis

Description

Classes

Reference Pages

XmArrowButtonGadget (3X)

XmArrowButtonGadget-The ArrowButtonGadget widget class

#include <XmlArrowBG.h>

ArrowButtonGadget consists of a directional arrow surrounded by a border
shadow. When it is selected, the shadow changes to give the appearance that the
ArrowButtonGadget has been pressed in. When it is unselected, the shadow
reverts to give the appearance that the button is released, or out.

ArrowButtonGadget inherits behavior and resources from the Object, RectObj,
and XmGadget classes.

The class pointer is xmArrowButtonGadgetClass.

The class name is XmArrowButtonGadget.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-185

OSF/Motif Programmer's Reference

XmArrowButtonGadget(3X)

1-186

ArrowButtonGadget Resource Set

Name Default Access
Class Type

Xm NactivateCaliback NULL C
XmCCaliback XtCalibackList

XmNarmCaliback NULL C
XmCCaliback XtCalibackList

Xm NarrowDirection XmARROW_UP CSG
XmCArrowDirection unsigned char

XmNdisarmCaliback NULL C
XmCCaliback XtCalibackList

XmNmultiClick dynamic CSG
XmCMultiClick unsigned char

XmN activateCallback
Specifies a list of callbacks that is called when the
ArrowButtonGadget is activated. To activate the button, press and
release BSelect while the pointer is inside the ArrowButtonGadget.
Activating the ArrowButtonGadget also disarms it. The reason sent
by this callback is XmCR_ACTIVATE.

XmNarmCallback
Specifies a list of callbacks that is called when the
ArrowButtonGadget is armed. To arm this widget, press BSelect
while the pointer is inside the ArrowButtonGadget. The reason sent
by this callback is XmCR_ARM.

XmNarrowDirection
Sets the arrow direction. The values for this resource are

• XmARROW _UP

• XmARROW _DOWN

• XmARROW _LEFT

• XmARROW _RIGHT

Reference Pages

XmArrowButtonGadget (3X)

XmNdisarmCallback
Specifies a list of callbacks that is called when the
ArrowButtonGadget is disarmed. To disarm this widget, press and
release BSelect while the pointer is inside the ArrowButtonGadget.
The reason sent by this callback is XmCR_DISARM.

XmNmultiClick

Inherited Resources

If a button click is followed by another button click within the time
span specified by the display's multiclick time and this resource is
set to XmMULTICLICK_DISCARD, the second click is not
processed. If this resource is set to XmMULTICLICK_KEEP, the
event is processed and click_count is incremented in the callback
structure. When the ArrowButtonGadget is not in a menu, the
default value is XmMULTICLICK_KEEP.

ArrowButtonGadget inherits behavior and resources from the superclasses
described in the following tables. For a complete description of each resource,
refer to the reference page for that superclass.

1-187

OSF/Motif Programmer's Reference

XmArrowButtonGadget(3X)

XmGadget Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic G
XmCBottomShadowColor Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic G
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightThickness 2 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType Xm NavigationType

XmNshadowThickness 2 CSG
XmCShadowThickness Dimension

XmNtopShadowColor dynamic G
XmCTopShadowColor Pixel

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-188

Reference Pages

XmArrowButtonGadget(3X)

RectObj Resource Set

Name Default Access
Class Type

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

Xm NborderWidth 0 N/A
XmCBorderWidth Dimension

XmNheight dynamic CSG
XmCHeight Dimension

XmNsensitive True CSG
XmCSensitive Boolean

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Object Resource Set

Name Default Access
Class Type

Xm NdestroyCallback NULL C
XmCCallback XtCallbackList

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
int click_count;

} XmArrowButtonCallbackStruct;

1-189

OSF/Motif Programmer's Reference

XmArrowButtonGadget{ 3X)

1-190

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback.

click_count This value is valid only when the reason is XmCR_ACTIVATE. It
contains the number of clicks in the last multiclick sequence if the
XmNmultiClick resource is set to XmMULTICLICK_KEEP,
otherwise it contains 1. The activate callback is invoked for each
click if XmNmultiClick is set to XmMULTICLICK_KEEP.

Behavior
XmArrowButtonGadget includes behavior from XmGadget. The following list
describes additional XmArrowButtonGadget behavior:

BSelect Press:
Draws the shadow in the selected state and calls the callbacks for
XmNarmCallback.

BSelect Click or BSelectRelease:
Draws the shadow in the unselected state. If the pointer is within
the ArrowButtonGadget, calls the callbacks for
XmNactivateCailback. Calls the callbacks for
XmNdisarmCallback.

BSelect Press 2+:
If XmNmultiClick is XmMULTICLICK_DISCARD, this action
does nothing. If XmNmultiClick is XmMULTICLICK_KEEP,
this action draws the shadow in the selected state and calls the
callbacks for XmNarmCallback.

BSelect Release 2+:

KSelect:

If XmNmultiClick is XmMULTICLICK_DISCARD, this action
does nothing.

If XmNmultiClick is XmMULTICLICK_KEEP, this action
increments click_count in the callback structure and draws the
shadow in the un selected state. If the pointer is within the
ArrowButtonGadget, this action calls the callbacks for
XmNactivateCallback and XmNdisarmCallback.

Draws the shadow in the selected state and calls the callbacks for
XmNarmCallback. Arranges for the shadow to be drawn in the
un selected state and the callbacks for XmNactivateCallback and
XmNdisarmCallback to be called, either immediately or at a later
time.

KHelp:

<Enter>:

<Leave>:

Virtual Bindings

Reference Pages

XmArrowButtonGadget{ 3X)

Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

Draws the ArrowButtonGadget shadow in its selected state if the
pointer leaves and re-enters the gadget while BSelect is pressed.

Draws the ArrowButtonGadget shadow in its un selected state if the
pointer leaves the gadget while BSelect is pressed.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Object(3X), RectObj(3X), XmCreateArrowButtonGadget(3X), and
XmGadget(3X).

1-191

OSF/Motif Programmer's Reference

XmBulietinBoard(3X)

XmBulletinBoard-The BulletinBoard widget class

Synopsis #include <XmlBulletinB.h>

Description

Classes

BulletinBoard is a composite widget that provides simple geometry management
for children widgets. It does not force positioning on its children, but can be set to
reject geometry requests that result in overlapping children. BulletinBoard is the
base widget for most dialog widgets and is also used as a general container widget.

Modal and modeless dialogs are implemented as collections of widgets that include
a DialogShell, a BulletinBoard (or subclass) child of the shell, and various dialog
components (buttons, labels, and so on) that are children of BulletinBoard.
BulletinBoard defines callbacks useful for dialogs (focus, map, unmap), which are
available for application use. If its parent is a DialogShell, BulletinBoard passes
title and input mode (based on dialog style) information to the parent, which is
responsible for appropriate communication with the window manager.

The default value for XmNinitialFocus is the value of XmNdefaultButton.

BulletinBoard inherits behavior and resources from the Core, Composite,
Constraint, and XmManager classes.

The class pointer is xmBulletinBoardWidgetClass.

The class name is XmBulletinBoard.

New Resources

1-192

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (0), or is not applicable (N/A).

Reference Pages

XmBulietinBoard(3X)

XmBulletlnBoard Resource Set
Name Default Access

Class Type

XmNaliowOverlap True CSG
XmCAliowOverlap Boolean

XmNautoUnmanage True CG
XmCAutoUnmanage Boolean

XmNbuttonFontList dynamic CSG
XmCButtonFontList XmFontList

Xm NcancelButton NULL SG
XmCWidget Widget

Xm NdefaultButton NULL SG
XmCWidget Widget

Xm NdefaultPosition True CSG
XmCDefaultPosition Boolean

Xm NdialogStyle dynamic CSG
XmCDialogStyle unsigned char

XmNdialogTitle NULL CSG
XmCDialogTitle XmString

Xm NfocusCallback NULL C
XmCCaliback XtCalibackList

Xm NlabelFontList dynamic CSG
XmCLabelFontList XmFontList

XmNmapCaliback NULL C
XmCCaliback XtCalibackList

XmNmarginHeight 10 CSG
XmCMarginHeight Dimension

XmNmarginWidth 10 CSG
XmCMarginWidth Dimension

XmNnoResize False CSG
XmCNoResize Boolean

XmNresizePolicy XmRESIZE_ANY CSG
XmCResizePolicy unsigned char

1-193

OSF/Motif Programmer's Reference
XmBulietinBoard (3X)

1-194

Name Default Access
Class Type

XmNshadowType XmSHADOW_OUT CSG
XmCShadowType unsigned char

Xm NtextFontList dynamic CSG
XmCTextFontList XmFontList

Xm NtextTranslations NULL C
XmCTranslations XtTranslations

XmNunmapCaliback NULL C
XmCCaliback XtCalibackList

XmNallowOveriap
Controls the policy for overlapping children widgets. If True,
BulletinBoard allows geometry requests that result in overlapping
children.

XmNautoUnmanage
Controls whether or not BulletinBoard is automatically unmanaged
after a button is activated. If this resource is True on initialization
and if the BulletinBoard's parent is a DialogShell, BulletinBoard
adds a callback to button children (PushB uttons,
PushButtonGadgets, and DrawnButtons) that unmanages the
BulletinBoard when a button is activated. If this resource is False
on initialization or if the BulletinBoard's parent is not a
DialogShell, the BulletinBoard is not automatically unmanaged.
For BulletinBoard subclasses with Apply or Help buttons, activating
those buttons does not automatically unmanage the BulletinBoard.

XmNbuttonFontList
Specifies the font list used for BUlletinBoard's button descendants.
If this value is NULL at initialization, the font list is initialized by
looking up the parent hierarchy of the widget for an ancestor that is
a subclass of the XmBulletinBoard, VendorShell, or XmMenuShell
widget class. If such an ancestor is found, the font list is initialized
to the XmNbuttonFontList of the ancestor widget. If no such
ancestor is found, the default is implementation dependent. Refer to
XmFontList(3X) for more information on the creation and structure
of a font list.

Reference Pages

XmBulietinBoard(3X)

XmNcancelButton
Specifies the widget ID of the Cancel button. BulletinBoard's
subclasses, which define a Cancel button, set this resource.
BulletinBoard does not directly provide any behavior for that
button.

XmNdefaultButton
Specifies the widget ID of the default button. Some BulletinBoard
subclasses, which define a default button, set this resource.
BulletinBoard defines translations and installs accelerators that
activate that button when KActivate is pressed and the keyboard
focus is not in another button.

XmNdefaultPosition
Controls whether or not the BulletinBoard is automatically
positioned by its parent. If True, and the parent of the BulletinBoard
is a DialogShell, the BulletinBoard is centered within or around the
parent of the DialogShell when the BulletinBoard is mapped and
managed. If False, the BulletinBoard is not automatically
positioned.

XmNdialogStyle
Indicates the dialog style associated with the BulletinBoard. If the
parent of the BulletinBoard is a DialogShell, the parent's
XmNmwmInputMode is set according to the value of this
resource. This resource can be set only if the BulletinBoard is
unmanaged. Possible values for this resource include the following:

XmDIALOG_SYSTEM_MODAL
U sed for dialogs that must be responded to before
any other interaction in any application.

XmDIALOG_PRIMARY _APPLICATION_MODAL
U sed for dialogs that must be responded to before
some other interactions in ancestors of the widget.

XmDIALOG_APPLICATION_MODAL
U sed for dialogs that must be responded to before
some other interactions in ancestors of the widget.
This value is the same as
XmDIALOG_PRIMARY _APPLICATION_MODAL,
and remains for compatibility.

XmDIALOG_FULL_APPLICATION_MODAL
U sed for dialogs that must be responded to before
some other interactions in the same application.

1-195

OSF/Motif Programmer's Reference

XmBulietinBoard(3X)

1-196

XmDIALOG_MODELESS
Used for dialogs that do not interrupt interaction of
any application. This is the default when the parent
of the BulletinBoard is a DialogShell.

XmDIALOG_ WORK_AREA

XmNdialogTitle

Used for BulletinBoard widgets whose parents are
not DialogShells. XmNdialogStyle is forced to have
this value when the parent of the BulletinBoard is not
a DialogShell.

Specifies the dialog title. If this resource is not NULL, and the
parent of the BulletinBoard is a subclass of WMShell,
BulletinBoard sets the XmNtitle and XmNtitleEncoding of its
parent. If the only character set in XmNdialogTitle is IS08859-1,
XmNtitle is set to the string of the title, and XmNtitleEncoding is
set to STRING. If XmNdialogTitle contains character sets other
than IS08859-1, XmNtitle is set to the string of the title converted
to a compound text string, and XmNtitleEncoding is set to
COMPOUND_TEXT.

XmNfocusCallback
Specifies the list of callbacks that is called when the BulletinBoard
widget or one of its descendants accepts the input focus. The
callback reason is XmCR_FOCUS.

XmNlabelFontList
Specifies the font list used for BulletinBoard's label descendants
(Labels and LabeIGadgets). If this value is NULL at initialization,
the font list is initialized by looking up the parent hierarchy of the
widget for an ancestor that is a subclass of the XmBulletinBoard,
VendorS hell, or XmMenuShell widget class. If such an ancestor is
found, the font list is initialized to the XmNlabelFontList of the
ancestor widget. If no such ancestor is found, the default is
implementation dependent. Refer to XmFontList(3X) for more
information on the creation and structure of a font list.

Reference Pages
XmBulietinBoard(3X)

XmNmapCallback
Specifies the list of callbacks that is called only when the parent of
the BulletinBoard is a DialogShell. In this case, this callback list is
invoked when the BulletinBoard widget is mapped. The callback
reason is XmCR_MAP. DialogShells are usually mapped when the
DialogShell is managed.

XmNmarginHeight
Specifies the minimum spacing in pixels between the top or bottom
edge of BulletinBoard and any child widget.

XmNmarginWidth
Specifies the minimum spacing in pixels between the left or right
edge of BulletinBoard and any child widget.

XmNnoResize
Controls whether or not resize controls are included in the window
manager frame around the BulletinBoard's parent. If this resource
is set to True, mwm does not include resize controls in the window
manager frame containing the parent of the BulletinBoard if the
parent is a subclass of VendorShell. If this resource is set to False,
the window manager frame does include resize controls. Other
controls provided by mwm can be included or excluded through the
mwm resources provided by VendorShell.

XmNresizePolicy
Controls the policy for resizing BulletinBoard widgets. Possible
values include

XmRESIZE_NONE

XmRESIZE_ANY

XmRESIZE_GROW

XmNshadowType

Fixed size

Shrink or grow as needed

Grow only

Describes the shadow drawing style for BulletinBoard. This
resource can have the following values:

XmSHADOW _IN
Draws the BulletinBoard shadow so that it appears
inset. This means that the bottom shadow visuals and
top shadow visuals are reversed.

XmSHADOW_OUT
Draws the BulletinBoard shadow so that it appears
outset.

1-197

OSF/Motif Programmer's Reference

XmBulietinBoard(3X)

1-198

XmSHADOW _ETCHED_IN
Draws the BulletinBoard shadow using a double line
giving the effect of a line etched into the window,
similar to the Separator widget.

XmSHADOW_ETCHED_OUT
Draws the BulletinBoard shadow using a double line
giving the effect of a line coming out of the window,
similar to the Separator widget.

XmNtextFontList
Specifies the font list used for BulletinBoard's Text and List
descendants. If this value is NULL at initialization, the parent
hierarchy of the widget is searched for an ancestor that is a subclass
of the XmBulletinBoard or VendorS hell widget class. If such an
ancestor is found, the font list is initialized to the XmNtextFontList
of the ancestor widget. If no such ancestor is found, the default is
implementation dependent. Refer to XmFontList(3X) for more
information on the creation and structure of a font list.

XmNtextTranslations
Adds translations to any Text widget or Text widget subclass that is
added as a child of BulletinBoard.

XmNunmapCaUback

Inherited Resources

Specifies the list of callbacks that is called only when the parent of
the BulletinBoard is a DialogShell. In this case, this callback list is
invoked when the BulletinBoard widget is unmapped. The callback
reason is XmCR_ UNMAP. DialogShells are usually unmapped
when the DialogShell is unmanaged.

BulletinBoard inherits behavior and resources from the superclasses described in
the following tables. For a complete description of each resource, refer to the
reference page for that superclass.

Reference Pages

XmBulietinBoard (3X)

XmManager Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus dynamic CSG
XmClnitialFocus Widget

XmNnavigationType XmTAB_GROUP CSG
XmCNavigationType Xm NavigationType

XmNshadowThickness dynamic CSG
XmCShadowThickness Dimension

XmNstringDirection dynamic CG
XmCStringDirection XmStringDirection

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-199

OSF/Motif Programmer's Reference

XmBulietinBoard (3X)

Composite Resource Set
Name Default Access

Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmCI nsertPosition XtOrderProc

XmNnumChiidren 0 G
XmCReadOnly Cardinal

1-200

Reference Pages

XmBulietinBoard (3X)

Core Resource Set
Name Default Access

Class Type

XmNaccelerators dynamic N/A
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-201

OSF/Motif Programmer's Reference

XmBulietinBoard(3X)

1-202

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;

} XmAnyCallbackStruct;

reason Indicates why the callback was invoked

event Points to the XEvent that triggered the callback

Translations
XmBulletinBoard includes the translations from XmManager.

Additional Behavior
The XmBulletinBoard widget has the following additional behavior:

MAny KCancel:
Calls the activate callbacks for the cancel button if it is sensitive. If
no cancel button exists and if the parent of the BulletinBoard is a
manager, passes the event to the parent.

KActivate: Calls the activate callbacks for the button with the keyboard focus.
If no button has the keyboard focus, calls the activate callbacks for
the default button if it is sensitive. In a List widget or single-line
Text widget, the List or Text action associated with KActivate is
called before the BulletinBoard actions associated with KActivate.

Reference Pages

XmBulietinBoard (3X)

In a multiline Text widget, any KActivate event except KEnter
calls the Text action associated with KActivate, then the
BulletinBoard actions associated with KActivate. If no button has
the focus, no default button exists, and the parent of the
BulletinBoard is a manager, passes the event to the parent.

<FocusIn>: Calls the callbacks for XmNfocusCallback. When the focus policy
is XmPOINTER, the callbacks are called when the pointer enters
the window. When the focus policy is XmEXPLICIT, the
callbacks are called when the user traverses to the widget.

<Map>: Calls the callbacks for XmNmapCallback.

<Unmap>: Calls the callbacks for XmNunmapCallback.

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Composite(3X), Constraint(3X), Core(3X), XmCreateBulletinBoard(3X),
XmCreateBulletinBoardDialog(3X), XmDialogShell(3X), and
XmManager(3X).

1-203

OSF/Motif Programmer's Reference

XmCascadeButton (ax)

Synopsis

Description

1-204

XmCascadeButton-The CascadeButton widget class

#include <Xm/CascadeB.h>

CascadeButton links two MenuPanes or a MenuBar to a MenuPane.

It is used in menu systems and must have a RowColumn parent with its
XmNrowColumnType resource set to XmMENU_BAR, XmMENU_POPUP or
XmMENU_PULLDOWN.

It is the only widget that can have a Pulldown MenuPane attached to it as a
submenu. The submenu is displayed when this widget is activated within a
MenuBar, a PopupMenu, or a PulldownMenu. Its visuals can include a label or
pixmap and a cascading indicator when it is in a Popup or Pulldown MenuPane; or
it can include only a label or a pixmap when it is in a MenuBar.

The default behavior associated with a CascadeButton depends on the type of
menu system in which it resides. By default, BSelect controls the behavior of the
CascadeButton. In addition, BMenu controls the behavior of the CascadeButton if
it resides in a PopupMenu system. The actual mouse button used is determined by
its RowColumn parent.

A CascadeButton's visuals differ from most other button gadgets. When the button
becomes armed, its visuals change from a 2-D to a 3-D look, and it displays the
submenu that has been attached to it. If no submenu is attached, it simply changes
its visuals.

When a CascadeButton within a Pulldown or Popup MenuPane is armed as the
result of the user moving the mouse pointer into the widget, it does not immediately
display its submenu. Instead, it waits a short amount of time to see if the arming
was temporary (that is, the user was simply passing through the widget), or whether
the user really wanted the submenu posted. This time delay is configurable using
XmNmappingDelay.

CascadeB utton provides a single mechanism for activating the widget from the
keyboard. This mechanism is referred to as a keyboard mnemonic. If a mnemonic
has been specified for the widget, the user may activate the CascadeButton by
simply typing the mnemonic while the CascadeButton is visible. If the
CascadeButton is in a MenuBar and the MenuBar does not have the focus, the
MAlt modifier must be pressed with the mnemonic. Mnemonics are typically used
to interact with a menu using the keyboard interface.

Classes

Reference Pages

XmCascadeButton (3X)

If in a Pulldown or Popup MenuPane and there is a submenu attached, the
XmNmarginBottom, XmNmarginLeft, XmNmarginRight, and
XmNmarginTop resources may enlarge to accommodate XmNcascadePixmap.
XmNmargin Width defaults to 6 if this resource is in a MenuBar; otherwise, it
takes Label's default, which is 2.

CascadeButton inherits behavior and resources from Core, XmPrimitive, and
XmLabel classes.

The class pointer is xmCascadeButtonWidgetClass.

The class name is XmCascadeButton.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a :Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for· a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

XmCascadeButton Resource Set

Name Default Access
Class Type

Xm N activateCall back NULL C
XmCCaliback XtCalibackList

Xm NcascadePixmap dynamic CSG
XmCPixmap Pixmap

XmNcascadingCallback NULL C
XmCCaliback XtCalibackList

XmNmappingDelay 180ms CSG
XmCMappingDelay int

XmNsubMenuld NULL CSG
XmCMenuWidget Widget

XmNactivateCallback
Specifies the list of callbacks that is called when the user activates
the CascadeB utton widget and there is no submenu attached to pop
up. The activation occurs when a mouse button is released or when

1-205

OSF/Motif Programmer's Reference

XmCascadeButton (3X)

1-206

the mnemonic associated with the widget is typed. The specific
mouse button depends on information in the RowColumn parent.
The reason sent by the callback is XmCR_ACTIVATE.

XmNcascadePixmap
Specifies the cascade pixmap displayed on one end of the widget
when a CascadeButton is used within a Popup or Pulldown
MenuPane and a submenu is attached. The Label class resources
XmNmarginBottom, XmNmarginLeft, XmNmarginRight, and
XmNmarginTop may be modified to ensure that room is left for the
cascade pixmap. The default cascade pixmap is an arrow pointing
to the side of the menu where the submenu will appear.

XmNcascadingCallback
Specifies the list of callbacks that is called just prior to the mapping
of the submenu associated with CascadeButton. The reason sent by
the callback is XmCR_CASCADING.

XmNmappingDelay
Specifies the amount of time, in milliseconds, between when a
CascadeButton becomes armed and when it maps its submenu. This
delay is used only when the widget is within a Popup or Pulldown
MenuPane. The value must not be negative.

XmNsubMenuld

Inherited Resources

Specifies the widget ID for the Pulldown MenuPane to be associated
with this CascadeButton. The specified MenuPane is displayed
when the CascadeButton becomes armed. The MenuPane must
have been created with the appropriate parentage depending on the
type of menu used. See XmCreateMenuBar(3X),
XmCreatePulldownMenu(3X), and XmCreatePopupMenu(3X)
for more information on the menu systems.

CascadeButton inherits behavior and resources from the superclasses described in
the following tables. For a complete description of each resource, refer to the
reference page for that superclass.

Reference Pages

XmCascadeButton (3X)

XmLabel Resource Set

Name Default Access
Class Type

Xm Naccelerator NULL N/A
XmCAccelerator String

XmNacceleratorText NULL N/A
XmCAcceleratorText XmString

XmNalignment dynamic CSG
XmCAlignment unsigned char

XmNfontList dynamic CSG
XmCFontList XmFontList

Xm Nlabell nsensitivePixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCLabellnsensitivePixmap Pixmap

XmNlabelPixmap XmUNSPECIFIED_PIXMAP CSG
XmCLabelPixmap Pixmap

Xm NlabelString dynamic CSG
XmCXmString XmString

XmNlabelType XmSTRING CSG
XmCLabelType unsigned char

XmNmarginBottom dynamic CSG
XmCMarginBottom Dimension

XmNmarginHeight 2 CSG
XmCMarginHeight Dimension

XmNmarginLeft 0 CSG
XmCMarginLeft Dimension

XmNmarginRight dynamic CSG
XmCMarginRight Dimension

XmNmarginTop dynamic CSG
XmCMarginTop Dimension

XmNmarginWidth dynamic CSG
XmCMarginWidth Dimension

1-207

OSF/Motif Programmer's Reference

XmCascadeButton (aX)

1-208

Name
Class

XmNmnemonic
XmCMnemonic

Default
Type

NULL
KeySym

Access

CSG

Reference Pages

XmCascadeButton (3X)

Name Default Access
Class Type

XmNmnemonicCharSet XmFONTLIST _DEFAULT_TAG CSG
XmCMnemonicCharSet String

XmNrecomputeSize True CSG
XmCRecomputeSize Boolean

Xm NstringDirection dynamic CSG
XmCStringDirection XmStringDirection

1-209

OSF/Motif Programmer's Reference

XmCascadeButton(3X)

XmPrimitive Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBoUomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNhighlightThickness 0 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType Xm NavigationType

XmNshadowThickness 2 CSG
XmCShadowThickness Dimension

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn dynamic G
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-210

Reference Pages

XmCascadeButton (aX)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap Xm UNSPECI FI ED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap Xm UNSPECI FI ED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-211

OSF/Motif Programmer's Reference

XmCascadeButton (3X)

1-212

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;

} XmAnyCallbackStruct;

reason

event

Translations

Indicates why the callback was invoked

Points to the XEvent that triggered the callback or is NULL if this
callback was not triggered due to an XEvent

XmCascadeButton includes translations from XmPrimitive. XmCascadeButton
includes the menu traversal translations from XmLabel. These translations may
not directly correspond to a translation table.

Note that altering translations in #override or #augment mode is undefined.

The following list describes the translations for a CascadeButton in a MenuBar.
These translations may not directly correspond to a translation table.

BSelect Press:

BSelect Release:

KActivate:

KSelect:

MenuBarSelectO

DoSelectO

KeySelectO

KeySelectO

Reference Pages

XmCascadeButton (3X)

KHelp:

MAny KCancel:

HeipO

CleanupMenuBarO

The following list describes the translations for a CascadeButton in a PullDown or
Popup MenuPane. In a Popup menu system, BMenu also performs the BSelect
actions. These translations may not directly correspond to a translation table.

BSelect Press: StartDragO

BSelect Release: DoSelectO

KActivate: KeySelectO

KSelect: KeySelectO

KHelp: HeipO

MAny KCancel: CleanupMenuBarO

Action Routines
The XmCascadeButton action routines are

CleanupMenuBarO:
In a MenuBar, disarms the CascadeButton and the menu and, when
the shell's keyboard focus policy is XmEXPLICT, restores
keyboard focus to the widget that had the focus before the menu was
entered.

In a toplevel Pulldown MenuPane from a MenuBar, unposts the
menu, disarms the MenuBar CascadeButton and the MenuBar, and,
when the shell's keyboard focus policy is XmEXPLICT, restores
keyboard focus to the widget that had the focus before the MenuBar
was entered. In other Pulldown MenuPanes, unposts the menu.

In a Popup MenuPane, unposts the menu and, when the shell's
keyboard focus policy is XmEXPLICT, restores keyboard focus to
the widget from which the menu was posted.

1-213

OSF/Motif Programmer's Reference

XmCascadeButton (3X)

1-214

DoSelectO: Calls the callbacks in XmNcascadingCallback, posts the submenu
attached to the CascadeButton and enables keyboard traversal
within the menu. If the CascadeButton does not have a submenu
attached, this action calls the callbacks in XmNactivateCallback,
activates the CascadeButton, and unposts all posted menus in the
cascade.

HelpO: Unposts all menus in the menu hierarchy and, when the shell's
keyboard focus policy is XmEXPLICT, restores keyboard focus to
the widget that had the focus before the menu system was entered.
Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

KeySelectO: Calls the callbacks in XmNcascadingCallback, and posts the
submenu attached to the CascadeButton if keyboard traversal is
enabled in the menu. If the CascadeButton does not have a
submenu attached, this action calls the callbacks in
XmNactivateCallback, activates the CascadeButton, and unposts
all posted menus in the cascade.

MenuBarSelectO:
Unposts any menus posted by the parent menu. Arms both the
CascadeButton and the MenuBar, posts the associated submenu, and
enables mouse traversal. If the menu is already active, this event
disables keyboard traversal for the menu and returns the menu to
mouse traversal mode.

StartDragO: Arms the CascadeButton, posts the associated submenu, and enables
mouse traversal. If the menu is already active, this event disables
keyboard traversal for the menu and returns the menu to mouse
traversal mode.

Additional Behavior
Posting a submenu calls the XmNcascadingCallback callbacks. This widget has
the following additional behavior:

<EnterWindow>:
If keyboard traversal is enabled, does nothing. Otherwise, in a
MenuBar that is armed, unposts any MenuPanes associated with
another MenuBar entry, arms the CascadeButton, and posts the
associated submenu. In other menus, arms the CascadeButton and
posts the associated submenu after the delay specified by
XmNmappingDelay.

Reference Pages

XmCascadeButton (3X)

<LeaveWindow>:

Virtual Bindings

If keyboard traversal is enabled does nothing. Otherwise, in a
MenuBar that is armed, disarms the CascadeButton if the submenu
associated with the CascadeButton is not currently posted or if there
is no submenu associated with the CascadeButton.

In other menus, if the pointer moves anywhere except into a
submenu associated with the CascadeButton, the CascadeButton is
disarmed and its submenu is unposted.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Core(3X), XmCascadeButtonHighlight(3X),
XmCreateCascadeButton(3X),XmCreateMenuBar(3X),
XmCreatePulldownMenu(3X), XmCreatePopupMenu(3X), XmLabel(3X),
XmPrimitive(3X), and XmRowColumn(3X).

1-215

OSF/Motif Programmer's Reference

XmCascadeButtonGadget(3X)

Synopsis

Description

1-216

XmCascadeButtonGadget-The CascadeButtonGadget widget class

#include <XmlCascadeBG.h>

CascadeButtonGadget links two MenuPanes, a MenuBar to a MenuPane, or an
OptionMenu to a MenuPane.

It is used in menu systems and must have a RowColumn parent with its
XmNrowColumnType resource set to XmMENU_BAR, XmMENU_POPUP,
XmMENU_PULLDOWN, or XmMENU_OPTION.

It is the only gadget that can have a Pulldown MenuPane attached to it as a
submenu. The submenu is displayed when this gadget is activated within a
PopupMenu, a PulldownMenu, or an OptionMenu. Its visuals can include a label
or pixmap and a cascading indicator when it is in a Popup or Pulldown MenuPane;
or it can include only a label or a pixmap when it is in an OptionMenu.

The default behavior associated with a CascadeButtonGadget depends on the type
of menu system in which it resides. By default, BSelect controls the behavior of
the CascadeButtonGadget. In addition, BMenu controls the behavior of the
CascadeButtonGadget if it resides in a PopupMenu system. The actual mouse
button used is determined by its RowColumn parent.

A CascadeButtonGadget's visuals differ from most other button gadgets. When the
button becomes armed, its visuals change from a 2-D to a 3-D look, and it displays
the submenu that has been attached to it. If no submenu is attached, it simply
changes its visuals.

When a CascadeButtonGadget within a Pulldown or Popup MenuPane is armed as
the result of the user moving the mouse pointer into the gadget, it does not
immediately display its submenu. Instead, it waits a short time to see if the arming
was temporary (that is, the user was simply passing through the gadget), or the user
really wanted the submenu posted. This delay is configurable using
XmNmappingDelay.

CascadeButtonGadget provides a single mechanism for activating the gadget from
the keyboard. This mechanism is referred to as a keyboard mnemonic. If a
mnemonic has been specified for the gadget, the user may activate it by simply
typing the mnemonic while the CascadeButtonGadget is visible. If the
CascadeButtonGadget is in a MenuBar and the MenuBar does not have focus, the
MAlt modifier must be pressed with the mnemonic. Mnemonics are typically used
to interact with a menu using the keyboard.

Classes

Reference Pages

XmCascadeButtonGadget (3X)

If a CascadeButtonOadget is in a Pulldown or Popup MenuPane and there is a
submenu attached, the XmNmarginBottom, XmNmarginLeft,
XmNmarginRight, and XmNmarginTop resources may enlarge to accommodate
XmNcascadePixmap. XmNmarginWidth defaults to 6 if this resource is in a
MenuBar; otherwise, it takes LabelOadget's default, which is 2.

CascadeButtonOadget inherits behavior and resources from the Object, RectObj,
XmGadget, and XmLabelGadget classes.

The class pointer is xmCascadeButtonGadgetClass.

The class name is XmCascadeButtonGadget.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (0), or is not applicable (N/A).

XmCascadeButtonGadget

Name Default Access
Class Type

Xm NactivateCallback NULL C
XmCCallback XtCallbackList

XmNcascadePixmap dynamic CSG
XmCPixmap Pixmap

XmNcascadingCallback NULL C
XmCCallback XtCallbackList

XmNmappingDelay 180 ms CSG
XmCMappingDelay int

XmNsubMenuld NULL CSG
XmCMenuWidget Widget

XmNactivateCallback
Specifies the list of callbacks that is called when the user activates
the CascadeButtonOadget, and there is no submenu attached to pop
up. The activation occurs when a mouse button is released or when

1-217

OSF/Motif Programmer's Reference

XmCascadeButtonGadget (aX)

1-218

the mnemonic associated with the gadget is typed. The specific
mouse button depends on information in the RowColumn parent.
The reason sent by the callback is XmCR_ACTIVATE.

XmNcascadePixmap
Specifies the cascade pixmap displayed on one end of the gadget
when a CascadeButtonGadget is used within a Popup or Pulldown
MenuPane and a submenu is attached. The LabelGadget class
resources XmNmarginBottom, XmNmarginLeft,
XmNmarginRight, and XmNmarginTop may be modified to
ensure that room is left for the cascade pixmap. The default cascade
pixmap in menus other than option menus is an arrow pointing to the
side of the menu where the submenu will appear. The default for
the CascadeButtonGadget in an option menu is
XmUNSPECIFIED_PIXMAP.

XmNcascadingCallback
Specifies the list of callbacks that is called just prior to the mapping
of the submenu associated with the CascadeButtonGadget. The
reason sent by the callback is XmCR_ CASCADING.

XmNmappingDelay
Specifies the amount of time, in milliseconds, between when a
CascadeButtonGadget becomes armed and when it maps its
submenu. This delay is used only when the gadget is within a Popup
or Pulldown MenuPane. The value must not be negative.

XmNsubMenuId

Inherited Resources

Specifies the widget ID for the Pulldown MenuPane to be associated
with this CascadeButtonGadget. The specified MenuPane is
displayed when the CascadeButtonGadget becomes armed. The
MenuPane must have been created with the appropriate parentage
depending on the type of menu used. See
XmCreatePulldownMenu(3X), XmCreatePopupMenu(3X), and
XmCreateOptionMenu(3X) for more information on the menu
systems.

CascadeButtonGadget inherits behavior and resources from the following
superclasses. For a complete description of each resource, refer to the reference
page for that superclass.

Reference Pages

XmCascadeButtonGadget (3X)

XmLabelGadget Resource Set

Name Default Access
Class Type

Xm Naccelerator NULL N/A
XmCAccelerator String

Xm NacceleratorText NULL N/A
XmCAcceleratorText XmString

XmNalignment dynamic CSG
XmCAlignment unsigned char

Xm NfontList dynamic CSG
XmCFontList XmFontList

Xm NlabellnsensitivePixmap XmUNSPECI FI ED _PIXMAP CSG
XmCLabellnsensitivePixmap Pixmap

XmNlabelPixmap XmUNSPECI FI ED _PIXMAP CSG
XmCLabelPixmap Pixmap

Xm NlabelString dynamic CSG
XmCXmString XmString

XmNlabelType XmSTRING CSG
XmCLabelType unsigned char

XmNmarginBottom dynamic CSG
XmCMarginBottom Dimension

XmNmarginHeight 2 CSG
XmCMarginHeight Dimension

XmNmarginLeft 0 CSG
XmCMarginLeft Dimension

XmNmarginRight dynamic CSG
XmCMarginRight Dimension

XmNmarginTop dynamic CSG
XmCMarginTop Dimension

XmNmarginWidth dynamic CSG
XmCMarginWidth Dimension

1-219

OSF/Motif Programmer's Reference

XmCascadeButtonGadget(ax)

Name Default Access
Class Type

XmNmnemonic NULL CSG
XmCMnemonic KeySym

Xm Nmnel110nicCharSet dynamic CSG
XmCMnemonicCharSet String

XmNrecomputeSize True CSG
XmCRecomputeSize Boolean

XmNstringDirection dynamic CSG
XmCStringDirection XmStringDirection

XmGadget Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic G
XmCBottomShadowColor Pixel

XmNhelpCallback NULL C
XmCCallback XtCallbackList

XmNhighlightColor dynamic G
XmCHighlightColor Pixel

Xm NhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightThickness 0 CSG
XmCHighlightThickness Dimension

Xm NnavigationType XmNONE CSG
XmCNavigationType XmNavigationType

XmNshadowThickness 2 CSG
XmCShadowThickness Dimension

Xm NtopShadowColor dynamic G
XmCTopShadowColor Pixel

1-220

Reference Pages

XmCascadeButtonGadget (aX)

Name Default Access
Class Type

XmNtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

RectObj Resource Set

Name Default Access
Class Type

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNborderWidth 0 N/A
XmCBorderWidth Dimension

XmNheight dynamic CSG
XmCHeight Dimension

XmNsensitive True CSG
XmCSensitive Boolean

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Object Resource Set

Name Default Access
Class Type

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

1-221

OSF/Motif Programmer's Reference

XmCascadeButtonGadget(3X)

1-222

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;

} XmAnyCallbackStruct;

reason

event

Behavior

Indicates why the callback was invoked

Points to the XEvent that triggered the callback or is NULL if this
callback was not triggered by an XEvent

XmCascadeButtonGadget includes behavior from XmGadget.
XmCascadeButton includes the menu traversal behavior from XmLabel.
Additional XmCascadeButtonGadget behavior is described in the following list
(in a Popup menu system, BMenu also performs the BSelect actions).

BSelect Press:
Unposts any menus posted by the parent menu. Arms the
CascadeButtonGadget, posts the associated submenu, enables
mouse traversal, and, in a MenuBar, arms the MenuBar. If the menu
is already active, this event disables keyboard traversal for the menu
and returns the menu to mouse traversal mode.

BSelect Release:
Calls the callbacks in XmNcascadingCallback, posts the submenu
attached to the CascadeButtonGadget and enables keyboard
traversal within the menu. If the CascadeButtonGadget does not
have a submenu attached, this action calls the callbacks in
XmNactivateCallback, activates the CascadeButtonGadget, and
unposts all posted menus in the cascade.

KActivate: Calls the callbacks in XmNcascadingCallback, and posts the
submenu attached to the CascadeButtonGadget if keyboard
traversal is enabled in the menu. If the CascadeButtonGadget does
not have a submenu attached, this action calls the callbacks in
XmNactivateCallback, activates the CascadeButtonGadget, and
unposts all posted menus in the cascade. This action applies only to
gadgets in MenuBars, PulldownMenus, and PopupMenus. For a
CascadeButtonGadget in an OptionMenu, if the parent is a manager,
this action passes the event to the parent.

KSelect:

KHelp:

Reference Pages

XmCascadeButtonGadget(3X)

Calls the callbacks in XmNcascadingCallback, and posts the
submenu attached to the CascadeButtonGadget if keyboard
traversal is enabled in the menu. If the CascadeB uttonGadget does
not have a submenu attached, this action calls the callbacks in
XmNactivateCallback, activates the CascadeButtonGadget, and
unposts all posted menus in the cascade.

Unposts all menus in the menu hierarchy and, when the shell's
keyboard focus policy is XmEXPLICT, restores keyboard focus to
the widget that had the focus before the menu system was entered.
Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

MAny KCancel:

<Enter>:

<Leave>:

In a MenuBar, disarms the CascadeButtonGadget and the menu and,
when the shell's keyboard focus policy is XmEXPLICT, restores
keyboard focus to the widget that had the focus before the menu was
entered. For a CascadeButtonGadget in an OptionMenu, if the
parent is a manager, this action passes the event to the parent.

In a toplevel Pulldown MenuPane from a MenuBar, unposts the
menu, disarms the MenuBar CascadeButton and the MenuBar, and,
when the shell's keyboard focus policy is XmEXPLICT, restores
keyboard focus to the widget that had the focus before the MenuBar
was entered. In other Pulldown MenuPanes, unposts the menu.

In a Popup MenuPane, unposts the menu and restores keyboard
focus to the widget from which the menu was posted.

If keyboard traversal is enabled does nothing. Otherwise, in a
MenuBar, unposts any MenuPanes associated with another
MenuBar entry, arms the CascadeButtonGadget, and posts the
associated submenu. In other menus, arms the
CascadeButtonGadget and posts the associated submenu after the
delay specified by XmNmappingDelay.

If keyboard traversal is enabled does nothing. Otherwise, in a
MenuBar, disarms the CascadeButtonGadget if the submenu
associated with the CascadeButtonGadget is not currently posted or
if there is no submenu associated with the CascadeButtonGadget.

In other menus, if the pointer moves anywhere except into a
submenu associated with the CascadeButtonGadget, the
CascadeButtonGadget is disarmed and its submenu is unposted.

1-223

OSF/Motif Programmer's Reference

XmCascadeButtonGadget(3X)

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information

1-224

Object(3X), RectObj(3X), XmCascadeButtonHighlight(3),
XmCreateCascadeButtonGadget(3X), XmCreatePulldownMenu(3X),
XmCreatePopupMenu(3X), XmCreateOptionMenu(3X),xmGadget(3X),
XmLabeIGadget(3X), and XmRowColumn(3X).

Reference Pages

XmCascadeButtonGadgetHighlight(3X)

XmCascadeButtonGadgetHighlight-A CascadeButtonGadget function that sets
the highlight state

Synopsis #include <XmlCascadeBG.h>

Description

void XmCascadeButtonGadgetHighlight (cascadeButtonGadget, highlight)
Widget cascadeButtonGadget;
Boolean highlight;

XmCascadeButtonGadgetHighlight either draws or erases the shadow highlight
around the CascadeButtonGadget.

cascade Button Gadget

highlight

Specifies the CascadeButtonGadget to be highlighted or
unhighlighted

Specifies whether to highlight (True) or to unhighlight (False)

For a complete definition of CascadeButtonGadget and its associated resources,
see XmCascadeButtonGadget(3X).

Related Information
XmCascadeButton(3X), XmCascadeButtonGadget(3X), and
XmCascadeButtonHighlight(3X).

1-225

OSF/Motif Programmer's Reference
XmCascadeButtonHighlight(3X)

XmCascadeButtonHighlight-A CascadeButton and CascadeButtonGadget
function that sets the highlight state

Synopsis #include <Xm/CascadeB.h>
#include <Xm/CascadeBG.h>

Description

void XmCascadeButtonHighlight (cascadeButton, highlight)
Widget cascadeButton;
Boolean highlight;

XmCascadeButtonffighlight either draws or erases the shadow highlight around
the CascadeButton or the CascadeButtonGadget.

cascadeButton

highlight

Specifies the CascadeButton or CascadeButtonGadget to be
highlighted or unhighlighted

Specifies whether to highlight (True) or to unhighlight (False)

For a complete definition of CascadeButton or CascadeButtonGadget and their
associated resources, see XmCascadeButton(3X) or
XmCascadeButtonGadget(3X).

Related Information

1-226

XmCascadeButton(3X), XmCascadeButtonGadget(3X) and
XmCascadeButtonGadgetHighlight(3X).

Synopsis

Description

Reference Pages

XmChangeColor(3X)

XmChangeColor-Recalculates all associated colors of a widget

#include <XmlXm.h>

void XmChangeColor (widget, background)
Widget widget;
Pixel background;

XmChangeColor handles all color modifications for the specified widget when a
new background pixel value is specified. This function recalculates the
foreground, select, and shadow colors based on the new background color and sets
the corresponding resources for the widget. If a color calculation procedure has
been set by a call to XmSetColorCalculation, XmChangeColor uses that
procedure to calculate the new colors. Otherwise, the routine uses a default
procedure.

widget Specifies the widget ID whose colors will be updated

background Specifies the background color pixel value

Related Information
XmGetColorCaIculation(3X), XmGetColors(3X), and
XmSetColorCalculation(3X) .

1-227

OSF/Motif Programmer's Reference

XmClipboardCancelCopy(aX)

Synopsis

Description

1-228

XmClipboardCancelCopy-A clipboard function that cancels a copy to the
clipboard

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardCancelCopy (display, window, item_id)
Display * display;
Window window;
long item_id;

XmClipboardCancelCopy cancels the copy to clipboard that is in progress and
frees up temporary storage. When a copy is to be performed,
XmClipboardStartCopy allocates temporary storage for the clipboard data.
XmClipboardCopy copies the appropriate data into the the temporary storage.
XmClipboardEndCopy copies the data to the clipboard structure and frees up the
temporary storage structures. If XmClipboardCancelCopy is called, the
XmClipboardEndCopy function does not have to be called. A call to
XmClipboardCancelCopy is valid only after a call to XmClipboardStartCopy
and before a call to XmClipboardEndCopy.

display

window

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies a widget's window ID that relates the application window
to the clipboard. The widget's window ID can be obtained through
XtWindow. The same application instance should pass the same
window ID to each of the clipboard functions that it calls.

Specifies the number assigned to this data item. This number was
returned by a previous call to XmClipboardStartCopy.

Reference Pages

XmClipboardCancelCopy (3X)

Return Value

ClipboardSuccess
The function was successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

ClipboardFail
The function failed because XmClipboardStartCopy was not
called or because the data item contains too many formats.

Related Information
XmClipboardCopy(3X), XmClipboardEndCopy(3X), and
XmClipboardStartCopy(3X).

1-229

OSF/Motif Programmer's Reference
XmClipboardCopy(3X)

Synopsis

Description

1-230

XmClipboardCopy-A clipboard function that copies a data item to temporary
storage for later copying to clipboard

#include <XmlXm.h>
#include <Xm/CutPaste.h>

int XmClipboardCopy (display, window, item_id, jormacname,
buffer, length, private_id, data_id)

Display * display;
Window window;
long item_id;
char * jormacname;
XtPointer buffer;
unsigned long length;
long private_id;
long * data_id;

XmClipboardCopy copies a data item to temporary storage. The data item is
moved from temporary storage to the clipboard data structure when a call to
XmClipboardEndCopy is made. Additional calls to XmClipboardCopy before a
call to XmClipboardEndCopy add additional data item formats to the same data
item or append data to an existing format. Formats are described in the Inter­
Client Communication Conventions Manual (lCCCM) as targets.

NOTE: Do not call XmClipboardCopy before a call to XmClipboardStartCopy
has been made. The latter function allocates temporary storage required by
XmClipboardCopy.

If the buffer argument is NULL, the data is considered to be passed by name.
When data that has been passed by name is later requested by another application,
the application that owns the data receives a callback with a request for the data.
The application that owns the data must then transfer the data to the clipboard with
the XmClipboardCopyByName function. When a data item that was passed by
name is deleted from the clipboard, the application that owns the data receives a
callback stating that the data is no longer needed.

For information on the callback function, see the callback argument description for
XmClipboardStartCopy.

display

window

Reference Pages

XmClipboardCopy(3X)

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each of the clipboard functions that it calls.

Specifies the number assigned to this data item. This number was
returned by a previous call to XmClipboardStartCopy.

formaCname Specifies the name of the format in which the data item is stored on

buffer

length

Return Value

the clipboard. The format was known as target in the ICCCM.

Specifies the buffer from which the clipboard copies the data.

Specifies the length of the data being copied to the clipboard.

Specifies the private data that the application wants to store with the
data item.

Specifies an identifying number assigned to the data item that
uniquely identifies the data item and the format. This argument is
required only for data that is passed by name.

Clipboard Success
The function is successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

ClipboardFail
The function failed because XmClipboardStartCopy was not
called or because the data item contains too many formats.

Related Information
XmClipboardCopyByName(3X), XmClipboardEndCopy(3X), and
XmClipboardStartCopy(3X).

1-231

OSF/Motif Programmer's Reference

XmClipboardCopy8yName(3X)

Synopsis

Description

1-232

XmClipboardCopyByName-A clipboard function that copies a data item passed
by name

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardCopyByName (display, window, data_id,
buffer, length, private_id)

Display * display;
Window window;
long data_id;
XtPointer buffer;
unsigned long length;
long private_id;

XmClipboardCopyByName copies the actual data for a data item that was
previously passed by name to the clipboard. Data is considered to be passed by
name when a call to XmClipboardCopy is made with a NULL buffer parameter.
Additional calls to this function append new data to the existing data.

display

window

buffer

length

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
by through XtWindow. The same application instance should pass
the same window ID to each clipboard function it calls.

Specifies an identifying number assigned to the data item that
uniquely identifies the data item and the format. This number was
assigned by XmClipboardCopy to the data item.

Specifies the buffer from which the clipboard copies the data.

Specifies the number of bytes in the data item.

Specifies the private data that the application wants to store with the
data item.

Reference Pages

XmClipboardCopyByName(3X)

Return Value

ClipboardSuccess
The function was successful.

ClipboardLocked

Related Information

The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

XmClipboardCopy(3X), XmClipboardLock(3X),
XmClipboardStartCopy(3X), and XmClipboardUnlock(3X).

1-233

OSF/Motif Programmer's Reference

XmClipboardEndCopy(3X)

Synopsis

Description

1-234

XmClipboardEndCopy-A clipboard function that ends a copy to the clipboard

#include <XmlXm.h>
#include <Xm/CutPaste.h>

int XmClipboardEndCopy (display, window, item_id)
Display * display;
Window window;
long item_id;

XmClipboardEndCopy locks the clipboard from access by other applications,
places data in the clipboard data structure, and unlocks the clipboard. Data items
copied to the clipboard by XmClipboardCopy are not actually entered in the
clipboard data structure until the call to XmClipboardEndCopy.

This function also frees up temporary storage that was allocated by
XmClipboardStartCopy, which must be called before XmClipboardEndCopy.
The latter function should not be called if XmClipboardCancelCopy has been
called.

display

window

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each clipboard function it calls.

Specifies the number assigned to this data item, which was returned
by a previous call to XmClipboardStartCopy.

Reference Pages

XmClipboardEndCopy (3X)

Return Value

ClipboardSuccess
The function was successful.

Clipboard Locked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

ClipboardFail
The function failed because XmClipboardStartCopy was not
called.

Related Information
XmClipboardCanceICopy(3X), XmClipboardCopy(3X) and
XmClipboardStartCopy(3X).

1-235

OSF/Motif Programmer's Reference

XmClipboardEndRetrieve(3X)

XmClipboardEndRetrieve-A clipboard function that ends a copy from the
clipboard

Synopsis #include <XmlXm.h>
#include <Xm/CutPaste.h>

Description

int XmClipboardEndRetrieve (display, window)
Display * display;
Window window;

XmClipboardEndRetrieve suspends copying data incrementally from the
clipboard. It tells the clipboard routines that the application is through copying an
item from the clipboard. Until this function is called, data items can be retrieved
incrementally from the clipboard with XmClipboardRetrieve.

display

window

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
with XtWindow. The same application instance should pass the
same window ID to each of the clipboard functions that it calls.

Return Value

ClipboardSuccess
The function was successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

Related Information

1-236

XmClipboardRetrieve(3X), XmClipboardStartCopy(3X), and
XmClipboardStartRetrieve(3X).

Synopsis

Description

Reference Pages

XmClipboardlnquireCount(3X)

XmClipboardlnquireCount-A clipboard function that returns the number of
data item formats

#include <XmlXm.h>
#include <Xm/CutPaste.h>

int XmClipboardlnquireCount (display, window, count,
maxJormaCname_length)

Display * display;
Window window;
int * count;
unsigned long * maxJormaCname_length;

XmClipboardlnquireCount returns the number of data item formats available for
the data item in the clipboard. This function also returns the maximum name­
length for all formats in which the data item is stored.

display

window

count

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window 1D of a widget that relates the application
window to the clipboard. The widget's window 10 can be obtained
through XtWindow. The same application instance should pass the
same window 1D to each of the clipboard functions that it calls.

Returns the number of data item formats available for the data item
in the clipboard. If no formats are available, this argument equals 0
(zero). The count includes the formats that were passed by name.

maxJormacname_length
Specifies the maximum length of all format names for the data item
in the clipboard. '

1-237

OSF/Motif Programmer's Reference

XmClipboardlnquireCount(3X)

Return Value

ClipboardSuccess
The function was successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

ClipboardNoData
The function could not find data on the clipboard corresponding to
the format requested. This could occur because the clipboard is
~mpty; there is data on the clipboard, but not in the requested
format; or the data in the requested format was passed by name and
is no longer available.

Related Information
XmClipboardStartCopy(3X).

1-238

Synopsis

Description

Reference Pages

XmClipboardlnquireFormat(3X)

XmClipboardlnquireFormat-A clipboard function that returns a specified
format name

#include <XmlXm.h>
#include <XmlCutPaste.h>

int Xm ClipboardlnquireFormat (display, window, index, formacname _buf,
buffer _len, copied_len)

Display * display;
Window window;
int
XtPointer
unsigned long
unsigned long

index;
formacname_buf;
buffer _len;
* copied_len;

XmClipboardlnquireFormat returns a specified format name for the data item in
the clipboard. If the name must be truncated, the function returns a warning status.

display

window

index

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window 10 can be obtained
through XtWindow. The same application instance should pass the
same window ID to each of the clipboard functions that it calls.

Specifies which of the ordered format names to obtain. If this index
is greater than the number of formats for the data item, this function
returns a 0 (zero) in the copied_len argument.

formacname_buf
Specifies the buffer that receives the format name.

Specifies the number of bytes in the format name buffer.

Specifies the number of bytes in the string copied to the buffer. If
this argument equals 0 (zero), there is no nth format for the data
item.

1-239

OSF/Motif Programmer's Reference

XmClipboardlnquireFormat(3X)

Return Value

Clipboard Success
The function was successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

ClipboardTruDcate
The data returned is truncated because the user did not provide a
buffer large enough to hold the data.

ClipboardNoData
The function could not find data on the clipboard corresponding to
the format requested. This could occur because the clipboard is
empty; there is data on the clipboard, but not in the requested
format; or the data in the requested format was passed by name and
is no longer available.

Related Information
XmClipboardStartCopy(3X).

1-240

Synopsis

Description

Reference Pages

XmClipboardlnquireLength(3X)

XmClipboardlnquireLength-A clipboard function that returns the length of the
stored data

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardlnquireLength (display, window, jormaCname, length)
Display * display;
Window window;
char * jormacname;
unsigned long * length;

XmClipboardlnquireLength returns the length of the data stored under a
specified format name for the clipboard data item. If no data is found for the
specified format, or if there is no item on the clipboard, this function returns a
value of 0 (zero).

Any format passed by name is assumed to have length passed in a call to
XmClipboardCopy, even though the data has not yet been transferred to the
clipboard in that format.

display

window

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each of the clipboard functions that it calls.

formaCname Specifies the name of the format for the data item.

length Specifies the length of the next data item in the specified format.
This argument equals 0 (zero) if no data is found for the specified
format, or if there is no item on the clipboard.

1-241

OSF/Motif Programmer's Reference

XmClipboardlnquireLength (3X)

Return Value

Clipboard Success
The function was successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

ClipboardNoData
The function could not find data on the clipboard corresponding to
the format requested. This could occur because the clipboard is
empty; there is data on the clipboard, but not in the requested
format; or the data in the requested format was passed by name and
is no longer available.

Related Information
XmClipboardCopy(3X) and XmClipboardStartCopy(3X).

1-242

Synopsis

Description

Reference Pages

XmClipboardlnquirePendi ngltems (3X)

XmClipboardlnquirePendingltems-A clipboard function that returns a list of
data ID/private ID pairs

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardlnquirePendingItems (display, window, jormaCname,
item_list, count)

Display * display;
Window window;
char * jormaCname;
XmClipboardPendingList * item_list;
unsigned long * count;

XmClipboardlnquirePendingltems returns a list of data ID/private ID pairs for
the specified format name. A data item is considered pending if the application
originally passed it by name, the application has not yet copied the data, and the
item has not been deleted from the clipboard. The application is responsible for
freeing the memory provided by this function to store the list. To free the memory,
call XtFree.

This function is used by an application when exiting, to determine if the data that is
passed by name should be sent to the clipboard.

display

window

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each of the clipboard functions that it calls.

formaCname Specifies a string that contains the name of the format for which the
list of data ID/private ID pairs is to be obtained.

count

Specifies the address of the array of data ID/private ID pairs for the
specified format name. This argument is a type
XmClipboardPendingList. The application is responsible for
freeing the memory provided by this function for storing the list.

Specifies the number of items returned in the list. If there is no data
for the specified format name, or if there is no item on the clipboard,
this argument equals 0 (zero).

1-243

OSF/Motif Programmer's Reference

XmClipboardlnquirePendingltems{ 3X)

Return Value

Clipboard Success
The function was successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

Related Information
XmClipboardStartCopy(3X).

1-244

Synopsis

Description

Reference Pages

XmClipboardLock(3X)

XmClipboardLock-A clipboard function that locks the clipboard

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardLock (display, window)
Display * display;
Window window;

XmClipboardLock locks th~ clipboard from access by another application until
XmClipboardUnlock is called. All clipboard functions lock and unlock the
clipboard to prevent simultaneous access. This function allows the application to
keep the clipboard data from changing between calls to Inquire and other
clipboard functions. The application does not need to lock the clipboard between
calls to XmClipboardStartCopy and XmClipboardEndCopy or to
XmClipboardStartRetrieve and XmClipboardEndRetrieve.

If the clipboard is already locked by another application, XmClipboardLock
returns an error status. Multiple calls to this function by the same application
increases the lock level.

display

window

Specifies a 'pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each of the clipboard functions that it calls.

Return Value

ClipboardSuccess
The function was successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

1-245

OSF/Motif Programmer's Reference

XmCI ipboardLock(3X)

Related Information

1-246

XmClipboardEndCopy(3X), XmClipboardEndRetrieve(3X),
XmClipboardStartCopy(3X), XmClipboardStartRetrieve(3X), and
XmClipboardUnlock(3X).

Synopsis

Description

Reference Pages

XmClipboardRegisterFormat(3X)

XmClipboardRegisterFormat-A clipboard function that registers a new format

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardRegisterFormat (display, formacname, formaClength)
Display * display;
char
int

* formacname;
formaClength;

XmClipboardRegisterFormat registers a new format. Each format stored on the
clipboard should have a length associated with it; this length must be known to the
clipboard routines. Formats are known as targets in the Inter-Client
Communication Conventions Manual (ICCCM). All of the formats specified by
the ICCCM conventions are preregistered. Any other format that the application
wants to use must either be 8-bit data or be registered through this routine. Failure
to register the length of the data results in incompatible applications across
platforms having different byte-swapping orders.

display Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

formacname Specifies the string name for the new format (target).

formaClength Specifies the format length in bits (8, 16, or 32).

Return Value

ClipboardBadFormat
The formacname must not be NULL, and the formaClength must be
8,16, or 32.

Clipboard Success
The function was successful.

1-247

OSF/Motif Programmer's Reference

XmClipboardRegisterFormat(3X)

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

ClipboardFail
The function failed because the format was already registered with
this length.

Related Information
XmClipboardStartCopy(3X).

1-248

Synopsis

Description

Reference Pages

XmClipboardRetrieve(3X)

XmClipboardRetrieve-A clipboard function that retrieves a data item from the
clipboard

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardRetrieve (display, window, jormacname,
buffer, length, num_bytes, private_id)

Display * display;
Window window;
char
XtPointer
unsigned long
unsigned long
long

* jormaCname;
buffer;
length;
* num_bytes;
* private _id;

XmClipboardRetrieve retrieves the current data item from clipboard storage. It
returns a warning if the clipboard is locked, if there is no data on the clipboard, or
if the data needs to be truncated because the buffer length is too short.

Between a call to XmClipboardStartRetrieve and a call to
XmClipboardEndRetrieve, multiple calls to XmClipboardRetrieve with the
same format name result in data being incrementally copied from the clipboard
until the data in that format has all been copied.

The return value ClipboardTruncate from calls to XmClipboardRetrieve
indicates that more data remains to be copied in the given format. It is
recommended that any calls to the Inquire functions that the application needs to
make to effect the copy from the clipboard be made between the call to
XmClipboardStartRetrieve and the first call to XmClipboardRetrieve. This
way, the application does not need to call XmClipboardLock and
XmClipboardUnlock.

display

window

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each of the clipboard functions that it calls.

formacname Specifies the name of a format in which the data is stored on the
clipboard.

1-249

OSF/Motif Programmer's Reference

XmCIipboardRetrieve(3X)

buffer

length

Specifies the buffer to which the application wants the clipboard to
copy the data.

Specifies the length of the application buffer.

Specifies the number of bytes of data copied into the application
buffer.

Specifies the private data stored with the data item by the
application that placed the data item on the clipboard. If the
application did not store private data with the data item, this
argument returns 0 (zero).

Return Value

ClipboardSuccess
The function was successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

Clipboard Truncate
The data returned is truncated because the user did not provide a
buffer large enough to hold the data.

ClipboardNoData
The function could not find data on the clipboard corresponding to
the format requested. This could occur because the clipboard is
empty; there is data on the clipboard but not in the requested format;
or the data in the requested format was passed by name and is no
longer available.

Related Information

1-250

XmClipboardEndRetrieve(3X), XmClipboardLock(3X),
XmClipboardStartCopy(3X), XmClipboardStartRetrieve(3X), and
XmClipboardUnlock(3X).

Synopsis

Description

Reference Pages

XmClipboardStartCopy (3X)

XmClipboardStartCopy-A clipboard function that sets up a storage and data
structure

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardStartCopy (display, window, clip_label,
timestamp, widget, callback, item_id)

Display * display;
Window window;
XmString clip_label;
Time timestamp;
Widget widget;
XmCutPasteProccallback;
long * item_id;

XmClipboardStartCopy sets up storage and data structures to receive clipboard
data. An application calls this function during a cut or copy operation. The data
item that these structures receive then becomes the next data item in the clipboard.

Copying a large piece of data to the clipboard can take a long time. It is possible
that, once copied, no application will ever request that data. The Motif Toolkit
provides a mechanism so that an application does not need to actually pass data to
the clipboard until the data has been requested by some application.

Instead, the application passes format and length information in
XmClipboardCopy to the clipboard functions, along with a widget ID and a
callback function address that is passed in XmClipboardStartCopy. The widget
ID is necessary for communications between the clipboard functions in the
application that owns the data and the clipboard functions in the application that
requests the data.

The callback functions are responsible for copying the actual data to the clipboard
through XmClipboardCopyByName. The callback function is also called if the
data item is removed from the clipboard and the actual data is no longer needed.

display

window

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each of the clipboard functions that it calls.

1-251

OSF/Motif Programmer's Reference
XmCIipboardStartCopy(3X)

1-252

timestamp

widget

callback

Specifies the label to be associated with the data item. This
argument is used to identify the data item, for example, in a
clipboard viewer. An example of a label is the name of the
application that places the data in the clipboard.

Specifies the time of the event that triggered the copy. A valid
timestamp must be supplied; it is not sufficient to use CurrentTime.

Specifies the ID of the widget that receives messages requesting
data previously passed by name. This argument must be present in
order to pass data by name. Any valid widget ID in your application
can be used for this purpose and all the message handling is taken
care of by the cut and paste functions.

Specifies the address of the callback function that is called when the
clipboard needs data that was originally passed by name. This is
also the callback to receive the delete message for items that were
originally passed by name. This argument must be present in order
to pass data by name.

Specifies the number assigned to this data item. The application
uses this number in calls to XmClipboardCopy,
XmClipboardEndCopy, and XmClipboardCancelCopy.

For more information on passing data by name, see XmClipboardCopy(3X) and
XmClipboardCopyByName(3X).

The widget and callback arguments must be present in order to pass data by name.
The callback format is as follows:

void (*callback) (widget, data_id, private, reason)
Widget widget;
int *data_id;
int
int

widget

data_id

private

reason

*private;
*reason;

Specifies the ID of the widget passed to this function.

Specifies the identifying number returned by XmClipboardCopy,
which identifies the pass-by-name data.

Specifies the private information passed to XmClipboardCopy.

Specifies the reason. The reason can be either one of the following:
XmCR_CLIPBOARD_DATA_DELETE or
XmCR_CLIPBOARD_DATA_REQUEST.

Reference Pages

XmClipboardStartCopy (ax)

Return Value

Clipboard Success
The function was successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

Related Information
XmClipboardCanceICopy(3X), XmClipboardCopy(3X),
XmClipboardCopyByName(3X), XmClipboardEndCopy(3X),
XmClipboardEndRetrieve(3X), XmClipboardlnquireCount(3X),
XmClipboardlnquireFormat(3X), XmClipboardlnquireLength(3X),
XmClipboardlnquirePendingltems(3X), XmClipboardLock(3X),
XmClipboardRegisterFormat(3X), XmClipboardRetrieve(3X),
XmClipboardStartRetrieve(3X), XmClipboardUndoCopy(3X),
XmClipboardUnlock(3X), and XmClipboardWithdrawFormat(3X).

1-253

OSF/Motif Programmer's Reference

XmClipboardStartRetrieve (3X)

Synopsis

Description

1-254

XmClipboardStartRetrieve-A clipboard function that starts a copy from the
clipboard

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardStartRetrieve (display, window, timestamp)
Display * display;
Window window;
Time timestamp;

XmClipboardStartRetrieve tells the clipboard routines that the application is
ready to start copying an item from the clipboard. The clipboard is locked by this
routine and stays locked until XmClipboardEndRetrieve is called. Between a
call to XmClipboardStartRetrieve and a call to XmClipboardEndRetrieve,
mUltiple calls to XmClipboardRetrieve with the same format name result in data
being incrementally copied from the clipboard until the data in that format has all
been copied.

A return value of Clipboard Truncate from calls to XmClipboardRetrieve
indicates that more data remains to be copied in the given format. It is
recommended that any calls to the Inquire functions that the application needs to
make to complete the copy from the clipboard be made between the call to
XmClipboardStartRetrieve and the first call to XmClipboardRetrieve. This
way, the application does not need to call XmClipboardLock and
XmClipboardUnlock.

display

window

timestamp

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each of the clipboard functions that it calls.

Specifies the time of the event that triggered the copy. A valid
timestamp must be supplied; it is not sufficient to use CurrentTime.

Reference Pages

XmClipboardStartRetrieve(3X)

Return Value

Clipboard Success
The function is successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

Related Information
XmClipboardEndRetrieve(3X), XmClipboardlnquireCount(3X),
XmClipboardlnquireFormat(3X), XmClipboardInquireLength(3X),
XmClipboardlnquirePendingltems(3X), XmClipboardLock(3X),
XmClipboardRetrieve(3X), XmClipboardStartCopy(3X), and
XmClipboardUnlock(3X).

1-255

OSF/Motif Programmer's Reference

XmClipboardUndoCopy(3X)

Synopsis

Description

XmClipboardUndoCopy-A clipboard function that deletes the last item placed
on the clipboard

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardUndoCopy (display, window)
Display * display;
Window window;

XmClipboardUndoCopy deletes the last item placed on the clipboard if the item
was placed there by an application with the passed display and window arguments.
Any data item deleted from the clipboard by the original call to
XmClipboardCopy is restored. If the display or window IDs do not match the last
copied item, no action is taken, and this function has no effect.

display

window

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each clipboard function it calls.

Return Value

Clipboard Success
The function was successful.

ClipboardLocked
The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

Related Information
XmClipboardLock(3X) and XmClipboardStartCopy(3X).

1-256

Synopsis

Description

Reference Pages

XmClipboardUnlock(3X)

XmClipboardUnlock-A clipboard function that unlocks the clipboard

#include <XmlXm.h>
#include <XmlCutPaste.h>

int XmClipboardUnlock (display, window, remove_aU_locks)
Display * display;
Window window;
Boolean remove_aU_locks;

XmClipboardUnlock unlocks the clipboard, enabling it to be accessed by other
applications.

If multiple calls to XmClipboardLock have occurred, the same number of calls to
XmClipboardUnlock is necessary to unlock the clipboard, unless
remove_ail_locks is set to True.

display

window

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each of the clipboard functions that it calls.

remove_ail_locks
When True, indicates that all nested locks should be removed.
When False, indicates that only one level of lock should be
removed.

Return Value

ClipboardSuccess
The function was successful.

ClipboardFaii
The function failed because the clipboard was not locked or was
locked by another application.

1-257

OSF/Motif Programmer's Reference

XmClipboardUnlock(3X)

Related Information

1-258

XmClipboardCanceICopy(3X), XmClipboardCopy(3X),
XmClipboardEndCopy(3X), XmClipboardEndRetrieve(3X),
XmClipboardlnquireCount(3X), XmClipboardlnquireFormat(3X),
XmClipboardlnquireLength(3X), XmClipboardlnquirePendingltems(3X),
XmClipboardLock(3X), XmClipboardRegisterFormat(3X),
XmClipboardRetrieve(3X), XmClipboardStartCopy(3X),
XmClipboardStartRetrieve(3X), XmClipboardUndoCopy(3X), and
XmClipboardWithdrawFormat(3X).

Synopsis

Description

Reference Pages

XmClipboardWithdrawFormat(3X)

XmClipboardWithdrawFormat-A clipboard function that indicates that the
application no longer wants to supply a data item

#include <XmlXm.h>
#include <Xm/CutPaste.h>

int XmClipboardWithdrawFormat (display, window, data_id)
Display * display;
Window window;
long data_id;

XmClipboardWithdrawFormat indicates that the application no longer supplies
a data item to the clipboard that the application had previously passed by name.

display

window

Specifies a pointer to the Display structure that was returned in a
previous call to XOpenDisplay or XtDisplay.

Specifies the window ID of a widget that relates the application
window to the clipboard. The widget's window ID can be obtained
through XtWindow. The same application instance should pass the
same window ID to each clipboard function it calls.

Specifies an identifying number assigned to the data item, which
uniquely identifies the data item and the format. This was assigned
to the item when it was originally passed by XmClipboardCopy.

Return Value

ClipboardSuccess
The function was successful.

ClipboardLocked

Related Information

The function failed because the clipboard was locked by another
application. The application can continue to call the function again
with the same parameters until the lock goes away. This gives the
application the opportunity to ask if the user wants to keep trying or
to give up on the operation.

XmClipboardCopy(3X) and XmClipboardStartCopy(3X).

1-259

OSF/Motif Programmer's Reference

XmCommand (3X)

Synopsis

Description

XmCommand-The Command widget class

#include <XmlCommand.h>

Command is a special-purpose composite widget for command entry that provides
a built-in command-history mechanism. Command includes a command-line text­
input field, a command-line prompt, and a command-history list region.

One additional WorkArea child may be added to the Command after creation.

Whenever a command is entered, it is automatically added to the end of the
command-history list and made visible. This does not change the selected item in
the list, if there is one.

Many of the new resources specified for Command are actually SelectionBox
resources that have been renamed for clarity and ease of use.

Classes

1-260

Command inherits behavior and resources from Core, Composite, Constraint,
XmManager, XmBulletinBoard, and XmSelectionBox classes.

The class pointer is xmCommandWidgetClass.

The class name is XmCommand.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (0), or is not applicable (N/A).

Reference Pages

XmCommand(3X)

XmCommand Resource Set

Name Default Access
Class Type

XmNcommand 1111 CSG
XmCTextString XmString

XmNcommandChangedCallback NULL C
XmCCallback XtCallbackList

XmNcommandEnteredCallback NULL C
XmCCallback XtCallbackList

Xm Nhistoryltems NULL CSG
XmCltems XmStringTable

XmNhistoryltemCount 0 CSG
XmCltemCount int

XmNhistoryMaxltems 100 CSG
XmCMaxltems int

XmNhistoryVisibleltemCount dynamic CSG
XmCVisibleltemCount int

XmNpromptString dynamic CSG
XmCPromptString XmString

XmNcommand
Contains the current command-line text. This is the
XmNtextString resource in SelectionBox, renamed for Command.
This resource can also be modified with XmCommandSetValue
and XmCommandAppendValue functions. The command area is
a Text widget.

XmNcommandChangedCallback
Specifies the list of callbacks that is called when the value of the
command changes. The callback reason is
XmCR_COMMAND_CHANGED. This is equivalent to the
XmNvalueChangedCallback of the Text widget, except that a
pointer to an XmCommandCallbackStructure is passed, and the
structure's value member contains the XmString.

1-261

OSF/Motif Programmer's Reference

XmCommand(3X)

1-262

XmNcommandEnteredCallback
Specifies the list of callbacks that is called when a command is
entered in the Command. The callback reason is
XmCR_COMMAND_ENTERED. A pointer to an
XmCommandCallback structure is passed.

XmNhistoryItems
Lists XmString items that make up the contents of the history list.
This is the XmNlistItems resource in SelectionBox, renamed for
Command. XtGetValues for this resource returns the list items
themselves, not a copy of the list items. The application must not
free the returned items.

XmNhistoryItemCount
Specifies the number of XmStrings in XmNhistoryItems. This is
the XmNlistItemCount resource in SelectionBox, renamed for
Command. The value must not be negative.

XmNhistoryMaxItems
Specifies the maximum number of items allowed in the history list.
Once this number is reached, an existing list item must be removed
before a new item can be added to the list. For each command
entered, the first list item is removed from the list, so the new
command can be added to the list. The value must be greater than 0
(zero).

XmNhistoryVisibleltemCount
Specifies the number of items in the history list that should be
visible at one time. In effect, it sets the height (in lines) of the
history list window. This is the XmNlistVisibleltemCount
resource in SelectionBox, renamed for Command. The value must
be greater than 0 (zero). The default is dynamic based on the height
of the list.

XmNpromptString
Specifies a prompt for the command line. This is the
XmNselectionLabelString resource in SelectionBox, renamed for
Command. The default may vary depending on the value of the
XmNstringDirection resource and the locale. In the C locale the
default is > (right angle bracket).

Reference Pages

XmCommand(3X)

Inherited Resources
Command inherits behavior and resources from the superc1asses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superc1ass.

XmSelectionBox Resource Set

Name Default Access
Class Type

XmNapplyCallback NULL N/A
XmCCallback XtCallbackList

XmNapplyLabelString dynamic N/A
XmCApplyLabelString XmString

XmNcancelCallback NULL N/A
XmCCallback XtCallbackList

Xm NcancelLabelString dynamic N/A
XmCCancelLabelString XmString

XmNchildPlacement XmPLACE_ABOVE_SELECTION CSG
XmCChildPlacement unsigned char

XmNdialogType XmDIALOG_COMMAND G
XmCDialogType unsigned char

Xm NhelpLabelString dynamic N/A
XmCHelpLabelString XmString

XmNlistltemCount 0 CSG
XmCltemCount int

XmNlistltems NULL CSG
XmCltems XmStringTable

XmNlistLabelString NULL N/A
XmCListLabelString XmString

XmNlistVisibleltemCount dynamic CSG
XmCVisibleltemCount int

Xm Nm inim izeButtons False N/A
XmCMinimizeButtons Boolean

1-263

OSF/Motif Programmer's Reference

XmCommand(3X)

Name Default Access
Class Type

XmNmustMatch False N/A
XmCMustMatch Boolean

XmNnoMatchCallback NULL N/A
XmCCaliback XtCalibackList

XmNokCaliback NULL N/A
XmCCaliback XtCalibackList

Xm NokLabelString dynamic N/A
XmCOkLabelString XmString

Xm NselectionLabelString dynamic CSG
XmCSelectionLabelString XmString

XmNtextAccelerators default C
XmCTextAccelerators XtAccelerators

XmNtextColumns dynamic CSG
XmCColumns short

XmNtextString 1111 CSG
XmCTextString XmString

t~264

Reference Pages

XmCommand{3X)

XmBulietinBoard Resource Set

Name Default Access
Class Type

Xm NallowOverlap True CSG
XmCAllowOverlap Boolean

XmNautoUnmanage False N/A
XmCAutoUnmanage Boolean

Xm NbuttonFontList dynamic N/A
XmCButtonFontList XmFontList

XmNcancelButton NULL N/A
XmCWidget Widget

Xm NdefaultButton NULL N/A
XmCWidget Widget

Xm NdefaultPosition False CSG
XmCDefaultPosition Boolean

XmNdialogStyle dynamic CSG
XmCDialogStyle unsigned char

XmNdialogTitle NULL CSG
XmCDialogTitle XmString

Xm NfocusCallback NULL C
XmCCallback XtCallbackList

Xm NlabelFontList dynamic CSG
XmCLabelFontList XmFontList

XmNmapCallback NULL C
XmCCallback XtCallbackList

XmNmarginHeight 10 CSG
XmCMarginHeight Dimension

XmNmarginWidth 10 CSG
XmCMarginWidth Dimension

XmNnoResize False CSG
XmCNoResize Boolean

Xm NresizePolicy XmRESIZE_NONE CSG
XmCResizePolicy unsigned char

1-265

OSF/Motif Programmer's Reference

XmCommand(3X)

Name Default Access
Class Type

XmNshadowType XmSHADOW_OUT CSG
XmCShadowType unsigned char

Xm NtextFontList dynamic CSG
XmCTextFontList XmFontList

Xm NtextTranslations NULL C
XmCTranslations XtTranslations

XmNunmapCaliback NULL C
XmCCaliback XtCalibackList

1-266

Reference Pages

XmCommand(3X)

XmManager Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

Xm NhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus dynamic CSG
XmClnitialFocus Widget

Xm NnavigationType XmTAB_GROUP CSG
XmCNavigationType Xm NavigationType

Xm NshadowThickness dynamic CSG
XmCShadowThickness Dimension

XmNstringDirection dynamic CG
XmCStringDirection XmStringDirection

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-267

OSF/Motif Programmer's Reference

XmCommand{3X)

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

Xm NinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

Xm NnumChiidren 0 G
XmCReadOnly Cardinal

1-268

Reference Pages

XmCommand(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic N/A
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-269

OSF/Motif Programmer's Reference

XmCommand (3X)

1-270

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information

A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
XmString value;
int length;

} XmCommandCallbackStruct;

reason

event

value

length

Translations

Indicates why the callback was invoked

Points to the XEvent that triggered the callback

Specifies the XmString in the CommandArea

Specifies the size of the command in XmString

XmCommand inherits translations from XmSelectionBox.

Accelerators
The XmNtextAccelerators from XmSelectionBox are added to the Text
descendant of XmCommand.

Reference Pages

XmCommand(3X)

Action Routines
The XmCommand action routines are described below:

SelectionBoxUpOrDown(OI11213):

Additional Behavior

When called with an argument of 0 (zero), selects the previous item
in the history list and replaces the text with that item.

When called with an argument of 1, selects the next item in the
history list and replaces the text with that item.

When called with an argument of 2, selects the first item in the
history list and replaces the text with that item.

When called with an argument of 3, selects the last item in the
history list and replaces the text with that item.

Calls the callbacks for XmNcommandChanged Callback.

The Command widget has the following additional behavior:

MAny KCancel:
If the parent of the Command is a manager, the event is passed to
the parent.

KActivate in Text:
Calls the Text widget's XmNactivateCallback callbacks. If the
text is empty, this action then returns. Otherwise, if the history list
has XmNhistoryMaxltems items, it removes the first item in the
list. It adds the text to the history list as the last item, clears the text,
and calls the XmNcommandEnteredCallback callbacks.

<Key> in Text:
When any change is made to the text edit widget, this action calls
the callbacks for XmNcommandChangedCallback.

<DoubleClick> or <KActivate> in List:
Calls the List widget's XmNdefaultActionCallback callbacks. If
the history list has XmNhistoryMaxltems items, this action
removes the first item in the list. It adds the selected List item to the
history list as the last item, clears the text, and calls the
XmNcommandEnteredCallback callbacks.

<Focusln>: Calls the callbacks for XmNfocusCallback.

1-271

OSF/Motif Programmer's Reference

XmCommand (3X)

<MapWindow>:
When a Command that is the child of a DialogShell is mapped, this
action calls the callbacks for XmNmapCallback.

<UnmapWindow>:

Virtual Bindings

When a Command that is the child of a DialogShell is unmapped,
this action calls the callbacks for XmNunmapCallback.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information

1-272

Composite(3X), Constraint(3X), Core(3X), XmBulletinBoard(3X),
XmCommandAppendValue(3X), XmCommandError(3X),
XmCommandGetChild(3X), XmCommandSetValue(3X),
XmCreateCommand(3X), XmManager(3X), and XmSelectionBox(3X).

Reference Pages

XmCommandAppendValue(3X)

XmCommandAppendValue-A Command function that appends the passed
XmString to the end of the string displayed in the command area of the widget

Synopsis #include <XmlCommand.h>

Description

void XmCommandAppendValue (widget, command)
Widget widget;
XmString command;

XmCommandAppendValue appends the passed XmString to the end of the
string displayed in the command area of the Command widget.

widget

command

Specifies the Command widget ID

Specifies the passed XmString

For a complete definition of Command and its associated resources, see
XmCommand(3X).

Related Information
XmCommand(3X).

1-273

OSF/Motif Programmer's Reference

XmCommandError(3X)

Synopsis

Description

XmCommandError-A Command function that displays an error message

#include <XmlCommand.h>

void XmCommandError (widget, error)
Widget widget;
XmString error;

XmCommandError displays an error message in the history area of the
Command widget. The XmString error is displayed until the next command
entered occurs.

widget

error

Specifies the Command widget ID

Specifies the passed XmString

For a complete definition of Command and its associated resources, see
XmCommand(3X).

Related Information
XmCommand(3X).

1-274

Synopsis

Description

Reference Pages

XmCommandGetChiid (3X)

XmCommandGetChild-A Command function that is used to access a
component

#include <Xm/Command.h>

Widget XmCommandGetChild (widget, child)
Widget widget;
unsigned char child;

XmCommandGetChild is used to access a component within a Command. The
parameters given to the function are the Command widget and a value indicating
which component to access.

widget

child

Specifies the Command widget ID.

Specifies a component within the Command. The following values
are legal for this parameter:

• XmDIALOG_COMMAND_TEXT

• XmDIALOG_PROMPT_LABEL

• XmDIALOG_HISTORY _LIST

• XmDIALOG_ WORK_AREA

For a complete definition of Command and its associated resources, see
XmCommand(3X).

Return Value
Returns the widget ID of the specified Command component. An application
should not assume that the returned widget will be of any particular class.

Related Information
XmCommand(3X).

1-275

OSF/Motif Programmer's Reference

XmCommandSetValue(3X)

Synopsis

Description

XmCommandSetValue-A Command function that replaces a displayed string

#include <Xm/Command.h>

void XmCommandSetValue (widget, command)
Widget widget;
XmString command;

XmCommandSetValue replaces the string displayed in the command area of the
Command widget with the passed XmString.

widget

command

Specifies the Command widget ID

Specifies the passed XmString

For a complete definition of Command and its associated resources, see
XmCommand(3X).

Related Information
XmCommand(3X).

1-276

Synopsis

Description

Reference Pages

XmConvertUnits (3X)

XmConvertUnits-A function that converts a value in one unit type to another
unit type

#include <XmlXm.h>

int XmConvertUnits (widget, orientation, from_uniCtype, from_value, to _uniCtype)
Widget widget;
int
int
int
int

orientation;
from_uniCtype;
from_value;
to _uniCtype;

XmConvertUnits converts the value and returns it as the return value from the
function.

widget Specifies the widget for which the data is to be converted.

orientation Specifies whether the converter uses the horizontal or vertical
screen resolution when performing the conversions. The orientation
parameter can have values of XmHORIZONTAL or
XmVERTICAL.

from_uniCtype
Specifies the current unit type of the supplied value.

from_value Specifies the value to be converted.

to _uniCtype Converts the value to the unit type specified.

The parameters from_uniCtype and to_uniCtype can have the following values:

XmPIXELS All values provided to the widget are treated as normal pixel values.
This is the default for the resource.

XmlOOTH_MILLIMETERS
All values provided to the widget are treated as 11100 of a
millimeter.

XmlOOOTH_INCHES
All values provided to the widget are treated as 111000 of an inch.

1-277

OSF/Motif Programmer's Reference

XmConvertUnits (3X)

Xml00TH_POINTS
All values provided to the widget are treated as 111 00 of a point. A
point is a unit typically used in text processing applications and is
defined as 1172 of an inch.

Xml00TH_FONT _UNITS
All values provided to the widget are treated as 111 00 of a font unit.
A font unit has horizontal and vertical components. These are the
values of the XmScreen resources XmNhorizontalFontUnit and
XmNverticalFontUnit.

Return Value
Returns the converted value. If a NULL widget, incorrect orientation, or incorrect
uniCtype is supplied as parameter data, 0 (zero) is returned.

Related Information
XmSetFontUnits(3X) and XmScreen(3X).

1-278

Synopsis

Description

Reference Pages

XmCreateArrowButton (3X)

XmCreateArrowButton-The ArrowButton widget creation function

#include <XmI ArrowB.h>

Widget XmCreateArrowButton (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateArrowButton creates an instance of an ArrowButton widget and
returns the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of ArrowButton and its associated resources, see
XmArrowButton(3X).

Return Value
Returns the ArrowButton widget ID.

Related Information
XmArrowButton(3X).

1-279

OSF/Motif Programmer's Reference

XmCreateArrowButtonGadget(3X)

Synopsis

Description

XmCreateArrowButtonGadget-The ArrowButtonGadget creation function

#include <XmlArrowBG.h>

Widget XmCreateArrowButtonGadget (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateArrowButtonGadget creates an instance of an ArrowButtonGadget
widget and returns the associated widget ID.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of ArrowButtonGadget and its associated resources, see
XmArrowButtonGadget(3X).

Return Value
Returns the ArrowButtonGadget widget ID.

Related Information
XmArrowButtonGadget(3X).

1-280

Synopsis

Description

Reference Pages

XmCreateBulietinBoard (3X)

XmCreateBulletinBoard-The BulletinBoard widget creation function

#include <XmlBulletinB.h>

Widget XmCreateBulletinBoard (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateBulletinBoard creates an instance of a BulletinBoard widget and
returns the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of BulletinBoard and its associated resources, see
XmBulletinBoard(3X).

Return Value
Returns the BulletinBoard widget ID.

Related Information
XmBulletinBoard(3X).

1-281

OSF/Motif Programmer's Reference

XmCreateBulletinBoardDialog(3X)

Synopsis

Description

XmCreateBulletinBoardDialog-The
convenience creation function

#include <XmlBulletinB.h>

BulletinBoard BulletinBoardDialog

Widget XmCreateBulletinBoardDialog (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateBulletinBoardDialog is a convenience creation function that creates a
DialogShell and an unmanaged BulletinBoard child of the DialogShell. A
BulletinBoardDialog is used for interactions not supported by the standard dialog
set. This function does not automatically create any labels, buttons, or other dialog
components. Such components should be added by the application after the
BulletinBoardDialog is created.

Use XtManageChiid to pop up the BulletinBoardDialog (passing the
BulletinBoard as the widget parameter); use XtUnmanageChiid to pop it down.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of BulletinBoard and its associated resources, see
XmBulletinBoard(3X) .

Return Value
Returns the BulletinBoard widget ID.

Related Information
XmBulletinBoard(3X) .

1-282

Synopsis

Description

Reference Pages

XmCreateCascadeButton (3X)

XmCreateCascadeButton-The CascadeButton widget creation function

#include <XmlCascadeB.h>

Widget XmCreateCascadeButton (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateCascadeButton creates an instance of a CascadeButton widget and
returns the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID. The parent must be a RowColumn
widget.

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of CascadeButton and its associated resources, see
XmCascadeButton(3X).

Return Value
Returns the CascadeButton widget ID.

Related Information
XmCascadeButton(3X).

OSF/Motif Programmer's Reference
XmCreateCascadeButtonGadget(3X)

Synopsis

Description

XmCreateCascadeButtonGadget-The CascadeButtonGadget creation function

#include <XmlCascadeBG.h>

Widget XmCreateCascadeButtonGadget (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateCascadeButtonGadget creates an instance of a CascadeButtonGadget
and returns the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID. The parent must be a RowColumn
widget.

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of CascadeB uttonGadget and its associated resources,
see XmCascadeButtonGadget(3X).

Return Value
Returns the CascadeB uttonGadget widget ID.

Related Information
XmCascadeButtonGadget(3X).

1-284

Synopsis

Description

Reference Pages

XmCreateCommand (3X)

XmCreateCommand-The Command widget creation function

#include <XmlCommand.h>

Widget XmCreateCommand (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateCommand creates an instance of a Command widget and returns the
associated widget ID.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of Command and its associated resources, see
XmCommand(3X).

Return Value
Returns the Command widget ID.

Related Information
XmCommand(3X).

1-285

OSF/Motif Programmer's Reference

XmCreateDialogShell (3X)

Synopsis

Description

XmCreateDialogShell-The DialogShell widget creation function

#include <XmlDialogS.h>

Widget XmCreateDialogShell (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateDialogShell creates an instance of a DialogShell widget and returns the
associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of DialogShell and its associated resources, see
XmDialogShell(3X) .

Return Value
Returns the DialogShell widget ID.

Related Information
XmDialogShell(3X) .

Synopsis

Description

Reference Pages

XmCreateDraglcon (3X)

XmCreateDragIcon-A Drag and Drop function that creates a DragIcon widget

#include <XmlDraglcon.h>

Widget XmCreateDraglcon (widget, name, argUst, argcount)
Widget widget;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateDragIcon creates a DragIcon and returns the associated widget ID.

widget

name

arglist

argcount

Specifies the ID of the widget that the function uses to access
default values for visual attributes of the DragIcon. This widget
may be different than the actual parent of the Draglcon.

Specifies the name of the DragIcon widget.

Specifies the argument list.

Specifies the number of attribute/value pairs in the argument list
(argUst).

For a complete definition of DragIcon and its associated resources, see
XmDragIcon(3X).

Return Value
The function creates a DragIcon and returns the associated widget ID.

Related Information
XmDragContext(3X), XmDragIcon(3X), and XmScreen(3X).

1-287

OSF/Motif Programmer's Reference

XmCreateDrawingArea (3X)

Synopsis

Description

XmCreateDrawingArea-The DrawingArea widget creation function

#include <XmlDrawingA.h>

Widget XmCreateDrawingArea (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateDrawingArea creates an instance of a DrawingArea widget and returns
the associated widget ID.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of DrawingArea and its associated resources, see
XmDrawingArea(3X).

Return Value
Returns the DrawingArea widget ID.

Related Information
XmDrawingArea(3X).

1-288

Synopsis

Description

Reference Pages

XmCreateDrawnButton (3X)

XmCreateDrawnButton-The DrawnButton widget creation function

#include <XmlDrawnB.h>

Widget XmCreateDrawnButton (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateDrawnButton creates an instance of a DrawnButton widget and returns
the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of DrawnButton and its associated resources, see
XmDrawnButton(3X).

Return Value
Returns the DrawnButton widget ID.

Related Information
XmDrawnButton(3X).

1-289

OSF/Motif Programmer's Reference

XmCreateErrorDialog(3X)

Synopsis

Description

XmCreateErrorDialog-The MessageBox ErrorDialog convenience creation
function

#include <Xm/MessageB.h>

Widget XmCreateErrorDialog (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateErrorDialog is a convenience creation function that creates a
DialogShell and an unmanaged MessageBox child of the DialogShell. An
ErrorDialog warns the user of an invalid or potentially dangerous condition. It
includes a symbol, a message, and three buttons. The default symbol is an octagon
with a diagonal slash. The default button labels are OK, Cancel, and Help.

Use XtManageChiid to pop up the ErrorDialog (passing the MessageBox as the
widget parameter); use XtUnmanageChiid to pop it down.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3X).

Return Value
Returns the MessageBox widget ID.

Related Information
XmMessageBox(3X).

1-290

Synopsis

Description

Reference Pages

XmCreateFileSelectionBox (3X)

XmCreateFileSelectionBox-The FileSelectionBox widget creation function

#include <XmlFileSB.h>

Widget XmCreateFileSelectionBox (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateFileSelectionBox creates an unmanaged FileSelectionBox. A
FileSelectionBox is used to select a file and includes the following:

• An editable text field for the directory mask

• A scrolling list of filenames

• An editable text field for the selected file

• Labels for the list and text fields

• Four buttons

The default button labels are OK, Filter, Cancel, and Help. Additional work area
children may be added to the FileSelectionBox after creation. FileSelectionBox
inherits the layout functionality provided by SelectionBox for any additional work
area children.

If the parent of the FileSelectionBox is a DialogShell, use XtManageChild to pop
up the FileSelectionDialog (passing the FileSelectionBox as the widget
parameter); use XtUnmanageChild to pop it down.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

1-291

OSF/Motif Programmer's Reference

XmCreateFileSelectionBox(3X)

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSeiectionBox(3X).

Return Value
Returns the FileSelectionBox widget ID.

Related Information
XmFileSeiectionBox(3X).

1-292

Synopsis

Description

Reference Pages

XmCreateFileSelectionDialog (ax)

XmCreateFileSelectionDialog-The FileSelectionBox FileSelectionDialog
convenience creation function

#include <XmlFileSB.h>

Widget XmCreateFileSelectionDialog (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateFileSelectionDialog is a convenience creation function that creates a
DialogShell and an unmanaged FileSelectionBox child of the DialogShell. A
FileSelectionDialog selects a file. It includes the following:

• An editable text field for the directory mask

• A scrolling list of filenames

• An editable text field for the selected file

• Labels for the list and text fields

• Four buttons

The default button labels are OK, Filter, Cancel, and Help. One additional
WorkArea child may be added to the FileSelectionBox after creation.

Use XtManageChiid to pop up the FileSelectionDialog (passing the
FileSelectionBox as the widget parameter); use XtUnmanageChiid to pop it
down.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

1-293

OSF/Motif Programmer's Reference

XmCreateFileSelectionDialog (3X)

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSeiectionBox(3X) .

Return Value
Returns the FileSelectionBox widget ID.

Related Information
XmFileSeiectionBox(3X) .

1-294

Synopsis

Description

Reference Pages
XmCreateForm (3X)

XmCreateForm-The Form widget creation function

#include <Xm/Form.h>

Widget XmCreateForm (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateForm creates an instance of a Form widget and returns the associated
widget ID.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of Form and its associated resources, see XmForm(3X).

Return Value
Returns the Form widget ID.

Related Information
XmForm(3X).

1-295

OSF/Motif Programmer's Reference

XmCreateFormDialog (3X)

Synopsis

Description

XmCreateFormDialog-A Form FormDialog convenience creation function

#include <XmlForm.h>

Widget XmCreateFormDialog (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateFormDialog is a convenience creation function that creates a
DialogShell and an unmanaged Form child of the DialogShell. A FormDialog is
used for interactions not supported by the standard dialog set. This function does
not automatically create any labels, buttons, or other dialog components. Such
components should be added by the application after the FormDialog is created.

Use XtManageChild to pop up the FormDialog (passing the Form as the widget
parameter); use XtUnmanageChild to pop it down.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of Form and its associated resources, see XmForm(3X).

Return Value
Returns the Form widget ID.

Related Information
XmForm(3X).

1-296

Synopsis

Description

Reference Pages

XmCreateFrame(3X)

XmCreateFrame-The Frame widget creation function

#include <XmlFrame.h>

Widget XmCreateFrame (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateFrame creates an instance of a Frame widget and returns the associated
widget ID.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of Frame and its associated resources, see
XmFrame(3X) .

Return Value
Returns the Frame widget ID.

Related Information
XmFrame(3X).

1-297

OSF/Motif Programmer's Reference

XmCreatelnformationDialog (3X)

XmCreatelnformationDialog-The
convenience creation function

MessageBox InformationDialog

Synopsis #include <Xm/MessageB.h>

Description

Widget XmCreatelnformationDialog (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreatelnformationDialog is a convenience creation function that creates a
DialogShell and an unmanaged MessageBox child of the DialogShel1. An
InformationDialog gives the user information, such as the status of an action. It
includes a symbol, a message, and three buttons. The default symbol is i. The
default button labels are OK, Cancel, and Help.

Use XtManageChild to pop up the InformationDialog (passing the MessageBox as
the widget parameter); use XtUnmanageChild to pop it down.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3X).

Return Value
Returns the MessageBox widget ID.

Related Information
XmMessageBox(3X).

1-298

Synopsis

Description

XmCreateLabel-The Label widget creation function

#include <XmlLabel.h>

Widget XmCreateLabel (parent, name, arglist, argcount)
Widget parent;
String
ArgList
Cardinal

name;
arglist;
argcount;

Reference Pages

XmCreateLabel (3X)

XmCreateLabel creates an instance of a Label widget and returns the associated
widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of Label and its associated resources, see XmLabel(3X).

Return Value
Returns the Label widget ID.

Related Information
XmLabel(3X) .

1-299

OSF/Motif Programmer's Reference

XmCreateLabelGadget{ 3X)

Synopsis

Description

XmCreateLabelGadget-The LabelGadget creation function

#include <Xm/LabeIG.h>

Widget XmCreateLabelGadget (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateLabelGadget creates an instance of a LabelGadget widget and returns
the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of LabelGadget and its associated resources, see
XmLabelGadget(3X).

Return Value
Returns the LabelGadget widget ID.

Related Information
XmLabelGadget(3X).

1-300

Synopsis

Description

Reference Pages

XmCreateList(3X)

XmCreateList-The List widget creation function

#include <XmlList.h>

Widget XmCreateList (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arg list;
Cardinal argcount;

XmCreateList creates an instance of a List widget and returns the associated
widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
Returns the List widget ID.

Related Information
XmList(3X).

1-301

OSF/Motif Programmer's Reference

XmCreateMainWindow(3X)

Synopsis

Description

XmCreateMain Window-The Main Window widget creation function

#include <Xm/MainW.h>

Widget XmCreateMainWindow (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateMainWindow creates an instance of a MainWindow widget and returns
the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of Main Window and its associated resources, see
XmMainWindow(3X).

Return Value
Returns the Main Window widget ID.

Related Information
XmMainWindow(3X).

1-302

Synopsis

Description

Reference Pages

XmCreateMenuBar(3X)

XmCreateMenuBar-A RowColumn widget convenience creation function

#include <XmlRowColurnn.h>

Widget XmCreateMenuBar (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateMenuBar creates an instance of a RowColumn widget of type
XmMENU _BAR and returns the associated widget ID. It is provided as a
convenience function for creating RowColumn widgets configured to operate as a
MenuBar and is not implemented as a separate widget class.

The MenuBar widget is generally used for building a Pulldown menu system.
Typically, a MenuBar is created and placed along the top of the application
window, and several CascadeB uttons are inserted as the children. Each of the
CascadeButtons has a Pulldown MenuPane associated with it. These Pulldown
MenuPanes must have been created as children of the MenuBar. The user interacts
with the MenuBar by using either the mouse or the keyboard.

The MenuBar displays a 3-D shadow along its border. The application controls the
shadow attributes using the visual-related resources supported by XmManager.

The MenuBar widget is homogeneous in that it accepts only children that are a
subclass of XmCascadeButton or XmCascadeButtonGadget. Attempting to
insert a child of a different class results in a warning message.

If the MenuBar does not have enough room to fit all of its subwidgets on a single
line, the MenuBar attempts to wrap the remaining entries onto additional lines if
allowed by the geometry manager of the parent widget.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

1-303

OSF/Motif Programmer's Reference
XmCreateMenuBar(3X)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information

1-304

XmCascadeButton(3X), XmCascadeButtonGadget(3X),
XmCreatePulldownMenu(3X), XmCreateSimpleMenuBar(3X),
XmManager(3X), XmRowColumn(3X), and
XmVaCreateSimpleMenuBar(3X).

Synopsis

Description

Reference Pages

XmCreateMenuShell (3X)

XmCreateMenuShell-The MenuShell widget creation function

#include <XmlMenuShell.h>

Widget XmCreateMenuShell (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateMenuShell creates an instance of a MenuShell widget and returns the
associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of MenuShell and its associated resources, see
XmMenuShell(3X).

Return Value
Returns the MenuShell widget ID.

Related Information
XmMenuShell(3X).

1-305

OSF/Motif Programmer's Reference

XmCreateMessageBox(3X)

Synopsis

Description

XmCreateMessageBox-The MessageBox widget creation function

#include <Xm/MessageB.h>

Widget XmCreateMessageBox (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateMessageBox creates an unmanaged MessageBox. A MessageBox is
used for common interaction tasks, which include giving information, asking
questions, and reporting errors. It includes an optional symbol, a message, and
three buttons.

By default, there is no symbol. The default button labels are OK, Cancel, and
Help.

If the parent of the MessageBox is a DialogShell, use XtManageChiid to pop up
the MessageBox (passing the MessageBox as the widget parameter); use
XtUnmanageChiid to pop it down.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3X).

Return Value
Returns the MessageBox widget ID.

Related Information
XmMessageBox(3X).

1-306

Synopsis

Description

Reference Pages

XmCreateMessageDialog (3X)

XmCreateMessageDialog-The MessageBox MessageDialog convenience
creation function

#include <Xm/MessageB.h>

Widget XmCreateMessageDialog (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateMessageDialog is a convenience creation function that creates a
DialogShell and an unmanaged MessageBox child of the DialogShell. A
MessageDialog is used for common interaction tasks, which include giving
information, asking questions, and reporting errors. It includes a symbol, a
message, and three buttons. By default, there is no symbol. The default button
labels are OK, Cancel, and Help.

Use XtManageChiid to pop up the MessageDialog (passing the MessageBox as
the widget parameter); use XtUnmanageChiid to pop it down.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3X).

Return Value
Returns the MessageBox widget ID.

Related Information
XmMessageBox(3X).

1-307

OSF/Motif Programmer's Reference

XmCrea~eOptionMenu (3X)

Synopsis

Description

1-308

XmCreateOptionMenu-A RowColumn widget convenience creation function

#include <XmlRowColumn.h>

Widget XmCreateOptionMenu (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateOptionMenu creates an instance of a RowColumn widget of type
XmMENU_OPTION and returns the associated widget ID.

It is provided as a convenience function for creating a RowColumn widget
configured to operate as an OptionMenu and is not implemented as a separate
widget class.

The OptionMenu widget is a specialized RowColumn manager composed of a
label, a selection area, and a single Pulldown MenuPane. When an application
creates an OptionMenu widget, it supplies the label string and the Pulldown
MenuPane. In order for the operation to be successful, there must be a valid
XmNsubMenuld resource set when this function is called. When the OptionMenu
is created, the Pulldown MenuPane must have been created as a child of the
OptionMenu's parent and must be specified. The LabelGadget and the selection
area (a CascadeButtonGadget) are created by the OptionMenu.

The OptionMenu's Pulldown MenuPane must not contain any ToggleButtons or
ToggleButtonGadgets. The results of including CascadeButtons or
CascadeButtonGadgets in the OptionMenu's Pulldown MenuPane are undefined.

An OptionMenu is laid out with the label displayed on one side of the widget and
the selection area on the other side when XmNorientation is XmHORIZONTAL.
If the value is XmVERTICAL, the label is above the selection area. The selection
area has a dual purpose; it displays the label of the last item selected from the
associated Pulldown MenuPane, and it provides the means for posting the
Pulldown MenuPane.

The OptionMenu typically does not display any 3-D visuals around itself or the
internal LabelGadget. By default, the internal CascadeButtonGadget has a visible
3-D shadow. The application may change this by getting the
CascadeButtonGadget ID using XmOptionButtonGadget, and then calling
XtSetValues using the standard visual-related resources.

The Pulldown MenuPane is posted when the mouse pointer is moved over the
selection area and a mouse button that is defined by OptionMenu's RowColumn
parent is pressed. The Pulldown MenuPane is posted and positioned so that the last

Reference Pages

XmCreateOptionMenu (3X)

selected item is directly over the selection area. The mouse is then used to arm the
desired menu item. When the mouse button is released, the armed menu item is
selected and the label within the selection area is changed to match that of the
selected item. By default, BSelect is used to interact with an OptionMenu. The
default can be changed with the RowColumn resource XmNmenuPost.

The OptionMenu also operates with the keyboard interface mechanism. If the
application has established a mnemonic with the OptionMenu, pressing <Alt> with
the mnemonic causes the Pulldown MenuPane to be posted with traversal enabled.
The standard traversal keys can then be used to move within the MenuPane.
Pressing <Return> or typing a mnemonic or accelerator for one of the menu items
selects that item.

An application may use the XmNmenuHistory resource to indicate which item in
the Pulldown MenuPane should be treated as the current choice and have its label
displayed in the selection area. By default, the first item in the Pulldown
MenuPane is used.

parent

name

arglist

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

argcount Specifies the number of attribute/value pairs in the argument list
(arglist)

The user can specify resources in a resource file for the automatically created
widgets and gadgets of an OptionMenu. These widgets (or gadgets) and the
associated OptionMenu areas are

Option Menu Label Gadget

Option Menu Cascade Button

OptionLabel

OptionButton

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information
XmCascadeButtonGadget(3X), XmCreatePulldownMenu(3X),
XmCreateSimpleOptionMenu(3X), XmLabeIGadget(3X),
XmOptionButtonGadget(3X), XmOptionLabeIGadget(3X),
XmRowColumn(3X), and XmVaCreateSimpleOptionMenu(3X).

1-309

OSF/Motif Programmer's Reference

XmCreatePanedWindow(3X)

Synopsis

Description

XmCreatePanedWindow-The PanedWindow widget creation function

#include <Xm/PanedW.h>

Widget XmCreatePanedWindow (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreatePanedWindow creates an instance of a PanedWindow widget and
returns the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of PanedWindow and its associated resources, see
XmPanedWindow(3X) .

Return Value
Returns the PanedWindow widget ID.

Related Information
XmPanedWindow(3X).

1-310

Synopsis

Description

Reference Pages

XmCreatePopupMenu (3X)

XmCreatePopupMenu-A RowColumn widget convenience creation function

#include <XmlRowColumn.h>

Widget XmCreatePopupMenu (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreatePopupMenu creates an instance of a RowColumn widget of type
XmMENU_POPUP and returns the associated widget ID. When this function is
used to create the Popup MenuPane, a MenuShell widget is automatically created
as the parent of the MenuPane. The parent of the MenuShell widget is the widget
indicated by the parent parameter.

XmCreatePopupMenu is provided as a convenience function for creating
RowColumn widgets configured to operate as Popup MenuPanes and is not
implemented as a separate widget class.

The PopupMenu is used as the first MenuPane within a Popup Menu system; all
other MenuPanes are of the Pulldown type. A Popup MenuPane displays a 3-D
shadow, unless the feature is disabled by the application. The shadow appears
around the edge of the MenuPane.

The Popup MenuPane must be created as the child of a MenuShell widget in order
to function properly when it is incorporated into a menu. If the application uses
this convenience function for creating a Popup MenuPane, the MenuShell is
automatically created as the real parent of the MenuPane. If the application does
not use this convenience function to create the RowColumn to function as a Popup
MenuPane, it is the application's responsibility to create the MenuShell widget.

To access the Popup Menu, the application must first position the widget using the
XmMenuPosition function and then manage it using XtManageChiid.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

1-311

OSF/Motif Programmer's Reference

XmCreatePopupMenu(3X)

Popup MenuPanes support tear-off capabilities for tear-off menus through
XmRowColumn resources. For a complete definition of RowColumn and its
associated resources, see XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information

1-312

XmCreateSimplePopupMenu(3X), XmMenuPosition(3X), XmMenuShell(3X),
XmRowColumn(3X), and XmVaCreateSimplePopupMenu(3X).

Synopsis

Description

Reference Pages
XmCreatePromptDialog (3X)

XmCreatePromptDialog-The SelectionBox PromptDialog convenience creation
function

#include <Xm/SelectioB.h>

Widget XmCreatePromptDialog (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreatePromptDialog is a convenience creation function that creates a
DialogShell and an unmanaged SelectionBox child of the DialogShell. A
PromptDialog prompts the user for text input. It includes a message, a text input
region, and three managed buttons. The default button labels are OK, Cancel, and
Help. An additional button, with Apply as the default label, is created unmanaged;
it may be explicitly managed if needed. One additional WorkArea child may be
added to the SelectionBox after creation.

XmCreatePromptDialog forces the value of the SelectionBox resource
XmNdialogType to XmDIALOG_PROMPT.

Use XtManageChiid to pop up the PromptDialog (passing the SelectionBox as the
widget parameter); use XtUnmanageChild to pop it down.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox(3X).

Return Value
Returns the SelectionBox widget ID.

Related Information
XmSelectionBox(3X) .

1-313

OSF/Motif Programmer's Reference

XmCreatePulldownMenu(3X)

Synopsis

Description

1-314

XmCreatePulldownMenu-A RowColumn widget convenience creation function

#include <XmlRowColumn.h>

Widget XmCreatePulldownMenu (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreatePulldownMenu creates an instance of a RowColumn widget of type
XmMENU_PULLDOWN and returns the associated widget ID.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

Specifies the number of attribute/value pairs in the argument list (argUst) When
using this function to create the Pulldown MenuPane, a MenuShell widget is
automatically created as the parent of the MenuPane. If the widget specified by the
parent parameter is a Popup or a Pulldown MenuPane, the MenuShell widget is
created as a child of the parent's MenuShell; otherwise, it is created as a child of
the specified parent widget.

XmCreatePulldownMenu is provided as a convenience function for creating
RowColumn widgets configured to operate as Pulldown MenuPanes and is not
implemented as a separate widget class.

A Pulldown MenuPane displays a 3-D shadow, unless the feature is disabled by the
application. The shadow appears around the edge of the MenuPane.

A Pulldown MenuPane is used with submenus that are to be attached to a
CascadeButton or a CascadeButtonGadget. This is the case for all MenuPanes that
are part of a PulldownMenu system (a MenuBar), the MenuPane associated with an
OptionMenu, and any MenuPanes that cascade from a Popup MenuPane. Pulldown
MenuPanes that are to be associated with an OptionMenu must be created before
the OptionMenu is created.

Reference Pages

XmCreatePulidownMenu (3X)

The Pulldown MenuPane must be attached to a CascadeButton or
CascadeButtonGadget that resides in a MenuBar, a Popup MenuPane, a Pulldown
MenuPane, or an OptionMenu. It is attached with the button resource
XmNsubMenuld.

A MenuShell widget is required between the Pulldown MenuPane and its parent.
If the application uses this convenience function for creating a Pulldown
MenuPane, the MenuShell is automatically created as the real parent of the
MenuPane; otherwise, it is the application's responsibility to create the MenuShell
widget.

To function correctly when incorporated into a menu, the Pulldown MenuPane's
hierarchy must be considered. This hierarchy depends on the type of menu system
that is being built, as follows:

• If the Pulldown MenuPane is to be pulled down from a MenuBar, its parent
must be the MenuBar.

• If the Pulldown MenuPane is to be pulled down from a Popup or another
Pulldown MenuPane, its parent must be that Popup or Pulldown MenuPane.

• If the Pulldown MenuPane is to be pulled down from an OptionMenu, its
parent must be the same as the OptionMenu parent.

PullDown MenuPanes support tear-off capabilities for tear-off menus through
XmRowColumn resources. For a complete definition of RowColumn and its
associated resources, see XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information
XmCascadeButton(3X), XmCascadeButtonGadget(3X),
XmCreateOptionMenu(3X), XmCreatePopupMenu(3X),
XmCreateSimplePulldownMenu(3X), XmMenuShell(3X),
XmRowColumn(3X), and XmVaCreateSimplePulldownMenu(3X).

1-315

OSF/Motif Programmer's Reference

XmCreatePushButton (3X)

Synopsis

Description

XmCreatePushButton-The PushButton widget creation function

#include <XmlPushB.h>

Widget XmCreatePushButton (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreatePushButton creates an instance of a PushButton widget and returns the
associated widget ID.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of PushButton and its associated resources, see
XmPushButton(3X).

Return Value
Returns the PushButton widget ID.

Related Information
XmPushButton(3X).

1-316

Synopsis

Description

Reference Pages

XmCreatePushButtonGadget(3X)

XmCreatePushButtonGadget-The PushButtonGadget creation function

#include <XmlPushBG.h>

Widget XmCreatePushButtonGadget (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreatePushButtonGadget creates an instance of a PushButtonGadget widget
and returns the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of PushButtonGadget and its associated resources, see
XmPushButtonGadget(3X).

Return Value
Returns the PushButtonGadget widget ID.

Related Information
XmPushButtonGadget(3X).

1-317

OSF/Motif Programmer's Reference
XmCreateQuestionDialog{ 3X)

XmCreateQuestionDialog-The MessageBox QuestionDialog convenience
creation function

Synopsis #include <Xm/MessageB.h>

Description

Widget XmCreateQuestionDialog (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateQuestionDialog is a convenience creation function that creates a
DialogShell and an unmanaged MessageBox child of the DialogShell. A
QuestionDialog is used to get the answer to a question from the user. It includes a
symbol, a message, and three buttons. The default symbol is a question mark. The
default button labels are OK, Cancel, and Help.

Use XtManageChild to pop up the QuestionDialog (passing the MessageBox as
the widget parameter); use XtUnmanageChild to pop it down.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3X).

Return Value
Returns the MessageBox widget ID.

Related Information
XmMessageBox(3X).

1-318

Synopsis

Description

Reference Pages

XmCreateRadioBox(3X)

XmCreateRadioBox-A RowColumn widget convenience creation function

#include <XmlRowColumn.h>

Widget XmCreateRadioBox (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateRadioBox creates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID. Typically, this is a
composite widget that contains multiple ToggleButtonGadgets. The RadioBox
arbitrates and ensures that at most one ToggleButtonGadget is on at any time.

Unless the application supplies other values in the argUst, this function provides
initial values for several RowColumn resources. It initializes XmNpacking to
XmPACK_COLUMN, XmNradioBehavior to True, XmNisHomogeneous to
True, and XmNentryClass to XmToggleButtonGadgetClass.

In a RadioBox, the ToggleButton or ToggleButtonGadget resource
XmNindicatorType defaults to XmONE_OF_MANY, and the ToggleButton or
ToggleButtonGadget resourceXmNvisibleWhenOff defaults to True.

This routine is provided as a convenience function for creating RowColumn
widgets.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3X).

1-319

OSF/Motif Programmer's Reference

XmCreateRadioBox(3X)

Return Value
Returns the RowColumn widget ID.

Related Information

1-320

XmCreateRowColumn(3X), XmCreateSimpleCheckBox(3X),
XmCreateSimpleRadioBox(3X), XmCreate WorkArea(3X),
XmRowColumn(3X), XmVaCreateSimpleCheckBox(3X), and
XmVaCreateSimpleRadioBox(3X).

Synopsis

Description

Reference Pages

XmCreateRowColumn (3X)

XmCreateRowColumn-The RowColumn widget creation function

#include <XmlRowColumn.h>

Widget XmCreateRowColumn (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateRowColumn creates an instance of a RowColumn widget and returns
the associated widget ID. If XmNrowColumnType is not specified, then it is
created with XmWORK_AREA, which is the default.

If this function is used to create a Popup Menu of type XmMENU_POPUP or a
Pulldown Menu of type XmMENU _PULLDOWN, a MenuShell widget is not
automatically created as the parent of the MenuPane. The application must first
create the MenuShell by using either XmCreateMenuShell or the standard toolkit
create function.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

1-321

OSF/Motif Programmer's Reference

XmCreateRowColumn (aX)

Related Information

1-322

XmCreateMenuBar(3X), XmCreateMenuShell(3X),
XmCreateOptionMenu(3X), XmCreatePopupMenu(3X),
XmCreatePulldownMenu(3X), XmCreateRadioBox(3X),
XmCreateSimpleCheckBox(3X), XmCreateSimpleMenuBar(3X),
XmCreateSimpleOptionMenu(3X), XmCreateSimplePopupMenu(3X),
XmCreateSimplePulldownMenu(3X), XmCreateSimpleRadioBox(3X),
XmCreateWorkArea(3X), XmRowColumn(3X),
XmVaCreateSimpleCheckBox(3X), XmVaCreateSimpleMenuBar(3X),
XmVaCreateSimpleOptionMenu(3X), XmVaCreateSimplePopupMenu(3X),
XmVaCreateSimplePulldownMenu(3X), and
XmVaCreateSimpleRadioBox(3X).

Synopsis

Description

Reference Pages

XmCreateScale(3X)

XmCreateScale-The Scale widget creation function

#include <Xm/Scale.h>

Widget XmCreateScale (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateScale creates an instance of a Scale widget and returns the associated
widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of Scale and its associated resources, see XmScale(3X).

Return Value
Returns the Scale widget ID.

Related Information
XmScale(3X) .

1-323

OSF/Motif Programmer's Reference

XmCreateScroll Bar(ax)

Synopsis

Description

XmCreateScroIlBar-The ScrollBar widget creation function

#include <Xm/ScrollBar .h>

Widget XmCreateScrollBar (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateScroIlBar creates an instance of a ScrollBar widget and returns the
associated widget ID.

parent Specifies the parent widget ID

name

arglist

argcount

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of ScrollBar and its associated resources, see
XmScroIlBar(3X).

Return Value
Returns the ScrollBar widget ID.

Related Information
XmScroIlBar(3X).

1-324

Synopsis

Description

Reference Pages

XmCreateScrolledList(ax)

XmCreateScrolledList-The List ScrolledList convenience creation function

#include <XmlList.h>

Widget XmCreateScrolledList (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateScrolledList creates an instance of a List widget that is contained
within a ScrolledWindow. All ScrolledWindow subarea widgets are automatically
created by this function. The ID returned by this function is that of the List widget.
Use this ID for all normal List operations, as well as those that are relevant for the
ScrolledList widget.

All arguments to either the List or the ScrolledWindow widget can be specified at
creation time using this function. Changes to initial position and size are sent only
to the ScrolledWindow widget. Other resources are sent to the List or the
ScrolledWindow widget as appropriate.

This function forces the following initial values for ScrolledWindow resources:

• XmNscrollingPolicy is set to XmAPPLICATION_DEFINED.

• XmNvisualPolicy is set to XmVARIABLE.

• XmNscrollBarDisplayPolicy is set to XmSTATIC. (No initial value is
forced for the List's XmNscrollBarDisplayPolicy.)

• XmNshadowThickness is set to 0 (zero).

To obtain the ID of the ScrolledWindow widget associated with the ScrolledList,
use the Xt Intrinsics XtParent function. The name of the ScrolledWindow created
by this function is formed by concatenating SW onto the end of the name specified
in the parameter list.

parent Specifies the parent widget ID

name Specifies the name of the created widget

1-325

OSF/Motif Programmer's Reference

XmCreateScrolledList(3X)

arglist

argcount

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
Returns the List widget ID.

Related Information
XmList(3X) and XmScrolledWindow(3X).

1-326

Synopsis

Description

Reference Pages

XmCreateScrolledText(3X)

XmCreateScrolledText-The Text ScrolledText convenience creation function

#include <Xm/Text.h>

Widget XmCreateScrolledText (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateScrolledText creates an instance of a Text widget that is contained
within a ScrolledWindow. All ScrolledWindow subarea widgets are automatically
created by this function. The ID returned by this function is that of the Text widget.
Use this ID for all normal Text operations, as well as those that are relevant for the
ScrolledText widget.

The Text widget defaults to single-line text edit; therefore, no ScrollBars are
displayed. The Text resource XmNeditMode must be set to
XmMULTI_LINE_EDIT to display the ScrollBars. The results of placing a Text
widget inside a ScrolledWindow when the Text's XmNeditMode is
XmSINGLE_LINE_EDIT are undefined.

All arguments to either the Text or the ScrolledWindow widget can be specified at
creation time with this function. Changes to initial position and size are sent only
to the ScrolledWindow widget. Other resources are sent to the Text or the
ScrolledWindow widget as appropriate.

This function forces the following initial values for ScrolledWindow resources:

• XmNscrollingPolicy is set to XmAPPLICATION_DEFINED.

• XmNvisualPolicy is set to XmVARIABLE.

• XmNscrollBarDisplayPolicy is set to XmSTATIC.

• XmNshadowThickness is set to 0 (zero).

To obtain the ID of the ScrolledWindow widget associated with the ScrolledText,
use the Xt Intrinsics XtParent function. The name of the ScrolledWindow created
by this function is formed by concatenating the letters SW onto the end of the
name specified in the parameter list.

parent Specifies the parent widget ID

name Specifies the name of the created widget

1-327

OSF/Motif Programmer's Reference

XmCreateScrolledText(aX)

argUst

argcount

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns the Text widget ID.

Related Information
XmScrolledWindow(3X) and XmText(3X).

1-328

Synopsis

Description

Reference Pages

XmCreateScroliedWindow(3X)

XmCreateScrolledWindow-The ScrolledWindow widget creation function

#include <Xm/ScrolledW.h>

Widget XmCreateScrolledWindow (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateScrolledWindow creates an instance of a ScrolledWindow widget and
returns the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of ScrolledWindow and its associated resources, see
XmScrolledWindow(3X).

Return Value
Returns the ScrolledWindow widget ID.

Related Information
XmScrolledWindow(3X).

1-329

OSF/Motif Programmer's Reference

XmCreateSelectionBox(3X)

Synopsis

Description

XmCreateSelectionBox-The SelectionBox widget creation function

#include <Xm/SelectioB.h>

Widget XmCreateSelectionBox (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateSelectionBox creates an unmanaged S electionB ox. A SelectionBox is
used to get a selection from a list of alternatives from the user and includes the
following:

• A scrolling list of alternatives

• An editable text field for the selected alternative

• Labels for the list and text field

• Three or four buttons

The default button labels are OK, Cancel, and Help. By default, an Apply button
is also created. If the parent of the SelectionBox is a DialogShell, it is managed;
otherwise it is unmanaged. Additional work area children may be added to the
SelectionBox after creation.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox(3X).

Return Value
Returns the SelectionBox widget ID.

Related Information
XmSelectionBox(3X).

1-330

Synopsis

Description

Reference Pages

XmCreateSelectionDialog (3X)

XmCreateSelectionDialog-The SelectionBox SelectionDialog convenience
creation function

#include <Xm/SelectioB.h>

Widget XmCreateSelectionDialog (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateSelectionDialog is a convenience creation function that creates a
DialogShell and an unmanaged SelectionBox child of the DialogShell. A
SelectionDialog offers the user a choice from a list of alternatives and gets a
selection. It includes the following:

• A scrolling list of alternatives

• An editable text field for the selected alternative

• Labels for the text field

• Four buttons

The default button labels are OK, Cancel, Apply, and Help. One additional
WorkArea child may be added to the SelectionBox after creation.

XmCreateSelectionDialog forces the value of the SelectionBox resource
XmNdialogType to XmDIALOG_SELECTION.

Use XtManageChild to pop up the SelectionDialog (passing the SelectionBox as
the widget parameter); use XtUnmanageChild to pop it down.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

1-331

OSF/Motif Programmer's Reference

XmCreateSelectionDialog (3X)

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox(3X) .

Return Value
Returns the SelectionBox widget ID.

Related Information
XmSelectionBox(3X).

1-332

Synopsis

Description

Reference Pages

XmCreateSeparator(3X)

XmCreateSeparator-The Separator widget creation function

#include <Xm/Separator.h>

Widget XmCreateSeparator (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateSeparator creates an instance of a Separator widget and returns the
associated widget ID.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of Separator and its associated resources, see
XmSeparator(3X).

Return Value
Returns the Separator widget ID.

Related Information
XmSeparator(3X).

1-333

OSF/Motif Programmer's Reference

XmCreateSeparatorGadget{ 3X)

SYD()psis

Description

XmCreateSeparatorGadget-The SeparatorGadget creation function

#include <Xm/SeparatoG.h>

Widget XmCreateSeparatorGadget (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateSeparatorGadget creates an instance of a SeparatorGadget widget and
returns the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of SeparatorGadget and its associated resources, see
XmSeparatorGadget(3X).

Return Value
Returns the SeparatorGadget widget ID.

Related Information
XmSeparatorGadget(3X).

1-334

Reference Pages

XmCreateSimpleCheckBox (3X)

XmCreateSimpleCheckBox-A RowColumn widget convenience creation
function

Synopsis #include <XmlRowColumn.h>

Description

Widget XmCreateSimpleCheckBox (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arg list;
Cardinal argcount;

XmCreateSimpleCheckBox creates an instance of a RowColumn widget of type
XmWORK_AREA and returns the associated widget ID.

This routine creates a CheckBox and its ToggleB uttonGadget children. A
CheckBox is similar to a RadioBox, except that more than one button can be
selected at a time. The name of each button is button_n, where n is an integer
from 0 (zero) to 1 minus the number of buttons in the menu. Buttons are named
and created in the order they are specified in the RowColumn simple menu creation
resources supplied in the argument list.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button type allowed in the XmNbuttonType resource
is XmCHECKBUTTON. For a complete definition of RowColumn and its
associated resources, see XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information
XmCreateRadioBox(3X), XmCreateRowColumn(3X),
XmCreateSimpleRadioBox(3X), XmRowColumn(3X),
XmVaCreateSimpleCheckBox(3X), and XmVaCreateSimpleRadioBox(3X).

1-335

OSF/Motif Programmer's Reference

XmCreateSimpleMenuBar(3X)

Synopsis

Description

XmCreateSimpleMenuBar-A RowColumn widget convenience creation
function

#include <Xm/RowColumn.h>

Widget XmCreateSimpleMenuBar (parent, name, argUst, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateSimpleMenuBar creates an instance of a RowColumn widget of type
XmMENU _BAR and returns the associated widget ID.

This routine creates a MenuBar and its CascadeButtonGadget children. The name
of each button is button_n, where n is an integer from 0 (zero) to 1 minus the
number of buttons in the menu. Buttons are named and created in the order they
are specified in the RowColumn simple menu creation resources supplied in the
argument list.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button type allowed in the XmNhuttonType resource
is XmCASCADEBUTTON. For a complete definition of RowColumn and its
associated resources, see XmRowColumn(3X).

Return Value-
Returns the RowColumn widget ID.

Related Information

1-336

XmCreateMenuBar(3X), XmCreateRowColumn(3X), XmRowColumn(3X),
and XmVaCreateSimpleMenuBar(3X).

Synopsis

Description

Reference Pages

XmCreateSimpleOptionMenu (3X)

XmCreateSimpleOptionMenu-A RowColumn widget convenience creation
function

#include <XmlRowColumn.h>

Widget XmCreateSimpleOptionMenu (parent, name, a rglis t, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateSimpleOptionMenu creates an instance of a RowColumn widget of
type XmMENU_OPTION and returns the associated widget ID.

This routine creates an OptionMenu and its submenu containing PushButtonGadget
or CascadeButtonGadget children. The name of each button is button_n, where n
is an integer from 0 (zero) to 1 minus the number of buttons in the menu. The
name of each separator is separator_n, where n is an integer from 0 (zero) to 1
minus the number of separators in the menu. Buttons and separators are named and
created in the order they are specified in the RowColumn simple menu creation
resources supplied in the argument list.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

The user can specify resources in a resource file for the automatically created
widgets and gadgets of an OptionMenu. These widgets (or gadgets) and the
associated OptionMenu areas are

Option Menu Label Gadget

Option Menu Cascade Button

OptionLabel

OptionButton

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button types allowed in the XmNbuttonType resource
are XmPUSHBUTTON, XmCASCADEBUTTON, XmSEPARATOR, and
XmDOUBLE_SEPARATOR. For a complete definition of RowColumn and its
associated resources, see XmRowColumn(3X).

1-337

OSF/Motif Programmer's Reference

XmCreateSimpleOptionMenu (3X)

Return Value
Returns the RowColumn widget ID.

Related Information

1-338

XmCreateOptionMenu(3X), XmCreateRowColumn(3X),
XmRowColumn(3X), and XmVaCreateSimpleOptionMenu(3X).

Synopsis

Description

Reference Pages

XmCreateSimplePopupMenu (3X)

XmCreateSimplePopupMenu-A RowColumn widget convenience creation
function

#include <XmlRowColumn.h>

Widget XmCreateSimplePopupMenu (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList argUst;
Cardinal argcount;

XmCreateSimplePopupMenu creates an instance of a RowColumn widget of
type XmMENU_POPUP and returns the associated widget ID.

This routine creates a Popup MenuPane and its button children. The name of each
button is button_n, where n is an integer from 0 (zero) to 1 minus the number of
buttons in the menu. The name of each separator is separator_n, where n is an
integer from 0 (zero) to 1 minus the number of separators in the menu. The name
of each title is labeCn, where n is an integer from 0 (zero) to 1 minus the number
of titles in the menu. Buttons, separators, and titles are named and created in the
order in which they are specified in the RowColumn simple menu creation
resources supplied in the argument list.

parent

name

arglist

argcount

Specifies the widget ID of the parent of the MenuShell

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button types allowed in the XmNhuttonType resource
are XmCASCADEBUTTON, XmPUSHBUTTON, XmRADIOBUTTON,
XmCHECKBUTTON, XmTITLE, XmSEPARATOR, and
XmDOUBLE_SEPARATOR. For a complete definition of RowColumn and its
associated resources, see XmRowColumn(3X).

1-339

OSF/Motif Programmer's Reference

XmCreateSimplePopupMenu (3X)

Return Value
Returns the RowColumn widget ID.

Related Information

1-340

XmCreatePopupMenu(3X), XmCreateRowColumn(3X), XmRowColumn(3X),
and XmVaCreateSimplePopupMenu(3X).

Synopsis

Description

Reference Pages

XmCreateSimplePulidownMenu (3X)

XmCreateSimplePulldownMenu-A RowColumn widget convenience creation
function

#include <XmlRowColumn.h>

Widget XmCreateSimplePulldownMenu (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateSimplePulldownMenu creates an instance of a RowColumn widget of
type XmMENU_PULLDOWN and returns the associated widget ID.

This routine creates a Pulldown MenuPane and its button children. The name of
each button is button_n, where n is an integer from 0 (zero) to 1 minus the number
of buttons in the menu. The name of each separator is separator _n, where n is an
integer from 0 (zero) to 1 minus the number of separators in the menu. The name
of each title is label_n, where n is an integer from 0 (zero) to 1 minus the number
of titles in the menu. Buttons, separators, and titles are named and created in the
order they are specified in the RowColumn simple menu creation resources
supplied in the argument list.

parent

name

argUst

argcount

Specifies the widget ID of the parent of the MenuShell

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button types allowed in the XmNbuttonType resource
are XmCASCADEBUTTON, XmPUSHBUTTON, XmRADIOBUTTON,
XmCHECKBUTTON, XmTITLE, XmSEPARATOR, and
XmDOUBLE_SEPARATOR. For a complete definition of RowColumn and its
associated resources, see XmRowColumn(3X).

1-341

OSF/Motif Programmer's Reference

XmCreateSimplePulidownMenu(3X)

Return Value
Returns the RowColumn widget ID.

Related Information

1-342

XmCreatePuIldownMenu(3X), XmCreateRowColumn(3X),
XmRowColumn(3X), and XmVaCreateSimplePuIldownMenu(3X).

Synopsis

Description

Reference Pages

XmCreateSimpleRadioBox(3X)

XmCreateSimpleRadioBox-A RowColumn widget convenience creation
function

#include <XmlRowColumn.h>

Widget XmCreateSimpleRadioBox (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateSimpleRadioBox creates an instance of a RowColurnn widget of type
XmWORK_AREA and returns the associated widget ID.

This routine creates a RadioBox and its ToggleButtonGadget children. The name
of each button is button_n, where n is an integer from 0 (zero) to 1 minus the
number of buttons in the menu. Buttons are named and created in the orderthey are
specified in the RowColumn simple menu creation resources supplied in the
argument list.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

A number of resources exist specifically for use with this and other simple menu
creation routines. The only button type allowed in the XmNbuttonType resource
is XmRADIOBUTTON. For a complete definition of RowColumn and its
associated resources, see XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information
XmCreateRadioBox(3X), XmCreateRowColumn(3X),
XmCreateSimpleCheckBox(3X), XmRowColumn(3X), and
XmVaCreateSimpleRadioBox(3X).

1-343

OSF/Motif Programmer's Reference

XmCreateTemplateDialog (3X)

Synopsis

Description

XmCreateTemplateDialog-A MessageBox TemplateDialog convenience
creation function

#include <Xm/MessageB.h>

Widget XmCreateTemplateDialog (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateTemplateDialog is a convenience creation function that creates a
DialogShell and an unmanaged MessageBox child of the DialogShell. The
MessageBox widget's XmNdialogType resource is set to
XmDIALOG_TEMPLATE. By default, the TemplateDialog widget contains
only the separator child. You can build a customized dialog by adding children to
the TemplateDialog.

You can create the standard MessageBox pushbuttons, Cancel, Help, and OK, by
specifying the associated callback and label string resources. Setting
XmNsymbolPixmap or XmNmessageString creates a symbol or message label.

Use XtManageChiid to pop up the TemplateDialog (passing the MessageBox as
the widget parameter); use XtUnmanageChiid to pop it down.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3X).

Return Value
Returns the MessageBox widget ID.

Related Information
XmMessageBox(3X).

1-344

Synopsis

Description

Reference Pages

XmCreateText(3X)

XmCreateText-The Text widget creation function

#include <Xm/Text.h>

Widget XmCreateText (parent, name, arglis t, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateText creates an instance of a Text widget and returns the associated
widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns the Text widget ID.

Related Information
XmText(3X).

