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/ think that it's extraordinarily portant that we in
computer science keep fun in computing. When it
started out, it was an awful lot of fun. Of course, the
paying customers got shafted every now and then, and
after a while we began to take their complaints
seriously. We began to feel as if we really were
responsible for the successful, error-free perfect use
of these machines. don't think we are. I think we're
responsible for stretching them, setting them off in
new directions, and keeping fun in te house. I hope
the field of computer science never loses its sense of
fun. Above all, hope we don't become missionaries.
Don't feel as if you're Bible salesmen. The world has
too many of those already. What you know about
computing other people will learn. Don't feel as if the
key to successful computing is only in your hands.
What's in your hands, think and hope, is intelligence:
the ability to see the machine as more than when you
were first led up to it, that you can make it more.

Alan Perlis

This book is dedicated, in respect and admiration:

To the spirit that lives in the computer.
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Prologue

A computer is like a violin. You can imagine a novice

trying first a phonograph and then a violin, The latter,

he says, sounds terrible. That is the argument we

have heard from our humanists and most of our

computer scientists. Computer programs are good,

they say, for particular purposes, but they aren't

flexible. Neither is a violin, or a typewriter, until you

learn how to use it.

Marvin Minsky, Why Programming is a Good

Medium for Expressing Poorly-Understood and

Sloppily-Formulated Ideas

"The Structure and Interpretation of Computer Programs" is the etry-level subject in

Computer Science at the Massachusetts Institutue of Technology. It is required of all

students at MIT who ajor in Electrical Engineering or in Computer Science, as one fourth of

the "common core curriculum," which also includes two subjects on circuits and linear

systems and a subject on the design of digital systems. We have been involved in the

development of this subject since 1978, and we have taught this material in its present form

since te fall of 1980 to approximately 600 students each year. Most of tese student-S have

had little or no prior formal training in computation, although most have played with

computers a bit and a few have had extensive programming or hardware design experience.

Our design of this introductory Computer Science subject reflects two major concerns.

First, we want to establish the idea that a computer language is not just a way of getting a

computer to perform operations, but rather that it is a novel formal medium for expressing

ideas about methodology. Thus, programs must be written for people to read, and only

incidentally for machines to execute. Secondly, we believe that the essential material to be

addressed by a subject at this level, is not the syntax of particular programming language

constructs, nor clever algorithms for computing particular functions efficiently, nor even tile

mathematical analysis of algorithms and the foundations of computing, but rather the

techniques used to control the intellectual complexity of large software systems.

Our goal is that a student who completes this subject should have a good feel for the

elements of style and the aesthetics of programming. He should also have command of the

major techniques for controlling complexity in a large system. He should b.e. capable of

reading a 0 page long program, if it is written in an exemplary style. He sould know what

not to read, and what he need not understand at any moment. Thus he should feel secure

about modifying a program, retaining the spirit and style ot the original author.

These skills are by no means unique to computer programming. The techniques we teach

and draw upon are common to all of engineering design. We control complexity by building

abstractions that hide details when appropriate. We control complexity by establishing

conventional interfaces that enable us to construct systems by combining standard, well-

understood pieces in a mix ad match" way. We control complexity by establishing new

languages for describing a design, each of which emphasizes particular aspects of the design

and de-emphasizes others.
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Underlying our approach to this subject is our conviction that "Computer Science" is not a
science, and that its significance has has little to do with computers. The computer revolution
is a revolution in the way we think, and in the way in which we express what we think. The
essence of this change is the emergence of what might best be called procedural
epistemology -- the study of the structure of knowledge from an imperative point of view, as
opposed to the more declarative point of view taken by classical mathematical subjects.
Mathematics provides a framework for precisely dealing with notions of "what is".
Computation provides a framework for precisely dealing with notions of "how to."

In teaching our material we use a dialect of the programming language Lisp. We never
formally teach the language, because we don't have to. We just use it, and students pick it up
in a few days. This is one great advantage of Lisp-like languages: They have very few ways of
forming compound expressions, and almost no syntactic structure. All of the formal
properties covered in an hour, like the rules of chess. After a short time we forget about
details of the language (because there are none) and get on with the real issues -- figuring out
what we want to compute, how we will decompose problems into manageable parts, and how
we will work on the parts. Another advantage of Lisp is that it supports (but does not enforce)
more of the large-scale strategies for modular decomposition of programs than any other
language we know. We can make procedural and data abstractions; we can use high-order
functions to capture common patterns of usage; we can model local state using assig nment
and data mutation; we can link parts of a program with streams; and we can easily implement
embedded languages. All of this is embedded in an interactive environment with excellent
support for incremental program design, construction, testing, and debugging. We thank all
of the generations of Lisp wizards, starting with John McCarthy, who have fashioned a fine
tool of unprecedented power and elegance.

Scheme, the dialect of Lisp that we use, is an attempt to bring together the power and
elegance of Lisp and Algol-60. From Lisp we take the meta-linguistic power, deriving from the
simple syntax, the uniform representation of programs as data objects, and the garbage-
collected heap-allocated data. From Algol we take the lexical scoping rule, and block
structure, which are gifts from the pioneers of programming language design who were on the
Algol-60 Committee. W e wish to cite John Reynolds and Peter Landin for their insights into
the relationship of Church's Lambda Calculus to the structure of programming languages.
We also recognize our debt to the mathematicians who scouted out this territory decades
before computers appeared on the scene. Our heroes include Alonzo Church, Barkley
Rosser, Stephen Kleene, and Haskell Curry.
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Chapter 
Building Abstractions with Procedures

The acts of the mind, wherein it exerts its power over
simple ideas, are chiefly these three: 1. Combining
several simple ideas into one compound one, and thus
all complex ideas are made. 2 The second is bringing
two ideas, whether simple or complex, together, and
setting them by one another so as to take a view of
them at once, without uniting them into one, by which
it gets all its ideas of relations. 3. The third is
separating them from all other ideas that accompany
them in their real existence: this is called abstraction,
and thus all its general ideas are made.

--John Locke, An Essay Concerning Human
Understanding 1690)

We are about to stud the idea of a computational process. Computational processes are
abstract, almost magical beings that inhabit computers. Processes manipulate other abstract
things called data. In their tasks, processes are directed by sets of rules' or patterns called
programs. Human engineers create programs to direct processes. In effect, we conjure
spirits of the computer with our spells.

- A computational process is indeed very like the sorcerer's idea of a spirit. It cannot be seen
or touched. It is not composed of matter at all. However, it is very real. It can perform
intellectual work. It can answer questions. It can affect the world by disbursing money at'a
bank or by controlling a robot arm in a factory. The programs we use to conjure processes
are very much like a sorcerer's spells, They are carefully composed from symbolic
expressions in arcane and esoteric programming languages that prescribe the tasks that we
want our processes to perform.

A computational process, in a correctly working computer, executes programs precisely
and accurately. Thus, like the proverbial sorcerer's apprentice, the problem of the novice
programmer is to understand and to anticipate the consequences of his conjuring. Even
small errors (usually called bugs or glitches) in programs can have complex and
unanticipated consequences.

Fortunately, learning to program is considerably less dangerous than learning sorcery,
because the spirits we deal with are conveniently contained in a secure way. Real world
programming, however, requires care, expertise, and wisdom. A small bug in a computer-
aided design program, for example, can lead to the catastrophic collapse of an airplane or a
dam, or the self-destruction of an industrial robot.

A master software engineer has the ability to organize programs so that he can be
reasonably sure his processes will perform the tasks intended. He can previsualize the
behavior of his system. He knows how to structure his programs so that unanticipated
problems do not lead to- catastrophic consequences, and when problems do arise, he can
debug his programs. Well-designed computational systems, like well-designed automobiles
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or nuclear reactors, are designed in a modular manner, so that the parts can be constructed,
replaced, and debugged separately.

