OSFMotf™

Programmer’s Reference

OPEN SOFTWARE FOUNDATION

OSF/Motif™
Programmer’s Reference

| ReviSion- 10

Open Software Foundation

Prentice Hall, Englewood Cliffs, New Jersey 07632

Cover design
and cover illustration: BETH FAGAN

This book was formatted with troff

= Published by Prentice-Hall, Inc.
= A Division of Simon & Schuster
=~ Englewood Cliffs, New Jersey 07632

The information contained within this document is subject to change
without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE.

OSF shall not be liable for errors contained herein or for incidental
consequential damages in connection with the furnishing, performance, or
use of this material.

All rights are reserved. No part of this publication may be photocopied,
reproduced, or translated into another language without the prior written
consent of Open Software Foundation, Inc.

Copyright© 1990, Open Software Foundation, Inc.
Copyright© 1989, Digital Equipment Corporation
Copyright© 1987, 1988, 1989 Hewlett-Packard Company
Copyright© 1988 Massachusetts Institute of Technology
Copyright© 1988 Microsoft Corporation

ALL RIGHTS RESERVED

Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are
trademarks of The Open Software Foundation, Inc.

DEC and DIGITAL are registered trademarks of Digital Equipment
Corporation

X Window System is a trademark of the Massachusetts Institute of
Technology

Printed in the United States of America
10 987 65 4321

ISBN 0-1%3-L40517-7

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia PTY. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc.,, Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

Preface
Audience .

Typographical Conventlons.

Manual Page Format
mwm

uil . .
ApphcatlonShell
Composite

Constraint

Core .
MrmCloseHlerarchy .
MrmkFetchColorLiteral .
MrmFetchlconLiteral .
MrmPFetchInterfaceModule
MrmFetchLiteral .
MrmPFetchSetValues
MrmFetchWidget

MnnFetchW1dgetOve.:m£ie ’

Mrmlnitialize
MrmOpenHierarchy
MrmRegisterClass
MrmRe gisterN ames
Object .
OverrldeShell
RectObj

vii
vii
viii
viii
1-1
1-46
1-48
1-56
1-61
1-65
1-71
1-73
1-75
1-77
1-79
1-81
1-83
1-86
1-89
1-90
1-93
1-95
1-97
1-99
1-104

OSF/Motif Programmer’s Reference

Shell . .

TopLevelShell
TransientShell

vil . . .
U11DumpSymbolTable .
VendorShell .
WMShell .

WindowObj .
XmActlvateProtocol .
XmActivate WMProtocol
XmAddProtocolCallback
XmAddProtocols
XmAddTabGroup . .
XmAddWMProtocolCallback
XmAddWMProtocols .
XmArrowButton
XmArrowButtonGadget
XmBulletinBoard
XmCascadeButton .
XmCascadeButtonGadget .
XmCascadeButtonHighlight
XmClipboardCancelCopy .
XmClipboardCopy .
XmChpboardCopyByName
XmClipboardEndCopy . .
XmClipboardEndRetrieve .
XmClipboardInquireCount
XmClipboardInquireFormat
XmClipboardInquireLength .
XmChpboardInqulrePendmgItems
XmClipboardLock .
XmChpboardReglsterFormat .
XmClipboardRetrieve
XmClipboardStartCopy
XmClipboardStartRetrieve
XmClipboardUndoCopy
XmClipboardUnlock . .
XmChpboardehdrawFormat
XmCommand . .
XmCommandAppendValue .
XmCommandError
XmCommandGetChild
XmCommandSetValue
XmConvertUnits

XmCreate ArrowButton
XmCreate ArrowButtonGadget
XmCreateBulletinBoard

1-108
1-113
1-121
1-129
1-132
1-134
1-143
1-153
1-155
1-157
1-159
1-161
1-163
1-165
1-167
1-169
1-177
1-184
1-198
1-211
1-221
1-223
1-225
1-228
1-231
1-233
1-235
1-238
1-241
1-244
1-247
1-249
1-251
1-254
1-258
1-261
1-263
1-266
1-268
1-283
1-285
1-287
1-289
1-291
1-294
1-296
1-298

Contents

XmCreateBulletinBoardDialog 1300
XmCreateCascadeButton+ .« + . . < .« . 1302
XmCreateCascadeButtonGadget 1304
XmCreateCommand « ¢« « « « « « + « « . 1306
XmCreateDialogShell+ .+ . + .+ . . 1308
XmCreateDrawingArea . . .+ « +« + + & o « « « o+ « « o . 1310
XmCreateDrawnButton+ .« ¢ « « « . o 1312
XmCreateErrorDialog « . .+ + « + .+ . .« . 1314
XmCreateFileSelectionBox 1316
XmCreateFileSelectionDialog 1-318
XmCreateForm « + « « « + + o« « 4 o« 4+ o« o« « . 1320
XmCreateFormDialog « .+ .« + « « « « . . 1322
XmCreateFrame . e e e e e e e e e e e e e e e e 12324
XmCreateInformatlonDlalog e e e e e e e e e e e e e e 12326
XmCreateLabel . . S £ A

XmCreatelabelGadget B B X [0
XmCreateList . . e e e e e e e e e e e e e e e e 1-332
XmCreateMamedow e e e e e e e e e e e e e e e e e 1-334
XmCreateMenuBar+ ¢ « ¢ « < « < < 1336

XmCreateMenuShell 1338
XmCreateMessageBox e 4]
XmCreateMessageDialog« « . .+ . . . 1342
XmCreateOptionMenu e e e e e e e e e e e e e e e e 1344
XmCreatePanedWindow+ < .« . . . 1347
XmCreatePopupMenu+« « o .+ . . . 1349
XmCreatePromptDialog 1351
XmCreatePulldlownMenu+ .« + « « « « « « « « o 1353
XmCreatePushButton+ + + + +« « « + « « « « .+ . 1356
XmCreatePushButtonGadget « . . 1358
XmCreateQuestionDialog +« « .+ + « « « « « o 1360
XmCreateRadioBox+ + « + + ¢ < « « o« . . 1362
XmCreateRowColumn « .« + « « « « « . 1364
XmCreateScale + <« « + ¢ « +« « + « . 1366
XmCreateScrollBar e e e e e e e e e e e e e e e e e 1-368
XmCreateScrolledList + « « + .+ .+ . . 1370
XmCreateScrolledText e e e e e e e e e e e e e e e e 32
XmCreateScrolledWindow+ .+ . .+ . . 1374
XmCreateSelectionBox+ .+ .+ + 4 o« « « o .« « . 1376
XmCreateSelectionDialog e e e e e e e e e e e e e e e 1378
XmCreateSeparator e e e e e e e e e e e e e e e .. 1-380
XmCreateSeparatorGadget e £ 19
XmCreateText . . e e e e e e e e e e e e e e .. 1384
XmCreateToggleButton e e e e e e e e e e e e e e e .. 1-386
XmCreateToggleButtonGadget « . . . 1-388
XmCreateWarningDialog « . . . 139
XmCreateWorkingDialog .-« « .+ « « « .+ « .+ . . 1392
XmCvtStringToUnitType« .« +« + « « « « o« « o« « « « 1394

OSF/Motif Programmer’s Reference

XmbDeactivateProtocol e e e e e e e e e e e e e e e e 1-396
XmbDeactivate WMProtocol« . .+« ¢ ¢ .« e v e e 1-398
XmDestroyPixmap« . « + + +« « « « « + « « .« . 1400
XmbDialogShell ¢+ . ¢ 0 v e v e e .. 14402
XmDrawingArea+« o 4 4 4 e e . . . 14410
XmDrawnButton v ¢ 4 v 4 e e« 4 o« . 1418
XmFileSelectionBox . e e e e e e e e e e e e e e 1-430
XmFlleSelectlonBoxGetChlld O v 72V
XmPFileSelectionDoSearch O, pv2¥: T3
XmFontListAdd « « « ¢ v ¢ v v e e e e e 1-448
XmFontListCreate « ¢ « +v « « o @« « o « o+ « « o+ 1450
XmPFontListFree e e e e e e e e e e e e e e e e e e 1-452
XmForm . . . ¢ . ¢ ¢ 4« e e 4 e e e e e e e e e e« . 1453
XmFrame 14469
XmGadget . . . v v v e e v e e 4 e e e e e e .o . . 1476
XmGetAtomName . . . + « v+ v e e e e e e e e o« o« . 1482
XmGetMenuCursor e e e e e e e e e e e e e e e e e . 1484
XmGetPixmap . . .« .+ .+« « . 4 e« o« s+ o+ o« .+ .« . 1486
Xmlnstalllmage « « « + « « « + « « .« . . 1489
XmlinternAtom . . e, g) |
XmIsMotlfWMRunnmg e e e e e e e e e e e e e e e e . 14493
XmLabel . . e e e e e e e e e e e e e e e e e 1495
XmLabelGadget e e e e e e e e e e e e e e e e e e . 1506
XmList . . ¢ . v e i e e e e e e e e e e e e e W« « 1516
XmListAddItem e e e e e e e e e e e e e e e e e e .+ 153
XmListAddItemUnselected + ¢« + ¢« « « ¢ « « « 1-538
XmListDeleteltem « « ¢ + « « « « « & « o o 1540
XmListDeletePos . . ¢ « ¢ ¢ v 4 e e e e e e e e e e 1-542
XmListDeselectAllltems . . ¢« +« « « « o o o o o o o o o 1-544
XmListDeselectltem + ¢ .« 4 e e e e e e e e 1-546
XmListDeselectP os e e e e e e e e e e e e e e e e e 1-548
XmListltemExists + « ¢« « « + ¢« « « + « o o +« o« 1550
XmListSelectltem + « ¢« « « 4« 4 e + e « « « « 1552
XmListSelectPos ¢ . 0 0 0 e 0 e e e e e 1-554
XmListSetBottomItem « « + .+ ¢« +« +« « « « « « . 1556
XmListSetBottomPos ¢ v e e e e e e e e 1-558
XmListSetHorizPos e e e e e e e e e e e e e e e e e 1-560
XmListSetltem v v v v e e e e e e e e e e . 1562
XmListSetPos ¢ v e e e e e e e e e e e e 1-564
XmMainWindow« v« 4 4 v v e e « o « « o 1566
XmMainWindowSepl+ .+ .+ + + « « « .+ o 1575
XmMainWindowSep2 4 . 0 e e 4 e . .. 1577
XmMainWindowSetAreas e B Y
XmManager . . . C e e e e e e e e e e e e e e e e 12582
XmMenuPosition ¢ . 0 e v e e e e e e e e . . 1591
XmMenuShell v ¢ v e e e e e e e e e e . 12593
XmMessageBox e e e e e e e e e e e e e e e e e e e 1-600

iv

Contents

XmMessageBoxGetChild .
XmOptionButtonGadget
XmOptionLabelGadget
XmPanedWindow
XmPrimitive .
XmPushButton . . .
XmPushButtonGadget . .
XmRemoveProtocolCallback .
XmRemoveProtocols
XmRemoveTabGroup

XmRemoveWMProtocofCallback)

XmRemoveWMProtocols .
XmResolvePartOffsets .
XmRowColumn .
XmScale . .
XmScaleGetValue
XmScaleSetValue
XmScrollBar ..
XmScrollBarGetValues
XmScrollBarSetValues
XmScrolledWindow . . .
XmScrolledWindowSetAreas
XmSelectionBox .
XmSelectlonBoxGetChlld
XmSeparator .« e .
XmSeparatorGadget
XmSetFontUnit .
XmSetMenuCursor .
XmSetProtocolHooks .
XmSetWMProtocolHooks
XmStringBaseline
XmStringByteCompare
XmStringCompare
XmStringConcat
XmStringCopy .
XmStringCreate .
XmStringCreateLtoR
XmStringDirectionCreate
XmStringDraw
XmStringDrawImage
XmStringDrawUnderline
XmStringEmpty .
XmStringExtent .
XmStringFree
XmStringFreeContext
XmStringGetLtoR
XmStnngGetNextComponent

¢ e o o o

OSF/Motif Programmer's Reference

XmStringGetNextSegment . .« +« + + + « « ¢« o+ 4 . o+ .« . 1812
XmStringHeight o o 1814
XmStringnitContext « 1816
XmStringlength+« « .+« .« . . 1818
XmStringLineCount+ .« .+ .+ .+ + .« « « . . 1820
XmStringNConcat+ + + + + + ¢ « + e 4 4 e o+« . 1-822
XmStringNCopy . e e e e e e e e e e e e e .. 1-824
XmStnngPeekNextComponent e v e e e e e e e e e e e o« . 1-826
XmStringSegmentCreate+ . .+ « « .+ « « & + .« o . 1-828
XmStringSeparatorCreate « .+ « « « « + . . . 1-830
XmStringWidth 0 0 . . 1832
XmText . . . e R 2
XmTextClearSelectlon e e e e e e e e e w e e e e e eeo. 12855
XmTextGetEditable e e e e e e e e e e e e e e e e e . 19857
XmTextGetMaxLength e e e e e e e e e e e e e e . 1859
XmTextGetSelection « + ¢ « + + + + « « « « . 1861
XmTextGetString+« .+ .+ + + ¢ + ¢ « +« « « « . 1863
XmTextReplace« + « « « + ¢« « + « « .+ . 1865
XmTextSetEditable+ . . . 1867
XmTextSetMaxLength « « . .+ .+ « + + « . 1869
XmTextSetSelection« .+ .+« o o« o . . 1871
XmTextSetString+ .« + .+ . .« .+« .« . . . 1873
XmToggleButton ¢ ¢ « ¢« + « « « .« . 1-875
XmToggleButtonGadget « . . .« « .+ « « . . 189
XmToggleButtonGadgetGetState B e
XmToggleButtonGadgetSetState 1906
XmToggleButtonGetState « « + « + « « « .+ . 1908
XmToggleButtonSetState+ . .« . . 1910
XmUninstalllmage « « « .+ < « <« « o . 1912
XmUpdateDisplay « « « « « « + « + « « + .+ . 1914
XtDisplaylnitialize+ « « « « « + .+ « . 1915
XtGrabKey+ . o . 0 0 0 000w 19919
XtGrabKeyboard o . 0 0 0. .o. 1921
Xtlnitialize+ . . . 0 0 0 0 e e e e e e e e . 12923
XtUngrabKey . e e e e e e e e e e e e e e e e e 1927
XtUngrabKeyboard e e e e e e e e e e e e e e e e e 19929
XtWidgetCallCallbacks + .+ + +« + « o « « « o+ « « 1930

Vi

Preface

This is the reference manual for OSF/Motif ™ commands and functions. It
contains toolkit, window manager, and user interface language commands
and functions.

Audience

This document is written for programmers who want to write applications
using Motif ™ interfaces to use as a reference.

vii

OSF/Motif Programmer’s Reference

Typographical Conventions

This volume uses the following typographical conventions:
o Boldfaced strings represent literals; type them exactly as they appear.

¢ [talicized strings represent variables (for example, function or macro
arguments).

o Ellipses (...) indicate that additional arguments are optional.

Manual Page Format

The manual pages in this volume use the following format:

Purpose
This section gives a short description of the interface.

Synopsis
This section describes the appropriate syntax for using the
interface.

Description
This section describes the behavior of the interface. On widget
man pages there are tables of resource values in the
descriptions. Those tables have the following headers:

Name Contains the name of the resource. Each new
resource is described following the new resources
table.

Class Contains the class of the resource.

Type Contains the type of the resource.

Default Contains the default value of the resource.

Access Contains the access permissions for the resource. A
C in this column means the resource can be set at
widget creation time. An S means the resource can
be set anytime. A G means the resource’s value can
retrieved.

viii

Preface

Examples
This sections gives practical examples for using the interface.

Return Value
This lists the values returned by function interfaces.

Errors
This section describes the error conditions associated with using
this interface.

Related Information
This section provides cross references to related interfaces and
header files described within this document.

System Calls
mwm(1X)

mwm

Purpose

A Window Manager

Synopsis

mwm [options]

Description

mwm is an X Window System client that provides window management
functionality and some session management functionality. It provides
functions that facilitate control (by the user and the programmer) of
elements of window states such as placement, size, icon/normal display, and
input-focus ownership. It also provides session management functions such
as stopping a client.

Options
-display display

This option specifies the display to use; see X(1).

-XI'm resourcestring
This option specifies a resource string to use.

1-1

OSF/Motif Programmer’s Reference

mwm(1X)

Appearance

The following sections describe the basic default behaviors of windows,
icons, the icon box, input focus, and window stacking. The appearance and
behavior of the window manager can be altered by changing the
configuration of specific resources. Resources are defined under the heading

"X DEFAULTS."
Windows

Default MWM window frames have distinct components with associated

functions:
Title Area

Title Bar

Minimize Button

Maximize Button

Window Menu Button

In addition to displaying the client’s title, the title
area is used to move the window. To move the
window, place the pointer over the title area, press
button 1 and drag the window to a new location. A
wire frame is moved during the drag to indicate the
new location. When the button is released, the
window is moved to the new location.

The title bar includes the title area, the minimize
button, the maximize button and the window menu
button.

To turn the window back into its icon, click button 1
on the minimize button (the frame box with a small
square in it).

To make the window fill the screen (or enlarge to
the largest size allowed by the configuration files),
click button 1 on the maximize button (the frame
box with a large square in it).

The window menu button is the frame box with a
horizontal bar in it. To pop up the window menu,
press button 1. While pressing, drag the pointer on
the menu to your selection, then release the button
when your selection is highlighted. Alternately, you
can click button 1 to pop up the menu and keep it
posted; then position the pointer and select.

System Calls

Icons

mwm(1X)

Default Window Menu

Selection | Accelerator Description

Restore Alt+F5 Inactive (not an option for windows)

Move Alt+F7 Allows the window to be moved with keys
or mouse

Size Alt+F8 Allows the window to be resized

Minimize Alt+F9 Turns the window into an icon

Maximize | Alt+F10 Makes the window fill the screen

Lower Alt+F11 Moves window to bottom of window stack

Close Alt+F4 Removes client from MWM management

Resize Border Handles To change the size of a window, move the pointer

Matte

over a resize border handle (the cursor changes),
press button 1, and drag the window to a new size.
When the button is released, the window is resized.
While dragging is being done, a rubber-band outline
is displayed to indicate the new window size.