1-345

OSF/Motif Programmer's Reference

XmCreateTextField (3X)

XmCreateTextField-The TextField widget creation function

Synopsis #include <Xm/TextF.h>

Description

Widget XmCreateTextField (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateTextField creates an instance of a TextField widget and returns the
associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Return Value
Returns the TextField widget ID.

Related Information
XmTextField(3X).

1-346

Synopsis

Description

Reference Pages

XmCreateToggleButton (3X)

XmCreateToggleButton-The ToggleButton widget creation function

#include <XmlToggleB.h>

Widget XmCreateToggleButton (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateToggleButton creates an instance of a ToggleButton widget and returns
the associated widget ID.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3X).

Return Value
Returns the ToggleButton widget ID.

Related Information
XmToggleButton(3X).

1-347

OSF/Motif Programmer's Reference

XmCreateToggleButtonGadget{ 3X)

Synopsis

Description

XmCreateToggleButtonGadget-The ToggleButtonGadget creation function

#include <XmffoggleBG.h>

Widget XmCreateToggleButtonGadget (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateToggleButtonGadget creates an instance of a ToggleButtonGadget and
returns the associated widget ID.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of ToggleButtonGadget and its associated resources, see
XmToggleButtonGadget(3X).

Return Value
Returns the ToggleButtonGadget widget ID.

Related Information
XmToggleButtonGadget(3X).

1-348

Synopsis

Description

Reference Pages

XmCreateWarningDialog{ 3X)

XmCreateWarningDialog-The MessageBox WarningDialog convenience
creation function

#include <Xm/MessageB.h>

Widget XmCreateWarningDialog (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateWarningDialog is a convenience creation function that creates a
DialogShell and an unmanaged MessageBox child of the DialogShell. A
WarningDialog warns users of action consequences and gives them a choice of
resolutions. It includes a symbol, a message, and three buttons. The default
symbol is an exclamation point. The default button labels are OK, Cancel, and
Help.

Use XtManageChild to pop up the WarningDialog (passing the MessageBox as
the widget parameter); use XtUnmanageChild to pop it down.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3X).

Return Value
Returns the MessageBox widget ID.

Related Information
XmMessageBox(3X).

1-349

OSF/Motif Programmer's Reference

XmCreateWorkArea (3X)

XmCreateWorkArea-A function that creates a RowColumn work area

Synopsis #include <XmlRowColumn.h>

Description

Widget XmCreateWorkArea (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateWorkArea creates an instance of a RowColumn widget and returns the
associated widget ID. The widget is created with XmNrowColumnType set to
XmWORK_AREA.

parent

name

argUst

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information

1-350

XmCreateRadioBox(3X), XmCreateSimpleCheckBox(3X),
XmCreateSimpleRadioBox(3X), XmRowColumn(3X),
XmVaCreateSimpleCheckBox(3X), and XmVaCreateSimpleRadioBox(3X).

Synopsis

Description

Reference Pages

XmCreateWorkingDialog (ax)

XmCreateWorkingDialog-The MessageBox WorkingDialog convenience
creation function

#include <Xm/MessageB.h>

Widget XmCreateWorkingDialog (parent, name, arglist, argcount)
Widget parent;
String name;
ArgList arglist;
Cardinal argcount;

XmCreateWorkingDialog is a convenience creation function that creates a
DialogShell and an unmanaged MessageBox child of the DialogShell. A
WorkingDialog informs users that there is a time-consuming operation in progress
and allows them to cancel the operation. It includes a symbol, a message, and three
buttons. The default symbol is an hourglass. The default button labels are OK,
Cancel, and Help.

Use XtManageChiid to pop up the WorkingDialog (passing the MessageBox as
the widget parameter); use XtUnmanageChiid to pop it down.

parent

name

arglist

argcount

Specifies the parent widget ID

Specifies the name of the created widget

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3X).

Return Value
Returns the MessageBox widget ID.

Related Information
XmMessageBox(3X).

1-351

OSF/Motif Programmer's Reference

XmCvtCTToXmString(3X)

XmCvtCTToXmString-A compound string function that converts compound
text to a compound string

Synopsis #include <XmlXm.h>

Description

XmString XmCvtCTToXmString (text)
char * text;

XmCvtCTToXmString converts a (char *) string in compound text format to a
compound string. The application must call XtAppInitialize before calling this
function. Conversion of compound text to compound strings is implementation
dependent.

text Specifies a string in compound text format to be converted to a
compound string.

Return Value
Returns a compound string derived from the compound text. The compound text is
assumed to be NULL-terminated; NULLs within the compound text are handled
correctly. The handling of HORIZONTAL TABULATION (HT) control characters
within the compound text is undefined. The compound text format is described in
the X Consortium Standard Compound Text Encoding.

Related Information
XmCvtXmStringToCT(3X).

1-352

Synopsis

Description

Reference Pages

XmCvtStringToUnitType(3X)

XmCvtStringToUnitType-A function that converts a string to a unit-type value

#include <XmlXm.h>

void XmCvtStringToUnitType (args, num_args, from_val, to_val)
XrmValuePtr args;
Cardinal
XrmValue
XrmValue

* num_args;
* from_val;
* to_val;

XmCvtStringToUnitType converts a string to a unit type. Refer to the reference
pages for XmGadget, XmManager, or XmPrimitive for a description of the valid
unit types. Use of this function as a resource converter is obsolete. It has been
replaced by a new resource converter that uses the RepType facility.

args Specifies a list of additional XrmValue arguments to the converter
if additional context is needed to perform the conversion. For
example, the string-to-font converter needs the widget's screen and
the string-to-pixel converter needs the widget's screen and color
map. This argument is often NULL.

Specifies the number of additional XrmValue arguments. This
argument is often zero.

Specifies the value to convert

Specifies the descriptor to use to return the converted value

Related Information
XmGadget(3X), XmManager(3X), and XmPrimitive(3X).

1-353

OSF/Motif Programmer's Reference

XmCvtXmStringToCT (3X)

Synopsis

Description

1-354

XmCvtXmStringToCT -A compound string function that converts a compound
string to compound text

#include <XmlXm.h>

char * XmCvtXmStringToCT (string)
XmString string;

XmCvtXmStringToCT converts a compound string to a (char *) string in
compound text format. The application must call XtAppInitialize before calling
this function. The converter uses the font list tag associated with a given
compound string segment to select a compound text format for that segment. A
registry defines a mapping between font list tags and compound text encoding
formats. The converter uses the following algorithm for each compound string
segment:

1. If the compound string segment tag is mapped to
XmFONTLIST_DEFAULT_TAG in the registry, the converter passes the
text of the compound string segment to XmbTextListToTextProperty with
an encoding style of XCompoundTextStyle and uses the resulting
compound text for that segment.

2. If the compound string segment tag is mapped to an MIT registered charset
in the registry, the converter creates the compound text for that segment
using the charset (from the registry) and the text of the compound string
segment as defined in the X Consortium Standard Compound Text
Encoding.

3. If the compound string segment tag is mapped to a charset in the registry
that is neither XmFONTLIST_DEFAULT_TAG nor an MIT registered
charset, the converter creates the compound text for that segment using the
charset (from the registry) and the text of the compound string segment as
an "extended segment" with a variable number of octets per character.

4. If the compound string segment tag is not mapped in the registry, the result
is implementation dependent.

string Specifies a compound string to be converted to compound text.

Reference Pages

XmCvtXmStringToCT(ax)

Return Value
Returns a (char *) string in compound text format. This format is described in the
X Consortium Standard Compound Text Encoding.

Related Information
XmCvtCTToXmString(3X), XmFontList(3X), XmMapSegmentEncoding(3X),
XmRegisterSegmentEncoding(3X), and XmString.

1-355

OSF/Motif Programmer's Reference

XmDeactivateProtocol (3X)

Synopsis

Description

XmDeactivateProtocol-A VendorShell function that deactivates a protocol
without removing it

#include <XmlXm.h>
#include <XmlProtocols.h>

void XmDeactivateProtocol (shell, property, protocol)
Widget shell;
Atom property;
Atom protocol;

void XmDeactivateWMProtocol (shell, protocol)
Widget shell;
Atom protocol;

XmDeactivateProtocol deactivates a protocol without removing it. It updates the
handlers and the property if the shell is realized. It is sometimes useful to allow a
protocol's state information (callback lists, and so on) to persist, even though the
client may choose to temporarily resign from the interaction. The main use of this
capability is to gray/ungray f.send_msg entries in the MWM system menu. To
support this capability, protocol is allowd to be in one of two states: active or
inactive. If protocol is active and shell is realized, property contains the protocol
Atom. If protocol is inactive, Atom is not present in the property.

XmDeactivateWMProtocol is a convenience interface. It calls
XmDeactivateProtocol with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell

property

protocol

Specifies the widget with which the protocol property is associated

Specifies the protocol property

Specifies the protocol atom (or an int type cast to Atom)

For a complete definition of VendorS hell and its associated resources, see
VendorShell(3X) .

Related Information

1-356

mwm(lX), VendorShell(3X), XmDeactivateWMProtocol(3X), and
XmlnternAtom(3X).

Synopsis

Description

Reference Pages

XmDeactivateWMProtocol (3X)

XmDeactivateWMProtocol-A VendorShell convenience interface that
deactivates a protocol without removing it

#include <XmlXm.h>
#include <XmJProtocols.h>

void XmDeactivateWMProtocol (shell, protocol)
Widget shell;
Atom protocol;

XmDeactivate WMProtocol is a convenience interface. It calls
XmDeactivateProtocol with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell

protocol

Specifies the widget with which the protocol property is associated

Specifies the protocol atom (or an int type cast to Atom)

For a complete definition of VendorShell and its associated resources, see
VendorShell(3X).

Related Information
VendorShell(3X), XmDeactivateProtocol(3X), and XmlnternAtom(3X).

1-357

OSF/Motif Programmer's Reference
XmDestroyPixmap(3X)

Synopsis

Description

XmDestroyPixmap-A pixmap caching function that removes a pixmap from the
pixmap cache

#include <XmlXm.h>

Boolean XmDestroyPixmap (screen, pixmap)
Screen * screen;
Pixmap pixmap;

XmDestroyPixmap removes pixmaps that are no longer used. Pixmaps are
completely freed only when there is no further reference to them.

screen

pixmap

Specifies the display screen for which the pixmap was requested

Specifies the pixmap to be destroyed

Return Value
Returns True when successful; returns False if there is no matching screen and
pixmap in the pixmap cache.

Related Information
XmlnstaIlImage(3X), XmUninstaIlImage(3X), and XmGetPixmap(3X).

1-358

Synopsis

Description

Reference Pages

XmDialogShell (3X)

XmDialogShell-The DialogShell widget class

#include <XmlDialogS.h>

Modal and modeless dialogs use DialogShell as the Shell parent. DialogShell
widgets cannot be iconified. Instead, all secondary DialogShell widgets associated
with an ApplicationShell widget are iconified and de-iconified as a group with the
primary widget.

The client indirectly manipulates DialogShell through the convenience interfaces
during creation, and it can directly manipulate its BulletinBoard-derived child.
Much of the functionality of DialogShell assumes that its child is a BulletinBoard
subclass, although it can potentially stand alone.

Setting XmNheight, XmNwidth, or XmNborderWidth for either a DialogShell
or its managed child usually sets that resource to the same value in both the parent
and the child. When an off-the-spot input method exists, the height and width of
the shell may be greater than those of the managed child in order to accommodate
the input method. In this case setting XmNheight or XmNwidth for the shell does
not necessarily set that resource to the same value in the managed child, and setting
XmNheight or XmNwidth for the child does not necessarily set that resource to
the same value in the shell.

For the managed child of a DialogShell, regardless of the value of the shell's
XmNallowShellResize resource, setting XmNx or XmNy sets the corresponding
resource of the parent but does not change the child's position relative to the
parent. The XtGetValues resource for the child's XmNx or XmNy yields the
value of the corresponding resource in the parent. The x and y-coordinates of the
child's upper left outside corner relative to the parent's upper left inside corner are
both 0 (zero) minus the value of XmNborderWidth.

Note that the Inter-Client Communication Conventions Manual (lCCCM) allows a
window manager to change or control the border width of a reparented top-level
window.

Classes
DialogShell inherits behavior and resources from the Core, Composite, Shell,
WMShell, VendorShell, and TransientShell classes.

The class pointer is xmDialogShellWidgetClass.

The class name is XmDialogShell.

1-359

OSF/Motif Programmer's Reference

XmDialogShell (3X)

1-360

New Resources
DialogShell defines no new resources but overrides the XmNdeleteResponse
resource in the VendorShell class.

Inherited Resources
DialogShell inherits behavior and resources from the superclasses described in the
following tables, which define sets of widget resources used by the programmer to
specify data.

For a complete description of each resource, refer to the reference page for that
superclass. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

TransientShell Resource Set

Name Default Access
Class Type

Xm NtransientFor NULL eSG
XmCTransientFor Widget

Reference Pages

XmDialogShell (3X)

VendorShell Resource Set

Name Default Access
Class Type

XmNaudibleWarning XmBELL CSG
XmCAudibleWarning unsigned char

Xm NbuttonFontList dynamic CSG
XmCButtonFontList XmFontList

Xm NdefaultFontList dynamic CG
XmCDefaultFontList XmFontList

Xm NdeleteResponse XmUNMAP CSG
XmCDeleteResponse unsigned char

Xm NinputMethod NULL CSG
XmClnputMethod String

XmNkeyboardFocusPolicy XmEXPLICIT CSG
XmCKeyboardFocusPolicy unsigned char

Xm NlabelFontList dynamic CSG
XmCLabel FontList XmFontList

XmNmwmDecorations -1 CSG
XmCMwmDecorations int

XmNmwm Functions -1 CSG
XmCMwmFunctions int

XmNmwmlnputMode -1 CSG
XmCMwmlnputMode int

XmNmwmMenu NULL CSG
XmCMwmMenu String

Xm NpreeditType dynamic CSG
XmCPreeditType String

XmNsheliUnitType XmPIXELS CSG
XmCSheliUnitType unsigned char

Xm NtextFontList dynamic CSG
XmCTextFontList XmFontList

XmNuseAsyncGeometry False CSG
XmCUseAsyncGeometry Boolean

1-361

OSF/Motif Programmer's Reference

XmDialogShell(3X)

WMShell Resource Set

Name Default Access
Class Type

XmNbaseHeight XtUnspecifiedShelllnt CSG
XmCBaseHeight int

XmNbaseWidth XtUnspecifiedShelllnt CSG
XmCBaseWidth int

XmNheightlnc XtU nspecifiedShell1 nt CSG
XmCHeightlnc int

XmNiconMask NULL CSG
XmClconMask Pixmap

XmNiconPixmap NULL CSG
XmClconPixmap Pixmap

XmNiconWindow NULL CSG
XmClconWindow Window

XmNiconX -1 CSG
XmClconX int

XmNiconY -1 CSG
XmClconY int

XmNinitialState NormalState CSG
XmClnitialState int

XmNinput True CSG
XmClnput Boolean

XmNmaxAspectX XtUnspecifiedShelllnt CSG
XmCMaxAspectX int

XmNmaxAspectY XtUnspecifiedShell1 nt CSG
XmCMaxAspectY int

XmNmaxHeight XtUnspecifiedShelllnt CSG
XmCMaxHeight int

XmNmaxWidth XtUnspecifiedShell1 nt CSG
XmCMaxWidth int

XmNminAspectX XtUnspecifiedShell1 nt CSG
XmCMinAspectX int

1-362

Reference Pages

XmDialogShel1 (ax)

Name Default Access
Class Type

XmNminAspectY XtUnspecifiedShell1 nt CSG
XmCMinAspectY int

XmNminHeight XtUnspecifiedShelllnt CSG
XmCMinHeight int

XmNminWidth XtUnspecifiedShelllnt CSG
XmCMinWidth int

XmNtitle dynamic CSG
XmCTitle String

Xm NtitleEncoding dynamic CSG
XmCTitleEncoding Atom

XmNtransient True CSG
XmCTransient Boolean

Xm NwaitForWm True CSG
XmCWaitForWm Boolean

XmNwidthlnc XtUnspecifiedShelllnt CSG
XmCWidthlnc int

Xm NwindowGroup dynamic CSG
XmCWindowGroup Window

XmNwinGravity dynamic CSG
XmCWinGravity int

XmNwmTimeout 5000 ms CSG
XmCWmTimeout int

1-363

OSF/Motif Programmer's Reference

XmDialogShell(3X)

Shell Resource Set

Name Default Access
Class Type

XmNaliowSheliResize False CG
XmCAllowShellResize Boolean

Xm NcreatePopupChiidProc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChiidProc

XmNgeometry NULL CSG
XmCGeometry String

Xm NoverrideRedirect False CSG
XmCOverrideRedirect Boolean

XmNpopdownCaliback NULL C
XmCCaliback XtCalibackList

XmNpopupCaliback NULL C
XmCCaliback XtCalibackList

XmNsaveUnder True CSG
XmCSaveUnder Boolean

XmNvisual Copy From Parent CSG
XmCVisual Visual *

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-364

Reference Pages
XmDialogShell (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-365

OSF/Motif Programmer's Reference

XmDialogShell (aX)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for XmDialogShell.

Related Information
Composite(3X), Core(3X), Shell(3X), TransientShell(3X), WMShell(3X),
VendorShell(3X), and XmCreateDialogShell(3X).

1-366

Synopsis

Description

Reference Pages

XmDisplay(3X)

XmDisplay-The Display widget class

#include <XmlDisplay.h>

The XmDisplay object is used by the Motif widgets to store information that is
specific to a display. It also allows the toolkit to access certain information on
widget hierarchies that would otherwise be unavailable. Each client has one
XmDisplay object for each display it accesses.

An XmDisplay object is automatically created when the application creates the
first shell on a display (usually accomplished by a call to XtAppInitialize or
XtAppCreateShell). It is not necessary to create an XmDisplay object by any
other means. An application can use the function XmGetXmDisplay to obtain the
widget ID of the XmDisplay object for a given display.

An application cannot supply initial values for XmDisplay resources as arguments
to a call to any function that creates widgets. The application or user can supply
initial values in a resource file. After creating the first shell on the display, the
application can use XmGetXmDisplay to obtain the widget ID of the XmDisplay
object and then call XtSetValues to set the XmDisplay resources.

XmDisplay resources specify the drag protocol style for a client participating in
drag and drop transactions. The two basic protocol types are preregister and
dynamic. When a preregister protocol is used, the toolkit handles any
communication between the initiator and receiver clients and displays the
appropriate drag-over and drag-under visual effects. A client registers its drop sites
in advance and this information is stored in a property for each top-level window.
When the drag pointer enters a top-level window, the drop site information is read
by the initiator. A dynamic protocol allows the source and destination clients to
dynamically communicate drag and drop state information between each other, and
to update their respective visuals accordingly. The toolkit provides drop site
information as the pointer passes over any given drop site. In this mode, a receiver
can supply a procedure to generate its own drag-under effects.

Classes
Display inherits behavior and resources from Core, Composite, Shell, WMShell,
VendorS hell, TopLevelShell, and ApplicationShell classes.

The class pointer is xmDisplayClass.

The class name is XmDisplay.

1-367

OSF/Motif Programmer's Reference

XmDisplay(3X)

1-368

New Resources

Name

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

XmDisplay Resource Set

Default Access
Class Type

Xm NdefaultVirtualBindings dynamic CG
DefaultVirtualBindings String

XmNdraglnitiatorProtocolStyle XmDRAG_PREFER_RECEIVER CG
XmCDraglnitiatorProtocolStyle unsigned char

Xm NdragReceiverProtocolStyle XmDRAG_PREFER_PREREGISTER CG
XmCDragReceiverProtocolStyle unsigned char

XmNdefault VirtualBindings
Specifies the default virtual bindings for the display. Following is
an example of a specification for the defaultVirtualBindings
resource in a resource file:

*defaultVirtualBindings: \
osfBackSpace
osfInsert

osfDelete

<Key>BackSpace \n\
<Key>InsertChar\n\

<Key>DeleteChar

Reference Pages

XmDisplay (3X)

XmNdraglnitiatorProtocolStyle
Specifies the drag and drop protocol requirements or preference
when the client is an initiator. The possible values are

XmDRAG_PREREGISTER
As an initiator, this client does not use the dynamic
protocol and can only arrange visual effects with
receivers who provide preregistered information.

XmDRAG_DYNAMIC
As an initiator, this client does not make use of any
preregistered drop site information made available by
other clients, and can only arrange visual effects with
receivers who use the dynamic protocol.

XmDRAG_NONE
Specifies that drag and drop is disabled for this client.

XmDRAG_DROP _ONLY
As an initiator, this client does not use either the
preregistered drop site information or the dynamic
protocol. It supports dragging, and any time the
cursor is over a client that supports drag and drop,
valid feedback is provided. There are no other visual
effects.

XmDRAG_PREFER_DYNAMIC
As an initiator, this client can support both the
preregister and dynamic protocols, but prefers to use
dynamic protocols whenever possible in order to
provide high-quality drag-under feedback.

XmDRAG_PREFER_PREREGISTER
As an initiator, this client can support both the
preregister and dynamic protocols, but prefers to use
the preregister protocol whenever possible in order to
accommodate performance needs or to provide
consistent drag-over feedback.

XmDRAG_PREFER_RECEIVER
Indicates that this client can support both preregister
and dynamic protocols, but will defer to the
preference of the receiver client. This value is valid
only for the XmNdraglnitiatorProtocolStyle
resource, and is its default value.

1-369

OSF/Motif Programmer's Reference

XmDisplay(3X)

XmNdragReceiverProtocolStyle

1-370

Specifies the drag and drop protocol requirements or preference
when this client is a receiver. The values are

XmDRAG_PREREGISTER
As a receiver, this client preregisters drop site
information and does not use the dynamic protocol.
It can only arrange visual effects with initiators who
make use of the preregistered information.

XmDRAG_DYNAMIC
As a receiver, this client uses the dynamic protocol
and does not preregister drop site information. It can
only arrange visual effects with initiators who use the
dynamic protocol.

XmDRAG_NONE
Specifies that drag and drop is disabled for this client.

XmDRAG_DROP _ONLY
As a receiver, this client neither uses the dynamic
protocol nor preregisters drop site information. It
supports dropping, and when dragging over this
client, valid feedback is always provided, but there
are no other visual effects.

XmDRAG_PREFER_DYNAMIC
As a receiver, this client can support both the
preregister and dynamic protocols, but prefers to use
the dynamic protocol whenever possible in order to
provide high-quality drag-under feedback.

XmDRAG_PREFER_PREREGISTER
As a receiver, this client can support both the
preregister and dynamic protocols, but prefers to use
the preregister protocol whenever possible in order to
accommodate performance needs.

The actual protocol used between an initiator and a receiver is based
on the protocol style of the receiver and initiator. The decision
matrix is described in the following table.

Inherited Resources

Reference Pages

XmDisplay (3X)

Drag Initiator Drag Receiver Protocol Style

Protocol Style Preregister Prefer Preregister Prefer Dynamic Dynamic

Preregister Preregister Preregister Preregister Drop Only

Prefer Preregister Preregister Preregister Preregister Dynamic

Prefer Receiver Preregister Preregister Dynamic Dynamic

Prefer Dynamic Preregister Dynamic Dynamic Dynamic

Dynamic Drop Only Dynamic Dynamic Dynamic

The value XmDRAG_NONE does not appear in the matrix. When
specified for either the initiator or receiver side, XmDRAG_NONE
implies that drag and drop transactions are not supported. A value of
XmDRAG_DROP _ONLY (Drop Only) results when an initiator and
receiver cannot compromise protocol styles, that is, one client requires
dynamic mode while the other can only support preregister mode, or if
either explicitly has specified XmDRAG_DROP _ONLY.

All of the superclass resources inherited by XmDisplay are designated NI A (not
applicable).

Related Information
ApplicationShell(3X), Composite(3X), Core(3X), TopLeveIShell(3X),
VendorShell(3X), WMShell(3X), XmGetXmDisplay(3X), and XmScreen(3X).

1-371

OSF/Motif Programmer's Reference

XmDragCancel (aX)

XmDragCancel-A Drag and Drop function that terminates a drag transaction

Synopsis #include <XmlDragDrop.h>

Description

void XmDragCancel (dragcontext)
Widget dragcontext;

XmDragCancel terminates a drag operation and cancels any pending actions of
the specified DragContext. This routine can only be called by the initiator client.

dragcontext Specifies the ID of the DragContext widget associated with the drag
and drop transaction to be terminated

For a complete definition of DragContext and its associated resources, see
XmDragContext(3X).

Related Information
XmDragContext(3X) and XmDragStart(3X).

1-372

Synopsis

Description

Reference Pages

XmDragContext(3X)

XmDragContext-The DragContext widget class

#include <XmlDragDrop.h>

DragContexts are special widgets used in drag and drop transactions. A
DragContext is implemented as a widget, but a client does not explicitly create a
DragContext widget. Instead, a client initiates a drag and drop transaction by
calling XmDragStart, and this routine initializes and returns a DragContext
widget. There is a unique DragContext for each drag operation. The toolkit frees a
DragContext when a transaction is complete; therefore, an application programmer
should not explicitly destroy a DragContext. .

Initiator and receiver clients both use DragContexts . to track the state of a
transaction. When the initiator and receiver of a transaction are in the same client,
they share the same DragContext instance. If they are in different clients, there are
two separate DragContexts. In this case, the initiator calls XmDragStart and the
toolkit provides a DragContext for the receiver client. The only resources
pertinent to the receiver are XmNexportTargets and XmNnumExportTargets.
These can both be passed as arguments to the XmDropSiteRetrieve function to
obtain information about the current drop site.

In general, in order to receive data, a drop site must share at least one target type
and operation in common with a drag source. The DragContext resource,
XmNexportTargets, identifies the selection targets for the drag source. These
export targets are compared with the XmNimportTargets resource list specified
by a drop site. The DragContext resource, XmNdragOperations, identifies the
valid operations that can be applied to the source data by the initiator. The drop
site counterpart resource is XmNdropSiteOperations, which indicates a drop
site's supported operations.

A client uses DragIcon widgets to define the drag-over animation effects associated
with a given drag and drop transaction. An initiator specifies a set of drag icons,
selects a blending model, and sets foreground and background cursor colors with
DragContext resources.

The type of drag -over visual used to represent a drag operation depends on the drag
protocol style. In preregister mode, the server is grabbed, and either a cursor or a
pixmap may be used as a drag-over visual. In dynamic mode, drag-over visuals

1-373

OSF/Motif Programmer's Reference

Xm DragContext (3X)

1-374

Classes

must be implemented with the X cursor. If the resulting drag protocol style is Drop
Only or None and the XmNdraglnithitorProtocolStyle is
XmDRAG_DYNAMIC or XmDRAG_PREFER_DYNAMIC, then a dynamic
visual style (cursor) is used. Otherwise, a preregister visual style is used.

DragContext inherits behavior and resources from Core.

The class pointer is xmDragContextClass.

The class name is XmDragContext.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The progralllIiler can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages
XmDragContext(3X)

XmDragContext Resource Set

Name Default Access
Class Type

XmNblendModel XmBLEND_ALL CG
XmCBlendModel unsigned char

XmNclientData NULL CSG
XmCClientData XtPointer

Xm NconvertProc NULL CSG
XmCConvertProc XtConvertSelectionlncrProc

XmNcursorBackground dynamic CSG
XmCCursorBackground Pixel

Xm NcursorForeground dynamic CSG
XmCCursorForeground Pixel

XmNdragDropFinishCallback NULL CSG
XmCCaliback XtCalibackList

XmNdragMotionCallback NULL C
XmCCaliback XtCalibackList

Xm NdragOperations XmDROP_COPYIXmDROP_MOVE C
XmCDragOperations unsigned char

Xm NdropFinishCaliback NULL C
XmCCaliback XtCalibackList

Xm NdropSiteEnterCaliback NULL C
XmCCaliback XtCalibackList

XmNdropSiteLeaveCallback NULL C
XmCCaliback XtCalibackList

XmNdropStartCaliback NULL C
XmCCaliback XtCalibackList

XmNexportTargets NULL CSG
XmCExportTargets Atom *

XmNincremental False CSG
XmClncremental Boolean

XmNinvalidCursorForeground dynamic CSG
XmCCursorForeground Pixel

1-375

OSF/Motif Programmer's Reference

XmDragContext{3X)

1-376

Name Default Access
Class Type

XmNnoneCursorForeground dynamic CSG
XmCCursorForeground Pixel

XmNnumExportTargets 0 CSG
XmCNum ExportTargets Cardinal

XmNoperationChangedCallback NULL C
XmCCaliback XtCalibackList

XmNoperationCursorlcon dynamic CSG
XmCOperationCursorlcon Widget

Xm NsourceCursorlcon dynamic CSG
XmCSourceCursorlcon Widget

Xm NsourcePixmaplcon dynamic CSG
XmCSourcePixmaplcon Widget

Xm NstateCursorlcon dynamic CSG
XmCStateCursorlcon Widget

XmNtopLevelEnterCallback NULL C
XmCCaliback XtCalibackList

XmNtopLevelLeaveCallback NULL C
XmCCaliback XtCalibackList

Xm NvalidCursorForeground dynamic CSG
XmCCursorForeground Pixel

XmNblendModel
Specifies which combination of DragIcons are blended to produce a
drag-over visual.

XmBLEND_ALL
Blends all three DragIcons: the source, state and
operation icons. The icons are layered from top to
bottom with the operation icon on top and the source
icon on the bottom. The hotspot is derived from the
state icon.

XmBLEND_STATE_SOURCE
Blends the state and source icons only. The hotspot
is derived from the state icon.

Reference Pages
XmDragContext (3X)

XmBLEND_JUST_SOURCE
Specifies that only the source icon is used, which the
initiator updates as required.

XmBLEND_NONE

XmNclientData

Specifies that no drag-over visual is generated. The
client tracks the drop site status through callback
routines and updates the drag-over visuals as
necessary.

Specifies the client data to be passed to XmNconvertProc when it
is invoked.

XmNconvertProc
Specifies a procedure of type XtConvertSelectionIncrProc that
converts the source data to the format(s) requested by the receiver
client. The widget argument passed to this procedure is the
DragContext widget. The selection atom passed is
_MOTIF_DROP. If XmNincremental is False, the procedure
should ignore the max_length, cliencdata, and requesCid
arguments and should handle the conversion atomically. Data
returned by XmNconvertProc must be allocated using XtMalloc,
and will be freed automatically by the toolkit after the transfer. For
additional information on selection conversion procedures, see X
Toolkit Intrinsics-C Language Inteiface.

XmNcursorBackground
Specifies the background pixel value of the cursor.

XmNcursorForeground
Specifies the foreground pixel value of the cursor when the state
icon is not blended. This resource defaults to the foreground color
of the widget passed to the XmDragStart function.

XmNdragDropFinishCallback
Specifies the list of callbacks that are called when the transaction is
completed. The type of the structure whose address is passed to this
callback is XmDragDropFinishCallbackStruct. The reason sent
by the callback is XmCR_DRAG_DROP _FINISH.

1-377

OSF/Motif Programmer's Reference

XmDragContext(3X)

1-378

XmNdragMotionCallback
Specifies the list of callbacks that are invoked when the pointer
moves. The type of structure whose address is passed to this
callback is XmDragMotionCallbackStruct. The reason sent by
the callback is XmCR_DRAG_MOTION.

XmNdragOperations
Specifies the set of valid operations associated with an initiator
client for a drag transaction. This resource is a bit mask that is
formed by combining one or more of the following values using a
bitwise operation such as inclusive OR (I): XmDROP _COPY,
XmDROP _LINK, XmDROP _MOVE. The value
XmDROP _NOOP for this resource indicates that no operations are
valid. For Text and TextField widgets, this resource is set to
XmDROP _COpy 1 XmDROP _MOVE; for List widgets, it is set to
XmDROP _COPY.

XmNdropFinishCallback
Specifies the list of callbacks that are invoked when the drop is
completed. The type of the structure whose address is passed to
this callback is XmDropFinishCallbackStruct. The reason sent
by the callback is XmCR_DROP _FINISH.

XmNdropSiteEnterCallback
Specifies the list of callbacks that are invoked when the pointer
enters a drop site. The type of the structure whose address is passed
to this callback is XmDropSiteEnterCallbackStruct. The reason
sent by the callback is XmCR_DROP _SITE_ENTER.

XmNdropSiteLeaveCallback
Specifies the list of callbacks that are invoked when the pointer
leaves a drop site. The type of the structure whose address is passed
to this callback is XmDropSiteLeaveCallbackStruct. The reason
sent by the callback is XmCR_DROP _SITE_LEAVE.

XmNdropStartCallback
Specifies the list of callbacks that are invoked when a drop is
initiated. The type of the structure whose address is passed to this
callback is XmDropStartCallbackStruct. The reason sent by the
callback is XmCR_DROP _START.

XmNexportTargets
Specifies the list of target atoms associated with this source. This
resource identifies the selection targets this source can be converted
to.

Reference Pages
XmDragContext (3X)

XmNincremental
Specifies a Boolean value that indicates whether the transfer on the
initiator side uses the Xt incremental selection transfer mechanism
described in X Toolkit Intrinsics-C Language Interface. If the
value is True, the initiator uses incremental transfer; if the value is
False, the initiator uses atomic transfer.

XmNinvalidCursorForeground
Specifies the foreground pixel value of the cursor when the state is
invalid. This resource defaults to the value of the
XmNcursorForeground resource.

XmNnoneCursorForeground
Specifies the foreground pixel value of the cursor when the state is
none. This resource defaults to the value of the
XmNcursorForeground resource.

XmNnumExportTargets
Specifies the number of entries in the list of export targets.

XmNoperationChangedCallback
Specifies the list of callbacks that are invoked when the drag is
started and when the user requests that a different operation be
applied to the drop. The type of the structure whose address is
passed to this callback is XmOperationChangedCallbackStruct.
The reason sent by the callback is
XmCR_OPERATION_CHANGED.

XmNoperationCursorlcon
Specifies the cursor icon used to designate the type of operation
performed by the drag transaction. If NULL, XmScreen resources
provide default icons for copy, link, and move operations.

XmNsourceCursorlcon
Specifies the cursor icon used to represent the source when a
dynamic visual style is used. If NULL, the
XmNdefaultSourceCursorIcon resource of XmScreen provides a
default cursor icon.

XmNsourcePixmaplcon
Specifies the pixmap icon used to represent the source when a
preregister visual style is used. The icon is used in conjunction with
the colormap of the widget passed to XmDragStart. If NULL,
XmNsourceCursorlcon is used.

1-379

OSF/Motif Programmer's Reference

XmDragContext(3X)

1-380

XmNstateCursorIcon
Specifies the cursor icon used to designate the state of a drop site. If
NULL, XmScreen resources provide default icons for a valid,
invalid, and no drop site condition.

XmNtopLevelEnterCallback
Specifies the list of callbacks that are called when the pointer enters
a top-level window or root window (due to changing screens). The
type of the structure whose address is passed to this callback is
XmTopLevelEnterCallbackStruct. The reason sent by the
callback is XmCR_TOP _LEVEL_ENTER.

XmNtopLevelLeaveCallback
Specifies the list of callbacks that are called when the pointer leaves
a top level window or the root window (due to changing screens).
The type of the structure whose address is passed to this callback is
XmTopLevelLeaveCailbackStruct. The reason sent by the
callback is XmCR_TOP _LEVEL_LEAVE.

XmNvalidCursorForeground

Inherited Resources

Specifies the foreground pixel value of the cursor designated as a
valid cursor icon.

DragContext inherits behavior and resources from the superc1ass described in the
following table. For a complete description of each resource, refer to the Core
reference page.

Reference Pages

XmDragContext(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmCI nitial ResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-381

OSF/Motif Programmer's Reference
XmDragContext(3X)

1-382

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
Each of the DragContext callbacks has an associated callback structure.

A pointer to the following structure is passed to the
XmNdragDropFinishCallback callback:

typedef struct
{

int reason;
XEvent *event;
Time timeStamp;

}XmDragDropFinishCallbackStruct, *XmDragDropFinishCallback;

reason Indicates why the callback was invoked

event Points to the XEvent that triggered the callback

timeStamp Specifies the time at which either the drag or the drop was
completed

A pointer to the following structure is passed to callbacks for
XmNdragMotionCallback:

typedef struct
{

int
XEvent
Time
unsigned char
unsigned char
unsigned char
Position

reason;
*event;
timeStamp;
operation;
operations;
dropSiteStatus;
X;

Position y;
} XmDragMotionCallbackStruct, *XmDragMotionCallback;

reason

event

timeStamp

operation

operations

Reference Pages

XmDragContext(3X)

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback.

Specifies the timestamp of the logical event.

Identifies an operation.

If the toolkit has just called a DropSite's XmNdragProc, the toolkit
initializes operation to the value of the operation member of the
XmDragProcCallbackStruct at the time the DropSite's
XmNdragProc returns.

If the toolkit has not called an XmNdragProc and the pointer is
within an active drop site, the toolkit initializes operation by
selecting an operation from the bitwise AND of the initial value of
the operations member and the value of the DropSite's
XmNdropSiteOperations resource. The toolkit searches this set
first for XmDROP _MOVE, then for XmDROP _COPY, then for
XmDROP _LINK, and initializes operation to the first operation it
finds in the set. If the toolkit finds none of these operations in the
set, it initializes operation to XmDROP _NOOP.

If the toolkit has not called an XmNdragProc and the pointer is not
within an active drop site, the toolkit initializes operation by
selecting an operation from the initial value of the operations
member. The toolkit searches this set first for XmDROP _MOVE,
then for XmDROP _COPY, then for XmDROP _LINK, and
initializes operation to the first operation it finds in the set. If the
toolkit finds none of these operations in the set, it initializes
operation to XmDROP _NOOP.

Indicates the set of operations supported for the source data.

If the toolkit has just called a DropSite's XmNdragProc, the toolkit
initializes operations to the bitwise AND of the DropSite's
XmNdropOperations and the value of the operations member of
the XmDragProcCallbackStruct at the time the DropSite's
XmNdragProc returns. If the resulting set of operations is empty,
the toolkit initializes operations to XmDROP _NOOP.

1-383

OSF/Motif Programmer's Reference

XmDragContext(3X)

dropSiteStatus

1-384

If the toolkit has not called an XmNdragProc and the user does not
select an operation (by pressing a modifier key), the toolkit
initializes operations to the value of the DragContext's
XmNdragOperations resource.

If the toolkit has not called an XmNdragProc and the user does
select an operation, the toolkit initializes operations to the bitwise
AND of the corresponding operation and the value of the
DragContext's XmNdragOperations resource. If the resulting set
of operations is empty, the toolkit initializes operations to
XmDROP _NOOP.

Indicates whether or not a drop site is valid.

If the toolkit has just called a DropSite's XmNdragProc, the toolkit
initializes dropSiteStatus to the value of the dropSiteStatus member
of the XmDragProcCaIlbackStruct at the time the DropSite's
XmNdragProc returns.

If the toolkit has not called an XmNdragProc, it initializes
dropSiteStatus as follows: the toolkit initializes dropSiteStatus to
XmNO_DROP _SITE if the pointer is over an inactive drop site or
is not over a drop site. The toolkit initializes dropSiteStatus to
XmDROP _SITE_ VALID if all the following conditions are met:

• The pointer is over an active drop site.

• The DragContext's XmNexportTargets and the DropSite's
XmNimportTargets are compatible.

• The initial value of the operation member is not
XmDROP _NOOP.

Otherwise, the toolkit initializes dropSiteStatus to
XmDROP _SITE_INVALID.

Reference Pages

XmDragContext(3X)

A pointer to the following structure is passed for the XmNdropFinishCallback
callback:

typedef struct
{

int
XEvent
Time

reason;
*event;
timeStamp;

unsigned char operation;
unsigned char operations;
unsigned char dropSiteStatus;
unsigned char dropAction;
unsigned char completionStatus;

} XmDropFinishCallbackStruct, *XmDropFinishCallback;

reason

event

timeStamp

operation

operations

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback.

Specifies the time at which the drop was completed.

Identifies an operation.

If the pointer is over an active drop site when the drop begins, the
toolkit initializes operation to the value of the operation member of
the XmDropProcCallbackStruct at the time the DropSite's
XmNdropProc returns.

If the pointer is not over an active drop site when the drop begins,
the toolkit initializes operation by selecting an operation from the
initial value of the operations member. The toolkit searches this set
first for XmDROP _MOVE, then for XmDROP _COPY, then for
XmDROP _LINK, and initializes operation to the first operation it
finds in the set. If it finds none of these operations in the set, it
initializes operation to XmDROP _NOOP.

Indicates the set of operations supported for the source data.

If the pointer is over an active drop site when the drop begins, the
toolkit initializes operations to the bitwise AND of the DropSite's
XmNdropOperations and the value of the operations member of
the XmDropProcCallbackStruct at the time the DropSite's
XmNdropProc returns. If the resulting set of operations is empty,
the toolkit initializes operations to XmDROP _NOOP.

1-385

OSF/Motif Programmer's Reference

XmDragContext(3X)

1-386

dropSiteStatus

If the pointer is not over an active drop site when the drop begins
and if the user does not select an operation (by pressing a modifier
key), the toolkit initializes operations to the value of the
DragContext's XmNdragOperations resource.

If the pointer is not over an active drop site when the drop begins
and if the user does select an operation, the toolkit initializes
operations to the bitwise AND of the corresponding operation and
the value of the DragContext's XmNdragOperations resource. If
the resulting set of operations is empty, the toolkit initializes
operations to XmDROP _NOOP.

Indicates whether or not a drop site is valid.

If the pointer is over an active drop site when the drop begins, the
toolkit initializes dropSiteStatus to the value of the dropSiteStatus
member of the XmDropProcCallbackStruct at the time the
DropSite's XmNdropProc returns.

If the pointer is not over an active drop site when the drop begins,
the toolkit initializes dropSiteStatus to XmNO_DROP _SITE.

dropAction Identifies the drop action. The values are XmDROP,
XmDROP _CANCEL, XmDROP _HELP, and
XmDROP _INTERRUPT. The XmDROP _INTERRUPT value is
currently unsupported; if specified, it will be interpreted as an
XmDROP _CANCEL.

completionStatus
An IN/OUT member that indicates the status of the drop action.
After the last callback procedure has returned, the final value of this
member determines what visual transition effects will be applied.
There are two values:

XmDROP _SUCCESS

XmDROP _FAILURE

The drop was successful.

The drop was unsuccessful.

Reference Pages

XmDragContext(3X)

A pointer to the following structure is passed to callbacks for
XmNdropSiteEnterCallback:

typedef struct
{

int reason;
XEvent
Time
unsigned char
unsigned char
unsigned char

*event;
timeStamp;
operation;
operations;
dropSiteStatus;

Position X;
Position y;

}XmDropSiteEnterCallbackStruct, *XmDropSiteEnterCallback;

reason

event

timeStamp

operation

operations

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback.

Specifies the time the crossing event occurred.

Identifies an operation.

If the toolkit has just called a DropSite's XmNdragProc, the toolkit
initializes operation to the value of the operation member of the
XmDragProcCallbackStruct at the time the DropSite's
XmNdragProc returns.

If the toolkit has not called an XmNdragProc, it initializes
operation by selecting an operation from the bitwise AND of the
initial value of the operations member and the value of the
DropSite's XmNdropSiteOperations resource. The toolkit
searches this set first for XmDROP _MOVE, then for
XmDROP _COPY, then for XmDROP _LINK, and initializes
operation to the first operation it finds in the set. If the toolkit finds
none of these operations in the set, it initializes operation to
XmDROP _NOOP.

Indicates the set of operations supported for the source data.

If the toolkit has just called a DropSite's XmNdragProc, the toolkit
initializes operations to the bitwise AND of the DropSite's
XmNdropOperations and the value of the operations member of
the XmDragProcCallbackStruct at the time the DropSite's
XmNdragProc returns. If the resulting set of operations is empty,
the toolkit initializes operations to XmDROP _NOOP.

1-387

OSF/Motif Programmer's Reference

XmDragContext{ 3X)

1-388

If the toolkit has not called an XmNdragProc and the user does not
select an operation (by pressing a modifier key), the toolkit
initializes operations to the value of the DragContext's
XmNdragOperations resource.

If the toolkit has not called an XmNdragProc and the user does
select an operation, the toolkit initializes operations to the bitwise
AND of the corresponding operation and the value of the
DragContext's XmNdragOperations resource. If the resulting set
of operations is empty, the toolkit initializes operations to
XmDROP _NOOP.

dropSiteStatus

x

y

Indicates whether or not a drop site is valid.

If the toolkit has just called a DropSite's XmNdragProc, the toolkit
initializes dropSiteStatus to the value of the dropSiteStatus member
of the XmDragProcCallbackStruct at the time the DropSite's
XmNdragProc returns.

If the toolkit has not called XmNdragProc, it initializes
dropSiteStatus to XmDROP _SITE_VALID if the DragContext's
XmNexportTargets and the DropSite's XmNimportTargets are
compatible and if the initial value of the operation member is not
XmDROP _NOOP. Otherwise, the toolkit initializes dropSiteStatus
to XmDROP _SITE_INVALID.

Indicates the x -coordinate of the pointer in root window
coordinates.

Indicates the y-coordinate of the pointer in root window
coordinates.

A pointer to the following structure is passed to callbacks for
XmNdropSiteLeaveCallback:

typedef struct
{

int reason;
XEvent *event;
Time timeStamp;

}XmDropSiteLeaveCallbackStruct, *XmDropSiteLeaveCallback;

reason

event

timeStamp

Reference Pages

XmDragContext(3X)

Indicates why the callback was invoked

Points to the XEvent that triggered the callback

Specifies the timestamp of the logical event

A pointer to the following structure is passed for the XmNdropStartCallback
callback:

typedef struct
{

int
XEvent
Time
unsigned char
unsigned char
unsigned char
unsigned char
Position

reason;
*event;
timeStamp;
operation;
operations;
dropSiteStatus;
dropAction;
X;

Position y;

}XmDropStartCallbackStruct, *XmDropStartCallback;

reason

event

timeStamp

operation

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback.

Specifies the time at which the drag was completed.

Identifies an operation.

If the pointer is over an active drop site when the drop begins, the
toolkit initializes operation to the value of the operation member of
the XmDropProcCallbackStruct at the time the DropSite's
XmNdropProc returns.

If the pointer is not over an active drop site when the drop begins,
the toolkit initializes operation by selecting an operation from the
initial value of the operations member. The toolkit searches this set
first for XmDROP _MOVE, then for XmDROP _COPY, then for
XmDROP _LINK, and initializes operation to the first operation it
finds in the set. If it finds none of these operations in the set, it
initializes operation to XmDROP _NOOP.

1-389

OSF/Motif Programmer's Reference

XmDragContext(3X)

1-390

operations

dropSite Status

Indicates the set of operations supported for the source data.

If the pointer is over an active drop site when the drop begins, the
toolkit initializes operations to the bitwise AND of the DropSite's
XmNdropOperations and the value of the operations member of
the XmDropProcCallbackStruct at the time the DropSite's
XmNdropProc returns. If the resulting set of operations is empty,
the toolkit initializes operations to XmDROP _NOOP.

If the pointer is not over an active drop site when the drop begins
and if the user does not select an operation (by pressing a modifier
key), the toolkit initializes operations to the value of the
DragContext's XmNdragOperations resource.

If the pointer is not over an active drop site when the drop begins
and if the user does select an operation, the toolkit initializes
operations to the bitwise AND of the corresponding operation and
the value of the DragContext's XmNdragOperations resource. If
the resulting set of operations is empty, the toolkit initializes
operations to XmDROP _NOOP.

Indicates whether or not a drop site is valid.

If the pointer is over an active drop site when the drop begins, the
toolkit initializes dropSiteStatus to the value of the dropSiteStatus
member of the XmDropProcCallbackStruct at the time the
DropSite's XmNdropProc returns.

If the pointer is not over an active drop site when the drop begins,
the toolkit initializes dropSiteStatus to XmNO_DROP _SITE.

dropAction An IN/OUT member that identifies the drop action. The values are
XmDROP, XmDROP _CANCEL, XmDROP _HELP, and
XmDROP _INTERRUPT. The value of dropAction can be
modified to change the action actually initiated. The value
XmDROP _INTERRUPT is currently unsupported; if specified, it
will be interpreted as an XmDROP _CANCEL.

x Indicates the x-coordinate of the pointer in root window
coordinates.

y Indicates the y-coordinate of the pointer in root window
coordinates.

Reference Pages

XmDragContext{ 3X)

A pointer to the following structure is passed to the
XmNoperationChangedCallback callback:

typedef struct
{

int
XEvent
Time

reason;
*event;
timeStamp;

unsigned char operation;
unsigned char operations;
unsigned char dropSiteStatus;

}XmOperationChangedCallbackStruct, *XmOperationChangedCallback;

reason

event

timeStamp

operation

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback.

Specifies the time at which the crossing event occurred.

Identifies an operation.

If the toolkit has just called a DropSite's XmNdragProc, the toolkit
initializes operation to the value of the operation member of the
XmDragProcCallbackStruct at the time the DropSite's
XmNdragProc returns.

If the toolkit has not called an XmNdragProc, and the pointer is
within an active drop site, the toolkit initializes operation by
selecting an operation from the bitwise AND of the initial value of
the operations member and the value of the DropSite's
XmNdropSiteOperations resource. The toolkit searches this set
first for XmDROP _MOVE, then for XmDROP _COPY, then for
XmDROP _LINK, and initializes operation to the first operation it
finds in the set. If the toolkit finds none of these operations in the
set, it initializes operation to XmDROP _NOOP.

If the toolkit has not called an XmNdragProc, and the pointer is not
within an active drop site, the toolkit initializes operation by
selecting an operation from the initial value of the operations
member. The toolkit searches this set first for XmDROP _MOVE,
then for XmDROP _COPY, then for XmDROP _LINK, and
initializes operation to the first operation it finds in the set. If the
toolkit finds none of these operations in the set, it initializes
operation to XmDROP _NOOP.

1-391

OSF/Motif Programmer's Reference

XmDragContext(3X)

operations

dropSiteStatus

1-392

Indicates the set of operations supported for the source data.

If the toolkit has just called a DropSite's XmNdragProc, the toolkit
initializes operations to the bitwise AND of the DropSite's
XmNdropOperations and the value of the operations member of
the XmDragProcCallbackStruct at the time the DropSite's
XmNdragProc returns. If the resulting set of operations is empty,
the toolkit initializes operations to XmDROP _NOOP.

If the toolkit has not called an XmNdragProc, and the user does not
select an operation (by pressing a modifier key), the toolkit
initializes operations to the value of the DragContext's
XmNdragOperations resource.

If the toolkit has not called an XmNdragProc, and the user does
select an operation, the toolkit initializes operations to the bitwise
AND of the corresponding operation and the value of the
DragContext's XmNdragOperations resource. If the resulting set
of operations is empty, the toolkit initializes operations to
XmDROP _NOOP.

Indicates whether or not a drop site is valid.

If the toolkit has just called a DropSite's XmNdragProc, the toolkit
initializes dropSiteStatus to the value of the dropSiteStatus member
of the XmDragProcCallbackStruct at the time the DropSite's
XmNdragProc returns.

If the toolkit has not called an XmNdragProc it initializes
dropSiteStatus to XmNO_DROP _SITE if the pointer is over an
inactive drop site or is not over a drop site. The toolkit initializes
dropSiteStatus to XmDROP _SITE_ VALID if all the following
conditions are met:

• The pointer is over an active drop site

• The DragContext's XmNexportTargets and the DropSite's
XmNimportTargets are compatible

• The initial value of the operation member is not
XmDROP _NOOP

Otherwise, the toolkit initializes dropSiteStatus to
XmDROP _SITE_INVALID.

Reference Pages

XmDragContext(3X)

A pointer to the following structure is passed to callbacks for
XmNtopLevelEnterCallback:

typedef struct
{

int
XEvent
Time
Screen
Window
Position

reason;
*event;
timeStamp;
screen;
window;
X;

Position y;
unsigned char dragProtocolStyle;

}XmTopLevelEnterCallbackStruct, *XmTopLevelEnterCallback;

reason

event

timeStamp

screen

window

x

y

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback.

Specifies the timestamp of the logical event.

Specifies the screen associated with the top-level window or root
window being entered.

Specifies the ID of the top-level window or root window being
entered.

Indicates the x -coordinate of the pointer in root window
coordinates.

Indicates the y -coordinate of the pointer in root window
coordinates.

dragProtocolStyle
Specifies the protocol style adopted by the initiator. The values are
XmDRAG_DROP _ONLY, XmDRAG_DYNAMIC,
XmDRAG_NONE, and XmDRAG_PREREGISTER.

1-393

OSF/Motif Programmer's Reference

XmDragContext{ ax)

1-394

A pointer to the following structure is passed to callbacks for
XmNtopLevelLeaveCallback:

typedef struct
{

int
XEvent
Time

reason;
*event;
timeStamp;

Screen screen;
Window window;

}XmTopLeveILeaveCallbackStruct, *XmTopLeveILeaveCallback;

reason

event

timeStamp

screen

window

Translations

Indicates why the callback was invoked

Points to the XEvent that triggered the callback

Specifies the timestamp of the logical event

Specifies a screen associated with the top-level window or root
window being left

Specifies the ID of the top-level window or root window being left

The XmDragContext translations are described in the following list. These
translations may not directly correspond to a translation table.

BTransfer Motion:

BTransfer Release:

KCancel:

KHelp:

DragMotionO

FinishDragO

CancelDragO

HelpDragO

Reference Pages
XmDragContext{ ax)

Action Routines
The XmDragContext action routines are

CancelDragO:
Cancels the drag operation and frees the associated DragContext.

DragMotionO:
Drags the selected data as the pointer is moved.

FinishDragO:
Finishes the drag operation and starts the drop operation.

HelpDragO: Initiates a conditional drop that enables the receiver to provide help
information to the user. The user can cancel or continue the drop
operation in response to this information.

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Core(3X), XmDisplay(3X), XmDragCancel(3X), XmDraglcon(3X),
XmDragStart(3X), XmDropSite(3X), XmDropTransfer(3X), and
XmScreen(3X) .

1-395

OSF/Motif Programmer's Reference

XmDraglcon (3X)

Synopsis

Description

1-396

XmDraglcon-The DragIcon widget class

#include <XmlDragDrop.h>

A DragIcon is a component of the visual used to represent the source data in a drag
and drop transaction. During a drag operation, a real or simulated X cursor
provides drag-over visuals consisting of a static portion that represents the object
being dragged, and dynamic cues that provide visual feedback during the drag
operation. The visual is attained by blending together various XmDraglcons
specified in the XmDragContext associated with the drag operation.

The static portion of the drag-over visual is the graphic representation that
identifies the drag source. For example, when a user drags several items within a
list, a DragIcon depicting a list might be supplied as the visual. The
XmDragContext resources, XmNsourceCursorIcon or
XmNsourcePixmaplcon, specify a DragIcon to use for the static portion of the
visual.

A drag-over visual incorporates dynamic cues in order to provide visual feedback
in response to the user's actions. For instance, the drag-over visual might use
different indicators to identify the type of operation (copy, link, or move) being
performed. Dynamic cues could also alert the user that a drop site is valid or
invalid as the pointer traverses the drop site. The XmNoperationCursorIcon and
XmNstateCursorIcon resources of XmDragContext specify DragIcons for
dynamic cues.

A drag-over visual typically consists of a source, operation and state DragIcon.
The XmNblendModel resource of XmDragContext offers several options that
determine which icons are blended to produce the drag-over visual. DragIcon
resources control the relative position of the operation and state icons (if used). If
a particular DragIcon is not specified, the toolkit uses the XmScreen default
DragIcons.

An application initializes a DragIcon with the function XmCreateDraglcon or
through entries in the resource database. If a pixmap and its mask (optional) are
specified in the resource database, the toolkit converts the values in the XII
Bitmap file format and assigns values to the corresponding resources.

Classes
DragIcon inherits behavior and a resource from Object.

The class pointer is xmDragIconObjectClass.

The class name is XmDragIcon.

Reference Pages
XmDraglcon(3X)

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-397

OSF/Motif Programmer's Reference

XmDraglcon(3X)

XmDraglcon Resource Set

Name Default Access
Class Type

XmNattachment XmATTACH_NORTH_WEST CSG
XmCAttachment unsigned char

XmNdepth 1 CSG
XmCDepth int

XmNheight 0 CSG
XmCHeight Dimension

XmNhotX 0 CSG
XmCHot Position

XmNhotY 0 CSG
XmCHot Position

XmNmask XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNoffsetX 0 CSG
XmCOffset Position

XmNoffsetY 0 CSG
XmCOffset Position

XmNpixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNwidth 0 CSG
XmCWidth Dimension

XmNattachment

1-398

Specifies a relative location on the source icon for the attachment of
the state or operation icon. The origin of the state and operation
icons is aligned with the specified compass point on the source icon.
The XmNoffsetX and XmNoffsetY resources can be used to further
refine the icon positions. The possible values are

XmATTACH_NORTH_ WEST
Attaches the origin of the state or operation icon to
the northwest point on the source icon.

XmATTACH_NORTH
Attaches the origin of the state or operation icon to
the north point on the source icon.

Reference Pages
XmDraglcon (3X)

XmATTACH_NORTH_EAST
Attaches the origin of the state or operation icon to
the northeast point on the source icon.

XmATTACH_EAST
Attaches the origin of the state or operation icon to
the east point on the source icon.

XmATTACH_SOUTH_EAST
Attaches the origin of the state or operation icon to
the southeast point on the source icon.

XmATTACH_SOUTH
Attaches the origin of the state or operation icon to
the south point on the source icon.

XmATTACH_SOUTH_ WEST
Attaches the origin of the state or operation icon to
the southwest point on the source icon.

XmATTACH_ WEST
Attaches the origin of the state or operation icon to
the west point on the source icon.

XmATTACH_CENTER
Attaches the origin of the state or operation icon to
the center of the source icon. The XmNoffsetX and
XmNoffsetY resources may be used to center the
attached icon.

XmATTACH_HOT
Attaches the hotspot coordinates of a state or
operation DragIcon to an x,y position on the source
icon. The x,y coordinate is taken from the event
passed to the XmDragStart function, and made
relative to the widget passed as an argument to the
same function.

XmNdepth Specifies the depth of the pixmap.

XmNheight Specifies the height of the pixmap.

XmNhotX Specifies the x-coordinate of the hotspot of a cursor DragIcon in
relation to the origin of the pixmap bounding box.

XmNhotY Specifies the y-coordinate of the hotspot of a cursor DragIcon in
relation to the origin of the pixmap bounding box.

1-399

OSF/Motif Programmer's Reference

XmDraglcon (3X)

XmNmask Specifies a pixmap of depth 1 to use as the DragIcon mask pixmap.

XmNoffsetX Specifies a horizontal offset (in pixels) of the origin of the state or
operation icon relative to the attachment point on the source icon. A
positive offset value moves the origin to the right; a negative value
moves the origin to the left.

XmNoffsetY Specifies a vertical offset (in pixels) of the origin of the state or
operation icon relative to the attachment point on the source icon. A
positive offset value moves the origin down; a negative value moves
the origin up.

XmNpixmap Specifies a pixmap to use as the DragIcon pixmap.

XmNwidth Specifies the width of the pixmap.

Inherited Resources
DragIcOn inherits behavior and a resource from Object. For a complete
description of this resource, refer to the Object reference page.

Object Resource Set

Name Default Access
Class Type

Xm NdestroyCallback NULL C
XmCCallback XtCallbackList

Related Information

1-400

Object(3X), XmCreateDragIcon(3X), XmDisplay(3X), XmDragContext(3X),
XmDropSite(3X), XmDropTransfer(3X), and XmScreen(3X).

Synopsis

Description

Reference Pages

XmDragStart(3X)

XmDragStart-A Drag and Drop function that initiates a drag and drop
transaction

#include <XmlDragDrop.h>

Widget XmDragStart (widget, event, arglist, argcount)
Widget widget;
XEvent *event;
ArgList arglist;
Cardinal argcount;

XmDragStart initiates a drag operation. This routine returns the DragContext
widget that it initializes for the associated drag transaction. The toolkit is
responsible for freeing the DragContext when the drag and drop transaction is
complete.

widget

event

argUst

argcount

Specifies the ID of the smallest widget and/or gadget that encloses
the source elements selected for a drag operation.

Specifies the XEvent that triggered the drag operation. This event
must be a ButtonPress event.

Specifies the argument list. Any XmDragContext resources not
specified in the argument list are obtained from the resource
database or are set to their default values.

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of DragContext and its associated resources, see
XmDragContext(3X).

Return Value
Returns the ID of the DragContext widget that controls this drag and drop
transaction.

Related Information
XmDragCancel(3X) and XmDragContext(3X).

1-401

OSF/Motif Programmer's Reference

XmDrawingArea(3X)

Synopsis

Description

Classes

XmDrawingArea-The DrawingArea widget class

#include <XmlDrawingA.h>

DrawingArea is an empty widget that is easily adaptable to a variety of purposes.
It does no drawing and defines no behavior except for invoking callbacks.
Callbacks notify the application when graphics need to be drawn (exposure events
or widget resize) and when the widget receives input from the keyboard or mouse.

Applications are responsible for defining appearance and behavior as needed in
response to DrawingArea callbacks.

DrawingArea is also a composite widget and subclass of XmManager that
supports minimal geometry management for multiple widget or gadget children.

DrawingArea inherits behavior and resources from the Core, Composite,
Constraint, and XmManager classes.

The class pointer is xmDrawingArea WidgetClass.

The class name is XmDrawingArea.

New Resources

1-402

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmDrawingArea (3X)

XmDrawingArea Resource Set

Name Default Access
Class Type

XmNexposeCaliback NULL C
XmCCaliback XtCalibackList

Xm NinputCaliback NULL C
XmCCaliback XtCalibackList

XmNmarginHeight 10 CSG
XmCMarginHeight Dimension

XmNmarginWidth 10 CSG
XmCMarginWidth Dimension

XmNresizeCaliback NULL C
XmCCaliback XtCalibackList

XmNresizePolicy XmRESIZE_ANY CSG
XmCResizePolicy unsigned char

XmNexposeCallback
Specifies the list of callbacks that is called when DrawingArea
receives an exposure event. The callback reason is
XmCR_EXJ>OSE. The callback structure also includes the
exposure event.

The default bit gravity for Manager windows is NorthWestGravity.
This may cause the XmNexposeCallback procedures not to be
invoked when the DrawingArea window i~ made smaller.

XmNinputCallback
Specifies the list of callbacks that is called when the DrawingArea
receives a keyboard or mouse event (key or button, up or down).
The callback reason is XmCR_INPUT. The callback structure also
includes the input event.

XmNmarginHeight
Specifies the minimum spacing in pixels between the top or bottom
edge of DrawingArea and any child widget.

XmNmarginWidth
Specifies the minimum spacing in pixels between the left or right
edge of DrawingArea and any child widget.

1-403

OSF/Motif Programmer's Reference

XmDrawingArea(3X)

1-404

XmNresizeCallback
Specifies the list of callbacks that is called when the DrawingArea is
resized. The callback reason is XmCR_RESIZE.

XmNresizePolicy

Inherited Resources

Controls the policy for resizing DrawingArea
values include XmRESIZE_NONE
XmRESIZE_ANY (shrink or grow as
XmRESIZE_GROW (grow only).

widgets. Possible
(fixed size),
needed), and

DrawingArea inherits behavior and resources from the following superclasses. For
a complete description of each resource, refer to the reference page for that
superclass.

Reference Pages

XmDrawingArea (3X)

XmManager Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus NULL CSG
XmClnitialFocus Widget

XmNnavigationType XmTAB_GROUP CSG
XmCNavigationType XmNavigationType

XmNshadowThickness 0 CSG
XmCShadowThickness Dimension

XmNstringDirection dynamic CG
XmCStringDirection XmStringDirection

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

XmNtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-405

OSF/Motif Programmer's Reference

XmDrawingArea (ax)

Composite Resource Set

Name Default Access
Class Type

XmNchiidren NULL G
XniCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-406

Reference Pages

XmDrawingArea (3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

Xm N initial ResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-407

OSF/Motif Programmer's Reference

XmDrawingArea(3X)

1-408

Name Default Access
Class Type

XmNtranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
Window window;

} XmDrawingAreaCallbackStruct;

reason

event

window

Translations

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback. This is NULL for
the XmNresizeCallback.

Is set to the widget window.

XmDrawingArea inherits translations from XmManager. Before calling the
XmManager actions, all events in the inherited translations except <BtnMotion>,
<EnterWindow>, <LeaveWindow>, <FocusIn>, and <FocusOut> also call the
DrawingAreaInputO action.

Reference Pages

XmDrawingArea (aX)

XmDrawingArea has the following additional translations. These translations may
not directly correspond to a translation table.

MAny BAny Press:

MAny BAny Release:

MAny KAny Press:

MAny KAny Release:

Action Routines

DrawingArealnputO

DrawingArealnputO

DrawingAreaJnputO
ManagerGadgetKeylnputO

DrawingArealnputO

The XmDrawingArea action routines are described below:

DrawingArealnputO:
Unless the event takes place in a gadget, calls the callbacks for
XmNinputCallback

ManagerGadgetKeylnputO:
Causes the current gadget to process a keyboard event

Additional Behavior
The XmDrawingArea widget has the following additional behavior:

<Expose>: Calls the callbacks for XmNexposeCallback

<Widget Resize>:
Calls the callbacks for XmNresizeCallback

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Composite(3X), Constraint(3X), Core(3X), XmCreateDrawingArea(3X), and
XmManager(3X) .

1-409

OSF/Motif Programmer's Reference

XmDrawnButton (3X)

Synopsis

Description

Classes

XmDrawnButton-The DrawnButton widget class

#include <XmlDrawnB.h>

The DrawnButton widget consists of an empty widget window surrounded by a
shadow border. It provides the application developer with a graphics area that can
have PushButton input semantics.

Callback types are defined for widget exposure and widget resize to allow the
application to redraw or reposition its graphics. If the DrawnButton widget has a
highlight and shadow thickness, the application should not draw in that area. To
avoid drawing in the highlight and shadow area, create the graphics context with a
clipping rectangle for drawing in the widget. The clipping rectangle should take
into account the size of the widget's highlight thickness and shadow.

DrawnButton inherits behavior and resources from the Core, XmPrimitive, and
XmLabel classes.

The class pointer is xmDrawnButton WidgetClass.

The class name is XmDrawnButton.

New Resources

1-410

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmDrawnButton (3X)

XmDrawnButton Resource Set

Name Default Access
Class Type

XmNadivateCallback NULL C
XmCCallback XtCallbackList

XmNarmCallback NULL C
XmCCallback XtCallbackList

XmNdisarmCallback NULL C
XmCCallback XtCallbackList

Xm NexposeCallback NULL C
XmCCallback XtCallbackList

XmNl11ultiClick dynamic CSG
XmCMultiClick unsigned char

XmNpushButtonEnabled False CSG
XmCPushButtonEnabled Boolean

Xm N resizeCallback NULL C
XmCCallback XtCallbackList

XmNshadowType XmSHADOW_ETCHED_IN CSG
XmCShadowType unsigned char

XmNactivateCallback
Specifies the list of callbacks that is called when the widget
becomes selected. The reason sent by the callback is
XmCR_ACTIVATE.

XmNarmCallback
Specifies the list of callbacks that is called when the widget
becomes armed. The reason sent by the callback is XmCR_ARM.

XmNdisarmCallback
Specifies the list of callbacks that is called when the widget
becomes disarmed. The reason sent by the callback is
XmCR_DISARM.

XmNexposeCallback
Specifies the list of callbacks that is called when the widget receives
an exposure event. The reason sent by the callback is
XmCR_EXPOSE.

1-411

OSF/Motif Programmer's Reference
XmDrawnButton (3X)

1-412

XmNmultiClick
If a button click is followed by another button click within the time
span specified by the display's multiclick time, and this resource is
set to XmMULTICLICK_DISCARD, the second click is not
processed. If this resource is set to XmMULTICLICK_KEEP, the
event is processed and click_count is incremented in the callback
structure. When the button is not in a menu, the default value is
XmMULTICLICK_KEEP.

XmNpushButtonEnabled
Enables or disables the 3-dimensional shadow drawing as in
PushButton.

XmNresizeCallback
Specifies the list of callbacks that is called when the widget receives
a resize event. The reason sent by the callback is XmCR_RESIZE.
The event returned for this callback is NULL.

XmNshadowType
Describes the drawing style for the DrawnButton. This resource can
have the following values:

XmSHADOW _IN
Draws the DrawnButton so that the shadow appears
inset. This means that the bottom shadow visuals and
top shadow visuals are reversed.

XmSHADOW _OUT
Draws the DrawnButton so that the shadow appears
outset.

XmSHADOW _ETCHED_IN
Draws the DrawnButton using a double line. This
gives the effect of a line etched into the window. The
thickness of the double line is equal to the value of
XmNshadowThickness.

XmSHADOW_ETCHED_OUT
Draws the DrawnButton using a double line. This
gives the effect of a line coming out of the window.
The thickness of the double line is equal to the value
of XmNshadowThickness.

Reference Pages

XmDrawnButton(3X)

Inherited Resources
DrawnButton inherits behavior and resources from the superclasses described in
the following tables. For a complete description of each resource, refer to the
reference page for that superclass.

1-413

OSF/Motif Programmer's Reference

XmDrawnButton (3X)

XmLabel Resource Set

Name Default Access
Class Type

Xm Naccelerator NULL N/A
XmCAccelerator String

Xm NacceleratorText NULL N/A
XmCAcceleratorText XmString

XmNalignment dynamic CSG
XmCAlignment unsigned char

XmNfontList dynamic CSG
XmCFontList XmFontList

XmNlabellnsensitivePixmap XmUNSPECIFIED_PIXMAP CSG
XmCLabel1 nsensitivePixmap Pixmap

XmNlabelPixmap XmUNSPECIFIED_PIXMAP CSG
XmCLabelPixmap Pixmap

Xm N labelString "\0" CSG
XmCXmString XmString

XmNlabelType XmSTRING CSG
XmCLabelType unsigned char

XmNmarginBottom 0 CSG
XmCMarginBoUom Dimension

XmNmarginHeight 2 CSG
XmCMarginHeight Dimension

XmNmarginLeft 0 CSG
XmCMarginLeft Dimension

XmNmarginRight 0 CSG
XmCMarginRight Dimension

XmNmarginTop 0 CSG
XmCMarginTop Dimension

XmNmarginWidth 2 CSG
XmCMarginWidth Dimension

XmNmnemonic NULL N/A
XmCMnemonic KeySym

1-414

Reference Pages

XmDrawnButton{3X)

Name Default Access
Class Type

XmNmnemonicCharSet XmFONTLIST _DEFAULT_TAG N/A
XmCMnemonicCharSet String

XmNrecomputeSize True CSG
XmCRecomputeSize Boolean

XmNstringDirection dynamic CSG
XmCStringDirection XmStringDirection

1-415

OSF/Motif Programmer's Reference

XmDrawnButton (3X)

XmPrimitive Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

Xm NhelpCallback NULL C
XmCCallback XtCallbackList

Xm NhighlightColor dynamic CSG
XmCHighlightColor Pixel

Xm NhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

Xm NhighlightThickness 2 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType Xm NavigationType

Xm NshadowThickness 2 CSG
XmCShadowThickness Dimension

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-416

Reference Pages

XmDrawnButton(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmCI nitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-417

OSF/Motif Programmer's Reference

XmDrawnButton(3X)

1-418

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int
XEvent
Window

reason;
* event;
window;

int click_count;
} XmDrawnButtonCallbackStruct;

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback. This is NULL for
XmNresizeCallback.

window Is set to the window ID in which the event occurred.

click_count Contains the number of clicks in the last multi click sequence if the
XmNmultiClick resource is set to XmMULTICLICK_KEEP,
otherwise it contains 1. The activate callback is invoked for each
click if XmNmultiClick is set to XmMULTICLICK_KEEP.

Translations
XmDrawnButton includes translations from Primitive. Additional
XmDrawnButton translations are described in the following list. These translations
may not directly correspond to a translation table.

BSelect Press:

BSelect Click:

ArmO

ActivateO
DisarmO

Reference Pages

Xm Drawn Button (3X)

Select Release: ActivateO
DisarmO

BSelect Press 2+: MultiArmO

MultiActivateO

ArmAndActivateO

BSelect Release 2+:

KSelect:

KHelp: HeipO

Action Routines
The XmDrawnButton action routines are

ActivateO: If XmNpushButtonEnabled is True, redraws the shadow in the
un selected state; otherwise, redraws the shadow according to
XmNshadowType. If the pointer is within the DrawnButton, calls
the XmNactivateCallback callbacks.

ArmO: If XmNpushButtonEnabled is True, redraws the shadow in the
selected state; otherwise, redraws the shadow according to
XmNshadowType. Calls the callbacks for XmNarmCallback.

ArmAndActivateO:

DisarmO:

HelpO:

If XmNpushButtonEnabled is True, redraws the shadow in the
selected state; otherwise, redraws the shadow according to
XmNshadowType. Calls the callbacks for XmNarmCallback.

If XmNpushButtonEnabled is True, the shadow is redrawn in the
un selected state; otherwise, the shadow is redrawn according to
XmNshadowType. The callbacks for XmNactivateCallback and
XmNdisarmCallback are called. These actions happen either
immediately or at a later time:

Marks the DrawnButton as unselected and calls the callbacks for
XmNdisarmCallback.

Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

MultiActivateO:
If XmNmultiClick is XmMULTICLICK_DISCARD, this action
does nothing.

If XmNmultiClick is XmMULTICLICK_KEEP, this action
increments click_count in the callback structure. If
XmNpushButtonEnabled is True, this action redraws the shadow

1-419

OSF/Motif Programmer's Reference

Xm DrawnButton (3X)

in the un selected state; otherwise, it redraws the shadow according
to XmNshadowType. If the pointer is within the DrawnButton, this
action calls the XmNactivateCallback callbacks and calls the
callbacks for XmNdisarmCallback.

MultiArmO: If XmNmultiClick is XmMULTICLICK_DISCARD, this action
does nothing.

Additional Behavior

If XmNmultiClick is XmMULTICLICK_KEEP and if
XmNpushButtonEnabled is True, this action redraws the shadow
in the selected state; otherwise, it redraws the shadow according to
XmNshadowType and Calls the callbacks for XmNarmCallback.

This widget has the following additional behavior:

<EnterWindow>:
Draws the shadow in its selected state if XmNpushButtonEnabled
is True and if the cursor leaves and re-enters the window while
BSelect is pressed.

<Leave Window>:

Virtual Bindings

Draws the shadow in its unselected state if
XmNpushButtonEnabled is True and if the cursor leaves the
window while BSelect is pressed.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information

1-420

Core(3X), XmCreateDrawnButton, XmLabel(3X), XmPrimitive(3X),
XmPushButton, and XmSeparator(3X).

Synopsis

Description

Reference Pages

XmDropSite(3X)

XmDropSite-The DropSite Registry

#include <XmlDragDrop.h>

A client registers a widget or gadget as a drop site using the XmDropSiteRegister
function. In addition, this routine defines the behavior and capabilities of a drop
site by specifying appropriate resources. For example, the XmNimportTargets
and XmNnumImportTargets resources identify respectively the selection target
types and number of types supported by a drop site. The visual animation effects
associated with a drop site are also described with DropSite resources.

Drop site animation effects that occur in response to the pointer entering a valid
drop site are called drag-under effects. A receiver can select from several
animation styles supplied by the toolkit or can provide customized animation
effects. Drag-under effects supplied by the toolkit include border highlighting,
shadow in/out drawing, and pixmap representation.

When a preregister drag protocol style is used, the toolkit generates drag-under
visual effects based on the value of the XmNanimationStyle resource. In dynamic
mode, if the drop site XmNdragProc resource is NULL, the toolkit also provides
animation effects based on the XmNanimationStyle resource. Otherwise, if the
XmNdragProc routine is specified, the receiver can either assume responsibility
for animation effects (through the XmNdragProc routine) or rely on the toolkit to
provide animation.

Drop sites may overlap. The initial stacking order corresponds to the order in
which the drop sites were registered. When a drop site overlaps another drop site,
the drag-under effects of the drop site underneath are clipped by the obscuring drop
site(s).

The XmDropSiteUpdate routine sets resources for a widget that is registered as a
drop site. XmDropSiteRetrieve gets drop site resource values previously
specified for a registered widget. These routines are used instead of XtSetValues
and XtGetValues.

Classes
XmDropSite does not inherit from any widget class.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. To reference a resource by name or by class in a .Xdefaults file,
remove the XmN or XmC prefix and use the remaining letters. To specify one of

1-421

OSF/Motif Programmer's Reference

XmDropSite(3X)

1-422

the defined values for a resource in a .Xdefaults file, remove the Xm prefix and
use the remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the given
resource can be set at creation time (C), set by using XmDropSiteUpdate (8),
retrieved by using XmDropSiteRetrieve (G), or is not applicable (N/A).

XmDropSite Resource Set

Name Default Access
Class Type

XmNanimationMask XmUNSPECIFIED_PIXMAP CSG
XmCAnimationMask Pixmap

XmNanimationPixmap XmUNSPECIFIED_PIXMAP CSG
XmCAnimationPixmap Pixmap

XmNanimationPixmapDepth 0 CSG
XmCAnimationPixmapDepth int

Xm NanimationStyle XmDRAG_UNDER_HIGHLIGHT CSG
XmCAnimationStyle unsigned char

XmNdragProc NULL CSG
XmCDragProc XtCallbackProc

XmNdropProc NULL CSG
XmCDropProc XtCallbackProc

Xm NdropRectangles dynamic CSG
XmCDropRectangles XRectangle *

Xm NdropSiteActivity XmDROP _SITE_ACTIVE CSG
XmCDropSiteActivity unsigned char

XmNdropSiteOperations XmDROP_MOVEIXmDROP_COPY CSG
XmCDropSiteOperations unsigned char

XmNdropSiteType XmDROP _SITE_SIMPLE CG
XmCDropSiteType unsigned char

XmNimportTargets NULL CSG
XmClmportTargets Atom *

XmNnumDropRectangles 1 CSG
XmCNum DropRectangles Cardinal

Xm Nnum ImportTargets 0 CSG
XmCNumlmportTargets Cardinal

Reference Pages

XmDropSite(3X)

XmNanimationMask
Specifies a mask to use with the pixmap specified by
XmNanimationPixmap when the animation style is
XmDRAG_UNDER_PIXMAP.

XmNanimationPixmap
Specifies a pixmap for drag-under animation when the animation
style is XmDRAG_UNDER_PIXMAP. The pixmap is drawn with
its origin at the upper left comer of the bounding box of the drop
site. If the drop site window is larger than the animation pixmap,
the portion of the window not covered by the pixmap will be tiled
with the window's background color.

XmNanimationPixmapDepth
Specifies the depth of the pixmap specified by the
XmNanimationPixmap resource. When the depth is 1, the colors
are taken from the foreground and background of the drop site
widget. For any other value, drop site animation occurs only if the
XmNanimationPixmapDepth matches the depth of the drop site
window. Colors are derived from the current colormap.

XmNanimationStyle
Specifies the drag-under animation style used when a drag enters a
valid drop site. The possible values are

XmDRAG_UNDER_HIGHLIGHT
The drop site uses highlighting effects.

XmDRAG_UNDER_SHADOW _OUT
The drop site uses an outset shadow.

XmDRAG_UNDER_SHADOW _IN
The drop site uses an inset shadow.

XmDRAG_UNDER_PIXMAP
The drop site uses the pixmap specified by
XmNanimationPixmap to indicate that it can
receive the drop.

XmDRAG_UNDER_NONE
The drop site does not use animation effects. A client
using a dynamic protocol, may provide drag-under
effects in its XmNdragProc routine.

1-423

OSF/Motif Programmer's Reference

XmDropSite(3X)

1-424

XmNdragProc
Specifies the procedure that is invoked when the drop site receives a
crossing, motion, or operation changed message. This procedure is
called only when a dynamic protocol is used. The type of structure
whose address is passed to this procedure is
XmDragProcCallbackStruct. The reason sent to the procedure is
one of the following:

• XmCR_DROP _SITE_ENTER_MESSAGE

• XmCR_DROP _SITE_LEAVE_MESSAGE

• XmCR_DRAG_MOTION_MESSAGE

• XmCR_OPERATION_CHANGED_MESSAGE

The drag procedure may change the values of some members of the
XmDragProcCallbackStruct passed to it. After the drag
procedure returns, the toolkit uses the final values in initializing
some members of the callback structure passed to the appropriate
callbacks of the initiator (the DragContext's
XmNdropSiteEnterCallback, XmNdropSiteLeaveCallback,
XmNdragMotionCallback, or XmNoperationChangedCallback
callbacks).

XmNdropProc
Specifies the procedure that is invoked when a drop (excluding a
cancel or interrupt action) occurs on a drop site regardless of the
status of the drop site. The type of the structure whose address is
passed to this procedure is XmDropProcCallbackStruct. The
reason sent to the procedure is XmCR_DROP _MESSAGE.

The drop procedure may change the values of some members of the
XmDropProcCallbackStruct passed to it. After the drop
procedure returns, the toolkit uses the final values in initializing
some members of the XmDropStartCallbackStruct passed to the
initiator's drop start callbacks (the DragContext's
XmNdropStartCallback callbacks).

XmNdropRectangles
Specifies a list of rectangles that describe the shape of a drop site.
The locations of the rectangles are relative to the origin of the
enclosing object. When XmNdropRectangles is NULL, the drop
site is assumed to be the sensitive area of the enclosing widget. If
XmNdropSiteType is XmDROP _SITE_COMPOSITE, this
resource cannot be specified by the application.

Reference Pages

XmDropSite(3X)

XmNdropSiteActivity
Indicates whether a drop site is active or inactive. The values are
XmDROP _SITE_ACTIVE and XmDROP _SITE_INACTIVE.
An active drop site can receive a drop, whereas an inactive drop site
is dormant. An inactive drop site is treated as if it was not a
registered drop site and any drag-under visuals associated with
entering or leaving the drop site do not occur. However, it is still
used for clipping drag-under effects.

XmNdropSiteOperations
Specifies the set of valid operations associated with a drop site. This
resource is a bit mask that is formed by combining one or more of
the following values using a bitwise operation such as inclusive OR
(I): XmDROP _COPY, XmDROP _LINK, and XmDROP _MOVE.
The value XmDROP _NOOP for this resource indicates that no
operations are valid.

XmNdropSiteType
Specifies the type of the drop site. The possible values are

XmDROP _SITE_SIMPLE
The widget does not have any additional children that
are registered as drop sites.

XmDROP _SITE_COMPOSITE
The widget will have children that are registered as
drop sites.

XmNimportTargets
Specifies the list of target atoms that this drop site accepts.

XmNnumDropRectangles
Specifies the number of rectangles in the XmNdropRectangles list.
If the drop site type is XmDROP _SITE_COMPOSITE, this
resource can not be specified by the application.

XmNnumImportTargets
Specifies the number of atoms in the target atom list.

1-425

OSF/Motif Programmer's Reference

XmDropSite(3X)

1-426

Callback Information
A pointer to the following structure is passed to the XmNdragProc routine when
the drop site receives crossing, motion, or operation changed messages:

typedef struct
{

int
XEvent
Time
Widget
Position

reason;
*event;
timeStamp;
drag Context
X;

Position y;

unsigned char dropSiteStatus;
unsigned char operation;
unsigned char operations;
Boolean animate;

} XmDragProcCallbackStruct, *XmDragProcCallback;

reason

event

timeStamp

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback.

Specifies the timestamp of the logical event.

drag Context Specifies the ID of the DragContext widget associated with the
transaction.

X

y

dropSiteStatus

Indicates the x-coordinate of the pointer relative to the drop site.

Indicates the y-coordinate of the pointer relative to the drop site.

An IN/OUT member that indicates whether or not a drop site is
valid.

When reason is XmCR_DROP _SITE_ENTER_MESSAGE or
XmCR_OPERATION_CHANGED_MESSAGE, or reason is
XmCR_DRAG_MOTION_MESSAGE or
XmCR_DROP _SITE_LEAVE_MESSAGE and the pointer is not
in the same drop site as on the previous invocation of the drag
procedure, the toolkit initializes dropSiteStatus to
XmDROP _SITE...:VALID if the DragContext's
XmNexportTargets and the DropSite's XmNimportTargets are
compatible and if the initial value of the operation member is not
XmDROP _NOOP. Otherwise, the toolkit initializes dropSiteStatus
to XmDROP _SITE_INVALID.

operation

operations

Reference Pages

XmDropSite(3X)

When the reason is XmCR_DRAG_MOTION_MESSAGE or
XmCR_DROP _SITE_LEAVE_MESSAGE and the pointer is
within the same drop site as on the previous invocation of the drag
procedure, the toolkit initializes dropSiteStatus to the value of
dropSiteStatus at the time the previous invocation of the drag
procedure returns.

The drag procedure may change the value of this member. After the
drag procedure returns, the toolkit uses the final value in initializing
the dropSiteStatus member of the callback struct passed to the
appropriate callbacks of the initiator.

An IN/OUT member that identifies an operation.

The toolkit initializes operation by selecting an operation from the
bitwise AND of the initial value of the operations member and the
value of the DropSite's XmNdropSiteOperations resource. The
toolkit searches this set first for XmDROP _MOVE, then for
XmDROP _COPY, then for XmDROP _LINK, and initializes
operation to the first operation it finds in the set. If the toolkit finds
none of these operations in the set, it initializes operation to
XmDROP _NOOP.

The drag procedure may change the value of this member. After the
drag procedure returns, the toolkit uses the final value in initializing
the operation member of the callback struct passed to the
appropriate callbacks of the initiator.

An IN/OUT member that indicates the set of operations supported
for the source data.

If the user does not select an operation (by pressing a modifier key),
the toolkit initializes operations to the value of the DragContext's
XmNdragOperations resource. If the user does select an
operation, the toolkit initializes operations to the bitwise AND of
the corresponding operation and the value of the DragContext's
XmNdragOperations resource. If the resulting set of operations is
empty, the toolkit initializes operations to XmDROP _NOOP.

The drag procedure may change the value of this member. After the
drag procedure returns, the toolkit uses the final value in initializing
the operations member of the callback struct passed to the
appropriate callbacks of the initiator.

1-427

OSF/Motif Programmer's Reference

XmDropSite(3X)

1-428

animate An OUT member that indicates whether the toolkit or the receiver
client provides drag-under effects for a valid drop site. If animate is
set to True, the toolkit provides drop site animation per the
XmNanimationStyle resource value; if it is set to False, the
receiver generates drag-under animation effects.

A pointer to the following structure is passed to the XmNdropProc routine when
the drop site receives a drop message:

typedef struct
{

int
XEvent
Time
Widget
Position

reason;
*event;
timeStamp;
dragContext;
X;

Position y;
unsigned char dropSiteStatus;
unsigned char operation;
unsigned char operations;
unsigned char dropAction;

} XmDropProcCallbackStruct, *XmDropProcCallback;

reason

event

timeStamp

Indicates why the callback was invoked.

Specifies the XEvent that triggered the callback.

Specifies the timestamp of the logical event.

drag Context Specifies the ID of the DragContext widget associated with the
transaction.

x

y

dropSiteStatus

Indicates the x-coordinate of the pointer relative to the drop site.

Indicates the y-coordinate of the pointer relative to the drop site.

An IN/OUT member that indicates whether or not a drop site is
valid.

The toolkit initializes dropSiteStatus to XmDROP _SITE_ VALID if
the DragContext's XmNexportTargets and the DropSite's
XmNimportTargets are compatible and if the initial value of the
operation member is not XmDROP _NOOP. Otherwise, the toolkit
initializes dropSiteStatus to XmDROP _SITE_INVALID.

operation

operations

Reference Pages

XmDropSite (3X)

The drop procedure may change the value of this member. After the
drop procedure returns, the toolkit uses the final value in initializing
the dropSiteStatus member of the XmDropStartCallbackStruct
passed to the initiator's drop start callbacks (the DragContext's
XmNdropStartCallback callbacks).

An IN/OUT member that identifies an operation.

The toolkit initializes operation by selecting an operation from the
bitwise AND of the initial value of the operations member and the
value of the DropSite's XmNdropSiteOperations resource. The
toolkit searches this set first for XmDROP _MOVE, then for
XmDROP _COPY, then for XmDROP _LINK, and initializes
operation to the first operation it finds in the set. If it finds none of
these operations in the set, it initializes operation to
XmDROP _NOOP.

The drop procedure may change the value of this member. After the
drop procedure returns, the toolkit uses the final value in initializing
the operation member of the XmDropStartCallbackStruct passed
to the initiator's drop start callbacks (the DragContext's
XmNdropStartCallback callbacks).

An IN/OUT member that indicates the set of operations supported
for the source data.

If the user does not select an operation (by pressing a modifier key),
the toolkit initializes operations to the value of the DragContext's
XmNdragOperations resource. If the user does select an
operation, the toolkit initializes operations to the bitwise AND of
the corresponding operation and the value of the DragContext's
XmNdragOperations resource. If the resulting set of operations is
empty, the toolkit initializes operations to XmDROP _NOOP.

The drop procedure may change the value of this member. After the
drop procedure returns, the to()lkit uses the final value in initializing
the operations member of the XmDropStartCallbackStruct passed
to the initiator's drop start callbacks (the DragContext's
XmNdropStartCallback callbacks).

1-429

OSF/Motif Programmer's Reference

XmDropSite(3X)

dropAction An IN/OUT member that identifies the action associated with the
drop. The possible values are

XmDROP A drop was attempted. If the drop site is valid, drop
transfer handling proceeds.

XmDROP _HELP
The user has requested help on the drop site.

The drop procedure may change the value of this member. After the
drop procedure returns, the toolkit uses the final value in initializing
the dropAction member of the XmDropStartCallbackStruct
passed to the initiator's drop start callbacks (the DragContext's
XmNdropStartCallback callbacks).

Related Information

1-430

XmDragContext(3X), XmDragIcon(3X),
XmDropSiteConfigureStackingOrder(3X), XmDropSiteEndUpdate(3X),
XmDropSiteQueryStackingOrder(3), XmDropSiteRegister(3X),
XmDropSiteStartUpdate(3X), ~mDropSiteUpdate(3X),
XmDropSiteUnregister(3X), XmDropTransfer(3X), and
XmTargetsAreCompatible(3X).

Synopsis

Description

Reference Pages

XmDropSiteConfigureStackingOrder(3X)

XmDropSiteConfigureStackingOrder-A Drag and Drop function that reorders
a stack of widgets that are registered drop sites

#include <XmlDragDrop.h>

void XmDropSiteConfigureStackingOrder (widget, sibling, stack_mode)
Widget widget;
Widget sibling;
Cardinal stack_mode;

XmDropSiteConfigureStackingOrder changes the stacking order of the drop site
specified by widget. The stacking order controls the manner in which drag-under
effects are clipped by overlapping siblings, regardless of whether they are active.
The stack mode is relative either to the entire stack, or to another drop site within
the stack. The stack order can be modified only if the drop sites are siblings in both
the widget and drop site hierarchy, and the widget parent of the drop sites is
registered as a composite drop site.

widget Specifies the drop site to be restacked.

sibling Specifies a sibling drop site for stacking operations. If specified,
then widget is restacked relative to this drop site's stack position.

stack_mode Specifies the new stack position for the specified widget. The
values are XmABOVE and XmBELOW. If a sibling is specified,
then widget is restacked as follows:

XmABOVE The widget is placed just above the sibling.

XmBELOW The widget is placed just below the sibling.

If the sibling parameter is not specified, then widget is restacked as
follows:

XmABOVE The widget is placed at the top of the stack.

XmBELOW The widget is placed at the bottom of the stack.

For a complete definition of DropSite and its associated resources, see
XmDropSite(3X).

Related Information
XmDropSite(3X), XmDropSiteRetrieve(3X), and
XmDropSiteQueryStackingOrder(3X).

1-431

OSF/Motif Programmer's Reference

XmDropSiteEndUpdate(3X)

Synopsis

Description

XmDropSiteEndUpdate-A Drag and Drop function that facilitates processing
updates to multiple drop sites

#include <XmlDragDrop.h>

void XmDropSiteEndUpdate (widget)
Widget widget;

XmDropSiteEndUpdate is used in conjunction with XmDropSiteStartUpdate to
process updates to multiple drop sites within the same hierarchy.
XmDropSiteStartUpdate and XmDropSiteEndUpdate signal the beginning and
the end respectively of a series of calls to XmDropSiteUpdate. Calls to
XmDropSiteStartUpdate and XmDropSiteEndUpdate can be recursively
stacked. Using these routines optimizes the processing of update information.

widget Specifies the ID of any widget within a given hierarchy. The
function uses this widget to identify the shell that contains the drop
sites.

For a complete definition of DropSite and its associated resources, see
XmDropSite(3X).

Related Information
XmDropSiteStartUpdate(3X) and XmDropSiteUpdate(3X).

1-432

Synopsis

Description

Reference Pages

XmDropSiteQueryStackingOrder(3X)

XmDropSiteQueryStackingOrder-A Drag and Drop function that returns the
parent, a list of children, and the number of children for a specified widget

#include <XmlDragDrop.h>

Status XmDropSiteQueryStackingOrder (widget, parenCreturn, child_returns,
num_child_returns)

Widget
Widget
Widget
Cardinal

widget;
*parencreturn;
**child_returns;

XmDropSiteQueryStackingOrder obtains the parent, a list of children registered
as drop sites, and the number of children registered as drop sites for a given widget.
The children are listed in current stacking order, from bottom-most (first child) to
the top-most (last child). This function allocates memory for the returned data that
must be freed by calling XtFree.

widget

parencreturn

Specifies the widget ID. For this widget, you obtain the list of its
children, its parent, and the number of children.

Returns the widget ID of the drop site parent of the specified widget.

Returns a pointer to the list of drop site children associated with the
specified widget.

num_child_returns
Returns the number of drop site children for the specified widget.

For a complete definition of DropSite and its associated resources, see
XmDropSite(3X).

Return Value
Returns 0 (zero) if the routine fails; returns a nonzero value if it succeeds.

Related Information
XmDropSite(3X) and XmDropSiteConfigureStackingOrder(3X).

1-433

OSF/Motif Programmer's Reference

XmDropSiteRegister(3X)

Synopsis

Description

XmDropSiteRegister-A Drag and Drop function that identifies a drop site and
assigns resources that specify its behavior

#include <XmlDragDrop.h>

void XmDropSiteRegister (widget, argUst, argcount)
Widget widget;
ArgList argUst;
Cardinal argcount;

XmDropSiteRegister identifies the specified widget or gadget as a drop site and
sets resource values that define the drop site's behavior. The routine assigns
default values to any resources that are not specified in the argument list. The
toolkit generates a warning message if a drop site is registered with
XmNdropSiteActivity set to XmDROP _SITE_ACTIVE and the XmNdropProc
resource is NULL.

If the drop site is a descendant of a widget that is registered as a drop site, the
XmNdropSiteType resource of the ancestor drop site must be specified as
XmDROP _SITE_COMPOSITE. The ancestor must be registered before the
descendant. The drop site is stacked above all other sibling drop sites already
registered.

widget

argUst

argcount

Specifies the ID of the widget to be registered.

Specifies the argument list.

Specifies the number of attribute/value pairs in the argument list
(argUst).

For a complete definition of DropSite and its associated resources, see
XmDropSite(3X).

Related Information

1-434

XmDisplay(3X), XmDropSite(3X), XmDropSiteEndUpdate(3X),
XmDropSiteStartUpdate(3X), XmDropSiteUpdate(3X),
XmDropSiteUnregister(3X), and XmScreen(3X).

Synopsis

Description

Reference Pages

XmDropSiteRetrieve(3X)

XmDropSiteRetrieve-A Drag and Drop function that retrieves resource values
set on a drop site

#include <XmlDragDrop.h>

void XmDropSiteRetrieve (widget, arglist, argcount)
Widget widget;
ArgList arglist;
Cardinal argcount;

XmDropSite:R,etrieve extracts values for the given resources from the drop site
specified by widget. An initiator can also obtain information about the current drop
site by passing the associated DragContext widget as the widget parameter to this
routine. The initiator can retrieve all of the drop site resources except
XmNdragProc and XmNdropProc using this method.

widget

argUst

argcount

Specifies the ID of the widget that encloses the drop site.

Specifies the argument list.

Specifies the number of attribute/value pairs in the argument list
(argUst).

For a complete definition of DropSite and its associated resources, see
XmDropSite(3X).

Related Information
XmDropSite(3X) and XmDropSiteUpdate(3X).

1-435

OSF/Motif Programmer's Reference

XmDropSiteStartUpdate(3X)

XmDropSiteStartUpdate-A Drag and Drop function that facilitates processing
updates to multiple drop sites

Synopsis #include <XmlDragDrop.h>

Description

void XmDropSiteStartUpdate (widget)
Widget widget;

XmDropSiteStartUpdate is used in conjunction with XmDropSiteEndUpdate to
process updates to multiple drop sites within the same shell widget.
XmDropSiteStartUpdate and XmDropSiteEndUpdate signal the beginning and
the end< respectively of a series of calls to XmDropSiteUpdate. Calls to
XmDropSiteStartUpdate and XmDropSiteEndUpdate can be recursively
stacked. Using these routines optimizes the processing' of update information.

widget Specifies the ID of any widget within a given hierarchy. The
function uses this widget to identify the shell that contains the drop
sites.

For a complete definition of DropSite and its associated resources, see
XmDropSite(3X).

Related Information
XmDropSite(3X), XmDropSiteEndUpdate(3X), and XmDropSiteUpdate(3X).

1-436

Synopsis

Description

Reference Pages

XmDropSiteUnregister(3X)

XmDropSiteUnregister-A Drag and Drop function that frees drop site
information

#include <XmlDragDrop.h>

void XmDropSiteUnregister (widget)
Widget widget;

XmDropSiteUnregister informs the toolkit that the specified widget is no longer a
registered drop site. The function frees all associated drop site information.

widget Specifies the ID of the widget, registered as a drop site, that is to be
unregistered

For a complete definition of DropSite and its associated resources, see
XmDropSite(3X).

Related Information
XmDropSite(3X) and XmDropSiteRegister(3X).

1-437

OSF/Motif Programmer's Reference

XmDropSiteUpdate(3X)

Synopsis

Description

XmDropSiteUpdate-A Drag and Drop function that sets resource values for a
drop site

#inClude <XmlDragDrop.h>

void XmDropSiteUpdate (widget, arglist, argcount)
Widget widget;
ArgList arglist;
Cardinal argcount;

XmDropSiteUpdate modifies drop site resources associated with the specified
widget. This routine updates the drop site resources specified in the argUst.

widget

argUst

argcount

Specifies the ID of the widget registered as a drop site

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(argUst)

For a complete definition of DropSite and its associated resources, see
XmDropSite(3X).

Related Information

1-438

XmDropSite(3X), XmDropSiteEndUpdate(3X), XmDropSiteRegister(3X),
XmDropSiteStartUpdate(3X), and XmDropSiteUnregister(3X).

Synopsis

Description

Reference Pages

XmDropTransfer(3X)

XmDropTransfer-The DropTransfer widget class

#include <XmlDragDrop.h>

DropTransfer provides a set of resources that identifies the procedures and
associated information required by the toolkit in order to process and complete a
drop transaction. Clients should not explicitly create a DropTransfer widget.
Instead, a client initiates a transfer by calling XmDropTransferStart, which
initializes and returns a DropTransfer widget. If this function is called within an
XmNdropProc callback, the actual transfers are initiated after the callback
returns. Even if no data needs to be transferred, XmDropTransferStart needs to
be called (typically with no arguments, or just setting XmNtransferStatus) to
finish the drag and drop transaction.

The XmNdropTransfers resource specifies a transfer list that describes the
requested target types for the source data. A transfer list is an array of
XmDropTransferEntryRec structures, each of which identifies a target type. The
transfer list is analogous to the MULTIPLE selections capability defined in the
Inter-Client Communication Conventions Manual (lCCCM).

The DropTransfer resource, XmNtransferProc, specifies a transfer procedure of
type XtSelectionCallbackProc that delivers the requested selection data. This
procedure operates in conjunction with the underlying Xt selection capabilities and
is called for each target in the transfer list. Additional target types can be
requested after a transfer is initiated by calling the XmDropTransfer Add
function.

Structures
An XmDropTransferEntry is a pointer to the following structure of type
XmDropTransferEntryRec, which identifies a selection target associated with a
given drop transaction:

typedef struct
{

XtPointer clienCdata;
Atom target;

} XmDropTransferEntryRec, *XmDropTransferEntry;

clienCdata Specifies any additional information required by this selection target

target Specifies a selection target associated with the drop operation

1-439

OSF/Motif Programmer's Reference

XmDropTransfer(3X)

1-440

Classes
DropTransfer inherits behavior and a resource from Object.

The class pointer is xmDropTransferObjectClass.

The class name is XmDropTransfer.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

XmDropTransfer Resource Set

Name Default Access
Class Type

XmNdropTransfers NULL CG
XmCDropTransfers XmDropTransferEntryRec *

XmNincremental False CSG
XmClncremental Boolean

XmNnumDropTransfers 0 CSG
XmCNumDropTransfers Cardinal

Xm NtransferProc NULL CSG
XmCTransferProc XtSelectionCallbackProc

Xm NtransferStatus XmTRANSFER_SUCCESS CSG
XmCTransferStatus unsigned char

XmNdropTransfers
Specifies the address of an array of drop transfer entry records. The
drop transfer is complete when all the entries in the list have been
processed.

XmNincremental
Specifies a Boolean value that indicates whether the transfer on the
receiver side uses the Xt incremental selection transfer mechanism
described in X Toolkit Intrinsics-C Language Interface. If the
value is True, the receiver uses incremental transfer; if the value is
False, the receiver uses atomic transfer.

Reference Pages

XmDropTransfer(3X)

XmNnumDropTransfers
Specifies the number of entries in XmNdropTransfers. If this
resource is set to 0 at any time, the transfer is considered complete.
The value of XmNtransferStatus determines the completion
handshaking process.

XmNtransferProc
Specifies a procedure of type XtSelectionCallbackProc that
delivers the requested selection values. The widget argument
passed to this procedure is the DropTransfer widget. The selection
atom passed is _MOTIF_DROP. For additional information on
selection callback procedures, see X Toolkit Intrinsics-C Language
Interface.

XmNtransferStatus

Inherited Resources

Specifies the current status of the drop transfer. The client updates
this value when the transfer ends and communicates the value to the
initiator. The possible values are

XmTRANSFER_SUCCESS

XmTRANSFER_FAILURE

The transfer succeeded.

The transfer failed.

DropTransfer inherits behavior and a resource from Object. For a complete
description of this resource, refer to the Object reference page.

Object Resource Set

Name Default Access
Class Type

XmNdestroyCallback NULL C
XmCCallback X tCall backList

Related Information
Object(3X), XmDisplay(3X), XmDragContext(3X), XmDragIcon(3X),
XmDropSite(3X), XmDropTransferAdd(3X), and XmDropTransferStart(3X).

1-441

OSF/Motif Programmer's Reference
XmDropTransferAdd{3X)

Synopsis

Description

XmDropTransfer Add-A Drag and Drop function that enables additional drop
transfer entries to be processed after initiating a drop transfer

#include <XmlDragDrop.h>

void XmDropTransferAdd (drop_transfer, transfers, num_transfers)
Widget drop_transfer;
XmDropTransferEntryRec*transfers;
Cardinal num_transfers;

XmDropTransfer Add identifies a list of additional drop transfer entries to be
processed after a drop transfer is started.

drop_transfer

transfers

num_transfers

Specifies the ID of the DropTransfer widget returned by
XmDropTransferStart

Specifies the additional drop transfer entries that the receiver wants
processed

Specifies the number of items in the transfers array

For a complete definition of DropTransfer and its associated resources, see
XmDropTransfer(3X).

Related Information
XmDragContext(3X), XmDropTransfer(3X), and XmDropTransferStart(3X).

1-442

Synopsis

Description

Reference Pages
XmDropTransferStart(3X)

XmDropTransferStart-A Drag and Drop function that initiates a drop transfer

#include <XmlDragDrop.h>

Widget XmDropTransferStart (widget, argUst, argcount)
Widget widget;
ArgList argUst;
Cardinal argcount;

XmDropTransferStart initiates a drop transfer and uses the specified argument
list to initialize an XmDropTransfer object. The DropTransfer object can be
manipulated with XtSetValues and XtGetValues until the last call to the
XmNtransferProc procedure is made. After that point, the result of using the
widget pointer is undefined. The DropTransfer object is freed by the toolkit when a
transfer is complete.

widget

arglist

argcount

Specifies the ID of the DragContext widget associated with the
transaction

Specifies the argument list

Specifies the number of attribute/value pairs in the argument list
(arglist)

For a complete definition of DropTransfer and its associated resources, see
XniDropTransfer(3X).

Return Value
Returns the ID of the DropTransfer widget.

Related Information
XmDragContext(3X), XmDropTransfer(3X), and XmDropTransferAdd(3X).

1-443

OSF/Motif Programmer's Reference

XmFileSelectionBox (3X)

Synopsis

Description

1-444

XmFileSelectionBox-The FileSelectionBox widget class

#include <XmlFileSB.h>

FileSelectionBox traverses through directories, views the files and subdirectories in
them, and then selects files.

A FileSelectionBox has five main areas:

• A text input field for displaying and editing a directory mask used to select
the files to be displayed

• A scrollable list of filenames

• A scrollable list of subdirectories

• A text input field for displaying and editing a filename

• A group of PushButtons, labeled OK, Filter, Cancel, and Help

Additional children may be added to the FileSelectionBox after creation.
FileSelectionBox inherits the layout functionality provided by SelectionBox for
any additional children. To remove the list of filenames, the list of subdirectories,
or both from the FileSelectionBox after creation, unmanage the appropriate
widgets and their labels. The list and label widgets are obtained through a call to
the XmFileSelectionBoxGetChiid function. To remove either the directory list or
the file list, unmanage the parent of the appropriate list widget and unmanage the
corresponding label.

The user can specify resources in a resource file for the automatically created
widgets and gadgets of FileSelectionBox. The following list identifies the names
of these widgets (or gadgets) and the associated FileSelectionBox areas:

Filter Text

Directory List

Directory List Label

Text

DirList

Dir

The directory mask is a string specifying the base directory to be examined and a
search pattern. Ordinarily, the directory list displays the subdirectories of the base
directory, as well as the base directory itself and its parent directory. The file list
ordinarily displays all files and/or subdirectories in the base directory that match
the search pattern.

Reference Pages

XmFileSelectionBox (3X)

A procedure specified by the XmNqualifySearchDataProc resource extracts the
base directory and search pattern from the directory mask. If the directory
specification is empty, the current working directory is used. If the search pattern
is empty, a pattern that matches all files is used.

An application can supply its own XmNqualifySearchDataProc as well as its own
procedures to search for subdirectories and files. The default
XmNqualifySearchDataProc works as follows: The directory mask is a
pathname that can contain zero or more wildcard characters in its directory
portion, its file portion, or both. The directory components of the directory mask
- up to, but not including, the first component with a wildcard character -
specify the directory to be searched, relative to the current working directory. The
remaining components specify the search pattern. If the directory mask is empty or
if its first component contains a wildcard character, the current working directory is
searched. If no component of the directory mask contains a wildcard character, the
entire directory mask is the directory specification, and all files in that directory are
matched.

The user can select a new directory to examine by scrolling through the list of
directories and selecting the desired directory or by editing the directory mask.
Selecting a new directory from the directory list does not change the search
pattern. A user can select a new search pattern by editing the directory mask.
Double clicking or pressing KActivate on a directory in the directory list initiates a
search for files and subdirectories in the new directory, using the current search
pattern.

The user can select a file by scrolling through the list of filenames and selecting the
desired file or by entering the filename directly into the text edit area. Selecting a
file from the list causes that filename to appear in the file selection text edit area.

The user may select a new file as many times as desired. The application is not
notified until the user takes one of the following actions:

• Selects the OK PushButton

• Presses KActivate while the selection text edit area has the keyboard focus

• Double clicks or presses KActivate on an item in the file list

FileSelectionBox initiates a directory and file search when any of the following
occurs:

• The FileSelectionBox is initialized

• The function XtSetValues is used to change XmNdirMask,
XmNdirectory, XmNpattern, or XmNfileTypeMask

1-445

OSF/Motif Programmer's Reference

XmFileSelectionBox (3X)

1-446

• The user activates the Filter PushButton

• The user double clicks or presses KActivate on an item in the directory list

• The application calls XmFileSelectionDoSearch

• The user presses KActivate while the directory mask text edit area has the
keyboard focus

When a file search is initiated, the FileSelectionBox takes the following actions:

• Constructs an XmFileSelectionBoxCailbackStruct structure with values
appropriate for the action that initiated the search

• Calls the XmNqualifySearchDataProc with the callback structure as the
data input argument

• Sets XmNdirectoryValid and XmNlistUpdated to False

• Calls the XmNdirSearchProc with the qualified data returned by the
XmNqualifySearchDataProc

If XmNdirectoryValid is True, the FileSelectionBox takes the following
additional actions:

• Sets XmNlistUpdated to False

• Calls the XmNfileSearchProc with the qualified data returned by the
XmNqualifySearchDataProc (and possibly modified by the
XmNdirSearchProc)

• If XmNlistUpdated is True and the file list is empty, displays the
XmNnoMatchString in the file list and clears the selection text and
XmNdirSpec

• If XmNlistUpdated is True and the file list is not empty, sets the selection
text and XmNdirSpec to the qualified dir returned by the
XmNqualifySearchDataProc (and possibly modified by the
XmNdirSearchProc)

• Sets the directory mask text and XmNdirMask to the qualified mask
returned by the XmNqualifySearchDataProc (and possibly modified by
the XmNdirSearchProc)

Classes

Reference Pages

XmFileSelectionBox (3X)

• Sets XmNdirectory to the qualified dir returned by the
XmNqualifySearchDataProc (and possibly modified by the
XmNdirSearchProc)

• Sets XmNpattern to the qualified pattern returned by the
XmNqualifySearchDataProc (and possibly modified by the
XmNdirSearchProc)

FileSelectionBox inherits behavior and resources from Core, Composite,
Constraint, XmManager, XmBulletinBoard, and XmSelectionBox.

The class pointer is xmFileSelectionBoxWidgetClass.

The class name is XmFileSelectionBox.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-447

OSF/Motif Programmer's Reference

XmFileSelectionBox (3X)

XmFileSelectionBox Resource Set

Name Default Access
Class Type

XmNdirectory dynamic CSG
XmCDirectory XmString

XmNdirectoryValid dynamic SG
XmCDirectoryValid Boolean

Xm NdirListltems dynamic SG
XmCDirListltems XmStringTable

XmNdirListltemCount dynamic SG
XmCDirListltemCount int

XmNdirListLabelString dynamic CSG
XmCDirListLabelString XmString

XmNdirMask dynamic CSG
XmCDirMask XmString

XmNdirSearchProc default procedure CSG
XmCDirSearchProc XmSearchProc

XmNdirSpec dynamic CSG
XmCDirSpec XmString

XmNfileListltems dynamic SG
XmCltems XmStringTable

XmNfileListltemCount dynamic SG
XmCltemCount int

XmNfileListLabelString dynamic CSG
XmCFileListLabelString XmString

XmNfileSearchProc default procedure CSG
XmCFileSearchProc XmSearchProc

XmNfileTypeMask XmFILE_REGULAR CSG
XmCFileTypeMask unsigned char

Xm NfilterLabelString dynamic CSG
XmCFilterLabelString XmString

XmNlistUpdated dynamic SG
XmCListUpdated Boolean

1-448

Reference Pages

XmFileSelectionBox(3X)

Name Default Access
Class Type

Xm NnoMatchString II [] II CSG
XmCNoMatchString XmString

XmNpattern dynamic CSG
XmCPattern XmString

Xm Nq ualifySearch DataProc default procedure CSG
XmCQualifySearchDataProc XmQualifyProc

XmNdirectory
Specifies the base directory used in combination with XmNpattern
in determining the files and directories to be displayed. The default
value is determined by the XmNqualifySearchDataProc and
depends on the initial values of XmNdirMask, XmNdirectory, and
XmNpattern. If the default is NULL or empty, the current working
directory is used.

XmNdirectoryValid
Specifies an attribute that is set only by the directory search
procedure. The value is set to True if the directory passed to the
directory search procedure can actually be searched. If this value is
False the file search procedure is not called, and XmNdirMask,
XmNdirectory, and XmNpattern are not changed.

XmNdirListltems
Specifies the items in the directory list. XtGetValues for this
resource returns the list items themselves, not a copy of the list
items. The application must not free the returned items.

XmNdirListltemCount
Specifies the number of items in the directory list. The value must
not be negative.

XmNdirListLabelString
Specifies the label string of the directory list. The default for this
resource depends on the locale. In the C locale the default is
Directories.

1-449

OSF/Motif Programmer's Reference

XmFileSelectionBox (3X)

XmNdirMask
Specifies the directory mask used in determining the files and
directories to be displayed. The default value is determined by the
XmNqualifySearchDataProc and depends on the initial values of
XmNdirMask, XmNdirectory, and XmNpattern.

XmNdirSearchProc

1-450

Specifies a directory search procedure to replace the default
directory search procedure. FileSelectionBox's default directory
search procedure fulfills the needs of most applications. Because it
is impossible to cover the requirements of all applications, you can
replace the default search procedure.

The directory search procedure is called with two arguments: the
FileSelectionBox widget and a pointer to an
XmFileSelectionBoxCallbackStruct structure. The callback
structure is generated by the XmNqualifySearchDataProc and
contains all information required to conduct a directory search,
induding the directory mask and a qualified base directory and
search pattern. Once called, it is up to the search routine to generate
a new list of directories and update the FileSelectionBox widget by
using XtSetValues.

The search procedure must set XmNdirectoryValid and
XmNlistUpdated. If it generates a new list of directories, it must
also set XmNdirListltems and XmNdirListltemCount.

If the search procedure cannot search the specified directory, it must
warn the user and set XmNdirectoryValid and XmNlistUpdated to
False, unless it prompts and subsequently obtains a valid directory.
If the directory is valid but is the same as the current
XmNdirectory, the search procedure must set XmNdirectoryValid
to True, but it may elect not to generate a new list of directories. In
this case, it must set XmNlistUpdated to False.

If the search procedure generates a new list of directories, it must
set XmNdirListItems to the new list of directories and
XmNdirListltemCount to the number of items in the list. If there
are no directories, it sets XmNdirListItems to NULL and
XmNdirListltemCount to 0 (zero). In either case, it must set
XmNdirectoryValid and XmNlistUpdated to True.

The search procedure ordinarily should not change the callback
structure. But if the original directory is not valid, the search
procedure may obtain a new directory from the user. In this case it
should set the dir member of the callback structure to the new

Reference Pages

XmFileSelectionBox(3X)

directory, call the XmNqualifySearchDataProc with the callback
struct as the input argument, and copy the qualified data returned by
the XmNqualifySearchDataProc into the callback struct.

XmNdirSpec Specifies the full file path specification. This is the XmNtextString
resource in SelectionBox, renamed for FileSelectionBox. The
default value is determined by the FileSelectionBox after
conducting the initial directory and file search.

XmNtileListItems
Specifies the items in the file list. This is the XmNlistItems
resource in SelectionBox, renamed for FileSelectionBox.
XtGetValues for this resource returns the list items themselves, not
a copy of the list items. The application must not free the returned
items.

XmNtileListItemCount
Specifies the number of items in the file list. This is the
XmNlistItemCount resource in SelectionBox, renamed for
FileSelectionBox. The value must not be negative.

XmNtileListLabelString
Specifies the label string of the file list. This is the
XmNlistLabelString resource in SelectionBox, renamed for
FileSelectionBox. The default for this resource depends on the
locale. In the C locale the default is Files.

XmNtileSearchProc
Specifies a file search procedure to replace the default file search
procedure. FileSelectionBox's default file search procedure fulfills
the needs of most applications. Because it is impossible to cover the
requirements of all applications, you can replace the default search
procedure.

The file search procedure is called with two arguments: the
FileSelectionBox widget and a pointer to an
XmFileSelectionBoxCallbackStruct structure. The callback
structure is generated by the XmNqualifySearchDataProc (and
possibly modified by the XmNdirSearchProc). It contains all
information required to conduct a file search, including the directory
mask and a qualified base directory and search pattern. Once this
procedure is called, it is up to the search routine to generate a new
list of files and update the FileSelectionBox widget by using
XtSetValues.

1-451

OSF/Motif Programmer's Reference

XmFileSelectionBox(3X)

1-452

The search procedure must set XmNlistUpdated. If it generates a
new list of files, it must also set XmNfileListltems and
XmNfileListltemCount.

It is recommended that the search procedure always generate a new
list of files. If the mask member of the callback structure is the same
as the mask member of the callback struct in the preceding call to
the search procedure, the procedure may elect not to generate a new
list of files. In this case it must set XmNlistUpdated to False.

If the search procedure generates a new list of files, it must set
XmNfileListltems to the new liSt of files and
XmNfileListltemCount to the number of items in the list. If there
are no files, it sets XmNfileListltems to NULL and
XmNfileListltemCount to 0 (zero). In either case it must set
XmNlistUpdated to True.

In constructing the list of files, the search procedure should include
only files of the types specified by the widget's XmNfileTypeMask.

Setting XmNdirSpec is optional, but recommended. Set this
attribute to the full file specification of the directory searched. The
directory specification is displayed below the directory and file lists.

XmNfileTypeMask
Specifies the type of files listed in the file list. Following are the
possible values:

• XmFILE_REGULAR restricts the file list to contain only
regular files.

• XmFILE_DIRECTORY restricts the file list to contain
only directories.

• XmFILE_ANY _TYPE allows the list to contain all file
types including directories.

XmNfilterLabelString
Specifies the label string for the text entry field for the directory
mask. The default for this resource depends on the locale. In the C
locale the default is Filter.

XmNlistUpdated
Specifies an attribute that is set only by the directory and file search
procedures. Set to True if the search procedure updated the
directory or file list.

Reference Pages

XmFileSelectionBox (3X)

XmNnoMatchString
Specifies a string to be displayed in the file list if the list of files is
empty.

XmNpattern Specifies the search pattern used in combination with
XmNdirectory in determining the files and directories to be
displayed. The default value is determined by
XmNqualifySearchDataProc and depends on the initial values of
XmNdirMask, XmNdirectory, and XmNpattern. If the default is
NULL or empty, a pattern that matches all files is used.

XmNqualifySearchDataProc
Specifies a search data qualification procedure to replace the default
data qualification procedure. FileSelectionBox's default data
qualification procedure fulfills the needs of most applications.
Because it is impossible to cover the requirements of all
applications, you can replace the default procedure.

The data qualification procedure is called to generate a qualified
directory mask, base directory, and search pattern for use by the
directory and file search procedures. It is called with three
arguments: the FileSelectionBox widget and pointers to two
XmFileSelectionBoxCallbackStruct structures. The first callback
struct contains the input data. The second callback struct contains
the output data, to be filled in by the data qualification procedure.

If the input dir and pattern members are not NULL, the procedure
must copy them to the corresponding members of the output
callback struct.

If the input dir is NULL, the procedure constructs the output dir as
follows: If the input mask member is NULL, the procedure uses the
widget's XmNdirectory as the output dir; otherwise, it extracts the
output dir from the input mask. If the resulting output dir is empty,
the procedure uses the current working directory instead.

If the input pattern is NULL, the procedure constructs the output
pattern as follows: If the input mask member is NULL, the
procedure uses the widget's XmNpattern as the output pattern;
otherwise, it extracts the output pattern from the input mask. If the
resulting output pattern is empty, the procedure uses a pattern that
matches all files instead.

The data qualification procedure constructs the output mask from
the output dir and pattern. The procedure must ensure that the
output dir, pattern, and mask are fully qualified.

1-453

OSF/Motif Programmer's Reference

XmFileSelectionBox (3X)

1-454

If the input value member is not NULL, the procedure must copy it
to the output value member; otherwise, the procedure must copy the
widget's XmNdirSpec to the output value.

The data qualification procedure must calculate the lengths of the
output value, mask, dir, and pattern members and must fill in the
corresponding length members of the output callback struct.

The data qualification procedure must copy the input reason and
event members to the corresponding output members.

The values of the XmNdirSearchProc and XmNfileSearchProc are procedure
pointers of type XmSearchProc, defined as follows:

void (* XmSearchProc) (w, search_data)
Widget W;
XtPointer search_data;

w The FileSelectionBox widget

search_data Pointer to an XmFileSelectionBoxCallbackStruct containing
information for conducting a search

The value of the XmNqualifySearchDataProc resource is a procedure pointer of
type XmQualifyProc, defined as follows:

void (* XmQualifyProc) (w, inpucdata, outpucdata)
Widget W;
XtPointer inpucdata;
XtPointer outpucdata;

w The FileSelectionBox widget

inpuCdata Pointer to an XmFileSelectionBoxCallbackStruct containing input
data to be qualified

outpucdata Pointer to an XmFileSelectionBoxCallbackStruct containing
output data to be filled in by the qualification procedure

Inherited Resources
FileSelectionBox inherits behavior and resources from the superc1asses described
in the following tables. For a complete description of each resource, refer to the
reference page for that superc1ass.

Reference Pages

XmFileSelectionBox (3X)

XmSelectionBox Resource Set

Name Default Access
Class Type

XmNapplyCaliback NULL C
XmCCaliback XtCalibackList

Xm NapplyLabelString dynamic CSG
XmCApplyLabelString XmString

XmNcancelCaliback NULL C
XmCCaliback XtCalibackList

Xm NcancelLabelString dynamic CSG
XmCCancelLabelString XmString

XmNchiidPlacement XmPLACE_ABOVE_SELECTION CSG
XmCChildPlacement unsigned char

XmNdialogType XmDIALOG_FILE_SELECTION G
XmCDialogType unsigned char

Xm NhelpLabelString dynamic CSG
XmCHelpLabelString XmString

XmNlistltemCount dynamic CSG
XmCltemCount int

XmNlistltems dynamic CSG
XmCltems XmStringTable

XmNlistLabelString dynamic CSG
XmCListLabelString XmString

XmNlistVisibleltemCount dynamic CSG
XmCVisibleltemCount int

XmNminimizeButtons False CSG
XmCMinimizeButtons Boolean

XmNmustMatch False CSG
XmCMustMatch Boolean

XmNnoMatchCaliback NULL C
XmCCaliback XtCalibackList

XmNokCaliback NULL C
XmCCaliback XtCalibackList

1-455

OSF/Motif Programmer's Reference

XmFileSelectionBox{ 3X)

Name Default Access
Class Type

Xm NokLabelString dynamic CSG
XmCOkLabelString XmString

Xm NselectionLabelString dynamic CSG
XmCSelectionLabelString XmString

Xm NtextAccelerators default C
XmCTextAccelerators XtAccelerators

XmNtextColumns dynamic CSG
XmCColumns short

Xm NtextString dynamic CSG
XmCTextString XmString

1-456

Reference Pages

XmFileSelectionBox (3X)

XmBulietinBoard Resource Set

Name Default Access
Class Type

XmNaliowOverlap True CSG
XmCAllowOverlap Boolean

XmNautoUnmanage False CG
XmCAutoUnmanage Boolean

XmNbuttonFontList dynamic CSG
XmCButtonFontList XmFontList

Xm NcancelButton Cancel button SG
XmCWidget Widget

Xm NdefaultButton OK button SG
XmCWidget Widget

Xm NdefaultPosition True CSG
XmCDefaultPosition Boolean

XmNdialogStyle dynamic CSG
XmCDialogStyle unsigned char

XmNdialogTitle NULL CSG
XmCDialogTitle XmString

Xm NfocusCaliback NULL C
XmCCaliback XtCalibackList

XmNlabelFontList dynamic CSG
XmCLabelFontList XmFontList

XmNmapCaliback NULL C
XmCCaliback X tCalibackList

XmNmarginHeight 10 CSG
XmCMarginHeight Dimension

XmNmarginWidth 10 CSG
XmCMarginWidth Dimension

XmNnoResize False CSG
XmCNoResize Boolean

XmNresizePolicy XmRESIZE_ANY CSG
XmCResizePolicy unsigned char

1-457

OSF/Motif Programmer's Reference

XmFileSelectionBox (3X)

Name Default Access
Class Type

XmNshadowType XmSHADOW_OUT CSG
XmCShadowType unsigned char

Xm NtextFontList dynamic CSG
XmCTextFontList XmFontList

Xm NtextTranslations NULL C
XmCTranslations XtTranslations

XmNunmapCaliback NULL C
XmCCaliback XtCalibackList

1-458

Reference Pages

XmFileSelectionBox (3X)

XmManager Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus dynamic CSG
XmClnitialFocus Widget

Xm NnavigationType XmTAB_GROUP CSG
XmCNavigationType XmNavigationType

XmNshadowThickness dynamic CSG
XmCShadowThickness Dimension

XmNstringDirection dynamic CG
XmCStringDirection XmStringDirection

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

Xm N userData NULL CSG
XmCUserData XtPointer

1-459

OSF/Motif Programmer's Reference

XmFileSelectionBox(3X)

Composite Resource Set

Name Default Access
Class Type

XmNchiidren NULL G
XmCReadOnly WidgetList

Xm NinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChiidren 0 G
XmCReadOnly Cardinal

1-460

Reference Pages

XmFileSelectionBox (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic N/A
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmC Initial ResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-461

OSF/Motif Programmer's Reference

Xm FileSelectionBox(ax)

1-462

Name Default Access
Class Type

XmNtranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
XmString value;
int length;
XmString mask;
int mask_length;
XmString dir;
int dir _length;
XmString pattern;
int pattern_length;

} XmFileSelectionBoxCallbackStruct;

reason

event

value

length

mask

Indicates why the callback was invoked

Points to the XEvent that triggered the callback

Specifies the current value of XmNdirSpec

Specifies the number of bytes in value

Specifies the current value of XmNdirMask

mask_length Specifies the number of bytes in mask

dir Specifies the current base directory

Specifies the number of bytes in dir

Reference Pages

XmFileSelectionBox (3X)

pattern Specifies the current search pattern

pattern_length
Specifies the number of bytes in pattern

Translations
XmFileSelectionBox inherits translations from XmSelectionBox.

Accelerators
The XmNtextAccelerators from XmSelectionBox are added to the selection and
directory mask (filter) Text descendants of XmFileSelectionBox.

Action Routines
The XmFileSelectionBox action routines are

SelectionBoxUpOrDown(OI11213):
If neither the selection text nor the directory mask (filter) text has
the focus, this action does nothing.

If the selection text has the focus, the term list in the following
description refers to the file list, and the term text refers to the
selection text. If the directory mask text has the focus, list refers to
the directory list, and text refers to the directory mask text.

When called with an argument of 0 (zero), this action selects the
previous item in the list and replaces the text with that item.

When called with an argument of 1, this action selects the next item
in the list and replaces the text with that item.

When called with an argument of 2, this action selects the first item
in the list and replaces the text with that item.

When called with an argument of 3, this action selects the last item
in the list and replaces the text with that item.

SelectionBoxRestoreO:
If neither the selection text nor the directory mask (filter) text has
the focus, this action does nothing.

If the selection text has the focus, this action replaces the selection
text with the selected item in the file list. If no item in the file list is
selected, it clears the selection text.

If the directory mask text has the focus, this action replaces the
directory mask text with a new directory mask constructed from the
XmNdirectory and XmNpattern resources.

1-463

OSF/Motif Programmer's Reference

XmFileSelectionBox (3X)

1-464

Additional Behavior
The FileSelectionBox widget has the following additional behavior:

MAny KCancel:
Calls the activate callbacks for the cancel button if it is sensitive. If
no cancel button exists and the parent of the FileSelectionBox is a
manager, it passes the event to the parent.

<KActivate> in Selection Text:
Calls the selection text widget's XmNactivateCallback callbacks.
If XmNmustMatch is True and the selection text does not match an
item in the file list, it calls the XmNnoMatchCallback callbacks
with reason XmCR_NO_MATCH. Otherwise, it calls the
XmNokCallback callbacks with reason XmCR_OK.

<KActivate> in Directory Mask Text:
Calls the directory mask text widget'S XmNactivateCallback
callbacks, initiates a directory and file search, and calls the
XmNapplyCallback callbacks with reason XmCR_APPL Y.

<Double Click> or <KActivate> in Directory List:
Calls the directory list widget's XmNdefaultActionCallback
callbacks, initiates a directory and file search, and calls the
XmNapplyCallback callbacks with reason XmCR_APPL Y.

<Double Click> or <KActivate> in File List:
Calls the file list widget's XmNdefaultActionCallback callbacks
and calls the XmNokCallback callbacks with reason XmCR_OK.

<Single Select> or <Browse Select> in Directory List:
Generates a new directory mask, using the selected list item as the
directory and the pattern extracted from the current directory mask
text as the search pattern. If the search pattern is empty, it uses a
pattern that matches all files in the directory. Replaces the directory
mask text with the new directory mask.

<Single Select> or <Browse Select> in File List:
Replaces the selection text with the selected list item.

<BTransfer> in File List:
Drags the content of one or more selected list items using the drag
and drop facility. If BTransfer is pressed on an un selected item,
drags only that item, excluding any other selected items.

Reference Pages

XmFileSelectionBox(3X)

The XmNexportTargets resource of the associated DragContext is
set to target types of COMPOUND_TEXT and FILE_NAME.
The XmNclientData resource is set to the index of the item in the
list.

<BTransfer> in Directory List:
Drags the content of one or more selected list items using the drag
and drop facility. If BTransfer is pressed on an unselected item, it
drags only that item, excluding any other selected items.

The XmNexportTargets resource of the associated DragContext is
set to target types of COMPOUND_TEXT and FILE_NAME.
The XmNclientData resource is set to the index of the item in the
list.

<Apply Button Activated>:
Initiates a directory and file search. Calls the XmNapplyCallback
callbacks with reason XmCR_APPLY.

<OK Button Activated>:
If XmNmustMatch is True and the selection text does not match an
item in the file list, calls the XmNnoMatchCallback callbacks with
reason XmCR_NO_MATCH. Otherwise, it calls the
XmNokCallback callbacks with reason XmCR_OK.

<Cancel Button Activated>:
Calls the XmNcancelCallback callbacks with reason
XmCR_CANCEL.

<Help Button Activated>:

<KActivate> :

Virtual Bindings

Calls the XmNhelpCallback callbacks with reason XmCR_HELP.

If no button, list widget, or text widget has the keyboard focus, if
XmNmustMatch is True and the selection text does not match an
item in the file list, it calls the XmNnoMatchCallback callbacks
with reason XmCR_NO_MATCH. Otherwise, it calls the
XmNokCallback callbacks with reason XmCR_OK.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

1-465

OSF/Motif Programmer's Reference

XmFileSelectionBox(3X)

Related Information

1-466

Composite(3X), Constraint(3X), Core(3X), XmBulletinBoard(3X),
XmCreateFileSelectionBox(3X), XmCreateFileSelectionDialog(3X),
XmFileSelectionBoxGetChild(3X), XmFileSelectionDoSearch(3X),
XmManager(3X), and XmSelectionBox(3X).

Reference Pages

XmFileSelectionBoxGetChild(3X)

XmFileSelectionBoxGetChild-A FileSelectionBox function used to access a
component

Synopsis #include <XmlFileSB.h>

Description

Widget XmFileSelectionBoxGetChild (widget, child)
Widget widget;
unsigned char child;

XmFileSelectionBoxGetChild is used to access a component within a
FileSelectionBox. The parameters given to the function are the FileSelectionBox
widget and a value indicating which component to access.

widget

child

Specifies the FileSelectionBox widget ID.

Specifies a component within the FileSelectionBox. The following
are legal values for this parameter:

• XmDIALOG_APPLY_BUTTON

• XmDIALOG_CANCEL_BUTTON

• XmDIALOG_DEFAULT_BUTTON

• XmDIALOG_DIR_LIST

• XmDIALOG_DIR_LIST _LABEL

• XmDIALOG_FILTER_LABEL

• XmDIALOG_FILTER_TEXT

• XmDIALOG_HELP _BUTTON

• XmDIALOG_LIST

• XmDIALOG_LIST_LABEL

• XmDIALOG_OK_BUTTON

• XmDIALOG_SELECTION_LABEL

• XmDIALOG_SEPARATOR

• XmDIALOG_TEXT

• XmDIALOG_ WORK_AREA

1-467

OSF/Motif Programmer's Reference
XmFileSelectionBoxGetChild(3X)

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSeiectionBox(3X).

Return Value
Returns the widget ID of the specified FileSelectionBox component. An
application should not assume that the returned widget will be of any particular
class.

Related Information
XmFileSeiectionBox(3X) .

1-468

Synopsis

Description

Reference Pages

XmFileSelectionDoSearch (aX)

XmFileSelectionDoSearch-A FileSelectionBox function that initiates a
directory search

#include <XmlFileSB.h>

void XmFileSelectionDoSearch (widget, dirmask)
Widget widget;
XmString dirmask;

XmFileSelectionDoSearch initiates a directory and file search in a
FileSelectionBox widget. For a description of the actions that the
FileSelectionBox takes when doing a search, see XmFileSelectionBox(3X).

widget

dirmask

Specifies the FileSelectionBox widget ID ...

Specifies the directory mask used in determining the directories and
files displayed in the FileSelectionBox lists. This value is used as
the mask member of the input data
XmFileSelectionBoxCallbackStruct structure passed to the
FileSelectionBox's XmNqualifySearchDataProc. The dir and
pattern members of that structure are NULL.

For a complete definition of FileSelectionBox and its associated resources, see
XmFileSelectionBox(3X).

Related Information
XmFileSelectionBox(3X).

