CADR

Thomas F. Knight, Jr.
David A. Moon
Jack Holloway

and Guy L. Stegle, Jr.

The CADR machme‘ a revised version of the CONS machine, is a general-purpose, 32-bit
mxcroprogrammable processor which is the basis of the hsp-machme sysum _a new. compuaer
system 'bﬁmg devebpgd by the Laboratory as a high»perfannance ot ! :

Lisp: “This paper @swbcs d§ C;&DR processa ‘and .some .
lcvcl soﬁware‘ v

Printed by Symbolics, Inc. under licepsc from the Massachusetts: Instityté of Technology.

PROCESSOR .
Amem ik x 328
Hmem 32 x 328
PDL duffer 1K = 328
VDispatch 2K = 178

CONTROL MEM

up to 16X x 488

Other

tmage
A box
Image

devices

coavolver

taput

~

Chaos Net
Keyboard
Mouse
UNIBUS compatible .
4
BUS '
ADAPTOR
A3z b1t
- | ABUS MEMORY
128K to 4Mword
32 bit + parity
DISK CONTROL
e —>
T Trident compatible N
i Up to 8 drives (2.5 Gbyteg) .
Error check amnd correct .
—>

up

Programmable raster

5122532 4 bit pizely

TV CONTROL

80 Mbyte

to 864 x 1168

768 x 900 bit map
Mhite phosphor

Lisp Machine

18-SEP-1981 08:42 | . Al: LMDOC; FIG1

: ‘éystgm Cdnfigu ration

1 The CADR Microprocessor

Overview

The CADR microprocessor is a general purpose processor designed for
convenient emulation of complex order codes, particularly those involving stacks and
pointer manipulation. It is the central processor in the LISP machine project, where it
interprets the bit-efficient 16-bit order code produced by the LISP machine compiler.
(The terms "LISP machine” and "CADR machine" are sometimes confused. In this
document, the CADR machine is a particular design of microprocessor, while the LISP
machine is the CADR machine plus the microcode which interprets the LISP machine
order code.)

The data paths of the CADR machine are 32 bits wide. Each 48-bit-wide
microcode instruction specifies two 32-bit data sources from a vmety of internal
scratchpad registers; the two data-manipulation instructions can also specify a destination
address. The internal scratchpads include a 1K pointer-addressable RAM intended for
storing the top of the emulated stack, in a manner similar to a cache. Since in the LISP
machine a large percentage of main memory references will be to the stack, this
materially speeds up the machine.

The CADR machine has a 14-bit microprogram counter, which behaves much
like that of a traditional processor, allowing up to 16K of writable microprogram memory.
Also included is a 32-location microcode subroutine return stack.

Memory is accessed through a two-level virtual paging system, which maps 24-bit
-virtual addresses into 22-bit physical addresses.

. There are four classes of micro-instructions. Each specmu two sources (A and
M); the ALU and BYTE operations also specify a destination (A, or M plus functional).
The A bus supplies data from the 1024-word A scratchpad memory, while the M bus
- supplies data from either the 32-word M scratchpad memory (a copy of the first 32
locations of the A scratchpad) or a variety of other internal regtsten The four clases of
microinstruction are:

ALU ° The destiqation receives the result of a boolean or arithmetic operation
~performed on the two sources.

BYTE The destination receives the result of a byte extraction, byte deposit, or
‘ selective field substitution from:one source to the other. The byte so
manipulated can be of any non-zero width.

JUMP A transfer of control occurs, conditional on the value of any bit accessible to
the M bus, or on a variety of ALU and other internal cond:tiom such as
pending interrupts and page faults, :

DISPATCH - A transfer of control occurs to a location determined by a word from the

dispatch memory selected by a byte of up to seven bits extracted from the M
bus.

‘ There are several sources and destinations whose loading and use mvoke special
lction by the microprocessor. These include the memory address and memory data

2 ' The CADR mcroprocuwt

registers, whose use initiates main memory cycles.

Some of the ALU operations are conditional, depending upon the low order bit
in the Q register and the sign of A source. Thae operations are used for multiply and
divide steps.

The main features of this machine which make it suitable for interpreting the
LISP machine order code are its dynamically writable microcode, its very flexible
dispatching and subroutining, its excellent byte manipulation abilities, and its internal
stack storage. While the design of CADR was strongly influenced by the requirements of
the LISP machine design, a conscious attempt was made to avoid features that are
extremely special-purpose. The goal is a machine that happens to be good at interpreting
the particular order code of the LISP machine, but which is general enough to interpret
- others almost as well. In particular, no critical parts of the LISP machine design (such as
- LISP machine instruction formats) are "wired in"; thus any changes to the LISP machine
design can be easily accomodated by CADR. However, there are several "efficiency
hacks” in the hardware, designed to speed up certain common operations of the LISP
machine microcode, which might not be useful for other microcodes. These are described
in later sections of this document.

'N'otl‘tlonal Conventions

All numbers used to describe bit positions, field widths, memory sizes, etc. are
decimal. Octal is used only (and exclusively) to describe the values of fields. Bits within
a word are consistently numbered from right to left, the least signif significant bit being bit
<0>. Fields are described by the numbers of their most and least significant bits (e.g.
"bits <22-10>"). -

Whenever a particular field value is described as "illegal”, it does not mean that
specifying that value will screw up the operation of the machine. It merely indicates a
value which happens to have a certain function, not because it is considered directly
useful, but because the internal workings of the machine may force certain selectors to
that value for other reasons, and the user can select this value too even though it is not
normally useful. These illegal values are described for the benefit of someone who may
wish to fathom these inner workings.

A field value described as "unused” is reserved for possible design expansion and
- should not be used in programs. Bit fields described as "unused” should be zero in
programs, for the sake of future compatibility.

3 The CADR Microprocessor

Since the use of the term "micro” in referring to registers and instructions
becomes redundant, its use will be dropped from here on in this part of the document.
All instructions discussed are microinstructions.

The following bits are treated the same in every instruction. They will not be repeated in

the individual instruction descriptions

IR(48> = Odd parity bit

IR<47> = Unused)

IR<46> = Statistics (see the description of the Statistics Counter)
This can be used to count how many times specified areas
of the microcode are executed, to implement microcode

_ - breakpoints, or to stop the machine at a certain "time®.
~ IR<45> = ILONG (1 means slow clock)

IR<44-43> = Opcode (0 ALU, 1 JUMP, 2 DISPATCH, 3 BYTE)

IR<42> = POPJ transfer. Causes a return from a micro subroutinc,
‘after executing one additional 1nstruction.

IRC11-10> = Miscellaneous Functions

0 Normal

1 Not used

2 Write dispatch memory, if opcode is DISPATCH.

3 Enable modification of the M-ROTATE field by the
location counter (LC). See the description of the
-instruction-stream hardwars.

L L
<

|R7-5—-1
© IR23-14
R6-0
PRUM
FLEMENT N
IMASKS ALt RUT] - _bﬂﬂ_

A4
LOW N BIIS 1
DISPATCH
MIEM14-D HEHORY DR,DP.DN
(PARLTY WMEMIS) 2048 x 17 CLoce
(PLUS PARITY) LEC
DPC
s K

N 2

$x 14

IR23-12 wmert

NPC 2 = Juw v DISP
SELECT 1~ ..uv.-u)v(msr.-a)v 17E

INSTRUCTTON
MEMORY

16K x 48
(PLUS PARITY)
CLQO)

MEXT INSTRUCTION MOD
(FUNCTIONAL DESI 16 m 17)
DEBUG INSTRUCTION FROM PDP-1

. . CADR Main Control Paths

oD PC
PCl RING BUFFER b0 POP-

POL POINTER
POL INDEX

Data Paths

The CADR Microprocessor

‘I'he data paths of the machine consist of two source busses A and M, which

A A?R

A MEMORY
1024 x 32
(+PARITY)

A PASS-AROQUND PATH ’///J

ALY OP

»

L} AD% L
L
M MEMORY L »
32 x 32] ?
(+PARITY) c
H
—r—
M PASS
o
L
P
PDL BUFFER L
1024 x 32 '—-1"‘—
(+PARITY) ¢
H
 —
SPC PHTR
I s i
S
P
SPC MEM [
32 x 19 — L —
(+PARITY) ¢
H

PASS-AROUND
MISC SOURCES

CADR A and M Busses

M BUS

SHIFTER

ROTATION
CounT

MASK
SELECT

provide data to the ALU and byte extractor, and an output bus OB, which is selected

* from the ALU (optionally shifted left or right) or the output of the byte extractor, and
whose data can be routed to various destinations. We first describe the specification of
the source busses, which are identically specified for all instructions; then the destination
specifiers which control where results are stored; and finally the two instructions for
controlling the ALU and the byte extractor.

OQUTPUT

BUS

SELECT

ALl

ALU30-0.031

ALU3Z ALU32-1

MO |

OUTPUT BUS

5 | The CADR Microprocessor

Sources

~ All instructions specify sources in the same way. There are two source busses in
the machine, the A bus and the M bus. The A bus is driven only from the A scratchpad
memory of 1024 32-bit words. The M bus is driven from the M scratchpad of 32 32-bit
words and a variety of other sources, including main memory data and control registers,
the PC stack (for restoring the state of the processor after traps), the internal stack buffer
and its pointer registers, the macrocode location counter, and the Q register. Addresses _
for the A and M scratchpads are taken directly from the instruction. The alternate
sources of data for the M source are specified with an additional bit in the M source field.

IR<41-32> = A source address
IR(31-26> = M source address
If IRC31> = 0,
IRC30-26> = M scratchpad address
If IRCG3I> = 1, .
IRC(30-26> = M “functional® source
' 0. Dispatch constant (see below)
SPC pointer <28-24)>, SPC data <18-0>
PDL pointer <9-0>
PDL index.<9-0>
PDL Buffer (addressed by Index)
OPC registers (see below) <13-0>
7 Q register
10 VMA register (memory address)
11 MAP[MD]
12 MD register (memory data)
13 LC (location counter)
14 SPC pointer and data, pop
24 PDL buffer, addressed by Pointer, pop
25 PDL buffer, addressed by Pointer

DWW N e

‘Functional sources not listed above should not be used and may have side effects. Sources
15, 16, and 17 are reserved for future expansion. Source 4 is the PDL buffer, indexed by
the PDL Index, and the PDL pointer is decremented, presumably a useless operation.

Programming hint: it is often convenient to reserve one A memory word and one M
memory word and fill them with constant zeros, to provide a zero source for each source
- bus. It is also convenient to have an M memory word containing all ones. These are
particularly useful for byte extraction, masking, bit setting, and bit clearing operations.
The CONSLP assembler in fact assumes that A memory location 2 and M memory
location 2 are sources of zeros. The UCONS microcode stores all ones in location 3.

The M scratchpad normally contains a.duplicate copy of the first 32 locations of the A
scratchpad. The effect is as if there were a single scratchpad memory, the first 32
lqcations of which were dual-ported. This makes programming more convenient, since

(] The CADR Microprocessor

these locations are accessible to both sides of the ALU and shifter.

7 : The CADR Microprocessor

Destinations

The 12-bit destination field in the BYTE and ALU instructions specifies where the result
of the instruction is deposited. It is in one of two forms, depending upon the high-order
bit. If the high-order bit is 1, then the low 10 bits are the address of an A memory
location, and the remaining bit is unused. If the high order bit is 0, the low 10 bits are
divided into a 5-bit "functional destination™ field, and a 5-bit M scratchpad address, and
both of the places specified by these fields get written into. The next-to-highest bit in the
destination field is not used.

IR¢25-14> = Destination
If IRC25> = 1,
IRC23-14> = A scratchpad write address
If IRC25> = 0, .
IR<23-19> = Functional destination write address
0 None
1 LC (Location Counter)
Interrupt Control <29-26>

Bit 26 = Sequence-Break request
Bit 27 = Interrupt-Enable

Bit 28 = Bus-Reset

Bit 29 = LC Byte-mode

10 PDL (addressed by Pointer)

11 PDL (addressed by Pointer), push

12 PDL (addressed by Index) »

13 PDL Index

14 PDL .Pointer

15 SPC data, push

16 Next instruction modifier
("OA register"), bits <25-0>

17 Next instruction modifier

' ("OA register®), bits <47-26>

20 VMA register (memory address)

‘Zl VMA register, start main memory read

22 VMA register, start main memory write

23 VMA register, write map. The map is
addressed from ND and written from
VMA. VMAC26>=1 writes the level 1
map from VMAC31-27>. VMA(25)>=]1 writes

. the level 2 map from VMAC23-0).

30 MD register (memory data)

31 MD register, start main memory read

32 MD register, start main memory write

33 MD register, write map like 23

" IRC18-14) = M scratchpad write address

s | The CADR Microprocessor

Functional destinations not listed may have strange results. Destinations 3-7 are reserved
for expansion. ’

Note: If you write into the M-memory, the machine will also write into the
corresponding A-memory address. Therefore you should never write into A-memory
locations 0-37; this way the first 40 (octal) locations of A-memory "map into” the M-
memory. :) :

The full details of the more complicated functional destinations are described in later
sections below. The Q register is loaded by using the Q-control field of the ALU
instruction, not by using a functional destination. In addition, it loads from the ALU
outputs, not the output bus. This means that the left and right shift operations are
ineffective for data being loaded into Q.

Programming hint: if a functional destination is specified, an M scratchpad location must
also be specified. ‘It is convenient to reserve one location of the M scratchpad for
"garbage"; this location can be specified when it is desired to write into a functional
destination but not into any other M scratchpad location. Since the CONSLP assembler
defaults the M write address to zero, it'is best to let location 0 be the garbage location.
Location 0 of the A scratchpad will also be written and is also reserved as a garbage
Jocation.

] . The CADR Microprocessor

The ALU ll;strnction

The ALU operation performs most of the arithmetic in the machine. It specifies.
two sources of 32 bit numbers, and an operation to be performed by the ALU. The
operation can be any of the 16 boolean functions on two variables, two's complement
addition or subtraction, left shift, and several less useful operations. The carry into the
ALU can be forced to be 0 or 1. The output of the ALU is optionally shifted one place,
" and then written into the specified destinations via the output bus. Additionally, the
ALU instruction specifies one of four operations upon the Q register. These are do
nothing, shift left, shift right, and load from the ALU outputs. An additional bit in the
ALU operation field is decoded to indicate conditional operations; this is how the
"multiply step” and "divide step” operations are specified. (Multiplication and division are
explained in greater detail in another section.)

IR<44-43> = 0 (ALU opcode)
IRC41-32> = A source
IRC31-26> = N source
IRC(25-14> = Destination

IRC(13-12> = Output bus control
0 Byte extractor putput (illegal)
1 ALU output
2 ALU output shifted right one, with the correct
’ ‘'sign shifted in, regardless of overflow.
3 ALU output shifted left one, shifting in Q<C31>
. from the right. : o
IR<9> = not used
IRCB-4> = ALU operation

If IR(8> = 0,
~ IRC7-3> = ALU op code (see table)
If IR(8) = 1,

IRC(7-3> = Conditional ALU op code
0 Multiply step
1 Divide step
5 Remainder correction
11 Initial divide step
IRC2> = Carry into low end of ALU
IRC1-0> = Q control
0 Do nothing
1 Shift Q left, shifting in the inverse
of the sign of the ALU output (ALUC31))
2 Shift Q right, shifting in the low bit
’ of the ALU output (ALUCO))
3 Load Q from ALU output

10

The CADR Microprocessor

ALU operation codes (from Table 1 of 74181 specifications). All arithmetic operations
are two's complement. Note that the bits are permuted in such a way as to make the .
logical operations come out with the same opcodes as used by the Lisp BOOLE function. .
Names in square brackets are the CONSLP mnemonics for the operations.

IR<6-3>

Boolean (IRC(7>=1)

ZEROS [SETZ]
MAA [AND]
MA-A [ANDCA]
M [SETM]
=MAA [ANDCH] -
A [SETA]
Me

[XOR] M-A-1
MvA [IOR]
-A-N [ANDCB]
M=A [EQV]
=A [SETCA]
Mv-A [ORCA]
-N [SETCM]
-MvA [ORCM]
-Mv-A [ORCB]
ONES [SETO]

-1

(MAR)-1
(MA-A)-1

N-1

M-A
(Mv-A)+(MAA)

[M-A-1]

< (Mv=A)+M

MvA

M+A
(MvA)+(MA-A)
(MvA)+M

M

M+(MAA)
Me(M-A)
M+M

H-A

[ADD]

[M+M]

Arithmetic (IRC7>=0)
"Carry in = 0 !

Carry in = 1
0

MAA

(Br-A)

M

(Mv-~A)+1
(M-A)+(MAA)+1

[suB]
(Mv-A)+He1
(MvA)+1
MeA+) ‘
(MvA)+(MA-A)+]
(MvA)+M+1
M+l ,
M+(BAA)+]

N+ (Mv-A)+l
MM+l

[Me+A+1]

[H+1]

[ReN+1]

.1 The CADR Microprocessot

.The BYTE Instruction

The BYTE instruction specifies two sources and a destination in the same way as
the ALU instruction, but the operation performed is one of selective insertion of a byte
field from the M source into an equal length field of the word from the A source. The
rotation of the M source is specified by the SR bit as either zero or equal to the contents
of the ROTATE field. The rotation of the mask used to select the bits replaced is
specified by the MR bit as either zero or equal to the contents of the ROTATE field. -
The length of the mask field used for replacement is specified in the LENGTH MINUS 1
field. The four states of the SR and MR bits yield the following operations:

MR=0 SR=0 Notuseful . (This is a subset of other modes.)

. MR=0 SR=1 LOAD BYTE PDP-10 LDB instruction (except the unmasked bits
‘ are from the A source). A byte of arbitrary position from the M source is
_ right-justified in the output.

MR=1 SR=0 SELECTIVE DEPOSIT = The masked field from the M source is used to
replace the same length and position byte in the word from the A source.

MR=1 SR=1 DEPOSIT BYTE PDP-10 DPB instruction. A right-justified byte
' from the M source is used to replace a byte of arbitrary position in the word
from the A source. :

The BYTE instruction autamatically makes the output of the byte extractor available by
forcing the output bus select code to 0 (byte extractor output).

IRC44-43> = 3 (BYTE operation)
"IRC41-32> = A source
- IR¢31-26> = M source
IR(25-14> = Destination
IRC1I3D = MR = Mask Rotate (see above)
IRC12> = SR = Soyrce Rotate (see above)
IR<9-5> = Length of byte minus 1 (0 means byte of length I, etc.)
IR<4-0> = Rotation count (to the left) of mask and/or M source

The byte operation rotates the M source by 0 (if SR=0) or by the rotation count
(if SR=1), producing a result called R. It also uses the MR bit, the rotation count, and
the length minus 1 field to produce a selector mask (see description below). This mask is
all zeros except for a contiguous section of ones denoting the selected byte. This mask is
used to merge the A source with R, bit by bit, selecting a bit from A if the mask is 0 and
from R if the mask is 1. This result is then written into the specified destination(s).

Output of mask memories:
Right mask memory is indexed by 0 (MR=0) or by rotation count (MR=1).
Left mask memory is indexed by (the index into right mask memory) plus

octel
index

~N O s W N e

10
11
12
13
14
13
16
17
20
21
22
23
. 24
25
28
27
30
31
32
a3

s
36
37

(the length minus 1 field), mod 32.

LEFT MASK MEMORY contents

00000000000000000000000000000001
00000000000000000000000000000011
00000000000000000000000000000111
00000000000000000000000000001111
00000000000000000000000000011111
00000000000000000000000000111111

0000000000000000000000000lllllfl'
00000000000000000000000012111111.

00000000000000000000000211111111
00000000000000000000001111111111
000000000000000000000222121111111
00000000000000000000211112111111

.00000000000000000001111111111111

00000000000000000011121121111111
00000000000000000111111311111111

.00000000000000002211121111111111

00000000000000011111111111111111
00000000000000111111111111111111
00000000000001111111111111111111
00000000000011111111311111111111
000000000001111llllllllllllil!ll
000000600001111111111211111111111

/00000000011111111111111111111111

00000000111111111111111111111111
00000001111111111111111111111111
00000011111111111111111111111111
00000111111111111111111111111111
000011111ll!llllllllllllilllllll
00011111111111111111111111111111
00111111111111111111111111111111

01111111111111111111111111111131 |

11111111111111111113311111111111

12

The CADR Microprocessor

RIGHT MASK MEMORY contents

111111111112111111111111211111111
111131131113111311111111132111 30
1111111211111210221222212211221100
11131111111111211111211212111000
111111111131111113111111111110000
11111111111111111111111111100000
11111111111121111111111111000000
11111111111111111111111110000000
11111111111111111111111100000000
11111111111111111111111000000000
11111111111111111111110000000000
11111111111111111111100000000000

J11111111111111111111000000000000

11111111111111111110000000000000
11111111111111111100000000000000
11111111111111111000000000000000
11111111111111110000000000000000

" 11111111111111100000000000000000

11111111111111000000000000000000
11111111111110000000000000000000
11111111111100000000000000000000
11111111111000000000000000000000
11111111116000000000000000000000
11111111100000000000000000000000
11111111000000000000000000000000
11111110000000000000000000000000
11111100000000000000000000000000
11111000000000000060000000000000
11110000000000000000000000000000
11100000000000000000000000000000
11000000000000000000000000000080
10000000000000000000000000000000

After the two masks are selected, they are AND'ed together to get the final
- mask. This mask is all zeros, except for a field of contiguous ones defining the byte.

13 ' The CADR Microprocessor

As an example, if MR=1, rotation count=5, and length minus 1=7, then the right
mask index is § and the left mask index is 14 (octal). This results in a final mask '
follows: - ,

Right mask § 11118012 0200000202020111111100000
Left mask 14 00000000000000000001111111111111
AND them together = —cecccccccccecccccccccccccccnncee.
Final mask 00000000000000000001111111100000

The byte is 8 bits wide, 5 positions from the right.

Programming hint: if the byte is "too large” (i.e. its position and size specifications cause
it to hang over the left-hand edge of a word), then the masker does not truncate the byte
at the left-hand edge. Instead, it produces a zero mask, selecting no byte at all; thus, the
output of the byte operation equals the A source. The reason for this is that an overflow
occurs in calculating the index into the left mask memory, and so the final mask is zero.
For example, if MR=1, rotation count=20 (octal), and length minus 1=27 (octal), then the
right mask index is 20 and the left mask index is 477 (mod 32). This results in a final
mask as follows:

Right mask 20 11111111111111110000000000000000
Left mask 7 0000000000000000000000001 1111111
AND them together = =e-cmccccccccmcccccccncccoae. =
Final mask 00000000000000000000000000000000

" - - The CADR Microprocessor

Control

The control section of the processor consists of a 14-bit program counter (the’
PC). a 32-location PC stack (SPC) and stack pointer (SPCPTR), and a 2K dispatch
memory, used during the DISPATCH instruction. Unlike some microprocessors, and like
most traditional machines, the normal mode of operation is to execute the next‘sequential ‘
instruction by incrementing the PC.

The processor uses single instruction look ahead, i.e. the lookup of the next

“instruction is overlapped with execution of the current one. This implies that after

branching instructions the processor normally executes the following instruction, even if
the branch was successful. Provision is made in these instructions to inhibit this execution
(with the N bit), but the cycle it would have used will then be wasted.

(I2 is a branch instruction to the location of 18)

TIME ===
I | | | | |
| fetch I | fetch I2 | fetch I3 | fetch I8 | fetch I9 |
| execute 10 | execute I1 | execute I2 | execute I3 | execute I8 | .
| | | | | |
N | | |
Fetch of branch---' | | |
; I | |
Execution of branch-------ccec--. ' | |
| |
Execution (optionally inhibited) | |
of following instruction---c-cccccccccccccacaaa. ' |
’ |

Execution of instruction branched to ~~-e-ccccccceccccccccncans '

Two types of instruction affect flow of control in the machine. The conditional
JUMP specifies a new PC and transfer type in the instruction itself, while the DISPATCH
instruction looks up the new PC and transfer type in-the 2K dispatch memory. In either
case, the new PC is loaded into the PC register, and the operation specified by the 3-bit
transfer type is performed. These operations are:

Nbit If on, inhibits execution of the next instruction, i.e. the instruction st the
address one greater than that of the transfer instruction. ' (This instruction
needn’t actually be at the address one greater, if 8 transfer of control was

15 ‘ The CADR Microprocessor

already in progress.) The cycle that would have executed that instruction is
wasted,

The P and R bits are decoded as follows:

P=0R=0 BRANCH Normal program transfer.
P=1 R=0 CALL Savé the correct return address on the SPC stack, and jump to
the new PC address. :
P=O0R=1 RETURN Ignore new PC; instead pop PC off the SPC stack.
P=1 R=1 FALL THROUGH In a DISPATCH instruction, do not dispatch.
I'MEM WRITE In a JUMP instruction; write into the instruction memory,
' and do not jump. ’

The BRANCH transfer type is the normal program transfer, without saving a
return address.

The CALL transfer type pushes the appropriate return address onto the SPC
stack. This stack is 32 locations long. It is the responsibility of the programmer to avoid
overflows. The return address is PC+2, or PC+1 if the N bit is als¢ on. Actually, if the
N bit is on the address of the instruction NOP'ed is saved, which may not be identical to
‘PC+1 if a transfer of control is already in progress. If the N bit is not on, 1 + the address
of that instruction is saved. ‘In the case of a dispatch, if the N bit.is on and bit 25 of the
instruction is on, save PC, the address of the dispatch instruction itself; this allows the
dispatch to be re-executed upon return. (Actually, due to pipelining, when the above
paragraph says PC it doesn’t really mean PC.) :

The RETURN transfer type pops a return PC from the SPC stack, ignoring the
PC specified in the instruction or dispatch table.

'~ The FALL THROUGH transfer type for dispatches allows some entries in a
dispatch table to specify that the dispatch should not occur after all. The following
instruction is executed (unless inhibited), followed by the one after that (unless the first .
following one branches and inhibits it!).

The I-MEM WRITE transfer type is the mechanism for writing instructions into
the microprogram instruction memory, and is described in a later section. (The dispatch
memory, unlike the instruction memory, is not written into by setting the P and R bits
(after all, in a dispatch instruction these bits come from the dispatch memory!); instead,
the Miscellaneous Function field is used.)