Programming in Lisp
We need an appropriate language for describing processes, ad we will use. for th-is

purpose te programming language Lisp. Just as our everyday thoughts are usually
expressed in our natural language (such as English, or French, or Japanese), and
descriptions of quantitative phenomena are expressed with mathematical notations, our
procedural thOUghts will be expressed in Lisp. Lisp was invented in the late 1950's as a
formalism for reasoning about the use of certain kinds of logical expressions, called recursio ft
equations, as a model for computation. The language was conceived by John McCarthy and
is based on his paper "Recursive Functions of Symbolic Expressions and Their Computation
by Machine" [30].

Despite its inception as a mathematical formalism, Lisp is a practical programming,
language. A Lisp interpreter is a machine (commonly implemented as a program that makesa
commercial computer simulate a machine) that carries out processes described n the Lisp
language. The first Lisp interpreter was implemented by McCarthy with the help of colleagues
and students in the Artificial Intelligence Group of the MIT Research Laboratory of Electronics
and in the MIT Computation Center.' Lisp, whose name is an acronym for LSt Processing,
was designed to provide symbol manipulating capabilities for attacking programming
problems such as the symbolic differentiation and integration of algebraic expressions. It
included for this purpose new data objects known as atoms and lists, which most strikingly set
it apart from all other languages of the period.

Lisp was not the product of a concerted design effort. Instead, it evolved 'Informally in an
experimental manner in response to user needs and pragmatic implementatioO
considerations. Lisp's informal evolution has continued through the years-, and the
community of Lisp users has traditionally resisted attempts to promulgate any "officiat"
definition of the language. This evolution, together with the flexibility and elegance of'the-
initial conception, has enabled Lisp, which is the second oldest language in widespread, use
today only Fortran is older), to continually adapt to encompass tile most modern ideas about
program design. Thus Lisp is by now a family of dialects, which, while sharing most of the
original features, may differ from one another in significant ways. The dialect of Lisp used in

The "Lisp I Programmer's Manual" appeared in 1960, and the "Lisp 1.5 Programmer's Manual" 31] was-
published in 1962. The eady history of Lisp is described by McCarthy in 32].
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2this book is called Scheme.

Because of its experimental character and its emphasis on symbol manipulation, Lisp was
originally inordinately inefficient for numerical computations, at least when compared to
Fortran. Over the past fifteen years, however, Lisp compilers have been developed that
translate programs into machine code that can perform numerical computations as efficiently
as code generated from any other high-level language. In spite of this, Lisp has not yet
overcome its old reputation as a hopelessly inefficient language, and its use is still localized in
a few research laboratories.

If Lisp is not a popular language, why are we using it as the framework for our discussion of
programming? Because the language possesses unique features that make it an excellent
medium for studying important programming constructs and data structures, and for relating
them to the linguistic features that support them. The most significant of these features is the
fact that Lisp descriptions of processes, called procedures, can themselves be represented
and manipulated as Lisp data. The importance of this is that there are powerful program
design techniques that rely on the ability to blur the traditional dstinction between "passive"
data and "active" processes. As we shall discover, Lisp's flexibility in handling procedures as
data makes it one of the most convenient languages in existence for exploring these
techniques. The ability to represent procedures as data also makes Lisp an excellent
language for writing programs that must manipulate other programs as data, such as the
interpreters and compilers that support computer languages. Above and beyond, these
considerations, programming in Lisp is great fun.

1.1. The Elements of Programming

A powerful programming language is more than just a means for instructing a computer to
perform tasks. The language also serves as a framework within which we organize our ideas
about processes. Thus, when we describe a language, we should pay particular attention to
the means that the language provides for combining simple ideas to form more complex
ideas. Every powerful language has three mechanisms for accomplishing this:

* There are primitive expressions that represent the simplest entities with which the
language is concerned.

* There are means of combination by which compound expressions are built from
simpler ones.

2The two dialects in wich most major Lisp programs of the 1970's were written are MacLisp 33], developed at the
MIT Project MAC, and nterlisp 48), developed at Bolt Beranek and Newman and the Xerox Palo Alto Research
Center. Portable Standard Lisp [18, 14] is another Lisp dialect designed to be easily portable between different
machines, and is beginning to become widely available. MacLisp has also spawned a number of sub-dialects, such
as Franz Lisp, which was developed at the University of California at Berkeley, and Lisp Machine Lisp 341, which is
based on a special-purpqse processor designed at the MIT Artificial Intelligence Laboratory to run Lisp very
efficiently. Common Lisp is another Lisp dialect currently under development, which is meant to serve as a standard
for future production Lisp systems 41]. The Lisp dialect used in this book is called Scheme. It was invented in 1975
by Guy Lewis Steele Jr. and Gerald Jay Sussman of the MIT Artificial Intelligence Laboratory 39] and later
reimplemented for instructional use at MIT.
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There are means of abstraction by which compound objects can be named and
manipulated as units.

In programming, there are two kinds of objects with which we deal: procedures and data
(though we will discover that they are really not so distinct). Informally, data is "stuff" that

represents specific objects that we want to manipulate, and procedures are descriptions of
the rules for manipulating the data. Thus any powerful programming language should be able
to describe primitive data and primitive procedures, and should have methods for combining
and abstracting procedures and data.

In this chapter we will deal only with simple numerical data so that we can focus on the
rules for building procedures-3 In later chapters we will see that these same rules allow us to
build procedures to manipulate compound data as well.

1.1.1. Expressions

One easy way to get started programming is to examine some typical interactions with an
interpreter for the Scheme dialect of Lisp. Imagine that we are sitting at a computer terminal,
and that the interpreter has indicated that it is ready to serve us by displaying a prompt

at the beginning of a blank line. If we respond to the prompt by typing an expression, the
interpreter responds by displaying the result of evaluating that expression.

One kind of primitive expression we might type is a number. (More precisely, the
expression that we type consists of the numerals that represent the number in base 10.) If we
present Lisp with a number

486

the interpreter will respond by printing4

486

Expressions representing numbers may be combined with an expression representing a
primitive procedure (such as or *) to form a compound expression that represents the
application of the procedure to those numbers. For example-,

3The characterization of numbers'as "simple data" is a barefaced bluff. in fact, the treatment of numbers is one of
'the trickiest and most confusing aspects of any programming language. Some typical issues involved are: Is there a
difference between integers, such as 2 and "real" numbers, such as 200? Are the arithmetic operators used for
integers the same as the operators used for real numbers? Does 6 divided by 2 produce 3 or 3.0? How large a
number can we represent? How many decimal places of accuracy can we represent? Is the range of integers the
same as the range of real numbers? Above and beyond these questions, of course, lies a collection of issues
concerning roundoff and truncation errors -- the entire science of numerical analysis. Since our focus in this book is
on large.scale program design rather than on numerical techniques, we are going to ignore these problems. The
Scheme dialect of Lisp, whereverpossible, does not distinguish between integers and "real" numbers (for example,
3 is equal to 30). The numerical examples in this chapter will exhibit the usual roundoff behavior that one observes
When using arithmetic operations that preserve about 7 decimal places of accuracy in non-integer operations.

4
Throughout this book, when we wish to emphasize the distinction between the input typed by the user and the

response printed by the interpreter, we'Will show the latter in italic characters.
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(+ 137 349)
486

> 1000 334)
666

6 99)
495

=0 (/ 0 
2

=0 (/ 1 6)
1. 66667

=0 ( 2 7 )
12 7

Expressions such as these, formed by delimiting a list of expressions within parentheses,
are called combinations. The leftmost element in the list is called the operator and the other
elements are called operands. The value of a combination is obtained by applying the
procedure specified by theoperator to the arguments which are the values of the operands.

The convention of placing the operator to the left of its arguments is known as prefix
notation, and it may be somewhat confusing at first because it departs significantly from the
mathematical convention to which we are accustomed. Prefix notation has several
advantages, however. One of them is that the notation can accommodate operators that may
take an arbitrary number of arguments, as in the following examples:

=0 ( 21 35 12 7)
75

=0 (* 25 4 12)
1200

No ambiguity can arise, because the operator is always the leftmost element and the entire
combination is delimited by the parentheses.

A second advantage of prefix notation is that it extends in a straightforward way to allow
combinations to be nested, that is, to have combinations whose elements are themselves
combinations-.