1-469

OSF/Motif Programmer's Reference

XmFontList(3X)

XmFontList-Data type for a font list

Synopsis #include <XmlXm.h>

Description

1-470

XmFontList is the data type for a font list. A font list consists of font list entries.
Each entry contains a font or a font set (a group of fonts) and is identified with a
tag, which is optional. If this tag is NULL, the tag is set to
XmFONTLIST_DEFAULT_TAG. XmFONTLIST_DEFAULT_TAG has a
value ofXmFONTLIST_DEFAULT_TAG_STRING.

When a compound string is displayed, the font list element tag of the compound
string segment is matched with a font list entry tag in the font list and the matching
font list entry is used to display the compound string. A font list entry is chosen as
follows:

• The first font list entry whose tag matches the tag of the compound string
segment is used.

• If no match has been found and if the tag of the compound string segment is
XmFONTLIST_DEFAULT_TAG, the first font list entry whose tag
matches the tag that would result from . creating an entry with
XmSTRING_DEFAULT_CHARSET is used. For example, if creating an
entry with XmSTRING_DEFAULT_CHARSET would result in the tag
IS08859-1, the compound string segment tag
XniFONTLIST_DEFAULT_TAG matches the font list entry tag
IS08859-1.

• If rib match has been found and if the tag of the compound string segment
matches the tag that would result from creating a segment with
XniSTRING_DEFAULT~CHARSET, the first font list entry whose tag is
XmFONTLIST_DEFAULT_TAG is used.

• If no match has been found, the first entry in the font list is used.

The font list interface consists of the routines listed in Related Information.

Font lists are specified in resource files with the following syntax:

resource_spec: joncentry [,joncentry]+

Reference Pages

XmFontList(3X)

The resource value string consists of one or more font list entries separated by
commas. Eachfoncentry identifies a font or font set and an optional font list entry
tag. A tag specified for a single font follows the font name and is separated by =
(equals sign); otherwise, in a font set the tag is separated by a colon. The colon is
required whether a tag is specified or not. A font entry uses the following syntax to
specify a single font:

fonCname ['=' tag]

For example, the following entry specifies a 10 point Times Italic font without a
font list entry tag;

fontList: -Adobe-Times-Medium-I-Normal--10

A font entry containing a font set is similar, except a semicolon separates multiple
font names and the specification ends with a colon followed by an optional tag:

fonCname [';' foncname]+ ':' [tag]

Afoncname is an X Logical Font Description (XLFD) string and tag is any set of
characters from IS0646IRV except space, comma, colon, equal sign and
semicolon. Following is an example of a font set entry. It consists of three fonts
(except for charsets), and an explicit font list entry tag.

*fontList : -Adobe-Courier-Bold-R-Normal--25-180-100-100-M-150;\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-240;\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120:MY_TAG

Related Information
XmFontListAdd(3X), XmFontListAppendEntry(3X), XmFontListCopy(3X),
XmFontListCreate(3X), XmFontListEntryCreate(3X),
XmFontListEntryFree(3X), XmFontListEntryGetFont(3X),
XmFontListEntryGetTag(3X), XmFontListEntryLoad(3X),
XmFontListFree(3X), XmFontListFreeFontContext(3X),
XmFontListGetNextFont(3X), XmFontListlnitFontContext(3X),
XmFontListNextEntry(3X), XmFontListRemoveEntry(3X), and
XmString(3X) .

1-471

OSF/Motif Programmer's Reference

XmFontListAdd (3X)

Synopsis

Description

XmFontListAdd-A font list function that creates a new font list

#include <XmlXm.h>

XmFontList XmFontListAdd (oldlist, font, charset)
XmFontList oldlist;
XFontStruct *font;
XmStringCharSet charset;

XmFontListAdd creates a new font list consisting of the contents of oldlist and the
new font list element being added. This function deallocates oldlist after extracting
the required information; therefore, do not reference oldlist thereafter.

NOTE: This function is obsolete and exists for compatibility with previous
releases. It has been replaced by XmFontListAppendEntry.

oldlist

font

charset

Specifies a pointer to the font list to which an entry will be added.

Specifies a pointer to a font structure for which the new font list is
generated. This is the structure returned by the XLib
XLoadQueryFont function.

Specifies the character set identifier for the font. This can be
XmSTRING_DEFAULT_CHARSET, but this value does not
comply with the AES, and it may be removed in future versions of
Motif. If the value is XmSTRING_DEFAULT_CHARSET, the
routine derives the character set from the current language
environment.

Return Value
Returns NULL if oldlist is NULL; returns oldlist if font or charset is NULL;
otherwise, returns a new font list.

Related Information
XmFontList(3X) and XmFontListAppendEntry(3X).

1-472

Synopsis

Description

Reference Pages

XmFontListAppendEntry{3X)

XmFontListAppendEntry-A font list function that appends an entry to a font
list

#include <XmlXm.h>

XmFontList XmFontListAppendEntry (oldlist, entry)
XmFontList oldlist;
XmFontListEntry entry;

XmFontListAppendEntry creates a new font list that contains the contents of
oldlist. This function copies the contents of the font list entry being added into this
new font list. If oldlist is NULL, XmFontListAppendEntry creates a new font list
containing only the single entry specified.

This function deallocates the original font list after extracting the required
information. The caller must free the font list entry by using
XmFontListEntryFree.

oldlist

entry

Specifies the font list to be added to

Specifies the font list entry to be added

Return Value
If entry is NULL, returns oldlist; otherwise, returns a new font list.

Related Information
XmFontList(3X), XmFontListEntryCreate(3X), XmFontListEntryFree(3X),
XmFontListEntryLoad(3X), XmFontListFree(3X), and
XmFontListRemoveEntry(3X).

1-473

OSF/Motif Programmer's Reference

XmFontListCopy(3X)

XmFontListCopy-A font list function that copies a font list

Synopsis #include <XmlXm.h>

Description

XmFontList XmFontListCopy ifontlist)
XmFontList Jontlist;

XmFontListCopy creates a new font list consisting of the contents of the fontlist
argument.

fontlist Specifies a font list to be copied

Return Value
Returns NULL if fontlist is NULL; otherwise, returns a new font list.

Related Information
XmFontList(3X) and XmFontListFree(3X).

1-474

Synopsis

Description

Reference Pages

XmFontListCreate(ax)

XmFontListCreate-A font list function that creates a font list

#include <XmlXm.h>

XmFontList XmFontListCreate (jont, charset)
XFontStruct * Jont;
XmStringCharSet charset;

XmFontListCreate creates a new font list with a single element specified by the
provided font and character set. It also allocates the space for the font list.

NOTE: This function is obsolete and exists for compatibility with previous
releases. It is replaced by XmFontListAppendEntry.

font

charset

Specifies a pointer to a font structure for which the new font list is
generated. This is the structure returned by the XLib
XLoadQueryFont function.

Specifies the character set identifier for the font. This can be
XmSTRING_DEFAULT_CHARSET, but this value does not
comply with the AES, and it may be removed in future versions of
Motif. If the value is XmSTRING_DEFAULT_CHARSET, the
routine derives the character set from the current language
environment.

Return Value
Returns NULL if font or charset is NULL; otherwise, returns a new font list.

Related Information
XmFontList(3X) and XmFontListAppendEntry(3X).

1-475

OSF/Motif Programmer's Reference

Xm FontListEntryCreate (3X)

Synopsis

Description

XmFontListEntryCreate-A font list function that creates a font list entry

#include <XmlXm.h>

XmFontListEntry XmFontListEntryCreate (tag, type, font)
char *tag;
XmFontType type;
XtPointer font;

XmFontListEntryCreate creates a font list entry that contains either a font or font
set and is identified by a tag.

tag Specifies a NULL-terminated string for the tag of the font list entry.
The tag may be specified as XmFONTLIST_DEFAULT_TAG,
which is used to identify the default font list element in a font list.

type Specifies whether the font argument is a font structure or a font set.
Valid values are XmFONT _IS_FONT and
XmFONT _IS_FONTSET.

font Specifies either an XFontSet returned by XCreateFontSet or a
pointer to an XFontStruct returned by XLoadQueryFont.

The toolkit does not copy the X Font structure specified by the font argument.
Therefore, an application programmer must not free XFontStruct or XFontSet
until all font lists and/or font entries that reference it have been freed.

Return Value
Returns a font list entry.

Related Information

1-476

XmFontList(3X), XmFontListAppendEntry(3X), XmFontListEntryFree(3X),
XmFontListEntryGetFont(3X), XmFontListEntryGetTag(3X),
XmFontListEntryLoad(3X), and XmFontListRemoveEntry(3X).

Reference Pages

XmFontListEntryFree(3X)

XmFontListEntryFree-A font list function that recovers memory used by a font
list entry

Synopsis #include <XmlXm.h>

Description

void XmFontListEntryFree (entry)
XmFontListEntry *entry;

XmFontListEntryFree recovers memory used by a font list entry. This routine
does not free the XFontSet or XFontStruct associated with the font list entry.

entry Specifies the font list entry to be freed

Related Information
XmFontList(3X), XmFontListAppendEntry(3X),
XmFontListEntryCreate(3X), XmFontListEntryLoad(3X),
XmFontListNextEntry(3X), and XmFontListRemoveEntry(3X).

1-477

OSF/Motif Programmer's Reference

XmFontListEntryGetFont(3X)

Synopsis

Description

XmFontListEntryGetFont-A font list function that retrieves font information
from a font list entry

#include <XmlXm.h>

XtPointer XmFontListEntryGetFont (entry, type_return)
XmFontListEntry entry;
XmFontType *type_return;

XmFontListEntryGetFont retrieves font information for a specified font list
entry. If the font list entry contains a font, type_return returns
XmFONT _IS_FONT and the function returns a pointer to an XFontStruct. If the
font list entry contains a font set, type_return returns XmFONT_IS_FONTSET
and the function returns the XFontSet.

entry Specifies the font list entry.

type_return Specifies a pointer to the type of the font element for the current
entry. Valid values are XmFONT_IS_FONT and
XmFONT _IS_FONTSET.

The returned XFontSet or XFontStruct is not a copy of the toolkit data and must
not be freed.

Return Value
Returns an XFontSet or a pointer to an XFontStruct structure.

Related Information

1-478

XmFontList(3X), XmFontListEntryCreate(3X), XmFontListEntryGetTag(3X)
XmFontListEntryLoad(3X), and XmFontListNextEntry(3X).

Reference Pages

XmFontListEntryGetTag(3X)

XmFontListEntryGetTag-A font list function that retrieves the tag of a font list
entry

Synopsis #include <XmlXm.h>

Description

char* XmFontListEntryGetTag (entry)
XmFontListEntry entry;

XmFontListEntryGetTag retrieves a copy of the tag of the specified font list
entry. This routine allocates memory for the tag string that must be freed by the
application.

entry Specifies the font list entry

Return Value
Returns the tag for the font list entry.

Related Information
XmFontList(3X), XmFontListEntryCreate(3X),
XmFontListEntryGetFont(3X), XmFontListEntryLoad(3X), and
XmFontListNextEntry(3X).

1-479

OSF/Motif Programmer's Reference

XmFontListEntryLoad (3X)

Synopsis

Description

1-480

XmFontListEntryLoad-A font list function that loads a font or creates a font set
and creates an accompanying font list entry

#include <XmlXm.h>

XmFontListEntry XmFontListEntryLoad (display, foncname, type, tag)
Display *display;
char *foncname;
XmFontType type;
char *tag;

XmFontListEntryLoad loads a font or creates a font set based on the value of the
type argument. It creates and returns a font list entry that contains the font or font
set and the specified tag.

If the value of type is XmFONT _IS_FONT, the function uses the
XtCvtStringToFontStruct routine to convert the value of foncname to a font
struct. If the value of type is XmFONT_IS_FONTSET, the function uses the
XtCvtStringToFontSet converter to create a font set in the current locale.
XmFontListEntryLoad creates a font list entry that contains the font or font set
derived from the converter. For more information about
XtCvtStringToFontStruct and XtCvtStringToFontSet, see X Toolkit Intrinsics­
C Language Inteiface.

display

foncname

Specifies the display where the font list will be used.

Specifies an X Logical Font Description (XLFD) string, which is
interpreted either as a font name or as a base font name list. A base
font name list is a comma-separated and NULL-terminated string.

type Specifies whether the foncname argument refers to a font name or
to a base font name list. Valid values are XmFONT_IS_FONT and
XmFONT _IS_FONTSET.

tag Specifies the tag of the font list entry to be created. The tag may be
specified as XmFONTLIST_DEFAULT_TAG, which is used to
identify the default font list element in a font list when specified as
part of a resource.

Reference Pages
XmFontListEntryLoad (3X)

Return Value
If the specified font is not found, or the specified font set cannot be created, returns
NULL; otherwise, returns a font list entry.

Related Information
XmFontList(3X), XmFontListAppendEntry(3X),
XmFontListEntryCreate(3X), XmFontListEntryFree(3X),
XmFontListEntryGetFont(3X), XmFontListEntryGetTag(3X), and
XmFontListRemoveEntry(3X).

1-481

OSF/Motif Programmer's Reference
XmFontListFree(3X)

XmFontListFree-A font list function that recovers memory used by a font list

Synopsis #include <XmlXm.h>

Description

void XmFontListFree (list)
XmFontList list;

XmFontListFree recovers memory used by a font list. This routine does not free
the XFontSet or XFontStruct associated with the specified font list.

list Specifies the font list to be freed

Related Information

1-482

XmFontList(3X), XmFontListAppendEntry(3X), XmFontListCopy(3X), and
XmFontListRemoveEntry(3X).

Synopsis

Description

Reference Pages
X mFontListFreeFontContext (3X)

XmFontListFreeFontContext-A font list function that instructs the toolkit that
the font list context is no longer needed

#include <XmlXm.h>

void XmFontListFreeFontContext (context)
XmFontContext context;

XmFontListFreeFontContext instructs the toolkit that the context is no longer
needed and will not be used without reinitialization.

context Specifies the font list context structure that was allocated by the
XmFontListlnitFontContext function

Related Information
XmFontListlnitFontContext(3X) and XmFontListNextEntry(3X).

1-483

OSF/Motif Programmer's Reference

XmFontListGetNextFont(3X)

Synopsis

Description

XmFontListGetNextFont-A font list function that allows applications to access
the fonts and character sets in a font list

#include <XmlXm.h>

Boolean XmFontListGetNextFont (context, charset, font)
XmFontContext context;
XmStringCharSet *charset;
XFontStruct **font;

XmFontListGetNextFont accesses the character set and font for the next entry of
the font list. The application first uses the XmFontListlnitFontContext routine to
create a font list context. The application then calls XmFontListGetNextFont
repeatedly with the same context. Each succeeding call accesses the next element
of the font list. When finished, the application calls XmFontListFreeFontContext
to free the allocated font list context.

This routine allocates memory for the character set string that must be freed by the
application.

This Function is obsolete and exists for compatibility with previous releases. It is
replaced by XmFontListNextEntry. If XmFontListGetNextFont is passed a
context that contains a font set entry, it will return the first font of the font set. The
next call to the function will move to the next entry in the font list.

context

charset

font

Specifies the font list context

Specifies a pointer to a character set string; the routine returns the
character set for the current font list element

Specifies a pointer to a pointer to a font structure; the routine returns
the font for the current font list element

Return Value
Returns True if the returned values are valid; otherwise, returns False.

Related Information
XmFontList(3X) and XmFontListNextEntry(3X).

1-484

Synopsis

Description

Reference Pages

XmFontListlnitFontContext (3X)

XmFontListlnitFontContext-A font list function that allows applications to
access the entries in a font list

#include <XmlXm.h>

Boolean XmFontListInitFontContext (context, Jontlist)
XmFontContext *context;
XmFontList Jontlist;

XmFontListlnitFontContext establishes a context to allow applications to access
the contents of a font list. This context is used when reading the font list entry tag,
font, or font set associated with each entry in the font list. A Boolean status is
returned to indicate whether or not the font list is valid.

context

fontlist

Specifies a pointer to the allocated context

Specifies the font list

Return Value
Returns True if the context was allocated; otherwise, returns False.

Related Information
XmFontList(3X), XmFontListFreeFontContext(3X), and
XmFontListNextEntry(3X).

1-485

OSF/Motif Programmer's Reference
XmFontListNextEntry(3X)

Synopsis

Description

XmFontListNextEntry-A font list function that returns the next entry in a font
list

#include <XmlXm.h>

XmFontListEntry XmFontListNextEntry (context)
XmFontContext context;

XmFontListNextEntry returns the next entry in the font list. The application uses
the XmFontListlnitFontContext routine to create a font list context. The first call
to XmFontListNextEntry sets the context to the first entry in the font list. The
application then calls XmFontListNextEntry repeatedly with the same context.
Each succeeding call accesses the next entry of the font list. When finished, the
application calls XmFontListFreeFontContext to free the allocated font list
context.

context Specifies the font list context

Return Value
Returns NULL if the context does not refer to a valid entry or if it is at the end of
the font list; otherwise, it returns a font list entry.

Related Information

1-486

XmFontList(3X), XmFontListEntryFree(3X), XmFontListEntryGetFont(3X),
XmFontListEntryGetTag(3X), XmFontListFreeFontContext(3X), and
XmFontListlnitFontContext(3X) .

Synopsis

Description

Reference Pages

XmFontListRemoveEntry(3X)

XmFontListRemoveEntry-A font list function that removes a font list entry
from a font list

#include <XmlXm.h>

XmFontList XmFontListRemoveEntry (oldlist, entry)
XmFontList oldlist;
XmFontListEntry entry;

XmFontListRemoveEntry creates a new font list that contains the contents of
aldUst minus those entries specified in entry. The routine removes any entries from
aldlist that match the components (tag, type font/font set) of the specified entry.
The function deallocates the original font list after extracting the required
information. The caller uses XmFontListEntryFree to recover memory allocated
for the specified entry. This routine does not free the XFontSet or XFontStruct
associated with the font list entry that is removed.

aldUst Specifies the font list

entry Specifies the font list entry to be removed

Return Value
If aldUst is NULL, the function returns NULL. If entry is NULL or no entries are
removed, the function returns aldUst. Otherwise, it returns a new font list.

Related Information
XmFontList(3X), XmFontListAppendEntry(3X),
XmFontListEntryCreate(3X), XmFontListEntryFree(3X),
XmFontListEntryLoad(3X), and XmFontListFree(3X).

1-487

OSF/Motif Programmer's Reference

XmForm(3X)

Synopsis

Description

1-488

XmForm-The Form widget class

#include <XmlForm.h>

Form is a container widget with no input semantics of its own. Constraints are
placed on children of the Form to define attachments for each of the child's four
sides. These attachments can be to the Form, to another child widget or gadget, to
a relative position within the Form, or to the initial position of the child. The
attachments determine the layout behavior of the Form when resizing occurs.

The default value for XmNinitialFocus is the value of XmNdefaultButton.

Following are some important considerations in using a Form:

• Every child must have an attachment on either the left or the right. If
initialization or XtSetValues leaves a widget without such an attachment,
the result depends upon the value of XmNrubberPositioning.

If XmNrubberPositioning is False, the child is given an
XmNleftAttachment of XmATTACH_FORM and an XmNleftOffset
equal to its current x value.

If XmNrubberPositioning is True, the child is given an
XmNleftAttachment of XmATTACH_POSITION and an
XmNleftPosition proportional to the current x value divided by the width
of the Form.

In either case, if the child has not been previously given an x value, its x
value is taken to be 0 (zero), which places the child at the left side of the
Form.

• If you want to create a child without any attachments, and then later (for
example, after creating and managing it, but before realizing it) give it a
right attachment through XtSetValues, you must set its
XmNleftAttachment to XmATTACH_NONE at the same time.

• The XmNresizable resource controls only whether a geometry request by
the child will be granted. It has no effect on whether the child's size can be
changed because of changes in geometry of the Form or of other children.

• Every child has a preferred width, based on geometry requests it makes
(whether they are granted or not).

Reference Pages

XmForm(3X)

• If a child has attachments on both the left and the right sides, its size is
completely controlled by the Form. It can be shrunk below its preferred
width or enlarged above it, if necessary, due to other constraints. In
addition, the child's geometry requests to change its own width may be
refused.

• If a child has attachments on only its left or right side, it will always be at
its preferred width (if resizable, otherwise at is current width). This may
cause it to be clipped by the Form or by other children.

• If a child's left (or right) attachment is set to XmATTACH_SELF, its
corresponding left (or right) offset is forced to 0 (zero). The attachment is
then changed to XmATTACH_POSITION, with a position that
corresponds to the x value of the child's left (or right) edge. To fix the
position of a side at a specific x value, use XmATTACH_FORM or
XmATTACH_OPPOSITE_FORM with the x value as the left (or right)
offset.

• Unmapping a child has no effect on the Form except that the child is not
mapped.

• Unmanaging a child unmaps it. If no other child is attached to it, or if all
children attached to it and all children recursively attached to them are also
all unmanaged, all of those children are treated as if they did not exist in
determining the size of the Form.

• When using XtSetValues to change the XmNx resource of a child, you
must simultaneously set its left attachment to either XmATTACH_SELF
or XmATTACH_NONE. Otherwise, the request is not granted. If
XmNresizable is False, the request is granted only if the child's size can
remain the same.

• A left (or right) attachment of XmATTACH-, WIDGET, where
XmNleftWidget (or XmNrightWidget) is NULL, acts like an attachment
of XmATTACH_FORM.

• If an attachment is made to a widget that is not a child of the Form, but an
ancestor of the widget is a child of the Form, the attachment is made to the
ancestor.

All these considerations are true of top and bottom attachments as well, with top
acting like left, bottom acting like right, y acting like x, and height acting like
width.

1-489

OSF/Motif Programmer's Reference

XmForm(3X)

1-490

Classes
Form inherits behavior and resources from Core, Composite, Constraint,
XmManager, and XmBulletinBoard.

The class pointer is xmForm WidgetClass.

The class name is XmForm.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

XmForm Resource Set

Name Default Access
Class Type

Xm NfractionBase 100 CSG
XmCMaxValue int

Xm NhorizontalSpacing 0 CSG
XmCSpacing Dimension

Xm NrubberPositioning False CSG
XmCRubberPositioning Boolean

Xm NverticalSpacing 0 CSG
XmCSpacing Dimension

XmNfractionBase
Specifies the denominator used in calculating the relative position of
a child widget using XmATTACH_POSITION constraints. The
value must not be 0 (zero).

If the value of a child's XmNleftAttachment (or
XmNrightAttachment) is XmATTACH_POSITION, the position
of the left (or right) side of the child is relative to the left side of the
Form and is a fraction of the width of the Form. This fraction is the
value of the child's XmNleftPosition (or XmNrightPosition)
resource divided by the value of the Form's XmNfractionBase.

If the value of a child's XmNtopAttachment (or

Reference Pages

XmForm(3X)

XmNbottomAttachment) is XmATTACH_POSITION, the
position of the top (or bottom) side of the child is relative to the top
side
of the Form and is a fraction of the height of the Form. This fraction
is the value of the child's XmNtopPosition (or
XmNbottomPosition) resource divided by the value of the Form's
XmNfractionBase.

XmNhorizontalSpacing
Specifies the offset for right and left attachments. This resource is
only used if no offset resource is specified (when attaching to a
widget), or if no margin resource is specified (when attaching to the
Form).

XmNrubberPositioning
Indicates the default near (left) and top attachments for a child of
the Form. (Note that whether this resource actually applies to the
left or right side of the child and its attachment may depend on the
value of the XmNstringDirection resource.)

The default left attachment is applied whenever initialization or
XtSetValues leaves the child without either a left or right
attachment. The default top attachment is applied whenever
initialization or XtSetValues leaves the child without either a top or
bottom attachment.

If this Boolean resource is set to False, XmNleftAttachment and
XmNtopAttachment default to XmATTACH_FORM,
XmNleftOffset defaults to the current x value of the left side of the
child, and XmNtopOffset defaults to the current y value of the
child. The effect is to position the child according to its absolute
distance from the left or top side of the Form.

If this resource is set to True, XmNleftAttachment and
XmNtopAttachment default to XmATTACH_POSITION,
XmNleftPosition defaults to a value proportional to the current x
value of the left side of the child divided by the width of the Form,
and XmNtopPosition defaults to a value proportional to the current
y value of the child divided by the height of the Form. The effect is
to position the child relative to the left or top side of the Form and in
proportion to the width or height of the Form.

1-491

OSF/Motif Programmer's Reference

XmForm(3X)

XmNverticalSpacing

1-492

Specifies the offset for top and bottom attachments. This resource is
only used if no offset resource is specified (when attaching to a
widget), or if no margin resource is specified (when attaching to the
Form).

Reference Pages

XmForm{3X)

XmForm Constraint Resource Set

Name Default Access
Class Type

XmNbottomAttachment XmATTACH_NONE CSG
XmCAttachment unsigned char

XmNbottomOffset 0 CSG
XmCOffset int

Xm Nbottom Position 0 CSG
XmCAttachment int

XmNbottomWidget NULL CSG
XmCWidget Widget

XmNleftAttachment XmATTACH_NONE CSG
XmCAttachment unsigned char

Xm N leftOffset 0 CSG
XmCOffset int

XmNleftPosition 0 CSG
XmCAttachment int

XmNleftWidget NULL CSG
XmCWidget Widget

XmNresizable True CSG
XmCBoolean Boolean

XmNrightAttachment XmATTACH_NONE CSG
XmCAttachment unsigned char

XmNrightOffset 0 CSG
XmCOffset int

XmNrightPosition 0 CSG
XmCAttachment int

Xm N rightWidget NULL CSG
XmCWidget Widget

XmNtopAttachment XmATTACH_NONE CSG
XmCAttachment unsigned char

1-493

OSF/Motif Programmer's Reference

XmForm(3X)

Name Default Access
Class Type

XmNtopOffset 0 CSG
XmCOffset int

XrnNtopPosition 0 CSG
XmCAttachment int

XmNtopWidget NULL CSG
XmCWidget Widget

XmNbottomAttachment

1-494

Specifies attachment of the bottom side of the child. It can have the
following values:

XmATTACH_NONE
Do not attach the bottom side of the child.

Attach the bottom side of the child to the bottom side
of the Form.

XmATTACH_OPPOSITE_FORM
Attach the bottom side of the child to the top side of
the Form. XmNbottomOffset can be used to
determine the visibility of the child.

XmATTACH_ WIDGET
Attach the bottom side of the child to the top side of
the widget or gadget specified in the
XmNbottomWidget resource. If
XmNbottomWidget is NULL,
XmATTACH_ WIDGET is replaced by
XmATTACH_FORM, and the child is attached to
the bottom side of the Form.

XmATTACH_OPPOSITE_ WIDGET
Attach the bottom side of the child to the bottom side
of the widget or gadget specified in the
XmNbottomWidget resource.

XmATTACH_POSITION
Attach the bottom side of the child to a position that
is relative to the top side of the Form and in
proportion to the height of the Form. This position is
determined by the XmNbottomPosition and
XmNfractionBase resources.

Reference Pages

XmForm{3X)

XmATTACH_SELF

XmNbottomOffset

Attach the bottom side of the child to a position that
is proportional to the current y value of the bottom of
the child divided by the height of the Form. This
position is determined by the XmNbottomPosition
and XmNfractionBase resources.
XmNbottomPosition is set to a value proportional to
the current y value of the bottom of the child divided
by the height of the Form.

Specifies the constant offset between the bottom side of the child
and the object to which it is attached. The relationship established
remains, regardless of any resizing operations that occur. When this
resource is explicitly set, the value of XmNverticalSpacing is
ignored.

XmNbottomPosition
This resource is used to determine the position of the bottom side of
the child when the child's XmNbottomAttachment is set to
XmATTACH_POSITION. In this case the position of the bottom
side of the child is relative to the top side of the Form and is a
fraction of the height of the Form. This fraction is the value of the
child's XmNbottomPosition resource divided by the value of the
Form's XmNfractionBase. For example, if the child's
XmNbottomPosition is 50, the Form's XmNfractionBase is 100,
and the Form's height is 200, the position of the bottom side of the
child is 100.

XmNbottom Widget
Specifies the widget or gadget to which the bottom side of the child
is attached. This resource is used if the XmNbottomAttachment
resource is set to either XmATTACH_ WIDGET or
XmATTACH_OPPOSITE_ WIDGET.

A string-to-widget resource converter is automatically installed for
use with this resource. With this converter, the widget that is to be
the value of the resource must exist at the time the widget that has
the resource is created.

1-495

OSF/Motif Programmer's Reference
XmForm(3X)

XmNleftAttachment

1-496

Specifies attachment of the near (left) side of the child. (Note that
whether this resource actually applies to the left or right side of the
child and its attachment may depend on the value of the
XmNstringDirection resource.) It can have the following values:

XmATTACH_NONE
Do not attach the left side of the child. If
XmNrightAttachment is also
XmATTACH_NONE, this value is ignored and the
child is given a default left attachment.

XmATTACH_FORM
Attach the left side of the child to the left side of the
Form.

XmATTACH_OPPOSITE_FORM
Attach the left side of the child to the right side of the
Form. XmNleftOffset can be used to determine the
visibility of the child.

XmATTACH_ WIDGET
Attach the left side of the child to the right side of the
widget or gadget specified in the XmNleftWidget
resource. If XmNleftWidget is NULL,
XmATTACH_ WIDGET is replaced by
XmATTACH_FORM, and the child is attached to
the left side of the Form.

XmATTACH_OPPOSITE_ WIDGET
Attach the left side of the child to the left side of the
widget or gadget specified in the XmNleftWidget
resource.

XmATTACH_POSITION
Attach the left side of the child to a position that is
relative to the left side of the Form and in proportion
to the width of the Form. This position is determined
by the XmNleftPosition and XmNfractionBase
resources.

Reference Pages

XmForm(3X)

XmATTACH_SELF

XmNleftOffset

Attach the left side of the child to a position that is
proportional to the current x value of the left side of
the child divided by the width of the Form. This
position is determined by the XmNleftPosition and
XmNfractionBase resources. XmNleftPosition is
set to a value proportional to the current x value of
the left side of the child divided by the width of the
Form.

Specifies the constant offset between the near (left) side of the child
and the object to which it is attached. (Note that whether this
resource actually applies to the left or right side of the child and its
attachment may depend on the value of the XmNstringDirection
resource.) The relationship established remains, regardless of any
resizing operations that occur. When this resource is explicitly set,
the value of XmNhorizontalSpacing is ignored.

XmNleftPosition
This resource is used to determine the position of the near (left) side
of the child when the child's XmNleftAttachment is set to
XmATTACH_POSITION. (Note that whether this resource
actually applies to the left or right side of the child and its
attachment may depend on the value of the XmNstringDirection
resource.)

In this case, the position of the left side of the child is relative to the
left side of the Form and is a fraction of the width of the Form. This
fraction is the value of the child's XmNleftPosition resource
divided by the value of the Form's XmNfractionBase. For
example, if the child's XmNleftPosition is 50, the Form's
XmNfractionBase is 100, and the Form's width is 200, the position
of the left side of the child is 100.

XmNleftWidget
Specifies the widget or gadget to which the near (left) side of the
child is attached. (Note that whether this resource actually applies
to the left or right side of the child and its attachment may depend
on the value of the XmNstringDirection resource.) The
XmNleftWidget resource is used if the XmNleftAttachment
resource is set to either XmATTACH_ WIDGET or
XmATTACH_OPPOSITE_ WIDGET.

1-497

OSF/Motif Programmer's Reference

XmForm{3X)

1-498

A string-to-widget resource converter is automatically installed for
use with this resource. With this converter, the widget that is to be
the value of the resource must exist at the time the widget that has
the resource is created.

XmNresizable
This Boolean resource specifies whether or not a child's request for
a new size is (conditionally) granted by the Form. If this resource is
set to True the request is granted if possible. If this resource is set to
False the request is always refused.

If a child has both left and right attachments, its width is completely
controlled by the Form, regardless of the value of the child's
XmNresizable resource. If a child has a left or right attachment but
not both, the child's XmNwidth is used in setting its width if the
value of the child's XmNresizable resource is True. These
conditions are also true for top and bottom attachments, with height
acting like width.

XmNrightAttachment
Specifies attachment of the far (right) side of the child. (Note that
whether this resource actually applies to the left or right side of the
child and its attachment may depend on the value of the
XmNstringDirection resource.) It can have the following values:

XmATTACH_NONE
Do not attach the right side of the child.

XmATTACH_FORM
Attach the right side of the child to the right side of
the Form.

XmATTACH_OPPOSITE_FORM
Attach the right side of the child to the left side of the
Form. XmNrightOffset can be used to determine the
visibility of the child.

XmATTACH_ WIDGET
Attach the right side of the child to the left side of the
widget or gadget specified in the XmNrightWidget
resource. If XmNrightWidget is NULL,
XmATTACH_ WIDGET is replaced by
XmATTACH_FORM, and the child is attached to
the right side of the Form.

Reference Pages

XmForm(3X)

XmATTACH_OPPOSITE_ WIDGET
Attach the right side of the child to the right side of
the widget or gadget specified in the
XmNrightWidget resource.

XmATTACH_POSITION
Attach the right &ide of the child to a position that is
relative to the left side of the Form and in proportion
to the width of the Form. This position is determined
by the XmNrightPosition and XmNfractionBase
resources.

XmATTACH_SELF

XmNrightOffset

Attach the right side of the child to a position that is
propo~ional to the current x value of the right side of
the child divided by the width of the Form. This
position is determined by the XmNrightPosition and
XmNfractionBase resources. XmNrightPosition is
set to· a value proportional to the current x value of
the right side of the child divided by the width of the
Form.

Specifies the constant offset between the far (right) side of the child
and the object to which it is attached. (Note that whether this
resource actually applies to the left or right side of the child and its
attachment may depend on the value of the XmNstringDire~tion
resource.) The relationship established remains, regardless of any
resizing operations that occur. When this resource is explicitly set,
the value of XmNhorizontalSpacing is ignored.

XmNrightPosition
This resource is used to determine the position of the far (right) side
of the child when the child's XmNrightAttachment is set to
XmATTACH_POSITION. (Note that· whether this resource
actually applies to the left or right side of the child and its
attachment may depend on the value of the XmNstringDirection
resource.)

In this case the position of the right side of the child is relative to the
left side of the Form and is a fraction of the width of the Form. This
fraction is the value of the child's XmNrightPosition resourc~
divided by

1-499

OSF/Motif Programmer's Reference

XmForm(3X)

1-500

the value of the Form's XmNfractionBase. For example, if the
child's XmNrightPosition is 50, the Form's XmNfractionBase is
100, and the Form's width is 200, the position of the right side of the
child is 100. '

XmNrightWidget
Specifies the widget or gadget to which the far (right) side of the
child is attached. (Note: Whether this resource actually applies to
the left or right side of the child and its attachment may depend on
the value of the XmNstringDirection resource.) The
XmNrightWidget resource is used if the XmNrightAttachment
resource is set to either XmATTACH_ WIDGET or
XmATTACH_OPPOSITE_ WIDGET.

A string-to-widget resource converter is automatically installed for
use with this resource. With this converter, the widget that is to be
the value of the resource must exist at the time the widget that has
the resource is created.

XmNtopAttachment
Specifies attachment of the top side of the child. It can have
following values:

, XmATTACH_NONE
Do not attach the top side of the child. If
XmNbottomAttachment is also
XmATTACH_NONE, this value is ignored and the
child is given a default top attachment.

XmATTACH_FORM
Attach the top side of the child to the top side of the
Form.

XmATTACH_OPPOSITE_FORM
Attach the top side of the child to the bottom side of
the Form. XmNtopOffset can be used to determine
the visibility of the child.

XmATTACH_ WIDGET
Attach the top side of the child to the bottom side of
the widget or gadget specified in the
XmNtopWidget resource. If XmNtopWidget is
NULL, XmATTACH_ WIDGET is replaced by
XmATTACH_FORM and the child is· attached to
the top side of the Form.

Reference Pages

XmForm(3X)

XmATTACH_OPPOSITE_ WIDGET
Attach the top side of the child to the top side of the
widget or gadget specified in the XmNtopWidget
resource.

XmATTACH_POSITION
Attach the top side of the child to a position that is
relative to the top side of the Form and in proportion
to the height of the Form. This position is determined
by the XmNtopPosition and XmNfractionBase
resources.

XmATTACH_SELF

XmNtopOffset

Attach the top side of the child to a position that is
proportional to the current y value of the child
divided by the height of the Form. This position is
determined by the XmNtopPosition and
XmNfractionBase resources. XmNtopPosition is
set to a value proportional to the current y value of
the child divided by the height of the Form.

Specifies the constant offset between the top side of the child and
the object to which it is attached. The relationship established
remains, regardless of any resizing operations that occur. When this
resource is explicitly set, the value of XmNverticalSpacing is
ignored.

XmNtopPosition
This resource is used to determine the position of the top side of the
child when the child's XmNtopAttachment is set to
XmATTACH_POSITION. In this case, the position of the top side
of the child is relative to the top side of the Form and is a fraction of
the height of the Form. This fraction is the value of the child's
XmNtopPosition resource divided by the value of the Form's
XmNfractionBase. For example, if the child's XmNtopPosition is
50, the Form's XmNfractionBase is 100, and the Form's height is
200, the position of the top side of the child is 100.

1-501

OSF/Motif Programmer's Referenqe

XmForm(3X)

1-502

XmNtopWidget ,

Inherited Resources

Specifies the widget or gadget to which the top side of the child is
attached. This resource is used if XmNtopAttachment is set to
either XmATTACH_ WIDGET or
XmATTACH_OPPOSITE_ WIDGET.

A string-to-widget resource converter is automatically installed for
use with this resource. With this converter, the widget that is to be
the value of the resource must exist at the time the widget that has
the resource is created.

Form inherits behavior and resources from the superc1asses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superc1ass.

Reference Pages

XmForm(3X)

XmBulietinBoard Resource Set

Name Default Access
Class Type

XmNaliowOverlap True CSG
XmCAllowOverlap Boolean

XmNautoUnmanage True CG
XmCAutoUnmanage Boolean

Xm NbuttonFontList dynamic CSG
XmCButtonFontList XmFontList

Xm NcancelButton NULL SG
XmCWidget Widget

Xm NdefaultButton NULL SG
XmCWidget Widget

Xm NdefaultPosition True CSG
XmCDefaultPosition Boolean

XmNdialogStyle dynamic CSG
XmCDialogStyle unsigned char

XmNdialogTitle NULL CSG
XmCDialogTitle XmString

Xm NfocusCaliback NULL C
XmCCaliback XtCalibackList

XmNlabelFontList dynamic CSG
XmCLabelFontList XmFontList

XmNmapCaliback NULL C
XmCCaliback XtCalibackList

XmNmarginHeight 0 CSG
XmCMarginHeight Dimension

XmNmarginWidth 0 CSG
XmCMarginWidth Dimension

XmNnoResize False CSG
XmCNoResize Boolean

XmNresizePolicy XmRESIZE_ANY CSG
XmCResizePolicy unsigned char

1-503

OSF/Motif Programmer's Reference

XmForm(3X)

Name Default Access
Class Type

XmNshadowType XmSHADOW_OUT CSG
XmCShadowType unsigned char

Xm NtextFontList dynamic CSG
XmCTextFontList XmFontList

Xm NtextTranslations NULL C
XmCTranslations XtTranslations

XmN unmapCaliback NULL C
XmCCaliback XtCalibackList

1-504

Reference Pages

XmForm(3X)

XmManager Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

Xm Nbottom ShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus dynamic CSG
XmClnitialFocus Widget

XmNnavigationType XmTAB_GROUP CSG
XmCNavigationType XmNavigationType

XmNshadowThickness dynamic CSG
XmCShadowThickness Dimension

XmNstringDirection dynamic CG
XmCStringDirection XmStringDirection

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-505

OSF/Motif Programmer's Reference

XmForm(3X)

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly Widget List

Xm NinsertPosition NULL CSG
XmCI nsertPosition XtOrderProc

XmNnumChiidren 0 G
XmCReadOnly Cardinal

1-506

Reference Pages

XmForm{3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic N/A
XmCAccelerators X tAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-507

OSF/Motif Programmer's Reference

XmForm{3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
XmForm inherits translations from XmBulletinBoard.

Related Information
Composite(3X), Constraint(3X), Core(3X), XmBulletinBoard(3X),
XmCreateForm, XmCreateFormDialog(3X), and XmManager(3X).

1-508

Synopsis

Description

Reference Pages

XmFrame(3X)

XmFrame-The Frame widget class

#include <XmlFrame.h>

Frame is a very simple manager used to enclose a single work area child in a
border drawn by Frame. It uses the Manager class resources for border drawing
and performs geometry management so that its size always matches its child's
outer size plus the Frame's margins and shadow thickness.

Frame is most often used to enclose other managers when the application
developer desires the manager to have the same border appearance as the primitive
widgets. Frame can also be used to enclose primitive widgets that do not support
the same type of border drawing. This gives visual consistency when you develop
applications using diverse widget sets. Constraint resources are used to designate a
child as the Frame title, align its text, and control its vertical alignment in relation
to Frame's top shadow. The title appears only at the top of the Frame.

If the Frame's parent is a Shell widget, the XmNshadowType resource defaults to
XmSHADOW_OUT, and the Manager's XmNshadowThickness resource
defaults to 1.

If the Frame's parent is not a Shell widget, the XmNshadowType resouce defaults
to XmSHADOW_ETCHED_IN, and the Manager's XmNshadowThickness
resource defaults to 2.

Classes
Frame inherits behavior and resources from the Core, Composite, Constraint, and
XmManager classes.

The class pointer is xmFrame WidgetClass.

The class name is XmFrame.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-509

OSF/Motif Programmer's Reference.

XmFrame(3X)

1-510

XmFrame Resource Set

Name Default Access
Class Type

XmNmarginWidth 0 CSG
XmCMarginWidth Dimension

XmNmarginHeight 0 CSG
XmCMarginHeight Dimension

XmNshadowType dynamic CSG
XmCShadowType unsigned char

XmNmarginWidth
Specifies the padding space on the left and right sides between
Frame's child and Frame's shadow drawing.

XmNmarginHeight
Specifies the padding space on the top and bottom sides between
Frame's child and Frame's shadow drawing. When a title is present,
the top margin equals the value specified by this resource plus the
distance (if any) that the title extends below the top shadow.

XmNshadowType
Describes the drawing style for Frame. This resource can have the
following values:

XmSHADOW _IN
Draws Frame so that it appears inset. This means
that the bottom shadow visuals and top shadow
visuals are reversed.

XmSHADOW_OUT
Draws Frame so that it appears outset. This is the
default if Frame's parent is a Shell widget.

Name
Class

XmNchildType

Reference Pages

XmFrame(3X)

XmSHADOW _ETCHED_IN
Draws Frame using a double line giving the effect of
a line etched into the window. The thickness of the
double line is equal to the value of
XmNshadowThickness. This is the default when
Frame's parent is not a Shell widget.

XmSHADOW_ETCHED_OUT
Draws Frame using a double line giving the effect of
a line coming out of the window. The thickness of
the double line is equal to the value of
XmNshadowThickness.

XmFrame Constraint Resource Set

Default Access
Type

XmFRAME_WORKAREA_CHILD CSG
XmCChildType unsigned char

Xm NchildHorizontalAlignment XmALIGNMENT _BEGINNING CSG
XmCChildHorizontalAlignment unsigned char

Xm NchildHorizontalSpacing dynamic CSG
XmCChildHorizontalSpacing Dimension

XmNchildVerticalAlignment XmALIGNMENT _CENTER CSG
XmCChildVerticalAlignment unsigned char

XmNchildType
Specifies whether a child is a title or work area. Frame supports a
single title and/or work area child. The possible values are

• XmFRAME_TITLE_CIDLD

• XmFRAME_ WORKAREA_CHILD

• XmFRAME_GENERIC_CHILD

The Frame geometry manager ignores any child of type
XmFRAME_GENERIC_CHILD.

1-511

OSF/Motif Programmer's Reference

XmFrame(3X)

1-512

XmNchildHorizontalAlignment
Specifies the alignment of the title. This resource has the following
values:

• XmALIGNMENT_BEGINNING

• XmALIGNMENT_CENTER

• XmALIGNMENT.-END

See the description of XmNalignment in the XmLabel reference
page for an explanation of these values.

XmNchildHorizontalSpacing
Specifies the minimum distance between either edge of the title text
and the inner edge of the Frame shadow. Clipping of the title text
occurs in order to maintain this spacing. The default value is the
margin width of the Frame.

XmNchildVerticalAlignment
Specifies the vertical alignment of the title text, or the title area in
relation to the top shadow of the Frame.

XmALIGNMENT _BASELINE_BOTTOM
Causes the baseline of the title to align vertically
with the top shadow of the Frame. In the case of a
multi-line title, the baseline of the last line of text
aligns vertically with the top shadow of the Frame.

XmALIGNMENT_BASELINE_TOP
Causes the baseline of the first line of the title to
align vertically with the top shadow of the Frame.

XmALIGNMENT_ WIDGET_TOP
Causes the top edge of the title area to align
vertically with the top shadow of the Frame.

XmALIGNMENT_CENTER
Causes the center of the title area to align vertically
with the top shadow of the Frame.

XmALIGNMENT_ WIDGET_BOTTOM
Causes the bottom edge of the title area to align
vertically with the top shadow of the Frame.

Reference Pages

XmFrame{ 3X)

Inherited Resources
Frame inherits behavior and resources from the following superc1asses. For a
complete description of each resource, refer to the man page for that superc1ass.

1-513

OSF/Motif Programmer's Reference

XmFrame(3X)

XmManager Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECI FIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

Xm NhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus NULL CSG
XmClnitialFocus Widget

XmNnavigationType XmTAB_GROUP CSG
XmCNavigationType XmNavigationType

XmNshadowThickness dynamic CSG
XmCShadowThickness Dimension

Xm NstringDirection dynamic CG
XmCStringDirection XmStringDirection

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

Xm NunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-514

Reference Pages

XmFrame(3X)

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-515

OSF/Motif Programmer's Reference

XmFrame(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

Xm Nsensitive True CSG
XmCSensitive Boolean

1-516

Reference Pages

XmFrame(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
XmFrame inherits translations from XmManager.

Related Information
Composite(3X), Constraint(3X), Core(3X), XmCreateFrame(3X), and
XmManager(3X) .

1-517

OSF/Motif Programmer's Reference

XmGadget(3X)

Synopsis

Description

Classes

XmGadget-The Gadget widget class

#include <XmlXm.h>

Gadget is a widget class used as a supporting superclass for other gadget classes. It
handles shadow-border drawing and highlighting, traversal activation and
deactivation, and various callback lists needed by gadgets.

The color and pixmap resources defined by XmManager are directly used by
gadgets. If XtSetValues is used to change one of the resources for a manager
widget, all of the gadget children within the manager also change.

Gadget inherits behavior and resources from Object and RectObj classes.

The class pointer is xmGadgetClass.

The class name is XmGadget.

New Resources

1-518

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmGadget(3X)

XmGadget Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic G
XmCBottomShadowColor Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic G
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightThickness 2 CSG
XmCHighlightThickness Dimension

Xm NnavigationType XmNONE CSG
XmCNavigationType XmNavigationType

XmNshadowThickness 2 CSG
XmCShadowThickness Dimension

Xm NtopShadowColor dynamic G
XmCTopShadowColor Pixel

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

XmNbottomShadowColor
Contains the color to use to draw the bottom and right sides of the
border shadow.

XmNhelpCaUback
Specifies the list of callbacks that is called when the help key
sequence is pressed. The reason sent by the callback is
XmCR_HELP.

XmNhighlightColor
Contains the color of the highlighting rectangle.

1-519

OSF/Motif Programmer's Reference
XmGadget(3X)

1-520

XmNhighlightOnEnter
Specifies if the highlighting rectangle is drawn when the cursor
moves into the widget. If the shell's focus policy is XmEXPLICIT,
this resource is ignored, and the widget is highlighted when it has
the focus. If the shell's focus policy is XmPOINTER and if this
resource is True, the highlighting rectangle is drawn when the the
cursor moves into the widget. If the shell's focus policy is
XmPOINTER and if this resource is False, the highlighting
rectangle is not drawn when the the cursor moves into the widget.
The default is False.

XmNhighlightThickness
Specifies the thickness of the highlighting rectangle.

XmNnavigationType
Determines whether the widget is a tab group.

XmNONE Indicates that the widget is not a tab group.

XmTAB_GROUP
Indicates that the widget is a tab group, unless the
XmNnavigationType of another widget in the
hierarchy is XmEXCLUSIVE_TAB_GROUP.

XmSTICKY_TAB_GROUP
Indicates that the widget is a tab group, even if the
XmNnavigationType of another widget in the
hierarchy is XmEXCLUSIVE_TAB_GROUP.

XmEXCLUSIVE_TAB_GROUP
Indicates that the widget is a tab group and that
widgets in the hierarchy whose XmNnavigationType
is XmTAB_GROUP are not tab groups.

When a parent widget has an XmNnavigationType
of XmEXCLUSIVE_TAB_GROUP, traversal of
non-tab-group widgets within the group is based on
the order of those widgets in their parent's
XmNchiidren list.

When the XmNnavigationType of any widget in a
hierarchy is XmEXCLUSIVE_TAB_GROUP,
traversal of tab groups in the hierarchy proceeds to
widgets in the order in which their

XmNshadowThickness

Reference Pages

XmGadget(3X)

XmNnavigationType resources were specified as
XmEXCLUSIVE_TAB_GROUP or
XmSTICKY_TAB_GROUP, whether by creating
the widgets with that value, by calling XtSetValues,
or by calling XmAddTabGroup.

Specifies the size of the drawn border shadow.

XmNtopShadowColor
Contains the color to use to draw the top and left sides of the border
shadow.

XmNtraversalOn
Specifies traversal activation for this gadget.

XmNunitType
Provides the basic support for resolution independence. It defines
the type of units a widget uses with sizing and positioning resources.
If the widget's parent is a subclass of XmManager and if the
XmNunitType resource is not explicitly set, it defaults to the unit
type of the parent widget. If the widget's parent is not a subclass of
XmManager, the resource has a default unit type of XmPIXELS.

XmNunitType can have the following values:

XmPIXELS All values provided to the widget ar,e treated as
normal pixel values.

XmlOOTH_MILLIMETERS
All values provided to the widget are treated as 111 00
of a millimeter.

XmlOOOTH_INCHES
All values provided to the widget are treated as
111000 of an inch.

XmlOOTH_POINTS
All values provided to the widget are treated as 111 00
of a point. A point is a unit used in text processing
applications and is defined as 1172 of an inch.

1-521

OSF/Motif Programmer's Reference

XmGadget(3X)

1-522

Xml00TH_FONT _UNITS
All values provided to the widget are treated as 11100
of a font unit. A font unit has horizontal and vertical
components. These are the values of the XmScreen
resources XmNhorizontalFontUnit and
XmNverticalFontUnit.

XmNuserData

Inherited Resources

Allows the application to attach any necessary specific data to the
gadget. This is an internally unused resource.

Gadget inherits the following resources from the superclass described in the
following table. For a complete description of each resource, refer to the reference
page for that superc1ass.

RectObj Resource Set

Name Default Access
Class Type

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

Xm NborderWidth 0 N/A
XmCBorderWidth Dimension

XmNheight dynamic CSG
XmCHeight Dimension

XmNsensitive True CSG
XmCSensitive Boolean

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Reference Pages

XmGadget{3X)

Object Resource Set

Name Default Access
Class Type

Xm NdestroyCallback NULL C
XmCCallback XtCallbackList

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;

} XmAnyCallbackStruct;

reason Indicates why the callback was invoked. For this callback, reason is
set to XmCR_HELP.

event Points to the XEvent that triggered the callback.

Behavior
Gadgets cannot have translations associated with them. Because of this, a Gadget's
behavior is determined by the Manager widget into which the Gadget is placed. If
focus is on a Gadget, events are passed to the Gadget by its Manager.

Related Information
Object(3X), RectObj(3X), XmManager(3X), and XmScreen(3X).

1-523

OSF/Motif Programmer's Reference

XmGetAtomName(3X)

Synopsis

Description

XmGetAtomName-A function that returns the string representation for an atom

#include <XmIXm.h>
#include <XmlAtomMgr.h>

String XmGetAtomName (display, atom)
Display * display;
Atom atom;

XmGetAtomName returns the string representation for an atom. It mirrors the
Xlib interfaces for atom management but provides client-side caching. When and
where caching is provided in Xlib, the routines will become pseudonyms for the
Xlib routines.

display Specifies the connection to the X server

atom Specifies the atom for the property name you want returned

Return Value
Returns a string.

1-524

Reference Pages

XmGetColorCalculation (ax)

XmGetColorCalculation-A function to get the procedure used for default color
calculation

Synopsis #include <XmlXm.h>

Description

XmColorProc XmGetColorCalculation 0

XmGetColorCalculation returns the procedure being used to calculate default
colors.

For a description of XmColorProc, see XmSetColorCalculation(3X).

Return Value
Returns the procedure used for default color calculation.

Related Information
XmChangeColor(3X), XmGetColors(3X), and XmSetColorCalculation(3X).

1-525

OSF/Motif Programmer's Reference

XmGetColors (aX)

Synopsis

Description

XmGetColors-A function that generates foreground, select, and shadow colors

#include <XmIXm.h>

void XmGetColors (screen, colormap, background, foreground, top_shadow,
bottom3hadow, select)

Screen
Colormap
Pixel
Pixel
Pixel
Pixel
Pixel

* screen;
colormap;
background;
* foreground;
* top_shadow;
* bottom_shadow;
* select;

XmGetColors takes a screen, a colormap, and a background pixel, and returns
pixel values for foreground, select, and shadow colors.

screen Specifies the screen for which these colors should be allocated.

co 10 rmap Specifies the colormap from which these colors should be allocated.

background Specifies the background on which the colors should be based.

foreground Specifies a pointer to the returned foreground pixel value. If this
argument is NULL no value is allocated or returned for this color.

top_shadow Specifies a pointer to the returned top shadow pixel value. If this
argument is NULL, no value is allocated or returned for this color.

bottom_shadow

select

Specifies a pointer to the returned bottom shadow pixel value. If
this argument is NULL, no value is allocated or returned for this
color.

Specifies a pointer to the returned select pixel value. If this
argument is NULL, no value is allocated or returned for this color.

Related Information

1-526

XmChangeColor(3X}, XmGetColorCalculation(3X}, and
XmSetColorCalculation(3X}.

Synopsis

Description

Reference Pages

XmGetDestination (3X)

XmGetDestination-A function that returns the widget ID of the widget to be
used as the current destination for quick paste and certain clipboard operations

#include <XmlXm.h>

Widget XmGetDestination (display)
Display *display;

XmGetDestination returns the widget that is the current destination on the
specified display. The destination is generally the last editable widget on which a
select, edit, insert, or paste operation was performed and is the destination for
quick paste and certain clipboard functions. The destination is NULL if the
application makes this call before any of the specified operations have been
performed on an editable widget.

display Specifies the display whose destination widget is to be queried

Return Value
Returns the widget ID for the current destination or NULL if there is no current
destination.

1-527

OSF/Motif Programmer's Reference

XmGetDragContext(3X)

XmGetDragContext-A Drag and Drop function that retrieves the DragContext
widget ID associated with a timestamp

Synopsis #include <XmlDragC.h>

Description

Widget XmGetDragContext (refwidget, timestamp)
Widget refwidget;
Time timestamp;

XmGetDragContext returns the widget ID of the active DragContext associated
with a given display and timestamp. A timestamp uniquely identifies which
DragContext is active when more than one drag and drop transaction has been
initiated on a display. If the specified timestamp matches a timestamp processed
between the start and finish of a single drag and drop transaction, the function
returns the corresponding DragContext ID.

refwidget

timestamp

Specifies the ID of the widget that the routine uses to identify the
intended display. The function returns the ID of the DragContext
associated with the display value passed by this widget.

Specifies a timestamp.

For a complete definition of DragContext and its associated resources, see
XmDragContext(3X).

Return Value
Returns the ID of the DragContext widget that is active for the specified
timestamp. Otherwise, returns NULL if no active DragContext is found.

Related Information
XmDragContext(3X).

1-528

Reference Pages

XmGetFocusWidget{ ax)

XmGetFocusWidget-Returns the ID of the widget that has keyboard focus

Synopsis #include <XmlXm.h>

Description

Widget XmGetFocusWidget (widget)
Widget widget;

XmGetFocusWidget examines the hierarchy that contains the specified widget
and returns the ID of the widget that has keyboard focus. The function extracts the
widget ID from the associated Shell widget; therefore, the specified widget can be
located anywhere in the hierarchy.

widget Specifies a widget ID within a given hierarchy

Return Value
Returns the ID of the widget with keyboard focus. If no child of the Shell has
focus, the function returns NULL.

Related Information
XmProcessTraversal(3X).

1-529

OSF/Motif Programmer's Reference

XmGetMenuCursor(3X)

Synopsis

Description

XmGetMenuCursor-A function that returns the cursor ID for the current menu
cursor

#include <XmlXm.h>

Cursor XmGetMenuCursor (display)
Display * display;

XmGetMenuCursor queries the menu cursor currently being used by this client
on the specified display and returns the cursor ID. This function returns the menu
cursor for the default screen of the display.

NOTE: XmGetMenuCursor is obsolete and exists for compatibility with previous
releases. Instead of using this function, call XtGetValues for the XmScreen
resource XmNmenuCursor.

display Specifies the display whose menu cursor is to be queried

Return Value
Returns the cursor ID for the current menu cursor or the value None if a cursor is
not yet defined. A cursor will not be defined if the application makes this call
before the client has created any menus on the specified display.

Related Information
XmScreen(3X) .

1-530

Synopsis

Description

Reference Pages

XmGetPixmap(3X)

XmGetPixmap-A pixmap caching function that generates a pixmap, stores it in a
pixmap cache, and returns the pixmap

#include <XmlXm.h>

Pixmap XmGetPixmap (screen, image_name, foreground, background)
Screen *screen;
char *image_name;
Pixel foreground;
Pixel background;

XmGetPixmap uses the parameter data to perform a lookup in the pixmap cache
to see if a pixmap has already been generated that matches the data. If one is
found, a reference count is incremented and the pixmap is returned. Applications
should use XmDestroyPixmap when the pixmap is no longer needed.

screen Specifies the display screen on which the pixmap is to be drawn.
The depth of the pixmap is the default depth for this screen.

image_name Specifies the name of the image to be used to generate the pixmap

foreground Combines the image with the foreground color to create the pixmap
if the image referenced is a bit-per-pixel image

background Combines the image with the background color to create the pixmap
if the image referenced is a bit-per-pixel image

If a pixmap is not found, image_name is used to perform a lookup in the image
cache. If an image is found, it is used to generate the pixmap, which is then cached
and returned.

If an image is not found, the image_name is used as a filename, and a search is
made for an XIO or XII bitmap file. If it is found, the file is read, converted into
an image, aqd cached in the image cache. The image is then used to generate a
pixmap, which is cached and returned.

If image_name has a leading slash (I), it specifies a full pathname, and
XmGetPixmap opens the file as specified. Otherwise, image_name specifies a
filename. In this case, XmGetPixmap looks for the file along a search path
specified by the XBMLANGPATH environment variable or by a default search
path, which varies depending on whether or not the XAPPLRESDIR environment
variable is set.

1-531

OSF/Motif Programmer's Reference

XmGetPixmap(ax)

1-532

The XBMLANGPATH environment variable specifies a search path for X bitmap
files. It can contain the substitution field %B, where the image_name argument to
XmGetPixmap is substituted for %B. It can also contain the substitution fields
accepted by XtResolvePathname. The substitution field % T is always mapped to
bitmaps, and % S is always mapped to NULL.

If XBMLANGPATH is not set but the environment variable XAPPLRESDIR is
set, the following pathnames are searched:

• %B

• $XAPPLRESDIRI%Llhitmaps/%N/%B

• $XAPPLRESDIRI% IIbitmaps/% N/% B

• $XAPPLRESDIRlbitmaps/%N/%B

• $XAPPLRESDIRI%Llhitmaps/%B

• $XAPPLRESDIRI% IIbitmaps/% B

• $XA~rLRESDIRlbitmaps/% B

• $HOMElhitmaps/%B

• $HOME/%B

• /usr/lib/xl1/%Llhitmaps/%N/%B

• /usr/lib/Xll/% IIbitmaps/% N/% B

• /usr/lib/xlllhitmaps/%N/%B

• /usr/lib/xll/% Llhitmaps/% B

• /usr/lib/xll/%Ilbitmaps/%B

• /usr/lib/xlllhitmaps/%B

• /usr/include/xlllhitmaps/% B

If neither XBMLANGPATH nor XAPPLRESDIR is set, the following pathnames
are searched:

• %B

• $HOME/%Llhitmaps/%N/%B

• $HOME/%Ilbitmaps/%N/%B

Reference Pages

XmGetPixmap(3X)

• $HOMElbitmaps/%N/%B

• $HOME/%Llbitmaps/%B

• $HOME/%Vbitmaps/%B

• $HOMElbitmaps/% B

• $HOME/%B

• lusr/liblXll/%Llbitmaps/%N/%B

• lusr/liblXll1% Vbitmaps/% N/% B

• lusr/liblXlllbitmaps/%N/%B

• lusr/liblXll/% Llbitmaps/% B

• lusr/liblXll/% Vbitmaps/% B

• lusr/liblXlllbitmaps/%B

• lusr/includelXlllbitmaps/%B

These paths are defaults that vendors may change. For example, a vendor may use
different directories for lusr/liblXll and lusr/includelXll.

The following substitutions are used in these paths:

%B The image name, from the image_name argument

% N The class name of the application

% L The display's language string

%1 The language component of the display's language string

Return Value
Returns a pixmap when successful; returns XmUNSPECIFIED_PIXMAP if the
image corresponding to image_name cannot be found.

Related Information
XmDestroyPixmap(3X), XmGetPixmapByDepth(3X), XmInstaIlImage(3X),
and XmUninstaIlImage(3X).

1-533

OSF/Motif Programmer's Reference

XmGetPixmapByDepth (3X)

Synopsis

Description

1-534

XmGetPixmapByDepth-A pixmap caching function that generates a pixmap,
stores it in a pixmap cache, and returns the pixmap

#include <XmlXm.h>

Pixmap XmGetPixmapByDepth (screen, image_name,foreground, background, depth)
Screen *screen;
char *i"~nage_name;

Pixel foreground;
Pixel background;
int depth;

XmGetPixmapByDepth uses the parameter data to perform a lookup in the
pixmap cache to see if a pixmap has already been generated that matches the data.
If one is found, a reference count is incremented and the pixmap is returned.
Applications should use XmDestroyPixmap when the pixmap is no longer needed.

screen Specifies the display screen on which the pixmap is to be drawn

image_name Specifies the name of the image to be used to generate the pixmap

foreground Combines the image with the foreground color to create the pixmap
if the image referenced is a bit-per-pixel image

background Combines the image with the background color to create the pixmap
if the image referenced is a bit-per-pixel image

depth Specifies the depth of the pixmap

If a matching pixmap is not found, image_name is used to perform a lookup in the
image cache. If an image is found, it is used to generate the pixmap, which is then
cached and returned.

If an image is not found, image_name is used as a filename, and a search is made
for an XIO or XII bitmap file. If it is found, the file is read, converted into an
image, and cached in the image cache. The image is then used to generate a
pixmap, which is cached and returned.

If image_name has a leading / (slash), it specifies a full pathname, and
XmGetPixmapByDepth opens the file as specified. Otherwise, image_name
specifies a filename. In this case, XmGetPixmapByDepth looks for the file along
a search path specified by the XBMLANGPATH environment variable or by a
default search path, which varies depending on whether or not the
XAPPLRESDIR environment variable is set.

Reference Pages

XmGetPixmapByDepth (3X)

The XBMLANGPATH environment variable specifies a search path for X bitmap
files. It can contain the substitution field %B, where the image_name argument to
XmGetPixmapByDepth is substituted for %B. It can also contain the substitution
fields accepted by XtResolvePathname. The substitution field % T is always
mapped to bitmaps, and % S is always mapped to NULL.

If XBMLANGPATH is not set, but the environment variable XAPPLRESDIR is
set, the following pathnames are searched:

• %B

• $XAPPLRESDIRI% Llbitmapsl%N/% B

• $XAPPLRESDIRI% lIbitmaps/% N/% B

• $XAPPLRESDIRlbitmaps/%N/%B

• $XAPPLRESDIRI% Llbitmaps/% B

• $XAPPLRESDIRI%lIbitmaps/%B

• $XAPPLRESDIRlbitmaps/% B

• $HOMElbitmapsl%B

• $HOME/%B

• lusrlliblXll/%Llbitmaps/%N/%B

• lusrlliblXll/% lIbitmaps/% N/% B

• lusrlliblXlllbitmaps/%N/%B

• lusrlliblXll/%Llbitmaps/%B

• lusrlliblXll/% lIbitmaps/% B

• /usrlliblXlllbitmaps/% B

• lusr/includelXlllbitmaps/%B

If neither XBMLANGPATH nor XAPPLRESDIR is set, the following pathnames
are searched:

• %B

• $HOME/%Llbitmaps/%N/%B

• $HOME/%lIbitmaps/%N/%B

1-535

OSF/Motif Programmer's Reference

XmGetPixmapByDepth (3X)

• $HOMElbitmaps/%N/%B

• $HOME/%Llbitmaps/%B

• $HOME/%Vbitmaps/%B

• $HOMElbitmaps/%B

• $HOME/%B

• /usrllihlXll/%Llbitmaps/%N/%B

• /usrllihlXll/%Vbitmaps/%N/%B

• /usrllihlXlllbitmaps/%N/%B

• /usrllihlXll/%Llbitmaps/%B

• /usrllihlXll/%Vbitmaps/%B

• /usrllihlXlllhitmaps/ % B

• /usr/includelXlllhitmaps/%B

These paths are defaults that vendors may change. For example, a vendor may use
different directories for /usrllihlXll and /usr/includelXll.

The following substitutions are used in these paths:

%B The image name, from the image_name argument

% N The class name of the application

%L The display's language string

% I The language component of the display's language string

Return Value
Returns a pixmap when successful; returns XmUNSPECIFIED_PIXMAP if the
image corresponding to image_name cannot be found.

Related Information
XmDestroyPixmap(3X), XmlnstallImage(3X), and XmUninstallImage(3X).

1-536

Synopsis

Description

Reference Pages

XmGetPostedFromWidget{ 3X)

XmGetPostedFromWidget-A RowColumn function that returns the widget from
which a menu was posted

#include <Xm/RowColumn.h>

Widget XmGetPostedFromWidget (menu)

Widget menu;

XmGetPostedFromWidget returns the widget from which a menu was posted.
For tom-off menus, this function returns the widget from which the menu was
originally tom. An application can use this routine during the activate callback to
determine the context in which the menu callback should be interpreted.

menu Specifies the widget ID of the menu

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3X).

Return Value
Returns the widget ID of the widget from which the menu was posted. If the menu
is a Popup Menu, the returned widget is the widget from which the menu was
popped up. If the menu is a Pulldown Menu, the returned widget is the MenuBar
or OptionMenu from which the widget was pulled down.

Related Information
XmRowColumn(3X).

1-537

OSF/Motif Programmer's Reference

XmGetSecondaryResourceData(3X)

Synopsis

Description

1-538

XmGetSecondaryResourceData-A function that provides access to secondary
widget resource data

#include <XmlXm.h>

Cardinal XmGetSecondaryResourceData (widgeCclass, secondary_data_return)
WidgetClass widgecclass;
XmSecondaryResourceData ** secondary _dataJeturn;

Some Motif widget classes (such as Gadget, Text, and VendorS hell) have resources
that are not accessible through the functions XtGetResourceList and
XtGetConstraintResourceList. In order to retrieve the descriptions of these
resources, an application must use XmGetSecondaryResourceData.

When a widget class has such resources, this function provides descriptions of the
resources in one or more data structures. XmGetSecondaryResourceData takes a
widget class argument and returns the number of these data structures associated
with the widget class. If the return value is greater than 0 (zero), the function
allocates and fills an array of pointers to the corresponding data structures. It
returns this array at the address that is the value of the secondary _data_return
argument.

The type XmSecondaryResourceData is a pointer to a structure with two
members that are useful to an application: resources, of type XtResourceList, and
num_resources, of type Cardinal. The resources member is a list of the widget
resources that are not accessible using Xt functions. The num_resources member
is the length of the resources list.

If the return value is greater than 0 (zero), XmGetSecondaryResourceData
allocates memory that the application must free. Use XtFree to free the resource
list in each structure (the value of the resources member), the structures
themselves, and the array of pointers to the structures (the array whose address is
secondary _data_return).

widgecclass Specifies the widget class for which secondary resource data is to be
retrieved.

secondary _data_return
Specifies a pointer to an array of XmSecondaryResourceData
pointers to be returned by this function. If the widget class has no
secondary resource data, for example, if the value returned by the
function is 0 (zero), the function returns no meaningful value for
this argument.

Reference Pages

XmGetSecondaryResourceData (3X)

Return Value

Example

Returns the number of secondary resource data structures associated with this
widget class.

The following example uses XmGetSecondaryResourceData to print the names
of the secondary resources of the Motif Text widget and then frees the data
allocated by the function:

XmSecondaryResourceData * block_array ;
Cardinal num_blocks, i, j ;
if (num_blocks = XmGetSecondaryResourceData (xmTextWidgetClass,

&block_array)) {
for (i = 0; i < num_blocks; i++) {

for (j = 0 ; j < block_array[i]->num_resources; j++) {
printf ("%s\n", block_array [i] ->resources [j] . resource_name) ;

XtFree«char*)block_array[i]->resources);
XtFree«char*)block_array[i]);

XtFree«char*)block_array);

1-539

OSF/Motif Programmer's Reference

XmGetTabGroup(3X)

Synopsis

Description

XmGetTabGroup-Returns the widget ID of a tab group

#include <XmlXm.h>

Widget XmGetTabGroup (widget)
Widget widget;

XmGetTabGroup returns the widget ID of the tab group that contains the
specified widget.

widget Specifies a widget ID within a tab group

Return Value
Returns the widget ID of a tab group or shell, determined as follows:

• If widget is a tab group or shell, returns widget

• If neither widget nor any ancestor up to the nearest shell is a tab group,
returns the nearest ancestor of widget that is a shell

• Otherwise, returns the nearest ancestor of widget that is a tab group

Related Information
XmAddTabGroup(3X), XmManager(3X), and XmPrimitive(3X).

1-540

Synopsis

Description

Reference Pages

XmGetTearOffControl (3X)

XmGetTearOffControl-A RowColumn function that obtains the widget ID for
the tear-off control in a menu

#include <XmlRowColumn.h>

Widget XmGetTearOtfControl (menu)

Widget menu;

XmGetTearOffControl provides the application with the means for obtaining the
widget ID of the internally created tear-off control in a tear-off menu.

RowColumn creates a tear-off control for a PulldownMenu or PopupMenu when
the XmNtearOffModel resource is initialized or set to
XmTEAR_OFF _ENABLED. The tear-off control is a widget that appears as the
first element in the menu. The user tears off the menu by means of mouse or
keyboard events in the tear-off control.

The tear-off control has Separator-like behavior. Once the application has
obtained the widget ID of the tear-off control, it can set resources to specify the
appearance of the control. The application or user can also set these resources in a
resource file by using the name of the control, which is TearOffControl. For a list
of the resources the application or user can set, see XmRowColumn(3X).

menu Specifies the widget ID of the RowColumn PulldownMenu or
PopupMenu

For more information on tear-off menus and a complete definition of RowColumn
and its associated resources, see XmRowColumn(3X).

Return Value
Returns the widget ID for the tear-off control, or NULL if no tear-off control exists.
An application should not assume that the returned widget will be of any particular
class.

Related Information
XmRowColumn(3X).

1-541

OSF/Motif Programmer's Reference

XmGetVisibility (3X)

XmGetVisibility-A function that determines if a widget is visible

Synopsis #include <XmlXm.h>

XmVisibility XmGetVisibility (widget)
Widget widget;

Description
XmGetVisibility returns the visibility state of the specified widget.

widget Specifies the ID of the widget

Return Value
Returns one of the following values:

• XmVISffiILITY_UNOBSCURED

• XmVISffiILITY_PARTIALLY_OBSCURED

• XmVISffiILITY_FULLY_OBSCURED

Related Information
XmIsTraversable(3X), XmManager(3X), and XmProcessTraversal(3X).

1-542

Reference Pages

XmGetXmDisplay (3X)

XmGetXmDisplay-A Display function that returns the XmDisplay object ID for
a specified display

Synopsis #include <XmlXm.h>

Description

Widget XmGetXmDisplay (display)
Display *display;

XmGetXmDisplay returns the XmDisplay object ID associated with a display.
The application can access Display resources with XtGetValues.

display Specifies the display for which the XmDisplay object ID is to be
returned

For a complete definition of Display and its associated resources, see
XmDisplay(3X).

Return Value
Returns the XmDisplay object ID for the specified display.

Related Information
XmDisplay(3X).

1-543

OSF/Motif Programmer's Reference

XmGetXmScreen (3X)

Synopsis

Description

XmGetXmScreen-A Screen function that returns the XmScreen object ID for a
specified screen

#include <XmlXm.h>

Widget XmGetXmScreen (screen)
Screen *screen;

XmGetXmScreen returns the XmScreen object ID associated with a screen. The
application can access and manipulate Screen resources with XtGetValues and
XtSetValues.

screen Specifies the screen for which the XmScreen ID is to be returned

For a complete definition of Screen and its associated resources, see
XmScreen(3X) .

Return Value
Returns the XmScreen object ID.

Related Information
XmScreen(3X) .

1-544

Synopsis

Description

Reference Pages
Xmlnstalllmage(3X)

XmlnstallImage-A pixmap caching function that adds an image to the image
cache

#include <XmlXm.h>

Boolean XmlnstallImage (image, image_name)
Xlmage * image;
char * image_name;

XmlnstallImage stores an image in an image cache that can later be used to
generate a pixmap. Part of the installation process is to extend the resource
converter used to reference these images. The resource converter is given the
image name so that the image can be referenced in a .Xdefaults file. Since an
image can be referenced by a widget through its pixmap resources, it is up to the
application to ensure that the image is installed before the widget is created.

image Points to the image structure to be installed. The installation process
does not make a local copy of the image. Therefore, the application
should not destroy the image until it is uninstalled from the caching
functions.

image_name Specifies a string that the application uses to name the image. After
installation, this name can be used in a .Xdefaults file for
referencing the image. A local copy of the name is created by the
image caching functions.

The image caching functions provide a set of eight preinstalled images. These
names can be used within a .Xdefaults file for generating pixmaps for the resource
for which they are provided.

1-545

OSF/Motif Programmer's Reference

Xmlnstalllmage (3X)

Image Name Description

background A tile of solid background

25_foreground A tile of 25% foreground, 75% background

50_foreground A tile of 50% foreground, 50% background

75_foreground A tile of 75% foreground, 25% background

horizontal A tile of horizontal lines of the two colors

vertical A tile of vertical lines of the two colors

slanCright A tile of slanting lines of the two colors

slanCleft A tile of slanting lines of the two colors

Return Value
Returns True when successful; returns False if NULL image, NULL image_name,
or duplicate image_name is used as a parameter value.

Related Information
XmUninstalllmage(3X), XmGetPixmap(3X), and XmDestroyPixmap(3X).

1-546

Synopsis

Description

Reference Pages

XmlnternAtom (3X)

XmlnternAtom-A function that returns an atom for a given name

#include <XmlXm.h>
#include <XmlAtomMgr.h>

Atom XmlnternAtom (display, name, only_if_exists)
Display * display;
String name;
Boolean only _if_exists;

XmlnternAtom returns an atom for a given name. It mirrors the Xlib interfaces
for atom management, but provides client-side caching. When and where caching
is provided in Xlib, the routines will become pseudonyms for the Xlib routines.

display

name

only _if_exists

Specifies the connection to the X server

Specifies the name associated with the atom you want returned

Specifies a Boolean value that indicates whether XlnternAtom
creates the atom

Return Value
Returns an atom.

1-547

OSF/Motif Programmer's Reference

XmlsMotifWMRunning (3X)

Synopsis

Description

XmIsMotifWMRunning-A function that determines whether the window
manager is running

#include <XmlXm.h>

Boolean XmIsMotifWMRunning (shell)
Widget shell;

XmIsMotifWMRunning lets a user know whether the Motif Window Manager is
running on a screen that contains a specific widget hierarchy. This function first
sees whether the _MOTIF _ WM_INFO property is present on the root window of
the shell's screen. If it is, its window field is used to query for the presence of the
specified window as a child of root.

shell Specifies the shell whose screen will be tested for mwm's presence.

Return Value
Returns True if MWM is running.

1-548

Synopsis

Description

Reference Pages

XmlsTraversable(ax)

XmIsTraversable-A function that identifies whether a widget can be traversed

#include <XmlXm.h>

Boolean XmIsTraversable (widget)
Widget widget;

XmIsTraversable determines whether the specified widget is eligible to receive
focus through keyboard traversal. In general, a widget is eligible to receive focus
when all of the following conditions are true:

• The widget and its ancestors are not being destroyed, are sensitive, and
have a value of True for XmNtraversalOn.

• The widget and its ancestors are realized, managed, and (except for
gadgets) mapped.

• Some part of the widget's rectangular area is unobscured by the widget's
ancestors, or some part of the widget's rectangular area is inside the work
window (but possibly outside the clip window) of a ScrolledWindow whose
XmNscrollingPolicy is XmAUTOMATIC and whose
XmNtraverseObscuredCallback is not NULL.

Some widgets may not be eligible to receive focus even if they meet all these
conditions. For example, most managers cannot receive focus through keyboard
traversal. Some widgets may be eligible to receive focus under particular
conditions. For example, a DrawingArea is eligible to receive focus if it meets the
conditions above and has no child whose XmNtraversalOn resource is True.

widget Specifies the ID of the widget

Return Value
Returns True if the widget is eligible to receive focus through keyboard traversal;
otherwise, returns False.

Related Information
XmGetVisibility(3X) and XmProcessTraversal(3X).

1-549

OSF/Motif Programmer's Reference
XmLabel(3X)

Synopsis

Description

Classes

1-550

XmLabel-The Label widget class

#include <Xm/Label.h>

Label is an instantiable widget and is also used as a superclass for other button
widgets, such as PushButton and ToggleButton. The Label widget does not accept
any button or key input, and the help callback is the only callback defined. Label
also receives enter and leave events.

Label can contain either text or a pixmap. Label text is a compound string. Refer
to the OSFIMotij Programmer's Guide for more information on compound strings.
The text can be multilingual, multiline, and/or multifont. When a Label is
insensitive, its text is stippled, or the user-supplied insensitive pixmap is displayed.

Label supports both accelerators and mnemonics primarily for use in Label
subclass widgets that are contained in menus. Mnemonics are available in a menu
system when the button is visible. Accelerators in a menu system are accessible
even when the button is not visible. The Label widget displays the mnemonic by
underlining the first matching character in the text string. The accelerator is
displayed as a text string adjacent to the label text or pixmap.

Label consists of many margin fields surrounding the text or pixmap. These margin
fields are resources that may be set by the user, but Label subclasses and Manager
parents also modify some of these fields. They tend to modify the
XmNmarginLeft, XmNmarginRight, XmNmarginTop, and
XmNmarginBottom resources and leave the XmNmargin Width and
XmNmarginHeight resources as set by the application.

Label takes into account XmNshadowThickness in determining its layout but does
not draw the shadow. That is, if XmNshadowThickness is greater than 0 (zero),
Label leaves space for the shadow, but the shadow does not appear.

In a Label XmNtraversalOn and XmNhighlightOnEnter are forced to False
inside Popup MenuPanes, Pulldown MenuPanes, and OptionMenus. Otherwise,
these resources default to False.

Label inherits behavior and resources from Core and XmPrimitive.

The class pointer is xmLabelWidgetClass.

The class name is XmLabel.

Reference Pages
XmLabel{3X)

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-551

OSF/Motif Programmer's Reference

XmLabel(3X)

XmLabel Resource Set

Name Default Access
Class Type

Xm Naccelerator NULL CSG
XmCAccelerator String

XmNacceleratorText NULL CSG
XmCAcceleratorText XmString

XmNalignment dynamic CSG
XmCAlignment unsigned char

Xm NfontList dynamic CSG
XmCFontList XmFontList

XmNlabellnsensitivePixmap XmUNSPECIFIED_PIXMAP CSG
XmCLabellnsensitivePixmap Pixmap

XmNlabelPixmap XmUNSPECIFIED_PIXMAP CSG
XmCLabelPixmap Pixmap

XmNlabelString dynamic CSG
XmCXmString XmString

XmNlabelType XmSTRING CSG
XmCLabelType unsigned char

XmNmarginBottom 0 CSG
XmCMarginBottom Dimension

XmNmarginHeight 2 CSG
XmCMarginHeight Dimension

XmNmarginLeft 0 CSG
XmCMarginLeft Dimension

XmNmarginRight 0 CSG
XmCMarginRight Dimension

XmNmarginTop 0 CSG
XmCMarginTop Dimension

XmNmarginWidth 2 CSG
XmCMarginWidth Dimension

XmNmnemonic NULL CSG
XmCMnemonic KeySym

1-552

Reference Pages

XmLabel(3X)

Name Default Access
Class Type

XmNmnemonicCharSet XmFONTLIST _DEFAULT_TAG CSG
XmCMnemonicCharSet String

XmNrecomputeSize True CSG
XmCRecomputeSize Boolean

XmNstringDirection dynamic CSG
XmCStringDirection XmStringDirection

XmNaccelerator
Sets the accelerator on a button widget in a menu, which activates a
visible or invisible, but managed, button from the keyboard. This
resource is a string that describes a set of modifiers and the key that
may be used to select the button. The format of this string is
identical to that used by the translations manager, with the exception
that only a single event may be specified and only KeyPress events
are allowed.

Accelerators for buttons are supported only for PushButtons and
ToggleButtons in Pulldown and Popup MenuPanes.

XmNacceleratorText
Specifies the text displayed for the accelerator. The text is
displayed adjacent to the label string or pixmap. Accelerator text
for buttons is displayed only for PushButtons and ToggleButtons in
Pulldown and Popup Menus.

XmNalignment
Specifies the label alignment for text or pixmap.

XmALIGNMENT _BEGINNING (left alignment)
Causes the left sides of the lines of text to be
vertically aligned with the left edge of the widget
window. For a pixmap, its left side is vertically
aligned with the left edge of the widget window.

XmALIGNMENT_CENTER (center alignment)
Causes the centers of the lines of text to be vertically
aligned in the center of the widget window. For a
pixmap, its center is vertically aligned with the center
of the widget window.

1-553

OSF/Motif Programmer's Reference

XmLabel(3X)

1-554

XmALIGNMENT_END (right alignment)
Causes the right sides of the lines of text to be
vertically aligned with the right edge of the widget
window. For a pixmap, its right side is vertically
aligned with the right edge of the widget window.

The preceding descriptions for text are correct when
XmNstringDirection is XmSTRING_DIRECTION_L_TO_R.
When that resource is XmSTRING_DIRECTION_R_TO_L, the
descriptions for XmALIGNMENT _BEGINNING and
XmALIGNMENT_END are switched.

If the parent is a RowColumn whose XmNisAligned resource is
True, XmNalignment is forced to the same value as the
RowColumn's XmNentryAlignment if the RowColumn's
XmNrowColumnType is XmWORK_AREA or if the widget is a
subclass of XmLabel. Otherwise, the default is
XmALIGNMENT_CENTER.

XmNfontList Specifies the font of the text used in the widget. If this value is
NULL at initialization, the parent hierarchy of the widget is
searched for an ancestor that is a subclass of the XmBulletinBoard,
VendorS hell, or XmMenuShell widget class. If such an ancestor is
found, the font list is initialized to the XmNbuttonFontList (for
button subclasses) or XmNlabelFontList of the ancestor widget. If
no such ancestor is found, the default is implementation dependent.
Refer to XmFontList(3X) for more information on the creation and
structure of a font list.

XmNlabelInsensitivePixmap
Specifies a pixmap used as the button face if XmNlabelType is
XmPIXMAP and the button is insensitive. The default value,
XmUNSPECIFIED_PIXMAP, displays an empty label.

XmNlabelPixmap
Specifies the pixmap when XmNlabelType is XmPIXMAP. The
default value, XmUNSPECIFIED_PIXMAP, displays an empty
label.

XmNlabelString
Specifies the compound string when XmNlabelType is
XmSTRING. If this value is NULL, it is initialized by converting
the name of the widget to a compound string. Refer to
XmString(3X) for more information on the creation and structure
of compound strings.

Reference Pages

XmLabel(3X)

XmNlabelType
Specifies the label type.

XmSTRING Displays text using XmNlabelString.

XmPIXMAP Displays pixmap using XmNlabelPixmap or
XmNlabelInsensitivePixmap.

XmNmarginBottom
Specifies the amount of spacing between the bottom of the label text
and the top of the bottom margin specified by XmNmarginHeight.
This may be modified by Label's subclasses. For example,
CascadeButton may increase this field to make room for the cascade
pixmap.

XmNmarginHeight
Specifies an equal amount of spacing above the margin defined by
XmNmarginTop and below the margin defined by
XmNmarginBottom. XmNmarginHeight specifies the amount of
spacing between the top edge of the margin set by XmNmarginTop
and the bottom edge of the top shadow, and the amount of spacing
between the bottom edge of the margin specified by
XmNmarginBottom and the top edge of the bottom shadow.

XmNmarginLeft
Specifies the amount of spacing between the left edge of the label
text and the right side of the left margin (specified by
XmNmarginWidth). This may be modified by Label's subclasses.
For example, ToggleButton may increase this field to make room for
the toggle indicator and for spacing between the indicator and label.
Whether this actually applies to the left or right side of the label
may depend on the value of XmNstringDirection.

XmNmarginRight
Specifies the amount of spacing between the right edge of the label
text and the left side of the right margin (specified by
XmNmarginWidth). This may be modified by Label's subclasses.
For example, CascadeB utton may increase this field to make room
for the cascade pixmap. Whether this actually applies to the left or
right side of the label may depend on the value of
XmNstringDirection.

1-555

OSF/Motif Programmer's Reference

XmLabel(3X)

1-556

XmNmarginTop
Specifies the amount of spacing between the top of the label text
and the bottom of the top margin specified by XmNmarginHeight.
This may be modified by Label's subclasses. For example,
CascadeButton may increase this field to make room for the cascade
pixmap.

XmNmarginWidth
Specifies an equal amount of spacing to the left of the margin
defined by XmNmarginLeft and to the right of the margin defined
by XmNmarginRight. XmNmarginWidth specifies the amount of
spacing between the left edge of the margin set by
XmNmarginLeft and the right edge of the left shadow, and the
amount of spacing between the right edge of the margin specified by
XmNmarginRight and the left edge of the right shadow.

XmNmnemonic
Provides the user with an alternate means of activating a button. A
button in a MenuBar, a Popup MenuPane, or a Pulldown MenuPane
can have a mnemonic.

This resource contains a keysym as listed in the XII keysym table.
The first character in the label string that exactly matches the
mnemonic in the character set specified in XmNmnemonicCharSet
is underlined when the button is displayed.

When a mnemonic has been specified, the user activates the button
by pressing the mnemonic key while the button is visible. If the
button is a CascadeButton in a MenuBar and the MenuBar does not
have the focus, the user must use the MAlt modifier while pressing
the mnemonic. The user can activate the button by pressing either
the shifted or the un shifted mnemonic key.

XmNmnemonicCharSet
Specifies the character set of the mnemonic for the label. The
default is XmFONTLIST_DEFAULT_TAG.

Reference Pages

XmLab.el(3X)

XmNrecomputeSize
Specifies a Boolean value that indicates whether the widget shrinks
or expands to accommodate its contents (label string or pixmap) as a
result of an XtSetValues resource value that would change the size
of the widget. If True, the widget shrinks or expands to exactly fit
the label string or pixmap. If False, the widget never attempts to
change size on its own.

XmNstringDirection

Inherited Resources

Specifies the direction in which the string is to be drawn:

XmSTRING_DlRECTION_L_TO_R

XmSTRING_DlRECTION_R_TO_L

Left to right

Right to left

The default for this resource is determined at creation time. If no
value is specified for this resource arid the widget's parent is a
manager, the value is inherited from the parent; otherwise, it
defaults to XmSTRING_DlRECTION_L_ TO _R.

Label inherits behavior and resources from the following superclasses. For a
complete description of each resource, refer to the reference page for that
superclass.

1-557

OSF/Motif Programmer's Reference

XmLabel(3X)

XmPrimitive Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

Xm NhighlightThickness 0 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType Xm NavigationType

XmNshadowThickness 0 CSG
XmCShadowThickness Dimension

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn False· CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-558

Reference Pages

XmLabel(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap Xm UNSPECI FI ED _PIX MAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-559

OSF/Motif Programmer's Reference

XmLabel(3X)

1-560

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
XmLabel includes translations from Primitive. The XmLabel translations are
described in the following list. These translations may not directly correspond to a
translation table.

BTransfer Press: ProcessDragO

HelpO KHelp:

The translations used by subclasses of XmLabel for menu traversal are described in
the following list. These translations may not directly correspond to a translation
table.

KLeft:

KRight:

KUp:

KDown:

MAny KCancel:

MenuTraverseLeftO

MenuTraverseRightO

MenuTraverseUpO

MenuTraverseDownO

MenuEscapeO

Action Routines
The XmLabel action routines are

HelpO: In a Popup or Pulldown MenuPane, unposts all menus in the menu
hierarchy and, when the shell's keyboard focus policy is
XmEXPLICIT, restores keyboard focus to the widget that had the
focus before the menu system was entered. Calls the callbacks for
XmNhelpCallback if any exist. If there are no help callbacks for
this widget, this action calls the help callbacks for the nearest
ancestor that has them.

Reference Pages
XmLabel (3X)

MenuEscapeO:
In a MenuBar, disarms the CascadeButton and the menu and, when
the shell's keyboard focus policy is XmEXPLICIT, restores
keyboard focus to the widget that had the focus before the menu was
entered.

In a top-level Pulldown MenuPane from a MenuBar, unposts the
menu, disarms the MenuBar CascadeButton and the MenuBar, and,
when the shell's keyboard focus policy is XmEXPLICIT, restores
keyboard focus to the widget that had the focus before the MenuBar
was entered. In other Pulldown MenuPanes, unposts the menu and
moves the focus to its CascadeButton.

In a Popup MenuPane, unposts the menu and, when the shell's
keyboard focus policy is XmEXPLICIT, restores keyboard focus to
the widget from which the menu was posted.

MenuTraverseDownO:
If the current menu item has a submenu and is in a MenuBar, then
this action posts the submenu, disarms the current menu item, and
arms the submenu's first traversable menu item.

If the current menu item is in a MenuPane, then this action disarms
the current menu item and arms the item below it. This action wraps
within the MenuPane. When the current menu item is at the
MenuPane's bottom edge, then this action wraps to the topmost
menu item in the column to the right, if one exists. When the
current menu item is at the bottom, rightmost corner of the
MenuPane, then this action wraps to the tear-off control, if present,
or to the top, leftmost menu item.

MenuTraverseLeftO:
When the current menu item is in a MenuBar, then this action
disarms the current item and arms the MenuBar item to the left.
This action wraps within the MenuBar.

In MenuPanes, if the current menu item is not at the left edge of a
MenuPane, this action disarms the current item and arms the item to
its left. If the current menu item is at the left edge of a submenu
attached to a MenuBar item, then this action unposts the submenu
and traverses to the MenuBar item to the left, wrapping if necessary.
If that MenuBar item has a submenu, it posts the submenu and arms
the first traversable item in the submenu. If the current menu item is
at the left edge of a submenu not directly attached to a MenuBar
item, then this action unposts the current submenu only.

1-561

OSF/Motif Programmer's Reference

XmLabel(3X)

1-562

In Popup or Tom-off MenuPanes, when the current menu item is at
the left edge, this action wraps within the MenuPane. If the current
menu item is at the left edge of the MenuPane and not in the top
row, this action wraps to the rightmost menu item in the row above.
If the current menu item is in the upper, leftmost comer, this action
wraps to the tear-off control, if present, or else it wraps to the
bottom, rightmost menu item in the MenuPane.

MenuTraverseRightO:
If the current menu item is in a MenuBar, then this action disarms
the current item and arms the MenuBar item to the right. This
action wraps within the MenuBar.

In MenuPanes, if the current menu item is a CascadeButton, then
this action posts its associated submenu. If the current menu item is
not a CascadeB utton and is not at the right edge of a MenuPane, this
action disarms the current item and arms the item to its right,
wrapping if necessary. If the current menu item is not a
CascadeButton and is at the right edge of a submenu that is a
descendent of a MenuBar, then this action unposts all submenus and
traverses to the MenuBar item to the right. If that MenuBar item
has a submenu, it posts the submenu and arms the submenu's first
traversable item.

In Popup or Tom-off menus, if the current menu item is not a
CascadeButton and is at the right edge of a row (except the bottom
row), this action wraps to the leftmost menu item in the row below.
If the current menu item is not a CascadeButton and is in the
bottom, rightmost comer of a Popup or Pulldown MenuPane, this
action wraps to the tear-off control, if present, or else it wraps to the
top, leftmost menu item of the MenuPane.

MenuTraverseUpO:
When the current menu item is in a MenuPane, then this action
disarms the current menu item and arms the item above it. This
action wraps within the MenuPane. When the current menu item is
at the MenuPane's top edge, then this action wraps to the
bottommost menu item in the column to the left, if one exists. When
the current menu item is at the top, leftmost comer of the
MenuPane, then this action wraps to the tear-off control, if present,
or to the bottom, rightmost menu item.

Reference Pages

XmLabel(3X)

ProcessDragO:

Virtual Bindings

Drags the contents of a Label, identified when BTransfer is pressed.
This action creates a DragContext object whose
XmNexportTargets resource is set to COMPOUND_TEXT for a
label type of XmSTRING; otherwise, it is set to PIXMAP if the
label type is XmPIXMAP. This action is undefined for Labels used
in a menu system.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Core(3X), XmCreateLabel(3X), XmFontListAppendEntry(3X),
XmStringCreate(3X), XmStringCreateLtoR(3X), and XmPrimitive(3X).

1-563

OSF/Motif Programmer's Reference

XmLabelGadget{3X)

Synopsis

Description

1-564

XmLabelGadget-The LabelGadget widget class

#include <XmlLabeIG.h>

LabelGadget is an instantiable widget and is also used as a superclass for other
button gadgets, such as PushButtonGadget and ToggleButtonGadget.

LabelGadget can contain either text or a pixmap. LabelGadget text is a compound
string. Refer to the OSFIMotij Programmer's Guide for more information on
compound strings. The text can be mUltilingual, multiline, andlor multifont. When
a LabelGadget is insensitive, its text is stippled, or the user-supplied insensitive
pixmap is displayed.

LabelGadget supports both accelerators and mnemonics primarily for use in
LabelGadget subclass widgets that are contained in menus. Mnemonics are
available in a menu system· when the button is visible. Accelerators in a menu
system are accessible eyen when the button is not visible. The LabelGadget
displays the mnemonic by underlining the first matching character in the text
string. The accelerator is displayed as a text string adjacent to the label text or
pixmap.

LabelGadget consists of many margin fields surrounding the text or pixmap. These
margin fields are resources that may be set by the user, but LabelGadget subclasses
and Manager parents also modify some of these fields. They tend to modify the
XmNmarginLeft, XqINmarginRight, XmNmarginTop, and
XmNmarginBottom resources and leave the XmNmarginWidth and
XmNmarginHeight resources as set by the application.

LabelGadget takes into account XmNshadowThickness in determining its layout
but does not draw the shadow .. That is, if XmNshadowThickness is greater than 0
(zero), LabelGadget leaves space for the shadow, but the shadow does not appear.

In a LabelGadget XmNtraversalOn and XmNhighlightOnEnter are forced to
False inside Popup MenuPanes, Pulldown MenuPanes, and OptionMenus.
Otherwise, these resources default to False.

Classes

Reference Pages

XmLabelGadget (aX)

LabelGadget inherits behavior and resources from Object, RectObj and
XmGadget classes.

The class pointer is xmLabelGadgetClass.

The class name is XmLabelGadget.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-565

OSF/Motif Programmer's Reference

XmLabelGadget(3X)

XmLabelGadget Resource Set

Name Default Access
Class Type

Xm Naccelerator NULL CSG
XmCAccelerator String

Xm NacceleratorText NULL CSG
XmCAcceleratorText XmString

XmNalignment dynamic CSG
XmCAlignment unsigned char

XmNfontList dynamic CSG
XmCFontList XmFontList

Xm N label I nsensitivePixmap XmUNSPECIFIED_PIXMAP CSG
XmCLabellnsensitivePixmap Pixmap

XmNlabelPixmap XmUNSPECIFIED_PIXMAP CSG
XmCLabelPixmap Pixmap

XmNlabelString dynamic CSG
XmCXmString XmString

XmNlabelType XmSTRING CSG
XmCLabelType unsigned char

XmNmarginBottom 0 CSG
XmCMarginBottom Dimension

XmNmarginHeight 2 CSG
XmCMarginHeight Dimension

XmNmarginLeft 0 CSG
XmCMarginLeft Dimension

XmNmarginRight 0 CSG
XmCMarginRight Dimension

XmNmarginTop 0 CSG
XmCMarginTop Dimension

Xm NmarginWidth 2 CSG
XmCMarginWidth Dimension

1-566

Reference Pages

XmLabeIGadget(3X)

Name Default Access
Class Type

XmNmnemonic NULL CSG
XmCMnemonic KeySym

XmNmnemonicCharSet dynamic CSG
XmCMnemonicCharSet String

Xm N recomputeSize True CSG
XmCRecomputeSize Boolean

XmNstringDirection dynamic CSG
XmCStringDirection XmStringDirection

XmN accelerator
Sets the accelerator on a button widget in a menu, which activates a
visible or invisible, but managed, button from the keyboard. This
resource is a string that describes a set of modifiers and the key that
may be used to select the button. The format of this string is
identical to that used by the translations manager, with the exception
that only a single event may be specified and only KeyPress events
are allowed.

Accelerators for buttons are supported only for PushButtonGadgets
and ToggleButtonGadgets in Pulldown and Popup menus.

XmNacceleratorText
Specifies the text displayed for the accelerator. The text is
displayed adjacent to the label string or pixmap. Accelerator text
for buttons is displayed only for PushButtonGadgets and
ToggleButtonGadgets in Pulldown and Popup Menus.

XmNalignment
Specifies the label alignment for text or pixmap.

XmALIGNMENT _BEGINNING (left alignment)
Causes the left sides of the lines of text to be
vertically aligned with the left edge of the gadget.
For a pixmap, its left side is vertically aligned with
the left edge of the gadget.

XmALIGNMENT_CENTER (center alignment)
Causes the centers of the lines of text to be vertically
aligned in the center of the gadget. For a pixmap, its
center is vertically aligned with the center of the
gadget.

1-567

OSF/Motif Programmer's Reference

XmLabeIGadget(3X)

1-568

XmALIGNMENT _END (right alignment)
Causes the right sides of the lines of text to be
vertically aligned with the right edge of the gadget.
For a pixmap, its right side is vertically aligned with
the right edge of the gadget.

The preceding descriptions for text are correct when
XmNstringDirection is XmSTRING_DlRECTION_L_TO_R;
the descriptions for XmALIGNMENT_BEGINNING and
XmALIGNMENT _END are switched when the resource is
XmSTRING_DIRECTION_R_TO_L.

If the parent is a RowColumn whose XmNisAligned resource is
True, XmNalignment is forced to the same value as the
RowColumn's XmNentryAlignment if the RowColumn's
XmNrowColumnType is XmWORK_AREA or if the gadget is a
subclass of XmLabelGadget. Otherwise, the default is
XmALIGNMENT_CENTER.

XmNfontList Specifies the font of the text used in the gadget. If this value is
NULL at initialization, the parent hierarchy of the widget is
searched for an ancestor that is a subclass of the XmBulletinBoard,
VendorShell, or XmMenuShell widget class. If such an ancestor is
found, the font list is initialized to the XmNbuttonFontList (for
button gadget subclasses) or XmNlabelFontList of the ancestor
widget. If no such ancestor is found, the default is implementation
dependent. Refer to XmFontList(3X) for more information on the
creation and structure of a font list.

XmNlabelInsensitivePixmap
Specifies a pixmap used as the button face if XmNlabelType is
XmPIXMAP and the button is insensitive. The default value,
XmUNSPECIFIED_PIXMAP, displays an empty label.

XmNlabelPixmap
Specifies the pixmap when XmNlabelType is XmPIXMAP. The
default value, XmUNSPECIFIED_PIXMAP, displays an empty
label.

XmNlabelString
Specifies the compound string when XmNlabelType is
XmSTRING. If the value of this resource is NULL, it is initialized
to name of the gadget converted to a compound string. Refer to
XmString(3X) for more information on the creation and the
structure of compound strings.

Reference Pages

XmLabelGadget (3X)

XmNlabelType
Specifies the label type.

XmSTRING

XmPIXMAP

XmNmarginBottom

Text displays XmNlabelString

Icon data in pixmap
XmNlabelPixmap
XmNlabelInsensitivePixmap

displays
or

Specifies the amount of spacing between the bottom of the label text
and the top of the bottom margin specified by XmNmarginHeight.
This may be modified by LabelGadget's subclasses. For example,
CascadeButtonGadget may increase this field to make room for the
cascade pixmap.

XmNmarginHeight
Specifies an equal amount of spacing above the margin defined by
XmNmarginTop and below the margin defined by
XmNmarginBottom. XmNmarginHeight specifies the amount of
spacing between the top edge of the margin set by XmNmarginTop
and the bottom edge of the top shadow, and the amount of spacing
between the bottom edge of the margin specified by
XmNmarginBottom and the top edge of the bottom shadow.

XmNmarginLeft
Specifies the amount of spacing between the left edge of the label
text and the right side of the left margin (specified by
XmNmarginWidth). This may be modified by LabelGadget's
subclasses. For example, ToggleButtonGadget may increase this
field to make room for the toggle indicator and for spacing between
the indicator and label. Whether this actually applies to the left or
right side of the label may depend on the value of
XmNstringDirection.

XmNmarginRight
Specifies the amount of spacing between the right edge of the label
text and the left side of the right margin (specified by
XmNmarginWidth). This may be modified by LabelGadget's
subclasses. For example, CascadeButtonGadget may increase this
field to make room for the cascade pixmap. Whether this actually
applies to the left or right side of the label may depend on the value
of XmN stringDirection.

1-569

OSF/Motif Programmer's Reference
XmLabelGadget{ 3X)

1-570

XmNmarginTop
Specifies the amount of spacing between the top of the label text
and the bottom of the top margin specified by XmNmarginHeight.
This may be modified by LabelGadget's subclasses. For example,
CascadeButtonGadget may increase this field to make room for the
cascade pixmap.

XmNmarginWidth
Specifies an equal amount of spacing to the left of the margin
defined by XmNmarginLeft and to the right of the margin defined
by XmNmarginRight. XmNmarginWidth specifies the amount of
spacing between the left edge of the margin set by
XmNmarginLeft and the right edge of the left shadow, and the
amount of spacing between the right edge of the margin specified by
XmNmarginRight and the left edge of the right shadow.

XmNmnemonic
Provides the user with an alternate means of activating a button. A
button in a MenuBar, a Popup MenuPane, or a Pulldown MenuPane
can have a mnemonic.

This resource contains a keysym as listed in the XII keysym table.
The first character in the label string that exactly matches the
mnemonic in the character set specified in XmNmnemonicCharSet
is underlined when the button is displayed.

When a mnemonic has been specified, the user activates the button
by pressing the mnemonic key while the button is visible. If the
button is a CascadeButtonGadget in a MenuBar and the MenuBar
does not have the focus, the user must use the MAlt modifier while
pressing the mnemonic. The user can activate the button by
pressing either the shifted or the un shifted mnemonic key.

XmNmnemonicCharSet
Specifies the character set of the mnemonic for the label. The
default is XmFONTLIST_DEFAULT_TAG.

Reference Pages

XmLabelGadget(3X)

XmNrecomputeSize
Specifies a Boolean value that indicates whether the gadget shrinks
or expands to accommodate its contents (label string or pixmap) as a
result of an XtSetValues resource value that would change the size
of the gadget. If True, the gadget shrinks or expands to exactly fit
the label string or pixmap. If False, the gadget never attempts to
change size on its own.

XmNstringDirection

Inherited Resources

Specifies the direction in which the string is to be drawn.

XmSTRING_DlRECTION_L_TO_R

XmSTRING_DlRECTION_R_TO_L

Left to right

Right to left

The default for this resource is determined at creation time. If no
value is specified for this resource and the widget's parent is a
manager, the value is inherited from the parent; otherwise, it
defaults to XmSTRING_DIRECTION_L_TO_R.

LabelGadget inherits behavior and resources from the superc1asses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superc1ass.

1-571

OSF/Motif Programmer's Reference

XmLabelGadget(3X)

XmGadget Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic G
XmCBottomShadowColor Pixel

Xm NhelpCaliback NULL C
XmCCaliback XtCalibackList

Xm NhighlightColor dynamic G
XmCHighlightColor Pixel

Xm NhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightThickness 0 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType Xm NavigationType

Xm NshadowThickness 0 CSG
XmCShadowThickness Dimension

Xm NtopShadowColor dynamic G
XmCTopShadowColor Pixel

Xm NtraversalOn False CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-572

'I

Reference Pages

XmLabelGadget (3X)

RectObj Resource Set

Name Default Access
Class Type

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNborderWidth 0 N/A
XmCBorderWidth Dimension

XmNheight dynamic CSG
XmCHeight Dimension

XmNsensitive True CSG
XmCSensitive Boolean

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Object Resource Set

Name Default Access
Class Type

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

Behavior
XmLabelGadget includes behavior from XmGadget. Additional
XmLabelGadget behavior is described in the following list:

BTransfer Press:

KHelp:

Drags the contents of a LabelGadget, identified with BTransfer.
This action creates a DragContext object whose
XmNexportTargets resource is set to COMPOUND_TEXT for a
label type of XmSTRING; otherwise it is set to, PIXMAP if the
label type is XmPIXMAP. This action is undefined for
LabelGadgets used in a menu system.

In a Popup or Pulldown MenuPane, unposts all menus in the menu
hierarchy and, when the shell's keyboard focus policy is
XmEXPLICIT, restores keyboard focus to the widget that had the
focus before the menu system was entered. Calls the callbacks for

1-573

OSF/Motif Programmer's Reference

XmLabelGadget(3X)

XmNhelpCallback if any exist. If there are no help callbacks for
this widget, this action calls the help callbacks for the nearest
ancestor that has them.

MAny KCancel:

KDown:

KLeft:

1-574

In a MenuBar, disarms the CascadeButton and the menu and, when
the shell's keyboard focus policy is XmEXPLICIT, restores
keyboard focus to the widget that had the focus before the menu was
entered.

In a toplevel Pulldown MenuPane from a MenuBar, unposts the
menu, disarms the MenuBar CascadeButton and the MenuBar, and,
when the shell's keyboard focus policy is XmEXPLICIT, restores
keyboard focus to the widget that had the focus before the MenuBar
was entered. In other Pulldown MenuPanes, unposts the menu.

In a Popup MenuPane, unposts the menu and, when the shell's
keyboard focus policy is XmEXPLICIT, restores keyboard focus to
the widget from which the menu was posted.

If the current menu item has a submenu and is in a MenuBar, then
this action posts the submenu, disarms the current menu item, and
arms the submenu's first traversable menu item.

If the current menu item is in a MenuPane, then this action disarms
the current menu item and arms the item below it. This action wraps
within the MenuPane. When the current menu item is at the
MenuPane's bottom edge, then this action wraps to the topmost
menu item in the column to the right, if one exists. When the
current menu item is at the bottom, rightmost comer of the
MenuPane, then this action wraps to the tear-off control, if present,
or to the top, leftmost menu item.

When the current menu item is in a MenuBar, then this action
disarms the current item and arms the MenuBar item to the left.
This action wraps within the MenuBar.

In MenuPanes, if the current menu item is not at the left edge of a
MenuPane, this action disarms the current item and arms the item to
its left. If the current menu item is at the left edge of a submenu
attached to a MenuBar item, then this action unposts the submenu
and traverses to the MenuBar item to the left, wrapping if necessary.
If that MenuBar item has a submenu, it posts the submenu and arms
the first traversable item in the submenu. If the current menu item is
at the left edge of a submenu not directly attached to a MenuBar
item, then this action unposts the current submenu only.

KRight:

KUp:

Reference Pages

XmLabelGadget(ax)

In Popup or Tom-off MenuPanes, when the current menu item is at
the left edge, this action wraps within the MenuPane. If the current
menu item is at the left edge of the MenuPane and not in the top
row, this action wraps to the rightmost menu item in the row above.
If the current menu item is in the upper, leftmost comer, this action
wraps to the tear-off control, if present, or else it wraps to the
bottom, rightmost menu item in the MenuPane.

If the current menu item is in a MenuBar, then this action disarms
the current item and arms the MenuBar item to the right. This
action wraps within the MenuBar.

In MenuPanes, if the current menu item is a CascadeButton, then
this action posts its associated submenu. If the current menu item is
not a CascadeButton and is not at the right edge of a MenuPane, this
action disarms the current item and arms the item to its right,
wrapping if necessary. If the current menu item is not a
CascadeButton and is at the right edge of a submenu that is a
descendent of a MenuBar, then this action unposts all submenus and
traverses to the MenuBar item to the right. If that MenuBar item
has a submenu, it posts the submenu and arms the submenu's first
traversable item.

In Popup or Tom-off menus, if the current menu item is not a
CascadeButton and is at the right edge of a row (except the bottom
row), this action wraps to the leftmost menu item in the row below.
If the current menu item is not a CascadeButton and is in the
bottom, rightmost comer of a Popup or Pulldown MenuPane, this
action wraps to the tear-off control, if present, or else it wraps to the
top, leftmost menu item of the MenuPane.

When the current menu item is in a MenuPane, then this action
disarms the current menu item and arms the item above it. This
action wraps within the MenuPane. When the current menu item is
at the MenuPane's top edge, then this action wraps to the
bottommost menu item in the column to the left, if one exists. When
the current menu item is at the top, leftmost comer of the
MenuPane, then this action wraps to the tear-off control, if present,
or to the bottom, rightmost menu item.

1-575

OSF/Motif Programmer's Reference
XmLabeIGadget(3X)

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information

1-576

Object(3X), RectObj(3X), XmCreateLabeIGadget(3X),
XmFontListCreate(3X), XmStringCreate(3X), XmStringCreateLtoR(3X), and
XmGadget(3X).

Synopsis

Description

Reference Pages

XmList(3X)

XmList-The List widget class

#include <XmlList.h>

List allows a user to select one or more items from a group of choices. Items are
selected from the list in a variety of ways, using both the pointer and the keyboard.
List operates on an array of compound strings that are defined by the application.
Each compound string becomes an item in the List, with the first compound string
becoming the item in position 1, the second becoming the item in position 2, and so
on.

Specifying the number of items that are visible sets the size of the List. If the
number of visible items is not specified, the height of the list controls the number of
visible items. Each item assumes the height of the tallest element in the list. To
create a list that allows the user to scroll easily through a large number of items,
use the XmCreateScrolledList convenience function.

To select items, move the pointer or cursor to the desired item and press the
BSelect mouse button or the key defined as KSelect. There are several styles of
selection behavior, and they all highlight the selected item or items by displaying
them in inverse colors. An appropriate callback is invoked to notify the application
of the user's choice. The application then takes whatever action is required for the
specified selection. When a List is insensitive, all of the list items are displayed in
a stippled fill pattern.

Selection
Each list has one of four selection models:

• Single Select

• Browse Select

• Multiple Select

• Extended Select

In Single Select and Browse Select, at most one item is selected at a time. In
Single Select, pressing BSelect on an item toggles its selection state and deselects
any other selected item. In Browse Select, pressing BSelect on an item selects it
and deselects any other selected item; dragging BSelect moves the selection as the
pointer is moved. Releasing BSelect on an item moves the location cursor to that
item.

1-577

OSF/Motif Programmer's Reference

XmList(3X)

Classes

1-578

In Multiple Select, any number of items can be selected at a time. Pressing
BSelect on an item toggles its selection state but does not deselect any other
selected items.

In Extended Select, any number of items can be selected at a time, and the user can
easily select ranges of items. Pressing BSelect on an item selects it and deselects
any other selected item. Dragging BSelect or pressing or dragging BExtend
following a BSelect action selects all items between the item under the pointer and
the item on which BSelect was pressed. This action also deselects any other
selected items outside that range.

Extended Select also allows the user to select and deselect discontiguous ranges of
items. Pressing BToggle on an item toggles its selection state but does not deselect
any other selected items. Dragging BToggle or pressing or dragging BExtend
following a BToggle action sets the selection state of all items between the item
under the pointer and the item on which BToggle was pressed to the state of the
item on which BToggle was pressed. This action does not deselect any other
selected items outside that range.

All selection operations available from the mouse are also available from the
keyboard. List has two keyboard selection modes, Normal Mode and Add Mode.
In Normal Mode, navigation operations and KSelect select the item at the location
cursor and deselect any other selected items. In Add Mode, navigation operations
have no effect on selection, and KSelect toggles the selection state of the item at
the location cursor without deselecting any other selected items, except in Single
Select.

Single and Multiple Select use Add Mode, and Browse Select uses Normal Mode.

Extended Select can use either mode; the user changes modes by pressing
KAddMode. In Extended Select Normal Mode, pressing KSelect has the same
effect as pressing BSelect; KExtend and shifted navigation have the same effect as
pressing BExtend following a BSelect action. In Extended Select Add Mode,
pressing KSelect has the same effect as pressing BToggle; KExtend and shifted
navigation have the same effect as pressing BExtend following a BToggle action.

Normal Mode is indicated by a solid location cursor, and Add Mode is indicated by
a dashed location cursor.

List inherits behavior and resources from Core and XmPrimitive classes.

The class pointer is xmListWidgetClass.

The class name is XmList.

Reference Pages
XmList(3X)

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-579

OSF/Motif Programmer's Reference

XmList(3X)

XmList Resource Set

Name Default Access
Class Type

Xm NautomaticSelection False CSG
XmCAutomaticSelection Boolean

Xm NbrowseSelectionCaliback NULL C
XmCCallback XtCalibackList

Xm NdefaultActionCaliback NULL C
XmCCaliback XtCalibackList

Xm NdoubleClickl nterval dynamic CSG
XmCDoubleClicklnterval int

XmNextendedSelectionCaliback NULL C
XmCCaliback XtCalibackList

XmNfontList dynamic CSG
XmCFontList XmFontList

XmNitemCount 0 CSG
XmCltemCount int

XmNitems NULL CSG
XmCltems XmStringTable

XmNlistMarginHeight 0 CSG
XmCListMarginHeight Dimension

XmNlistMarginWidth 0 CSG
XmCListMarginWidth Dimension

XmNlistSizePolicy XmVARIABLE CG
XmCListSizePolicy unsigned char

XmNlistSpacing 0 CSG
XmCListSpacing Dimension

Xm Nm ultipleSelectionCaliback NULL C
XmCCaliback XtCalibackList

Xm NscroliBarDisplayPolicy XmAS_NEEDED CSG
XmCScrollBarDisplayPolicy unsigned char

Xm Nselected Item Count 0 CSG
XmCSelectedltemCount int

1-580

Reference Pages

XmList(3X)

Name Default Access
Class Type

XmNselectedltems NULL CSG
XmCSelectedltems XmStringTable

Xm NselectionPolicy XmBROWSE_SELECT CSG
XmCSelection Policy unsigned char

Xm NSingleSelectionCaliback NULL C
XmCCaliback XtCalibackList

XmNstringDirection dynamic CSG
XmCStringDirection XmStringDirection

Xm Ntopltem Position 1 CSG
XmCTopltemPosition int

XmNvisibleltemCount dynamic CSG
XmCVisibleltemCount int

XmNautomaticSelection
Invokes either XmNbrowseSelectionCallback or
XmNextendedSelectionCallback when BSelect is pressed and the
items that are shown as selected change if the value is True and the
selection mode is either XmBROWSE_SELECT or
XmEXTENDED_SELECT respectively. If False, no selection
callbacks are invoked until the user releases the mouse button. See
Behavior for further details on the interaction of this resource with
the selection modes.

XmNbrowseSelectionCallback
Specifies a list of callbacks that is called when an item is selected in
the browse selection mode. The reason is
XmCR_BROWSE_SELECT.

XmNdefaultActionCallback
Specifies a list of callbacks that is called when an it€m is double
clicked or KActivate is pressed. The reason is
XmCR_DEFAULT_ACTION.

XmNdoubleClicklnterval
If a button click is followed by another button click within the time
span specified by this resource (in milliseconds), the button clicks
are considered a double-click action, rather than two single-click
actions. The value must not be negative. The default value is the
display's multiclick time.

1-581

OSF/Motif Programmer's Reference
XmList(3X)

1-582

XmNextendedSelectionCallback
Specifies a list of callbacks that is called when items are selected
using the extended selection mode. The reason is
XmCR_EXTENDED_SELECT.

XmNfontList Specifies the font list associated with the list items. This is used in
conjunction with the XmNvisibleltemCount resource to determine'
the height of the List widget. If this value is NULL at initialization,
the parent hierarchy of the widget is searched for an ancestor that is
a subclass of the XmBulletinBoard or VendorS hell widget class. If
such an ancestor is found, the font list is initialized to the
XmNtextFontList of the ancestor widget. If no such ancestor is
found, the default is implementation dependent. Refer to
XmFontList(3X) for more information on a font list structure.

XmNitemCount
Specifies the total number of items. The value must be the number
of items in XmNitems and must not be negative. It is automatically
updated by the list whenever an item is added to or deleted from the
list.

XmNitems Points to an array of compound strings that are to be displayed as
the list items. Refer to XmString(3X) for more information on the
creation and structure of compound strings. XtGetValues for this
resource returns the list items themselves, not a copy of the list
items. The application must not free the returned items.

XmNlistMarginHeight
Specifies the height of the margin between the list border and the
items.

XmNlistMarginWidth
Specifies the width of the margin between the list border and the
items.

XmNlistSizePolicy
Controls the reaction of the List when an item grows horizontally
beyond the current size of the list work area. If the value is
XmCONSTANT, the list viewing area does not grow, and a
horizontal ScrollBar is added for a ScrolledList. If this resource is
set to XmVARIABLE, the List grows to
match the size of the longest item, and no horizontal ScrollBar
appears.

Reference Pages

XmList(3X)

When the value of this resource is XmRESIZE_IF _POSSffiLE,
the List attempts to grow or shrink to match the width of the widest
item. If it cannot grow to match the widest size, a horizontal
ScrollBar is added for a ScrolledList if the longest item is wider
than the list viewing area.

The size policy must be set at the time the List widget is created. It
cannot be changed at a later time through XtSetValues.

XmNlistSpacing
Specifies the spacing between list items. This spacing increases by
the value of the XmNhighlightThickness resource in Primitive.

XmNmultipleSelectionCallback
Specifies a list of callbacks that is called when an item is selected in
multiple selection mode. The reason is
XmCR_MULTIPLE_SELECT.

XmNscrollBar DisplayPolicy
Controls the display of vertical ScrollBars in a ScrolledList. When
the value of this resource is XmAS_NEEDED, a vertical ScrollBar
is displayed only when the number of items in the List exceeds the
number of visible items. When the value is XmSTATIC, a vertical
ScrollBar is always displayed.

XmNselectedItemCount
Specifies the number of strings in the selected items list. The value
must be the number of items in XmNselectedItems and must not be
negative.

XmNselectedItems
Points to an array of compound strings that represents the list items
that are currently selected, either by the user or by the application.
XtGetValues for this resource returns the list items themselves, not
a copy of the list items. The application must not free the returned
items.

Setting XmNselectedItems selects those list items that exactly
match items in the given XmNselectedItems list. There may be
additional items in XmNselectedItems that do not match items in
the list. These items remain until XmN selectedItems is updated. If
XmNitems is changed such that the list now contains items
matching previously unmatched items in XmNselectedItems, those
new items will also appear selected.

1-583

OSF/Motif Programmer's Reference

XmList(3X)

1-584

Any user interaction with the list that causes at least one item to be
selected or deselected and any call to XmListDeselectAlIltems,
XmListDeselectAlIltems, XmListDeselectPos,
XmListSelectItem, XmListSelectPos, or
XmListUpdateSelectedList cause XmNselectedltems to be
updated immediately to exactly reflect the visual state of the list.
Calls to any other XmList functions do not affect
XmNselectedItems.

XmNselectionPolicy
Defines the interpretation of the selection action. This can be one of
the following:

XmSINGLE_SELECT
Allows only single selections

XmMULTIPLE_SELECT
Allows multiple selections

XmEXTENDED_SELECT
Allows extended selections

XmBROWSE_SELECT
Allows drag-and-browse functionality

XmNsingleSelectionCallback
Specifies a list of callbacks that is called when an item is selected in
single selection mode. The reason is XmCR_SINGLE_SELECT.

XmNstringDirection
Specifies the initial direction to draw the string. The values for this
resource are XmSTRING_DlRECTION_L_TO_R and
XmSTRING_DIRECTION_R_TO_L. The value of this resource
is determined at creation time. If the widget's parent is a manager,
this value is inherited from the widget's parent, otherwise it is set to
XmSTRING_DlRECTION_L_TO_R.

XmNtopItemPosition
Specifies the position of the item that is the first visible item in the
list. Setting this resource is equivalent to calling the XmListSetPos
function. The position of the first item in the list is 1; the position of
the second item is 2; and so on. A position of 0 (zero) specifies the
last item in the list. The value must not be negative.

Reference Pages

XmList(3X)

XmNvisibleltemCount

Inherited Resources

Specifies the number of items that can fit in the visible space of the
list work area. The List uses this value to determine its height. The
value must be greater than 0 (zero).

List inherits behavior and resources from the superclasses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superclass.

1-585

OSF/Motif Programmer's Reference

XmList(3X)

XmPrimitive Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

Xm Nforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

Xm NhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOn Enter Boolean

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

Xm NhighlightThickness 2 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmTAB_GROUP CSG
XmCNavigationType Xm NavigationType

XmNshadowThickness 2 CSG
XmCShadowThickness Dimension

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

Xm NtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-586

Reference Pages

XmList(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormapl Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-587

OSF/Motif Programmer's Reference

XmList(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information

1-588

List defines a new callback structure. The application must first look at the reason
field and use only the structure members that are valid for that particular reason,
because not all fields are relevant for every possible reason. The callback structure
is defined as follows:

typedef struct
{

int
XEvent
XmString
int
int
XmString

reason;
*event;
item;
item_length;
itemyosition;
* selected_items;

int selected_item_count;
int * selected_itemyositions;
char selection_type;

} XmListCallbackStruct;

reason

event

item

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback. It can be NULL.

The last item selected at the time of the event that caused the
callback. item points to a temporary storage space that is reused
after the callback is finished. Therefore, if an application needs to
save the item, it should copy the item into its own data space.

item_length The length in bytes of item.

item-position
The position of item in the List's XmNitems array.

se lected_items

Reference Pages

XmList(3X)

A list of items selected at the time of the event that caused the
callback. selected_items points to a temporary storage space that is
reused after the callback is finished. Therefore, if an application
needs to save the selected list, it should copy the list into its own
data space.

selected_item_count
The number of items in the selected_items list. This number must be
nonnegative.

selected_item.JJositions

se lection_type

An array of integers, one for each selected item, representing the
position of each selected item in the List's XmNitems array.
selected_item.JJositions points to a temporary storage space that is
reused after the callback is finished. Therefore, if an application
needs to save this array, it should copy the array into its own data
space.

Indicates that the most recent extended selection was the initial
selection (XmINITIAL), a modification of an existing selection
(XmMODIFICATION), or an additional noncontiguous selection
(XmADDITION).

The following table describes the reasons for which the individual callback
structure fields are valid.

1-589

OSF/Motif Programmer's Reference

XmList{3X)

Reason Valid Fields

XmCR_SI NGLE_SELECT reason, event, item, item_length, item-position

XmCR_DEFAULT _ACTION reason, event, item, item_length,
item-position, selected_items,
selected_item_count, selected_item-positions

XmCR_BROWSE_SELECT reason, event, item, item_length, item-position

XmCR_MULTIPLE_SELECT reason, event, item, item_length,
item-position, selected_items,
selected_item_count, selected_item-positions

XmCR_EXTENDED_SELECT reason, event, item, item_length,
item-position, selected_items,
selected_item_count, selected_item-positions,
selection_type

Translations

1-590

XmList includes translations from Primitive. The XmList translations are
described in the following list. These translations may not directly correspond to a
translation table.

BSelect Press: ListBeginSelect()

BSelect Motion: ListButtonMotionO

BSelect Release: ListEndSelectO

BExtend Press: ListBeginExtendO

BExtend Motion: ListButtonMotionO

BExtend Release: ListEndExtendO

BToggle Press: ListBeginToggleO

BToggle Motion: ListButtonMotionO

BToggle Release: ListEndToggleO

BTransfer Press: ListProcessDragO

KUp: ListPrevltemO

MShiftKUp: ListExtendPrevltemO

KDown: ListNextltemO

MShift KDown: ListExtendNextltemO

Reference Pages

XmList(3X)

KLeft: ListLeftCharO

MCtrl KLeft: ListLeftPageO

KRight: ListRightCharO

MCtrl KRight: ListRightPageO

KPageUp: ListPrevPageO

KPageDown: ListNextPageO

KPageLeft: ListLeftPageO

KPageRight: ListRightPageO

KBeginLine: ListBeginLineO

KEndLine: ListEndLineO

KBeginData: ListBeginDataO

MShift KBeginData: ListBeginDataExtendO

KEndData: ListEndDataO

MShift KEndData: ListEndDataExtendO

KAddMode: ListAddModeO

KActivate: ListKbdActivateO

KCopy Press: ListCopyToClipboardO

KSelect Press: ListKbdBeginSelectO

KSelect Release: ListKbdEndSelectO

KExtend Press: ListKbdBeginExtendO

KExtend Release: ListKbdEndExtendO

MAny KCancel: ListKbdCancelO

KSelectAll: ListKbdSelectAlIO

KDeselectAll: ListKbdDeSelectAlIO

KHelp: PrimitiveHelpO

1-591

OSF/Motif Programmer's Reference

XmList(3X)

KNextField

KPrevField

PrimitiveNextTabGroupO

PrimitivePrevTabGroupO

Action Routines

1-592

The XmList action routines are described in the following list. The current
selection is always shown with inverted colors.

ListAddModeO:
Toggles the state of Add Mode for keyboard selection.

ListBeginDataO:
Moves the location cursor to the first item in the list. In Normal
Mode, this also deselects any current selection, selects the first item
in the list, and calls the appropriate selection callbacks
(XmNbrowseSelectionCallback when XmNselectionPolicy is set
to XmBROWSE_SELECT, XmNextendedSelectionCallback
when XmNselectionPolicy is set to XmEXTENDED _SELECT).

ListBeginDataExtendO:
If XmNselectionPolicy is set to XmMULTIPLE_SELECT or
XmEXTENDED _SELECT, this action moves the location cursor
to the first item in the list.

If XmNselectionPolicy is set to XmEXTENDED_SELECT, this
action does the following: If an extended selection has been made
from the current anchor point, restores the selection state of the
items in that range to their state before the extended selection was
done; changes the selection state of the first item and all items
between it and the current anchor point to the state of the item at the
current anchor point; calls the XmNextendedSelectionCallback
callbacks.

ListBeginExtendO:
If XmNselectionPolicy is set to XmEXTENDED_SELECT, this
action does the following: If an extended selection has been made
from the current anchor point, restores the selection state of the
items in that range to their state before the extended selection was
done, and changes the selection state of the item under the pointer
and all items between it and the current anchor point to the state of
the item at the current anchor point. If XmNautomaticSelection is
set to True, this action calls the XmNextendedSelectionCallback
callbacks.

Reference Pages

XmList{3X)

ListBeginLineO:
Moves the horizontal scroll region to the beginning of the line.

ListBeginSelectO:
If XmNselectionPolicy is set to XmSINGLE_SELECT, deselects
any current selection and toggles the selection state of the item
under the pointer.

If XmNselectionPolicy is set to XmBROWSE_SELECT,
deselects any current selection and selects the item under the
pointer. If XmNautomaticSelection is set to True, this action calls
the XmNbrowseSelectionCallback callbacks.

If XmNselectionPolicy is set to XmMULTIPLE_SELECT,
toggles the selection state of the item under the pointer. Any
previous selections remain.

If XmNselectionPolicy is set to XmEXTENDED _SELECT, this
action deselects any current selection, selects the item under the
pointer, and sets the current anchor at that item. If
XmNautomaticSelection is set to True, this action calls the
XmNextendedSelectionCallback callbacks.

ListBeginToggleO:
If XmNselectionPolicy is set to XmEXTENDED _SELECT, this
action moves the current anchor to the item under the pointer
without changing the current selection. If the item is unselected,
this action selects it; if the item is selected, this action unselects it.
If XmNautomaticSelection is set to True, this action calls the
XmNextendedSelectionCallback callbacks.

ListButtonMotionO:
If XmNselectionPolicy is set to XmBROWSE_SELECT, this
action deselects any current selection and selects the item under the
pointer. If XmNautomaticSelection is set to True and the pointer
has entered a new list item, this action calls the
XmNbrowseSelectionCallback callbacks.

If XmNselectionPolicy is set to XmEXTENDED _SELECT, this
action does the following: If an extended selection is being made
and an extended selection has previously been made from the
current anchor point, restores the selection state of the items in that
range to their state before the previous extended selection was done
and changes the selection state 'of the item under the pointer and all

1-593

OSF/Motif Programmer's Reference
XmList{3X)

1-594

items between it and the current anchor point to the state of the item
at the current anchor point. If XmNautomaticSelection is set to
True and the pointer has entered a new list item, calls the
XmNextendedSelectionCallback callbacks.

If the pointer leaves a scrolled list, this action scrolls the list in the
direction of the pointer motion.

ListCopyToClipboardO
Copies the content of the selected items to the clipboard as a single
compound string with each item separated by a newline.

ListEndDataO:
Moves the location cursor to the last item in the list. In Normal
Mode, this also deselects any current selection, selects the last item
in the list, and calls the appropriate selection callbacks
(XmNbrowseSelectionCallback when XmNselectionPolicy is set
to XmB ROWSE_SELE CT, XmNextendedSelectionCallback
when XmNselectionPolicy is set to XmEXTENDED_SELECT).

ListEndDataExtendO:
If XmNselectionPolicy is set to XmMULTIPLE_SELECT or
XmEXTENDED_SELECT, this action moves the location cursor
to the last item in the list.

If XmNselectionPolicy is set to XmEXTENDED_SELECT, this
action does the following: If an extended selection has been made
from the current anchor point, restores the selection state of the
items in that range to their state before the extended selection was
done; changes the selection state of the last item and all items
between it and the current anchor point to the state of the item at the
current anchor point; calls the XmNextendedSelectionCallback
callbacks.

ListEndExtendO:
If XmNselectionPolicy is set to XmEXTENDED_SELECT, this
action moves the location cursor to the last item selected or
deselected and, if XmNautomaticSelection is set to False, calls the
XmNextendedSelectionCallback callbacks.

ListEndLineO:
Moves the horizontal scroll region to the end of the line.

Reference Pages

XmList(3X)

ListEndSelectO:
If XmNselectionPolicy is set to XmSINGLE_SELECT or
XmMULTIPLE_SELECT, this action moves the location cursor to
the last item selected or deselected and calls the appropriate
selection callbacks (XmNsingleSelectionCallback when
XmNselectionPolicy is set to XmSINGLE_SELECT,
XmNmultipleSelectionCallback when XmNselectionPolicy is set
to XmMULTIPLE_SELECT).

If XmNselectionPolicy is set to XmBROWSE_SELECT or
XmEXTENDED _SELECT, moves the location cursor to the last
item selected or deselected and, if XmNautomaticSelection is set
to False, calls the appropriate selection callbacks
(XmNbrowseSelectionCallb&ck when XmNselectionPolicy is set
to XmBROWSE_SELECT, XmNextendedSelectionCallback
when XmNselectionPolicy is set to XmEXTENDED _SELECT).

ListEndToggleO:
If XmNselectionPolicy is set to XmEXTENDED_SELECT,
moves the location cursor to the last item selected or deselected and,
if XmNautomatkSelection is set to False, calls the
XmNextendedSelect~onCallback callbacks.

ListExtendNextItemO:
If XmNselectionPolicy is set to XmEXTENDED_SELECT, this
action does the following: If an extended selection has been made
from the current anchor point, restores the selection state of the
items in that range to their state before the extended selection was
done; moves the location cursor to the next item and changes the
selection state of the item and all items between it and the current
anchor point to the state of the item at the current anchor point; calls
the XmNextendedSelectionCallback callbacks.

ListExtendPrevltemO:
If XmNselectionPolicy is set to XmEXTENDED _SELECT, this
action does the following: If an extended selection has been made
from the current anchor point, restores the selection state of the
items in that range to their state before the extended selection was
done; moves the location cursor to the previous item and changes
the selection state of the item and all items between it and the
current anchor point to the state of the item at the current anchor
point; calls the XmNextendedSelectionCallback callbacks.

1-595

OSF/Motif Programmer's Reference

XmList{3X)

1-596

ListScrollCursorVertically(percentage):
Scrolls the line containing the insertion cursor vertically to an
intermediate position in the visible window based on an input
percentage. A value of ° (zero) indicates the top of the window; a
value of 100, the bottom of the window. If this action is called with
no argument, the line containing the insertion cursor is scrolled
vertically to a new position designated by the y event passed to the
routine.