An additional bit in every instruction, including ALU and BYTE instructions,
called the POPJ bit, allows specification of simultaneous execution of a RETURN transfer
type along with execution of any instruction. That is, it does the same thing as if this
instruction, in addition to whatever else it does, had executed a RETURN transfer type
jump without the N bit on. It is the responsibility of the programmer to avoid conflicts
in the use of this bit simultaneously with other types of transfers.

. The POPJ bit should be used in a JUMP instruction only in conjunction mth
the RETURN transfer type. This will cause a RETURN operation in either case, but

_execution of the following instruction is conditional, controlled by the N bit and the

‘conditional JUMP instruction. The POPJ bit, when used in a DISPATCH instruction, is

16 The CADR Microprocessor

specially over-ruled by the JUMP and CALL transfer types. This allows you to RETURN
normally, but jump off to other code in exceptional cases, using the same dispatch table as
other dispatch instructions which do not want to return. The POPJ bit should not be
used in conjunction with writing of dispatch or instruction memory, nor with the SPC pop
and push functional source and destination. The machine doesn't bother to do anything
reasonable in these cases.

B

it The CADR Microprocessor

The DISPATCH Instruction

The dispatch instruction allows selection of any source available on the M bus
[see description of M bus sources in the Data Path section], and the dispatch on any sub-
field of up to 7 bits from the selected word. The selected subfield is ORed with the
"dispatch address” field of the instruction to produce an 11 bit address. This address is
used to look up a 14 bit PC and 3 bit transfer type in the dispatch memory. The SPC-
pointer-and-data-pop source will not operate reasonably in conjunction with the dispatch
instruction.

IR<44-43> = 2 (DISPATCH operation)

IR<41-32)> = Dispatch constant (also A source when writing D-MEM)

IR¢31-26> = M source

IR<25)> = Alter return address pushed on SPC by the CALL transfer
‘type, if the N bit is set, to be the address of this

. instruction rather than the next instruction. :

IR<24> = Enable instruction-stream hardware (described later).

IR<23> = Unused

IR<22-12> = Address in dispatch memory

IR<9-8> = Control dispatching off the map, see below.

IRC7-5> = Length of byte (not minus 1!) from M source to dispatch on

IR<4-0> = Rotation count (to the left) of M source

The dispatch operation takes the specified M source word and rotates it to the
left as specified by the rotation count. All but the low K bits are masked out, where K is
the contents of the length field. The result is OR'ed with the dispatch address, and this is
used to address the 2K dispatch memory, which supplies the new PC and the R, P, and N
bits. '

If bits 8 and 9 of IR are not zero, the bottom bit of the dispatch address comes
from the virtual memory map rather than the rotator and masker. The address inputs to
the map in this case come from MD. This is primarily useful for testing pointers just
fetched from main memory for validity with respect to the garbage collector’s
conventions. IR<8> selects bit 14 of the second level map, and IR<9> selects bit 15.
Selecting both bits ORs them together.

- The dispatch constant field is loaded into the DISPATCH CONSTANT register
on every dispatch instruction. This register is accessible as an M source. The dispatch
constant field has nothing whatsoever to do with the operation of dispatching; it is merely
a convenient device for loading a completely random register while doing something else.
(Uses for this feature are discussed in a later section.)

Miscellaneous function 2 inhibits the normal action of the instruction and
instead loads the dispatch memory with the low order contents of the A memory
scratchpad location specified in the A source. Note that the A source address is the same
field as the dispatch constant field. The dispatch constant is loaded anyway, but this can
be ignored. The parity bit (bit 17) is also loaded, and it is the responsibility of the

—

T The CADR Microprocessor

programmer to load-correct (odd) parity into the memory. Normal addressing of the
dispatch memory is in effect, so it is advisable to have the length field contain 0 so that
the dispatch memory location to modify is uniquely specified by the dispatch address in
the instruction.

19 . The CADR Microprocessor

The JUMP Instruction

The JUMP instruction allows conditional branching based on any bit of any M
source or on a variety.of internal processor conditions, including ALU output. (While
DISPATCH could also be used to test single.-M source bits, the use of JUMP saves
dispatch memory.) The JUMP operation is also used, by means of a trick, to write into
the instruction memory.

IR<44-43> = 1 (JUMP operation)

IR<41-32> = A source

IRC¢31-26> = M source

IR<(25-12> = New PC

IR<C9> = R bit (1 means pop new PC off SPC stack)

IR<8> = P bit (1 means push return PC onto SPC stack)

IR<7> = N bit (1 means inhibit next instruction -if Jump successful)
IR<6D = If 1, invert sense of jump condition

"IR<S> = If 0, test bit of M source; if 1, test internal condltion
IRC4-0> = If IR<5>=0, rotation count for M source.

If IR¢5>=1, condition number:

0 Low bit of shifter output (illegal)

‘ M source < A source
M source < A source
M source = A source
‘Page fault
Page fault or interrupt pending
Page fault or interrupt pending or sequence break flag
‘Unconditionally true

N DA D W N

Page faults, interrupts, and-sequence breaks are documented in later sections.

The jump condition is determined as follows. If IR<5>=0, then the M source is
rotated left by the rotation count; the low-order bit of the result is then tested. Thus, to
test the sign bit, a rotation count of 1 should be used. The jump condition is true if the
low-order bit is 1. If IR<5>=1, then the specified internal condition is tested. In either
case, the sense of the jump condition is inverted if IR<6>=1. (In particular, this allows
testing of all six arithmetic relations between the M and A sources.
' If the final jump condition, possibly after inversion, is true, then the new PC
field and the R, P, and N bits are used to determine the new contents of the PC. If the
condition is not true, execution continues with the next instruction, modulo the POPJ bit,

If both the R and P bits are set (WRITE), then A and M sources are
(conditionally!) written into the instruction memory. Bits <47-32> are taken from A
source bits <15-0>; bits <31-0> are taken from M source <31-0>. Notice that this is not
the same alignment of bits as is used for the "next instruction modify” functional
destinations (16 and 17). The reason for the odd location of WRITE in the instruction

PN

20 - The CADR Microprocessor

set is due to the way in which it operates. It causes the same operations as the CALL
transfer type, resulting in the the old PC plus 1 or 2 being saved on the SPC stack and the
PC register being loaded with the address to be modified. Then, when the instruction
memory would normally be fetching the instruction to be executed from that location, a
write pulse is generated, causing the saved data from the A and M sources to be written
into the instruction memory. Meanwhile, the machine simulates a RETURN transfer
instruction, causing the SPC stack to be popped back into the PC and instruction
execution to proceed from where it left off. Note that this instruction requires use of a
word on the SPC stack and requires an extra cycle. It is highly recommended that the N
bit also be on in the JUMP instruction, since the processor will be executing a RETURN
transfer type unconditionally during what should be the execution of the instruction
following the write. If, however, this does not conflict with other things that this
following instruction specifies, then the following instruction may be executed. Care is
required.

- s

21 The CADR Microprocessor

Program Modification

A ‘novel technique is used for variabilizing fields in the program instruction.
Two of the "functional destinations” of the output bus are (conceptual) registers
(sometimes collectively referred to as the OA register), whose contents get OR’ed with the
next instruction executed. Combined with the shifter/masker ability to move any
contiguous set of bits into an arbitrary field, this feature provides, for example, variable
rotation counts and the ability to use program determined addresses of registers; for
example, it can be used to index into the A scratchpad memory.
Functional destination 16 (DA-REG-LOW), when written into, effectnvely OR's
bits <25-0> into bits <25-0> of the next instruction; functional destination 17 (OA-REG-
- HIGH) effectively OR's bits <21-0> into bits <47-26> of the next instruction. The place
between bits <26> and <25> is a natural dividing line for all classes of instructions. Note
that only one half of a particular instruction can be modified, since it is impossible to
write into both functional destinations simultaneously.
. When this feature is used, parity checking is disabled for the word fetched from
the instruction memory, since the OA "register” is OR'ed into the output of the memory
- before parity is checked. .

This feature is particularly useful for supplying the address of a location of
instruction memory or dispatch memory to be written into, for specifying variable
addresses in the A and M memories, and for operations on bytes of variable length or
position. Examples of these are detailed in a later section.

22 The CADR Microprocessor

Clocks -

The CADR processor uses only one clock signal. This clock loads output data
into the designated registers, and a new PC and instruction are also loaded. The only
events which do not take place synchronous with the clock are the control signals for the
A. M, and PDL scratchpads and the SPC stack. For these devices, a two stage cycle is
performed. During the first phase, the source addresses of the respective devices are gated
into the address inputs. After the output data has settled, the outputs of these devices are
latched. Then, the address is changed to that specified as the write location from the
previous instruction. After the address has settled, a write pulse is generated for the
scratchpad memory to perform the write. Pass-around paths are provided (invisibly to the
programmer) for the A and M memories, which notice and correct read references to a
location which was written into on the previous cycle but has not yet actually been
written into the scratchpad. No such pass-around path is provided for the PDL memory,
because on any cycle in which the PDL memory is written into, the M scratchpad must
also be written into, and so the next instruction can refer to that M scratchpad location,
thereby using the M pass-around path. The SPC stack has a pass-around path when used
by the RETURN transfer type, but does not have a pass-around path when used as an M
'source. The RETURN pass-around path makes it possible to have a subroutine only two
instructions long. It would take extra hardware to provide the missing pass-around paths,
and examination of actual microprograms showed that they would be very rarely used.

The clock cycle is of variable length. The duration of the first half of the cycle
(the "read phase™) is controlled by both the ILONG bit of the instruction (IR<45>) and
. by two "speed” bits from the diagnostic interface. The duration of the second half (the

"write phase”) is normally fixed. This clock serves as both the processor clock and a clock
for the bus interface, memory, and external devices.

The clock can be stopped at the end-of either phase, for several reasons. Usually
the clock stops at the end of the read phase, referred to as "wait". This leaves the clock
in the inactive high state, and leaves the latches on the memories open. The clock can
wait because the machine was commanded to halt by the diagnostic interface, because a
single-step commanded by the diagnostic interface has completed, because of an error
such as a parity error, because of the statistics counter overflowing, or because of a
memory-wait condition. This latter condition happens if a main memory cycle is initiated
while a previous cycle is still in progress, or if the program calls for the result of a main
memory read before the bus controller has granted the bus access needed to perform that
read cycle. During a clock wait, the processor clock stops, but the clock to the rest of the
system (the bus interface and XBUS devices), continues to run, allowing them to operate.
When the processor finishes waiting the processor clock starts up in synchrony with the
external clock.

The clock can also stop at the end of the write phase, referred to as "hang".
This is used ‘only during memory reads. If the processor calls for the result of a read
which is in progress but has not yet completed, it hangs until the data has arrived from
memory and sufficient time has passed for the data to flow through the data paths and .
appear on the output bus. This is also sufficient time for the parity of the data to be
checked. In the case of a hang, both clocks stop, which allows them to restart
synchronously without any extra delay. In this way, the speed of the processor is adjusted

23 The CADR Microprocessor

to exactly match the speed of the memory.

TIME 3

Instruction N-1 Jdnstruction N Instruction N+1

___|eeromws siome w-2 leeinw stome w-r [reronmer stoRew |

CLOCK {CLK) .
WRITE (W) -~ n m ,_] -

LOCK DATA CLAMP NEXT CYCLE NOMINALLY
INIG REGISTERS _ LATCHES STARTS HERE. BUT
sy | Sl ginlb,
A AND M SOURCES ALU AND MASKER GRIND N 4
APPEAR NOW AND SETTLE AMD RESULTS SETILE it HALT. OR SINGLE STEP
BUS -
READ PHASE WRITE PHASE
o --
1
< Pty gl le
100 NS (ILONG => 120 KS) 708 | Ao

!
|
|
+ —t—--
|
|
|

é——-}(———)@l

50 NS 45 NS
| SET UP WRITE WRITE DATA |
ADDRESS INTO RAMS

CADR Circle Timing

PR

2 The CADR Microprocessor

Accessing Memor}

Access to main memory is accomplished through use of several functional .
sources and destinations. These perform three functions; first, they allow access to two
registers, VMA (virtual memory address) and MD (memory data). Secondly, they can
initiate memory operations. Thirdly, they can wait for a memory operation to be
.completed. Actually, this facility is not just for accessing main memory; it is used to
access. any device on the Xbus or the Unibus, which includes not only memory but
peripheral equipment. For simplicity the term "memory” will be used, however.

There are eight functional destinations associated with the memory system.

Four of these load data into the VMA, the other four load data into the MD. Each group
of four consists of one with no other side effects, one which starts a read cycle, one
which starts a write cycle, and one which writes into the virtual address map.

In a memory read operation, data from memory is placed in the MD register
when it arrives, and can then be picked up by the program (using a functional source). In
a memory write operation, the program places the.data to be written into the MD register
(by using a functional destination), whence it is passed to the memory.

The VMA register contains the virtual address of the location to be referenced.
This is 24 bits long; the high 8 bits of the register exist but are ignored by the hardware.
The VMA contains a "virtual” address; before being sent to the memory it is passed
through the "map", which produces a 22 bit physical address, controls whether permission
for the read or write operation requested is allowed, and remembers 8 bits which the
software (microcode) can use for its own purposes.

Except when starting a memory cycle, the address to be mapped comes from bits
<23-0> of the MD register, rather than the VMA register. The reason for this is to
simplify the use of the map for checking what "space” a pointer being read from or
written into memory points at, a frequently-needed operation in the Lisp machine
garbage-collection algorithm., _ ‘

The map consists of two scratchpad memories. The First Level Map contains
2048 5-bit locations, and is addressed by bits <23-13> of the VMA or MD. The Second
Level map contains 1024 24-bit locations, and is addressed by the concatenation of the
output from the First Level Map and bits <12-8> of the VMA or MD, The virtual address
space consists of 2048 blocks, each containing 32 pages. Each page contains 256 words
(of 32 bits, of course). Each block of virtual address space has a corresponding location in
the First Level Map. Locations in the Second Level Map are not permanently allocated
to particular addresses; instead, the First Level Map location for a block of virtual
addresses indicates where in the Second Level Map those addresses are currently described.
The Second Level Map contains sufficient space to describe 32 blocks, so at any given
time most blocks must be described as "no information available.” This done by reserving
the last 32 locations in the Second Level Map for this purpose and filling them with "no
information available” page descriptors; most First Level Map locations will point here.

26 . The CADR Microprocessor

The output of the Second Level Map consists of:

MAP<23> = access permission
MAPC22> = write permission

MAPC21-14> = available to software. Note that bits 15 and 14 can
be tested by the DISPATCH instruction.
MAPC13-0> = physical page number

The physical address sent to memory is the concatenation of the physical page number
and bits 7-0 of the VMA.

_ The two maps can be read by putting an appropriate address in the MD, and
reading the functional source MEMORY-MAP-DATA (11):

MAPC31> = 1 if the most recent memory cycle was not performed because it
was an attempt to write without write permission, i.e. a 1 in
bit 22 of the second level map.)

MAPC30> = 1 if the most recent memory cycle was not performed because there
was no access permission, i.e. a 1 in bit 23 of the second level map.
MAPC30> is 0 if no access fault exists, although a write fault may
exist. Note that bits (31-30)> apply to the last attempted memory
cycle, and have nothing to do with the map locations addressed by
the contents of MD.

MAP(29> = 0 always.

MAP(28-24> = First Level Map

MAPC23-0> = Second Level Map

_ The maps can be written by using one of the functional destinations VMA-
WRITE-MAP (23), MEMORY-DATA-WRITE-MAP (33). The MD supplies the address
~of the map location to be written, and the VMA supplies the data to be written, and tells

which level of the map is being written. One register must be set up in a previous
instruction, the other is written via the functional destination, and the actual writing into
the map happens on the following cycle. There is no pass-around path and no latch for
the map, so the following instruction must not use it.

The first level map is written from bits <31-27> of the VMA, if VMA<26> is a
1. (These are not the same bits as it reads into when using the MEMORY-MAP-DATA
functional source.) The second level map is written from VMA<23-0>, if VMA<25> is a
1. Note that when writing the second level map the first level map supplies part of the
address, and must have been written previously. Therefore it is not useful to write both lt
the same time, although it is possible to set both bits to 1.

Main memory operations are initiated by using one of the functional destinations
VMA-START-READ (21), VMA-START-WRITE (22), and MEMORY-DATA-START-
WRITE (32). There is also MEMORY-DATA-START-READ (31), but it is probably
" useless. In the case of a write, the VMA supplies the address and the MD supplies the
data, so one register must be set up in advance and the other is set up by the functional
destination that starts the operation. A main memory read can also be started by the

27 ' The CADR Microprocessor

macro instruction-stream hardware, described later. '

The register named (VMA or MD) is loaded with the result of the instruction
(from the Output Bus) at the end of the cycle during which that instruction is executed. -
During the following cycle, the map is read. The instruction executed during this cycle
should be a JUMP instruction which checks for a page fault condition. At the end of this
cycle, if no page fault occurs, the memory operation begins. The processor continues
executing while the memory operation happens, but if any operation which conflicts with
the memory being busy is attempted, the machine waits or hangs until the memory
operation has been completed. Such references include asking for the results of a read
cycle by using the MEMORY-DATA (12) functional source, using any functional
destination that refers to the VMA, MD, or MAP, or attempting to start a read cycle via
the instruction-stream hardware. ’

The presence or absence of a page fault is remembered until the next time a
memory cycle is started, so it is not strictly necessary to check for page fault immediately
- after starting a cycle, but is good practice.

The MEMORY-DATA-START-WRITE destination is useful for doing the
second half of a read-followed-by-write operation, since the correct value is still in the
VMA. Note that it is still necessary to check for a page fault after starting the write,
since you may have read permission but not write permission.

There is a feature by which main memory parity errors can be trapped to the
microcode. A bit in the diagnostic interface controls whether or not this is enabled.
When the MEMORY-DATA functional source is used, and the last thing to be loaded
into the MD was data from memory which had even parity, a main memory parity error
has occurred. If trapping is enabled, the current instruction is NOPed and a CALL
transfer to location 0 is forced. The following instruction is also NOPed. The trap
routine must use the OPC registers to determine just where to return to if it plans to
return, since if a transfer operation was in progress the address pushed on the SPC stack
by the trap may have nothing to do with the address of the instruction which caused the
trap. This is also true of the error-handler for microcode-detected programming errors. If
a main memory parity error occurs, and trapping is not enabled, the machine halts if
error-halting is enabled, just as it does in response to a parity error in an internal memory.

When using semiconductor main memory, which has single-bit error correction, a
parity error trap indicates that an uncorrectable multiple-bit error occurred. Single-bit
errors are corrected automatically by the hardware, and cause an interrupt so that the
processor may, at its leisure, log the error and attempt to rewrite the contents of the bad
location. '

28 _ The CADR Microprocessor

The Instruction-Stream Feature

The CADR processor contains a small amount of hardware to aid in the
interpretation of an instruction stream which comes in units smaller than the CADR word
size. For example, the Lisp-machine macrocompiled instruction set uses 16-bit units. The
hardware speeds up both fetching and decoding of instructions by relieving the microcode
of some routine bookkeeping.

Both 8-bit (byte) and 16-bit (halfword) instructions are supported, depcndmg on
a mode bit (bit 29 of the "Interrupt Control" register, functional destination 2.) The
hardware decides when it is time to fetch a new main-memory word, containing the next
2 or 4 units of the instruction stream, and alters the flow of microprogram control. The
hardware provides a feature by which the rotator control can be made to select the
current unit of the instruction stream; this is used when dispatching on the instruction .
being interpreted, and when extracting fields of the instruction via the BYTE
microinstruction.

There is a 26-bit regtster called the Location Counter (LC), which can be read
by functional source 13 and written by functional destination 1. It always contains the
address of the next instruction stream unit, in terms of 8-bit bytes. In halfword mode
LC<0> is forced to zero. The LC is capable of counting by 1 or 2 (depending on byte vs.
halfword mode) and has a special connection to the VMA; the VMA is loaded from the
LC, divided by 4, when an instruction-fetch occurs.

The high 6 bits of functional source 13 are not part of the LC per se, but -
~ contain various associated status, as follows:

31 Need Fetch. This is 1 if the next time the instruction stream is advanced, a
new word will be fetched from main memory. This is a function of the low
2 bits of LC, of byte mode, and of whether the LC has been written into
since an instruction word was last fetched from main memory.

30 not used, zero. _

29 LC Byte Mode. 1 if the instruction stream is in 8-bit units, 0 if it is in 16-bit
units. This reflects bit 29 of the Interrupt Control register.

28 Bus Reset. This reflects bit 28 of the Interrupt Control register, which is set
to 1 to reset the bus intérface, the Unibus, and the Xbus.

27 Interrupt Enable. 1 if external interrupt requests are allowed to contribute
‘to the JUMP condition. This reflects bit 27 of the Imermpt Control
register.

26 Sequence Break. 1 if a sequence break (macrocode interrupt signal) is
pending. This flag does nothing except contribute to the JUMP condition.
This reflects bit 26 of the Interrupt Control register.

Bit 14 of the SPC stack is used to flag the return address containing it as the .
. address of the main instruction-interpretation loop. The hardware recognizes a RETURN
transfer with SPC<14>=1 as completing the interpretation of one instruction and
initiating the interpretation of the next. The instruction stream will be advanced to its
next unit (byte or halfword) in the cycle following the RETURN transfer. (It is delayed
one cycle for obscure timing reasons.) This cycle is free to also execute a useful
microinstruction, provided it does not use the LC, VMA, MD, and associated hardware.

28 o The CADR Microprocessor

Advancing the instruction stream increments the LC, by 1 or 2. If a new word
needs to be fetched. from main memory, the unincremented LC, divided by 4, is
transferred to the VMA and a read cycle is started. A fetch can be required either
because the LC points at the first unit of a word or because the LC has been modified
since the last instruction stream advance (a branch occurred). It is legal for the
instruction which does the RETURN transfer to modify the LC, and a fetch will always
be required. If no fetch is required, the RETURN transfer is altered by forcing SPC<1>
to 1, skipping over two microinstructions which, in the fetch case, check for a page fault
(or interrupt or sequence break) and transfer the new instruction stream word from MD
into a scratchpad location. '

The instruction stream can also be advanced by a DISPATCH instruction with
bit 24 set. In this case, no alteration of the SPC return address occurs. The dispatch
should check the NEEDFETCH signal, which is available as bit 31 of the LC functional
source, to determine whether a new word is going to be fetched. If a fetch occurs, the
DISPATCH should call a subroutine to check for page fault and transfer the new
instruction stream word from MD to a scratchpad location. If no-fetch occurs, the
DISPATCH should drop through. The instruction after the DISPATCH may then
operate on the next unit of the instruction stream. This feature is provided to facilitate
the use of multi-unit instructions. '

The remaining hardware associated with the instruction stream feature
implements miscellaneous function 3, which alters the M-rotate field to select the current
unit of the instruction stream from the current word, which should be supplied as the M-
source. This applies to any operation which uses the rotator: BYTE instructions,
DISPATCH instructions, and JUMP instructions which test a bit. The instruction should
be coded for the unit (byte or halfword) at the right-hand end of the word. In half-word
mode, IR<4> is XOR'ed with LC<1> to produce the high-order bit of the rotate count.
In byte mode, IR<4> is XOR'’ed with (LC<1> XOR LC<0>), and IR<3> is XOR'ed with
LC<0>. The effect, since the LC always has the address of the next instruction, and the
bits are numbered from right to left, is as desired. In halfwerd mode, the low half of the
M source is accessed for the even instruction, when LC<1>=1, and the high half is
accessed for the odd instruction, when LC<1>=0,

- » The CADR Microprocessor

Multiﬁlicntion, Division, and the Q register

The Q register is provided in CADR primarily for multiplication and division. It
is occasionally useful for other things because it is an extra place to put the results of an
ALU instruction, and because it can be used to collect the bits which are shifted out
when the OUTPUT-SELECTOR-RIGHTSHIFT-1 operation is used in an ALU
instruction. ' '

The Q register is.controlled by two bits (IR<1-0>) in the ALU instruction. The
* operations are do nothing, shift it left, shift it right, and load it from the output of the
ALU. (It loads from the ALU rather than the Output Bus for electrical reasons.) When
the Q register shifts left, Q<0> receives -ALU<31>, the complement of the sign of the
ALU output. When the Q register shifts right, Q<31> receives ALU<0>, the low bit of
the ALU output. The Q register is also connected to the Output Bus shifter; when the
Output Bus is shifted left, OB<0> receives Q<31>, the sign of the Q. These
interconnections are dictated by the needs of multiplication and division.

Multiplication in CADR is a simple, 1 bit at a time, shift-and-add affair. The
hardware provides a conditional-ALU operation, MULTIPLY-STEP, which is ADD if
Q<0>=1, and SETM otherwise. This is used in combination with SHIFT-Q-RIGHT and
OUTPUT-SELECTOR-RIGHTSHIFT-1. Initially the multiplicand is placed in an A-
scratchpad location and the multiplier is placed in Q. 32 MULTIPLY-STEP operations
- are executed; as Q shifts to the right each of the bits of the multiplier appear in Q<0>. If
the bit is 1, the multiplicand gets added in. The results of each operation go into an M-
scratchpad location, which is fed back into the next step. The low bit of each result is
shifted into Q. Thus, when the 32 steps have been completed, the Q contains the low 32
bits of the product, and the M-scratchpad location contains the high 32 bits.

This algorithm needs a slight modification to deal with 2's complement numbers.
The sign bit of a 2's complement number has negative weight, so in the last step if
Q<0>=1, i.e. the multiplier is negative, a subtraction should be done instead of an
addition. The hardware does not provide this, so instead we do a subtraction after the last
step, which is adding and then subtracting twice as much, which has the effect of
~ subtracting. Note that this correction only affects the high 32 bits of the product, and
can be omitted if we are only looking for a single-precision result. Consider the following
code. (The CONSLP assembler format used is explained later in this document.)

s Multiply Subroutine. A-MPYR times Q-R, low product to Q-R, high to M-AC.

mPY ((M-AC) MULTIPLY-STEP M-ZERO A-MPYR) . iPartial result = 0 in first step ‘
(REPEAT 30. ((M-AC) MULTIPLY-STEP M-AC A-MPYR)) ;Do 30 steps
(POPI-IF-BIT-CLEAR-XCT-NEXT :Return after next 4f A-MPYR positive
(BYTE-FIELD 1 0) Q-R) ‘
((M-AC) MULTIPLY-STEP M-AC A-MPYR) ;The final step

(POPJ-AF TER-NEXT .
(M-AC) SUB M-AC A-MPYR) ' sCorrection for negative multiplier

K The CADR Microprocessor

{no-0P) ..knp delay

To multiply numbers of less than 32 bits is also possible. With the same initial
conditions, after n steps the high n bits of the Q contain the low n bits of the product,
and the remaining bits of the product are in the low bits of the M-scratchpad location.
Two BYTE instructions can be used to extract and combine these bits to produce a right-
adjusted product, if the numbers are unsigned.