=0 (+ (* 3 5) (- 1 6)
19

There is no limit n rnciple) to the depth of such nesting and to the overall complexity of
the expressions that the Lisp interpreter can evaluate. It is we humans who get confused by
still relatively simple expressions such as

(+ ( 3 (* 2 4 3 ( (- 1 7 6)

which the interpreter would readily evaluate to be 57. We can help ourselves by writing such
an expression in the form



Immotolm "WA.A.

DRAFT: 31 JULY 8Duilding Abstractions with Procedures12

(+ ( 3
+ 2 4)

( 3 )
(+ (- 1 7)

6)

following a formatting convention known as pretty-printing, in which each long combination 'is
written so that the operands are aligned vertically. The resulting indentations display clearly
the structure of the expressions

Even with complex expressions, the interpreter always operates in the same basic cycle: It
reads an expression from the terminal, it evaluates the expression, and it prints the result.
This mode of operation is often expressed by saying that the interpreter runs in a
read-eval-print loop. Observe in particular that it is not necessary to explicitly instruct the
interpreter to print the value of the expression.

1.1.2. Naming and the Environment

A critical aspect of a programming language is the means it provides for allowing one to
use names to refer to computational objects. We say that the name identifies a variable
whose value is the object.

In the Scheme dialect of Lisp, the operator for naming things is called de f ine. Typing

==> (define sze 2)
size

causes the interpreter to associate the value 2 with the name s ize. Notice that the interpreter
responds to a de f in e combination by printing the name being def ined.6

Once the name s ize has been defined to be the number 2 we can refer to the value 2 by
name:

=0 size

=0 5 size)
10

5Lisp systems typically provide features to aid the user in formatting expressions. Two especially useful features
are to automatically indent to the proper pretty-print position whenever a new line is started, and to highlight the
matching left parenthesis whenever a right parenthesis is typed.

6The symbol printed is actually the value of the de f in e combination. In Lisp, one makes the convention that every
expression has a value. This requirement may seem silly, but deviating from it would cause more bothersome
complications. It also meshes nicely with the read-eval-print mode in which the interpreter operates, since it ensures
that the interpreter will have something to print in response to evaluating any expression. When there is no natural
choice for the value to be returned as the result of can operation, language implementors choose a value by
convention, as in the case of def ine. The conventions for choosing such values tend to be highly implementation

dependent, and it is dangerous practice to write programs that rely on them. (The convention that every Lisp
expression have a value, together with the old reputation of Lisp as an inefficient language, is the source of the quip
by Alan Perfis. that "Lisp programmers know the value of everything but the cost of nothing.")
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Here are further examples of the use of def no:

=0 define pi 314159)
pi

=0 define radius 10)
radius

=0 (* pi radius radius))
314.159

=0 (define crcumference ( 2 pi' radius))
circumference

circumference
62.8318

Define, as the basic mechanism for naming, is our language's simplest means of
abstraction. Computational objects may have very complex structures, and it would be
extremely inconvenient to have to remember and repeat their details each time we want to use
them. Indeed, complex programs are constructed by building, step by step, computational
objects of increasing complexity. The interpreter makes this step-by-step program
construction particularly convenient because name-object associations can be created
incrementally in sccessive interactions. This feature encourages the incremental
development and testing of programs, and is largely responsible for the fact that Lp
programs usually consist of a large number of relatively simple procedures.

It shoul.d be clear that the possibility of associating values with symbols and later retrieving
them means that the interpreter must maintain some sort of memory that keeps track of the
name-object pairs. This memory is called the environment, or more precisely the global
environment, since we will see later that a computation may involve a number -of different
environments!

1.1.3. Evaluating Combinations

One of our goals in this chapter is to isolate issues about thinking procedurally. As a case
in point, let us consider that, in evaluating combinations, the Lisp interpreter is itself following
a procedure. Fo r the expressions we have discussed so far the evaluation process is simply
described.

To evaluate a combination (other than a definition):

1. Evaluate the subexpressions of the combination.

2. Apply the procedure which is the value of the leftmost subexpression (the
operator) to the arguments which are the values of the other subexpressions (the
operands).

7
In Chapter 3 we shall see that this notion of environment is crucial, both for understanding how the interpreter

works and for implementing interpreters.



Even this simple rule illustrates some important points about processes in general'. First,
observe that step dictates that in order to accomplish the evaluation process for a
combination we must first perform the evaluation process on each element of the
combination. Thus the evaluation rule is recursive in natUre; that is, it includes, as one of its
steps, te need to invoke the rle itself.8

Notice how succinctly the idea of recursion can be used to express what, in the case of a
deeply nested combination, would otherwise be viewed as a rather complicated process. For
example, evaluating

( 2 (* 4 6)
( 3 7 

requires tat the evaluation rule be applied to four different combinations. We can obtain a
picture of this process by representing the combination in the form of a tree, as shown 'in
figure 1-1. Each combination is represented by a node, from which stem branches
corresponding to the operator and operands of the combination. The terminal nodes (that is,
nodes with no branches stemming from them) represent either operators or numbers.
Viewing evaluation in terms of the tree, we can imagine that the values of the operands
percolate upwards, starting from the terminal nodes and ten combining at higher and hgher
levels. In general, we shall see that recursion is a very powerful technique for dealing with
hierarchical, tree-like objects. In fact, the "percolate values upwards" form of the evaluation
rule is an example of a general kind of process known as tree accumulation.

8It may seem strange that the evaluation rule includes, as part of Step 1, that we should evaluate the leftmost
element of a combination which, so far as we have seen, can only be an operator representing a built-in primitive
procedure such as or *. We will see later on that it is in fact useful to be able to work with combinations whose
operators are themselves compound expressions.
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alto

I

Figu re - Tree representation, showing the value of each subcombination.

Next, observe that the repeated application of step brings us to the point where we need
to evaluate, not combinations, but primitive expressions such as numerals, built-in operators,
or other names. We take care of the primitive cases by stipulating that:

* The values of numerals are the numbers that they name.

9 The values of built-in operators are the primitive machine instruction sequences
that carry out the corresponding operations.

* The values of other names are the objects associated with those names in the
environment.

We may regard the second rule as a special case of the third one, by imagining that symbols
such as and are also 'Included n the global environment, associated with the sequences
of machine instructions that are their "values." The key point to notice is the role of the
environment in determining the meaning of the symbols in the expressions. In an interactive
language such as Lisp, it is in a certain sense meaningless to ask for the value of an
expression such as

(+ 

without specifying any information about the environment that would provide a meaning for
thesymbol"x"(orev�!nforthesymbol"+"1)- AsweshallseeinChap4ter3,thegenerainotion
of the environment as providing a context in which evaluation takes place will play an
important role in our understanding of program execution.
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Finally, notice that def ine 'is an except ion to the general evaluation rule given above. For
instance, evaluating the expression

(def lne x 3)

does not apply def ine to two arguments, one of which is the value of the symbol x and the
other of which is 3 since the purpose of the de in e is precisely to associate x with a value.

Suchexceptionstothegeneralevaluationrulearecalledspecia/forms. Defineistheonly
example of a special form wich we have seen so far, but we shall meet others shortly. Each
special form has its own way in which the general evaluation rule should be modified in order
to handle it. The special forms and their associated special evaluation rules constitute the
syntax of the programming language. In comparison to most other programming languages,
Lisp has a very simple syntax; that is, the evaluation rule for expressions can be described by
a simple general rule together with specialized rules for a small number of special forms-9

1.1.4. Compound procedures

We have identified in Lisp some of the elements that must appear in any powerful
programming language:

Numbers and arithmetic operators are primitive data and procedures.

Nesting of combinations provides ameans of combining operators.

e Using def ine to associate names with values provides a limited means of
abstraction.

Now we will learn about procedure definitions -- a much more powerful abstraction technique
by which a compound operation can be given a name and then referred to as a unit.

We begin by examining how to express the dea of squaring." We might say, "To square
something, multiply it by itself." This is expressed in our language as follows:

(define (square x) (* x x))

We can understand this in the following way:

(define (square x) X X))

To square something, multiply it by itself.