ListKbdActivateO:
Calls the callbacks for XmNdefaultActionCallback. If the List's
parent is a manager, this action passes the event to the parent.

ListKbdBeginExtendO:
If XmNselectionPolicy is set to XmEXTENDED _SELECT, does
the following: Jf an extended selection has been made from the
current anchor point, restores the selection state of the items in that
range to their state before the extended selection was done; changes
the selection state of the item at the location cursor and all items
between it and the current anchor point to the state of the item at the
current anchor point. If XmNautomaticSelection is set to True, this
action calls the XmNextendedSelectionCallback callbacks.

ListKbdBeginSelectO:
If the XmNselectionPolicy is set to XmSINGLE_SELECT,
deselects any current selection and toggles the state of the item at
the location cursor .

. If the XmNselectionPolicy is set to XmBROWSE_SELECT,
deselects any current selection and selects the item at the location
cursor. If XmNautomaticSelection is set to True, this action calls
the XmNbrowseSelectionCallback callbacks.

If the XmNselectionPolicy is set to XmMULTIPLE_SELECT,
toggles the selection state of the item at the location cursor. Any
previous selections remain.

If the XmNselectionPolicy is set to XmEXTENDED_SELECT,
moves the current anchor to the item at the location cursor. In
Normal Mode, this action deselects any current selection and selects
the item at the location cursor. In Add Mode, this action toggles the
selection state of the item at the location cursor and leaves the
current selection unchanged. If XmNautomaticSelection is set to
True, this action calls the XmNextendedSelectionCallback
callbacks.

Reference Pages

XmList(3X)

ListKbdCancelO:
If XmNselectionPolicy is set to XmEXTENDED _SELECT and an
extended selection is being made from the current anchor point, this
action cancels the new selection and restores the selection state of
the items in that range to their state before the extended selection
was done. If XmNalltomaticSelection is set to True, this action
calls the XmNextendedSelectionCallback callbacks; otherwise, if
the parent is a manager, it passes the event to the parent.

ListKbdDeSelectAllO:
If the XmNselectionPolicy is set to XmSINGLE_SELECT,
XmMULTIPLE_SELECT, or XmEXTENDED_SELECT in Add
Mode, this action deselects all items in the list. If the
XmNselectionPolicy is set to XmEXTENDED_SELECT in
Normal Mode, this action deselects all items in the list (except the
item at the location cursor if the shell's XmNkeyboardFocllsPolicy
is XmEXPLICIT). This action also calls the appropriate selection
callbacks (XmNsingleSelectionCallback when
XmNselectionPolicy is set to XmSINGLE_SELECT,
XmNmllltipleSelectionCallback when XmNselectionPolicy is set
to XmMULTIPLE_SELECT, XmNextendedSelectionCallback
when XmNselectionPolicy is set to XmEXTENDED_SELECT).

ListKbdEndExtendO:
If XmNselectionPolicy is set to XmEXTENDED _SELECT and if
XmNalltomaticSelection is set to False, this action calls the
XmNextendedSelectionCallback callbacks.

ListKbdEndSelectO:
If XmNselectionPolicy is set to XmSINGLE_SELECT or
XmMULTIPLE_SELECT or if XmNalltomaticSelection is set to
False, calls the appropriate selection callbacks
(XmNsingleSelectionCallback when XmNselectionPolicy is set to
XmSINGLE_SELECT, XmNbrowseSelectionCallback when
XmNselectionPolicy is set to XmBROWSE_SELECT,
XmNmllltipleSelectionCallback when XmNselectionPolicy is set
to XmMULTIPLE_SELECT, XmNextendedSelectionCallback
when XmNselectionPolicy is set to XmEXTENDED_SELECT).

ListKbdSelectAllO:
If XmNselectionPolicy is set to XmSINGLE_SELECT or
XmBROWSE_SELECT, this action selects the item at the location
cursor. If XmNselectionPolicy is set to
XmEXTENDED_SELECT or XmMULTIPLE_SELECT, it
selects all items in the list. This action also calls the appropriate

1-597

OSF/Motlf Programmer's Reference

XmList(3X)

1-598

selection callbacks (XmNsingleSelectionCallback when
XmNselectionPolicy is set to XmSINGLE_SELECT,
XmNbrowseSelectionCallback when XmNselectionPolicy is set
to XmBROWSE_SELECT, XmNmultipleSelectionCallback
when XmNselectionPolicy is set to XmMULTIPLE_SELECT,
XmNextendedSelectionCallback when XmNselectionPolicy is set
to XmEXTENDED_SELECT).

ListLeftCharO:
Scrolls the list one character to the left.

ListLeftPageO:
Scrolls the list one page to the left.

ListNextItemO:
Moves the location cursor to the next item in the list.

If the XmNselectionPolicy is set to XmBROWSE_SELECT, this
action also selects the next item, deselects any current selection, and
calls the XmNbrowseSelectionCallback callbacks.

If the XmNselectionPolicy is set to XmEXTENDED_SELECT,
this action in Normal Mode also selects the next item, deselects any
current selection, moves the current anchor to the next item, and
calls the XmNextendedSelectionCallback callbacks. In Add
Mode, this action does not affect the selection or the anchor.

ListNextPageO:
Scrolls the list to the next page, moving the location cursor to a new
item.

If the XmNselectionPolicy is set to XmBROWSE_SELECT, this
action also selects the new item, deselects any current selection, and
calls the XmNbrowseSelectionCallback callbacks.

If the XmNselectionPolicy is set to XmEXTENDED _SELECT,
this action in Normal Mode also selects the new item, deselects any
current selection, moves the current anchor to the new item, and
calls the XmNextendedSelectionCallback callbacks. In Add
Mode, this action does not affect the selection or the anchor.

ListPrevItemO:
Moves the location cursor to the previous item in the list.

If the XmNselectionPolicy is set to XmBROWSE_SELECT, this
action also selects the previous item, deselects any current selection,
and calls the XmNbrowseSelectionCallback callbacks.

Reference Pages

XmList{3X)

If the XmNselectionPolicy is set to XmEXTENDED_SELECT,
this action in Normal Mode also selects the previous item, deselects
any current selection, moves the current anchor to the previous item,
and calls the XmNextendedSelectionCallback callbacks. In Add
Mode, this action does not affect the selection or the anchor.

ListPrevPageO:
Scrolls the list to the previous page, moving the location cursor to a
new item.

If the XmNselectionPolicy is set to XmBROWSE_SELECT, this
action also selects the new item, deselects any current selection, and
calls the XmNbrowseSelectionCallback callbacks.

If the XmNselectionPolicy is set to XmEXTENDED_SELECT,
this action in Normal Mode also selects the new item, deselects any
current selection, moves the current anchor to the new item, and
calls the XmNextendedSelectionCallback callbacks. In Add
Mode this action does not affect the selection or the anchor.

ListProcessDragO:
Drags the contents of one or more selected list items. Each item is
separated by a newline. This action creates a DragContext object
whose XmNexportTargets resource is set to
COMPOUND_TEXT; and the XmNclientData resource is set to
the index of the item in the list. If BTransfer is pressed on an
un selected item, this action drags only that item, excluding any
other selected items.

ListRightCharO:
Scrolls the list one character to the right.

ListRightPageO:
Scrolls the list one page to the right.

PrimitiveHelpO:
Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

PrimitiveNextTabGroupO:
Moves the focus to the first item contained within the next tab
group. If the current tab group is the last entry in the tab group list,

1-599

OSF/Motif Programmer's Reference

XmList(3X)

1-600

it wraps to the beginning of the tab group list.

PrimitivePrevTabGroupO:

Additional Behavior

Moves the focus to the first item contained within the previous tab
group. If the beginning of the tab group list is reached, it wraps to
the end of the tab group list.

The List widget has the following additional behavior:

<Double Click>
If a button click is followed by another button click within the time
span specified by the display's multiclick time, the List interprets
that as a double click and calls the callbacks for
XmNdefaultActionCallback. The item's colors invert to indicate
that it is selected. The XmNdoubleClicklnterval resource can be
used to specify a time span that overrides the display's multi-click
time.

<Focusln>: If the focus policy is Explicit, this action sets the focus and draw the
location cursor.

<FocusOut>: If the focus policy is Explicit, this action removes the focus and
erase the location cursor.

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Reference Pages

XmList(3X)

Related Information
Core(3X), Xm CreateList(3X), XmCreateScrolledList(3X),
XmFontListAppendEntry(3X), XmListAddltem(3X), XmListAddltems(3X),
XmListAddltemUnselected(3X), XmListAddltemsUnselected(3X),
XmListDeleteAllltems(3X), XmListDeleteltem(3X), XmListDeieteltems(3X),
XmListDeleteltemsPos(3X), XmListDeletePos(3X),
XmListDeietePositions(3X), XmListDeseiectAllltems(3X),
XmListDeseiectltem(3X), XmListDeseiectPos(3X), XmListGetKbdltemPos
XmListGetMatchPos(3X), XmListGetSelectedPos(3X),
XmListltemExists(3X), XmListltemPos(3X), XmListPosToBounds(3X),
XmListRepiaceItems(3X), XmListReplaceltemsPos(3X),
XmListRepiaceltemsPositions(3X), XmListReplaceltemsPosUnseiected(3X),
XmListRepiaceltemsUnseiected(3X), XmListSeiectltem(3X),
XmListSelectPos(3X), XmListSetAddMode(3X), XmListSetBottomltem(3X),
XmListSetBottomPos(3X), XmListSetHorizPos(3X), XmListSetltem(3X),
XmListSetKbdltemPos(3X), XmListSetPos(3X),
XmListUpdateSelectedList(3X), XmListYToPos(3X), XmPrimitive(3X) and
XmStringCreate(3X).

1-601

OSF/Motif Programmer's Reference

XmListAddltem (3X)

Synopsis

Description

XmListAddltem-A List function that adds an item to the list

#include <XmlList.h>

void XmListAddltem (widget, item, position)
Widget widget;
XmString item;
int position;

XmListAddltem adds an item to the list at the given position. When the item is
inserted into the list, it is compared with the current XmNselectedItems list. If the
new item matches an item on the selected list, it appears selected.

widget

item

position

Specifies the ID of the List to which an item is added.

Specifies the item to be added to the list.

Specifies the position of the new item in the list. A value of 1 makes
the new item the first item in the list; a value of 2 makes it the
second item; and so on. A value of 0 (zero) makes the new item the
last item in the list.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-602

Synopsis

Description

Reference Pages

XmListAddltemUnselected (ax)

/

XmListAddItemUnselected-A List function that adds an item to the list

#include <XmlList.h>

void XmListAddItemUnselected (widget, item, position)
Widget widget;
XmString item;
int position;

XmListAddItemUnselected adds an item to the list at the given position. The
item does not appear selected, even if it matches an item in the current
XmNselectedItems list.

widget

item

position

Specifies the ID of the List from whose list an item is added.

Specifies the item to be added to the list.

Specifies the position of the new item in the list. A value of 1 makes
the new item the first item in the list; a value of 2 makes it the
second item; and so on. A value of 0 (zero) makes the new item the
last item in the list.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-603

OSF/Motif Programmer's Reference
XmListAddltems (3X)

Synopsis

Description

XmListAddltems-A List function that adds items to the list

#include <XmlList.h>

void XmListAddltems (widget, items, item_count, position)
Widget widget;
XmString *items;
int item_count;
int position;

XmListAddltems adds the specified items to the list at the given position. The
first item_count items of the items array are added to the list. When the items are
inserted into the list, they are compared with the current XmNselectedltems list.
If any of the new items matches an item on the selected list, it appears selected.

widget Specifies the ID of the List to which an item is added.

items Specifies a pointer to the items to be added to the list.

item_count Specifies the number of items in items. This number must be
nonnegative.

position Specifies the position of the first new item in the list. A value of 1
makes the first new item the first item in the list; a value of 2 makes
it the second item; and so on. A value of 0 (zero) makes the first
new item follow the last item in the list.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-604

Synopsis

Description

Reference Pages

Xm ListAddltemsU nselected (3X)

XmListAddItemsUnselected-A List function that adds items to a list

#include <XmlList.h>

void XmListAddltemsUnselected (widget, items, item_count, position)
Widget widget;
XmString *items;
int item_count;
int position;

XmListAddItemsUnselected adds the specified items to the list at the given
position. The inserted items remain unselected, even if they currently appear in the
XmNselectedItems list.

widget Specifies the ID of the List widget to add items to.

items Specifies a pointer to the items to be added to the list.

item_count Specifies the number of elements in items. This number must be
nonnegative.

position Specifies the position of the first new item in the list. A value of 1
makes the first new item the first item in the list; a value of 2 makes
it the second item; and so on. A value of 0 (zero) makes the first
new item follow the last item of the list.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-605

OSF/Motif Programmer's Reference

XmListDeleteAllltems(3X)

XmListDeleteAIlItems-A List function that deletes all items from the list

Synopsis #include <XmlList.h>

void XmListDeleteAllltems (widget)
Widget widget;

Description
XmListDeleteAIlItems deletes all items from the list.

widget Specifies the ID of the List from whose list the items are deleted

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-606

Synopsis

Description

Reference Pages

XmListDeleteltem (3X)

XmListDeleteltem-A List function that deletes an item from the list

#include <XmlList.h>

void XmListDeleteltem (widget, item)
Widget widget;
XmString item;

XmListDeleteltem deletes the first item in the list that matches item. A warning
message appears if the item does not exist.

widget

item

Specifies the ID of the List from whose list an item is deleted

Specifies the text of the item to be deleted from the list

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-607

OSF/Motif Programmer's Reference
XmListDeleteltems{ 3X)

Synopsis

Description

XmListDeleteltems-A List function that deletes items from the list

#include <XmlList.h>

void XmListDeleteltems (widget, items, item_count)
Widget widget;
XmString * items;
int item_count;

XmListDeleteltems deletes the specified items from the list. For each element of
items, the first item in the list that matches that element is deleted. A warning
message appears if any of the items do not exist.

widget Specifies the ID of the List from whose list an item is deleted.

items Specifies a pointer to items to be deleted from the list.

item_count Specifies the number of elements in items This number must be
nonnegative.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-608

Synopsis

Description

Reference Pages

XmListDeleteltemsPos(3X)

XmListDeleteItemsPos-A List function that deletes items from the list starting at
the given position

#include <XmlList.h>

void XmListDeleteItemsPos (widget, item_count, position)
Widget widget;
int
int

item_count;
position;

XmListDeleteltemsPos deletes the specified number of items from the list starting
at the specified position.

widget Specifies the ID of the List from whose list an item is deleted.

item_count Specifies the number of items to be deleted. This number must be
nonnegative.

position Specifies the position in the list of the first item to be deleted. A
value of 1 indicates that the first deleted item is the first item in the
list; a value of 2 indicates that it is the second item; and so on.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-609

OSF/Motif Programmer's Reference
XmListDeletePos (3X)

Synopsis

Description

XmListDeletePos-A List function that deletes an item from a list at a specified
position

#include <XmlList.h>

void XmListDeletePos (widget, position)
Widget widget;
int position;

XmListDeletePos deletes an item at a specified position. A warning message
appears if the position does not exist.

widget

position

Specifies the ID of the List from which an item is to be deleted.

Specifies the position of the item to be deleted. A value of 1
indicates that the first item in the list is deleted; a value of 2
indicates that the second item is deleted; and so on. A value of 0
(zero) indicates that the last item in the list is deleted.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-610

Synopsis

Description

Reference Pages

XmListDeletePositions(3X)

XmListDeletePositions-A List function that deletes items from a list based on an
array of positions

#include <XmlList.h>

void XmListDeletePositions (widget, position_list, position_count)
Widget widget;
int *position_list;
int position_count;

XmListDeletePositions deletes noncontiguous items from a list. The function
deletes all items whose corresponding positions appear in the position_list array. A
warning message is displayed if a specified position is invalid; that is, the value is 0
(zero), a negative integer, or a number greater than the number of items in the list.

widget Specifies the ID of the List widget.

position_list Specifies an array of the item positions to be deleted. The
position of the first item in the list is 1; the position of the second
item is 2; and so on.

position_count Specifies the number of elements in the position_list.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-611

OSF/Motif Programmer's Reference

XmListDeselectAllltems(3X)

Synopsis

Description

XmListDeselectAllItems-A List function that unhighlights and removes all items
from the selected list

#include <XmlList.h>

void XmListDeselectAllltems (widget)
Widget widget;

XmListDeselectAllItems unhighlights and removes all items from the selected list.

widget Specifies the ID of the List widget from whose list all selected items
are deselected

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-612

Synopsis

Description

Reference Pages

XmListDeselectltem(ax)

XmListDeselectItem-A List function that deselects the specified item from the
selected list

#include <XmlList.h>

void XmListDeselectItem (widget, item)
Widget widget;
XmString item;

XmListDeselectItem unhighlights and removes from the selected list the first item
in the list that matches item.

widget

item

Specifies the ID of the List from whose list an item is deselected

Specifies the item to be deselected from the list

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-613

OSF/Motif Programmer's Reference

XmListDeselectPos (3X)

Synopsis

Description

XmListDeselectPos-A List function that deselects an item at a specified position
in the list

#include <XmlList.h>

void XmListDeselectPos (widget, position)
Widget widget;
int position;

XmListDeselectPos unhighlights the item at the specified position and deletes it
from the list of selected items.

widget

position

Specifies the ID of the List widget.

Specifies the position of the item to be deselected. A value of I
indicates that the first item in the list is deselected; a value of 2
indicates that the second item is deselected; and so on. A value of 0
(zero) indicates that the last item in the list is deselected.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-614

Synopsis

Description

Reference Pages

XmListGetKbdltemPos (3X)

XmListGetKbdItemPos-A List function that returns the position of the item at
the location cursor

#include <XmIList.h>

int XmListGetKbdItemPos (widget)
Widget widget;

XmListGetKbdItemPos returns the position of the list item at the location cursor.

widget Specifies the ID of the List widget

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
Returns the position of the current keyboard item. A value of 1 indicates that the
location cursor is at the first item of the list; a value of 2 indicates that it is at the
second item; and so on. A value of 0 (zero) indicates the List widget is empty.

Related Information
XmList(3X) .

1-615

OSF/Motif Programmer's Reference

XmListGetMatchPos (3X)

Synopsis

Description

XmListGetMatchPos-A List function that returns all instances of an item in the
list

#include <XmlList.h>

Boolean XmListGetMatchPos (widget, item, position_list, position_count)
Widget widget;
XmString item;
int **position_list;
int *position_count;

XmListGetMatchPos is a Boolean function that returns an array of positions
where a specified item is found in a List.

widget Specifies the ID of the List widget.

item Specifies the item to search for.

position_list Returns an array of positions at which the item occurs in the List.

position_count

The position of the first item in the list is 1; the position of the
second item is 2; and so on. When the return value is True,
XmListGetMatchPos allocates memory for this array. The caller is
responsible for freeing this memory.

Returns the number of elements in the position_list.

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
Returns True if the specified item is present in the list, and False if it is not.

Related Information
XmList(3X) .

1-616

Synopsis

Description

Reference Pages

XmListGetSelectedPos(3X)

XmListGetSelectedPos-A List function that returns the position of every
selected item in the list

#include <XmlList.h>

Boolean XmListGetSelectedPos (widget, position_list, position_count)
Widget widget;
int **position_list;
int *position_count;

XmListGetSelectedPos is a Boolean function that returns an array of the positions
of the selected items in a List.

widget Specifies the ID of the List widget.

position_list Returns an array of the positions of the selected items in the List.

position_count

The position of the first item in the list is 1; the position of the
second item is 2; and so on. When the return value is True,
XmListGetSelectedPos allocates memory for this array. The caller
is responsible for freeing this memory.

Returns the number of elements in the position_list.

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
Returns True if the list has any selected items, and False if it does not.

Related Information
XmList(3X) .

1-617

OSF/Motif Programmer's Reference

XmListltemExists (3X)

Synopsis

Description

XmListItemExists-A List function that checks if a specified item is in the list

#include <XmlList.h>

Boolean XmListltemExists (widget, item)
Widget widget;
XmString item;

XmListItemExists is a Boolean function that checks if a specified item is present
in the list.

widget Specifies the ID of the List widget

item Specifies the item whose presence is checked

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
Returns True if the specified item is present in the list.

Related Information
XmList(3X).

1-618

Synopsis

Description

Reference Pages

XmListltemPos{ 3X)

XmListltemPos-A List function that returns the position of an item in the list

#include <XmlList.h>

int XmListltemPos (widget, item)
Widget widget;
XmString item;

XmListltemPos returns the position of the first instance of the specified item in
a list.

widget Specifies the ID of the List widget

item Specifies the item whose position is returned

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
Returns the position in the list of the first instance of the specified item. The
position of the first item in the list is 1; the position of the second item is 2; and so
on. This function returns 0 (zero) if the item is not found.

Related Information
XmList(3X) .

1-619

OSF/Motif Programmer's Reference

XmListPosSelected (3X)

Synopsis

Description

XmListPosSelected-A List function that determines if the list item at a specified
position is selected

#include <XmlList.h>

Boolean XmListPosSelected (widget, position)
Widget widget;
int position;

XmPosSelected determines if the list item at the specified position is selected or
not.

widget

position

Specifies the ID of the List widget.

Specifies the position of the list item. A value of 1 indicates the first
item in the list; a value of 2 indicates the second item; and so on. A
value of 0 (zero) specifies the last item in the list.

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
Returns True if the list item is selected; otherwise, returns False if the item is not
selected or the specified position is invalid.

Related Information
XmList(3X) .

1-620

Synopsis

Description

Reference Pages

XmListPosToBounds (3X)

XmListPosToBounds-A List function that returns the bounding box of an item at
a specified position in a list

#include <XmlList.h>

Boolean XmListPosToBounds (widget, position, x, y, width, height)
Widget widget;
int
Position
Position
Dimension
Dimension

position;
*x;
*y;
*width;
*height;

XmListPosToBounds returns the coordinates of an item within a list and the
dimensions of its bounding box. The function returns the associated x and y­
coordinates of the upper left corner of the bounding box relative to the upper left
corner of the List widget, as well as the width and the height of the box. The caller
can pass a NULL value for the x, y, width, or height parameters to indicate that the
return value for that parameter is not requested.

widget

position

x

y

width

height

Specifies the ID of the List widget.

Specifies the position of the specified item. A value of 1 indicates
the first item in the list; a value of 2 indicates the second item; and
so on. A value of 0 (zero) specifies the last item in the list.

Specifies a pointer to the returned x-coordinate of the item.

Specifies the pointer to the returned y-coordinate of the item.

Specifies the pointer to the returned width of the item.

Specifies the pointer to the returned height of the item.

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
If the item at the specified position is not visible, returns False, and the returned
values (if any) are undefined. Otherwise, this function returns True.

Related Information
XmList(3X) and XmListYToPos(3X).

1-621

OSF/Motif Programmer's Reference

XmListReplaceltems (3X)

Synopsis

Description

XmListReplaceltems-A List function that replaces the specified elements in the
list

#include <XmIList.h>

void XmListReplaceltems (widget, old_items, item_count, new_items)
Widget widget;
XmString *old_items;
int
XmString

item_count;
*new _items;

XmListReplaceltems replaces each specified item of the list with a corresponding
new item. When the items are inserted into the list, they are compared with the
current XmNselectedltems list. If any of the new items matches an item on the
selected list, it appears selected.

widget Specifies the ID of the List widget.

old_items Specifies the items to be replaced.

item_count Specifies the number of items in old_items and new_items. This
number must be nonnegative.

new _items Specifies the replacement items.

Every occurrence of each element of old_items is replaced with the corresponding
element from new_items. That is, the first element of old_items is replaced with
the first element of new_items. The second element of old_items is replaced with
the second element of new_items, and so on until item_count is reached.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-622

Synopsis

Description

Reference Pages

XmListReplaceltemsPos (3X)

XmListReplaceltemsPos-A List function that replaces the specified elements in
the list

#include <XmlList.h>

void XmListReplaceltemsPos (widget, new_items, item_count, position)
Widget widget;
XmString *new _items;
int item_count;
int position;

XmListReplaceltemsPos replaces the specified number of items of the List with
new items, starting at the specified position in the List. When the items are inserted
into the list, they are compared with the current XmNselectedltems list. If any of
the new items matches an item on the selected list, it appears selected.

widget Specifies the ID of the List widget.

new _items Specifies the replacement items.

item_count Specifies the number of items in new _items and the number of items
in the list to replace. This number must be nonnegative.

position Specifies the position of the first item in the list to be replaced. A
value of 1 indicates that the first item replaced is the first item in the
list; a value of 2 indicates that it is the second item; and so on.

Beginning with the item specified in position, item_count items in
the list are replaced with the corresponding elements from
new_items. That is, the item at position is replaced with the first
element of new_items; the item after position is replaced with the
second element of new_items; and so on, until item_count is
reached.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-623

OSF/Motif Programmer's Reference

XmListReplaceltemsPosUnselected (3X)

Synopsis

Description

XmListReplaceItemsPosUnselected-A List function that replaces items in a list
without selecting the replacement items

#include <XmlList.h>

void XmListReplaceItemsPosUnselected (widget, new_items, item_count, position)
Widget widget;
XmString *new_items;
int item_count;
int position;

XmListReplaceItemsPosUnselected replaces the specified number of items in the
list with new items, starting at the given position. The replacement items remain
unselected, even if they currently appear in the XmNselectedItems list.

widget Specifies the ID of the List widget to replace items in.

new _items Specifies a pointer to the replacement items.

item_count Specifies the number of elements in new _items and the number of
items in the list to replace. This number must be nonnegative.

position Specifies the position of the first item in the list to be replaced. A
value of 1 indicates that the first item replaced is the first item in the
list; a value of 2 indicates that it is the second item; and so on.

Beginning with the item specified in position, item_count items in
the list are replaced with the corresponding elements from
new_items. That is, the item at position is replaced with the first
element of new _items; the item after position is replaced with the
second element of new_items; and so on, until item_count is
reached.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-624

Synopsis

Description

Reference Pages

XmListReplaceltemsUnselected (3X)

XmListReplaceltemsUnselected-A List function that replaces items in a list

#include <XmlList.h>

void XmListReplaceItemsUnselected (widget, old_items, item_count, new_items)
Widget widget;
XmString *old_items;
int item_count;
XmString *new_items;

XmListReplaceItemsUnselected replaces each specified item in the list with a
corresponding new item. The replacement items remain un selected, even if they
currently appear in the XmNselectedltems list.

widget Specifies the ID of the List widget to replace items in.

old_items Specifies a pointer to the list items to be replaced.

item_count Specifies the number of elements in old_items and new_items. This
number must be nonnegative.

new _items Specifies a pointer to the replacement items. Every occurrence of
each element of old_items is replaced with the corresponding
element from new_items. That is, the first element of old_items is
replaced with the first element of new_items. The second element
of old_items is replaced with the second element of new_items, and
so on until item_count is reached. If an element in old_items does
not exist in the list, the corresponding entry in new _items is skipped.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-625

OSF/Motif Programmer's Reference

XmListReplacePositions (3X)

Synopsis

Description

XmListReplacePositions-A List function that replaces items in a list based on
position

#include <XmlList.h>

void XmListReplacePositions (widget, position_list, item_list, item_count)
Widget widget;
int
XmString
int

*position_list;
*item_list;
item_count;

XmListReplacePositions replaces noncontiguous items in a list. The item at each
position specified in position_list is replaced with the corresponding entry in
item_list. When the items are inserted into the list, they are compared with the
current XmNselectedItems list. Any of the new items that match items on the
selected list appear selected. A warning message is displayed if a specified
position is invalid; that is, the value is 0 (zero), a negative integer, or a number
greater than the number of items in the list.

widget Specifies the ID of the List widget.

position_list Specifies an array of the positions of items to be replaced. The
position of the first item in the list is 1; the position of the second
item is 2; and so on.

item_list Specifies an array of the replacement items.

item_count Specifies the number of elements in position_list and item_list. This
number must be nonnegative.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-626

Synopsis

Description

Reference Pages

XmListSelectltem (3X)

XmListSelectltem-A List function that selects an item in the list

#include <XmlList.h>

void XmListSelectltem (widget, item, notify)
Widget widget;
XmString item;
Boolean notify;

XmListSelectItem highlights and adds to the selected list the first item in the list
that matches item.

widget

item

notify

Specifies the ID of the List widget from whose list an item is
selected.

Specifies the item to be selected in the List widget.

Specifies a Boolean value that when True invokes the selection
callback for the current mode. From an application interface view,
calling this function with notify True is indistinguishable from a
user-initiated selection action.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-627

OSF/Motif Programmer's Reference

XmListSelectPos (3X)

Synopsis

Description

XmListSelectPos-A List function that selects an item at a specified position in
the list

#include <XmlList.h>

void XmListSelectPos (widget, position, notify)
Widget widget;
int
Boolean

position;
notify;

XmListSelectPos highlights a List item at the specified position and adds it to the
list of selected items.

widget

position

notify

Specifies the ID of the List widget.

Specifies the position of the item to be selected. A value of 1
indicates that the first item in the list is selected; a value of 2
indicates that the second item is selected; and so on. A value of 0
indicates that the last item in the list is selected.

Specifies a Boolean value that when True invokes the selection
callback for the current mode. From an application interface view,
calling this function with notify True is indistinguishable from a
user-initiated selection action.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-628

Synopsis

Description

Reference Pages

XmListSetAddMode (aX)

XmListSetAddMode-A List function that sets add mode in the list

#include <XmlList.h>

void XmListSetAddMode (widget, state)
Widget widget;
Boolean state;

XmListSetAddMode allows applications control over Add Mode in the extended
selection model.

widget

state

Specifies the ID of the List widget.

Specifies whether to activate or deactivate Add Mode. If state is
True, Add Mode is activated. If state is False, Add Mode is
deactivated.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-629

OSF/Motif Programmer's Reference

XmListSetBottomltem (3X)

Synopsis

Description

XtnListSetBottomltem-A List function that makes an existing item the last
visible item in the list

#include <XmlList.h>

void XmListSetBottomItem (widget, item)
Widget widget;
XmString item;

XmListSetBottomltem makes the first item in the list that matches item the last
visible item in the list.

widget

item

Specifies the ID of the List widget from whose list an item is made
the last visible

Specifies the item

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-630

Synopsis

Description

Reference Pages
XmListSetBottomPos (3X)

XmListSetBottomPos-A List function that makes a specified item the last visible
item in the list

#include <XmlList.h>

void XmListSetBottomPos (widget, position)
Widget widget;
int position;

XmListSetBottomPos makes the item at the specified position the last visible item
in the List.

widget

position

Specifies the ID of the List widget.

Specifies the position of the item to be made the last visible item in
the list. A value of 1 indicates that the first item in the list is the last
visible item; a value of 2 indicates that the second item is the last
visible item; and so on. A value of 0 (zero) indicates that the last
item in the list is the last visible item.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X).

1-631

OSF/Motif Programmer's Reference
XmListSetHorizpos (3X)

XmListSetHorizPos-A List function that scrolls to the specified position in
the list

Synopsis #include <XmlList.h>

Description

void XmListSetHorizpos (widget, position)
Widget widget;
int position;

XmListSetHorizpos sets the XmNvalue resource of the horizontal ScrollBar to
the specified position and updates the visible portion of the list with the new value
if the List widget's XmNlistSizePolicy is set to XmCONSTANT or
XmRESIZE_IF _POSSmLE and the horizontal ScrollBar is currently visible.
This is equivalent to moving the horizontal ScrollBar to the specified position.

widget

position

Specifies the ID of the List widget

Specifies the horizontal position

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-632

Synopsis

Description

Reference Pages
XmListSetltem (3X)

XmListSetltem-A List function that makes an existing item the first visible item
in the list

#include <XmlList.h>

void XmListSetItem (widget, item)
Widget widget;
XmString item;

XmListSetltem makes the first item in the list that matches item the first visible
item in the list.

widget

item

Specifies the ID of the List widget from whose list an item is made
the first visible

Specifies the item

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-633

OSF/Motif Programmer's Reference

XmListSetKbdltemPos (3X)

Synopsis

Description

XmListSetKbdItemPos-A List function that sets the location cursor at a
specified position

#include <XmlList.h>

Boolean XmListSetKbdltemPos (widget, position)
Widget widget;
int position;

XmListSetKbdItemPos sets the location cursor at the item specified by position.
This function does not determine if the item at the specified position is
selected or not.

widget

position

Specifies the ID of the List widget.

Specifies the position of the item at which the location cursor is set.
A value of 1 indicates the first item in the list; a value of 2 indicates
the second item; and so on. A value of 0 (zero) sets the location
cursor at the last item in the list.

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
Returns False if no item exists at the specified position or if the list is empty;
otherwise, returns True.

Related Information
XmList(3X) .

1-634

Synopsis

Description

Reference Pages

Xm ListSetPos (3X)

XmListSetPos-A List function that makes the item at the given position the first
visible position in the list

#include <XmlListh>

void XmListSetPos (widget, position)
Widget widget;
int position;

XmListSetPos makes the item at the given position the first visible position in the
list.

widget

position

Specifies the ID of the List widget.

Specifies the position of the item to be made the first visible item in
the list. A value of 1 indicates that the first item in the list is the first
visible item; a value of 2 indicates that the second item is the first
visible item; and so on. A value of 0 (zero) indicates that the last
item in the list is the first visible item.

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-635

OSF/Motif Programmer's Reference

XmListUpdateSelectedList (aX)

Synopsis

Description

XmListUpdateSelectedList-A
XmNselectedltems resource

#include <XmlList.h>

List

void XmListUpdateSelectedList (widget)
Widget widget;

function that updates the

XmListUpdateSelectedList frees the contents of the current XmNselectedltems
list. The routine traverses the XmNitems list and adds each currently selected item
to the XmNselectedltems list. For each selected item, there is a corresponding
entry in the updated XmNselectedltems list.

widget Specifies the ID of the List widget to update

For a complete definition of List and its associated resources, see XmList(3X).

Related Information
XmList(3X) .

1-636

Synopsis

, Description

Reference Pages

XmListYToPos(3X)

XmListYToPos-A List function that returns the position of the item at a specified
y -coordinate

#include <XmIList.h>

int XmListYToPos (widget, y)

Widget widget;
Position y;

XmListYToPos returns the position of the item at the given y-coordinate within
the list.

widget Specifies the ID of the List widget

y Specifies the y-coordinate in the list's coordinate system

For a complete definition of List and its associated resources, see XmList(3X).

Return Value
Returns the pOSItIon of the item at the specified y coordinate. A value of 1
indicates the first item in the list; a value of 2 indicates the second item; and so on.
A value of 0 (zero) indicates that no item exists at the specified y-coordinate.

Related Information
XmList(3X) and XmListPosToBounds(3X).

1-637

OSF/Motif Programmer's Reference

XmMainWindow(3X)

XmMain Window-The Main Window widget class

Synopsis #include <Xm/MainW.h>

Description

Classes

Main Window provides a standard layout for the primary window of an application.
This layout includes a MenuBar, a CommandWindow, a work region, a
Message Window, and ScrollBars. Any or all of these areas are optional. The work
region and ScrollBars in the Main Window behave identically to the work region
and ScrollBars in the ScrolledWindow widget. The user can think of the
Main Window as an extended ScrolledWindow with an optional MenuBar and
optional CommandWindow and MessageWindow.

In a fully loaded MainWindow, the MenuBar spans the top of the window
horizontally. The CommandWindow spans the MainWindow horizontally just
below the MenuBar, and the work region lies below the CommandWindow. The
Message Window is below the work region. Any space remaining below the
Message Window is managed in a manner identical to ScrolledWindow. The
behavior of ScrolledWindow can be controlled by the ScrolledWindow resources.
To create a MainWindow, first create the work region elements, a MenuBar, a
CommandWindow, a MessageWindow, a horizontal ScrollBar, and a vertical
ScrollBar widget, and then call XmMain WindowSetAreas with those widget IDs.

Main Window can also create three Separator widgets that provide a visual
separation of MainWindow's four components. The user can specify resources in a
resource file for the automatically created gadgets that contain the Main Window
separators. The name of the first separator gadget is Separator!; the second is
Separator2; and the third is Separator3.

Main Window inherits behavior and resources from Core, Composite, Constraint,
XmManager, and ScrolledWindow.

The class pointer is xmMain WindowWidgetClass.

The class name is XmMain Window.

New Resources

1-638

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by

Reference Pages

XmMainWindow(ax)

class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

XmMainWindow Resource Set

Name Default Access
Class Type

XmNcommandWindow NULL CSG
XmCCommandWindow Widget

XmNcommandWindowLocation ABOVE (SeeDesc.) CG
XmCCommandWindowLocation unsigned char

XmNmainWindowMarginHeight 0 CSG
XmCMainWindowMarginHeight Dimension

XmNmainWindowMarginWidth 0 CSG
XmCMainWindowMarginWidth Dimension

XmNmenuBar NULL CSG
XmCMenuBar Widget

XmNmessageWindow NULL CSG
XmCMessageWindow Widget

Xm NshowSeparator False CSG
XmCShowSeparator Boolean

XmNcommandWindow
Specifies the widget to be laid out as the CommandWindow. This
widget must have been previously created and managed as a child of
Main Window.

XmNcommandWindowLocation
Controls the pOSItion of the command window.
XmCOMMAND_ABOVE_ WORKSPACE locates the command
window between the menu bar and the work window.
XmCOMMAND_BELOW _WORKSPACE locates the command
window between the work window and the message window.

1-639

OSF/Motif Programmer's Reference
XmMainWindow(3X)

1-640

XmNmain WindowMarginHeight
Specifies the margin height on the top and bottom of MainWindow.
This resource overrides any setting of the ScrolledWindow resource
XmNscrolledWindowMarginHeight.

XmNmain WindowMarginWidth
Specifies the margin width on the right and left sides of
Main Window. This resource overrides any setting of the
ScrolledWindow resource XmNscrolledWindowMargin Width.

XmNmenuBar
Specifies the widget to be laid out as the MenuBar. This widget
must have been previously created and managed as a child of
Main Window.

XmNmessageWindow
Specifies the widget to be laid out as the MessageWindow. This
widget must have been previously created and managed as a child of
MainWindow. The MessageWindow is positioned at the bottom of
the MainWindow. If this value is NULL, no message window is
included in the Main Window.

XmNshowSeparator

Inherited Resources

Displays separators between the components of the Main Window
when set to True. If set to False, no separators are displayed.

Main Window inherits behavior and resources from the superclasses described in
the following table. For a complete description of each resource, refer to the
reference page for that superclass.

Reference Pages

XmMainWindow(3X)

XmScroliedWindow Resource Set

Name Default Access
Class Type

XmNclipWindow dynamic G
XmCClipWindow Widget

Xm NhorizontalScroliBar dynamic CSG
XmCHorizontalScrollBar Widget

Xm NscroliBarDisplayPolicy dynamic CSG
XmCScrollBarDisplayPolicy unsigned char

XmNscrollBarPlacement XmBOTTOM_RIGHT CSG
XmCScrollBarPlacement unsigned char

Xm NscroliedWindowMarginHeight 0 N/A
XmCScrolledWindowMarginHeight Dimension

XmNscroliedWindowMarginWidth 0 N/A
XmCScrolledWindowMarginWidth Dimension

XmNscrollingPolicy XmAPPLICATION_DEFINED CG
XmCScrollingPolicy unsigned char

XmNspacing 4 CSG
XmCSpacing Dimension

XmNtraverseObscuredCallback NULL CSG
XmCCaliback XtCalibackList

Xm NverticalScroliBar dynamic CSG
XmCVerticalScroliBar Widget

XmNvisualPolicy dynamic G
XmCVisualPolicy unsigned char

XmNworkWindow NULL CSG
XmCWorkWindow Widget

1-641

OSF/Motif Programmer's Reference

XmMainWindow(3X)

XmManager Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

Xm NhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus NULL CSG
XmClnitialFocus Widget

XmNnavigationType XmTAB_GROUP CSG
XmCNavigationType Xm NavigationType

Xm Nshadow Thickness 0 CSG
XmCShadowThickness Dimension

Xm NstringDirection dynamic CG
XmCStringDirection XmStringDirection

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-642

Reference Pages

XmMainWindow(3X)

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-643

OSF/Motif Programmer's Reference

XmMainWindow(3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic CSG
XmCAccelerators XtAccelerators

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

Xm Ninitial ResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-644

Reference Pages

XmMainWindow(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
Main Window inherits translations from ScrolledWindow.

Related Information
Composite(3X), Constraint(3X), Core(3X), XmCreateMainWindow(3X),
XmMain WindowSepl(3X), XmMain WindowSep2(3X),
XmMain WindowSep3(3X), XmMain WindowSetAreas(3X), XmManager(3X),
and XmScrolledWindow(3X)

1-645

OSF/Motif Programmer's Reference

XmMainWindowSep1 (3X)

XmMainWindowSepl-A MainWindow function that returns the widget ID of
the first Separator widget

Synopsis #include <XmlMainW.h>

Description

Widget XmMainWindowSepl (widget)
Widget widget;

XmMainWindowSepl returns the widget ID of the first Separator widget in the
MainWindow. The first Separator widget is located between the MenuBar and the
Command widget. This Separator is visible only when XmNshowSeparator is
True.

widget Specifies the MainWindow widget ID.

For a complete definition of Main Window and its associated resources, see
XmMainWindow(3X).

Return Value
Returns the widget ID of the first Separator.

Related Information
XmMain Window(3X).

1-646

Synopsis

Description

Reference Pages

XmMainWindowSep2 (3X)

XmMain WindowSep2-A Main Window function that returns the widget ID of
the second Separator widget

#include <Xm/MainW.h>

Widget XmMainWindowSep2 (widget)
Widget widget;

XmMain WindowSep2 returns the widget ID of the second Separator widget in the
Main Window. The second Separator widget is located between the Command
widget and the ScrolledWindow. This Separator is visible only when
XmNshowSeparator is True.

widget Specifies the MainWindow widget ID.

For a complete definition of Main Window and its associated resources, see
XmMainWindow(3X).

Return Value
Returns the widget ID of the second Separator.

Related Information
XmMainWindow(3X).

1-647

OSF/Motif Programmer's Reference

XmMainWindowSep3(3X)

Synopsis

Description

XmMain WindowSep3-A Main Window function that returns the widget ID of
the third Separator widget

#include <Xm/MainW.h>

Widget XmMainWindowSep3 (widget)
Widget widget;

XmMain WindowSep3 returns the widget ID of the third Separator widget in the
Main Window. The third Separator widget is located between the message window
and the widget above it. This Separator is visible only when XmNshowSeparator
is True.

widget Specifies the Main Window widget ID

For a complete definition of Main Window and its associated resources, see
XmMainWindow(3X).

Return Value
Returns the widget ID of the third Separator.

Related Information
XmMainWindow(3X).

1-648

Synopsis

Description

Reference Pages

XmMainWindowSetAreas (3X)

XmMain WindowSetAreas-A Main Window function that identifies manageable
children for each area

#include <Xm/MainW.h>

void XmMainWindowSetAreas (widget, menu_bar, command_window,
horizontaCscrollbar, verticaCscrollbar, work_region)

Widget widget;
Widget menu_bar;
Widget command_window;
Widget horizontaCscrollbar;
Widget verticaCscrollbar;
Widget workJegion;

XmMain WindowSetAreas identifies which of the valid children for each area
(such as the MenuBar and work region) are to be actively managed by
MainWindow. This function also sets up or adds the MenuBar, work window,
command window, and ScrollBar widgets to the application's main window
widget.

Each area is optional; therefore, the user can pass NULL to one or more of the
following arguments. The window manager provides the title bar.

widget Specifies the MainWindow widget ID.

Specifies the widget ID for the MenuBar to be associated with
the Main Window widget. Set this ID only after creating an
instance of the Main Window widget. The attribute name
associated with this argument is XmNmenuBar.

command_window
Specifies the widget ID for the command window to be
associated with the Main Window widget. Set this ID only after
creating an instance of the Main Window widget. The attribute
name associated with this argument is XmNcommandWindow.

horizontaLscrollbar
Specifies the ScrollBar widget ID for the horizontal ScrollBar to
be associated with the Main Window widget. Set this ID only
after creating an instance of the Main Window widget. The
attribute name associated with this argument is
XmNhorizontalScrollBar.

1-649

OSF/Motif Programmer's Reference
XmMainWindowSetAreas(3X)

ve rticaLscrolibar
Specifies the ScrollBar widget ID for the vertical ScrollBar to
be associated with the Main Window widget. Set this ID only
after creating an instance of the Main Window widget. The
attribute name associated with this argument is
XmNverticalScrollBar.

Specifies the widget ID for the work window to be associated
with the Main Window widget. Set this ID only after creating an
instance of the Main Window widget. The attribute name
associated with this argument is XmNworkWindow.

For a complete definition of Main Window and its associated resources, see
XmMain Window(3X).

Related Information
XmMain Window(3X).

1-650

Synopsis

Description

Classes

Reference Pages

XmManager(3X)

XmManager-The Manager widget class

#include <XmlXm.h>

Manager is a widget class used as a supporting superclass for other widget classes.
It supports the visual resources, graphics contexts, and traversal resources
necessary for the graphics and traversal mechanisms.

Manager inherits behavior and resources from Core, Composite, and Constraint.

The class pointer is xmManagerWidgetClass.

The class name is XmManager.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-651

OSF/Motif Programmer's Reference

XmManager(3X)

XmManager Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCallback NULL C
XmCCallback X tCall backList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

Xm NhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus NULL CSG
XmClnitialFocus Widget

Xm NnavigationType XmTAB_GROUP CSG
XmCNavigationType Xm NavigationType

XmNshadowThickness 0 CSG
XmCShadowThickness Dimension

Xm NstringDirection dynamic CG
XmCStringDirection XmStringDirection

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-652

Reference Pages

XmManager(3X)

XmNbottomShadowColor
Specifies the color to use to draw the bottom and right sides of the
border shadow. This color is used if the
XmNbottomShadowPixmap resource is NULL.

XmNbottomShadowPixmap
Specifies the pixmap to use to draw the bottom and right sides of the
border shadow.

XmNforeground
Specifies the foreground drawing color used by manager widgets.

XmNhelpCallback
Specifies the list of callbacks that are called when the help key
sequence is pressed. The reason sent by this callback is
XmCR_HELP.

XmNhighlightColor
Specifies the color of the highlighting rectangle. This color is used
if the highlight pixmap resource is XmUNSPECIFIED_PIXMAP.

XmNhighlightPixmap
Specifies the pixmap used to draw the highlighting rectangle.

XmNinitialFocus
Specifies the ID of a widget descendant of the manager. The widget
must meet these conditions:

• The widget must be either a tab group or a non-tab-group
widget that can receive keyboard focus. For the definition of
a tab group, see the description of the Manager, Primitive,
and Gadget XmNnavigationType resources. In general a
widget can receive keyboard focus when it is a primitive, a
gadget, or a manager (such as a DrawingArea with no
traversable children) that acts as a primitive.

• The widget must not be a descendant of a tab group that is
itself a descendant of the manager. That is, the widget
cannot be contained within a tab group that is nested inside
the manager.

• The widget and its ancestors must have a value of True for
their XmNtraversalOn resources.

If the widget does not meet these conditions, XmNinitialFocus is
treated as if the value were NULL.

1-653

OSF/Motif Programmer's Reference

XmManager(3X)

1-654

This resource is meaningful only when the nearest shell ancestor's
XmNkeyboardFocusPolicy is XmEXPLICIT. It is used to
determine which widget receives focus in these situations:

• When the manager is the child of a shell and the shell
hierarchy receives focus for the first time

• When focus is inside the shell hierarchy, the manager is a
composite tab group, and the user traverses to the manager
via the keyboard

Focus is then determined as follows:

• If XmNinitialFocus is a traversable non-tab-group widget,
that widget receives focus.

• If XmNinitialFocus is a traversable tab group, that tab
group receives focus. If that tab group is a composite with
descendant tab groups or traversable non-tab-group widgets,
these procedures are used recursively to assign focus to a
descendant of that tab group.

• If XmNinitialFocus is NULL, the first traversable non-tab­
group widget that is not contained within a nested tab group
receives focus.

• If XmNinitialFocus is NULL and no traversable non-tab­
group widget exists, the first traversable tab group that is not
contained within a nested tab group receives focus. If that
tab group is a composite with descendant tab groups or
traversable non-tab-group widgets, these procedures are
used recursively to assign focus to a descendant of that tab
group.

If a shell hierarchy regains focus after losing it, focus returns to the
widget that had the focus at the time it left the hierarchy.

The use of XmNinitialFocus is undefined if the manager is a
MenuBar, PulldownMenu, PopupMenu, or OptionMenu.

Reference Pages
XmManager(3X)

XmNnavigationType
Determines whether the widget is a tab group.

XmNONE Indicates that the widget is not a tab group.

XmTAB_GROUP
Indicates that the widget is a tab group, unless the
XmNnavigationType of another widget in the
hierarchy is XmEXCLUSIVE_TAB_GROUP.

XmSTICKY_TAB_GROUP
Indicates that the widget is a tab group, even if the
XmNnavigationType of another widget in the
hierarchy is XmEXCLUSIVE_TAB_GROUP.

XmEXCLUSIVE_TAB_GROUP

XmNshadowThickness

Indicates that the widget is a tab group and that
widgets in the hierarchy whose XmNnavigationType
is XmTAB_GROUP are not tab groups.

When a parent widget has an XmNnavigationType
of XmEXCLUSIVE_TAB_GROUP, traversal of
non-tab-group widgets within the group is based on
the order of those widgets in their parent's
XmNchiidren list.

When the XmNnavigationType of any widget in a
hierarchy is XmEXCLUSIVE_TAB_GROUP,
traversal of tab groups in the hierarchy proceeds to
widgets in the order in which their
XmNnavigationType resources were specified as
XmEXCLUSIVE_TAB_GROUP or
XmSTICKY_TAB_GROUP, whether by creating
the widgets with that value, by calling XtSetValues,
or by calling XmAddTabGroup.

Specifies the thickness of the drawn border shadow.
XmBulletinBoard and its descendants set this value dynamically.
If the widget is a top level window, this value is set to 1. If it is not
a top level window, this value is set to 0 (zero).

1-655

OSF/Motif Programmer's Reference

XmManager(3X)

1-656

XmNstringDirection
Specifies the initial direction to draw strings. The values for this
resource are XmSTRING_DlRECTION_L_TO_R and
XmSTRING_DlRECTION_R_TO_L. The value of this resource
is determined at creation time. If the widget's parent is a manager,
this value is inherited from the widget's parent, otherwise it is set to
XmSTRING_DlRECTION_L_TO_R.

XmNtopShadowColor
Specifies the color to use to draw the top and left sides of the border
shadow. This color is used if the XmNtopShadowPixmap resource
is NULL.

XmNtopShadowPixmap
Specifies the pixmap to use to draw the top and left sides of the
border shadow.

XmNtraversalOn
Specifies whether traversal is activated for this widget.

XmNunitType
Provides the basic support for resolution independence. It defines
the type of units a widget uses with sizing and positioning resources.
If the widget's parent is a subclass of XmManager and if the
XmNunitType resource is not explicitly set, it defaults to the unit
type of the parent widget. If the widget's parent is not a subclass of
XmManager, the resource has a default unit type of XmPIXELS.

XmNunitType can have the following values:

XmPIXELS All values provided to the widget are treated as
normal pixel values.

XmlOOTH_MILLIMETERS
All values provided to the widget are treated as 11100
of a millimeter.

XmlOOOTH_INCHES
All values provided to the widget are treated as
111000 of an inch.

Reference Pages
XmManager(3X)

XmlOOTH_POINTS
All values provided to the widget are treated as 11100
of a point. A point is a unit used in text processing
applications and is defined as 1172 of an inch.

XmlOOTH_FONT _UNITS
All values provided to the widget are treated as 11100
of a font unit. A font unit has horizontal and vertical
components. These are the values of the XmScreen
resources XmNhorizontalFontUnit and
XmNverticalFontUnit.

XmNuserData
Allows the application to attach any necessary specific data to the
widget. This is an internally unused resource.

Dynamic Color Defaults
The foreground, background, top shadow, bottom shadow, and highlight color
resources are dynamically defaulted. If no color data is specified, the colors are
automatically generated. On a single-plane system, a black and white color
scheme is generated. Otherwise, four colors are generated, which display the
correct shading for the 3-D visuals. If the background is the only color specified
for a widget, the top shadow and bottom shadow colors are generated to give the
3-D appearance. Foreground and highlight colors are generated to provide
sufficient contrast with the background color.

Colors are generated only at creation. Resetting the background through
XtSetValues does not regenerate the other colors. XmChangeColor can be used
to recalculate all associated colors based on a new background color.

Inherited Resources
Manager inherits the following resources from the superc1asses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superc1ass.

1-657

OSF/Motif Programmer's Reference

XmManager(3X)

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

Xm NnumChildren 0 G
XmCReadOnly Cardinal

1-658

Reference Pages

XmManager(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators X tAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-659

OSF/Motif Programmer's Reference
XmManager(3X)

1-660

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;

} XmAnyCallbackStruct;

reason Indicates why the callback was invoked. For this callback, reason is
set to XmCR_HELP~

event Points to the XEvent that triggered the callback.

Translations
The following set of translations are used by Manager widgets that have Gadget
children. Because Gadgets cannot have translations associated with them, it is the
responsibility of the Manager widget to intercept the events of interest and pass
them to any Gadget child with focus. These events are ignored if no Gadget child
has the focus. These translations may not directly correspond to a translation table.

BAny Motion:

BSelect Press:

BSelect Click:

BSelect Release:

BSelect Press 2+:

BSelect Release 2+:

ManagerGadgetButtonMotionO

ManagerGadgetArmO

ManagerGadgetActivateO

ManagerGadgetActivateO

ManagerGadgetMultiArmO

ManagerGadgetMultiActivateO

Reference Pages

XmManager{ 3X)

BTransfer Press: ManagerGadgetDragO

ManagerGadgetSelectO

Manager ParentActivateO

Manager ParentCancelO

ManagerGadgetPrevTabGroupO

ManagerGadgetNextTabGroupO

ManagerGadgetTraverseUpO

ManagerGadgetTraverseDownO

ManagerGadgetTraverseLeftO

ManagerGadgetTraverseRightO

ManagerGadgetTraverseHomeO

ManagerGadgetHelpO

ManagerGadgetKeylnputO

KSelect:

KActivate:

KCancel:

KPrevField:

KNextField:

KUp:

KDown:

KLeft:

KRight:

KBeginLine:

KHelp:

KAny:

Action Routines
The XmManager action routines are

ManagerGadgetActivateO:
Causes the current gadget to be activated.

ManagerGadgetArmO:
Causes the current gadget to be armed.

Causes the current gadget to process a mouse motion event.

ManagerGadgetDragO:
Drags the contents of a gadget label, identified by pressing
BTransfer. This action creates a Drag Context object whose
XmNexportTargets resource is set to COMPOUND_TEXT for a
label type of XmSTRING; otherwise, PIXMAP if the label type is
XmPIXMAP. This action is undefined for gadgets used in a menu
system.

1-661

OSF/Motif Programmer's Reference
XmManager(3X)

1-662

ManagerGadgetHelpO:
Calls the callbacks for the current gadget's XmNhelpCaUback if
any exist. if there are no help callbacks for this widget, this action
cabs the help callbacks for the nearest ancestor that has them.

ManagerGadgetKeyInputO:
Causes the current gadget to process a keyboard event.

ManagerGadgetMultiActivateO:
Causes the current gadget to process a multiple mouse click.

ManagerGadgetMultiArmO:
Causes the current gadget to process a multiple mouse button press.

ManagerGadgetNextTabGroupO:
Traverses to the first item in the next tab group. If the current tab
group is the last entry in the tab group list, it wraps to the beginning
of the tab group list.

ManagerGadgetPrevTabGroupO:
Traverses to the first item in the previous tab group. If the beginning
of the tab group list is reached, it wraps to the end of the tab group
list.

ManagerGadgetSelectO:
Causes the current gadget to be armed and activated.

ManagerGadgetTraverseDownO:
Traverses to the next item below the current gadget in the current
tab group, wrapping if necessary.

ManagerGadgetTraverseHomeO:
Traverses to the first widget or gadget in the current tab group.

ManagerGadgetTraverseLeftO:
Traverses to the next item to the left of the current gadget in the
current tab group, wrapping if necessary.

ManagerGadgetTraverseNextO:
Traverses to the next item in the current tab group, wrapping if
necessary.

ManagerGadgetTraversePrevO:
Traverses to the previous item in the current tab group, wrapping if
necessary.

Reference Pages

XmManager{ ax)

ManagerGadgetTraverseRightO
Traverses to the next item to the right of the current gadget in the
current tab group, wrapping if necessary.

ManagerGadgetTraverseUpO:
Traverses to the next item above the current gadget in the current
tab group, wrapping if necessary.

ManagerParentActivateO:
If the parent is a manager, passes the KActivate event received by
the current widget/gadget to its parent.

ManagerParentCancelO:
If the parent is a manager, passes the KCancel event received by
the current widget/gadget to its parent.

Additional Behavior
This widget has the following additional behavior:

<Focusln>: If the shell's keyboard focus policy is XmEXPLICIT and the event
occurs in a gadget, causes the gadget to be highlighted and to take
the focus.

<FocusOut>: If the shell's keyboard focus policy is XmEXPLICIT and the event
occurs in a gadget, causes the gadget to be unhighlighted and to lose
the focus.

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Composite(3X), Constraint(3X), Core(3X), XmChangeColor(3X),
XmGadget(3X), and XmScreen(3X).

1-663

OSF/Motif Programmer's Reference
XmMapSegmentEncoding (3X)

XmMapSegmentEncoding-A compound string function that returns the
compound text encoding format associated with the specified font list tag

Synopsis #include <XmlXm.h>

Description

char * XmMapSegmentEncoding ifontlisCtag)
char *fontlistjag;

XmMapSegmentEncoding searches the segment encoding registry for an entry
that matches the specified font list tag and returns a copy of the associated
compound text encoding format. The application is responsible for freeing the
storage associated with the returned data by calling XtFree.

fontlisCtag Specifies the compound string font list tag

Return Value
Returns a copy of the associated compound text encoding format if the font list tag
is found in the registry; otherwise, returns NULL.

Related Information

1-664

XmCvtXmStringToCT(3X), XmFontList(3X),
XmRegisterSegmentEncoding(3X), and XmString(3X).

Synopsis

Description

Reference Pages

XmMenuPosition (3X)

XmMenuPosition-A RowColumn function that positions a Popup MenuPane

#include <XmlRowColumn.h>

void XmMenuPosition (menu, event)
Widget menu;
XButtonPressedEvent * event;

XmMenuPosition posItions a Popup MenuPane using the information in the
specified event. Unless an application is positioning the MenuPane itself, it must
first invoke this function before managing the PopupMenu. The x_root and y _root
values in the specified event are used to determine the menu position.

menu Specifies the PopupMenu to be positioned

event Specifies the event passed to the action procedure which manages
the PopupMenu

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3X).

Related Information
XmRowColumn(3X).

1-665

OSF/Motif Programmer's Reference

XmMenuShell(3X)

Synopsis

Description

1-666

XmMenuShell-The MenuShell widget class

#include <XmlMenuShell.h>

The MenuShell widget is a custom OverrideS hell widget. An OverrideS hell
widget bypasses mwm when displaying itself. It is designed specifically to contain
Popup or Pulldown MenuPanes.

Most application writers never encounter this widget if they use the menu-system
convenience functions, XmCreatePopupMenu or XmCreatePulldown Menu, to
create a Popup or Pulldown MenuPane. The convenience functions automatically
create a MenuShell widget as the parent of the MenuPane. However, if the
convenience functions are not used, the application programmer must create the
required MenuShell. In this case, it is important to note that the parent of the
MenuShell depends on the type of menu system being built.

• If the MenuShell is for the top-level Popup MenuPane, the MenuShell's
parent must be the widget from which the Popup MenuPane is popped up.

• If the MenuShell is for a MenuPane that is pulled down from a Popup or
another Pulldown MenuPane, the MenuShell's parent must be the Popup or
Pulldown MenuPane.

• If the MenuShell is for a MenuPane that is pulled down from a MenuBar,
the MenuShell's parent must be the MenuBar.

• If the MenuShell is for a Pulldown MenuPane in an OptionMenu, the
MenuShell's parent must be the OptionMenu's parent.

Setting XmNheight, XmNwidth, or XmNborderWidth for either a MenuShell or
its child sets that resource to the same value in both the parent and the child. An
application should always specify these resources for the child, not the parent.

For the managed child of a MenuShell, regardless of the value of the shell's
XmNallowShellResize, setting XmNx or XmNy sets the corresponding resource
of the parent but does not change the child's position relative to the parent.
XtGetValues for the child's XmNx or XmNy yields the value of the corresponding
resource in the parent. The x and y-coordinates of the child's upper left outside
comer relative to the parent's upper left inside comer are both 0 (zero) minus the
value of XmNborderWidth.

Classes

Reference Pages
XmMenuShell(3X)

MenuShell inherits behavior and resources from Core, Composite, Shell, and
OverrideShell.

The class pointer is xmMenuShellWidgetClass.

The class name is XmMenuShell.

New Resources
MenuShell overrides the XmNallowShellResize resource in Shell. The following
table defines a set of widget resources used by the programmer to specify data.
The programmer can also set the resource values for the inherited classes to set
attributes for this widget. To reference a resource by name or by class in a
.Xdefaults file, remove the XmN or XmC prefix and use the remaining letters. To
specify one of the defined values for a resource in a .Xdefaults file, remove the
Xm prefix and use the remaining letters (in either lowercase or uppercase, but
include any underscores between words). The codes in the access column indicate
if the given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (0), or is not applicable (N/A).

XmMenuShell Resource Set

Name Default Access
Class Type

Xm Nbutton FontList dynamic CSG
XmCButtonFontList XmFontList

Xm NdefaultFontList dynamic CG
XmCDefaultFontList XmFontList

XmNlabelFontList dynamic CSG
XmCLabelFontList XmFontList

XmNbuttonFontList
Specifies the font list used for MenuShell's button descendants. If
this value is NULL at initialization and if the value of
XmNdefaultFontList is not NULL, XmNbuttonFontList is
initialized to the value of XmNdefaultFontList. If the value of
XmNdefaultFontList is NULL, XmNbuttonFontList is initialized
by looking up the parent hierarchy of the widget for an ancestor that
is a subclass of the XmBulletinBoard, VendorS hell, or

1-667

OSF/Motif Programmer's Reference
XmMenuShell(3X)

1-668

XmMenuShell widget class. If such an ancestor is found,
XmNbuttonFontList is initialized to the XmNbuttonFontList of
the ancestor widget. If no such ancestor is found, the default is
implementation dependent.

XmNdefaultFontList
Specifies a default font list for MenuShell's descendants. This
resource is obsolete and exists for compatibility with earlier
releases. It has been replaced by XmNbuttonFontList and
XmNlabelFontList.

XmNlabelFontList

Inherited Resources

Specifies the font list used for MenuShell's label descendants
(Labels and LabeIGadgets). If this value is NULL at initialization
and if the value of XmNdefaultFontList is not NULL,
XmNlabelFontList is initialized to the value of
XmNdefaultFontList. If the value of XmNdefaultFontList is
NULL, the parent hierarchy of the widget is searched for an
ancestor that is a subclass of the XmBulletinBoard, VendorS hell , or
XmMenuShell widget class. If such an ancestor is found,
XmNlabelFontList is initialized to the XmNlabelFontList of the
ancestor widget. If no such ancestor is found, the default is
implementation dependent.

MenuShell inherits behavior and resources from the following superc1asses. For a
complete description of each resource, refer to the man page for that superclass.
The following tables define a set of widget resources used by the programmer to
specify data. The programmer can set the resource values for these inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages
XmMenuShell (3X)

Shell Resource Set

Name Default Access
Class Type

Xm NaliowShellResize True G
XmCAllowShellResize Boolean

Xm NcreatePopupChildProc NULL CSG
XmCCreatePopupChildProc XtCreatePopupChildProc

XmNgeometry NULL CSG
XmCGeometry String

Xm NoverrideRedirect True CSG
XmCOverrideRedirect Boolean

Xm NpopdownCaliback NULL C
XmCCaliback XtCalibackList

Xm NpopupCaliback NULL C
XmCCaliback XtCalibackList

XmNsaveUnder True CSG
XmCSaveUnder Boolean

XmNvisual CopyFrom Parent CSG
XmCVisual Visual *

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmC I nsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-669

OSF/Motif Programmer's Reference

XmMenuShell (aX)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-670

Reference Pages

XmMenuShell (3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
The XmMenuShell translations are described in the following list. These
translations may not directly correspond to a translation table.

BSelect Press: ClearTraversalO

MenuShellPopdownDoneO BSelect Release:

Action Routines
The XmMenuShell action routines are

ClearTraversalO:
Disables keyboard traversal for the menu, enables mouse traversal,
and unposts any menus posted by this menu.

MenuShellPopdownDoneO:
Unposts the menu hierarchy and, when the shell's keyboard focus
policy is XmEXPLICIT, restores focus to the widget that had the
focus before the menu system was entered.

MenuShellPopdownOneO:
In a top-level Pulldown MenuPane from a MenuBar, this action
unposts the menu, disarms the MenuBar CascadeButton and the
MenuBar, and, when the shell's keyboard focus policy is
XmEXPLICT, restores keyboard focus to the widget that had the
focus before the MenuBar was entered. In other Pulldown
MenuPanes, this action unposts the menu.

In a Popup MenuPane, this action unposts the menu, and, when the
shell's keyboard focus policy is XmEXPLICT, restores keyboard
focus to the widget from which the menu was posted.

1-671

OSF/Motif Programmer's Reference

XmMenuShell(3X)

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information

1-672

Composite(3X), Core(3X), OverrideShell(3X), Shell(3X),
XmCreateMenuShell(3X), XmCreatePopupMenu(3X),
XmCreatePulldown(3X), and XmRowColumn(3X).

Synopsis

Description

Reference Pages

XmMessageBox (3X)

XmMessageBox-The MessageBox widget class

#include <Xm/MessageB.h>

MessageBox is a dialog class used for creating simple message dialogs.
Convenience dialogs based on MessageBox are provided for several common
interaction tasks, which include giving information, asking questions, and reporting
errors.

A MessageBox dialog is typically transient in nature, displayed for the duration of
a single interaction. MessageBox is a subclass of XmBulletinBoard and depends
on it for much of its general dialog behavior.

The default value for XmNinitialFocus is the value of XmNdefaultButton.

A typical MessageBox contains a message symbol, a message, and up to three
standard default PushButtons: OK, Cancel, and Help. It is laid out with the
symbol and message on top and the PushButtons on the bottom. The help button is
positioned to the side of the other push buttons. You can localize the default
symbols and button labels for MessageBox convenience dialogs.

The user can specify resources in a resource file for the gadgets created
automatically that contain the MessageBox symbol pixmap and separator. The
gadget names are Symbol and Separator.

A MessageBox can also be customized by creating and managing new children that
are added to the MessageBox children created automatically by the convenience
dialogs. In the case of TemplateDialog, only the separator child is created by
default. If the callback, string, or pixmap symbol resources are specified, the
appropriate child will be created.

Additional children are laid out in the following manner:

• The first MenuBar child is placed at the top of the window.

• All XmPushButton widgets or gadgets, and their subclasses are placed
after the OK button in the order of their creation.

• A child that is not in the above categories is placed above the row of
buttons. If a message label exists, the child is placed below the label. If a
message pixmap exists, but a message label is absent, the child is placed on
the same row as the pixmap. The child behaves as a work area and grows
or shrinks to fill the space above the row of buttons. The layout of multiple
work area children is undefined.

1-673

OSF/Motif Programmer's Reference

XmMessageBox(3X)

1-674

Classes

At initialization, MessageBox looks for the following bitmap files:

• xm_information

• xm_question

• xm_ working

See XmGetPixmap(3X) for a list of the paths that are searched for these files.

MessageBox inherits behavior and resources from Core, Composite, Constraint,
XmManager, and XmBulletinBoard.

The class pointer is xmMessageBoxWidgetClass.

The class name is XmMessageBox.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmMessageBox(ax)

XmMessageBox Resource Set

Name Default Access
Class Type

XmNcancelCaliback NULL C
XmCCaliback XtCalibackList

XmNcancelLabelString dynamic CSG
XmCCancelLabelString XmString

Xm NdefaultButtonType XmDIALOG_OK_BUTTON CSG
XmCDefaultButtonType unsigned char

XmNdialogType XmDIALOG_MESSAGE CSG
XmCDialogType unsigned char

Xm NhelpLabelString dynamic CSG
XmCHelpLabelString XmString

XmNmessageAlignment XmALIGNMENT _BEGINNING CSG
XmCAlignment unsigned char

XmNmessageString 1111 CSG
XmCMessageString XmString

XmNminimizeButtons False CSG
XmCMinimizeButtons Boolean

XmNokCaliback NULL C
XmCCaliback XtCalibackList

XmNokLabelString dynamic CSG
XmCOkLabelString XmString

XmNsymbolPixmap dynamic CSG
XmCPixmap Pixmap

1-675

OSF/Motif Programmer's Reference

XmMessageBox{ 3X)

1-676

XmNcancelCallback
Specifies the list of callbacks that is called when the user clicks on
the cancel button. The reason sent by the callback is
XmCR_CANCEL.

XmNcancelLabelString
Specifies the string label for the cancel button. The default for this
resource depends on the locale. In the C locale the default is
Cancel.

XmNdefaultButtonType
Specifies the default PushButton. A value of XmDIALOG_NONE
means that there should be no default PushButton. The following
types are valid:

• XmDIALOG_CANCEL_BUTTON

• XmDIALOG_OK_BUTTON

• XmDIALOG_HELP _BUTTON

• XmDIALOG_NONE

XmNdialogType
Specifies the type of MessageBox dialog, which determines the
default message symbol. The following are the possible values for
this resource:

• Indicates an ErrorDialog.

• Indicates an InformationDialog.

• Indicates a MessageDialog. This is the default MessageBox
dialog type. It does not have an associated message symbol.

• Indicates a QuestionDialog.

• Indicates a TemplateDialog. The TemplateDialog contains
only a separator child. It does not have an associated
message symbol.

• indicates a WarningDialog.

• Indicates a WorkingDialog.

Reference Pages

XmMessageBox (3X)

If this resource is changed with XtSetValues, the symbol bitmap is
modified to the new XmNdialogType bitmap unless
XmNsymbolPixmap is also being set in the call to XtSetValues. If
the dialog type does not have an associated message symbol, then no
bitmap will be displayed.

XmNhelpLabelString
Specifies the string label for the help button. The default for this
resource depends on the locale. In the C locale the default is Help.

XmNmessageAlignment
Controls the alignment of the message Label. Possible values
include the following:

• XmALIGNMENT_BEGINNING (default)

• XmALIGNMENT_CENTER

• XmALIGNMENT_END

XmNmessageString
Specifies the string to be used as the message.

XmNminimizeButtons
Sets the buttons to the width of the widest button and height of the
tallest button if False. If True, button width and height are set to the
preferred size of each button.

XmNokCaUback
Specifies the list of callbacks that is called when the user clicks on
the OK button. The reason sent by the callback is XmCR_OK.

XmNokLabelString
Specifies the string label for the OK button. The default for this
resource depends on the locale. In the C locale the default is OK.

XmNsymbolPixmap
Specifies the pixmap label to be used as the message symbol.

Inherited Resources
MessageBox inherits behavior and resources from the superclasses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superclass.

1-677

OSF/Motif Programmer's Reference

XmMessageBox(3X)

XmBulietinBoard Resource Set

Name Default Access
Class Type

XmNallowOverlap True CSG
XmCAliowOverlap Boolean

XmNautoUnmanage True CG
XmCAutoUnmanage Boolean

Xm N button FontList dynamic CSG
XmCButtonFontList XmFontList

XmNcancelButton Cancel button SG
XmCWidget Widget

XmNdefaultButton dynamic SG
XmCWidget Widget

Xm NdefaultPosition True CSG
XmCDefaultPosition Boolean

XmNdialogStyle dynamic CSG
XmCDialogStyle unsigned char

XmNdialogTitle NULL CSG
XmCDialogTitie XmString

Xm NfocusCaliback NULL C
XmCCaliback XtCalibackList

XmNlabelFontList dynamic CSG
XmCLabelFontList XmFontList

XmNmapCaliback NULL C
XmCCaliback XtCalibackList

XmNmarginHeight 10 CSG
XmCMarginHeight Dimension

XmNmarginWidth 10 CSG
XmCMarginWidth Dimension

XmNnoResize False CSG
XmCNoResize Boolean

XmNresizePolicy XmRESIZE_ANY CSG
XmCResizePolicy unsigned char

1-678

Reference Pages

XmMessageBox(3X)

Name Default Access
Class Type

XmNshadowType XmSHADOW_OUT CSG
XmCShadowType unsigned char

Xm NtextFontList dynamic CSG
XmCTextFontList XmFontList

Xm NtextTranslations NULL C
XmCTranslations XtTranslations

XmNunmapCallback NULL C
XmCCallback XtCallbackList

1-679

OSF/Motif Programmer's Reference

XmMessageBox(3X)

XmManager Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus dynamic CSG
XmClnitialFocus Widget

XmNnavigationType XmTAB_GROUP CSG
XmCNavigationType XmNavigationType

XmNshadowThickness dynamic CSG
XmCShadowThickness Dimension

XmNstringDirection dynamic CG
XmCStringDirection XmStringDirection

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-680

Reference Pages

XmMessageBox (3X)

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly WidgetList

Xm N insert Position NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChiidren 0 G
XmCReadOnly Cardinal

1-681

OSF/Motif Programmer's Reference

XmMessage8ox(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic N/A
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth a CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCaliback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmCI nitial ResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-682

Reference Pages

XmMessageBox (3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;

} XmAnyCallbackStruct;

reason Indicates why the callback was invoked

event Points to the XEvent that triggered the callback

Translations
XmMessageBox includes the translations from XmManager.

Additional Behavior
The XmMessageBox widget has the following additional behavior:

MAny KCancel:
Calls the activate callbacks for the cancel button if it is sensitive.

KActivate: Calls the activate callbacks for the button with the keyboard focus.
If no button has the keyboard focus, calls the activate callbacks for
the default button if it is sensitive.

<Ok Button Activated>:
Calls the callbacks for XmNokCallback.

<Cancel Button Activated>:
Calls the callbacks for XmNcancelCallback.

<Help Button Activated>:
Calls the callbacks for XmNhelpCallback.

1-683

OSF/Motif Programmer's Reference

XmMessageBox (3X)

<FocusIn>: Calls the callbacks for XmNfocusCallback.

<Map>: Calls the callbacks for XmNmapCallback if the parent is a
DialogShell.

<Unmap>: Calls the callbacks for XmNunmapCallback if the parent is a
DialogShell.

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information

1-684

Composite(3X), Constraint(3X), Core(3X), XmBulletinBoard(3X),
XmCreateErrorDialog(3X), XmCreateInformationDialog(3X),
XmCreateMessageBox(3X), XmCreateMessageDialog(3X),
XmCreateQuestionDialog(3X), XmCreateTemplateDialog(3X),
XmCreate WarningDialog(3X), XmCreate WorkingDialog(3X),
XmManager(3X), and XmMessageBoxGetChild(3X).

Synopsis

Description

Reference Pages

XmMessageBoxGetChild(3X)

XmMessageBoxGetChild-A MessageBox function that is used to access a
component

#include <XmlMessageB.h>

Widget XmMessageBoxGetChild (widget, child)
Widget widget;
unsigned char child;

XmMessageBoxGetChiid is used to access a component within a MessageBox.
The parameters given to the function are the MessageBox widget and a value
indicating which component to access.

widget

child

Specifies the MessageBox widget ID.

Specifies a component within the MessageBox. The following are
legal values for this parameter:

• XmDIALOG_CANCEL_BUTTON

• XmDIALOG_DEFAULT_BUTTON

• XmDIALOG_HELP _BUTTON

• XmDIALOG_MESSAGE_LABEL

• XmDIALOG_OK_BUTTON

• XmDIALOG_SEPARATOR

• XmDIALOG_SYMBOL_LABEL

For a complete definition of MessageBox and its associated resources, see
XmMessageBox(3X).

Return Value
Returns the widget ID of the specified MessageBox component. An application
should not assume that the returned widget will be of any particular class.

Related Information
XmMessageBox(3X).

1-685

OSF/Motif Programmer's Reference

XmOptionButtonGadget(3X)

Synopsis

Description

XmOptionButtonGadget-A RowColumn function that obtains the widget ID for
the CascadeButtonGadget in an OptionMenu

#include <XmlRowColumn.h>

Widget XmOptionButtonGadget (option_menu)
Widget option_menu;

XmOptionButtonGadget provides the application with the means for obtaining
the widget ID for the internally created CascadeButtonGadget. Once the
application has obtained the widget ID, it can adjust the visuals for the
CascadeButtonGadget, if desired.

option_menu Specifies the OptionMenu widget ID

When an application creates an instance of the OptionMenu widget, the widget
creates two internal gadgets. One is a LabelGadget that is used to display
RowColumn's XmNlabelString resource. The other is a CascadeButtonGadget
that displays the current selection and provides the means for posting the
OptionMenu's submenu.

The user can specify resources in a resource file for the automatically created
widgets and gadgets of an OptionMenu. The following list identifies the names of
these widgets (or gadgets) and the associated OptionMenu areas.

O~tion Menu Label Gadget

Option Menu Cascade Button

OptionLabel

OptionButton

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3X).

Return Value
Returns the widget ID for the internal button.

Related Information

1-686

XmCreateOptionMenu(3X), XmCascadeButtonGadget(3X),
XmOptionLabeIGadget(3X), and XmRowColumn(3X).

Synopsis

Description

Reference Pages

XmOptionLabeIGadget(3X)

XmOptionLabelGadget-A RowColumn function that obtains the widget ID for
the LabelGadget in an OptionMenu

#include <XmlRowColumn.h>

Widget XmOptionLabelGadget (option_menu)
Widget option_menu;

XmOptionLabelGadget provides the application with the means for obtaining the
widget ID for the internally created LabelGadget. Once the application has
obtained the widget ID, it can adjust the visuals for the LabelGadget, if desired.

option_menu Specifies the OptionMenu widget ID

When an application creates an instance of the OptionMenu widget, the widget
creates two internal gadgets. One is a LabelGadget that is used to display
RowColumn's XmNlabelString resource. The other is a CascadeButtonGadget
that displays the current selection and provides the means for posting the
OptionMenu's submenu.

The user can specify resources in a resource file for the automatically created
widgets and gadgets of an OptionMenu. The following list identifies the names of
these widgets (or gadgets) and the associated OptionMenu areas.

Option Menu Label Gadget

Option Menu Cascade Button

OptionLabel

OptionButton

For a complete definition of RowColumn and its associated resources, see
XmRowColumn(3X).

Return Value
Returns the widget ID for the internal label.

Related Information
XmCreateOptionMenu(3X), XmLabeIGadget(3X),
XmOptionButtonGadget(3X), and XmRowColumn(3X).

1-687

OSF/Motif Programmer's Reference

XmPanedWindow(3X)

Synopsis

Description

Classes

1-688

XmPanedWindow-The PanedWindow widget class

#include <Xm/PanedW.h>

PanedWindow is a composite widget that lays out children in a vertically tiled
format. Children appear in top-to-bottom fashion, with the first child inserted
appearing at the top of the PanedWindow and the last child inserted appearing at
the bottom. The PanedWindow grows to match the width of its widest child and all
other children are forced to this width. The height of the PanedWindow is equal to
the sum of the heights of all its children, the spacing between them, and the size of
the top and bottom margins.

The user can also adjust the size of the panes. To facilitate this adjustment, a pane
control sash is created for most children. The sash appears as a square box
positioned on the bottom of the pane that it controls. The user can adjust the size of
a pane by using the mouse or keyboard.

The PanedWindow is also a constraint widget, which means that it creates and
manages a set of constraints for each child. You can specify a minimum and
maximum size for each pane. The PanedWindow does not allow a pane to be
resized below its minimum size or beyond its maximum size. Also, when the
minimum size of a pane is equal to its maximum size, no control sash is presented
for that pane or for the lowest pane.

The default XmNinsertPosition procedure for PanedWindow causes sashes to be
inserted at the end of the list of children and causes nons ash widgets to be inserted
after other nonsash children but before any sashes.

All panes and sashes in a PanedWindow must be tab groups. When a pane is
inserted as a child of the PanedWindow, if the pane's XmNnavigationType is
not XmEXCLUSIVE_TAB_GROUP, PanedWindow sets it to
XmSTICKY _TAB_GROUP.

PanedWindow inherits behavior and resources from the Core, Composite,
Constraint, and XmManager classes.

The class pointer is xmPanedWindowWidgetClass.

The class name is XmPanedWindow.

Reference Pages

XmPanedWindow{3X)

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

XmPanedWindow Resource Set

Name Default Access
Class Type

XmNmarginHeight 3 CSG
XmCMarginHeight Dimension

XmNmarginWidth 3 CSG
XmCMarginWidth Dimension

XmNrefigureMode True CSG
XmCBoolean Boolean

XmNsashHeight 10 CSG
XmCSashHeight Dimension

XmNsashlndent -10 CSG
XmCSash Indent Position

Xm NsashShadowThickness dynamic CSG
XmCShadowThickness Dimension

XmNsashWidth 10 CSG
XmCSashWidth Dimension

Xm NseparatorOn True CSG
XmCSeparatorOn Boolean

XmNspacing 8 CSG
XmCSpacing Dimension

XmNmarginHeight
Specifies the distance between the top and bottom edges of the
PanedWindow and its children.

XmNmarginWidth
Specifies the distance between the left and right edges of the
PanedWindow and its children.

1-689

OSF/Motif Programmer's Reference
XmPanedWindow(3X)

1-690

XmNrefigureMode
Determines whether the panes' positions are recomputed and
repositioned when programmatic changes are being made to the
PanedWindow. Setting this resource to True resets the children to
their appropriate positions.

XmNsashHeight
Specifies the height of the sash.

XmNsashlndent
Specifies the horizontal placement of the sash along each pane. A
positive value causes the sash to be offset from the near (left) side of
the PanedWindow, and a negative value causes the sash to be offset
from the far (right) side of the PanedWindow. If the offset is greater
than the width of the PanedWindow minus the width of the sash, the
sash is placed flush against the near side of the PanedWindow.

Whether the placement actually corresponds to the left or right side
of the PanedWindow may depend on the value of the
XmNstringDirection resource.

XmNsashShadowThickness
Specifies the thickness of the shadows of the sashes.

XmNsashWidth
Specifies the width of the sash.

XmNseparatorOn
Determines whether a Separator is created between each of the
panes. Setting this resource to True creates a Separator at the
midpoint between each of the panes.

XmNspacing Specifies the distance between each child pane.

Reference Pages

XmPanedWindow(3X)

XmPanedWindow Constraint Resource Set

Name Default Access
Class Type

Xm NaliowResize False CSG
XmCBoolean Boolean

XmNpaneMaximum 1000 CSG
XmCPaneMaximum Dimension

XmNpaneMinimum 1 CSG
XmCPaneMinimum Dimension

Xm Nposition Index XmLAST _POSITION CSG
XmCPositionlndex short

XmNskipAdjust False CSG
XmCBoolean Boolean

XmNallowResize
Allows an application to specify whether the PanedWindow should
allow a pane to request to be resized. This flag has an effect only
after the PanedWindow and its children have been realized. If this
flag is set to True, the PanedWindow tries to honor requests to alter
the height of the pane. If False, it always denies pane requests to
resize.

XmNpaneMaximum
Allows an application to specify the maximum size to which a pane
may be resized. This value must be greater than the specified
minimum.

XmNpaneMinimum
Allows an application to specify the minimum size to which a pane
may be resized. This value must be greater t~an 0 (zero).

XmNpositionlndex
Specifies the position of the widget in its parent's list of children
(the list of pane children, not including sashes). The value is an
integer that is no less than 0 (zero) and no greater than the number
of children in the list at the time the value is specified. A value of 0
means that the child is placed at the beginning of the list. The value
can also be specified as XmLAST_POSITION (the default), which
means that the child is placed at the end of the list. Any other value
is ignored. XtGetValues returns the position of the widget in its
parent's child list at the time of the call to XtGetValues.

1-691

OSF/Motif Programmer's Reference

XmPanedWindow(3X)

1-692

When a widget is inserted into its parent's child list, the positions of
any existing children that are greater than or equal to the specified
widget's XmNpositionIndex are increased by 1. The effect of a
call to XtSetValues for XmNpositionIndex is to remove the
specified widget from its parent's child list, decrease by one the
positions of any existing children that are greater than the specified
widget's former position in the list, and then insert the specified
widget into its parent's child list as described in the preceding
sentence.

XmNskipAdjust

Inherited Resources

When set to True, this Boolean resource allows an application to
specify that the PanedWindow should not automatically resize this
pane.

PanedWindow inherits behavior and resources from the superclasses described in
the following tables. For a complete description of each resource, refer to the
reference page for that superclass.

Reference Pages

XmPanedWindow(3X)

XmManager Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus NULL CSG
XmClnitialFocus Widget

Xm NnavigationType XmTAB_GROUP CSG
XmCNavigationType Xm NavigationType

XmNshadowThickness 2 CSG
XmCShadowThickness Dimension

Xm NstringDirection dynamic CG
XmCStringDirection XmStringDirection

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

XmNtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-693

OSF/Motif Programmer's Reference

XmPanedWindow(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-694

Reference Pages

XmPanedWindow(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Composite Resource Set

Name Default Access
Class Type

XmNchiidren NULL G
XmCReadOnly WidgetList

XmNinsertPosition default procedure CSG
XmClnsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

Translations
XmPanedWindow inherits translations from XmManager.

The translations for sashes within the PanedWindow are described in the following
table. These translations may not directly correspond to a translation table.

BSelect Press:

BSelect Motion:

BSelect Release:

BTransfer Press:

BTransfer Motion:

BTransfer Release:

KUp:

MCtrIKUp:

SashAction(Start)

SashAction(Move)

SashAction(Commit)

SashAction(Start)

SashAction(Move)

SashAction(Commit)

SashAction(Key ,Defaultlncr ,Up)

SashAction(Key ,Largelncr ,Up)

1-695

OSF/Motif Programmer's Reference

XmPanedWindow(3X)

1-696

KDown:

MCtri KDown:

SashAction(Key ,DefaultIncr ,Down)

SashAction(Key ,LargeIncr ,Down)

NextTabGroupO KNextField:

KPrevField: PrevTabGroupO

KHelp: HeipO

Action Routines
The XmPanedWindow action routines are

HelpO: Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

NextTabGroupO:
Moves the keyboard focus to the next tab group. By default, each
pane and sash is a tab group.

PrevTabGroupO:
Moves the keyboard focus to the previous tab group. By default,
each pane and sash is a tab group.

SashAction(action) or SashAction(Key ,increment ,direction):
The Start action activates the interactive placement of the pane's
borders. The Move action causes the sash to track the position of
the pointer. If one of the panes reaches its minimum or maximum
size, adjustment continues with the next adjustable pane. The
Commit action ends sash motion.

When sash action is caused by a keyboard event, the sash with the
keyboard focus is moved according to the increment and direction
specified. DefaultIncr adjusts the sash by one line. LargeIncr
adjusts the sash by one view region. The direction is specified as
either Up or Down.

Note that the SashAction action routine is not a direct action routine
of the XmPanedWindow, but rather an action of the Sash control
created by the XmPanedWindow.

Reference Pages

XmPanedWindow(3X)

Additional Behavior
This widget has the following additional behavior:

<FocusIn>: Moves the keyboard focus to the sash and highlights it

<FocusOut>: Unsets the keyboard focus in the sash and unhighlights it

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Composite(3X), Constraint(3X), Core(3X), XmCreatePanedWindow(3X), and
XmManager(3X) .

1-697

OSF/Motif Programmer's Reference

XmPrimitive(3X)

Synopsis

Description

Classes

XmPrimitive-The Primitive widget class

#include <XmlXm.h>

Primitive is a widget class used as a supporting superclass for other widget classes.
It handles border drawing and highlighting, traversal activation and deactivation,
and various callback lists needed by Primitive widgets.

Primitive inherits behavior and resources from Core.

The class pointer is xmPrimitive WidgetClass.

The class name is XmPrimitive.

New Resources

1-698

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmPrimitive(3X)

XmPrimitive Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

Xm Nforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNhighlightThickness 2 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType XmNavigationType

XmNshadowThickness 2 CSG
XmCShadowThickness Dimension

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

XmNtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

XmNbottomShadowColor
Specifies the color to use to draw the bottom and right sides of the
border shadow. This color is used if the XmNtopShadowPixmap
resource is unspecified.

1-699

OSF/Motif Programmer's Reference
XmPrimitive(3X)

1-700

XmNbottomShadowPixmap
Specifies the pixmap to use to draw the bottom and right sides of the
border shadow.

XmNforeground
Specifies the foreground drawing color used by Primitive widgets.

XmNhelpCallback
Specifies the list of callbacks that is called when the help key is
pressed. The reason sent by the callback is XmCR_HELP.

XmNhighlightColor
Specifies the color of the highlighting rectangle. This color is used
if the highlight pixmap resource is XmUNSPECIFIED _PIXMAP.

XmNhighlightOnEnter
Specifies if the highlighting rectangle is drawn when the cursor
moves into the widget. If the shell's focus policy is XmEXPLICIT,
this resource is ignored, and the widget is highlighted when it has
the focus. If the shell's focus policy is XmPOINTER and if this
resource is True, the highlighting rectangle is drawn when the cursor
moves into the widget. If the shell's focus policy is XmPOINTER
and if this resource is False, the highlighting rectangle is not drawn
when the the cursor moves into the widget. The default is False.

XmNhighlightPixmap
Specifies the pixmap used to draw the highlighting rectangle.

XmNhighlightThickness
Specifies the thickness of the highlighting rectangle.

XmNnavigationType
Determines whether the widget is a tab group.

XmNONE Indicates that the widget is not a tab group.

XmTAB_GROUP
Indicates that the widget is a tab group, unless the
XmNnavigationType of another widget in the
hierarchy is XmEXCLUSIVE_TAB_GROUP.

XmSTICKY_TAB_GROUP
Indicates that the widget is a tab group, even if the
XmNnavigationType of another widget in the
hierarchy is XmEXCLUSIVE_TAB_GROUP.

Reference Pages

XmPrimitive(3X)

XmEXCLUSIVE_TAB_GROUP

XmNshadowThickness

Indicates that the widget is a tab group and that
widgets in the hierarchy whose XmNnavigationType
is XmTAB_GROUP are not tab groups.

When a parent widget has an XmNnavigationType
of XmEXCLUSIVE_TAB_GROUP, traversal of
non-tab-group widgets within the group is based on
the order of those widgets in their parent's
XmNchiidren list.

When the XmNnavigationType of any widget in a
hierarchy is XmEXCLUSIVE_TAB_GROUP,
traversal of tab groups in the hierarchy proceeds to
widgets in the order in which their
XmNnavigationType resources were specified as
either XmEXCLUSIVE_TAB_GROUP or
XmSTICKY_TAB_GROUP, whether by creating
the widgets with that value, by calling XtSetValues,
or by calling XmAddTabGroup.

Specifies the size of the drawn border shadow.

XmNtopShadowColor
Specifies the color to use to draw the top and left sides of the border
shadow. This color is used if the XmNtopShadowPixmap resource
is unspecified.

XmNtopShadowPixmap
Specifies the pixmap to use to draw the top and left sides of the
border shadow.

XmNtraversalOn
Specifies if traversal is activated for this widget. In CascadeButton
and CascadeButtonGadget, this resource is forced to True unless the
parent is an OptionMenu.

1-701

OSF/Motif Programmer's Reference

XmPrimitive (3X)

1-702

XmNunitType
Provides the basic support for resolution independence. It defines
the type of units a widget uses with sizing and positioning resources.
If the widget's parent is a subclass of XmManager and if the
XmNunitType resource is not explicitly set, it defaults to the unit
type of the parent widget. If the widget's parent is not a subclass of
XmManager, the resource has a default unit type ofXmPIXELS.

XmNunitType can have the following values:

XmPIXELS All values provided to the widget are treated as
normal pixel values.

XmlOOTH_MILLIMETERS
All values provided to the widget are treated as 11100
of a millimeter.

XmlOOOTH_INCHES
All values provided to the widget are treated as
III 000 of an inch.

XmlOOTH_POINTS
All values provided to the widget are treated as 11100
of a point. A point is a unit used in text processing
applications and is defined as 1172 of an inch.

XmlOOTH_FONT _UNITS

XmNuserData

All values provided to the widget are treated as 1/100
of a font unit. A font unit has horizontal and vertical
components. These are the values of the XmScreen
resources XmNhorizontalFontUnit and
XmNverticalFontUnit.

Allows the application to attach any necessary specific data to the
widget. It is an internally unused resource.

Dynamic Color Defaults
The foreground, background, top shadow, bottom shadow, and highlight color
resources are dynamically defaulted. If no color data is specified, the colors are
automatically generated. On a single-plane system, a black and white color
scheme is generated. Otherwise, four colors are generated, which display the
correct shading for the 3-D visuals. If the background is the only color specified
for a widget, the top shadow and bottom shadow colors are generated to give the
3-D appearance. Foreground and highlight colors are generated to provide
sufficient contrast with the background color.

Reference Pages

XmPrimitive(3X)

Colors are generated only at creation. Resetting the background through
XtSetValues does not regenerate the other colors. XmChangeColor can be used
to recalculate all associated colors based on a new background color.

Inherited Resources
Primitive inherits behavior and resources from the superc1ass described in the
following table. For a complete description of each resource, refer to the reference
page for that superc1ass.

1-703

OSF/Motif Programmer's Reference

XmPrimitive(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccel erato rs

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

Xm Ninitial ResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-704

Reference Pages

XmPrimitive(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;

} XmAnyCallbackStruct;

reason Indicates why the callback was invoked. For this callback, reason is
set to XmCR_HELP.

event Points to the XEvent that triggered the callback.

Translations
The XmPrimitive translations are listed below. These translations may not
directly correspond to a translation table.

Note that for buttons in menus, altering translations in #override or #augment
mode is undefined.

KUp: PrimitiveTraverseUpO

KDown: PrimitiveTraverseDownO

KLeft: PrimitiveTraverseLeftO

KRight: PrimitiveTraverseRightO

KBeginLine: PrimitiveTraverseHomeO

KNextField: PrimitiveNextTabGroupO

KPrevField: PrimitivePrevTabGroupO

1-705

OSF/Motif Programmer's Reference

XmPrimitive(3X)

1-706

KActivate:

KCancel:

KHelp:

Action Routines

PrimitiveParentActivateO

PrimitiveParentCancelO

PrimitiveHelpO

The XmPrimitive action routines are

PrimitiveHelpO:
Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

PrimitiveNextTabGroupO:
Traverses to the first item in the next tab group. If the current tab
group is the last entry in the tab group list, it wraps to the beginning
of the tab group list.

PrimitiveParentActivateO:
If the parent is a manager, passes the KActivate event received by
the widget to the parent.

PrimitiveParentCancelO:
If the parent is a manager, passes the KCancel event received by
the widget to the parent.

PrimitivePrevTabGroupO:
Traverses to the first item in the previous tab group. If the beginning
of the tab group list is reached, it wraps to the end of the tab group
list.

PrimitiveTraverseDownO:
Traverses to the next item below the current widget in the current
tab group, wrapping if necessary.

PrimitiveTraverseHomeO:
Traverses to the first widget or gadget in the current tab group.

PrimitiveTraverseLeftO:
Traverses to the next item to the left of the current widget in the
current tab group, wrapping if necessary.

PrimitiveTraverseNextO:
Traverses to the next item in the current tab group, wrapping if
necessary.

Reference Pages

XmPrimitive(3X)

PrimitiveTraversePrevO:
Traverses to the previous item in the current tab group, wrapping if
necessary.

PrimitiveTraverseRightO:
Traverses to the next item to the right of the current gadget in the
current tab group, wrapping if necessary.

PrimitiveTraverseUpO:

Additional Behavior

Traverses to the next item above the current gadget in the current
tab group, wrapping if necessary.

This widget has the following additional behavior:

<Focusln>: If the shell's keyboard focus policy is XmEXPLICIT, highlights
the widget and gives it the focus

<FocusOut>: If the shell's keyboard focus policy is XmEXPLICIT, unhighlights
the widget and removes the focus

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings

'. for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Core(3X), XmChangeColor(3X), and XmScreen(3X).

1-707

OSF/Motif Programmer's Reference

XmProcessTraversal (3X)

Synopsis

Description

1-708

XmProcessTraversal-A function that determines which component receives
keyboard events when a widget has the focus

#include <XmlXm.h>

Boolean XmProcessTraversal (widget, direction)
Widget widget;
XmTraversalDirection direction;

XmProcessTraversal determines which component of a hierarchy receives
keyboard events when the hierarchy that contains the given widget has keyboard
focus. Using XmProcessTraversal to traverse to MenuBars, Pulldown
MenuPanes, or Popup MenuPanes is not supported.

widget

direction

Specifies the widget ID of the widget whose hierarchy is to be
traversed. The hierarchy is only traversed up to the top of the shell.
If that shell does not currently have the focus, any changes to the
element with focus within that shell will not occur until the next
time the shell recieves focus.

Specifies the direction of traversal.

The direction parameter can have the following values, which cause the routine to
take the corresponding actions:

XmTRAVERSE_CURRENT
Finds the hierarchy and the tab group that contain widget. If this tab
group is not the active tab group, this action makes it the active tab
group. If widget is an item in the active tab group, this action makes
it the active item. If widget is the active tab group, this action
makes the first traversable item in the tab group the active item.

XmTRA VERSE_DOWN
Finds the hierarchy that contains widget, finds the active item in the
active tab group, and makes the item below it the active item. If
there is no item below, it wraps.

XmTRA VERSE_HOME
Finds the hierarchy that contains widget and finds the active item in
the active tab group and makes the first traversable item in the tab
group the active item.

Reference Pages

XmProcessTraversal (3X)

XmTRA VERSE_LEFT
Finds the hierarchy that contains widget, finds the active item in the
active tab group, and makes the item to the left the active item. If
there is no item to the left, this action wraps.

XmTRA VERSE_NEXT
Finds the hierarchy that contains widget, finds the active item in the
active tab group, and makes the next item in child order the active
item.

XmTRAVERSE_NEXT_TAB_GROUP
Finds the hierarchy that contains widget, finds the active tab group
(if any), and makes the next tab group the active tab group in the
hierarchy.

XmTRA VERSE_PREV
Finds the hierarchy that contains widget, finds the active item in the
active tab group, and makes the previous item in child order the
active item.

XmTRAVERSE_PREV_TAB_GROUP
Finds the hierarchy that contains widget, finds the active tab group
(if any), and makes the previous tab group the active tab group in
the hierarchy.

XmTRA VERSE_RIGHT
Finds the hierarchy that contains widget, finds the active item in the
active tab group, and makes the item to the right the active item. If
there is no item to the right, this action wraps.

XmTRA VERSE_UP
Finds the hierarchy that contains widget, finds the active item in the
active tab group, and makes the item above it the active item. If
there is no item above, this action wraps.

1-709

OSF/Motif Programmer's Reference

XmProcessTraversal (3X)

Cautions

• XmProcessTraversal will not allow traversal to a widget in a different
shell.

• XmProcessTraversal will only allow traversal to widgets that are currently
mapped.

• You cannot call XmProcessTraversal from inside a focusCallback routine
(or you will get a segmentation fault).

Return Value
Returns True if the setting succeeded. Returns False if the keyboard focus policy is
not XmEXPLICIT, if there are no traversable items, or if the call to the routine
has invalid parameters.

Related Information
XmGetVisibility(3X) and XmIsTraversable(3X).

1-710

Synopsis

Description

Classes

Reference Pages

XmPushButton(3X)

XmPushButton-The PushButton widget class

#include <XmlPushB.h>

PushButton issues commands within an application. It consists of a text label or
pixmap surrounded by a border shadow. When a PushButton is selected, the
shadow changes to give the appearance that it has been pressed in. When a
PushButton is unselected, the shadow changes to give the appearance that it is out.

The default behavior associated with a PushButton in a menu depends on the type
of menu system in which it resides. By default, BSelect controls the behavior of
the PushButton. In addition, BMenu controls the behavior of the PushButton if it
resides in a PopupMenu system. The actual mouse button used is determined by its
RowColumn parent.

Thickness for a second shadow, used when the PushButton is the default button,
may be specified with the XmNshowAsDefault resource. If it has a nonzero value,
the Label's resources XmNmarginLeft, XmNmarginRight, XmNmarginTop,
and XmNmarginBottom may be modified to accommodate the second shadow.

If an initial value is specified for XmNarmPixmap but not for XmNlabelPixmap,
the XmNarmPixmap value is used for XmNlabelPixmap.

PushButton inherits behavior and resources from Core, XmPrimitive, and
XmLabel.

The class pointer is xmPushButton WidgetClass.

The class name is XmPushButton.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-711

OSF/Motif Programmer's Reference

XmPushButton(3X)

1-712

XmPushButton Resource Set

Name Default Access
Class Type

Xm NactivateCallback NULL C
XmCCaliback XtCalibackList

XmNarmCaliback NULL C
XmCCaliback XtCalibackList

XmNarmColor dynamic CSG
XmCArmColor Pixel

XmNarmPixmap XmUNSPECIFIED_PIXMAP CSG
XmCArmPixmap Pixmap

XmNdefaultButtonShadowThickness dynamic CSG
XmCDefaultButtonShadowThickness Dimension

XmNdisarmCaliback NULL C
XmCCallback XtCalibackList

XmNfiliOnArm True CSG
XmCFiIIOnArm Boolean

XmNmultiClick dynamic CSG
XmCMultiClick unsigned char

XmNshowAsDefault 0 CSG
XmCShowAsDefault Dimension

XmNactivateCallback
Specifies the list of callbacks that is called when PushButton is
activated. PushButton is activated when the user presses and
releases the active mouse button while the pointer is inside that
widget. Activating the PushButton also disarms it. For this
callback, the reason is XmCR_ACTIVATE.

XmNarmCallback
Specifies the list of callbacks that is called when PushButton is
armed. PushButton is armed when the user presses the active mouse
button while the pointer is inside that widget. For this callback, the
reason is XmCR_ARM.

Reference Pages
XmPushButton(3X)

XmNarmColor
Specifies the color with which to fill the armed button.
XmNfillOnArm must be set to True for this resource to have an
effect. The default for a color display is a color between the
background and the bottom shadow color. For a monochrome
display, the default is set to the foreground color, and any text in the
label appears in the background color when the button is armed.

XmNarmPixmap
Specifies the pixmap to be used as the button face if XmNlabelType
is XmPIXMAP and PushButton is armed. This resource is disabled
when the PushButton is in a menu.

XmNdefaultButtonShadowThickness
This resource specifies the width of the default button indicator
shadow. If this resource is ° (zero), the width of the shadow comes
from the value of the XmNshow AsDefault resource. If this
resource is greater than 0, the XmNshowAsDefault resource is only
used to specify whether this button is the default. The default value
is the initial value of XmNshowAsDefault.

XmNdisarmCallback
Specifies the list of callbacks that is called when PushButton is
disarmed. PushButton is disarmed when the user presses and
releases the active mouse button while the pointer is inside that
widget. For this callback, the reason is XmCR_DISARM.

XmNflllOnArm
Forces the PushButton to fill the background of the button with the
color specified by XmNarmColor when the button is armed and
when this resource is set to True. If False, only the top and bottom
shadow colors are switched. When the PushButton is in a menu, this
resource is ignored and assumed to be False.

XmNmultiClick
If a button click is followed by another button click within the time
span specified by the display's multiclick time, and this resource is
set to XmMULTICLICK_DISCARD, do not process the second
click. If this resource is set to XmMULTICLICK_KEEP, process
the event and increment click_count in the callback structure.
When the button is in a menu, the default is
XmMULTICLICK_DISCARD; otherwise, for a button not in a
menu, XmMULTICLICK_KEEP is the default value.

1-713

OSF/Motif Programmer's Reference

XmPushButton(3X)

1-714

XmNshow AsDefault

Inherited Resources

If XmNdefaultButtonShadowThickness is greater than ° (zero), a
value greater than ° in this resource specifies to mark this button as
the default button. If XmNdefaultButtonShadowThickness is 0, a
value greater than ° in this resource specifies to mark this button as
the default button with the shadow thickness specified by this
resource. The space between the shadow and the default shadow is
equal to the sum of both shadows. The default value is 0. When this
value is not 0, the Label resources XmNmarginLeft,
XmNmarginRight, XmNmarginTop, and XmNmarginBottom
may be modified to accommodate the second shadow. This resource
is disabled when the PushButton is in a menu.

PushButton inherits behavior and resources from the superclasses described the
following tables. For a complete description of each resource, refer to the reference
page for that superclass.

Reference Pages

XmPushButton{3X)

XmLabel Resource Set

Name Default Access
Class Type

Xm Naccelerator NULL CSG
XmCAccelerator String

XmNacceleratorText NULL CSG
XmCAcceleratorText XmString

XmNalignment dynamic CSG
XmCAlignment unsigned char

XmNfontList dynamic CSG
XmCFontList XmFontList

Xm Nlabell nsensitivePixmap XmUNSPECIFIED_PIXMAP CSG
XmCLabel1 nsensitivePixmap Pixmap

XmNlabelPixmap dynamic CSG
XmCLabelPixmap Pixmap

XmNlabelString dynamic CSG
XmCXmString XmString

XmNlabelType XmSTRING CSG
XmCLabelType unsigned char

XmNmarginBottom dynamic CSG
XmCMarginBottom Dimension

XmNmarginHeight 2 CSG
XmCMarginHeight Dimension

XmNmarginLeft dynamic CSG
XmCMarginLeft Dimension

XmNmarginRight dynamic CSG
XmCMarginRight Dimension

XmNmarginTop dynamic CSG
XmCMarginTop Dimension

XmNmarginWidth 2 CSG
XmCMarginWidth Dimension

XmNmnemonic NULL CSG
XmCMnemonic KeySym

1-715

OSF/Motif Programmer's Reference

XmPushButton(3X)

Name Default Access
Class Type

Xm NmnemonicCharSet XmFONTLIST _DEFAULT_TAG CSG
XmCMnemonicCharSet String

XmNrecomputeSize True CSG
XmCRecomputeSize Boolean

Xm NstringDirection dynamic CSG
XmCStringDirection XmStringDirection

1-716

Reference Pages

XmPushButton (3X)

XmPrimitive Resource Set

Name Default Access
Class Type

Xm Nbottom ShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNhighlightThickness 2 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType Xm NavigationType

Xm NshadowThickness 2 CSG
XmCShadowThickness Dimension

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-717

OSF/Motif Programmer's Reference

XmPushButton (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

Xm NbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

Xm Ninitial ResourcesPersistent True C
XmCI nitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-718

Reference Pages

XmPushButton(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
int click_count;

} XmPushButtonCallbackStruct;

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback.

click_count This value is valid only when the reason is XmCR_ACTIVATE. It
contains the number of clicks in the last multi click sequence if the
XmNmultiClick resource is set to XmMULTICLICK_KEEP,
otherwise it contains 1. The activate callback is invoked for each
click if XmNmultiClick is set to XmMULTICLICK_KEEP.

Translations
XmPushButton includes translations from XmPrimitive.

Note that altering translations in #override or #augment mode is undefined.

Additional XmPushButton translations for XmPushButtons not in a menu system
are described in the following list. These translations may not directly correspond
to a translation table.

BTransfer Press:

BSelect Press:

ProcessDragO

ArmO

1-719

OSF/Motif Programmer's Reference

XmPushButton(3X)

1-720

BSelect Click:

DisarmO

BSelect Release:

BSelect Press 2+:

BSelect Release 2+:

KSelect:

KHelp:

ActivateO

ActivateO
DisarmO

MultiArmO

MultiActivateO
DisarmO

ArmAndActivateO

HeipO

XmPushButton inherits menu traversal translations from XmLabel. Additional
XmPushButton translations for PushButtons in a menu system are described in the
following list. In a Popup menu system, BMenu also performs the BSelect actions.
These translations may not directly correspond to a translation table.

BSelect Press:

BSelect Release:

KActivate:

KSelect:

MAny KCancel:

Action Routines

BtnDownO

BtnUpO

ArmAndActivateO

ArmAndActivateO

MenuShellPopdownOneO

The XmPushButton action routines are

ActivateO: This action draws the shadow in the unarmed state. If the button is
not in a menu and if XmNfillOnArm is set to True, the background
color reverts to the unarmed color. If XmNlabelType is
XmPIXMAP, XmNlabelPixmap is used for the button face. If the
pointer is still within the button, this action calls the callbacks for
XmNactivateCallback.

ArmO: This action arms the PushButton. It draws the shadow in the armed
state. If the button is not in a menu and if XmNfillOnArm is set to
True, it fills the button with the color specified by XmNarmColor.
If XmNlabelType is XmPIXMAP, the XmNarmPixmap is used
for the button face. It calls the XmNarmCallback callbacks.

Reference Pages

XmPushButton (3X)

ArmAndActivateO:
In a menu, unposts all menus in the menu hierarchy and, unless the
button is already armed, calls the XmNarmCallback callbacks.
This action calls the XmNactivateCallback and
XmNdisarmCallback callbacks.

Outside a menu, draws the shadow in the armed state and, if
XmNfillOnArm is set to True, fills the button with the color
specified by XmNarmColor. If XmNlabelType is XmPIXMAP,
XmNarmPixmap is used for the button face. This action calls the
XmNarmCallback callbacks.

Outside a menu, this action also arranges for the following to
happen, either immediately or at a later time: the shadow is drawn
in the unarmed state and, if XmNfillOnArm is set to True, the
background color reverts to the unarmed color. If XmNlabelType
is XmPIXMAP, XmNlabelPixmap is used for the button face. The
XmNactivateCallback and XmNdisarmCallback callbacks are
called.

BtnDownO: This action unposts any menus posted by the PushButton's parent
menu, disables keyboard traversal for the menu, and enables mouse
traversal for the menu. It draws the shadow in the armed state and,
unless the button is already armed, calls the XmNarmCallback
callbacks.

BtnUpO: This action unposts all menus in the menu hierarchy and activates
the PushButton. It calls the XmNactivateCallback callbacks and
then the XmNdisarmCallback callbacks.

DisarmO: Calls the callbacks for XmNdisarmCallback.

HelpO: In a Pulldown or Popup MenuPane, unposts all menus in the menu
hierarchy and, when the shell's keyboard focus policy is
XmEXPLICT, restores keyboard focus to the widget that had the
focus before the menu system was entered. This action calls the
callbacks for XmNhelpCallback if any exist. If there are no help
callbacks for this widget, this action calls the help callbacks for the
nearest ancestor that has them.

1-721

OSF/Motif Programmer's Reference

XmPushButton(3X)

1-722

MenuShellPopdownOneO:
In a top-level Pulldown MenuPane from a MenuBar, unposts the
menu, disarms the MenuBar CascadeButton and the MenuBar; and,
when the shell's keyboard focus policy is XmEXPLICT, restores
keyboard focus to the widget that had the focus before the MenuBar
was entered. In other Pulldown MenuPanes, it unposts the menu.

In a Popup MenuPane, this action unposts the menu and restores
keyboard focus to the widget from which the menu was posted.

MultiActivateO:
If XmNmultiClick is XmMULTICLICK_DISCARD, this action
does nothing.

If XmNmultiClick is XmMULTICLICK_KEEP, this action
increments click_count in the callback structure and draws the
shadow in the unarmed state. If the button is not in a menu and if
XmNfillOnArm is set to True, the background color reverts to the
unarmed color. If XmNlabelType is XmPIXMAP, the
XmNlabelPixmap is used for the button face. If the pointer is
within the PushButton, calls the callbacks for
XmNactivateCallback and XmNdisarmCallback.

MultiArmO: If XmNmultiClick is XmMULTICLICK_DISCARD, this action
does nothing.

If XmNmultiClick is XmMULTICLICK_KEEP, this action draws
the shadow in the armed state. If the button is not in a menu and if
XmNfillOnArm is set to True, this action fills the button with the
color specified by XmNarmColor. If XmNlabelType is
XmPIXMAP, the XmNarmPixmap is used for the button face.
This action calls the XmNarmCallback callbacks.

ProcessDragO:
Drags the contents of a PushButton label, identified when
BTransfer is pressed. This action creates a DragContext object
whose XmNexportTargets resource is set to COMPOUND_TEXT
for a label type of XmSTRING; otherwise, it is set to PIXMAP if
the label type is XmPIXMAP. This action is undefined for
PushButtons used in a menu system.

Reference Pages

XmPushButton (3X)

Additional Behavior
This widget has the following additional behavior:

<EnterWindow>:
In a menu, if keyboard traversal is enabled, this action does nothing.
Otherwise, it draws the shadow in the armed state and calls the
XmNarmCallback callbacks.

If the PushButton is not in a menu and the cursor leaves and then
reenters the PushButton's window while the button is pressed, this
action draws the shadow in the armed state. If XmNfillOnArm is
set to True, it also fills the button with the color specified by
XmNarmColor. If XmNlabelType is XmPIXMAP,
XmNarmPixmap is used for the button face.

<Leave Window>:

Virtual Bindings

In a menu, if keyboard traversal is enabled, this action does nothing.
Otherwise, it draws the shadow in the unarmed state and calls the
XmNdisarmCallback callbacks.

If the PushButton is not in a menu and the cursor leaves the
PushButton's window while the button is pressed, this action draws
the shadow in the unarmed state. If XmNfillOnArm is set to True,
the background color reverts to the unarmed color. If
XmNlabelType is XmPIXMAP, the XmNlabelPixmap is used for
the button face.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Core(3X), XmCreatePushButton(3X), XmLabel(3X), XmPrimitive(3X), and
XmRowColumn(3X).

1-723

OSF/Motif Programmer's Reference

XmPushButtonGadget(3X)

Synopsis

Description

Classes

XmPushButtonGadget-The PushButtonGadget widget class

#include <Xm/PushBG.h>

PushButtonGadget issues commands within an application. It consists of a text
label or pixmap surrounded by a border shadow. When PushButtonGadget is
selected, the shadow changes to give the appearance that the PushButtonGadget
has been pressed in. When PushButtonGadget is unselected, the shadow changes
to give the appearance that the PushButtonGadget is out.

The default behavior. associated with a PushButtonGadget in a menu depends on
the type of menu system in which it resides. By default, BSelect controls the
behavior of the PushButtonGadget. In addition, BMenu controls the behavior of
the PushButtonGadget if it resides in a PopupMenu system. The actual mouse
button used is determined by its RowColumn parent.

Thickness for a second shadow may be specified with the XmNshow AsDefault
resource. If it has a nonzero value, the Label's XmNmarginLeft,
XmNmarginRight, XmNmarginTop, and XmNmarginBottom resources may be
modified to accommodate the second shadow.

If an initial value is specified for XmNarmPixmap but not for XmNlabelPixmap,
the XmNarmPixmap value is used for XmNlabelPixmap.

PushButtonGadget inherits behavior and resources from Object, RectObj,
XmGadget and XmLabelGadget.

The class pointer is xmPushButtonGadgetClass.

The class name is XmPushButtonGadget.

New Resources

1-724

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmPushButtonGadget(3X)

XmPushButtonGadget

Name Default Access
Class Type

Xm NactivateCaliback NULL C
XmCCaliback XtCalibackList

XmNarmCaliback NULL C
XmCCaliback XtCalibackList

XmNarmColor dynamic CSG
XmCArmColor Pixel

XmNarmPixmap XmUNSPECIFIED_PIXMAP CSG
XmCArm Pixmap Pixmap

Xm NdefaultButtonShadowThickness dynamic CSG
XmCdefaultButtonShadowThickness Dimension

XmNdisarmCaliback NULL C
XmCCaliback XtCalibackList

XmNfiliOnArm True CSG
XmCFiliOnArm Boolean

XmNmultiClick dynamic CSG
XmCMultiClick unsigned char

XmNshowAsDefault 0 CSG
XmCShowAsDefault Dimension

XmNactivateCallback
Specifies the list of callbacks that is called when the
PushButtonGadget is activated. It is activated when the user presses
and releases the active mouse button while the pointer is inside the
PushButtonGadget. Activating PushButtonGadget also disarms it.
For this callback, the reason is XmCR_ACTIVATE.

XmNarmCallback
Specifies the list of callbacks that is called when PushButtonGadget
is armed. It is armed when the user presses the active mouse button
while the pointer is inside the PushButtonGadget. For this callback,
the reason is XmCR_ARM.

1-725

OSF/Motif Programmer's Reference

XmPushButtonGadget(3X)

1-726

XmNarmColor
Specifies the color with which to fill the armed button.
XmNfillOnArm must be set to True for this resource to have an
effect. The default for a color display is a color between the
background and the bottom shadow color. For a monochrome
display, the default is set to the foreground color, and any text in the
label appears in the background color when the button is armed.

XmNarmPixmap
Specifies the pixmap to be used as the button face if XmNlabeltype
is XmPIXMAP and PushButtonGadget is armed. This resource is
disabled when the PushButtonGadget is in a menu.

XmNdefaultButtonShadowThickness
This resource specifies the width of the default button indicator
shadow. If this resource is zero, the width of the shadow comes
from the value of the XmNshowAsDefault resource. If this
resource is greater than zero, the XmNshow AsDefault resource is
only used to specify whether this button is the default. The default
value is the initial value of XmNshowAsDefault.

XmNdisarmCallback
Specifies the list of callbacks that is called when the
PushButtonGadget is disarmed. PushButtonGadget is disarmed
when the user presses and releases the active mouse button while
the pointer is inside that gadget. For this callback, the reason is
XmCR_DISARM.

XmNfillOnArm
Forces the PushButtonGadget to fill the background of the button
with the color specified by XmNarmColor when the button is
armed and when this resource is set to True. If it is False, only the
top and bottom shadow colors are switched. When the
PushButtonGadget is in a menu, this resource is ignored and
assumed to be False.

XmNmultiClick
If a button click is followed by another button click within the time
span specified by the display's multiclick time, and this resource is
set to XmMULTICLICK_DISCARD, the second click is not
processed. If this resource is set to XmMULTICLICK_KEEP, the
event is processed and click_count is incremented in the callback
structure. When the button is in a menu, the default is
XmMULTICLICK_DISCARD; otherwise, for a button not in a
menu, the default value is XmMULTICLICK_KEEP.

Reference Pages
XmPushButtonGadget(3X)

XmNshow AsDefault

Inherited Resources

If XmNdefaultButtonShadowThickness is greater than ° (zero), a
value greater than zero in this resource specifies to mark this button
as the default button. If XmNdefaultButtonShadowThickness is
0, a value greater than ° in this resource specifies to mark this button
as the default button with the shadow thickness specified by this
resource. The space between the shadow and the default shadow is
equal to the sum of both shadows. The default value is 0. When this
value is not 0, the Label XmNmarginLeft, XmNmarginRight,
XmNmarginTop, and XmNmarginBottom resources may be
modified to accommodate the second shadow. This resource is
disabled when the PushButton is in a menu.

PushButtonGadget inherits behavior and resources from the superclasses described
in the following tables. For a complete description of each resource, refer to the
reference page for that superclass.

1-727

OSF/Motif Programmer's Reference

XmPushButtonGadget{ 3X)

XmLabelGadget Resource Set

Name Default Access
Class Type

Xm Naccelerator NULL CSG
XmCAccelerator String

Xm NacceleratorText NULL CSG
XmCAcceleratorText XmString

XmNalignment dynamic CSG
XmCAlignment unsigned char

XmNfontList dynamic CSG
XmCFontList XmFontList

Xm Nlabell nsensitivePixmap XmUNSPECIFIED_PIXMAP CSG
XmCLabel1 nsensitivePixmap Pixmap

XmNlabelPixmap dynamic CSG
XmCLabelPixmap Pixmap

XmNlabelString dynamic CSG
XmCXmString XmString

XmNlabelType XmSTRING CSG
XmCLabelType unsigned char

XmNmarginBoUom dynamic CSG
XmCMarginBoUom Dimension

XmNmarginHeight 2 CSG
XmCMarginHeight Dimension

XmNmarginLeft dynamic CSG
XmCMarginLeft Dimension

XmNmarginRight dynamic CSG
XmCMarginRight Dimension

XmNmarginTop dynamic CSG
XmCMarginTop Dimension

XmNmarginWidth 2 CSG
XmCMarginWidth Dimension

1-728

Reference Pages

XmPushButtonGadget{ 3X)

Name Default Access
Class Type

XmNmnemonic NULL CSG
XmCMnemonic KeySym

XmNmnemonicCharSet dynamic CSG
XmCMnemonicCharSet String

XmNrecomputeSize True CSG
XmCRecomputeSize Boolean

XmNstringDirection dynamic CSG
XmCStringDirection XmStringDirection

1-729

OSF/Motif Programmer's Reference

XmPushButtonGadget{ 3X)

XmGadget Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic G
XmCBottomShadowColor Pixel

XmNhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic G
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightThickness 2 CSG
XmCHighlightThickness Dimension

Xm NnavigationType XmNONE CSG
XmCNavigationType XmNavigationType

Xm NshadowThickness 2 CSG
XmCShadowThickness Dimension

Xm NtopShadowColor dynamic G
XmCTopShadowColor Pixel

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-730

Reference Pages

XmPushButtonGadget(3X)

RectObj Resource Set

Name Default Access
Class Type

XmNancestorSensitive dynamic G
XmCSensitive Boolean

XmNborderWidth 0 N/A
XmCBorderWidth Dimension

XmNheight dynamic CSG
XmCHeight Dimension

XmNsensitive True CSG
XmCSensitive Boolean

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Object Resource Set

Name Default Access
Class Type

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
int click_count;

} XmPushButtonCallbackStruct;

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback.

1-731

OSF/Motif Programmer's Reference

XmPushButtonGadget (aX)

1-732

click_count Valid only when the reason is XmCR_ACTIVATE. It contains the
number of clicks in the last multi click sequence if the
XmNmultiClick resource is set to XmMULTICLICK_KEEP;
otherwise it contains 1. The activate callback is invoked for each
click if XmNmultiClick is set to XmMULTICLICK_KEEP.

Behavior
XmPushButtonGadget includes behavior from XmGadget.
XmPushButtonGadget includes menu traversal behavior from XmLabelGadget.
Additional behavior for XmPushButtonGadget is described in the following list.

BTransfer Press:

BSelect Press:

Drags the contents of a PushButtonGadget label, identified when
BTransfer is pressed. This action creates a DragContext object
whose XmNexportTargets resource is set to COMPOUND_TEXT
for a label type of XmSTRING; otherwise, it is set to PIXMAP if
the label type is XmPIXMAP. This action is undefined for
PushButtonGadgets used in a menu system.

This action arms the PushButtonGadget.

In a menu, this action unposts any menus posted by the
PushButtonGadget's parent menu, disables keyboard traversal for
the menu, and enables mouse traversal for the menu. It draws the
shadow in the armed state. Unless the button is already armed, it
calls the XmNarmCallback callbacks.

If the button is not in a menu, this action draws the shadow in the
armed state. If XmNfillOnArm is set to True, it fills the button with
the color specified by XmNarmColor. If XmNlabelType is
XmPIXMAP, the XmNarmPixmap is used for the button face. It
calls the XmNarmCallback callbacks.

BSelect Press 2+:
If XmNmultiClick is XmMULTICLICK_DISCARD, this action
does nothing.

If XmNmultiClick is XmMULTICLICK_KEEP, this action draws
the shadow in the armed state. If the button is not in a menu and if
XmNfillOnArm is set to True, it fills the button with the color

Reference Pages

XmPushButtonGadget(3X)

specified by XmNarmColor. If XmNlabelType is XmPIXMAP,
the XmNarmPixmap is used for the button face. This action calls
the XmNarmCallback callbacks.

BSelect Click or BSelect Release:
In a menu, this action unposts all menus in the menu hierarchy and
activates the PushButtonGadget. It calls the XmNactivateCallback
callbacks and then the XmNdisarmCallback callbacks.

If the PushButtonGadget is not in a menu, this action draws the
shadow in the unarmed state. If XmNfillOnArm is set to True, the
background color reverts to the unarmed color. If XmNlabelType
is XmPIXMAP, the XmNlabelPixmap is used for the button face.
If the pointer is still within the button, this action calls the callbacks
for XmNactivateCallback and XmNdisarmCallback.

BSelect Release 2+:
If XmNmultiClick is XmMULTICLICK_DISCARD, this action
does nothing.

If XmNmultiClick is XmMULTICLICK_KEEP, this action
increments click_count in the callback structure and draws the
shadow in the unarmed state. If the button is not in a menu and if
XmNfillOnArm is set to True, the background color reverts to the
unarmed color. If XmNlabelType is XmPIXMAP,
XmNlabelPixmap is used for the button face. If the pointer is
within the PushButtonGadget, this action calls the callbacks for
XmNactivateCallback and XmNdisarmCallback.

KActivate: In a menu, this action unposts all menus in the menu hierarchy,
unless the button is already armed, and calls the XmNarmCallback
callbacks, the XmNactivateCallback and the
XmNdisarmCallback callbacks. Outside a menu, KActivate has
no effect. For PushButtonGadgets outside of a menu, if the parent is
a manager, this action passes the event to the parent.

KSelect: In a menu, this action unposts all menus in the menu hierarchy,
unless the button is already armed, and calls the XmNarmCallback
callbacks. This acton calls the XmNactivateCallback and
XmNdisarmCallback callbacks.

1-733

OSF/Motif Programmer's Reference

XmPushButtonGadget(3X)

1-734

KHelp:

Outside a menu, this action draws the shadow in the armed state
and, if XmNfillOnArm is set to True, fills the button with the color
specified by XmNarmColor. If XmNlabelType is XmPIXMAP,
XmNarmPixmap is used for the button face. This action calls the
XmN arm Callback callbacks.

Outside a menu, this action also arranges for the following to
happen, either immediately or at a later time: the shadow is drawn
in the unarmed state and, if XmNfillOnArm is set to True, the
background color reverts to the unarmed color. If XmNlabelType
is XmPIXMAP, the XmNlabelPixmap is used for the button face.
The XmNactivateCallback and XmNdisarmCallback callbacks
are called.

In a Pulldown or Popup MenuPane, unposts all menus in the menu
hierarchy and restores keyboard focus to the widget that had the
focus before the menu system was entered. This action calls the
callbacks for XmNhelpCallback if any exist. If there are no help
callbacks for this widget, this action calls the help callbacks for the
nearest ancestor that has them.

MAny KCancel:

<Enter>:

In a toplevel Pulldown MenuPane from a MenuBar, unposts the
menu, disarms the MenuBar CascadeButton and the MenuBar, and
restores keyboard focus to the widget that had the focus before the
MenuBar was entered. In other Pulldown MenuPanes, unposts the
menu.

In a Popup MenuPane, unposts the menu and restores keyboard
focus to the widget from which the menu was posted. For a
PushButtonGadget outside of a menu, if the parent is a manger, this
action passes the event to the parent.

In a menu, if keyboard traversal is enabled, this action does nothing.
Otherwise, it draws the shadow in the armed state and calls the
XmNarmCallback callbacks.

If the PushButtonGadget is not in a menu and the cursor leaves and
then reenters the PushButtonGadget while the button is pressed, this
action draws the shadow in the armed state. If XmNfillOnArm is

<Leave>:

Virtual Bindings

Reference Pages

XmPushButtonGadget{3X)

set to True, it also fills the button with the color specified by
XmNarmColor. If XmNlabelType is XmPIXMAP, the
XmNarmPixmap is used for the button face.

In a menu, if keyboard traversal is enabled, this action does nothing.
Otherwise, it draws the shadow in the unarmed state and calls the
XmNdisarmCallback callbacks.

If the PushButtonGadget is not in a menu and the cursor leaves the
PushButtonGadget while the button is pressed, this action draws the
shadow in the unarmed state. If XmNfillOnArm is set to True, the
background color reverts to the unarmed color. If XmNlabelType
is XmPIXMAP, the XmNlabelPixmap is used for the button face.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Object(3X), RectObj(3X), XmCreatePushButtonGadget(3X), XmGadget(3X),
XmLabeIGadget(3X), and XmRowColumn(3X).

1-735

OSF/Motif Programmer's Reference

XmRegisterSegmentEncoding{ 3X)

Synopsis

Description

XmRegisterSegmentEncoding-A compound string function that registers a
compound text encoding format for a specified font list element tag

#include <XmlXm.h>

char * XmRegisterSegmentEncoding (jontlisCtag, ccencoding)
char *fontlisCtag;
char *ccencoding;

XmRegisterSegmentEncoding registers a compound text encoding format with
the specified font list element tag. The XmCvtXmStringToCT function uses this
registry to map the font list tags of compound string segments to compound text
encoding formats. Registering a font list tag that already exists in the registry
overwrites the original entry. You can unregister a font list tag by passing a NULL
value for the cCencoding parameter.

fontlisctag Specifies the font list element tag to be registered. The tag must be
a NULL-terminated 1S08859-1 string.

ccencoding Specifies the compound text character set to be used for segments
with the font list tag. The value must be a NULL-terminated
1S08859-1 string. A value of XmFONTLIST_DEFAULT_TAG
maps the specified font list tag to the code set of the locale.

Return Value
Returns NULL for a new font list tag or the old cCencoding value for an already
registered font list tag. The application is responsible for freeing the storage
associated with the returned data (if any) by calling XtFree.

Related Information

1-736

XmCvtXmStringToCT(3X), XmFontList(3X), XmMapSegmentEncoding(3X),
and XmString(3X).

Synopsis

Description

Reference Pages

XmRemoveProtocoICallback(3X)

XmRemoveProtocolCallback-A VendorS hell function that removes a callback
from the internal list

#include <XmlXm.h>
#include <Xm/Protocols.h>

void XmRemoveProtocolCallback (shell, property, protocol, callback, closure)
Widget shell;
Atom property;
Atom protocol;
XtCallbackProc callback;
XtPointer closure;

void XmRemoveWMProtocolCallback (shell, protocol, callback, closure)
Widget shell;
Atom protocol;
XtCallbackProc callback;
XtPointer closure;

XmRemoveProtocolCallback removes a callback from the internal list.

XmRemoveWMProtocolCallback is a convenience interface. It calls
XmRemoveProtocolCallback with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell

property

protocol

callback

closure

Specifies the widget with which the protocol property is associated

Specifies the protocol property

Specifies the protocol atom (or an int cast to Atom)

Specifies the procedure to call when a protocol message is received

Specifies the client data to be passed to the callback when it is
invoked

For a complete definition of VendorS hell and its associated resources, see
VendorShell(3X).

Related Information
VendorShell(3X), XmInternAtom(3X), and
XmRemoveWMProtocoICallback(3X).

1-737

OSF/Motif Programmer's Reference

XmRemoveProtocols (aX)

Synopsis

Description

XmRemoveProtocols-A VendorS hell function that removes the protocols from
the protocol manager and deallocates the internal tables

#include <XmlXm.h>
#include <XmlProtocols.h>

void XmRemoveProtocols (shell, property, protocols, num...,protocols)
Widget shell;
Atom property;
Atom
Cardinal

* protocols;
num...,protocols;

void XmRemoveWMProtocols (shell, protocols, num...,protocols)
Widget shell;

Atom * protocols;
Cardinal num...,protocols;

XmRemoveProtocols removes the protocols from the protocol manager and
deallocates the internal tables. If any of the protocols are active, it will update the
handlers and update the property if shell is realized.

XmRemove WMProtocols is a convenience interface. It calls
XmRemoveProtocols with the property value set to the atom returned by interning
WM_PROTOCOLS.

shell

property

protocols

num-protocols

Specifies the widget with which the protocol property is associated

Specifies the protocol property

Specifies the protocol atoms (or ints cast to Atom)

Specifies the number of elements in protocols

For a complete definition of VendorS hell and its associated resources, see
VendorShell(3X).

Related Information
VendorShell(3X), XmlnternAtom(3X), and XmRemoveWMProtocols(3X).

1-738

Synopsis

Description

Reference Pages

XmRemoveTabGroup(3X)

XmRemoveTabGroup-A function that removes a tab group

#include <XmlXm.h>

void XmRemoveTabGroup (tabgroup)
VVidget tab....group;

This function is obsolete and its behavior is replaced by setting
XmNnavigationType to XmNONE. XmRemoveTabGroup removes a widget
from the list of tab groups associated with a particular widget hierarchy and sets
the widget's XmNnavigationType to XmNONE.

tab-lJroup Specifies the widget ID

Related Information
XmAddTabGroup(3X), XmManager(3X), and XmPrimitive(3X).

1-739

OSF/Motif Programmer's Reference

XmRemoveWMProtocoICallback(3X)

Synopsis

Description

XmRemoveWMProtocolCallback-A VendorShell convenience interface that
removes a callback from the internal list

#include <XmlXm.h>
#include <XmlProtocols.h>

void XmRemoveWMProtocolCallback (shell, protocol, callback, closure)
Widget shell;
Atom protocol;
XtCallbackProc callback;
XtPointer closure;

XmRemoveWMProtocolCallback is a convenience interface. It calls
XmRemoveProtocolCallback with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell

protocol

callback

closure

Specifies the widget with which the protocol property is associated

Specifies the protocol atom (or an int type cast to Atom)

Specifies the procedure to call when a protocol message is received

Specifies the client data to be passed to the callback when it is
invoked

For a complete definition of VendorS hell and its associated resources, see
VendorShell(3X).