Division is a little more complex than multiplication. It too goes a bit at a time,
using a non-restoring algorithm which either adds or subtracts at each stage. The basic
idea is to keep subtracting the divisor from the dividend, shifted over by different
amounts, as in long-division by hand. If the subtraction produces a positive result, it "goes
in” and a quotient bit of 1 is produced. If the subtraction produces a negative result, it_
"fails to go in" and a quotient bit of 0 is produced. Instead of backing up and not doing
the subtraction, we set a flag that too much has been subtracted, and add instead the next
time. This works since the weight of the divisor on the next step is half as much, and B-
(A/2) = B-A+(A/2). The "flag" is simply the complement of the quotient bit produced,
except for the first step when the flag must be forced to OFF.

Division does not handle 2's complement numbers as easily as multiplication
does. The algorithm essentially requires all positive numbers, however the hardware
automatically takes the absolute value of the divisor by interchanging addition and
subtraction if the divisor is negative. It is up to the microcode to make the dividend
positive beforehand, and to determine the correct signs for the quotient and remainder
afterward. The sign of the quotient should be the XOR of the signs of dividend and
divisor. The sign of the remainder should be the same as the sign of the dividend.

Initially the positive dividend is in the Q register and the signed divisor is in an
. A-scratchpad location. Appropriate conditional-ALU operations are used in conjunctior

with the SHIFT-Q-LEFT and OUTPUT-SELECTOR-LEFTSHIFT-1 functions. An M-
scratchpad location receives the result of each step, and is fed back to the next sten. This
location initially contains the high 32 bits of the double-length dividend, or G it the
dividend is single-precision. At each step, the OUTPUT-SELECTOR-LEFTSHIFT-1
operation brings the high bit of the Q into the low bit of the M-scratchpad, bringing up
another bit of the dividend. At each step, the complement of the sign of the ALU output
represents a bit of the quotient and is shifted into the low end of Q. After 33 steps, Q
contains the positive quotient (which is why it is called the Q-for-quotient register). The
- reason why it takes 33 steps rather than 32 is a little difficult to explain. The quotient bit
produced by the first step, if 1, indicates "divide overflow”, and is not really part of the
quotient. When using a single-precision dividend, "divide overflow™ can only happen if
the divisor is zero, since the initial operation is zero minus the absolute value of the
divisor, which is negative unless the divisor is zero.

What is-left of the dividend after all the subtractions is the positive remainder.
The last step does not use OUTPUT-SELECTOR-LEFTSHIFT-1, so that the M-
scratchpad will receive the remainder rather than the remainder times 2. If the "too
much has been subtracted” flag is set, it is necessary to do one final addition to correct

32 : The CADR Microprocessor

the remainder. This addition simply undoes the previous subtraction, not also doing a
new subtraction, because of the omission of the left shift.
The ALU operations for division are:
DIVIDE-STEP The conditional add or subtract described above, SHIFT-Q-
LEFT, and OUTPUT-SELECTOR-LEFTSHIFT-1. Q<0>=0 serves as.
the "too much has been subtracted” flag.
DIVIDE-FIRST-STEP Identical to DIVIDE-STEP except that the "too much
has been subtracted” flag is forced to be off.
DIVIDE-LAST-STEP Identical to DIVIDE-STEP except that the OUTPUT
SELECTOR LEFTSHIFT-1 is omitted.
DIVIDE-REMAINDER-CORRECTION-STEP The conditional add or subtract
logic is used, except subtract is turned into SETM by invoking part of
the multiply logic. The exchanging of add and subtract if the divisor is
negative then applies, doing the right thing. No shifting occurs and Q
is unchanged.
Division of numbers smaller than 32 bits can be accomphshed in less than 33
steps by sufficiently careful shifting of the inputs and outputs.
To illustrate how it all fits together, and show how to do the sign-correction,
here is the code for 32-bit division, with a double-precision dividend, in the CONSLP
format explained later in this document:

+ Division Subroutine. :
s M-AC and M-1 are the high and low words of the dividend, respectively.
: M-2 13 the divisor. The quotient is in M-AC, the remainder in M-1.

DIV (JUMP-GREATER-OR-EQUAL M-AC A-ZERO DIV1) ;Check for negative dividend

(JUMP-NOT-EQUAL-XCT-NEXT M-1 A-ZERO DIVO) ;17 so, change sign
{(M-1 Q-R) SUB M-ZERO A-1)
((M-AC) SUB M-AC (A-CONSTANT 1)) ;Borrow from high if low is zero
" DIVO . ((M-AC) SETCM M-AC) :1's compiement high dividend
(CALL DIV2) ;Now, call positive-dividend case
(POPJ-AFTER-NEXT (M-1) SUB M-ZERO A-1) ;Make the remainder negative,
((M-AC) SUB M-ZERG A-AC) ;and change the sign of the quotient

; Divide routine for positive dividend.

DIVl ({(Q-R) M-1) sLow dividend to Q-R
) oIv2 ((M-1) DiV!DEJIRSY-STEP M-AC A-2) sFirst division step
4 (JUMP-TF-BIT-SET (BYTE-FIELD 1 0) Q-R DIVIDE-OVERFLOW) :Error check
(REPEAT 31. ((M-1) DIVIDE-STEP M-1 A-2) :Middie division steps
((M-1) DIVIDE-LAST-STEP M-1 A-2) ;Final step, quotient tn Q-R
((M-1) DIVIDE-REMAINDER-CORRECTION-STEP M-1 ‘A-2) ;M-1 gets remainder
((M-AC) Q-R) : sExtract quotient from Q-R
(POPJ-AFTER-NEXT = ;Return after next, but 4f

* POPJ-GREATER-OR-EQUAL M-2 A-ZERO) ; Giviser 13 negative,

3 , The CADR Microprocessor

((M-AC) SUB M-ZERO A-AC) ; changs sign of guotient

1} The CADR Microprocessor

" The Bus Interface

The Bus Interface connects the CADR machine to two busses, the Unibus and
the Xbus. The Unibus is a regular pdp11 bus, used to attach peripheral devices, especially
commercial devices designed for the PDP11 line. The Xbus is a 32-bit bus used to attach

‘memory and high-performance peripheral devices, such as disk. The bus interface also
includes the diagnostic interface, which allows a unibus operator, such as a pdp10, a
pdpl1, or another lisp machine, to control the operation of the machine, hardware to pass
interrupts from the Unibus and the Xbus to the processor, the logic which arbitrates the

- Xbus, and the logic which arbitrates the Unibus in the absence of a pdpl1 on that bus.

The Bus Interface allows the CADR machine to access memory on the Xbus and
devices on the Unibus, allows independent devices on the Xbus to access the Xbus (only),
and allows Unibus devices to access Xbus memory (through a map since the Unibus
address space is not big enough.) Buffering is provided when the Unibus accesses the
Xbus, to convert a 32-bit word into a pair of 16-bit words.

The CADR machine sees a 22-bit physical address space of 32-bit words. The
top 128K of this, locations 17400000-17777777, reference the Unibus. Each 32-bit word
has a 16-bit Unibus word in bits 0-15, and zero in bits 16-31. There is no provision for
using byte addressing on the Unibus, nor for read-pause-write cycles.. The 128K
immediately below the Unibus, locations 17000000-17377777, are reserved for Xbus I/0
devices. Locations 0-16777777 are for Xbus memory.

The bus interface includes a number of Unibus registers which control its various
functions:

Spy Feature

Unibus locations 766000-766036 are used for the Spy feature, which is described
in detail elsewhere. These locations read and write various internal signals in the CADR
machine, and provide the necessary hook for microcode loading and diagnostics.

Two-Machine Lashup

Two bus interfaces may be cabled together with a single 50-wire flat cable for
maintenance purposes. One machine, the debugger, is able to perform reads and writes on
the other machine's, the debuggee's, Unibus. Through registers on the Unibus (such as
the Spy feature), the debuggee may be diagnosed and exercised. By using the debuggee's
Unibus map (described below), the debuggee's Xbus can be exercised. The following
locations on the debugger's Unibus control this feature:

766100 Reads or writes the debuggee-Unibus location addressed by the registers below.

766114 (Write only) Contains bits 1-16 of the debuggee-Unibus address to be accessed.
Bit O of the address is always zero.

766110 {Write only) Contains additional modifier bits, as follows. Thae bits are reset to
‘zero when the debuggee’s Unibus is reset.

.

3 : The CADR Microprocessor

1 Bit 17 of the debuggee-Unibus address.

2 Resets the debuggee’s Unibus and bus interface. Write a 1 here then
write a 0.

4 Timeout inhibit. This turns off the NXM timeout for all Xbus and

~ Unibus cycles done by the debuggee's bus interface (not just those
commanded by the debugger).

766104 (Read only) These contain the status for bus cycles executed on the debuggee’s
busses. These bits are cleared by writing into location 766044 (Error Status) on
the debuggee's Unibus. They are not cleared by power up. The bits are
documented below under "Error Status”.

Error Status ‘

766044 Reading this location returns accumulated error status bits from previous bus
cycles. Writing this location ignores the data written and clears the status bits.
Note that these bits are not cleared by power up.

1 Xbus NXM Error. Set when an Xbus cycle times out for lack of
response.

2 Xbus Parity Error. Set when an Xbus read receives a word with bad
parity, and the Xbus ignore-parity line was not asserted. Parity Error is
also set by Xbus NXM Error.

4 CADR Address Parity Error. Set when an address received from the
processor has bad parity. Indicates trouble in the communication
between the processor and the bus interface.

10 Unibus NXM Error. Set when a Unibus cycle times out for lack of
response.
20 CADR Parity Error. Set when data received from the processor has bad
parity. Indicates trouble in the communication between the processor
" and the bus interface.
‘40 Unibus Map Error. Set when an attempt to perform an Xbus cycle
through the Unibus map is refused because the map specifies invalid or
_ write-protected.
The remaining. bxts are random (not necessarily zero)

Interrupts ‘

The bus interface allows the CADR machine to field interrupts on the Unibus, if
no pdpl1 is present. If a pdpl1 is present, its program can forward interrupts to the
CADR machine in a transparent way. The Xbus also can interrupt the CADR machine.

- The following Unibus locations control interrupts and the Unibus arbitrator:

766040 Reading this location returns interrupt status, as follows:
1 Disable Interrupt Grant. If this is set, the Unibus arbitrator will not
grant BR4, BR3J, BR6, and BR7 requests. It will continue to grant NPR

3 - The CADR Microprocessor

requests. Powers up fo zero. -

2 Local Enable (read only). 1 means that the bus interface is arbitrating
the Unibus. O means that a pdp11 is present on the bus and is doing the
arbitration. o :

1774 Bits 9-2 contain the vector address of the last Unibus interrupt accepted
by the bus interface or simulated by the pdpl1 program.. _
2000 Enable Unibus Interrupts. A 1 here causes bit 15 (Unibus interrupt) to
be set when the bus interface accepts a Unibus interrupt. This bit is not '
reset by power-up. . ' ,
4000 Interrupt Stops Grants. A 1 here causes bit 0 (Disable Interrupt Grant)
to be set when the bus interface accepts a Unibus interrupt, thus
preventing further interrupts until the CADR machine has processed the
first interrupt. This bit is not reset by power-up. '
30000 Bits 13-12 are the "interrupt level” for purposes of Unibus granting. The
mapping to normal pdpl1 levels is: 0->0, 1->4, 2->5, 3->6. To simulate
level 7, turn on Disable Interrupt Grant. These bits are not reset by
power-up.
40000 Xbus Interrupt (read only). This bit is the interrupt-request line on the
Xbus. '

100000 Unibus Interrupt. A 1 indicates that a Unibus interrupt has been
accepted by the bus interface or simulated by a pdp11 program, and is
awaiting processing by the CADR program. This bit clears on power-up.
Note that the interrupt-request signal to the CADR machine is the OR
of bits 14.and 15.

766040 Writing this location writes into bits 0 and 10-13 (mask 36001) of the above
register. This is used to change the "interrupt level” and to re-enable acceptance
" of Unibus interrupts after processing an interrupt. '
766042 Writing this location writes into bits 2-9 and 15 (mask 101774) of the above
register. This is used to simulate Unibus interrupts and to clear bit 15 (Unibus
Interrupt) after processing an interrupt. '

Locations between 766040 and 766136 not mentioned above are duplicates of other
locations, and should not be used. ’

Unibus Map

Unibus locations 140000-177777 are divided into 16 pages which can be mapped
anywhere in Xbus physical address space. Each page is 512 16-bit words or 256 32-bit
words long, the same size as the pages of the CADR virtual memory. The first 8 pages
can be addressed by a pdp11, while the second 8 are hidden under the pdp11 1/0 space.
The Unibus map is intended to be used both as a diagnostic path to the Xbus and for
operating Unibus peripherals that access.memory. . _

Each Xbus location occupies 4 Unibus byte addresses. It takes two 16-bit Unibus
cycles to read or write one 32-bit Xbus location. 16 buffers (one for each page) are
provided to hold the data between the two Unibus cycies. As long as each page is only in

| 37 The CADR Microprocessor

"use by a single bus-master, the right thing will happen.

An additional feature is that writing an Xbus address of 17400000 or higher
through the Unibus map writes into CADR's MD register. This provides a 32-bit parallel
data path into the processor for diagnostic purposes. These Xbus addresses are otherwise
unusable, because they are used by the processor to address the Unibus.

Unibus locations 766140-766176 contain the 16 mapping registers. 'Note that
these power up to random contents, and should be cleared by an initialization mutme
‘The bit layout is:

100000 Bit 15 is the map-valid bit. If this is 0, this mapping register is not set up,
and will not respond to the Unibus; NXM timeout will occur and an Error
Status bit will be set. ‘

40000 Bit 14 is the write-permit bit, If this is O, this mapping register will not
respond to Unibus writes; NXM timeout will occur and an Error Status bit
will be set.

37777 Bits 13-0 contain the Xbus page number. These bits are concatenated mth
bits 9-2 of the Unibus address to produce the mapped Xbus address.

38 | ‘ The CADR Microprocessor

The Xbus

The Xbus is the standard 32 bit wide data bus for the CADR processor. Main

memory and high speed peripherals such as the disk control and TV display are interfaced

to the Xbus. Control of the Xbus is similar to the Unibus, in that transfers are positively
timed and (as far as the devices are concerned) asynchronous. The bus is terminated at
both ends with resistive pullups of 390 ohms to ground and 180 ohms to +5 volts, for an
effective 123 ohm termination to +3.42 volts. At ground, each termination draws 28 ma.
for atotal load of 56 ma. The bus is open collector, and may be driven with any device
capable of handling the 56 ma. load. The recommended driver is the AMD 26510, which
also provides bus receivers.

A typical read cycle begins with placing the address for the transfer on the -
XADDR lines and the parity of the address on the -XBUS.ADDRPAR line. The -
XBUS.RQ line is then lowered, initiating the request. The responding device places the
requested data on the 32 -XBUS lines and the parity of the data on the -XBUS.PAR line.
Should it not be convenient for the device to produce parity (as in the case of 1/0

_registers), the device may assert -XBUS.IGNPAR to notify the bus master that the
transfer should not be checked for correct parity. The responding device then asserts -
XBUS.ACK, which remains asserted until the -XBUS.RQ signal is removed by the master,

Write requests proceed identically, except that the master asserts -XBUS.WR and
the data to be written on the -XBUS lines along with the address lines. All bus masters -
are required to produce good parity data on writes.

Deskewing delays are the responsibility of the bus master. In particular, it is the
responsxbﬂny of the bus master to assert good address, write, and data lines 80.ns. prior to
asserting -XBUS.RQ, and these lines must be held until the -XBUS.ACK signal drops in
response to the master dropping -XBUS.RQ. Responding devices are allowed to assert -
XBUS.ACK at the same time they drive read data onto the -XBUS lines. Thus, masters
should delay 50 ns. after receiving -XBUS.ACK before dropping -XBUS.RQ and strobing
the data. Responding devices are required to drop -XBUS.ACK immediately after -
XBUS.RQ is no longer asserted.

Normal bus master arbitration between the CADR processor and the Unibus
requests is handled by the bus interface. Devices on the Xbus which must become bus
master, such as the disk control, do so by asserting the -XBUSEXTRQ signal. When the
bus becomes free, the bus interface responds by. asserting -XBUS.EXTGRANT. This
signal is daisy chained between bus master devices on the Xbus, coming in on the -
XBUS.EXTGRANT.IN pin and leaving on the -XBUS LEXTGRANT.OUT pin. Within
each device, the decision is made whether or not to pass the grant onto the next device.
Unlike the Unibus structure, the decision on whether to pass grant and the act of
becoming bus master happen synchronously with a master clock signal distributed on the -
‘XBUS.SYNC line. ,

) When a device initiates a request, it immediately asserts -XBUS.EXTRQ. At the
falling edge of -XBUS.SYNC it clocks the request signal into a D flip flop which we will
- call REQ.SYNC. When -XBUS.EXTGRANT.IN goes low, the device asserts -
XBUS.EXTGRANT.OUT unless it has either the REQ.SYNC flip flop set, or is already
the bus master. At the next falling edge of -XBUSSYNC the device which has both -
XBUS.EXTGRANT.IN and REQ.SYNC set becomes bus master. The device should

» The CADR Microprocessor

immediately assert —XBUS.ﬁUSY and may immediately begin asserting address lines for a

transfer.

~-XBUS.BUSY may be dropped asynchronously, after the slave device drops -

XBUS.ACK in response to the master's request. 4
The -XBUS.EXTGRANT.IN signal must be terminated with a resistive pullup of
180 ohms to +5 volts within each device which does not simply connect it to -

XBUS.EXTGRANT.OUT.

XBUS Signal review:

Data lines:
-XBUS<31:.0>
-XBUS.PAR
-XBUS.IGNPAR

Address lines:

-XADDR<21:0>
-XADDR.PAR

‘Cycle control lines:

-XBUS.RQ

-XBUS ACK

-XBUS WR

Mastership control lines:

-XBUS.BUSY =
- bus master. Only the bus interface examines this line.

-XBUS.EXTRQ

32 data lines, low when data is 2 one.

Parity of the 32 data lines. Required for writes.

Ignore parity signal, may be asserted by any device for
a read. ' A

22 address lines, low for address bit a one. -
. Odd parity for the address. '

Asserted by the master to request a read or write

- Minimum of 80 ns following stable -XADDR, -XBUS WRITE,

and -XBUS data.
Asserted by the slave in r&ponse to -XBUS.RQ No

. - .. delay necessary following assertion of good read data.

Asserted by the master during a write cycle.

Asserted when a device other than the bus interface is

Asserted on a -XBUS.SYNC clock edge, dropped

. asynchronously after -XBUS.ACK drops.

Asserted when a device other than the bus interface
wishes to become bus master. Asserted asynchronously, may
be removed asynchronously after the device becomes master,
but before dropping -XBUS.BUSY.

-XBUS. EXTGRANT IN The daisy-chained mastership grant signal. Must be

‘pulled up to +5V with a 180 ohm resistor. -

XBUS.EEXTGRANT.OUT Asserted initially by the bus
interface, synchronously with the -XBUSSYNC edge. The
signal may be subject to synchronizer lossage, since it is a
clocked version of -XBUS.EXTRQ which is not synchronous

Miscellaneous:
- -XBUS.INIT

-XBUS.SYNC

-XBUS.INTR

XBUS.POWER.OK

1) : The CADR Microprocessor

with -XBUS.SYNC

When low, resets all devices. This is low during power
on and off; and when the machine is reset. '

Synchronization clock for mastership passing and other
desired purposes. Devices become bus master synchronous
with the edge of this signal. The request will normally follow
the edge by 80 ns.

Driving this low requests an interrupt. All devices are
required to initialize to a non-interrupt enable condition, and
are required to have interrupt enable and disable bits which
can selectively enable interrupts from that device. The
"requesting interrupt” state must be readable in one of the
device control register bits. ,

This line is HIGH when power is stable. It
remains low for 3 seconds after power comes on, and goes low
3 seconds before power is turned off.

a ~ The CADR Microprocessor -

: Error Cl\ecking

Al mternal memories in the CADR machme have parity checking. If bad parity

is detected, the machine is halted, if that is enabled. The processor always completes the
current instruction, and clocks the next one into the IR, before halting. This is done to
simplify the timing and to ensure that it halts with the scratchpad memory latches open. -
It means that the data with bad parity will.no longer be on the busses once the machine
stops. Furthermore, one incorrect instruction will have been executed. The OPC registers
can be helpful in reconstructing what must have happened.

Upon initial power-on, error halting is disabled, but it is expected that as soon as
thc bootstrap program has initialized all internal memories it will enable error halting.

Main memory parity is checked .and can either halt the machine, cause a
microcode trap, or be ignored, depending on mode flags in the diagnostic interface.

The data paths do not have any redundant checking. When the machine is
bootstrapped it runs some simple dxagnosttcs designed to detect solid failures in the
memones and data paths. ‘

Y] : The CADR Microprocessor

Self Bootstrapping

When the machine is powered on it resets itself and the Unibus but does not
automatically start up. A bootstrap sequence can be initiated in any of several ways. The
diagnostic interface can command one. The diagnostic display panel, by grounding one
wire, can start one. This is intended to be connected to a push button. The bus interface
can start a bootstrap by grounding one wire. The chaos network interface, if it receives a
certain sequence of messages from the network, will "push the boot button." The 1/0 .
board recognizes a special set of keyboard commands (left and right control-meta) as a
boot signal. The character typed along with the left-right control-meta is available to the
bootstrap for selection of software options.

The bootstrap sequence starts by resetting the machine, which will halt it if it is
running. It turns on RUN, which will not do anything yet since the clock is stopped. It
sets the machine to its slowest speed, disables parity traps, error halts, and the statistics
counter, and enables the PROM (read-only) control memory. The trailing edge of the
boot signal allows the clock to start, causing a trap to microcode location 0, just like the
memory parity error trap. Location 0 of the PROM receives control. It must clear all
internal memories (filling them with good parity), reset the Unibus (before first using it),
enable error halts, set the machine speed to its normal value, run some diagnostic checks
to be sure the machine is working to some extent, load the microcode from the disk, load
the initial contents of main memory from the disk, and transfer control to the normal
microcode at its start address by going over the Unibus and manipulating the diagnostic
interface. A

If the diagnostic self-test fails, the microcode goes into a loop, and the value of
the PC can be read from the diagnostic display to determine what the problem seemed to
be. . :

M , The CADR Microprocessor

Interfupts and Sequence Breaks

Interrupts are hardware signals to the microcode - typically the microcode
transfers data in or out of a buffer in main memory. When the signal requires the
attention of full Lisp code, a sequence break is triggered. This consists of setting a
sequence-break pending flag in A-memory, and, if a defer-sequence-break flag (also in A-
memory) is not set, setting the hardware sequence-break flag. This flag is tested at
various convenient points such as macroinstruction fetch, and causes the microcode to .
turn off the flag and enter the sequence-break routines. The sequence-break flag is tested
by the same jump instruction that tests for page faults and interrupts.

Interrupts can be generated by both the Xbus and the Unibus. The exact
protocol is documented in the section on the bus interface. .

Sequence-breaks are software signals indicating the need to run the scheduler (a
'Lisp program). A sequence-break suggests that the condition for which some process is
waiting may have become true. The scheduler checks all processes for runnability, and
also checks if it is time to perform periodic actions which are not full processes. Lisp
programs can defer sequence-breaks to protect critical areas, while still allowing interrupts
so that real-time response at the lowest level is preserved.

~ Access to virtual memory in the Lisp Machine software environment is viewed as
a primitive operation. Regardless of the actual location of a memory datum, the fetch of
that item is continued. This view considerably simplifies coding of the system, but
imposes moderately high potential latencies in responding to sequence breaks. Interrupts
are handled entirely at the microcode level, and the response-time for these will be quite
short.

The mtetruptconttol register, writable by functional destxnatlon 2 and readable
in the high bits of LC (functional source 13), contains three bits relevant to interrupts,
Bit <27>, INTERRUPT ENABLE, allows the external interrupt signal from the bus
interface to be seen by the JUMP instruction. Bit <26>, SEQUENCE-BREAK, is the
sequence-break flag which is testable by the JUMP instruction,

Bit <28>, BUS-RESET, generates a RESET signal on the Unibus (BUS INIT L)
and on the Xbus (XBUS.INIT L), and resets the bus interface, when it is written 1 and
then 0. The machine also resets the busses when it is powered up.

Bit <29> is used by the Instruction-Stream feature.

“ ' The CADR Microprocessor

The Statistics Counter

The statistics counter is a 32-bit counter, which increments whenever an
instruction with bit 46 = 1 is executed. When the counter overflows from -1 to 0 the
machine stops, after completing execution of the instruction which caused the overflow.
(The stopping is under control of an enable bit in the diagnostic interface.) Bit 46 is
always O in instructions from the PROM. -

The statistics counter can be read and wmtcn using the diagnostic interface. It
provides several facilities.

It can be used for metering, to measure how many instructions are executed,
possibly restricted to a certain subset of the microprogram. The microcode debugger and
console program has commands to set and clear the statistics bits in areas of control
memory.

It can be used for breakpointing, by setting the counter to -1 and turning on the
statistics bit in those instructions which have breakpoints set on them.

It can be used to find obscure bugs, by setting the statistics bit in all locations of
control memory, and setting the appropriate number in the statistics counter to cause the
machine to halt just before the point where the error appcars, so that it can be single-
stepped through the suspect microcode.