We have here a compound procedure, which has been given the name square. It
represents the operation of multiplication of an entity by itself. The entity to be multiplied is

9Special syntactic forms that are simply convenient alternative surface structure for things that can be written in
more uniform ways, are sometimes called syntactic sugar, to use a phrasecoined by Peter Landin. When compared
to users of other languages, Lisp programmers, as a rule, tend to be unconcerned with matters of syntax. (By
contrast, examine any Pascal manual, and notice how much of it is devoted to descriptions of syntax.) This disdain.
for syntax is partially due to the flexibility of Lisp, which makes it easy to chan e surface synta'x, and partly due to te
observation that many "convenient". syntactic constructs, which make the I.anguage less uniform, end up causing
more trOLjbIe than they are worth when programs become large and complex. In the words of Alan Perlis: Syntactic
sugar causes cancer of the semicolon."
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given a local name, x, which plays the same role that a pronoun plays in natural language.

Executing the def ine form causes the specified procedure name to be associated with the'
corresponding procedure definition in the environment. The interpreter responds to def ine
by printing the name of the procedure being defined:

(define (square x) (* x x))
square

The general form of a procedure definition is

(def ine (<name> (formal parameters>) <body>)

The <name> is a symbol to be associated with te procedure definition in the environment.10
The <formal parameters> are the names used within the body of the procedure to refer to th e

corresponding arguments of the procedure. The <body> is an expression that will yield the
value of the procedure application when the formal parameters are replaced by the actual
arguments to which the procedure is applied-" Observe that the <name> and the <formal
parameters> are grouped within parentheses, just as they would in an actual call to the
procedure being defined.

Having defined square, we can now use it:

==> (square 21)
441

(square 2 )
49

==>,(square (square 3)
81

We can also use square as a building block in defining other procedures. For example:
x 2+ 2 can be expressed as

(+ (square x) (square y))

We can easily define a procedure sum-of -squares which, gven any two numbers as
arguments, -produces the sum of their squares:

(define (sum-of-squares x y)
(+ (square x) (square y)))-

And if we were to define the following procedure.-

(define (f a)
(sum-of-squares a a 2))

10 Throughout this book, we will describe the general syntax of expressions by using italic symbols delimited by
angle brackets -- e.g., <name> to denote the "slots" in the expression to be filled in when such an expression is
actually used.

More generally, the body of the procedure can be a sequence of combinations. In this case, the interpreter
evaluates each combination in the sequence in turn, and returns the value of the final combination as the value of the
procedure application.
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2 2we would have that 5) is 6 + 10 or 136. Notice that defined procedures are used in
exactly the same way as primitive procedures. Indeed, one could not tell by looking at the
definition of sum-of -squares given above whether square was built into the interpreter or
defined as a compound procedure.

1.1.5. The Substitution Model for Procedure Evaluation

To evaluate a combination whose operator is a compound procedure, the interpreter
follows much the same process as for combinations whose operators are primitive
procedures, as we discussed in section 11.3. That is, the interpreter evaluates the elements
of the combination and applies the procedure (which is the value of the operator of the
combination) to the arguments (which are the values of the operands of the combination).

We can assume that the mechanism for applying primitive procedures to arguments is built
into the interpreter. For compound procedures, the application process is as follows:

To apply a compound procedure to arguments, evaluate the body of the
procedure with each formal parameter replaced by the corresponding argument.

To illustrate this process, let's evaluate the combination

(f )

where f is the procedure defined in section 1.1 4 above. We begin by retrieving the body of 

(sum-of-squares a (* a 2))

Then we replace the formal parameter a by the argument :

(sum-of-squares ( 5 1) ( 2)

Thus the problem reduces to the evaluation of a combination with two operands and an
operator named sum-of -squares. Evaluating this combination involves three subproblems.
We must evaluate the operator to get the procedure to be applied, and we must evaluate the
operands 'Lo get the arguments. Now 1 produces 6 and (* 2 produces 10. So we
must apply the procedure sum-of -squares to 6 and 10. These values are substituted for the
formal parameters x and y in the body of sum-of -squares, reducing to

(+ (square 6 (square 10))

Using the definition of square, this reduces to

(+ ( 6 6 (* 10 10))

which reduces by multiplication to

(+ 36 100)

and finally to

136

The process we have just described is called the substitution model for procedure
evaluation, and it can be- taken as a model that determines the "meaning" of procedure
application, insofar as the procedures in this chapter are concerned. However, there are two
points that should be stressed:
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1. The substitution model is a model that allows oe to tink about procedure
application. Typical interpreters do not evaluate procedure applications by
operating on the text of a procedure to substitute values for the formal
parameters. In practice, the "substitution" is accomplished by using a local
environment for the formal parameters. We will discuss this more fully in
Chapters 3 and 4 we will examine the implementation of an interpreter in detail.

2. The substitution model is not powerful enough to describe all of the procedures
we will consider in this book. In particular, when we address in Chapter 3 the use
of procedures with so-called "mutable data," we will see that the substitution
model breaks down and must be replaced by a more complicated model of
procedure application. On the other hand, substitution is a straightforward idea.
It serves well for understanding all of the procedures in the first two chapters of
this book and indeed, for understanding most of the procedures one normally

12encounters. The model is a good tool to use, so long as we bear in mind that 'it
does have limitations.

Notice that, according to the model given above, the interpreter first evaluates the
arguments to a procedure, and then applies the procedure to the evaluated arguments. This
is not the only way to perform evaluation. An alternative substitution model Wuld first expand
each procedure definition in terms of simpler and simpler procedures, until we obtain an
expression involving only primitive operators, and then perform the evaluation. If we used this
method, then the evaluation of

(f )

would proceed according to the following sequence of expansions:

(sum-of-squares ( 5 1) ( 2)

(+ (square 5 1)) (square ( 2)

(+ (+ 5 1) + 1)) 2 2)

followed by the reductions

(+ 6 6 10 10)).

(+ 36 100)

136

This gives the same answer as our previous substitution model, but the process is different.

12Despite the fact that substitution is a "straightforward idea" it turns out to be surprisingly complicated to give a
rigorous mathematical definition of the substitution process. The problem arises from the possibility of confusion
between the names used for the formal parameters of a procedure and the (possibly identical) names used in the
expressions to wch the procedure may be applied. Indeed, there is a long history of erroneous definitions of
"substitution" in the literature of logic and programming semantics. See the book by Joseph Stoy 43] for a careful
discussion of substitution, And.yet, from a formal mathematical perspective, substitution is 'Much simpler to contend
with rigorously tan the more complete interpreter model that we shall discuss in later chapters, which, at the current
state of the art, seems hardly mathematically tractable at all.
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Notice in particular that the evaluations of 5 1) and (* 2 are each performed twice
here, corresponding to the reduction of the expression

X X)

withxreplacedrespectivelyby( 5 and(* 2.

This alternative "fully expand and then reduce" evaluation method is known as normal
order evaluation, in contrast to the "evaluate the arguments and ten apply" method that the
interpreter actually uses, which is called applicative order evaluation. It can be shown that, for
procedure applications that can be modeled using substitution (including all the procedures
in the first two chapters of this book) and that yield legitimate values, normal and applicative
order evaluation produce the same value. (See exercise 14 for an instance of an
"illegitimate" value where normal and applicative order evaluation would not give the same
result.) Most interpreters use applicative order evaluation, partly because of the additional
efficiency obtained from avoiding the kind of multiple evaluations of expressions illustrated
with 5 1) and (* 2 above, and, more significantly, because normal order evaluation
becomes much more complicated to deal with wen we leave the realm of procedures that
can be modeled by substitution, as we will do in Chapter 3 On the other hand, normal ord-er
evaluation can also be a useful technique. When we tackle the problem of coping wth
"infinite data structures," we will use a method closely akin to normal order evaluation.13

1.1.6. Conditional Expressions and Predicates

The expressive power of the class of procedures that we can define at this point is very
limited. For instance, we cannot define a procedure that computes the absolute value of a
number by testing whether the number is positive, negative, or zero and taking different
actions in the different cases according to the rule:

X if X > 
abs(x) 0 if X = 

-X if X < 

This construct is called a case analysis and there is a special form in Lisp for notating such a
case analysis. It is called cond (which stands for "conditional") and it is used as follows:

(define (abs x)
(cond ((> x.0) x)

X 0) 0)
X 0) (- XM)

The general form of a conditional expression is

13 In Chapter 3 we will introduce the notion of delayed evaluation to provide various "intermediate grounds!'
between normal and applicative orders. We will also introduce" &all-by-need evaluation as a general technique for
avoiding the multiple evaluations used in strict normal order evaluation. See Chapter 3, section 3.4.3.