An optional matte decoration can be added between
the client area and the window frame. A matte is
not actually part of the window frame. There is no
functionality associated with a matte.

Icons are small graphic representations of windows. A window can be
minimized (iconified) using the minimize button on the window frame.
Icons provide a way to reduce clutter on the screen.

OSF/Motif Programmer’s Reference

mwm(1X)

Pressing mouse button 1 when the ‘pointer is over an icon causes the icon’s
window menu to pop up. Releasing the button (press + release without
moving mouse = click) causes the menu to stay posted. The menu contains
the following selections:

B Icon Window Menu
Selection | Accelerator Description
Restore Alt+F5 Opens the associated window
Move Alt+F7 Allows the icon to be moved with keys
Size Alt+F8 Inactive (not an option for icons)
Minimize Alt+F9 Inactive (not an option for icons) -
Maximize | Alt+F10 Opens the associated window and

makes it fill the screen

Lower Alt+F11 Moves icon to bottom of icon stack
Close Ait+F4 Removes client from MWM management

Double-clicking button 1 on an icon normalizes the icon into its associated
window. Double-clicking button 1 on the icon box’s icon opens the icon box
and allow access to the contained icons. (In general, double-clicking a
mouse button is a quick way to perform a function.) Double-clicking button
1 with the pointer on the window menu button closes the window.

Icon Box

When icons begin to clutter the screen, they can be packed into an icon box.
(To use an icon box, MWM must be started with the icon box configuration
already set.) The icon box is an MWM window that holds client icons.
Icons in the icon box can be manipulated with the mouse. The following
table summarizes the behavior of this interface. Button actions apply
whenever the pointer is on any part of the icon.

System Calls

mwm(1X)

Button Action Description
Button 1 click Selects the icon
Button 1 double click | Normalizes (opens) the associated window.

Button 1 double click | Raises an already open window
to the top of the stack

Button 1 drag Moves the icon

The window menu of the icon box differs from the window menu of a client
window: The Close selection is replaced with the Packlcons Alt+F12
selection. When selected, PackIcons packs the icons in the box to achieve
neat rows with no empty slots.

Input Focus

MWM supports (by default) a keyboard input focus policy of explicit
selection. This means when a window is selected to get keyboard input, it
continues to get keyboard input until the window is withdrawn from window
management, another window is explicitly selected to get keyboard input, or
the window is iconified. Several resources control the input focus. The
client window with the keyboard input focus has the active window
appearance with a visually distinct window frame.

The following tables summarize the keyboard input focus selection
behavior:

Button Action Object Function Description

Button 1 press | Window / window frame | Keyboard focus selection
Button 1 press | Icon Keyboard focus selection

OSF/Motif Programmer’s Reference
mwm(1X)

Key Action Function Description

[Alt][Tab] Move input focus to next window in window stack
[Alt][Shift][Tab] | Move input focus to previous window in window stack

Window stacking

The stacking order of windows may be changed as a result of setting the
keyboard input focus, iconifying a window, or by doing a window manager
window stacking function.

When a window is iconified, the window’s icon is placed on the bottom of

the stack.
The following table summarizes the default window stacking behavior of
MWM,
Key Action Function Description
[AR][ESC] Put bottom window on top of stack

[AR][Shift[ESC] | Put top window on bottom of stack

A window can also be raised to the top when it gets the keyboard input
focus (for example, by pressing button 1 on the window or by using
[Alt][Tab]) if this auto-raise feature is enabled with the focusAutoRaise
resource.

X Defaults

MWM is configured from its resource database. This database is built from
the following sources. They are listed in order of precedence, low to high:

app-defaults/Mwm

RESOURCE_MANAGER root window property or SHOME/.Xdefaults
XENVIRONMENT variable or SHOME/.Xdefaults-host

mwim command line options

System Calls

mwm(1X)

Entries in the resource database may refer to other resource files for specific
types of resources. These include files that contain bitmaps, fonts, and
MWM specific resources such as menus and behavior specifications (for
example, button and key bindings).

Mwm is the resource class name of MWM and mwm is the resource name
used by MWM to look up resources. In the following discussion of resource
specification, "Mwm" and "mwm" can be used interchangeably.

MWM uses the following types of resources:
Component Appearance Resources:

These resources specify appearance attributes of window manager user
interface components. They can be applied to the appearance of window
manager menus, feedback windows (for example, the window
reconfiguration feedback window), client window frames, and icons.

Specific Appearance and Behavior Resources:

These resources specify MWM appearance and behavior (for example,
window management policies). They are not set separately for different
MWM user interface components.

Client Specific Resources:

These MWM resources can be set for a particular client window or class of
client windows. They specify client-specific icon and client window frame
appearance and behavior.

Resource identifiers can be either a resource name (for example,
foreground) or a resource class (for example, Foreground). If the value of a
resource is a filename and if the filename is prefixed by "7/", then it is
relative to the path contained in the $HOME environment variable
(generally the user’s home directory). This is the only environment variable
that MWM uses directly ($XENVIRONMENT is used by the resource
manager).

Component Appearance Resources

The syntax for specifying component appearance resources that apply to
window manager icons, menus, and client window frames is

OSF/Motif Programmer’s Reference

mwm(1X)

Mwm*resource_id

For example, Mwm*foreground is used to specify the foreground color for
MWM menus, icons, and client window frames.

The syntax for specifying component appearance resources that apply to a
particular MWM component is

Mwm*[menuliconIclientifeedback]*resource_id

If menu is specified, the resource is applied only to MWM menus; if icon is
specified, the resource is applied to icons; and if client is specified, the
resource is applied to client window frames. For example,
Mwm*icon*foreground is used to specify the foreground color for MWM
icons, Mwm*menu*foreground specifies the foreground color for MWM
menus, and Mwm*client*foreground is used to specify the foreground
color for MWM client window frames.

The appearance of the title area of a client window frame (including
window management buttons) can be separately configured. The syntax for
configuring the title area of a client window frame is:

Mwm*client*title*resource_id

For example, Mwm*client*title*foreground specifies the foreground color
for the title area. Defaults for title area resources are based on the values of
the corresponding client window frame resources.

The appearance of menus can be configured based on the name of the menu.
The syntax for specifying menu appearance by name is:

Mwm*menu*menu_name*resource_id

For example, Mwm*menu*my menu*foreground specifies the
foreground color for the menu named my_menu.

System Calls

mwm(1X)

The following component appearance resources that apply to all window

manager parts can be specified:

Component Appearance Resources - All Window Manager Parts

Name Class Value Type | Default
background Background color varies*
backgroundPixmap BackgroundPixmap string™* varies*
bottomShadowColor Foreground color varies*
bottomShadowPixmap | BottomShadowPixmap | string™* varies”
fontList FontList string™** "fixed"
foreground Foreground color varies™
saveUnder SaveUnder TIF F
topShadowColor Background color varies”
topShadowPixmap TopShadowPixmap string** varies*

*The default is chosen based on the visual type of the screen. **Pixmap
image name. See Xmlnstalllmage(3X). ***X11 R3 Font description.

background (class Background)
This resource specifies the background color. Any legal X color
may be specified. The default value is chosen based on the visual
type of the screen.

backgroundPixmap (class BackgroundPixmap)
This resource specifies the background pixmap of the MWM
decoration when the window is inactive (does not have the
keyboard focus). The default value is chosen based on the visual
type of the screen.

bottomShadowColor (class Foreground)
This resource specifies the bottom shadow color. This color is
used for the lower and right bevels of the window manager
decoration. Any legal X color may be specified. The default value
is chosen based on the visual type of the screen.

OSF/Motif Programmer’s Reference
mwm(1X)

bottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap. This pixmap is
used for the lower and right bevels of the window manager
decoration. The default is chosen based on the visual type of the
screen.

fontList (class Font)
This resource specifies the font used in the window manager
decoration. The character encoding of the font should match the
character encoding of the strings that are used. The default is
"fixed."

foreground (class Foreground)
This resource specifies the foreground color. The default is
chosen based on the visual type of the screen.

saveUnder (class SaveUnder)

This is used to indicate whether "save unders" are used for MWM
components. For this to have any effect, save unders must be
implemented by the X server. If save unders are implemented, the
X server saves the contents of windows obscured by windows that
have the save under attribute set. If the saveUnder resource is
True, MWM sets the save under attribute on the window manager
frame of any client that has it set. If saveUnder is False, save
unders are not on any window manager frames. The default value
is False.

topShadowColor (class Background)
This resource specifies the top shadow color. This color is used for
the upper and left bevels of the window manager decoration. The
defauit is chosen based on the visual type of the screen.

topShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap. This pixmap is
used for the upper and left bevels of the window manager
decoration. The default is chosen based on the visual type of the
screen.

System Calls
mwm(1X)

The following component appearance resources that apply to frame and
icons can be specified:

Frame and Icon Components
Name Class Value Type | Default
activeBackground Background color varies*
activeBackgroundPixmap BackgroundPixmap string** varies*
activeBottomShadowColor Foreground color varies”
activeBottomShadowPixmap | BottomShadowPixmap | string™* varies*
activeForeground Foreground color varies*
activeTopShadowColor Background color varies”
activeTopShadowPixmap TopShadowPixmap string™* varies”

*The default is chosen based on the visual type of the screen. **See
Xmlnstalllmage(3X).

activeBackground (class Background)
This resource specifies the background color of the MWM
decoration when the window is active (has the keyboard focus).
The default is chosen based on the visual type of the screen.

activeBackgroundPixmap (class ActiveBackgroundPixmap)
This resource specifies the background pixmap of the MWM
decoration when the window is active (has the keyboard focus).
The default is chosen based on the visual type of the screen.

activeBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the MWM
decoration when the window is active (has the keyboard focus).
The default is chosen based on the visual type of the screen.

activeBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap of the mwm
decoration when the window is active (has the keyboard focus).
The default is chosen based on the visual type of the screen.

OSF/Motif Programmer’s Reference
mwm(1X)

activeForeground (class Foreground)
This resource specifies the foreground color of the MWM
decoration when the window is active (has the keyboard focus).
The default is chosen based on the visual type of the screen.

activeTopShadowColor (class Background)
This resource specifies the top shadow color of the MWM
decoration when the window is active (has the keyboard focus).
The default is chosen based on the visual type of the screen.

activeTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap of the MWM
decoration when the window is active (has the keyboard focus).
The default is chosen based on the visual type of the screen.

Specific Appearance and Behavior Resources

The syntax for specifying specific appearance and behavior resources is

Mwm*resource_id

For example, Mwm*keyboardFocusPolicy specifies the window manager
policy for setting the keyboard focus to a particular client window.

System

Calls

mwm(1X)

The following specific appearance and behavior resources can be specified:

Specific Appearance and Behavior Resources

Name -Class Value Type | Default
autoKeyFocus AutoKeyFocus T/F T
autoRaiseDelay AutoRaiseDelay millisec 500
bitmapDirectory BitmapDirectory directory fusrfinclude/
: , X11/bitmaps
buttonBindings ButtonBindings string NULL -
cleanText CleanText T/F . T
clientAutoPlace ClientAutoPlace T/F T
colormapFocusPolicy | ColormapFocusPolicy | string keyboard
configFile ConfigFile file .mwmrc
deiconifyKeyFocus DeiconifyKeyFocus T/F T
doubleClickTime DoubleClickTime millisec. 500
enforceKeyFocus EnforceKeyFocus T/F T
fadeNormalicon FadeNormallcon TIF F
frameBorderWidth FrameBorderWidth pixels 5
iconAutoPlace IconAutoPlace T/F T
iconBoxGeometry IconBoxGeometry string 6x1+0-0
iconBoxName IconBoxName string iconbox
iconBoxTitle IconBoxTitle string lcons .
iconClick IconClick T/F T
iconDecoration iconDecoration string varies
iconimageMaximum IconimageMaximum wxh 50x50
iconlmageMinimum IconimageMinimum wxh 32x32
iconPlacement lconPlacement string ieft bottom
iconPlacementMargin | IconPlacementMargin | pixels varies
interactivePlacement T/F F

InteractivePlacement

OSF/Motif Programmer’s Reference

mwm(1X)
Name Class Value Type | Default
keyBindings KeyBindings string system
keyboardFocusPolicy KeyboardFocusPolicy string explicit
limitResize LimitResize T/F T
lowerOnlconify LowerOnlconify TF T
maximumMaximumSize | MaximumMaximumSize | wxh (pixels) | 2X screen
wé&h
moveThreshold MoveThreshold pixels 4
passButtons PassButtons T/F F
passSelectButton PassSelectButton TIF T
positionisFrame PositionlsFrame T/F T
positionOnScreen PositionOnScreen T/F T
quitTimeout QuitTimeout millisec. 1000
resizeBorderWidth ResizeBorderWidth pixels 10
resizeCursors ResizeCursors T/F T
showFeedback ShowFeedback string all
startupKeyFocus StartupKeyFocus T/F T
transientDecoration TransientDecoration string system
title
transientFunctions TransientFunctions string -minimize
-maximize
uselconBox UselconBox T/F F
wMenuButtonClick WMenuButtonClick T/F T
wMenuButtonClick2 WMenuButtonClick2 TF T

System Calls

mwm(1X)

autoKeyFocus (class AutoKeyFocus)

This resource is available only when the keyboard input focus
policy is explicit. If autoKeyFocus is given a value of True, then
when a window with the keyboard input focus is withdrawn from
window management or is iconified, the focus is set to the
previous window that had the focus. If the value given is False,
there is no automatic setting of the keyboard input focus. The
default value is True.

autoRaiseDelay (class AutoRaiseDelay)
This resource is available only when the focusAutoRaise resource
is True and the keyboard focus policy is pointer. The
autoRaiseDelay resource specifies the amount of time (in
milliseconds) that MWM waits before raising a window after it
gets the keyboard focus. The default value of this resource is 500
(ms).

bitmapDirectory (class BitmapDirectory)
This resource identifies a directory to be searched for bitmaps
- referenced by MWM resources. This directory is searched if a
bitmap is specified without an absolute pathname. The default
value for this resource is /usr/include/X11/bitmaps.

buttonBindings (class ButtonBindings)
This resource identifies the set of button bindings for window
management functions. The named set of button bindings is
specified in the mwm resource description file. These button
bindings are merged with the built-in default bindings. The
default value for this resource is NULL (that is, no button bindings
are added to the built-in button bindings).

cleanText (classCleanText)

This resource controls the display of window manager text in the
client title and feedback windows. If the default value of True is
used, the text is drawn with a clear (no stipple) background. This
makes text easier to read on monochrome systems where a
backgroundPixmap is specified. Only the stippling in the area
immediately around the text is cleared. If False, the text is drawn
directly on top of the existing background.

OSF/Motif Programmer’s Reference

mwm(1X)

clientAutoPlace (class ClientAutoPlace)

This resource determines the position of a window when the
window has not been given a user specified position. With a value
of True, windows are positioned with the top left corners of the
frames offset horizontally and vertically. A value of False causes
the currently configured position of the window to be used. In
either case, MWM attempts to place the windows totally on-
screen. The default value is True.

colormapFocusPolicy (class ColormapFocusPolicy)

This resource indicates the colormap focus policy that is to be
used. If the resource value is explicit, a colormap selection action
is done on a client window to set the colormap focus to that
window. If the value is pointer, the client window containing the
pointer has the colormap focus. If the value is keyboard, the client
window that has the keyboard input focus has the colormap focus.
The default value for this resource is keyboard.

configFile (class ConfigFile)
The resource value is the pathname for an mwm resource
description file. The default is .mwmrc in the user’s home
directory (based on the $HOME environment variable) if this file
exists, otherwise /usr/lib/X11/system.mwmrc.

deiconifyKeyFocus (class DeiconifyKeyF ocus)
This resource applies only when the keyboard input focus policy is
explicit. If a value of True is used, a window receives the
keyboard input focus when it is normalized (deiconified). True is
the default value.

doubleClick Time (class DoubleClickTime)
This resource is used to set the maximum time (in ms) between the
clicks (button presses) that make up a double-click. The default
value of this resource is 500 (ms).

System Calls

mwm(1X)

enforceKeyFocus (class EnforceKeyFocus)

If this resource is given a value of True, the keyboard input focus
is always explicitly set to selected windows even if there is an
indication that they are "globally active" input windows. (An
example of a globally active window is a scroll bar that can be
operated without setting the focus to that client.) If the resource is
False, the keyboard input focus is not explicitly set to globally
active windows. The default value is True.

fadeNormallcon (class FadeNormallcon)
If this resource is given a value of True, an icon is grayed out
whenever it has been normalized (its window has been opened).
The default value is False.

frameBorder Width (class FrameBorder Width)
This resource specifies the width (in pixels) of a client window
frame border without resize handles. The border width includes
the 3-D shadows. The default value is 5 pixels.

iconAutoPlace (class IconAutoPlace)

This resource indicates whether icons are automatically placed on
the screen by MWM, or are placed by the user. Users may specify
an initial icon position and may move icons after initial
placement; however, MWM adjusts the user-specified position to
fit into an invisible grid. When icons are automatically placed,
MWM places them into the grid using a scheme set with the
iconPlacement resource. If the iconAutoPlace resource has a value
of True, MWM does automatic icon placement. A value of False
allows user placement. The default value of this resource is True.

iconBoxGeometry (class IconBoxGeometry)
This resource indicates the initial position and size of the icon
box. The value of the resource is a standard window geometry
string with the following syntax:

[=]lwidthxheight|[{+-}xoffset{+-}yoffset]

OSF/Motif Programmer’s Reference

mwm(1X)

If the offsets are not provided, the iconPlacement policy is used to determine
the initial placement. The units for width and height are columns and rows.