The statistics counter is loaded from the Instruction Write Register, rather than
the normal diagnostic bus, because of jts 32-bit width. Effectively it loads from the M bus
with a 1-cycle delay. It is probably not possible for the machine to use the statistics
counter on itself, although clever ways might be found.

' ’ The CADR Microprocessor

The Diagnostic Interface

The diagnostic interface occupies 16 Unibus addresses. It includes a 16-bit
diagnostic bus which can be used to read and write various portions of the machine.
There are 16 readable locations, and 8 writable locations. A readable location and a
writable location at the same address have no relation to each other. The diagnostic bus
is used by debugging and maintenance programs, including the "console” program. and in
a few cases by the machine itself during bootstrapping.

First we will describe the readable locations. These are sometimes called the
"spy feature.” Naturally, most of these are somewhat meaningless if read while the
machine is running.

766000 IR<15.0>. The low 16 bits of the currently-executing instruction.
766002 IR<314-16>4. The middle 16 bits of the currently-executing instruction.
766004 IR<47-32>. The high 16 bits of the currently-executing instruction,
766006 not used | |

766010 OPC. The OPCs are described below.

766012 PC. The current program counter, which is the address of the next instruction to
be executed. ,

766014 OB<15-0>. The low half of the output bus.
766016 OB<31-16>. The high half of the output bus.

766020 Flag Register 1. This provides various signals associated with starting and
stopping the machine. When the machine stops due to a hardware error, this
register tells what happened. The bits are:

<15> = -WAIT. 1 if the machine is running or runnable, 0 if it is waiting
for memory. See the discussion of Clocks for the exact meaning of

WAIT.

<14> = .VIPE, Normally 1, 0 if the level-2 map had a parity error at the
last clock.

<13> = -VOPE. Normally 1, 0 if the level-1 map had a parity error at the
last clock.

. <12> = HIGHOK. 1 if the high runs in the machine are all valid, O if
some are not. This is essentially a power-supply check, and a
check for broken wires. ’

<11> = -STATHALT. ' Normally 1, 0 if the machine has been stopped by
the statistics counter.

<10> = ERR. 1 if an error condition is present. If ERRSTOP is on in the
mode register, the machine is stopped.

—

“ The CADR Microprocessor

 <9>=SSDONE. 1ifa single-step operation has been completed.

<8> = SRUN. 1 if the machine is trying to-run_(but it may be stopped by
a parity error, by a wait condition, or by the statistics counter).
<7> = -HIGHERR. 1 if there was HIGHOK at the last clock.

. <6> = -MEMPE. Normally 1, 0 if there was a main memory parity error

that was_not caught by a trap at the last clock.

<5> = .IPE. Normally 1, 0 if there was a control memory parity error at
the last clock.

<4>= .DPE. Normally 1, 0 if there was a dispatch memory parity error
at the last clock.

<3> = -SPE. Normally 1, 0 if there was an SPC stack parity error at the
last clock.

<2> = -PDLPE. Normally 1, 0 if there was a PDbbuffer parity error at
the last clock.

<1> =-MPE. Normally 1, 0 if there was an M-scratchpad parity error at
the last clock.

<0> = -APE. Normally 1, 0 if there was an A-scratchpad parity error at-

_ the last clock. '

766022 Flag Register 2. This register contains flags associated with pipelining and some
miscellaneous control signals which the debugging program likes to see. The bits

are:

<15> = unused

. <14> = unused

<13> = WMAPD. The previous cycle said to write the map, and this cycle
will.

' <12> ="DESTSPCD. The previous cycle wrote into the SPC stack by using

a functional destination (as opposed to a CALL transfer).
<11> = IWRITED. The previous cycle did an 'MEM WRITE type of
~ ' JUMP instruction, and this cycle will write control memory, do a
RETURN transfer, and NOP the following cycle.
<10> = IMODD. The previous cycle used the "OA register” to modify this
cycle's instruction, or this cycle's instruction came from the
DEBUG-IR (see below). This flag inhibits parity checking of the
IR.
<9> = PDLWRITED. The previous cycle caused a write into the PDL-
buffer, and this cycle will do it.
<8> = SPUSHD. The previous cycle caused a write into the SPC stack,
. and this cycle will do it.
<7> = unused
<6> = unused. :
<5> = IR<48>. This is the parity bit of the IR.
<4> = NOP. The instruction currently in the IR is not really being
- executed; this cycle is a NOP cycle.
<3> = -VMAOK. The last attempt to start a main memory cycle was not
sqcmful because the map indicated a page fault.

766024

766026

766030

766032

766034

- 766036

766000

766002
766004

766006

RSP

'Y The CADR Microprocessor

<2> = JCOND. 1 if the jump-condition is satisfied. Meaningless if the
. instruction in IR is not a JUMP instruction.
’ <l-0> PCS1-0. These 2 bits select the next PC (the address of the
instruction after next) The encoded values are: ' .

0= SPC<13-0> the SPC stack.
1 = IR<25-12> the address specified by a JUMP instructnon
2 = DPC<13-0> the dispatch memory.
3 = IPC<13-0> the PC+1.

M<150>. The low half of the M-source selected by the instruction currently in
IR. ‘

M<31-16>. The high half of the M-source.

A<150>. The low half of the A-source selected by the instruction currently in
IR.

A<31-16>. The high half of the A-source.
ST<15-0>. The low half of the statistics counter.

ST<31-16>. The high half of the statistics counter.

Here is a description of the writable registers of the diagnostic interface.

DEBUG-IR<15-0>. The low 16 bits of an instruction supplied by the diagnostic

~ interface.

DEBUG-IR<31-16>. The middle 16 bits.
DEBUG-IR<47-32>. The high 16 bits.

Clock control register. Resetting the machine sets this to zero. The following
bits exist: _
<4> = LDSTAT. Setting this to 1, then clocking the machine, causes the
+ statistics counter to load from IWR<31-0>, which loaded from the M
. bus on the previous clock. .
<3> = IDEBUG. Setting this to 1 causes the IR to load from the DEBUG-IR
instead of the PROM or the control memory, when the machine is
clocked. The primary way that the machine can be manipulated
through the diagnostic interface is by executing instructions using this
mechanism.
<2> = NOPI1I. Setting this to 1 forces NOP. This allows you to clock the
~ machine, for instance to transfer DEBUG-IR into IR, without the
present contents of the IR causing unwanted side-effects by getting

a8 The CADR Microprocessor

_executed as an instruction. NOP11 does not prevent the PC from
getting changed (in fact it will be incremented), and it does not prevent
previously-scheduled pipelined writes from happening.

- <1> = STEP. Setting this to 1, when SSDONE is 0, causes the processor clock
to run for one cycle, and then set SSDONE. Setting STEP to O clears
SSDONE. (Both of these operations really take several cycles of the

* clock to complete.) STEP is the way that the diagnostic interface
"clocks” the machine. Note that the main clock is running all the time,
even when the machine is stopped. STEP generates a single processor
clock, in synchronism with the main clock.

<0> = RUN. Setting this to 1 causes the machine to start nmmng. You first
use STEP to set up the state of all the registers and memories, the PC,
and the IR, then turn on RUN. The first instruction executed is the
one you left in the IR,

766010 OPC control register. Resetting the machine sets this to zero. This register
contains some bits which need to be used by the console program in order to
completely restore the state of the machine from a saved state. The bits are:

<2> = OPCINH. Setting this to 1 inhibits the OPCs from being clocked by
the processor clock. This bit must not be changed except when the
clock is high (i.e. the machine is stopped). The process of restoring the
OPCs consists of setting OPCINH, then getting the 8 values into the PC
by executing JUMP instructions, and transferring those values into the
OPCs via the OPCCLK bit. Once the OPCs have been restored,
OPCINH remains set so that they will be undisturbed while the rest of
the machine state is restored. Just before starting the machine, set

. OPCINH t0 0.

<1> = OPCCLK. Setting this to 1 and then to 0 generates a clock to just the
OPCs. This is used to read out the 8 OPC registers without disturbing
the state of the rest of the machine,

<0> = LPC.HOLD. Setting this to 1 prevents the LPC register from loading

' from the PC register when the machine is clocked. This is used in

restoring the LPC. The LPC is a duplicate copy of the first OPC
register, used by the IR<25> t‘eature of the DISPATCH instruction.

766012 Mode register. Resetting the machine sets this to zero. This register enablu
various features and controls the speed.of the clock. The bits are:
<7> = PROG.BOOT. Setting this to 1 starts a bootstrap sequence.
<6> = PROG.RESET. Setting this to] resets the machine. Reset stops the
machine by clearing RUN, forces the clock to stop until the RESET
 operation is over, clears the pipeline flags which cause things to happen
in the next instruction, and clears the Clock, Mode, and OPC registers
of the diagnostic interface.
<5> = PROMDISABLE. A 1 here disables the PROM. A O here replaces the
first 1K locations of control memory with the PROM.
. <4>=TRAPENB. A | here enables main memory parity errors to cause

m The CADR Microprocessor

microcode traps to location 0. A 0 here causes main memory parity
errors to be treated the same as other parity errors, -
<3> =STATHENB. A | here enables overflow of the statistics counter to

: halt the machine.

.<2> = ERRSTOP. A 1 here enables hardware errors (HIGHERR and various
parity errors) to halt the machine. A O causes it to continue blithely
on.

- <10> = SPEED<1.0>. These bits control the speed of the clock. The ‘
ILONG bit in the microinstruction also affects the speed, slowing it
down by 40 nanoseconds. The speed coda are:

0 = Extra Slow
1 = Slow

2 = Normal

3 = Fast

766014 not used.

766016 not used.

The OPCs are a set of 8 registers which remember the last 8 values of the PC.
This pravides a useful history for debugging. It is also used by the microcode itself in
certain frap-handling routines. You can only read the last of the 8 OPCs, which is what
the PC was 8 clocks ago. Special control is provided over the clocking of the OPCs so
that they can be read out without di so that they can be saved and restored by the
microcode debugger. This is described above under 766010.

The OPCs can be read both by the diagnostic interface and as a functional
source, for maxxmum ﬂexlbxhty

The bus interface provides a special path by which the MD register may be
loaded. This provides a parallel source of diagnostic input data. After loading MD,
instructions can be executed via the DEBUG-IR to transfer the data to the desired
destination. .

There are several maintenance indicators (light-emitting diodes) scattered around
the-machine. Inside the front door, near the lower-left-hand corner, are 5 octal displays.
These show the current value of the PC. The decimal points on these displays show
various interesting conditions. From left to right:

1 - PROMENABLE. Indicates that the current instruction is coming from the PROM
~ rather than the writable control memory.

2 - IPE. Indxcat& that control memory had a parity error at the last clock.

3 - DPE. Indicates that dispatch memory had a parity error at the last clock.

- ——

" " The CADR Microprocessor

.

© 4.-TILTO. lndiataMthempormainmemoryh&dapudtyeno’utthelatcloct.

5 - TILT1. Indicates that the A-scratchpad, the M-scratchpad, the PDL-buffer, or the
SPC stack had a parity error at the last clock.

There is also provision for indicators for the various error conditions, "the
machine is really running,” and the status of the disk interface. The location of this
indicator panel, and whether or not all machines will have one, is not yet determined. .

51 The CADR Microprocessor

The Disk Controller

The Lisp machine disk controller attaches from 1 to 8 disk units of the "Trident™
family to the CADR machine’s XBUS. The 1-unit version consists of one board, and 2
second board is added when more than one disk unit is to be used. The two versions are
almost program compatible.

Interface Registers

The disk controller is operated by reading and writing four 32-bit registers which
are on the XBUS. These are normally at physical addresses 17377774-17377777, which is
just below the Unibus. The address can be changed by changing jumpers. Many bits in
these registers refer to the "selected unit", which is that disk unit whose number is
currently in bits <30:28> of the disk-address register.

When read, the registers are:

0 STATUS -

- <24:31> The block-countcr of the selected unit. This tells you its current rotational
position. Reading of this segister is not synchronized to its incrementation, so
you must read it twice and check that it came out the same both times.

<23> Internal Parity Error. This indicates that parity of the bits seen at the disk

- and parity of the bits seen at the memory failed to agree; something must have
been lost inside the controller someplace. The Read All and Write All '
commands cause spurious internal parity errors. The Read Compare command
causes a spurious internal parity error if it sets Read Compare Difference (bit
22) and the the disk data and the memory data differ in parity. This error
does not stop the transfer.

<22> Read Compare Difference. This indicates that data from memory and data
from the disk failed to agree. This bit is undefined unless the command is

. read-compare. This error does not stop the transfer.

<21> CCW Cycle. This bit being on in combination with Memory Parity Ecror
or Nonexistent Memory Error indicates that the error happened while fetching
a CCW, rather than while reading or writing data.

<20> Nonexistent Memory Error. Indicates that memory (or other XBUS device)
failed to respond within 15 microseconds. This error stops the transfer.

<19> Memory Parity Error. Indicates that even parity was read from memory (or
other XBUS device). This error stops.the transfer.

<18> Header Compare Error. Indicates that a block-header read from disk failed
to have the expected value. This may be because the disk head is not
positioned at the proper place, because the disk is not correctly formatted, or
because the header wasn't read correctly. This error stops the transfer.

<17> Header ECC Error. Indicates that the error-correcting code of a block
header failed to check. Unfortunately most header ECC errors show up as
header compare errors instead. Maybe this can be fixed? This error stops the
transfer. Header ECC Error also happens if an attempt is made to continue a

<16>

- <15>

<14>

<13

<1>

<11>

<10>.

<9>

<8>

<>

<6>

<5>

<>

<>

—

2 The CADR Microprocessor

read or write operation past the end of the disk.

ECC Hard. Indicates that the error correcting code discovered an error, and
was unable to correct it. The data read from disk is wrong, try reading again.
This error stops the transfer. :

ECC Soft. Indicates that the error correcting code discovered an error, and
was able to determine which data bits were in error. The program can correct
it, see the ECC Register for how. The error correcting code will correct any
single burst of up.to 11 erroneous bits. This error stops the transfer. :

Read Overrun. Indicates that data arrived from the disk faster than it could
be stored into memory. This error stops the transfer.

Write Overrun. Indicates that memory did not supply data fast enough for
the disk. “This error stops the transfer. : :

Start Block Error. Indicates that a start-of-block (sector pulse) happened at
a time when it should not have. Either the disk is incorrectly formatted or it
is generating spurious sector pulses. This error stops the transfer.

- Timeout Error. Indicates that a disk operation took longer than 2.5
seconds. This error stops the transfer.

Selected Unit Seek Error. The selected unit is reporting failure of a seek
operation. This error stops the transfer. Reset the error by using the
Recalibrate command.

Selected Unit not On-line. The heads are not loaded, the disk is
not powered on, or there is no disk at the specified unit number. This error
stops the transfer.

Selected Unit not On-Cylinder. Generally indicates that a seek is
in progress on the selected unit. Not an error. If the disk goes off-cylinder
during a write operation, a fault will occur. If it goes off cylinder during a
read, presumably a header-compare error or an ECC error will occur.

Selected Unit Read-Only. The status of a switch on the disk. Note
that the read-only status can only change to reflect a change in the switch
when the drive is not selected. Storing into the Disk Address register

. momentarily deselects the current unit so that it may update its read-only

status from the switch. Writing while the disk is read-only causes a fault.
Selected Unit Fault. Indicates either trouble with the disk or a
programming error, see the Trident manual. This error stops the transfer.
Reset by using the Fault Clear and/or Recalibrate commands. This error
lights the Device Check light on the drive. ' '
No Unit Selected. This error stops the transfer. Happens if no

 disk is plugged into the selected unit number, or the disk unit is powered off

or "degated".

Multiple Units Selected. This error stops the transfer. This
indicates that more than one disk drive is selected, or the wrong drive is
selected.

: Interrupt Request. 1 means the disk controller is asserting -
XBUS.INTR.

Selected Unit Attention. Reset using the At Ease command.

Attention indicates seek completion, recalibrate completion, initial loading of

RN

53 The CADR Microprocessor

the heads, seek incomplete error, or an emergency head retract. "Implicit™-
secks do not cause attention.

<1> ~ Any Attention. Some unit has an attention, you have to select
them one after another to find out which.
<> Not Active. 0 means the controller is busy, 1 means it is ready to

accept a command.

1 MEMORY ADDRESS
<31:24> not used
<23:22> Disk type. 00 Trident 01 Marksman 10 unused 11 Trident (old control)
" <21:0> the address of the last memory reference made by the disk control. This is
the address of a CCW if CCW Cycle is on in thc status register, otherwise the
address of a data word.

2 DISK ADDRESS

<31> not used '

<30:28> Unit number. In the 1-unit version, always zero.

<27:16> Cylinder number. A T-80 has 815. cylinders.

<15:8> ‘Head number. A T-80 has 5 heads. As it turns out, only the bottom 6 bits
' of the head number can work (this is a feature of the Trident.)

<7:0> Block number. A T-80 is usually formatted with 17. blocks per track.

"Block" is mostly synonymous with "sector".

When a transfer is terminated by an error, the disk address register contains the
address of the block being transferred when the error occurred. When a transfer
terminates normally, the disk address register has the address of the last block
transferred.

3 ERROR CORRECTION REGISTER-
<31:16> Error pattern bits.
<15:0> Error bit position+1.

When a soft ECC error occurs, this register tells where in the last block transferred
the error was. The disk address register has the disk address of the block containing
the error, and the command list pointer points to the CCW which points to the
memory page containing the error. The error pattern should be XOR'ed into the
contents of memory at the specified bit address; it may overlap across a word
boundary. Note that the bit position is off by 1; the first bit in the block is bit 1.

You should not write any register while a transfer is active, excépt for using the Reset
command to stop a hung transfer, and even then you should expect to lose.

When written, the registers are:

0 COMMANS |
Writing the command register does NOT initiate a transfer, unlike most disk

PN

54 ' ‘The CADR Microprocessor

controllers. Use register 3 (START) to initiate a transfer, after setting up the other
registers. However, writing the command register does reset the various error flags.
Note that the command register cannot be read back. :

<31:12> not u#e,d

<{1>

<1>

<>
<8>

<7>

<6>

<5>

<4>
<>

Done Interrupt Enable. Enables not-active (bit O of the status register) to
cause an interrupt. The interrupt will keep happening until you clear this bit.
(This is really an idle interrupt rather than a done interrupt.)

Attention Interrupt Enable. Enables any-attention (bit 1 of the status
register) to cause an interrupt. (The interrupt will only happen if the
controller is not active. While the controller is active you couldn't do
anything about it anyway.) The interrupt will keep happening until you select
the drive and give an at-ease command, or clear this bit.

Recalibrate. In combination with command 5, causes the disk to return the
heads to cylinder 0.

Fault Clear. In combination with command S, resets. most fault condtttons
in the disk.

Data Strobe Late. For recovery of margmal data,

Data Strobe Early. For recovery of marginal data.

Servo Offset. For recovery of marginal data, offsets the heads slightly. Bit
4 controls which direction. Note that this is somewhat kludgey, if you try to
seek while the heads are offset you get a fault.(use command 6 first to clear
the offset.) Transferring more than one block at a time while in servo offset

" mode, or even retrying a transfer without first doing an offset clear, will

probably cause a fault. Of questionable worth anyway. Writing while the
heads are offset causes a fault.

Offset forward. 1 means offset forward, 0 means offset backward.

1/0 Direction. 1 means from-memory, 0 means to-memory. See below for
valid combinations.

<2:0> . Command code. The following combinations of bits are valid commands

(here expressed in octal), Note that bits 10 and 11 may always be turned on,
and bits 4 through 7-may be turned on in any reading command.
0000 Read. '

0010 Read-compare. Reads from both disk and memory, and sets bit 22
of the status register if they don't agree.

0011 Write. N

0002 Read All. Reads all bits of the disk starting at the specified
rotational position. Note that internal parity errors will occur
spuriously during this command, and that it will not automatically

.advance heads and cylinders. See the description of disk
formatting below.

0013 Write All. Writes all bits of the disk starting at the specified
rotational position. This is intended for formatting the disk, see
below. The caveats under READ ALL apply to WRITE ALL also.
In addition, it doesn't really write quite all of the last page;
somewhere between zero and seventeen words will be lost.

e e

55 The CADR Microprocasor-

0004 Seek. Initiates a seek to the cylinder specified in the disk address
register. An attention will occur when the seek completes. Note
that this command is not logically necessary; the controller always
initiates a seek if necessary at the start of a data transfer command.
The read, read-compare, and write commands also will seek in the
middle of a transfer when necessary. The seek command is
provided so you can overlap seeks on multiple units.

0005 At ease. Resets attention on the selected unit,

1005 Recalibrate. Seek to cylinder 0, without assuming the current
position of the heads is correct. This is used to correct a seek
_error, and as part of error recovery. Recalibrate resets some error
conditions in the drive, and causes an attention when complete.

0405 Fault clear. Resets most error conditions in the drive.

1405 This probably does both a Recalibrate and a Fault Clear.

0006 Offset clear. Take the heads out of the offset state. This does not
wait for completion, but the next command will,

xxxT This is a reserved command, and will currently hang the controller,
causing a timeout error (bit 11 in the status register.)

0016 Reset. This stops the current transfer and resets the controller.
This command takes effect as soon as it is stored in the command
register; no store in START is required. After storing a Reset

.command you should store 0 in the command register to turn off
the reset condition. Use of Reset while a transfer is in progress
isn't guaranteed not to do strange things.

All commands except for the xxx5 group and Reset wait for completion of any
previous seek operation on the selected unit before starting. Thus even the
Seek and Offset Clear commands can take finite time before the controller is

" ready for the next command.

1 COMMAND LIST POINTER
This is the address of a vector of Channel Command Words (CCWs) which
specify what memory pages, and how many, are to be transferred to/from
disk. Only bits <15:0> of the CLP can count, so if you try to carry across this
boundary your command list will wrap around.

The format of a CCW is:
<31:24> not used
<23:8> Main memory address of a page
<T:1> " not used
<0> More flag. If this bit is 0, this is the last CCW in the list. If this bit
is 1, there is another CCW in the following locstion.

2 DISK ADDRESS - ’
' See the description of the digk address register under reading. Note that in the 1-unit
version, the unit number bits <30:28> are ignored and regarded as always zero.

. The CADR Microprocessor

{

3 STARI:
© Writifg anything at this address initiates the operatlon specxfied in the command,
~ disk address. and command list pointer registers. -

Disk Structure

Each disk block contains one Lisp machine page worth of data, i.e. 256. words
or 1024 bytes. You can transfer up to 65536. consecutive disk blocks to non-consecutive
memory locations in-a single operation, or you could if the machine supported that much
main memory. A T-80 has 815. cylinders, each with 5 heads (tracks), each with 16. or 17.
blocks depending on how you feel like formatting it. A T-300 is the same except it has
19. heads.

Formatting

- The format is determined by the program that uses the Write All operation to
format the disk, within the constraints determined by the hardware. A track contains
(approximately) 20160. bytes (on a T- 80 or a T-300). Jumpers in the disk are set to give
17. sector pulses per track, or one every 1164. bytes, with a little left over at the end of
the track. :

Everything goes low-order bit first and low-order byte first. Note that bits in the disk
controller are the complement of bits seen by the drive. Thus all bits in the Trident
manual should be thought of as complemented.

The format of a block is:
(sector pulse here)
PREAMBLE - 53. bytes of ones.
VFO LOCK - 8. bytes of ones.
SYNC - a byte containing octal 177
HEADER - a 32-bit word as follows:
<31:30> next block address code:
0 following block on same track
1 block 0 on next track (next head)
2 block 0 on head 0 of next cylinder
3 end of disk
€29:28> not used, should be zero
<27:16> cylinder number, used to verify that the
disk is positioned to the correct cylinder.
<15:8> head number, used to verify the head selection.
<7:0> block number, used to verify the rotational position.
HEADER ECC - a 32-bit checkword.
‘VFO RELOCK - 20. bytes of ones.
SYNC - a byte contajning octal 177

S S

.57 The CADR Microprocessor

PAD - a byte containing octal 377, which is here to fix
a bug in the logic for read-compare. (Ugh)

DATA - 1024. bytes of whatever you want.

DATA ECC - a 32-bit checkword.

POSTAMBLE - 44. bytes of ones.

~ To format the disk, you should do it one track at a time. Lay out in memory
the bits to be written on the track. Truncate the length to a multiple of a page, but make
sure that the last 17. words don't matter (in general you will be writing 19. pages, or
19456. bytes, leaving about 771. bytes at the end of the track which may not get written,
depending on how full the fifo is when the operation terminates. Depending on the block
‘length chosen, you may not get a chance to fully write the last block, but as long as you
get into the data area it will be all right. Do'a WRITE ALL command of this data, with
a disk address whose block-number field (bits <7:0>) is zero. Ignore any internal parity
error (bit 23 of the status register.) You can verify it by using the Read All command
(but the internal parity and read-compare features will not work), or you can use the
ordinary write and read commands. You must compute the ECC check-words manually.
The polynomial'is x~31+x~29+x~20+x~10+x~8+1 [if I understand this logic correctly.)

Note that, when using Read All, there is some ambiguity as to precisely where
the data read starts. It is unlikely to line up the bytes on byte boundaries. The first
several microseconds worth of data will be missing or corrupted.

Debugging |

Connector J11'is provided for a flat cable to an LED display, with the following
useful signals on it. These are ground when inactive, 15 milliamps at +3 volts or so when
active. ' '

1 Read Active. The controller is active and bit 0
) of ‘the command register is 0.
2 Write Active. The controller is active and bit 0
of the command register is 1.
3 Seek. The selected unit is not on-cylinder.

4 ~ Transfer Lossage. This is the IOR of Timeout, Read
' Overrun, Write Overrun, Memory Parity Error, and
Nonexistent Memory Error.