14 Abs also uses the 'minus" operator -, which, when used with a single operand, as in (- x), indicates negation.
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(cond (pl> <el>)

(<P2> <e2>)

> <e

(<Pn n>)

in which the arguments are pairs of expressions p> <e>) called clauses. The first expression
in each pair is a predicate -- that is, an expression whose value is interpreted as either true or
false. In Lisp, "false" is represented by the value of the distinguished symbol n 7 and any
other value is interpreted as "true." The symbol t is often used as a canonical non-n I
symbol to represent "true."

Conditional expressions are evaluated as follows. The predicate pl> is evaluated first. If its
value is false (i.e., n i 1) then P? is evaluated. If its value is also false then P? is evaluated.
This process continues until a predicate is found whose value is non-n 7 in which case the
interpreter returns the value of the corresponding <0 of the clause as the value of the
conditional expression. If none of the pYs is found to be true, the cond returns n .

14The abs procedure above makes use of the primitive procedures > < and These are
operators that take two numbers as arguments and return t if the first number is greater than,
less tan, or equal to the second umber, respectively, and n 7 otherwise.

Another way to write the absolute value procedure is:

(define (abs x)
(cond ((< x 0) (- x))

(else x)))

which could be expressed in English as "if x is less than zero return -x; otherwise return x."
E7se is a special symbol that can be used in place of the p> in the final clause of a cond.
This causes the cond to return as its value the value of the corresponding <e> whenever all
previous clauses have been bypassed. In fact, any expression that always evaluates to a
non -n 7 value could be used here.

Here is yet another way to write the absolute value procedure:

(define (abs x)
(if < 

X)
X))

This uses the special form if, a restricted type of conditional that can be used when there are
precisely two' cases in the case analysis. The general form of an i f expression i's

i f <predicate> <consequent> <alternative>)

To evaluate an if expression, the interpreter first evaluates the <predicate> part of the
expression, If it is non-n!7 the interpreter then evaluates and returns the value of the
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<consequent>. Otherwise it evaluates and returns the value of the (alternafive>.15

In addition to primitive predicates such as < = and > there are logical composition
operators, which enable us to construct compound predicates. The three most frequently
used are

and Takes an arbitrary number of arguments. If none of the arguments
evaluatesto nfl, thevalueof the andisnon-n7*7.

or Takes an arbitrary number of arguments. If all of the arguments evaluate
to n 7 the value of the or is n 7 otherwise it is non- n 7 7.

not Takes a single argument. It returns non-ni7 when the argument
evaluates to n 7 and n 7 otherwise.

For instance, the condition that a number x be in the range < x. < 10 may be expressed as

(and > x ) < x 10))

As aother example, we can define a predicate to test whether one number is greater than or
equal to another as

(define >= x A
(or > x y) x y)))

or, alternatively, as

(def ine > X A
(not < x y) ) ) -

Observe that and and or are special forms, because the interpreter will not necessarily
evaluate all the arguments to these operators. It only evaluates as many arguments as are
required to determine the value to be returned.

Exercise - Below is a sequence of expressions. What is the result printed by the interpreter in
response to each expression? You should assume that the sequence is to be evaluated in the order it is

presented.

=0 0

(+ 3 4)

=0 9 1)

z=> 6 2)

(+ 24) 4 6)

(def ine a 3)

(define b a 

(+ a b a b))

15
A minor difference between if and cond is that, in Scheme, the e> partof each cond clause may be a

sequence of expressions, which are evaluated in sequence if the corresponding p> is triggered. In an If
combination, however, the <consequent> and alternativ 6) clauses must be single expressions.
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a b)

(if (and > b a) < b a b)))
b
a)

(cond a 4 6)
b 4 6 7 a))

(else 25))

Exercise 12: Define a procedure that takes three numbers as arguments and returns the sum of the
squares of the two larger numbers.

Exercise 13: Show that an y expression that uses if can be rewritten in terms of and and or. As an
example, rewrite the abs procedure to use andand or, ratherthan if or cond.

Exercise 14: Ben Bitdiddle has invented a testtodetermine whether the interpreter he isfaced with is
using applicative order evaluation or normal order evaluation. He defines the following two procedures:

(define (p) (p))

(def ine (test x y)
(if Z )

0

Y))

Then he evaluates the expression

(test 0 (p))

What behavior will Ben observe with an interpreter that uses applicative order evaluations What
behavior will he observe with an interpreter that uses normal order evaluation? Explain your answer.
(Assume that the evaluation rule for the special form if is the same, whether the interpreter is using
normal or applicative order: The predicate expression is evaluated first, and the result is examined to
determine whether the evaluator will continue to evaluate the consequent or the alternative expression.)

1.1.7. Example: Square Roots by Newton's Method

Procedures, as introduced above, are much like ordinary mathematical functions -- they
specify a value that is determined by one or more parameters. But there is an important
difference between mathematical functions and computer procedures. Procedures must be
effective.

As a case in point, let us consider the problem of computing square roots. We can define
the square root function.as follows:

x = the such that y > and y = 

This describes a perfectly legitimate mathematical function. We could use it to recognize
whether one number is the square root of another, or to derive facts about square roots in
general. On the other hand, the definition does not describe a procedure. Indeed, it tells us
almost nothing about how to actually find the square root of a given number. It won't help
matters to rephrase this definition in Lisp-ese:

(define (sqrt x)
(the y (and y 0)

(square y) x))))

That only begs the question.
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The contrast between function and procedure is a reflection of the general distinction
between describing properties of things and describing how to do things, or, as it is
sometimes referred to, the distinction between declarative knowledge and imperative
knowledge. In mathematics we are usually concerned with declarative, or "what is"
descriptions, while in computer science we are usually concerned with imperative, or "how
to" descriptions.,-

How does one compute square roots? The most common way is to use Newton's method of
successive approximations, which says that whenever we have a guess y for the value of the
square root of a number x, we can perform a simple manipulation to get a better guess -- one

17closer to the actual square root -- by averaging y together with xly. For example, we can
compute the square root of 2 as follows. Suppose our initial guess is :

Guess Quotient Average

1 2/1 = 2 (2+1)/2 = 1.5
1.5 2/1.6 = 13333 (1.333 15)/2 = 14167
1.4167 2/1.4167 = 14118 (1.4167 14118)/2 = 14142
1.4142

Continuing this process, we obtain better and better approximations to the square root.

Now let's formalize the process in terms of procedures. We start with a value for the
radicand (the number whose square root we are trying to compute) and a value for the guess.
If the guess is good enough (for our purposes) we are done; if not, we must repeat the
process with an improved guess. We write this basic strategy as a procedure:

(def ine (sqrt-iter guess x)
(if (good-enough? guess x)

guess
(sqrt-iter (improve guess x)

X)))

A guess is improved by averaging it with the quotient of the radicand with old guess:

(define (improve guess x)
(average guess x guess)))

16 Declarative and imperative descriptions are intimately related, as indeed are mathematics and computer
science. For instance, to say-that the answer produced by a program is "correct" is to make a declarative statement
about the program. There is a large amount of research aimed at establishing techniques for proving that programs
are correct, and much of the technical difficulty of this subject has to do precisely with negotiating the transition
between imperative statements (which is how the programs are formulated) and declarative statements which can
be used to deduce things). In a related vein, an important current area in programming language design is devoted
to exploring so-called "Very High Level Languages," in which one actually programs in terms of declarative
statements. The idea is to make interpreters sophisticated enough so that, given "what is" knowledge specified by
the programmer, the "how to" knowledge can be generated automatically. This cannot cannot be done in general,
but there are important areas where progress has been made. In Chapter 4 we shall implement such a language, a
"Logic Programming" language used for information retrieval.