Related Information
VendorShell(3X), XmInternAtom(3X), and XmRemoveProtocoICallback(3X).

1-740

Synopsis

Description

Reference Pages

XmRemoveWMProtocols(3X)

XmRemoveWMProtocols-A VendorS hell convenience interface that removes
the protocols from the protocol manager and deallocates the internal tables

#include <XmlXm.h>
#include <XmlProtocols.h>

void XmRemoveWMProtocols (shell, protocols, num-fJrotocols)
Widget shell;
Atom * protocols;
Cardinal num-fJrotocols;

XmRemoveWMProtocols is a convenience interface. It calls
XmRemoveProtocols with the property value set to the atom returned by interning
WM_PROTOCOLS.

shell

protocols

num..JJrotocols

Specifies the widget with which the protocol property is associated

Specifies the protocol atoms (or ints cast to Atom)

Specifies the number of elements in protocols

For a complete definition of VendorS hell and its associated resources, see
VendorShell(3X).

Related Information
VendorShell(3X), XmInternAtom(3X), and XmRemoveProtocols(3X).

1-741

OSF/Motif Programmer's Reference

XmRepTypeAddReverse(3X)

Synopsis

Description

XmRepTypeAddReverse-A representation type manager function that installs
the reverse converter for a previously registered representation type

#include <XmlRepType.h>

void XmRepTypeAddReverse (rep_type_id)
XmRepTypeld rep _type_id;

XmRepTypeAddReverse installs the reverse converter for a previously registered
representation type. The reverse converter takes a numerical representation type
value and returns its corresponding string value. Certain applications may require
this capability to obtain a string value to display on a screen or to build a resource
file.

The values argument of the XmRepTypeRegister function can be used to register
representation types with nonconsecutive values or with duplicate names for the
same value. If the list of numerical values for a representation type contains
duplicate values, the reverse converter uses the first name in the value_names list
that matches the specified numeric value. For example, if a value_names array has
cancel, proceed, and abort, and the corresponding values array
contains 0, I, and 0, the reverse converter will return cancel instead of abort for an
input value of 0.

rep_type_id Specifies the identification number of the representation type

Related Information
XmRepTypeGetld(3X) and XmRepTypeRegister(3X).

1-742

Synopsis

Description

Reference Pages

XmRepTypeGetld (3X)

XmRepTypeGetId-A representation type manager function that retrieves the
identification number of a representation type

#include <Xm/RepType.h>

XmRepTypeld XmRepTypeGetld (rep_type)
String rep_type;

XmRepTypeGetId searches the registration list for the specified representation
type and returns the associated identification number.

Specifies the representation type for which an identification number
is requested

Return Value
Returns the identification number of the specified representation type. If the
representation type is
XmREP_TYPE_INVALID.

Related Information

not registered, the function

XmRepTypeGetRegistered(3X) and XmRepTypeRegister(3X).

returns

1-743

OSF/Motif Programmer's Reference

XmRepTypeGetNameList(3X)

Synopsis

Description

XmRepTypeGetNameList-A representation type manager function that
generates a list of values for a representation type

#include <Xm/RepType.h>

String * XmRepTypeGetNameList (rep_type_id, use_uppercaseJormat)
XmRepTypeId rep _type_id;
Boolean use_uppercaseJormat;

XmRepTypeGetNameList generates a NULL-terminated list of the value names
associated with the specified representation type. Each value name is a NULL­
terminated string. This routine allocates memory for the returned data. The
application must free this memory using XtFree.

rep_type_id Specifies the identification number of the representation type.

use_uppercase~o~at

Specifies a Boolean value that controls the format of the name list.
If the value is True, each value name is in uppercase characters
prefixed by Xm; if it is False, the names are in lowercase characters.

Return Value
Returns a pointer to an array of the value names.

Related Information

1-744

XmRepTypeGetld(3X), XmRepTypeGetRegistered(3X), and
XmRepTypeRegister(3X).

Synopsis

Description

Reference Pages

XmRepTypeGetRecord (3X)

XmRepTypeGetRecord-A representation type manager function that returns
information about a representation type

#include <XmlRepType.h>

XmRepTypeEntry XmRepTypeGetRecord (rep_type_id)
XmRepTypeld rep _type_id;

XmRepTypeGetRecord retrieves information about a particular representation
type that is registered with the representation type manager. This routine allocates
memory for the returned data. The application must free this memory using
XtFree.

rep_type_id The identification number of the representation type

The representation type entry structure contains the following information:

typedef struct
{

String
String

rep _type_name;
*value_names;

unsigned char *values;
unsigned char num_values;
Boolean reve rse _installed;
XmRepTypeld rep _type_id;

} XmRepTypeEntryRec, *XmRepTypeEntry ;

rep_type_name
The name of the representation type

value_names An array of representation type value names

values An array of representation type numerical values

num_values The number of values associated with the representation type

reverse_installed
A flag that indicates whether or not the reverse converter is installed

rep_type_id The identification number of the representation type

1-745

OSF/Motif Programmer's Reference

XmRepTypeGetRecord (3X)

Return Value
Returns a pointer to the representation type entry structure that describes the
representation type.

Related Information

1-746

XmRepTypeGetld(3X), XmRepTypeGetRegistered(3X), and
XmRepTypeRegister(3X).

Synopsis

Description

Reference Pages

XmRepTypeGetRegistered (3X)

XmRepTypeGetRegistered-A representation type manager function that returns
a copy of the registration list

#include <XmlRepType.h>

XmRepTypeList XmRepTypeGetRegistered 0

XmRepTypeGetRegistered retrieves information about all representation types
that are registered with the representation type manager. The registration list is an
array of structures, each of which contains information for a representation type
entry. The end of the registration list is marked with a representation type entry
whose rep_type_name field has a NULL pointer. This routine allocates memory
for the returned data. The application must free this memory using XtFree.

The representation type entry structure contains the following information:

typedef struct
{

String
String

rep _type_name;
*value _names;

unsigned char *values;
unsigned char num_values;
Boolean reverse_installed;
XmRepTypeld rep_type _id;

} XmRepTypeEntryRec, *XmRepTypeList ;

rep_type_name
The name of the representation type

value_names An array of representation type value names

values An array of representation type numerical values

num_values The number of values associated with the representation type

reverse_installed
A flag that indicates whether or not the reverse converter is installed

rep_type _id The identification number of the representation type

1-747

OSF/Motif Programmer's Reference
XmRepTypeGetRegistered (3X)

Return Value
Returns a pointer to the registration list of representation types.

Related Information
XmRepTypeRegister(3X) and XmRepTypeGetRecord(3X).

1-748

Synopsis

Description

Reference Pages

XmRepTypelnstallTearOffModelConverter(3X)

XmRepTypelnstallTearOffModelConverter-A representation type manager
function that installs the resource converter for XmNtearOffModel.

#include <Xm/RepType.h>

void XmRepTypeInstallTearOffModelConverter 0

XmRepTypelnstallTearOffModelConverter installs the resource converter that
allows values for the XmNtearOffModel resource to be specified in resource
default files.

Related Information
XmRowColumn(3X).

1-749

OSF/Motif Programmer's Reference

XmRepTypeRegister(3X)

Synopsis

Description

1-750

XmRepTypeRegister-A representation type manager function that registers a
representation type resource

#include <XmlRepType.h>

XmRepTypeld XmRepTypeRegister (rep_type, value_names, values, num_values)
String rep_type;
String *value_names;
unsigned char
unsigned char

*values;
num_values;

XmRepTypeRegister registers a representation type resource with the
representation type manager. All features of the representation type management
facility become available for the specified representation type. The function
installs a forward type converter to convert string values to numerical
representation type values.

When the values argument is NULL, consecutive numerical values are assumed.
The order of the strings in the value_names array determines the numerical values
for the resource. For example, the first value name is 0· (zero); the second value
name is l; and so on.

If it is non-NULL, the values argument can be used to assign values to
representation types that have nonconsecutive values or have duplicate names for
the same value. Representation types registered in this manner will consume
additional storage and will be slightly slower than representation types with
consecutive values.

A representation type can only be registered once; if the same representation type
name is registered more than once, the behavior is undefined.

The function XmRepTypeAddReverse installs a reverse converter for a registered
representation type. The reverse converter takes a representation type numerical
value and returns the corresponding string value. If the list of numerical values for
a representation type contains duplicate values, the reverse converter uses the first
name in the value_names list that matches the specified numeric value. For
example, if a value_names array has cancel, proceed, and abort, and the
corresponding values array contains 0, l, and 0, the reverse converter will return
cancel instead of abort for an input value of 0.

Reference Pages
XmRepTypeRegister(ax)

rep_type Specifies the representation type name.

value_names Specifies a pointer to an array of value names associated with the
representation type. A value name is specified in lowercase
characters without an Xm prefix. Words within a name are
separated with underscores.

values Specifies a pointer to an array of values associated with the
representation type. A value in this array is associated with the
value name in the corresponding position of the value_names array.

num_values Specifies the number of entries in the value_names and values
arrays.

Return Value
Returns the identification number for the specified representation type.

Related Information
XmRepTypeAddReverse(3X), XmRepTypeGetld(3X),
XmRepTypeGetNameList(3X), XmRepTypeGetRecord(3X),
XmRepTypeGetRegistered(3X), and XmRepType ValidValue(3X).

1-751

OSF/Motif Programmer's Reference

XmRepTypeValidValue{ ax)

Synopsis

Description

XmRepTypeValidValue-A representation type manager function that tests the
validity of a numerical value of a representation type resource

#include <XmlRepType.h>

Boolean XmRepTypeValidValue (rep_type_id, tesCvalue, enable_de fault_warning)
XmRepTypeld rep _type_id;
unsigned char
Widget

tescvalue;
enable _defaulcwarning;

XmRepTypeValidValue tests the validity of a numerical value for a given
representation type resource. The function generates a default warning message if
the value is invalid and the enable_defaulCwarning argument is non-NULL.

rep_type_id Specifies the identification number of the representation type.

tesCvalue Specifies the numerical value to test.

enable _defaulCwarning
Specifies the ID of the widget that contains a default warning
message. If this parameter is NULL, no default warning message is
generated and the application must provide its own error handling.

Return Value
Returns True if the specified value is valid; otherwise, returns False.

Related Information
XmRepTypeGetId(3X) and XmRepTypeRegister(3X).

1-752

Synopsis

Description

Reference Pages
XmResolveAIiPartOffsets(3X)

XmResolveAlIPartOffsets-A function that allows writing of upward-compatible
applications and widgets

#include <XmlXmP.h>

void XmResolveAllPartOffsets (widgecclass, offset, constraincoffset)
WidgetClass widgeCclass;
XmOffsetPtr * offset;
XmOffsetPtr * constraincoffset;

The use of offset records requires two extra global variables per widget class. The
variables consist of pointers to arrays of offsets into the widget record and
constraint record for each part of the widget structure. The
XmResolveAlIPartOffsets function allocates the offset records needed by an
application to guarantee upward-compatible access to widget instance and
constraint records by applications and widgets. These offset records are used by
the widget to access all of the widget's variables. A widget needs to take the steps
described in the following paragraphs.

Instead of creating a resource list, the widget creates an offset resource list. To
accomplish this, use the XmPartResource structure and the XmPartOffset macro.
The XmPartResource data structure looks just like a resource list but, instead of
having one integer for its offset, it has two shorts. This structure is put into the
class record as if it were a normal resource list. Instead of using XtOffset for the
offset, the widget uses XmPartOffset.

If the widget is a subclass of the Constraint class and it defines additional
constraint resources, create an offset resource list for the constraint part as well.
Instead of using XtOffset for the offset, the widget uses XmConstraintPartOffset
in the constraint resource list.

XmPartResource resources[] = {
BarNxyz, BarCXyz, XmRBoo1 ean, sizeof(Boolean),
XmPartOffset(Bar,xyz), XmRImmediate, (XtPointer)False} };

XmPartResource constraints[] = {
BarNmaxWidth, BarNMaxWidth,

XmRDimension, sizeof(Dimension) ,
XmConstraintPartOffset(Bar,max_width) ,
XmRImmediate, (XtPointer)100 } };

1-753

OSF/Motif Programmer's Reference

XmResolveAIiPartOffsets(3X)

1-754

Instead of putting the widget size in the class record, the widget puts the widget
part size in the same field. If the widget is a subclass of the Constraint class,
instead of putting the widget constraint record size in the class record, the widget
puts the widget constraint part size in the same field.

Instead of putting XtVersion in the class record, the widget puts
XtVersionDontCheck in the class record.

Define a variable, of type XmOffsetPtr, to point to the offset record. If the widget
is a subclass of the Constraint class, define a variable of type XmOffsetPtr to point
to the constraint offset record. These can be part of the widget's class record or
separate global variables.

In class initialization, the widget calls XmResolveAllPartOffsets, passing it
pointers to the class record, the address of the offset record, and the address of the
constraint offset record. If the widget not is a subclass of the Constraint class, it
should pass NULL as the address of the constraint offset record. This does several
things:

• Adds the superclass (which, by definition, has already been initialized) size
field to the part size field

• If the widget is a subclass of the Constraint class, adds the superclass
constraint size field to the constraint size field

• Allocates an array based upon the number of superclasses

• If the widget is a subclass of the constraint class, allocates an array for the
constraint offset record

• Fills in the offsets of all the widget parts and constraint parts with the
appropriate values, determined by examining the size fields of all
superclass records

• Uses the part offset array to modify the offset entries in the resource list to
be real offsets, in place

The widget defines a constant that will be the index to its part structure in the
offsets array. The value should be 1 greater than the index of the widget's
superclass. Constants defined for all Xm widgets can be found in XmP.h.

#define Bar Index (XmBulletinBIndex + 1)

Reference Pages
Xm ResolveAIi PartOffsets (3X)

Instead of accessing fields directly, the widget must always go through the offset
table. The XmField and XmConstraintField macros help you access these fields.
Because the XmPartOffset, XmConstraintPartOffset, XmField, and
XmConstraintField macros cQncatenate things, you must ensure that there is no
space after the part argument. For example, the following macros do not work
because of the space after the part (Label) argument:

XmField(w, offset, Label , text, char *}
XmPartOffset(Label , text).

Therefore, you must not have any spaces after the part (Label) argument, as
illustrated here:

XmField(w, offset, Label, text, char *)

You can define macros for each field to make this easier. Assume an integer field
xyz:

#define BarXyz(w) (*(int *) (((char *) w) + \

offset [BarIndex] + XtOffset(BarPart,xyz»)

For constraint field max_width:

#define BarMaxWidth(w) \
XmConstraintField(w, constraint_offsets, Bar,max_width,Dimen sion)

The parameters for XmResolveAllPartOffsets are

widgecclass Specifies the widget class pointer for the created widget

offset Returns the offset record

constraincoffset
Returns the constraint offset record

Related Information
XmResolvePartOffsets(3X) .

1-755

OSF/Motif Programmer's Reference

XmResolvePartOffsets (aX)

Synopsis

Description

1-756

XmResolvePartOffsets-A function that allows writing of upward-compatible
applications and widgets

#include <XmlXmP.h>

void XmResolvePartOffsets (widgecclass, offset)
WidgetClass widgecclass;
XmOffsetPtr * offset;

The use of offset records requires one extra global variable per widget class. The
variable consists of a pointer to an array of offsets into the widget record for each
part of the widget structure. The XmResolvePartOffsets function allocates the
offset records needed by an application to guarantee upward-compatible access to
widget instance records by applications and widgets. These offset records are used
by the widget to access all of the widget's variables. A widget needs to take the
steps described in the following paragraphs.

Instead of creating a resource list, the widget creates an offset resource list. To
accomplish this, use the XmPartResource structure and the XmPartOffset macro.
The XmPartResource data structure looks just like a resource list but, instead of
having one integer for its offset, it has two shorts. This structure is put into the
class record as if it were a normal resource list. Instead of using XtOffset for the
offset, the widget uses XmPartOffset.

XmPartResource resources[] = {

} ;

BarNxyz, BarCXyz, XmRBoolean,
sizeof(Boolean), XmPartOffset(Bar,xyz),
XmRlmmediate, (XtPointer)False }

Instead of putting the widget size in the class record, the widget puts the widget
part size in the same field.

Instead of, putting XtVersion in the class record, the widget puts
XtVersionDontCheck in the class record.

The widget defines a variable, of type XmOffsetPtr, to point to the offset record.
This can be part of the widget's class record or a separate global variable.

Reference Pages

XmResolvePartOffsets (3X)

In class initialization, the widget calls XmResolvePartOffsets, passing it a pointer
to contain the address of the offset record and the class record. This does several
things:

• Adds the superclass (which, by definition, has already been initialized) size
field to the part size field

• Allocates an array based upon the number of superclasses

• Fills in the offsets of all the widget parts with the appropriate values,
determined by examining the size fields of all superclass records

• Uses the part offset array to modify the offset entries in the resource list to
be real offsets, in place

The widget defines a constant that will be the index to its part structure in the
offsets array. The value should be I greater than the index of the widget's
superclass. Constants defined for all Xm widgets can be found in XmP.h.

#define Bar Index (XmBulletinBIndex + 1)

Instead of accessing fields directly, the widget must always go through the offset
table. The XmField macro helps you access these fields. Because the
XmPartOffset and XmField macros concatenate things together, you must ensure
that there is no space after the part argument. For example, the following macros
do not work because of the space after the part (Label) argument:

XmField(w, offset, Label , text, char *)
XmPartOffset(Label , text)

Therefore, you must not have any spaces after the part (Label) argument, as
illustrated here:

XmField(w, offset, Label, text, char *)

You can define macros for each field to make this easier. Assume an integer field
xyz:

#define BarXyz(w) (*(int *) «(char *) w) + \

offset [BarIndex] + XtOffset(BarPart,xyz)))

1-757

OSF/Motif Programmer's Reference
XmResolvePartOffsets(3X)

The parameters for XmResolvePartOffsets are

widgeCclass Specifies the widget class pointer for the created widget

offset Returns the offset record

Related Information
XmResolveAllPartOffsets(3X).

1-758

Synopsis

Description

Reference Pages

XmRowColumn(3X)

XmRowColumn-The RowColumn widget class

#include <Xm/RowColumn.h>

The RowColumn widget is a general-purpose RowColumn manager capable of
containing any widget type as a child. In general, it requires no special knowledge
about how its children function and provides nothing beyond support for several
different layout styles. However, it can be configured as a menu, in which case, it
expects only certain children, and it configures to a particular layout. The menus
supported are MenuBar, Pulldown or Popup MenuPanes, and OptionMenu.

The type of layout performed is controlled by how the application has set the
various layout resources. It can be configured to layout its children in either rows
or columns. In addition, the application can specify how the children are laid out,
as follows:

• The children are packed tightly together into either rows or columns.

• Each child is placed in an identically sized box (producing a symmetrical
look).

• A particular layout is specified (the current x and y positions of the children
control their location).

In addition, the application has control over both the spacing that occurs between
each row and column and the margin spacing present between the edges of the
RowColumn widget and any children that are placed against it.

In a MenuBar, Pulldown MenuPane, or Popup MenuPane the default for the
XmNshadowThickness resource is 2. In an OptionMenu or a WorkArea, (such as
a RadioBox or CheckBox) this resource is not applicable and its use is undefined.
If an application wishes to place a 3-D shadow around an OptionMenu or
WorkArea, it can create the RowColumn as a child of a Frame widget.

In a MenuBar, Pulldown MenuPane, or Popup MenuPane the
XmNnavigationType resource is not applicable and its use is undefined. In a
WorkArea, the default for XmNnavigationType is XmTAB_GROUP. In an
OptionMenu the default for XmNnavigationType is XmNONE.

In a MenuBar, Pulldown MenuPane, or Popup MenuPane the XmNtraversalOn
resource is not applicable and its use is undefined. In an OptionMenu or
WorkArea, the default for XmNtraversalOn is True.

If the parent of the RowColumn is a MenuShell, the XmNmappedWhenManaged
resource is forced to False when the widget is realized.

1-759

OSF/Motif Programmer's Reference
XmRowColumn(3X)

1-760

The user can specify resources in a resource file for the automatically created
widgets and gadgets of an OptionMenu. The following list identifies the names of
these widgets (or gadgets) and the associated OptionMenu areas.

Option Menu Label Gadget

Option Menu Cascade Button

Tear-off Menus

OptionLabel

OptionButton

Pulldown and Popup MenuPanes support tear-off menus, which enable the user to
retain a MenuPane on the display to facilitate subsequent menu selections. A
MenuPane that can be tom off is identified by a tear-off button that spans the width
of the MenuPane and displays a dashed line. A tom-off MenuPane contains a
window manager system menu icon and a title bar. The window title displays the
label of the cascade button that initiated the action when the label type is
XmSTRING. If the label contains a pixmap the window title is empty. A tear-off
menu from a Popup MenuPane also displays an empty title.

The user can tear off a MenuPane using the mouse or keyboard. Clicking BSelect
or pressing KActivate (or KSelect) on the tear-off button, tears off the MenuPane
at the current position. Pressing BTransfer on the tear-off button tears off the
MenuPane and allows the user to drag the tom-off menu to a new position
designated by releasing the mouse button. Tearing off a MenuPane unposts the
current active menu. Only one tear-off copy for each MenuPane is allowed.
Subsequent tear-off actions of a tom MenuPane unpost the existing copy first.

The name of the tear-off button of a tom-off menu pane is TearOffControl. The
name can be used to set resources in a resource file. An application can also obtain
the tear-off button itself using XmGetTearOffControl and then set resource values
by calling XtSetValues.

The tear-off button has Separator-like behavior. Its appearance can be specified
with the following tear-off button resources: XmNbackground,
XmNbackgroundPixmap, XmNbottomShadowColor, XmNforeground,
XmNheight, XmNmargin, XmNseparatorType, XmNshadowThickness, and
XmNtopShadowColor. Refer to the XmSeparator reference page for a complete
description of each of these resources.

The XmNtearOfIModel, XmNtearOfIMenuActivateCallback, and
XmNtearOfIMenuDeactivateCallback are RowColumn resources that affect
tear-off menu behavior.

By default, menus do not tear off. Setting the XmNtearOfIModel resource to
XmTEAR_OFF _ENABLED enables tear-off functionality. There is no resource
converter preregistered for XmNtearOfIModel. To allow tear-off functionality to
be enabled through the resource database, call the function
XmRepTypeInstallTearOfIModelConverter.

Classes

Reference Pages

XmRowColumn(3X)

Tear-off menu focus policy follows standard window manager policy. It is
recommended that the startupKeyFocus and autoKeyFocus mwm resources be
set to True.

RowColumn inherits behavior and resources from Core, Composite, Constraint,
and XmManager classes.

The class pointer is xmRowColumn WidgetClass.

The class name is XmRowColumn.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (0), or is not applicable (N/A).

1-761

OSF/Motif Programmer's Reference

XmRowColumn(3X)

XmRowColumn Resource Set

Name Default Access
Class Type

XmNadjustLast True CSG
XmCAdjustLast Boolean

XmNadjustMargin True CSG
XmCAdjustMargin Boolean

Xm Nentry Alignment XmALIGNMENT _BEGINNING CSG
XmCAlignment unsigned char

Xm NentryBorder 0 CSG
XmCEntryBorder Dimension

Xm NentryCallback NULL C
XmCCallback XtCallbackUst

Xm NentryClass dynamic CSG
XmCEntryClass WidgetClass

Xm NentryVerticalAlignment XmALIGNMENT _CENTER CSG
XmCVerticalAlignment unsigned char

XmNisAligned True CSG
XmClsAligned Boolean

Xm NisHomogeneous dynamic CG
XmClsHomogeneous Boolean

Xm NlabelString NULL C
XmCXmString XmString

Xm NmapCallback NULL C
XmCCallback X tCall backUst

Xm NmarginHeight dynamic CSG
XmCMarginHeight Dimension

XmNmarginWidth dynamic CSG
XmCMarginWidth Dimension

Xm NmenuAccelerator dynamic CSG
XmCAccelerators String

XmNmenuHelpWidget NULL CSG
XmCMenuWidget Widget

1-762

Reference Pages

XmRowColumn(3X)

Name Default Access
Class Type

XmNmenuHistory NULL CSG
XmCMenuWidget Widget

XmNmenuPost NULL CSG
XmCMenuPost String

XmNmnemonic NULL CSG
XmCMnemonic KeySym

XmNmnemonicCharSet XmFONTLIST _DEFAULT_TAG CSG
XmCMnemonicCharSet String

XmNnumColumns 1 CSG
XmCNumColumns short

Xm Norientation dynamic CSG
XmCOrientation unsigned char

XmNpacking dynamic CSG
XmCPacking unsigned char

XmNpopupEnabled True CSG
XmCPopupEnabled Boolean

XmNradioAlwaysOne True CSG
XmCRadioAlwaysOne Boolean

Xm NradioBehavior False CSG
XmCRadioBehavior Boolean

XmNresizeHeight True CSG
XmCResizeHeight Boolean

XmNresizeWidth True CSG
XmCResizeWidth Boolean

XmNrowColumnType XmWORK_AREA CG
XmCRowColumnType unsigned char

XmNspacing dynamic CSG
XmCSpacing Dimension

XmNsubMenuld NULL CSG
XmCMenuWidget Widget

XmNtearOffMenuActivateCallback NULL C
XmCCaliback XtCalibackList

1-763

OSF/Motif Programmer's Reference

XmRowColumn(3X)

1-764

Name Default Access
Class Type

Xm NtearOffMenuDeactivateCallback NULL C
XmCCaliback XtCalibackList

Xm NtearOffModel XmTEAR_OFF _DISABLED CSG
XmCTearOffModel unsigned char

XmNunmapCaliback NULL e
XmCCaliback XtCalibackList

XmNwhichButton dynamic eSG
XmCWhichButton unsigned int

XmNadjustLast
Extends the last row of children to the bottom edge of RowColumn
(when XmNorientation is XmHORIZONTAL) or extends the last
column to the right edge of RowColumn (when XmNorientation is
XmVERTICAL). Setting XmNadjustLast to False disables this
feature.

XmNadjustMargin
Specifies whether the inner minor margins of all items contained
within the RowColumn widget are forced to the same value. The
inner minor margin corresponds to the XmNmarginLeft,
XmNmarginRight, XmNmarginTop, and XmNmarginBottom
resources supported by XmLabel and XmLabelGadget.

A horizontal orientation causes XmNmarginTop and
XmNmarginBottom for all items in a particular row to be forced to
the same value; the value is the largest margin specified for one of
the Label items.

A vertical orientation causes XmNmarginLeft and
XmNmarginRight for all items in a particular column to be forced
to the same value; the value is the largest margin specified for one
of the Label items.

This keeps all text within each row or column lined up with all other
text in its row or column. If XmNrowColumnType is either
XmMENU_POPUP or XmMENU_PULLDOWN and this
resource is True, only button children have their margins adjusted.

Reference Pages

XmRowColumn(3X)

XmNentry Alignment
Specifies the alignment type for children that are subclasses of
XmLabel or XmLabelGadget when XmNisAligned is enabled.
The following are textual alignment types:

• XmALIGNMENT_BEGINNING (default)

• XmALIGNMENT_CENTER

• XmALIGNMENT_END

See the description of XmNalignment in the XmLabel(3X)
reference page for an explanation of these actions.

XmNentryBorder
Imposes a uniform border width upon all RowColumn's children.
The default value is 0 (zero), which disables the feature.

XmNentryCallback
Disables the XmNactivateCallback and
XmNvalueChangedCallback callbacks for all CascadeButton,
DrawnButton, PushButton, and ToggleButton widgets and gadgets
contained within the RowColumn widget. If the application
supplies this resource, the XmNactivateCallback and
XmNvalueChangedCallback callbacks are then revectored to the
XmNentryCallback callbacks. This allows an application to
supply a single callback routine for handling all items contained in a
RowColumn widget. The callback reason is XmCR_ACTIVATE.
If the application does not supply this resource, the
XmNactivateCallback and XmNvalueChangedCallback
callbacks for each item in the RowColumn widget work as normal.

The application must supply this resource when this widget is
created. Changing this resource using the XtSetValues is not
supported.

XmNentryClass
Specifies the only widget class that can be added to the RowColumn
widget; this resource is meaningful only when the
XmNisHomogeneous resource is set to True. Both widget and
gadget variants of the specified class may be added to the widget.

When XmCreateRadioBox is called or when
XmNrowColumnType is set to XmWORK_AREA and
XmNradioBehavior is True, the default value of XmNentryClass

1-765

OSF/Motif Programmer's Reference

XmRowColumn(3X)

1-766

is xmToggleButtonGadgetClass. When XmNrowColumnType is
set to XmMENV_BAR, the value of XmNentryClass is forced to
xmCascadeButtonWidgetClass.

XmNentryVerticalAlignment
Specifies the type of vertical alignment for children that are
subclasses of XmLabel, XmLabelGadget, and XmText. This
resource is invalid if XmNorientation is XmVERTICAL and
XmNpacking is XmPACK_TIGHT, because this layout preserves
variable heights among the children. The vertical alignment types
include:

XmALIGNMENT _BASELINE_BOTTOM
Causes the bottom baseline of all children in a row to
be aligned. This resource is applicable only when all
children in a row contain textual data.

XmALIGNMENT _BASELINE_TOP
Causes the top baseline of all children in a row to be
aligned. This resource is applicable only when all
children in a row contain textual data.

XmALIGNMENT _ CONTENTS_BOTTOM
Causes the bottom of the contents (text or pixmap) of
all children in a row to be aligned.

XmALIGNMENT_CENTER
Causes the center of all children in a row to be
aligned.

XmALIGNMENT _ CONTENTS_TOP

XmNisAligned

Causes the top of the contents (text or pixmap) of all
children in a row to be aligned.

Specifies text alignment for each item within the RowColumn
widget; this applies only to items that are subclasses of XmLabel or
XmLabelGadget. However, if the item is a Label widget or gadget
and its parent is either a Popup MenuPane or a Pulldown MenuPane,
alignment is not performed; the Label is treated as the title within
the MenuPane, and the alignment set by the application is not
overridden. XmNentry Alignment controls the type of textual
alignment.

Reference Pages

XmRowColumn(3X)

XmNisHomogeneous
Indicates whether the RowColumn widget should enforce exact
homogeneity among the items it contains; if this resource is set to
True, only the widgets that are of the class indicated by
XmNentryClass are allowed as children of the RowColumn widget.
This is most often used when creating a MenuBar. Attempting to
insert a child that is not a member of the specified class generates a
warning message.

In a MenuBar the value of XmNisHomogeneous is forced to True.
In an OptionMenu the value is forced to False. When
XmCreateRadioBox is called the default value is True. Otherwise,
the default value is False.

XmNlabelString
Points to a text string that displays the label to one side of the
selection area when XmNrowColumnType is set to
XmMENU_OPTION. This resource is not meaningful for all other
RowColumn types. If the application wishes to change the label
after creation, it must get the LabelGadget ID
(XmOptionLabeIGadget) and call XtSetValues on the
LabelGadget directly. The default value is no label.

XmNmapCallback
Specifies a widget-specific callback function that is invoked when
the window associated with the RowColumn widget is about to be
mapped. The callback reason is XmCR_MAP.

XmNmarginHeight
Specifies the amount of blank space between the top edge of the
RowColumn widget and the first item in each column, and the
bottom edge of the RowColumn widget and the last item in each
column. The default value is 0 (zero) for Pulldown and Popup
MenuPanes, and 3 pixels for other RowColumn types.

XmNmarginWidth
Specifies the amount of blank space between the left edge of the
RowColumn widget and the first item in each row, and the right
edge of the RowColumn widget and the last item in each row. The
default value is 0 (zero) for Pulldown and Popup MenuPanes, and 3
pixels for other RowColumn types.

XmNmenuAccelerator
This resource is useful only when the RowColumn widget has been
configured to operate as a Popup MenuPane or a MenuBar. The
format of this resource is similar to the left side specification of a

1-767

OSF/Motif Programmer's Reference
XmRowColumn(3X)

1-768

translation string, with the limitation that it must specify a key
event. For a Popup MenuPane, when the accelerator is typed by the
user, the Popup MenuPane is posted. For a MenuBar, when the
accelerator is typed by the user, the first item in the MenuBar is
highlighted, and traversal is enabled in the MenuBar. The default
for a Popup MenuPane is KMenu. The default for a MenuBar is
KMenuBar. Setting the XmNpopupEnabled resource to False
disables the accelerator.

XmNmenuHelp Widget
Specifies the widget ID for the CascadeButton, which is treated as
the Help widget if XmNrowColumnType is set to
XmMENU_BAR. The MenuBar always places the Help widget at
the bottom right corner (in a left to right environment) of the
MenuBar. If the RowColumn widget is any type other than
XmMENU _BAR, this resource is not meaningful.

XmNmenuHistory
Specifies the widget ID of the last menu entry to be activated. It is
also useful for specifying the current selection for an OptionMenu.
If XmNrowColumnType is set to XmMENU_OPTION, the
specified menu item is positioned under the cursor when the menu is
displayed.

If the RowColumn widget has the XmNradioBehavior resource set
to True, the widget field associated with this resource contains the
widget ID of the last ToggleButton or ToggleButtonGadget to
change from un selected to selected. The default value is the widget
ID of the first child in the widget.

XmNmenuPost
Specifies an X event description indicating a button event that posts
a menu system. The default for XmMENU_POPUP is BMenu
Press. The default for XmMENU_OPTION, XmMENU_BAR,
and XmWORK_AREA is BSelect Press. The XmNmenuPost
resource for pulldowns should be consistent with that of the top­
level parent menu (although the event type is ignored). Setting this
resource to BTransfer Press will conflict with drag and drop
operations, which use BTransfer Press as a default button binding.

XmNmnemonic
This resource is useful only when XmNrowColumnType is set to
XmMENU_OPTION. It specifies a keysym for a key that, when
pressed by the user along with the MAlt modifier, posts the
associated Pulldown MenuPane. The first character in the
OptionMenu label string that exactly matches the mnemonic in the

Reference Pages

XmRowColumn(3X)

character set specified in XmNmnemonicCharSet is underlined.
The user can post the menu by pressing either the shifted or the
un shifted mnemonic key. The default is no mnemonic.

XmNmnemonicCharSet
Specifies the character set of the mnemonic for an OptionMenu.
The default is XmFONTLIST_DEFAULT_TAG. If the
RowColumn widget is any type other than XmMENU_OPTION,
this resource is not meaningful.

XmNnumColumns
Specifies the number of minor dimension extensions that are made
to accommodate the entries; this attribute is meaningful only when
XmNpacking is set to XmPACK_COLUMN.

For vertically oriented RowColumn widgets, this attribute indicates
how many columns are built; the number of entries per column is
adjusted to maintain this number of columns, if possible.

For horizontally oriented RowColumn widgets, this attribute
indicates how many rows are built.

The default value is 1. In an OptionMenu the value is forced to 1.
The value must be greater than 0 (zero).

XmNorientation
Determines whether RowColumn layouts are row-major or
column-major. In a column-major layout, the children of the
RowColumn are laid out in columns top to bottom within the
widget. In a row-major layout the children of the RowColumn are
laid out in rows. The XmVERTICAL resource value selects a
column-major layout. XmHORIZONTAL selects a row-major
layout.

When creating a MenuBar or an OptionMenu, the default is
XmHORIZONTAL. Otherwise, the default value is
XmVERTICAL. The results of specifying a value of
XmVERTICAL for a MenuBar are undefined.

XmNpacking Specifies how to pack the items contained within a RowColumn
widget. This can be set to XmPACK_TIGHT,
XmPACK_COLUMN or XmPACK_NONE. When a RowColumn
widget packs the items it contains, it determines its major dimension
using the value of the XmNorientation resource.

1-769

OSF/Motif Programmer's Reference

XmRowColumn(3X)

1-770

XmPACK_TIGHT indicates that given the current major
dimension (for example, vertical if XmNorientation is
XmVERTICAL), entries are placed one after the other until the
RowColumn widget must wrap. RowColumn wraps when there is
no room left for a complete child in that dimension. Wrapping
occurs by beginning a new row or column in the next available
space. Wrapping continues, as often as necessary, until all of the
children are laid out. In the vertical dimension (columns), boxes are
set to the same width; in the horizontal dimension (rows), boxes are
set to the same depth. Each entry's position in the major dimension
is left unaltered (for example, XmNy is left unchanged when
XmNorientation is XmVERTICAL); its position in the minor
dimension is set to the same value as the greatest entry in that
particular row or column. The position in the minor dimension of
any particular row or column is independent of all other rows or
columns.

XmPACK_COLUMN indicates that all entries are placed in
identically sized boxes. The boxes are based on the largest height
and width values of all the children widgets. The value of the
XmNnumColumns resource determines how many boxes are
placed in the major dimension, before extending in the minor
dimension.

XmPACK_NONE indicates that no packing is performed. The x
and y attributes of each entry are left alone, and the RowColumn
widget attempts to become large enough to enclose all entries.

When XmCreateRadioBox IS called or when
XmNrowColumnType is set to XmWORK_AREA and
XmNradioBehavior is True, the default value of XmNpacking is
XmPACK_COLUMN. In an OptionMenu the value is initialized
to XmPACK_TIGHT. Otherwise, the value defaults to
XmPACK_TIGHT.

Reference Pages

XmRowColumn(3X)

XmNpopupEnabled
Allows the menu system to enable keyboard input (accelerators and
mnemonics) defined for the Popup MenuPane and any of its
submenus. The Popup MenuPane needs to be informed whenever
its accessibility to the user changes because posting of the Popup
MenuPane is controlled by the application. The default value of this
resource is True (keyboard input-accelerators and mnemonics­
defined for the Popup MenuPane and any of its submenus is
enabled).

XmNradioAlwaysOne
If True, forces the active ToggleButton or ToggleButtonGadget to
be automatically selected after having been un selected (if no other
toggle was activated). If False, the active toggle may be unselected.
The default value is True. This resource is important only when
XmNradioBehavior is True.

The application can always add and subtract toggles from
RowColumn regardless of the selected/unselected state of the
toggle. The application can also manage and unman age toggle
children of RowColumn at any time regardless of state. Therefore,
the application can sometimes create a RowColumn that has
XmNradioAlwaysOne set to True and none of the toggle children
selected. The result is undefined if the value of this resource is True
and the application sets more than one ToggleB utton at a time.

XmNradioBehavior
Specifies a Boolean value that when True, indicates that the
RowColumn widget should enforce a RadioBox-type behavior on
all of its children that are ToggleButtons or ToggleButtonGadgets.

When the value of this resource is True, XmNindicatorType
defaults to XmONE_OF _MANY for ToggleButton and
ToggleB uttonGadget children.

RadioBox behavior dictates that when one toggle is selected and the
user selects another toggle, the first toggle is unselected
automatically. The RowColumn usually does not enforce this
behavior if the application, rather than the user, changes the state of
a toggle. The RowColumn does enforce this behavior if a toggle
child is selected with XmToggleButtonSetState or
XmToggleButtonGadgetSetState with a notify argument of True.

When XmCreateRadioBox is called, the default value of
XmNradioBehavior is True. Otherwise, the default value is False.

1-771

OSF/Motif Programmer's Reference

XmRowColumn(3X)

1-772

XmNresizeHeight
Requests a new height if necessary, when set to True. When this
resource is set to False, the widget does not request a new height
regardless of any changes to the widget or its children.

XmNresize Width
Requests a new width if necessary, when set to True. When set to
False, the widget does not request a new width regardless of any
changes to the widget or its children.

XmNrowColumnType
Specifies the type of RowColumn widget to be created. It is a
nonstandard resource that cannot be changed after it is set. If an
application uses any of the convenience routines, except
XmCreateRowColumn, this resource is automatically forced to the
appropriate value by the convenience routine. If an application uses
the Xt Intrinsics API to create its RowColumn widgets, it must
specify this resource itself. The set of possible settings for this
resource are

• XmWORK_AREA (default)

• XmMENU_BAR

• XmMENU_PULLDOWN

• XmMENU_POPUP

• XmMENU_OPTION

This resource cannot be changed after the RowColumn widget is
created. Any changes attempted through XtSetValues are ignored.

The value of this resource is used to determine the value of a
number of other resources. The descriptions of RowColumn
resources explain this when it is the case. The resource
XmNnavigationType, inherited from XmManager, is changed to
XmNONE if XmNrowColumnType is XmMENU_OPTION.

XmNspacing Specifies the horizontal and vertical spacing between items
contained within the RowColumn widget. The default. value is 3
pixels for XmOPTION_MENU and XmWORK_AREA and 0
(zero) for other RowColumn types.

Reference Pages
XmRowColumn(3X)

XmNsubMenuId
Specifies the widget ID for the Pulldown MenuPane to be associated
with an OptionMenu. This resource is useful only when
XmNrowColumnType is set to XmMENU_OPTION. The default
value is NULL.

XmNtearOftMenuActivateCallback
Specifies the callback list that notifies the application when the
tear-off MenuPane is about to be activated. It precedes the tear-off's
map callback.

Use this resource when your application has shared MenuPanes and
when the torn-off menu can have two or more parents that can have
opposing sensitivity states for the same menu item. This resource
enables the application to track whether a menu item is sensitive or
insensitive and to set the state to the original parent's menu item
state when the torn-off menu is reposted. The application can use
XmGetPostedFromWidget to determine from which parent the
menu was torn. The callback reason is
XmCR_TEAR_OFF_ACTIVATE. The default is NULL.

XmN1earOftMenuDeac1iva1eCallback
Specifies the callback list that notifies the application when the
tear-off MenuPane is about to be deactivated. It follows the tear­
off's unmap callback.

Use this resource when your application has shared MenuPanes and
when the torn-off menu can have two or more parents that can have
opposing sensitivity states for the same menu item. This resource
enables the application to track whether a menu item is sensitive or
insensitive and to set the state to the original parent's menu item
state when the torn-off menu is reposted. The application can use
XmGetPostedFrom Widget to determine from which parent the
menu was torn. The callback reason is
XmCR_TEAR_OFF_DEACTIVATE. The default is NULL.

XmNtearOftModel
Indicates whether tear-off functionality is enabled or disabled when
XmNrowColumnType is set to XmMENU _PULLDOWN or
XmMENU_POPUP. The values are XmTEAR_OFF _ENABLED
or XmTEAR_OFF _DISABLED (default value). This resource is
invalid for type XmMENU_OPTION; however, it does affect any

1-773

OSF/Motif Programmer's Reference

XmRowColumn{3X)

1-774

pUlldown submenus within an OptionMenu. The function
XmRepTypelnstallTearOfIModelConverter installs a resource
converter for this resource.

XmNunmapCallback
Specifies a list of callbacks that is called after the window
associated with the RowColumn widget has been unmapped. The
callback reason is XmCR_UNMAP. The default value is NULL.

XmNwhichButton
This resource is obsolete; it has been replaced by XmNmenuPost
and is present for compatibility with older releases of OSFlMotif.

XmRowColumn Constraint Resource Set

Name Default Access
Class Type

XmNpositionlndex XmLAST _POSITION CSG
XmCPositionlndex short

XmNpositionlndex
Specifies the position of the widget in its parent's list of children
(the value of the XmNchiidren resource). The value is an integer
that is no less than 0 (zero) and no greater than the number of
children in the list at the time the value is specified. A value of 0
(zero) means that the child is placed at the beginning of the list. The
value can also be specified as XmLAST_POSITION (the default),
which means that the child is placed at the end of the list. Any other
value is ignored. XtGetValues returns the position of the widget in
its parent's child list at the time of the call to XtGetValues.

When a widget is inserted into its parent's child list, the positions of
any existing children that are greater than or equal to the specified
widget's XmNpositionlndex are increased by 1. The effect of a
call to XtSetValues for XmNpositionlndex is to remove the
specified widget from its parent's child list, decrease by 1 the
positions of any existing children that are greater than the specified
widget's former position in the list, and then insert the specified
widget into its parent's child list as described in the preceding
sentence.

Reference Pages

XmRowColumn(3X)

Simple Menu Creation Resource Set

Name Default Access
Class Type

Xm NbuttonAccelerators NULL C
XmCButtonAccelerators StringTable

Xm NbuttonAcceleratorText NULL C
XmCButtonAcceleratorText XmStringTable

XmNbuttonCount 0 C
XmCButtonCount int

Xm NbuttonM nemonicCharSets NULL C
XmCButtonMnemonicCharSets XmStringCharSetTable

XmNbuttonMnemonics NULL C
XmCButtonMnemonics Xm KeySymTable

XmNbuttons NULL C
XmCButtons XmStringTable

XmNbuttonSet -1 C
XmCButtonSet int

XmNbuttonType NULL C
XmCButtonType Xm ButtonTypeTable

XmNoptionLabel NULL C
XmCOptionLabel XmString

XmNoptionMnemonic NULL C
XmCOptionM nemonic KeySym

XmNpostFromButton -1 C
XmCPostF rom Button int

XmNsimpleCallback NULL C
XmCCallback XtCallbackProc

XmNbuttonAccelerators
This resource is for use with the simple menu creation routines. It
specifies a list of accelerators for the buttons created. The list
contains one element for each button, separator, and title created.

XmNbuttonAcceleratorText
This resource is for use with the simple menu creation routines. It
specifies a list of compound strings to display for the accelerators
for the buttons created. The list contains one element for each
button, separator, and title created.

1-775

OSF/Motif Programmer's Reference
XmRowColumn(3X)

1-776

XmNbuttonCount
This resource is for use with the simple menu creation routines. It
specifies the total number of menu buttons, separators, and titles to
create. The value must not be negative.

XmNbuttonMnemonicCharSets
This resource is for use with the simple menu creation routines. It
specifies a list of character sets with which button mnemonics are to
be displayed. The list contains one element for each button,
separator, and title created. The default is determined dynamically
depending on the locale of the widget.

XmNbuttonMnemonics
This resource is for use with the simple menu creation routines. It
specifies a list of mnemonics for the buttons created. The list
contains one element for each button, separator, and title created.

XmNbuttons This resource is for use with the simple menu creation routines. It
specifies a list of compound strings to use as labels for the buttons
created. The list contains one element for each button, separator,
and title created.

XmNbuttonSet
This resource is for use with the simple menu creation routines. It
specifies which button of a RadioBox or OptionMenu Pulldown
submenu is initially set. The value is an integer n indicating the nth
ToggleButtonGadget specified for a RadioBox or the nth
PushButtonGadget specified for an OptionMenu Pulldown submenu.
The first button specified is number O. The value must not be
negative.

XmNbuttonType
This resource is for use with the simple menu creation routines. It
specifies a list of button types associated with the buttons to be
created. The list contains one element for each button, separator,
and title created. If this resource is not specified, each button in a
MenuBar is a CascadeButtonGadget, each button in a RadioBox or
CheckBox is a ToggleButtonGadget, and each button in any other

Reference Pages

XmRowColumn(3X)

type of RowColumn widget is a PushB uttonGadget. Each button
type is of type XmButtonType, an enumeration with the following
possible values:

XmCASCADEBUTTON
Specifies a CascadeButtonGadget for a MenuBar,
Popup MenuPane, or Pulldown MenuPane.

XmCHECKBUTTON
Specifies a ToggleButtonGadget for a CheckBox,
Popup MenuPane, or Pulldown MenuPane.

XmDOUBLE_SEPARATOR
Specifies a SeparatorGadget for a Popup MenuPane,
Pulldown MenuPane, or OptionMenu Pulldown
submenu. The separator type is
XmDOUBLE_LINE.

XmPUSHBUTTON
Specifies a PushButtonGadget for a Popup
MenuPane, Pulldown MenuPane, or OptionMenu
Pulldown submenu.

XmRADIOBUTTON
Specifies a ToggleButtonGadget for a RadioBox,
Popup MenuPane, or Pulldown MenuPane.

XmSEPARATOR
Specifies a SeparatorGadget for a Popup MenuPane,
Pulldown MenuPane, or OptionMenu Pulldown
submenu.

XmTITLE Specifies a LabelGadget used as a title for a Popup
MenuPane or Pulldown MenuPane.

XmNoptionLabel
This resource is for use with the simple menu creation routines. It
specifies a compound string for the label string to be used on the left
side of an OptionMenu.

1-777

OSF/Motif Programmer's Reference

XmRowColumn(3X)

1-778

XmNoptionMnemonic
This resource is for use with the simple menu creation routines. It
specifies a keysym for a key that, when pressed by the user along
with the MAlt modifier, posts the associated Pulldown MenuPane
for an OptionMenu.

XmNpostFromButton
This resource is for use with the simple menu creation routines. For
a Pulldown MenuPane, it specifies the button in the parent to which
the submenu is attached. The menu is then posted from this button.
The value is an integer n indicating the nth CascadeButton or
CascadeButtonGadget specified for the parent of the Pulldown
MenuPane. The first button specified is number O. The value must
not be negative.

XmNsimpleCallback

Inherited Resources

This resource is for use with the simple menu creation routines. It
specifies a callback procedure to be called when a button is
activated or when its value changes. This callback function is added
to each button after creation. For a CascadeButtonGadget or a
PushButtonGadget, the callback is added as the button's
XmNactivateCallback, and it is called when the button is activated.
For a ToggleButtonGadget, the callback is added as the button's
XmNvalueChangedCallback, and it is called when the button's
value changes. The button number is passed in the clienCdata field.

RowColumn inherits behavior and resources from the superclasses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superclass.

Reference Pages

XmRowColumn(3X)

XmManager Resource Set

Name Default Access
Class Type

Xm Nbottom ShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCallback NULL C
XmCCallback XtCallbackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus NULL CSG
XmClnitialFocus Widget

XmNnavigationType dynamic CSG
XmCNavigationType XmNavigationType

Xm NshadowThickness dynamic CSG
XmCShadowThickness Dimension

Xm Nstring Direction dynamic CG
XmCStringDirection XmStringDirection

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn dynamic CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-779

OSF/Motif Programmer's Reference

XmRowColumn(3X)

Composite Resource Set

Name Default Access
Class Type

XmNchiidren NULL G
XmCReadOnly WidgetList

XmNinsertPosition default procedure CSG
XmClnsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-780

Reference Pages

XmRowColumn(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback X tCall backList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmCI nitial ResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-781

OSF/Motif Programmer's Reference

XmRowColumn(3X)

1-782

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int
XEvent
Widget

reason;
* event;
widget;

char * data;
char * callbackstruct;

} XmRowColumnCallbackStruct;

reason Indicates why the callback was invoked

event Points to the XEvent that triggered the callback

The following fields apply only when the callback reason is XmCR_ACTIVATE;
for all other callback reasons, these fields are set to NULL. The
XmCR_ACTIVATE callback reason is generated only when the application has
supplied an entry callback, which overrides any activation callbacks registered
with the individual RowColumn items.

widget

data

callbackstruct

Is set to the widget ID of the RowColumn item that has been
activated

Contains the client-data value supplied by the application when the
RowColumn item's activation callback was registered

Points to the callback structure generated by the RowColumn item's
activation callback

Reference Pages

XmRowColumn(3X)

Translations
XmRowColumn translations depend on the value of the XmNrowColumnType
resource.

If XmNrowColumnType is set to XmWORK_AREA, XmRowColumn inherits
translations from XmManager.

If XmNrowColumnType is set to XmMENU_OPTION, XmRowColumn
inherits traversal, KActivate, and KCancel translations from XmManager and has
the following additional translations. These translations may not directly
correspond to a translation table.

BSelect Press:

BSelect Release:

KSelect:

KHelp:

MenuBtnDownO

MenuBtnUpO

ManagerGadgetSelectO

HelpO

The translations for XmRowColumn if XmNrowColumnType is set to
XmMENU_BAR XmMENU_PULLDOWN, or XmMENU_POPUP are
described in the following list. In a Popup menu system, BMenu also performs the
BSelect actions. These translations may not directly correspond to a translation
table.

BSelect Press: MenuBtnDownO

BSelect Release: MenuBtnUpO

KActivate: ManagerGadgetSelectO

KSelect: ManagerGadgetSelectO

MAny KCancel: MenuGadgetEscapeO

KHelp: HeipO

KLeft: MenuGadgetTraverseLeftO

KRight: MenuGadgetTraverseRightO

KUp: MenuGadgetTraverseUpO

KDown: MenuGadgetTraverseDownO

1-783

OSF/Motif Programmer's Reference

XmRowColumn(3X)

1-784

Action Routines
The XmRowColumn action routines are

HelpO: Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

ManagerGadgetSelectO:
When a gadget child of the menu has the focus, invokes the gadget
child's behavior associated with KSelect. This generally has the
effect of unposting the menu hierarchy and arming and activating
the gadget, except that, for a CascadeButtonGadget with a submenu,
it posts the submenu.

MenuBtnDownO:
When a gadget child of the menu has focus, invokes the gadget
child's behavior associated with BSelect Press. This generally has
the effect of unposting any menus posted by the parent menu,
enabling mouse traversal in the menu, and arming the gadget. For a
CascadeButtonGadget with a submenu, it also posts the associated
submenu.

MenuBtnUpO:
When a gadget child of the menu has focus, invokes the gadget
child's behavior associated with BSelect Release. This generally
has the effect of unposting the menu hierarchy and activating the
gadget, except that for a CascadeButtonGadget with a submenu, it
posts the submenu and enables keyboard traversal in the menu.

MenuGadgetEscapeO:
In a top-level Pulldown MenuPane from a MenuBar, unposts the
menu, disarms the MenuBar CascadeButton and the MenuBar, and,
when the shell's keyboard focus policy is XmEXPLICIT, restores
keyboard focus to the widget that had the focus before the MenuBar
was entered. In other Pulldown MenuPanes, unposts the menu.

In a Popup MenuPane, unposts the menu and, when the shell's
keyboard focus policy is XmEXPLICIT, restores keyboard focus to
the widget from which the menu was posted. In a TearOff
MenuPane that has no submenus posted, dismisses the menu;
otherwise, if one or more submenus are posted, unposts the last
menu pane.

Reference Pages

XmRowColumn(3X)

MenuGadgetTraverseDownO:
If the current menu item has a submenu and is in a MenuBar, then
this action posts the submenu, disarms the current menu item, and
arms the submenu's first traversable menu item.

If the current menu item is in a MenuPane, then this action disarms
the current menu item and arms the item below it. This action wraps
within the MenuPane. When the current menu item is at the
MenuPane's bottom edge, then this action wraps to the topmost
menu item in the column to the right, if one exists. When the
current menu item is at the bottom, rightmost corner of the
MenuPane, then this action wraps to the tear-off control, if present,
or to the top, leftmost menu item.

MenuGadgetTraverseLeftO:
When the current menu item is in a MenuBar, this action disarms
the current item and arms the MenuBar item to the left. This action
wraps within the MenuBar.

In MenuPanes, if the current menu item is not at the left edge of a
MenuPane, this action disarms the current item and arms the item to
its left. If the current menu item is at the left edge of a submenu
attached to a MenuBar item, then this action unposts the submenu
and traverses to the MenuBar item to the left, wrapping if necessary.
If that MenuBar item has a submenu, it posts the submenu and arms
the first traversable item in the submenu. If the current menu item is
at the left edge of a submenu not directly attached to a MenuBar
item, then this action unposts the current submenu only.

In Popup or torn-off MenuPanes, when the current menu item is at
the left edge, this action wraps within the MenuPane. If the current
menu item is at the left edge of the MenuPane and not in the top
row, this action wraps to the rightmost menu item in the row above.
If the current menu item is in the upper, leftmost corner, this action
wraps to the tear-off control, if present, or else it wraps to the
bottom, rightmost menu item in the MenuPane.

MenuGadgetTraverseRightO:
If the current menu item is in a MenuBar, then this action disarms
the current item and arms the MenuBar item to the right. This
action wraps within the MenuBar.

In MenuPanes, if the current menu item is a CascadeButton, then
this action posts its associated submenu. If the current menu item is
not a CascadeButton and is not at the right edge of a MenuPane, this
action disarms the current item and arms the item to its right,
wrapping if necessary. If the current menu item is not a

1-785

OSF/Motif Programmer's Reference

XmRowColumn(3X)

1-786

CascadeButton and is at the right edge of a submenu that is a
descendent of a MenuBar, then this action unposts all submenus and
traverses to the MenuBar item to the right. If that MenuBar item
has a submenu, it posts the submenu and arms the submenu's first
traversable item.

In Popup or torn-off menus, if the current menu item is not a
CascadeButton and is at the right edge of a row (except the bottom
row), this action wraps to the leftmost menu item in the row below.
If the current menu item is not a CascadeButton and is in the
bottom, rightmost corner of a Popup or Pulldown MenuPane, this
action wraps to the tear-off control, if present, or else it wraps to the
top, leftmost menu item of the MenuPane.

MenuGadgetTraverseUpO:

Related Behavior

When the current menu item is in a MenuPane, then this action
disarms the current menu item and arms the item above it. This
action wraps within the MenuPane. When the current menu item is
at the MenuPane's top edge, then this action wraps to the
bottommost menu item in the column to the left, if one exists. When
the current menu item is at the top, leftmost corner of the
MenuPane, then this action wraps to the tear-off control, if present,
or to the bottom, rightmost menu item.

The following menu functions are available:

KMenuBar: In any non-popup descendant of a MenuBar's parent, excluding the
MenuBar itself, this action enables keyboard traversal and moves
keyboard focus to the first item in the MenuBar. In the MenuBar or
any menu cascaded from it, this action unposts the menu hierarchy
and, when the shell's keyboard focus policy is XmEXPLICIT,
restores focus to the widget that had the focus when the menu
system was entered.

KMenu: Pops up the menu associated with the control that has the keyboard
focus. Enables keyboard traversal in the menu. In the Popup menu
system or any menu cascaded from it, this action unposts the menu
hierarchy and, when the shell's keyboard focus policy is
XmEXPLICIT, restores focus to the widget that had the focus
when the menu system was entered.

Reference Pages

XmRowColumn(3X)

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Composite(3X), Constraint(3X), Core(3X), XmCreateMenuBar(3X),
XmCreateOptionMenu(3X), XmCreatePopupMenu(3X),
XmCreatePulldownMenu(3X), XmCreateRadioBox(3X),
XmCreateRowColumn(3X), XmCreateSimpleCheckBox(3X),
XmCreateSimpleMenuBar(3X), XmCreateSimpleOptionMenu(3X),
XmCreateSimplePopupMenu(3X), XmCreateSimplePulldownMenu(3X),
XmCreateSimpleRadioBox(3X), XmCreateWorkArea(3X),
XmGetMenuCursor(3X), XmGetPostedFrom Widget(3X),
XmGetTearOffControl, XmLabel(3X), XmManager(3X),
XmMenuPosition(3X), XmOptionButtonGadget(3X),
XmOptionLabeIGadget(3X), XmRepTypelnstallTearOftModelConverter,
XmSetMenuCursor(3X), XmUpdateDisplay(3X),
XmVaCreateSimpleCheckBox(3X), XmVaCreateSimpleMenuBar(3X),
XmVaCreateSimpleOptionMenu(3X),' XmVaCreateSimplePopupMenu(3X),
XmVaCreateSimplePulldownMenu(3X), and
XmVaCreateSimpleRadioBox(3X).

1-787

OSF/Motif Programmer's Reference

XmScale(3X)

Synopsis

Description

Classes

XmScale-The Scale widget class

#include <Xm/Scale.h>

Scale is used by an application to indicate a value from within a range of values,
and it allows the user to input or modify a value from the same range.

A Scale has an elongated rectangular region similar to a ScrollBar. A slider inside
this region indicates the current value along the Scale. The user can also modify
the Scale's value by moving the slider within the rectangular region of the Scale. A
Scale can also include a label set located outside the Scale region. These can
indicate the relative value at various positions along the scale.

A Scale can be either input/output or output only. An input/output Scale's value
can be set by the application and also modified by the user with the slider. An
output-only Scale is used strictly as an indicator of the current value of something
and cannot be modified interactively by the user. The Core resource
XmNsensitive specifies whether the user can interactively modify the Scale's
value.

The user can specify resources in a resource file for the automatically created
gadget that contains the title of the Scale widget. The name of the gadget is Title.

Scale inherits behavior and resources from Core, Composite, Constraint, and
XmManager classes.

The class pointer is xmScale WidgetClass.

The class name is XmScale.

New Resources

1-788

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmScale(3X)

XmScale Resource Set

Name Default Access
Class Type

XmNdecimalPoints 0 CSG
XmCDecimalPoints short

Xm NdragCallback NULL C
XmCCaliback XtCalibackList

XmNfontList dynamic CSG
XmCFontList XmFontList

Xm NhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

Xm NhighlightThickness 2 CSG
XmCHighlightThickness Dimension

XmNmaximum 100 CSG
XmCMaximum int

XmNminimum 0 CSG
XmCMinimum int

Xm Norientation XmVERTICAL CSG
XmCOrientation unsigned char

Xm NprocessingDirection dynamic CSG
XmCProcessingDirection unsigned char

Xm NscaleHeight 0 CSG
XmCScaleHeight Dimension

Xm NscaleM ultiple dynamic CSG
XmCScaleMultiple int

XmNscaleWidth 0 CSG
XmCScaleWidth Dimension

XmNshowValue False CSG

,I XmCShowValue Boolean

1-789

OSF/Motif Programmer's Reference

XmScale(3X)

1-790

Name Default Access
Class Type

Xm NtitleString NULL CSG
XmCTitleString XmString

XmNvalue dynamic CSG
XmCValue int

XmNvalueChangedCaliback NULL C
XmCCaliback XtCalibackList

XmNdecimalPoints
Specifies the number of decimal points to shift the slider value when
displaying it. For example, a slider value of 2,350 and an
XmdecimalPoints value of 2 results in a display value of 23.50.
The value must not be negative.

XmNdragCallback
Specifies the list of callbacks that is called when the slider position
changes as the slider is being dragged. The reason sent by the
callback is XmCR_DRAG.

XmNfontList Specifies the font list to use for the title text string specified by
XmNtitleString, and the label displayed when XmNshowValue is
True. If this value is NULL at initialization, the parent hierarchy is
searched for an ancestor that is a subclass of the BulletinBoard,
VendorS hell, or MenuShell widget class. If such an ancestor is
found, the font list is initialized to the XmNlabelFontList of the
ancestor widget. If no such ancestor is found, the default is
implemehtation dependent. Refer to XmFontList(3X) for more
information on the creation and structure of a font list.

XmNhighlightOnEnter
Specifies whether the highlighting rectangle is drawn when the
cursor moves into the widget. If the shell's focus policy is
XmEXPLICIT, this resource is ignored, and the widget is
highlighted when it has the focus. If the shell's focus policy is
XmPOINTE~ and if this resource is True, the highlighting
rectangle is drawn when the the cursor moves into the widget. If the
shell's focus policy is XmPOINTER and if this resource is False,
the highlighting rectangle is not drawn when the the cursor moves
into the widget. The default is False.

Reference Pages

XmScale (3X)

XmNhighlightThickness
Specifies the size of the slider's border drawing rectangle used for
enter window and traversal highlight drawing.

XmNmaximum
Specifies the slider's maximum value. XmNmaximum must be
greater than XmNminimum.

XmNminimum
Specifies the slider's minimum value. XmNmaximum must be
greater than XmNminimum.

XmNorientation
Displays Scale vertically or horizontally. This resource can have
values of XmVERTICAL and XmHORIZONTAL.

XmNprocessingDirection
Specifies whether the value for XmNmaximum is on the right or
left side of XmNminimum for horizontal Scales or above or below
XmNminimum for vertical Scales. This resource can have values
of XmMAX_ON_TOP, XmMAX_ON_BOTTOM,
XmMAX_ON_LEFT, and XmMAX_ON_RIGHT. If the
XmScale is oriented vertically, the default value is
XmMAX_ ON_TOP. If the XmScale is oriented horizontally, the
default value may depend on the value of the XmNstringDirection
resource.

XmNscaleHeight
Specifies the height of the slider area. The value should be in the
specified unit type (the default is pixels). If no value is specified a
default height is computed.

XmN scaleMultiple
Specifies the amount to move the slider when the user takes an
action that moves the slider by a multiple increment. The default is
(XmNmaximum - XmNminimum) divided by 10, with a minimum
of 1.

1-791

OSF/Motif Programmer's Reference

XmScale(3X)

1-792

XmNscaleWidth
Specifies the width of the slider area. The value should be in the
specified unit type (the default is pixels). If no value is specified a
default width is computed.

XmNshowValue
Specifies whether a label for the current slider value should be
displayed next to the slider. If the value is True, the current slider
value is displayed.

XmNtitleString
Specifies the title text string to appear in the Scale widget window.

XmNvalue Specifies the slider's current position along the scale, between
XmNminimum and XmNmaximum. The value is constrained to
be within these inclusive bounds. The initial value of this resource
is the larger of 0 and XmNminimum.

XmNvalueChangedCallback

Inherited Resources

Specifies the list of callbacks that is called when the value of the
slider has changed. The reason sent by the callback is
XmCR_ VALUE_CHANGED.

Scale inherits behavior and resources from the superclasses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superclass.

Reference Pages

XmScale{3X)

XmManager Resource Set

Name Default Access
Class Type

Xm Nbottom ShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

Xm NhelpCaliback NULL C
XmCCaliback XtCalibackList

Xm NhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus NULL CSG
XmClnitialFocus Widget

XmNnavigationType XmTAB_GROUP CSG
XmCNavigationType XmNavigationType

Xm NshadowThickness 2 CSG
XmCShadowThickness Dimension

XmNstringDirection dynamic CG
Xm CString Direction XmStringDirection

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-793

OSF/Motif Programmer's Reference

XmScale(3X)

Composite Resource Set

Name Default Access
Class Type

XmNchiidren NULL G
XmCReadOnly Widget List

XmNinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-794

Reference Pages

XmScale (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-795

OSF/Motif Programmer's Reference

XmScale(3X)

1-796

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
int value;

} XmScaleCallbackStruct;

reason

event

value

Behavior

Indicates why the callback was invoked

Points to the XEvent that triggered the callback

Is the new slider value

XmScale has the following behavior:

BSelect Press or BTransfer Press:
In the region between an end of the Scale and the slider:
Moves the slider by one multiple increment in the direction of the
end of the Scale and calls the XmNvalueChangedCallback
callbacks. If XmNprocessingDirection is XmMAX_ON_RIGHT
or XmMAX_ ON_BOTTOM, movement toward the right or bottom
increments the Scale value, and movement toward the left or top
decrements the Scale value. If XmNprocessingDirection is
XmMAX_ON_LEFT or XmMAX_ON_TOP, movement toward
the right or bottom decrements the Scale value, and movement
toward the left or top increments the Scale value. If the button is
held down longer than a delay period, the slider is moved again by
the same increment and the same callbacks are called.

Reference Pages

XmScale{3X)

In slider:
Activates the interactive dragging of the slider.

BSelect Motion or BTransfer Motion:
If the button press occurs within the slider, the subsequent motion
events move the slider to the position of the pointer and call the
callbacks for XmNdragCallback.

BSelect Release or BTransfer Release:
If the button press occurs within the slider and the slider position is
changed, the callbacks for XmNvalueChangedCallback are called.

MCtrl BSelect Press:

KUp:

KDown:

KLeft:

In the region between an end of the Scale and the slider:
Moves the slider to that end of the Scale and calls the
XmNvalueChangedCallback callbacks. If
XmNprocessingDirection is XmMAX_ON_RIGHT or
XmMAX_ON_BOTTOM, movement toward the right or bpttom
increments the Scale value, and movement toward the left or top
decrements the Scale value. If XmNprocessingDirection is
XmMAX_ON_LEFT or XmMAX_ON_TOP, movement toward
the right or bottom decrements the Scale value, and movement
toward the left or top increments the Scale value.

For vertical Scales, moves the slider up one increment and calls the
XmNvalueChangedCallback callbacks. If
XmNprocessingDirection is XmMAX_ON_TOP, movement
toward the top increments the Scale value. If
XmNprocessingDirection is XmMAX_ ON_BOTTOM,
movement toward the top decrements the Scale value.

For vertical Scales, moves the slider down one increment and calls
the XmNvalueChangedCallback callbacks. If
XmNprocessingDirection is XmMAX_ ON_BOTTOM,
movement toward the bottom increments the Scale value. If
XmNprocessingDirection is XmMAX_ON_TOP, movement
toward the bottom decrements the Scale value.

For horizontal Scales, moves the slider one increment to the left and
calls the XmNvalueChangedCallback callbacks. If
XmNprocessingDirection is XmMAX_ON_LEFT, movement
toward the left increments the Scale value. If
XmNprocessingDirection is XmMAX_ ON_RIGHT, movement
toward the left decrements the Scale value.

1-797

OSF/Motif Programmer's Reference

XmScale(3X)

1-798

KRight: For horizontal Scales, moves the slider one increment to the right
and calls the XmNvalueChangedCallback callbacks. If
XmNprocessingDirection is XmMAX_ON_RIGHT, movement
toward the right increments the Scale value. If
XmNprocessingDirection is XmMAX_ ON_LEFT, movement
toward the right decrements the Scale value.

MCtrl KUp or KPageUp:
For vertical Scales, moves the slider up one mUltiple increment and
calls the XmNvalueChangedCallback callbacks. If
XmNprocessingDirection is XmMAX_ON_TOP, movement
toward the top increments the Scale value. If
XmNprocessingDirection is XmMAX_ ON_BOTTOM,
movement toward the top decrements the Scale value.

MCtrl KDown or KPageDown:
For vertical Scales, moves the slider down one multiple increment
and calls the XmNvalueChangedCallback callbacks. If
XmNprocessingDirection is XmMAX_ ON_BOTTOM,
movement toward the bottom increments the Scale value. If
XmNprocessingDirection is XmMAX_ON_TOP, movement
toward the bottom decrements the Scale value.

MCtrl KLeft or KPageLeft:
For horizontal Scales, moves the slider one multiple increment to
the left and calls the XmNvalueChangedCallback callbacks. If
XmNprocessingDirection is XmMAX_ON_LEFT, movement
toward the left increments the Scale value. If
XmNprocessingDirection is XmMAX_ON_RIGHT, movement
toward the left decrements the Scale value.

MCtrl KRight or KPageRight:
For horizontal Scales, moves the slider one multiple increment to
the right and calls the XmNvalueChangedCallback callbacks. If
XmNprocessingDirection is XmMAX_ON_RIGHT, movement
toward the right increments the Scale value. If
XmNprocessingDirection is XmMAX_ON_LEFT, movement
toward the right decrements the Scale value.

KBeginLine or KBeginData:
Moves the slider to the minimum value and calls the
XmNvalueChangedCallback callbacks.

KEndLine or KEndData:
Moves the slider to the maximum value and calls the
XmNvalueChangedCallback callbacks.

Reference Pages

XmScale(3X)

KNextField: Traverses to the first item in the next tab group. If the current tab
group is the last entry in the tab group list, it wraps to the beginning
of the tab group list.

KPrevField: Traverses to the first item in the previous tab group. If the beginning
of the tab group list is reached, it wraps to the end of the tab group
list.

KHelp:

Virtual Bindings

Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Composite(3X), Constraint(3X), Core(3X), XmCreateScale(3X),
XmManager(3X), XmScaleGetValue(3X), and XmScaleSetValue(3X).

1-799

OSF/Motif Programmer's Reference

XmScaleGetValue(3X)

XmScaleGetValue-A Scale function that returns the current slider position

Synopsis #include <XmlScale.h>

void XmScaleGetValue (widget, valueJeturn)
Widget widget;
int * value_return;

Description
XmScaleGetValue returns the current slider position value displayed in the scale.

widget Specifies the Scale widget ID

value_return Returns the current slider position value

For a complete definition of Scale and its associated resources, see XmScale(3X).

Related Information
XmScale(3X) .

1-800

Synopsis

Description

Reference Pages

XmScaleSetValue(3X)

XmScaleSetValue-A Scale function that sets a slider value

#include <Xm/Scale.h>

void XmScaleSetValue (widget, value)
Widget widget;
int value;

XmScaleSetValue sets the slider value within the Scale widget.

widget

value

Specifies the Scale widget ID.

Specifies the slider position along the scale. This sets the
XmNvalue resource.

For a complete definition of Scale and its associated resources, see XmScale(3X).

Related Information
XmScale(3X) .

1-801

OSF/Motif Programmer's Reference

XmScreen (3X)

Synopsis

Description

Classes

XmScreen-The Screen widget class

#include <Xm/Screen.h>

The XmScreen object is used by Motif widgets to store information that is specific
to a screen. It also allows the toolkit to store certain information on widget
hierarchies that would otherwise be unavailable. Each client has one XmScreen
object for each screen that it accesses.

An XmScreen object is automatically created when the application creates the first
shell on a screen (usually accomplished by a call to XtApplnitialize or
XtAppCreateShell). It is not necessary to create an XmScreen object by any
other means. An application can use the function XmGetXmScreen to obtain the
widget ID of the XmScreen object for a given screen.

An application cannot supply initial values for XmScreen resources as arguments
to a call to any function that creates widgets. The application or user can supply
initial values in a resource file. After creating the first shell on the screen, the
application can use XmGetXmScreen to obtain the widget ID of the XmScreen
object and then call XtSetValues to set the XmScreen resources.

Screen inherits behavior and resources from Core.

The class pointer is xmScreenClass.

The class name is XmScreen.

New Resources

1-802

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in an .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in an .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmScreen (3X)

XmScreen Resource Set

Name Default Access
Class Type

XmNdarkThreshold dynamic C
XmCDarkThreshold int

Xm NdefaultCopyCursorlcon NULL CSG
XmCDefaultCopyCursorlcon Widget

Xm Ndefaultl nvalidCursorlcon NULL CSG
XmCDefaultlnvalidCursorlcon Widget

XmNdefaultLinkCursorlcon NULL CSG
XmCDefaultLinkCursorlcon Widget

XmNdefaultMoveCursorlcon NULL CSG
XmCDefaultMoveCursorlcon Widget

XmNdefaultNoneCursorlcon NULL CSG
XmCDefaultNoneCursorlcon Widget

Xm NdefaultSourceCursorlcon NULL CSG
XmCDefaultSourceCursorlcon Widget

XmNdefaultValidCursorlcon NULL CSG
XmCDefaultValidCursorlcon Widget

XmNfont NULL CSG
XmCFont XFontStruct *

Xm NforegroundThreshold dynamic C
XmCForegroundThreshold int

Xm NhorizontalFontUnit dynamic CSG
XmCHorizontalFontUnit int

XmNlightThreshold dynamic C
XmCLightThreshold int

XmNmenuCursor arrow C
XmCCursor String

XmNmoveOpaque False CSG
XmCMoveOpaque Boolean

1-803

OSF/Motif Programmer's Reference

XmScreen (3X)

1-804

Name Default Access
Class Type

Xm N unpostBehavior XmUNPOST _AND_REPLAY CSG
XmCUnpostBehavior unsigned char

Xm Nvertical FontUnit dynamic CSG
XmCVerticalFontUnit int

XmNdarkThreshold
An integer between a (zero) and 100, inclusive, that specifies a level
of perceived brightness for a color. If the perceived brightness of
the background color is below this level, Motif treats the
background as "dark" when computing default shadow and select
colors. If this resource is specified for a particular screen, it applies
to widgets created on that screen; otherwise it applies to widgets
created on all screens. The default value is implementation specific.

XmNdefaultCopyCursorIcon
Specifies the DragIcon used during a drag operation when the
operation is a copy and no other pixmap is specified by the
application. If this resource is NULL, a system default icon is used.

XmNdefaultInvalid Cursor Icon
Specifies the Draglcon used to indicate that the cursor is over an
invalid drop site during a drag operation when no other pixmap
symbol is specified by the application. If this resource is NULL, a
system default icon is used.

XmNdefaultLinkCursorIcon
Specifies the DragIcon used during a drag operation when the
operation is a link and no other pixmap is specified by the
application. If this resource is NULL, a system default icon is used.

XmNdefaultMoveCursor Icon
Specifies the DragIcon used during a drag operation when the
operation is a move and no other pixmap is specified by the
application. If this resource is NULL, a system default icon is used.

XmNdefaultNoneCursorIcon
Specifies the DragIcon used to indicate that the cursor is not over a
drop site during a drag operation when no other pixmap is specified
by the application. If this resource is NULL, a system default icon
is used.

Reference Pages

XmScreen (3X)

XmNdefaultSourceCursor Icon
Specifies the depth-1 pixmap used as a cursor when an
XmNsourceCursorIcon is not provided by the DragContext, or it is
not usable. If this resource is NULL, a system default icon is used.

XmNdefault Valid Cursor Icon

XmNfont

Specifies the DragIcon used to indicate that the cursor is over a
valid drop site during a drag operation when no other pixmap is
specified by the application. If this resource is NULL, a system
default icon is used.

Specifies a font for use in computing values for
XmNhorizontalFontUnit and XmNverticalFontUnit. When an
application is initialized, this resource can be supplied in a resource
file or through the standard command line options -fn, -font, and
-xrm.

XmNforegroundThreshold
An integer between 0 (zero) and 100, inclusive, that specifies a level
of perceived brightness for a color. If the perceived brightness of
the background color is equal to or below this level, Motif treats the
background as "dark" when computing the default foreground and
highlight colors. If the perceived brightness of the background
color is above this level, Motif treats the background as "light" when
computing the default foreground and highlight colors. When the
background is "dark," the default foreground and highlight is white;
when the background is "light," the default foreground and highlight
is black. If this resource is specified for a particular screen, it
applies to widgets created on that screen; otherwise, it applies to
widgets created on all screens. The default value is implementation
specific.

XmNhorizontalFontUnit
Specifies the horizontal component of the font units used by
XmConvertUnits, and is used to interpret the values of geometry
resources when the XmNshellUnitType resource of VendorS hell or
the XmNunitType resource of Gadget, Manager, or Primitive has
the value XmlOOTH_FONT_UNITS. If no initial value is supplied
for this resource, the default is computed from the font specified in
XmNfont. If no initial value is supplied for this resource or for
XmNfont, the default is 10.

1-805

OSF/Motif Programmer's Reference

XmScreen (aX)

1-806

If a call to XtSetValues specifies a value for
XmNhorizontalFontUnit, this resource is set to that value. If a call
to XtSetValues specifies a value for XmNfont but not for
XmNhorizontalFontUnit, this resource is set to a value computed
from the new XmNfont.

A horizontal font unit is derived from a font as follows:

• If the font has an AVERAGE_WIDTH property, the
horizontal font unit is the AVERAGE_WIDTH property
divided by 10.

• If the font has no AVERAGE_WIDTH property but has a
QUAD_WIDTH property, the horizontal font unit is the
QUAD_WIDTH property.

• If the font has no AVERAGE_WIDTH or QUAD_WIDTH
property, the horizontal font unit is the sum of the font
structure's min_bounds. width and max_bounds. width divided
by 2.3.

XmNlightThreshold
An integer between 0 (zero) and 100, inclusive, that specifies a level
of perceived brightness for a color. If the perceived brightness of
the background color is above this level, Motif treats the
background as "light" when computing default shadow and select
colors. If this resource is specified for a particular screen, it applies
to widgets created on that screen; otherwise, it applies to widgets
created on all screens. The default value is implementation specific.

XmNmenuCursor
Sets a variable that controls the cursor used whenever this
application posts a menu. This resource can be specified only once
at application startup time, either by placing it within a defaults file
or by using the -xrm command line argument. For example:

myProg -xrm "*menuCursor: arrow"

The menu cursor can also be selected in the program through the
function XmSetMenuCursor. The following list shows acceptable
cursor names. If the application does not specify a cursor or if an
invalid name is supplied, the default cursor (an arrow pointing up
and to the right) is used.

arrow

based_arrow _down

based_arrow _up

boat

bogosity

bottom_lefCcorner

bottom_righCcorner

bottom_side

bottom_tee

box_spiral

center_ptr

circle

clock

cross

cross_reverse

crosshair

diamond_cross

dot

dotbox

drafClarge

drafCsmall

draped_box

exchange

Reference Pages

XmScreen (3X)

leftbutton

ll_angle

lr_angle

man

middlebutton

mouse

pencil

pirate

plus

question_arrow

righCptr

righCside

righCtee

rightbutton

rtClogo

sailboat

sb_h_double_arrow

sb _left_arrow

sb_righCarrow

sb_up_arrow

sb_ v_double_arrow

shuttle

sizing

spider

spraycan

1-807

OSF/Motif Programmer's Reference

XmScreen (3X)

1-808

fleur

gobbler

gumby

hand!

hand2

heart

icon

left_side

left_tee

uCangle

ur_angle

xterm

XmNmoveOpaque

star

target

tcross

top_left_arrow

top_left_corner

top_righCcorner

top_side

left_ptr

top_tee

trek

umbrella

watch

Specifies whether an interactive operation that moves a window,
such as tearing off and dragging a tear-off menu or moving a
window in MWM, displays an outline of the window or a
representation of the window itself during the move. If the value is
True, the operation displays a representation of the window during
the move. If the value is False, the operation displays an outline of
the window.

XmNunpostBehavior
Specifies the behavior of an active menu posted in traversal mode
when a subsequent menu button selection is made outside the posted
menu. When the value is XmUNPOST_AND_REPLAY, the
resource unposts the menu hierarchy and causes the server to replay
the event to the window in which the pointer is located. When the
value is XmUNPOST, the resource unposts the hierarchy without
replaying the event.

XmNverticalFontUnit
Specifies the vertical component of the font units used by
XmConvertUnits and used to interpret the values of geometry
resources when the XmNshellUnitType resource of VendorS hell or
the XmNunitType resource of Gadget, Manager, or Primitive has

Inherited Resources

Reference Pages

XmScreen (3X)

the value XmlOOTH_FONT _UNITS. If no initial value is supplied
for this resource, the default is computed from the font specified in
XmNfont. If no initial value is supplied for this resource or for
XmNfont, the default is 10.

If a call to XtSetValues specifies a value for
XmNverticalFontUnit, this resource is set to that value. If a call to
XtSetValues specifies a value for XmNfont but not for
XmNverticalFontUnit, this resource is set to a value computed
from the new XmNfont.

A vertical font unit is derived from a font as follows:

• If the font has a PIXEL_SIZE property, the vertical font
unit is the PIXEL_SIZE property divided by 1.8.

• If the font has no PIXEL_SIZE property but has
POINT_SIZE and RESOLUTION_Yproperties, the
vertical font unit is the product of the POINT_SIZE and
RESOLUTION_Y properties divided by 1400.

• If the font has no PIXEL_SIZE, POINT_SIZE, or
RESOLUTION_ Y properties, the vertical font unit is the
sum of the font structure's max_bounds. ascent and
max_bounds. descent divided by 2.2.

All of the superc1ass resources inherited by XmScreen are designated N/A (not
applicable).

Related Information
Core(3X), XmDisplay(3X), and XmGetXmScreen(3X).

1-809

OSF/Motif Programmer's Reference

XmScroIlBar(3X)

Synopsis

Description

Classes

XmScrollBar-The ScrollBar widget class

#include <Xm/ScrollBar .h>

The ScrollBar widget allows the user to view data that is too large to be displayed
all at once. ScrollBars are usually located inside a ScrolledWindow and adjacent
to the widget that contains the data to be viewed. When the user interacts with the
ScrollBar, the data within the other widget scrolls.

A ScrollBar consists of two arrows placed at each end of a rectangle. The
rectangle is called the scroll region. A smaller rectangle, called the slider, is
placed within the scroll region. The data is scrolled by clicking either arrow,
selecting on the scroll region, or dragging the slider. When an arrow is selected,
the slider within the scroll region is moved in the direction of the arrow by an
amount supplied by the application. If the mouse button is held down, the slider
continues to move at a constant rate.

The ratio of the slider size to the scroll region size typically corresponds to the
relationship between the size of the visible data and the total size of the data. For
example, if 10 percent of the data is visible, the slider typically occupies 10 percent
of the scroll region. This provides the user with a visual clue to the size of the
invisible data.

ScrollBar inherits behavior and resources from the Core and XmPrimitive classes.

The class pointer is xmScrollBarWidgetClass.

The class name is XmScrollBar.

New Resources

1-810

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmScrollBar{3X)

XmScroliBar Resource Set

Name Default Access
Class Type

Xm NdecrementCallback NULL C
XmCCaliback X tCall backList

Xm NdragCaliback NULL C
XmCCaliback XtCalibackList

XmNincrement 1 CSG
XmClncrement int

Xm N incrementCaliback NULL C
XmCCaliback XtCalibackList

XmNinitialDelay 250 ms CSG
XmClnitialDelay int

XmNmaximum dynamic CSG
XmCMaximum int

XmNminimum 0 CSG
XmCMinimum int

Xm Norientation XmVERTICAL CSG
XmCOrientation unsigned char

Xm NpageDecrementCaliback NULL C
XmCCaliback XtCalibackList

XmNpagelncrement 10 CSG
XmCPagelncrement int

XmNpagelncrementCallback NULL C
XmCCaliback XtCalibackList

XmNprocessingDirection dynamic CSG
XmCProcessingDirection unsigned char

Xm N repeatDelay 50ms CSG
XmCRepeatDelay int

XmNshowArrows True CSG
XmCShowArrows Boolean

XmNsliderSize dynamic CSG
XmCSliderSize int

1-811

OSF/Motif Programmer's Reference

XmScroIlBar(3X)

1-812

Name Default Access
Class Type

Xm NtoBottomCallback NULL C
XmCCallback XtCallbackList

XmNtoTopCallback NULL C
XmCCallback XtCallbackList

XmNtroughColor dynamic CSG
XmCTroughColor Pixel

XmNvalue dynamic CSG
XmCValue int

XmNvalueChangedCallback NULL C
XmCCallback XtCallbackList

XmNdecrementCallback
Specifies the list of callbacks that is called when the user takes an
action that moves the ScrollBar by one increment and the value
decreases. The reason passed to the callback is
XmCR_DECREMENT.

XmNdragCallback
Specifies the list of callbacks that is called on each incremental
change of position when the slider is being dragged. The reason
sent by the callback is XmCR_DRAG.

XmNincrement
Specifies the amount by which the value increases or decreases
when the user takes an action that moves the slider by one
increment. The actual change in value is the lesser of
XmNincrement and (previous XmNvalue - XmNminimum) when
the slider moves to the end of the ScrollBar with the minimum
value, and the lesser otXmNincrement and (XmNmaximum­
XmNsliderSize - previous XmNvalue) when the slider moves to
the end of the ScrollBar with the maximum value. The value of this
resource must be greater than 0 (zero).

XmNincrementCallback
Specifies the list of callbacks that is called when the user takes an
action that moves the ScrollBar by one increment and the value
increases. The reason passed to the callback is
XmCR_INCREMENT.

Reference Pages

XmScroIlBar(3X)

XmNinitialDelay
Specifies the amount of time in milliseconds to wait before starting
continuous slider movement while a button is pressed in an arrow or
the scroll region. The value of this resource must be greater than 0
(zero).

XmNmaximum
Specifies the slider's maximum value. ScrollBars contained within
ScrolledWindows have a maximum equal to the size of ScrollBar
(that is, the height if it is vertical, or the width if it is horizontal).
XmNmaximum must be greater than XmNminimum.

XmNminimum
Specifies the slider's minimum value. XmNmaximum must be
greater than XmNminimum.

XmNorientation
Specifies whether the ScrollBar is displayed vertically or
horizontally. This resource can have values of XmVERTICAL and
XmHORIZONTAL.

XmNpageDecrementCallback
Specifies the list of callbacks that is called when the user takes an
action that moves the ScrollBar by one page increment and the
value decreases. The reason passed to the callback is
XmCR_PAGE_DECREMENT.

XmNpagelncrement
Specifies the amount by which the value increases or decreases
when the user takes an action that moves the slider by one page
increment. The actual change in value is the lesser of
XmNpagelncrement and (previous XmNvalue - XmNminimum)
when the slider moves to the end of the ScrollBar with the minimum
value, and the lesser of XmNpagelncrement and (XmNmaximum­
XmNsliderSize - previous XmNvalue) when the slider moves to
the end of the ScrollBar with the maximum value. The value of this
resource must be greater than 0 (zero).

XmNpagelncrementCallback
Specifies the list of callbacks that is called when the user takes an
action that moves the ScrollBar by one page increment and the
value increases. The reason passed to the callback is
XmCR_PAGE_INCREMENT.

1-813

OSF/Motif Programmer's Reference
XmScroIlBar(3X)

1-814

XmNprocessingDirection
Specifies whether the value for XmNmaximum should be on the
right or left side of XmNminimum for horizontal ScrollBars or
above or below XmNminimum for vertical ScrollBars. This
resource can have values of XmMAX_ON_TOP,
XmMAX_ON_BOTTOM,XmMAX_ON_LEFT, and
XmMAX_ON_RIGHT. If the XmScrollBar is oriented vertically,
the default value is XmMAX_ON_BOTTOM. If the XmScrollBar
is oriented horizontally, the default value may depend on the value
of the XmNstringDirection resource.

XmNrepeatDelay
Specifies the amount of time in milliseconds to wait between
subsequent slider movements after the XmNinitialDelay has been
processed. The value of this resource must be greater than 0 (zero).

XmNshowArrows
Specifies whether the arrows are displayed.

XmNsliderSize
Specifies the length of the slider between the values of 1 and
(XmNmaximum - XmNminimum). The value is constrained to be
within these inclusive bounds. The default value is
(XmNmaximum - XmNminimum) divided by 10, with a minimum
of 1.

XmNtoBottomCallback
Specifies the list of callbacks that is called when the user takes an
action that moves the slider to the end of the ScrollBar with the
maximum value. The reason passed to the callback is
XmCR_TO_BOTTOM.

XmNtoTopCallback
Specifies the list of callbacks that is called when the user takes an
action that moves the slider to the end of the ScrollBar with the
minimum value. The reason passed to the callback is
XmCR_TO_TOP.

XmNtroughColor
Specifies the color of the slider trough.

Reference Pages

XmScrollBar{3X)

XmNvalue Specifies the slider's posItIon, between XmNminimum and
(XmNmaximum - XmNsliderSize). The value is constrained to be
within these inclusive bounds. The initial value of this resource is
the larger of 0 (zero) and XmNminimum.

XmNvalueChangedCallback

Inherited Resources

Specifies the list of callbacks that is called when the slider is
released after being dragged. These callbacks are also called in
place of XmNincrementCallback, XmNdecrementCallback,
XmNpagelncrementCallback, XmNpageDecrementCallback,
XmNtoTopCallback, or XmNtoBottomCallback when one of
these callback lists would normally be called but the value of the
corresponding resource is NULL. The reason passed to the callback
is XmCR_ VALUE_CHANGED.

ScrollBar inherits behavior and resources from the superclasses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superclass.

1-815

OSF/Motif Programmer's Reference

XmScroIlBar(3X)

XmPrimitive Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCallback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

Xm NhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNhighlightThickness dynamic CSG
XmCHighlightThickness Dimension

XmNnavigationType XmSTICKY _TAB_GROUP CSG
XmCNavigationType Xm NavigationType

Xm NshadowThickness 2 CSG
XmCShadowThickness Dimension

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn dynamic CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-816

Reference Pages

XmScroIIBar(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-817

OSF/Motif Programmer's Reference

XmScroIlBar(3X)

1-818

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
int value;
int pixel;

} XmScrollBarCallbackStruct;

reason

event

value

pixel

Translations

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback.

Contains the new slider location value.

Is used only for XmNtoTopCallback and XmNtoBottomCallback.
For horizontal ScrollBars, it contains the x coordinate of where the
mouse button selection occurred. For vertical ScrollBars, it contains
the y coordinate.

XmScrollBar includes translations from Primitive. The XmScrollBar translations
are described in the following list. These translations may not directly correspond
to a translation table.

BSelect Press:

BSelect Release:

BSelect Press Moved:

SelectO

ReleaseO

MovedO

Reference Pages

XmScroIIBar(3X)

BTransfer Press: SelectO

BTransfer Release: ReleaseO

BTransfer Press Moved: MovedO

MCtrl BSelect Press: TopOrBottomO

MCtrl BSelect Release: ReleaseO

KUp: IncrementUpOrLeft(O)

MCtrl KUp: PageUpOrLeft(O)

KDown: IncrementDownOr Right(O)

MCtrl KDown: PageDownOrRight(O)

KLeft: IncrementUpOrLeft(l)

MCtrl KLeft: PageUpOrLeft(l)

KRight: IncrementDownOr Right(l)

MCtrl KRight: PageDownOrRight(l)

KPageUp: PageUpOrLeft(O)

KPageDown: PageDownOrRight(O)

KPageLeft: PageUpOrLeft(l)

KPageRight: PageDownOr Right(l)

KBeginLine: TopOrBottomO

KEndLine: TopOrBottomO

KBeginData: TopOrBottomO

KEndData: TopOrBottomO

KNextField: PrimitiveNextTabGroupO

KPrev Field: PrimitivePrevTabGroupO

KActivate: PrimitiveParentActivateO

KCancel: CancelDragO

KHelp: PrimitiveHelpO

1-819

OSF/Motif Programmer's Reference

XmScrollBar(3X)

1-820

Action Routines
The ScrollBar action routines are

CancelDragO:
If the key press occurs during scrolling, cancels the scroll and
returns the slider to its previous location in the scrollbar; otherwise,
and if the parent is a manager, it passes the event to the parent.

IncrementDownOrRight(Oll):
With an argument of 0, moves the slider down by one increment.
With ail argument of 1, it moves the slider right by one increment.
If XmNprocessingDirection is XmMAX_ON_RIGHT or
XmMAX_ ON_BOTTOM, movement toward the right or bottom
calls the callbacks for XmNincrementCallback. If
XmNprocessingDirection is XmMAX_ ON_LEFT or
XmMAX_ON_TOP, movement toward the right or bottom calls the
callbacks for XmNdecrementCallback. The
XmNvalueChangedCallback is called if the
XmNincrementCallback or XmNdecrementCallback is NULL.

IncrementUpOrLeft(Oll):

MovedO:

With an argument of 0, moves the slider up by one increment. With
an argument of 1, it moves the slider left by one increment. If
XmNprocessingDirection is XmMAX_ON_RIGHT or
XmMAX_ON_BOTTOM, movement to the left or top calls the
callbacks for XmNdecrementCallback. If
XmNprocessingDirection is XmMAX_ON_LEFT or
XmMAX_ON_TOP, movement to the left or top calls the callbacks
for XmNincrementCallback. The XmNvalueChangedCallback
is called if the XmNincrementCallback or
XmNdecrementCallback is NULL.

If the button press occurs within the slider, the subsequent motion
events move the slider to the position of the pointer and call the
callbacks for XmNdragCallback.

PageDownOrRight(Oll):
With an argument of 0, moves the slider down by one page
increment. With an argument of 1, moves the slider right by one
page increment. If XmNprocessingDirection is
XmMAX_ON_RIGHT or XmMAX_ON_BOTTOM, movement
toward the right or bottom calls the callbacks for
XmNpagelncrementCallback. If XmNprocessingDirection is
XmMAX_ON_LEFT or XmMAX_ON_TOP, movement toward
the right or bottom calls the XmNpageDecrementCallback

Reference Pages

XmScroIlBar(3X)

callbacks. The XmNvalueChangedCallback is called if the
XmNpageIncrementCallback or XmNpageDecrementCallback
is NULL.

PageUpOrLeft(Oll):
With an argument of 0, moves the slider up by one page increment.
With an argument of I, it fmoves the slider left by one page
increment. If XmNprocessingDirection is XmMAX_ON_RIGHT
or XmMAX_ON_BOTTOM, movement to the left or top calls the
callbacks for XmNpageDecrementCallback. If
XmNprocessingDirection is XmMAX_ON_LEFT or
XmMAX_ON_TOP, movement to the left or top calls the
XmNpageIncrementCallback callbacks. The
XmN value Changed Callback is called if the
XmNpageIncrementCallback or XmNpageDecrementCallback
is NULL.

PrimitiveHelpO:
Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

PrimitiveNextTabGroupO:
Traverses to the first item in the next tab group. If the current tab
group is the last entry in the tab group list, it wraps to the beginning
of the tab group list.

PrimitiveParentActivateO:
If the parent is a manager, passes the event to the parent.

PrimitivePrevTabGroupO:

ReleaseO:

SelectO:

Traverses to the first item in the previous tab group. If the beginning
of the tab group list is reached, it wraps to the end of the tab group
list.

If the button press occurs within the slider and the slider position is
changed, the callbacks for XmNvalueChangedCallback are called.

In arrow:
Moves the slider by one increment in the direction of the arrow. If
XmNprocessingDirection is XmMAX_ ON_RIGHT or
XmMAX_ ON_BOTTOM, movement toward the right or bottom
calls the callbacks for XmNincrementCallback, and movement to
the left or top calls the callbacks for XmNdecrementCallback. If
XmNprocessingDirection is XmMAX_ON_LEFT or
XmMAX_ON_TOP, movement toward the right or bottom calls the

1-821

OSF/Motif Programmer's Reference

XmScroIlBar(3X)

callbacks for XmNdecrementCallback, and movement to the left
or top calls the callbacks for XmNincrementCallback. The
XmNvalueChangedCallback is called if the
XmNincrementCallback or XmNdecrementCallback is NULL.

In scroll region between an arrow and the slider:
Moves the slider by one page increment in the direction of the
arrow. If XmNprocessingDirection is XmMAX_ON_RIGHT or
XmMAX_ ON_BOTTOM, movement toward the right or bottom
calls the callbacks for XmNpageIncrementCallback, and
movement to the left or top calls the callbacks for
XmNpageDecrementCallback. If XmNprocessingDirection is
XmMAX_ON_LEFT or XmMAX_ON_TOP, movement toward
the right or bottom calls the callbacks for
XmNpageDecrementCallback, and movement to the left or top
calls the callbacks for XmNpageIncrementCallback. The
XmN value Changed Callback is called if the
XmNpageIncrementCallback or XmNpageDecrementCallback
is NULL.

In slider:
Activates the interactive dragging of the slider.

If the button is held down in either the arrows or the scroll region
longer than the XmNinitialDelay resource, the slider is moved
again by the same increment and the same callbacks are called.
After the initial delay has been used, the time delay changes to the
time defined by the resource XmN repeatDelay.

TopOrBottomO:

1-822

MCtrl BSelect Press in an arrow or in the scroll region between an
arrow and the slider moves the slider as far as possible in the
direction of the arrow. If XmN processingDirection is
XmMAX_ON_RIGHT or XmMAX_ON_BOTTOM, movement
toward the right or bottom calls the callbacks for
XmNtoBottomCallback, and movement to the left or top calls the
callbacks for XmNtoTopCallback. If XmNprocessingDirection is
XmMAX_ON_LEFT or XmMAX_ON_TOP, movement toward
the right or bottom calls the callbacks for XmNtoTopCallback, and
movement to the left or top calls the callbacks for
XmNtoBottomCallback. The XmNvalueChangedCallback is
called if the XmNtoTopCallback or XmNtoBottomCallback is
NULL. Pressing KBeginLine or KBeginData moves the slider to
the minimum value and invokes the XmNtoTopCallback. Pressing
KEndLine or KEndData moves the slider to the maximum value
and invokes the XmNtoBottomCallback.

Reference Pages

XmScroIlBar(3X)

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Core(3X), XmCreateScrollBar(3X), XmPrimitive(3X),
XmScrollBarGet Values(3X), and XmScrollBarSetValues(3X).

1-823

OSF/Motif Programmer's Reference
XmScroliBarGetValues(3X)

Synopsis

Description

XmScrollBarGetValues-A ScrollBar function that returns the ScrollBar's
increment values

#include <XmlScrollBar.h>

void XmScrollBarGetValues (widget, valueJeturn,
slider _size_return, incremenCreturn, page_incremenCreturn)

Widget widget;
int
int
int
int

* value_return;
* slider _sizeJeturn;
* incremencreturn;
* page_incremenCreturn;

XmScrollBarGetValues returns the the ScrollBar's increment values. The scroll
region is overlaid with a slider bar that is adjusted in size and position using the
main ScrollBar or set slider function attributes.

widget Specifies the ScrollBar widget rD.

value_return Returns the ScrollBar's slider position between the XmNminimum
and XmNmaximum resources.

slider _size_return
Returns the size of the slider as a value between zero and the
absolute value of XmNmaximum minus XmNminimum. The size
of the slider varies, depending on how much of the slider scroll area
it represents.

incremencreturn
Returns the amount of increment and decrement.

page_incremencreturn
Returns the amount of page increment and decrement.

For a complete definition of ScrollBar and its associated resources, see
XmScrollBar(3X).

Return Value
Returns the ScrollBar's increment values.

Related Information
XmScrollBar(3X) .

1-824

Synopsis

Description

Reference Pages

XmScroll BarSetVal ues (3X)

XmScrollBarSetValues-A ScrollBar function that changes ScrollBar's
increment values and the slider's size and position

#include <Xm/ScrollBar .h>

void XmScrollBarSetValues (widget, value,
slider _size, increment, page_increment, notify)

Widget widget;
int
int
int
int
Boolean

value;
slider_size;
increment;
page _increment;
notify;

XmSetScrollBarValues changes the ScrollBar's increment values and the slider's
size and position. The scroll region is overlaid with a slider bar that is adjusted in
size and position using the main ScrollBar or set slider function attributes.

widget

value

increment

Specifies the ScrollBar widget ID.

Specifies the ScrollBar's slider position between XmNminimum
and XmNmaximum. The resource name associated with this
argument is XmNvalue.

Specifies the size of the slider as a value between 0 (zero) and the
absolute value of XmNmaximum minus XmNminimum. The size
of the slider varies, depending on how much of the slider scroll area
it represents. This sets the XmNsliderSize resource associated with
ScrollBar.

Specifies the amount of button increment and decrement. If this
argument is not 0 (zero), the ScrollBar widget automatically adjusts
the slider when an increment or decrement action occurs. This sets
the XmNincrement resource associated with ScrollBar.

page _increment
Specifies the amount of page increment and decrement. If this
argument is not 0 (zero), the ScrollBar widget automatically adjusts
the slider when an increment or decrement action occurs. This sets
the XmNpagelncrement resource associated with ScrollBar.

1-825

OSF/Motif Programmer's Reference
XmScroliBarSetValues (3X)

notify Specifies a Boolean value that, when True, indicates a change in the
ScrollBar value and also specifies that the ScrollBar widget
automatically activates the XmNvalueChangedCallback with the
recent change. If it is set to False, it specifies any change that has
occurred in the ScrollBar's value, but does not activate
XmNvalueChangedCallback.

For a complete definition of ScrollBar and its associated resources, see
XmScroIlBar(3X) .

Related Information
XmScroIlBar(3X) .

1-826

Synopsis

Description

Reference Pages

XmScrollVisible(3X)

XmScrollVisible-A ScrolledWindow function that makes an invisible
descendant of a ScrolledWindow work area visible

#include <XmlScrolledW.h>

void XmScrollVisible (scrollw_widget, widget, left_righcmargin, top_bottom_margin)
Widget scrollw _widget;
Widget widget;
Dimension leJtJighCmargin;
Dimension

XmScrollVisible makes an obscured or partially obscured widget or gadget
descendant of a ScrolledWindow work area visible. The function repositions the
work area and sets the specified margins between the widget and the nearest
viewport boundary. The widget's location relative to the viewport determines
whether one or both of the margins must be adjusted. This function requires that
the XmNscrollingPolicy of the ScrolledWindow widget be set to
XmAUTOMATIC.

scrollw _widget

widget

Specifies the ID of the ScrolledWindow widget whose work area
window contains an obscured descendant.

Specifies the ID of the widget to be made visible.

iejcrighcmargin
Specifies the margin to establish between the left or right edge of
the widget and the associated edge of the viewport. This margin is
established only if the widget must be moved horizontally to make it
visible.

top _bottom_margin
Specifies the margin to establish between the top or bottom edge of
the widget and the associated edge of the viewport. This margin is
established only if the widget must be moved vertically to make it
visible.

For a complete definition of ScrolledWindow and its associated resources, see
XmScrolledWindow(3X)

Related Information
XmScrolledWindow(3X).

1-827

OSF/Motif Programmer's Reference

XmScrolledWindow(3X)

Synopsis

Description

1-828

XmScrolledWindow-The ScrolledWindow widget class

#include <XmlScrolledW.h>

The ScrolledWindow widget combines one or two ScrollBar widgets and a viewing
area to implement a visible window onto some other (usually larger) data display.
The visible part of the window can be scrolled through the larger display by the use
of ScrollBars.

To use ScrolledWindow, an application first creates a ScrolledWindow widget, any
needed ScrollBar widgets, and a widget capable of displaying any desired data as
the work area of ScrolledWindow. ScrolledWindow positions the work area
widget and displays the ScrollBars if so requested. When the user performs some
action on the ScrollBar, the application is notified through the normal ScrollBar
callback interface.

ScrolledWindow can be configured to operate automatically so that it performs all
scrolling and display actions with no need for application program involvement. It
can also be configured to provide a minimal support framework in which the
application is responsible for processing all user input and making all visual
changes to the displayed data in response to that input.

When ScrolledWindow is performing automatic scrolling it creates a clipping
window and automatically creates the scroll bars. Conceptually, this window
becomes the viewport through which the user examines the larger underlying data
area. The application simply creates the desired data, then makes that data the
work area of the ScrolledWindow. When the user moves the slider to change the
displayed data, the workspace is moved under the viewing area so that a new
portion of the data becomes visible.

Sometimes it is impractical for an application to create a large data space and
simply display it through a small clipping window. For example, in a text editor,
creating a single data area that consisted of a large file would involve an
undesirable amount of overhead. The application needs to use a ScrolledWindow
(a small viewport onto some larger data), but needs to be notified when the user
scrolls the viewport so it can bring in more data from storage and update the
display area. For these cases, the ScrolledWindow can be configured so that it
provides only visual layout support. No clipping window is created, and the
application must maintain the data displayed in the work area, as well as respond to
user input on the ScrollBars.

Classes

Reference Pages

XmScrolledWindow(3X)

The user can specify resources in a resource file for the automatically created
widgets that contain the horizontal and vertical scrollbars of the ScrolledWindow
widget. The names of these widgets are HorScrollBar and VertScrollBar, and
remain consistent whether created by XmCreateScrolledList,
XmCreateScrolledText or XmCreateScrolledWindow.

ScrolledWindow inherits behavior and resources from Core, Composite,
Constraint, and XmManager.

The class pointer is xmScrolledWindowWidgetClass.

The class name is XmScrolledWindow.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-829

OSF/Motif Programmer's Reference

XmScroliedWindow(3X)

1-830

XmScroliedWindow Resource Set

Name Default Access
Class Type

XmNclipWindow dynamic G
XmCClipWindow Widget

Xm NhorizontalScroliBar dynamic CSG
Xm CHorizontalScrollBar Widget

XmNscrollBarDisplayPolicy dynamic CSG
XmCScrollBarDisplayPolicy unsigned char

XmNscrollBarPlacement XmBOTTOM_RIGHT CSG
XmCScrollBarPlacement unsigned char

XmNscrolledWindowMarginHeight 0 CSG
XmCScrolledWindowMarginHeight Dimension

XmNscrolledWindowMarginWidth 0 CSG
XmCScrolledWindowMarginWidth Dimension

Xm NscrollingPolicy XmAPPLICATION_DEFINED CG
XmCScrolling Policy unsigned char

XmNspacing 4 CSG
XmCSpacing Dimension

Xm NtraverseObscuredCallback NULL CSG
XmCCaliback X tCal1 backList

Xm NverticalScroliBar dynamic CSG
XmCVerticalScrollBar Widget

XmNvisualPolicy dynamic G
XmCVisualPolicy unsigned char

XmNworkWindow NULL CSG
XmCWorkWindow Widget

XmNclip Window
Specifies the widget ID of the clipping area. This is automatically
created by ScrolledWindow when the XmNvisualPolicy resource is
set to XmCONSTANT and can only be read by the application.
Any attempt to set this resource to a new value causes a warning
message to be printed by the scrolled window. If the
XmNvisualPolicy resource is set to XmVARIABLE, this resource
is set to NULL, and no clipping window is created.

Reference Pages

XmScrolledWindow{ 3X)

XmNhorizontalScrollBar
Specifies the widget ID of the horizontal ScrollBar. This is
automatically created by ScrolledWindow when the
XmNscrollingPolicy is initialized to XmAUTOMATIC; otherwise,
the default is NULL.

XmNscrollBarDisplay Policy
Controls the automatic placement of the ScrollBars. If it is set to
XmAS_NEEDED and if XmNscrollingPolicy is set to
XmAUTOMATIC, ScrollBars are displayed only if the workspace
exceeds the clip area in one or both dimensions. A resource value
of XmSTATIC causes the ScrolledWindow to display the
ScrollBars whenever they are managed, regardless of the
relationship between the clip window and the work area. This
resource must be XmSTATIC when XmNscrollingPolicy is
XmAPPLICATION_DEFINED. The default is XmAS_NEEDED
when XmNscrollingPolicy is XmAUTOMATIC, and XmSTATIC
otherwise.

XmNscrollBarPlacement
Specifies the positioning of the ScrollBars in relation to the work
window. The values are

XmTOP_LEFT
The horizontal ScrollBar is placed above the work
window; the vertical ScrollBar to is placed the left.

XmBOTTOM_LEFT
The horizontal ScrollBar is placed below the work
window; the vertical ScrollBar to is placed the left.

XmTOP _RIGHT
The horizontal ScrollBar is placed above the work
window; the vertical ScrollBar to is placed the right.

XmBOTTOM_RIGHT
The horizontal ScrollBar is placed below the work
window; the vertical ScrollBar to is placed the right.

The default value may depend on the value of the
XmNstringDirection resource.

XmNscrolledWindowMarginHeight
Specifies the margin height on the top and bottom of the
ScrolledWindow.

1-831

OSF/Motif Programmer's Reference
XmScrolledWindow(3X)

1-832

XmNscrolledWindowMarginWidth
Specifies the margin width on the right and left sides of the
ScrolledWindow.

XmNscrollingPolicy
Performs automatic scrolling of the work area with no application
interaction. If the value of this resource is XmAUTOMATIC,
ScrolledWindow automatically creates the ScrollBars; attaches
callbacks to the ScrollBars; sets the visual policy to
XmCONSTANT; and automatically moves the work area through
the clip window in response to any user interaction with the
ScrollBars. An application can also add its own callbacks to the
ScrollBars. This allows the application to be notified of a scroll
event without having to perform any layout procedures.

NOTE: Since the ScrolledWindow adds callbacks to the
ScrollBars, an application should not perform an
XtRemoveAlICallbacks on any of the ScrollBar widgets.

When XmNscrollingPolicy is set to
XmAPPLICATION_DEFINED, the application is responsible for
all aspects of scrolling. The ScrollBars must be created by the
application, and it is responsible for performing any visual changes
in the work area in response to user input.

This resource must be set to the desired policy at the time the
ScrolledWindow is created. It cannot be changed through
SetValues.

XmNspacing Specifies the distance that separates the ScrollBars from the work
window.

XmNtraverseObscuredCallback
Specifies a list of callbacks that is called when traversing to a
widget or gadget that is obscured due to its position in the work area
relative to the location of the ScrolledWindow viewport. This
resource is valid only when XmNscrollingPolicy is
XmAUTOMATIC. If this resource is NULL, an obscured widget
cannot be traversed to. The callback reason is
XmCR_OBSCURED_TRAVERSAL.

XmNverticalScrollBar
Specifies the widget ID of the vertical ScrollBar. This is
automatically created by ScrolledWindow when the
XmNscrollingPolicy is initialized to XmAUTOMATIC; otherwise,
the default is NULL.

Reference Pages

XmScroliedWindow(ax)

XmNvisualPolicy
Enlarges the ScrolledWindow to match the size of the work area. It
can also be used as a static viewport onto a larger data space. If the
visual policy is XmVARIABLE, the ScrolledWindow forces the
ScrollBar display policy to XmSTATIC and allows the work area to
grow or shrink at any time and adjusts its layout to accommodate the
new size. When the policy is XmCONSTANT, the work area
grows or shrinks as requested, but a clipping window forces the size
of the visible portion to remain constant. The only time the viewing
area can grow is in response to a resize from the ScrolledWindow's
parent. The default is XmCONSTANT when XmNscrollingPolicy
is XmAUTOMATIC, and XmVARIABLE otherwise.

NOTE: This resource must be set to the desired policy at the time
the ScrolledWindow is created. It cannot be changed through
SetValues.

XmNworkWindow
Specifies the widget ID of the viewing area.

Inherited Resources
ScrolledWindow inherits behavior and resources from the superc1asses described
in the following tables. For a complete description of each resource, refer to the
reference page for that superclass.

1-833

OSF/Motif Programmer's Reference

XmScroliedWindow(3X)

XmManager Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap Xm UNSPECI FI ED _PIX MAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

Xm NhelpCallback NULL C
XmCCallback XtCallbackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

Xm Ninitial Focus NULL CSG
XmClnitialFocus Widget

Xm NnavigationType XmTAB_GROUP CSG
XmCNavigationType Xm NavigationType

Xm Nshadow Thickness dynamic CSG
XmCShadowThickness Dimension

Xm NstringDirection dynamic CG
XmCStringDirection XmStringDirection

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

Xm NtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-834

Reference Pages

XmScrolledWindow{3X)

Composite Resource Set

Name Default Access
Class Type

XmNchiidren NULL G
XmCReadOnly WidgetList

XmNinsertPosition NULL CSG
XmClnsertPosition XtOrderProc

XmNnumChiidren 0 G
XmCReadOnly Cardinal

1-835

OSF/Motif Programmer's Reference

XmScrolledWindow(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
Xm CAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

Xm Nbackground Pixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight dynamic CSG
XmCHeight Dimension

Xm NinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-836

Reference Pages

XmScrolledWindow(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
The application must use the ScrollBar callbacks to be notified of user input.

ScrolledWindow defines a callback structure for use with
XmNtraverseObscuredCallback callbacks. The
XmNtraverseObscuredCallback resource provides a mechanism for traversal to
obscured widgets (or gadgets) due to their position in the work area of a
ScrolledWindow. The XmNtraverseObscuredCallback routine has
responsibility for adjusting the position of the work area such that the specified
traversal destination widget is positioned within the viewport of the
ScrolledWindow. A NULL XmNtraverseObscuredCallback resource causes
obscured widgets within the ScrolledWindow to be nontraversable.

Traversal to an obscured widget or gadget requires that the following conditions
are met: the widget or gadget can be obscured only due to its position in the work
area of a ScrolledWindow relative to the viewport; the viewport of the associated
ScrolledWindow is fully visible, or can be made visible with the
XmNtraverseObscuredCallback routines of its ancestors; and the
XmNtraverseObscuredCallback resource must be non-NULL.

When ScrolledWindow widgets are nested, the XmNtraverseObscuredCallback
routine for each ScrolledWindow that obscures the traversal destination is called in
ascending order within the given hierarchy.

A pointer to the following structure is passed to callbacks for
XmNtraverseObscuredCallback.

typedef struct
{

int reason;
XEvent *event:
Widget traversaCdestination;
XmTraversalDirectiondirection;

} XmTraverseObscuredCallbackStruct;

1-837

OSF/Motif Programmer's Reference

XmScroliedWindow(ax)

1-838

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback.

trave rsaCde stination

direction

Translations

Specifies the widget or gadget to traverse to, which will be a
descendant of the work window.

Specifies the direction of traversal. See the description of the
direction parameter in the XmProcessTraversal reference page for
an explanation of the valid values.

XmScrolledWindow includes the translations from XmManager.

Additional Behavior
This widget has the following additional behavior:

KPageUp: If XmNscrollingPolicy is XmAUTOMATIC, scrolls the window
up the height of the viewport. The distance scrolled may be reduced
to provide some overlap. The actual distance scrolled depends on
the XmNpagelncrement resource of the vertical ScrollBar.

KPageDown: If XmNscrollingPolicy is XmAUTOMATIC, scrolls the window
down the height of the viewport. The distance scrolled may be
reduced to provide some overlap. The actual distance scrolled
depends on the XmNpagelncrement resource of the vertical
ScrollBar.

KPageLeft: If XmNscrollingPolicy is XmAUTOMATIC, scrolls the window
left the width of the viewport. The distance scrolled may be
reduced to provide some overlap. The actual distance scrolled
depends on the XmNpageIncrement resource of the horizontal
ScrollBar.

KPageRight: If XmNscrollingPolicy is XmAUTOMATIC, scrolls the window
right the width of the viewport. The distance scrolled may be
reduced to provide some overlap. The actual distance scrolled
depends on the XmNpageIncrement resource of the horizontal
ScrollBar.

Reference Pages

XmScroliedWindow(3X)

KBeginLine: If XmNscrollingPolicy is XmAUTOMATIC, scrolls the window
horizontally to the edge corresponding to the horizontal ScrollBar's
minimum value.

KEndLine: If XmNscrollingPolicy is XmAUTOMATIC, scrolls the window
horizontally to the edge corresponding to the horizontal ScrollBar's
maximum value.

KBeginData: If XmNscrollingPolicy is XmAUTOMATIC, scrolls the window
vertically to the edge corresponding to the vertical ScrollBar's
minimum value.

KEndData: If XmNscrollingPolicy is XmAUTOMATIC, scrolls the window
vertically to the edge corresponding to the vertical ScrollBar's
maximum value.

Certain applications will want to replace the page bindings with ones that are
specific to the content of the scrolled area.

Virtual Bindings
The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Composite(3X), Constraint(3X), Core(3X), XmCreateScrolledWindow(3X),
XmManager(3X), XmProcessTraversal(3X), XmScroIlBar(3X),
XmScroIlVisible(3X), and XmScrolledWindowSetAreas(3X).

1-839

OSF/Motif Programmer's Reference

XmScrolledWindowSetAreas (3X)

Synopsis

Description

1-840

XmScrolledWindowSetAreas-A ScrolledWindow function that adds or changes
a window work region and a horizontal or vertical ScrollBar widget to the
ScrolledWindow widget

#include <Xm/ScrolledW.h>

void XmScrolledWindowSetAreas (widget, horizontaLscrollbar, verticaLscrollbar,
work_region)

Widget
Widget
Widget
Widget

widget;
horizontaLscrollbar;
ve rticaLscrollbar;

XmScrolledWindowSetAreas adds or changes a window work region and a
horizontal or vertical ScrollBar widget to the ScrolledWindow widget for the
application. Each widget is optional and may be passed as NULL.

widget Specifies the ScrolledWindow widget ID.

horizontaLscrollbar
Specifies the ScrollBar widget ID for the horizontal ScrollBar to be
associated with the ScrolledWindow widget. Set this ,ID only after
creating an instance of the ScrolledWindow widget. The resource
name associated with this argument is XmNhorizontalScrollBar.

ve rticaLscrollbar
Specifies the ScrollBar widget ID for the vertical ScrollBar to be
associated with the ScrolledWindow widget. Set this ID only after
creating an instance of the ScrolledWindow widget. The resource
name associated with this argument is XmNverticalScrollBar.

work_region Specifies the widget ID for the work window to be associated with
the ScrolledWindow widget. Set this ID only after creating an
instance of the ScrolledWindow widget. The attribute name
associated with this argument is XmNworkWindow.

Reference Pages

XmScroliedWindowSetAreas (3X)

For a complete definition of ScrolledWindow and its associated resources, see
XmScrolledWindow(3X).

Related Information
XmScrolledWindow(3X).

1-841

OSF/Motif Programmer's Reference

XmSelectionBox (3X)

Synopsis

Description

1-842

XmSelectionBox-The SelectionBox widget class

#include <Xm/SelectioB.h>

SelectionBox is a general dialog widget that allows the user to select one item from
a list. By default, a SelectionBox includes the following:

• A scrolling list of alternatives

• An editable text field for the selected alternative

• Labels for the list and text field

• Three or four buttons

The default button labels are OK, Cancel, and Help. By default an Apply button
is also created; if the parent of the SelectionBox is a DialogShell, it is managed;
otherwise it is unmanaged. Additional children may be added to the SelectionBox
after creation. The first child is used as a work area. The value of
XmNchildPlacement determines if the work area is placed above or below the
Text area, or above or below the List area. Additional children are laid out in the
following manner:

MenuBar

Buttons

The first menu bar child is placed at the top of the window.

All XmPushButton widgets or gadgets, and their subclasses are
placed after the OK button in the order of their creation.

The layout of additional children that are not in the above categories is undefined.

The user can select an item in two ways: by scrolling through the list and selecting
the desired item or by entering the item name directly into the text edit area.
Selecting an item from the list causes that item name to appear in the selection text
edit area.

The user may select a new item as many times as desired. The item is not actually
selected until the user presses the OK PushButton.

The default value for the XmBulletinBoard resource XmNcancelButton is the
Cancel button, unless XmNdialogType is XmDIALOG_COMMAND, when the
default is NULL. The default value for the XmBulletinBoard
XmNdefaultButton resource is the OK button, unless XmNdialogType is
XmDIALOG_COMMAND, when the default is NULL.

For SelectionBox and its subclasses, the default value for XmNinitialFocus is the
text edit area.

Classes

Reference Pages

XmSelectionBox (3X)

The user can specify resources in a resource file for the automatically created
widgets and gadgets of SelectionBox. The following list identifies the names of
these widgets (or gadgets) and the associated SelectionBox areas:

List Items Label Items

List Items ltemsList

Selection Label Selection

Selection Text Text

Selection Separator Separator

SelectionBox inherits behavior and resources from Core, Composite, Constraint,
XmManager, and XmBulletinBoard.

The class pointer is xmSelectionBoxWidgetClass.

The class name is XmSelectionBox.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-843

OSF/Motif Programmer's Reference

XmSelectionBox (3X)

XmSelectionBox Resource Set

Name Default Access
Class Type

Xm NapplyCaliback NULL C
XmCCaliback XtCalibackList

Xm NapplyLabelString dynamic CSG
XmCApplyLabelString XmString

Xm NcancelCaliback NULL C
XmCCaliback XtCalibackList

Xm Ncancel LabelString dynamic CSG
XmCCancelLabelString XmString

Xm NchildPlacement XmPLACE_ABOVE_SELECTION CSG
XmCChildPlacement unsigned char

XmNdialogType dynamic CG
XmCDialogType unsigned char

Xm NhelpLabelString dynamic CSG
XmCHelpLabelString XmString

XmNlistltemCount 0 CSG
XmCltemCount int

XmNlistltems NULL CSG
XmCltems XmStringTable

Xm N listLabelString dynamic CSG
XmCListLabelString XmString

XmNlistVisibleltemCount dynamic CSG
XmCVisibleltemCount int

XmNminimizeButtons False CSG
XmCMinimizeButtons Boolean

Xm N m ustMatch False CSG
XmCMustMatch Boolean

Xm NnoMatchCallback NULL C
XmCCaliback XtCallbackList

XmNokCaliback NULL C
XmCCaliback XtCallbackList

1-844

Reference Pages

XmSelectionBox (3X)

Name Default Access
Class Type

Xm NokLabelString dynamic CSG
XmCOkLabelString XmString

XmNselectionLabelString dynamic CSG
XmCSelectionLabelString XmString

Xm NtextAccelerators default C
XmCTextAccelerators X tAccelerators

XmNtextColumns dynamic CSG
XmCColumns short

XmNtextString 1111 CSG
XmCTextString XmString

XmNapplyCallback
Specifies the list of callbacks called when the user activates the
Apply button. The callback reason is XmCR_APPLY.

XmNapplyLabelString
Specifies the string label for the Apply button. The default for this
resource depends on the locale. In the C locale the default is Apply.

XmNcancelCallback
Specifies the list of callbacks called when the user activates the
Cancel button. The callback reason is XmCR_CANCEL.

XmNcancelLabelString
Specifies the string label for the Cancel button. The default for this
resource depends on the locale. In the C locale the default is
Cancel.

XmNchildPlacement
Specifies the placement of the work area child. The possible values
are

XmPLACE_ABOVE_SELECTION
Places the work area child above the Text area

XmPLACE_BELOW _SELECTION
Places the work area child below the Text area

XmPLACE_TOP
Places the work area child above the List area, and
below a MenuBar, if one is present

1-845

OSF/Motif Programmer's Reference

XmSelectionBox(3X)

1-846

XmNdialogType
Determines the set of SelectionBox children widgets that are
created anq managed at initialization. The possible values are

XmDIALOG_PROMPT
All standard children except the list and list label are
created, and all except the Apply button are
managed.

XmDIALOG_COMMAND
Only the list, the selection label, and the text field are
created and managed.

XmDIALOG_SELECTION
All standard children are created and managed.

XmDIALOG_FILE_SELECTION
All standard children are created and managed.

XmDIALOG_ WORK_AREA
All standard children are created, and all except the
Apply button are managed.

If the parent of the SelectionBox is a DialogShell, the default is
XmDIALOG_SELECTION; otherwise, the default is
XmDIALOG_ WORK_AREA. XmCreatePromptDialog and
XmCreateSelectionDialog set and append this resource to the
creation argUst supplied by the application. This resource cannot be
modified after creation.

XmNhelpLabelString

XmNlistItems

Specifies the string label for the Help button. The default for this
resource depends on the locale. In the C locale the default is Help.

Specifies the items in the SelectionBox list. XtGetValues for this
resource returns the list items themselves, not a copy of the list
items. The application must not free the returned items.

XmNlistItemCount
Specifies the number of items in the SelectionBox list. The value
must not be negative.

Reference Pages

XmSelectionBox (aX)

XmNlistLabelString
Specifies the string label to appear above the SelectionBox list
containing the selection items. The default for this resource
depends on the locale. In the C locale the default is Items unless
XmNdialogType is XmDIALOG_PROMPT; in this case the
default is NULL.

XmNlist Visibleltem Count
Specifies the number of items displayed in the SelectionBox list.
The value must be greater than 0 (zero) unless XmNdialogType is
XmDIALOG_PROMPT; in this case, the value is always O. The
default is dynamic based on the height of the list.

XmNminimizeButtons
Sets the buttons to the width of the widest button and height of the
tallest button if False. If True, button width and height are not
modified.

XmNmustMatch
Specifies whether the selection widget should check if the user's
selection in the text edit field has an exact match in the
SelectionBox list when the OK button is activated. If the selection
does not have an exact match, and XmNmustMatch is True, the
XmNnoMatchCallback callbacks are called. If the selection does
have an exact match or if XmNmustMatch is False,
XmNokCallback callbacks are called.

XmNnoMatchCallback
Specifies the list of callbacks called when the user makes a selection
from the text edit field that does not have an exact match with any of
the items in the list box. The callback reason is
XmCR_NO_MATCH. Callbacks in this list are called only if
XmNmustMatch is true.

XmNokCallback
Specifies the list of callbacks called when the user activates the OK
button. The callback reason is XmCR_OK. If the selection text
does not match a list item, and XmNmustMatch is True, the
XmNnoMatchCallback callbacks are called instead.

XmNokLabelString
Specifies the string label for the OK button. The default for this
resource depends on the locale. In the C locale the default is OK.

1-847

OSF/Motif Programmer's Reference

XmSelectionBox(3X)

1-848

XmNselectionLabelString
Specifies the string label for the selection text edit field. The default
for this resource depends on the locale. In the C locale the default is
Selection.

XmNtextAccelerators
Specifies translations added to the Text widget child of the
SelectionBox. The default includes bindings for the up and down
keys for auto selection of list items. This resource is ignored if
XmNaccelerators is initialized to a nondefault value.

XmNtextColumns
Specifies the number of columns in the Text widget. The value must
be greater than 0 (zero).

XmN textString
Specifies the text in the text edit selection field.

Inherited Resources
SelectionBox inherits behavior and resources from the superclasses in the
following tables. For a complete description of each resource, refer to the reference
page for that superclass.

Reference Pages

XmSelectionBox (aX)

XmBulietinBoard Resource Set

Name Default Access
Class Type

XmNaliowOverlap True CSG
XmCAliowOverlap Boolean

XmNautoUnmanage True CG
XmCAutoUnmanage Boolean

X m N button FontList dynamic CSG
XmCButtonFontList XmFontList

XmNcancelButton dynamic SG
XmCWidget Widget

XmNdefaultButton dynamic SG
XmCWidget Widget

Xm NdefaultPosition True CSG
XmCDefaultPosition Boolean

Xm NdialogStyle dynamic CSG
XmCDialogStyle unsigned char

XmNdialogTitle NULL CSG
XmCDialogTitle XmString

Xm NfocusCaliback NULL C
XmCCaliback XtCalibackList

XmNlabelFontList dynamic CSG
XmCLabelFontList XmFontList

XmNmapCaliback NULL C
XmCCaliback XtCalibackList

XmNmarginHeight 10 CSG
XmCMarginHeight Dimension

XmNmarginWidth 10 CSG
XmCMarginWidth Dimension

XmNnoResize False CSG
XmCNoResize Boolean

XmNresizePolicy XmRESIZE_ANY CSG
XmCResizePolicy unsigned char

1-849

OSF/Motif Programmer's Reference

XmSelectionBox (3X)

Name Default Access
Class Type

XmNshadowType XmSHADOW_OUT CSG
XmCShadowType unsigned char

Xm NtextFontList dynamic CSG
XmCTextFontList XmFontList

Xm NtextTranslations NULL C
XmCTranslations XtTranslations

XmNunmapCaliback NULL C
XmCCaliback XtCalibackList

1-850

Reference Pages

XmSelectionBox (3X)

XmManager Resource Set

Name Default Access
Class Type

Xm Nbottom ShadowColor dynamic CSG
XmCBottomShadowColor Pixel

Xm NbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

Xm NhelpCallback NULL C
XmCCallback XtCallbackList

XmNhighlightColor dynamic CSG
XmCH ighl ightColor Pixel

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNinitialFocus dynamic CSG
XmClnitialFocus Widget

Xm NnavigationType XmTAB_GROUP CSG
XmCNavigationType Xm NavigationType

XmNshadowThickness dynamic CSG
XmCShadowThickness Dimension

XmNstringDirection dynamic CG
XmCStringDi rection XmStringDirection

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-851

OSF/Motif Programmer's Reference

XmSelectionBox (3X)

Composite Resource Set

Name Default Access
Class Type

XmNchildren NULL G
XmCReadOnly Widget List

Xm NinsertPosition NULL CSG
XmCI nsertPosition XtOrderProc

XmNnumChildren 0 G
XmCReadOnly Cardinal

1-852

Reference Pages

XmSelectionBox (3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators dynamic N/A
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel·

Xm NbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

Xm Nsensitive True CSG
XmCSensitive Boolean

1-853

OSF/Motif Programmer's Reference

XmSelectionBox (3X)

1-854

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;
XmString value;
int length;

} XmSelectionBoxCallbackStruct;

reason

event

value

length

Translations

Indicates why the callback was invoked

Points to the XEvent that triggered the callback

Indicates the XmString value selected by the user from the
SelectionBox list or entered into the SelectionBox text field

Indicates the size in bytes of the XmString value

XmSelectionBox inherits translations from XmBulletinBoard.

Reference Pages

XmSelectionBox(3X)

Accelerators
The XmNtextAccelerators are added to the Text descendant of XmSelectionBox.
The default accelerators are described in the following list. These accelerators
may not directly correspond to a translation table.

KUp:

KDown:

KBeginData:

KEndData:

KRestore:

Action Routines

SelectionBoxUpOrDown(O)

SelectionBoxUpOrDown(l)

SelectionBoxUpOrDown(2)

SelectionBoxUpOrDown(3)

SelectionBoxRestoreO

The XmSelectionBox action routines are

SelectionBoxUpOrDown(OI11213):
When called with an argument of 0 (zero), selects the previous item
in the list and replaces the text with that item.

When called with an argument of 1, selects the next item in the list
and replaces the text with that item.

When called with an argument of 2, selects the first item in the list
and replaces the text with that item.

When called with an argument of 3, selects the last item in the list
and replaces the text with that item.

SelectionBoxRestoreO:

Additional Behavior

Replaces the text value with the list selection. If no item in the list
is selected, clears the text.

The SelectionBox widget has the following additional behavior:

MAny KCancel:
Calls the activate callbacks for the cancel button if it is sensitive. If
no cancel button exists and the parent of the SelectionBox is a
manager, passes the event to the parent.

KActivate: Calls the activate callbacks for the button with the keyboard focus.
If no button has the keyboard focus, calls the activate callbacks for
the default button if it is sensitive. In a List widget or single-line
Text widget, the List or Text action associated with KActivate is
called before the SelectionBox actions associated with KActivate.

1-855

OSF/Motif Programmer's Reference

XmSelectionBox (aX)

In a multiline Text widget, any KActivate event except KEnter
calls the Text action associated with KActivate, then the
SelectionBox actions associated with KActivate. If no button has
the focus, no default button exists, and the parent of the
SelectionBox is a manager, passes the event to the parent.

<OK Button Activated>:
If XmNmustMatch is True and the text does not match an item in
the file list, calls the XmNnoMatchCallback callbacks with reason
XmCR_NO_MATCH. Otherwise, calls the XmNokCallback
callbacks with reason XmCR_ OK.

<Apply Button Activated>:
Calls the XmNapplyCallback callbacks with reason
XmCR_APPLY.

<Cancel Button Activated>:
Calls the XmNcancelCallback callbacks with reason
XmCR_CANCEL.

<Help Button Activated>:
Calls the XmNhelpCallback callbacks with reason XmCR_HELP.

<MapWindow>:
Calls the callbacks for XmNmapCallback if the SelectionBox is a
child of a Dialog shell.

<UnmapWindow>:

Virtual Bindings

Calls the callbacks for XmNunmapCallback if the SelectionBox is
the child of a DialogShell.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information

1-856

Composite(3X), Constraint(3X), Core(3X), XmBulletinBoard(3X),
XmCreateSelectionBox(3X), XmCreateSelectionDialog(3X),
XmCreatePromptDialog(3X), XmManager(3X), and
XmSelectionBoxGetChild(3X) .