L] Format Lossage. This is the IOR of Start Block Error,
Header Compare Error, Header ECC Error, and Reset.
6 ECC Lossage. This is the IOR of Hard ECC Error and
~ Soft ECC Error. ,
7 Disk Lossage. This is the IOR of Multiple Units Selected,

No Units Selected, Selected Unit Fault, Selected Unit not
On-Line, and Selected Unit Seek Error.
8 Spare. This probably does not light up.

ks

s The CADR Microprocessor

<<Here insert a one—pag.e table of instruction formats and so forth>>

. e

o " The CADR Microprocessor

‘the expression program is evaluated to produce the symbol'’s value (which may be
conditional on the context in which it appears). Expression programs are discussed in a
later section. - -

Instrnctlons

In general, CONSLP assembles a list into a data item by evaluating all the
elements of the list and adding them up. There is a fairly rich language for specifying
complex expression programs and assigning symbolic names to them; for now, however,

. we will merely use the symbols predefined by CONSLP. CONSLP also allows the fields of
an instruction to be written in almost any order, but we will describe only the
conventional order for writing them,

The general form of an I-MEM instruction is:

(<pop s> (<destinations>) <(operation) <(condition)
C(M-sourced <(byte-descriptor) <(A-source) (target-tagd <(other fielids))

The <popj> field is POPJ-AFTER-NEXT to specify that the POPJ bit be set.

The <destinations> field may be an A or M memory tag, or the name of a functional

destination, or both an M memory tag and a functional destination.

The <operation> specifies the instruction type, and possibly other fields (such as the jump

condition) as well. '

The <condition> may also be a separate field, though it usually is encoded as part of the

operation. :

The <byte-descriptor> describes the byte to be used in a BYTE or DISPATCH
ﬁinstruction.) :

Vrhe <M-source> and <A-source> specify the sources; these may be tags in the appropriate
memories, or, for the <M-source>, the name of an M multiplexor source. '
The <target-tag> is an I-MEM tag for JUMP instructions, or a D-MEM tag for
DISPATCH instructions.

The <other fields> can be such things as the Q control and Miscellaneous Functions.

A Many of these fields can be omitted, and CONSLP will default them
appropriately. If the <operation> is omitted, then ALU is assumed, unless a <byte
descriptor> is present either implicitly or explicitly, in which case BYTE is assumed. If
only one source is present in an ALU instruction, then an opcode of SETA is supplied for
an A source, and SETM for an M source, thus causing a simple movement of data. If the
A source is omitted in a2 BYTE instruction, then location 2 in A memory is assumed
(which is supposed to contain zero).

Here are some examples of instructions, with commentary. We assume the
convention described above for A and M memory tags.

{(A-FOO) M-BAR) imove from BAR in M-MEM to FOO in A-MEM

(CALL ZAP) ;do a CALL transfer to instruction ZAP (N bit set)

PR

61 The CADR Microprocessor

((A-FOO) SUB M-BAR A-BAZ)
;subinct A-u'l from M-BAR, put result in A-FOO

(JUMP-EQUAL -XCT-NEXT M-BAR A-FOO LOSE)
: ‘tJump to LOSE 1f M-BAR equals A-FOO; N bit is cleasr,
s 30 instruction after the JUMP is executed
; whether or not the JUMP succeeds

(POPJ-AFTER-NEXT (M-FOO) MEMORY-DATA)
iput data from memory intc M-FOO,
; and slso POPJ after next tnstruction

({M-SAVE MEMORY-DATA-START-WRITE)
' ADD MEMORY-DATA A-ZERO ALU-CARRY-IN-ONE)
. ;add one to the read memory data,
; transfer to write memory data and M-SAVE,
>; and begin writing the data into main memory
+ ot the address already in the VMA

Literals

CONSLP provides a facxhty for specifying literals in the A and M memories.
The constructs

(A-CONSTANT Cexpression>) and (M-CONSTANT Cexpression))

may appear as an A source or M source specification, causing CONSLP to allocate a word
in the appropriate memory, assemble the literal expression there, and use the address of
that location as the source location. If the same constant in the same memory is
referenced many times, CONSLP will assemble only one copy of it. Two constants are
considered the same if their final binary values are identical, regardless of the source
expressions which reduced to those values, The zero constant is treated specially, and
made to refer to location 2 of the appropriate memory (hence the user should reserve
these locations as constant sources of zeros). Similarly the -1 constant is made to refer to
location 3 of the appropnate ‘memory.

Byte Specifications

Rather than requiring the user to calculate the rotation count and length (minus
1) fields for BYTE and DISPATCH instructions, CONSLP provides a uniform method for
specifying a byte in terms of its size and position jn the word; CONSLP then calculates
the fields appropriately.

The simplest way to describe a byte is with the BYTE-FIELD construct:

62 ' The CADR Micmpm

(BYTE-FIELD <size in'bits> <position from right>)

For example, (BYTE-FIELD 5 0) is the low five bits of a word, and (BYTE FIELD 7 §) i is
the seven bits abovc them The two arguments to BYTE-FIELD must be constant
integers,

Another way to descnbe a byte is:

(LISP-BYTE <ppss>)

where the low two octal digits of <ppss> are the size and the next two are the position.
The argument <ppss> is evaluated as a LISP form (see below under "Expression
Programs”™).
When a byte specifier appears in-an instruction, the op-code is defaulted to
BYTE, and the type of byte instruction defaulted to "load byte". If specified elsewhere
in the instruction, the op-code may be DISPATCH instead; the dispatch is based on the
specified byte. The op-code may-also be JUMP, but only if the byte is one bit wide; this
means that the jump will test the specified bit of the M source.
When CONSLP assembles the final instruction, it constructs the rotation count
~and length minus 1 fields on the basis of the byte specifier and the operation to be
performed. For JUMP, DISPATCH, and "load byte” type BYTE instructions, this
involves subtracting the byte position from 32 to obtain the correct rotation count.
(Recall that CADR rotates words to the left.) If Miscellaneous Function 3 (LOW PC BIT
specifies half word) is enabled, then the position (which should be less than 16) is
subtracted from 16 instead. For “"deposit byte" and "selective deposit” type BYTE
instructions, the byte position itself is used as the rotation count. The length minus 1
field for BYTE and JUMP is computed by subtracting 1 from the byte length, unless the
“byte length is zero, in which case zero is used. (Note that CADR cannot really handle
zero-length bytes, but CONSLP allows them to be defined on the theory that the "next
instruction modify” feature may be in'use. Programs which use this feature must be
aware of the hackery which the assembler pulls, and allow for the actual values of the
fields at run time.) The DISPATCH instruction has a length field instead .of a length
minus 1 field, and so no subtraction of 1 is performed for it.
- Here are some examples of the use of byte specifiers:

((M-X) (BYTE-FIELD 7 4) M-Y)
: ;extracts & 7-bit byt‘. 4 bits from
i the right, from M-Y, and puts this
: byte right-justified in M-X. The
" ; A source i3 defaulted to 1, which
; should be a constant zero so that the
: other bits in M-X will be zere.

(JUMP-IF-BIT-SET (BYTE-FIELD 1 3)'n-w QuUX)
;Jump to QUUX 1f the *10" bit is set in M-ZAP

. : (DISPATCH (BYTE-FIELD 3 0) M-ZAP DTABLE)

e e

63 The CADR Microprocessor
suse the Yow three bits of M-ZAP to index
; into the dispatch table DTABLE

It is possible to create a symbolic name for 2 byte field by using the ASSIGN
pseudo-operation: :

(ASSIGN LOV-HEX-DIGIT (BYTE-FIELD & 0))

Siﬁce this is a comtﬂon operation, another pseudo-op exists for the purpose:
(ozr-nﬁn-rmo <smo1>' Cbyte size> Cbyte positiond)

For example:
(DEF-DATA-FIELD LOV-HEX-DIGIT 4 0)

It is‘also possible to associate a name with a byte field in a particular register.
One way to do this is to sum the byte specifier and the name of the register:

(ASSIGN CONDITION-CODES (PLUS (BYTE-FIELD 4 0) POP-11-PS))
(ASSI16N TRACE-TRAP-BIT (PLUS (BYTE-FIELD 1 4) PDP-11-PS))
(ASS16M PRIORITY (PLUS (BYTE-FIELD 3 5) POP-11-PS))
This case too is common enough to warrant a special pseudo-operation for the purpose:
(DEF-BIT-FIELD-IN-REG (symbol)> <byte size> <byte positiond C(register))
For example:
(DEF-BIT-FIELD-IN-REG CONDITION-CODES 4 0 POP-11-PS)

(DEF-BIT-FIELD-IN-REG TRACE-TRAP-8IT) 4 POP-11-PS)
(OEF-BIT-FIELD-IN-REG PRIORITY 3 § POP-11-PS)

Note that the <register> had better be in the M-scratchpad. With this definition, it is
only necessary to mention, say, PRIORITY, in an instruction to cause an appropriate byte
reference to occur:

{(A-PRIORITY) PRIORITY) ;extract the PRIQRITY byte from PDP-11-PS
: and place 4t right-justified in A-PRIORITY

By special dispensation, it also works to use such symbols in the destination field. The
appropriate DPB is assembled.

Two more pseudo-operations make it easy to define names for many consecutive
bits or fields in a register.

< e

o4 The. CADR Microprocessor

(DEF-NEXT-FIELD Csymbol> Cbyte size> <register>) .Sp This defines <symbol> to be 2 byte of
the speicified size, in a position to the left of any fields already defined by DEF-NEXT-
FIELD. If this is the first DEF-NEXT-FIELD for the specified register, then the field
position is zero (at the low end of the word). For example: :

(DEF-NEXT-FIELD REL-OFFSET 8 IBM-1130-INSTRUCTION)
(DEF-NEXT-FIELD TAG-FIELD 2 IBM-1130-INSTRUCTION)
(DEF-NEXT-FIELD FORMAT-BIT 1 I1BM-1130-INSTRUCTION)
(DEF-NEXT-FIELD OP-CODE 5 1BM-1130-INSTRUCTION)

‘would be entirely equivalent to:

(OEF-BIT-FIELD-IN-REG REL-OFFSET 8 0 IBM-1130-INSTRUCTION)

. (DEF-BIT-FIELD-IN-REG, TAG-FIELD 2 8 IBM-1130-INSTRUCTION)
(DEF-BIT-FIELD-IN-REG FORMAT-BIT 1 10. 18M-1130-INSTRUCTION)
(DEF-BIT-FIELD-IN-REG OP-CODE § 11. IBH-IISOJISTRUCTIOI)'

.The pseudo-operation:
(DEF-NEXT-BIT (symbol> Cregister))

is entirely equivalent to:
(DEF-NEXT-FIELD Csymbol)> 1 (register))

and so allocates a single bit. It may be intermixed freely with DEF-NEXT-FIELD. For
example:

(DEF-NEXT-FIELD CONDITION-CODES 4 PDP-11-PS)
{DEF-NEXT-BIT TRACE-TRAP-BIT POP-11-PS)
(DEF.-NEXT-FIELD PRIORITY 3 PDP-11-PS)

The construct:
(RESET-BIT-POINTER Cregister))

may be used to reset the pointer into <register> used by DEF-NEXT-FIELD and DEF-
NEXT-BIT. This is useful if the data in <regnster> can have several different formats.
For example:

(DEF-NEXT-BIT C POP-11-PS)

(DEF-NEXT-BIT V PDP-11-PS).

(DEF-NEXT-BIT 2 PDP-11-PS),

(DEF -NEXT-BIT N PDP-11-PS)

(IESET-IIT POINTER PDP-H PS)

(OEF- IEKT-F IELD CO'DITION-COBES 4 PDP 11-PS)

(1) ‘ The CADR Microprocessor

(DEF-NEXT-BIT TRACE;T!AP-I" ‘POP-11-PS)
(DEF-NEXT-FIELD PRIORITY 3 POP-11-PS)

(DEF -NEXT-FIELD DST-REG 3 POP-11-INSTRUCTION)
{DEF-NEXT-FIELD DST-MODE 3 PDP-11-INSTRUCTION)
(DEF-NEXT-FIELD SRC-REG 3 PDP-11-INSTRUCTION)
(DEF-NEXT-FIELD SRC-REG 3 POP-11-INSTRUCTION)
(DEF-NEXT-FIELD OP-CODE 4 PDP-11-INSTRUCTION)
(RESET-BIT-POINTER POP-11-INSTRUCTION)
(DEF-NEXT-FIELD BRANCH-OFFSET 8 PDP-11-INSTRUCTION)

{ DEF -NEXT-F IELD BRANCH-CONDITION 3 POP-11-INSTRUCTION)
(RESET-BIT-POINTER PDP-11-INSTRUCTION)

Dispatch Tables

When assembling into the dispatch memory (i.e. (LOCALITY D-MEM)) it is
necessary to use two special pseudo-operations, START-DISPATCH and END-
DISPATCH, to allocate blocks of dispatch memory. These pseudo-operations specify the
length of the block required, and CONSLP undertakes to pack the various odd-sized
blocks into the dispatch memory in an appropriate mhanner.

The typical form for a dispatch block is:

(START-DISPATCH (log2 of size> <(constant data))
<dispatch table tag)
{first word of table)

"Clast word of table)
(END-DISPATCH)

The <log2 of size> is the number of bits that will be dispatched .on, that is, the logarithm
-base 2 of the size of the dispatch block. The <constant data> will be added into each of
the words of the dispatch table; this is useful for the P, R, and N bits (which in CONSLP
are called P-BIT, R-BIT, and INHIBIT-XCT-NEXT-BIT). The END-DISPATCH is
logically not necessary, but is used for error checking. Exactly the correct number of
words must be assembled between the START-DISPATCH and END-DISPATCH, or
CONSLP will give an error message,

As.an example of a dispatch table, consider this code:

(LOCALITY M-MEM) ‘

POP-11- INSTRUCTION (0) ;HOLDS SIMULATED POP-11 INSTRUCTION
(DEF-NEXT-FIELD DST-REG 3 PDP-11-INSTRUCTION)

(DEF -NEXT-FIELD DST-MODE 3 POP-11- INSTRUCTION)

(DEF-NEXT-FIELD SRC-REG 3 PDP-11-INSTRUCTION)

(DEF-NEXT-FIELD SRC-REG 3 PDP-11-INSTRUCTION)

(DEF-NEXT-FIELD OP-CODE 4 PDP-11-INSTRUCTION) -

6 The CADR Microprocessor
(LOCALITY I-MEM)
(HISPATCN~CALL-XCT-!EXT DST-MODE 0-DST-MODE)

(LOCALITY D-MEM)
(START-DISPATCH 3 P-BIT)

D-DST-MODE

(DST-REGISTER) iRO
(DST-REG- INDIRECT) ;0RO
(DST-AUTO- INCREMENT) ° ;(RO)+
(DST-AUTO-INC- INDIRECT) 0RO+
(DST-AUTO-DECREMENT) ;-(RO)
(DST-AUTO-DEC- INDIRECT) : :0-(RO) -
(DST- INDEXED) : sN(RO)
(DST-INOEXED- INDIRECT) © ;ON(RO)

(END-DISPATCH)
Note that the use in I-MEM of the op-code DISPATCH-CALL-XCT -NEXT is purely for
cosmetic purposes, to indicate that the P bit but not the N bit is a constant in all of the
dispatch table entries; it is otherwise identicql to the DISPATCH op-code.

Standard Operation Cades

.CONSLP supplies-a large number of initial symbols for various operations,
particularly for the various conditional jumps. While it is possible to define different
ones, use of these standard ones is naturally encouraged. (These symbols are defined in
the file LISPM; CONSYM >.)
" ALU Operations

The standard ALU operations supplied by CONSLP are:

Boolean _

SETCH set to complement of M

- ANDCB AND together complements of both M and A
ANDCM ~ AND complement of M with A
SETZ : set to zeros
ORCB OR together complements of both M and A
SETCA ~ set to complement of A
XOR XOR (exclusive OR) M and A
ANDCA . AND M with complement of A

ORCH OR complement of M with A

7 The CADR Microprocessor

EQV ' EQV M and A (complement of XOR)

SETA © . set to A

AND B AND together M and A

SETO ' set to ones

‘ORCA - OR M with complement of A
IR ‘ OR.M and A (inclusive OR)

SETH - set to M

~Arithmetic

" ADD M plus A (two's complement addition)
SuUB M minus A (two's complement subtraction)
MM ' M plus M (two's complement addition) -
M+M+] M plus M plus 1

MeA+l M plus A plus 1

M-A-1 "M minus A minus. 1

M+l " Moplusi

Conditional Arithmetic
MULTIPLY-STEP
DIVIDE-FIRST-STEP
DIVIDE-STEP
DIVIDE-LAST-STEP
DIVIDE-REMAINDER-CORRECTION-STEP

The conditional ALU operations for multiplication and division are explained.in detail in
a later section.

The output bus selector field dcfaults to 1 (output bus gets ALU output). The
other two choices must be specified explicitly:

OUTPUT-SELECTOR-RIGHTSHIFT-1
OUTPUT-SELECTOR-LEFTSHIFT-1

The Q control field of an ALU instruction may be specified by using one of
these symbols:

SHIFT-Q-LEFT shift Q left (shifts inverse of ALUC31)> into Q<0>)
SHIFT-Q-RIGHT shift Q right (shifts ALUCO> into Q<31))
LOAD-Q load Q from output bus

'If none of these is present, the default is to do nothing to Q. (Instead of writing LOAD-
Q. one may write Q-R in the destination portion of the instruction. This does not mean
that Q is a functional destination; it merely forces the operation to be ALU, and forces
the Q control field to be LOAD-Q.)

' The carry field may be specified by ALU-CARRY-IN-ZERO or ALU-CARRY-
IN-ONE. Note that the SUB, M+M+1, M+A+1, and M+1 operations have ALU-CARRY-
IN-ONE as part of their definitions, so it is not necessary to specify it explicitly.

68 ' The CADR Micrbproc&ssor :

BYTE operations

If a byte specifier is present in an instruction and the op-code is not explicitly
forced to be JUMP or DISPATCH, then the op-code is BYTE by default, performing a
"load byte" type of operation.

To get a "deposit byte" type operation, the symbol DPB is used; similarly, to get
a "selective deposit", SELECTIVE-DEPOSIT is used. For example:

((A-FOO) DPB M-BAR (BYTE-FIELD 3 6) A-FOO)
;8 true-PDP-10 style DPB; the low octsl
; digit of M-BAR replaces the third lowest
; octal digit of A-FOO.

((A-ZAP) DPB M-BAR (BYTE-FIELD 3 6) A-FOO)
;;imilar,.but the result is placed in
: A-7AP. A-qu is not altered.

((A-ZAP) SELECTIVE-DEPOSIT M-FOO (BYTE-FIELD 16. 8) (A-CONSTANT -1))
+A-ZAP gets a copy of M-FOO with the high eight
; bits and the low eight bits replaced with all ones
; (alternatively, 1t gets a copy of the -1
i with the middle 16. bits replaced with
; the corresponding bits from M-FOO)

DISPATCH Operations
Four op-codes are defined in CONSLP for dispatching:

DISPATCH

DISPATCH-CALL
DISPATCH-XCT-NEXT
DISPATCH-CALL-XCT-NEXT

- These are provided purely for cosmetic purposes, since the actual dispatch action is
controlled by the dispatch table. CONSLP makes no attempt to check that the "correct”
op-code. is used with a given dispatch table. By convention, the XCT-NEXT versions are
used iff the instruction following the dispatch instruction will be executed (N bit not set),
and the CALL versions are used if the P bit is set.

To specify the value of the 10-bit "immediate argument” which is loaded into
the DISPATCH CONSTANT register, one may use

. {1-ARG {expression)) ;immediate urgumnht '

69 TheCADR Microproc&#ot

in the dispatch instruction.

There is a special ps-eudo-op to facilitate use of the DISPATCH CONSTANT to
pass a small, constant number as an argument to a subroutine. The form

* ((ARG-CALL FOO) (I-ARG BAR))

generates a DISPATCH instruction to a one-word table containing a CALL-type transfer
to FOO, and puts BAR in the dispatch constant field of the dispatch instruction. FOO
may then use the READ-I-ARG functional source to pick up and act on the argument.

Miscellaneous Function 2 (write into the dispatch memory) is specified by the
symbol WRITE-DISPATCH-RAM.

JUMP Operations

CONSLP defines a large number of names for the various JUMP operations.
These are all built out of a logical progression of pieces:

{(type> <condition> <{xct next)

The <type> may be either JUMP, CALL, or POPJ, meaning that no bits, the P bit, or the
R bit is set. The <condition> may be one of the following:

IF-BIT-SET
IF-BIT-CLEAR

EQUAL

NOT-EQUAL

LESS-THAN -

GREATER-THAN

GREATER-OR-EQUAL.

LESS-OR-EQUAL

IF-PAGE-FAULT

IF-NO-PAGE-FAULT |

IF-PAGE-FAULT-OR- INTERRUPT

IF -NO-PAGE-FAULT-OR- INTERRUPT

IF - PAGE-FAULT-OR- INTERRUPT-OR- SEQUENCE - BREAK
IF-NO-PAGE - FAULT-OR- INTERRUPT-OR - SEQUENCE - BREAK

If omitted, the <condition> is assumed to be "always". The <xct next>, if present, is
~-XCT-NEXT; its absence denotes the presence of the N bit, which inhibits the instruction
after the jump if the jump is successful. The three parts are connected by "-",
Examples of these operations:

CALL-LESS-THAN

70 The CADR Microprocessor

JUMP-LESS-THAN-XCT-NEXT

CALL

POPJ-IF-BIT-SET

CALL- IF-PAGE-FAULT-OR- INTERRUPT
CALL-IF-BIT-CLEAR-XCT-NEXT
JUMP-XCT-NEXT

POPJ-XCT-NEXT

The POPJ-XCT-NEXT operation is not to be confused with POPJ-AFTER-NEXT, which
may be used in any instruction to set the POPJ bit.

Jump instructions which perform an arithmetic comparison should have both an

A and an M source; the sources are compared. Jump instructions which test a bit shoulgl
have an M source and a byte specifier for a 1-bit byte to test.

Functional Sources

14

g W N

25
24

=)}

10

11
12
13

The following names are supplied by CONSLP for the various functional sources:

READ-I-ARG The dispatch constant
MICRO-STACK-PNTR-AND-DATA SPCPTR and SPC contents
MICRO-STACK-POINTER Byte specifier for bits <28-24>
MICRO-STACK-DATA Byte specifier for bits <18-0>
MICRO-STACK-PNTR-AND-DATA-POP Like 1, but pops SPC stack
MICRO-STACK-POINTER-POP Like 1, but pops SPC stack
MICRO-STACK-DATA-POP Like 1, but pops SPC stack
PDL-BUFFER-POINTER " PDL-pointer register
PDL-BUFFER-INDEX PDL-index register
C-PDL-BUFFER-INDEX PDL-buffer addressed by index
C-PDL-BUFFER-POINTER PDL-buffer addressed by pointer
C-PDL-BUFFER-POINTER-POP PDL-buffer addressed by pointer, pop
OPC-REGISTER ' The OPCs

Q-R Q register

VMA VMA register - -

MEMORY -MAP-DATA MAP[MD]

MEMORY -DATA MD

LOCATION-COUNTER LC

10

11
12
13
14
15
16
17
20
21
22
23

30 .

31
32
33

n . The CADR Microprocessor

Functional Destinations

The following names are provided by CONSLP for functional destinations. Note
that some of them are the same names used for sources; CONSLP distinguishes usage by
context.

LOCATION-COUNTER ‘ LC

INTERRUPT-CONTROL : Interrupt Control Register
C-PDL-BUFFER-POINTER Pdl location addressed by PDL POINTER
C-PDL-BUFFER-POINTER-PUSH Push data onto pdl, increment PDL POINTER
C-PDL-BUFFER-INDEX ‘ Pdl location addressed by PDL INDEX
PDL-BUFFER-INDEX PDL INDEX register

PDL-BUFFER-POINTER PDL POINTER register
MICRO-STACK-DATA-PUSH Push data onto SPC stack

OA-REG-LOW Next instruction modify, bits <25-0>
OA-REG-HI v) Next instruction modify, bits <47-26>
VMA ' VMA register

VMA-START-READ , - VMA, initiate read cycle
VMA-START-WRITE VMA, initiate write cycle
VMA-WRITE-MAP VMA, MAP[MD] « VMA

MEMORY - DATA MD register

MEMORY-DATA-START-READ MD, initiate read cycle

MEMORY -DATA-START-WRITE MD, initiate write cycle

MEMORY-DATA-WRITE-MAP MD, MAP[MD] « VMA

The symbol Q-R may also be used as a destination; it causes an ALU instruction
to have its Q control field to be set to "load Q from ALU output”; this is equivalent to
specifying LOAD-Q in the instruction. Do not use the output bus shifter in connection
with Q-R as a destination!
Operations Common to All Instructions

The symbol for the POPJ bit is POPJ-AFTER-NEXT.

Miscellaneous Function 3 is denoted by LOW-PC-BIT-SELECTS-HALF-WD,
(This feature is described in greater detail in an earlier and a later section.)

Expression Programs in CONSLP

Wherever an expression may be used in CONSLP, the following arcane forms

~may be used. In particular, the value of a symbol is normally an expression instead of a

simple number. Whenever an expression (or a symbol with an expression as its definition)
is encountered, it is evaluated according to the following rules:

<number> ' - Evaluates to itself.

72 The CADR Microprocessor

(PLUS <expl> <exp2>) Adds together the two expressions, and combines their
properties (such as byte-specifier-ness).

(DESTINATION-P <exp>) A conditional: if encountered while assembling a
destination, returns the value of <exp>, and otherwise
NIL.

(SOURCE-P <exp>) A conditional: if encountered while assembling a source
' (M or A), returns the value of <exp>, and otherwise
NIL.

(DISPATCH-INSTRUCTION-P <exp>) A conditional: if encountered while assembling a
: DISPATCH instruction, returns the value of <exp>,
and otherwise NIL.

(j UMP-INSTRUCTION-P <exp>) - A conditional: if encountered while assembling a
JUMP instruction, returns the value of <exp>, and
otherwise NIL. '

(ALU-INSTRUCTION-P <exp>) A conditional: if encountered while assembling an
‘ ALU instruction, returns the value of <exp>, and
otherwise NIL. '

(BYTE-INSTRUCTION-P <exp>) A conditional: if encountered while assembling a
: BYTE instruction, returns the value of <exp>, and
otherwise NIL.

(NOT <conditional>) - Negation. <conditional> must be one of the above
conditions! forms.

'(OR <cond1> ... <condn>) Like a LISP OR, returns the first non-NIL conditional.