17This square root algorithm is actually a special case of Newton's Method, which is a general technique for
finding roots of equations. The square root algorithm itself was developed by Heron of Alexandria in the first century-
We will see how to express the general Newton's Method as a Lisp procedure in section 13.4.
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where

(def ine (average x y)
( x y 2)

We also have to say what we mean by a guess being "good enough." The following wl do for
illustration, but it is not really a very good test. (See exercise 16.) The idea is to improve thet
answer until it is close enough so that its square differs from the radicand by less than a
predetermined tolerance (here 001):18

(define (good-enough? guess x)
(< (abs (- (square guess) x)) .001))

Finally, we need a way to get started. For instance, we could always guess that the square
root of any number is :

(define (sqrt x)
(sqrt-iter 1 x))

If we type these definitions to the interpreter, we can use sqrt just as we can use any
procedure:

(sqrt 9)
3 0001

(sqrt ( 100 37))
11.7047

=0 (sqrt ( (sqrt 2 (sqrt 3))
1.7739

=0 (square (sqrt 1000))
1000.0003

The sqrt program also illustrates that the simple procedural language we have introduced
so far is sufficient for writing any purely numerical program that one could write in, say, Basic
or Fortran. This might seem surprising, since we haven't included in our language any
iterative or "looping" constructs that direct the computer to do something over and over
again. Sqrt-iter, on the other hand, demonstrates how iteration can be accomplished
using no special construct other than te ordinary ability to call a procedure's

Exe rci se - Alyssa P. Hacker doesn't see why f needs to be provided as a special form. "Why can't
I just define it as an ordinary procedure in terms of concP" she asks. Aiyssa's friend Eva Lu Ator claims
this can indeed be done, and she defines a new version of if as follows:

(define (new-if predicate then-clause else-clause)
(cond (predicate then-clause)

(else lse-clause)))

Eva demonstrates the program for Alyssa:

18
We will use the convention of naming predicates with names whose last character is a question mark. This is

just a stylistic convention. As far as the interpreter is concerned, the question mark is just an ordinary symbol.

19
Readers who are worried about the efficiency issues involved in using procedure calls to implement iteration

should note the remarks on "tail rcursion" in section 12.1 below.
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=0 (new-if = 2 3 0 5)
5

=0 (new-if 1 1) 0 )
0

Delighted, Alyssa uses new- i f to rewrite the square root program:

(define (sqrt-iter guess x)
(now-if (good-enough? guess x)

guess
(sqrt-iter (improve guess x)

XM

WhathappenswhenAl ssaattemptstousethistOCOMPLitesquareroots? Explain.

Exercise 1 6: The good-enough test used in computing square roots will not be very effective if we
areinterested in finding the square roots of very small numbers. Also, in real computers, arithmetic
operations are almost always performed with limited precision. This makes our test'inadequate for very
large numbers. Explain these statements, with examples showing how the test fails for small and large.
numbers. An alternative strategy for implementing good-enough is to watch how guess changes from
one iteration to the next. and to stop wen the change is a very small fraction of the guess. Design a
square root procedure that uses this kind of end test. Does this work better for small and large

numbers?

Exercise 17: Newton's method for cube roots is based on the fact that if y is an approximation to the
cube root of x, then a better approximation is given by the value:

X
- + 2y
Y 2

3

Use this formula to implement a cube root pocedure analogous to the square root procedure. (In
section 13-4, we will see how to implement Newton's method in general as an abstraction of these
square root and cube root procedures.)

1.1.8. Procedures as Black-Box Abstractions

Sqrt is our first example of a process defined by a set -of mutually defined
procedures. Notice that the definition of sqrt-iter is recursive; that is, the procedure is
defined in terms of itself. The idea of being able to define a procedure in terms of itself may
be disturbing, because it may seem unclear how such a "circular" definition could make
sense at all, much less how such a.definition could specify a well-defined process to be
carried out by a computer. We'll address this issue more carefully in section 1.2. But first let"s
consider some other important points illustrated by the sqrt example.

Observe that the problem of computing square roots breaks up naturally 'Into a number of
subproblems: how to tell whether a guess is good enough, how to improve a guess, and so
on. Each of these tasks is accomplished by a separate procedure. The entire sqrt program
can be viewed as a cluster of procedures (shown in figure 12) that mirrors the decomposition
of the problem into subproblems.
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sqrt

sqrt-iter

good-enough? improve

square abs average

Figure 12: Procedural decomposition of the sqrt program

The importance of this decomposition strategy is not simply that one is dividing the
program into parts. After all, we could take any large program and divide it into parts -- the
first ten lines, the next ten lines, the next ten lines, arid so on. Rather, it is crucial that each
procedure accomplishes an identifiable task that can be used as a module in defining other
procedures. For example, when we define the good-enough.? procedure in terms of square,
we are able to regard the square procedure as a black box. We are not at that moment
concerned with how the procedure computes its result, but only with the fact that it computes
the square. The details of how the square is computed can be suppressed, to be considered
at a later time. Indeed, as far as the good-enough? procedure is concerned, square is not
quite a procedure, but rather an abstraction of a procedure, a so-called procedural
abstraction. At this level of abstraction, any procedure that computes the square is equally
good.

Thus, considering only the value, the following two procedures for squaring a number
should be indistinguishable. Both take a number as an input and produce the square of that

20number as an output.

(define (square x) (* x x))

(define (square x)
(exp (double (log x))))

(define (double x) ( x x))

So a procedure definition should be able to suppress detail. The user of the procedure may
not have written the procedure himself, but may have obtained it as a "black box" to perform
some function from another programmer. The user should not need to know how the
procedure is implemented in order to use it.

201t is not even clear which of these procedures is a more efficient implementation, This depends upon the
hardware available. There are machines for which the "obvious" implementation is the less efficient. Consider a
machine which has extensive tables of logarithms and antilogarithms stored in a very efficient mannerl
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Local Names and Block Structure
One detail of a procedure's implementation that should not matter to the user of the

procedure is implementor's choice of names for the procedure's formal parameters, Thus the
following procedures should not be distinguishable.

(define (square x) x x))

(define (square y) y y))

This principle, that the meaning of a procedure should be independent of the parameter
names used by its author, seems on the surface to be self-evident, but its consequences are
profound. The simplest consequence is that the parameter names of a procedure must be
local to the body of the procedure. For example, we used square in the definition of
good-enough in our square root routine:

(define (good-enough.? guess x)
(< (abs (- (square guess) x)) .001))

The intention of the author of good-enough? is to determine if the square of the first
argument is within a given tolerance of the second argument. We see that the author of
good-enough? used the name guess to refer to the first argument and x to refer to the
second argument. The argument of square is guess. If the author of square used x (as he
did above) to refer to that argument, we see that the x in good-enough must be a different x
than the one n square. Running the procedure square must not modify the value of x
which is used by good-enough because that value of x may be needed by good-enough 
after s qua re is done computing,

If the parameters were not local to the bodies of their respective procedures, so that the x
in square could be confused with the x in good-enough?, then the behavior of
good-enough? would depend upon which version of square we used. Thus square would
not be the black box we desired.

A formal parameter of a procedure has a very special role in the procedure definition in
that it doesn't matter what name the formal parameter has. Such a name is called a bound
variable and we say that the procedure definition binds its formal parameters. A variable is
bound in an expression if the meaning of the expression is unchanged by renaming the
variable consistently throughout the expression to another name.21 If a variable is not bound
in an expression, we say that it is free in that expression. The expressions for which a binding
defines a name is called the scope of that name'. In a procedure definition, the bound
variables declared as the formal parameters of the procedure have the body of the procedure
as their scope.