Reference Pages

XmSelectionBoxGetChild (3X)

XmSelectionBoxGetChild-A SelectionBox function that is used to access a
component

Synopsis #include <XmlSelectioB.h>

Description

Widget XmSelectionBoxGetChiid (widget, child)
Widget widget;
unsigned char child;

XmSelectionBoxGetChild is used to access a component within a SelectionBox.
The parameters given to the function are the SelectionBox widget and a value
indicating which component to access.

widget

child

Specifies the SelectionBox widget ID.

Specifies a component within the SelectionBox. The following
values are legal for this parameter:

• XmDIALOG_APPLY_BUTTON

• XmDIALOG_CANCEL_BUTTON

• XmDIALOG_DEFAULT_BUTTON

• XmDIALOG_HELP _BUTTON

• XmDIALOG_LIST

• XmDIALOG_LIST_LABEL

• XmDIALOG_OK_BUTTON

• XmDIALOG_SELECTION_LABEL

• XmDIALOG_SEPARATOR

• XmDIALOG_TEXT

• XmDIALOG_ WORK_AREA

For a complete definition of SelectionBox and its associated resources, see
XmSelectionBox(3X) .

1-857

OSF/Motif Programmer's Reference

XmSelectionBoxGetChild (3X)

Return Value
Returns the widget ID of the specified SelectionBox component. An application
should not assume that the returned widget will be of any particular class.

Related Information
XmSelectionBox(3X) .

1-858

Synopsis

Description

Reference Pages

XmSeparator(3X)

XmSeparator-The Separator widget class

#include <XmlSeparator.h>

Separator is a primitive widget that separates items in a display. Several different
line drawing styles are provided, as well as horizontal or vertical orientation.

The Separator line drawing is automatically centered within the height of the
widget for a horizontal orientation and centered within the width of the widget for
a vertical orientation. An XtSetValues with a new XmNseparatorType resizes
the widget to its minimal height (for horizontal orientation) or its minimal width
(for vertical orientation) unless height or width is explicitly set in the XtSetValues
call.

Separator does not draw shadows around the separator. The Primitive resource
XmNshadowThickness is used for the Separator's thickness when the
XmNseparatorType resource is XmSHADOW _ETCHED_IN,
XmSHADOW _ETCHED_IN_DASH, XmSHADOW _ETCHED_OUT, or
XmSHADOW _ETCHED_OUT_DASH.

Separator does not highlight and allows no traversing. The primitive resource
XmNtraversalOn is forced to False.

The XmNseparatorType of XmNO_LINE provides an escape to the application
programmer who needs a different style of drawing. A pixmap the height of the
widget can be created and used as the background pixmap by building an argument
list using the XmNbackgroundPixmap argument type as defined by Core.
Whenever the widget is redrawn, its background is displayed containing the
desired separator drawing.

Classes
Separator inherits behavior and resources from Core and XmPrimitive.

The class pointer is xmSeparatorWidgetClass.

The class name is XmSeparator.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix anduse the remaining letters (in either lowercase or

1-859

OSF/Motif Programmer's Reference

XmSeparator(3X)

1-860

uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

XmSeparator Resource Set

Name Default Access
Class Type

XmNmargin 0 CSG
XmCMargin Dimension

Xm Norientation XmHORIZONTAL CSG
Xm COrientation unsigned char

Xm NseparatorType XmSHADOW_ETCHED_IN CSG
XmCSeparatorType unsigned char

XmNmargin For horizontal orientation, specifies the space on the left and right
sides between the border of the Separator and the line drawn. For
vertical orientation, specifies the space on the top and bottom
between the border of the Separator and the line drawn.

XmNorientation
Displays Separator vertically or horizontally. This resource can
have values of XmVERTICAL and XmHORIZONTAL.

XmNseparatorType
Specifies the type of line drawing to be done in the Separator
widget.

XmSINGLE_LINE
Single line

XmDOUBLE_LINE
Double line

XmSINGLE_DASHED_LINE
Single-dashed line

XmDOUBLE_DASHED_LINE
Double-dashed line

XmNO_LINE
/ No line

XmSHADOW _ETCHED_IN
A line whose shadows give the effect of a line etched
into the window. The thickness of the line is equal to

Inherited Resources

Reference Pages

XmSeparator(3X)

the value of XmNshadowThickness. For horizontal
orientation, the top shadow is drawn in
XmNtopShadowColor and the bottom shadow is
drawn in XmNbottomShadowColor. For vertical
orientation, the left edge is drawn in
XmNtopShadowColor and the right edge is drawn
in XmNbottomShadowColor.

XmSHADOW_ETCHED_OUT
A line whose shadows give the effect of an etched
line coming out of the window. The thickness of the
line is equal to the value of XmNshadowThickness.
For horizontal orientation, the top shadow is drawn in
XmNbottomShadowColor and the bottom shadow
is drawn in XmNtopShadowColor. For vertical
orientation, the left edge is drawn in
XmNbottomShadowColor and the right edge is
drawn in XmNtopShadowColor.

XmSHADOW _ETCHED_IN_DASH
Identical to XmSHADOW _ETCHED _IN except a
series of lines creates a dashed line.

XmSHADOW _ETCHED_OUT_DASH
Identical to XmSHADOW_ETCHED_OUT except
a series of lines creates a dashed line.

Separator inherits behavior and resources from the superc1asses in the following
table. For a complete description of each resource, refer to the reference page for
that superc1ass.

1-861

OSF/Motif Programmer's Reference

XmSeparator(3X)

XmPrimitive Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap Xm UNSPECI FI ED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

Xm NhelpCallback NULL C
XmCCallback XtCalibackList

Xm NhighlightColor dynamic CSG
XmCHighlightColor Pixel

Xm NhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

Xm NhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

Xm NhighlightThickness 0 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType Xm Navigation Type

Xm Nshadow Thickness 2 CSG
XmCShadowThickness Dimension

XmNtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

Xm NtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn False G
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-862

Reference Pages

XmSeparator{3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECI FI ED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynam1c CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-863

OSF/Motif Programmer's Reference

XmSeparator(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Translations
There are no translations for XmSeparator.

Related Information
Core(3X), XmCreateSeparator(3X), and XmPrimitive(3X).

1-864

Synopsis

Description

Reference Pages

XmSeparatorGadget (3X)

XmSeparatorGadget-The SeparatorGadget widget class

#include <Xm/SeparatoG.h>

SeparatorGadget separates items in a display. Several line drawing styles are
provided, as well as horizontal or vertical orientation.

Lines drawn within the SeparatorGadget are automatically centered within the
height of the gadget for a horizontal orientation and centered within the width of
the gadget for a vertical orientation. An XtSetValues with a new
XmNseparatorType resizes the widget to its minimal height (for horizontal
orientation) or its minimal width (for vertical orientation) unless height or width is
explicitly set in the XtSetValues call.

SeparatorGadget does not draw shadows around the separator. The Gadget
resource XmNshadowThickness is used for the SeparatorGadget's thickness when
the XmNseparatorType resource is XmSHADOW _ETCHED_IN,
XmSHADOW_ETCHED_IN_DASH, XmSHADOW_ETCHED_OUT, or
XmSHADOW _ETCHED_OUT_DASH.

SeparatorGadget does not highlight and allows no traversing. The Gadget resource
XmNtraversalOn is forced to False.

Classes
SeparatorGadget inherits behavior and resources from Object, RectObj, and
XmGadget.

The class pointer is xmSeparatorGadgetClass.

The class name is XmSeparatorGadget.

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

1-865

OSF/Motif Programmer's Reference

XmSeparatorGadget(3X)

1-866

XmSeparatorGadget Resource Set

Name Default Access
Class Type

XmNmargin 0 CSG
XmCMargin Dimension

Xm Norientation XmHORIZONTAL CSG
XmCOrientation unsigned char

XmNseparatorType XmSHADOW_ETCHED_IN CSG
XmCSeparatorType unsigned char

XmNmargin For horizontal orientation, specifies the space on the left and right
sides between the border of SeparatorGadget and the line drawn.
For vertical orientation, specifies the space on the top and bottom
between the border of SeparatorGadget and the line drawn.

XmNorientation
Specifies whether SeparatorGadget is displayed vertically or
horizontally. This resource can have values of XmVERTICAL and
XmHORIZONTAL.

XmNseparatorType
Specifies the type of line drawing to be done in the Separator
widget.

XmSINGLE_LINE
Single line.

XmDOUBLE_LINE
Double line.

XmSINGLE_DASHED_LINE
Single-dashed line.

XmDOUBLE_DASHED_LINE
Double-dashed line.

No line.

XmSHADOW _ETCHED_IN
A line whose shadows give the effect of a line etched
into the window. The thickness of the line is equal to
the value of XmNshadowThickness. For horizontal
orientation, the top shadow is drawn III

Inherited Resources

Reference Pages

XmSeparatorGadget (3X)

XmNtopShadowColor and the bottom shadow is
drawn in XmNbottomShadowColor. For vertical
orientation, the left edge is drawn in
XmNtopShadowColor and the right edge is drawn
in XmNbottomShadowColor.

XmSHADOW_ETCHED_OUT
A line whose shadows give the effect of an etched
line coming out of the window. The thickness of the
line is equal to the value of XmNshadowThickness.
For horizontal orientation, the top shadow is drawn in
XmNbottomShadowColor and the bottom shadow
is drawn in XmNtopShadowColor. For vertical
orientation, the left edge is drawn in
XmNbottomShadowColor and the right edge is
drawn in XmNtopShadowColor.

XmSHADOW _ETCHED_IN_DASH
Identical to XmSHADOW _ETCHED _IN except a
series of lines creates a dashed line.

XmSHADOW_ETCHED_OUT_DASH
Identical to XmSHADOW _ETCHED_OUT except
a series of lines creates a dashed line.

SeparatorGadget inherits behavior and resources from the superclasses in the
following tables. For a complete description of each resource, refer to the reference
page for that superc1ass.

1-867

OSF/Motif Programmer's Reference

XmSeparatorGadget (3X)

XmGadget Resource Set

Name Default Access
Class Type

XmNbottomShadowColor dynamic G
XmCBottomShadowColor Pixel

XmNhelpCallback NULL C
XmCCallback XtCallbackList

Xm NhighlightColor dynamic G
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightThickness 0 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType XmNavigationType

Xm NshadowThickness 2 CSG
XmCShadowThickness Dimension

XmNtopShadowColor dynamic G
XmCTopShadowColor Pixel

Xm NtraversalOn False G
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-868

Reference Pages

XmSeparatorGadget (3X)

RectObj Resource Set

Name Default Access
Class Type

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNborderWidth 0 N/A
XmCBorderWidth Dimension

XmNheight dynamic CSG
XmCHeight Dimension

XmNsensitive True CSG
XmCSensitive Boolean

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Object Resource Set

Name Default Access
Class Type

Xm NdestroyCaliback NULL C
XmCCaliback X tCal1 backList

Behavior
XmSeparatorGadget has no behavior.

Related Information
Object(3X), RectObject(3X), XmCreateSeparatorGadget(3X), and
XmGadget(3X).

1-869

OSF/Motif Programmer's Reference

XmSetColorCalculation (3X)

Synopsis

Description

1-870

XmSetColorCalculation-A function to set the procedure used for default color
calculation

#include <XmlXm.h>

XmColorProc XmSetColorCalculation (color -proc)
XmColorProc color -proc;

XmSetColorCalculation sets the procedure to calculate default colors. This
procedure is used to calculate the foreground, top shadow, bottom shadow, and
select colors on the basis of a given background color. If called with an argument
of NULL, it restores the default procedure used to calculate colors.

color yroc Specifies the procedure to use for color calculation.

Following is a description of the XmColorProc type used by
XmSetColorCalculation:

void (*color -proc) (background_color, foreground_color, selecCcolor, top_shadow _color,
bottom_shadow _color)

XColor
XColor
XColor
XColor
XColor

*background_color;
*foreground_color;
*selecCcolor;
*top _shadow_color;
*bottom_shadow _color;

Specifies the procedure used to calculate default colors. The procedure is passed a
pointer to an XColor structure representing the background color. The pixel, red,
green, and blue members of this structure are filled in with values that are valid for
the current colormap.

The procedure is passed pointers to XColor structures representing the foreground,
select, top shadow, and bottom shadow colors to be calculated. The procedure
calculates and fills in the red, green, and blue members of these stl1lctures. The
procedure should not allocate color cells for any of these colors.

background_color
Specifies the background color

foreground_color
Specifies the foreground color to be calculated

Reference Pages
XmSetColorCalculation (3X)

selecCcolor Specifies the select color to be calculated

top _shadow _color
Specifies the top shadow color to be calculated

bottom_shadow _color
Specifies the bottom shadow color to be calculated

Return Value
Returns the color calculation procedure that was used at the time this routine was
called.

Related Information
XmChangeColor(3X), XmGetColors(3X), and XmGetColorCalculation(3X).

1-871

OSF/Motif Programmer's Reference

XmSetFontUnit(3X)

Synopsis

Description

XmSetFontUnit-A function that sets the font unit value for a display

#include <XmlXm.h>

void XmSetFontUnit (display, fonCunicvalue)
Display * display;
int fonCunicvalue;

XmSetFontUnit provides an external function to initialize font unit values.
Applications may want to specify resolution-independent data based on a global
font size. See the XmNunitType resource description in the reference pages for
XmGadget, XmManager, and XmPrimitive for more information on resolution
independence.

This function sets the font units for all screens on the display.

NOTE: XmSetFontUnit is obsolete and exists for compatibility with previous
releases. Instead of using this function, provide initial values or call XtSetValues
for the XmScreen resources XmNhorizontalFontUnit and
XmNverticalFontUnit.

display Defines the display for which this font unit value is to be applied

foncuniCvalue
Specifies the value to be used for both horizontal and vertical font
units in the conversion calculations

Related Information

1-872

XmConvertUnits(3X), XmSetFontUnits(3X), XmGadget(3X),
XmManager(3X), XmPrimitive(3X), and XmScreen(3X).

Synopsis

Description

Reference Pages

XmSetFontUnits(3X)

XmSetFontUnits-A function that sets the font unit value for a display

#include <XmlXm.h>

void XmSetFontUnits (display, h_value, v_value)
Display * display;
int h_value;
int v_value;

XmSetFontUnits provides an external function to initialize font unit values.
Applications may want to specify resolution-independent data based on a global
font size. This function must be called before any widgets with resolution­
independent data are created. See the XmNunitType resource description in the
reference pages for XmGadget, XmManager, and XmPrimitive for more
information on resolution independence.

This function sets the font units for all screens on the display.

NOTE: XmSetFontUnits is obsolete and exists for compatibility with previous
releases. Instead of using this function, provide initial values or call XtSetValues
for the XmScreen resources XmNhorizontalFontUnit and
XmNverticalFontUnit.

display Defines the display for which this font unit value is to be applied

Specifies the value to be used for horizontal units in the conversion
calculations

Specifies the value to be used for vertical units in the conversion
calculations

Related Information
XmConvertUnits(3X), XmSetFontUnit(3X), XmGadget(3X),
XmManager(3X), XmPrimitive(3X), and XmScreen(3X).

1-873

OSF/Motif Programmer's Reference

XmSetMenuCursor(3X)

Synopsis

Description

XmSetMenuCursor-A function that modifies the menu cursor for a client

#include <XmIXm.h>

void XmSetMenuCursor (display, cursorId)
Display * display;
Cursor cursorId;

XmSetMenuCursor programmatically modifies the menu cursor for a client; after
the cursor has been created by the client, this function registers the cursor with the
menu system. After calling this function, the specified cursor is displayed
whenever this client displays a Motif menu on the indicated display. The client can
then specify different cursors on different displays.

This function sets the menu cursor for all screens on the display.
XmSetMenuCursor is obsolete and exists for compatibility with previous
releases. Instead of using this function, provide initial values or call XtSetValues
for the XmScreen resource XmNmenuCursor.

display

cursorld

Specifies the display to which the cursor is to be associated

Specifies the X cursor ID

Related Information
XmScreen(3X) .

1-874

Synopsis

Description

Reference Pages

XmSetProtocoIHooks(3X)

XmSetProtocolHooks-A VendorS hell function that allows pre and post actions
to be executed when a protocol message is received from MWM

#include <XmIXm.h>
#include <XmlProtocols.h>

void XmSetProtocolHooks (shell, property, protocol, prehook, pre_closure,
posthook, poscclosure)

Widget shell;
Atom property;
Atom
XtCallbackProc
XtPointer
XtCallbackProc
XtPointer

protocol;
prehook;
pre_closure;
posthook;
poscclosure;

void XmSetWMProtocolHooks (shell, protocol, prehook, pre_closure,
posthook, poscclosure)

Widget
Atom
XtCallbackProc
XtPointer
XtCallbackProc
XtPointer

shell;
protocol;
prehook;
pre_closure;
posthook;
posCclosure;

XmSetProtocolHooks is used by shells that want to have pre and post actions
executed when a protocol message is received from MWM. Since there is no
guaranteed ordering in execution of event handlers or callback lists, this allows the
shell to control the flow while leaving the protocol manager structures opaque.

XmSetWMProtocolHooks is a convenience interface. It calls
XmSetProtocolHooks with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

property Specifies the protocol property

protocol Specifies the protocol atom (or an int cast to Atom)

prehook Specifies the procedure to call before calling entries on the client
callback list

pre_closure Specifies the client data to be passed to the prehook when it is
invoked

1-875

OSF/Motif Programmer's Reference

XmSetProtocolHooks (3X)

posthook Specifies the procedure to call after calling entries on the client
callback list

poscclosure Specifies the client data to be passed to the posthook when it is
invoked

For a complete definition of VendorS hell and its associated resources, see
VendorShell(3X) .

Related Information
VendorShell(3X), XmlnternAtom(3X), and XmSetWMProtocoIHooks(3X).

1-876

'I
1

Synopsis

Description

Reference Pages

XmSetWM Protocol Hooks (3X)

XmSetWMProtocolHooks-A VendorS hell convenience interface that allows pre
and post actions to be executed when a protocol message is received from the
window manager

#include <XmlXm.h>
#include <XmlProtocols.h>

void XmSetWMProtocolHooks (shell, protocol, prehook, pre_closure, posthook,
poscclosure)

Widget shell;
Atom protocol;
XtCallbackProc pre hook;
XtPointer
XtCallbackProc
XtPointer

pre_closure;
posthook;
posCclosure;

XmSetWMProtocolHooks is a convenience interface. It calls
XmSetProtocolHooks with the property value set to the atom returned by
interning WM_PROTOCOLS.

shell Specifies the widget with which the protocol property is associated

protocol Specifies the protocol atom (or an int cast to Atom)

prehook Specifies the procedure to call before calling entries on the client
callback list

pre_closure Specifies the client data to be passed to the prehook when it is
invoked

posthook Specifies the procedure to call after calling entries on the client
callback list

POsCclosure Specifies the client data to be passed to the posthook when it is
invoked

For a complete definition of VendorS hell and its associated resources, see
VendorShell(3X).

Related Information
VendorShell(3X), XmlnternAtom(3X), and XmSetProtocoIHooks(3X).

1-877

OSF/Motif Programmer's Reference

XmString(3X)

XmString-Data type for a compound string

Synopsis #include <XmlXm.h>

Description
XmString is the data type for a compound string. Compound strings include one
or more segments, each of which may contain a font list element tag, string
direction, and text component. When a compound string is displayed, the font list
element tag and the direction are used to determine how to display the text.
Whenever a font list element tag is set to XmFONTLIST_DEFAULT_TAG the
text is handled as a locale text segment.

Calling XtGetValues for a resource whose type is XmString yields a copy of the
compound string resource value. The application is responsible for using
XmStringFree to free the memory allocated for the copy.

Refer to the XmFontList reference page for a description of the algorithm that
associates the font list element tag of a compound string segment with a font list
entry in a font list.

The compound string interface consists of the routines listed in Related
Information.

Related Information

1-878

XmStringBaseline(3X), XmStringByteCompare(3X), XmStringCompare(3X),
XmStringConcat(3X), XmStringCopy(3X), XmStringCreate(3X),
XmStringCreateLtoR(3X), XmStringCreateLocalized(3X),
XmStringCreateSimple(3X), XmStringDirection(3X),
XmStringDirectionCreate(3X), XmStringDraw(3X),
XmStringDrawImage(3X), XmStringDrawUnderline(3X),
XmStringEmpty(3X), XmStringExtent(3X), XmStringFree(3X),
XmStringFreeContext(3X), XmStringGetLtoR(3X),
XmStringGetNextComponent(3X), XmStringGetNextSegment(3X),
XmStringHasSubstring(3X), XmStringHeight(3X), XmStringInitContext(3X),
XmStringLength(3X), XmStringLineCount(3X), XmStringNConcat(3X),
XmStringNCopy(3X), XmStringPeekNextComponent(3X),
XmStringSegmentCreate(3X), XmStringSeparatorCreate(3X),
XmStringTable(3X), and XmStringWidth(3X).

Synopsis

Description

Reference Pages

XmStringBaseline(3X)

XmStringBaseline-A compound string function that returns the number of pixels
between the top of the character box and the baseline of the first line of text

#include <XmlXm.h>

Dimension XmStringBaseline lfontlist, string)
XmFontList Jontlist;
XmString string;

XmStringBaseline returns the number of pixels between the top of the character
box and the baseline of the first line of text in the provided compound string.

fontlist Specifies the font list

string Specifies the string

Return Value
Returns the number of pixels between the top of the character box and the baseline
of the first line of text.

Related Information
XmStringCreate(3X).

1-879

OSF/Motif Programmer's Reference

XmStringByteCompare(3X)

XmStringByteCompare-A compound string function that indicates the results of
a byte-by-byte comparison

Synopsis #include <XmlXm.h>

Description

Boolean XmStringByteCompare (sl, s2)
XmString s 1;
XmString s2;

XmStringByteCompare returns a Boolean indicating the results of a byte-by-byte
comparison of two compound strings.

In general, if two compound strings are created with the same (char *) string using
XmStringCreateLocalized in the same language environment, the compound
strings compare as equal. If two compound strings are created with the same
(char *) string and the same font list element tag set other than
XmFONTLIST_DEFAULT_TAG using XmStringCreate, the strings compare
as equal.

In some cases, once a compound string is put into a widget, that string is converted
into an internal form to allow faster processing. Part of the conversion process
strips out unnecessary or redundant information. If an application then does an
XtGetValues to retrieve a compound string from a widget (specifically, Label and
all of its subclasses), it is not guaranteed that the compound string returned is byte­
for-byte the same as the string given to the widget originally.

sl

s2

Specifies a compound string to be compared with s2

Specifies a compound string to be compared with sl

Return Value
Returns True if two compound strings are identical byte-by-byte.

Related Information
XmStringCreate(3X) and XmStringCreateLocalized(3X).

1-880

Synopsis

Description

Reference Pages

XmStringCompare (aX)

XmStringCompare-A compound string function that compares two strings

#include <XmlXm.h>

Boolean XmStringCompare (s1, s2)
XmString s1;
XmString s2;

XmStringCompare returns a Boolean value indicating the results of a
semantically equivalent comparison of two compound strings.

Semantically equivalent means that the strings have the same text components, font
list element tags, directions, and separators. In general, if two compound strings
are created with the same (char *) string using XmStringCreateLocalized in the
same language environment, the compound strings compare as equal. If two
compound strings are created with the same (char *) string and the same font list
element tag other than XmFONTLIST_DEFAULT_TAG using
XmStringCreate, the strings compare as equal.

s1

s2

Specifies a compound string to be compared with s2

Specifies a compound string to be compared with s1

Return Value
Returns True if two compound strings are equivalent.

Related Information
XmStringCreate(3X) and XmStringCreateLocalized(3X).

1-881

OSF/Motif Programmer's Reference

XmStringConcat(3X)

Synopsis

Description

XmStringConcat-A compound string function that appends one string to another

#include <XmlXm.h>

XmString XmStringConcat (sl, s2)
XmString s 1;
XmString s2;

XmStringConcat copies s2 to the end of sl and returns a copy of the resulting
compound string. The original strings are preserved. The space for the resulting
compound string is allocated within the function. After using this function, free
this space by calling XmStringFree.

sl

s2

Specifies the compound string to which a copy of s2 is appended

Specifies the compound string that is appended to the end of sl

Return Value
Returns a new compound string.

Related Information
XmStringCreate(3X) and XmStringFree(3X).

1-882

Synopsis

Description

Reference Pages

XmStringCopy (3X)

XmStringCopy-A compound string function that makes a copy of a string

#include <XmlXm.h>

XmString XmStringCopy (s 1)
XmString s 1 ;

XmStringCopy makes a copy of a compound string. The space for the resulting
compound string is allocated within the function. The application is responsible for
managing the allocated space. The memory can be recovered with XmStringFree.

s1 Specifies the compound string to be copied

Return Value
Returns a new compound string.

Related Information
XmStringCreate(3X) and XmStringFree(3X).

1-883

OSF/Motif Programmer's Reference

XmStringCreate(3X)

XmStringCreate-A compound string function that creates a compound string

Synopsis #include <XmIXm.h>

Description

XmString XmStringCreate (text, tag)
char * text;
char *tag;

XmStringCreate creates a compound string with two components: text and a font
list element tag.

text Specifies a NULL-terminated string to be used as the text
component of the compound string.

tag Specifies the font list element tag to be associated with the given
text. The value XmFONTLIST_DEFAULT_TAG identifies a
locale text segment.

Return Value
Returns a new compound string.

Related Information

1-884

XmFontList(3X), XmFontListAdd(3X), XmFontListAppendEntry(3X),
XmFontListCopy(3X), XmFontListCreate(3X), XmFontListEntryCreate(3X),
XmFontListEntry Free(3X), XmFontListEntryGetFont(3X),
XmFontListEntryGetTag(3X), XmFontListEntryLoad(3X),
XmFontListFree(3X), XmFontListFreeFontContext(3X),
XmFontListGetNextFont(3X), XmFontListInitFontContext(3X),
XmFontListNextEntry(3X), XmFontListRemoveEntry(3X), XmString(3X),
XmStringBaseline(3X), XmStringByteCompare(3X), XmStringCompare(3X),
XmStringConcat(3X), XmStringCopy(3X), XmStringCreateLocalized(3X),
XmStringCreateLtoR(3X), XmStringCreateSimpie(3X),
XmStringDirection(3X), XmStringDirectionCreate(3X), XmStringDraw(3X),
XmStringDraw Image(3X), XmStringDrawUnderline(3X),
XmStringEmpty(3X), XmStringExtent(3X), XmStringFree(3X),

Reference Pages

XmStringCreate(3X)

XmStringFreeContext(3X), XmStringGetLtoR(3X),
XmStringGetNextComponent(3X), XmStringGetNextSegment(3X),
XmStringHasSubstring(3X), XmStringHeight(3X), XmStringlnitContext(3X),
XmStringLength(3X), XmStringLineCount(3X), XmStringN Concat(3X),
XmStringNCopy(3X), XmStringPeekNextComponent(3X),
XmStringSegmentCreate(3X), XmStringSeparatorCreate(3X),
XmStringTable(3X), and XmStringWidth(3X).

1-885

OSF/Motif Programmer's Reference

XmStringCreateLocalized (3X)

Synopsis

Description

XmStringCreateLocalized-A compound string function that creates a
compound string in the current locale

#include <Xm/Text.h>

XmString XmStringCreateLocalized (text)

char * text;

XmStringCreateLocalized creates a compound string containing the specified
text and assigns XmFONTLIST_DEFAULT_TAG as the font list entry tag. An
identical compound string would result from the function XmStringCreate called
with XmFONTLIST_DEFAULT_TAG explicitly as the font list entry tag.

text Specifies a NULL-terminated string of text encoded in the current
locale to be used as the text component of the compound string

Return Value
Returns a new compound string.

Related Information
XmStringCreate(3X).

1-886

Synopsis

Description

Reference Pages

XmStringCreateLtoR(3X)

XmStringCreateLtoR-A compound string function that creates a compound
string

#include <XmlXm.h>

XmString XmStringCreateLtoR (text, tag)
char *text;
char *tag;

XmStringCreateLtoR creates a compound string with two components: text and a
font list element tag. This function imposes the semantic of scanning for \n
characters in the text. When one is found, the text up to that point is put into a
segment followed by a separator component. No final separator component is
appended to the end of the compound string. The direction defaults to left-to-right.
This function assumes that the encoding is single octet rather than double octet per
character of text.

text

tag

Specifies a NULL-terminated string to be used as the text
component of the compound string.

Specifies the font list element tag to be associated with the given
text. The value XmFONTLIST_DEFAULT_TAG identifies a
locale text segment.

Return Value
Returns a new compound string.

Related Information
XmStringCreate(3X).

1-887

OSF/Motif Programmer's Reference

XmStringCreateSimple(3X)

Synopsis

Description

XmStringCreateSimple-A compound string function that creates a compound
string in the language environment of a widget

#include <XmlXm.h>

XmString XmStringCreateSimple (text)
char * text;

XmStringCreateSimple creates a compound string with two components: text and
a character set. It derives the character set from the current language environment.

The routine attempts to derive a character set from the value of the LANG
environment variable. If this does not result in a valid character set, the routine
uses a vendor-specific default. If the vendor has not specified a different value, this
default is IS08859-1.

NOTE: This routine is obsolete and exists for compatibility with previous
releases. It has been replaced by XmStringCreateLocalized.

text Specifies a NULL-terminated string to be used as the text
component of the compound string

Return Value
Returns a new compound string.

Related Information
XmStringCreate(3X) and XmStringCreateLocalized(3X).

1-888

Reference Pages

XmStringDirection (3X)

XmStringDirection-Data type for the direction of display in a string

Synopsis #include <XmlXm.h>

Description
XmStringDirection is the data type for specifying the direction in which the
system displays characters of a string, or characters of a segment of a compound
string. This is an enumeration with two possible values:

XmSTRING_DlRECTION_L_TO_R
Specifies left to right display

XmSTRING_DlRECTION_R_TO_L
Specifies right to left display

Related Information
XmString(3X) .

1-889

OSF/Motif Programmer's Reference

XmStringDirectionCreate(3X)

Synopsis

Description

XmStringDirectionCreate-A compound string function that creates a compound
string

#include <XmlXm.h>

XmString XmStringDirectionCreate (direction)
XmStringDirectiondirection;

XmStringDirectionCreate creates a compound string with a single component, a
direction with the given value.

direction Specifies the value of the directional component

Return Value
Returns a new compound string.

Related Information
XmStringCreate(3X).

1-890

Synopsis

Description

Reference Pages

XmStringDraw(3X)

XmStringDraw-A compound string function that draws a compound string in an
X window

#include <XmlXm.h>

void XmStringDraw (d, w, fontlist, string, gc, x, y, width, alignment, layoucdirection, clip)
Display * d;
Window W;
XmFontList fontlist;
XmString
GC

string;
gc;

Position X;
Position y;

Dimension width;
unsigned char alignment;
unsigned char layouCdirection;
XRectangle * clip;

XmStringDraw draws a compound string in an X Window. If a compound string
segment uses a font list entry that defines a font set, the graphic context passed to
this routine will have the GC font member left in an undefined state. The
underlying XmbStringDraw function called by this routine modifies the font ID
field of the GC passed into it and does not attempt to restore the font ID to the
incoming value. If the compound string segment is not drawn using a font set, the
graphic context must contain a valid font member. Graphic contexts created by
XtGetGC are not valid for this routine; instead, use XtAllocateGC to create a
graphic context.

d

w

fontlist

string

gc

x

y

Specifies the display.

Specifies the window.

Specifies the font list.

Specifies the string.

Specifies the graphics context to use.

Specifies a coordinate of the rectangle that will contain the
displayed compound string.

Specifies a coordinate of the rectangle that will contain the
displayed compound string.

1-891

OSF/Motif Programmer's Reference

XmStringDraw(3X)

width

alignment

Specifies the width of the rectangle that will contain the displayed
compound string.

Specifies how the string will be aligned within the specified
rectangle. It is either XmALIGNMENT _BEGINNING,
XmALIGNMENT_CENTER, or XmALIGNMENT_END.

layouCdirection
Controls the direction in which the segments of the compound string
will be laid out. It also determines the meaning of the alignment
parameter.

clip Allows the application to restrict the area into which the compound
string will be drawn. If the value is NULL, no clipping will be done.

Related Information
XmStringCreate(3X) .

1-892

Synopsis

Description

Reference Pages

XmStringDrawlmage(3X)

XmStringDrawImage-A compound string function that draws a compound
string in an X Window and creates an image

#include <XmlXm.h>

void XmStringDrawlmage (d, w, fontlist, string, gc, x, y, width, alignment,
layout_direction, clip)

Display *d;
Window W;
XmFontList font list;
XmString
GC

string;
gc;

Position X;
Position y;
Dimension width;
unsigned char alignment;
unsigned char layoucdirection;
XRectangle * clip;

XmStringDrawlmage draws a compound string in an X Window and paints both
the foreground and background bits of each character. If a compound string
segment uses a font list entry that defines a font set, the graphic context passed to
this routine will have the GC font member left in an undefined state. The
underlying XmbStringDraw function called by this routine modifies the font ID
field of the GC passed into it and does not attempt to restore the font ID to the
incoming value. If the compound string segment is not drawn using a font set, the
graphic context must contain a valid font member. Graphic contexts created by
XtGetGC are not accepted by this routine; instead, use XtAlIocateGC to create a
graphic context.

d

w

fontlist

string

gc

x

Specifies the display.

Specifies the window.

Specifies the font list.

Specifies the string.

Specifies the graphics context to use.

Specifies a coordinate of the rectangle that will contain the
displayed compound string.

1-893

OSF/Motif Programmer's Reference

XmStringDrawlmage(3X)

y

width

alignment

Specifies a coordinate of the rectangle that will contain the
displayed compound string.

Specifies the width of the rectangle that will contain the displayed
compound string.

Specifies how the string will be aligned within the specified
rectangle. It is either XmALIGNMENT_BEGINNING,
XmALIGNMENT _CENTER, or XmALIGNMENT _END.

layouCdirection

clip

Controls the direction in which the segments of the compound string
will be laid out. It also determines the meaning of the alignment
parameter.

Allows the application to restrict the area into which the compound
string will be drawn. If NULL, no clipping will be done.

Related Information
XmStringCreate(3X) .

1-894

Synopsis

Description

Reference Pages

XmStringDrawUnderline(3X)

XmStringDrawUnderline-A compound string function that underlines a string
drawn in an X Window

#include <XmlXm.h>

void XmStringDrawUnderline (d, w, Jontlist, string, gc, x, y, width, alignment,
layoucdirection, clip, underline)

Display * d;
Window w;
XmFontList Jontlist;
XmString
GC
Position
Position

string;
gc;
X;
y;

Dimension width;
unsigned char alignment;
unsigned char layouCdirection;
XRectangle * clip;
XmString underline;

XmStringDrawUnderline draws a compound string in an X Window. If the
substring identified by underline can be matched in string, the substring will be
underlined. Once a match has occurred, no further matches or underlining will be
done.

If a compound string segment uses a font list entry that defines a font set, the
graphic context passed to this routine will have the GC font member left in an
undefined state. The underlying XmbStringDraw function called by this routine
modifies the font ID field of the GC passed into it and does not attempt to restore
the font ID to the incoming value. If the compound string segment is not drawn
using a font set, the graphic context must contain a valid font member. Graphic
contexts created by XtGetGC are not accepted by this routine; instead, use
XtAlIocateGC to create a graphic context.

d

w

fontlist

string

gc

Specifies the display.

Specifies the window.

Specifies the font list.

Specifies the string.

Specifies the graphics context to use.

1-895

OSF/Motif Programmer's Reference

XmStringDrawUnderline(3X)

x

Y

width

alignment

Specifies a coordinate of the rectangle that will contain the
displayed compound string.

Specifies a coordinate of the rectangle that will contain the
displayed compound string.

Specifies the width of the rectangle that will contain the displayed
compound string.

Specifies how the string will be aligned within the specified
rectangle. It is one of XmALIGNMENT_BEGINNING,
XmALIGNMENT_CENTER, or XmALIGNMENT_END.

layouCdirection

clip

underline

Controls the direction in which the segments of the compound string
will be laid out. It also determines the meaning of the alignment
parameter.

Allows the application to restrict the area into which the compound
string will be drawn. If it is NULL, no clipping will be done.

Specifies the substring to be underlined.

Related Information
XmStringCreate(3X).

1-896

Synopsis

Description

Reference Pages

XmStringEmpty (3X)

XmStringEmpty-A compound string function that provides information on the
existence of non-zero-Iength text components

#include <XmIXm.h>

Boolean XmStringEmpty (sl)
XmString sl;

XmStringEmpty returns a Boolean value indicating whether any non-zero-Iength
text components exist in the provided compound string. It returns True if there are
no text segments in the string. If this routine is passed NULL as the string, it
returns True.

sl Specifies the compound string

Return Value
Returns True if there are no text segments in the string. If this routine is passed
NULL as the string, it returns True.

Related Information
XmStringCreate(3X) .

1-897

OSF/Motif Programmer's Reference

XmStringExtent (aX)

Synopsis

Description

XmStringExtent-A compound string function that determines the size of the
smallest rectangle that will enclose the compound string

#include <XmlXm.h>

void XmStringExtent ifontlist, string, width, height)
XmFontList Jontlist;
XmString string;
Dimension *width;
Dimension *height;

XmStringExtent determines the width and height, in pixels, of the smallest
rectangle that will enclose the provided compound string.

fontlist

string

width

height

Specifies the font list

Specifies the string

Specifies a pointer to the width of the rectangle

Specifies a pointer to the height of the rectangle

Related Information
XmStringCreate(3X) .

1-898

Reference Pages

XmStringFree(3X)

XmStringFree-A compound string function that recovers memory

Synopsis #include <XmlXm.h>

void XmStringFree (string)
XmString string;

Description
XmStringFree recovers memory used by a compound string.

string Specifies the compound string to be freed

Related Information
XmStringCreate(3X).

1-899

OSF/Motif Programmer's Reference

XmStringFreeContext(ax)

Synopsis

Description

XmStringFreeContext-A compound string function that instructs the toolkit that
the context is no longer needed

#include <XmlXm.h>

void XmStringFreeContext (context)
XmStringContext context;

XmStringFreeContext instructs the toolkit that the context is no longer needed
and will not be used without reinitialization.

context Specifies the string context structure that was allocated by the
XmStringlnitContext function

Related Information
XmStringCreate(3X) and XmStringlnitContext(3X).

1-900

Synopsis

Description

Reference Pages

XmStringGetLtoR (3X)

XmStringGetLtoR-A compound string function that searches for a text segment
in the input compound string

#include <XmlXm.h>

Boolean XmStringGetLtoR (string, tag, text)
XmString string;
XmStringCharSettag;
char **text;

XmStringGetLtoR searches for a text segment in the input compound string that
matches the given font list element tag.

string

tag

text

Specifies the compound string.

Specifies the font list element tag associated with the text. A value
of XmFONTLIST_DEFAULT_TAG identifies a locale text
segment.

Specifies a pointer to a NULL-terminated string.

Return Value
Returns True if the matching text segment can be found. On return, text will have a
NULL-terminated octet sequence containing the matched segment.

Related Information
XmStringCreate(3X) .

1-901

OSF/Motif Programmer's Reference

XmStringGetNextComponent(3X)

Synopsis

Description

1-902

XmStringGetNextComponent-A compound string function that returns the type
and value of the next component in a compound string

#include <XmIXm.h>

XmStringComponentType XmStringGetNextComponent (context, text, tag, direction,
unknown_tag, unknown_length, unknown_value)

XmStringContext context;
char * * text;
XmStringCharSet *tag;
XmStringDirection * direction;
XmStringComponentType *unknown_tag;
unsigned short * unknown_length;
unsigned char **unknown_value;

XmStringGetNextComponent returns the type and value of the next component
in the compound string identified by context. It is a low-level component function.
Components are returned one at a time. On return, only some output parameters
will be valid; which ones can be determined by examining the return status. In the
case of text, tag, and direction components, only one output parameter is valid. If
the return status indicates an unknown component was encountered, the font list
element tag, length, and value are retilrned. This function allocates the space
necessary to hold returned values; freeing this space is the caller's responsibility.

context

text

tag

direction

Specifies the string context structure that was allocated by the
XmStringInitContext function.

Specifies a pointer to a NULL-terminated string.

Specifies a pointer to the font list element tag associated with the
text. The value XmFONTLIST_DEFAULT_TAG identifies a
locale text segment.

Specifies a pointer to the direction of the text.

unknown_tag Specifies a pointer to the tag of an unknown component.

unknown_length
Specifies a pointer to the length of an unknown component.

unknown_value
Specifies a pointer to the value of an unknown component.

I

·1

I

Reference Pages

XmStringGetNextComponent(ax)

Return Value
Returns the type of component found. The possible values are

• XmSTRING_COMPONENT_CHARSET

This component is obsolete and remains for compatibility with previous
releases. This component has been replaced by
XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG.

• XmSTRING_COMPONENT_FONTLIST_ELEMENT_TAG

• XmSTRING_COMPONENT_LOCALE_TEXT

• XmSTRING_COMPONENT_TAG

• XmSTRING_COMPONENT_TEXT

• XmSTRING_COMPONENT_DlRECTION

• XmSTRING_COMPONENT_SEPARATOR

• XmSTRING_COMPONENT_END

• XmSTRING_COMPONENT_UNKNOWN

Related Information
XmStringCreate(3X) and XmStringlnitContext(3X).

1-903

OSF/Motif Programmer's Reference

XmStringGetNextSegment (3X)

Synopsis

Description

XmStringGetNextSegment-A compound string function that fetches the octets
in the next segment of a compound string

#include <XmlXm.h>

Boolean XmStringGetNextSegment (context, text, tag, direction, separator)
XmStringContext context;
char
XmStringCharSet
XmStringDirection
Boolean

* * text;
*tag;
*direction;
* separator;

XmStringGetNextSegment fetches the octets in the next segment; repeated calls
fetch sequential segments. The text, tag, and direction of the fetched segment are
returned each time. A Boolean status is returned to indicate whether a valid
segment was successfully parsed.

context

text

tag

direction

separator

Specifies the string context structure which was allocated by the
XmStringInitContext function

Specifies a pointer to a NULL-terminated string

Specifies a pointer to the font list element tag associated with the
text

Specifies a pointer to the direction of the text

Specifies whether the next component of the compound string is a
separator

Return Value
Returns True if a valid segment is found.

Related Information
XmStringCreate(3X) and XmStringInitContext(3X).

1-904

Synopsis

Description

Reference Pages

XmStringHasSubstring{3X)

XmStringHasSubstring-A compound string function that indicates whether one
compound string is contained within another

#include <XmlXm.h>

Boolean XmStringHasSubstring (string, substring)
XmString string;
XmString substring;

XmStringHasSubstring indicates whether or not one compound string is
contained within another.

string

substring

Specifies the compound string to be searched

Specifies the compound string to be searched for

Return Value
Returns True if substring has a single segment and if its text is completely
contained within any single segment of string; otherwise, it returns False. If two
compound strings created using XmStringCreateLocalized in the same language
environment satisfy this condition, the function returns True. If two compound
strings created with the same character set using XmStringCreate satisfy this
condition, the function returns True.

Related Information
XmStringCreate(3X) and XmStringCreateLocalized(3X).

1-905

OSF/Motif Programmer's Reference

XmStringHeight (3X)

Synopsis

Description

XmStringHeight-A compound string function that returns the line height of the
gi ven compound string

#include <XmlXm.h>

Dimension XmStringHeight (Jontlist, string)
XmFontList Jontlist;
XmString string;

XmStringHeight returns the height, in pixels, of the sum of all the line heights of
the given compound string. Separator components delimit lines.

fontlist Specifies the font list

string Specifies the string

Return Value
Returns the height of the specified string.

Related Information
XmStringCreate(3X).

1-906

Synopsis

Description

Reference Pages

XmStringlnitContext(3X)

XmStringlnitContext-A compound string function that allows applications to
read out the content segment by segment

#include <XmlXm.h>

Boolean XmStringlnitContext (context, string)
XmStringContext * context;
XmString string;

XmStringlnitContext maintains a context to allow applications to read out the
contents of a compound string segment by segment. This function establishes the
context for this read out. This context is used when reading subsequent segments
out of the string. A Boolean status is returned to indicate if the input string could
be parsed.

context

string

Specifies a pointer to the allocated context

Specifies the string

Return Value
Returns True if the context was allocated.

Related Information
XmStringCreate(3X) .

1-907

OSF/Motif Programmer's Reference

XmStringLength (3X)

Synopsis

Description

XmStringLength-A compound string function that obtains the length of a
compound string

#include <XmlXm.h>

int XmStringLength (sl)
XmString s 1;

XmStringLength obtains the length of a compound string. It returns the number
of bytes in sl including all tags, direction indicators, and separators. If the
compound string has an invalid structure, 0 (zero) is returned.

sl Specifies the compound string

Return Value
Returns the length of the compound string.

Related Information
XmStringCreate(3X) .

1-908

Synopsis

Description

Reference Pages

XmStringLineCount{3X)

XmStringLineCount-A compound string function that returns the number of
separators plus one in the provided compound string

#include <XmlXm.h>

int XmStringLineCount (string)
XmString string;

XmStringLineCount returns the number of separators plus one in the provided
compound string. In effect, it counts the lines of text.

string Specifies the string

Return Value
Returns the number of lines in the compound string

Related Information
XmStringCreate(3X).

1-909

OSF/Motif Programmer's Reference

XmStringNConcat (3X)

Synopsis

Description

XmStringNConcat-A compound string function that appends a specified number
of bytes to a compound string

#include <XmIXm.h>

XmString XmStringNConcat (sl, s2, num_bytes)
XmString s 1 ;
XmString s2;
int num_bytes;

XmStringNConcat appends a specified number of bytes from s2 to the end of sl,
including tags, directional indicators, and separators. It then returns the resulting
compound string. The original strings are preserved. The space for the resulting
compound string is allocated within the function. The application is responsible for
managing the allocated space. The memory can be recovered with XmStringFree.

sl

s2

Specifies the compound string to which a copy of s2 is appended.

Specifies the compound string that is appended to the end of sl.

Specifies the number of bytes of s2 to append to sl. If this value is
less than the length of s2, as many bytes as possible, but possibly
fewer than this value, will be appended to sl such that the resulting
string is still a valid compound string.

Return Value
Returns a new compound string.

Related Information
XmStringCreate(3X) and XmStringFree(3X).

1-910

Synopsis

Description

Reference Pages

XmStringNCopy (3X)

XmStringNCopy-A compound string function that creates a copy of a compound
string

#include <XmIXm.h>

XmString XmStringNCopy (sl, num_bytes)
XmString sl;
int

XmStringNCopy creates a copy of sl that contains a specified number of bytes,
including tags, directional indicators, and separators. It then returns the resulting
compound string. The original strings are preserved. The space for the resulting
compound string is allocated within the function. The application is responsible for
managing the allocated space. The memory can be recovered by calling
XmStringFree.

sl Specifies the compound string.

Specifies the number of bytes of sl to copy. If this value is less than
the length of s 1, as many bytes as possible, but possibly fewer than
this value, will be appended to sl such that the resulting string is
still a valid compound string.

Return Value
Returns a new compound string.

Related Information
XmStringCreate(3X) and XmStringFree(3X).

1-911

OSF/Motif Programmer's Reference
XmStringPeekNextComponent (3X)

XmStringPeekNextComponent-A compound string function that returns the
component type of the next component fetched

Synopsis #include <XmlXm.h>

Description

XmStringComponentType XmStringPeekNextComponent (context)
XmStringContext context;

XmStringPeekNextComponent examines the next component that would be
fetched by XmStringGetNextComponent and returns the component type.

context Specifies the string context structure that was allocated by the
XmStringlnitContext function

Return Value
Returns the type of component found.

Related Information

1-912

XmStringCreate(3X), XmStringGetNextComponent(3X), and
XmStringlnitContext(3X).

Synopsis

Description

Reference Pages

XmStringSegmentCreate (3X)

XmStringSegmentCreate-A compound string function that creates a compound
string

#include <XmlXm.h>

XmString XmStringSegmentCreate (text, tag, direction, separator)
char * text;
char *tag;
XmStringDirectiondirection;
Boolean separator;

XmStringSegmentCreate is a high-level function that assembles a compound
string consisting of a font list element tag, a direction component, a text
component, and an optional separator component.

text

tag

direction

separator

Specifies a NULL-terminated string to be used as the text
component of the compound string.

Specifies the font list element tag to be associated with the text. The
value XmFONTLIST_DEFAULT_TAG identifies a locale text
segment.

Specifies the direction of the text.

Specifies separator addition. A value of False means the compound
string does not have a separator at the end. A value of True, means
a separator immediately follows the text component.

Return Value
Returns a new compound string.

Related Information
XmStringCreate(3X) .

1-913

OSF/Motif Programmer's Reference
XmStringSeparatorCreate(3X)

Synopsis

Description

XmStringSeparatorCreate-A compound string function that creates a
compound string

#include <XmlXm.h>

XmString XmStringSeparatorCreate 0

XmStringSeparatorCreate creates a compound string with a single component, a
separator.

Return Value
Returns a new compound string.

Related Information
XmStringCreate(3X).

1-914

Reference Pages

XmStringTable (3X)

XmStringTable-Data type for an array of compound strings

Synopsis #include <XmIXm.h>

Description
XmStringTable is the data type for an array of compound strings (objects of type
XmString).

Related Information
XmString(3X) .

1-915

OSF/Motif Programmer's Reference
XmStringWidth (3X)

Synopsis

Description

XmStringWidth-A compound string function that returns the width of the
longest sequence of text components in a compound string

#include <XmlXm.h>

Dimension XmStringWidth (jontlist, string)
XmFontList Jontlist;
XmString string;

XmStringWidth returns the width, in pixels, of the longest sequence of text
components in the provided compound string. Separator components are used to
delimit sequences of text components.

fontlist Specifies the font list

string Specifies the string

Return Value
Returns the width of the compound string.

Related Information
XmStringCreate(3X) .

1-916

Synopsis

Description

Reference Pages

XmTargetsAreCompatible(3X)

XmTargetsAreCompatible-A function that tests whether the target types match
between a drop site and source object

#include <XmlDragDrop.h>

Boolean XmTargetsAreCompatible (display, exporctargets, num_exporctargets,

Display
Atom
Cardinal
Atom
Cardinal

imporCtargets, num_imporctargets)
*display;
*exporCtargets;
num_exporCtargets;
* imporctargets;
num_import_targets;

XmTargetsAreCompatible determines whether the import targets of the
destination match any of the export targets of a source. If there is at least one
target in common, the function returns True.

display

exporctargets

Specifies the display connection.

Specifies the list of target atoms associated with the source object.
This resource identifies the selection targets the source can convert
to.

num_exporCtargets

imporctargets

Specifies the number of entries in the list of export targets.

Specifies the list of targets to be checked against the
XmNexportTargets of the source associated with the specified
DragContext.

num_imporctargets
Specifies the number of entries in the imporctargets list.

Return Value
Returns a Boolean value that indicates whether the destination targets are
compatible with the source targets. If there is at least one target in common, the
routine returns True; otherwise, returns False.

Related Information
XmDragContext(3X) and XmDropSite(3X).

1-917

OSF/Motif Programmer's Reference

XmText(3X)

Synopsis

Description

XmText-The Text widget class

#include <Xm/Text.h>

Text provides a single-line and multiline text editor for customizing both user and
programmatic interfaces. It can be used for single-line string entry, forms entry
with verification procedures, and full-window editing. It provides an application
with a consistent editing system for textual data. The screen's textual data adjusts
to the application writer's needs.

Text provides separate callback lists to verify movement of the insert cursor,
modification of the text, and changes in input focus. Each of these callbacks
provides the verification function with the widget instance, the event that caused
the callback, and a data structure specific to the verification type. From this
information, the function can verify if the application considers this to be a
legitimate state change and can signal the widget whether to continue with the
action.

The user interface tailors a new set of translations. The default translations provide
key bindings for insert cursor movement, deletion, insertion, and selection of text.

Text allows the user to select regions of text. Selection is based on the model
specified in the Inter-Client Communication Conventions Manual (ICCCM). Text
supports primary and secondary selection.

Mouse and Keyboard Selection

1-918

The Text widget allows text to be edited, inserted, and selected. The user can cut,
copy, and paste text using the clipboard, primary transfer, or secondary transfer.
Text also provides a Drag and Drop facility that enables the user to copy or move
data within Text or to a different widget. When keyboard focus policy is set to
EXPLICIT, the widget that receives focus is the destination widget. In POINTER
mode, any keyboard or mouse operation (except secondary selection) in an editable
widget establishes that widget as the destination.

If a destination widget becomes insensitive or uneditable, it forfeits its destination
status. In EXPLICIT mode, when a widget becomes insensitive, the focus moves
to another widget. If that widget is editable, it becomes the destination widget;
otherwise, there is no destination widget. The text of any insensitive Text widget is
stippled, indicating its state to the user.

The insertion cursor, displayed as an I-beam, shows where input is inserted. Input
is inserted just before the insertion cursor.

Classes
Text inherits behavior and resources from Core and Primitive.

The class pointer is xmTextWidgetClass.

The class name is XmText.

Reference Pages

XmText(3X)

New Resources
The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (0), or is not applicable (N/A).

1-919

OSF/Motif Programmer's Reference

XmText(3X)

XmText Resource Set

Name Default Access
Class Type

XmNactivateCaliback NULL C
XmCCaliback XtCalibackList

Xm NautoShowCursorPosition True CSG
XmCAutoShowCursorPosition Boolean

XmNcursorPosition 0 CSG
XmCCursorPosition Xm TextPosition

XmNeditable True CSG
XmCEditable Boolean

XmNeditMode XmSINGLE_LlNE_EDIT CSG
XmCEditMode int

Xm NfocusCallback NULL C
XmCCaliback XtCalibackList

XmNgainPrimaryCallback NULL C
XmCCaliback XtCalibackList

XmNlosePrimaryCallback NULL C
XmCCaliback XtCalibackList

XmNlosingFocusCallback NULL C
XmCCaliback XtCalibackList

XmNmarginHeight 5 CSG
XmCMarginHeight Dimension

XmNmarginWidth 5 CSG
XmCMarginWidth Dimension

XmNmaxLength largest integer CSG
XmCMaxLength int

XmNmodifyVerifyCallback NULL C
XmCCaliback XtCalibackList

XmNmodifyVerifyCallbackWcs NULL C
XmCCaliback XtCalibackList

Xm NmotionVerifyCallback NULL C
XmCCaliback X tCali backList

1-920

Reference Pages

XmText(3X)

Name Default Access
Class Type

XmNsource Default source CSG
XmCSource XmTextSource

Xm NtopCharacter 0 CSG
XmCTextPosition XmTextPosition

XmNvalue 1111 CSG
XmCValue String

XmNvalueChangedCallback NULL C
XmCCaliback XtCalibackList

XmNvalueWcs (wchar_t *)'"' CSG1
XmCvalueWcs wchact *

XmNverifyBell dynamic CSG
XmCVerifyBeli Boolean

1 This resource cannot be set in a resource file.

XmN activate Callback
Specifies the list of callbacks that is called when the user invokes an
event that calls the ActivateO function. The type of the structure
whose address is passed to this callback is XmAnyCallbackStruct.
The reason sent by the callback is XmCR_ACTIVATE.

XmNautoShowCursorPosition
Ensures that the visible text contains the insert cursor when set to
True. If the insert cursor changes, the contents of Text may scroll in
order to bring the insertion point into the window.

XmNcursorPosition
Indicates the position in the text where the current insert cursor is to
be located. Position is determined by the number of characters from
the beginning of the text. The first character position is 0 (zero).

XmNeditable When set to True, indicates that the user can edit the text string.
Prohibits the user from editing the text when set to False.

XmNeditMode
Specifies the set of keyboard bindings used in Text. The default,
XmSINGLE_LINE_EDIT, provides the set of key bindings to be
used in editing single-line text. XmMULTI_LINE_EDIT provides
the set of key bindings to be used in editing multiline text.

1-921

OSF/Motif Programmer's Reference

XmText(3X)

1-922

The results of placing a Text widget inside a ScrolledWindow when
the Text's XmNeditMode is XmSINGLE_LINE_EDIT are
undefined.

XmNfocusCallback
Specifies the list of callbacks called when Text accepts input focus.
The type of the structure whose address is passed to this callback is
XmAnyCallbackStruct. The reason sent by the callback is
XmCR_FOCUS.

XmNgainPrimaryCallback
Specifies the list of callbacks called when an event causes the Text
widget to gain ownership of the primary selection. The reason sent
by the callback is XmCR_GAIN_PRIMARY.

XmNlosePrimaryCallback
Specifies the list of callbacks called when an event causes the Text
widget to lose ownership of the primary selection. The reason sent
by the callback is XmCR_LOSE_PRIMARY.

XmNlosingFocusCallback
Specifies the list of callbacks called before Text loses input focus.
The type of the structure whose address is passed to this callback is
XmTextVerifyCallbackStruct. The reason sent by the callback is
XmCR_LOSING_FOCUS.

XmNmarginHeight
Specifies the distance between the top edge of the widget window
and the text, and between the bottom edge of the widget window
and the text.

XmNmarginWidth
Specifies the distance between the left edge of the widget window
and the text, and between the right edge of the widget window and
the text.

XmNmaxLength
Specifies the maximum length of the text string that can be entered
into text from the keyboard. This value must be nonnegative.
Strings that are entered using the XmNvalue resource or the
XmTextSetString function ignore this resource.

XmNmodifyVerifyCallback
Specifies the list of callbacks called before text is deleted from or
inserted into Text. The type of the structure whose address is passed
to this callback is XmTextVerifyCallbackStruct. The reason sent
by the callback is XmCR_MODIFYING_TEXT_ VALUE. When

Reference Pages

XmText(3X)

multiple Text widgets share the same source, only the widget that
mitIates the source change will generate the
XmNmodifyVerifyCallback.

If both XmNmodifyVerifyCallback and
XmNmodifyVerifyCallbackWcs are registered callback lists, the
procedure(s) in the XmNmodifyVerifyCallback list is always
executed first; and the resulting data, which may have been
modified, is passed to the XmNmodifyVerifyCallbackWcs callback
routines.

XmNmodifyVerifyCallbackWcs
Specifies the list of callbacks called before text is deleted from or
inserted into Text. The type of the structure whose address is passed
to this callback is XmTextVerifyCallbackStructWcs. The reason
sent by the callback is XmCR_MODIFYING_TEXT_ VALUE.
When multiple Text widgets share the same source, only the widget
that InItiates the source change will generate the
XmNmodifyVerifyCallbackWcs.

If both XmNmodifyVerifyCallback and
XmNmodifyVerifyCallbackWcs are registered callback lists, the
procedure(s) in the XmNmodifyVerifyCallback list is always
executed first; and the resulting data, which may have been
modified, is passed to the XmNmodifyVerifyCallbackWcs callback
routines.

XmNmotionVerifyCallback
Specifies the list of callbacks called before the insert cursor is
moved to a new position. The type of the structure whose address is
passed to this callback is XmTextVerifyCallbackStruct. The
reason sent by the callback is
XmCR_MOVING_INSERT_CURSOR. It is possible for more
than one XmNmotionVerifyCallback to be generated from a single
action.

XmNsource Specifies the source with which the widget displays text. If no
source is specified, the widget creates a default string source. This
resource can be used to share text sources between Text widgets.

XmNtopCharacter
Displays the position of text at the top of the window. Position is
determined by the number of characters from the beginning of the
text. The first character position is 0 (zero).

1-923

OSF/Motif Programmer's Reference

XmText(3X)

1-924

If the XmNeditMode is XmMULTI_LINE~EDIT, the line of text
that contains the top character is displayed at the top of the widget
without shifting the text left or right. XtGetValues for
XmNtopCharacter returns the position of the first character in the
line that is displayed at the top of the widget.

XmNvalue Specifies the string value of the Text widget as a char* data value.
If XmNvalue and XmNvalueWcs are both defined, the value of
XmNvalueWcs supersedes that of XmNvalue. XtGetValues
returns a copy of the value of the internal buffer and XtSetValues
copies the string values into the internal buffer.

XmNvalueChangedCaIlback
Specifies the list of callbacks called after text is deleted from or
inserted into Text. The type of the structure whose address is passed
to this callback is XmAnyCallbackStruct. The reason sent by the
callback is XmCR_ VAL UE_ CHANGED. When multiple Text
widgets share the same source, only the widget that initiates the
source change will generate the XmNvalueChangedCallback.
This callback represents a change in the source in the Text, not in
the Text widget. The XmNvalueChangedCallback should occur
only in pairs with an XmNmodifyVerifyCallback, assuming that
the doit flag in the callback structure of the
XmNmodifyVerifyCallback is not set to False.

XmNvalueWcs
Specifies the string value of the Text widget as a wchar_t* data
value. This resource cannot be specified in a resource file.

If XmNvalue and XmNvalueWcs are both defined, the value of
XmNvalueWcs supersedes that of XmNvalue. XtGetValues
returns a copy of the value of the internal buffer encoded as a wide
character string. XtSetValues copies the value of the wide
character string into the internal buffer.

XmNverifyBell
Specifies whether the bell should sound when the verification
returns without continuing the action. The default depends on the
value of the ancestor VendorShell's XmNaudibleWarning
resource.

Reference Pages

XmText(3X)

XmText Input Resource Set

Name Default Access
Class Type

Xm NpendingDelete True CSG
XmCPendingDelete Boolean

Xm NselectionArray default array CSG
XmCSelectionArray XtPointer

Xm NselectionArrayCount 4 CSG
XmCSelectionArrayCount int

Xm NselectThreshold 5 CSG
XmCSelectThreshold int

XmNpendingDelete
Indicates that pending delete mode is on when the Boolean value is
True. Pending deletion is defined as deletion of the selected text
when an insertion is made.

XmN selectionArray
Defines the actions for multiple mouse clicks. The value of the
resource is an array of XmTextScanType elements.
XmTextScanType is an enumeration indicating possible actions.
Each mouse click performed within half a second of the previous
mouse click increments the index into this array and performs the
defined action for that index. The possible actions in the order they
occur in the default array are

XmSELECT_POSITION
Resets the insert cursor position

XmSELECT_ WORD
Selects a word

XmSELECT _LINE
Selects a line of text

XmSELECT_ALL
Selects all of the text

XmNselectionArrayCount
Indicates the number of elements in the XmNselectionArray
resource. The value must not be negative.

1-925

OSF/Motif Programmer's Reference

XmText(3X)

1-926

XmNselectThreshold
Specifies the number of pixels of motion that is required to select
the next character when selection is performed using the click-drag
mode of selection. The value must not be negative.

XmText Output Resource Set

Name Default Access
Class Type

XmNblinkRate 500 CSG
XmCBlinkRate int

XmNcolumns dynamic CSG
XmCColumns short

XmNcursorPositionVisible True CSG
XmCCursorPositionVisible Boolean

XmNfontList dynamic CSG
XmCFontList XmFontList

Xm N resizeHeight False CSG
XmCResizeHeight Boolean

Xm N resizeWidth False CSG
XmCResizeWidth Boolean

XmNrows dynamic CSG
XmCRows short

Xm NwordWrap False CSG
XmCWordWrap Boolean

XmNblinkRate

XmNcolumns

Specifies the blink rate of the text cursor in milliseconds. The time
indicated in the blink rate relates to the time the cursor is visible and
the time the cursor is invisible (that is, the time it takes to blink the
insertion cursor on and off is twice the blink rate). The cursor does
not blink when the blink rate is set to 0 (zero). The value must not
be negative.

Specifies the initial width of the text window as an integer number
of characters. The width equals the number of characters specified
by this resource multiplied by the maximum character width of the
associated font. For proportionate fonts, the actual number of
characters that fit on a given line may be greater than the value

Reference Pages

XmText{3X)

specified. The value must be greater than 0 (zero). The default
value depends on the value of the XmNwidth resource. If no width
is specified the default is 20.

XmNcursorPositionVisible
Indicates that the insert cursor position is marked by a blinking text
cursor when the Boolean value is True.

XmNfontList Specifies the font list to be used for Text. If this value is NULL at
initialization, the parent hierarchy of the widget is searched for an
ancestor that is subclass of the XmBulletinBoard or VendorShell
widget class. If such an ancestor is found, the font list is initialized
to the XmNtextFontList of the ancestor widget. If no such ancestor
is found, the default is implementation dependent.

Text searches the font list for the first occurrence of a font set that
has an XmFONTLIST_DEFAULT_TAG. If a default element is
not found, the first font set in the font list is used. If the list contains
no font sets, the first font in the font list will be used. Refer to
XmFontList(3X) for more information on a font list structure.

XmNresizeHeight
Indicates that Text will attempt to resize its height to accommodate
all the text contained in the widget when the Boolean value is True.
If the Boolean value is set to True, the text is always displayed
starting from the first position in the source, even if instructed
otherwise. This attribute is ignored when the application uses a
ScrolledText widget and when XmNscrollVertical is True.

XmNresizeWidth

XmNrows

Indicates that Text attempts to resize its width to accommodate all
the text contained in the widget when the Boolean value is True.
This attribute is ignored if XmNwordWrap is True.

Specifies the initial height of the text window measured in character
heights. This attribute is ignored if the text widget resource
XmNeditMode is XmSINGLE_LINE_EDIT. The value must be
greater than 0 (zero). The default value depends on the value of the
XmNheight resource. If no height is specified the default is 1.

XmNwordWrap
Indicates that lines are to be broken at word breaks (that is, the text
does not go off the right edge of the window) when the Boolean
value is True. Words are defined as a sequence of characters

1-927

OSF/Motif Programmer's Reference

XmText(3X)

1-928

separated by white space. White space is defined as a space, tab, or
newline. This attribute is ignored if the text widget resource
XmNeditMode is XmSINGLE_LINE_EDIT.

The following resources are used only when text is created in a ScrolledWindow.
See the reference page for XmCreateScrolledText.

XmText ScroliedText Resource Set

Name Default Access
Class Type

Xm NscroliHorizontal True CG
XmCScroll Boolean

XmNscrollLeftSide dynamic CG
XmCScroliSide Boolean

XmNscroliTopSide False CG
XmCScroliSide Boolean

Xm NscroliVertical True CG
XmCScro11 Boolean

XmNscrollHorizontal
Adds a ScrollBar that allows the user to scroll horizontally through
text when the Boolean value is True. This resource is forced to
False when the Text widget is placed in a ScrolledWindow with
XmNscrollingPolicy set to XmAUTOMATIC.

XmNscrollLeftSide
Indicates that the vertical ScrollBar should be placed on the left side
of the scrolled text window when the Boolean value is True. This
attribute is ignored if XmNscrollVertical is False or the Text
resource XmNeditMode is XmSINGLE_LINE_EDIT. The
default value may depend on the value of the XmNstringDirection
resource.

XmNscrollTopSide
Indicates that the horizontal ScrollBar should be placed on the top
side of the scrolled text window when the Boolean value is True.

Reference Pages

XmText(3X)

XmNscrollVertical

Inherited Resources

Adds a ScrollBar that allows the user to scroll vertically through
text when the Boolean value is True. This attribute is ignored if the
Text resource XmNeditMode is XmSINGLE_LINE_EDIT. This
resource is forced to False when the Text widget is placed in a
ScrolledWindow with XmNscrollingPolicy set to
XmAUTOMATIC.

Text inherits behavior and resources from the superclasses described in the
following tables. For a complete description of each resource, refer to the reference
page for that superclass.

1-929

OSF/Motif Programmer's Reference

XmText(3X)

XmPrimitive Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

Xm NbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

Xm NhelpCaliback NULL C
XmCCallback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

Xm NhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

Xm NhighlightThickness 2 CSG
XmCHighlightThickness Dimension

Xm NnavigationType XmTAB_GROUP CSG
XmCNavigationType XmNavigationType

Xm NshadowThickness 2 CSG
XmCShadowThickness Dimension

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-930

Reference Pages

XmText(3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

Xm N initial ResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

Xm NmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-931

OSF/Motif Programmer's Reference

XmText(3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information

1-932

A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;

} XmAnyCallbackStruct;

reason Indicates why the callback was invoked

event Points to the XEvent that triggered the callback

The Text widget defines a new callback structure for use with verification
callbacks. Note that not all fields are relevant for every callback reason. The
application must first look at the reason field and use only the structure members
that are valid for the particular reason. The values startPos, endPos, and text in the
callback structure XmTextVerifyCallbackStruct may be modified when the
callback is received, and these changes will be reflected as changes made to the
source of the Text widget. (For example, all keystrokes can be converted to spaces
or NULL characters when a password is entered into a Text widget.) The
application programmer should not overwrite the text field, but should attach data
to that pointer.

Reference Pages
XmText(3X)

A pointer to the following
XmNlosingFocusCallback,
XmNmotionVerifyCallback:

structure is passed to callbacks for
XmNmodifyVerifyCallback, and

typedef struct
{

int
XEvent
Boolean

reason;
* event;
doit;

XmTextPosition currlnsert, newlnsert;
XmTextPosition startPos, endPos;
XmTextBlock text;

} XmTextVerifyCallbackStruct, *XmTextVerifyPtr;

reason

event

doit

currlnsert

newlnsert

startPos

endPos

text

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback. It can be NULL.
For example, changes made to the Text widget programmatically do
not have an event that can be passed to the associated callback.

Indicates whether the action that invoked the callback is performed.
Setting doit to False negates the action.

Indicates the current position of the insert cursor.

Indicates the position at which the user attempts to position the
insert cursor.

Indicates the starting position of the text to modify. If the callback
is not a modify verification callback, this value is the same as
currInsert.

Indicates the ending position of the text to modify. If no text is
replaced or deleted, the value is the same as startPos. If the
callback is not a modify verification callback, this value is the same
as currlnsert.

Points to a structure of type XmTextBlockRec. This structure holds
the textual information to be inserted.

typedef struct
{

char
int

*ptr;
length;

XmTextFormat format;
} XmTextBlockRec, *XmTextBlock;

1-933

OSF/Motif Programmer's Reference

XmText(3X)

1-934

ptr

length

format

Points to the text to be inserted.

Specifies the length of the text to be inserted.

Specifies the format of the text, either
XmFMT_8_BIT or XmFMT_16_BIT.

A pointer to the following structure is passed to callbacks for
XmNmodifyVerifyCaUbackWcs.

typedef struct
{

int reason;
XEvent *event;
Boolean doit;
XmTextPosition currlnsert, newlnsert;
XmTextPosition startPos, endPos;
XmTextBlockWcs text;

} XmTextVerifyCallbackStructWcs, *XmTextVerify PtrWcs;

reason

event

doit

currlnsert

newlnsert

startPos

endPos

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback. It can be NULL.
For example, changes made to the Text widget programmatically do
not have an event that can be passed to the associated callback.

Indicates whether the action that invoked the callback is performed.
Setting doit to False negates the action.

Indicates the current position of the insert cursor.

Indicates the position at which the user attempts to position the
insert cursor.

Indicates the starting position of the text to modify. If the callback
is not a modify verification callback, this value is the same as
currlnsert.

Indicates the ending position of the text to modify. If no text is
replaced or deleted, the value is the same as startPos. If the
callback is not a modify verification callback, this value is the same
as currlnsert.

Reference Pages

XmText(3X)

text Points to the following structure of type XmTextBlockRecWcs.
This structure holds the textual information to be inserted.

typedef struct
{

wchar _t *wcsptr;
int length;

} XmTextBlockRecWcs, *XmTextBlockWcs;

wcsptr Points to the wide character text to be inserted.

length Specifies the number of characters to be inserted.

The following table describes the reasons why the individual verification callback
structure fields are valid.

Reason Valid Fields

XmCR_LOSING_FOCUS reason, event, do it, currlnsert,
newlnsert, startPos, endPos

XmCR_MODIFYING_ TEXT_VALUE reason, event, do it, currlnsert,
newlnsert, startPos, endPos, text

XmCR_MOVING_INSERT _CURSOR reason, event, do it, currlnsert,
newlnsert

Translations
XmText includes translations from XmPrimitive. The XmText translations are
described in the following list. These translations may not directly correspond to a
translation table. The actions represent the effective behavior of the associated
events, and they may differ in a right-to-Ieft language environment.

BSelect Press: grab-focusO

BSelect Motion: extend -adjustO

BSelect Release: extend-endO

BExtend Press: extend -startO

BExtend Motion: extend-adjustO

BExtend Release: extend-endO

BToggle Press: move-destinationO

BTransfer Press: process-bdragO

1-935

OSF/Motif Programmer's Reference

XmText(3X)

1-936

BTransfer Motion: secondary-adjustO

BTransfer Release: copy-toO

MCtrl BTransfer Press: process-bdragO

MCtrl BTransfer Motion: secondary-adjustO

MCtrl BTransfer Release: copy-toO

MAlt BTransfer Press: process-bdragO

MAlt BTransfer Motion: secondary-adjustO

MAlt BTransfer Release: copy-toO

MShift BTransfer Press: process-bdragO

MShift BTransfer Motion: secondary-adjustO

MShift BTransfer Release: move-toO

MAlt MCtrl BTransfer Release: copy-toO

MAlt MShift BTransfer Release: move-toO

KUp:

MShiftKUp:

MCtrlKUp:

MShift MCtrl KUp:

KDown:

MShift KDown:

MCtrl KDown:

MShift MCtrl KDown:

KLeft:

MShift KLeft:

MCtrl KLeft:

MShift MCtrl KLeft:

KRight:

process-upO

process-shift-upO

backward-paragraphO

backward-paragraph(extend)

process-downO

process-shift-downO

forward-paragraphO

forward-paragraph(extend)

backward-characterO

key -select(left)

backward-wordO

backward-word(extend)

forward-characterO

MShift KRight:

MCtrl KRight:

MShift MCtrl KRight:

KPageUp:

MShift KPageUp:

KPageDown:

MShift KPageDown:

KPageLeft:

KPageRight:

KBeginLine:

MShift KBeginLine:

KEndLine:

MShift KEndLine:

KBeginData:

MShift KBeginData:

KEndData:

MShift KEndData:

KTab:

KNextField:

KPrevField:

KEnter:

KActivate:

KDelete:

KBackSpace:

KAddMode:

KSpace:

Reference Pages

key -select(right)

forward-wordO

forward-word(extend)

previous-pageO

previous-page(extend)

next-pageO

next-page(extend)

page-leftO

page-rightO

beginning-of-lineO

beginning-of-Iine(extend)

end-of-lineO

end-of-Iine(extend)

beginning -of -fileO

beginning-of -file(extend)

end-of-fileO

end -of -file (extend)

process-tabO

next-tab-groupO

prev-tab-groupO

process-returnO

activateO

delete-next-characterO

delete-previous-characterO

toggle-add-modeO

self-insertO

XmText{3X)

1-937

OSF/Motif Programmer's Reference

XmText(3X)

MShift KSpace:

KSelect:

KExtend:

MAny KCancel:

KClear:

KSelectAll:

KDeselectAll:

KCut:

KCopy:

KPaste:

KPrimaryCut:

KPrimaryCopy:

KPrimaryPaste:

KHelp:

KAny:

self-insertO

set-anchorO

key-selectO

process-cancelO

clear-selectionO

select-allO

deselect-allO

cut-clipboardO

copy-clipboardO

paste-clipboardO

cut-primaryO

copy-primaryO

copy-primaryO

HelpO

self-insertO

Action Routines

1-938

The XmText action routines are

activateO: Calls the callbacks for XmNactivateCallback. If the parent is a
manager, passes the event to the parent.

backward -characterO:
Moves the insertion cursor one character to the left. For other
effects, see the description of navigation operations in Keyboard
Selection. This action may have different behavior in a right-to-Ieft
language environment.

backward-paragraph(extend):
If XmNeditMode is XmMULTI_LINE_EDIT and this action is
called with no argument, moves the insertion cursor to the first non­
whitespace character following the first previous blank line or
beginning of the text. If the insertion cursor is already at the
beginning of a paragraph, moves the insertion cursor to the
beginning of the previous paragraph. For other effects, see the
description of navigation operations in Keyboard Selection.

Reference Pages

XmText(3X)

If XmNeditMode is XmMULTI_LINE_EDIT and this action is
called with an argument of extend, moves the insertion cursor as in
the case of no argument and extends the current selection. For other
effects, see the description of shifted navigation operations in
Keyboard Selection.

backward -word(extend):

beepO:

If this action is called with no argument, moves the insertion cursor
to the first non-whitespace character after the first whitespace
character to the left or after the beginning of the line. If the
insertion cursor is already at the beginning of a word, moves the
insertion cursor to the beginning of the previous word. For other
effects, see the description of navigation operations in Keyboard
Selection. This action may have different behavior in a locale other
than the C locale.

If called with an argument of extend, moves the insertion cursor as
in the case of no argument and extends the current selection. For
other effects, see the description of shifted navigation operations in
Keyboard Selection.

Causes the terminal to beep.

beginning-of-file(extend):
If this action is called with no argument, moves the insertion cursor
to the beginning of the text. For other effects, see the description of
navigation operations in Keyboard Selection.

If called with an argument of extend, moves the insertion cursor as
in the case of no argument and extends the current selection. For
other effects, see the description of shifted navigation operations in
Keyboard Selection.

beginning-of-line(extend):
If this action is called with no argument, moves the insertion cursor
to the beginning of the line. For other effects, see the description of
navigation operations in Keyboard Selection.

If called with an argument of extend, moves the insertion cursor as
in the case of no argument and extends the current selection. For
other effects, see the description of shifted navigation operations in
Keyboard Selection.

clear-selectionO:
Clears the current selection by replacing each character except
<Return> with a <space> character.

1-939

OSF/Motif Programmer's Reference

XmText(3X)

1-940

copy-clipboardO:
Copies the current selection to the clipboard.

copy-primaryO:

copy-toO:

Copies the primary selection to just before the insertion cursor.

If a secondary selection exists, copies the secondary selection to just
before the insertion cursor. If no secondary selection exists, copies
the primary selection to the pointer location.

cut-clipboardO:
Cuts the current selection to the clipboard.

cut-primaryO:
Cuts the primary selection to just before the insertion cursor.

delete-next-characterO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the character following the insertion cursor. In
add mode, if there is a nonnull selection, the cursor is not disjoint
from the selection, and XmNpendingDelete is set to True, deletes
the selection; otherwise, deletes the character following the
insertion cursor. This may impact the selection.

delete-next-wordO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the characters following the insertion cursor to
the next space, tab or end-of-line character. In add mode, if there is
a nonnull selection, the cursor is not disjoint from the selection, and
XmNpendingDelete is set to True, deletes the selection; otherwise,
deletes the characters following the insertion cursor to the next
space, tab or end-of-line character. This may impact the selection.
This action may have different behavior in a locale other than the C
locale.

delete-previous-characterO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the character of text immediately preceding the
insertion cursor. In add mode, if there is a nonnull selection, the
cursor is not disjoint from the selection, and XmNpendingDelete is
set to True, deletes the selection; otherwise, deletes the character of
text immediately preceding the insertion cursor. This may impact
the selection.

Reference Pages

XmText(3X)

delete-previous-wordO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the characters preceding the insertion cursor to
the next space, tab or beginning-of-line character. In add mode, if
there is a nonnull selection, the cursor is not disjoint from the
selection, and XmNpendingDelete is set to True, deletes the
selection; otherwise, deletes the characters preceding the insertion
cursor to the next space, tab or beginning-of-line character. This
may impact the selection. This action may have different behavior
in a locale other than the C locale.

delete-selectionO:
Deletes the current selection.

delete-to-end -of -lineO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the characters following the insertion cursor to
the next end of line character. In add mode, if there is a nonnull
selection, the cursor is not disjoint from the selection, and
XmNpendingDelete is set to True, deletes the selection; otherwise,
deletes the characters following the insertion cursor to the next end
of line character. This may impact the selection.

delete-to-start-of -lineO:

deselect-allO:

In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the characters preceding the insertion cursor to
the previous beginning-of-line character. In add mode, if there is a
nonnull selection, the cursor is not disjoint from the selection, and
XmNpendingDelete is set to True, deletes the selection; otherwise,
deletes the characters preceding the insertion cursor to the previous
beginning-of-line character. This may impact the selection.

Deselects the current selection.

end -of -file(extend):
If this action is called with no argument, moves the insertion cursor
to the end of the text. For other effects, see the description of
navigation operations in Keyboard Selection.

If called with an argument of extend, moves the insertion cursor as
in the case of no argument and extends the current selection. For
other effects, see the description of shifted navigation operations in
K~yboard Selection.

1-941

OSF/Motif Programmer's Reference

XmText{3X)

1-942

end-of-line(extend):
If this action is called with no argument, moves the insertion cursor
to the end of the line. For other effects, see the description of
navigation operations in Keyboard Selection. If called with an
argument of extend, moves the insertion cursor as in the case of no
argument and extends the current selection. For other effects, see
the description of shifted navigation operations in Keyboard
Selection.

extend -adjustO:

extend-endO:

Selects text from the anchor to the pointer position and deselects
text outside that range. Moving the pointer over several lines
selects text from the anchor to the end of each line the pointer
moves over and up to the pointer position on the current line.

Moves the insertion cursor to the position of the pointer.

extend -startO:
Adjusts the anchor using the balance-beam method. Selects text
from the anchor to the pointer position and deselects text outside
that range.

forward-cbaracterO:
Moves the insertion cursor one character to the right. For other
effects, see the description of navigation operations in Keyboard
Selection. This action may have different behavior in a right-to-left
language environment.

forward -paragrapb(extend):
If XmNeditMode is XmMULTI_LINE_EDIT, and this action is
called with no argument, moves the insertion cursor to the first non­
whitespace character following the next blank line. If the insertion
cursor is already at the beginning of a paragraph, moves the
insertion cursor to the beginning of the next paragraph. For other
effects, see the description of navigation operations in Keyboard
Selection.

If XmNeditMode is XmMULTI_LINE_EDIT and this action is
called with an argument of extend, moves the insertion cursor as in
the case of no argument and extends the current selection. For other
effects, see the description of shifted navigation operations in
Keyboard Selection.

Reference Pages

XmText(3X)

forward-word(extend):
If this action is called with no argument, moves the insertion cursor
to the first whitespace character or end-of-line following the next
non-whitespace character. If the insertion cursor is already at the
end of a word, moves the insertion cursor to the end of the next
word. For other effects, see the description of navigation operations
in Keyboard Selection. This action may have different behavior in
a locale other than the C locale.

If called with an argument of extend, moves the insertion cursor as
in the case of no argument and extends the current selection. For
other effects, see the description of shifted navigation operations in
Keyboard Selection.

grab-focusO: This key binding performs the action defined in the
XmNselectionArray, depending on the number of multiple mouse
clicks. The default selection array ordering is one click to move the
insertion cursor to the pointer position, two clicks to select a word,
three clicks to select a line of text, and four clicks to select all text.
A single click also deselects any selected text and sets the anchor at
the pointer position. This action may have different behavior in a
locale other than the C locale.

HelpO: Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

insert-string(string) :
If XmNpendingDelete is True and the cursor is not disjoint from
the current selection, deletes the entire selection. Inserts string
before the insertion cursor.

key -select(direction):
If called with an argument of right, moves the insertion cursor one
character to the right and extends the current selection. If called
with an argument of left, moves the insertion cursor one character to
the left and extends the current selection. If called with no
argument, extends the current selection. For other effects, see the
description of shifted navigation operations and KExtend in
Keyboard Selection.

kill-next-characterO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, kills the character following the insertion cursor and
stores the character in the cut buffer. In add mode, if there is a
nonnull selection, the cursor is not disjoint from the selection, and

1-943

OSF/Motif Programmer's Reference

XmText(3X)

1-944

XmNpendingDelete is set to True, deletes the selection; otherwise,
kills the character following the insertion cursor and stores the
character in the cut buffer. This may impact the selection.

kill-next-wordO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, kills the characters following the insertion cursor to the
next space, tab or end-of-line character, and stores the characters in
the cut buffer. In add mode, if there is a nonnull selection, the
cursor is not disjoint from the selection, and XmNpendingDelete is
set to True, deletes the selection; otherwise, kills the characters
following the insertion cursor to the next space, tab or end-of-line
character, and stores the characters in the cut buffer. This may
impact the selection. This action may have different behavior in a
locale other than the C locale.

kill-previous-characterO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, kills the character immediately preceding the insertion
cursor and stores the character in the cut buffer. In add mode, if
there is a nonnull selection, the cursor is not disjoint from the
selection, and XmNpendingDelete is set to True, deletes the
selection; otherwise, kills the character immediately preceding the
insertion cursor and stores the character in the cut buffer. This may
impact the selection.

kill-previous-word 0:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, kills the characters preceding the insertion cursor up to
the next space, tab or beginning-of-line character, and stores the
characters in the cut buffer. In add mode, if there is a nonnull
selection, the cursor is not disjoint from the selection, and
XmNpendingDelete is set to True, deletes the selection; otherwise,
kills the characters preceding the insertion cursor up to the next
space, tab or beginning-of-line character, and stores the characters
in the cut buffer. This may impact the selection. This action may
have different behavior in a locale other than the C locale.

kill-selectionO:
Kills the currently selected text and stores the text in the cut buffer.

kill-to-end-of-lineO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, kills the characters following the insertion cursor to the
next end of line character and stores the characters in the cut buffer.
In add mode, if there is a nonnull selection, the cursor is not disjoint

Reference Pages

XmText(3X)

from the selection, and XmNpendingDelete is set to True, deletes
the selection; otherwise, kills the characters following the insertion
cursor to the next end of line character and stores the characters in
the cut buffer. This may impact the selection.

kill-to-start-of -lin eO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, kills the characters preceding the insertion cursor to the
next beginning-of-line character and stores the characters in the cut
buffer. In add mode, if there is a nonnull selection, the cursor is not
disjoint from the selection, and XmNpendingDelete is set to True,
deletes the selection; otherwise, kills the characters preceding the
insertion cursor to the next beginning-of-line character and stores
the characters in the cut buffer. This may impact the selection.

move-destinationO:

move-toO:

newlineO:

Moves the insertion cursor to the pointer position without changing
any existing current selection. If there is no current selection, sets
the widget as the destination widget.

If a secondary selection exists, cuts the secondary selection to the
insertion cursor. If no secondary selection exists, cuts the primary
selection to the pointer location.

If XmNpendingDelete is True and the cursor is not disjoint from
the current selection, deletes the entire selection. Inserts a newline
before the insertion cursor.

newline-and-backupO:
If XmNpendingDelete is True and the cursor is not disjoint from
the current selection, deletes the entire selection. Inserts a newline
just before the insertion cursor and repositions the insertion cursor
to the end of the line before the newline.

newline-and -indentO:
If XmNpendingDelete is True and the cursor is not disjoint from
the current selection, deletes the entire selection. Inserts a newline
and then the same number of whitespace characters as at the
beginning of the previous line.

next-lineO: Moves the insertion cursor to the next line. For other effects, see the
description of navigation operations in Keyboard Selection.

next-page(extend):
If this action is called with no argument, moves the insertion cursor
forward one page. For other effects, see the description of
navigation operations in Keyboard Selection.

1-945

OSF/Motif Programmer's Reference

XmText(3X)

1-946

If called with an argument of extend, moves the insertion cursor as
in the case of no argument and extends the current selection. For
other effects, see the description of shifted navigation operations in
Keyboard Selection.

next-tab-groupO:
Traverses to the next tab group.

page-IeftO: Scrolls the viewing window left one page of text.

page-rightO: Scrolls the viewing window right one page of text.

paste-clipboardO:
Pastes the contents of the clipboard before the insertion cursor.

prev-tab-groupO:
Traverses to the previous tab group.

previous-lineO:
Moves the insertion cursor to the previous line. For other effects,
see the description of navigation operations in Keyboard Selection.

previous-page(extend):
If this action is called with no argument, moves the insertion cursor
back one page. For other effects, see the description of navigation
operations in Keyboard Selection.

If called with an argument of extend, moves the insertion cursor as
in the case of no argument and extends the current selection. For
other effects, see the description of shifted navigation operations in
Keyboard Selection.

process-bdragO
The result of this action is determined by several factors: posItIOn
of the location cursor, movement of the location cursor, and the
interval between a BTransfer press and release.

This action copies the current selection to the insertion cursor if text
is selected, the location cursor is disjoint from the current selection,
and no motion is detected within a given time interval.

It performs a secondary selection and copies the selection to the
position where the text was last edited if the cursor is disjoint from a
current selection (if one exists), the time interval is exceeded, and
movement of the location cursor is detected.

The action drags the current selection if the location cursor is
positioned on the selection, the time interval is exceeded, and
movement of the location cursor is detected. This action creates a

Reference Pages

XmText{3X)

DragContext object whose XmNexportTargets resource value
includes target types of COMPOUND_TEXT, STRING, and
TEXT.

process-canceIO:
Cancels the current extend-adjustO, secondary-adjustO or
process-bdragO operation and leaves the selection state as it was
before the operation; otherwise, and if the parent is a manager,
passes the event to the parent.

process-downO:
If XmNeditMode is XmSINGLE_LINE_EDIT, and
XmNnavigationType is XmNONE, traverses to the widget below
the current one in the tab group.

If XmNeditMode is XmMULTI_LINE_EDIT, moves the insertion
cursor down one line. For other effects, see the description of
navigation operations in Keyboard Selection.

process-homeO:
Moves the insertion cursor to the beginning of the line. For other
effects, see the description of navigation operations in Keyboard
Selection.

process-returnO:
If XmNeditMode is XmSINGLE_LINE_EDIT, calls the callbacks
for XmNactivateCallback, and if the parent is a manager, passes
the event to the parent. If XmNeditMode is
XmMULTI_LINE_EDIT, inserts a newline.

process-shift-downO:
If XmNeditMode is XmMULTI_LINE_EDIT, moves the insertion
cursor down one line. For other effects, see the description of
navigation operations in Keyboard Selection.

process-shift-upO:

process-tabO:

If XmNeditMode is XmMULTI_LINE_EDIT, moves the insertion
cursor up one line. For other effects, see the description of
navigation operations in Keyboard Selection.

If XmNeditMode is XmSINGLE_LINE_EDIT, traverses to the
next tab group. If XmNeditMode is XmMULTI_LINE_EDIT,
inserts a tab.

1-947

OSF/Motif Programmer's Reference

XmText(3X)

1-948

process-upO: If XmNeditMode is XmSINGLE_LINE_EDIT and
XmNnavigationType is XmNONE, traverses to the widget above
the current one in the tab group.

If XmNeditMode is XmMULTI_LINE_EDIT, moves the insertion
cursor up one line. For other effects, see the description of
navigation operations in Keyboard Selection.

redraw-displayO:
Redraws the contents of the text window.

scroll-cursor-vertically(percentage):
Scrolls the line containing the insertion cursor vertically to an
intermediate position in the visible window based on an input
percentage. A value of ° indicates the top of the window; a value of
100, the bottom of the window. If this action is called with no
argument, the line containing the insertion cursor is scrolled
vertically to a new position designated by the y position of the event
passed to the routine.

scroll-one-line-downO:
Scrolls the text area down one line.

scroll-one-line-upO:
Scrolls the text area up one line.

secondary-adjustO:
Extends the secondary selection to the pointer position.

secondary-notifyO:
Copies the secondary selection to the insertion cursor of the
destination widget.

secondary-startO:
Marks the beginning of a secondary selection.

select-adjustO:
Extends the current selection. The amount of text selected depends
on the number of mouse clicks, as specified by the
XmNselectionArray resource.

select-allO: Selects all text.

select-endO : Extends the current selection. The amount of text selected depends
on the number of mouse clicks, as specified by the
XmNselectionArray resource.

Reference Pages

XmText(3X)

select-startO: Marks the beginning of a new selection region.

self-insertO: If XrnNpendingDelete is True and the cursor is not disjoint from
the current selection, deletes the entire selection. Inserts the
character associated with the key pressed at the insertion cursor.

set-anchorO: Resets the anchor point for extended selections. Resets the
destination of secondary selection actions.

set-insertion-pointO:
Sets the insertion position.

set-selection-hintO:
Sets the text source and location of the current selection.

toggle-add -rnodeO:
Toggles the state of Add Mode.

toggle-overstrikeO:
Toggles the state of the text insertion mode. By default, characters
typed into the Text widget are inserted at the position of the
insertion cursor. In overstrike mode, characters entered into the
Text widget replace the characters that directly follow the insertion
cursor. In overstrike mode, when the end of a line is reached,
characters are appended to the end of the line.

traverse-horneO:
Traverses to the first widget in the tab group.

traverse-nextO:
Traverses to the next widget in the tab group.

traverse-prevO:
Traverses to the previous widget in the tab group.

unkillO: Restores last killed text to the position of the insertion cursor.

Additional Behavior
This widget has the following additional behavior:

<FocusIn>: Draws the insertion cursor as solid and starts blinking the cursor.

<FocusOut>: Displays the insertion cursor as a stippled I-beam unless it is the
destination widget.

1-949

OSF/Motif Programmer's Reference

XmText(3X)

Virtual Bindings
The bindings for virtual keys are vendor specific. The following table lists the
Text-specific bindings of virtual keys to actual key event descriptions in
OSFlMotif:

Virtual Key Bindings

Virtual Key Actual Key Events

KActivate Ctrl<Key>Return
<Key>osfActivate

KExtend Ctrl Shift<Key>space
Shift<Key>osfSelect

KNextField Ctrl<Key> Tab

KSelect Ctrl<Key>space
< Key>osf Select

For information about bindings for virtual buttons and keys, see
VirtuaIBindings(3X) .

Related Inforination

1-950

Core(3X), XmCreateScrolledText(3X), XmCreateText(3X), XmFontList(3X),
XmFontListAppendEntry(3X), XmPrimitive(3X), XmTextClearSelection(3X),
XmTextCopy(3X), XmTextCut(3X), XmTextEnableRedisplay(3X),
XmTextDisableRedisplay(3X), XmTextField(3X), XinTextFindString(3X),
XmTextFindStringWcs(3X), XmTextGetBaseline(3X),
XmTextGetEditable(3X), XmTextGetInsertionPosition(3X),
XmTextGetLastPosition(3X), XmTextGetMaxLength(3X),
XmTextGetSelection(3X), XmTextGetSelectionWcs(3X),
XmTextGetSelectionPosition(3X), XmTextGetSource(3X),
XmTextGetString(3X), XmTextGetStringWcs(3X), XmTextGetSubstring(3X),
XmTextGetSubstringWcs(3X), XmTextGetTopCharacter(3X),
XmTextInsert(3X), XmTextInsertWcs(3X), XmTextPaste(3X),
XmTextPosToXY(3X), XmTextPosition(3X), XmTextRemove(3X),
XIilTextReplace(3X), XmTextReplace W cs(3X), X,:mTextScroll(3X),
XmTextSetAddMode(3X), XIilTextSetEditable(3X), XmTextSetHighlight(3X),
XmTextSetlnsertionPosition(3X), XmTextSetMaxLength(3X),
XmTextSetSelection(3X), XmTextSetSource(3X), XmTextSetString(3X),
XmTextSetStringWcs(3X), XmTextSetTopCharacter(3X),
XmTextShowPosition(3X), and XmTextXYToPos(3X).

Synopsis

Description

Reference Pages

XmTextClearSelection (aX)

XmTextClearSelection-A Text function that clears the primary selection

#include <Xm/Text.h>

void XmTextClearSelection (widget, time)
Widget widget;
Time time;

XmTextClearSelection clears the primary selection in the Text widget.

widget

time

Specifies the Text widget ID.

Specifies the server time at which the selection value is desired.
This should be the time of the event that triggered this request. One
source of a valid time stamp is the function
XtLastTimestampProcessedO·

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X).

1-951

OSF/Motif Programmer's Reference

XmTextCopy(3X)

Synopsis

Description

XmTextCopy-A Text function that copies the primary selection to the clipboard

#include <Xm/Text.h>

Boolean XmTextCopy (widget, time)
Widget widget;
Time time;

XmTextCopy copies the primary selected text to the clipboard.

widget

time

Specifies the Text widget rD.

Specifies the server time at which the selection value is to be
modified. This should be the time of the event which triggered this
request. One source of a valid time stamp is the function
XtLastTimestampProcessedO.

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
This function returns False if the primary selection is NULL, if the widget doesn't
own the primary selection, or if the function is unable to gain ownership of the
clipboard selection. Otherwise, it returns True.

Related Information
XmText(3X).

1-952

Synopsis

Description

Reference Pages

XmTextCut (3X)

XmTextCut-A Text function that copies the primary selection to the clipboard
and deletes the selected text

#include <Xm/Text.h>

Boolean XmTextCut (widget, time)
Widget widget;
Time time;

XmTextCut copies the primary selected text to the clipboard and then deletes the
primary selected text. This routine calls the widget's
XmNvalueChangedCallback and verification callbacks, either
XmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs, or both. If both
verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks.

widget

time

Specifies the Text widget ID.

Specifies the server time at which the selection value is to be
modified. This should be the time of the event that triggered this
request. One source of a valid time stamp is the function
XtLastTimestampProcessedO.

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
This function returns False if the primary selection is NULL, if the widget does not
own the primary selection, or if the function is unable to gain ownership of the
clipboard selection. Otherwise, it returns True.

Related Information
XmText(3X).

1-953

OSF/Motif Programmer's Reference

XmTextDisableRedisplay (3X)

Synopsis

Description

XmTextDisableRedisplay-A Text function that temporarily prevents visual
update of the Text widget

#include <XmlText.h>

void XmTextDisableRedisplay (widget)
Widget widget;

XmTextDisableRedisplay prevents redisplay of the specified Text widget even
though its visual attributes have been modified. The visual appearance of the
widget remains unchanged until XmTextEnableRedisplay is called. This allows
an application to make multiple changes to the widget without causing
intermediate visual updates.

widget Specifies the Text widget ID

Related Information
XmTextEnableRedisplay(3X) .

1-954

Synopsis

Description

Reference Pages

XmTextEnableRedisplay (aX)

XmTextEnableRedisplay-A Text function that forces the visual update of a Text
widget

#include <Xm/Text.h>

void XmTextEnableRedisplay (widget)

Widget widget;

XmTextEnableRedisplay is used in conjunction with XmTextDisableRedisplay,
which suppresses visual update of the Text widget. When
XmTextEnableRedisplay is called, it determines if any visual attributes have been
set or modified for the specified widget since XmTextDisableRedisplay was
called. If so, it forces the widget to update its visual display for all of the
intervening changes. Any subsequent changes that affect visual appearance cause
the widget to update its visual display.

widget Specifies the Text widget ID

Related Information
XmTextDisableRedisplay(3X).

1-955

OSF/Motif Programmer's Reference

XmTextField (aX)

XmTextField-The TextField class

Synopsis #include <Xm/TextF.h>

Description

Classes

The TextField widget provides a single line text editor for customizing both user
and programmatic interfaces. It is used for single-line string entry, and forms entry
with verification procedures. It provides an application with a consistent editing
system for textual data.

TextField provides separate callback lists to verify movement of the insert cursor,
modification of the text, and changes in input focus. Each of these callbacks
provides the verification function with the widget instance, the event that caused
the callback, and a data structure specific to the verification type. From this
information the function can verify if the application considers this to be a
legitimate state change and can signal the widget whether to continue with the
action.

The user interface tailors a new set of actions. The key bindings have been added
for insert cursor movement, deletion, insertion, and selection of text.

TextField allows the user to select regions of text. Selection is based on the model
specified in the Inter-Client Communication Conventions Manual (ICCCM).
TextField supports primary and secondary selection.

TextField widget inherits behavior and resources from Core and Primitive.

The class pointer is xmTextFieldWidgetClass.

The class name is XmTextField.

New Resources

1-956

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lower case or upper
case, but include any underscores between words). The codes in the access column
indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmTextField(3X)

XmTextFieldResource Set

Name Default Access
Class Type

Xm NactivateCallback NULL C
XmCCaliback XtCallbackList

XmNblinkRate 500 CSG
XmCBlinkRate int

XmNcolumns dynamic CSG
XmCColumns short

XmNcursorPosition 0 CSG
XmCCursorPosition XmTextPosition

XmNcursorPositionVisible True CSG
XmCCursorPositionVisible Boolean

XmNeditable True CSG
XmCEditable Boolean

Xm NfocusCaliback NULL C
XmCCaliback XtCalibackList

XmNfontList dynamic CSG
XmCFontList XmFontList

XmNgainPrimaryCallback NULL C
XmCCaliback XtCalibackList

XmNlosePrimaryCallback NULL C
XmCCaliback XtCalibackList

XmNlosingFocusCallback NULL C
XmCCaliback XtCalibackList

XmNmarginHeight 5 CSG
XmCMarginHeight Dimension

XmNmarginWidth 5 CSG
XmCMarginWidth Dimension

XmNmaxLength largest integer CSG
XmCMaxLength int

XmNmodifyVerifyCaliback NULL C
XmCCaliback XtCalibackList

1-957

OSF/Motif Programmer's Reference

XmTextField (aX)

1-958

Name Default Access
Class Type

XmNmodifyVerifyCallbackWcs NULL C
XmCCaliback XtCalibackList

XmNmotionVerifyCallback NULL C
XmCCaliback XtCalibackList

XmNpendingOelete True CSG
XmCPendingOelete Boolean

XmNresizeWidth False CSG
XmCResizeWidth Boolean

Xm NselectionArray default array CSG
XmCSelectionArray XtPointer

Xm NselectionArrayCount 3 CSG
XmCSelectionArrayCount int

Xm NselectTh reshold 5 CSG
XmCSelectThreshold int

XmNvalue 1111 CSG
XmCValue String

Xm NvalueChangedCaliback NULL C
XmCCaliback XtCalibackList

XmNvalueWcs (wchar_t *)"" CSG1
XmCValueWcs wchact *

XmNverifyBell dynamic CSG
XmCVerifyBell Boolean

1 This resource cannot be specified in a resource file.

XmN activate Callback
Specifies the list of callbacks that is called when the user invokes an
event that calls the ActivateO function. The type of the structure
whose address is passed to this callback is XmAnyCallbackStruct.
The reason sent by the callback is XmCR_ACTIVATE.

XmNblinkRate
Specifies the blink rate of the text cursor in milliseconds. The time
indicated in the blink rate relates to the length of time the cursor is
visible and the time the cursor is invisible (that is, the time it will
take to blink the insertion cursor on and off will be two times the
blink rate). The cursor will not blink when the blink rate is set to 0
(zero). The value must not be negative.

XmNcolumns

Reference Pages

XmTextField (3X)

Specifies the initial width of the text window as an integer number
of characters. The width equals the number of characters specified
by this resource multiplied by the maximum character width of the
associated font. For proportionate fonts, the actual number of
characters that fit on a given line may be greater than the value
specified. The value must be greater than 0 (zero). The default
value depends on the value of the XmNwidth resource. If no width
is specified the default is 20.

XmNcursorPosition
Indicates the position in the text where the current insert cursor is to
be located. Position is determined by the number of characters from
the beginning of the text.

XmNcursorPosition Visible
Indicates that the insert cursor position is marked by a blinking text
cursor when the Boolean is True.

XmNeditable When set to True, indicates that the user can edit the text string. A
false value will prohibit the user from editing the text.

XmNfocusCallback
Specifies the list of callbacks called when TextField accepts input
focus. The type of the structure whose address is passed to this
callback is XmAnyCallbackStruct. The reason sent by the
callback is XmCR_FOCUS.

XmNfontList Specifies the font list to be used for TextField. If this value is NULL
at initialization, the parent hierarchy of the widget is searched for an
ancestor that is a subclass of the BulletinBoard or VendorS hell
widget class. If such an ancestor is found, the font list is initialized
to the XmNtextFontList of the ancestor widget. If no such ancestor
is found, the default is implementation dependent. Refer to
XmFontList(3X) for more information on a font list structure.

TextField searches the font list for the first occurrence of a font set
that has an XmFONTLIST_DEFAULT_TAG. If a default element
is not found, the first font set in the font list is used. If the list
contains no font sets, the first font in the font list is used.

1-959

OSF/Motif Programmer's Reference

XmTextField (3X)

1-960

XmNgainPrimaryCallback
Specifies the list of callbacks that are called when the user invokes
an event that causes the text widget to gain ownership of the
primary selection. The callback reason for this callback is
XmCR_GAIN_PRIMARY.

XmNlosePrimaryCallback
Specifies the list of callbacks that are called when the user invokes
an event that cause the text widget to lose ownership of the primary
selection. The callback reason for this callback is
XmCR_LOSE_PRIMARY.

XmNlosingFocusCaIlback
Specifies the list of callbacks that are called before TextField widget
loses input focus. The type of the structure whose address is passed
to this callback is XmTextVerifyCallbackStruct. The reason sent
by the callback is XmCR_LOSING_FOCUS.

XmNmarginHeight
Specifies the distance between the top edge of the widget window
and the text, and the bottom edge of the widget window and the text.

XmNmargin Width
Specifies the distance between the left edge of the widget window
and the text, and the right edge of the widget window and the text.

XmNmaxLength
Specifies the maximum length of the text string that can be entered
into text from the keyboard. This value must be nonnegative.
Strings that are entered using the XmNvalue resource or the
XmTextFieldSetString function ignore this resource.

XmNmodifyVerifyCallback
Specifies the list of callbacks that is called before text is deleted
from or inserted into TextField. The type of the structure whose
address is passed to this callback is XmTextVerifyCallbackStruct.
The reason sent by the callback is
XmCR_MODIFYING_TEXT_ VALUE. When multiple TextField
widgets share the same source, only the widget that initiates the
source change will generate the XmNmodifyVerifyCallback.

Reference Pages

XmTextField (3X)

If both XmNmodifyVerifyCallback and
XmNmodifyVerifyCallbackWcs are registered callback lists, the
procedure(s) in the XmNmodifyVerifyCallback list is always
executed first; and the resulting data, which may have been
modified, is passed to the XmNmodifyVerifyCallbackWcs callback
routines.

XmNmodifyVerifyCallbackWcs
Specifies the list of callbacks called before text is deleted from or
inserted into Text. The type of the structure whose address is passed
to this callback is XmTextVerifyCallbackStructWcs. The reason
sent by the callback is XmCR_MODIFYING_TEXT_ VALUE.
When multiple TextField widgets share the same source, only the
widget that initiates the source change will generate the
XmNmodifyVerifyCallbackWcs.

If both XmNmodifyVerifyCallback and
XmNmodifyVerifyCallbackWcs are registered callback lists, the
procedure(s) in the XmNmodifyVerifyCallback list is always
executed first; and the resulting data, which may have been
modified, is passed to the XmNmodifyVerifyCallbackWcs callback
routines.

XmNmotionVerifyCallback
Specifies the list of callbacks that is called before the insert cursor is
moved to a new position. The type of the structure whose address is
passed to this callback is XmTextVerifyCallbackStruct. The
reason sent by the callback is
XmCR_MOVING_INSERT_CURSOR. It is possible for more
than one XmNmotionVerifyCallbacks to be generated from a
single action.

XmNpendingDelete
Indicates that pending delete mode is on when the Boolean is True.
Pending deletion is defined as deletion of the selected text when an
insertion is made.

XmNresizeWidth
Indicates that TextField widget will attempt to resize its width to
accommodate all the text contained in the widget when Boolean is
True.

1-961

OSF/Motif Programmer's Reference

XmTextField (3X)

1-962

XmN selectionArray
Defines the actions for multiple mouse clicks. Each mouse click
performed within a half of a second of the previous mouse click will
increment the index into this array and perform the defined action
for that index. The possible actions are

XmSELECT _POSITION
Resets the insert cursor position

XmSELECT_ WORD
Selects a word

XmSELECT _LINE
Selects a line of text

XmNselectionArrayCount
Specifies the number of actions that are defined in the
XmNselectionArray resource. The value must not be negative.

XmN selectThreshold
Specifies the number of pixels of motion that is required to select
the next character when selection is performed using the click-drag
mode of selection. The value must not be negative.

XmNvalue Specifies the string value of the TextField widget as a char* data
value. If XmNvalue and XmNvalueWcs are both defined, the value
of XmNvalueWcs supersedes that of XmNvalue. XtGetValues
returns a copy of the value of the internal buffer and XtSetValues
copies the string values into the internal buffer.

XmNvalueChangedCallback
Specifies the list of callbacks that is called after text is deleted from
or inserted into TextField. The type of the structure whose address
is passed to this callback is XmAnyCallbackStruct. The reason
sent by the callback is XmCR_ VALUE_CHANGED. When
multiple TextField widgets share the same source, only the widget
that Imtlates the source change will generate the
XmNvalueChangedCallback. This callback represents a change in
the source in the TextField, not in the TextField widget. The
XmNvalueChangedCallback should occur only in pairs with a
XmNmodifyVerifyCallback, assuming that the doit flag in the
callback structure of the XmNmodifyVerifyCallback is not set to
False.

Reference Pages

XmTextField (3X)

XmNvalueWcs
Specifies the string value of the TextField widget as a wchar _t*
data value. This resource cannot be specified in a resource file.

If XmNvalue and XmNvalueWcs are both defined, the value of
XmNvalueWcs supersedes that of XmNvalue. XtGetValues
returns a copy of the value of the internal buffer encoded as a wide
character string. XtSetValues copies the value of the wide
character string into the internal buffer.

XmNverifyBell

Inherited Resources

Specifies whether a bell will sound when an action is reversed
during a verification callback. The default depends on the value of
the ancestor VendorShell's XmNaudibleWarning resource.

TextField widget inherits behavior and resources from the superc1asses in the
following tables. For a complete description of these resources, refer to the
reference page for that superc1ass.

1-963

OSF/Motif Programmer's Reference

XmTextField (3X)

XmPrimitive Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmC Foreground Pixel

Xm NhelpCaliback NULL C
XmCCaliback XtCalibackList

XmNhighlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

Xm NhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

Xm NhighlightThickness 2 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmTAB_GROUP CSG
XmCNavigationType XmNavigationType

XmNshadowThickness 2 CSG
XmCShadowThickness Dimension

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

XmNtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-964

Reference Pages

XmTextField (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

XmNdestroyCaliback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

XmNinitialResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-965

OSF/Motif Programmer's Reference

XmTextField (aX)

1-966

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int reason;
XEvent * event;

} XmAnyCallbackStruct;

reason Indicates why the callback was invoked

event Points to the XEvent that triggered the callback

The TextField widget defines a new callback structure for use with verification
callbacks. Note that not all of the fields are relevant for every callback reason.
The application must first look at the reason field and use only the structure
members that are valid for the particular reason. The values startPos, endPos, and
text in the callback structure XmTextVerifyCallbackStruct may be modified upon
receiving the callback, and these changes will be reflected as the change made to
the source of the TextField widget. (For example, all keystrokes can be converted
to spaces or NULL characters when a password is entered into a TextField widget.)
The application programmer should not overwrite the text field, but should attach
data to that pointer.

Reference Pages

XmTextField (3X)

A pointer to the following structure is passed to the callbacks for
XmNlosingFocusCallback, XmNmodifyVerifyCallback, and
XmNmotion Verify Callback.

typedef struct
{

int
XEvent
Boolean

reason;
*event;
doit;

XmTextPosition currlnsert, newlnsert;
XmTextPosition startPos, endPos;
XmTextBlock text;

} XmTextVerifyCallbackStruct, *XmTextVerifyPtr;

reason

event

do it

currlnsert

newlnsert

startPos

endPos

text

Indicates why the callback was invoked.

Points to the XEvent the triggered the callback. It can be NULL.
For example, changes made to the Text widget programmatically do
not have an event that can be passed to the associated callback.

Indicates whether the action that invoked the callback will be
performed. Setting doit to False negates the action.

Indicates the current position of the insert cursor.

Indicates the position at which the user attempts to position the
insert cursor.

Indicates the starting position of the text to modify. If the callback
is not a modify verification callback, this value is the same as
currlnsert.

Indicates the ending position of the text to modify. If no text is
replaced or deleted, then the value is the same as startPos. If the
callback is not a modify verification callback, this value is the same
as currlnsert.

Points to the following structure of type XmTextBlockRec. This
structure holds the textual information to be inserted.

typedef struct
{

char *ptr;
int length;
XmTextFormat format

} XmTextBlockRec, *XmTextBiock;

1-967

OSF/Motif Programmer's Reference

XmTextField (aX)

1-968

ptr

length

format

The text to be inserted. ptr points to a temporary
storage space that is reused after the callback is
finished. Therefore, if an application needs to save
the text to be inserted, it should copy the text into its
own data space.

Specifies the length of the text to be inserted.

Specifies the format of the text, either
XmFMT_8_BIT or XmFMT_16_BIT.

A pointer to the following structure is passed to callbacks for
XmNmodifyVerifyCallbackWcs.

typedef struct
{

int reason;
XEvent *event;
Boolean doit;
XmTextPosition currlnsert, newlnsert;
XmTextPosition startPos, endPos;
XmWcsTextBlock text;

} XmTextVerifyCallbackStructWcs, *XmTextVerifyPtrWcs;

reason

event

doit

currlnsert

newlnsert

startPos

endPos

Indicates why the callback was invoked.

Points to the XEvent that triggered the callback. It can be NULL.
For example, changes made to the Text widget programmatically do
not have an event that can be passed to the associated callback.

Indicates whether the action that invoked the callback is performed.
Setting doit to False negates the action.

Indicates the current position of the insert cursor.

Indicates the position at which the user attempts to position the
insert cursor.

Indicates the starting position of the text to modify. If the callback
is not a modify verification callback, this value is the same as
currInsert.

Indicates the ending position of the text to modify. If no text is
replaced or deleted, the value is the same as startPos. If the
callback is not a modify verification callback, this value is the same
as currlnsert.

Reference Pages

XmTextField(3X)

text Points to the following structure of type XmTextBlockRecWcs.
This structure holds the textual information to be inserted.

typedef struct
{

wchar_t *wcsptr;
int length;

} XmTextBiockRecWcs, *XmTextBlockWcs;

wcsptr Points to the wide character text to be inserted

length Specifies the number of characters to be inserted

The following table describes the reasons for which the individual verification
callback structure fields are valid.

Reason Valid Fields

XmCR_LOSING_FOCUS reason, event, dail

XmCR_MODIFYING_ TEXT_VALUE reason, event, dail, currlnsert,
newlnsert, startPos, endPos, text

XmCR_MOVING_INSERT _CURSOR reason, event, dail, currlnsert,
newlnsert

Translations
XmTextField includes translations from XmPrimitive. The XmTextField
translations are described in the following list. These translations may not directly
correspond to a translation table. The actions represent the effective behavior of
the associated events, and they may differ in a right-to-Ieft language environment.

BSelect Press: grab-focusO

BSelect Motion: extend -adjustO

BSelect Release: extend-endO

BExtend Press: extend -startO

BExtend Motion: extend -adjustO

BExtend Release: extend-endO

BToggle Press: move-destinationO

BTransfer Press: process-bdragO

BTransfer Motion: secondary-adjustO

1-969

OSF/Motif Programmer's Reference

XmTextField (3X)

1-970

BTransfer Release: copy-toO

MCtrl BTransfer Press: process-bdragO

MCtrl BTransfer Motion: secondary-adjustO

MCtrl BTransfer Release: copy-toO

MShift BTransfer Press: process-bdragO

MShift BTransfer Motion: secondary-adjustO

MShift BTransfer Release: move-toO

MAlt BTransfer Press: process-bdragO

MAlt BTransfer Motion: secondary-adjustO

MAlt BTransfer Release: copy-toO

MAlt MCtrl BTransfer Release: copy-toO

MAlt MShift BTransfer Release: move-toO

KUp:

KDown:

KLeft:

MShift KLeft:

MCtrl KLeft:

MShift MCtrl KLeft:

KRight:

MShift KRight:

MCtri KRight:

MShift MCtrl KRight:

KPageLeft:

KPageRight:

KBeginLine:

MShift KBeginLine:

traverse-prevO

traverse-nextO

backward-characterO

key -select(left)

backward-wordO

backward-word(extend)

forward-characterO

key-select(right)

forward-wordO

forward-word(extend)

page-leftO

page-rightO

beginning-of-lineO

beginning-of -Iine(extend)

KEndLine:

MShift KEndLine:

KNextField:

KPrevField:

KActivate:

KDelete:

KBackSpace:

KAddMode:

KSpace:

MShift KSpace:

KSelect:

KExtend:

MAny KCancel:

KClear:

KSelectAll:

KDeselectAll:

KCut:

KCopy:

KPaste:

KPrimaryCut:

KPrimaryCopy:

KPrimaryPaste:

KHelp:

KAny:

Reference Pages

XmTextField (3X)

end-of-lineO

end -of -line(extend)

next-tab-groupO

prev-tab-groupO

activateO

delete-next-characterO

delete-previous-characterO

toggle-add -modeO

self-insertO

self-insertO

set-anchorO

key-selectO

process-cancelO

clear-selectionO

select-allO

deselect-allO

cut-clipboardO

copy-clipboardO

paste-clip boardO

cut-primaryO

copy -primaryO

copy-primaryO

HeipO

self-insertO

1-971

OSF/Motif Programmer's Reference

XmTextField (3X)

1-972

Action Routines
The XmText action routines are

activateO: Calls the callbacks for XmNactivateCallback. If the parent is a
manager, passes the event to the parent.

backward -characterO:
Moves the insertion cursor one character to the left. For other
effects, see the description of navigation operations in Keyboard
Selection in XmText(3X). This action may have different behavior
in a right-to-Ieft language environment.

backward -word(extend):
If this action is called with no argument, moves the insertion cursor
to the first non-whitespace character after the first whitespace
character to the left or after the beginning of the line. If the
insertion cursor is already at the beginning of a word, moves the
insertion cursor to the beginning of the previous word. For other
effects, see the description of navigation operations in Keyboard
Selection in XmText(3X). This action may have different behavior
in a locale other than the C locale.

If called with an argument of extend, moves the insertion cursor as
in the case of no argument and extends the current selection. For
other effects, see the description of shifted navigation operations in
Keyboard Selection in XmText(3X).

beginning -of -line(extend):
If this action is called with no argument, moves the insertion cursor
to the beginning of the line. For other effects, see the description of
navigation operations in Keyboard Selection in XmText(3X).

If called with an argument of extend, moves the insertion cursor as
in the case of no argument and extends the current selection. For
other effects, see the description of shifted navigation operations in
Keyboard Selection in XmText(3X).

clear-selectionO:
Clears the current selection by replacing each character except
<Return> with a <space> character.

copy-clipboardO:
Copies the current selection to the clipboard.

copy-primaryO:
Copies the primary selection to just before the insertion cursor.

copy-toO:

Reference Pages

XmTextField (3X)

If a secondary selection exists, copies the secondary selection to just
before the insertion cursor. If no secondary selection exists, copies
the primary selection to the pointer location.

cut-clipboardO:
Cuts the current selection to the clipboard.

cut-primaryO:
Cuts the primary selection to just before the insertion cursor.

delete-next-characterO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the character following the insertion cursor. In
add mode, if there is a nonnull selection, the cursor is not disjoint
from the selection and XmNpendingDelete is set to True, deletes
the selection; otherwise, deletes the character following the
insertion cursor. This may impact the selection.

delete-next-wordO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the characters following the insertion cursor to
the next space, tab or end-of-line character. In add mode, if there is
a nonnull selection, the cursor is not disjoint from the selection and
XmNpendingDelete is set to True, deletes the selection; otherwise,
deletes the characters following the insertion cursor to the next
space, tab or end-of-line character. This may impact the selection.
This action may have different behavior in a locale other than the C
locale.

delete-previous-characterO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the character of text immediately preceding the
insertion cursor. In add mode, if there is a nonnull selection, the
cursor is not disjoint from the selection and XmNpendingDelete is
set to True, deletes the selection; otherwise, deletes the character of
text immediately preceding the insertion cursor. This may impact
the selection.

delete-previous-wordO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the characters preceding the insertion cursor to
the next space, tab or beginning-of-line character. In add mode, if
there is a nonnull selection, the cursor is not disjoint from the
selection and XmNpendingDelete is set to True, deletes the
selection; otherwise, deletes the characters preceding the insertion
cursor to the next space, tab or beginning-of-line character. This

1-973

OSF/Motif Programmer's Reference

XmTextField (3X)

1-974

may impact the selection. This action may have different behavior
in a locale other than the C locale.

delete-selectionO:
Deletes the current selection.

delete-to-end-of-lineO:
In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the characters following the insertion cursor to
the next end-of- line character. In add mode, if there is a nonnull
selection, the cursor is not disjoint from the selection and
XmNpendingDelete is set to True, deletes the selection; otherwise,
deletes the characters following the insertion cursor to the next end
of line character. This may impact the selection.

delete-to-start-of-lineO:

deselect-allO:

In normal mode, if there is a nonnull selection, deletes the selection;
otherwise, deletes the characters preceding the insertion cursor to
the previous beginning-of-line character. In add mode, if there is a
nonnull selection, the cursor is not disjoint from the selection and
XmNpendingDelete is set to True, deletes the selection; otherwise,
deletes the characters preceding the insertion cursor to the previous
beginning-of-line character. This may impact the selection.

Deselects the current selection.

end -of-line(extend):
If this action is called with no argument, moves the insertion cursor
to the end of the line. For other effects, see the description of
navigation operations in Keyboard Selection in XmText(3X). If
called with an argument of extend, moves the insertion cursor as in
the case of no argument and extends the current selection. For other
effects, see the description of shifted navigation operations in
Keyboard Selection in XmText(3X).

extend-adjustO:

extend-endO:

Selects text from the anchor to the pointer position and deselects
text outside that range.

Moves the insertion cursor to the position of the pointer.

Reference Pages
XmTextField(3X)

extend-startO:
Adjusts the anchor using the balance-beam method. Selects text
from the anchor to the pointer position and deselects text outside
that range.

forward-character():
Moves the insertion cursor one character to the right. For other
effects, see the description of navigation operations in the
Keyboard Selection in XmText(3X). This action may have
different behavior in a right-to-left language environment.

forward-word(extend):
If this action is called with no argument, moves the insertion cursor
to the first whitespace character or end-of-line following the next
non-whitespace character. If the insertion cursor is already at the
end of a word, moves the insertion cursor to the end of the next
word. For other effects, see the description of navigation operations
in the Keyboard Selection in XmText(3X). This action may have
different behavior in a locale other than the C locale.

If called with an argument of extend, moves the insertion cursor as
in the case of no argument and extends the current selection. For'
other effects, see the description of shifted navigation operations in
Keyboard Selection in XmText(3X).

grab-focusO: This key binding performs the action defined in the
XmNselectionArray, depending on the number of multiple mouse
clicks. The default selection array ordering is one click to move the
insertion cursor to the pointer position, two clicks to select a word,
three clicks to select a line of text, and four clicks to select all text.
A single click also deselects any selected text and sets the anchor at
the pointer position. This action may have different behavior in a
locale other than the C locale.

HelpO: Calls the callbacks for XmNhelpCallback if any exist. If there are
no help callbacks for this widget, this action calls the help callbacks
for the nearest ancestor that has them.

key-select(direction):
If called with an argument of right, moves the insertion cursor one
character to the right and extends the current selection. If called
with an argument of left, moves the insertion cursor one character to
the left and extends the current selection. If called with no
argument, extends the current selection. For other effects, see the
description of shifted navigation operations and KExtend in
Keyboard Selection in XmText(3X).

1-975

OSF/Motif Programmer's Reference

XmTextField (3X)

1-976

move-destinationO:

move-toO:

Moves the insertion cursor to the pointer position without changing
any existing current selection. If there is no current selection, sets
the widget as the destination widget.

If a secondary selection exists, cuts the secondary selection to just
before the insertion cursor. If no secondary selection exists, cuts the
primary selection to the pointer location.

next-tab-groupO:
Traverses to the next tab group.

page-leftO: Scrolls the viewing window left one page of text.

page-rightO: Scrolls the viewing window right one page of text.

paste-clipboardO:
Pastes the contents of the clipboard before the insertion cursor.

prev-tab-groupO:
Traverses to the previous tab group.

process-bdragO
The result of this action is determined by several factors: pOSItIon
of the location cursor, movement of the location cursor, and the
interval between a BTransfer press and release.

This action copies the current selection to the insertion cursor if text
is selected, the location cursor is disjoint from the selection, and no
motion is detected within a given time interval.

It performs a secondary selection and copies the selection to the
position where the text was last edited if the cursor is disjoint from a
current selection (if one exists), the time interval is exceeded, and
movement of the location cursor is detected.

The action drags the current selection if the location cursor is
positioned on the selection, the time interval is exceeded, and
movement of the location cursor is detected. This action creates a
DragContext object whose XmNexportTargets resource value
includes target types of COMPOUND_TEXT, STRING, and
TEXT.

process-cancelO:
Cancels the current extend-adjustO, secondary-adjustO or
process-bdrag operation and leaves the selection state as it was
before the operation; otherwise, and the parent is a manager, it
passes the event to the parent.

Reference Pages

XmTextField (3X)

secondary-adjustO:
Extends the secondary selection to the pointer position.

secondary -startO:
Marks the beginning of a secondary selection.

select-aIlO: Selects all text.

self-insertO: If XrnNpendingDelete is True and the cursor is not disjoint from
the current selection, deletes the entire selection. Inserts the
character associated with the key pressed before the insertion
cursor.

set-anchorO: Resets the anchor point for extended selections. Resets the
destination of secondary selection actions.

toggle-add-rnodeO:
Toggles the state of Add Mode.

toggle-overstrikeO:
Toggles the state of the text insertion mode. By default, characters
typed into the TextField widget are inserted before the position of
the insertion cursor. In overstrike mode, characters entered into the
TextField widget replace the characters that directly follow the
insertion cursor. In overstrike mode, when the end of a line is
reached, characters are appended to the end of the line.

traverse-horneO:
Traverses to the first widget in the tab group.

traverse-nextO:
Traverses to the next widget in the tab group.

traverse-prevO:
Traverses to the previous widget in the tab group.

Additional Behavior
This widget has the following additional behavior:

<FocusIn>: Draws the insertion cursor as solid and starts blinking the cursor.

<FocusOut>: Displays the insertion cursor as a stippled I-beam unless it is the
destination widget.

1-977

OSF/Motif Programmer's Reference

XmTextField (3X)

Virtual Bindings
The bindings for virtual keys are vendor specific. The following table lists the
TextField-specific bindings of virtual keys to actual key event descriptions in
OSFlMotif.

Virtual Key Bindings

Virtual Key Actual Key Events

KExtend Ctrl Shift<Key>space
Shift<Key>osfSelect

KSelect CtrkKey>space
<Key>osfSelect

For . information about bindings for virtual buttons and keys, see
VirtualBindings(3X).

Related Information

1-978

Core(3X), XmCreateTextField(3X), XmFontList(3X),
XmFontListAppendEntry(3X), XmPrimitive(3X),
XmTextFieldClearSelection(3X), XmTextField Copy(3X),
XmTextFieldCut(3X), XmTextFieldGetBaseline(3X),
XmTextFieldGetEditable(3X), XmTextFieldGetInsertionPosition(3X),
XmTextFieldGetLastPosition(3X), XmTextFieldGetMaxLength(3X),
XmTextFieldGetSelection(3X), XmTextFieldGetSelectionPosition(3X),
XmTextFieldGetSelectionWcs(3X), XmTextFieldGetString(3X),
XmTextFieldGetStringWcs(3X), XmTextFieldGetSubstring(3X),
XmTextFieldGetSubstringWcs(3X), XmTextFieldInsert(3X),
XmTextFieldInsertWcs(3X), XmTextFieldPaste(3X),
XmTextFieldPosToXY(3X), XmTextFieldRemove(3X),
XmTextFieldReplace(3X), XmTextFieldReplaceWcs(3X),
XmTextFieldSetAddMode(3X), XmTextFieldSetEditable(3X),
XmTextFieldSetHighlight(3X), XmTextFieldSetInsertionPosition(3X),
XmTextFieldSetMaxLength(3X), XmTextFieldSetSelection(3X),
XmTextFieldSetString(3X), XmTextFieldSetStringWcs(3X),
XmTextFieldShowPosition(3X), and XmTextFieldXYToPos(3X).

Synopsis

Description

Reference Pages

XmTextFieldClearSelection (3X)

XmTextFieldClearSelection-A TextField function that clears the primary
selection

#include <Xm/TextF.h>

void XmTextFieldClearSelection (widget, time)
Widget widget;
Time time;

XmTextFieldClearSelection clears the primary selection in the TextField widget.

widget

time

Specifies the TextField widget ID.

Specifies the time at which the selection value is desired. This
should be the time of the event that triggered this request.

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Related Information
XmTextField(3X) .

1-979

OSF/Motif Programmer's Reference
XmTextFieldCopy(3X)

Synopsis

Description

XmTextFieldCopy-A TextField function that copies the primary selection to the
clipboard

#include <XmlTextF.h>

Boolean XmTextFieldCopy (widget, time)
Widget widget;
Time time;

XmTextFieldCopy copies the primary selected text to the clipboard.

widget

time

Specifies the TextField widget rD.

Specifies the time at which the selection value is to be modified.
This should be the time of the event that triggered this request.

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Return Value
This function returns False if the primary selection is NULL, if the widget does not
own the primary selection, or if the function is unable to gain ownership of the
clipboard selection. Otherwise, it returns True.

Related Information
XmTextField(3X) .

1-980

Synopsis

Description

Reference Pages

XmTextFieldCut(3X)

XmTextFieldCut-A TextField function that copies the primary selection to the
clipboard and deletes the selected text

#include <Xm/TextF.h>

Boolean XmTextFieldCut (widget, time)
Widget widget;
Time time;

XmTextFieldCut copies the primary selected text to the clipboard and then deletes
the primary selected text. This routine calls the widget's
XmNvalueChangedCallback and verification callbacks, either
XmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs, or both. If both
verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks.

widget

time

Specifies the TextField widget ID.

Specifies the time at which the selection value is to be modified.
This should be the time of the event that triggered this request.

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Return Value
This function returns False if the primary selection is NULL, if the widget does not
own the primary selection, or if the function is unable to gain ownership of the
clipboard selection. Otherwise, it returns True.

Related Information
XmTextField(3X) .

1-981

OSF/Motif Programmer's Reference

XmTextFieldGetBaseline{3X)

Synopsis

Description

XmTextFieldGetBaseline-A TextField function that accesses the x position of
the first baseline

#include <XmlTextF.h>

int XmTextFieldGetBaseline (widget)
Widget widget;

XmTextFieldGetBaseline accesses the x posItIOn of the first baseline in the
TextField widget, relative to the x position of the top of the widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Return Value
Returns an integer value that indicates the x position of the first baseline in the
TextField widget. The calculation takes into account the margin height, shadow
thickness, highlight thickness, and font ascent of the first font in the fondist. In this
calculation, the x position of the top of the widget is 0 (zero).

Related Information
XmTextField(3X) .

1-982

Synopsis

Description

Reference Pages

XmTextFieldGetEditable(3X)

XmTextFieldGetEditable-A TextField function that accesses the edit permission
state

#include <Xm/TextF.h>

Boolean XmTextFieldGetEditable (widget)
Widget widget;

XmTextFieldGetEditable accesses the edit permission state of the TextField
widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Return Value
Returns a Boolean value that indicates the state of the XmNeditable resource.

Related Information
XmTextField(3X).

1-983

OSF/Motif Programmer's Reference
XmTextFieldGetlnsertionPosition (aX)

Synopsis

Description

XmTextFieldGetInsertionPosition-A TextField function that accesses the
position of the insertion cursor

#include <XmlTextF.h>

XmTextPosition XmTextFieldGetInsertionPosition (widget)
. Widget widget;

XmTextFieldGetInsertionPosition accesses the insertion cursor position of the
TextField widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Return Value
Returns an XmTextPosition value that indicates the state of the
XmNcursorPosition resource. This is an integer number of characters from the
beginning of the text buffer. The first character position is 0 (zero).

Related Information
XmTextField(3X) .

1-984

Synopsis

Description

Reference Pages

XmTextFieldGetLastPosition (3X)

XmTextFieldGetLastPosition-A TextField function that accesses the position of
the last text character

#include <Xm/TextF.h>

XmTextPosition XmTextFieldGetLastPosition (widget)
Widget widget;

XmTextFieldGetLastPosition accesses the position of the last character in the text
buffer of the TextField widget.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Return Value
Returns an XmTextPosition value that indicates the position of the last character in
the text buffer. This is an integer number of characters from the beginning of the
buffer. The first character position is 0 (zero).

Related Information
XmTextField(3X) .

1-985

OSF/Motif Programmer's Reference

XmTextFieldGetMaxLength (3X)

Synopsis

Description

XmTextFieldGetMaxLength-A TextField function that accesses the value of the
current maximum allowable length of a text string entered from the keyboard

#include <XmlTextF.h>

int XmTextFieldGetMaxLength (widget)
Widget widget;

XmTextFieldGetMaxLength accesses the value of the current maximum
allowable length of the text string in the TextField widget entered from the
keyboard. The maximum allowable length prevents the user from entering a text
string larger than this limit.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Return Value
Returns the integer value that indicates the string's maximum allowable length that
can be entered from the keyboard.

Related Information
XmTextField(3X) .

1-986

Synopsis

Description

Reference Pages

XmTextFieldGetSelection (3X)

XmTextFieldGetSelection-A TextField function that retrieves the value of the
primary selection

#include <Xm/TextF.h>

char * XmTextFieldGetSelection (widget)
Widget widget;

XmTextFieldGetSelection retrieves the value of the primary selection. It returns a
NULL pointer if no text is selected in the widget. The application is responsible
for freeing the storage associated with the string by calling XtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Return Value
Returns a character pointer to the string that is associated with the primary
selection.

Related Information
XmTextField(3X) and XmTextFieldGetSelection Wcs(3X).