(BYTE-FIELD <size> <pos>) As described earlier, defines a byte with the given size
' and position from the right. ‘

(LISP-BYTE <ppss>) - As described earlier; if ppss is written in octal, then this is
like (BYTE-FIELD ss pp). If <ppss> is not a
number, then it is a LISP expression (not a CONSLP
expression!), and is evaluated in LISP,

(BYTE-MASK <byte specifier>) Value is a word which is zero everywhere except for
‘ being all ones in the specified byte. This is a kind of
‘conditional, in that it returns NIL if the byte
specifier doesn't really specify a byte.

73 The CADR Microprocessor

(BYTE-VALUE <byte specifier> <value>) Value is a word which is zero everywhere.
except that it contains <value> in the specified byte.
This is a kind of conditional, in that it returns NIL if
the byte specifier doesn’t really specify a byte.

(OA-HIGH-CONTEXT <word>) Assembles <word> as an instruction, and returns
the high half (bits <47-26>), as if for use by the OA
register feature (next instruction modify, functional
destination 17).

(OA-LOW-CONTEXT <word>) Assembles <word> as an instruction, and returns
_ the low half (bits <25-0>), as if for use by the OA
. register feature (next instruction modify, functional
destination 16).

(FORCE-DISPATCH <exp>) ° Returns value of <exp>, but also forces the
! instruction to be a DISPATCH instruction. A
conflict causes an error.

(FORCE-JUMP <exp>) ‘Returns value of <exp>, but also forces the instruction
to be a JUMP instruction.

(FORCE-ALU <exp>) Returns value of <exp>, but also forces the instruction
to be an ALU instruction.

(FORCE-BYTE <exp>) " Returns value of <exp>, but also forces the instruction
to be a BYTE instruction,

(FORCE-DISPATCH-OR-BYTE <exp>) Returns value of <exp>, but also forces the
instruction to be a DISPATCH or BYTE instruction.

(FORCE-ALU-OR-BYTE <exp>) Returns value of <exp>, but also forces the
) instruction to be an ALU or BYTE instruction.

(I-MEM-LOC <tag>) - Returns the address represented by <tag> in locality I-
: MEM as a right-justified value.

(D-MEM-LOC <tag>) | ' Rett;rns the address represented by <tag> in lecality D-
MEM as a right-justified value.

(A-MEM-LOC <tag>) Returns the address represented by <tag> in locahty A-
: ' MEM as a right-justified value.

(M;MEM-LOC <tag>) Returns the address represented by <tag> in locality M-
, ‘ MEM as a right-justified value.

74 The CADR Microprocessor

(EVAL <lisp exp>) Returns the result of evaluating in LISP the S-expression
<exp>.
(FIELD <name> <value>) ~ Makes a note that the field <name> has been specified.'

then multiplies together the values of <name> and
<value>; if <name> has a LISP CONS-LAP-
ADDITIVE-CONSTANT property, this is then added
in. (This obscurity is the primitive from which all.
field specifications are made.)

(ERROR) Error if this is assembled. Useful in conditionals.

‘As examples of how conditionals might be used in expressions, consider these
definitions (which are similar (but not identical) to the ones actually used in CONSLP):

(ASSIGN Q-R (OR (SOURCE-P (FIELD M-SOURCE 7))
{FORCE-ALU -3)))

" (ASSIGN MEMORY-DATA
(OR (SOURCE-P (FIELD M-SOURCE 12))
(FIELD FUNCTIONAL-DESTINATION 30)))
(ASSIGN MEMORY-DATA-START-WRITE
(OR (SOURCE-P (ERROR))
(FIELD FUNCTIONAL-DESTINATION 32)))
Miscellaneous Pseudo-Operations
Several identical words may be assembled consecutively by saying:
(REPEAT <count) C(word))

‘The location counter within the current locality may be set by

(LOC (valued) ;sets 1t to (value)
(MODULO <nd>) " ;advances it to the next multiple of <n)

If the MODULO operation is used in A-memory, wastage is avoided by filling in the
skipped-over locations with constants.

75 The CADR Microprocessor

CADR Features and Programming Examples

In this section the various features of the CADR machine are examined and
discussed in detail. An attempt is made to give some feeling for how each feature fits
into the overall structure of the machine, and the purposes for which the feature is
intended. Short programming examples using each feature are presented.

Timing - The N Bit and the POPJ.Bit.

Because CADR fetches the next instruction at the same time it is executing the
current one, by the time the effect of a JUMP or DISPATCH is known the instruction
following the JUMP or DISPATCH has already been fetched. Unless suppressed by the
N bit, this instruction is executed before the instruction branched to. The effect of this
on programming is that one should "code the branch one instruction sooner”. The
mnemonics CONSLP provides for the various branching operations normally set the N bit,
.thus doing the straightforward thing at the cost of wasted cycles; one must append "-
XCT-NEXT" to the mnemonic to clear the N bit and so bum the code.

For example, consider these two pieces of code:

((A-FOO) XOR M-BAR A-F0O) A +XOR M-BAR into A-FOO

(JUMP-IF-BIT-SET MUMBLE MUMBLIFY) ;branch on MUMBLE bit
(JUMP-IF -BIT-SET-XCT-NEXT MUMBLE MUMBLIFY) ' ;branch on MUMBLE bit
((A-FOO) XOR M:BAR A FOO)) ;XOR M-BAR into A-FOO

- These both perform an XOR and conditionally jump to MUMBLIFY, but the first one
- wastes a cycle if the JUMP is successful. Notice the convention of "exdenting” an
instruction which is under the influence of an. XCT-NEXT to make it more visible.

If a CALL transfer type is executed, the return address saved on the SPC stack
depends on the N bit:

(CALL TME-SUBROUTINE) ;call, N bit set
({(A-FOO) XOR M-BAR A-F00) sreturn here after call
(CALL-XCT-NEXT THE-SUBROUTINE) call, N bit clear
((A-ARGUMENT) ADD M-BAZ A-FOO) 1do this before entering the subroutine
((A-FOO) XOR M-BAR A-F0O) © ;return here after call

If the N bit is set, PC+1 is pushed on the SPC stack; otherwise
PC+2 is pushed.

The POPJ bit may be set in any instruction.
It causes a RETURN transfer, but only after the next instruction has

76 The CADR Microprocessor

also been executed:
ADD - THREE -WORDS ;subroutine to add'together A-1, A-2, and A-3
((M-RESULT) A-1)
(POPJ-AFTER-NEXT (M-RESULT) ADD M-RESULT A-2)
((M-RESULT) ADD M-RESULT A-3)
Again, the idea is to specify the desired control "one instruction early".

Consider the following program:

STARY (JUMP-XCT-NEXT FOO)
(JUMP-XCT-NEXT BAR)

FOO (JUMP-XCT-NEXT FOO)

BAR (JUMP-XCT-NEXT BAR)

When started at START, it will go into an infinite loop alternately executing FOO and
BAR. Effectively it is in two "jump point" loops at the same time! -

Byte Manipulation -

By using M location 2 (by convention a source of zeros) with a BYTE
instruction, one can clear any bit or field of bits in any A memory location:

((A-FOO) DPB M-ZERO A-FOO (BYTE-FIELD 1 31.)) ;Clear- sign bit

It is often convenient to reserve another M memory ‘location to contain -1 (all ones), in
order to be able to set bits easily:

((A-FOO) DPB M-ONES A-FOO (BYTE-FIELD 1 31.)) iset sign bit
In a similar manner one can write a routine to extend a signed 24-bit number to 32 bits:
SIGN-EXTEND ;extend 24-bit number in M-NUM
(POPJ-AFTER-NEXT POPJ-TF-BIT-CLEAR M-NUM (BYTE-FIELD 1 23.))

((M-NUM) SELECTIVE-DEPOSIT M-NUM (BYT;-FIELD 24. 0) (A-CONSTANT -1))

‘Another way to do this, which doesn't réquire the use of POPJ, is to use OA modification
to select whether the M source is M-ZERO .or M-ONES:

({(OA-REG-HI) (BY?E-F!ELD 1 23.) M-NUM) ;low M-source bit gets sign
((M-NUM) SELECTIVE-DEPOSIT M-ZERO (BYTE-FIELD 8 24.) A-NUM)

a The CADR Microprocessor

This requires that M-ZERO and M-ONES be an even/odd pair.

Normally bytes can only be loaded from an M source. However, it is possible to
load a byte from A-memory, provided that it is at one end of the word, by the following
trick:

(DEF-DATA-FIELD X-FIELD 6 0)
(DEF-DATA-FIELD ALL-BUT-X-FIELD 32 6)

((DEST) SELECTIVE-DEPOSIT M-ZERO ALL-BUT-X-FIELD A-FOO)

The Instruction Stream

<<Some new stuff should be written for this>>

The SPC Stack

The SPC stack is 32 locations leng, each location containing 19 bits (plus parity).
It is indexed by SPCPTR, a 5-bit up/down counter. It is used primarily as a microcode
subroutine return stack, but besides the-14 bits needed to save a microcode PC there are 5
bits for software use, one of which is the bit used for the macroinstruction pair fetch
feature mentioned above. - :

SPC Stack Location - 18 15 12 9 6 3 0

| l | | | | |

| | |

| 5 | 14 |

|]]
| |
Software bits---ccccccccccacaa. ! |
‘ |
Saved return address--------ccccccmccccmccocccana. !

There are two ways in which to write into the SPC stack memory; both of them
also increment SPCPTR, thus causing a push operation. A JUMP or DISPATCH
performing a CALL transfer type (P bit set, R bit clear) causes a return address to be
pushed on the stack as described earlier. The five software bits are set to zero. Writing
into functional destination 15 (MICRO-STACK-DATA-PUSH) pushes the low 19 bits of
the output bus data onto the SPC stack. .

The SPC stack is read by a JUMP or DISPATCH performing a RETURN
transfer type (R bit set, P bit clear); the low 14 bits popped off the stack are put in the
PC, and the software bits are ignored, except for bit 14-which causes NEXT-INSTR. It

73 | The CADR Microprocessor

can also be read as M functional sources 1 and 14. The first (MICRO-STACK-PNTR-
AND-DATA) merely reads the data (and SPCPTR) on the top of the stack, while the
second (MICRO-STACK-PNTR-AND-DATA-POP) pops the stack after reading the data.

There is no way to explicitly set the contents of SPCPTR. However, a good
trick is to use the following loop:

FOO . ((M-TEMP) MICRO-STACK-POINTER-POP) ;get just SPCPTR
(JUMP-IF -EQUAL M-TEMP A-ZERO FOO)

A better trick is to use the following loop, which not only is shorter, but is recursive
rather than iterative, and has the important advantage of being more obscure:

FOO (CALL-NOT-EQUAL MICRO-STACK-PNTR-AND-DATA -
(A-CONSTANT (PLUS 1 (1-MEM-LOC F00))) FOO)

This is a good thing to do on initialization so that the stack will begin in a known place,

thus aiding debugging via the diagnostic interface.

_ There is no provision for detection of SPC stack overflow or underflow. It is the
responsibility of the programmer to avoid nesting subroutines to a depth greater than 32.

The PDL BUFFER Memory

The PDL BUFFER is intended to be used as a special-purpose cache in the Lisp
machine to contain the top portion of the Lisp pushdown stack. It has 1024 locations of
32 bits, and can be indexed by either the PDL POINTER or the PDL INDEX. PDL
POINTER is a 10-bit up/down counter, while PDL INDEX is simply a 10-bit register.

The PDL BUFFER is manipulated through various functional sources and
functional destinations, The PDL POINTER and PDL INDEX registers may be read and
written. (On CONS, these could only be read together, but on CADR they are read '
separately to facilitate doing arithmetic with them without the need to extract a byte
first.) The contents of the PDL BUFFER location addressed by the contents of PDL
INDEX may be read and written. The contents of the location addressed by the contents
of PDL POINTER may also be read and written, and in this case the PUSH and POP
operations may optionally be done by incrementing or decrementing the PDL POINTER.
The pointer decrements after reading and increments before writing, so it always points to-
the topmost valid location. '

It doesn’'t work to specify both C-PDL-BUFFER-POINTER-PUSH and C-PDL-
BUFFER-POINTER-POP in the same instruction. On the other hand, the same effect can

~always be achieved simply by using C-PDL-BUFFER-POINTER for both source and
destination instead. ' '

There is no provision for automatic overflow or underflow detection on pushes
and pops of the PDL BUFFER. In the Lisp machine, the PDL POINTER is checked on
entry to every function, and at a few other necessary places. If there is insufficient room
left within the PDL BUFFER for a maximum size frame, some of the PDL BUFFER is
stored into main memory to make room. If there is also insufficient space left within the

79 "The CADR Microprocessor

virtual memory allocated to the PDL, a PDL-OVERFLOW error is signalled. Similarly,
the function exit code decides whetheér to pull some stack back in from main memory.

e s iy o1 i ‘o o st BavE

v ;06600'

3VAAINE 2UVKINIS

0F-¢-11 muve

10 enscmary

narve

ant

"
k]
i
x
El
iy
i3
s
i5
i=
o
>
S
§
§

REGISTER MEMORY ALU PROGRAN COUNTER INST MEMORY ONE INST MEMOKY TwO MAIN MEMOKY INTER
J1 Jz J3 Ju J5 Jé
T He o CX.T S—— 0 .
L) 0 H
fr enl)) B . N
CLE)) Oe [!
S rrrm— 3 :
[7- Mik O H
N LIN] Ce. 1
[15_3wo I oo
EAELY) o '
—
)) S J
0 o]
0 .
0o 0
T
- 5
0 0 B) f
0 0 3 1
o D !
o o8 H
T oo
[
0
B T
0 3 ry
O 0
0 S O 0
)
0 S v
0
O 5 0
o
oo
Oe
oo
o8
o o
) o
oo e
Se o8
™y
0
0
.
()
T
T
T
ToCLan) o 1.8 cuc 0 S
Ty -awi - = ° ~IwE)
5.0 “wPb A0 =3 WP M S
- - o =1 L3 o
O @ND L] 8
1{6 -wa T S) =i X
iy on, =3 ry
15__IRS 16 cl e
I 1T e) oo s IR .
+ 10 b &
™S 1 EARD) Zie IRO cl
=) 3 Q
S_IR40 b AW) o 3
2]e 1 3
29 __DPaAROK GND &N °
| IR o ou8 1 JIRY2 .
IRU3 o CE ° L)
O DEST [X=1-) o
37 st o 1 . ° 0e5PY 1 ~ £ o8
B2 G Sl
Wi -SPY.OR (42 o OB [T
= 0
¢ b1) ”ﬁ&m 0826 Se) .
[l o o o8 {2} 1% (1] oe
= N ND - °
1] i s 51 1 o8 o
CENCET A o
EL7Y 56 A0 0 B
I75 3K;] o . 383 1)
K 0 SNL 4! 6]
[T) 157 0
3 = G4 eAL! 63 0 ~Pr 0
~Kie b o ~Klio * - 24
€T __-R 68 8/ 6] 0 ~FCIl -5TC32 9
=3te 5T X ST 0
(2 _—woh o oe AT T} .
13 - vMASK oM oe 7. SVMACK I} L]
It II . oe o IS [l Se o
S o) oe O8N | [18.0 M Oe o8
K3 5N 3 80 &
{213 o, 0 oo SeShh g M2 Ge. =)
3; - =) OUSPY I [o »
ai oM)) LYY
o IRT M3 o8 o3
AM] SnD) SMD
) . [} 3]
S e 3 3
o IR 1 [)
1710 33 [°)
X o)
!0l SIN 1 SIN 1820 .
102 ESEMCE TX K [1o%0 L]
ios—~pe\Z. o <R S OB S
V6T~ T S 0815)
- S 1Y v
(IR TECT) o®
(ERRELYT D IL
115 IR SR
Nr_IRY ¥ T3l 11§ ce3
o 4 7] D
[¥1) o 2! IX| i} Al
3 _IRI) 1738 TR13 124 AF:
25 Tw) T i T2 A
1270 IR\ 1278 IR\ I Al
~ WAL o ~HALT. S
¥ M H 1¥0 ERR 2
13 LUIL = AT ¥) .
B ~TR, 13— ~TRAP i .
I I 1 LI . [l
I 3 T T
>
ELECTRICAL COMMECTIVITY OF J1, T2 « 33 IS IDENTKAL 2
ELECTRICAL CONNECTWITY OF I, TE € T 1S 106NTICAL. 2
TYRCAL PIN pEsimwaTion 15 J2L36 e
e fTHRU wo POl
“-f‘“:u: “This dsta and information is proprietary to, and a ;_“g
valusble trade sscret of, SYMBOLICS, INC., a Delawars R H
Carporation. It is given in confidence by SYMBOLICS, "
and may. not be used a5 the basis of manufacture, or be 3&
roduced distri 2
@ INST 18 ZND OK WTH GUARTER © USE OF SivwAL b N or “."“' or be . butad m‘m ..'." 3
D ST N WEFT MLk © 30URCE OF SiamAL party, in whole or in part, without the prior written &
: °

consent of SYMBOLICS.”

VEw A
.543
i

.mI D

4.80

20 AMP, 125 VAC
Jwiks GROUNDME
STRAKGHT BADE

L

IMET - HBBEL 2315
P - wssee 1313

o o TIRRO-

“This dsta snd information is proprietary to, and a
valuable trade secret of, SYMBOLICS, INC., s Delaware
Corporation. 1t is given in confid by SYMBOLICS,
and may not be used as the basis of manufacture, or-be
reproduced or copied, or be distributed to any other
party, in whole or in part, without the prior written
consent of SYMBOLICS.”

CrecT BreAcsx
AIRPAX UPL-11-1-42-203

SoLID -STATE RAAY
cRrYDON DI2YO

oo}

FANS

BARRIER STRIP
TRU CiKH ISH~11-10-001

EMX FLTER
SAE HPs-20

+5voe

PoweR SUPRY
Acorian 5€BSO

PuweR ON- CFF

1
SaLp STATE RELAY O

Recerracce
NUBBELL $258D

/50a fw

15

FUANENT TRAVESCRIk R
TRIAD FI3X

; e ; I \ 3
X3 K 2ZH - R 3
\ N i/ T §
Cavvenenxe | - T o ! y ;i
s 0 1 W % [wwg g
: § 3 g 8 3 N
recerraces - 2 0
sosomu. Si58 N - &
o T o~ TR N
i)
11 2 2 %3
e LEH i 18
T <n AY § 3‘
CIRUIT Breaver t —
ARPAR UPL-11-]~ 60~ 103 I
/D - CONIENEANCE 2
TWIST LoCK CoNveETTOR - 3 §
20 AMP , 125 vAC Q
recermcie s !
NUBBELL 5258 1Y ¥
— 3

COMNECTOR | SISNAL
MEX /5-24-021 (Ros)
” 15-31- 1122 (KEcerTACLE)

TERMINAL PINS
MoLex OZ-04-6202 ok
“ 01 06-5202 FEMME

(Loos& ,6cep cver wicEL)

HAMD TooiS
MOCER 11-01-0008 CRINPING
" Hn-al- ocot INSERTION
. 1-03-0007 &ATEACIOR

SYMBOLICS, INC.

[e e VI

POWER SEQUENCER, Schematic (120VAC)

l 101091

o

JL)

I 1-16 SLove uP

3¢S 2036 SLoPE Jown

000

i3t

Pty

==

0 ¥zA uaul

© SRoUND ComwutCTION(VSS)

@ HL Comnechion (Vo)

O 3¢ ok ComPOMENT PAD
€

TN

P
ALiew A1 O E1Y
AUGN A8 To FiS
Ausn A19 To Fi6
Srace merony 3Cs

AT ov

THERMALLY
REUEVED

SAHPLE LAYOUT

MEMoRY SecTioN

s Y s
GuD
werresnor “ v

i5F

“This data and information is proprietary to, and a
valuable trade secret of, SYMBOLICS, INC., s Delaware
Corporation. It is given in confidence by SYMBOLICS,
and may not be used as the basis of manufacture, or be
reproduced or copied, or be distributed to any other
party, in whale or in part, without the prior written
consent of SYMBOLICS.”

2 1%
H
aoxn { Lo
nonl reoal

y i
L L
i
xsre | lastm
aool mo

xans
1eois|

THE 3¢ ICs SHOWN ABVE (Row A) ARE DYPLICATED
FOUR TiMES (TOTAL OF 4x 3¢)

IN Row B REPLACE @ BY o

IV Row C REPLACE @ BY 2

In Row D RepncE & BY 3

H.. oL e =

-

113 ® o 3 9 30 3 2y 5 26
H
%-
1 i
a1t xa12é x8123 xBI22 BI29 reze L2 XBI3 ABI30
Miﬂmmmmnwmw
% 26510
IN NUMBER S
Vo tave ag LGPONID PINS |48
FoR ‘240 SEWIES 1. PN wuMRERS
. ABLD S&mas
ARE |WDETENDENT
& PaY BE 06
orverey
AuGH
Hewe —>

w
Swi
Sw
1 s
:' Swt®
£ 1
2 swib
e
5E
BOARD SELECT
4 0
oo U1 |3 «a0 xpos s w5l 16 ane xmom SP T [C xn
ot 2] ey a0 ®9 et mn s s
202 13| w2 A0 anvo xpoe Al e o 18116
o3 9 (mx3 xsoit ! 10yt e | As19 xeony !l 0 ye1ry
- ABaso R d ~nsié ~dous2y
L - xgost ey -Xeusi1 -xpasis
~XBUSZ -xBsi0 “Awsid -x8US2%
~XBUSS ~Xpusil ~XBISI9 ~XBUS2T
~XbRIVE 2k 12 bl L o
25F 2%6F 21F 28F 29F
SCMBOLICS 1NC
PC BOARD 101201 605 HIGHTREE ROAD SANTA HONCA, (A 90401
ASSY 101202 T e 0vB]
w2981 e
MENORY , Schematic
Lo AL3nsen IIOIZOO

'
32
3
2
b3

hal

3
g
H
o

15] i1

Z—

2

£

3k

ol
IS b

ERL

“This data and information is proprietary to, snd a
valuable trade secret of, SYMBOLICS, INC., a Delaware
Corporation. It Is given in confidence by SYMBOLICS,
and may not be used as the basis of menufacture, or be
reproduced or copied, or be distributed to any other
party, in whole or in part, without the prior written
consent of SYMBOLICS.”

Z‘ -mli
< o 5]
¢
3
1] ,: - -bARY
£ 2 i 4

sei3 4
7]
seve =
wit
6 ~HF FoNM

z
-MseLIA o st

=MSeLoA
23 P 28 26 21 8 29 20

SYMBEOLICS,ING.

PC BOKRD 009191 PROGRAM COUNTER Sheet 144
ASSY 009192

"SJ\:miu; 009'90' leho V. Blankentawe

e A& X NS4 7E D Mowrbee 1, 1550

Res 8

2

L e

e
ZRYSA 6
o &JA - -1eons

IR wA 0—1
f::m A -’i -sTaTEIT

~VHiok 21

1
P3| s 104

g
- Remn

NC
23
e
L'
s o

we 8,

e 2
wReseL -

&no.

i

s

[

IR phatebnebolols =)

7l—1

PGF.0R, INT. R S8
PGF.OR INT

“This data and information is proprietary to, and »
valusble trade secret of, SYMBOLICS, INC., a Delaware
Corporation. It is given in confidence by SYMBOLICS,
and may not be used as the basis of manufacture, or be
reproduced or copied, or be distributed to any other
party, in whole or in part, without the prior written
consent of SYMBOLICS.”

H
SprTey
& 3

<umsnu€—
ZERD. 168~

>

T

L oren

=
>

n
IR
iz faje

2&8

©

~ v SRSl

&R M kejnfe

u NRY

T >
<

>

LI

= - HIMEuBA
-2 ~LOHERB

d
—l'leulA

SYMBOLICS. INC

PROGRAM COUNTER Sheet 2063

IS-;lwmf;f. ()O‘)l‘;o] John V Blankesiker

Noamhev 11,1990
RevB

) : 3 m 5 3 7 3 9 10 T) 5 4

Byl

Eo =y

«
15
-
2
g
H
I
”
%

z SRun€ : Srewh
o Sheuny -2 3 Shcwio
12] SRwd | 2]

SRl Srewe
2 13 Iy 3
1 [} 4]
5] g 5] A
i T [1
2

- SACSRPOPREAL -

Rls ot

skcrrey
3 creprer mrz-

pLEYY
4

N
"

2
—srmey 3w

19&.1

L

2 g Sivo

2

GND
cBISH

obmp

vty 1L
ovmp

eerae |
osp

Oes

sewt 4

Shwé
SRowS &
Shwy

[+

SRo}
SRoé

SRoy

SRW3
SRewl
SRwl
SRwo

b

a0

l

|—Fn

w

1

~5wP

]

~SRPTRY-

i

SREPTRY

% skos
Sko2.

swoo

12 1023 FF1

(Ter1%)

£ curmr

KItSA

YT T

Y|
— 14
_l osco

TPWZ
<0 —cres

2| -TrRep -FFI

2 reear

“This dats and information is proprietary to, and a

SESTSRD
103

FFID
-Haws
-CRES

TPRY
~TPR3
=TPRY

28

4 wireear

HIFREQL ¢ ~HE¢
R

14
|- weowvp
1_0 HFTomm

~HF

29 %0

SYMBOCICS INC.

PROGRAM COUNTER Sheet 3463

valuable trade secret of, SYMBOLICS, INC., a Delaware

Corporation. It is given in confidence by SYMBOLICS, -

and may not be used as the basis of manufacture, or be Iilmhc 009”0' Joho V Blankenbaker

reproduced or copied, or be distributed to any other Novnber [l 1950
Pev B

party, in whole or in part, without the prior written
consent of SYMBOLICS.”

[T —

[

consent of SYMBOLICS.”

“This dota and information is proprietary to, and o
valuable trade secret of, SYMBOLICS, INC., a Delaware
Comporation. It is given in confidence by SYMBOLICS,
snd may not be used as the basis of manufacture, or be
reproduced or copied, or be distributed to any other
party, in whole or in part, without the prior written

?