The actual screen size of the icon box window depends on the
iconlmageMaximum (size) and iconDecoration resources. The default
value for size is (6 * iconWidth + padding) wide by (1 * iconHeight +
padding) high. The default value of the location is +0 -0.

iconBoxName (class IconBoxName)
This resource specifies the name that is used to look up icon box
resources. The default name is iconbox.

iconBoxTitle (class IconBoxTitle)
This resource specifies the name that is used in the title area of the
icon box frame. The default value is Icons.

iconClick (class IconClick)
When this resource is given the value of True, the system menu is
posted and left posted when an icon is clicked. The default value
is True.

iconDecoration (class IconDecoration)

This resource specifies the general icon decoration. The resource
value is label (only the label part is displayed) or image (only the
image part is displayed) or label image (both the label and image
parts are displayed). A value of activelabel can also be specified
to get a label (not truncated to the width of the icon) when the icon
is selected. The default icon decoration for icon box icons is that
each icon has a label part and an image part (label image). The
default icon decoration for stand-alone icons is that each icon has
an active label part, a label part and an image part (activelabel
label image).

iconImageMaximum (class IconImageMaximum)
This resource specifies the maximum size of the icon image. The
resource value is widthxheight (for example, 64x64). The
maximum supported size is 128x128. The default value of this
resource is 50x50.

System Calls

mwm(1X)

iconImageMinimum (class IconImageMinimum)
This resource specifies the minimum size of the icon image. The
resource value is widthxheight (for example, 32x50). The
minimum supported size is 16x16. The default value of this
resource is 32x32.

iconPlacement (class IconPlacement)
This resource specifies the icon placement scheme to be used.
The resource value has the following syntax:

primary_layout secondary layout
The layout value is one of the following:

top Lay the icons out top to bottom
bottom Lay the icons out bottom to top
left Lay the icons out left to right

right Lay the icons out right to left

A horizontal (vertical) layout value should not be used for both the
primary_layout and the secondary_layout (for example, don’t use
top for the primary layout and bottom for the secondary layout).
The primary_layout indicates whether, when an icon placement is
done, the icon is placed in a row or a column and the direction of
placement. The secondary layout indicates where to place new
rows or columns. For example, top right indicates that icons
should be placed top to bottom on the screen and that columns
should be added from right to left on the screen. The default
placement is left bottom (icons are placed left to right on the
screen, with the first row on the bottom of the screen, and new
rows added from the bottom of the screen to the top of the screen).

iconPlacementMargin (class IconPlacementMargin)

This resource sets the distance between the edge of the screen and
the icons that are placed along the edge of the screen. The value
should be greater than or equal to 0. A default value (see below)
is used if the value specified is invalid. The default value for this
resource is equal to the space between icons as they are placed on
the screen (this space is based on maximizing the number of icons
in each row and column).

OSF/Motif Programmer’s Reference

mwm(1X)

1-20

interactivePlacement (class InteractivePlacement)

This resource controls the initial placement of new windows on
the screen. If the value is True, the pointer shape changes before a
new window is placed on the screen to indicate to the user that a
position should be selected for the upper-left hand corner of the
window. If the value is False, windows are placed according to
the initial window configuration attributes. The default value of
this resource is False.

keyBindings (class KeyBindings)

This resource identifies the set of key bindings for window
management functions. If specified these key bindings replace the
built-in default bindings. The named set of key bindings is
specified in mwm resource description file. The default value
for this resource is the set of system-compatible key bindings.

keyboardFocusPolicy (class KeyboardFocusPolicy)

If set to pointer, the keyboard focus policy is to have the keyboard
focus set to the client window that contains the pointer (the
pointer could also be in the client window decoration that MWM
adds). If set to explicit, the policy is to have the keyboard focus
set to a client window when the user presses button 1 with the
pointer on the client window or any part of the associated MWM
decoration. The default value for this resource is explicit.

limitResize (class LimitResize)

If this resource is True, the user is not allowed to resize a window
to greater than the maximum size. The default value for this
resource is True.

lowerOnlconify (class LowerOnlconify)

If this resource is given the default value of True, a window’s icon
appears on the bottom of the window stack when the window is
minimized (iconified). A value of False places the icon in the
stacking order at the same place as its associated window.

System Calls

mwm(1X)

maximumMaximumSize (class MaximumMaximumSize)
This resource is used to limit the maximum size of a client
window as set by the user or client. The resource value is
widthxheight (for example, 1024x1024) where the width and
height are in pixels. The default value of this resource is twice the
screen width and height.

moveThreshold (class MoveThreshold)

This resource is used to control the sensitivity of dragging
operations that move windows and icons. The value of this
resource is the number of pixels that the locator is moved with a
button down before the move operation is initiated. This is used to
prevent window/icon movement when you click or double-click
and there is unintentional pointer movement with the button down.
The default value of this resource is 4 (pixels).

passButtons (class PassButtons)

This resource indicates whether or not button press events are
passed to clients after they are used to do a window manager
function in the client context. If the resource value is False, the
button press is not passed to the client. If the value is True, the
button press is passed to the client window. The window manager
function is done in either case. The default value for this resource
is False.

passSelectButton (class PassSelectButton) ,

This resource indicates whether or not the keyboard input focus
selection button press (if keyboardFocusPolicy is explicit) is
passed on to -the client window or used to do a window
management action associated with the window decorations. If
the resource value is False, the button press is not used for any
operation other than selecting the window to be the keyboard
input focus; if the value is True, the button press is passed to the
client window or used to do a window management operation, if
appropriate. The keyboard input focus selection is done in either
case. The default value for this resource is True.

positionlsFrame (class PositionIsFrame)
This resource indicates how client window position information
(from the WM_NORMAL_HINTS property and from

1-21

OSF/Motif Programmer’s Reference

mwm(1X)

1-22

configuration requests) is to be interpreted. If the resource value
is True, the information is interpreted as the position of the MWM
client window frame. If the value is False, it is interpreted as
being the position of the client area of the window. The default
value of this resource is True.

positionOnScreen (class PositionOnScreen)

This resource is used to indicate that windows should initially be
placed (if possible) so that they are not clipped by the edge of the
screen (if the resource value is True). If a'window is larger than
the size of the screen, at least the upper left corner of the window
is on-screen. If the resource value is False, windows are placed in
the requested position even if totally off-screen. The default value
of this resource is True.

quitTimeout (class QuitTimeout)

This resource specifies the amount of time (in milliseconds) that
MWM waits for a client to update the WM_COMMAND property
after MWM has sent the WM_SAVE_YOURSELF message. This
protocol is used .only for those clients that have a
WM_SAVE_YOURSELF atom and no WM_DELETE_WINDOW
atom in the WM_PROTOCOLS client window property. The
default value of this resource is 1000 (ms). (Refer to the fkill
function for additional information,)

resizeBorder Width (class ResizeBorder Width)
This resource specifies the width (in pixels) of a client window
frame border with resize handles. The specified border width
includes the 3-D shadows. The default is 10 (pixels).

resizeCursors (class ResizeCursors)
This is used to indicate whether the resize cursors are always
displayed when the pointer is in the window size border. If True,
the cursors are shown, otherwise the window manager cursor is
shown. The default value is True.

showFeedback (class ShowFeedback)
This resource controls when feedback information is displayed. It
controls both window position and size feedback during move or
resize operations and initial client placement. It also controls
window manager message and dialog boxes. The value for this

System Calls

mwm(1X)

resource is a list of names of the feedback options to be enabled;
the names must be separated by a space. The names of the
feedback options are shown below:)

Name Description
all Show all feedback (Default value)
behavior Confirm behavior switch
move Show position during move
none Show no feedback
placement | Show position and size during initial placement
resize Show size during resize
restart Confirm MWM restart

The following command line illustrates the syntax for showFeedback:

Mwm*showFeedback: placement resize behavior restart

This resource specification provides feedback for initial client placement
and resize, and enables the dialog boxes to confirm the restart and set
behavior functions. It disables feedback for the move function.

startupKeyFocus (class StartupKeyFocus)
This resource is available only when the keyboard input focus
policy is explicit. When given the default value of True, a window
gets the keyboard input focus when the window is mapped (that is,
initially managed by the window manager).

transientDecoration (class TransientDecoration)

This controls the amount of decoration that Mwm puts on transient
windows. The decoration specification is exactly the same as for
the clientDecoration (client specific) resource. Transient
windows are identified by the WM_TRANSIENT_FOR property
which is added by the client to indicate a relatively temporary
window. The default value for this resource is menu title (that is,
transient windows have resize borders and a titlebar with a
window menu button).

1-23

OSF/Motif Programmer’s Reference

mwm(1X)

transientFunctions (class TransientFunctions)
This resource is used to indicate which window management
functions are applicable (or not applicable) to transient windows.
The function specification is exactly the same as for the
clientFunctions (client specific) resource. The default value for
this resource is -minimize -maximize.

uselconBox (class UselconBox)
If this resource is given a value of True, icons are placed in an icon
box. When an icon box is not used, the icons are placed on the
root window (default value).

wMenuButtonClick (class WMenuButtonClick)
This resource indicates whether a click of the mouse when the
pointer is over the window menu button posts and leaves posted
the system menu. If the value given this resource is True, the
menu remains posted. True is the default value for this resource.

wMenuButtonClick2 (class WMenuButtonClick2)
When this resource is given the default value of True, a double-
click action on the window menu button does an f kill function.

Client Specific Resources

1-24

The syntax for specifying client specific resources is
Mwm*client_name_or_class*resource_id

For example, Mwm*mterm*windowMenu is used to specify the window
menu to be used with mterm clients.

The syntax for specifying client specific resources for all classes of clients is
Mwm*resource_id

Specific client specifications take precedence over the specifications for all

clients. For example, Mwm*windowMenu is used to specify the window

menu to be used for all classes of clients that don’t have a window menu
specified.

System Calls

mwm(1X)

The syntax for specifying resource values for windows that have an
unknown name and class (that is, windows that do not have a WM_CLASS
property associated with them) is

Mwm*defaults*resource_id

For example, Mwm*defaults*iconImage is used to specify the icon image
to be used for windows that have an unknown name and class.

The following client specific resources can be specified:

Client Specific Resources

Name Class Value Type | Default
clientDecoration ClientDecoration | string all
clientFunctions ClientFunctions string all
focusAutoRaise FocusAutoRaise | T/F T
iconlmage Iconimage pathname (image)
iconimageBackground Background color icon
background
iconlmageBottomShadowColor Foreground color icon bottom
shadow
iconimageBottomShadowPixmap | BottomShadow- | color icon bottom
Pixmap shadow pixmap
iconimageForeground Foreground color icon
foreground
iconimageTopShadowColor Background color icon top
shadow color
iconimageTopShadowPixmap TopShadow- color icon top
Pixmap shadow pixmap
matteBackground Background color background
matteBottomShadowColor Foreground color bottom

shadow color

1-25

OSF/Motif Programmer’s Reference

mwm(1X)
Name Class Value Type | Default
matteBottomShadowPixmap | BottomShadow- color bottom shadow
Pixmap pixmap
matteForeground Foreground color foreground
matteTopShadowColor Background color top shadow
color
matteTopShadowPixmap TopShadow- color top shadow
Pixmap pixmap
matteWidth MatteWidth pixels 0
maximumClientSize MaximumClientSize | wxh fill the
screen
useClientlcon UseClientlcon T/F F
windowMenu WindowMenu string string

clientDecoration (class ClientDecoration)

This resource controls the amount of window frame decoration.
The resource is specified as a list of decorations to specify their
inclusion in the frame. If a decoration is preceded by a minus sign,
that decoration is excluded from the frame. The sign of the first
item in the list determines the initial amount of decoration. If the
sign of the first decoration is minus, MWM assumes all
decorations are present and starts subtracting from that set. If the
sign of the first decoration is plus (or not specified), MWM starts
with no decoration and builds up a list from the resource.

1-26

System Calls

mwm(1X)

Name - Description
all Include all decorations (default value)
border Window border '

maximize | Maximize button (includes title bar)
minimize | Minimize button (includes title bar)

none No decorations
resizeh Border resize handles (includes border)
menu Window menu button (includes title bar)
title Title bar (includes border)

Examples:

Mwm*XClock.clientDecoration: -resizeh -maximize

This removes the resize handles and maximize button from
XClock windows.

Mwm*XClock.clientDecoration: menu minimize border

This does the same thing as above. Note that either menu or
minimize implies title.

clientFunctions (class ClientFunctions)

This resource is used to indicate which MWM functions are
applicable (or not applicable) to the client window. The value for
the resource is a list of functions. If the first function in the list
has a minus sign in front of it, MWM starts with all functions and
subtracts from that set. If the first function in the list has a plus
sign in front of it, MWM starts with no functions and builds up a
list. Each function in the list must be preceded by the appropriate
plus or minus sign and separated from the next function by a
space.

1-27

OSF/Motif Programmer’s Reference

mwm(1X)

1-28

The table below lists the functions available for this resource:

Name ‘ " Description
alb - - Include all functions (default value)
none No functions
resize f.resize
move | f.move

minimize f.minimize
maximize | f.maximize

close f.kill

focusAutoRaise (class FocusAutoRaise)
When the value of this resource is True, clients are raised when
they get the keyboard input focus. If the value is False, the
stacking of windows on the display is not changed when a window
gets the keyboard input focus. The default value is True.

iconImage (class IconImage)

This resource can be used to specify an icon image for a client (for
example, "Mwm*myclock*iconlmage"). The resource value is a
pathname for a bitmap. file. The value of the (cllent specific)
useClientIcon resource is used to determine whether or not user
supplied icon images are used instead of client supplied icon
images. The default value is to display a built-in window manager
icon image.

iconImageBackground (class Background)
This resource specifies the background color of the icon image
that is displayed in the image part of an icon. The default value of
this resource is the icon background color (that is, specified by
"Mwm*background or Mwm*icon*background).

iconlmageBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the icon image
that is displayed in the image part of an icon. The default value of
this resource is the icon bottom shadow color (that is, specified by
Mwm*1con*bottomShadowColor) :

System Calls

mwm(1X)

iconImageBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap of the icon
image that is displayed in the image part of an icon. The default
value of this resource is the icon bottom shadow pixmap (that is,
specified by Mwm*icon*bottomShadowPixmap).

iconImageForeground (class Foreground)
This resource specifies the foreground color of the icon image that
is‘displa‘yed in the image part of an icon. The default value of this
resource is the icon foreground color (that is, specified by
"Mwm*foreground or Mwm*icon*foreground).

iconImageTopShadowColor (class Background)
This resource specifies the top shadow color of the icon image that
is displayed in the image part of an icon. The default value of this
resource is the-icon top shadow color (that is, specified by
Mwm*icon*topShadowColor).

iconImageTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow plxmap of the icon image
that is displayed in the image part of an icon. The default value of
this resource is the icon top shadow pixmap (that is, specified by
Mwm*icon*topShadowPixmap).

matteBackground (class Background)
This resource specifies the background color of the matte, when
matteWidth is positive. The default value of this resource is the
client background color (that is, specified by "Mwm*background
or Mwm*client*background).

matteBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the matte,
when matteWidth is positive. The default value of this resource
is the client bottom shadow color (that is, specified by
"Mwm*bottomShadowColor or
Mwm*client*bottomShadowColor).

1-29

OSF/Motif Programmer’s Reference

mwm(1X)

1-30

matteBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow pixmap of the matte,
when matteWidth is positive. The default value of this resource
is the client bottom shadow pixmap (that is, specified by
"Mwm*bottomShadowPixmap or
Mwm*client*bottomShadowPixmap).

matteForeground (class Foreground)
This resource specifies the foreground color of the matte, when
matteWidth is positive. The default value of this resource is the
client foreground color (that is, specified by "Mwm*foreground or
Mwm*client*foreground).

matteTopShadowColor (class Background)
This resource specifies the top shadow color of the matte, when
matteWidth is positive. The default value of this resource is the
client top shadow color (that is, specified by
"Mwm*topShadowColor or Mwm*client*topShadowColor).

matteTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow pixmap of the matte, when
matteWidth is positive. The default value of this resource is the
client top shadow pixmap (that is, specified by
"Mwm*topShadowPixmap or Mwm*client*topShadowPixmap).

matteWidth (class MatteWndth)
This resource specifies the width of the optional matte. The
default value is 0, which effectively disables the matte.

maximumClientSize (class MaximumClientSize)

This is a size specification that indicates the client size to be used
when an application is maximized. The resource value is
specified as widthxheight. The width and height are interpreted in
the units that the client uses (for example, for terminal emulators
this is generally characters). If this resource is not specified, the
maximum size from the WM_NORMAL_HINTS property is used
if set. Otherwise the default value is the size where the client
window with window management borders fills the scréen. When
the maximum client size -is not determined by the
maximumClientSize ~ resource, the maximumMaximumSize
resource value is used as a constraint on the maximum size.

System Calls

mwm(1X)

useClientIcon (class UseClientIcon)

If the value given for this resource is True, a client supplied icon
image takes precedence over a user supplied icon image. The
default value is False, giving the user supplied icon image higher
precedence than the client supplied icon image.

windowMenu (class WindowMenu)

This resource indicates the name of the menu pane that is posted
when the window menu is popped up (usually by pressing button 1
on the window menu button on the client window frame). Menu
panes are specified in the MWM resource description file.
Window menus can be customized on a client class basis by
specifying resources of the form
Mwm*client_name_or_class*windowMenu (See "MWM
Resource Description File Syntax"). The default value of this
resource is the name of the built-in window menu specification.

Resource Description File

The MWM resource description file is a supplementary resource file that
contains resource descriptions that are referred to by entries in the defaults
files (.Xdefaults, app-defaults/Mwm). It contains descriptions of resources
that are to be used by MWM, and that cannot be easily encoded in the
defaults files (a bitmap file is an analogous type of resource description file).
A particular MWM resource description file can be selected using the
configFile resource. The following types of resources can be described in
the MWM resource description file:

Buttons

Keys

Menus

Window manager functions can be bound (associated)
with button events.

Window manager functions can be bound (associated)
with key press events.

Menu panes can be used for the window menu and other
menus posted with key bindings and button bindings.