In the definition of good-enough above, guess and x are bound variables, but < -, abs,
and square are free. The meaning of good-enough.? should be independent of the names
we choose for guess and x, so long as they are distinct and different from < - abs,'or
square. (if we renamed guess to abs we would have introduced a bug by capturing the
variable abs. It would have changed from free to bound.) The meaning of good-enough? is
not independent of the names of its free variables, however. tsurely depends upon the fact

21
The concept of "consistent renaming" is actually subtle and difficult to formally define. Famous logicians have

made embarrassing errors here.
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(external to this definition) that the symbol abs names a procedure for computing the.
absolute value of a number. Good-enough will compute a different function if we substitute
cos for abs in its definition.

Internal definitions
We have one kind of name isolation available to us so far; the formal parameters of a

procedure are local to the body of the procedure. The square root program illustrates
another way in which we would like to control the use of names. The existing program
consists of separate procedures:

(def ine (sqrt x)
(sqrt-iter 1 x))

(def line (sqrt-iter guess x)
(if (good-enough? guess x)

guess
(sqrt-iter (improve guess x) x)))

(define (good-enough? guess x)
(< (abs (- (square guess) x)) .001))

(define improve guess 
(average guess (/ x guess)))

The problem with this program is that the only procedure important to the user of srt is
sqrt. Theotherprocedures(sqrt-iter,good-enough?,and improve)onlyclutteruphis
mind. He may not define any other procedure called good-enough? as part of another
program to work together with his square root program because he must remember that sqrt
needs it. The problem is especially severe in the construction of large systems by many
separate programmers. For example, in the construction of a large library of numerical
procedures, many numerical functions are computed as successive approximations and thus
would have procedures named good-enough? and improve, as auxiliary procedures.' We
would like tolocalize the subprocedures, hiding them inside s q r t, so that s qr t could coexist
with other successive approximations, each having its own private good-enough?
procedure. To make this possible, we allow procedures to have internal definitions that are
local to that procedure. For example, in the square root problem we can write:

(define (sqrt x)
(define (good-enough? guess x)

(< (abs (- (square guess) x)) .001))

(define improve guess 
.(average guess x guess)))

(define (sqrt-iter guess x)
(if (good-enough? guess x)

�guess
(sqrt-iter improve guess X) X)))

(sqrt-iter I x))
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This works, and it is basically t he right thing for solving the smplest name packaging
problem. But there is a better idea lurking here. In addition to internalizing the definitions of
the auxiliary procedures, we can simplify them. Since x is bound in the body of sqrt and
since the definitions of sqrt-fter, etc. are in that scope, it is not necessary to pass x
explicitly to each of them. Specifically, we allow x to be a free variable in the internal
definitions. X then gets its value from the argument with which the enclosing procedure sqrt
is called. This discipline is called lexical scoping.22

(def ine (sqrt x)
(define (good-enough? guess)

(< (abs (- (square guess) x)) .001))

(define improve guess)
(average guess (/ x guess)))

(define (sqrt-iter guess)
(if (good-enough? guess)

guess
sqrt-i ter imp rove guess

(sqrt-iter 1))

From now on we will use this technique of block structure quite extensively to help us break
up large programs into tractable pieces-23 The block structure idea originated wth the
programming language Algol-60. It appears in most advanced programming languages and is
an important tool for helping to organize the construction of large programs.

1.2. Procedures and the Processes they Generate

We have been introduced to the elements of programming -- to primitives, combinations,
procedures, and naming. But that is not enough to say that we know how to program. Our
situation is analogous to someone who has learned the rules for how the pieces move in
chess, but.knows nothing of typical openings, of tactics, or of strategy. Like the novice chess
player, we don't yet know the common patterns of usage in our domain. We lack the'
knowledge of which moves are worth making -- which procedures are worth defining We
lack the experience to predict the consequences of making a move, or of executing a- -
procedure.

The ability to predict, or to pre-visualize, the consequences of the actions Under
consideration is crucial in becoming an expert programmer, just as it is in any synthetic,
creative activity. In becoming an expert photographer, for example, one must learn how to
look at a scene and know how dark each region will appear'on a print for each possible.

22 Lexical scoping dictates that free variables in a procedure are taken to refer to variables in enclosing'
procedures, that is, they are looked up in the environment in which the procedure was defined. We will see how this
works in detail in Chapter 3 when we study environments and the detailed behavior of the interpreter.

23 Be careful here. Those embedded definitions must come first in a definition. The management is not

responsible for the consequences of running a program that intertwines definition and use.
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choice of exposure and development conditions. Only then'can one reason backwards,
planning framing, lighting, exposure, and development to obtain the desired effects. So it I's
with programming, where we are planning the course of action to be taken by a process, and
we control the proCess by means of a program. To become experts, we must learn to pre-
visualize the processes engendered by vtriOLIS types of procedures. Only having developed
such a skill can we learn to reliably construct programs that exhibit the desired behavior.

A procedure is a pattern for the local evolution of a computational process. It specifies the
evolution of a process in the same way that a differential equation describes the evolution of a
physical system. At each instant, the change in state of a physical system is computed from
its current state according to its equations of motion. At each step, the next state of the
process is computed from its current state according to the rules of interpreting procedures.
Much of the theory of differential equations is concerned with describing the overall, or
global, behavior of a system whose local evolution has been specified by a differential
equation. Similarly, we would like to be able to make statements about the "overal'I" behavior
of a process whose local evolution has been specified by a procedure. This is very difficult to
do in general, but we can at least try to. describe some typical patterns of process evolution.

In this section, we'll examine some common "shapes" for processes generated by simple
procedures. We'll also investigate the rates at which these processes consume the important
computational resources of time and space. The procedures we will be considering are very
simple. Their role is like that played by photographic test patterns in photography-" - as
oversimplified prototypical patterns, rather than as practical examples in their own right,,`.'

1.2.1. Linear Recursion and Iteration

Let's begin by considering the factorial function, defined by

n1 = n a (n-1) * (n-2) 3 2 * 1

There are many ways to compute factorials. One way is to make use of the observation that nl
is equal to n times (n-1)! for any positive integer n:

n I = n (n-1) * (n-2) 3 * 2 * 1) = n * (n-1 I

Thus we can compute n! by computing (n-1)! and multiplying the result by n. If we add the
stipulation that is equal to 1, this observation translates directly into a procedure:

(define (factorial n)
(if n 1)

n (factorial n 1)))))

We can use the substitution model of section 1.1.5 to watch tis procedure n action
computing !, as shown in figure 13.
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(factorial 6)
6 factorial 5))
6 5 factorial 4)
6 5 4 (factorial 3))
6 5 4 3 factorial 2)))
6 5 4 3 2 (factorial 1))'
6 5 4�( 3 2 OM)
6 6 4 (* 3 2))
6 5 4 6)
6 5 24))
6 120)

720

Figtj re 1 3: A linearly recursive process for computing 6 factorial.

Now let's take a different perspective on computing factorials. We could describe a rule for
Computing n factorial by specifying that we first multiply times 2 then multiply the result by
3, then by 4 and so on until we reach n. More formally, we aintain a running product,
together with a counter that counts from up to n We can describe the computation by
saying that the counter and product simultaneously change from one step to the next
according to the rule:

product counter product
counter counter 

together with the stipulation that the value of factoria7 is the value of the product when the
counter exceeds n.

Once again, we can recast our description as a procedure for computing factorials: 24

(define (factorial n)
(fact-iter 1 1 n))

(define (fact-iter product counter max-count)
(if > counter max-count)

product
(fact-iter (* counter product)

(+ counter 1)
max-count)))

As before, we can use the substitution model to visualize the process of computing 6,
shown in figure 1-4.

24
In a real program we would probably use the block structure introduced in the last section to hide the definition

of f act - ter and to simplify the argument passing as follows:

(def ine (factorial n)
(define (iter product counter)

(if > counter n)
product
(iter (* counter product)

(+ counter
(iter I 1))

We did not do this here so as to minimize the number of things to think about.
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(factorial 6)
(fact-iter 6)
(fact-iter 2 6)
(fact-iter 2 3 6).
(fact-iter 6 4 6)
(fact-iter 24 6)
(fact-iter 120 6 6)
(fact-iter 720 7 6)
720

Fiqu re 1 4: An iterative process for computing 6 factorial.