" e [4

I

i

1]

It

il

a}—1

ol—

Li B - R
-RaT

(]

m :lu’

8

13 [i]
233

4 -kaz
-3
~Rox

FEE N

qK LTATIC Mos RAms

PweuT + zial
— i . — —
7 B 7 —17 —— 7
o T I -) Ty . w8 ap—~ T°
- Twe3—{ | ner— | et~ Taeo
13
[E]
T3]
2]
3
7
3
i
4+
3
LET P W " E}lu M 2T} ul B2k 1o
Jurit =] Tues —{] Twkz =] ETE N Twwo —for
] 2
an
i3
74 Ao
Bl
a1
I
3 AT
ﬁ L
~y .
3 Al
2},
1
- - - 8
] - - - o=
- —_— —_— |-c€
wo 'l w2 N
oo 4} rdlremen 3en sevs
wo Jes sm
weo 3e0 sevt
IeA 0 2 ¢pre
e !
T s
e a8 | sPy
e an s
brH am B shi
are i Re sP1o
had shyre 1

2 181
oug
Haeg TN
ong
Ezm e
o8
e 3
2816
%

Lo KX XNXK7 897

3YMBOLICS, INC.

INSTRUCTION MEMORY DNE Shiet los £

OD200 Yohn V. Blankenbaker
. Sept 22, 1380

e i < il

I
s X
Rl
D
“FCD
-iesp
110 4
-ep

6
C Eid
o 0

2]

D
wob

—Tuep-

1 -ICEIB

lwi‘ﬂ"

-rens
- ud K
-RAL
-nes
-l :‘
D - PLes
-# S8
R
-3
-ras 3
-8 i
-peos

-luEp

8
[‘ ~KEoB 2]

E
L
F
L
! 2

v

“This data and information is proprietary to, and »
valuable trade secret of, SYMBOLICS, INC., s Delaware
Corporation. It is given in confidence by SYMBOLICS,
and may not be used as the basis of manufacture, or be
reproduced or copied, or be distributed to any other
party, in whole or in part, without the prior written
consent of SYMBOLICS.”

133 i3y

H

i

b7 E 1 —
-1 -1
] e - .
!
5]
s
18]
\
-] - 5
] s
o) 11
—10 e 173
MI)LIE suaz 24— [
(]
2
1
|——3 - - — a8
|— — —1 o]

—— —
4 1 ——
- 10 19 | 1x
E Surio 2 T rwes —'—'-E suny 2]
w
2 <
H e
=3 olri
": € ~'§
* < e
4]
4 s -
3 il
3 1.€
= 1.6 4‘
! i
| - - o] we Y
— — }—
] L] L] L]
1 —
. EELR' E w10 " —-—‘l“ nf e
Toery E p? - yoey —f] Jue?
12
13
[2
I Py 7]
Rz =
W i
[} Rauvrame —]
wrs 2]
- L]] 5 ree Y
| —} L o}— 15

1854 From

SYMBOLICS, INC
INSTRICTION MEMIRY ONE Shect 2063

OOI200)JohnV Blankoubaker
Sept 22, nwo

loc XX\ NSp 797

UOTE ! 6% 0oq210
foe SHT 3

' 2 2 Y 5 (3 7 8 3] " 12 i3 L] 1
b 205 1 2y 41 22 1 1 ue —1 ne =] -
’-"l'ﬂE L g Y I w_-wE FE | gy :,...uﬂE“ e B wa PO O s
Twkey Tweee r— uevs — 2wave +— TwRir 16830, FreiZ] Erer Ty B siwar T] 2wie |
i ;i
i] 14
E g
; 0 b}
W] 1
L1
s o
3
' N
4
- || -
] H = e
L]]
o e 1 b2 - 6 22y] 2]
5 nwwsy V35 M”JLE R ST I N B oY PR i Iimglﬁa R TR i .7 g g
'_vll'g JTuee? Nwkug Ev {3 Turst [I'uk!o"_ Turzs s Jwkvz | weel Jwrdo
~20r L b1)
R) Y
-R¥F I T 3 TuRET
-RIF I - ——
B oot v 7 uRF2
-xse g ~ .
Ry £ eev
3 s ! "3
3 -me E] U o [
e 2 7 2 rwave | 3
E -Aor -t ! ! :s
M 3oer — -] - o] —]]] - o |
eas e] - - ol - = CE
+ 2 — = =T Tl v e A
g 22 AR s S o X = 1 e 70 y e b 1 e = 11
3 j; et} EE I o BET L I T e AN s TArH 122 Juan 3o MR ne TR Mg TeR T, e g L L
! Vi _1;2‘ aen iy —4 w1 Jor — k2 Iukte iy, T "]} o aurn o]
1Y [}
wu
.% " [i
1610 T
. 3.2]
Yim &
Qen q
Ny i 3
6% 2
z,z T 1
, || - || - | - -
19,28 § e] (] 5 j - . -
L]] - (]
27 L F: TR He 2 1 18 [)
k14 JED 1 10 1 2 e I FS
[= JW.EL'E =] m_"ﬂE}lf’ﬁ ney W 5 moen ul T E7S seme —~% E2:3 i wi—km k3 0 B e T 5wy T
TR 1437 a3 Tz TR umw | TWRE TR 23 |
I]
8 ' N
8
L "‘; s
R [
ho |£
] | -] g} 4] —
L] U] - -] -] -
16 i 18 9 23 24 5 26 27 28 29 30
l Conwecde 72 - él—'
PIN __Stsuat 2N
l é :r,; 3 ' NOTES:
[" H
3 T "5 ON Bomaer | AT A1 ¢ Bl INSTHL BoARD 1 S1AwaL
“This data and information is proprietary to, snd s ' ¢ AT "% LS 24O DEvERS A5 SHoww pews BoARD T S\GuAL SYmBOUCS 10G.
valusble trade secret of, SYMBOLICS, INC., » Oclaware : :;; ;; ‘ r?:] 4K RAM WiTH 2141 PiouT
Corporation. It is given in confidence by SYMBOLICS,] ; ’;;; 2 'o INSTRUCTION MEMORY OME 4 TW) | Shert 3,3
nd mey not be wsed #s the basis of manufacture, or be 9 T
reproduced or copied, or be distributed to any other b 5;{ ' - Q02210 Ju:"nll. Blankenbakey
party, in whole or in pert, without the prior written e mMr . __ | Sept 75, 1980
consent of SYMBOLICS.”

< Sttt e el

LEP 2 533
wen - dwan Y

7
s

[S ot
rurty Tusr?"] -l Tows—

U]
]
[

i
[
l

(]

rl:u\‘ W e LN T2
e

nj—
Twen —

1]

Y

Lin "
Aunio—] Twr—

— "

Jaess

LI]

[T (I

— — F— -
L rav W an Pm - L) P e
Tweyr— TJwer— Juns — Twni—

LT

Jwkyg 2

~PCiA
~PCIA
“PCéA
~resa
NG
~Pcat
-PcZ®
—rulf
-Pco8

~IEA
~IcEuA

l
L
L]
L
L]
L]
L]

1€ A4 PRoM 1E A Prom

N ne
3 e
3 e
NG L8
-x3y sPi3
-ry sere
-~y sPve
~Ral seio
e
1o8% e
@
Jotoy ot
135
13z
Tooe PESTINODL
[
16 1 18 19 20 21 22 23 24 25 26 27 28 29 30

) ~ SYMBOLICS, INC.

. INSTRUCTION MEMORY TWO , Sheet 103

“This dala and information is proprietary to, and
valuable trade secrot of, SYMBOLICS, INC., a Defaware
Corporation. It is given in confidence by SYMBOLICS, .

and may not be used as the basis of manufacture, or be 003210 Jbn V Blankenba ker
reproduced or copied, or be distributed to any other Sept 25,1780
party, in whole or in part, without the prior written ResA

consent of SYMBOLICS.”

Loc ffBfser189

]

TS
H

L

LL]

(L1

I
10 (]
1T
i

1
meild

Jwado u

L]

L]

[
E

]

R

F‘gﬁ

“This dats and information is proprietary to, and »
valuable trade secret of, SYMBOLICS, INC., a Delaware
Corporation. It is given in canfidence by SYMBOLICS,
and may not be used as the basis of manufacture, or be
reproduced or copied, or be distributed to any other
party, in whole or in part, without the prior written
consent of SYMBOLICS.”

(L]

{814]

LJ

4 15

SYMBOLICS, INC.

INSTRUCTION MEMORY TWO , Sheet 2.1%

09210 John V. Biankenbaker
Sert 25, 1980
v

| 2 3 4 s é 7 8 9 10 1} 12 13 L] 15
= F—h e o ALY v 22 120 oz I ne b o o 2 . 12
Tuws W™ 167 Twey W 98 s Jwaz)| e aweer 137 awamwb— Tie Juke€ W Y Jwav || T@ zpen W— 19 o
seayi Twrie p— Twave Tandy 16430 }—] 15&Ty 2iis i 2293 f—ip
4 - P
3 -Ron
Rig
3 [I T
W fuo § -Rion &M
- Ra ¢ “RAN oM
Rs o -Pesy ‘lf:
o e
ay -Ri6 -un
-R9G -Won
] - —1 - R e - =] -
- -] - o] wo -se -] -]
zs :11_:! 213 -~ L3 - 17 e 12 12 I 11 20 E
T o N o SV - ST W Y S W B o R e -
TN e Iwksg vy Juan TR0 Lk neze | s Jwenr el
7] poiod
R -RItF -REE
T 7 Kio -Riog e
ril 9 L -RF RLF
- £ (7] -Rege -RsF
« - -RYF
§ i ar
§ 4l § ~RIE -RaF
N 1 Rio -RoE -k -
$ ®y k] -Rge -hor
Y = = - P %8 -RBE ppr - | -
. -]] - 2 o -¥Ew)]]]
i id h o ;10 Elz_ﬁ e He = 1 e p 0) ne (= =
'i 3 3 m F—{ 1 Tus AT BT gy AT RO W 3 M rne ™ P s T
‘ ‘ - Iweyy i Tue | Jurzs Tukn, Jwkdl Iurzo |} Jwes Twewm
N B [L :]
N B =
& Uz
h o 3| ™ -ou
e —Paw Iy
4 -Rin -4
¥ i -Rss
3an A]
Ny il 3 -::-
68 | 2 i
5,3 Bl 1 iy
’ o8 g} —|] - - slj
19,23 1§] ~Juy s | 1 3
- o} KN (] L] L | | tof<e] EI @
h 1 EL 7 0 : 10 iy b L Fa s 1
R Iwke 8 TWES | I3 R B T T2 Twra u 1o TwR3 1l 1% Rz i v we b e nee w]ERF 3G,
JwRie o] ForTiy :u;“x; " — ZR Ty |— kR oL
0 it O]] A«I:
R [T} o
5] R 8l |
I X% ¢ I &
B T Thee &]
il - < |8
- ~
3 e 2 v S
2 rie 2 |
N ~Roe e |F
-] - - e -] Sfa]
(] -] M -Xen] - 2f<e]
16 17 18 19 20 23 24 2 26 4] 28 29 30
'_?om;«ne 72 vy D S —'
PIN_ Sluat PIN_SKGuaL ‘
| I %= A I NOTES
’ NP3 H
3 P2T 5 oN Bomes 1 AT A1 ¢ BI imsTHL BOARD 1 S GwiAL
“This data and information is proprietary to, and s l ‘; ,‘%3; :3 TeekT THIRIO bRIvERS A4S How wews ' m BoAmD 2 S16uAL SYmBOL’CS ‘NC
valuable trade secret of, SYMBOLICS, INC., » Delaware ¢ Rmsr 18 -eRRT I [2] axemmwan 2iay Pt ‘ .
Comoration. It is given in confidence by SYMBOLICS, ' ; ’,g,’ ;2 IMSTRUCTION HEMORY OVE ¢ TWO, Shect 3of 3
and may not be used as the basis of manufacture, or be 2 AT
P 1 [@e]
reproduced or copied, or be distiibuted to any other l /a/ :f p; , 9210 lohn V. Buankenbarer
. .) 12 _ Rur | Sept 25, 1980
party, in whole or in part, without the prior written — — e — e e e - — —
consent of SYMBOLICS.”

H
B

] o e, [N
L mons L —woio 2 - mot <l -woe 12 -wos e we , H -won Wote i J LY ol }--wor P ey
VML -wn L RL -vHAY —wng ~VHAS ~VHAY -~y - -vias 247 ~vMAL - Va0
13 I3 1 I} [} 13 4 L 3 /3 I}
Ve IR 12 iz s i 13| i 2] 1z 12 173 0]
- 10 i 7 1 T it 1 i i li]] g}
! 1 10 I ¥ s 2
C PUPIA o g I’ 4* o} : ’
VMAPOA- 3 Fi] IS
- VAPLIIA <l <] <] ra
- MAPIIA P Y [] 4
“MAPTI0A T
3 3 3
- apLaA - 2 2 3 7 3 _ £
M‘":: I 14— 19— " 14— 14— M — 44— 14— " 1 iy " Ll s
— v 1} -]] [=]
b - o 4 o L] P ano 4] anp 4 e] s L] ave L] [P P P o 4] aw Lie

p T —— SYMB0LICS.ING
“This dsta and information is proprietary to, and @ A

valuable trade secret of, SYMBOLICS, INC., s Delaware

: MOTE |. 74502 PINOUTS SHowN ASSY 009222 MAIN MEMORY INTERFACE, Sheet |of 2
Comoration. It is given in confidence by SYMBOLICS, AS BoARD 1S BUILT. To UZE FC 8D 009221

and may not be used as the basis of manufaciure, or be 74502 ADAPTOR I3 I Shematic 009220 ' John V. Blawker bokir
reproduced or copied, or be distributed to any other REQUIRED. SEE ZA.4A Z7A, o AR XY KEXE9 Novenher (3, 1980
party, in whole or in part, without the prior written

1LB ¢ 30B RevA
consent of SYMBOLICS.”

vmwu‘;
VMAPUB :.
LI
VNAPS
VHAPIB
C VMAPCE
~MAPILEB E
~HATNG 2
~MARLIDB
el
~4APLE8
~VMINPB o
Snp

ET;)
Dep—-VMOPAR
= -
I3
2
[
2
A
Ty 1] —

=€

suo H)

Moo H
cvso 4]

i

zFE‘
vemzfo |4
oen 3fy [N

17w

sy

2

ll"JN'lSN

. vnsso

“This dsta snd information is proprietary to, and a
valuable trade secret of, SYMBOLICS, INC., » Delaware
Comoration. It is given in confidence by SYMBOLICS,
and may not be used as the basis of manufacture, or be
reproduced or copied, or be distributed to any other
party, in whole or in part, without the prior written
consent of SYMBOLICS.”

= - LLAYIS
(]

1!«1!“

lmrw

7 varey

13
-~ HaP1B

L
oms

L

‘4

!

meLe
(2eanv)
4

wP
KN

SYMBeOCICS, 1C

MAIN MEMORY INTERFACE, Sheet 20

‘Scbemahc 009220] John V. Blankenbake

Hovember 13, 1980
Rev A

Z maruerp ol

2r214]2

TR2LA]S

Moseed IRI9A |
2EsT Yo

=21-exe

JIw23A
mpsec8 K1
IR2ZA

“This dats and information is proprietary to, and &
valuable trade secret of, SYMBOLICS, INC., a Delaware
Cowporation. It is given in confidence by SYMBOLICS,
and may not be used ss the basis of manufacture, or be
reproduced or copied, or be distributed to any other
pasty, in whole or in part, without the prior written
consent of SYMBOLICS.”

-TR22A —"1

D——<
i

P

INST INLEET N

ST M ZUD OR WIN GUILTIE.

30

SYMBOCICS 1nC

MAIN MEMORY INTERFACE | Shert 300

ISA\: ! OO‘.)'Z?OIJG'M V Blnitenbeker

Noveraber 13, 1980
FevA

s e

oo
T

1 Amsa

ly 53]

[¥11
AADRZA ar &
i Lo

ARDRIA
. Aua S
G
LW LY
MADROR’
.
~HADA €

REL

E
Forey
F Poare Jwnd s e Pan om et
v wo o ® Zam 1218 e A ¢l T3¢ £
3
Pouapes L wo ma] [Cary zev w0 w2 v33 2
PoLIMY Mo 9 A
L —prorwe R0 IR0 IRIG SR Ao T
l6 N 8 19 20 2 2 23 24 25 2 27 8 23 10

“This data and information is proprietary to, and s %MB@ Ig .

valuable trade secret of, SYMBOLICS, INC., s Delaware .
Corporation. It is given in confidence hy SYMBOLICS, toc XX 3Ivse REGISTER MEMCRY Sheet | of .
and may not be used as the basis of manufacture, or be S

reproduced or copied, or be distiibuted ta any ather ASSY 003172 [?f_hi"ﬁif; 993'_’0_] chn V Blankenbaker
party, in whole or in part, without the prior written PC BOARD OOOMTH i |1,19%0

consent of SYMBOLICS.”

£ 2 MMy D]
Z Mugmo MU
i e a2y L 178
a MmEM2E¢ Minzy
Ly
1% 3
L
C ug
.
o
awa.
b -
L]
e
S
watrww
. L2 oLy
vy Pbi Yo
R mo
[PoLIS
12
E Py Foug
~ P
L8 Poit
coen ey
reepe ™ - POLORWE-
lﬁl'l3 2z ~R€3ET
' " Ll I -
F -15€ £ rse
- Cey z K
(LN .'—Cl-ll
< cw Y e
| 2 3 4 5 é 7 8 9 10 t 12 3 4 s
BOLICS,INC
“Yhis data and information is propristary to, "and » SYm L) N
valuable trade secret of, SYMBOLICS, INC., a Delaware R REGISTER MEMORY Sheet 2 of 3
Corporation. 1t is given in confidence by SYMBOLICS, .
and may not be used ss the basis of manufacture, of be ISchema(w 009170 | Jehn V. Blankenboker
reproduced or copied, or be distributed to any other - Octobev 17,1950
party, in whole or in part, without the priar written A
consent of SYMBOLICS.”

5 (] ;
eyt amems 1 aneras e I Foamemis [Poamera sl Pamen of Pamense o [Pamemss 1 anery e aneme A2 amem
13y L a2 us w G2 1] e as 2] uw Ly IO
It af) v 13) 13 5 3 ¥
A0 12 = i i i W z i} =]
Anpesl il i] il 1] ﬁ ﬁ W 1] 1]
Advery 1 Tof m o o m:i g A
AnDED 1 it 3 :] ﬂ g P
A Angea ﬂ 2 ?l g q g N
Avor & ————g : : x
AADRSY 0 p 3
A erh 3 3 3 5|
Admip 1 Z H 2 z 7] z x
:w:m il p— 14— "] i Wl 4] o]
5-:'- -] awe-L{] ow 4] s P P PO wd{™] . dvo {7
53] 3 %] 3
, 17 pouis .;E ¥ s LTS P, i) ST L wus . pouy P J s 1 XN s s o s LI
Lo uy -;__ U o [13] m L% m|) ; w B e s ; 1] - 7oul
3|
Ay |’ p) T 2 v i | LD
Ahorsy 1 I] [1] PPTR
::m: o] [I io] i i A X
B AARSE 1 3 1 2 p 1 P 1 ™
AneAIB i £ 4 ﬂ %] 3 [
AN ——3 o
hpesd ;i 4 3 3 focrm
M P 7 f1 i z — Z)
' o, o | I it 14— il " i T M 1y pinyin
: i a0 PPy &up -1 P wo4f] sw 1] en-{] e sue 1] a1 suo {7 P o
£ .
]
[2 3 4 5 6 7 8 9 o . n 1z 13 8 5
le n 18 19 1]] u 3 Pal 5 26 4 8 9 30
b
h
5) N
& 7 7) 7 7, 1 b 7 7 7 7 1 7 E 2
o = AMEM] I M — EM <l [~ AMEMS | (1] AMEMIY AMEMIS [~ AMEMIT [~ AMEMIG [~ AMEM) [— AMEM2 5] AME
S mew ameml aoemo ol AT wnewr e e 't - w? 5! 2t s
] [)) 3} 5 [; 13 D) '
AAORIA ¥ T i i I [i 2] 12 L
Advesh i)] 1 I i] i i i
::::‘7: é [io} io] li" [
A anesh 1 4 1 1 ol
Aid —ﬂ 4 £ 4 4 $
nawsn 4 4 4 [l
AMRZA + £l 3 b) ﬂ ;l.‘
oot 7 7 z 2] z 2] Z] 2 Z z
—AwPA W, L (4 14— T} 9, 14— 14— 1 14— " HE—
4wp oo] o P e a4 s ool{] Y ao{] awi{] 5 PRl
: > 5 [3na} z]
i H s g Hma o b} oo 2 poun « [—1 e L2 pous Ly 2 b0 e AP PR enn 2 Pk
w w3 w Qo (4]] L " T w ue . ur v .
-PoLATA i ! ; 2 ¢
“Poaud i 1] 1 |] 1] 1t | W 1 ﬂ
Jroeadk | To| 10 0 l [lﬂ] 12} [ol
~PoLAKA H "% i1 3]
B ~POLASA &1
P AYA 4 £ 5 ol
-PRLASA 3]) 5 3
“PRLALA 3 3] 2 k) Fi
-POLALA 2] 3 2 2 2] 2} 2] 2] 3 2
-PILACA :] :’
— P " " A 14— M it 4 Nl-— o] 0?—-—
L anp oo o] P s 1] ano] e s 4] awp 2 a0 ow 4] Gw {7
“This data and information is proprietary to, and a . r S Ymeo‘- 'CS' lNC
valuable trade secret of, SYMBOLICS, INC., a Detaware
2 3 3 REGISTER MEMOR' Shet 3 of
Corporation. It is given in confidence by SYMBOLICS, . 1 343
and may not be used as the basis of manufacture, or be . [‘QWMK 009170 I Toha V. BlaaKenbatier
reproduced or copied, or be distributed to any other . T Odteber 17,980
party, in whole or in part, without the prior written !
consent of SYMBOLICS.”

LERT HMF

RiowT wicx
> -

L

6

“This data and information is proprietary to, and a
valuable trade secret of, SYMBOLICS, INC., a Delaware
Corporation. It is given in confidence by SYMBOLICS,
and may not be used as the basis of manufacture, or be
reproduced or copied, or be distributed to any other
party, in whole or in part, without the prior written
consent of SYMBOLICS.”

%

WET N IND OR WTW GUARTIR,

ST I LEFT nur

29 30

SYMBOLICS, ING

ARITHMETIC UMIT Cheet 3 o 3

' 1ohe V. Blankenbaker

October 6,1950
Rev A

e

srrrey 4

“Yhis dath and information is proprietary to, and a
valusble trade secret of, SYMBOLICS, INC., a Defaware
Corporation. It is given in confidence by SYMBOLICS,
and may not he used as the basis of manufacture, or be
reproduced or copied, or be distsibuted to any other
party, in whale or in part, withaut the prior written
consent of SYMBOLICS.”

SYMBOLICS. INC.

p "' PROGRAM COUMTER Sheet 3463
A ————
[Shemotic 000190 | John V Bloaxenbaker
Novertrell, 1950
Rev B

4 <«
i ! - I
v
' e :
B Lt ‘
- A A :
e ! <. :
. -, 3-F
: | » > § : gi]:l]
! : v
; < 2 :
; B %3 | s : k=
. PR
. T
: 4
' . '
: * K3t N
. | "
. i . e >
B % | i : 3
'] - ! : 3
; \ - " S
. i § : : g
.]
< ’ 1 -] < <l _ o 1 E :
T * 3 e B Y g
: * - F| ?] g- ' &
H recevracea = - ' z 2 3 ' ' D
: wonsEe S158 . : %
:) Q
m - B ' } B
’ ¥ 3;
i g ° ¥
' . 1 : E 13c 3 ¥
P ' s -4 ;
- TR , i 3 § 3
; <o i ’3%
1 ciur - steacee . — -
: ARPAR URL-li-1-40-103 l
- : 7~ ;
if 2 2
TWHST LOCK C ToR o - ¥
20 AMP , 128 vAC \i
X gPINLE '»g"
Yocsecs s2ce i
g A
KR
k2 8 -
)
20 AME 128 vAC . ~
FuRE SROUNVDING
Irehenr mabe mET- pusaL 235 TS . O rews
Pus - wBseL 21313 | T Grovid 01D - STATE AN
; - GRVEN NINO N
1 BweEe TP
B 8 . E TRG) C1NEH I5Y~11- 10~ 00/
,.A:/o_rm\ i
‘: ms "»:’y coniscToR srsuAL)
H o !
E . - MOLER E-29-012 1 (Ros)
e s - ‘E-30- 1122 (rr«gmar) ’
TerminaL pins b
- wnex 02-Cé-6202 e 3
CiRCUIT BREARER B &MI FuvER - 08+ "
SiRPAx Goetyr-c2-203) Sax wPs 20 N c4 ohiszar senm#
B {LoosE ,écep crer wiiat) ki
MR SUPRY | i
Acarian s€Bs0 /50a K w VANp Tocts
R 28 /1-01-000§ CRIMNPING
/\/V\,—o - AL ONOI INSERTIN
w00y exrecro
&.3vAC
. - . E
! sy 1
FUAMENT TRANSAC BP0 R
- N 00 TS Te/AD Fr3X
“This data and information is proprietary to, and & "' Feonr mu’_:: N
veluable trade secret of, SYMBOLICS, INC., a Delaware : e St -
N " e i +5voc
k& tven s confidance by SYMBOLICS, - 1 > SYMBOLICS, INC.
and may not be used as the basis of manufacture, o be SoLin STATE REtAy O H g v b =ns e eV
reproduced or copied, or be distributed to any othes . : L 1 l-“’n.- T
party, in whole or in part, without the prior written POWER SEQUENCER, Schematic (120VAC)
cansent of SYMBOLICS.”
[ioi091

AI: CADR1; XSPEC 3 1/22/80 18:07:45

The clock can be stopped aL the end of either phase, for
several recsons. Usually the clock stops at the end of the read phase,
referred Lo as "wait". This leaves the clock in the inactive high
sltate, and leaves the latches on the memories open. The clock can wait
because the machine was commanded tc¢ hall by the diagnostic interface,
because a single-step commanded by the diagnostic interface has
completed, because of ar error such as a parity error. because of the
statistics counier oveiflowing, or because of a memory-wait
condition this latter condition happens if a main memory cycle is
initiated while a previous cycle is still in progress, or if the
program calis Tor the resnlt of a main memory read before the
bus controller has granted the bus access needed to perform that read cycle.
During a clock wait. the processor clock stops, but the
ciuck Lo the rest or the system (the bus intertace and XBUS devices),
cunlinues to rur, allowing them to operate. When the processor
Tinishes waiting the processor clock starts up in synchrony with the external
clock.