1-31

OSF/Motif Programmer’s Reference

mwm(1X)

MWM Resource Description File Syntax

1-32

The MWM resource description file is a standard text file that contains
items of information separated by blanks, tabs, and new-line characters.
Blank lines are ignored. Items or characters can be quoted to avoid special
interpretation (for example, the comment character can be quoted to prevent
it from being interpreted as the comment character). A quoted item can be
contained in double quotes ("). Single characters can be quoted by
preceding them by the back-slash character (\). All text from an unquoted #
to the end of the line is regarded as a comment and is not interpreted as part
of a resource description. If ! is the first character in a line, the line is
regarded as a comment. Window manager functions can be accessed with
button and key bindings, and with window manager menus. Functions are
indicated as part of the specifications for button and key binding sets, and
menu panes. The function specification has the following syntax:

function = function_name [function_args]
function_name = window manager function
function_args = {quoted_item | unquoted_item)

The following functions are supported. If a function is specified that isn’t
supported, it is interpreted by MWM as f.nop.

f.beep This function causes a beep.

f.circle_down [icon | window]

This function causes the window or icon that is on the top of
the window stack to be put on the bottom of the window stack
(so that it no longer obscures any other window or icon). This
function affects only those windows and icons that obscure
other windows and icons, or that are obscured by other
windows and icons. Secondary windows (that is, transient
windows) are restacked with their associated primary window.
Secondary windows always stay on top of the associated
primary window and there can be no other primary windows
between the secondary windows and their primary window. If
an icon function argument is specified, the function applies
only to icons. If a window function argument is specified, the
function applies only to windows.

System Calls

mwm(1X)

f.circle_up [icon | window]

f.exec or!

f.focus_color

f.focus_key

f.kill

This function raises the window or icon on the bottom of the
window stack (so that it is not obscured by any other
windows). This function affects only those windows and icons
that obscure other windows and icons, or that are obscured by
other windows and icons. Secondary windows (that is,
transient windows) are restacked with their associated primary
window.

If an icon function argument is specified, the function applies
only to icons. If an window function argument is specified, the
function applies only to windows.

This function causes command to be executed (using the value
of the $SHELL environment variable if it is set, otherwise
/bin/sh). The ! notation can be used in place of the f.exec
function name.

This function sets the colormap focus to a client window. If
this function is done in a root context, the default colormap
(setup by the X Window System for the screen where MWM is
running) is installed and there is no specific client window
colormap focus. This function is treated as fnop if
colormapFocusPolicy is not explicit.

This function sets the keyboard input focus to a client window
or icon. This function 1is treated as fnop if
keyboardFocusPolicy is not explicit or the function is
executed in a root context.

If the WM_DELETE_WINDOW protocol is set up, the client
is sent a client message event indicating that the client
window should be deleted. If the WM_SAVE_YOURSELF
protocol is set up and the WM_DELETE_WINDOW protocol
is not set up, the client is sent a client message event

1-33

OSF/Motif Programmer’s Reference

mwm(1X)

1-34

indicating that the client needs to prepare to be terminated. If
the client does not have the WM_DELETE_WINDOW or
WM_SAVE_YOURSELF protocol set up, this function causes
a client’s X connection to be terminated (usually resulting in
termination of the client). Refer to the description of the
quitTimeout resource and the WM_PROTOCOLS property.

f.lower [-client]

f.maximize

f.menu

f.minimize

f.move

This function lowers a client window to the bottom of the
window stack (where it obscures no other window).
Secondary windows (that is, transient windows) are restacked
with their associated primary window. The client argument
indicates the name or class of a client to lower. If the client
argument is not specified, the context that the function was
invoked in indicates the window or icon to lower.

This function causes a client window to be displayed with its
maximum size.

This function associates a cascading (pull-right) menu with a
menu pane entry or a menu with a button or key binding. The
menu_name function argument identifies the menu to be used.

This function causes a client window to be minimized
(iconified). When a window is minimized when no icon box is
used, its icon is placed on the bottom of the window stack (so
that it obscures no other window). If an icon box is used, the
client’s icon changes to its iconified form inside the icon box.
Secondary windows (that is, transient windows) are minimized
with their associated primary window. There is only one icon
for a primary window and all its secondary windows.

This function allows a client window to be interactively
moved.

f.next_cmap This function installs the next colormap in the list of

colormaps for the window with the colormap focus.

System Calls

mwm(1X)

f.next_key [icon | window | transient]

This function sets the keyboard input focus to the next
window/icon in the set of windows/icons managed by the
window manager (the ordering of this set is based on the
stacking of windows on the screen). This function is treated as
f.nop if keyboardFocusPolicy is not explicit. The keyboard
input focus is moved only to windows that do not have an
associated secondary window that is application modal. If the
transient argument is specified, transient (secondary)
windows are traversed (otherwise, if only window is specified,
traversal is done only to the last focused window in a transient
group). If an icon function argument is specified, the function
applies only to icons. If a window function argument is
specified, the function applies only to windows.

f.nop This function does nothing.

f.normalize This function causes a client window to be displayed with its
normal size. Secondary windows (that is, transient windows)
are placed in their normal state along with their associated
primary window.

f.pack_icons
This function is used to relayout icons (based on the layout
policy being used) on the root window or in the icon box. In
general this causes icons to be "packed" into the icon grid.

f.pass_keys This function is used to enable/disable (toggle) processing of
key bindings for window manager functions. When it disables
key-binding processing all keys are passed on to the window
with the keyboard input focus and no window manager
functions are invoked. If the f.pass_keys function is invoked
with a key binding to disable key-binding processing, the same
key binding can be used to enable key-binding processing.

1-35

OSF/Motif Programmer’s Reférence

mwm(1X)

1-36

f.prev_cmap

f.post_wmenu

This function is used to post the window menu. If a key is
used to post the window menu and a window menu button is
present, the window menu is automatlc‘élly placed with its
top-left corner at the bottom-left corner of the window menu
button for the client window. If no window menu button is
present, the window menu is placed at the top-left corner of

- the client window.

This function installs the previous colormap in the list of
colormaps for the window with the colormap focus.

f.prev_key [icon | window | transient]

This function sets the keyboard mput focus to the previous
window/icon in the set of windows/icons managed by the
window manager (the ordering of this set is based on the
stacking of windows on the screen). This function is treated as
f.nop if keyboardFocusPolicy is not explicit. The keyboard
input focus is moved only to windows that do not have an
associated secondary window that is application modal. If the
transient argument is specified, transient (secondary) windows
are traversed (otherwise, if only window is specified, traversal
is done only to the last focused window in a transient group).
If an icon function argument is specified, the function applies
only to icons. If an window function argument is spemﬁed the
function applies only to windows.

f.quit_mwm This function terminates MWM (but not the X window

system).

f.raise [-client]

This function raises a client window to the top of the wmdow
stack (where it is obscured by no other window). Secondary
windows (that is, transient windows) are restacked with their
associated primary window. The client argument indicates the
name or class of a client to raise. If the client argument is not
specified, the context that the function was invoked in
indicates the window or icon to raise.

System Calls

mwm(1X)

f.raise_lower

f.refresh

This function raises a client window to the top of the window
stack if it is partially obscured by another window, otherwise
it lowers the window to the bottom of the window stack.
Secondary windows (that is, transient windows) are restacked
with their associated primary window.

This function causes all windows to be redrawn.

f.refresh_win

f.resize

f.restart

This function causes a client window to be redrawn.

This function allows a client window to be interactively
resized.

This function causes MWM to be restarted (effectively
terminated and re-executed).

f.send_msg message _number

f.separator

This function sends a client message of the type
_MOTIF_WM_MESSAGES with the message_type indicated
by the message number function argument. The client
message is sent only if message number is included in the
client’s _MOTIF_WM_MESSAGES property. A menu item
label is grayed out if the menu item is used to do f.send_msg of
a message that is not included in the client’s
_MOTIF_WM_MESSAGES property.

This function causes a menu separator to be put in the menu
pane at the specified location (the label is ignored).

f.set_behavior

f.title

This function causes the window manager to restart with the
default OSF(TM) behavior (if a custom behavior is
configured) or a custom behavior (if an OSF default behavior
is configured).

This function inserts a title in the menu pane at the specified
location.

1-37

OSF/Motif Programmer’s Reference

mwm(1X)

1-38

Each function may be constrained as to which resource types can specify the
function (for example, menu pane) and also what context the function can
be used in (for example, the function is done to the selected client window).
Function contexts are

root No client window or icon has been selected as an object
for the function.

window A client window has been selected as an object for the
function. This includes the window’s title bar and frame.
Some functions are applied only when the window is in
its normalized state (for example, f.maximize) or its
maximized state (for example, f.normalize).

icon An icon has been selected as an object for the function.

If a function is specified in a type of resource where it is not supported or is
invoked in a context that does not apply, the function is treated as f.nop.
The following table indicates the resource types and function contexts in
which window manager functions apply.

System Calls

mwm(1X)

Function Contexts Resources
f.beep root,icon,window button,key,menu
f.circle_down root,icon,window button,key,menu
f.circle_up root,icon,window button,key,menu
f.exec root,icon,window button,key,menu
f.focus_color root,icon,window button,key,menu
f.focus_key root,icon,window button,key,menu
f.kill icon,window button,key,menu
f.lower root,icon,window button,key,menu
f.maximize icon,window(normal) button,key,menu
f.menu root,icon,window button,key,menu
f.minimize window button,key,menu
f.move icon,window button,key,menu
f.next_cmap root,icon,window button,key,menu
f.next_key root,icon,window button,key,menu
f.nop root,icon,window button,key,menu
f.normalize icon,window(maximized) button,key,menu
f.pack_icons root,icon,window button,key,menu
f.pass_keys root,icon,window button,key,menu
f.post_ wmenu root,icon,window button,key
f.prev_cmap root,icon,window button,key,menu
f.prev_key root,icon,window button,key,menu
f.quit._mwm root button,key,menu
f.raise root,icon,window button,key,menu
f.raise_lower icon,window button,key,menu
f.refresh root,icon,window button,key,menu
f.refresh_win window button,key,menu
f.resize window button,key,menu
f.restart root button,key,menu
f.send_msg icon,window button,key,menu

f.separator”
f.set_behavior
f.title

root,icon,window
root,icon,window
root,icon,window

menu
button,key,menu
menu

1-39

OSF/Motif Programmer’s Reference

mwm(1X)

1-40

Window Manager Event Specification

Events are indicated as part of the specifications for button and key- binding
sets, and menu panes.

Button events have the following syntax:

button = [modifier listl<button_event_name>
modifier_list= modifier_name {modifier_name}

All modifiers specified are interpreted as being exclusive (this means that
only the specified modifiers can be present when the button event occurs).
The following table indicates the values that can be used for modifier_name.
The [Alt] key is frequently labeled [Extend] or [Meta]. Alt and Meta can be
used interchangeably in event specification.

Modifier | Description

Ctrl Control Key
Shift Shift Key

Alt Alt/Meta Key
Meta Meta/Alt Key
Lock Lock Key
Mod1 Modifier1
Mod2 Modifier2

Mod3 Modifier3
Mod4 Modifier4
Mod5 Modifierd

System Calls

mwm(1X)

The following table indicates the values that can be used for
button_event_name.

Button Description
Btn1Down | Button 1 Press
Btn1Up Button 1 Release

Btn1Click Button 1 Press and Release
Btn1Click2 | Button 1 Double Click
Btn2Down | Button 2 Press

Btn2Up Button 2 Release

Btn2Click Button 2 Press and Release
Btn2Click2 | Button 2 Double Click
Btn3Down | Button 3 Press

Btn3Up Button 3 Release

Btn3Click Button 3 Press and Release
Btn3Click2 | Button 3 Double Click
Btn4Down | Button 4 Press

Btn4Up Button 4 Release

Btn4Click Button 4 Press and Release
Btn4Click2 | Button 4 Double Click
Btn5Down | Button 5 Press

Btn5Up Button 5 Release

Btn5Click Button 5 Press and Release
Btn5Click2 | Button 5 Double Click

Key events that are used by the window manager for menu mnemonics and
for binding to window manager functions are single key presses; key
releases are ignored. Key events have the following syntax:

key = [modifier_listl<Key>key _name
modifier_list= modifier_name {modifier_name}

All modifiers specified are interpreted as being exclusive (this means that
only the specified modifiers can be present when the key event occurs).
Modifiers for keys are the same as those that apply to buttons. The
key name is an X11 keysym name. Keysym names can be found in the
keysymdef.h file (remove the XK _prefix).

1-41

OSF/Motif Programmer's Reference

mwm(1X)

Button Bindings

1-42

The buttonBindings resource value is the name of a set of button bindings
that are used to configure window manager behavior. A window manager
function can be done when a button press occurs with the pointer over a
framed client window, an icon or the root window. The context for
indicating where the button press applies is also the context for invoking the
window manager function when the button press is done (significant for
functions that are context sensitive).

The button binding syntax is

Buttons bindings_set_name
{

button context function
button context function

button context function

}

The syntax for the context specification is

context = object]|context]
object = root | icon | window | title | frame | border | app

The context specification indicates where the pointer must be for the button
binding to be effective. For example, a context of window indicates that the
pointer must be over a client window or window management frame for the
button binding to be effective. The frame context is for the window
management frame around a client window (including the border and
titlebar), the border context is for the border part of the window
management frame (not including the titlebar), the title context is for the
title area of the window management frame, and the app context is for the
application window (not including the window management frame).

If an f.nop function is specified for a button binding, the button binding is
not done.

System Calls

mwm(1X)

Key Bindings

The keyBindings resource value is the name of a set of key bindings that
are used to configure window manager behavior. A window manager
function can be done when a particular key is pressed. The context in which
the key binding applies is indicated in the key binding specification. The
valid contexts are the same as those that apply to button bindings.

The key binding syntax is

Keys bindings_set_name
{

key context function
key context function

key context function

}

If an f.nop function is specified for a key binding, the key binding is not
done. If an fpost wmenu or f.menu function is bound to a key, MWM
automatically uses the same key for removirig the menu from the screen
after it has been popped up.

The context specification syntax is the same as for button bindings. For key
bindings, the frame, title, border, and app contexts are equivalent to the
window context. The context for a key event is the window or icon that has
the keyboard input focus (root if no window or icon has the keyboard input
focus).

1-43

OSF/Motif Programmer’s Reference

mwm(1X)

Menu Panes

1-44

Menus can be popped up using the fpost wmenu and f.menu window
manager functions. The context for window manager functions that are
done from a menu is root, icon or window depending on how the menu was
popped up. In the case of the window menu or menus popped up with a key
binding, the location of the keyboard input focus indicates the context. For
menus popped up using a button binding, the context of the button binding is
the context of the menu.

The menu pane specification syntax is

Menu menu_name

{ .
label [mnemonic] [accelerator] function
label [mnemonic] [accelerator] function

label [mnemonic] [accelerator] function
}

Each line in the Menu specification identifies the label for a menu item and
the function to be done if the menu item is selected. Optionally a menu
button mnemonic and a menu button keéyboard accelerator may be specified.
Mnemonics are functional only when the menu is posted and keyboard
traversal applies.

The label may be a string or a bitmap file. The label specification has the
following syntax:

label = text | bitmap_file
bitmap file= @file_name
text = quoted_item | unquoted_item

The string encoding for labels must be compatible with the menu font that is
used. Labels are greyed out for menu items that do the f.nop function or an
invalid function or a function that doesn’t apply in the current context.

System Calls
mwm(1X)

A mnemonic specification has the following syntax

mnemonic = _character

The first matching character in the label is underlined. If there is no
matching character in the label, no mnemonic is registered with the window
manager for that label. . Although the character must exactly match a
character in the label, the mnemonic does not execute if any modifier (such
as Shift) is pressed with the character key.

The accelerator specification is a key event specification with the same
syntax as is used for key bindings to window manager functions.

Environment

MWM uses the environment variable $HOME specifying the user’s home
directory.

Files

Jusr/lib/X11/system.mwmrc
/fusr/lib/X11/app-defaults/Mwm
$HOME/ Xdefaults

$HOME/ mwmrc

Related Information
X(1) ’

VendorShell(3X)
XmlInstalllmage(3X)

1-45

OSF/Motif Programmer’s Reference

uil(1X)

uil

Purpose

The user interface language compiler for X window system

Synopsis

uil [options] file

Description

1-46

The uil command invokes the UIL compiler. The user interface language
(UIL) is a specification language for describing the initial state of a user
interface for a Motif(TM) application. The specification describes the
objects (menus, dialog boxes, labels, push buttons, and so on) used in the
interface and specifies the routines to be called when the interface changes
state as a result of user interaction.

file Specifies the file to be compiled through the UIL compiler.
options Specifies one or more of the following options:

-Ipathname This option causes the compiler to look for
include files in the directory specified if the
include files have not been found in the paths
that already were searched. Specify this option
followed by a pathname, with no intervening
spaces.

System Calls

-o file

-v file

-w

uil(1X)

Machine code is listed. This directs the compiler
to place in the listing file a description of the
records that it added to the User Interface
Database (UID). This helps you isolate errors.
The default is no machine code.

Directs the compiler to produce a UID. By
default, UIL creates a UID with the name a.uid.
The file specifies the filename for the UID. No
UID is produced if the compiler issues any
diagnostics categorized as error or severe.

Directs the compiler to generate a listing. The
file specifies the filename for the listing. If the -v
option is not present, no listing is generated by
the compiler. The default is no listing.

Specifies that the compiler suppress all warning
and informational messages. If this option is not
present, all messages are generated, regardless of
the severity.

For more information about UIL syntax, see the OSF/Motif Programmer’s

Guide.

Related Information

X(1X), Uil(3X)

1-47

OSF/Motif Programmer’s Reference
ApplicationShell(3X)

ApplicationShell

Purpose

The ApplicationShell widget class

Synopsis

#include <Xm/Xm.h>
#include <X11/Shell.h>

Description

ApplicationShell is used as the main top-level window for an application.
An application should have more than one ApplicationShell only if it
implements multiple logical applications.

Classes

ApplicationShell inherits behavior and resources from Core, Composite,
Shell, WMShell, VendorShell, and TopLevelShell.

The class pointer is applicationShellWidgetClass.
The class name is ApplicationShell.

1-48

System Calls

New Resources

ApplicationShell(3X)

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource
values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or
XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),

retrieved by using XtGetValues (G), or is not applicable (N/A).

XmNargc

XmNargv

ApplicationShell Resource Set

Name Default Access
Class Type

XmNargc NULL CSG
XmCNargc int

XmNargv NULL CSG
XmCNargv String *

Specifies the number of arguments given in the XmNargv
resource. The function XtInitialize sets this resource on the
shell widget instance it creates by using its parameters as the

values.