1-987

OSF/Motif Programmer's Reference

XmTextFieldGetSelectionPosition (3X)

Synopsis

Description

XmTextFieldGetSelectionPosition-A TextField function that accesses the
position of the primary selection

#include <Xm/TextF.h>

Boolean XmTextFieldGetSelectionPosition (widget, left, right)
Widget widget;
XmTextPosition *left;
XmTextPosition *right;

XmTextFieldGetSelectionPosition accesses the left and right position of the
primary selection in the text buffer of the TextField widget.

widget

left

right

Specifies the TextField widget rD.

Specifies the pointer in which the position of the left boundary of
the primary selection is returned. This is an integer number of
characters from the beginning of the buffer. The first character
position is 0 (zero).

Specifies the pointer in which the position of the right boundary of
the primary selection is returned. This is an integer number of
characters from the beginning of the buffer. The first character
position is 0 (zero).

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Return Value
This function returns True if the widget owns the primary selection; otherwise, it
returns False.

Related Information
XmTextField(3X) .

1-988

Synopsis

Description

Reference Pages

XmTextFieldGetSelectionWcs (3X)

XmTextFieldGetSelectionWcs-A TextField function that retrieves the value of a
wide character encoded primary selection

#include <Xm/TextF.h>

wchar_t * XmTextFieldGetSelectionWcs (widget)
Widget widget;

XmTextFieldGetSelectionWcs retrieves the value of the primary selection,
encoded in a wide character format. It returns a NULL pointer if no text is selected
in the widget. The application is responsible for freeing the storage associated with
the wide character buffer by calling XtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Return Value
Returns the wide character string that is associated with the primary selection in
the TextField widget.

Related Information
XmTextField(3X) and XmTextFieldGetSelection(3X).

1-989

OSF/Motif Programmer's Reference

XmTextFieldGetString (3X)

Synopsis

Description

XmTextFieldGetString-A TextField function that accesses the string value

#include <Xm/TextF.h>

char * XmTextFieldGetString (widget)
Widget widget;

XmTextFieldGetString accesses the string value of the TextField widget. The
application is responsible for freeing the storage associated with the string by
calling XtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Return Value
Returns a character pointer to the string value of the TextField widget. Returns an
empty string if the length of the TextField widget's string is 0 (zero).

Related Information
XmTextField(3X) and XmTextFieldGetStringWcs(3X).

1-990

Synopsis

Description

Reference Pages

XmTextFieldGetStringWcs (3X)

XmTextFieldGetStringWcs-A TextField function that retrieves a copy of the
wide character string value of a TextField widget

#include <Xm/TextF.h>

wchar_t * XmTextFieldGetStringWcs (widget)
Widget widget;

XmTextFieldGetStringWcs retrieves a copy of the wide character string value of
the TextField widget. The application is responsible for freeing the storage
associated with the string by calling XtFree.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Return Value
Returns the wide character string value of the TextField widget. The function
returns an empty string if the length of the TextField widget's string is 0 (zero).

Related Information
XmTextField(3X) and XmTextFieldGetString(3X).

1-991

OSF/Motif Programmer's Reference

XmTextFieldGetSubstring (3X)

Synopsis

Description

1-992

XmTextFieldGetSubstring-A TextField function that retrieves a copy of a
portion of the internal text buffer

#include <XmlTextF.h>

int XmTextFieldGetSubstring (widget, start, num_chars, buffer _size, buffer)
Widget widget;
XmTextPosition start;
int
int
char

num_chars;
buffer_size;
*buffer;

XmTextFieldGetSubstring retrieves a copy of a portion of the internal text buffer
of a TextField widget. The function copies a specified number of characters from a
given start position in the internal text buffer into a buffer provided by the
application. A NULL terminator is placed at the end of the copied data.

The size of the required buffer depends on the maximum number of bytes per
character (MB_CUR_MAX) for the current locale. MB_CUR_MAX is a macro
defined in stdUb.h. The buffer should be large enough to contain the substring to
be copied and a NULL terminator. Use the following equation to calculate the size
of buffer the application should provide:

buffer_size = (num_chars * MB_CUR_MAX) + 1

widget Specifies the TextField widget ID.

start Specifies the beginning character position from which the data will
be retrieved. This is an integer number of characters from the
beginning of the text buffer. The first character position is 0 (zero).

num_chars Specifies the number of characters to be copied into the provided
buffer.

buffer _size Specifies the size of the supplied buffer in bytes. This size should
account for a NULL terminator.

buffer Specifies the character buffer into which the internal text buffer will
be copied.

Reference Pages

XmTextFieldGetSubstring (3X)

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Return Value

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY_FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may
be insufficient. The contents of buffer are undefined.

XmCOPY_TRUNCATED

Related Information

The requested number of characters extended beyond the internal
buffer. The function copied characters between start and the end of
the widget's buffer and terminated the string with a NULL
terminator; fewer than num_chars characters were copied.

XmTextField(3X) and XmTextFieldGetSubstringWcs(3X).

1-993

OSF/Motif Programmer's Reference

XmTextFieldGetSubstringWcs (3X)

Synopsis

Description

1-994

XmTextFieldGetSubstringWcs-A TextField function that retrieves a a portion of
a wide character internal text buffer

#include <XmlTextF.h>

int XmTextFieldGetSubstringWcs (widget, start, num_chars, buffer _size, buffer)
Widget widget;
XmTextPosition start;
int
int
wchar_t

num_chars;
buffer_size;
*buffer;

XmTextFieldGetSubstringWcs retrieves a copy of a portion of the internal text
buffer of a TextField widget that is stored in a wide character format. The function
copies a specified number of characters from a given start position in the internal
text buffer into a buffer provided by the application. A NULL terminator is placed
at the end of the copied data.

widget Specifies the TextField widget rD.

start Specifies the beginning character position from which the data will
be retrieved. This is an integer number of characters from the
beginning of the text buffer. The first character position is 0 (zero).

num_chars Specifies the number of wchar_t characters to be copied into the
provided buffer.

buffer _size Specifies the size of the supplied buffer as a number of wchar_t
storage locations. The minimum size is num_chars + 1.

buffer Specifies the wide character buffer into which the internal text
buffer will be copied.

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Reference Pages

XmTextFieldGetSubstringWcs{ ax)

Return Value

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY _FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may
be insufficient. The contents of buffer are undefined.

XmCOPY_TRUNCATED

Related Information

The requested number of characters extended beyond the internal
buffer. The function copied characters to the end of the buffer and
terminated the string with a NULL terminator; fewer than
num_chars characters were copied.

XmTextField(3X) and XmTextFieldGetSubstring(3X).

1-995

OSF/Motif Programmer's Reference

XmTextFieldlnsert (3X)

Synopsis

Description

XmTextFieldlnsert-A TextField function that inserts a character string into a
text string

#include <XmlTextF .h>

void XmTextFieldInsert (widget, position, value)
Widget widget;
XmTextPosition position;
char * value;

XmTextFieldlnsert inserts a character string into the text string in the TextField
widget. The character positions begin at 0 (zero) and are numbered sequentially
from the beginning of the text. For example, to insert a string after the fourth
character, the position parameter must be 4.

This routine calls the widget's XmNvalueChangedCallback and verification
callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget

position

value

Specifies the TextField widget ID

Specifies the position in the text string where the character string is
to be inserted

Specifies the character string value to be added to the text widget

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Related Information
XmTextField(3X) and XmTextFieldlnsertWcs(3X).

1-996

Synopsis

Description

Reference Pages

XmTextFieldlnsertWcs(3X)

XmTextFieldlnsertWcs-A TextField function that inserts a wide character string
into a TextField widget

#include <Xm/TextF.h>

void XmTextFieldlnsertWcs (widget, position, wcstring)
Widget widget;
XmTextPosition position;
wchar_t *wcstring;

XmTextFieldlnsertWcs inserts a wide character string into the TextField widget at
a specified location. The character positions begin at 0 (zero) and are numbered
sequentially from the beginning of the text. For example, to insert a string after the
fourth character, the position parameter must be 4.

This routine calls the widget's XmNvalueChangedCallback and verification
callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget

position

wcstring

Specifies the TextField widget ID

Specifies the position in the text string where the new character
string is to be inserted

Specifies the wide character string value to be added to the
TextField widget

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Related Information
XmTextField(3X) and XmTextFieldlnsert(3X).

1-997

OSF/Motif Programmer's Reference

XmTextFieldPaste(ax)

Synopsis

Description

XmTextFieldPaste-A TextField function that inserts the clipboard selection

#include <XmlTextF .h>

Boolean XmTextFieldPaste (widget)
Widget widget;

XmTextFieldPaste inserts the clipboard selection at the insertion cursor of the
destination widget. If XmNpendingDelete is True and the insertion cursor is
inside the current selection, the clipboard selection replaces the selected text.

This routine calls the widget's XmNvaIueChangedCaIlback and verification
callbacks, either XmNmodifyVerifyCalIback or
XmNmodifyVerifyCalIbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCalIback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCalIbackWcs callbacks.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Return Value
This function returns False if the widget does not own the primary selection.
Otherwise, it returns True.

Related Information
XmTextField(3X) .

1-998

Synopsis

Description

Reference Pages

XmTextFieldPosToXV (3X)

XmTextFieldPosToXY -A TextField function that accesses the x and y position of
a character position

#include <Xm/TextF.h>

Boolean XmTextFieldPosToXY (widget, position, x, y)
Widget widget;
XmTextPositionposition;
Position *x;
Position *y;

XmTextFieldPosToXY accesses the x and y position, relative to the upper left
comer of the TextField widget, of a given character position in the text buffer.

widget

position

x

y

Specifies the TextField widget ID

Specifies the character position in the text for which the x and y
position is accessed. This is an integer number of characters from
the beginning of the buffer. The first character position is O.

Specifies the pointer in which the x position, relative to the upper
left comer of the widget, is returned. This value is meaningful only
if the function returns True.

Specifies the pointer in which the y position, relative to the upper
left comer of the widget, is returned. This value is meaningful only
if the function returns True.

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Return Value
This function returns True if the character position is displayed in the TextField
widget; otherwise, it returns False, and no x or y value is returned.

Related Information
XmTextField(3X) .

1-999

OSF/Motif Programmer's Reference
XmTextFieldRemove(3X)

Synopsis

Description

XmTextFieldRemove-A TextField function that deletes the primary selection

#include <Xm/TextF.h>

Boolean XmTextFieldRemove (widget)
Widget widget;

XmTextFieldRemove deletes the primary selected text. If there is a selection, this
routine also calls the widget's XmNvalueChangedCallback and verification
callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget Specifies the TextField widget ID

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Return Value
This function returns False if the primary selection is NULL or if the widget does
not own the primary selection. Otherwise, it returns True.

Related Information
XmTextField(3X).

1-1000

Synopsis

Description

Reference Pages

XmTextFieldReplace (3X)

XmTextFieldReplace-A TextField function that replaces part of a text string

#include <Xm/TextF.h>

void XmTextFieldReplace (widget, jrom-pos, to-pos, value)
Widget widget;
XmTextPosition from-pos;
XmTextPosition to-pos;
char * value;

XmTextFieldReplace replaces part of the text string in the TextField widget. The
character positions begin at 0 (zero) and are numbered sequentially from the
beginning of the text.

An example text replacement would be to replace the second and third characters
in the text string. To accomplish this, the parameter jromyos must be 1 and toyos
must be 3. To insert a string after the fourth character, both parameters, jromyos
and toy os, must be 4.

This routine calls the widget's XmNvalueChangedCallback and verification
callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget

jromyos

value

Specifies the TextField widget ID

Specifies the start position of the text to be replaced

Specifies the end position of the text to be replaced

Specifies the character string value to be added to the text widget

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Related Information
XmTextField(3X). XmTextFieldReplace Wcs(3X).

1-1001

OSF/Motif Programmer's Reference

XmTextFieldReplaceWcs (3X)

Synopsis

Description

XmTextFieldReplaceWcs-A TextField function that replaces part of a wide
character string in a TextField widget

#include <Xm/TextF.h>

void XmTextFieldReplaceWcs (widget, jrom-pos, to-pos, wcstring)
Widget widget;
XmTextPosition jrom-pos;
XmTextPosition to-pos;

*wcstring;

XmTextFieldReplaceWcs replaces part of the wide character string in the
TextField widget. The character positions begin at 0 (zero) and are numbered
sequentially from the beginning of the text.

An example text replacement would be to replace the second and third characters
in the text string. To accomplish this, the parameter jrom-pos must be 1 and to -pos
must be 3. To insert a string after the fourth character, both parameters, jrom-pos
and to-pos, must be 4.

This routine calls the widget's XmNvalueChangedCalIback and verification
callbacks, either XmNmodifyVerifyCalIback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget

jrom-pos

to-pos

wcstring

Specifies the TextField widget ID

Specifies the start position of the text to be replaced

Specifies the end position of the text to be replaced

Specifies the wide character string value to be added to the
TextField widget

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Related Information
XmTextField(3X) and XmTextFieldReplace(3X).

1-1002

Synopsis

Description

Reference Pages

XmTextFieldSetAddMode (3X)

XmTextFieldSetAddMode-A TextField function that sets the state of Add mode

#include <Xm/TextF.h>

void XmTextFieldSetAddMode (widget, state)
Widget widget;
Boolean state;

XmTextFieldSetAddMode controls whether or not the TextField widget is in Add
mode. When the widget is in Add mode, the insert cursor can be moved without
disturbing the primary selection.

widget

state

Specifies the TextField widget ID

Specifies whether or not the widget is in Add mode. A value of True
turns on Add mode; a value of False turns off Add mode.

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Related Information
XmTextField(3X) .

1-1003

OSF/Motif Programmer's Reference

XmTextFieldSetEditable(3X)

Synopsis

Description

XmTextFieldSetEditable-A TextField function that sets the edit permission

#incIude <Xm/TextF.h>

void XmTextFieldSetEditable (widget, editable)
Widget widget;
Boolean editable;

XmTextFieldSetEditable sets the edit permission state of the TextField widget.
When set to True, the text string can be edited.

widget

editable

Specifies the TextField widget ID

Specifies a Boolean value that when True allows text string edits

For a complete definition of TextField and its associated resources, see
XmTextField(3X}.

Related Information
XmTextField(3X) .

1-1004

Synopsis

Description

Reference Pages

XmTextFieldSetHighl ight (3X)

XmTextFieldSetHighlight-A TextField function that highlights text

#include <Xm/TextF.h>

void XmTextFieldSetHighlight (widget, left, right, mode)
Widget widget;
XmTextPositionleft;
XmTextPositionrig ht;
XmHighlightModemode;

XmTextFieldSetHighlight highlights text between the two specified character
positions. The mode parameter determines the type of highlighting. Highlighting
text merely changes the visual appearance of the text; it does not set the selection.

widget

left

right

mode

Specifies the TextField widget ID.

Specifies the position of the left boundary of text to be highlighted.
This is an integer number of characters from the beginning of the
text buffer. The first character position is 0 (zero).

Specifies the position of the right boundary of text to be highlighted.
This is an integer number of characters from the beginning of the
text buffer. The first character position is 0 (zero).

Specifies the type of highlighting to be done. A value of
XmHIGHLIGHT_NORMAL removes highlighting. A value of
XmHIGHLIGHT_SELECTED highlights the test using reverse
video. A value of
XmHIGHLIGHT _SECONDARY_SELECTED highlights the
text using underlining.

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Related Information
XmTextField(3X).

1-1005

OSF/Motif Programmer's Reference

XmTextFieldSetlnsertionPosition (3X)

Synopsis

Description

XmTextFieldSetInsertionPosition-A TextField function that sets the position of
the insertion cursor

#include <XmlTextF.h>

void XmTextFieldSetlnsertionPosition (widget, position)
Widget widget;
XmTextPositionposition;

XmTextFieldSetInsertionPosition sets the insertion cursor position of the
TextField widget. This routine also calls the widget's XmNmotionVerifyCallback
callbacks if the insertion cursor position changes.

widget

position

Specifies the TextField widget ID.

Specifies the position of the insert cursor. This is an integer number
of characters from the beginning of the text buffer. The first
character position is 0 (zero).

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Related Information
XmTextField(3X) .

1-1006

Synopsis

Description

Reference Pages

XmTextFieldSetMaxLength (3X)

XmTextFieldSetMaxLength-A TextField function that sets the value of the
current maximum allowable length of a text string entered from the keyboard

#include <Xm/TextF.h>

void XmTextFieldSetMaxLength (widget, max_length)
Widget widget;
int max_length;

XmTextFieldSetMaxLength sets the value of the current maximum allowable
length of the text string in the TextField widget. The maximum allowable length
prevents the user from entering a text string from the keyboard that is larger than
this limit. Strings that are entered using the XmNvalue (or XmNvalueWcs)
resource, or the XmTextFieldSetString (or XmTextFieldSetStringWcs) function
ignore this resource.

widget Specifies the TextField widget ID

max_length Specifies the maximum allowable length of the text string

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Related Information
XmText(3X), XmTextFieldSetString(3X), and XmTextFieldSetStringWcs(3X).

1-1007

OSF/Motif Programmer's Reference

XmTextFieldSetSelection (3X)

Synopsis

Description

XmTextFieldSetSelection-A TextField function that sets the primary selection of
the text

#include <Xm/TextF.h>

void XmTextFieldSetSelection (widget, first, last, time)
Widget widget;
XmTextPosition first;
XmTextPosition last;
Time time;

XmTextFieldSetSelection sets the primary selection of the text in the widget. It
also sets the insertion cursor position to the last position of the selection and calls
the widget's XmNmotionVerifyCallback callbacks.

widget

first

last

time

Specifies the TextField widget ID.

Marks the first character position of the text to be selected.

Marks the last position of the text to be selected.

Specifies the time at which the selection value is desired. This
should be the same as the time of the event that triggered this
request.

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Related Information
XmTextField(3X) .

1-1008

Synopsis

Description

Reference Pages

XmTextFieldSetString (3X)

XmTextFieldSetString-A TextField function that sets the string value

#include <Xm/TextF.h>

void XmTextFieldSetString (widget, value)
Widget widget;
char * value;

XmTextFieldSetString sets the string value of the TextField widget. This routine
calls the widget's XmNvalueChangedCallback and verification callbacks, either
XmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs, or both. If both
verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. It also sets the insertion cursor
pOSItIon to the beginning of the string and calls the widget's
XmNmotion Verify Callback callbacks.

widget

value

Specifies the TextField widget ID

Specifies the character pointer to the string value and places the
string into the text edit window

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Related Information
XmTextField(3X) and XmTextFieldSetStringW cs(3X).

1-1009

OSF/Motif Programmer's Reference

XmTextFieldSetStringWcs (3X)

Synopsis

Description

XmTextFieldSetStringWcs-A TextField function that sets a wide character
string value

#include <Xm/TextF.h>

void XmTextFieldSetStringWcs (widget, wcstring)
Widget widget;

*wcstring;

XmTextFieldSetStringWcs sets the wide character string value of the TextField
widget. This routine calls the widget's XmNvalueChangedCallback and
verification callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.
It also sets the insertion cursor position to the beginning of the string and calls the
widget's XmNmotionVerifyCallback callbacks.

widget

wcstring

Specifies the TextField widget ID

Specifies the wide character string value and places the string into
the text edit window

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Related Information
XmTextField(3X) and XmTextFieldSetString(3X).

1-1010

Synopsis

Description

Reference Pages

XmTextFieldShowPosition (3X)

XmTextFieldShowPosition-A TextField function that forces text at a given
position to be displayed

#include <XmlTextF.h>

void XmTextFieldShowPosition (widget, position)
Widget widget;
XmTextPositionposition;

XmTextFieldShowPosition forces text at the specified position to be displayed. If
the XmNautoShowCursorPosition resource is True, the application should also
set the insert cursor to this position.

widget

position

Specifies the TextField widget rD.

Specifies the character position to be displayed. This is an integer
number of characters from the beginning of the text buffer. The first
character position is 0 (zero).

For a complete definition of TextField and its associated resources, see
XmTextField(3X) .

Related Information
XmTextField(3X) .

1-1011

OSF/Motif Programmer's Reference

XmTextFieldXYToPos(3X)

Synopsis

Description

XmTextFieldXYToPos-A TextField function that accesses the character position
nearest an x and y position

#include <Xm/TextF.h>

XmTextPosition XmTextFieldXYToPos (widget, x, y)
Widget widget;
Position X;
Position y;

XmTextFieldXYToPos accesses the character position nearest to the specified x
and y position, relative to the upper left comer of the TextField widget.

widget

x

y

Specifies the TextField widget ID

Specifies the x position, relative to the upper left comer of the
widget

Specifies the y position, relative to the upper left comer of the
widget

For a complete definition of TextField and its associated resources, see
XmTextField(3X).

Return Value
Returns the character position in the text nearest the x and y position specified.
This is an integer number of characters from the beginning of the buffer. The first
character position is 0 (zero).

Related Information
XmTextField(3X) .

1-1012

Synopsis

Description

Reference Pages
XmTextFindString(3X)

XmTextFindString-A Text function that finds the beginning position of a text
string

#include <XmlXm.h>

Boolean XmTextFindString (widget, start, string, direction, position)
Widget widget;
XmTextPosition start;
char *string;
XmTextDirection direction;
XmTextPosition *position;

XmTextFindString locates the beginning position of a specified text string. This
routine searches forward or backward for the first occurrence of the string starting
from the given start position. If it finds a match, the function returns the position of
the first character of the string in position.

widget

start

string

direction

position

Specifies the Text widget ID.

Specifies the character position from which the search proceeds.
This is an integer number of characters from the beginning of the
text buffer. The first character position is 0 (zero).

Specifies the search string.

Indicates the search direction. It is relative to the primary direction
of the text. The possible values are

XmTEXT_FORWARD
The search proceeds toward the end of the text
buffer.

XmTEXT_BACKWARD
The search proceeds toward the beginning of the text
buffer.

Specifies the pointer in which the first character position of the
string match is returned. This is an integer number of characters
from the beginning of the buffer. The first character position is 0
(zero). If the function returns False, this value is undefined.

1-1013

OSF/Motif Programmer's Reference
XmTextFindString (3X)

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns True if a string match is found; otherwise, returns False.

Related Information
XmText(3X) and XmTextFindStringWcs(3X).

1-1014

Synopsis

Description

Reference Pages

XmTextFindStringWcs (3X)

XmTextFindStringWcs-A Text function that finds the beginning position of a
wide character text string

#include <Xm/Text.h>

Boolean XmTextFindStringWcs (widget, start, wcstring, direction, position)
Widget widget;
XmTextPosition start;
wchar_t *wcstring;
XmTextDirection direction;
XmTextPosition *position;

XmTextFindStringWcs locates the beginning pOSItion of a specified wide
character text string. This routine searches forward or backward for the first
occurrence of the string, starting from the given start position. If a match is found,
the function returns the position of the first character of the string in position.

widget

start

wcstring

direction

position

Specifies the Text widget ID.

Specifies the character position from which the search proceeds.
This is an integer number of characters from the beginning of the
text buffer. The first character position is 0 (zero).

Specifies the wide character search string.

Indicates the search direction. It is relative to the primary direction
of the text. The possible values are

XmTEXT_FORWARD
The search proceeds toward the end of the buffer.

XmTEXT_BACKWARD
The search proceeds toward the beginning of the
buffer.

Specifies the pointer in which the first character position of the
string match is returned. This is an integer number of characters
from the beginning of the buffer. The first character position is 0
(zero). If the function returns False, this value is undefined.

1-1015

OSF/Motif Programmer's Reference
XmTextFindStringWcs (3X)

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns True if a string match is found; otherwise, returns False.

Related Information
XmText(3X) and XmTextFindString(3X).

1-1016

Synopsis

Description

Reference Pages

XmTextGetBaseline (3X)

XmTextGetBaseline-A Text function that accesses the x position of the first
baseline

#include <Xm/Text.h>

int XmTextGetBaseline (widget)
Widget widget;

XmTextGetBaseline accesses the x position of the first baseline in the Text widget,
relative to the x position of the top of the widget.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns an integer value that indicates the x position of the first baseline in the Text
widget. The calculation takes into account the margin height, shadow thickness,
highlight thickness, and font ascent of the first font in the fontlist. In this
calculation the x position of the top of the widget is 0 (zero).

Related Information
XmText(3X).

1-1017

OSF/Motif Programmer's Reference

XmTextGetEditable (3X)

XmTextGetEditable-A Text function that accesses the edit permission state

Synopsis #include <Xm/Text.h>

Boolean XmTextGetEditable (widget)
Widget widget;

Description
XmTextGetEditable accesses the edit permission state of the Text widget.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns a Boolean value that indicates the state of the XmNeditable resource.

Related Information
XmText(3X).

1-1018

Synopsis

Description

Reference Pages

XmTextGetlnsertionPosition (3X)

XmTextGetInsertionPosition-A Text function that accesses the position of the
insert cursor

#include <XmlText.h>

XmTextPosition XmTextGetlnsertionPosition (widget)
Widget widget;

XmTextGetInsertionPosition accesses the insertion cursor position of the Text
widget.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns an XmTextPosition value that indicates the state of the
XmNcursorPosition resource. This is an integer number of characters from the
beginning of the text buffer. The first character position is 0 (zero).

Related Information
XmText(3X).

1-1019

OSF/Motif Programmer's Reference
XmTextGetLastPosition (aX)

Synopsis

Description

XmTextGetLastPosition-A Text function that accesses the last position in the
text

#include <XmlText.h>

XmTextPosition XmTextGetLastPosition (widget)
Widget widget;

XmTextGetLastPosition accesses the last position in the text buffer of the Text
widget. This is an integer number of characters from the beginning of the buffer,
and represents the position following which text that is added to the end of the
buffer is placed. The first character position is 0 (zero). The last character position
is equal to the number of characters in the text buffer.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns an XmTextPosition value that indicates the last position in the text buffer.

Related Information
XmText(3X).

1-1020

Synopsis

Description

Reference Pages

XmTextGetMaxLength (3X)

XmTextGetMaxLength-A Text function that accesses the value of the current
maximum allowable length of a text string entered from the keyboard

#include <Xm/Text.h>

int XmTextGetMaxLength (widget)

Widget widget;

XmTextGetMaxLength accesses the value of the current maximum allowable
length of the text string in the Text widget entered from the keyboard. The
maximum allowable length prevents the user from entering a text string larger than
this limit.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns the integer value that indicates the string's maximum allowable length that
can be entered from the keyboard.

Related Information
XmText(3X).

1-1021

OSF/Motif Programmer's Reference

XmTextGetSelection (3X)

Synopsis

Description

XmTextGetSelection-A Text function that retrieves the value of the primary
selection

#include <XmlText.h>

char * XmTextGetSelection (widget)
Widget widget;

XmTextGetSelection retrieves the value of the primary selection. It returns a
NULL pointer if no text is selected in the widget. The application is responsible
for freeing the storage associated with the string by calling XtFree.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns a character pointer to the string that is associated with the primary
selection.

Related Information
XmText(3X) and XmTextGetSelectionWcs(3X).

1-1022

Synopsis

Description

Reference Pages

XmTextGetSelectionPosition (3X)

XmTextGetSelectionPosition-A Text function that accesses the position of the
primary selection

#include <Xm/Text.h>

Boolean XmTextGetSelectionPosition (widget, left, right)
Widget widget;
XmTextPosition *left;
XmTextPosition *right;

XmTextGetSelectionPosition accesses the left and right position of the primary
selection in the text buffer of the Text widget.

widget Specifies the Text widget ID

left Specifies the pointer in which the position of the left boundary of
the primary selection is returned. This is an integer number of
characters from the beginning of the buffer. The first character
position is 0 (zero).

right Specifies the pointer in which the position of the right boundary of
the primary selection is returned. This is an integer number of
characters from the beginning of the buffer. The first character
position is 0 (zero).

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
This function returns True if the widget owns the primary selection; otherwise, it
returns False.

Related Information
XmText(3X).

1-1023

OSF/Motif Programmer's Reference

XmTextGetSelectionWcs (3X)

Synopsis

Description

XmTextGetSelection Wcs-A Text function that retrieves the value of a wide
character encoded primary selection

#include <Xm/Text.h>

wchar_t * XmTextGetSelectionWcs (widget)
Widget widget;

XmTextGetSelection Wcs retrieves the value of the primary selection that is
encoded in a wide character format. It returns a NULL pointer if no text is selected
in the widget. The application is responsible for freeing the storage associated with
the wide character buffer by calling XtFree.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns the wide character string that is associated with the primary selection in
the Text widget.

Related Information
XmText(3X) and XmTextGetSelection(3X).

1-1024

Synopsis

Description

Reference Pages

X mTextGetSource (3X)

XmTextGetSource-A Text function that accesses the source of the widget

#include <XmlText.h>

XmTextSource XmTextGetSource (widget)
Widget widget;

XmTextGetSource accesses the source of the Text widget. Text widgets can share
sources of text so that editing in one widget is reflected in another. This function
accesses the source of one widget so that it can be made the source of another
widget, using the function XmTextSetSource(3X).

Setting a new text source destroys the old text source if no other Text widgets are
using that source. To replace a text source but keep it for later use, create an
unmanaged Text widget and set its source to the text source you want to keep.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns an XmTextSource value that represents the source of the Text widget.

Related Information
XmText(3X).

1-1025

OSF/Motif Programmer's Reference

X mTextGetString (3X)

Synopsis

Description

XmTextGetString-A Text function that accesses the string value

#include <Xm/Text.h>

char * XmTextGetString (widget)
Widget widget;

XmTextGetString accesses the string value of the Text widget. The application is
responsible for freeing the storage associated with the string by calling XtFree.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns a character pointer to the string value of the text widget. Returns an empty
string if the length of the Text widget's string is 0 (zero).

Related Information
XmText(3X) and XmTextGetStringWcs(3X).

1-1026

Synopsis

Description

Reference Pages

XmTextGetStringWcs (3X)

XmTextGetStringWcs-A Text function that retrieves a copy of the wide
character string value of a Text widget

#include <Xm/Text.h>

wchar_t * XmTextGetStringWcs (widget)
Widget widget;

XmTextGetStringWcs retrieves a copy of the wide character string value of the
Text widget. The application is responsible for freeing the storage associated with
the string by calling XtFree.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns the wide character string value of the Text widget. The function returns an
empty string if the length of the Text widget's string is 0 (zero).

Related Information
XmText(3X) and XmTextGetString(3X).

1-1027

OSF/Motif Programmer's Reference

XmTextGetSubstring (3X)

Synopsis

Description

1-1028

XmTextGetSubstring-A Text function that retrieves a copy of a portion of the
internal text buffer

#include <XmlText.h>

int XmTextGetSubstring (widget, start, num_chars, buffer _size, buffer)
Widget widget;
XmTextPosition start;
int
int
char

num_chars;
buffer_size;
*buffer;

XmTextGetSubstring retrieves a copy of a portion of the internal text buffer of a
Text widget. The function copies a specified number of characters from a given
start position in the internal text buffer into a buffer provided by the application. A
NULL terminator is placed at the end of the copied data.

The size of the required buffer depends on the maximum number of bytes per
character (MB_CUR_MAX) for the current locale. MB_CUR_MAX is a macro
defined in stdlib.h. The buffer should be large enough to contain the substring to
be copied and a NULL terminator. Use the following equation to calculate the size
of buffer the application should provide:

buffer_size = (num_chars * MB_CUR_MAX) + 1

widget Specifies the Text widget ID.

start Specifies the beginning character position from which the data will
be retrieved. This is an integer number of characters from the
beginning of the text buffer. The first character position is 0 (zero).

num_chars Specifies the number of characters to be copied into the provided
buffer.

buffer _size Specifies the size of the supplied buffer in bytes. This size should
account for a NULL terminator.

buffer Specifies the character buffer into which the internal text buffer will
be copied.

For a complete definition of Text and its associated resources, see XmText(3X).

Reference Pages

XmTextGetSubstring (3X)

Return Value

XmCOPY_SUCCEEDED
The function was successful.

XmCOPY _FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may
be insufficient. The contents of buffer are undefined.

XmCOPY_TRUNCATED

Related Information

The requested number of characters extended beyond the internal
buffer. The function copied characters between start and the end of
the widget's buffer and terminated the string with a NULL
terminator; fewer than num_chars characters were copied.

XmText(3X) and XmTextGetSubstringWcs(3X).

1-1029

OSF/Motif Programmer's Reference

XmTextGetSubstringWcs (3X)

Synopsis

Description

1-1030

XmTextGetSubstringWcs-A Text function that retrieves a portion of a wide
character internal text buffer

#include <Xm/Text.h>

int XmTextGetSubstringWcs (widget, start, num_chars, buffer _size, buffer)
Widget widget;
XmTextPosition start;
int
int
wchar_t

num_chars;
buffer_size;

* buffer;

XmTextGetSubstringWcs retrieves a copy of a portion of the internal text buffer
of a Text widget that is stored in a wide character format. The function copies a
specified number of characters from a given start position in the internal text buffer
into a buffer provided by the application. A NULL terminator is placed at the end
of the copied data.

widget Specifies the Text widget ID.

start Specifies the beginning character position from which the data will
be retrieved. This is an integer number of characters from the
beginning of the text buffer. The first character position is 0 (zero).

num_chars Specifies the number of wchar_t characters to be copied into the
provided buffer.

buffer _size Specifies the size of the supplied buffer as a number of wchar_t
storage locations. The minimum size is num_chars + 1.

buffer Specifies the wide character buffer into which the internal text
buffer will be copied.

For a complete definition of Text and its associated resources, see XmText(3X).

Reference Pages

XmTextGetSubstringWcs{3X)

Return Value

XmCOPY_SUCCEEDED
The function was successfuL

XmCOPY_FAILED
The function failed because it was unable to copy the specified
number of characters into the buffer provided. The buffer size may
be insufficient. The contents of buffer are undefined.

XmCOPY _TRUNCATED

Related Information

The requested number of characters extended beyond the internal
buffer. The function copied characters between start and the end of
the widget's buffer and terminated the string with a NULL
terminator; fewer than num_chars characters were copied.

XmText(3X) and XmTextGetSubstring(3X).

1-1031

OSF/Motif Programmer's Reference

XmTextGetTopCharacter(3X)

Synopsis

Description

XmTextGetTopCharacter-A Text function that accesses the position of the first
character displayed

#include <XmlText.h>

XmTextPosition XmTextGetTopCharacter (widget)
Widget widget;

XmTextGetTopCharacter accesses the position of the text at the top of the Text
widget.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns an XmTextPosition value that indicates the state of the
XmNtopCharacter resource. This is an integer number of characters from the
beginning of the text buffer. The first character position is 0 (zero).

Related Information
XmText(3X).

1-1032

Synopsis

Description

Reference Pages

XmTextinsert (3X)

XmTextlnsert-A Text function that inserts a character string into a text string

#include <XmlText.h>

void XmTextInsert(widget, position, value)
Widget widget;
XmTextPosition position;
char * value;

XmTextlnsert inserts a character string into the text string in the Text widget. The
character positions begin at 0 (zero) and are numbered sequentially from the
beginning of the text. For example, to insert a string after the fourth character, the
parameter position must be 4.

This routine calls the widget's XmNvalueChangedCallback and verification
callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget

position

value

Specifies the Text widget ID.

Specifies the position in the text string where the character string is
to be inserted.

Specifies the character string value to be added to the text widget.

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X) and XmTextlnsertWcs(3X).

1-1033

OSF/Motif Programmer's Reference

XmTextlnsertWcs (3X)

Synopsis

Description

XmTextlnsertWcs-A Text function that inserts a wide character string into a
Text widget

#include <Xm/Text.h>

void XmTextlnsertWcs (widget, position, wcstring)
Widget widget;
XmTextPosition position;

*wcstring;

XmTextlnsertWcs inserts a wide character string into the Text widget at a
specified location. The character positions begin at 0 (zero) and are numbered
sequentially from the beginning of the text. For example, to insert a string after the
fourth character, the position parameter must be 4.

This routine calls the widget's XmNvalueChangedCallback and verification
callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget

position

wcstring

Specifies the Text widget ID

Specifies the position in the text string where the new character
string is to be inserted

Specifies the wide character string value to be added to the Text
widget

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X) and XmTextlnsert(3X).

1-1034

Synopsis

Description

Reference Pages

XmTextPaste (3X)

XmTextPaste-A Text function that inserts the clipboard selection

#include <Xm/Text.h>

Boolean XmTextPaste (widget)

Widget widget;

XmTextPaste inserts the clipboard selection at the insertion cursor of the
destination widget. If XmNpendingDelete is True and the insertion cursor is
inside the current selection, the clipboard selection replaces the selected text.

This routine calls the widget's XmNvalueChangedCallback and verification
callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget Specifies the Text widget ID

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
This function returns False if the widget does not own the primary selection.
Otherwise, it returns True.

Related Information
XmText(3X).

1-1035

OSF/Motif Programmer's Reference

XmTextPosToXY (3X)

Synopsis

Description

XmTextPosToXY -A Text function that accesses the x and y position of a
character position

#include <Xm/Text.h>

Boolean XmTextPosToXY (widget, position, x, y)

Widget widget;
XmTextPositionposition;
Position *x;
Position *y;

XmTextPosToXY accesses the x and y position, relative to the upper left corner of
the Text widget, of a given character position in the text buffer.

widget Specifies the Text widget ID

position

x

y

Specifies the character position in the text for which the x and y
position is accessed. This is an integer number of characters from
the beginning of the buffer. The first character position is 0 (zero).

Specifies the pointer in which the x position, relative to the upper
left corner of the widget, is returned. This value is meaningful only
if the function returns True.

Specifies the pointer in which the y position, relative to the upper
left corner of the widget, is returned. This value is meaningful only
if the function returns True.

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
This function returns True if the character position is displayed in the Text widget;
otherwise, it returns False, and no x or y value is returned.

Related Information
XmText(3X).

1-1036

Synopsis

Description

Reference Pages

XmTextPosition (3X)

XmTextPosition-Data type for a character position within a text string

#include <XmlXm.h>

XmTextPosition is the data type for a character position within a text string. The
text position is an integer representing the number of characters from the beginning
of the string. The first character position in the string is 0 (zero).

Related Information
XmText(3X).

1-1037

OSF/Motif Programmer's Reference

XmTextRemove(3X)

Synopsis

Description

XmTextRemove-A Text function that deletes the primary selection

#include <XmlText.h>

Boolean XmTextRemove (widget)
Widget widget;

XmTextRemove deletes the primary selected text. If there is a selection, this
routine also calls the widget's XmNvalueChangedCallback and verification
callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget Specifies the Text widget ID.

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
This function returns False if the primary selection is NULL or if the widget does
not own the primary selection. Otherwise, it returns True.

Related Information
XmText(3X).

1-1038

Synopsis

Description

Reference Pages

XmTextReplace (3X)

XmTextReplace-A Text function that replaces part of a text string

#include <Xm/Text.h>

void XmTextReplace (widget, jromyos, toyos, value)
Widget widget;
XmTextPosition jromyos;
XmTextPosition toyos;
char * value;

XmTextReplace replaces part of the text string in the Text widget. The character
positions begin at 0 (zero) and are numbered sequentially from the beginning of the
text.

An example text replacement would be to replace the second and third characters
in the text string. To accomplish this, the parameter jrom-pos must be 1 and to-pos
must be 3. To insert a string after the fourth character, both parameters, jrom-pos
and to-pos, must be 4.

This routine calls the widget's XmNvalueChangedCallback and verification
callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget

jrom-pos

to-pos

value

Specifies the Text widget ID

Specifies the start position of the text to be replaced

Specifies the end position of the text to be replaced

Specifies the character string value to be added to the text widget

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X) and XmTextReplaceWcs(3X).

1-1039

OSF/Motif Programmer's Reference

XmTextReplaceWcs (3X)

Synopsis

Description

XmTextReplaceWcs-A Text function that replaces part of a wide character string
in a Text widget

#include <XmlText.h>

void XmTextReplaceWcs (widget, jromyos, toy os, wcstring)
Widget widget;
XmTextPosition jromyos;
XmTextPosition toyos;

*wcstring;

XmTextReplaceWcs replaces part of the wide character string in the Text widget.
The character positions begin at zero and are numbered sequentially from the
beginning of the text.

An example text replacement would be to replace the second and third characters
in the text string. To accomplish this, the jrom-pos parameter must be 1 and the
to-pos parameter must be 3. To insert a string after the fourth character, both the
jrom-pos and to-pos parameters must be 4.

This routine calls the widget's XmNvalueChangedCallback and verification
callbacks, either XmNmodifyVerifyCallback or
XmNmodifyVerifyCallbackWcs, or both. If both verification callback lists are
registered, the procedures of the XmNmodifyVerifyCallback list are executed first
and the resulting data is passed to the XmNmodifyVerifyCallbackWcs callbacks.

widget

jrom-pos

to-pos

wcstring

Specifies the Text widget ID

Specifies the start position of the text to be replaced

Specifies the end position of the text to be replaced

Specifies the wide character string value to be added to the Text
widget

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X) and XmTextReplace(3X).

1-1040

Synopsis

Description

Reference Pages

XmTextScrol1 (3X)

XmTextScroll-A Text function that scrolls text

#include <Xm/Text.h>

void XmTextScroll (widget, lines)
Widget widget;
int lines;

XmTextScroll scrolls text in a Text widget.

widget Specifies the Text widget ID

lines Specifies the number of lines of text to scroll. A positive value
causes text to scroll upward; a negative value causes text to scroll
downward.

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X).

1-1041

OSF/Motif Programmer's Reference

XmTextSetAddMode(3X)

Synopsis

Description

XmTextSetAddMode-A Text function that sets the state of Add mode

#include <XmlText.h>

void XmTextSetAddMode (widget, state)
Widget widget;
Boolean state;

XmTextSetAddMode controls whether or not the Text widget is in Add mode.
When the widget is in Add mode, the insert cursor can be moved without disturbing
the primary selection.

widget

state

Specifies the Text widget ID

Specifies whether or not the widget is in Add mode. A value of True
turns on Add mode; a value of False turns off Add mode.

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X).

1-1042

Synopsis

Description

Reference Pages

XmTextSetEditable (3X)

XmTextSetEditable-A Text function that sets the edit permission

#include <Xm/Text.h>

void XmTextSetEditable (widget, editable)
Widget widget;
Boolean editable;

XmTextSetEditable sets the edit permission state of the Text widget. When set to
True, the text string can be edited.

widget

editable

Specifies the Text widget ID

Specifies a Boolean value that when True allows text string edits

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
Xm'rext(3X).

1-1043

OSF/Motif Programmer's Reference
XmTextSetHighlight (3X)

Synopsis

Description

XmTextSetHighlight-A Text function that highlights text

#include <Xm/Text.h>

void XmTextSetHighlight (widget, left, right, mode)
Widget widget;
XmTextPositionleft;
XmTextPositionright;
XmHighlightModemode;

XmTextSetHighlight highlights text between the two specified character positions.
The mode parameter determines the type of highlighting. Highlighting text merely
changes the visual appearance of the text; it does not set the selection.

widget

left

right

mode

Specifies the Text widget ID

Specifies the position of the left boundary of text to be highlighted.
This is an integer number of characters from the beginning of the
text buffer. The first character position is 0 (zero).

Specifies the position of the right boundary of text to be highlighted.
This is an integer number of characters from the beginning of the
text buffer. The first character position is 0 (zero).

Specifies the type of highlighting to be done. A value of
XmHIGHLIGHT_NORMAL removes highlighting. A value of
XmHIGHLIGHT_SELECTED highlights the text using reverse
video. A value of
XmHIGHLIGHT_SECONDARY _SELECTED highlights the
text using underlining.

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X).

1-1044

Synopsis

Description

Reference Pages

XmTextSetinsertionPosition(3X)

XmTextSetInsertionPosition-A Text function that sets the position of the insert
cursor

#include <Xm/Text.h>

void XmTextSetInsertionPosition (widget, position)
Widget widget;
XmTextPositionposition;

XmTextSetInsertionPosition sets the insertion cursor position of the Text widget.
This routine also calls the widget's XmNmotionVerifyCallback callbacks if the
insertion cursor position changes.

widget Specifies the Text widget ID

position Specifies the position of the insertion cursor. This is an integer
number of characters from the beginning of the text buffer. The first
character position is 0 (zero).

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X).

1-1045

OSF/Motif Programmer's Reference

XmTextSetMaxLength (3X)

Synopsis

Description

XmTextSetMaxLength-A Text function that sets the value of the current
maximum allowable length of a text string entered from the keyboard

#include <Xm/Text.h>

void XmTextSetMaxLength (widget, max_length)
Widget widget;
int max_length;

XmTextSetMaxLength sets the value of the current maximum allowable length of
the text string in the Text widget. The maximum allowable length prevents the user
from entering a text string from the keyboard that is larger than this limit. Strings
that are entered using the XmNvalue (or XmNvalueWcs) resource, or the
XmTextSetString (or XmTextSetStringWcs) function ignore this resource.

widget Specifies the Text widget ID

max_length Specifies the maximum allowable length of the text string

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X), XmTextSetString(3X), and XmTextSetStringWcs(3X).

1-1046

Synopsis

Description

Reference Pages

XmTextSetSelection (3X)

XmTextSetSelection-A Text function that sets the primary selection of the text

#include <Xm/Text.h>

void XmTextSetSelection (widget, first, last, time)
Widget widget;
XmTextPosition first;
XmTextPosition last;
Time time;

XmTextSetSelection sets the primary selection of the text in the widget. It also
sets the insertion cursor position to the last position of the selection and calls the
widget's XmNmotionVerifyCallback callbacks.

widget

first

last

time

Specifies the Text widget ID

Marks the first character position of the text to be selected

Marks the last position of the text to be selected

Specifies the time at which the selection value is desired. This
should be the same as the time of the event that triggered this
request.

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X).

1-1047

OSF/Motif Programmer's Reference

XmTextSetSource (3X)

Synopsis

Description

XmTextSetSource-A Text function that sets the source of the widget

#include <Xm/Text.h>

void XmTextSetSource (widget, source, top_character, cursor -position)
Widget widget;
XmTextSource source;
XmTextPositiontop_character;
XmTextPositioncursor -position;

XmTextSetSource sets the source of the Text widget. Text widgets can share
sources of text so that editing in one widget is reflected in another. This function
sets the source of one widget so that it can share the source of another widget.

Setting a new text source destroys the old text source if no other Text widgets are
using that source. To replace a text source but keep it for later use, create an
unmanaged Text widget and set its source to the text source you want to keep.

widget

source

Specifies the Text widget ID.

Specifies the source with which the widget displays text. This can
be a value returned by the XmTextGetSource(3X) function. If no
source is specified, the widget creates a default string source.

top_character Specifies the position in the text to display at the top of the widget.
This is an integer number of characters from the beginning of the
text buffer. The first character position is 0 (zero).

cursor -position
Specifies the position in the text at which the insert cursor is located.
This is an integer number of characters from the beginning of the
text buffer. The first character position is 0 (zero).

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X).

1-1048

Synopsis

Description

Reference Pages

XmTextSetString (3X)

XmTextSetString-A Text function that sets the string value

#include <Xm/Text.h>

void XmTextSetString (widget, value)
Widget widget;
char * value;

XmTextSetString sets the string value of the Text widget. This routine calls the
widget's XmNvalueChangedCallback and verification callbacks, either
XmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs, or both. If both
verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the reSUlting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This function also sets the
insertion cursor position to the beginning of the string and calls the widget's
XmNmotion Verify Callback callbacks.

widget

value

Specifies the Text widget ID

Specifies the character pointer to the string value and places the
string into the text edit window

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X) and XmTextSetStringWcs(3X).

1-1049

OSF/Motif Programmer's Reference
XmTextSetStringWcs (aX)

Synopsis

Description

XmTextSetStringWcs-A Text function that sets a wide character string value

#include <XmlText.h>

void XmTextSetStringWcs (widget, wcstring)
Widget widget;

*wcstring;

XmTextSetStringWcs sets the wide character string value of the Text widget. This
routine calls the widget's XmNvalueChangedCallback and verification callbacks,
either XmNmodifyVerifyCallback or XmNmodifyVerifyCallbackWcs, or both.
If both verification callback lists are registered, the procedures of the
XmNmodifyVerifyCallback list are executed first and the resulting data is passed
to the XmNmodifyVerifyCallbackWcs callbacks. This function also sets the
insertion cursor position to the beginning of the string and calls the widget's
XmNmotion VerifyCallback callbacks.

widget

value

Specifies the Text widget ID

Specifies the wide character string value and places the string into
the text edit window

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X) and XmTextSetString(3X).

1-1050

Synopsis

Description

Reference Pages

XmTextSetTopCharacter(3X)

XmTextSetTopCharacter-A Text function that sets the position of the first
character displayed

#include <Xm/Texth>

void XmTextSetTopCharacter (widget, top_character)
Widget widget;
XmTextPositiontop _character;

XmTextSetTopCharacter sets the position of the text at the top of the Text
widget. If the XmNeditMode is XmMULTI_LINE_EDIT, the line of text that
contains top _character is displayed at the top of the widget without the text
shifting left or right.

widget Specifies the Text widget ID

top_character Specifies the position in the text to display at the top of the widget.
This is an integer number of characters from the beginning of the
text buffer. The first character position is 0 (zero).

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X).

1-1051

OSF/Motif Programmer's Reference

XmTextShowPosition (3X)

Synopsis

Description

XmTextShowPosition-A Text function that forces text at a given position to be
displayed

#include <Xm/Text.h>

void XmTextShowPosition (widget, position)
Widget widget;
XmTextPositionposition;

XmTextShowPosition forces text at the specified position to be displayed. If the
XmNautoShowCursorPosition resource is True, the application should also set
the insert cursor to this position.

widget

position

Specifies the Text widget ID

Specifies the character position to be displayed. This is an integer
number of characters from the beginning of the text buffer. The first
character position is 0 (zero).

For a complete definition of Text and its associated resources, see XmText(3X).

Related Information
XmText(3X).

1-1052

Synopsis

Description

Reference Pages

XmTextXYToPos (3X)

XmTextXYToPos-A Text function that accesses the character position nearest an
x and y position

#include <Xm/Text.h>

XmTextPosition XmTextXYToPos (widget, x, y)
Widget widget;
Position
Position

x· ,
y;

XmTextXYToPos accesses the character position nearest to the specified x and y
position, relative to the upper left corner of the Text widget.

widget Specifies the Text widget ID

x

y

Specifies the x position, relative to the upper left corner of the
widget

Specifies the y position, relative to the upper left corner of the
widget

For a complete definition of Text and its associated resources, see XmText(3X).

Return Value
Returns the character position in the text nearest the x and y position specified.
This is an integer number of characters from the beginning of the buffer. The first
character position is 0 (zero).

Related Information
XmText(3X).

1-1053

OSF/Motif Programmer's Reference

XmToggleButton (3X)

Synopsis

Description

XmToggleButton-The ToggleB utton widget class

#include <XmlToggleB.h>

ToggleButton sets nontransitory state data within an application. Usually this
widget consists of an indicator (square or diamond) with either text or a pixmap on
one side of it. However, it can also consist of just text or a pixmap without the
indicator.

The toggle graphics display a I-of-many or N-of-many selection state. When a
toggle indicator is displayed, a square indicator shows an N-of-many selection
state and a diamond indicator shows a I-of-many selection state.

ToggleButton implies a selected or un selected state. In the case of a label and an
indicator, an empty indicator (square or diamond shaped) indicates that
ToggleButton is unselected, and a filled indicator shows that it is selected. In the
case of a pixmap toggle, different pixmaps are used to display the
selectedlunselected states.

The default behavior associated with a ToggleButton in a menu depends on the
type of menu system in which it resides. By default, BSelect controls the behavior
of the ToggleButton. In addition, BMenu controls the behavior of the
ToggleButton if it resides in a PopupMenu system. The actual mouse button used
is determined by its RowColumn parent.

Label's resource XmNmarginLeft may be increased to accommodate the toggle
indicator when it is created.

Classes
ToggleButton inherits behavior and resources from Core, XmPrimitive, and
XmLabel.

The class pointer is xmToggleButtonWidgetClass.

The class name is XmToggleButton.

New Resources

1-1054

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmToggleButton (3X)

XmToggleButton Resource Set

Name Default Access
Class Type

Xm NarmCaliback NULL C
XmCArmCaliback XtCalibackList

XmNdisarmCaliback NULL C
XmCDisarmCaliback XtCallbackList

XmNfiliOnSelect dynamic CSG
XmCFillOnSelect Boolean

Xm NindicatorOn True CSG
XmCI ndicatorOn Boolean

Xm NindicatorSize dynamic CSG
XmClndicatorSize Dimension

Xm NindicatorType dynamic CSG
XmClndicatorType unsigned char

Xm NselectColor dynamic CSG
XmCSelectColor Pixel

Xm Nselectl nsensitivePixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCSelectlnsensitivePixmap Pixmap

XmNselectPixmap XmUNSPECIFIED_PIXMAP CSG
XmCSelectPixmap Pixmap

XmNset False CSG
XmCSet Boolean

XmNspacing 4 CSG
XmCSpacing Dimension

XmNvalueChangedCaliback NULL C
XmCValueChangedCaliback XtCalibackList

XmNvisibleWhenOff dynamic CSG
XmCVisibleWhenOff Boolean

XmNarmCallback
Specifies the list of callbacks called when the ToggleButton is
armed. To arm this widget, press the active mouse button while the
pointer is inside the ToggleButton. For this callback, the reason is
XmCR_ARM.

1-1055

OSF/Motif Programmer's Reference

XmToggleButton (aX)

1-1056

XmNdisarmCallback
Specifies the list of callbacks called when ToggleButton is
disarmed. To disarm this widget, press and release the active mouse
button while the pointer is inside the ToggleButton. This widget is
also disarmed when the user moves out of the widget and releases
the mouse button when the pointer is outside the widget. For this
callback, the reason is XmCR_DISARM.

XmNfillOnSelect
Fills the indicator with the color specified in XmNselectColor and
switches the top and bottom shadow colors when set to True.
Otherwise, it switches only the top and bottom shadow colors. The
default is set to the value of XmNindicatorOn. When
XmNindicatorOn is False, and XmNfillOnSelect is set explicitly to
True, the background is filled with the color specified by
XmNselectColor.

XmNindicatorOn
Specifies that a toggle indicator is drawn to one side of the toggle
text or pixmap when set to True. When set to False, no space is
allocated for the indicator, and it is not displayed. If
XmNindicatorOn is True, the indicator shadows are switched when
the button is selected or unselected, but, any shadows around the
entire widget are not switched. However, if XmNindicatorOn is
False, any shadows around the entire widget are switched when the
toggle is selected or unselected.

XmNindicatorSize
Sets the size of the indicator. If no value is specified, the size of the
indicator is based on the size of the label string or pixmap. If the
label string or pixmap changes, the size of the indicator is
recomputed based on the size of the label string or pixmap. Once a
value has been specified for XmNindicatorSize, the indicator has
that size, regardless of the size of the label string or pixmap, until a
new value is specified.

XmNindicatorType
Specifies if the indicator is a 1-of or N-of indicator. For the 1-of
indicator, the value is XmONE_OF_MANY. For the N-of
indicator, the value is XmN_OF _MANY. The N-of-many
indicator is square. The 1-of-many indicator is diamond shaped.
This resource specifies only the visuals and does not enforce the
behavior. When the ToggleButton is in a RadioBox, the default is
XmONE_OF_MANY; otherwise, the default is XmN_OF_MANY.

Reference Pages

XmToggleButton (3X)

XmNselectColor
Allows the application to specify what color fills the center of the
square or diamond-shaped indicator when it is set. If this color is
the same as either the top or the bottom shadow color of the
indicator, a one-pixel-wide margin is left between the shadows and
the fill; otherwise, it is filled completely. This resource's default for
a color display is a color between the background and the bottom
shadow color. For a monochrome display, the default is set to the
foreground color. To set the background of the button to
XmNselectColor when XmNindicatorOn is False, the value of
XmNfillOnSelect must be explicitly set to True.

XmNselectInsensitivePixmap
Specifies a pixmap used as the button face when the ToggleButton is
selected, the button is insensitive, and the Label resource
XmNlabelType is set to XmPIXMAP. If the ToggleButton is
un selected and the button is insensitive, the pixmap in
XmNlabelInsensitivePixmap is used as the button face. If no value
is specified for XmNlabelInsensitivePixmap, that resource is set to
the value specified for XmNselectlnsensitivePixmap.

XmNselectPixmap

XmNset

Specifies the pixmap to be used as the button face when
XmNlabelType is XmPIXMAP and the ToggleButton is selected.
When the ToggleButton is unselected, the pixmap specified in the
Label's XmNlabelPixmap is used. If no value is specified for
XmNlabelPixmap, that resource is set to the value specified for
XmNselectPixmap.

Represents the state of the ToggleButton. A value of False indicates
that the ToggleButton is not set. A value of True indicates that the
ToggleButton is set. Setting this resource sets the state of the
ToggleB utton.

XmNspacing Specifies the amount of spacing between the toggle indicator and
the toggle label (text or pixmap).

XmNvalueChangedCallback
Specifies the list of callbacks called when the ToggleButton value is
changed. To change the value, press and release the active mouse
button while the pointer is inside the ToggleButton. This action also
causes this widget to be disarmed. For this callback, the reason is
XmCR_ VALUE_CHANGED.

1-1057

OSF/Motif Programmer's Reference

XmToggleButton (3X)

XmNvisible WhenOff
Indicates that the toggle indicator is visible in the unselected state
when the Boolean value is True. When the ToggleButton is in a
menu, the default value is False. When the ToggleButton is in a
RadioBox, the default value is True.

Inherited Resources

1-1058

ToggleButton inherits behavior and resources from the superclasses in the
following tables. For a complete description of each resource, refer to the reference
page for that superclass.

Reference Pages

XmToggleButton (3X)

XmLabel Resource Set

Name Default Access
Class Type

Xm Naccelerator NULL CSG
XmCAccelerator String

Xm NacceleratorText NULL CSG
XmCAcceleratorText XmString

XmNalignment dynamic CSG
XmCAlignment unsigned char

XmNfontList dynamic CSG
XmCFontList XmFontList

Xm Nlabell nsensitivePixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCLabellnsensitivePixmap Pixmap

XmNlabelPixmap XmUNSPECI FI ED _PIXMAP CSG
XmCLabelPixmap Pixmap

XmNlabelString dynamic CSG
XmCXmString XmString

XmNlabelType XmSTRING CSG
XmCLabelType unsigned char

XmNmarginBoUom dynamic CSG
XmCMarginBottom Dimension

XmNmarginHeight 2 CSG
XmCMarginHeight Dimension

XmNmarginLeft dynamic CSG
XmCMarginLeft Dimension

XmNmarginRight 0 CSG
XmCMarginRight Dimension

XmNmarginTop dynamic CSG
XmCMarginTop Dimension

XmNmarginWidth 2 CSG
XmCMarginWidth Dimension

XmNmnemonic NULL CSG
XmCMnemonic KeySym

1-1059

OSF/Motif Programmer's Reference

XmToggleButton (3X)

Name Default Access
Class Type

XmNmnemonicCharSet XmFONTLIST _DEFAULT_TAG CSG
XmCMnemonicCharSet String

XmNrecomputeSize True CSG
XmCRecomputeSize Boolean

XmNstringDirection dynamic CSG
XmCStringDirection XmStringDirection

1-1060

Reference Pages

XmToggleButton (ax)

XmPrimitive Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic CSG
XmCBottomShadowColor Pixel

XmNbottomShadowPixmap XmUNSPECIFIED_PIXMAP CSG
XmCBottomShadowPixmap Pixmap

XmNforeground dynamic CSG
XmCForeground Pixel

XmNhelpCaliback NULL C
XmCCaliback X tCallbackList

Xm N highlightColor dynamic CSG
XmCHighlightColor Pixel

XmNhighlightOnEnter False CSG
XmCHighlightOnEnter Boolean

XmNhighlightPixmap dynamic CSG
XmCHighlightPixmap Pixmap

XmNhighlightThickness 2 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType XmNavigationType

Xm NshadowThickness dynamic CSG
XmCShadowThickness Dimension

Xm NtopShadowColor dynamic CSG
XmCTopShadowColor Pixel

Xm NtopShadowPixmap dynamic CSG
XmCTopShadowPixmap Pixmap

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-1061

OSF/Motif Programmer's Reference

XmToggleButton (3X)

Core Resource Set

Name Default Access
Class Type

Xm Naccelerators dynamic CSG
XmCAccelerators XtAccelerators

Xm NancestorSensitive dynamic G
XmCSensitive Boolean

XmNbackground dynamic CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderColor XtDefaultForeground CSG
XmCBorderColor Pixel

Xm NborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

Xm NborderWidth 0 CSG
XmCBorderWidth Dimension

XmNcolormap dynamic CG
XmCColormap Colormap

XmNdepth dynamic CG
XmCDepth int

Xm NdestroyCallback NULL C
XmCCaliback XtCalibackList

XmNheight dynamic CSG
XmCHeight Dimension

Xm Ninitial ResourcesPersistent True C
XmClnitialResourcesPersistent Boolean

Xm NmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen dynamic CG
XmCScreen Screen *

XmNsensitive True CSG
XmCSensitive Boolean

1-1062

Reference Pages

XmToggleButton (3X)

Name Default Access
Class Type

Xm Ntranslations dynamic CSG
XmCTranslations XtTranslations

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Callback Information
A pointer to the following structure is passed to each callback:

typedef struct
{

int
XEvent

reason;
* event;

int set;
} XmToggleButtonCallbackStruct;

reason

event

set

Translations

Indicates why the callback was invoked

Points to the XEvent that triggered the callback

Reflects the ToggleButton's current state when the callback
occurred, either True (selected) or False (unselected)

XmToggleButton includes translations from Primitive. Additional
XmToggleButton translations for buttons not in a menu system are described in the
following list. These translations may not directly correspond to a translation table.

Note that altering translations in #override or #augment mode is undefined.

1-1063

OSF/Motif Programmer's Reference

XmToggleButton (3X)

B Transfer Press:

BSelect Press:

BSelect Release:

KHelp:

KSelect:

ProcessDragO

ArmO

SelectO
DisarmO

HeipO

ArmAndActivateO

XmToggleButton inherits menu traversal translations from XmLabel. Additional
XmToggleButton translations for ToggleButtons in a menu system are described
in the following list. In a Popup menu system, BMenu also performs the BSelect
actions. These translations may not directly correspond to a translation table.

BSelect Press:

BSelect Release:

KHelp:

KActivate:

KSelect:

MAny KCancel:

BtnDownO

BtnUpO

HeipO

ArmAndActivateO

ArmAndActivateO

MenuShellPopdownOneO

Action Routines

1-1064

The XmToggleB utton action routines are

ArmO: If the button was previously unset, this action does the following: if
XmNindicatorOn is True, it draws the indicator shadow so that the
indicator looks pressed; if XmNfillOnSelect is True, it fills the
indicator with the color specified by XmNselectColor. If
XmNindicatorOn is False, it draws the button shadow so that the
button looks pressed. If XmNlabelType is XmPIXMAP, the
XmNselectPixmap is used as the button face. This action calls the
XmNarmCallback callbacks.

If the button was previously set, this action does the following: if
both XmNindicatorOn and XmNvisibleWhenOff are True, it
draws the indicator shadow so that the indicator looks raised; if
XmNfillOnSelect is True, it fills the indicator with the background

Reference Pages

XmToggleButton (3X)

color. If XmNindicatorOn is False, it draws the button shadow so
that the button looks raised. If XmNlabelType is XmPIXMAP, the
XmNlabelPixmap is used as the button face. This action calls the
XmNarmCallback callbacks.

ArmAndActivateO:
If the ToggleButton was previously set, unsets it; if the
ToggleButton was previously unset, sets it.

In a menu, this action unposts all menus in the menu hierarchy.
Unless the button is already armed, it calls the XmNarmCallback
callbacks. This action calls the XmNvalueChangedCallback and
XmNdisarmCallback callbacks.

Outside a menu, if the button was previously unset, this action does
the following: if XmNindicatorOn is True, it draws the indicator
shadow so that the indicator looks pressed; if XmNfillOnSelect is
True, it fills the indicator with the color specified by
XmNselectColor. If XmNindicatorOn is False, it draws the button
shadow so that the button looks pressed. If XmNlabelType is
XmPIXMAP, the XmNselectPixmap is used as the button face.
This action calls the XmNarmCallback,
XmNvalueChangedCallback, and XmNdisarmCallback
callbacks.

Outside a menu, if the button was previously set, this action does the
following: if both XmNindicatorOn and XmNvisible WhenOff are
True, it draws the indicator shadow so that the indicator looks
raised; if XmNfillOnSelect is True, it fills the indicator with the
background color. If XmNindicatorOn is False, it draws the button
shadow so that the button looks raised. If XmNlabelType is
XmPIXMAP, the XmNlabelPixmap is used as the button face.
This action calls the XmNarmCallback,
XmNvalueChangedCallback, and XmNdisarmCallback
callbacks.

BtnDownO: This action unposts any menus posted by the ToggleB utton' s parent
menu, disables keyboard traversal for the menu, and enables mouse
traversal for the menu. It draws the shadow in the armed state and,
unless the button is already armed, calls the XmNarmCallback
callbacks.

BtnUpO: This action unposts all menus in the menu hierarchy. If the
ToggleButton was previously set, unsets it; if the ToggleButton was
previously unset, sets it. It calls the XmNvalueChangedCallback
callbacks and then the XmNdisarmCallback callbacks.

1-1065

OSF/Motif Programmer's Reference

XmToggleButton (3X)

1-1066

DisarmO:

HelpO:

Calls the callbacks for XmNdisarmCallback.

In a Pulldown or Popup MenuPane, unposts all menus in the menu
hierarchy and restores keyboard focus to the widget that had the
focus before the menu system was entered. Calls the callbacks for
XmNhelpCallback if any exist. If there are no help callbacks for
this widget, this action calls the help callbacks for the nearest
ancestor that has them.

MenuShellPopdownOneO:
In a top-level Pulldown MenuPane from a MenuBar, unposts the
menu, disarms the MenuBar CascadeButton and the MenuBar, and
restores keyboard focus to the widget that had the focus before the
MenuBar was entered. In other Pulldown MenuPanes, unposts the
menu.

In a Popup MenuPane, unposts the menu and restores keyboard
focus to the widget from which the menu was posted.

ProcessDragO:

SelectO:

Drags the contents of a ToggleButton label, identified when
BTransfer is pressed. This action creates a DragContext object
whose XmNexportTargets resource is set to COMPOUND_TEXT
for a label type of XmSTRING, or PIXMAP if the label type is
XmPIXMAP. This action is undefined for ToggleButtons used in a
menu system.

If the pointer is within the button, takes the following actions: If the
button was previously unset, sets it; if the button was previously set,
un sets it. This action calls the XmNvalueChangedCallback
callbacks.

Reference Pages

XmToggleButton (3X)

Additional Behavior
This widget has the following additional behavior:

<EnterWindow>:
In a menu, if keyboard traversal is enabled, this action does nothing.
Otherwise, it draws the shadow in the armed state and calls the
XmNarmCallback callbacks.

If the ToggleButton is not in a menu and the cursor leaves and then
reenters the ToggleButton's window while the button is pressed, this
action restores the button's armed appearance.

<Leave Window>:

Virtual Bindings

In a menu, if keyboard traversal is enabled, this action does nothing.
Otherwise, it draws the shadow in the unarmed state and calls the
XmNdisarmCallback callbacks.

If the ToggleB utton is not in a menu and the cursor leaves the
ToggleButton's window while the button is pressed, this action
restores the button's unarmed appearance.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Core(3X), XmCreateRadioBox(3X), XmCreateToggleButton(3X),
XmLabel(3X), XmPrimitive(3X), XmRowColumn(3X),
XmToggleButtonGetState(3X), and XmToggleButtonSetState(3X).

1-1067

OSF/Motif Programmer's Reference

XmToggleButtonGadget (3X)

Synopsis

Description

Classes

XmToggleButtonGadget-The ToggleButtonGadget widget class

#include <Xm/ToggleBG.h>

ToggleButtonGadget sets nontransitory state data within an application. Usually
this gadget consists of an indicator (square or diamond-shaped) with either text or a
pixmap on one side of it. However, it can also consist of just text or a pixmap
without the indicator.

The toggle graphics display a I-of-many or N-of-many selection state. When a
toggle indicator is displayed, a square indicator shows an N-of-many selection
state and a diamond-shaped indicator shows a I-of-many selection state.

ToggleButtonGadget implies a selected or un selected state. In the case of a label
and an indicator, an empty indicator (square or diamond-shaped) indicates that
ToggleButtonGadget is unselected, and a filled indicator shows that it is selected.
In the case of a pixmap toggle, different pixmaps are used to display the
selected/unselected states.

The default behavior associated with a ToggleB uttonGadget in a menu depends on
the type of menu system in which it resides. By default, BSelect controls the
behavior of the ToggleButtonGadget. In addition, BMenu controls the behavior of
the ToggleButtonGadget if it resides in a PopupMenu system. The actual mouse
button used is determined by its RowColumn parent.

Label's resource XmNmarginLeft may be increased to accommodate the toggle
indicator when it is created.

ToggleButtonGadget inherits behavior and resources from Object, RectObj,
XmGadget and XmLabelGadget.

The class pointer is xmToggleButtonGadgetClass.

The class name is XmToggleButtonGadget.

New Resources

1-1068

The following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the inherited
classes to set attributes for this widget. To reference a resource by name or by
class in a .Xdefaults file, remove the XmN or XmC prefix and use the remaining
letters. To specify one of the defined values for a resource in a .Xdefaults file,
remove the Xm prefix and use the remaining letters (in either lowercase or
uppercase, but include any underscores between words). The codes in the access
column indicate if the given resource can be set at creation time (C), set by using
XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable (N/A).

Reference Pages

XmToggleButtonGadget (3X)

XmToggleButtonGadget Resource Set

Name Default Access
Class Type

XmNarmCaliback NULL C
XmCArmCaliback XtCalibackList

XmNdisarmCaliback NULL C
XmCDisarmCaliback XtCalibackList

XmNfiliOnSelect dynamic CSG
XmCFiliOnSelect Boolean

XmNindicatorOn True CSG
XmClndicatorOn Boolean

XmNindicatorSize dynamic CSG
XmClndicatorSize Dimension

XmNindicatorType dynamic CSG
XmCI ndicatorType unsigned char

Xm NselectColor dynamic CSG
XmCSelectColor Pixel

Xm Nselectl nsensitivePixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCSelectl nsensitivePixmap Pixmap

XmNselectPixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCSelectPixmap Pixmap

XmNset False CSG
XmCSet Boolean

XmNspacing 4 CSG
XmCSpacing Dimension

Xm NvalueChangedCallback NULL C
XmCValueChangedCallback XtCalibackList

XmNvisibleWhenOff dynamic CSG
XmCVisibleWhenOff Boolean

1-1069

OSF/Motif Programmer's Reference

XmToggleButtonGadget(3X)

1-1070

XmNarmCallback
Specifies a list of callbacks that is called when the
ToggleButtonGadget is armed. To arm this gadget, press the active
mouse button while the pointer is inside the ToggleButtonGadget.
For this callback, the reason is XmCR_ARM.

XmNdisarmCallback
Specifies a list of callbacks called when ToggleButtonGadget is
disarmed. To disarm this gadget, press and release the active mouse
button while the pointer is inside the ToggleB uttonGadget. The
gadget is also disarmed when the user moves out of the gadget and
releases the mouse button when the pointer is outside the gadget.
For this callback, the reason is XmCR_DISARM.

XmNfillOnSelect
Fills the indicator with the color specified in XmNselectColor and
switches the top and bottom shadow colors when set to True.
Otherwise, it switches only the top and bottom shadow colors. The
default is set to the value of XmNindicatorOn. When
XmNindicatorOn is False, and XmNfillOnSelect is set explicitly to
True, the background is filled with the color specified by
XmN selectColor.

XmNindicatorOn
Specifies that a toggle indicator is drawn to one side of the toggle
text or pixmap when set to True. When set to False, no space is
allocated for the indicator, and it is not displayed. If
XmNindicatorOn is True, the indicator shadows are switched when
the button is selected or unselected, but any shadows around the
entire gadget are not switched. However, if XmNindicatorOn is
False, any shadows around the entire gadget are switched when the
toggle is selected or unselected.

XmNindicatorSize
Sets the size of the indicator. If no value is specified, the size of the
indicator is based on the size of the label string or pixmap. If the
label string or pixmap changes, the size of the indicator is
recomputed based on the size of the label string or pixmap. Once a
value has been specified for XmNindicatorSize, the indicator has
that size, regardless of the size of the label string or pixmap, until a
new value is specified.

XmNindicatorType
Specifies if the indicator is a I-of or an N-of indicator. For the I-of
indicator, the value is XmONE_OF_MANY. For the N-of
indicator, the value is XmN_OF _MANY. The N-of-many

Reference Pages

XmToggleButtonGadget (3X)

indicator is square. The I-of-many indicator is diamond-shaped.
This resource specifies only the visuals and does not enforce the
behavior. When the ToggleButtonGadget is in a RadioBox, the
default is XmONE_ OF_MANY; otherwise, the default is
XmN_OF _MANY.

XmNselectColor
Allows the application to specify what color fills the center of the
square or diamond-shaped indicator when it is set. If this color is
the same as either the top or the bottom shadow color of the
indicator, a one-pixel-wide margin is left between the shadows and
the fill; otherwise, it is filled completely. This resource's default for
a color display is a color between the background and the bottom
shadow color. For a monochrome display, the default is set to the
foreground color. To set the background of the button to
XmNselectColor when XmNindicatorOn is False, the value of
XmNfillOnSelect must be explicitly set to True.

XmNselectInsensitivePixmap
Specifies a pixmap used as the button face when the
ToggleButtonGadget is selected, the button is insensitive, and the
LabelGadget resource XmNlabelType is XmPIXMAP. If the
ToggleButtonGadget is unselected and the button is insensitive, the
pixmap in XmNlabelInsensitivePixmap is used as the button face.
If no value is specified for XmNlabelInsensitivePixmap, that
resource is set to the value specified for
XmNselectlnsensitivePixmap.

XmNselectPixmap

XmNset

Specifies the pixmap to be used as the button face if XmNlabelType
is XmPIXMAP and the ToggleButtonGadget is selected. When the
ToggleButtonGadget is unselected, the pixmap specified in
LabelGadget's XmNlabelPixmap is used. If no value is specified
for XmNlabelPixmap, that resource is set to the value specified for
XmNselectPixmap.

Represents the state of the ToggleButton. A value of false indicates
that the ToggleButton is not set. A value of true indicates that the
ToggleButton is set. Setting this resource sets the state of the
ToggleButton.

XmNspacing Specifies the amount of spacing between the toggle indicator and
the toggle label (text or pixmap).

1-1071

OSF/Motif Programmer's Reference

XmToggleButtonGadget (3X)

XmNvalueChangedCallback
Specifies a list of callbacks called when the ToggleButtonGadget
value is changed. To change the value, press and release the active
mouse button while the pointer is inside the ToggleButtonGadget.
This action also causes the gadget to be disarmed. For this callback,
the reason is XmCR_ VALUE_CHANGED.

XmNvisible When Off
Indicates that the toggle indicator is visible in the un selected state
when the Boolean value is True. When the ToggleButtonGadget is
in a menu, the default value is False. When the
ToggleButtonGadget is in a RadioBox, the default value is True.

Inherited Resources

1-1072

ToggleButtonGadget inherits behavior and resources from the superc1asses
described in the following tables. For a complete description of each resource,
refer to the reference page for that superc1ass.

Reference Pages

XmToggleButtonGadget (aX)

XmLabelGadget Resource Set

Name Default Access
Class Type

Xm Naccelerator NULL CSG
XmCAccelerator String

Xm NacceleratorText NULL CSG
XmCAcceleratorText XmString

XmNalignment dynamic CSG
XmCAlignment unsigned char

XmNfontList dynamic CSG
XmCFontList XmFontList

Xm N label I nsensitivePixmap XmUNSPECIFIED_PIXMAP CSG
XmCLabel1 nsensitivePixmap Pixmap

XmNlabelPixmap Xm UNSPECI FI ED _PIXMAP CSG
XmCLabelPixmap Pixmap

Xm NlabelString dynamic CSG
XmCXmString XmString

XmNlabelType XmSTRING CSG
XmCLabelType unsigned char

XmNmarginBottom dynamic CSG
XmCMarginBottom Dimension

Xm NmarginHeight 2 CSG
XmCMarginHeight Dimension

XmNmarginLeft dynamic CSG
XmCMarginLeft Dimension

XmNmarginRight 0 CSG
XmCMarginRight Dimension

XmNmarginTop dynamic CSG
XmCMarginTop Dimension

XmNmarginWidth 2 CSG
XmCMarginWidth Dimension

1-1073

OSF/Motif Programmer's Reference

XmToggleButtonGadget (3X)

Name Default Access
Class Type

XmNmnemonic NULL CSG
XmCMnemonic KeySym

Xm N m nemonicCharSet dynamic CSG
XmCMnemonicCharSet String

XmNrecomputeSize True CSG
XmCRecomputeSize Boolean

--

XmNstringDirection dynamic CSG
XmCStringDirection XmStringDirection

1-1074

Reference Pages

XmToggleButtonGadget (3X)

XmGadget Resource Set

Name Default Access
Class Type

Xm NbottomShadowColor dynamic G
XmCBottomShadowColor Pixel

Xm NhelpCaliback NULL C
XmCCaliback XtCalibackList

Xm NhighlightColor dynamic G
XmCHighlightColor Pixel

Xm NhighlightOn Enter False CSG
XmCHighlightOnEnter Boolean

Xm NhighlightThickness 2 CSG
XmCHighlightThickness Dimension

XmNnavigationType XmNONE CSG
XmCNavigationType XmNavigationType

Xm NshadowThickness dynamic CSG
XmCShadowThickness Dimension

XmNtopShadowColor dynamic G
XmCTopShadowColor Pixel

Xm NtraversalOn True CSG
XmCTraversalOn Boolean

XmNunitType dynamic CSG
XmCUnitType unsigned char

XmNuserData NULL CSG
XmCUserData XtPointer

1-1075

OSF/Motif Programmer's Reference

XmToggleButtonGadget(3X)

RectObj Resource Set

Name Default Access
Class Type

XmNancestorSensitive dynamic G
XmCSensitive Boolean

Xm NborderWidth 0 N/A
XmCBorderWidth Dimension

XmNheight dynamic CSG
XmCHeight Dimension

XmNsensitive True CSG
XmCSensitive Boolean

XmNwidth dynamic CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Object Resource Set

Name Default Access
Class Type

Xm NdestroyCaliback NULL C
XmCCaliback XtCalibackList

Callback Information

1-1076

A pointer to the following structure is passed to each callback:

typedef struct
{

int
XEvent

reason;
* event;

int set;
} XmToggleButtonCaIlbackStruct;

reason

event

set

Indicates why the callback was invoked

Points to the XEvent that triggered the callback

Reflects the ToggleB uttonGadget' s current state when the callback
occurred, either True (selected) or False (unselected)

Reference Pages

XmToggleButtonGadget(3X)

Behavior
XmToggleButtonGadget includes behavior from XmGadget.
XmToggleButtonGadget includes menu traversal behavior from
XmLabelGadget. Additional XmToggleButtonGadget behavior is described in
the following list

BTransfer Press:
Drags the contents of a ToggleB uttonGadget label, identified by
pressing BTransfer. This action creates a DragContext object
whose XmNexportTargets resource is set to COMPOUND_TEXT
for a label type of XmSTRING, or PIXMAP if the label type is
XmPIXMAP. This action is undefined for ToggleButtonGadgets
used in a menu system.

BSelect Press:
In a menu, this action unposts any menus posted by the
ToggleButtonGadget's parent menu, disables keyboard traversal for
the menu, and enables mouse traversal for the menu. It draws the
shadow in the armed state and, unless the button is already armed,
calls the XmNarmCallback callbacks.

Outside a menu, if the button was previously unset, this action does
the following: if XmNindicatorOn is True, it draws the indicator
shadow so that the indicator looks pressed; if XmNfillOnSelect is
True, it fills the indicator with the color specified by
XmNselectColor. If XmNindicatorOn is False, it draws the button
shadow so that the button looks pressed. If XmNlabelType is
XmPIXMAP, the XmNselectPixmap is used as the button face.
This resource calls the XmNarmCallback callbacks.

Outside a menu, if the button was previously set, this action does the
following: if both XmNindicatorOn and XmNvisibleWhenOff are
True, it draws the indicator shadow so that the indicator looks
raised; if XmNfillOnSelect is True, it fills the indicator with the
background color. If XmNindicatorOn is False, it draws the button
shadow so that the button looks raised. If XmNlabelType is
XmPIXMAP, the XmNlabelPixmap is used as the button face.
This resource calls the XmNarmCallback callbacks.

BSelect Release:
In a menu, this action unposts all menus in the menu hierarchy. If
the ToggleButtonGadget was previously set, this action unsets it; if
the ToggleButtonGadget was previously unset, this action sets it. It
calls the XmNvalueChangedCallback callbacks and then the
XmNdisarmCallback callbacks.

1-1077

OSF/Motif Programmer's Reference

XmToggleButtonGadget(3X)

1-1078

If the button is outside a menu and the pointer is within the button,
this action does the following: if the button was previously unset,
sets it; if the button was previously set, unsets it. This action calls
the XmNvalueChangedCalIback callbacks.

If the button is outside a menu, this action calls the
XmNdisarmCalIback callbacks.

KHelp: In a Pulldown or Popup MenuPane, unposts all menus in the menu
hierarchy and, when the shell's keyboard focus policy is
XmEXPLICT, restores keyboard focus to the widget that had the
focus before the menu system was entered. Calls the callbacks for
XmNhelpCalIback if any exist. If there are no help callbacks for
this widget, this action calls the help callbacks for the nearest
ancestor that has them.

KActivate: In a menu, this action unposts all menus in the menu hierarchy.
Unless the button is already armed, this action calls the
XmNarmCallback callbacks; and calls the
XmNvalueChangedCallback and XmNdisarmCallback
callbacks. Outside a menu, if the parent is a manager, this action
passes the event to the parent.

KSelect: If the ToggleButtonGadget was previously set, this action unsets it;
if the ToggleButtonGadget was previously unset, this action sets it.

In a menu, this action unposts all menus in the menu hierarchy.
Unless the button is already armed, this action calls the
XmNarmCallback, the XmNvalueChangedCallback, and
XmNdisarmCallback callbacks.

Outside a menu, if the button was previously unset, this action does
the following: If XmNindicatorOn is True, it draws the indicator
shadow so that the indicator looks pressed; if XmNfillOnSelect is
True, it fills the indicator with the color specified by
XmNselectColor. If XmNindicatorOn is False, it draws the button
shadow so that the button looks pressed. If XmNlabelType is
XmPIXMAP, the XmNselectPixmap is used as the button face.
This action calls the XmNarmCallback,
XmNvalueChangedCallback, XmNdisarmCallback callbacks.

Outside a menu, if the button was previously set, this action does the
following: If both XmNindicatorOn and XmNvisible WhenOff are
True, it draws the indicator shadow so that the indicator looks
raised; if XmNfillOnSelect is True, it fills the indicator with the
background color. If XmNindicatorOn is False, it draws the button
shadow so that the button looks raised. If XmNlabelType is

Reference Pages

XmToggleButtonGadget(3X)

XmPIXMAP, the XmNlabelPixmap is used as the button face.
Calls the XmNarmCallback, XmNvalueChangedCallback, and
XmNdisarmCallback callbacks.

MAny KCancel:

<Enter>:

<Leave>:

Virtual Bindings

In a top-level Pulldown MenuPane from a MenuBar, unposts the
menu, disarms the MenuBar CascadeButton and the MenuBar, and,
when the shell's keyboard focus policy is XmEXPLICT, restores
keyboard focus to the widget that had the focus before the MenuBar
was entered. In other Pulldown MenuPanes, this action unposts the
menu. Outside a menu, if the parent is a manager, this action passes
the event to the parent.

In a Popup MenuPane, this action unposts the menu and restores
keyboard focus to the widget from which the menu was posted.

In a menu, if keyboard traversal is enabled, this action does nothing.
Otherwise, it draws the shadow in the armed state and calls the
XmNarmCallback callbacks.

If the ToggleButtonGadget is not in a menu and the cursor leaves
and then reenters the ToggleButtonGadget while the button is
pressed, this action restores the button's armed appearance.

In a menu, if keyboard traversal is enabled, this action does nothing.
Otherwise, it draws the shadow in the unarmed state and calls the
XmNdisarmCallback callbacks.

If the ToggleButtonGadget is not in a menu and the cursor leaves
the ToggleButtonGadget while the button is pressed, this action
restores the button's unarmed appearance.

The bindings for virtual keys are vendor specific. For information about bindings
for virtual buttons and keys, see VirtuaIBindings(3X).

Related Information
Object(3X), RectObj(3X), XmCreateRadioBox(3X),
XmCreateToggleButtonGadget(3X), XmGadget(3X), XmLabeIGadget(3X),
XmRowColumn(3X), XmToggleButtonGadgetGetState(3X), and
XmToggleButtonGadgetSetState(3X) .

1-1079

OSF/Motif Programmer's Reference
XmToggleButtonGadgetGetState(ax)

XmToggleButtonGadgetGetState-A ToggleButtonGadget function that obtains
the state of a ToggleButtonGadget

Synopsis #include <Xm/ToggleBG.h>

Description

Boolean XmToggleButtonGadgetGetState (widget)
Widget widget;

XmToggleButtonGadgetGetState obtains the state of a ToggleButtonGadget.

widget Specifies the ToggleButtonGadget ID

For a complete definition of ToggleButtonGadget and its associated resources, see
XmToggleButtonGadget(3X).

Return Value
Returns True if the button is selected and False if the button is unselected.

Related Information
XmToggleButtonGadget(3X).

1-1080

Synopsis

Description

Reference Pages

XmToggleButtonGadgetSetState(3X)

XmToggleButtonGadgetSetState-A ToggleButtonGadget function that sets or
changes the current state

#include <Xm/ToggleBG.h>

void XmToggleButtonGadgetSetState (widget, state, notify)
Widget widget;
Boolean
Boolean

state;
notify;

XmToggleButtonGadgetSetState sets or changes the ToggleButtonGadget's
current state.

widget

state

notify

Specifies the ToggleButtonGadget widget ID.

Specifies a Boolean value that indicates whether the
ToggleButtonGadget state is selected or unselected. If the value is
True, the button state is selected; if it is False, the button state is
unselected.

Indicates whether XmNvalueChangedCallback is called; it can be
either True or False. The XmNvalueChangedCallback is only
called when this function changes the state of the
ToggleButtonGadget. When this argument is True and the
ToggleButtonGadget is a child of a RowColumn widget whose
XmNradioBehavior is True, setting the ToggleButtonGadget
causes other ToggleButton and ToggleButtonGadget children of the
RowColumn to be unselected.

For a complete definition of ToggleButtonGadget and its associated resources, see
XmToggleButtonGadget(3X).

Related Information
XmToggleButtonGadget(3X).

1-1081

OSF/Motif Programmer's Reference
XmToggleButtonGetState(3X)

XmToggleButtonGetState-A ToggleButton function that obtains the state of a
ToggleButton

Synopsis #include <XmlToggleB.h>

Description

Boolean XmToggleButtonGetState (widget)
Widget widget;

XmToggleButtonGetState obtains the state of a ToggleButton.

widget Specifies the ToggleButton widget ID

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3X).

Return Value
Returns True if the button is selected and False if the button is unselected.

Related Information
XmToggleButton(3X).

1-1082

Synopsis

Description

Reference Pages
XmToggleButtonSetState(3X)

XmToggleButtonSetState-A ToggleButton function that sets or changes the
current state

#include <Xm/ToggleB.h>

void XmToggleButtonSetState (widget, state, notify)
Widget widget;
Boolean
Boolean

state;
notify;

XmToggleButtonSetState sets or changes the ToggleButton's current state.

widget

state

notify

Specifies the ToggleButton widget ID.

Specifies a Boolean value that indicates whether the ToggleButton
state is selected or unselected. If the value is True, the button state
is selected; if it is False, the button state is unselected.

Indicates whether XmNvalueChangedCallback is called; it can be
either True or False. The XmNvalueChangedCallback is only
called when this function changes the state of the ToggleButton.
When this argument is True and the ToggleB utton is a child of a
RowColumn widget whose XmNradioBehavior is True, setting the
ToggleButton causes other ToggleButton and ToggleButtonGadget
children of the RowColumn to be unselected.

For a complete definition of ToggleButton and its associated resources, see
XmToggleButton(3X).

Related Information
XmToggleButton(3X).

1-1083

OSF/Motif Programmer's Reference

XmTrackingEvent(3X)

Synopsis

Description

XmTrackingEvent-A Toolkit function that provides a modal interaction

#include <XmlXm.h>

Widget XmTrackingEvent (widget, cursor, confine_to, evencreturn)
Widget widget;
Cursor
Boolean
XEvent

cursor;
confine_to;
* evenCreturn;

XmTrackingEvent provides a modal interface for selection of a component. It is
intended to support context help. The function grabs the pointer and discards
succeeding events until BSelect is released or a key is pressed and then released.
The function then returns the widget or gadget that contains the pointer when
BSelect is released or a key is released.

widget Specifies the widget ID of a widget to use as the basis of the modal
interaction. That is, the widget within which the interaction must
occur, usually a top-level shell.

cursor Specifies the cursor to be used for the pointer during the interaction.
This is a standard X cursor name.

confine_to Specifies whether or not the cursor should be confined to widget.

evenCreturn Returns the ButtonRelease or KeyRelease event that causes the
function to return.

Return Value
Returns the widget or gadget that contains the pointer when BSelect is released or
a key is released. If no widget or gadget contains the pointer, the function returns
NULL.

Related Information
XmTrackingLocate(3X) .

1-1084

Synopsis

Description

Reference Pages

XmTrackingLocate(3X)

XmTrackingLocate-A Toolkit function that provides a modal interaction

#include <XmlXm.h>

Widget XmTrackingLocate (widget, cursor, confine_to)
Widget widget;
Cursor
Boolean

cursor;
confine_to;

XmTrackingLocate provides a modal interface for selection of a component. It is
intended to support context help. The function grabs the pointer and discards
succeeding events until BSelect is released or a key is pressed and then released.
The function then returns the widget or gadget that contains the pointer when
BSelect is released or a key is released.

NOTE: This function is obsolete and exists for compatibility with previous
releases. It has been replaced by XmTrackingEvent.

widget

cursor

confine_to

Specifies the widget ID of a widget to use as the basis of the modal
interaction. That is, the widget within which the interaction must
occur, usually a top-level shell.

Specifies the cursor to be used for the pointer during the interaction.
This is a standard X cursor name.

Specifies whether or not the cursor should be confined to widget

Return Value

Returns the widget or gadget that contains the pointer when BSelect is released or
a key is released. If no widget or gadget contains the pointer, the function returns
NULL.

Related Information
XmTrackingEvent(3X).

1-1085

OSF/Motif Programmer's Reference
XmTranslateKey(3X)

Synopsis

Description

XmTranslateKey-The default keycode-to-keysym translator

#include <XmlXm.h>

void XmTranslateKey (display, keycode, modifiers, modifiers_return, keysym_return)
Display *display;
KeyCode keycode;
Modifiers modifiers;
Modifiers
KeySym

* modifie rs_return;
*keysym_return;

XmTranslateKey is the default XtKeyProc translation procedure for Motif
applications. The function takes a keycode and modifiers and returns the
corresponding keysym.

XmTranslateKey serves two main purposes: to enable new translators with
expanded functionality to get the default Motif keycode-to-keysym translation in
addition to whatever they add, and to reinstall the default translator. This function
enables keysyms defined by the Motif virtual bindings to be used when an
application requires its own XtKeyProc to be installed.

display

keycode

modifiers

Specifies the display that the key code is from

Specifies the keycode to translate

Specifies the modifier keys to be applied to the keycode

modifiers_return

keysym_return

Specifies a mask of the modifier keys actually used to generate the
keysym (an AND of modifiers and any default modifiers applied by
the currently registered translator)

Specifies a pointer to the resulting keysym

Related Information
VirtuaIBindings(3X) .

1-1086

Synopsis

Description

Reference Pages

XmUninstalllmage(3X)

XmUninstallImage-A pix map caching function that removes an image from the
image cache

#include <XmIXm.h>

Boolean XmUninstalllmage (image)

Xlmage * image;

XmUninstallImage removes an image from the image cache.

image Points to the image structure given to the XmlnstalllmageO routine

Return Value
Returns True when successful; returns False if the image is NULL, or if it cannot
be found to be uninstalled.

Related Information
Xmlnstalllmage(3X), XmGetPixmap(3X), and XmDestroyPixmap(3X).

1-1087

OSF/Motif Programmer's Reference

XmUpdateOisplay (3X)

Synopsis

Description

1-1088

XmUpdateDisplay-A function that processes all pending exposure events
immediately

void XmUpdateDisplay (widget)
Widget widget;

XmUpdateDisplay provides the application with a mechanism for forcing all
pending exposure events to be removed from the input queue and processed
immediately. When a user selects a button within a MenuPane, the MenuPanes are
unposted and then any activation callbacks registered by the application are
invoked. If one of the callbacks performs a time-consuming action, the portion of
the application window that was covered by the MenuPanes will not have been
redrawn; normal exposure processing does not occur until all of the callbacks have
been invoked. If the application writer suspects that a callback will take a long
time, then the callback may choose to invoke XmUpdateDisplay before starting its
time-consuming operation. This function is also useful any time a transient
window, such as a dialog box, is unposted; callbacks are invoked before normal
exposure processing can occur.

widget Specifies any widget or gadget.

Synopsis

Description

Reference Pages

XmVaCreateSimpleCheckBox (3X)

XmVaCreateSimpleCheckBox-A RowColumn widget convenience creation
function

#include <Xm/RowColumn.h>

Widget XmVaCreateSimpleCheckBox (parent, name, callback, arg ...)
Widget parent;
String name;
XtCallbackProccallback;

XmVaCreateSimpleCheckBox creates an instance of a RowColumn widget of
type XmWORK_AREA and returns the associated widget ID. This routine uses
the ANSI C variable-length argument list (varargs) calling convention.

This routine creates a CheckBox and its ToggleButtonGadget children. A
CheckBox is similar to a RadioBox, except that more than one button can be
selected at a time. The name of each button is button_n, where n is an integer
from 0 (zero) to I minus the number of buttons in the menu. Buttons are named
and created in the order in which they are specified in the variable portion of the
argument list.

parent

name

callback

Specifies the parent widget ID.

Specifies the name of the created widget.

Specifies a callback procedure to be called when a button's value
changes. This callback function is added to each button after
creation as the button's XmNvalueChangedCallback. The
callback function is called when a button's value changes, and the
button number is returned in the clienCdata field.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. The following
list describes the possible first arguments in each group of varargs:

XmVaCHECKBUTTON
This is followed by four additional arguments. The set specifies one
button in the CheckBox and some of its resource values. The
following list describes the additional four arguments, in order.

1-1089

OSF/Motif Programmer's Reference

XmVaCreateSimpleCheckBox(3X)

1-1090

label The label string, of type XmString

mnemonic The mnemonic, of type KeySym. This is ignored in
this release.

accelerator The accelerator, of type String. This is ignored in
this release.

accelerator_text

resource _name

The accelerator text, of type XmString. This is
ignored in this release.

This is followed by one additional argument, the value of the
resource, of type XtArgVal. The pair specifies a resource and its
value for the RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional
four arguments, in order:

name The resource name, of type String

type The type of the resource value supplied, of type
String

value The resource value (or a pointer to the resource
value, depending on the type and size of the value),
of type XtArgVal

size The size of the resource value in bytes, of type int

XtVaNestedList
This is followed by one additional argument of type
XtVarArgsList. This argument is a nested list of varargs returned
by XtVaCreateArgsList.

Reference Pages
XmVaCreateSimpleCheckBox(3X)

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, see XmRowCoiumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information
XmCreateRadioBox(3X), XmCreateRowColumn(3X),
XmCreateSimpieCheckBox(3X), XmCreateSimpleRadioBox(3X),
XmRowColumn(3X), and XmVaCreateSimpleRadioBox(3X).

1-1091

OSF/Motif Programmer's Reference
XmVaCreateSimpleMenuBar(3X)

Synopsis

Description

1-1092

XmVaCreateSimpleMenuBar-A RowColumn widget convenience creation
function

#include <XmlRowColumn.h>

Widget XmVaCreateSimpleMenuBar (parent, name, arg ...)
Widget parent;
String name;

XmVaCreateSimpleMenuBar creates an instance of a RowColumn widget of
type XmMENU_BAR and returns the associated widget ID. This routine uses the
ANSI C variable-length argument list (varargs) calling convention.

This routine creates a MenuBar and its CascadeButtonGadget children. The name
of each button is button_n, where n is an integer from 0 (zero) to 1 minus the
number of buttons in the menu. Buttons are named and created in the order in
which they are specified in the variable portion of the argument list.

parent Specifies the parent widget ID

name Specifies the name of the created widget

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. Following are
the possible first arguments in each group of varargs:

XmVaCASCADEBUTTON
This is followed by two additional arguments. The set specifies one
button in the MenuBar and some of its resource values. Following
are the additional two arguments, in order:

label

mnemonic

resource_name

The label string, of type XmString

The mnemonic, of type KeySym

This is followed by one additional argument, the value of the
resource, of type XtArgVal. The pair specifies a resource and its
value for the RowColumn widget.

Reference Pages

XmVaCreateSimpleMenuBar(3X)

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional
four arguments, in order:

name The resource name, of type String

type The type of the resource value supplied, of type
String

value The resource value (or a pointer to the resource
value, depending on the type and size of the value),
of type XtArgVal

size The size of the resource value in bytes, of type int

Xt VaN estedList
This is followed by one additional argument of type
XtVarArgsList. This argument is a nested list of varargs returned
by XtVaCreateArgsList.

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, see XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information
XmCreateMenuBar(3X), XmCreateRowColumn(3X),
XmCreateSimpleMenuBar(3X), and XmRowColumn(3X).

1-1093

OSF/Motif Programmer's Reference

XmVaCreateSimpleOptionMenu (3X)

Synopsis

Description

1-1094

XmVaCreateSimpleOptionMenu-A RowColumn widget convenience creation
function

#include <XmlRowColumn.h>

Widget XmVaCreateSimpleOptionMenu (parent, name, option_label,
option_mnemonic, button_set, callback, arg ...)

Widget parent;
String name;
XmString option_label;
KeySym option_mnemonic;
int button_set;
XtCallbackProccallback;

XmVaCreateSimpleOptionMenu creates an instance of a RowColumn widget of
type XmMENU_OPTION and returns the associated widget ID. This routine uses
the ANSI C variable-length argument list (varargs) calling convention.

This routine creates an OptionMenu and its Pulldown submenu containing
PushButtonGadget or CascadeButtonGadget children. The name of each button is
button_n, where n is an integer from 0 (zero) to 1 minus the number of buttons in
the menu. The name of each separator is separator_n, where n is an integer from
o (zero) to I minus the number of separators in the menu. Buttons and separators
are named and created in the order in which they are specified in the variable
portion of the argument list.

parent Specifies the parent widget ID.

name Specifies the name of the created widget.

option_label Specifies the label string to be used on the left side of the
OptionMenu.

option_mnemonic
Specifies a keysym for a key that, when pressed by the user, posts
the associated Pulldown MenuPane.

Specifies which PushButtonGadget is initially set. The value is the
integer n that corresponds to the nth PushButtonGadget specified in
the variable portion of the argument list. Only a PushButtonGadget
can be set, and only PushButtonGadgets are counted in determining
the integer n. The first PushButtonGadget is number 0 (zero).

callback

Reference Pages

XmVaCreateSimpleOptionMenu (3X)

Specifies a callback procedure to be called when a button is
activated. This callback function is added to each button after
creation as the button's XmNactivateCallback. The callback
function is called when a button is activated, and the button number
is returned in the clienCdata field.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. Following are
the possible first arguments in each group of varargs:

XmVaPUSHBUTTON
This is followed by four additional arguments. The set specifies one
button in the OptionMenu's Pull down submenu and some of its
resource values. The button created is a PushButtonGadget.
Following are the additional four arguments, in order:

label The label string, of type XmString

mnemonic The mnemonic, of type KeySym

accelerator The accelerator, of type String

accelerator_text
The accelerator text, of type XmString

XmVaSEPARATOR
This is followed by no additional arguments. It specifies one
separator in the OptionMenu's Pulldown submenu.

XmVaDOUBLE_SEPARATOR
This is followed by no additional arguments. It specifies one
separator in the OptionMenu's Pull down submenu. The separator
type is XmDOUBLE_LINE.

resource_name
This is followed by one additional argument, the value of the
resource, of type XtArgVal. The pair specifies a resource and its
value for the Pulldown submenu.

1-1095

OSF/Motif Programmer's Reference

XmVaCreateSimpleOptionMenu (aX)

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the Pulldown submenu. A resource type
conversion is performed if necessary. Following are the additional
four arguments, in order:

name The resource name, of type String

type The type of the resource value supplied, of type
String

value The resource value (or a pointer to the resource
value, depending on the type and size of the value),
of type XtArgVal

size The size of the resource value in bytes, of type int

XtVaNestedList
This is followed by one additional argument of type
XtVarArgsList. This argument is a nested list of varargs returned
by XtVaCreateArgsList.

The user can specify resources in a resource file for the automatically created
widgets and gadgets of an OptionMenu. The following list identifies the names of
these widgets (or gadgets) and the associated OptionMenu areas:

Option Menu Label Gadget

Option Menu Cascade Button

OptionLabel

OptionButton

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, see XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information

1-1096

XmCreateOptionMenu(3X), XmCreateRowColumn(3X),
XmCreateSimpleOptionMenu(3X), and XmRowColumn(3X).

Synopsis

Description

Reference Pages

XmVaCreateSimplePopupMenu (3X)

XmVaCreateSimplePopupMenu-A RowColumn widget convenience creation
function

#include <Xm/RowColumn.h>

Widget XmVaCreateSimplePopupMenu (parent, name, callback, arg ...)
Widget parent;
String name;
XtCallbackProccallback;

XmVaCreateSimplePopupMenu creates an instance of a RowColumn widget of
type XmMENU_POPUP and returns the associated widget ID. This routine uses
the ANSI C variable-length argument list (varargs) calling convention.

This routine creates a Popup MenuPane and its button children. The name of each
button is button_n, where n is an integer from 0 (zero) to 1 minus the number of
buttons in the menu. The name of each separator is separator_n, where n is an
integer from 0 (zero) to 1 minus the number of separators in the menu. The name
of each title is label_n, where n is an integer from 0 (zero) to I minus the number
of titles in the menu. Buttons, separators, and titles are named and created in the
order in which they are specified in the variable portion of the argument list.

parent

name

callback

Specifies the widget ID of the parent of the MenuShell

Specifies the name of the created widget

Specifies a callback procedure to be called when a button is
activated or when its value changes. This callback function is added
to each button after creation. For a CascadeButtonGadget or a
PushButtonGadget, the callback is added as the button's
XmNactivateCallback, and it is called when the button is activated.
For a ToggleButtonGadget, the callback is added as the button's
XmNvalueCbangedCallback, and it is called when the button's
value changes. The button number is returned in the clienCdata
field.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. The following
list describes the possible first arguments in each group of varargs.

1-1097

OSF/Motif Programmer's Reference

XmVaCreateSimplePopupMenu (3X)

1-1098

XmVaCASCADEBUTTON
This is followed by two additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The
button created is a CascadeButtonGadget. Following are the
additional two arguments, in order:

label

mnemonic

XmVaPUSHBUTTON

The label string, of type XmString

The mnemonic, of type KeySym

This is followed by four additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The
button created is a PushButtonGadget. Following are the additional
four arguments, in order:

label The label string, of type XmString

mnemonic The mnemonic, of type KeySym

accelerator The accelerator, of type String

accelerator_text
The accelerator text, of type XmString

XmVaRADIOBUTTON
This is followed by four additional arguments. The set specifies one
button in the PopupMenu and some of its resource values. The
button created is a ToggleButtonGadget. Following are the
additional four arguments, in order:

label The label string, of type XmString

mnemonic The mnemonic, of type KeySym

accelerator The accelerator, of type String

accelerator_text
The accelerator text, of type XmString

Reference Pages

XmVaCreateSimplePopupMenu (ax)

XmVaCHECKBUTTON
This is followed by four additional arguments. The set specifies one
button in the Popup Menu and some of its resource values. The
button created is a ToggleButtonGadget. Following are the
additional four arguments, in order:

label The label string, of type XmString

mnemonic The mnemonic, of type KeySym

accelerator The accelerator, of type String

accelerator_text
The accelerator text, of type XmString

XmVaTITLE This is followed by one additional argument. The pair specifies a
title LabelGadget in the PopupMenu. Following is the additional
argument:

title The title string, of type XmString

XmVaSEPARATOR
This is followed by no additional arguments. It specifies one
separator in the PopupMenu.

XmVaDOUBLE_SEPARATOR
This is followed by no additional arguments. It specifies one
separator m the PopupMenu. The separator type is
XmDOUBLE_LINE.

resource_name
This is followed by one additional argument, the value of the
resource, of type XtArgVal. The pair specifies a resource and its
value for the RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the/::u1ditional
four arguments, in order: --

name The resource name, of type String

type The type of the resource value supplied, of type
String

1-1099

OSF/Motif Programmer's Reference

XmVaCreateSimplePopupMenu(3X)

value The resource value (or a pointer to the resource
value, depending on the type and size of the value),
of type XtArgVal

size The size of the resource value in bytes, of type int

XtVaNestedList
This is followed by one additional argument of type
XtVarArgsList. This argument is a nested list of varargs returned
by XtVaCreateArgsList.

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, see XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information

1-1100

XmCreatePopupMenu(3X), XmCreateRowColumn(3X),
XmCreateSimplePopupMenu(3X), and XmRowColumn(3X).

Synopsis

Description

Reference Pages

XmVaCreateSimplePu IIdownMenu (3X)

XmVaCreateSimplePulldownMenu-A RowColumn widget convenience
creation function

#include <Xm/RowColumn.h>

Widget XmVaCreateSimplePulldownMenu (parent, name, postJrom_button,
callback, arg ...)

Widget parent;
String name;
int postJrom_button;
XtCallbackProccallback;

XmVaCreateSimplePulldownMenu creates an instance of a RowColumn widget
of type XmMENU_PULLDOWN and returns the associated widget ID. This
routine uses the ANSI C variable-length argument list (varargs) calling
convention.

This routine creates a Pulldown MenuPane and its button children. The name of
each button is button_n, where n is an integer from 0 to 1 minus the number of
buttons in the menu. The name of each separator is separator _n, where n is an
integer from 0 to 1 minus the number of separators in the menu. The name of each
title is labeCn, where n is an integer from 0 (zero) to 1 minus the number of titles
in the menu. Buttons, separators, and titles are named and created in the order in
which they are specified in the variable portion of the argument list.

This routine also attaches the PulldownMenu to a CascadeButton or
CascadeButtonGadget in the parent. The PulldownMenu is then posted from this
button.

parent

name

Specifies the widget ID of the parent of the MenuShell.

Specifies the name of the created widget.

postJrom_button
Specifies the CascadeButton or CascadeButtonGadget in the parent
to which the Pulldown MenuPane is attached. The value is the
integer n that corresponds to the nth CascadeB utton or
CascadeButtonGadget specified for the parent of the Pulldown
MenuPane. A Pulldown MenuPane can be attached only to a
CascadeButton or CascadeButtonGadget, and only CascadeButtons
and CascadeButtonGadgets are counted in determining the integer
n. The first CascadeButton or CascadeButtonGadget is number 0
(zero).

1-1101

OSF/Motif Programmer's Reference

XmVaCreateSimplePulidownMenu (aX)

1-1102

callback Specifies a callback procedure to be called when a button is
activated or when its value changes. This callback function is added
to each button after creation. For a CascadeButtonGadget or a
PushButtonGadget, the callback is added as the button's
XmNactivateCallback, and it is called when the button is activated.
For a ToggleButtonGadget, the callback is added as the button's
XmNvalueChangedCallback, and it is called when the button's
value changes. The button number is returned in the clienCdata
field.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. Following are
the possible first arguments in each group of varargs:

XmVaCASCADEBUTTON
This is followed by two additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The
button created is a CascadeButtonGadget. Following are the
additional two arguments, in order:

label

mnemonic

XmVaPUSHBUTTON

The label string, of type XmString

The mnemonic, of type KeySym

This is followed by four additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The
button created is a PushButtonGadget. Following are the additional
four arguments, in order:

label The label string, of type XmString

mnemonic The mnemonic, of type KeySym

accelerator The accelerator, of type String

accelerator_text
The accelerator text, of type XmString

Reference Pages

XmVaCreateSimplePulidownMenu (3X)

XmVaRADIOBUTTON
This is followed by four additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The
button created is a ToggleButtonGadget. Following are the
additional four arguments, in order:

label The label string, of type XmString

mnemonic The mnemonic, of type KeySym

accelerator The accelerator, of type String

accelerator_text
The accelerator text, of type XmString

XmVaCHECKBUTTON
This is followed by four additional arguments. The set specifies one
button in the PulldownMenu and some of its resource values. The
button created is a ToggleButtonGadget. Following are the
additional four arguments, in order:

label The label string, of type XmString.

mnemonic The mnemonic, of type KeySym

accelerator The accelerator, oftype String

accelerator_text
The accelerator text, of type XmString

XmVaTITLE This is followed by one additional argument. The pair specifies a
title LabelGadget in the PulldownMenu. Following is the additional
argument:

title The title string, of type XmString

XmVaSEPARATOR
This is followed by no additional arguments. It specifies one
separator in the PulldownMenu.

1-1103

OSF/Motif Programmer's Reference
XmVaCreateSimplePulidownMenu (3X)

1-1104

XmVaDOUBLE_SEPARATOR
This is followed by no additional arguments. It specifies one
separator in the PulldownMenu. The separator type is
XmDOUBLE_LINE.

resource_name
This is followed by one additional argument, the value of the
resource, of type XtArgVal. The pair specifies a resource and its
value for the RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional
four arguments, in order:

name The resource name, of type String

type The type of the resource value supplied, of type
String

value The resource value (or a pointer to the resource
value, depending on the type and size of the value),
of type XtArgVal

size The size of the resource value in bytes, of type int

XtVaNestedList
This is followed by one additional argument of type XtVarArgsList.
This argument is a nested list of varargs returned by
Xt VaCreateArgsList.

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, see XmRowColumn(3X).

Reference Pages
XmVaCreateSimplePulldownMenu (3X)

Return Value
Returns the RowColumn widget ID.

Related Information
XmCreatePulldownMenu(3X), XmCreateRowColumn(3X),
XmCreateSimplePulldownMenu, and XmRowColumn(3X).

1-1105

OSF/Motif Programmer's Reference

XmVaCreateSimpleRadioBox (aX)

Synopsis

Description

1-1106

XmVaCreateSimpleRadioBox-A RowColumn widget convenience creation
function

#include <XmlRowColumn.h>

Widget XmVaCreateSimpleRadioBox (parent, name, button_set, callback, arg ...)
Widget parent;
String name;
int button_set;
XtCallbackProccallback;

XmVaCreateSimpleRadioBox creates an instance of a RowColumn widget of
type XmWORK_AREA and returns the associated widget ID. This routine uses
the ANSI C variable-length argument list (varargs) calling convention.

This routine creates a RadioBox and its ToggleButtonGadget children. The name
of each button is button_n, where n is an integer from 0 (zero) to 1 minus the
number of buttons in the menu.

parent

name

callback

Specifies the parent widget ID.

Specifies the name of the created widget.

Specifies which button is initially set. The value is the integer n in
the button name button_no

Specifies a callback procedure to be called when a button's value
changes. This callback function is added to each button after
creation as the button's XmNvalueChangedCallback. The
callback function is called when a button's value changes, and the
button number is returned in the clienCdata field.

The variable portion of the argument list consists of groups of arguments. The first
argument in each group is a constant or a string and determines which arguments
follow in that group. The last argument in the list must be NULL. The following
list describes the possible first arguments in each group of varargs.

Reference Pages

XmVaCreateSimpleRadioBox (3X)

XmVaRADIOBUTTON
This is followed by four additional arguments. The set specifies one
button in the RadioBox and some of its resource values. Following
are the additional four arguments, in order:

label The label string, of type XmString.

mnemonic The mnemonic, of type KeySym. This is ignored in
this release.

accelerator The accelerator, of type String. This is ignored in
this release.

accelerator_text

resource _name

The accelerator text, of type XmString. This is
ignored in this release.

This is followed by one additional argument, the value of the
resource, of type XtArgVal. The pair specifies a resource and its
value for the RowColumn widget.

XtVaTypedArg
This is followed by four additional arguments. The set specifies a
resource and its value for the RowColumn widget. A resource type
conversion is performed if necessary. Following are the additional
four arguments, in this order:

name The resource name, of type String

type The type of the resource value supplied, of type
String

value The resource value (or a pointer to the resource
value, depending on the type and size of the value),
of type XtArgVal

size The size of the resource value in bytes, of type int

XtVaNestedList
This is followed by one additional argument of type
XtVarArgsList. This argument is a nested list of varargs returned
by XtVaCreateArgsList.

1-1107

OSF/Motif Programmer's Reference
XmVaCreateSimpleRadioBox (3X)

For more information on variable-length argument lists, see the X Toolkit Intrinsics
documentation.

A number of resources exist specifically for use with this and other simple menu
creation routines. For a complete definition of RowColumn and its associated
resources, see XmRowColumn(3X).

Return Value
Returns the RowColumn widget ID.

Related Information

1-1108

XmCreateRadioBox(3X), XmCreateRowColumn(3X),
XmCreateSimpleCheckBox(3X), XmCreateSimpleRadioBox(3X),
XmRowColumn(3X), and XmVaCreateSimpleCheckBox(3X),

Synopsis

Description

Reference Pages

XmWidgetGetBaselines (3X)

Xm WidgetGetBaselines-Retrieves baseline information for a widget

#include <XmlXm.h>

Boolean XmWidgetGetBaselines (widget, baselines, line_count)
Widget widget;
Dimension
int

**baselines;
*line_count;

Xm WidgetGetBaselines returns an array that contains one or more baseline values
associated with the specified widget. The baseline of any given line of text is a
vertical offset in pixels from the origin of the widget's bounding box to the given
baseline. This routine allocates memory for the returned data. The application
must free this memory using XtFree.

widget

baselines

Specifies the ID of the widget for which baseline values are
requested

Returns an array that contains the value of each baseline of text in
the widget

Returns the number of lines in the widget

Return Value
Returns a Boolean value that indicates whether the widget contains a baseline. If
the value is True, the function returns a value for each baseline of text. If it is
False, the function was unable to return a baseline value.

Related Information
Xm WidgetGetDisplayRect(3X).

1-1109

OSF/Motif Programmer's Reference

XmWidgetGetDisplayRect(3X)

Synopsis

Description

XmWidgetGetDisplayRect-Retrieves display rectangle information for a widget

#include <XmlXm.h>

Boolean Xm WidgetGetDisplay Reet (widget, displayrect)
Widget widget;
XReetangle *displayrect;

XmWidgetGetDisplayRect returns the width, height and the x and y-coordinates
of the upper left corner of the display rectangle of the specified widget. The
display rectangle is the smallest rectangle that encloses either a string or a pixmap.

If the widget contains a string, the return values specify the x and y-coordinates of
the upper left corner of the display rectangle relative to the origin of the widget and
the width and height in pixels.

In the case of a pixmap, the return values specify the x and y-coordinates of the
upper left corner of the pixmap relative to the origin, and the width and height of
the pixmap in pixels.

widget Specifies the widget ID

displayrect Specifies a pointer to an XRectangle structure in which the x and y­
coordinates, width and height of the display rectangle are returned

Return Value
Returns True if the specified widget has an associated display rectangle; otherwise,
returns False.

Related Information
Xm WidgetGetBaselines(3X).

1-1110

Synopsis

Description

Reference Pages

UIL-The user interface language file format

MODULE module_name
[NAMES = CASE_INSENSITIVE I CASE_SENSITIVE]
[CHARACTER_SET = character_set]
[OBJECTS = { widgecname = GADGET I WIDGET; [...] }]
{ [
[value_section] I
[procedure_section] I
[list_section] I
[objecCsection] I
[identifier_section]
[...]
] }

END MODULE;

UIL(5X)

The UIL language is used for describing the initial state of a user interface for a
widget based application. UIL describes the widgets used in the interface, the
resources of those widgets, and the callbacks of those widgets. The UIL file is
compiled into a UID file using the command uil or by the callable compiler UilO.
The contents of the compiled UID file can then by accessed by the various Motif
Resource Management (MRM) functions from within an application program.

File Format

UIL is a free-form language. This means that high-level constructs such as object
and value declarations do not need to begin in any particular column and can span
any number of lines. Low-level constructs such as keywords and punctuation
characters can also begin in any column; however, except for string literals and
comments, they cannot span lines.

The UIL compiler accepts input lines up to 132 characters in length.

MODULE module_name
The name by which the UIL module is known in the UID file. This
name is stored in the UID file for later use in the retrieval of resources
by the MRM. This name is always stored in uppercase in the UID file.

NAMES = CASE_INSENSITIVE I CASE_SENSITIVE
Indicates whether names should be treated as case sensitive or case
insensitive. The default is case sensitive. The case-sensitivity clause
should be the first clause in the module header, and in any case must
precede any statement that contains a name. If names are case
sensitive in a UIL module, UIL keywords in that module must be in

1-1111

OSF/Motif Programmer's Reference

UIL(5X)

1-1112

lowercase. Each name is stored in the UIL file in the same case as it
appears in the UIL module. If names are case insensitive, then
keywords can be in uppercase, lowercase, or mixed case, and the
uppercase equivalent of each name is stored in the UID file.

CHARACTER_SET = character_set
Specifies the default character set for string literals in the module that
do not explicitly set their character set. The default character set, in
the absence of this clause is the codeset component of the LANG
environment variable, or the value of XmFALLBACK_CHARSET if
LANG is not set or has no codeset component. The value of
XmFALLBAC~CHARSET is defined by the UIL supplier, but is
usually IS08859-1 (equivalent to ISO_LATINI). Use of this clause
turns off all localized string literal processing turned on by the
compiler flag -s or the Uil_command_type data structure element
use_setlocale_ftag.

OBJECTS = { widgecname = GADGET I WIDGET; }
Indicates whether the widget or gadget form of the control specified by
widgeCname is used by default. By default, the widget form is used,
so the gadget keyword is usually the only one used. The specified
control should be one that has both a widget and gadget version:
XmCascadeButton, XmLabel, XmPushButton, XmSeparator, and
XmToggleButton. The form of more than one control can be specified
by delimiting them with semicolons. The gadget or widget form of an
instance of a control can be specified with the GADGET and
WIDGET keywords in a particular object declaration.

value _section
Provides a way to name a value expression or literal. The value name
can then be referred to by declarations that occur elsewhere in the UIL
module in any context where a value can be used. Values can be
forward referenced. Value sections are described in more detail later
in the reference page.

procedure _section
Defines the callback routines used by a widget and the creation
routines for user-defined widgets. These definitions are used for error
checking. Procedure sections are described in more detail later in the
reference page.

liscsection Provides a way to group together a set of arguments, controls
(children), callbacks, or procedures for later use in the UIL module.
Lists can contain other lists, so that you can set up a hierarchy to

Reference Pages

UIL(5X)

clearly show which arguments, controls, callbacks, and procedures are
common to which widgets. List sections are described in more detail
later in the reference page.

objecCsection
Defines the objects that make up the user interface of the application.
You can reference the object names in declarations that occur
elsewhere in the UIL module in any context where an object name can
be used (for example, in a controls list, as a symbolic reference to a
widget ID, or as the tag_value argument for a callback procedure).
Objects can be forward referenced. Object sections are described in
more detail later in the reference page.

identifier_section
Defines a run-time binding of data to names that appear in the UIL
module. Identifier sections are described in more detail later in the
reference page.

The UIL file can also contain comments and include directives, which are
described along with the main elements of the UIL file format in the following
sections.

Comments

Comments can take one of two forms, as follows:

• The comment is introduced with the sequence 1* followed by the text of the
comment and terminated with the sequence *1. This form of comment can
span multiple source lines.

• The comment is introduced with an ! (exclamation point), followed by the
text of the comment and terminated by the end of the source line.

Neither form of comment can be nested.

Value sections

A value section consists of the keyword VALUE followed by a sequence of value
declarations. It has the following syntax:

VAL UE value_name:
[EXPORTED I PRIVATE] value_expression I
IMPORTED value_type;

Where value_expression is assigned to value_name or a value_type is assigned to
an imported value name. A value declaration provides a way to name a value
expression or literal. The value name can be referred to by declarations that occur
later in the UIL module in any context where a value can be used. Values can be
forward referenced.

1-1113

OSF/Motif Programmer's Reference

UIL(5X)

1-1114

EXPORTED
A value that you define as exported is stored in the UIn file as a named
resource, and therefore can be referenced by name in other UIn files.
When you define a value as exported, MRM looks outside the module
in which the exported value is declared to get its value at run time.

PRIVATE A private value is a value that is not imported or exported. A value
that you define as private is not stored as a distinct resource in the UID
file. You can reference a private value only in the UIL module
containing the value declaration. The value or object is directly
incorporated into anything in the UIL module that references the
declaration.

IMPORTED
A value that you define as imported is one that is defined as a named
resource in a UID file. MRM resolves this declaration with the
corresponding exported declaration at application run time.

By default, values and objects are private. The following is a list of the supported
value types in UIL:

• ANY

• ARGUMENT

• BOOLEAN

• COLOR

• COLOR_TABLE

• COMPOUND_STRING

• FLOAT

• FONT

• FONT_TABLE

• FONTSET

• ICON

• INTEGER

• INTEGER_TABLE

• KEYSYM

Reference Pages

UIL(5X)

• REASON

• SINGLE_FLOAT

• STRING

• STRING_TABLE

• TRANSLATION_TABLE

• WIDE_CHARACTER

• WIDGET

Procedure sections

A procedure section consists of the keyword PROCEDURE followed by a
sequence of procedure declarations. It has the following syntax:

PROCEDURE
procedure_name [([value_type])] ;

Use a procedure declaration to declare

• A routine that can be used as a callback routine for a widget

• The creation function for a user-defined widget

You can reference a procedure name in declarations that occur later in the UIL
module in any context where a procedure can be used. Procedures can be forward
referenced. You cannot use a name you used in another context as a procedure
name.

In a procedure declaration, you have the option of specifying that a parameter will
be passed to the corresponding callback routine at run time. This parameter is
called the callback tag. You can specify the data type of the callback tag by
putting the data type in parentheses following the procedure name. When you
compile the module, the UIL compiler checks that the argument you specify in
references to the procedure is of this type. Note that the data type of the callback
tag must be one of the valid UIL data types. You can use a widget as a callback
tag, as long as the widget is defined in the same widget hierarchy as the callback,
that is they have a common ancestor that is in the same UIL hierarchy.

1-1115

OSF/Motif Programmer's Reference

UIL(5X)

The following list summarizes how the UIL compiler checks argument type and
argument count, depending on the procedure declaration.

No parameters

()

(ANY)

(type)

No argument type or argument count checking occurs. You can
supply either zero or one arguments in the procedure reference.

Checks that the argument count is 0 (zero).

Checks that the argument count is 1. Does not check the argument
type. Use the ANY type to prevent type checking on procedure
tags.

Checks for one argument of the specified type.

(class_name) Checks for one widget argument of the specified widget class.

While it is possible to use any UIL data type to specify the type of a tag in a
procedure declaration, you must be able to represent that data type in the
programming language you are using. Some data types (such as integer, Boolean,
and string) are common data types recognized by most programming languages.
Other UIL data types (such as string tables) are more complicated and may require
that you set up an appropriate corresponding data structure in the application in
order to pass a tag of that type to a callback routine.

You can also use a procedure declaration to specify the creation function for a
user-defined widget. In this case, you specify no formal parameters. The
procedure is invoked with the standard three arguments passed to all widget
creation functions. (See the Motif Toolkit documentation for more information
about widget creation functions.)

List sections

1-1116

A list section consists of the keyword LIST followed by a sequence of list
declarations. It has the following syntax:

LIST
liscname : { lisCitem; [... J }
[... J

You can also use list sections to group together a set of arguments, controls
(children), callbacks, or procedures for later use in the UIL module. Lists can
contain other lists, so that you can set up a hierarchy to clearly show which
arguments, controls, callbacks, and procedures are common to which widgets. You
cannot mix the different types of lists; a list of a particular type cannot contain
entries of a different list type or reference the name of a different list type. A list
name is always private to the UIL module in which you declare the list and cannot
be stored as a named resource in a UID file.

The additional list types are described in the following sections.

Arguments List Structure

Reference Pages

UIL(5X)

An arguments list defines which arguments are to be specified in the arguments list
parameter when the creation routine for a particular object is called at run time. An
arguments list also specifies the values for those arguments. Argument lists have
the following syntax:

LIST
lisCname : ARGUMENTS {

argumenCname = value_expression;
[...] } [...]

The argument name must be either a built-in argument name or a user-defined
argument name that is specified with the ARGUMENT function.

If you use a built-in argument name as an arguments list entry in an object
definition, the UIL compiler checks the argument name to be sure that it is
supported by the type of object that you are defining. If the same argument name
appears more than once in a given arguments list, the last entry that uses that
argument name supersedes all previous entries with that name, and the compiler
issues a message.

Some arguments, such as XmNitems and XmNitemCount, are coupled by the UIL
compiler. When you specify one of the arguments, the compiler also sets the other.
The coupled argument is not available to you.

The Motif Toolkit and the X Toolkit (intrinsics) support constraint arguments. A
constraint argument is one that is passed to children of an object, beyond those
arguments normally available. For example, the Form widget grants a set of
constraint arguments to its children. These arguments control the position of the
children within the Form.

Unlike the arguments used to define the attributes of a particular widget, constraint
arguments are used exclusively to define additional attributes of the children of a
particular widget. These attributes affect the behavior of the children within their
parent. To supply constraint arguments to the children, you include the arguments
in the arguments list for the child.

See Appendix B for information about which arguments are supported by which
widgets. See Appendix C for information about what the valid value type is for
each built-in argument.

1-1117

OSF/Motif Programmer's Reference

UIL(5X)

1-1118

Callbacks List Structure

Use a callbacks list to define which callback reasons are to be processed by a
particular widget at run time. Callback lists have the following syntax:

LIST
lisCname: CALLBACKS {

reason_name = PROCEDURE procedure_name
[([value_expression])]; I
reason_name = procedure_list;
[...] }

[...]

For Motif Toolkit widgets, the reason name must be a built-in reason name. For a
user-defined widget, you can use a reason name that you previously specified using
the REASON function. If you use a built-in reason in an object definition, the UIL
compiler ensures that reason is supported by the type of object you are defining.
Appendix B shows which reasons each object supports.

If the same reason appears more than once in a callbacks list, the last entry
referring to that name supersedes all previous entries using the same reason, and
the UIL compiler issues a diagnostic message.

If you specify a named value for the procedure argument (callback tag), the data
type of the value must match the type specified for the callback tag in the
corresponding procedure declaration. When specifying a widget name as a
procedure value expression you must also specify the type of the widget and a
space before the name of the widget.

Because the UIL compiler produces a UID file rather than an object module (.0),
the binding of the UIL name to the address of the entry point to the procedure is not
done by the loader, but is established at run time with the MRM function
MrmRegisterNames. You call this function before fetching any objects, giving it
both the UIL names and the procedure addresses of each callback. The name you
register with MRM in the application program must match the name you specified
for the procedure in the UIL module.

Each callback procedure receives three arguments. The first two arguments have
the same form for each callback. The form of the third argument varies from
object to object.

The first argument is the address of the data structure maintained by the Motif
Toolkit for this object instance. This address is called the widget ID for this object.

The second argument is the address of the value you specified in the callbacks list
for this procedure. If you do not specify an argument, the address is NULL.

The third argument is the reason name you specified in the callbacks list.

Reference Pages

UIL(5X)

Controls List Structure

A controls list defines which objects are children of, or controlled by, a particular
object. Each entry in a controls list has the following syntax:

LIST
liscname : CONTROLS {

[child_name] [MANAGED I UNMANAGED] objeccdejinition;
[...] }

[...]

If you specify the keyword MANAGED at run time, the object is created and
managed; if you specify UNMANAGED at run time, the object is only created.
Objects are managed by default.

You can use child_name to specify resources for the automatically created children
of a particular control. Names for automatically created children are formed by
appending Xm_ to the name of the child widget. This name is specified in the
documentation for the parent widget.

Unlike the arguments list and the callbacks list, a controls list entry that is identical
to a previous entry does not supersede the previous entry. At run time, each
controls list entry causes a child to be created when the parent is created. If the
same object definition is used for multiple children, multiple instances of the child
are created at run time. See Appendix B for a list of which widget types can be
controlled by which other widget types.

Procedures List Structure

You can specify multiple procedures for a callback reason in UIL by defining a
procedures list. Just as with other list types, procedures lists can be defined in-line
or in a list section and referenced by name.

If you define a reason more than once (for example, when the reason is defined
both in a referenced procedures list and in the callbacks list for the object),
previous definitions are overridden by the latest definition. The syntax for a
procedures list is as follows:

LIST
lisCname : PROCEDURES {

procedure_name [([value_expression])];
[...] }

[...]

When specifying a widget name as a procedure value expression you must also
specify the type of the widget and a space before the name of the widget.

1-1119

OSF/Motif Programmer's Reference

UIL(5X)

Object Sections

An object section consists of the keyword OBJECT followed by a sequence of
object declarations. It has the following syntax:

OBJECT objecCname :
[EXPORTED I PRIVATE I IMPORTED] objecCtype

[PROCEDURE creationJunction]
[objecCname [WIDGET I GADGET] I { lisCdefinitions }]

Use an object declaration to define the objects that are to be stored in the UID file.
You can reference the object name in declarations that occur elsewhere in the UIL
module in any context where an object name can be used (for example, in a
controls list, as a symbolic reference to a widget ID, or as the tag_value argument
for a callback procedure). Objects can be forward referenced; that is, you can
declare an object name after you reference it. All references to an object name
must be consistent with the type of the object, as specified in the object declaration.
You can specify an object as exported, imported, or private.

The object definition can contain a sequence of lists that define the arguments,
hierarchy, and callbacks for the widget. You can specify only one list of each type
for an object. When you declare a user-defined widget, you must include a
reference to the widget creation function for the user-defined widget.

Use the GADGET or WIDGET keyword to specify the object type or to override
the default variant for this object type. You can use the Motif Toolkit name of an
object type that has a gadget variant (for example, XmLabelGadget) as an
attribute of an object declaration. The objecCtype can be any object type,
including gadgets. You need to specify the GADGET or WIDGET keyword only
in the declaration of an object, not when you reference the object. You cannot
specify the GADGET or WIDGET keyword for a user-defined object; user­
defined objects are always widgets.

Identifier sections

1-1120

The identifier section allows you to define an identifier, a mechanism that achieves
run-time binding of data to names that appear in a UIL module. The identifier
section consists of the reserved keyword IDENTIFIER, followed by a list of
names, each name followed by a semicolon.

IDENTIFIER identifier_name; [... ;]

You can later use these names in the UIL module as either the value of an argument
to a widget or the tag value to a callback procedure. At run time, you use the MRM
functions MrmRegisterNames and MrmRegisterNamesInHierarchy to bind the
identifier name with the data (or, in the case of callbacks, with the address of the
data) associated with the identifier.

Reference Pages

UIL(5X)

Each UIL module has a single name space; therefore, you cannot use a name you
used for a value, object, or procedure as an identifier name in the same module.

The UIL compiler does not do any type checking on the use of identifiers in a UIL
module. Unlike a UIL value, an identifier does not have a UIL type associated with
it. Regardless of what particular type a widget argument or callback procedure tag
is defined to be, you can use an identifier in that context instead of a value of the
corresponding type.

To reference these identifier names in a UIL module, you use the name of the
identifier wherever you want its value to be used.

Include directives

The include directive incorporates the contents of a specified file into a UIL
module. This mechanism allows several UIL modules to share common
definitions. The syntax for the include directive is as follows:

INCLUDE FILE file_name ;

The UIL compiler replaces the include directive with the contents of the include
file and processes it as if these contents had appeared in the current UIL source file.

You can nest include files; that is, an include file can contain include directives.
The UIL compiler can process up to 100 references (including the file containing
the UIL module). Therefore, you can include up to 99 files in a single UIL module,
including nested files. Each time a file is opened counts as a reference, so
including the same file twice counts as two references.

The character expression is a file specification that identifies the file to be included.
The rules for finding the specified file are similar to the rules for finding header, or
.h files using the include directive, #include, with a quoted string in C. The UIL
uses the -I option for specifying a search directory for include files.

• If you do not supply a directory, the UIL compiler searches for the include
file in the directory of the main source file.

• If the compiler does not find the include file there, the compiler looks in the
same directory as the source file.

• If you supply a directory, the UIL compiler searches only that directory for
the file.

1-1121

OSF/Motif Programmer's Reference

UIL(5X)

Names and Strings

1-1122

Names can consist of any of the characters A to Z, a to z, 0 to 9, $ (dollar sign), and
_ (underscore). Names cannot begin with a digit (0 to 9). The maximum length of
a name is 31 characters.

UIL gives you a choice of either case-sensitive or case-insensitive names through a
clause in the MODULE header. For example, if names are case sensitive, the
names "sample" and "Sample" are distinct from each other. If names are case
insensitive, these names are treated as the same name and can be used
interchangeably. By default, UIL assumes names are case sensitive.

In CASE· INSENSITIVE mode, the compiler outputs all names in the UID file in
uppercase form. In CASE-SENSITIVE mode, names appear in the UIL file
exactly as they appear in the source.