Trhe clock can alsc stop at the end of the write phase, referred
to as “"hang". This is used only during memory reads. 1f the processor
calls for the resulil of a read which is in progress but has not yet
compieled, il hangs until the data has arrived frcm memory and
sufficient time has passed Tor the data to flow through the data gaths
and appear on the output bus. This is alsc sufficieat time for the
parity of the data Lo be checked. Tn the casc of a hang, both clocks
stap, which alluws Lhem 1o resiart synchreonously without any extra
delay. In Lhis way, the speed of the processor is adjusted to exactly
match the speed of the memory.

€4The Bus Interfaceel

fhe Bus F¥nierface connects the CADR machine to two busses,
the Unibus and the Xbus. The Uaibus is a regular pdpll bus, used to
attach peripheral devices, especialiy commercial devices designed for
the PDPIT line. The Ybus is a 37-bit vus used to attach memory and
high-performance peripheral devices, such as disk. The bus interface also
includes the diagnostic interface. which allows a unibus operator,
such as a pdpl0, a pupll, or another lisp machine, to control the
operation of (ke machine, hardware tn pass interrupts
from Lie Uaibus and the Xbus to the processor, the logic which arbitrates
the Xbus. and the togic which arbitrates the Unibus in the absence
of a pdp1l on that bus.

The Bus Interface allows the CADR machine to access memory
o the Xbue and devices on the Unibus, 3llows independent devices on the
Xbus Lo access the Xbus (orlty),. and allows Unibus devices Lo access Xhus memory
{through & map since Lhe Unibus address space is not big enaough.)
Buffering is provided when the Unibus accesses the Xbus,
to corvert a 32-bit werd into a pair of 16-bit words.

<<More to come>>

Cover how te pregram the various frobs from the Unibus,
initialization. map structure.

Page 2

AI: CADR1; XSPEC 3

.page
.sect
eAThe Xbusel

1/22/80 18:07:45

The Xbus is the standard 32 bit wide data bus Tor the CADR processor. Main
memory and high speed peripherals such as the disk control and TV
display are interfaced to the Xbus. Control of the Xbus is similar to the
Unibus, in thal transfers are positively timed and (as far as the devices are concerned)
asynchronous. The bus is terminated at both ends with resistive pullups of 390 ohms to
ground and 180 ohms to +5 volts, for an effective 123 ohm termination to +3.42 volts.
At ground, each termination draws 28 ma. for a total load of 56 ma. The bus is open
collector, and may be driven with any device capable of handling the 56 ma. load. The
recommended driver is the AMD 26S10, which also provides bus receivers.

A typical read cycle begins with placing the address for the transfer on the
-XADDR lines and ihe parity of the address on the -XBUS.ADDRPAR line. The -XBUS.RQ
Tine is then lowered, initiating the request. The responding device places the requested
data on the 32 -XBUS lTines and the parity of the data on the -XBUS.PAR line. Should it
not be convenienl for the device to produce parity (as in the case of I/0 registers), the
device may assert -XBUS.IGNPAR to nolify the bus master that the transfer should not

be checked for correct parity.

The responding device then asserts -XBUS.ACK, which remains

asserted until the -XBUS.RQ signal is removed by the master.

Write requests proceed identically, except that the master asserts -XBUS.WR and
the data to be writien on the -XBUS lines along with ihe address lines. A1l bus masters
are regyuired to produce good parity data on writes.

Deskewing delays are Lhe responsibility of the bus master. In particular, it
is the responsibility of the bus master to assert good address, write, and data lines
80 ns. prior to asserting -XBUS.RQ, and these lines must be held until the =-XBUS.ACK
signal drops in response to the master dropping -XBUS.RQ. Responding devices are
allowed to assert -XBUS.ACK at the same time they drive read data ontc the -XBUS lines.
Thus, masters shouvld delay 50 ns. after receiving -XBUS.ACK before droppin? -XBUS.RQ

L

and strobing the data. Responding devices are required to drop -XBUS.ACK

uncdiately

after -XBUS.RQ is no longer asserled.
Normal bus master arbitration belween the CADR processor and the Unibus

requests is handled by the bus

interface. Devices on the Xbus which must become

bus master, such as the disk control, do so by asserting the -XBUS.EXIRQ signal.
When the bus becomes free, the bus interface responds by asserting -XBUS.EXTGRANT.
This signa] is daisy chained between bus masler geviceS on the Xbus, coming in on the

-XBUS . E

TGRANT.IN pin and leaving on the -XBUS.EXIGRANT.OUT pin. Within each device,

the decision is made whether or not Lo pass the grant onto the next device. Unlike the
Unibus structure. the decision on whelher Lo pass grant and the act of becoming
bus master happen synchronously with a masler clock signal distributed on the -XBUS.SYNC

Tine.

When a device initiates a request, it immediately asserts -XBUS.EXTRQ. At the
falling edge of -XBUS.SYNC it clocks the request signal into a D flip flop which we will
call RFQ.SYNC. When -XBUS.EXIGRANI.IN goes low, the device asserts -XBUS.EXTGRANT.OUT
unless i1 has either the REQ.SYNC flip fTlop set, or is already the bus master. At
the next faliing edge of -XBUS.SYAC the device which has both -XBUS.EXTGRANT.IN and

RFQ.SYNC set becomes bus master.

The device should immediately assert -XBUS.BUSY and

may immediately begin asserting address lines for a tramsfer. -XBUS.BUSY may be dropped
asynchronousiy, afier the slave device drops -XBUS.ACK in responsc to the master's request.

The -XBUS.EXTGRANT.IN signal must be terminaled with a resistive pullup of 180 ohms
to +5 volits within each device which does not simply connect it to -XBUS.EXTGRANT.OUT.

Signal review:

data lines:

-XBUSO through -XBUS31
-XBUS .PAR
-XBUS . IGNPAR

address lines:

-XADDRO through -XADDR21
~XADDR . PAR

cycle control lines:
-XBUS.RQ

~XBUS .ACK

-XBUS .WR
mastership control lines:
~XBUS .BUSY

=XBUS . EXTRQ

~XBUS .EXTGRANT . IN
-XBUS .EXTGRANT . 0U1

Miscellancous:
-XBUS.INIT

~XBUS . SYRC

~XBUS. INIR

32 data lines, low when data is a one
pafity of the 32 data lines. Required for writes

ignore parity signa]. may be asserted by any
device for a rea

22 address lines, low for address bit a one

<<this needs to be decided... "is this required?>>

.

Asscrted by the master to request a read or write
Minimum of 80 ns following stable -XADDR, -XBUS.WRITE
and -XBUS data ,

Asserted by the slave in response to -XBUS.RQ
No delay necessary following assertion of good read data

Asserted by the master during a write cycle.

Asserted when a device other tham the bus interface

is bus master. Only the bus interface examines this line.
Asserted on a -XBUS.SYNC clock edge, dropped asynchronously
after -XBUS.ACK drups

Asseried when a device other than the bus interface
wishes Lo become bus master.

Assertied asynchronvusly, may be removed asynchronously
after the device becomes master, but before dropping
-XBUS . BUSY

The daisy-chained mastership grant signal. Must be pulled
up with 180 ohms to VCC in the device.

Asserted initially by the bus interface, synchronously
with the -XBUS.SYNC edge. The signal may be subject

1o synchronizer lossage, since it is a clocked

version of -XBUS.EXIRQ which is not synchronous with
-XBUS . SYNC

When low, resets all devices. This is low during power
on antd of I, and when the machine is reset.

Synchronization clock for mastership passing and other
desired purposes.

Devices become bus masbler synchronous with Lhe edge of
this signal. 1he request will normally follow the
cdye by 80 ns.

Driving Lhis low requests an interrupl.
ALl devices are reguired Lo inilialize Lo a non-interrupt
cnable condition, and arc reguired Lo have interrupt

Page 3

AI: CADR1; XSPEC 3 1/22/80 18:07:45 Page 4

enable and disable bits which can selectively enable
interrupts from that device. The "requesting interrupt®
state must be readable in one of the device control
regisier bits.

XBUS . POWER . 0K This line is HIGH when power is stable. It remains low
for <<xx>> seconds after power comes on, and goes low
<<xx>> seconds before power is turned off.

AL: CADK1; BUSINT UML 3/725/81 08:22:36 Page 4

LISPM Bus Interface CADR1;BUSINT UML 25-MAR-81 0822

sssesss NP MAP *e3ssss

26510 26510 7415244 93548 8304 SIP180/3
XD XD XBD BUSPAR , LMDATA LMDATA
x X x X x X
F30 E30 D30 C30 B30 A30
26510 26510 7415244 93548 8304 SIP180/3
XD XD X8D BUSPAR LMDATA LMDATA
X X X X X X
F29 - E29 D29 c29 B29 A29
26510 26510 7415244 93548 8304 SIP180/3
XD XD XBD BUSPAR LMDATA LMDATA
X X X X X X
F28 E28 D28 cag B28 A28
26510 26510 7415244 T 29701 8304 74L5240
XD XD XBD WBUF LMDATA LMADR
X x X X X X
F27 E27 D27 c27 827 A27
26510 26510 29701 29701 7415244 7415240
XA XA RBUF WBUF BUSSEL LMADR
X X X X X x
F26 E26 D26 C26 B26 A26
26510 26510 29701 29701 7415244 741.5240 *
XA XA RBUF WBUF BUSSEL LMADR
X X X X X X
F28 E25 D2s . €25 825 A25
26510 93548 29701 29701 7415244 7415240
XA XAPAR RBUF WBUF BUSSEL LMADR
X X X X X . X
F24 E24 D24 C24 Bz4 A24
26510 93548 29701 7415244 - 7415244 74L5240
XA XAPAR RBUF RBUF BUSSEL LMADR
x x x X x X
F23 E23 D23 ca3 B23 A23
26510 7415244 7415244 7415244 8304 SIP180/3
XA UBXA RBUF RBUF DBGOUT DBGIN
p 3 X X X X X
F22 E22 D22 c22 B22 A22
26510 7415244 7415244 T 7415243 8304 8304
XA UBXA RBUF BUSSEL DBGOUT DIAG
X X x X X X
F21 E21 D21 c21 B21 A21
26510 .74LSZ44 74586 7415244 74500 8304
XD UBXA REQERR BUSSEL DATCTL DIAG
X x XXXX x XXXX X

F20 E20 D20 c20 B20 A20

AlL:

CADR1; BUSINT UML

LISPM Bus Interface

3/25/81 08:22:36

CADR1;BUSINT UML

sssssss N]p MAP sssssss

25-MAR-81 0823

Page §

DM8838 7415244 7415244 7415244 74504 7415374
uBD UBD BUSSEL BUSSEL DATCTL DBGIN
x x x x XXXXXX X
F19 E19 D19 Cc19 B19 A19
NM8838 7415244 7415240 74551 74832 7415374
UBD UBD UBINTC DATCTL DATCTL DBGIN
x x x XX XXXX X
F18 E18 D18 Cis B18 Al18 ;
T DM8838 7415244 7415374 74551 74502 745241
uBD UBMAP UBINTC DATCTL DATCTL DBGOUT
x x x xx XXXX x
F17 E17 D17 Cc17 817 A7
T DM3838 741.5244 251525189 74L5244 74508 25152519
uBD UBMAP UBINTC . REQERR REQTIM DBGIN
x x x x XXXX x
F16 E16 D16 C16 B16 A6
DM8838 29701 74L574 74564 8304 745139
UPRIOR UBMAP UBINTC DATCTL REQERR DBGIN
i x x XX x x xo
F15 E15 D15 C15 B15 Al5
74538 29701 74L574 74851 74574 74510
UPRIOR UBMAP UBINTC DATCTL RQSYNC DBGIN
XX00 X 33 XX xx XXX
Fi4 El4 D14 Ci14 B14 Al4 -
74538 29701 74LS74 74510 T 73502 74504 :
UPRIOR UBMAP UBINTC RQSYNC XA DBGIN
XXXX x 33 XXX XXXXXX XXXXXX
F13 E13 D13 Ci3 B13 A13
T DM8s38] 29701 745133, 745260 74502 74508
ULA USMAP REQU RQSYNC DBGOUT DBGOUT
x X x xx XXXX XXXX
F12 E12 D12 Cc12 B12 A12
DM8838 745258 74504 74564 74551 74500
UBA UBMAP UBA REQLM REQLM DIAG
x X XXXXXX x XX XXXX
F11 E1n D11 c11 B11 A1l
T DMg83s 745258 745174 74564 74574 MTD100
UBA UBMAP UPRIOR REQLM REQUB DBGOUT
x x x x N xx x00
F10 E10 D10 C10 B10 A10
T DM8e3s 74508 745472 TD100 D250 74532
UBA REQLM UPRIOR REQLM REQUB DBGIN
x XX00 x x x XXXX
FO9 E09 D09 [£:1] 809 A09

AL: CADR1; BUSINT UML

LISPM Bus Interface

3/25/81 08:22:36

CADR1:BUSINT UML

sssssss NP MAP **ssnss

25-MAR-81 0823

DM8838 745133 25152519 74504 74574 745175
URA UBCYC UPRIOR. REQLM UBCYC RQSYNC
X X X XXXXXX XX X
FO8 E08 Do8 cos BO8 A08
DM8838 745139 25152519 MTD100 : 74504 745260
UBMAST UBCYC UPRIOR REQU CLM RQSYNC
X XX X XXX XXXXXX XX
Fo7 EO7 D07 co7 BO7 A07
DM8838 745260 74510 74551 D100 745175
UPRIOR UBCYC UBMAST REQUB RQSYNC RQSYNC
. X XX XXX XX X X
FOb E06 D06 Cco6 BO6 A06
745133 74504 74500 74520 74511 74502
UBCYC UBINTC UBINTC REQU RQSYNC RQSYNC
X XXXXXX XXXX X0 XXX XXXX
FO5 E05 D05 cos BO5 A05
TD250 74532 74S74 74511 745241 74500
uBCYC UBINTC UBMAST DBGIN DBGOUT REQU
X XXXX XX XXX X XXXX
Fo4 E04 po4 Co4 BD4 A04
74500 745138 74L574 741.527 74504 74L5112
REQU UBCYC REQU UPRIOR REQTIM REQERR
XXXX X XX XXX XXXXXX ox
FO3 EO3 D03 €03 BO3 A03
74502 74508 741574 74LS74 74 276 745288
REQU UBINTC UBMAST UBMAST REQERR REQTIM
XXXX XXXX 33 XX x x
Fo2 E02 D02 co2 B02 AD2
mioo 74500 MTD100 7415163 7415273 7415124
REQU UBMAST UBMAS T UPRIOR REQTVIM REQTIM
x XXXX XXX x x x0
Fo1 EQ1 DOl co1 BO1 A01

Page 6

AL: CADR1; BUSINT UML 3/25/81 08:22:36 ’ . Page 7

LISPM Bus Interface CADR1:BUSINT UML 25-MAR-81 0823
sssssss EDGE CONNECTIONS Flags: (# Output, @ Terminator, ---- Dedicated ground, ++++ Dedicated power) ®sessss
-A- -B- - -C- -D-

A1 -XBUS35 Al -XBUS5 #|A1 UB NPG IN #]A1 '
A2 +5 . QVH+++++ttddbdtbbb A2 45, ov++++++++++++++++++ A2 45 QV4+dttbtbttt bbbt bt A2 45, 0Véstdtttddbtddddbbt
B1 -XBUS34 B1 -XBUS4 #]B1 UB NPG OUT #|81

B2 -5.0V B2 -5.0Vv B2 -5.0V B2 -5.0V

C1 -XBUS33 C1 -XBUS3 #]C1 -XBUS RQ #|C1

C2 GND===-s==cwccnmn—conae C2 GND C2 GND: == |€2 GND----=-==-m-cmomcoeen
D1 -XBUS32 D1 -XBUS2 #1D1 -XBUS ACK #|D1

D2 -XBUS31 #]D2 -XBUS1 2 -UBD15 H 2 -UB BR7 H #
E1 -XBUS30 #|E1 -XBUSO #|E1 -XBUS WR #|E1

E2 -XBUS29 #]E2 -XBUS PAR #|E2 -UBD14 H #]E2 -UB BRE6 H #
F1 GND F1 GND F1 GND F1 GND

F2 -XBUS28 #|F2 -XADDR PAR #]F2 -UBD13 H #]F2 -UB BR5 H #
H1 -XBUS27 - #]H1 -XADDR21 #|H1 -UBD11 H

H2 -XBUS26 #|H2 -XADDR20 #]H2 -UBD12 H HZ -UB BR4 H #
J1 -XBUS25 #1J1 -XADDR19 # -XBUS IGHPAR

J2 -XBUS24 #]J2 -XADDR18 JZ -UBD10 JZ

K1 -XBUS23 #1K1 -XADDR17 1 ~XBUS lNIT #1K1

K2 -XBUS22 #}K2 -XADDR16 KZ -UBDS #}K2 UB BG7 IN #
L1 -XBUS21 #1L1 -XADDR15 #1L1 -XBUS EXTRQ #lL1 -UB INIT H #
L2 -XBUS20 #{L2 -XADDR14 ' #{L2 -UBD8 H 2 UB BG7 IN #
M1 -XBUS19] #|M1 -XADDR13 #|M1 -XBUS BUSY #1m1

M2 -XBUS18 #{M2 -XADDR12 #{M2 -URD7 #|M2 UB BG6 IN ¥
N1 GND N1 GND N1 GND N1 GND

N2 -XBUS17 #]N2 -XADDR11 #IN2 ~UBD4 H #{N2 UB BG6 IN * #
P1 -XBUS16 #|P1 -XADDR10 #]P1 -XBUS SYNC #1P1 +12.0V

P2 -XBUS1§ #|P2 -XADDRY 2 -UBDS H #|P2 UB BG5 IN #
R1 -XBUS14 #|R1 -XADDR8 #|R1 -LM BOOT H R1 +12.0V

R2 -XBUS13 #|R2 -XADDR7 #|R2 -UBD1 H #|R2 UB BG5S IN #
S1 -XBUS12 ~XADDR6 #]S1 -XBUS INTR #IS1 +12.0V

52 -XBUS11 sz ~XADDR5 #]S2 -UBDO H #]S2 UB BG4 IN ¥
T1 GHD-=-=-=-- ST T1 GND-——-==-==-====- STETT(T1 GhD---- T1 GND:

T2 -XBUS10 #]T2 -XADDR4 #]T2 -UBD3 H #]T2 UB BG4 IN #
U1l -XBUS9 # 1 -XADDR3 - #ut -XBUS POHER RESET H #lul

U2 -xsuss #{U2 -XADDR2 #{u2 -uBD2 #juz

V1 -XBUS? #]V1 -XADDR1 #1V1 -XBUS EXTGRANT OUT #1V1
V2 -XBUS6 #{V2 -XADDRO #{V2 -UBD6 H #

—] —] —] —] —] —]

AL:

CAD

R1: BUSINT UML

LISPM Bus Interface

3/25/81 08:22:36

CADR1:BUSINT UML

25-MAR-81 0823

Page 8

ssse=x* EDGE CONNECTIONS Flags: (# Output, @ Terminator, ---- Dedicated ground, ++++ Dedicated power) ®vsssss
-E- -F- -J01- -J02-
Al) A1l 01 CLKO #]101
A2 +5.0VHHHHbbbbdbbbt bttt (A2 45, OVA+++tbtbibiititist |02 -MEMRQ H ejo2
B1 B1 . 03 -LM ACK H #103
B2 -5.0V B2 -5.0V 04 LMX GRANT #]04
C1 -UB ADR12 H #|C1 05 LMUB GRANT #]05 B
C2 GND---=-=-===-- m——————— C2 GND====-==emmcceamceaan 06 XBUS REQUEST #]08
D1 -UB ADRi7 H #|D1 -UB BBSY H #]07 LMUB MASTER #1107
D2 -UB ADR15 H #|D2 08 C1 our #]08
E1 -UB MSYN H #]E1 09 XWR #1109
E2 -UB ADR16 H #{E2 10 -FREE H #{10
F1 -UB ADR2 H #|F1 GND 11 NXM TIMEOUT . #]11
F2 ~UB C1 H #|F2 12 -ANY PAR ERROR H #112
H1 -UB ADR1 H #]H1 13 ANY GRANT DLYD #]113
H2 -UB ADRO H #H2 14 MSYK IN #]14
J1 -UB SSYN #]J1 -UB NPR™ H #]15 MSYN OUT #1156
J2 -uUB CO H J2 16 SSYN IN #]16
K1 -UB ADR14 H #1K1 17 SSYN OUT #117 i
K2 -UB ADR13 H #1K2 18 UB REG CYC TO #]18 I
L1 -UB ADR11 H #|L1 19 UBXRQ #]19
L2 L2 20 UBX GRANT #j20
M1 M1 -UB INTR H #]21 -DEBUG IN REQ H el21
M2 M2 22 DEBUG ACK #|22
N1 GND N1 GND 23 DBUB MASTER #123
N2 -UB ADR8 H #]N2 24 NC #l24
Pl -UB ADR10 H #P1 25 NC #]25
P2 -UB ADR7 H #{p2 26 -- 26
R1 -UB ADRG H #IR1 77 —---mecm-mmsmeosoomeeiT 27 -
R2 R2 28 ~=mmemc-cemememaea- -=ee |28
ST 51 20 —-------m-m---ees === 129 -
sz s2 30 -mme-mseememeeeee 30
T GND------- e TT GND-----------emommooos 31 --—- 31
12 T2 -UB SACK H #]32 comemceeaenoan smemeenae 32
U1 -UB ADR6 H 71Ul 33 —--mmmeeemmeooeTeIoITET 33 =T
Uz -UB ADR4 H #U2 34 mvomememseeeoeae 34 --
V1 -UB ADR5 H #]V1 35 [
V2 -UB ADR3 H #]V2 LOCAL ENABLE 2}36 -~--- et 36
. 3] mmmmmmmmemmSoeeTE TS 37 - -
38 38
| l 39 = |39 mmmmmeemeemeeemToITes
40 ———- 40 ---=--n- mremmemeee ~———
41 4] —-mSTee e ———eeet
42 semmmmeemeeeoe cmmmmmmes |42 cemeeees R
43 —mommmmmemoeo e 43 ~-=-= B
44 = 44
45 - T |45 —-ece-em--er —TeeTee =S
46 46 -~
a7 47 —-e--eemeoos R S
i 48 —m-eemeee —mememcecooe -- 48 =-emesmnonee meeemem———
I I 49 -= 149
50 50

AI: CADR1; BUSINT UML 3/25/81 08:22:36 Page 9

LISPM Bus Interface
#eesses EDGE CONNECTIONS

CADR1;BUSINT UML 25-MAR-81 0823
Flags: (# Output, @ Terminator, ---- Dedicated grcund, ++++ Dedicated power) ®*essss

=-Jo3- -J04- -J05- -J06-
01 01 01 DRDO #]01 DBDO #
02 02 02 DBD1 #]02 DBD1 #
03 03 03 DBD2 #103 DBD2 #
04 04 04 DBD3 #|04 DBD3 #
05 05 05 DBD4 #]05 DBD4 #
06 06 06 DBDS #]06 DBDS #
07 07 07 DBD6 . #1107 DBD6 #
08 08 . 108 DBD?7 #108 DBD7 #
09 09 09 DBD8 #109 DBD8 #
10 10 10 DBDS #{10 DBDS #
11 11 11 DBD10 #1111 DBD1O #
12 12 12 DBD11 #{12 DBD11 #
13 13 13 DBD12 #]13 DBD12 #
14 14 14 DBD13 #|14 DBD13 #
15 15 15 DBD14 #115 DBD14 Ed
16 16 16 DBD15 #]16 DBD15 #
17 17 17 DEBUG IN AO @17 DEBUG OUT AD #
18 18 18 DEBUG IN Al €118 DEBUG OUT A1l #
19 19 19 DEBUG IN WR @]19 DEBUG OUT WR #
20 20 20 -DEBUG IN REQ H @]20 -DEBUG OUT REQ H #
21 2] ==sesmsccccceommee oo 21 DEBUG IN ACK #]21 DEBUG OUT ACK e
22 =--eesesessescscecoaooe 22 =m-wmeressccmoemcceomnn 22 NC #]22 NC #
I 23 m-esmmsssceecomcmcaooo 23 NC #]23 NC ¥
24 ~-mececeeesecccscooonon 24 =emcemmesessccocccconao 24 NC #]24 NC #
25 25 we-memmeem e e 25 NC #125 NC #
26 =e--sosscmsmcccecconaon 26 ~e-sosccomccmccc e 26 ---- 26 -- - -
2] mmemmmeeseseccecc—eemeae 27 m==--seemmmmemcocooooo 2] meemmesrecrccmccicmnanee 2] ~==eemesececec—cooeeao
28 mm-emvesecmcmscoclienoeon 28 messmosecccccoceccanaan 28 ---mesemsescccececoooon 28
[IR el 29 ~-=m-mcesccocecccconeao 29 ---- -- 29
30 30 --=--ee- 30 30
31) I an 3] ~emmmemeemcc s e 31 =---ecemesme e no oo
32 32 meemmmeesecccccc e 32 =emmmssmccocooooee 32 - -
33 33 -- 33 mevmseomccmcc e 33 --
34 34 mmmseemer e R h L F R ittt
35 35 meeemmeeememacc e 35 mmmmemeec oo 35 -
36 36 ~mmmeomemeceac e 36 -~memmmmemeseeoeoo 36 -
37 K A 37 =e--emmecmcccncccnccnan 37 mmemememesmeecce oo
3t 38 ~meemsesemccccccccena 38 mmewmcssscccecocomenonaa 38
38 39 -mesececcocomcmccmcenae 39 ~---- 39
40 40 -- 40 === |40 - - -
I ! L e 41 --
42 ----- 42
l I 43 ==-eesceceo-o == |43
44 ~oe-meccmrrocemcceccrana 44
45 -ce-ccccmmecmcccneaaas 45 —ocecsencmir e cneianee
46 -~~~ 4p ~ewmmmsmscscsecocnnenoe
, 47 -- |47 ~
48 --memmcececsmcccmcoonne 48
I I 49 49
50<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>