Specifies the argument list required by a session manager to
restart the application, if it is killed. This list should be
updated at appropriate points by the application if a new state
has been reached which can be directly restarted. The
function XtInitialize sets this resource on the shell widget

instance it creates by using its parameters as the values.

1-49

OSF/Motif Programmer’s Reference
ApplicationShell(3X)

Inherited Resources

ApplicationShell inherits behavior and resources from the following
superclasses. For a complete description of each resource, refer to the man
page for that superclass.

XmCKeyboardFocusPolicy

unsigned char

TopLevelShell Resource Set
Name Default Access
Class Type
XmNiconic False CSG
XmCliconic Boolean
XmNiconName NULL CSG
XmClconName String
VendorShell Resource Set
Name Default Access
Class Type
XmNdeleteResponse XmDESTROY CSG
XmCDeleteResponse unsigned char
XmNkeyboardFocusPolicy XmEXPLICIT CSG

XmCShellUnitType

unsigned char

XmNmwmDecorations -1 CSG
XmCMwmDecorations int

XmNmwmFunctions -1 CSG
XmCMwmFunctions int

XmNmwminputMode -1 CSG
XmCMwminputMode int

XmNmwmMenu NULL CSG
XmCMwmMenu String

XmNshellUnitType XmPIXELS CSG

1-50

System Calls

ApplicationShell(3X)

WMShell Resource Set
Name Default Access
Class Type
XmNheightinc -1 CSG
XmCHeightinc int
XmNiconMask NULL CSG
XmClconMask Pixmap
XmNiconPixmap NULL CSG
XmClconPixmap Pixmap
XmNiconWindow NULL CSG
XmClconWindow Window
XmNiconX -1 CSG
XmClconX int
XmNiconY -1 CSG
XmClconY int
XmNinitialState 1 CSG
XmClnitialState int
XmNinput True CSG
XmClnput Boolean
XmNmaxAspectX -1 CSG
XmCMaxAspectX int
XmNmaxAspectY -1 CSG
XmCMaxAspectY int
XmNmaxHeight -1 CSG
XmCMaxHeight int
XmNmaxWidth -1 CSG
XmCMaxWidth int
XmNminAspectX -1 CSG
XmCMinAspectX int
XmNminAspectY -1 CSG
XmCMinAspectY int

1-51

OSF/Motif Programmer’s Reference

ApplicationShell(3X)

Name Default Access
Class Type
XmNminHeight -1 ' CSG
XmCMinHeight int
XmNminWidth -1 CSG
XmCMinWidth int
XmNtitle NULL CSG
XmCTitle char *
XmNtransient False CSG
XmCTransient Boolean
XmNwaitForWm True CSG
XmCWaitForWm Boolean
XmNwidthinc -1 CSG
- XmCWidthinc int
XmNwindowGroup None CSG
XmCWindowGroup XID
XmNwmTimeout fivesecond CSG
XmCWmTimeout int

System Calls

ApplicationShell (3X)

Shell Resource Set

Name Default Access
Class Type
XmNallowShellResize False CSG
XmCAllowShellResize Boolean
XmNcreatePopupChildProc NULL CSG
XmCCreatePopupChildProc XmCreatePopupChildProc
XmNgeometry NULL CSG
XmCGeometry String
XmNoverrideRedirect False CSG
XmCOverrideRedirect Boolean
XmNpopdownCallback NULL C
XmCCaliback XtCallbackList
XmNpopupCallback NULL C
XmCcCallback XtCallbackList
XmNsaveUnder False CSG
XmCSaveUnder Boolean
Composite Resource Set
Name Default Access
Class Type
XmNinsertPosition NULL CSG
XmClnsertPosition XmRFunction

1-63

OSF/Motif Programmer’s Reference

ApplicationShell(3X)

1-54

Core Resource Set

Name Default Access
Class Type

XmNaccelerators NULL CSG
XmCAccelerators XtTranslations

XmNancestorSensitive ShellAncestorSensitive G
XmCSensitive Boolean

XmNbackground White CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor Black CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CsG
XmCBorderWidth Dimension

XmNcolormap ShellColormap CG
XmCColormap Colormap

‘XmNdepth ShellDepth CG
XmCDepth int

XmNdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight 0 CSG
XmCHeight . Dimension

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen XtCopyScreen CG
XmCScreen Pointer

XmNsensitive True CSG
XmCSensitive Boolean

System Calls

ApplicationShell(3X)

Name Default Access
Class Type

XmNtranslations NULL CSG
XmCTranslations XtTranslations

XmNwidth 0 CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Related Information

Composite(3X), Core(3X), Shell(3X), WMShell(3X), VendorShell(3X),

and TopLevelShell(3X).

1-55

OSF/Motif Programmer’s Reference

Composite(3X)

Composite

Purpose

The Composite widget class

Synopsis

#include <Xm/Xm.h>

Description

Composite widgets are intended to be containers for other widgets and can
have an arbitrary number of children. Their responsibilities (implemented
either directly by the widget class or indirectly by Intrinsics functions)
include.

1-56

Overall management of children from creation to destruction.
Destruction of descendants when the composite widget is destroyed.

Physical arrangement (geometry management) of a displayable subset of
managed children.

Mapping and unmapping of a subset of the managed children. Instances
of composite widgets need to specify the order in which their children
are kept. For example, an application may want a set of command
buttons in some logical order grouped by function, and it may want
buttons that represent filenames to be kept in alphabetical order.

System Calis

Composite(3X)

Classes

Composite inherits behavior and resources from Core.
The class pointer is composite WidgetClass.

The class name is Composite.

New Resources

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource
values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or
XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

Composite Resource Set
Name Default Access
Class Type
XmNinsertPosition NULL CSG
XmCinsertPosition XmRFunction
XmNinsertPosition

Points to the XtOrderProc function described below.

1-57

OSF/Motif Programmer’s Reference

Composite(3X)

1-58

The following procedure pointer in a composite widget instance is of type
XtOrderProc:

Cardinal (* XtOrderProc) (widget)
Widget w;

w Specifies the widget.

Composite widgets that allow clients to order their children (usually
homogeneous boxes) can call their widget instance’s insert_position
procedure from the class’s insert_child procedure to determine where a new
child should go in its children array. Thus, a client of a composite class can
apply different sorting criteria to widget instances of the class, passing in a
different insert_position procedure when it creates each composite widget
instance.

The return value of the insert_position procedure indicates how many
children should go before the widget. Returning zero indicates that the
widget should go before all other children; returning num_children indicates
that it should go after all other children. The default insert_position
function returns num_children and can be overridden by a specific
composite widget’s resource list or by the argument list provided when the
composite widget is created.

Inherited Resources

Composite inherits behavior and resources from the following superclass.
For a complete description of each resource, refer to the man page for that
superclass.

System Calls

Composite(3X)
Core Resource Set

Name Default Access
Class Type

XmNaccelerators NULL CSG
XmCAccelerators XtTranslations

XmNancestorSensitive True G
XmCSensitive Boolean

XmNbackground White CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap “Pixmap

XmNborderColor Black CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap XtCopyFromParent CG
XmCColormap Colormap

XmNdepth XtCopyFromParent CG
XmCDepth int

XmNdestroyCallback NULL c
XmCCallback XtCallbackList

XmNheight 0 CSG
XmCHeight Dimension

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen XtCopyScreen CG
XmCScreen Pointer

XmNsensitive True CSG
XmCSensitive Boolean

1-59

OSF/Motif Programmer’s Reference

Composite(3X)

Name Default Access
Class Type

XmNtranslations NULL CSG
XmCTranslations XtTranslations

XmNwidth 0 \ CSG
XmCWidth Dimension

XmNx o CSG

~ XmCPosition Position

XmNy 0 - CSG

- XmCPosition Position

Related Information

Core(3X).

1-60

System Calls
Constraint(3X)

Constraint

Purpose

The Constraint widget class

Synopsis

#include <Xm/Xm.h>

Description

Constraint widgets maintain additional state data for each child. For
example, client-defined constraints on the child’s geometry may be
specified. C

When a constrained composite widget defines constraint resources, all of
that widget’s children inherit all of those resources as their own. These
constraint resources are set and read just the same as any other resources
defined for the child. This resource inheritance extends exactly one
generation down, which means only the first-generation children of a
constrained composite widget inherit the parent widget’s constraint
resources. :

Because constraint resources are defined by the parent widgets and not the
children, the child widgets never directly use the constraint resource data.
Instead, the parents use constraint resource data to attach child-specific data
to children.

1-61

OSF/Motif Programmer’s Reference
Constraint(3X)

Classes

Constraint inherits behavior and resources from Composite and Core.
The class pointer is constraintWidgetClass.

The class name is Constraint.

New Resources

Constraint defines no new resources.

Inherited Resources

Constraint inherits behavior and resources from Composite and Core. The
following table defines a set of widget resources used by the programmer to
specify data. The programmer can also set the resource values for the
inherited classes to set attributes for this widget. To reference a resource by
name or by class in a .Xdefaults file, remove the XmN or XmC prefix and
use the remaining letters. To specify one of the defined values for a resource
in a .Xdefaults file, remove the Xm prefix and use the remaining letters (in
either lowercase or uppercase, but include any underscotes between words).
The codes in the access column indicate if the given resource can be set at
creation time (C), set by using XtSetValues (S), retrieved by using
XtGetValues (G), or is not applicable (N/A).

1-62

System Calls

Constraint(3X)
Core Resource Set

Name Default Access
Class Type

XmNaccelerators NULL CSG
XmCAccelerators XtTranslations

XmNancestorSensitive True G
XmCSensitive Boolean

XmNbackground White CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor Black CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSsG
XmCBorderWidth Dimension

XmNcolormap XtCopyFromParent CG
XmCColormap Colormap

XmNdepth XtCopyFromParent CG
XmCDepth int

XmNdestroyCallback NULL C
XmCcCallback XtCallbackList

XmNheight 0 CSG
XmCHeight Dimension

XmNmappedWhenManaged True CsSG
XmCMappedWhenManaged Boolean

XmNscreen XtCopyScreen CG
XmCScreen Pointer

XmNsensitive True CSG
XmCSensitive Boolean

1-63

OSF/Motif Programmer’s Reference

Constraint(3X)

Name Default Access
Class Type

XmNtranslations NULL CsG
XmCTranslations XtTranslations

XmNwidth 0 CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Related Information

1-64

Composite(3X) and Core(3X).

System Calls
Core(3X)

Core

Purpose

The Core widget class

Synopsis

#include <Xm/Xm.h>

Description

Core is the Xt Intrinsic base class for windowed widgets.

To add support for windowless widgets, three additional classes have been
added above Core in the class hierarchy. They are Object, RectObj, and
WindowObj. WindowObj is a synonym of Core that provides no added
functionality but was necessary for implementation reasons.

Classes

All widgets are built from Core.
The class pointer is widgetClass.
The class name is Core.

1-65

OSF/Motif Programmer’s Reference
Core(3X)

New Resources

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource
values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or
XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

1-66

System Calls

Core(3X)
Core Resource Set

Name Default Access
Class Type

XmNaccelerators NULL CSG
XmCAccelerators XtTranslations

XmNancestorSensitive True G
XmCSensitive Boolean

XmNbackground White CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor Black CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG

- XmCPixmap Pixmap

XmNborderWidth 1 CSG
‘XmCBorderWidth Dimension

XmNcolormap XtCopyFromParent CG
XmCColormap Colormap

XmNdepth XtCopyFromParent CG
XmCDepth int }

XmNdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight 0 CSG
XmCHeight Dimension

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen XtCopyScreen CG
XmCScreen Pointer

XmNsensitive True CSG
XmCSensitive Boolean

1-67

OSF/Motif Programmer’s Reference

Core(3X)

1-68

Name Default Access
Class Type

XmNtranslations NULL ‘ CSG
XmCTranslations XtTranslations

XmNwidth 0 ‘ CSG
XmCWidth Dimension

XmNXx ‘ 0 CSG
XmCPosition Position ‘

XmNy ' 0 ' CSG
XmCPosition Position

XmNaccelerators

Specifies a translation table that is bound with its actions in
the context of a particular widget. The accelerator table can
then be installed on some destination widget.

XmNancestorSensitive ,
Specifies whether the immediate parent of the widget receives
input events. Use the function XtSetSensitive to change the
argument to preserve data integrity (see XmNsensitive
below).

XmNbackground
Specifies the background color for the widget.

XmNbackgroundPixmap
Specifies a pixmap for tiling the background. The first tile is
placed at the upper left-hand corner of the widget’s window.

XmNborderColor
: Specifies the color of the border in a pixel value.

XmNborderPixmap
Specifies a pixmap to be used for tiling the border. The first
tile is placed at the upper left-hand corner of the border.

XmNborder Width
Specifies the width of the border that surrounds the widget’s
window on all four sides. The width is specified in pixels. A
width of zero means that no border shows.

System Calls

XmNcolormap

Core(3X)

Specifies the colormap that is used for conversions to the type
Pixel for this widget instance. When changed, previously
generated pixel values are not affected, but newly generated
values are in the new colormap.

XmNdepth Specifies the number of bits that can be used for each pixel in
the widget’s window. Applications should not change or set
the value of this resource as it is set by the Xt Intrinsics when
the widget is created.

XmNdestroyCallback
Specifies a list of callbacks that is called when the widget is
destroyed.

XmNheight Specifies the height of the widget’s window in pixels, not
including the border area.

XmNmappedWhenManaged ’

If set to True, it maps the widget (makes visible) as soon as it
is both realized and managed. If set to False, the client is
responsible for mapping and unmapping the widget. If the
value is changed from True to False after the widget has been
realized and managed, the widget is unmapped.

XmNscreen Specifies the screen on which a widget instance resides. It is
read only, except for shells.

XmNsensitive

Determines whether a widget receives input events. If a
widget is sensitive, the Xt Intrinsics’s Event Manager
dispatches to the widget all keyboard, mouse button, motion,
window enter/leave, and focus events. Insensitive widgets do
not receive these events., Use the function XtSetSensitive to
change the sensitivity argument. Using XtSetSensitive
ensures that if a parent widget has XmNsensitive set to False,
the ancestor-sensitive flag of all its children is appropriately
set.

1-69

OSF/Motif Programmer’s Reference
Core(3X)

XmNtranslations
Points to a translations list. A translations list is a list of
events and actions that are to be performed when the events
occur.

XmNwidth Specifies the width of the widget’s window in pixels, not
including the border area.

XmNx Specifies the x-coordinate of the widget’s upper left-hand
corner (excluding the border) in relation to its parent widget.

XmNy Specifies the y-coordinate of the widget’s upper left-hand
corner (excluding the border) in relation to its parent widget.

Related Information

WindowObj(3X).

1-70

System Calls
MrmCloseHierarchy(3X)

MrmCloseHierarchy

Purpose

Closes a UID hierarchy

Synopsis

#include <Xm/Intrinsics>

#include <Mrm/MrmPublic.h>

Cardinal MrmCloseHierarchy(hierarchy id)
MrmHierarchy hierarchy id;

Description

The MrmCloseHierarchy function closes a UID hierarchy previously
opened by MrmOpenHierarchy. All files associated with the hierarchy are
closed by the Motif Resource Manager (MRM) and all associated memory is
returned.

hierarchy_id Specifies the ID of a previously opened UID hierarchy. The
hierarchy id was returned in a previous call to
MrmOpenHierarchy.

1-71

OSF/Motif Programmer’s Reference

MrmCloseHierarchy(3X)

Return Value

This function returns one of these status return constants:
MrmSUCCESS The function executed successfully.
MrmFAILURE The function failed.

Related Information

MrmOpenHierarchy(3X)

1-72

System Calls
MrmFetchColorLiteral(3X)

MrmFetchColorLiteral

Purpose

Fetches a named color literal from a UID file

Synopsis

#include <Xm/Intrinsics>
#include <Mrm/MrmPublic.h>
int MrmFetchColorLiteral(hierarchy id , index, display, colormap_id,
pixel)
MrmHierarchy hierarchy_id;
String index;
Display *display;
Colormap colormap_id;
Pixel *pixel ;

Description

The MrmFetchColorLiteral function fetches a named color literal from a
UID file, and converts the color literal to a pixel color value.

hierarchy _id Specifies the ID of the UID hierarchy that contains the
specified literal. The hierarchy id was returned in a previous
call to MrmOpenHierarchy.

index Specifies the UIL name of the color literal to fetch. You must
define this name in UIL as an exported value.

display Specifies the display used for the pixmap. The display
argument specifies the connection to the X server. For more
information on the Display structure, see the Xlib function
XOpenDisplay.

1-73

OSF/Motif Programmer’s Reference
MrmFetchColorLiteral(3X)

colormap _id Specifies the ID of the color map. If NULL, the default color
map is used.

pixel Returns the ID of the color literal.

Return Value

This function returns one of these status return constants:
MrmSUCCESS The function executed successfully.
MrmNOT_FOUND The color literal was not found in the UIL file.
MrmFAILURE The function failed.

Related Information

MrmPFetchIconLiteral(3X), MrmFetchLiteral(3X), XOpenDisplay(3X)

1-74

System Calis
MrmFetchlconLiteral(3X)

MrmFetchlconLiteral

Purpose

Fetches an icon literal from a hierarchy

Synopsis

#include <Xm/Intrinsics>
#include <Mrm/MrmPublic.h>
int MrmFetchIconLiteral(hierarchy id, index, screen, display, fgpix,
bgpix, pixmap)
MrmHierarchy hierarchy id ;
String index;
Screen *screen;
Display *display;
Pixel fgpix;
Pixel bgpix;
Pixmap pixmap ;

Description
The MrmFetchIconLiteral function fetches an icon literal from an MRM
hierarchy, and converts the icon literal to an X pixmap.

hierarchy id Specifies the ID of the UID hierarchy that contains the
specified icon literal. The hierarchy id was returned in a
previous call to MrmOpenHierarchy.

index Specifies the UIL name of the icon literal to fetch.

screen Specifies the screen used for the pixmap. The screen
argument specifies a pointer to the Xlib structure Screen
which contains the information about that screen and is linked

1-75

OSF/Motif Programmer’s Reference

MrmFetchiconLiteral (3X)

to the Display structure. For more information on the Display
and Screen structures, see the Xlib function XOpenDisplay
and the associated screen information macros.

display Specifies the display used for the pixmap. The display
argument specifies the connection to the X server. For more
information on the Display structure, see the Xlib function

XOpenDisplay.
fapix Specifies the foreground color for the pixmap.
bgpix Specifies the background color for the pixmap.
pixmap Returns the resulting X pixmap value.