The following table lists the reserved keywords, which are not available for
defining programmer defined names.

ARGUMENTS
EXPORTED
INCLUDE
ON
PROCEDURES

Reserved Keywords
----------------~

CALLBACKS CONTROLS
FALSE GADGET
LIST MODULE
OBJECT
TRUE

PRIVATE
VALUE

END
IDENTIFIER
OFF
PROCEDURE
WIDGET

The UIL unreserved keywords are described in the following list and table. These
keywords can be used as programmer defined names; however, if you use any
keyword as a name, you cannot use the UIL-supplied usage of that keyword.

• Built-in argument names (for example, XmNx, XmNheight)

• Built-in reason names (for example, XmNactivateCallback,
XmNhelpCallback)

• Character set names (for example, ISO_LATINI, ISO_HEBREW _LR)

• Constant value names (for example, XmMENU_OPTION,
XmBROWSE_SELECT)

• Object types (for example, XmPushButton, XmBulletinBoard)

Reference Pages

UIL(5X)

Unreserved Keywords
f---------------------------------------

ANY
ASCIZ_ TABLE
CASE_INSENSITIVE
COLOR
COMPOUND_STRING_ TABLE
FONT
FOREGROUND
INTEGER
MANAGED
REASON
SINGLE_FLOAT
TRANSLATION_TABLE
VERSION
XBITMAPFILE

ARGUMENT
BACKGROUND
CASE_SENSITIVE
COLOR_TABLE
FILE
FONT_TABLE
ICON
INTEGER_TABLE
NAMES
RGB
STRING
UNMANAGED
WIDE_CHARACTER

ASCIZ_STRING_ TABLE
BOOLEAN
CHARACTER_SET
COMPOUND_STRING
FLOAT
FONTSET
IMPORTED
KEYSYM
OBJECTS
RIGHT _TO_LEFT
STRING_TABLE
USER_DEFINED
WIDGET

String literals can be composed of the uppercase and lowercase letters, digits, and
punctuation characters. Spaces, tabs, and comments are special elements in the
language. They are a means of delimiting other elements, such as two names. One
or more of these elements can appear before or after any other element in the
language. However, spaces, tabs, and comments that appear in string literals are
treated as character sequences rather than delimiters.

Data Types

UIL provides literals for several of the value types it supports. Some of the value
types are not supported as literals (for example, pixmaps and string tables). You
can specify values for these types by using functions described in the Functions
section. UIL directly supports the following literal types:

• String literal

• Integer literal

• Boolean literal

• Floating-point literal

UIL also includes the data type ANY, which is used to turn off compile time
checking of data types.

String Literals

A string literal is a sequence of zero or more 8-bit or 16-bit characters or a
combination delimited by , (single quotation marks) or " (double quotation marks).
String literals can also contain multibyte characters delimited with double
quotation marks. String literals can be no more than 2000 characters long.

1-1123

OSF/Motif Programmer's Reference

UIL(5X)

1-1124

A single-quoted string literal can span multiple source lines. To continue a single­
quoted string literal, terminate the continued line with a \ (backslash). The literal
continues with the first character on the next line.

Double-quoted string literals cannot span multiple source lines. (Because double­
quoted strings can contain escape sequences and other special characters, you
cannot use the backslash character to designate continuation of the string.) To
build a string value that must span multiple source lines, use the concatenation
operator described later in this section.

The syntax of a string literal is one of the following:

'[character_string]' [#char _set]" [character_string]"

Both string forms associate a character set with a string value. UIL uses the
following rules to determine the character set and storage format for string literals:

• A string declared as 'string' is equivalent to #cur _charset"string", where
cur _charset will be the codeset portion of the value of the LANG
environment variable if it is set or the value of
XmFALLBACK_CHARSET if LANG is not set or has no codeset
component. By default, XmFALLBACK_CHARSET is IS08859-1
(equivalent to ISO_LATINI), but vendors may define a different default.

• A string declared as "string" is equivalent to #char _set"string" if you
specified char _set as the default character set for the module. If no default
character set has been specified for the module, then if the -s option is
provided to the uil command or the use_setlocale_ftag is set for the
callable compiler, UilO, the string will be interpreted to be a string in the
current locale. This means that the string is parsed in the locale of the user
by calling setlocale, its charset is XmFONTLIST_DEFAULT_TAG, and
that if the string is converted to a compound string, it is stored as a locale
encoded text segment. Otherwise, "string" is equivalent to
#cur _charset"string", where cur _charset is interpreted as described for
single quoted strings.

• A string of the form "string" or #char _set"string" is stored as a null­
terminated string.

The following table lists the character sets supported by the UIL compiler for string
literals. Note that several UIL names map to the same character set. In some
cases, the UIL name influences how string literals are read. For example, strings
identified by a UIL character set name ending in _LR are read left-to-right. Names
that end in a different number reflect different fonts (for example, ISO_LATINI or
ISO_LATIN6). All character sets in this table are represented by 8 bits.

Reference Pages

UIL(5X)

~-------------- -----------------------~-----

Supported Character Sets

UIL Name

ISO_LATIN1
ISO_LATIN2
ISO_ARABIC
ISO_LATIN6
ISO_GREEK
ISO_LATIN7
ISO_HEBREW
ISO_LATIN8
ISO_HEBREW_LR
ISO _LATIN8_LR
JIS_KATAKANA

Description

GL: ASCII, GR: Latin-1 Supplement
GL: ASCII, GR: Latin-2 Supplement
GL: ASCII, GR: Latin-Arabic Supplement
GL: ASCII, GR: Latin-Arabic Supplement
GL: ASCII, GR: Latin-Greek Supplement
GL: ASCII, GR: Latin-Greek Supplement
GL: ASCII, GR: Latin-Hebrew Supplement
GL: ASCII, GR: Latin-Hebrew Supplement
GL: ASCII, GR: Latin-Hebrew Supplement
GL: ASCII, GR: Latin-Hebrew Supplement
GL: JIS Roman, GR: JIS Katakana

Following are the parsing rules for each of the character sets:

All character sets
Character codes in the range 00-1 F, 7F, and 80-9F are control
characters including both bytes of 16-bit characters. The compiler
flags these as illegal characters.

ISO_LATINI ISO_LATIN2 ISO_ARABIC ISO_LATIN3 ISO_GREEK
ISO_LATIN4
These sets are parsed from left to right. The escape sequences for
null-terminated strings are also supported by these character sets.

ISO_HEBREW ISO_LATINS
These sets are parsed from right to left; for example, the string
#ISO_HEBREW"OI234S" generates a primitive string "543210"
with character set ISO_HEBREW. A DDIS descriptor for such a
string has this segment marked as being right-to-Ieft. The escape
sequences for null-terminated strings are also supported by these
character sets, and the characters that compose the escape
sequences are in left-to-right order. For example, you would enter
\n, not n\.

ISO_HEBREW _LR ISO_LATINS_LR
These sets are parsed from left to right; for example, the string
#ISO_HEBREW _LR"OI234S" generates a pnmItIve string
"012345" with character set ISO_HEBREW. A DDIS descriptor

1-1125

OSF/Motif Programmer's Reference

UIL(5X)

1-1126

for such a string marks this segment as being left-to-right. The
escape sequences for null-terminated strings are also supported by
these character sets.

JIS_KATAKANA
This set is parsed from left to right. The escape sequences for null­
terminated strings are also supported by this character set. Note that
the \ (backslash) may be displayed as a yen symbol.

In addition to designating parsing rules for strings, character set information
remains an attribute of a compound string. If the string is included in a string
consisting of several concatenated segments, the character set information is
included with that string segment. This gives the Motif Toolkit the information it
needs to decipher the compound string and choose a font to display the string.

For an application interface displayed only in English, UIL lets you ignore the
distinctions between the two uses of strings. The compiler recognizes by context
when a string must be passed as a null-terminated string or as a compound string.

The UIL compiler recognizes enough about the various character sets to correctly
parse string literals. The compiler also issues errors if you use a compound string in
a context that supports only null-terminated strings.

Since the character set names are keywords, you must put them in lowercase if
case-sensitive names are in force. If names are case insensitive, character set
names can be uppercase, lowercase, or mixed case.

In addition to the built-in character sets recognized by UIL, you can define your
own character sets with the CHARACTER_SET function. You can use the
CHARACTER_SET function anywhere a character set can be specified.

String literals can contain characters with the eighth (high-order) bit set. You
cannot type control characters (~O-IF, 7F, and 80-9F) directly in a single-quoted
string literal. However, you can represent these characters with escape sequences.
The following list shows the escape sequences for special characters.

\b Backspace

\f Form-feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\' Single quotation mark

\"

\\

Double quotation mark

Backslash

Reference Pages

UIL(5X)

\integer\ Character whose internal representation is given by integer (in the
range 0 to 255 decimal)

Note that escape sequences are processed literally in strings that are parsed in the
current locale (localized strings).

The UIL compiler does not process newline characters in compound strings. The
effect of a newline character in a compound string depends only on the character
set of the string, and the result is not guaranteed to be a multiline string.

Compound String Literals

A compound string consists of a string of 8-bit, 16-bit, or multibyte characters, a
named character set, and a writing direction. Its UIL data type is
compound_string.

The writing direction of a compound string is implied by the character set specified
for the string. You can explicitly set the writing direction for a compound string by
using the COMPOUND_STRING function.

A compound string can consist of a sequence of concatenated compound strings,
null-terminated strings, or a combination of both, each of which can have a
different character set property and writing direction. Use the concatenation
operator & (ampersand) to create a sequence of compound strings.

Each string in the sequence is stored, including the character set and writing
direction information.

Generally, a string literal is stored in the UID file as a compound string when the
literal consists of concatenated strings having different character sets or writing
directions, or when you use the string to specify a value for an argument that
requires a compound string value. If you want to guarantee that a string literal is
stored as a compound string, you must use the COMPOUND_STRING function.

Data Storage Consumption for String Literals

The way a string literal is stored in the UID file depends on how you declare and
use the string. The UIL compiler automatically converts a null-terminated string to
a compound string if you use the string to specify the value of an argument that
requires a compound string. However, this conversion is costly in terms of storage
consumption.

PRIVATE, EXPORTED, and IMPORTED string literals require storage for a
single allocation when the literal is declared; thereafter, storage is required for
each reference to the literal. Literals declared in-line require storage for both an
allocation and a reference.

1-1127

OSF/Motif Programmer's Reference

UIL(5X)

1-1128

The following table summarizes data storage consumption for string literals. The
storage requirement for an allocation consists of a fixed portion and a variable
portion. The fixed portion of an allocation is roughly the same as the storage
requirement for a reference (a few bytes). The storage consumed by the variable
portion depends on the size of the literal value (that is, the length of the string). To
conserve storage space, avoid making string literal declarations that result in an
allocation per use.

Data Storage Consumption for String Literals

Declaration Data Type Used As
Storage Requirements
Per Use

In-line NUll-terminated Null-terminated An allocation and a
reference (within the
module)

Private Null-terminated Null-terminated A reference (within the
module)

Exported Null-terminated Null-terminated A reference (within the
UID hierarchy)

Imported Null-terminated Null-terminated A reference (within the
UID hierarchy)

In-line Null-terminated Compound An allocation and a
reference (within the
module)

Private Null-terminated Compound An allocation and a
reference (within the
module)

Exported NUll-terminated Compound A reference (within the
U I D hierarchy)

Imported Null-terminated Compound A reference (within the
UID hierarchy)

In-line Compound Compound An allocation and a
reference (within the
module)

Private Compound Compound A reference (within the
module)

Exported Compound Compound A reference (within the
UID hierarchy)

Imported Compound Compound A reference (within the
U I D hierarchy)

Reference Pages

UIL(5X)

Integer Literals

An integer literal represents the value of a whole number. Integer literals have the
form of an optional sign followed by one or more decimal digits. An integer literal
must not contain embedded spaces or commas.

Integer literals are stored in the UID file as long integers. Exported and imported
integer literals require a single allocation when the literal is declared; thereafter, a
few bytes of storage are required for each reference to the literal. Private integer
literals and those declared in-line require allocation and reference storage per use.
To conserve storage space, avoid making integer literal declarations that result in
an allocation per use.

The following table shows data storage consumption for integer literals.

Data Storage Consumption for Integer Literals

Declaration Storage Requirements Per Use

In-line An allocation and a reference (within the module)
Private An allocation and a reference (within the module)
Exported A reference (within the UID hierarchy)
Imported A reference (within the UID hierarchy)

Boolean Literal

A Boolean literal represents the value True (reserved keyword TRUE or On) or
False (reserved keyword FALSE or Off). These keywords are subject to case­
sensitivity rules.

In a UID file, TRUE is represented by the integer value 1 and FALSE is
represented by the integer value 0 (zero).

Data storage consumption for Boolean literals is the same as that for integer
literals.

Floating-Point Literal

A floating-point literal represents the value of a real (or float) number. Floating­
point literals have the following form:

[+1-] [integer].integer[Ele[+1-]exponent]

For maximum portability, a floating-point literal can represent values in the range
1.0E-37 to 1.0E+37 with at least 6 significant digits. On many machines this range
will be wider, with more significant digits. A floating-point literal must not contain
embedded spaces or commas.

1-1129

OSF/Motif Programmer's Reference

UIL(5X)

Floating-point literals are stored in the UID file as double-precision, floating-point
numbers. The following table gives examples of valid and invalid floating-point
notation for the UIL compiler.

Floating Point Literals

Valid Floating-Point Literals Invalid Floating-Point Literals

1.0 1 e1 (no decimal point)
.1 E-1 (no decimal point or digits)
3.1415E-2 (equals .031415) 2.87 e6 (embedded blanks)
-6.2ge7 (equals -62900000) 2.0e100 (out of range)

Data storage consumption for floating-point literals is the same as that for integer
literals.

The purpose of the ANY data type is to shut off the data-type checking feature of
the UIL compiler. You can use the ANY data type for the following:

• Specifying the type of a callback procedure tag

• Specifying the type of a user-defined argument

You can use the ANY data type when you need to use a type not supported by the
UIL compiler or when you want the data-type restrictions imposed by the compiler
to be relaxed. For example, you might want to define a widget having an argument
that can accept different types of values, depending on run-time circumstances.

If you specify that an argument takes an ANY value, the compiler does not check
the type of the value specified for that argument; therefore, you need to take care
when specifying a value for an argument of type ANY. You could get unexpected
results at run time if you pass a value having a data type that the widget does not
support for that argument.

Expressions

1-1130

UIL includes compile-time value expressions. These expressions can contain
references to other UIL values, but cannot be forward referenced.

The following table lists the set of operators in UIL that allow you to create integer,
real, and Boolean values based on other values defined with the UIL module. In
the table, a precedence of 1 is the highest.

Reference Pages

UIL(5X)

Valid Operators

Operator Operand Types Meaning Precedence

- Boolean NOT 1
integer One's complement

- float Negate 1
integer Negate

+ float NOP 1
integer NOP

* float,float Multiply 2
integer, integer Multiply

/ float,float Divide 2
integer,integer Divide

+ float,float Add 3
integer,integer Add

- float,float Subtract 3
integer,integer Subtract

» integer,integer Shift right 4
« integer,integer Shift left 4
& Boolean, Boolean AND 5

integer,integer Bitwise AND
string,string Concatenate

I Boolean, Boolean OR 6
integer, integer Bitwise OR

A Boolean, Boolean XOR 6
integer, integer Bitwise XOR

A string can be either a single compound string or a sequence of compound strings.
If the two concatenated strings have different properties (such as writing direction
or character set), the result of the concatenation is a multi segment compound
string.

The string resulting from the concatenation is a null-terminated string unless one or
more of the following conditions exists:

• One of the operands is a compound string

• The operands have different character set properties

• The operands have different writing directions

Then the resulting string is a compound string. You cannot use imported or
exported values as operands of the concatenation operator.

The result of each operator has the same type as its operands. You cannot mix
types in an expression without using conversion routines.

1-1131

OSF/Motif Programmer's Reference

UIL(5X)

You can use parentheses to override the normal precedence of operators. In a
sequence of unary operators, the operations are performed in right-to-Ieft order.
For example, - + -A is equivalent to -(+(-A)). In a sequence of binary operators of
the same precedence, the operations are performed in left-to-right order. For
example, A *B/C*D is equivalent to «A *B)lC)*D.

A value declaration gives a value a name. You cannot redefine the value of that
name in a subsequent value declaration. You can use a value containing operators
and functions anywhere you can use a value in a UIL module. You cannot use
imported values as operands in expressions.

Several of the binary operators are defined for multiple data types. For example,
the operator for multiplication (*) is defined for both floating-point and integer
operands.

For the UIL compiler to perform these binary operations, both operands must be of
the same type. If you supply operands of different data types, the UIL compiler
automatically converts one of the operands to the type of the other according to the
following conversions rules:

• If the operands are an integer and a Boolean, the Boolean is converted to an
integer.

• If the operands are an integer and a floating-point, the integer is converted
to an floating-point.

• If the operands are a floating-point and a Boolean, the Boolean is converted
to a floating-point.

You can also explicitly convert the data type of a value by using one of the
conversion functions INTEGER, FLOAT or SINGLE_FLOAT.

Functions

UIL provides functions to generate the following types of values:

• Character sets

• Keysyms

• Colors

• Pixmaps

• Single-precision, floating-point numbers

• Double-precision, floating-point numbers

• Fonts

1-1132

Reference Pages

UIL(5X)

• Fontsets

• Font tables

• Compound strings

• Compound string tables

• ASCIZ (null-terminated) string tables

• Wide character strings

• Widget class names

• Integer tables

• Arguments

• Reasons

• Translation tables

Remember that all examples in the following sections assume case-insensitive
mode. Keywords are shown in uppercase letters to distinguish them from user­
specified names, which are shown in lowercase letters. This use of uppercase
letters is not required in case-insensitive mode. In case-sensitive mode, keywords
must be in lowercase letters.

CHARACTER_SET(string_expression[, property[, ...]])
You can define your own character sets with the CHARACTER_SET
function. You can use the CHARACTER_SET function anywhere a
character set can be specified.

The result of the CHARACTER_SET function is a character set with the
name string_expression and the properties you specify. string_expression
must be a null-terminated string. You can optionally include one or both of
the following clauses to specify properties for the resulting character set:

RIGHT_TO_LEFT = boolean_expression
SIXTEEN_BIT = boolean_expression

The RIGHT_TO_LEFT clause sets the default wntmg direction of the
string from right to left if boolean_expression is True, and right to left
otherwise.

The SIXTEEN_BIT clause allows the strings associated with this character
set to be interpreted as 16-bit characters if boolean_expression is True, and
8-bit characters otherwise.

1-1133

OSF/Motif Programmer's Reference
UIL(5X)

1-1134

KEYSYM(string_literal)
The KEYSYM function is used to specify a keysym for a mnemonic
resource. string_literal must contain exactly one character.

COLOR(string_expression[,FOREGROUNDIBACKGROUND])
The COLOR function supports the definition of colors. Using the COLOR
function, you can designate a value to specify a color and then use that value
for arguments requiring a color value. The string expression names the color
you want to define; the optional keywords FOREGROUND and
BACKGROUND identify how the color is to be displayed on a monochrome
device when the color is used in the definition of a color table.

The UIL compiler does not have built-in color names. Colors are a server­
dependent attribute of an object. Colors are defined on each server and may
have different red-green-blue (ROB) values on each server. The string you
specify as the color argument must be recognized by the server on which
your application runs.

In a UID file, UIL represents a color as a character string. MRM calls X
translation routines that convert a color string to the device-specific pixel
value. If you are running on a monochrome server, all colors translate to
black or white. If you are on a color server, the color names translate to their
proper colors if the following conditions are met:

• The color is defined.

• The color map is not yet full.

If the color map is full, even valid colors translate to black or white
(foreground or background).

Interfaces do not, in general, specify colors for widgets, so that the selection
of colors can be controlled by the user through the .Xdefaults file.

To write an application that runs on both monochrome and color devices, you
need to specify which colors in a color table (defined with the
COL OR_ TABLE function) map to the background and which colors map to
the foreground. UIL lets you use the COLOR function to designate this
mapping in the definition of the color. The following example shows how to
use the COLOR function to map the color red to the background color on a
monochrome device:

VALUE c: COLOR (, red' , BACKGROUND);

Reference Pages

UIL(5X)

The mapping comes into play only when the MRM is given a color and the
application is to be displayed on a monochrome device. In this case, each
color is considered to be in one of the following three categories:

• The color is mapped to the background color on the monochrome
device.

• The color is mapped to the foreground color on the monochrome
device.

• Monochrome mapping is undefined for this color.

If the color is mapped to the foreground or background color, MRM
substitutes the foreground or background color, respectively. If you do not
specify the monochrome mapping for a color, MRM passes the color string
to the Motif Toolkit for mapping to the foreground or background color.

RGB(red_integer, green_integer, blue_integer)
The three integers define the values for the red, green, and blue components
of the color, in that order. The values of these components can range from 0
to 65,535, inclusive.

In a UID file, UIL represents an RGB value as three integers. MRM calls X
translation routines that convert the integers to the device-speci fic pixel
value. If you are running on a monochrome server, all colors translate to
black or white. If you are on a color server, RGB values translate to their
proper colors if the colormap is not yet full. If the colormap is full, values
translate to black or white (foreground or background).

COLOR_TABLE(color _expression='character'[, ...])
The color expression is a previously defined color, a color defined in line
with the COLOR function, or the phrase BACKGROUND COLOR or
FOREGROUND COLOR. The character can be any valid UIL character.

The COLOR_TABLE function provides a device-independent way to
specify a set of colors. The COLOR_TABLE function accepts either
previously defined UIL color names or in-line color definitions (using the
COLOR function). A color table must be private because its contents must
be known by the UIL compiler to construct an icon. The colors within a
color table, however, can be imported, exported, or private.

The single letter associated with each color is the character you use to
represent that color when creating an icon. Each letter used to represent a·
color must be unique within the color table.

ICON([COLOR_TABLE=color _table_name,] row[, ...)
color-table-name must refer to a previously defined color table, and row is a
character expression giving one row of the icon.

1-1135

OSF/Motif Programmer's Reference
UIL(5X)

1-1136

The ICON function describes a rectangular icon that is x pixels wide and y
pixels high. The strings surrounded by single quotation marks describe the
icon. Each string represents a row in the icon; each character in the string
represents a pixel.

The first row in an icon definition determines the width of the icon. All rows
must have the same number of characters as the first row. The height of the
icon is dictated by the number of rows.

The first argument of the ICON function (the color table specification) is
optional and identifies the colors that are available in this icon. By using the
single letter associated with each color, you can specify the color of each
pixel in the icon. The icon must be constructed of characters defined in the
specified color table.

A default color table is used if you omit the argument specifying the color
table. To make use of the default color table, the rows of your icon must
contain only spaces and asterisks. The default color table is defined as
follows:

COLOR_TABLE (BACKGROUND COLOR = ' " FOREGROUND COLOR = ' * ,)

You can define other characters to represent the background color and
foreground color by replacing the space and asterisk in the BACKGROUND
COLOR and FOREGROUND COLOR clauses shown in the previous
statement. You can specify icons as private, imported, or exported. Use the
MRM function MrmFetchIconLiteral to retrieve an exported icon at run
time.

XBITMAPFILE(string_expression)
The XBITMAPFILE function is similar to the ICON function in that both
describe a rectangular icon that is x pixels wide and y pixels high. However,
XBITMAPFILE allows you to specify an external file containing the
definition of an X bitmap, whereas all ICON function definitions must be
coded directly within UIL. X bitmap files can be generated by many
different X applications. UIL reads these files through the XBITMAPFILE
function, but does not support creation of these files. The X bitmap file
specified as the argument to the XBITMAPFILE function is read at
application run time by MRM.

The XBITMAPFILE function returns a value of type pixmap and can be
used anywhere a pixmap data type is expected.

SINGLE_FLOAT(reaCnumber _literal)
The SINGLE_FLOAT function lets you store floating-point literals in UIL
files as single-precision, floating-point numbers. Single-precision floating­
point numbers can often be stored using less memory than double-precision,
floating-point numbers. The reaCnumber _literal can be either an integer

Reference Pages

UIL(5X)

literal or a floating-point literal. A value defined using this function cannot
be used in an arithmetic expression.

FLOAT(reaLnumber _literal)
The FLOAT function lets you store floating-point literals in UIL files as
double-precision, floating-point numbers. The reaLnumber _literal can be
either an integer literal or a floating-point literal.

FONT(string_expression[, CHARACTER_SET=char _set])
You define fonts with the FONT function. Using the FONT function, you
designate a value to specify a font and then use that value for arguments that
require a font value. The UIL compiler has no built-in fonts.

Each font makes sense only in the context of a character set. The FONT
function has an additional parameter to let you specify the character set for
the font. This parameter is optional; if you omit it, the default character set
depends on the value of the LANG environment variable if it is set, or on the
value ofXmFALLBACK_CHARSET if LANG is not set.

string_expression specifies the name of the font and the clause
CHARACTER_SET = char _set specifies the character set for the font. The
string expression used in the FONT function cannot be a compound string.

FONTSET(string_expression[, ...] [, CHARACTER_SET=charset])
You define fontsets with the FONTSET function. Using the FONTSET
function, you designate a set of values to specify fonts and then use those
values for arguments that require a fontset. The UIL compiler has no built-in
fonts.

Each font makes sense only in the context of a character set. The FONTSET
function has an additional parameter to let you specify the character set for
the font. This parameter is optional; if you omit it, the default character set
depends on the value of the LANG environment variable if it is set, or on the
value of XmFALLBACK_CHARSET if LANG is not set.

The string expression specifies the name of the font and the clause
CHARACTER_SET = char _set specifies the character set for the font. The
string expression used in the FONTSET function cannot be a compound
string.

FONT _ TABLE(fonCexpression[, ... J)
A font table is a sequence of pairs of fonts and character sets. At run time,
when an object needs to display a string, the object scans the font table for
the character set that matches the character set of the string to be displayed.
UIL provides the FONT_TABLE function to let you supply such an
argument. jonCexpression is created with the FONT and FONTSET
functions.

1-1137

OSF/Motif Programmer's Reference

UIL(5X)

1-1138

If you specify a single font value to specify an argument that requires a font
table, the UIL compiler automatically converts a font value to a font table.

COMPOUND_STRING(string_expression[,property[, ...]J)
Use the COMPOUND_STRING function to set properties of a null­
terminated string and to convert it into a compound string. The properties
you can set are the character set, writing direction, and separator.

The result of the COMPOUND_STRING function is a compound string
with the string expression as its value. You can optionally include one or
more of the following clauses to specify properties for the resulting
compound string:

CHARACTER_SET = character_set
RIGHT_TO_LEFT = boolean_expression
SEPARATE = boolean_expression

The CHARACTER_SET clause specifies the character set for the string. If
you omit the CHARACTER_SET clause, the resulting string has the same
character set as string_expression.

The RIGHT_TO_LEFT clause sets the writing direction of the string from
right to left if boolean_expression is True, and left to right otherwise.
Specifying this argument does not cause the value of the string expression to
change. If you omit the RIGHT_TO _LEFT argument, the resulting string
has the same writing direction as string_expression.

The SEPARATE clause appends a separator to the end of the compound
string if boolean_expression is True. If you omit the SEPARATE clause, the
resulting string does not have a separator.

You cannot use imported or exported values as the operands of the
COMPOUND_STRING function.

COMPOUND _STRING_ TABLE(string_expression[, ... J)
A compound string table is an array of compound strings. Objects requiring
a list of string values, such as the XmNitems and XmNselectedItems
arguments for the list widget, use string table values. The
COMPOUND_STRING_TABLE function builds the values for these two
arguments of the list widget. The COMPOUND_STRING_TABLE
function generates a value of type string_table. The name
STRING_TABLE is a synonym for COMPOUND _STRING_TABLE.

The strings inside the string table can be simple strings, which the UIL
compiler automatically converts to compound strings.

Reference Pages

UIL(5X)

ASCIZ_STRING_TABLE(string_expression[, ...])
An ASCIZ string table is an array of ASCIZ (null-terminated) string values
separated by commas. This function allows you to pass more than one
ASCIZ string as a callback tag value. The ASCIZ_STRING_TABLE
function generates a value of type asciz_table. The name ASCIZ_TABLE
is a synonym for ASCIZ_STRING_TABLE.

WIDE_ CHARACTER(string_expression)
Use the WIDE_CHARACTER function to generate a wide character string
from null-terminated string in the current locale.

CLASS_REC_NAME(string_expression)
Use the CLASS_REC_NAME function to generate a widget class name.
For a widget class defined by the toolkit, the string argument is the name of
the class. For a user-defined widget, the string argument is the name of the
creation routine for the widget.

INTEGER_TABLE(integer _expression[, ...])
An integer table is an array of integer values separated by commas. This
function allows you to pass more than one integer per callback tag value.
The INTEGER_TABLE function generates a value of type integer_table.

ARGUMENT(string_expression[, argumenctype])
The ARGUMENT function defines the arguments to a user-defined widget.
Each of the objects that can be described by UIL permits a set of arguments,
listed in Appendix B. For example, XmNheight is an argument to most
objects and has an integer data type. To specify height for a user-defined
widget, you can use the built-in argument name XmNheight, and specify an
integer value when you declare the user-defined widget. You do not use the
ARGUMENT function to specify arguments that are built into the UIL
compiler.

The string_expression name is the name the UIL compiler uses for the
argument in the UID file. argumenCtype is the type of value that can be
associated with the argument. If you omit the second argument, the default
type is ANY and no value type checking occurs. Use one of the following
keywords to specify the argument type:

• ANY

• ASCIZ_ TABLE

• BOOLEAN

• COLOR

1-1139

OSF/Motif Programmer's Reference

UIL(5X)

1-1140

• COLOR_TABLE

• COMPOUND_STRING

• FLOAT

• FONT

• FONT_TABLE

• FONTSET

• ICON

• INTEGER

• INTEGER_TABLE

• REASON

• SINGLE_FLOAT

• STRING

• STRING_TABLE

• TRANSLATION_TABLE

• WIDE_CHARACTER

• WIDGET

You can use the ARGUMENT function to allow the UIL compiler to
recognize extensions to the Motif Toolkit. For example, an existing widget
may accept a new argument. Using the ARGUMENT function, you can
make this new argument available to the UIL compiler before the updated
version of the compiler is released.

REASON(string_expression)
The REASON function is useful for defining new reasons for user-defined
widgets.

Each of the objects in the Motif Toolkit defines a set of conditions under
which it calls a user-defined function. These conditions are known as
callback reasons. The user-defined functions are termed callback
procedures. In a UIL module, you use a callbacks list to specify which user­
defined functions are to be called for which reasons.

Appendix B lists the callback reasons supported by the Motif Toolkit objects.

Reference Pages

UIL(5X)

When you declare a user-defined widget, you can define callback reasons for
that widget using the REASON function. The string expression specifies the
argument name stored in the UID file for the reason. This reason name is
supplied to the widget creation routine at run time.

TRANSLATION_TABLE(string_expression[, ...])
Each of the Motif Toolkit widgets has a translation table that maps X events
(for example, mouse button 1 being pressed) to a sequence of actions.
Through widget arguments, such as the common translations argument, you
can specify an alternate set of events or actions for a particular widget. The
TRANSLATION_TABLE function creates a translation table that can be
used as the value of an argument that is of the data type translation_table.

You can use one of the following translation table directives with the
TRANSLATION_TABLE function: #override, #augment, or #replace.
The default.is #replace. If you specify one of these directives, it must be the
first entry in the translation table.

The #override directive causes any duplicate translations to be ignored. For
example, if a translation for <BtnlDown> is already defined in the current
translations for a PushButton, the translation defined by new_translations
overrides the current definition. If the #augment directive is specified, the
current definition takes precedence. The #replace directive replaces all
current translations with those specified in the XmNtranslations resource.

Related Information
uil(lX), Uil(3X)

1-1141

OSF/Motif Programmer's Reference

WML(5X)

Description

WML-The widget meta-language file format for creating UIL compilers

The widget meta-language facility (WML) is used to generate the components of
the user interface language (UIL) compiler that can change depending on the
widget set. Using WML you can add support in UIL for new widgets to the
OSFlMotif widget set or for a totally new widget set.

File Format

1-1142

WML files are ASCII files that you can modify with any standard text editor. They
are accessed in the tools/wml directory by WML. By convention WML files have
the suffix . wml. The Motif widget set is described in the motif. wml file. This is
also the default WML file when using the WML facility.

When adding new widgets or changing widget characteristics, you should start with
a copy of the motif. wml file. If you are creating a new widget set for use with
UIL, you should start from scratch. In either case the motif. wml file is a good
example of WML syntax, and you should familiarize yourself with it before writing
your own WML file.

WML files have a simple syntax, similar in structure to UIL. It is made up of the
following elements:

• Comments

• Data Type Definitions

• Character Set Definitions

• Enumeration Set Definitions

• Control List Definitions

• Class Definitions

• Child Definitions

• Resource Definitions

You can use space, tabs, or newlines anywhere in the syntax, as long as you do not
split up keywords or strings, except that comments end at a newline. The order of
elements is not important to the syntax.

Reference Pages
WML(5X)

This description uses the following additional conventions to describe the syntax of
the widget meta-language:

[] Indicates optional elements

Comments

Indicates where an element of syntax can be repeated

Indicates a choice among multiple items

You can include comments in the WML file. Comments have the following syntax:

[any. element] !any.comment

Comments begin with an exclamation point and extend to the end of the line. A
comment can begin on a line by itself or follow any part of another element. A
comment does not change the meaning of any other element. For example:

!This is a comment
that spans two lines.

DataType !This is a comment following code.

Data Type Definitions

Data type definitions register all the resource data types used in the file. You must
register all the data types used in your WML file. Data type definitions have the
following syntax:

DataType
any.datatype [{ InternalLiteral = internal.name I

DocName = "string"; [...]}];
[...]

A data type definition begins with the keyword DataType. Following the
DataType keyword is a list of data types that can be further modified with

InternalLiteral

DocName

This forces the value of the internal symbol table literal definition of
the data type name. This modifier is only used to get around symbol
table definitions hard coded into the UIL compiler. It should rarely
be used.

This gives an arbitrary string for use in the documentation. This
string is meant to supply a different name for the data type for use in
the documentation, or a single name for the data type if the data
type has aliases.

1-1143

OSF/Motif Programmer's Reference
WML(5X)

For example:

DataType OddNumber {DocName=="OddNumber";};

NewString;

Character Set Definitions

1-1144

Character set definitions register the Motif Toolkit name and other information for
the character set names used in UIL. Character set definitions have the following
syntax:

CharacterSet
any. c harac te r. se t

{ [FontListElementTag I XmStringCharsetName] = "string" ;
[Alias = "string" ... ; I
Direction = [LeftToRight I RightToLeft] ; I
ParseDirection = [LeftToRight I RightToLeft] ; I
CharacterSize = [OneByte I TwoByte] ;]
[...] } ;

[...]

A character set definition begins with the keyword CharacterSet. Following the
CharacterSet keyword is a list of character sets that can be further modified with

FontListElementTag I XmStringCharsetName

Alias

Direction

Specifies the name of the character set, which will become the
character set component of a compound string segment created
using this character set. This modifier is required.

Specifies one or more aliases for the character set name. Each alias
can be used within UIL to refer to the same character set.

Specifies the direction of a compound string segment created using
this character set. The default is LeftToRight.

ParseDirection
Specifies the direction in which an input string is parsed when a
compound string segment is created using this character set. The
default is whatever Direction is specified.

CharacterSize
Specifies the number of bytes in each character of a compound
string segment created using this character set. The default is
OneByte.

For example:

Character8et
iso_latin1

{ XmStringCharsetNarne = "1808859-1";
Alias = "180Latin1"; };

iso_hebrew_lr
XmStringCharsetNarne = "1808859-8";
Alias = "iso_latin8_lr";
Direction = RightToLeft;
ParseDirection = LeftToRight; };

ksc_korean
XmStringCharsetNarne = "K8C5601.1987 -0" ;
Character8ize = TwoByte; };

Enumeration Set Definitions

Reference Pages

WML(5X)

Enumeration set definitions register the named constants used in the Motif Toolkit
to specify some resource values. Enumeration set definitions have the following
syntax:

EnumerationSet
resource. name : resource. type

{ enum. value. name ; [...] } ;

An enumeration set definition begins with the keyword EnumerationSet. For
each enumeration set defined, the name and type of the resource are listed. The
resource name is the Motif Toolkit resource name, with the beginning XmN
removed and with the initial letter capitalized. For example, the name of the Motif
Toolkit resource XmNrowColumnType is RowColumnType. The resource type
is the data type for the resource; for most resources, this is integer. Following the
resource name and type is a list of names of enumeration values that can be used as
settings for the resource. These names are the same as those in the Motif Toolkit.

For example:

Enumeration8et
RowColumnType: integer

{ XmWORK_AREA; XmMENU_BAR; XmMENU_POPUP;
XmMENU_PULLOOWN; XmMENU_OPT10N; };

Control List Definitions

Control list definitions assign a name to groups of controls. You can use these
control lists later in class definitions to simplify the structure of your WML file.
Control list definitions have the following syntax:

ControlList
any. control. list [{ any.control; [... n];

1-1145

OSF/Motif Programmer's Reference

WML(5X)

A control list definition starts with the ControlList keyword. Following the
ControlList keyword are any number of control list definitions. Control list
definitions are made up of a control list name followed by the set of controls it
represents. For example:

ControlList
Buttons {PushButton;

RadioButton;
CascadeButton;
NewCascadebutton;};

Each control specified in the control list must be defined as a class in the file.

Class Definitions

1-1146

Class definitions describe a particular widget class including its position in the
class hierarchy, toolkit convenience function, resources, and controls. There
should be one class definition for each widget or gadget in the widget set you want
to support in UIL. Class definitions have the following syntax:

Class class. name : MetaClass I Widget I Gadget
[{[
Super Class = class. name; I
ParentClass::: parent.class.name; I
InternalLiteral = internal.name; I
Alias = alias; I
ConvenienceFunction = convenience function; I
WidgetClass = widget. class; I
DocName = "string"; I
DialogClass = True I False; I
Resources {any.resource.name [{

Default = new. default. value; I
Exclude = True I
False;
[... J}];

[... J}; I
Controls { any. control. name; [... J};
Children {any.child.name; [...] };
[...]
]}];

Class definitions start with the Class keyword. For each class defined, the name of
the class and whether the class is a metaclass, widget, or gadget is listed. Each
class definition can be further modified with the keywords described in the
following list.

Reference Pages

WML(5X)

SuperClass This indicates the name of the parent class. Only the root of the
hierarchy does not specify a SuperClass.

ParentClass This indicates the name of the widget's automatically created parent
class if one exists. This allows resources for that automatically
created class to be used in instances of this class. For example,
XmBulletinBoardDialog creates both an XmBulletinBoard and
an XmDialogSbell. To access the resources of the XmDialogSbell
parent class it must be specified here.

InternalLiteral
This forces the value of the internal symbol table literal definition of
the class name. This modifier is only used to get around symbol
table definitions hard coded into the UIL compiler. It should rarely
be used.

Alias This indicates alternate names for the class for use in a UIL
specification.

ConvenienceFunction
This indicates the name of the creation convenience function for this
class. All widget and gadget classes must have a
ConvenienceFunction.

WidgetClass This indicates the associated widget class of gadget type classes.

DocName

Presently, nothing is done with this value.

This defines an arbitrary string for use in the documentation.
Presently, nothing is done with this value.

DialogClass This indicates whether the class is a dialog class. Presently, nothing
is done with this value.

Resources This lists the resources of the widget class. This keyword can be
further modified with

Default This specifies a new default value for this resource.
Resource default values are usually set in the resource
definition. If an inherited resource's default value is
changed by the class, the new default value should be
noted here.

Exclude This specifies whether an inherited resource should be
excluded from the resource list of the class. Exclude is
False by default.

1-1147

OSF/Motif Programmer's Reference

WML(5X)

1-1148

Children This lists the names of the automatically created children of this
class, so that those children can be accessed in the UIL file.

Controls This lists the controls that the widget class allows. The controls can
be other classes or a control list from the control list definition.

The following example uses the examples from the data type definitions and
control list definitions above.

Class
TopLevelWidget MetaClass

{

Resources

} i

xtbNfirstResourcei
XtbNsecondResourcei
} i

NewWidget : Widget
{

SuperClass = TopLevelWidgeti
ConvenienceFunction =

XtbCreateNewWidgeti
Resources

XtbNnewResourcei
XtbNfirstResource

{Default="XtbNEW_VALUE"i}i
XtbNsecondResource

{Exclude=Truei};
} ;

Controls

} i

NewWidget;
Buttons;
} ;

Reference Pages

WML(5X)

Child Definitions

Child definitions register the classes of automatically created children.
Automatically created children are referenced elsewhere in a uil file using the
Children keyword within a class definition. Child definitions have the following
syntax:

Child
child.name : class.name;
[...]

Where child. name is the name of the automatically created child and class. name is
the name of the class of that child.

Resource Definitions

Resource definitions describe a particular resource including its type, and default
value. There should be a resource definition for each new resource referenced in
the class definitions. Resource definitions have the following syntax:

Resource
resource. name : Argument I Reason I Constraint I SubResource

[{[
Type = type ; I
ResourceLiteral = resource.literal ; I
InternalLiteral = inte mal. name; I
Alias = alias ; I
Related = related; I
Default = default; I
DocName = doc. name ;]
(...])]

[...]

Resource definitions start with the Resource keyword. For each resource
definition, the name of the resource and whether the resource is an argument,
reason, constraint or subresource is listed.

Argument Indicates a standard resource

Reason Indicates a callback resource

Constraint Indicates a constraint resource

SubResource Presently, nothing is done with this value

1-1149

OSF/Motif Programmer's Reference

WML(5X)

1-1150

The resource definition can be further modified with the following keywords:

Type This indicates the data type of the resource. It must be listed in
the data type definition.

ResourceLiteral This indicates the keyword used in the UIL file to reference the
resource. In Motif, the resource name is the same as the
ResourceLiteral.

InternalLiteral This forces the value of the internal symbol table literal
definition of the resource name. This modifier is only used to
get around symbol table definitions hard coded into the UIL
compiler. It should rarely be used.

Alias This indicates alternate names for the resource for use in a UIL
specification.

Related

Default

DocName

This is a special purpose field that allows resources that act as a
counter for the current resources to be related to the resource.
UIL automatically sets the value of this related resource to the
number of items in the compiled instance of type resource. name.

This indicates the default value of the resource.

This defines an arbitrary string for use in the documentation.
Presently, nothing is done with this value.

Reference Pages

WML(5X)

. The following example uses the examples from the data type definitions, control
list definitions and class definitions above.

Resource
XtbNfirstResource : Argument

{ Type = OddNumber;
Default = "XtbOLD_VALUE";};

XtbNsecondResource : Argument
{ Type = NewString;

Default = "XtbNEW_STRING"; };
XtbNnewResource : Argument

{ Type = OddNumber;
Default = "XtbODD_NUMBER"; };

1-1151

Appendix A

Constraint Arguments and
Automatically Created Children

The following tables list the constraint arguments and automatically created
children for widgets available within UIL. The constraints are available for
children of the listed widget. For more information about constraint
arguments see the OSFIMotij Programmer's Guide.

XmForm and XmFormDialog Constraint Arguments

XmNbottomAttachment XmNrightAttachment
XmNbottomOffset XmNrightOffset
XmNbottomPosition XmNrightPosition
XmNbottomWidget XmNrightWidget
XmNleftAttachment XmNtopAttachment
Xm N leftOffset Xm NtopOffset
XmNleftPosition Xm NtopPosition
XmNleftWidget XmNtopWidget
XmNresizable

A-1

OSF/Motif Programmer's Reference

XmPanedWindow Constraint Arguments

XmNaliowResize XmNpaneMinimum
XmNpaneMaximum XmNskipAdjust

XmFrame Constraint Arguments
XmNchildHorizontalAlignment XmNchildType
XmNchildHorizontalSpacing XmNchildVerticalAlignment

XmSelectionBox Constraint Arguments

XmNchildPlacement

XmScale Automatically Created Children
Name Class

Xm_ Title XmLabel

XmScroliedWindow Automatically Created Children
Name Class

Xm_ VertScroliBar XmScroliBar
Xm_HorScroliBar XmScroliBar

XmOptionMenu Automatically Created Children
Name Class

Xm_ Option Label XmLabelGadget
Xm_OptionButton XmCascadeButtonGadget

XmPopup and XmPulidownMenu Automatically Created Children
Name Class

Xm_ TearOffControl X mTea rOff Button

A-2

Constraint Arguments and Automatically Created Children

XmMainWindow Automatically Created Children
Name Class

Xm_Separator1 XmSeparator
Xm_Separator2 XmSeparator
Xm_Separator3 XmSeparator

XmMessageBox Automatically Created Children
Name Class

Xm_Symbol XmLabel
Xm_Separator XmSeparator
Xm_Message XmLabel
Xm_OK XmPushButton
Xm_Cancel
Xm_Help

XmPushButton
XmPushButton

XmSelectionBox Automatically Created Children
Name Class
Xm_ltems XmLabel
Xm_ltemsList XmScroliedList
Xm_Selection XmLabel
Xm_Text
Xm_Separator
Xm_OK
Xm_Cancel
Xm_Help
Xm_Apply

XmText
XmSeparator
XmPushButton
XmPushButton
XmPushButton
XmPushButton

A-3

OSF/Motif Programmer's Reference

A-4

XmFileSelectionBox Automatically Created Children
Name Class
Xm_ltems XmLabel
XmJtemsList XmScroliedList
Xm_Separator XmSeparator
Xm_OK XmPushButton
Xm_Cancel XmPushButton
Xm_Help XmPushButton
Xm_FilterLabel XmLabel
Xm_FilterText
Xm_DirList
Xm_Dir
Xm_Filter

XmText
XmScroliedList
XmLabel
XmPushButton

Appendix B

UIL Built-In Tables

This appendix contains a listing of part of the UIL built-in tables used
during compilation to check that your UIL specification is consistent with
the Motif Toolkit.

For each object in the Motif Toolkit, this appendix contains a table that lists
the reasons and controls (children) supported by UIL for that object. The
arguments supported by UIL for each object are the same as the Motif
Toolkit resources for that object. Appendix C lists the name and UIL data
type of each UIL argument. For information on which arguments are
supported for which objects and for the default values of arguments, see the
widget reference pages.

8-1

OSF/Motif Programmer's Reference

XmArrowButton

Controls Reasons

XmPopupMenu MrmNcreateCaliback
Xm NactivateCallback
XmNarmCaliback
Xm NdestroyCaliback
XmNdisarmCaliback
Xm NhelpCaliback

XmArrowButtonGadget

Controls Reasons

No children are supported Mrm NcreateCallback
XmNactivateCaliback
XmNarmCaliback
Xm NdestroyCaliback
XmNdisarmCaliback
XmNhelpCaliback

XmBulietinBoard

Controls Reasons

XmArrowB utton M rmNcreateCaliback
XmArrowButtonGadget Xm NdestroyCallback
XmBulietinBoard XmNfocusCallback
XmBulietinBoardDialog XmNhelpCaliback
XmCascadeButton XmNmapCaliback
XmCascadeButtonGadget XmNunmapCaliback
XmCommand
XmDialogShell
XmDrawingArea
XmDrawnButton
XmErrorDialog
Xm FileSelectionBox
XmFileSelectionDialog
XmForm
XmFormDialog

8-2

XmBulietinBoard

Controls

XmFrame
Xm Information Dialog
XmLabel
Xm LabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
Xm MessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulidownMenu
XmPushButton
XmPushButtonGadget
XmQuestionDialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmTogg leButtonGadget
XmWarningDialog

Reasons

UIL Built-In Tables

B-3

OSF/Motif Programmer's Reference

XmBulietinBoard

Controls Reasons

XmWorkArea
XmWorkingDialog
usecdefined

XmBulletinBoardDialog

Controls Reasons

XmArrowButton Mrm NcreateCaliback
XmArrowButtonGadget XmNdestroyCaliback
XmBulietinBoard XmNfocusCallback
XmBulietinBoardDialog XmNhelpCaliback
XmCascadeButton XmNmapCaliback
XmCascadeButtonGadget XmNpopdownCallback
XmCommand XmNpopupCaliback
XmDialogShel1 XmNunmapCaliback
XmDrawingArea
XmDrawnButton
XmErrorDialog
Xm FileSelectionBox
Xm FileSelectionDialog
XmForm
XmFormDialog
XmFrame
Xm Information Dialog
XmLabel
Xm LabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu

8-4

XmBulletinBoardDialog

Controls

XmPromptDialog
XmPulldownMenu
XmPushButton
Xm PushButton Gadget
XmQuestionDialog
XmRadioBox
XmRowColumn
XmScale
XmScrollBar
Xm Scrolled List
XmScrolledText
XmScrolledWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
usecdefined

Reasons

UIL Built-In Tables

8-5

OSF/Motif Programmer's Reference

XmCascadeButton

Controls Reasons

Xm PopupMenu M rmNcreateCaliback
XmPulidownMenu Xm NactivateCaliback

Xm NcascadingCallback
Xm NdestroyCaliback
Xm NhelpCaliback

XmCascadeButtonGadget

Controls Reasons

XmPulidownMenu M rm NcreateCaliback
Xm NactivateCallback
Xm NcascadingCallback
Xm NdestroyCaliback
Xm NhelpCaliback

XmCommand

Controls Reasons

XmPopupMenu M rm NcreateCallback
XmNcommandChangedCallback
XmNcommandEnteredCaliback
Xm NdestroyCaliback
XmNfocusCallback
XmNhelpCallback
XmNmapCaliback
XmNunmapCaliback

8-6

UIL Built-In Tables

XmDialogShell

Controls Reasons

XmBulietinBoard M rm NcreateCaliback
XmDrawingArea Xm NdestroyCaliback
Xm FileSelection Box Xm NpopdownCaliback
XmForm XmNpopupCaliback
XmFrame
XmMessageBox
Xm PanedWindow
XmRadioBox
XmRowColumn
XmScale
XmScroliedWindow
XmSelectionBox
XmWorkArea

XmDrawingArea

Controls Reasons

XmArrowButton M rm NcreateCaliback
XmArrowButtonGadget XmNdestroyCaliback
XmBulietinBoard Xm NexposeCaliback
XmBulietinBoardDialog XmNhelpCaliback
XmCascadeButton XmNinputCaliback
XmCascadeButtonGadget Xm N resizeCallback
XmCommand
XmDialogShell
Xm DrawingArea
XmDrawnButton
Xm E rrorDialog
Xm FileSelectionBox
Xm FileSelection Dialog
XmForm
XmFormDialog
XmFrame
Xm I nformationDialog
XmLabel

8-7

OSF/Motif Programmer's Reference

XmDrawingArea

8-8

Controls

XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
Xm MessageDialog
XmOption Men u
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulidownMenu
XmPushButton
Xm PushButtonGadget
XmQuestion Dialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
Xm Scrolled List
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelection Dialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

Reasons

UIL Built-In Tables

XmDrawnButton

Controls Reasons

XmPopupMenu M rm NcreateCaliback
XmNactivateCallback
XmNarmCaliback
XmNdestroyCaliback
XmNdisarmCaliback
XmNexposeCaliback
XmNhelpCaliback
XmNresizeCaliback

XmErrorDialog

Controls Reasons

XmArrowButton M rmNcreateCallback
XmArrowButtonGadget XmNcancelCaliback
XmBulietinBoard XmNdestroyCaliback
XmBulietinBoardDialog Xm NfocusCaliback
XmCascadeButton XmNhelpCaliback
XmCascadeButtonGadget XmNmapCaliback
XmCommand XmNokCaliback
XmDialogShell Xm NpopdownCaliback
XmDrawingArea Xm NpopupCaliback
XmDrawnButton XmNunmapCaliback
Xm E rrorDialog
Xm FileSelection Box
Xm FileSelection Dialog
XmForm
Xm Form Dialog
XmFrame
XmlnformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell

8-9

OSF/Motif Programmer's Reference

XmErrorDialog

8-10

Controls

XmMessageBox
XmMessageDialog
XmOptionMenu
Xm PanedWindow
XmPopupMenu
Xm PromptDialog
XmPulidownMenu
XmPushButton
Xm Push ButtonGadget
XmQuestionDialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelection Box
XmSelection Dialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButtQn
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorking Dialog
usecdefined

Reasons

UIL Built-In Tables

XmFileSelectionBox

Controls Reasons

XmArrowButton M rmNcreateCallback
XmArrowButtonGadget Xm NapplyCallback
XmBulletinBoard XmNcancelCallback
XmBulletinBoardDialog XmNdestroyCallback
XmCascadeButton XmNfocusCallback
XmCascadeButtonGadget XmNhelpCallback
XmCommand XmNmapCallback
XmDialogShell XmNnoMatchCallback
XmDrawingArea XmNokCallback
XmDrawnButton Xm NunmapCallback
XmErrorDialog
Xm FileSelection Box
Xm FileSelectionDialog
XmForm
XmFormDialog
XmFrame
Xm Information Dialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
Xm PromptDialog
XmPulldownMenu
XmPushButton
Xm PushButtonGadget
XmQuestionDialog
XmRadioBox
XmRowColumn

8-11

OSF/Motif Programmer's Reference

8-12

XmFileSelectionBox

Controls

XmScale
XmScrollBar
XmScrolledList
XmScrolledText
XmScrolledWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

Reasons

XmFileSelectionDialog

Controls Reasons

XmArrowButton M rmNcreateCallback
XmArrowButtonGadget XmNapplyCallback
XmBulletinBoard XmNcancelCallback
XmBulletinBoardDialog Xm NdestroyCallback
XmCascadeButton XmNfocusCallback
XmCascadeButtonGadget XmNhelpCallback
XmCommand XmNmapCallback
XmDialogShell XmNnoMatchCallback
XmDrawingArea XmNokCallback
XmDrawnButton XmNpopdownCallback
XmErrorDialog XmNpopupCallback
XmFileSelectionBox XmNunmapCallback
Xm FileSelectionDialog

XmFileSelectionDialog

Controls

XmForm
Xm Form Dialog
XmFrame
Xm I nformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuSheli
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulidownMenu
XmPushButton
Xm Push ButtonGadget
XmQuestion Dialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelection Dialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton

Reasons

UIL Built-In Tables

8-13

OSF/Motif Programmer's Reference

XmFileSelectionDialog

Controls Reasons

XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
usecdefined

XmForm

Controls Reasons

XmArrowButton M rm NcreateCaliback
XmArrowButtonGadget Xm NdestroyCaliback
XmBulietinBoard Xm NfocusCallback
XmBulletinBoardDialog XmNhelpCaliback
XmCascadeButton XmNmapCaliback
XmCascadeButtonGadget XmNunmapCaliback
XmCommand
XmDialogShell
XmDrawingArea
XmDrawnButton
XmErrorDialog
XmFileSelectionBox
XmFileSelectionDialog
XmForm
Xm Form Dialog
XmFrame
Xm I nformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
Xm MessageDialog
XmOptionMenu

8-14

XmForm

Controls

Xm PanedWindow
XmPopupMenu
XmPromptDialog
XmPulidownMenu
XmPushButton
XmPushButtonGadget
XmQuestion Dialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
XmScroliedList
Xm ScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
usecdefined

UIL Built-In Tables

Reasons

8-15

OSF/Motif Programmer's Reference

XmFormDialog

Controls Reasons

XmArrowButton M rmNcreateCaliback
XmArrowButtonGadget Xm NdestroyCaliback
XmBulietinBoard XmNfocusCaliback
XmBulietinBoardDialog XmNhelpCaliback
XmCascadeButton XmNmapCaliback
XmCascaqeButtonGadget XmNpopdownCaliback
XmCommand XmNpopupCallback
XmDialogShell XmNunmapCaliback
Xm DrawingArea
XmDrawnButton
XmErrorDialog
Xm FileSelectionBox
Xm FileSelectionDialog
XmForm
XmFormDialog
XmFrame
Xm Information Dialog
XmLabel
Xm LabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulidownMenu
XmPushButton
XmPushButtonGadget
XmQuestionDialog
XmRadioBox
XmRowColumn

8-16

UIL Built-In Tables

XmFormDialog

Controls

XmScale
XmScroliBar
Xm Scrolled List
XmScroliedText
XmScroliedWindow
XmSelection Box
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
usecdefined

Reasons

XmFrame

Controls Reasons

XmArrowButton M rm NcreateCaliback
XmArrowButton Gadget Xm NdestroyCaliback
XmBulietinBoard XmNhelpCaliback
XmBulietinBoardDialog XmNtraverseObscuredCallback
XmCascadeButton
XmCascadeButtonGadget
XmCommand
XmDialogShell
Xm DrawingArea
XmDrawnButton
XmErrorDialog
Xm FileSelectionBox
Xm FileSelection Dialog

8-17

OSF/Motif Programmer's Reference

XmFrame

Controls Reasons

XmForm
XmFormDialog
XmFrame
XmlnformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuSheil
XmMessageBox
Xm MessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
Xm PromptDialog
XmPulidownMenu
XmPushButton
XmPushButtonGadget
XmQuestionDialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScrolledWlndow
XmSelectionBox
XmSelection Dialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton

8-18

UIL Built-In Tables

XmFrame

Controls Reasons

XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
usecdefined

XmlnformationDialog

Controls Reasons

XmArrowButton MrmNcreateCaliback
XmArrowButtonGadget XmNcancelCallback
XmBulietinBoard XmNdestroyCaliback
XmBulietinBoardDialog XmNfocusCaliback
XmCascadeButton XmNhelpCaliback
XmCascadeButtonGadget XmNmapCaliback
XmCommand XmNokCaliback
XmDialogShell XmNpopdownCaliback
XmDrawingArea XmNpopupCaliback
Xm Drawn Button XmNunmapCaliback
XmErrorDialog
Xm FileSelectionBox
Xm FileSelection Dialog
XmForm
Xm Form Dialog
XmFrame
Xm I nformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu

8-19

OSF/Motif Programmer's Reference

8-20

XmlnformationDialog

Controls

XmPanedWindow
XmPopupMenu
Xm PromptDialog
XmPulidownMenu
XmPushButton
Xm Push ButtonGadget
XmQuestionDialog
XmRadioBox
Xm RowColumn
XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

Reasons

XmLabel

Controls Reasons

XmPopupMenu MrmNcreateCaliback
XmNdestroyCaliback
XmNhelpCaliback

UIL Built-In Tables

XmLabelGadget

Controls Reasons

No children are supported M rm NcreateCallback
Xm NdestroyCaliback
Xm NhelpCaliback

XmList

Controls Reasons

XmPopupMenu M rm NcreateCaliback
XmNbrowseSelectionCallback
XmNdefaultActionCallback
XmNdestroyCaliback
XmNextendedSelectionCallback
XmNhelpCaliback
XmNmultipleSelectionCaliback
XmNsingleSelectionCallback

XmMainWindow

Controls Reasons

XmArrowButton Mrm NcreateCaliback
XmArrowButtonGadget XmNdestroyCaliback
XmBulietinBoard Xm NhelpCaliback
XmBulietinBoardDialog Xm NtraverseObscu redCallback
XmCascadeButton
XmCascadeButtonGadget
XmCommand
XmDialogShell
XmDrawingArea
XmDrawnButton
XmErrorDialog
Xm FileSelectionBox
Xm FileSelectionDialog
XmForm
Xm Form Dialog
XmFrame

8-21

OSF/Motif Programmer's Reference

XmMainWindow

8-22

Controls

Xm I nformationDialog
XmLabel
Xm LabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
Xm MessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulidownMenu
XmPushButton
Xm PushButton Gadget
XmQuestionDialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea

Reasons

UIL Built-In Tables

XmMainWindow

Controls Reasons

XmWorkingDialog
user_defined

XmMenuBar

Controls Reasons

XmCascadeButton M rm NcreateCallback
XmCascadeButtonGadget XmNdestroyCaliback
XmDrawnButton Xm NentryCaliback
XmLabel XmNhelpCaliback
Xm LabelGadget XmNmapCaliback
XmPopupMenu XmNtearOffMenuActivateCallback
XmPushButton XmNtearOffMenuDeactivateCallback
Xm PushButtonGadget XmNunmapCaliback
XmSeparator
XmSeparatorGadget
XmToggleButton
XmToggleButtonGadget
usecdefined

XmMenuShell

Controls Reasons

XmRowColumn M rm NcreateCaliback
Xm NdestroyCaliback
Xm NpopdownCaliback
XmNpopupCaliback

8-23

OSF/Motif Programmer's Reference

XmMessageBox

Controls Reasons

XmArrowButton M rmNcreateCallback
XmArrowButtonGadget XmNcancelCallback
XmBulletinBoard Xm NdestroyCallback
XmBulletinBoardDialog XmNfocusCallback
XmCascadeButton XmNhelpCallback
XmCascadeButtonGadget XmNmapCallback
XmCommand XmNokCallback
XmDialogShell XmNunmapCallback
Xm DrawingArea
XmDrawnButton
XmErrorDialog
Xm FileSelectionBox
XmFileSelectionDialog
XmForm
Xm Form Dialog
XmFrame
XmlnformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
Xm PromptDialog
XmPulldownMenu
XmPushButton
Xm PushButton Gadget
XmQuestionDialog
XmRadioBox
XmRowColumn

8-24

XmMessageBox

Controls

XmScale
XmScrollBar
XmScrolledList
XmScrolledText
XmScrolledWindow
XmSelection Box
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

Reasons

UIL Built-In Tables

B-25

OSF/Motif Programmer's Reference

XmMessageDialog

Controls Reasons

XmArrowButton MrmNcreateCaliback
XmArrowButtonGadget Xm NcancelCaliback
XmBulietinBoard XmNdestroyCaliback
XmBulietinBoardDialog XmNfocusCaliback
XmCascadeButton XmNhelpCaliback
XmCascadeButtonGadget XmNmapCaliback
XmCommand XmNokCaliback
XmDialogShell Xm NpopdownCaliback
XmDrawingArea Xm NpopupCaliback
XmDrawnButton XmNunmapCaliback
XmErrorDialog
XmFileSelectionBox
Xm FileSelection Dialog
XmForm
XmFormDialog
XmFrame
Xm InformationDialog
XmLabel
Xm LabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulldownMenu
XmPushButton
Xm PushButton Gadget
XmQuestionDialog
XmRadioBox
XmRowColumn

8-26

UIL Built-In Tables

XmMessageDialog

Controls

XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingOialog
user_defined

Reasons

XmOptionMenu

Controls Reasons

XmPulidownMenu M rm NcreateCaliback
XmNdestroyCaliback
XmNentryCaliback
XmNhelpCaliback
XmNmapCaliback
XmNtearOffMenuActivateCallback
XmNtearOffMenu DeactivateCallback
XmNunmapCaliback

B-27

OSF/Motif Programmer's Reference

XmPanedWindow

Controls Reasons

XmArrowButton M rmNcreateCaliback
XmArrowButtonGadget XmNdestroyCaliback
XmBulietinBoard XmNhelpCaliback
XmBulietinBoardDialog
XmCascadeButton
XmCascadeButtonGadget
XmCommand
XmDialogSheli
XmDrawingArea
XmDrawnButton
XmErrorDialog
Xm FileSelectionBox
Xm FileSelectionDialog
XmForm
Xm Form Dialog
XmFrame
XmlnformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuSheli
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulidownMenu
Xm Push Button
Xm Push B uttonGadget
XmQuestion Dialog
XmRadioBox
XmRowColumn

8-28

XmPanedWindow

Controls

XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
X mWo rkA rea
XmWorking Dialog
user_defined

Reasons

UIL Built-In Tables

8-29

OSF/Motif Programmer's Reference

XmPopupMenu

Controls Reasons

XmCascadeButton MrmNcreateCaliback
XmCascadeButtonGadget Xm NdestroyCaliback
XmDrawnButton Xm NentryCaliback
XmLabel XmNhelpCaliback
XmLabelGadget XmNmapCaliback
XmPushButton XmNpopdownCaliback
Xm Push ButtonGadget XmNpopupCaliback
XmSeparator XmNtearOffMenuActivateCallback
XmSeparatorGadget XmNtearOffMenuDeactivateCallback
XmToggleButton XmNunmapCaliback
XmToggleButtonGadget
user_defined

XmPromptDialog

Controls Reasons

XmArrowButton M rmNcreateCaliback
XmArrowButtonGadget XmNapplyCaliback
XmBulietinBoard XmNcancelCaliback
XmBulietinBoardDialog XmNdestroyCaliback
XmCascadeButton XmNfocusCaliback
XmCascadeButtonGadget XmNhelpCaliback
XmCommand XmNmapCaliback
XmDialogSheil XmNnoMatchCaliback
XmDrawingArea XmNokCaliback
XmDrawnButton XmNunmapCaliback
Xm E rrorDialog
Xm FileSelection Box
Xm FileSelection Dialog
XmForm
XmFormDialog
XmFrame
XmlnformationDialog
XmLabel
XmLabelGadget

8-30

XmPromptDialog

Controls

XmList
XmMainWindow
XmMenuBar
XmMenuSheli
XmMessageBox
Xm MessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
Xm PromptOialog
XmPulidownMenu
XmPushButton
Xm Push ButtonGadget
XmQuestion Dialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
Xm Scrolled List
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningOialog
XmWorkArea
XmWorkingOialog
usecdefined

Reasons

UIL Built-In Tables

8-31

OSF/Motif Programmer's Reference

XmPulidownMenu

Controls Reasons

XmCascadeButton M rm NcreateCaliback
XmCascadeButtonGadget Xm NdestroyCaliback
XmDrawnButton Xm NentryCaliback
XmLabel XmNhelpCallback
XmLabelGadget XmNmapCaliback
Xm Push Button Xm N popdownCallback
Xm Push ButtonGadget XmNpopupCaliback
XmSeparator XmNtearOffMenuActivateCallback
XmSeparatorGadget XmNtearOffMenuDeactivateCallback
XmToggleButton XmNunmapCaliback
XmToggleButtonGadget
usecdefined

XmPushButton

Controls Reasons

XmPopupMenu M rm NcreateCaliback
XmNactivateCaliback
Xm NarmCaliback
Xm NdestroyCaliback
XmNdisarmCaliback
XmNhelpCaliback

XmPushButtonGadget

Controls Reasons

No children are supported M rmNcreateCaliback
XmNactivateCaliback
XmNarmCaliback
Xm NdestroyCaliback
Xm NdisarmCaliback
XmNhelpCaliback

8-32

UIL Built-In Tables

XmQuestionDialog

Controls Reasons

XmArrowButton M rmNcreateCaliback
XmArrowButtonGadget XmNcancelCaliback
XmBulietinBoard XmNdestroyCaliback
XmBulietinBoardDialog XmNfocusCallback
XmCascadeButton XmNhelpCaliback
XmCascadeButtonGadget XmNmapCallback
XmCommand XmNokCaliback
XmDialogShell XmNpopdownCaliback
XmDrawingArea XmNpopupCallback
XmDrawnButton XmNunmapCaliback
XmErrorDialog
Xm FileSelection Box
Xm FileSelection Dialog
XmForm
XmFormDialog
XmFrame
Xm I nformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
Xm MessageDialog
XmOptionMenu
Xm PanedWindow
XmPopupMenu
Xm PromptDialog
XmPulidownMenu
XmPushButton
Xm Push ButtonGadget
XmQuestion Dialog
XmRadioBox
XmRowColumn

8-33

OSF/Motif Programmer's Reference

XmQuestionDialog

8-34

Controls

XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

Reasons

UIL Built-In Tables

XmRadioBox

Controls Reasons

XmArrowButton M rmNcreateCaliback
XmArrowButtonGadget XmNdestroyCaliback
XmBulietinBoard XmNentryCaliback
XmBulietinBoardDialog XmNhelpCaliback
XmCascadeButton XmNmapCaliback
XmCascadeButtonGadget XmNtearOffMenuActivateCallback
XmCommand XmNtearOffMenuDeactivateCallback
XmDialogShell XmNunmapCaliback
Xm DrawingArea
XmDrawnButton
XmErrorDialog
XmFileSelectionBox
Xm FileSelectionDialog
XmForm
XmFormDialog
XmFrame
Xm I nformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
Xm MessageDialog
XmOptionMenu
XmPanedWindow
Xm PopupMenu
Xm PromptDialog
XmPulidownMenu
XmPushButton
XmPushButtonGadget
XmQuestionDialog
XmRadioBox
XmRowColumn

8-35

OSF/Motif Programmer's Reference

XmRadioBox

Controls Reasons

XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelection Box
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorking Dialog
user_defined

8-36

UIL Built-In Tables

XmRowColumn

Controls Reasons

XmArrowButton M rm NcreateCallback
XmArrowButtonGadget Xm NdestroyCallback
XmBulletinBoard XmNentryCallback
Xm BulletinBoardDialog XmNhelpCallback
XmCascadeButton XmNmapCallback
XmCascadeButtonGadget Xm NtearOffMen uActivateCallback
XmCommand Xm NtearOffMen u DeactivateCallback
XmDialogShell XmNunmapCallback
Xm DrawingArea
XmDrawnButton
XmErrorDialog
XmFileSelectionBox
Xm FileSelection Dialog
XmForm
XmFormDialog
XmFrame
Xm I nformation Dialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
Xm MessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulldownMenu
XmPushButton
Xm PushButton Gadget
XmQuestion Dialog
XmRadioBox
XmRowColumn

8-37

OSF/Motif Programmer's Reference

XmRowColumn

Controls Reasons

XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelection Dialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

8-38

UIL Built-In Tables

XmScale

Controls Reasons

XmArrowButton M rm NcreateCallback
XmArrowButtonGadget Xm NdestroyCaliback
XmBulietinBoard XmNdragCaliback
XmBulietinBoardDialog XmNhelpCaliback
XmCascadeButton Xm NvalueChangedCallback
XmCascadeButtonGadget
XmCommand
XmDialogShell
XmDrawingArea
XmDrawnButton
Xm E rrorDialog
XmFileSelectionBox
Xm FileSelectionDialog
XmForm
XmFormDialog
XmFrame
XmlnformationDialog
XmLabel
Xm LabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
Xm PromptDialog
XmPulidownMenu
XmPushButton
Xm Push Button Gadget
XmQuestion Dialog
XmRadioBox
XmRowColumn

8-39

OSF/Motif Programmer's Reference

XmScale

Controls Reasons

XmScale
XmScroliBar
XmScrolledList
XmScrolledText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

8-40

UIL Built-In Tables

XmScroliBar

Controls Reasons

XmPopupMenu M rmNcreateCallback
XmNdecrementCallback
XmNdestroyCallback
XmNdragCaliback
XmNhelpCallback
XmNincrementCallback
XmNpageDecrementCallback
XmNpagelncrementCallback
XmNtoBottomCallback
XmNtoTopCallback
XmNvalueChangedCallback

XmScroliedList

Controls Reasons

XmPopupMenu M rmNcreateCallback
XmNbrowseSelectionCallback
XmNdefaultActionCallback
XmNdestroyCallback
XmNextendedSelectionCallback
XmNhelpCaliback
XmNmultipleSelectionCallback
XmNsingleSelectionCallback

8-41

OSF/Motif Programmer's Reference

XmScroliedText

Controls Reasons

XmPopupMenu MrmNcreateCaliback
Xm NactivateCaliback
XmNdestroyCallback
XmNfocusCallback
Xm Ngain PrimaryCallback
XmNhelpCallback
XmNlosePrimaryCallback
Xm NlosingFocusCallback
XmNmodifyVerifyCallback
XmNmodifyVerifyCallbackWcs
XmNmotionVerifyCallback
XmNvalueChangedCallback

XmScrolledWindow

Controls Reasons

XmArrowButton MrmNcreateCallback
XmArrowButtonGadget Xm NdestroyCallback
XmBulletinBoard XmNhelpCallback
XmBulletinBoardDialog XmNtraverseObscuredCallback
XmCascadeButton
XmCascadeButtonGadget
XmCommand
XmDialogSheli
XmDrawingArea
XmDrawnButton
XmErrorDialog
Xm FileSelectionBox
Xm FileSelectionDialog
XmForm
XmFormDialog
XmFrame
Xm I nformationDialog
XmLabel
XmLabelGadget

8-42

XmScrolledWindow

Controls

XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
Xm PromptDialog
XmPulidownMenu
XmPushButton
Xm PushButton Gadget
XmQuestionDialog
XmRadioBox
XmRowColumn
XmScale
XmScrollBar
XmScrolledList
XmScrolledText
XmScrolledWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

Reasons

UIL Built-In Tables

8-43

OSF/Motif Programmer's Reference

XmSelectionBox

Controls Reasons

XmArrowButton MrmNcreateCallback
XmArrowButtonGadget XmNapplyCallback
XmBulletinBoard XmNcancelCallback
Xm BulletinBoardDialog XmNdestroyCallback
XmCascadeButton XmNfocusCallback
XmCascadeButtonGadget XmNhelpCallback
XmCommand XmNmapCallback
XmDialogShel1 XmNnoMatchCaliback
XmDrawingArea XmNokCaliback
XmDrawnButton XmNunmapCallback
Xm ErrorDialog
Xm FileSelectionBox
XmFileSelectionDialog
XmForm
XmFormDialog
XmFrame
Xm Information Dialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
Xm PromptDialog
XmPulldownMenu
XmPushButton
Xm PushButton Gadget
XmQuestionDialog
XmRadioBox
XmRowColumn

8-44

XmSelectionBox

Controls

XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

Reasons

UIL Built-In Tables

8-45

OSF/Motif Programmer's Reference

XmSelectionDialog

Controls Reasons

XmArrowButton MrmNcreateCallback
XmArrowButtonGadget XmNapplyCallback
XmBulletinBoard XmNcancelCallback
XmBulletinBoardDialog XmNdestroyCallback
XmCascadeButton XmNfocusCallback
XmCascadeButtonGadget XmNhelpCallback
XmCommand XmNmapCallback
XmDialogShel1 XmNnoMatchCallback
XmDrawingArea XmNokCallback
XmDrawnButton XmNpopdownCallback
Xm ErrorDialog XmNpopupCallback
Xm FileSelectionBox XmNunmapCallback
Xm FileSelectionDialog
XmForm
XmFormDialog
XmFrame
Xm Information Dialog
XmLabel
Xm LabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
Xm MessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
Xm PromptDialog
XmPulldownMenu
XmPushButton
Xm PushButton Gadget
XmQuestionDialog
XmRadioBox
XmRowColumn

8-46

UIL Built-In Tables

XmSelectionDialog

Controls

XmScale
XmScrollBar
XmScrolledList
XmScrolledText
XmScrolledWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

Reasons

XmSeparator

Controls Reasons

XmPopupMenu M rmNcreateCallback
XmNdestroyCallback
Xm NhelpCallback

XmSeparatorGadget

Controls Reasons

No children are supported Mrm NcreateCallback
XmNdestroyCallback
XmNhelpCallback

8-47

OSF/Motif Programmer's Reference

X mTea rOff Button

Controls Reasons

XmPopupMenu MrmNcreateCaliback
Xm NactivateCaliback<
XmNarmCallback
XmNdestroyCaliback
XmNdisarmCaliback
Xm NhelpCallback

XmTemplateDialog

Controls Reasons

XmArrowButton M rmNcreateCaliback
XmArrowButtonGadget Xm NcancelCallback
XmBulletinBoard XmNdestroyCallback
XmBulletinBoardDialog XmNfocusCallback
XmCascadeButton XmNhelpCallback
XmCascadeButtonGadget XmNmapCallback
XmCommand XmNokCallback
XmDialogShell XmNpopdown~allback

XmDrawingArea XmNpopupCallback
XmDrawnButton XmNunmapCallb~ck
XmErrorDialog
Xm FileSelectionBox
Xm FileSelectionDialog
XmForm
Xm Form Dialog
XmFrame
Xm InformationDialog
XmLabel
Xm LabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
Xm MessageDialog

8-48

XmTemplateDialog

Controls

XmOptionMenu
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulidownMenu
XmPushButton
Xm PushButton Gadget
XmQuestion Dialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarning Dialog
XmWorkArea
XmWorking Dialog
usecdefined

Reasons

UIL Built-In Tables

8-49

OSF/Motif Programmer's Reference

XmText

Controls Reasons

XmPopupMenu MrmNcreateCaliback
XmNactivateCaliback
XmNdestroyCaliback
XmNfocusCallback
XmNgainPrimaryCaliback
Xm NhelpCaliback
XmNlosePrimaryCallback
Xm NlosingFocusCaliback
XmNmodifyVerifyCallback
XmNmodifyVerifyCallbackWcs
XmNmotionVerifyCallback
XmNvalueChangedCallback

XmTextField

Controls Reasons

XmPopupMenu MrmNcreateCaliback
XmNactivateCallback
XmNdestroyCaliback
XmNfocusCaliback
Xm Ngain PrimaryCallback
XmNhelpCallback
XmNlosePrimaryCallback
Xm NlosingFocusCaliback
XmNmodifyVerifyCallback
XmNmodifyVerifyCallbackWcs
XmNmotionVerifyCallback
XmNvalueChangedCallback

8-50

UIL Built-In Tables

XmToggleButton

Controls Reasons

XmPopupMenu Mrm NcreateCaliback
XmNarmCallback
XmNdestroyCallback
XmNdisarmCaliback
XmNhelpCaliback
Xm NvalueChangedCallback

XmToggleButtonGadget

Controls Reasons

No children are supported Mrm NcreateCaliback
XmNarmCaliback
XmNdestroyCaliback
XmNdisarmCaliback
XmNhelpCaliback
Xm NvalueChangedCaliback

XmWarningDialog

Controls Reasons

XmArrowButton M rm NcreateCaliback
XmArrowButtonGadget Xm NcancelCaliback
XmBulietinBoard Xm NdestroyCaliback
XmBulietinBoardDialog XmNfocusCaliback
XmCascadeButton Xm NhelpCaliback
XmCascadeButtonGadget XmNmapCaliback
XmCommand XmNokCaliback
XmDialogShell Xm NpopdownCaliback
XmDrawingArea XmNpopupCaliback
XmDrawnButton XmNunmapCallback
Xm ErrorDialog
Xm FileSelectionBox
Xm FileSelectionDialog
XmForm
XmFormDialog

8-51

OSF/Motif Programmer's Reference

XmWarningDialog

8-52

Controls

XmFrame
Xm Information Dialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulidownMenu
Xm PushButton
Xm PushButton Gadget
XmQuestionDialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog

Reasons

UIL Built-In Tables

XmWarningOialog

Controls Reasons

XmWorkArea
XmWorkingDialog
usecdefined

XmWorkArea

Controls Reasons

XmArrowButton MrmNcreateCallback
XmArrowButtonGadget XmNdestroyCallback
XmBulletinBoard XmNentryCallback
XmBulletinBoardDialog XmNhelpCallback
XmCascadeButton XmNmapCallback
XmCascadeButtonGadget XmNtearOffMenuActivateCallback
XmCommand XmNtearOffMenuDeactivateCallback
XmDialogShell XmNunmapCallback
XmDrawingArea
XmDrawnButton
Xm ErrorDialog
XmFileSelectionBox
XmFileSelectionDialog
XmForm
XmFormDialog
XmFrame
XmlnformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
Xm PanedWindow
XmPopupMenu

8-53

OSF/Motif Programmer's Reference

XmWorkArea

Controls Reasons

Xm PromptDialog
XmPulidownMenu
XmPushButton
XmPushButtonGadget
XmQuestion Dialog
XmRadioBox
XmRowColumn
XmScale
XmScroliBar
XmScroliedList
XmScroliedText
XmScroliedWindow
XmSelectionBox
XmSelection Dialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
usecdefined

8-54

UIL Built-In Tables

XmWorkingDialog

Controls Reasons

XmArrowButton Mrm NcreateCallback
XmArrowButtonGadget XmNcancelCallback
XmBulletinBoard XmNdestroyCallback
Xm BulletinBoardDialog XmNfocusCallback
XmCascadeButton XmNhelpCallback
XmCascadeButtonGadget XmNmapCallback
XmCommand XmNokCallback
XmDialogShell Xm NpopdownCallback
XmDrawingArea Xm NpopupCallback
XmDrawnButton XmNunmapCallback
XmErrorDialog
Xm FileSelectionBox
Xm FileSelectionDialog
XmForm
XmFormDialog
XmFrame
Xm Information Dialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
XmPopupMenu
XmPromptDialog
XmPulldownMenu
XmPushButton
Xm Push ButtonGadget
XmQuestionDialog
XmRadioBox
XmRowColumn

8-55

OSF/Motif Programmer's Reference

XmWorkingDialog

8-56

Controls

XmScale
XmScroliBar
XmScroliedList
XmScrolledText
XmScroliedWindow
XmSelectionBox
XmSelectionDialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

Reasons

Controls

XmArrowButton
XmArrowButtonGadget
Xm BulletinBoard
Xm BulletinBoardDialog
XmCascadeButton
XmCascadeButtonGadget
XmCommand
XmDialogShell
Xm DrawingArea
XmDrawnButton
Xm ErrorDialog
Xm FileSelectionBox
Xm FileSelection Dialog
XmForm
XmFormDialog
XmFrame
XmlnformationDialog
XmLabel
XmLabelGadget
XmList
XmMainWindow
XmMenuBar
XmMenuShell
XmMessageBox
XmMessageDialog
XmOptionMenu
XmPanedWindow
Xm PopupMenu
Xm PromptDialog
XmPulldownMenu
XmPushButton
Xm PushButtonGadget
XmQuestionDialog
XmRadioBox
XmRowColumn

UIL Built-In Tables

Reasons

8-57

OSF/Motif Programmer's Reference

8-58

user_defined

Controls

XmScale
XmScrollBar
XmScrolledList
XmScrolledText
XmScrolledWindow
XmSelectionBox
XmSelection Dialog
XmSeparator
XmSeparatorGadget
XmTemplateDialog
XmText
XmTextField
XmToggleButton
XmToggleButtonGadget
XmWarningDialog
XmWorkArea
XmWorkingDialog
user_defined

Reasons

Appendix C

UIL Arguments

This appendix provides an alphabetical listing of the UIL arguments and
their data types. Each argument name is the same as the corresponding
Motif Toolkit resource name. For information on which arguments are
supported for which objects and for the default values of arguments, see the
widget reference pages.

UIL Argument Name Argument Type

XmNaccelerator string
XmNacceleratorText compound_string
XmNaccelerators translation_table
Xm Nadj ustLast boolean
XmNadjustMargin boolean
XmNalignment integer
XmNaliowOverlap boolean
XmNaliowResize boolean
XmNaliowSheliResize boolean
XmNancestorSensitive boolean
XmNapplyLabelString compound_string

C-1

OSF/Motif Programmer's Reference

C-2

UIL Argument Name

XmNarmColor
XmNarmPixmap
XmNarrowDirection
XmNaudibleWarning
XmNautoShowCursorPosition
XmNautoUnmanage
XmNautomaticSelection
XmNbackground
XmNbackgroundPixmap
XmNbaseHeight
XmNbaseWidth
XmNblinkRate
XmNborderColor
XmNborderPixmap
XmNborderWidth
XmNbottomAttachment
XmNbottomOffset
Xm Nbottom Position
XmNbottomShadowColor
XmNbottomShadowPixmap
Xm NbottomWidget
XmNbuttonFontList
XmNcancelButton
XmNcancelLabelString
XmNcascadePixmap
XmNchildHorizontalAlignment
Xm NchildHorizontalSpacing
XmNchiidPlacement
XmNchildType
XmNchildVerticalAlignment
XmNcolormap
XmNcolumns
XmNcommand
XmNcommandWindow
XmNcommandWindowLocation
Xm NcreatePopupChildProc

Argument Type

color
pixmap
integer
integer
boolean
boolean
boolean
color
pixmap
integer
integer
integer
color
pixmap
integer
integer
integer
integer
color
pixmap
widget_ref
font_table
widgeCref
compound_string
pixmap
integer
integer
integer
integer
integer
identifier
integer
compound_string
widget_ref
integer
any

UIL Argument Name
XmNcursorPosition
XmNcursorPositionVisible
XmNdecimalPoints
Xm NdefaultButton
XmNdefaultButtonShadowThickness
XmNdefaultButtonType
Xm NdefaultFontList
XmNdefaultPosition
XmNdeleteResponse
XmNdepth
XmNdialogStyle
XmNdialogTitle
XmNdialogType
XmNdirListltemCount
XmNdirListltems
XmNdirListLabelString
XmNdirMask
XmNdirSearchProc
XmNdirSpec
Xm Ndi rectory
XmNdoubleClicklnterval
XmNeditMode
XmNeditable
XmNentryAlignment
XmNentryBorder
XmNentryClass
XmNentryVerticalAlignment
XmNfileListltemCount
Xm NfileListltems
XmNfileListLabelString
XmNfileSearchProc
XmNfileTypeMask
XmNfiliOnArm
XmNfiliOnSelect
XmNfilterLabelString
Xm NfontList

UIL Arguments

Argument Type

integer
boolean
integer
widgeCref
integer
integer
font_table
boolean
integer
identifier
integer
compound_string
integer
integer
string_table
compound_string
compound_string
any
compound_string
compound_string
integer
integer
boolean
integer
integer
class_rec_name
integer
integer
string_table
compound_string
any
integer
boolean
boolean
compound_string
fonCtable

C-3

OSF/Motif Programmer's Reference

C-4

UIL Argument Name

XmNforeground
Xm Nfraction Base
XmNgeometry
XmNheight
XmNheightlnc
XmNhelpLabelString
XmNhighlightColor
XmNhighlightOnEnter
XmNhighlightPixmap
XmNhighlightThickness
XmNhistoryltemCount
XmNhistoryltems
Xm NhistoryMaxltems
XmNhistoryVisibleltemCount
XmNhorizontalScrollBar
Xm NhorizontalSpacing
XmNiconMask
XmNiconPixmap
XmNiconWindow
XmNiconX
XmNiconY
XmNincrement
XmNindicatorOn
XmNindicatorSize
XmNindicatorType
XmNinitialOelay
XmNinitialFocus
Xm N in itial Resou rcesPersistent
XmNinitialState
XmNinput
XmNinputMethod
XmNinsertPosition
XmNisAligned
XmNisHomogeneous
XmNitemCount
XmNitems

Argument Type

color
integer
string
integer
integer
compound_string
color
boolean
pixmap
integer
integer
string_table
integer
integer
widgeCref
integer
pixmap
pixmap
any
integer
integer
integer
boolean
integer
integer
integer
widget_ref
boolean
integer
boolean
string
identifier
boolean
boolean
integer
string_table

UIL Argument Name

XmNkeyboardFocusPolicy
Xm N label FontList
XmNlabellnsensitivePixmap
XmNlabelPixmap
XmNlabelString
XmNlabelType
XmNleftAttachment
Xm N leftOffset
XmNleftPosition
XmN leftWidget
XmNlistltemCount
Xm N listltems
Xm N I istLabelString
XmNlistMarginHeight
Xm N IistMarginWidth
XmNlistSizePolicy
XmNlistSpacing
XmNlistUpdated
XmNlistVisibleltemCount
XmNmainWindowMarginHeight
XmNmainWindowMarginWidth
Xm NmappedWhenManaged
XmNmappingOelay
XmNmargin
XmNmarginBottom
XmNmarginHeight
XmNmarginLeft
XmNmarginRight
XmNmarginTop
Xm NmarginWidth
XmNmaxAspectX
XmNmaxAspectY
XmNmaxHeight
XmNmaxLength
XmNmaxWidth
XmNmaximum

UIL Arguments

Argument Type

integer
font_table
pixmap
pixmap
compound_string
integer
integer
integer
integer
widget_ref
integer
string_table
compound_string
integer
integer
integer
integer
boolean
integer
integer
integer
boolean
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

C-5

OSF/Motif Programmer's Reference

UIL Argument Name Argument Type

XmNmenuAccelerator string
XmNmenuBar widgeCref
XmNmenuHelpWidget widget_ref
XmNmenuHistory widget_ref
XmNmenuPost string
XmNmessageAlignment integer
XmNmessageString compound_string
XmNmessageWindow widget_ref
XmNminAspectX integer
XmNminAspectY integer
XmNminHeight integer
XmNminWidth integer
Xm Nminim izeButtons boolean
XmNminimum integer
XmNmnemonic keysym
XmNmnemonicCharSet string
XmNmultiClick integer
XmNmustMatch boolean
XmNmwmOecorations integer
XmNmwmFunctions integer
XmNmwmlnputMode integer
XmNmwmMenu string
XmNnavigationType integer
XmNnoMatchString compound_string
XmNnoResize boolean
XmNnumColumns integer
XmNokLabelString compound_string
XmNorientation integer
XmNoverrideRedirect boolean
XmNpacking integer
XmNpagelncrement integer
XmNpaneMaximum integer
XmNpaneMinimum integer
XmNpattern compound_string
XmNpendingOelete boolean
Xm NpopupEnabled boolean

C-6

UIL Arguments

UIL Argument Name Argument Type

XmNpreeditType string
XmNprocessingDirection integer
XmNpromptString compound_string
XmNpushButtonEnabled boolean
XmNqualifySearchDataProc any
Xm NradioAlwaysOne boolean
XmNradioBehavior boolean
XmNrecomputeSize boolean
XmNrefigureMode boolean
XmNrepeatDelay integer
XmNresizable boolean
XmNresizeHeight boolean
Xm N resize Policy integer
XmNresizeWidth boolean
XmNrightAttachment integer
XmNrightOffset integer
XmNrightPosition integer
XmNrightWidget widget_ref
XmNrowColumnType integer
XmNrows integer
XmNrubberPositioning boolean
XmNsashHeight integer
XmNsash Indent integer
Xm NsashShadowThickness integer
XmNsashWidth integer
XmNsaveUnder boolean
Xm NscaleHeight integer
XmNscaleMultiple integer
XmNscaleWidth integer
XmNscreen identifier
Xm NscroliBarDisplayPolicy integer
XmNscrollBarPlacement integer
Xm NscroliHorizontal boolean
XmNscrollLeftSide boolean
Xm NscroliTopSide boolean
XmNscrollVertical boolean

C-7

OSF/Motif Programmer's Reference

C-8

UIL Argument Name

XmNscrolledWindowMarginHeight
XmNscrolledWindowMarginWidth
XmNscrollingPolicy
Xm NselectColor
Xm Nselectl nsensitivePixmap
Xm NselectPixmap
Xm NselectThreshold
Xm Nselected Item Count
XmNselectedltems
Xm NselectionArray
Xm NselectionArrayCount
XmNselectionLabelString
Xm NselectionPolicy
XmNsensitive
Xm NseparatorOn
XmNseparatorType
XmNset
Xm NshadowThickness
Xm NshadowType
XmNshellUnitType
XmNshowArrows
XmNshowAsDefault
Xm NshowSeparator
XmNshowValue
XmNskipAdjust
XmNsliderSize
XmNsource
XmNspacing
XmNstringDirection
XmNsubMenuld
XmNsymbolPixmap
XmNtearOffModel
XmNtextAccelerators
Xm NtextColumns
Xm NtextFontList
XmNtextString

Argument Type

integer
integer
integer
color
pixmap
pixmap
integer
integer
string_table
any
integer
compound_string
integer
boolean
boolean
integer
boolean
integer
integer
integer
boolean
integer
boolean
boolean
boolean
integer
any
integer
integer
widgeCref
pixmap
integer
translation_table
integer
fonCtable
compound_string

UIL Arguments

UIL Argument Name Argument Type

XmNtextTranslations translation_table
XmNtitle string
XmNtitleEncoding any
Xm NtitleString compound_string
XmNtopAttachment integer
Xm NtopCharacter integer
XmNtopltem Position integer
XmNtopOffset integer
XmNtopPosition integer
XmNtopShadowColor color
Xm NtopShadowPixmap pixmap
XmNtopWidget widget_ref
XmNtransient boolean
Xm NtransientFor widgecref
Xm Ntranslations translation_table
XmNtraversalOn boolean
Xm NtroughColor color
XmNunitType integer
XmNunpostBehavior integer
XmNuseAsyncGeometry boolean
XmNuserData any
XmNvalue any
XmNvalueWcs wide_character
XmNverifyBell boolean
XmNverticalScroliBar widgeCref
Xm NverticalSpacing integer
XmNvisibleltemCount integer
Xm NvisibleWhenOff boolean
XmNvisual any
XmNvisualPolicy integer
XmNwaitForWm boolean
XmNwhichButton integer
XmNwidth integer
XmNwidth Inc integer
XmNwinGravity integer
Xm NwindowGroup any

C-9

OSF/Motif Programmer's Reference

C-10

UIL Argument Name
XmNwmTimeout
XmNwordWrap
XmNworkWindow
XmNx
XmNy

Argument Type
integer
boolean
widget_ref
integer
integer

Index

Symbols
.mwmrc, 1-17, 1-33, 1-34
.Xdefaults, 1-8

A
ANY value, 1-1130
ApplicationShell, 1-51
Argument values, defining in UIL,

1-1139
Arguments, coupled in UIL,

1-1117
atoms, 1-524,1-547

B
Boolean literals, 1-1129
borders, resize, 1-4

c
CascadeButton functions,

XmCascadeButtonHighlight,
1-226

CascadeButtonGadget functions,
XmCascadeButtonGadget­
Highlight, 1-225

Character set, user-defined, 1-1133
CHARACTER_SET function,

1-1133
click to type, 1-21
clipboard functions

XmClipboardCancelCopy,
1-228

XmClipboardCopy, 1-230
XmClipboardCopyByN arne,

1-232
XmClipboardEndCopy,

1-234
XmClipboardEndRetrieve,

1-236
XmClipboardInquireCount,

1-237
XmClipboardInquireFormat,

1-239
XmClipboardInquireLength,

1-241
XmClipboardInquirePending­

Items, 1-243
XmClipboardLock, 1-245

Index-1

OSF/Motif Programmer's Reference

XmClipboardRegisterFormat,
1-247

XmClipboardRetrieve,
1-249

XmClipboardStartCopy,
1-251

XmClipboardStartRetrieve,
1-254

XmClipboardUndoCopy,
1-256

XmClipboardUnlock, 1-257
XmClipboardWithdrawFormat,

1-259
Color functions

XmChangeColor, 1-227
XmGetColorCalculation,

1-525
XmGetColors, 1-526
XmSetColorCalculation,

1-870
Color values, defining in UIL,

1-1134, 1-1135
COLOR_TABLE Function,

1-1135
Command functions

XmCommandAppendValue,
1-273

XmCommandError, 1-274
XmCommandGetChild,

1-275
XmCommandSetValue,

1-276
Composite, 1-59
compound string functions

XmCvtCTToXmString,

Index-2

1-352
XmCvtXmStringToCT,

1-354
XmMapSegmentEncoding,

1-664

XmRegisterSegment­
Encoding, 1-736

XmStringBaseline, 1-879
XmStringByteCompare,

1-880
XmStringCompare, 1-881
XmStringConcat, 1-882
XmStringCopy, 1-883
XmStringCreate, 1-884
XmStringCreateLocalized,

1-886
XmStringCreateLtoR,

1-887
XmStringCreateSimple,

1-888
XmStringDirectionCreate,

1-890
XmStringDraw, 1-891
XmStringDraw Image,

1-893
XmStringDrawUnderline,

1-895
XmStringEmpty, 1-897
XmStringExtent, 1-898
XmStringFree, 1-899
XmStringFreeContext,

1-900
XmStringGetLtoR, 1-901
XmStringGetN extComponent,

1-902
XmStringGetNextSegment,

1-904
XmStringHasSubstring,

1-905
XmStringHeight, 1-906
XmStringInitContext, 1-907
XmStringLength, 1-908
XmStringLineCount, 1-909
XmStringNConcat, 1-910

XmStringNCopy, 1-911
XmStringPeekNextComponent,

1-912
XmStringSegmentCreate,

1-913
XmStringSeparatorCreate,

1-914
XmStringWidth, 1-916

Constraint, 1-64
Conversions, data type, 1-1132
Core, 1-67
create functions,

XmCreateTemplateDialog,
1-344

creation functions
XmCreateArrow Button,

1-279
XmCreateArrow ButtonGadget,

1-280
XmCreateB ulletinBoard,

1-281
XmCreateBulletinBoardDialog,

1-282
XmCreateCascadeButton,

1-283
XmCreateCascadeButtonGadget,

1-284
XmCreateCommand, 1-285
XmCreateDialogShell,

1-286
XmCreateDragIcon, 1-287
XmCreateDrawingArea,

1-288
XmCreateDrawnButton,

1-289
XmCreateErrorDialog,

1-290
XmCreateFileSelectionBox,

1-291

Index

XmCreateFileSelection­
Dialog, 1-293

XmCreateForm, 1-295
XmCreateFormDialog,

1-296
XmCreateFrame, 1-297
XmCreateInformationDialog,

1-298
XmCreateLabel, 1-299
XmCreateLabelGadget,

1-300
XmCreateList, 1-301
XmCreateMain Window,

1-302
XmCreateMenuBar, 1-303
XmCreateMenuShell, 1-305
XmCreateMessageBox,

1-306
XmCreateMessageDialog,

1-307
XmCreateOptionMenu,

1-308
XmCreatePanedWindow,

1-310
XmCreatePopupMenu,

1-311
XmCreatePromptDialog,

1-313
XmCreatePulldownMenu,

1-314
XmCreatePushButton,

1-316
XmCreatePushButtonGadget,

1-317
XmCreateQuestionDialog,

1-318
XmCreateRadioBox, 1-319
XmCreateRowColumn,

1-321

Index-3

OSF/Motif Programmer's Reference

Index-4

XmCreateScale, 1-323
XmCreateScrollBar, 1-324
XmCreateScrolledList,

1-325
XmCreateScrolledText,

1-327
XmCreateScrolledWindow,

1-329
XmCreateSelectionBox,

1-330
XmCreateSelectionDialog,

1-331
XmCreateSeparator, 1-333
XmCreateSeparatorGadget,

1-334
XmCreateSimpleCheckBox,

1-335
XmCreateSimpleMenuBar,

1-336
XmCreateSimpleOptionMenu,

1-337
XmCreateSimplePopupMenu,

1-339
XmCreateSimplePulldown­

Menu, 1-341
XmCreateSimpleRadioBox,

1-343
XmCreateText, 1-345
XmCreateTextField, 1-346
XmCreateToggleButton,

1-347
XmCreateToggleButtonGadget,

1-348
XmCreate WamingDialog,

1-349
XmCreate WorkArea, 1-350
XmCreate WorkingDialog,

1-351
Xm VaCreateSimpleCheckBox,

1-1089

D

Xm VaCreateSimpleMenuBar,
1-1092

Xm VaCreateSimpleOption­
Menu, 1-1094

Xm VaCreateSimplePopup­
Menu, 1-1097

Xm VaCreateSimplePulldown­
Menu, 1-1101

Xm VaCreateSimpleRadioBox,
1-1106

Data type, conversions, 1-1132
data types

XmFontList, 1-470
XmString, 1-878
XmStringDirection, 1-889
XmStringTable, 1-915
XmTextPosition, 1-1037

default bindings, VirtualBindings,
1-151

Display functions,
XmGetXmDisplay, 1-543

Drag and Drop functions
XmCreateDragIcon, 1-287
XmDragCancel, 1-372
XmDragStart, 1-401
XmDropSiteConfigureStack -

ingOrder, 1-431
XmDropSiteEndUpdate,

1-432
XmDropSiteQueryStacking­

Order, 1-433
XmDropSiteRegister, 1-434
XmDropSiteRetrieve, 1-435

E

XmDropSiteStartUpdate,
1-436

XmDropSiteUnregister,
1-437

XmDropSiteUpdate, 1-438
XmDropTransferAdd,

1-442
XmDropTransferStart,

1-443
XmGetDragContext, 1-528
XmTargetsAreCompatible,

1-917

Escape sequences, 1-1126
explicit, 1-6, 1-21
EXPORTED, 1-1113
expressions, 1-1130

F
FileSelectionBox functions

XmFileSelectionBoxGetChild,
1-467

XmFileSelectionDoSearch,
1-469

Floating-point values, 1-1136,
1-1137

focus policy
click to type, 1-6, 1-21
explicit, 1-6, 1-21
pointer, 1-21

Index

real estate, 1-6, 1-21
font list functions

XmFontListAdd, 1-472
XmFontListAppendEntry,

1-473
XmFontListCopy, 1-474
XmFontListCreate, 1-475
XmFontListEntryCreate,

1-476
XmFontListEntryFree,

1-477
XmFontListEntryGetFont,

1-478
XmFontListEntryGetTag,

1-479
XmFontListEntry Load,

1-480
XmFontListFree, 1-482
XmFontListFreeFontContext,

1-483
XmFontListGetNextFont,

1-484
XmFontListlnitFontContext,

1-485
XmFontListNextEntry ,

1-486
XmFontListRemoveEntry ,

1-'-487
Font table value, defining, 1-1137
Font values, 1-1137
fontset value, defining, 1-1137
Functions, 1-1132

ANY value, 1-1130
font table value, 1-1137
fontset value, 1-1137
reason value, 1-1140
translation table value,

1-1141

Index-5

OSF/Motif Programmer's Reference

I
icon box, 1-5
icons, 1-4
IMPORTED, 1-1113
input focus, 1-6, 1-21

K

click to type, 1-6, 1-21
explicit, 1-6, 1-21
pointer, 1-21
real estate, 1-21

Keysyms, defining in UIL, 1-1134
Keywords, 1-1122

L
List functions

Index-6

XmListAddItem, 1-602
XmListAddItems, 1-604
XmListAddItems Unselected,

1-605
XmListAddItemUnselected,

1-603
XmListDeleteAllItems,

1-606
XmListDeleteItem, 1-607
XmListDeleteItems, 1-608
XmListDeleteItemsPos,

1-609
XmListDeletePos, 1-610
XmListDeletePositions,

1-611

XmListDeselectAllItems,
1-612

XmListDeselectItem, 1-613
XmListDeselectPos, 1-614
XmListGetKbdItemPos,

1-615
XmListGetMatchPos, 1-616
XmListGetSelectedPos,

1-617
XmListItemExists, 1-618
XmListItemPos, 1-619
XmListPosSelected, 1-620
XmListPosToBounds,

1-621
XmListReplaceItems,

1-622
XmListReplaceItemsPos,

1-623
XmListReplaceItemsPos Un­

selected, 1-624
XmListReplaceItems Un­

selected, 1-625
XmListReplacePositions,

1-626
XmListSelectItem, 1-627
XmListSelectPos, 1-628
XmListSetAddMode, 1-629
XmListSetBottomItem,

1-630
XmListSetBottomPos,

1-631
XmListSetHorizPos, 1-632
XmListSetItem, 1-633
XmListSetKbdItemPos,

1-634
XmListSetPos, 1-635
XmList U pdateSelectedList,

1-636

XmListYToPos, 1-637
List types

M

argument, 1-1117
callback, 1-1118

Main Window functions
XmMain WindowSep 1,

1-646
XmMain WindowSep2,

1-647
XmMain WindowSep3,

1-648
XmMain WindowSetAreas,

1-649
maximize, 1-3
maximize button, 1-3
menu, 1-3
menu button, 1-3
MessageBox functions,

XmMessageBoxGetChild,
1-685

minimize, 1-3
minimize button, 1-3
MRM function

MrmCloseHierarchy, 1-72
MrmFetchBitmapLiteral,

1-73
MrmFetchColorLiteral,

1-75
MrmFetchIconLiteral, 1-77
MrmFetchLiteral, 1-79
MrmFetchSetValues, 1-81
MrmFetch Widget, 1-83
MrmFetch WidgetOverride,

1-85

Index

Mrmlnitialize, 1-87
MrmOpenHierarchy, 1-88
MrmRegisterClass, 1-96
MrmRegisterNames, 1-98
MrmRegisterN amesln-

Hierarchy, 1-100
MrmBAD_HIERARCHY, 1-72,

1-74, 1-75, 1-78, 1-79,
1-82, 1-84, 1-86

MrmCloseHierarchy, 1-72
definition, 1-72
description, 1-72

MrmFAILURE, 1-72, 1-74,1-75,
1-78,1-79,1-82,1-84,
1-86, 1-91, 1-95, 1-97,
1-99, 1-101

MrmFetchBitmapLiteral, 1-73
definition, 1-73
description, 1-73

MrmFetchColorLiteral, 1-75
definition, 1-75
description, 1-75

MrmFetchIconLiteral, 1-77
definition, 1-77
description, 1-77

MrmFetchLiteral, 1-79
definition, 1-79
description, 1-79

MrmFetchSet Values, 1-81
definition, 1-81
description, 1-81

MrmFetch Widget, 1-83
definition, 1-83
description, 1-83

MrmFetch WidgetOverride, 1-85
definition, 1-85
description, 1-85

Mrmlnitialize, 1-87
definition, 1-87

Index-7

OSF/Motif Programmer's Reference

description, 1-87
MrmNOT_FOUND, 1-74, 1-75,

1-78, 1-79, 1-84, 1-86,
1-91,1-95

MrmOpenHierarchy, 1-88
definition, 1-88

MrmOpenHierarchyPerDisplay,
1-92

MrmP ARTIAL_SUCCESS, 1-82
MrmRegisterClass, 1-96

definition, 1-96
description, 1-96

MrmRegisterNames, 1-98
definition, 1-98
description, 1-98

MrmRegisterNamesInHierarchy,
1-100
definition, 1-100
description, 1-100

MrmSUCCESS, 1-72, 1-74, 1-75,
1-78, 1-79, 1-82, 1-84,
1-86, 1-91, 1-95, 1-97,
1-99, 1-101

mwm, 1-2

Index-8

resources, 1-9,1-10,1-11,
1-12,1-13,1-16,
1-17,1-18,1-19,
1-20, 1-21, 1-22,
1-23, 1-24, 1-25,
1-26,1-28,1-29,
1-30,1-31,1-32,
1-33

o
Object, 1-102
OverrideS hell , 1-103

p
pixmaps, 1-1087,1-358,1-531,

1-534, 1-545
pointer, 1-21
PRIVATE,1-1113
protocols, 1-170, 1-171, 1-172,

1-173,1-174,1-175,
1-176,1-356, 1-357,
1-737, 1-738, 1-740,
1-741,1-875,1-877

R
real estate, 1-6,1-21
Reason value, 1-1140
RectObj, 1-107
register functions,

XmDropSiteRegister, 1-434
representation type manager

functions
XmRepTypeAddReverse,

1-742
XmRepTypeGetId, 1-743
XmRepTypeGetN ameList,

1-744
XmRepTypeGetRecord,

1-745

XmRepTypeGetRegistered,
1-747

XmRepTypeInstall TearOff­
ModelConverter,
1-749

XmRepTypeRegister, 1-750
XmRepType ValidValue,

1-752
resize borders, 1-4
resource description file, 1-17,

1-33, 1-34
resources, 1-8,1-9,1-10,1-11,

1-12,1-13,1-15,1-16,
1-17, 1-18, 1-19, 1-20,
1-21, 1-22, 1-24, 1-26,
1-28, 1-29, 1-30, 1-32,
1-33

RowColumn functions
XmGetPostedFrom Widget,

1-537
XmGetTearOffControl,

1-541
XmMenuPosition, 1-665
XmOptionButtonGadget,

1-686
XmOptionLabelGadget,

1-687

s
Scale functions

XmScaleGetValue, 1-800
XmScaleSetValue, 1-801

ScrollBar functions
XmScrollBarGetValues,

1-824

Index

XmScrollBarSet Values,
1-825

Scrolled Window functions,
XmScrollVisible, 1-827

ScrolledWindow functions,
XmScrolledWindowSetAreas,
1-840

SelectionBox functions,
XmSelectionBoxGetChild,
1-857

session manager, 1-2
Shell, 1-110

T
Text functions

XmTextClearSelection,
1-951

XmTextCopy, 1-952
XmTextCut, 1-953
XmTextDisableRedisplay,

1-954
XmTextEnableRedisplay,

1-955
XmTextFindString, 1-1013
XmTextFindStringW cs,

1-1015
XmTextGetBaseline,

1-1017
XmTextGetEditable,

1-1018
XmTextGetlnsertionPosition,

1-1019
XmTextGetLastPosition,

1-1020
XmTextGetMaxLength,

1-1021

Index-9

OSF/Motif Programmer's Reference

Index-10

XmTextGetSelection,
1-1022

XmTextGetSelectionPosition,
1-1023

XmTextGetSelection W cs,
1-1024

XmTextGetSource, 1-1025
XmTextGetString, 1-1026
XmTextGetStringW cs,

1-1027
XmTextGetSubstring,

1-1028
XmTextGetSubstringW cs,

1-1030
XmTextGetTopCharacter,

1-1032
XmTextInsert, 1-1033
XmTextInsertWcs, 1-1034
XmTextPaste, 1-1035
XmTextPosToXY, 1-1036
XmTextRemove, 1-1038
XmTextReplace, 1-1039
XmTextReplace W cs,

1-1040
XmTextScroll, 1-1041
XmTextSetAddMode,

1-1042
XmTextSetEditable, 1-1043
XmTextSetHighlight,

1-1044
XmTextSetInsertionPosition,

1-1045
XmTextSetMaxLength,

1-1046
XmTextSetSelection,

1-1047
XmTextSetSource, 1-1048
XmTextSetString, 1-1049
XmTextSetStringW cs,

1-1050

XmTextSetTopCharacter,
1-1051

XmTextShowPosition,
1-1052

XmTextXYToPos, 1-1053
TextField functions

XmTextFieldClearSelection,
1-979

XmTextFieldCopy, 1-980
XmTextFieldCut, 1-981
XmTextFieldGetBaseline,

1-982
XmTextFieldGetEditable,

1-983
XmTextFieldGetInsertion­

Position, 1-984
XmTextFieldGetLastPosition,

1-985
XmTextFieldGetMaxLength,

1-986
XmTextFieldGetSelection,

1-987
XmTextFieldGetSelection­

Position, 1-988
XmTextFieldGetSelection­

Wcs, 1-989
XmTextFieldGetString,

1-990
XmTextFieldGetStringW cs,

1-991
XmTextFieldGetSubstring,

1-992
XmTextFieldGetSubstring­

Wcs, 1-994
XmTextFieldInsert, 1-996
XmTextFieldInsert W cs,

1-997
XmTextFieldPaste, 1-998
XmTextFieldPosToXY,

1-999

XmTextFieldRemove,
1-1000

XmTextFieldReplace,
1-1001

XmTextFieldReplace W cs,
1-1002

XmTextFieldSetAddMode,
1-1003

XmTextFieldSetEditable,
1-1004

XmTextFieldSetHighlight,
1-1005

XmTextFieldSetInsertion­
Position, 1-1006

XmTextFieldSetMaxLength,
1-1007

XmTextFieldSetSelection,
1-1008

XmTextFieldSetString,
1-1009

XmTextFieldSetStringW cs,
1-1010

XmTextFieldShowPosition,
1-1011

XmTextFieldXYToPos,
1-1012

title bar, 1-3
ToggleButton functions

XmToggleButtonGetState,
1-1082

XmToggleButtonSetState,
1-1083

ToggleButtonGadget functions
XmToggleButtonGadgetGet­

State, 1-1080
XmToggleButtonGadgetSet­

State, 1-1081
Toolkit functions

XmTrackingEvent, 1-1084

Index

XmTrackingLocate, 1-1085
TopLevelShell, 1-115
TransientShell, 1-123
Translation table value, 1-1141
traversal functions

u

XmGetFocusWidget, 1-529
XmGetTabGroup, 1-540

uid file, 1-48, 1-75
uid hierarchy, 1-72
UIL,l-llll

ANY value, 1-1130
argument values, 1-1139
arguments list, 1-1117
Boolean literals, 1-1129
callbacks list, 1-1118
case sensitivity clause,

1-1111
color values, 1-1134,

1-1135
controls list, 1-1119
coupled arguments, 1-1117
data type conversions,

1-1132
default character set clause,

1-1112
escape sequences, 1-1126
expressions, 1-1130
floating-point literals,

1-1129
floating-point values,

1-1136, 1-1137
font table value, 1-1137
font values, 1-1137

Index-11

OSF/Motif Programmer's Reference

fontset value, 1-1137
identifiers, 1-1120
include directive, 1-1121
integer literals, 1-1129
keysyms, 1-1134
keywords, 1-1122
list section, 1-1116
literals, 1-1123
object declaration, 1-1120
object section, 1-1120
objects clause, 1-1112
procedure declaration,

1-1115
procedure section, 1-1115
reason value, 1-1140
string literals, 1-1123
translation table value,

1-1141
user-defined character set,

1-1133
value section, 1-1113
wide character strings,

1-1139
widget class names, 1-1139

Uil, 1-131
uil, 1-48

compiler, 1-48
uil compiler, 1-131
uil functions

MrmCloseHierarchy, 1-72
MrmFetchBitmapLiteral,

1-73

Index-12

MrmFetchColorLiteral,
1~75 ' '

MrmFetchlconLiteral, 1-77
MrmFetchLiteral, 1 ~ 79
MrmFetchSet Values, 1-81
MrmFetchWidget" 1-83
MrmFetchWidgetOverride,

1.,-85 '

MrmInitialize, 1-87
MrmOpenHierarchy, 1-88
MrmOpenHierarchyPer-

Display, 1-92
MrmRegisterClass, 1-96
MrmRegisterNames, 1-98
MrmRegisterNamesIn-

Hierarchy, 1-100
Uil, 1-131
UilDumpSymbolTable,

1-136
U1L Functions, 1-1132

ARGUMENT,1-1139
CHARACTER_SET,

1-1133
CLASS_REC_NAME,

1-1139
COLOR, 1-1134
FLOAT, 1-1137

, FONT,1-1137
FONT_TABLE, 1-1137
KEYSYM,I-1134
reason value, 1-1140
RGB, 1-1135
SINGLE_FLOAT, 1-1136
WIDE_CHARACTER,

1-1139
UIL module

ANY value, 1-1130
argument values, 1-1139
Boolean literals, 1-1129
color values, 1-1134,

1-1135
floating-point literals,

1-1129
floating-point values,

1-1136,1-1137
font tabl~ value, 1-1137
font values, 1-1137

fontset value, 1-1137
functions, 1-1132
integer literals, 1-1129
keysyms, 1-1134
keywords, 1-1122
literals, 1-1123
reason value, 1-1140
string literals, 1-1123
translation table value,

1-1141
user-defined character set,

1-1133
wide character strings,

1-1139
widget class names, 1-1139

UIL specification file
ANY value, 1-1130
argument values, 1-1139
Boolean literals, 1-1129
color values, 1-1134,

1-1135
floating-point literals,

1-1129
floating-point values,

1-1136,1-1137
font table value, 1-1137
font values, 1-1137
fontset value, 1-1137
functions, 1-1132
integer literals, 1-1129
keysyms, 1-1134
keywords, 1-1122
literals, 1-1123
reason value, 1-1140
string literals, 1-1123
translation table value,

1-1141
user-defined character set,

1-1133

wide character strings,
1-1139

Index

widget class names, 1-1139
UilDumpSymbolTable, 1-136
user interface database, 1-48
user interface language, 1-48,

1-1111
compiler, 1-48

User-defined character set, 1-1133

v
Values

Boolean literals, 1-1129
floating-point literals,

1-1129
integer literals, 1-1129
literals, 1-1123
string literals, 1-1123

VendorShell, 1-138
VendorS hell functions

XmActivateProtocol, 1-170
XmActivate WMProtocol,

1-171
XmAddProtocolCallback,

1-172
XmAddProtocols, 1-173
XmAddTabGroup, 1-174
XmAddWMProtocol-

Callback, 1-175
XmAddWMProtocols,

1-176
XmDeactl vateProtocol,

1-356
XmDeactivate WMProtocol,

1-357

Index-13

OSF/Motif Programmer's Reference

XmRemoveProtocol­
Callback, 1-737

XmRemoveProtocols,
1-738

XmRemove WMProtocol­
Callback, 1-740

XmRemove WMProtocols,
1-741

XmSetProtocolHooks,
1-875

XmSetWMProtocolHooks,
1-877

VirtualBindings, 1-151

w
wide character strings, defining in

UIL, 1-1139
widget class

Index-14

ApplicationSheIl, 1-51
ArrowButton, 1-177
ArrowButtonGadget, 1-185
BulletinBoard, 1-192
CascadeButton, 1-204
CascadeButtonGadget,

1-216
Command, 1-260
Composite, 1-59
Constraint, 1-64
Core, 1-67
DialogShell, 1-359
DragContext, 1-373
DragIcon, 1-396
DrawingArea, 1-402
DrawnButton, 1-410
DropTransfer, 1-439

FileSelectionBox, 1-444
Form,1-488
Frame, 1-509
Gadget, 1-518
Label, 1-550
LabelGadget, 1-564
List, 1-577
MainWindow, 1-638
Manager, i -651
MenuShell, 1-666
MessageBox, 1-673
Object, 1-102
OverrideShell, 1-103
PanedWindow, 1-688
Primitive, 1-698
PushButton, 1-711
PushButtonGadget, 1-724
RectObj, 1-107
RowColumn, 1-759
Scale, 1-788
ScrollBar, 1-810
ScrolledWindow, 1-828
S electionB ox, 1-842
Separator, 1-859
SeparatorGadget, 1-865
Shell, 1-110
Text, 1-918
ToggleButton, 1-1054
ToggleButtonGadget,

1-1068
TopLevelSheIl, 1-115
TransientShell, 1-123
VendorShell, 1-138
WMShell, 1-160
XmDisplay, 1-367
XmScreen, 1-802

widget class names, defining in

UIL, 1-1139
widget meta-language, 1-1142
window manager, 1-2
window menu, 1-3
window stacking, 1-7
WML, 1-1142
WMShell, 1-160

x
XmActivateProtocol, 1-170
XmActivate WMProtocol, 1-171
XmAddProtocolCallback, 1-172
XmAddProtocols, 1-173
XmAddTabGroup, 1-174
XmAddWMProtocolCallback,

1-175
XmAddWMProtocols, 1-176
XmArrowButton, 1-177
XmArrowButtonGadget, 1-185
xmbind, 1-50
XmBulletinBoard, 1-192
XmCascadeButton, 1-204
XmCascadeButtonGadget, 1-216
XmCascadeButtonGadget -

Highlight, 1-225
XmCascadeButtonHighlight,

1-226
XmChangeColor, 1-227
XmClipboardCancelCopy, 1-228
XmClipboardCopy, 1-230
XmClipboardCopyByName, 1-232
XmClipboardEndCopy, 1-234
XmClipboardEndRetrieve, 1-236

Index

XmClipboardlnquireCount, 1-237
XmClipboardlnquireFormat, 1-239
XmClipboardlnquireLength, 1-241
XmCli pboardlnquirePendingltems,

1-243
XmClipboardLock, 1-245
XmClipboardRegisterFormat,

1-247
XmClipboardRetrieve, 1-249
XmClipboardStartCopy, 1-251
XmClipboardStartRetrieve, 1-254
XmClipboardUndoCopy, 1-256
XmClipboardUnlock, 1-257
XmClipboardWithdraw Format,

1-259
XmCommand, 1-260
XmCommandAppendValue, 1-273
XmCommandError, 1-274
XmCommandGetChild, 1-275
XmCommandSetValue, 1-276
XmConvertUnits, 1-277
XmCreateArrowButton, 1-279
XmCreateArrowButtonGadget,

1-280
XmCreateBulletinBoard, 1-281
XmCreateBulletinBoardDialog,

1-282
XmCreateCascadeButton, 1-283
XmCreateCascadeButtonGadget,

1-284
XmCreateCommand, 1-285
XmCreateDialogShell, 1-286
XmCreateDragIcon, 1-287
XmCreateDrawingArea, 1-288
XmCreateDrawnButton, 1-289
XmCreateErrorDialog, 1-290
XmCreateFileSelectionBox, 1-291

Index-15

OSF/Motif Programmer's Reference

XmCreateFileSelectionDialog,
1-293

XmCreateForm, 1-295
XmCreateFormDialog, 1-296
XmCreateFrame, 1-297
XmCreatelnformationDialog,

1-298
XmCreateLabel, 1-299
XmCreateLabelGadget, 1-300
XmCreateList, 1-301
XmCreateMain Window, 1-302
XmCreateMenuBar, 1-303
XmCreateMenuShell, 1-305
XmCreateMessageBox, 1-306
XmCreateMessageDialog, 1-307
XmCreateOptionMenu, 1-308
XmCreatePanedWindow, 1-310
XmCreatePopupMenu, 1-311
XmCreatePromptDialog, 1-313
XmCreatePulldownMenu, 1-314
XmCreatePushButton, 1-316
XmCreatePushButtonGadget,

1-317
XmCreateQuestionDialog, 1-318
XmCreateRadioBox, 1-319
XmCreateRowColumn, 1-321
XmCreateScale, 1-323
XmCreateScrollBar, 1-324
XmCreateScrolledList, 1-325
XmCreateScrolledText, 1-327
XmCreateScrolledWindow, 1-329
XmCreateSelectionBox, 1-330
XmCreateSelectionDialog, 1-331
XmCreateSeparator, 1-333
XmCreateSeparatorGadget, 1-334
XmCreateSimpleCheckBox, 1-335
XmCreateSimpleMenuBar, 1-336

Index-16

XmCreateSimpleOptionMenu,
1-337

XmCreateSimplePopupMenu,
1-339

XmCreateSimplePulldownMenu,
1-341

XmCreateSimpleRadioBox, 1-343
XmCreateTemplateDialog, 1-344
XmCreateText, 1-345
XmCreateTextField, 1-346
XmCreateToggleButton, 1-347
XmCreateToggleButtonGadget,

1-348
XmCreate WamingDialog, 1-349
XmCreateWorkArea, 1-350
XmCreate WorkingDialog, 1-351
XmCvtCTToXmString, 1-352
XmCvtStringToUnitType, 1-353
XmCvtXmStringToCT, 1-354
XmDeacti vateProtocol, 1-356
XmDeacti vate WMProtocol, 1-357
XmDestroyPixmap, 1-358
XmDialogShell, 1-359
XmDisplay, 1-367
XmDragCancel, 1-372
XmDragContext, 1-373
XmDragIcon, 1-396
XmDragStart, 1-401
XmDrawingArea, 1-402
XmDrawnButton, 1-410
XmDropSite, 1-421, 1-439
XmDropSiteConfigureStack -

ingOrder, 1-431
XmDropSiteEndUpdate, 1-432
XmDropSiteQueryStackingOrder,

1-433
XmDropSiteRegister, 1-434

XmDropSiteRetrieve, 1-435
XmDropSiteStartUpdate, 1-436
XmDropSiteUnregister, 1-437
XmDropS iteUpdate , 1-438
XmDropTransferAdd, 1-442
XmDropTransferStart, 1-443
XmFileSelectionBox, 1-444
XmFileSelectionBoxGetChild,

1-467
XmFileSelectionDoSearch, 1-469
XmFontList, 1-470
XmFontListAdd, 1-472
XmFontListAppendEntry, 1-473
XmFontListCopy, 1-474
XmFontListCreate, 1-475
XmFontListEntryCreate, 1-476
XmFontListEntryFree, 1-477
XmFontListEntryGetFont, 1-478
XmFontListEntryGetTag, 1-479
XmFontListEntryLoad, 1-480
XmFontListFree, 1-482
XmFontListFreeFontContext,

1-483
XmFontListGetNextFont, 1-484
XmFontListInitFontContext,

1-485
XmFontListNextEntry, 1-486
XmFontListRemoveEntry, 1-487
XmForm, 1-488
XmFrame, 1-509
XmGadget, 1-518
XmGetAtomName, 1-524
XmGetColorCalculation, 1-525
XmGetColors, 1-526
XmGetDestination, 1-527
XmGetDragContext, 1-528
XmGetFocusWidget, 1-529

Index

XmGetMenuCursor, 1-530
XmGetPixmap, 1-531
XmGetPixmapByDepth, 1-534
XmGetPostedFrom Widget, 1-537
XmGetSecondaryResourceData,

1-538
XmGetTabGroup, 1-540
XmGetTearOffControl, 1-541
XmGetVisibility, 1-542
XmGetXmDisplay, 1-543
XmGetXmScreen, 1-544
Xmlnstalllmage, 1-545
XmlnternAtom, 1-547
XmIsMotifWMRunning, 1-548
XmIsTraversable, 1-549
XmLabel,I-550
XmLabelGadget, 1-564
XmList, 1-577
XmListAddItem, 1-602
XmListAddItems, 1-604
XmListAddItemsUnselected,

1-605
XmListAddItemUnselected, 1-603
XmListDeleteAllItems, 1-606
XmListDeleteItem, 1-607
XmListDeleteItems, 1-608
XmListDeleteItemsPos, 1-609
XmListDeletePos, 1-610
XmListDeletePositions, 1-611
XmListDeselectAllItems, 1-612
XmListDeselectItem, 1-613
XmListDeselectPos, 1-614
XmListGetKbdItemPos, 1-615
XmListGetMatchPos, 1-616
XmListGetSelectedPos, 1-617
XmListItemExists, 1-618
XmListItemPos, 1-619

Index-17

OSF/Motif Programmer's Reference

XmListPosSelected, 1-620
XmListPosToBounds, 1-621
XmListReplaceItems, 1-622
XmListReplaceItemsPos, 1-623
XmListReplaceItemsPos Un-

selected, 1-624
XmListReplaceItems U nselected,

1-625
XmListReplacePositions, 1-626
XmListSelectItem, 1-627
XmListSelectPos, 1-628
XmListSetAddMode, 1-629
XmListSetBottomItem, 1-630
XmListSetBottomPos, 1-631
XmListSetHorizpos, 1-632
XmListSetItem, 1-633
XmListSetKbdItemPos, 1-634
XmListSetPos, 1-635
XmListUpdateSelectedList, 1-636
XmListYToPos, 1-637
XmMainWindow, 1-638
XmMain WindowSep 1, 1-646
XmMain WindowSep2, 1-647
XmMain WindowSep3, 1-648
XmMain WindowSetAreas, 1-649
XmManager, 1-651
XmMapSegmentEncoding, 1-664
XmMenuPosition, 1-665
XmMenuSp.eIl, 1-666
XmMessageBox, 1-673
XmMessageBoxGetChild, 1-685
XmOptionButtonGadget, 1-686
XmOptionLabelGadget, 1-687
XmPanedWindow, 1-688
XmPrimitive, 1-698
XmProcessTraversal, 1-708
XmPushButton, 1-711

Index-18

XmPushButtonGadget, 1-724
XmRegisterSegmentEncoding,

1-736
XmRemoveProtocolCaIlback,

1-737
XmRemoveProtocols, 1-738
XmRemoveTabGroup, 1-739
XmRemove WMProtocolCaIlback,

1-740
XmRemove WMProtocols, 1-741
XmRepTypeAddReverse, 1-742
XmRepTypeGetId, 1-743
XmRepTypeGetNameList, 1-744
XmRepTypeGetRecord, 1-745
XmRepTypeGetRegistered, 1-747
XmRepTypelnstaIl TearOff-

ModelConverter, 1-749
XmRepTypeRegister, 1-750
XmRepTypeValidValue, 1-752
XmResol veAIlPartOffsets, 1-753
XmResolvePartOffsets, 1-756
XmRowColumn, 1-759
XmScale, 1-788
XmScaleGetValue, 1-800
XmScaleSetValue, 1-801
XmScreen, 1-802
XmScroIlBar, 1-810
XmScroIlBarGetValues, 1-824
XmScrollBarSet Values, 1-825
XmScrolledWindow, 1-828
XmScrolledWindowSetAreas,

1-840
XmScrollVisible, 1-827
XmSelectionBox, 1-842
XmSelectionBoxGetChild, 1-857
XmSeparator, 1-859
XmSeparatorGadget, 1-865

XmSetColorCalculation, 1-870
XmSetFontUnit, 1-872
XmSetFontUnits, 1-873
XmSetMenuCursor, 1-874
XmSetProtocolHooks, 1-875
XmSetWMProtocolHooks, 1-877
XmString, 1-878
XmStringBaseline, 1-879
XmStringByteCompare, 1-880
XmStringCompare, 1-881
XmStringConcat, 1-882
XmStringCopy, 1-883
XmStringCreate, 1-884
XmStringCreateLocalized, 1-886
XmStringCreateLtoR, 1-887
XmStringCreateSimple, 1-888
XmStringDirection, 1-889
XmStringDirectionCreate, 1-890
XmStringDraw, 1-891
XmStringDrawImage, 1-893
XmStringDrawUnderline, 1-895
XmStringEmpty, 1-897
XmStringExtent, 1-898
XmStringFree, 1-899
XmStringFreeContext, 1-900
XmStringGetLtoR, 1-901
XmStringGetNextComponent,

1-902
XmStringGetNextSegment, 1-904
XmStringHasSubstring, 1-905
XmStringHeight, 1-906
XmStringInitContext, 1-907
XmStringLength, 1-908
XmStringLineCount, 1-909
XmStringNConcat, 1-910
XmStringNCopy, 1-911
XmStringPeekNextComponent,

1-912

Index

XmStringSegmentCreate, 1-913
XmStringSeparatorCreate, 1-914
XmStringTable, 1-915
XmStringWidth, 1-916
XmTargetsAreCompatible, 1-917
XmText, 1-918
XmTextClearSelection, 1-951
XmTextCopy, 1-952
XmTextCut, 1-953
XmTextDisableRedisplay, 1-954
XmTextEnableRedisplay, 1-955
XmTextFieldClearSelection,

1-979
XmTextFieldCopy, 1-980
XmTextFieldCut, 1-981
XmTextFieldGetBaseline, 1-982
XmTextFieldGetEditable, 1-983
XmTextFieldGetlnsertionPosition,

1-984
XmTextFieldGetLastPosition,

1-985
XmTextFieldGetMaxLength,

1-986
XmTextFieldGetSelection, 1-987
XmTextFieldGetSelectionPosition,

1-988
XmTextFieldGetSelection W cs,

1-989
XmTextFieldGetString, 1-990
XmTextFieldGetStringW cs, 1-991
XmTextFieldGetSubstring, 1-992
XmTextFieldGetSubstringW cs,

1-994
XmTextFieldInsert, 1-996
XmTextFieldInsertWcs, 1-997
XmTextFieldPaste, 1-998
XmTextFieldPosToXY, 1-999

Index-19

OSF/Motif Programmer's Reference

XmTextFieldRemove, 1-1000
XmTextFieldReplace, 1-1001
XmTextFieldReplace W cs, 1-1002
XmTextFieldSetAddMode, 1-1003
XmTextFieldSetEditable, 1-1004
XmTextFieldSetHighlight, 1-1005
XmTextFieldSetlnsertionPosition,

1-1006
XmTextFieldSetMaxLength,

1-1007
XmTextFieldSetSelection, 1-1008
XmTextFieldSetString, 1-1009
XmTextFieldSetStringW cs,

1-1010
XmTextFieldShowPosition,

1-1011
XmTextFieldXYToPos, 1-1012
XmTextFindString, 1-1013
XmTextFindStringWcs, 1-1015
XmTextGetBaseline, 1-1017
XmTextGetEditable, 1-1018
XmTextGetlnsertionPosition,

1-1019
XmTextGetLastPosition, 1-1020
XmTextGetMaxLength, 1-1021
XmTextGetSelection, 1-1022
XmTextGetSelectionPosition,

1-1023
XmTextGetSelection W cs, 1-1024
XmTextGetSource, 1-1025
XmTextGetString, 1-1026
XmTextGetStringWcs, 1-1027
XmTextGetSubstring, 1-1028
XmTextGetSubstringW cs, 1-1030
XmTextGetTopCharacter, 1-1032
XmTextlnsert, 1-1033
XmTextlnsertW cs, 1-1034

Index-20

XmTextPaste, 1-1035
XmTextPosition, 1-1037
XmTextPosToXY, 1-1036
XmTextRemove, 1-1038
XmTextReplace, 1-1039
XmTextReplaceWcs, 1-1040
XmTextScroll, 1-1041
XmTextSetAddMode, 1-1042
XmTextSetEditable, 1-1043
XmTextSetHighlight, 1-1044
XmTextSetlnsertionPosition,

1-1045
XmTextSetMaxLength, 1-1046
XmTextSetSelection, 1-1047
XmTextSetSource, 1-1048
XmTextSetString, 1-1049
XmTextSetStringWcs, 1-1050
XmTextSetTopCharacter, 1-1051
XmTextShowPosition, 1-1052
XmTextXYToPos, 1-1053
XmToggleButton, 1-1054
XmToggleButtonGadget, 1-1068
XmToggleButtonGadgetGetState,

1-1080
XmToggleButtonGadgetSetState,

1-1081
XmToggleButtonGetState, 1-1082
XmToggleButtonSetState, 1-1083
XmTrackingEvent, 1-1084
XmTrackingLocate, 1-1085
XmTranslateKey, 1-1086
Xm U ninstaillmage, 1-1087
XmUpdateDisplay, 1-1088
Xm VaCreateSimpleCheckBox,

1-1089
Xm VaCreateSimpleMenuBar,

1-1092

Xm VaCreateSimpleOptionMenu,
1-1094

Xm VaCreateSimplePopupMenu,
1-1097

Xm VaCreateSimplePulldown­
Menu, 1-1101

Xm VaCreateSimpleRadioBox,
1-1106

Xm WidgetGetBaselines, 1-1109
Xm WidgetGetDisplayRect,

1-1110

Index

Index-21

Notes

OSF/Motif™ Release 1.2

Programmer's Reference
TITLES IN THE OSF/Motif SERIES:

OSF/ Motif Programmer's Guide

OSF/ Motif Programmer's Reference

OSF/ Motif Style Guide

OSF/ Motif User's Guide

Application Environment Specification (AES)
User Environment Volume

Printed in U.S.A.

ISBN 0-13-643115-1

Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142

Prentice-Hall, Inc.

90000