Return Value

This function returns one of these status return constants: -

MrmSUCCESS The function executed successfully.
MrmNOT_FOUND The icon literal was not found in the hierarchy.
MrmFAILURE The function failed.

Related Informétioh

1-76

MrmPFetchLiteral(3X), MrmFetchColorLiteral(3X), XOpenDisplay(3X)

System Calls
MrmFetchinterfaceModule(3X)

MrmkFetchInterfaceModule

Purpose

Fetches all the widgets defined in an interface module in the UID hierarchy.

Synopsis

#include <Xm/Intrinsics>
#include <Mrm/MrmPublic.h>
Cardinal MrmFetchlnterfaceModule(hierarchy id, module_name,
parent_widget , widget)
MrmHierarchy hierarchy id;
char *module_name ;
Widget parent_widget ;
Widget *widget;

Description

The MrmFetchInterfaceModule function fetches all the widgets defined in
a UIL module in the UID hierarchy. Typically, each application has one or
more modules that define its interface. Each must be fetched in order to
initialize all the widgets the application requires. Applications do not need
to define all their widgets in a single module.

If the module defines a ' main window w1dget MrmFetchInterfaceModule
returns its widget ID. If no main window widget is contained in the module,
MrmPFetchInterfaceModule returns NULL and no widgets are realized.

1-77

OSF/Motif Programmer’s Reference

MrmFetchinterfaceModule(3X)

The application can obtain the IDs of widgets other than the main window
widget by using creation callbacks.

hierarchy id

module_name

parent_widget

widget

Return Value

Specifies the ID of the UID hierarchy that contains the
interface definition. The hierarchy id was returned in a
previous call to MrmOpenHierarchy.

Specifies the name of the interface module, which you
specified in the UIL module header. By convention, this is
usually the generic name of the application.

Specifies the parent widget ID for the topmost widgets
being fetched from the module. The topmost widgets are
those that have no parents specified in the UIL module. The
parent widget is usually the top-level widget returned by
XtInitialize. '

Returns the widget ID for the last main window widget
encountered in the UIL module, or NULL if no main
window widget is found.

This function returns one of these status return constants:

MrmSUCCESS The function executed successfully.
MrmFAILURE The function failed.

MrinNOT_FOUND The interface module or topmost widget not

1-78

found.

System Calls
MrmFetchLiteral (3X)

MrmPFetchLiteral

Purpose

Fetches a literal from a UID file

Synopsis

#include <Xm/Intrinsics>
#include <Mrm/MrmPublic.h>
int MrmFetchLiteral(hierarchy id , index, display, value , type)
MrmHierarchy hierarchy_id ;
String index ;
Display *display;
caddr_t *value;
MrmCode *type;

Description

The MrmFetchLiteral function reads and returns the value and type of a
literal (named value) that is stored as a public resource in a single UID file.
This function returns a pointer to the value of the literal. For example, an
integer is always returned as a pointer to an integer, and a string is always
returned as a pointer to a string.

Applications should not use MrmmFetchLiteral for fetching icon or color
literals. If this is attempted, MrmmFetchLiteral returns an error.

hierarchy_id Specifies the ID of the UID hierarchy that contains the
specified literal. The hierarchy id was returned in a previous
call to MrmmOpenHierarchy.

index Specifies the UIL name of the literal (pixmap) to fetch. You
must define this name in UIL as an exported value.

1-79

OSF/Motif Programmer’s Reference

MrmFetchLiteral (3X)

display Specifies the display used for the pixmap. The display
argument specifies the connection to the X server. For more
information on the Display structure see the Xlib function

XOpenDisplay.
value Returns the ID of the named literal’s value.
type Returns the named literal’s data type.

Return Value

This function returns one of these status return constants:

MrmSUCCESS The function executed successfully.

MrmWRONG_TYPE The operation encountered an unsupported literal
type.

MrmNOT_FOUND The literal was not found in the UIL file.

MrmFAILURE The function failed.

Related Information

1-80

MrmPFetchlconLiteral(3X), MrmFetchColorLiteral(3X),
XOpenDisplay(3X)

System Calls
MrmFetchSetValues(3X)

MrmFetchSetValues

Purpose

Fetches the values to be set from literals stored in UID files.

Synopsis

#include <Xm/Intrinsics>
#include <Mrm/MrmPublic.h>
Cardinal MrmFetchSetValues(hierarchy_id , widget, args, num_args)
MrmHierarchy hierarchy_id;
Widget widget ;
ArgList args;
Cardinal num_args;

Description

The MrmFetchSetValues function is similar to XtSetValues, except that
the values to be set are defined by the UIL named values that are stored in
the UID hierarchy. MrmFetchSetValues fetches the values to be set from
literals stored in UID files.

hierarchy_id Specifies the ID of the UID hierarchy that contains the
specified literal. The hierarchy id was returned in a previous
call to MrmOpenHierarchy.

widget Specifies the widget that is modified.

args Specifies an argument list that identifies the widget arguments
to be modified as well as the index (UIL name) of the literal
that defines the value for that argument. The name part of
each argument (args[n].name) must begin with the string XmN
followed by the name that uniquely identifies this attribute tag.

1-81

OSF/Motif Programmer’s Reference

MrmFetchSetValues(3X)

For example, XmNwidth is the attribute name associated with
the core argument width. The value part (args[n].value) must
be a string that gives the index (UIL name) of the literal. You
must define all literals in UIL as exported values.

num_args Specifies the number of entries in args.

This function sets the values on a widget, evaluating the values as public
literal resource references resolvable from a UID hierarchy. Each literal is
fetched from the hierarchy, and its value is modified and converted as
required. This value is then placed in the argument list and used as the
actual value for an XtSetValues call. MrmFetchSetValues allows a widget
to be modified after creation using UID file values exactly as is done for
creation values in MrmFetchWidget.

As in MrmFetchWidget, each argument whose value can be evaluated
from the UID hierarchy is set in the widget. Values that are not found or
values in which conversion errors occur are not modified.

Each entry in the argument list identifies an argument to be modified in the
widget. The name part identifies the tag, which begins with XmN. The
value part must be a string whose value is the index of the literal. Thus, the
following code would modify the label resource of the widget to have the
value of the literal accessed by the index OK_button_label in the hierarchy:
args[n].name = XmNlabel; args[n].value = "OK_button_label";

Return Value

This function returns one of these status return constants:
MrmSUCCESS The function executed successfully.
MrmFAILURE The function failed.

Related Information

1-82

XtSetValues(3X)

System Calls
MrmFetchWidget(3X)

MrmFetchWidget

Purpose

Fetches and creates any indexed (UIL named) application widgets and its
children.

Synopsis

#include <Xm/Intrinsics>
#include <Mrm/MrmPublic.h>
Cardinal MrmFetchWidget(hierarchy id, index, parent_widget, widget,
class)
MrmHierarchy hierarchy id;
String index;
Widget parent widget;
Widget *widget;
MrmType *class;

Description

The MrmFetchWidget function fetches and creates an indexed application
widget and its children. The indexed application widget is any widget that
is named in UIL and that is not the child of any other widget in the uid
hierarchy. In fetch operations, the fetched widget’s subtree is also fetched
and created. This widget must not appear as the child of a widget within its
own subtree. MrmFetchWidget does not execute XtManageChild for the
newly created widget.

hierarchy id Specifies the ID of the uid hierarchy that contains the
interface definition. The hierarchy id was returned in a
previous call to MrmOpenHierarchy.

1-83

OSF/Motif Programmer’s Reference

MrmFetchWidget(3X)

1-84

index Specifies the UIL name of the widget to fetch.
parent_widget Specifies the parent widget ID.

widget Returns the widget ID of the created widget. If this is not
NULL when you call MrmFetchWidgetOverride, MRM
assumes that the widget has already been created and
MrmFetchWidgetOverride returns MrmFAILURE.

class Returns the class code identifying MRM'’s widget class.
The widget class code for the main window widget, for
example, is MRMwcMainWindow. Literals identifying
MRM widget class codes are defined in Mrm.h.

MrmFetchWidget fetches widgets where MrmFetchInterfaceModule is
not used. MrmFetchWidget provides specific control over which widgets
are fetched from a UIL file; MrmFetchInterfaceModule, on the other hand,
fetches all widgets in a single call. An application can fetch any named
widget in-the uid hierarchy using MrmFetchWidget. MrmFetchWidget
can be called at any time to fetch a widget that was not fetched at
application startup. MrmFetchWidget determines if a widget has already
been fetched by checking widget for a NULL value. Non-NULL values
signify that the widget has already been fetched, and MrmFetchWidget
fails. MrmFetchWidget can be used to defer fetching pop-up widgets until
they are first referenced (presumably in a callback), and then used to fetch
them once. :

MrmFetchWidget can also create multiple instances of a widget (and its
subtree). In this case, the uid definition functions as a template; a widget
definition can be fetched any number of times. An application can use this
to make multiple instances of a widget, for example, in a dialog box box or
menu.

The index (UIL name) that identifies the widget must be known to the
application.; \

System Calls
MrmFetchWidget(3X)

Return Value

This function returns one of these status return constants:

MrmSUCCESS The function executed successfully.
MrmNOT_FOUND Widget not found in UID hierarchy.
MrmFAILURE The function failed.

Related Information

MrmFetchWidgetOverride(SX)

1-85

OSF/Motif Programmer’s Reference
MrmFetchWidgetOverride(3X)

MrmFetchWidgetOverride

Purpose

Fetches any indexed (UIL named) application widget. It overrides the
arguments specified for this application widget in UIL.

Synopsis

#include <Xm/Intrinsics>
#include <Mrm/MrmPublic.h>
Cardinal MrmFetchWidgetOverride(hierarchy _id , index, parent_widget ,
override_name '
override_args, override_num_args, widget, class)
MrmHierarchy hierarchy id;
String index;
Widget parent widget ;
String override_name ;
ArglList override_args ;
Cardinal override_num_args;
Widget *widget ;
MrmType *class;

Description

The MrmFetchWidgetOverride function is the extended version of
MrmFetchWidget. It is identical to MrmFetchWidget, except that it
allows the caller to override the widget’s name and any arguments that
MrmFetchWidget would otherwise retrieve from the UID file or one of the
defaulting mechanisms. That is, the override argument list is not limited to
those arguments in the UID file.

1-86

System Calls

MrmFetchWidgetOverride(3X)

The override arguments apply only to the widget fetched and returned by
this function. Its children (subtree) do not receive any override parameters.

hierarchy_id

index
parent_widget

override_name

override_args

override_num_args

widget

class

Specifies the ID of the UID hierarchy that contains the
interface definition. The hierarchy id was returned in a
previous call to MrmOpenHierarchy.

Specifies the UIL name of the widget to fetch.
Specifies the parent widget ID.

Specifies the name to override the widget name. Use a
NULL value if you do not want to override the widget
name.

Specifies the override argument list, exactly as given to
XtCreateWidget (conversion complete and so forth).
Use a NULL value if you do not want to override the
argument list.

Specifies the number of arguments in override_args.

Returns the widget ID of the created widget. If this is
not NULL when you call MrmFetchWidgetOverride,
MRM assumes that the widget has already been created
and MrmFetchWidgetOverride returns
MrmFAILURE.

Returns the class code identifying MRM’s widget class.
The widget class code for the main window widget, for
example, is MRMwcMainWindow. Literals
identifying MRM widget class codes are defined in
Mrm.h.

1-87

OSF/Motif Programmer’s Reference

MrmFetchWidgetOverride(3X)

Return Value

This function returns one of these status return constants:

MrmSUCCESS The function executed successfully.
MrmNOT_FOUND Widget not found in UID hierarchy.
MrmFAILURE The function failed.

Related Information

MrmFetchWidget(3X)

1-88

System Calls
Mrminitialize (3X)

Mrmlnitialize

Purpose

Prepares an application to use MRM widget-fetching facilities.

Synopsis

void MrmlInitialize()

Description

The Mrmlnitialize function must be called to prepare an application to use
MRM widget-fetching facilities. You must call this function prior to
fetching a widget. However, it is good programming practice to call
Mrmlnitialize prior to performing any MRM operations.

Mrmlnitialize initializes the internal data structures that MRM needs to
successfully perform type conversion on arguments and to successfully
access widget creation facilities. An application must call MrmlInitialize
before it uses other MRM functions.

1-89

OSF/Motif Programmer’s Reference

MrmOpenHierarchy(3X)

MrmOpenHierarchy

Purpose

Allocates a hierarchy ID and opens all the UID files in the hierarchy.

Synopsis

#include <Xm/Intrinsics>
#include <Mrm/MrmPublic.h>
Cardinal MrmOpenHierarchy(num_files, file_names_list,
ancillary_structures_list , hierarchy id)
MrmCount num_files;
String file_names _list[];
MrmOsOpenParamPtr *ancillary_structures_list ;
MrmHierarchy *hierarchy id;

Description

1-90

The MrmOpenHierarchy function allows the user to specify the list of
UID files that MRM searches in subsequent fetch operations. All
subsequent fetch operations return the first occurrence of the named item
encountered while traversing the UID hierarchy from the first list element
(UID file specification) to the last list element. This function also allocates
a hierarchy ID and opens all the UID files in the hierarchy. It initializes the
optimized search lists in the hierarchy. If MrmOpenHierarchy encounters
any errors during its execution, any files that were opened are closed.

num_files Specifies the number of files in the name list.

file_names_list Specifies an array of pointers to character strings that
identify the .UID files.

System Calls

MrmOpenHierarchy(3X)

ancillary structures_list

A list of operating-system-dependent ancillary
structures corresponding to such things as filenames,
clobber flag, and so forth. This argument should be
NULL for most operations. If you need to reference
this structure, see the definition of
MrmOsOpenParamPtr in MrmPublic.h for more
information.

hierarchy id Returns the search hierarchy ID. The search
hierarchy ID identifies the list of .uid files that MRM
searches (in order) when performing subsequent
fetch calls.

Each UID file specified in file_names_list can specify either a full directory
pathname or a filename. If a UID file “does not specify the pathname, it does
not contain any embedded slashes (/), and it is accessed through the
UIDPATH environment variable. '

The UIDPATH environment variable specifies search paths and naming
conventions associated with UID files. It can contain the substitution fields
%L and %N, where the current setting of the LANG environment variable is
substituted for %L and the .uid name passed to MrmOpenHierarchy is
substituted for %N. For example, the following UID path and
MrmOpenHierarchy call causes MRM to open two separate .uid files:

UIDPATH=/uidlib/%L/%N.uid:/uidlib/%N/%L

static char *uid_files[] = { "/usr/users/me/test.uid", "test2"};
MrmHierarchy *Hierarchy_id;
MrmOpenH1erarchy((MrmCount)2 uid_files, NULL, Hierarchy_id)

The first file, [usr/users/me/test.uid, is opened as specified, as this file
specification includes a pathname. The second file, test2, is looked for first
in /uidlib/$LANG/test2.uid, and second in /uidlib/test2/$LANG.

After MrmOpenHierarchy opens the UID hierarchy, you should not delete
or modify the UID files until you close the UID hierarchy by calling
MrmCloseHierarchy.

1-91

OSF/Motif Programmer’s Reference

MrmOpenHierarchy(3X) -

Return Value

This function returns one of these status return constants:

MrmSUCCESS The function executed successfully.
MrmNOT_FOUND File not found.

MrmFAILURE The function failed.

Related Information

Mi'mCloseHierarchy(3X)

1-92

System Calls
MrmRegisterClass(3X)

MMRegisterCIZas‘s»

Purpose

Saves the information needed for MRM to access the widget creation
function for user-defined widgets.

Synopsis

#include <Xm/Intrinsics>
#include <Mrm/MrmPublic.h>’
Cardinal MrmRegisterClass(class code, class name, create_name,
create_proc , class_record)
MrmType class_code;
String class_name;
String create_name ;
Widget (* create_proc) ();
WidgetClass class_record ;

Description
The MrmRegisterClass function allows MRM to access "user-defined
widget classes. This function registers the necessary information for MRM

to create widgets of this class. You must call MrmRegisterClass pnor to
fetching any user-defined class widget.

MrmRegisterClass saves the information needed to access the widget
creation function and to do type conversion of argument lists by using the
information in MRM databases.

class_code Specifies the code name of the class. For all application-
defined widgets, this code name is MRMwcUnknown. For all
Motif Toolkit widgets, each code name begins with the letters

1-93

OSF/Motif Programmer’s Reference

MrmRegisterClass(3X)

MRMwc. The code names for all application widgets are
defined in Mrm.h.

class_name Specifies the case-sensitive name of the class. The class
names for all Motif Toolkit widgets are defined in Mrm.h.
Each class name begins with the letters MRMwecn.

create_name Specifies the case-sensitive name of the low-level widget
creation function for the class. An example from the Motif
Toolkit is XmCreateLabel. Arguments are parent widget,
name, override_arglist, and override_argcount.

For user-defined widgets, create_name is the creation
procedure in the UIL that defines this widget.

create_proc Specifies the address of the creation function that you named
in create_name.

class_record Specifies a pointer to the class record.

Return Value

1-94

This function returns one of these status return constants:
MrmSUCCESS The function executed successfully.
MrmFAILURE The allocation of the class descriptor failed.

System Calls

MrmRegisterNames(3X)

MrmRegisterNames

Purpose

Registers the values associated with the names referenced in UIL (for
example, UIL callback function names or UIL identifier names).

Synopsis

#include <Xm/Intrinsics>

#include <Mrm/MrmPublic.h>

Cardinal MrmRegisterNames(register_list , register_count)
MrmRegisterArglist register _list;
MrmCount register _count ;

Description

The MrmRegisterNames function registers a vector of names and
associated values for access in MRM. The values can be callback functions,
pointers to user-defined data, or any other values. The information provided
is used to resolve symbolic references occurring in UID files to their run-
time values. For callbacks, this information provides the procedure address
required by the Motif Toolkit. For names used as identifiers in UIL, this
information provides any run-time mapping the application needs.

register_list ~ Specifies a list of name/value pairs for the names to be
registered. Each name is a case-sensitive, NULL-
terminated ASCII string. Each value is a 32-bit quantity,
interpreted as a procedure address if the name is a callback
function, and uninterpreted otherwise.

register_count Specifies the number of entries in register list.

1-95

OSF/Motif Programmer’s Reference

MrmRegisterNames(3X)

The names in the list are case-sensitive. The list can be either ordered or
unordered.

Callback functions registered through MrmRegisterNames can be either
regular or creation callbacks. Regular callbacks have declarations
determined by Motif Toolkit and user requirements. Creation callbacks
have the same format as any other callback:

void CallBackProc(widget_id, tag, callback_data)
Widget *widget_id;

Opaque tag;
XmAnyCallbackStruct *callback_data ;
widget id Specifies the widget ID associated with the widget
performing the callback (as in any callback function).
tag Specifies the tag value (as in any callback function).
callback_data Specifies a widget-specific data structure. This data

structure has a minimum of two members: event and
reason. The reason member is always set to
XmCRCreate.

Note that the widget name and parent are available from the widget record
accessible through widget id.

Return Value

1-96

This function returns one of these status return constants:
MrmSUCCESS The function executed successfully.
MrmFAILURE Memory allocation failed.

System Calls
Object(3X)

Object

Purpose

The Object widget class

Synopsis

#include <Xm/Xm.h>

Description

Object is never instantiated. 1ts sole purpose is as a supporting superclass for
other widget classes.

Classes

The class pointer is objectClass.
The class name is Object.

New Resources

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource
values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or

1-97

OSF/Motif Programmer’s Reference
Object(3X)

XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lower case or upper case, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

Object Resource Set
Name Default Access
Class Type
XmNdestroyCallback NULL Cc
XmCCallback XtCallbackL.ist
XmNdestroyCallback
Specifies a list of callbacks that is called when the gadget is
destroyed.

1-98

System Calls
OverrideShell(3X)

OverrideShell

Purpose

The OverrideShell widget class

Synopsis

#include <Xm/Xm.h>
#include <X11/Shell.h>

Description

OverrideShell is used for shell windows that completely bypass the window
manager, for example, PopupMenu shells.

Classes

OverrideShell inherits behavior and resources from Core, Composite, and
Shell.
The class pointer is overrideShellWidgetClass.

The class name is OverrideShell.

1-99

OSF/Motif Programmer’s Reference

OverrideShell(3X)

New Resources

OverrideShell defines no new ~ resources, but overrides the
XmNoverrideRedirect and XmNsaveUnder resources in the Shell class.

Inherited Resources

1-100

OverrideShell inherits behavior and resources from the following
superclasses. For a complete description of each resource, refer to the man
page for that superclass.

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource
values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or
XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

System Calls

OverrideShell(3X)

Shell Resource Set

Name Default Access
Class Type
XmNallowShellResize False CSG
XmCAllowShellResize Boolean
XmNancestorSensitive ShellAncestorSensitive CSsG
XmCSensitive Boolean
XmNcreatePopupChildProc NULL CSG
XmCCreatePopupChildProc XmCreatePopupChildProc
XmNdepth ShellDepth CSG
XmCDepth int
XmNgeometry NULL CSG
XmCGeometry String
XmNoverrideRedirect True CSG
XmCOverrideRedirect Boolean
XmNpopdownCallback NULL C
XmCcCallback XtCallbackList
XmNpopupCallback NULL C
XmCcCallback XtCallbackList
XmNsaveUnder True CSG
XmCSaveUnder Boolean
Composite Resource Set
Name Default Access
Class Type
XmNinsertPosition NULL : CSG
XmCinsertPosition XmRFunction

1-101

OSF/Motif Programmer’s Reference

OverrideShell(3X)

1-102

Core Resource Set

Name Default Access
Class Type

XmNaccelerators NULL CsG
XmCAccelerators XtTranslations

XmNancestorSensitive ShellAncestorSensitive G
XmCSensitive Boolean

XmNbackground White CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor Black CSG
XmCBorderColor Pixel ,

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap ShellColormap CG
XmCColormap Colormap

XmNdepth ShellDepth CG
XmCDepth int

XmNdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight 0 CSG
XmCHeight Dimension

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen XtCopyScreen CG
XmCScreen Pointer

XmNsensitive True CSG
XmCSensitive Boolean

System Calls
OverrideShell(3X)

Name Default Access
Class Type

XmNtranslations NULL CSG
XmCTranslations XtTranslations

XmNwidth 0 CSG
XmCWidth Dimension

XmNx 0 CsG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Related Information

Composite(3X), Core(3X), and Shell(3X).

1-103

OSF/Motif Programmer’s Reference
RectObj(3X)

RectObj

Purpose

The RectObj widget class

Synopsis

#include <Xm/Xm.h>

Description

RectObj is never instantiated. Its sole purpose is as a supporting superclass
for other widget classes.

Classes

RectObj inherits behavior and a resource from Object.
The class pointer is rectObjClass.
The class name is RectObj.

1-104

System Calls

New Resources

RectObj(3X)

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource
values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or
XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

RectObj Resource Set

Name Default Access
Class Type

XmNancestorSensitive ~ XtCopyFromParent CSG
XmCSensitive Boolean

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNheight 0 CSG
XmCHeight Dimension

XmNsensitive True CSG
XmCSensitive Boolean

XmNwidth 0 CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

1-105

OSF/Motif Programmer’s Reference

RectObj(3X)

XmNancestorSensitive

Specifies whether the immediate parent of the gadget receives
input events. Use the function XtSetSensitive if you are
changing the argument to preserve data integrity (see
XmNsensitive below).

XmNborder Width

Specifies the width of the border placed around the RectObj’s
rectangular display area.

XmNheight Specifies the height of the RectObj’s rectangular display area.

XmNsensitive

XmNwidth
XmNx

XmNy

Determines whether a RectObj receives input events. If a
RectObj is sensitive, the parent dispatches to the gadget all
keyboard, mouse button, motion, window enter/leave, and
focus events. Insensitive gadgets do not receive these events.
Use the function XtSetSensitive to change the sensitivity
argument. If a parent widget has XmNsensitive set to False,
the ancestor-sensitive flag of all its children is appropriately
set.

Contains the width of the RectObj’s rectangular display area.

Contains the x-coordinate of the gadget’s upper left-hand
corner in relation to its parent’s window.

Contains the y-coordinate of the gadget’s upper left-hand
corner in relation to its parent’s window.

Inherited Resources

1-106

RectObj inherits behavior and a resource from Object. For a description of
this resource, refer to the Object man page.

System Calls

RectObj(3X)
Object Resource Set
Name Default Access
Class Type
XmNdestroyCallback NULL C
XmCCallback XtCallbackList

Related Information

Object(3X).

1-107

OSF/Motif Programmer’s Reference
Shell(3X)

Shell

Purpose

The Shell widget class

Synopsis
#include <Xm/Xm.h>
#include <X11/Shell.h>

DeScriptioh ,

Shell is a top-level widget (with only one managed child) that encapsulates
the interaction with the window manager.

Classes _

Shell inherits behavior and resources from Composite and Core.
The class pointer is shellWidgetClass.

The class name is Shell.

New Resources

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource

1-108

System Calls

Shell(3X)

values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or
XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

Shell Resource Set

Name ‘Default Access
Class Type

XmNallowShellResize False - “CSG
XmCAliowShellResize ‘Boolean ;

XmNcreatePopupChildProc NULL CSG
XmCCreatePopupChildProc ' XmCreatePopupChildProc

XmNgeometry NULL CSG
XmCGeometry String

XmNoverrideRedirect False CSG
XmCOverrideRedirect Boolean

XmNpopdownCallback NULL C
XmCCallback - XtCallbackList

XmNpopupCallback NULL Cc
XmCCallback ~ XtCallbackList :

XmNsaveUnder False - CsG
XmCSaveUnder Boolean

XmNallowShellResnze

~-Specifies that if this resource is False, the Shell widget
instance returns XtGeometryNo to all geometry requests from

its children.
XmNcreatePopupChlldProc

Specifies the pointer to a function which is called when the
Shell widget instance is popped up by XtPopup.

1-109

OSF/Motif Programmer’s Reference

Shell(3X)

XmNgeometry
Specifies the desired geometry for the widget instance. This
resource is examined only when the widget instance is
unrealized and the number of its managed children is changed.
It is to change the values of the XmNx, XmNy, XmNwidth,
and XmNheight resources.

XmNoverrideRedirect
Specifies this is True if the widget instance is a temporary
window which should be ignored by the window manager.
Applications and users should not normally alter this resource.

XmNpopdownCallback
Specifies a list of callbacks that is called when the widget
instance is popped down by XtPopdown.

XmNpopupCallback
Specifies a list of callbacks that is called when the widget
instance is popped up by XtPopup.

XmNsaveUnder
Specifies a True value if it is desirable to save the contents of
the screen beneath this widget instance, avoiding expose
events when the instance is unmapped. This is a hint, and an
implementation may save contents whenever it desires,
including always or never.

Inherited Resources

1-110

Shell inherits behavior and resources from the following superclass. For a
complete description of each resource, refer to the man page for that
superclass.

System Calls

Shell(3X)
Composite Resource Set
Name Defauit Access
Class Type
XmNinsertPosition NULL CSG
XmCinsertPosition XmRFunction
Core Resource Set

Name Default Access
Class Type

XmNaccelerators NULL CSG
XmCAccelerators XtTranslations

XmNancestorSensitive ShellAncestorSensitive G
XmCSensitive Boolean

XmNbackground White CsG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor Black CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap ShellColormap CG
XmCColormap Colormap

1—-111

OSF/Motif Programmer’s Reference

Shell(3X)

Name Default Access
Class Type

XmNdepth ShellDepth CG
XmCDepth int

XmNdestroyCallback NULL Cc
XmCcCallback XtCallbackList

XmNheight 0 CSG
XmCHeight Dimension

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen XtCopyScreen CG
XmCScreen Pointer

XmNsensitive True CSG
XmCSensitive Boolean

XmNtranslations NULL CSG
XmCTranslations XtTranslations

XmNwidth 0 CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Related Information

1-112

Composite(3X) and Core(3X).

System Calls
TopLevelShell(3X)

TopLevelShell

Purpose

The TopLevelShell widget class

Synopsis

#include <Xm/Xm.h>
#include <X11/Shell.h>

Description

TopLevelShell is used for normal top-level windows such as any additional
top-level widgets an application needs.

Classes

TopLevelShell inherits behavior and resources from Core, Composite,
Shell, WMShell, and VendorShell. '
The class pointer is topLevelShellWidgetClass.

The class name is TopLevelShell.

1-113

OSF/Motif Programmer’s Reference

TopLevelShell(3X)

New Resources

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource
values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or
XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),

retrieved by using XtGetValues (G), or is not applicable (N/A).

TopLevelShell Resource Set
Name Access
Class
XmNiconic CSG
XmClconic
XmNiconName CSG
XmClconName

XmNiconic Specifies that if this is True when the widget instance is
realized, the widget instance indicates to the window manager
that the application wishes to start as an icon, irrespective of
the XtNinitialState resource. This resource is examined by
the Intrinsics only during a call to XtRealize; it is ignored at

all other times.

XmNiconName

Specifies the short form of the application name to be
displayed by the window manager when the application is

iconified.

1-114

System Calls

TopLevelShell(3X)

Inherited Resources

TopLevelShell inherits behavior and resources from the following
superclasses. For a complete description of each resource, refer to the man
page for that superclass.

VendorShell Resource Set
Name Default Access
Class Type
XmNdeleteResponse XmDESTROY CSG
XmCDeleteResponse unsigned char
XmNkeyboardFocusPolicy XmEXPLICIT CSG
XmCKeyboardFocusPolicy unsigned char
XmNmwmDecorations -1 CSG
XmCMwmDecorations int
XmNmwmFunctions -1 CSG
XmCMwmFunctions int
XmNmwmIinputMode -1 CSG
XmCMwminputMode int
XmNmwmMenu NULL CSG
XmCMwmMenu String
XmNshellUnitType XmPIXELS CSG
XmCShellUnitType unsigned char

1-115

OSF/Motif Programmer’s Reference

TopLevelShell(3X)

1-116

WMShell Resource Set

Name Default Access
Class Type
XmNheightinc -1 CSG
XmCHeightinc int
XmNiconMask 'NULL CSG
XmClconMask Pixmap
XmNiconPixmap NULL CSG
~ XmClconPixmap . Pixmap _
XmNiconWindow NULL CSG
XmClconWindow - Window
XmNiconX . -1 CSG
XmClconX int
XmNiconY- -1 CSG
XmClconY int B
XmNinitialState 1 CSG
XmClnitialState int ‘
XmNinput. True CSG
XmClnput " Boolean o
XmNmaxAspectX -1 .‘ CSG
XmCMaxAspectX int
XmNmaxAspectY -1 CSsG
XmCMaxAspectY int o
XmNmaxHeight -1 CSG
XmCMaxHeight int :
XmNmaxWidth -1 CsG
XmCMaxWidth int :
XmNminAspectX -1 CSG
XmCMinAspectX int ,
XmNminAspectY -1 CSG
int

XmCMinAspectY

System Calls

TopLevelShell(3X)

Name Default Access
Class Type
XmNminHeight -1 ' CSG
XmCMinHeight int
XmNminWidth -1 CsG
XmCMinWidth int
XmNtitle NULL CSG
XmCTitle char *
XmNtransient False CSG
XmCTransient Boolean
XmNwaitForWwm True CSG
XmCWaitForWm Boolean
XmNwidthinc -1 CSG
XmCWidthinc int
XmNwindowGroup None CSG
XmCWindowGroup XID

1-117

OSF/Motif Programmer’s Reference

ToplLevelShell(3X)

1-118

Name

Default Access
Class Type
XmNwmTimeout fivesecond CSG
- XmCWmTimeout int

Shell Resource Set

Name Default Access
Class Type
XmNallowSheliResize False CSG
XmCAllowShellResize Boolean
XmNcreatePopupChildProc NULL CSG
XmCCreatePopupChildProc XmCreatePopupChildProc
XmNgeometry NULL CSG
XmCGeometry String
XmNoverrideRedirect False CSG
XmCOverrideRedirect Boolean '
XmNpopdownCallback NULL C
XmCcCaliback XtCallbackList
XmNpopupCallback NULL Cc
XmCCallback XtCallbackList
XmNsaveUnder False CSG
XmCSaveUnder Boolean
Composite Resource Set
Name Default Access
Class Type
XmNinsertPosition NULL CSG
XmCinsertPosition XmRFunction

System Calls

TopLevelShell(3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators NULL CsG
XmCAccelerators XtTranslations

XmNancestorSensitive ShellAncestorSensitive G
XmCSensitive Boolean

XmNbackground White CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor Black CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap SheliColormap CG
XmCColormap Colormap

XmNdepth ShellDepth CG
XmCDepth int

XmNdestroyCallback NULL C
XmCCallback XtCallbackList

XmNheight 0 CSG
XmCHeight Dimension

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen XtCopyScreen CG
XmCScreen Pointer

XmNsensitive True CSG
XmCSensitive Boolean

1-119

OSF/Motif Programmer’s Reference

TopLevelShell(3X)

Name Default Access
Class Type

XmNtranslations NULL CSG
XmCTranslations XtTranslations

XmNwidth 0 CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CsG
XmCPosition Position

Related Information

Composite(3X), Core(3X), Shell(3X), WMShell(3X), and

VendorShell(3X).

1-120

System Calls
TransientShell(3X)

TransientShell

Purpose

The TransientShell widget class

Synopsis

#include <Xm/Xm.h>
#include <X11/Shell.h>

Description

TransientShell is used for shell windows that can be manipulated by the
window manager but are not allowed to be iconified separately. For
example, Dialog boxes make no sense without their associated application.
They are iconified by the window manager only if the main application shell
is iconified.

Classes

TransientShell inherits behavior and resources from Core, Composite,
Shell, WMShell, and VendorShell.
The class pointer is transientShellWidgetClass.

The class name is TransientShell.

1-121

OSF/Motif Programmer’s Reference

TransientShell(3X)

New Resources

TransientShell defines no new resources, but overrides the XmNsaveUnder
resource in Shell and the XmNtransient resource in WMShell.

Inherited Resources

1-122

TransientShell inherits behavior and resources from the following
superclasses. For a complete description of each resource, refer to the man
page for that superclass.

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource
values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or
XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

System Calls

TransientShell(3X)

VendorShell Resource Set
Name Default Access
Class Type
XmNdeleteResponse XmDESTRQY CSG
XmCDeleteResponse unsigned char '
XmNkeyboardFocusPolicy XmEXPLICIT CSG
XmCKeyboardFocusPolicy unsigned char
XmNmwmDecorations -1 CSG
XmCMmeecorations int
XmNmwmFunctions -1 CSG
XmCMwmFunctions int
XmNmwmInputMode -1 CSG
XmCMwminputMode int
XmNmwmMenu NULL CSG
XmCMwmMenu String
XmNshellUnitType XmPIXELS CSG
XmCShellUnitType unsigned char

1-123

OSF/Motif Programmer’s Reference

TransientShell(3X)

1-124

B WMShell Resource Set
Name Default Access
Class Type
XmNheightinc -1 CSG
XmCHeightinc - int.
XmNiconMask NULL CSG
XmClconMask Pixmap
XmNiconPixmap NULL CSG
XmClconPixmap Pixmap
XmNiconWindow NULL CSG
.. XmClconWindow Window ,
XmNiconX -1 CSG
XmCiconX int
XmNiconY -1 CSsG
XmClconY int
XmNinitialState 1 CSG
- XmClnitialState int
XmNinput True CSG
XmClnput Boolean .
XmNmaxAspectX -1 CSG
XmCMaxAspectX int
XmNmaxAspectY -1 CSG
XmCMaxAspectY int
XmNmaxHeight -1 CsG
- XmCMaxHeight int :
XmNmaxWidth -1 CSG
XmCMaxWidth ©int
XmNminAspectX -1 CSG
XmCMinAspectX - int
XmNminAspectY -1 CSG
int

‘XmCMinAspectY

System Calls

TransientShell(3X)

Name Default Access
Class Type ‘
XmNminHeight -1 CSG

- XmCMinHeight int o
XmNminWidth -1 CSG
XmCMinWidth “int .
XmNtitle NULL CSG

XmCTitle char *
XmNtransient False CSG
XmCTransient -Boolean :
XmNwaitForWm True CSG
XmCWaitForWm Boolean
XmNwidthlnc -1 CSG
XmCWidthinc int :
XmNwindowGroup None CsG
XmCWindowGroup XID
XmNwmTimeout fivesecond CSG
XmCWmTimeout int

1-125

OSF/Motif Programmer’s Reference

TransientShell(3X)

Shell Resource Set

XmCinsertPosition

1-128

Néme Default Access
Class Type v
XmNallowShellResize False CSG
XmCAllowShellResize Boolean
XmNcreatePopupChildProc NULL CSG
‘XmCCreatePopupChildProc XmCreatePopupChildProc
XmNgeometry NULL CSG
XmCGeometry ~ String
XmNoverrideRedirect False CSG
XmCOverrideRedirect Boolean
XmNpopdownCallback NULL ‘]
XmCCallback XtCallbackList
XmNpopupCallback NULL C
XmCCallback XtCallbackList
XmNsaveUnder False CSG
XmCSaveUnder Boolean
v Composite Resource Set
Name Default Access
Class Type
XmNinsertPosition NULL CSG
XmRFunction

System Calis

TransientShell(3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators NULL CSG
XmCAccelerators XiTranslations

XmNancestorSensitive ShellAncestorSensitive G
XmCSensitive Boolean

XmNbackground White CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor Black CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSG
XmCBorderWidth Dimension

XmNcolormap ShellColormap CG
XmCColormap Colormap

XmNdepth ShellDepth CG
XmCDepth int

XmNdestroyCallback NULL Cc
XmCCallback XtCallbackList

XmNheight 0 CSG
XmCHeight Dimension

XmNmappedWhenManaged True CSG
XmCMappedWhenManaged Boolean

XmNscreen XtCopyScreen CG
XmCScreen Pointer

XmNsensitive True CsG
XmCSensitive Boolean

1-127

OSF/Motif Programmer’s Reference

TransientShell(3X)

Name Default Access
Class Type

XmNitranslations NULL CsG
XmCTranslations XtTranslations

XmNwidth 0 CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CSG
XmCPosition Position

Related Information

Composite(3X), Core(3X), Shell(3X), VendorShell(3X), and

WMShell(3X).

1-128

System Calls
Uil(3X)

Uil

Purpose

Invokes the UIL compiler from within an application

Synopsis

#include <uil/UilDef.h>
Uil_status_type Uil(command desc, compile_desc, = message cb,
message_data,
status_cb, status_data)

Uil_command_type *command_desc

Uil_compile_desc_type *compile desc;

Uil_continue_type (*message_cb) ();

char *message_data;

Uil_continue_type (*status_cb) ();

char *status_data;

Description

The Uil function provides a callable entry point for the UIL compiler. The
Uil callable interface can be used to process a UIL source file and to
generate UID files, as well as return a detailed description of the UIL source
module in the form of a symbol table (parse tree).

command_desc Specifies the uil command line.
compile_desc Returns the results of the compilation.
message_cb Specifies a callback function that is called when the

compiler encounters errors in the UIL source.

1-129

OSF/Motif Programmer’s Reference
Uil(3X)

message_data Specifies user data that is passed to the message
callback function (message_cb). Note that this
argument is not interpreted by UIL, and is used
exclusively by the calling application.

status_cb Specifies a callback function that is called to allow
X applications to service X events such as updating
the screen. This function is called at various check
points, which have been hard coded into the UIL
compiler. The status_update_delay argument in
command_desc specifies the number of check
points to be passed before the status_cb function is
invoked.

status_data Specifies user data that is passed to the status
callback function (status_cb). Note that this
argument is not interpreted by the UIL compiler,
and is used exclusively by the calling application.

The data structures Uil_command_type and Uil_compile_desc_type are
detailed below.

typedef struct Uil _command_type {
char *source file;
/* single source to compile */
char *resource file; /* name of output file */
char *listing file; /* name of listing file */
unsigned int *include dir count;
/* number of dirs. in include dir */
char *((*include_dir) [1);
/* dir. to search for include files */
unsigned listing_file flag: 1;
/* produce a listing */
unsigned resource file flag: 1;
/* generate UID output */
unsigned machine code_ flag: 1;
/* generate machine code */
unsigned report_info msg flag: 1;
/* report info messages */
unsigned report_warn msg flag: 1;

1-130

System Calls
Uil(3X)

/* report warnings */
unsigned parse tree flag: 1;
/* generate parse tree */
unsigned int status_update delay;
/* number of times a status point is */
/* passed before calling status_cb */
/* function 0 means called every time */

}i

typedef struct Uil compile_desc_type {
unsigned int compiler version;
/* version number of compiler */
unsigned int data_version;
/* version number of structures */
char *parse_tree root; /* parse tree output */
unsigned int message count [Uil k max status+l];
/* array of severity counts /*
}:

Return Value

This function returns one of these status return constants:

Uil_k_success_status The operation succeeded.
Uil_k_info_status The operation succeeded, and an
‘ informational message is returned.
Uil k_warning_status The operation succeeded, and a warning
' message is returned.
Uil_k_error_status The operation failed due to an error.
Uil_k_severe_status The operation failed due to an error.

Related Information

UilDumpSymbolTable(3X), uil(1X)

1-131

OSF/Motif Programmer’s Reference

UilDumpSymbolTable(3X)

UilDumpSymbolTable

Purpose

Dumps the contents of a named UIL symbol table to standard output.

Synopsis

#include <uil/UilDef.h>
void UilDumpSymbolTable (root ptr)
sym_root_entry_type *root ptr;

Description

1-132

The UllDumpSymbolTable function dumps the contents of a UIL symbol
table pointer to standard output

root_ptr Specifies a pointer to the the symbol table root entry. This value
can be taken from the parse_tree_root part the
Uil_compile_desc_type data structure returned by Uil.

System Calls

UilDumpSymbolTabie(3X)

By following the link from the root 'entry, you can traverse the entire parse
tree. Symbol table entries are in the following format:

hex.address
symbol.type
symbol.data
prev.source.position
source.position
modification.record

Where:

hex.address

symbol.type

symbol.data

prev.source.position

source.position

Specifies the hexadecimal address of this entry in
the symbol table. - :

Specifies the type of this symbol table entry. Some
possible types are root, module, value, procedure,
and widget. :

Specifies data for the symbol table entry. The data
varies with the type of the entry. Often it contains
pointers to other symbol table entries, or the actual
data for the data type.

Specifies the end point in the source code for the
previous source item.

Specifies the range of positions in the source code
for this symbol.

The exact data structures for each symbol type are defined in the include file
UilSymDef.h. Note that this file is automatically included when an
application includes the file UilDef.h.

Related Information

Uil(3X)

1-133

OSF/Motif Programmer’s Reference
VendorShell(3X)

VendorShell

Purpose

The VendorShell widget class

Synopsis

#include <Xm/Xm.h>
#include <X11/Shell.h>

Description

VendorShell is a Motif widget class used as a supporting superclass for all
shell classes that are visible to the window manager and that are not
override redirect. It contains the resources that describe the MWM-specific
look and feel. It also manages the MWM-specific communication needed
by all VendorShell subclasses. See the mwm man page for more
information.

Classes

VendorShell inherits behavior and resources from Core, Composite, Shell,
and WMShell classes.
The class pointer is vendorShellWidgetClass.

The class name is VendorShell.

1-134

System Calls

New Resources

VendorShell(3X)

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource
values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or
XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

VendorShell Resource Set
Name Default Access
Class Type
XmNdeleteResponse XmDESTROY CSG
XmCDeleteResponse unsigned char
XmNkeyboardFocusPolicy XmEXPLICIT CsSG
XmCKeyboardFocusPolicy unsigned char
XmNmwmDecorations -1 CSG
XmCMwmDecorations int
XmNmwmFunctions -1 CSG
XmCMwmFunctions int
XmNmwmIinputMode -1 CSG
XmCMwminputMode int
XmNmwmMenu NULL CSG
XmCMwmMenu String
XmNshellUnitType XmPIXELS CSG
XmGCShellUnitType unsigned char

1-135

OSF/Motif Programmer’s Reference

VendorShell(3X)

1-136

XmNkeyboardFocusPolicy
Determines allocation of keyboard focus within the widget
hierarchy rooted at this shell. The X keyboard focus must be
directed to somewhere in the hierarchy for this client-side
focus management to take effect.

XmNdeleteResponse

Determines what action the shell takes in response to a
WM_DELETE_WINDOW message. The setting can be one
of three values: XmDESTROY, XmUNMAP, and
XmDO_NOTHING. The resource is scanned, and the
appropriate action is taken, after the
WM_DELETE_WINDOW callback list (if any) that is
registered with the Protocol manager has been called.

XmNmwmDecorations
Includes the decoration flags (specific decorations to add or
remove from the window manager frame) for MWM_HINTS.

XmNmwmFunctions
Includes the function flags (specific window manager
functions to include or exclude from the system menu) for
MWM_HINTS.

XmNmwmInputMode
Includes the input mode flag (application modal or system
modal input focus constraints) for MWM_HINTS.

XmNmwmMenu
Specifies the menu items that the Motif window manager
should add to the end of the system menu. The string contains
a list of items separated by \n with the following format:

label [mnemonic] [accelerator] function

If more than one item is specified, the items should be
separated by a newline character.

System Calls

VendorShell(3X)

XmNshellUnitType
Determines geometric resource interpretation. The following
values are allowed:

XmPIXELS — all values provided to the widget are
treated as normal pixel values.

Xm100TH_MILLIMETERS — all values provided to
the widget are treated as 1/100 millimeter.

Xml1000TH_INCHES — all values provided to the
widget are treated as 1/1000 inch.

Xm100TH_POINTS — all values provided to the widget
are treated as 1/100 point. A point is a unit used in text
processing applications and is defined as 1/72 inch.

Xm100TH_FONT_UNITS — all values provided to the
widget are treated as 1/100-font unit. The value used for
the font unit is determined in one of two ways: The
resource XmNfont can be used in a defaults file or on the
command line; or, the standard command line options of
-fn and -font can be used. The font unit value is taken as
the QUAD_WIDTH property of the font. The function
XmSetFontUnits allows applications to specify the font
unit values.

Inherited Resources

VendorShell

inherits behavior and resources from the following

superclasses. For a complete description of each resource, refer to the man
page for that superclass.

1-137

OSF/Motif Programmer’s Reference

VendorShell(3X)

1-138

WMShell Resource Set

Name Default Access
Class Type
XmNheightinc -1 CSG
XmCHeightinc int
XmNiconMask NULL CSG
XmClconMask Pixmap
XmNiconPixmap NULL CSG
XmClconPixmap Pixmap
XmNiconWindow NULL CSG
XmClconWindow Window
XmNiconX -1 CSG
XmClconX int
XmNiconY -1 CSG
XmCiconY int
XmNinitialState 1 CSG
XmClnitialState int
XmNinput True CSG
XmClnput Boolean
XmNmaxAspectX -1 CSG
XmCMaxAspectX int
XmNmaxAspectY -1 CSG
XmCMaxAspectY int
XmNmaxHeight -1 CSG
XmCMaxHeight int
XmNmaxWidth -1 CSG
XmCMaxWidth int
XmNminAspectX -1 CSG
XmCMinAspectX int
XmNminAspectY -1 CSG
XmCMinAspectY int

System Calis

VendorShell(3X)

Name Default Access
Class Type
XmNminHeight -1 CSG
XmCMinHeight int '
XmNminWidth -1 CSG
XmCMinWidth int
XmNtitle NULL CSG
XmCTitle char *
XmNtransient False CSG
XmCTransient Boolean
XmNwaitForWm True CSG
XmCWaitForWm Boolean
XmNwidthinc -1 CSG
XmCWidthinc int
XmNwindowGroup None CSG
XmCWindowGroup XID

1-139

OSF/Motif Programmer’s Reference
VendorShell(3X) '

1-140

v Default Access
- Class Type :
XmNwmTimeout fivesecond CSG
XmCWmTimeout ~ int

Shell ResoUrce Set

Name

Default’ Access

Class Type
XmNallowShellResize =~ False - CSG

XmCAllowShellResize Boolean
XmNcreatePopupChildProc NULL CSG

XmCCreatePopupChildProc ~ ~ XmCreatePopupChildProc
XmNgeometry NULL CSG

XmCGeometry ~String s
XmNoverrideRedirect False ' CSG

XmCOverrideRedirect Boolean '
XmNpopdownCallback “NULL C

XmCCallback XtCallbackList
XmNpopupCaliback NULL C

XmCcCallback XtCallbackList
XmNsaveUnder False CsG

XmCSaveUnder "Boolean

Composite Resource Set
Name Default Access
Class Type
XmNinsertPosition NULL CSG
XmCinsertPosition XmRFunction

System Calls

VendorShell(3X)

Core Resource Set

Name Default Access
Class Type

XmNaccelerators NULL CSG
XmCAccelerators . XtTranslations

XmNancestorSensitive ShellAncestorSensitive G
XmCSensitive Boolean

XmNbackground White CSG
XmCBackground Pixel

XmNbackgroundPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderColor Black CSG
XmCBorderColor Pixel

XmNborderPixmap XmUNSPECIFIED_PIXMAP CSG
XmCPixmap Pixmap

XmNborderWidth 1 CSsG
XmCBorderWidth Dimension

XmNcolormap, ShellColormap CG
XmCColormap Colormap

XmNdepth ShellDepth CG
XmCDepth int B

XmNdestroyCallback NULL Cc
XmCCallback XtCallbackL.ist

XmNheight. 0 : CSG
XmCHeight Dimension ,

XmNmappedWhenManaged - True CSG
XmCMappedWhenManaged Boolean C

XmNscreen XtCopyScreen CG
XmCScreen Pointer .~

XmNsensitive True ; CSsG

Boolean ’

- XmCSensitive

1-141

OSF/Motif Programmer’s Reference

VendorShell(3X)

Name Default Access
Class Type

XmNtranslations NULL CSG
XmCTranslations XtTranslations

XmNwidth 0 CSG
XmCWidth Dimension

XmNx 0 CSG
XmCPosition Position

XmNy 0 CsG
XmCPosition Position

Related Information

1-142

Composite(3X), Core(3X), mwm(1X), Shell(3X), WMShell(3X),
XmActivateProtocol(3X), XmActivate WMProtocol(3X),
XmAddProtocolCallback(3X), XmAddWMProtocolCallback(3X),
XmAddProtocols(3X), XmAddWMProtocols(3X),
XmDeactivateProtocol(3X), XmDeactivate WMProtocol(3X),
XmGetAtomName(3X), XmInternAtom(3X),

XmIsMotif WMRunning(3X), XmRemoveProtocolCallback(3X),
XmRemove WMProtocolCallback(3X), XmRemoveProtocols(3X),
XmRemove WMProtocols(3X), XmSetProtocolHooks(3X), and
XmSetWMProtocolHooks(3X).

System Calls
WMShell(3X)

WMShell

Purpose

The WMShell widget class

Synopsis

#include <Xm/Xm.h>
#include <X11/Shell.h>

Description

WMShell is a top-level widget that encapsulates the interaction with the
window manager.

Classes

WMShell inherits behavior and resources from Core, Composite, and Shell
classes.

The class pointer is wmShellWidgetClass.
The class name is WMShell.

1-143

OSF/Motif Programmer’s Reference

WMSheli(3X)

New Resources

1-144

The following table defines a set of widget resources used by the
programmer to specify data. The programmer can also set the resource
values for the inherited classes to set attributes for this widget. To reference
a resource by name or by class in a .Xdefaults file, remove the XmN or
XmC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, remove the Xm prefix and use the
remaining letters (in either lowercase or uppercase, but include any
underscores between words). The codes in the access column indicate if the
given resource can be set at creation time (C), set by using XtSetValues (S),
retrieved by using XtGetValues (G), or is not applicable (N/A).

System Calls

WMShell(3X)
WMShell Resource Set
Name Default Access
Class Type
XmNheightinc -1 CSG
XmCHeightinc int
XmNiconMask NULL CSG
XmClconMask Pixmap
XmNiconPixmap NULL CSG
XmClconPixmap Pixmap
XmNiconWindow NULL CSG
XmClconWindow Window
XmNiconX -1 CSG
XmClconX int
XmNiconY -1 CSG
XmCiconY int
XmNinitialState 1 CsG
XmClnitialState int
XmNinput True CSG
XmClnput Boolean
XmNmaxAspectX -1 CSG
XmCMaxAspectX int
XmNmaxAspectY -1 CSG
XmCMaxAspectY int
XmNmaxHeight -1 CSG
XmCMaxHeight int
XmNmaxWidth -1 CSG
XmCMaxWidth int
XmNminAspectX -1 CSG
XmCMinAspectX int
XmNminAspectY -1 CSG
XmCMinAspectY int

1-145

OSF/Motif Programmer’s Reference

WMShell(3X)
Name Defauit Access
Class Type
XmNminHeight -1 CSG
XmCMinHeight int
XmNminWidth -1 CSG
XmCMinWidth int
XmNititle NULL CSG
XmCTitle char *
XmNtransient False CSG
XmCTransient Boolean
XmNwaitForWm True CSG
XmCWaitForWm Boolean
XmNwidthinc -1 CSG
XmCWidthinc int
XmNwindowGroup None CSG
XmCWindowGroup XD
XmNwmTimeout fivesecond CSG
XmCWmTimeout int
XmNheightInc
Specifies allowable height for the widget instance by the
window manager if this resource is defined. The sizes are
XmNminimumHeight plus an integral multiple of
XmNheightInc, subject to the XmNmaximumHeight
resource.
XmNiconMask
Specifies a bitmap that could be used by the window manager
to clip the XmNiconPixmap bitmap to make the icon
nonrectangular.
XmNiconPixmap
Specifies a bitmap that could be used by the window manager
as the application’s icon.
XmNiconWindow

1-146

Specifies the ID of a wi