Let us compare the two processes. From one point of view, they seem hardly different at
all. Both compute the same mathematical function on the same domain, and each requires a
number of steps proportional to n to compute M Indeed, both processes even carry out the
same sequence of multiplications, obtaining the same sequence of partial products. On the
other hand, when we consider the "shapes" of the two processes, we find that they evolve
quite differently.

Consider the first process. The substitution model reveals a shape of expansion followed
by contraction, indicated by the arrow in figure 13. The expansion occurs as the process
builds up a chain- of deferred operations, in this case, a chain of multiplications. The
contraction occurs as the 'arguments to each multiplication are evaluated and the
multiplication is actually performed. This type of process, characterized by a chain of
deferred operations, is called a linearly recursive process. Notice that carrying out tht$
process requires that the interpreter keep track of the multiplications to be performed later on,
In computing n!, the length of the chain of deferred operations, and hence the amount of
information needed to keep track of t grows linearly with n.

By contrast, the second process does not grow and shrink. At each step, all we need to
keep track of, for any n, are the current values of the variables product, counter, and
max-count. We call this kind of process an iterative process. In general, an iterative process
is one whose state can be summarized by a fixed number of variables, called state variables,
together with a fixed rule that describes how the state variables should be updated as the
process moves from state, to state, and an (optional) end test that specifies conditions under
which the process should terminate.

Here is another way to view' the contrast between the two processes. In the iterative -dase',
the program variables provide a complete description of the state of the process at any point.
If we stopped the computation between steps, all we would need to do to resume the
computation is to supply the interpreter with the values of the three program variables. Not so
with the linearly recursive process. In this case there is some additional "hidden" data being
maintained by the interpreter, not contained in the program variables, which keeps track of
"where the process is" in negotiating the chain of deferred operations. The longer the chain,
the more information to be maintained.4

04
'-When we discuss the implementation of procedures on register machines, we will see that any iterative process

can be realized "in hardware" as a machine that has a fixed set of regi s4ters and no auxiliary memory. In contrast,

realizing a recursive process requires a machine that uses an auxiliary data structure known as a stack.
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In contrasting iteration and recursion, we must be careful not to confuse the notion of a
recursive process with the notion of a recursive procedure. In general, when we describe a
procedure as recursive, we are referring to the syntactic fact that the procedure definition
refers (either directly or indirectly) to the procedure itself. But when we describe a process as
following a pattern which is, say, linearly recursive we are speaking about how the process
evolves, not about the syntax of how a procedure is written. In particular, it may Seem
disturbing that we refer to a recursive procedure such as fact-iter as generating an
iterative process. But the process really is iterative: Its state is captured completely by its
three state variables, and an interpreter need keep track of only three variables in order to
execute the process.

One reason that the distinction between process and procedure may be confusing is that
interpreters for most common languages (including Algol, Pascal, and indeed -- until recently
.. most implementations of Lisp) are designed in such a way that the interpretation of any
recursive procedure consumes an amount of memory that grows linearly with the number of
procedure calls, even when the process described is, in principle, iterative. As a
consequence, these languages can describe iterative processes only by resorting to the use
of special-purpose "looping constructs" SLIch as do, repeat, unti7, for, while, and so
on. The interpreter we shall exhibit in Chapter does not share this defect. It will execute an
iterative process in constant space, even if the iterative process is described by a recursive
procedure. An interpreter with this property is called tail recursive. With a tail recursive
interpreter, iteration can be expressed using the ordinary procedure call mechanism, so that
special iteration constructs are useful only as syntactic sugar.26

Exercise 1-8: Each of the following two procedures defines a method for adding two positive integers
in terms of the more primitive operators 1+, which increments its argument by 1, and 1+, which
decrements its argument by .

(def ine ( a b)
(if = a )

b
(1+ (+ (-l+ a) b))))

(define ( a b)
(if = a )

b
(+ (-l+ a) (1+ b))))

Using the substitution model, illustrate the process generated by each procedure In evaluating
( 4 ). Aretheseprocessesiterativeorrecursive?

Exercise 19: The following procedure computes a mathematical function called "Ackerman's
function."

26 Tail recursion has long been known as a compiler optimization trick. A coherent semantic basis for tail
recursion was provided by Carl Hewitt 21], who explained it in terms of the "message-passing" model of
computation that we shall discuss in Chapter 3 Inspired by this, Get-aid Jay Sussman and Guy Lewis Steele, Jr. 39]
constructed a tail-recursiVe interpreter for Scheme. Steele 40] later showed how tail recursion is a consequence of
the natural way to compile procedure calls.
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(def i no (A x y)
(cond y 0) 0)

x 0) (* 2 y))
y 1) 2)

(else (A (- x 1)
(A x (- y 1))))))

What are the values of the following expressions?

(A 1 10)

(A 2 4)

(A 3 3)

Consider the following procedures, where A is the procedure defined above:

(define (f n) (A n))

(define (9 n) (A n))

(define (h n) (A 2 n))

(define (k n) (* 5 n n))

Give a concise mathematical definition for each of the functions computed by the procedures fg, and h,
for positive integer values of n. (For example, (k n) computes 5n2

1.2.2. Tree Recursion

Another common pattern of computation is called tree ecursion. As an example, consider
computing the sequence of Fibonacci numbers, in which each number is the sum of the
preceding two:

0 1 1 39 5 813, 21s

In general, the Fibonacci numbers can be defined by the rule

0 if n = 
Fib(n) 1 if n = 

Fib(n-1)+Fib(n-2) otherwise

We can immediately translate this definition into a recursive procedure for computing
Fibonacci numbers:

(define (fib n)
(cond n 0) 0)

n 
(else (fib n 1))

(fib n 2)))))

Let us consider the pattern of this computation. In order to compute, say, (f ib 5) we
compute (f ib 4 and (f7'b 3 In order to compute (f7b 4 we compute (f7'b 3 and
(f lb 2 In general, the evolved process looks like a tree, as shown in figure 1-5. Notice
that the branches split into 2 at each level (except at the bottom) and this reflects the fact that
the f lb procedure calls itself twice each time it is invoked.
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.Figurel-5: The tree-recursive process generated in computing (fib 5).

Th' edure is instructive as a prototypeis proc cal tree-recursion, but 'it is a terrible way to
compute Fibonacci numbers, because it-does so much redundant computation. Notice in
figure 1-5 that the entire computation of (f 'b 3 - almost half the work .. is duplicated. In

�' ee �_N fact, it is not to [lard to show that the nmber of times the procedure will compute ib or
(f lb 0) (the number of leaves in the above tree, in general) is precisely Fib(n + 1). And to
get an idea of how bad this is, one can show that te value of Fib(n) grows exponentially with
n. Moreprecisely,(seeexercisel-15)Fib(n)istheclosestintegertocpn/ V 5, where

( = + 52 1.6180

is the golden ratio that satisfies the equation

(P ( +

Thus the pocess takes an amount of time that grows exponentially with the nput. On the
other hand, the space required grows only linearly with the input because we need keep track
only of which nodes are above us in the tree at any point in the computation. In general, the
time required by a tree-recursive process will be proportional to the number of nodes in the
tree, while the space required will be proportional to the maximum depth of the tree.

We can also formulate an iterative process for computing the ibonacci numbers. The idea
is to use a pair of integers a and b, initialized to and 0, and to repeatedly apply the
simultaneous transformations

a a b
b a

It is not ard to show that,'after applying this transformation n times, a and b will be equal,
respectively, to Fib(n) and Fb(n-1). Thus we can compute Fibonacci numbers iteratively
using the procedure:
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(define (fib n)
(fib-iter 1 0 n))

(define (fib-iter a b count)
(if = count 

b
(fib-iter ( a b) a (- count 1))))

This second method for computing f b is a linear iteration. The difference in time required
by the two methods -- one linear in n, one growing as fast as Fib(n) itself -- is enormous, even
for small inputs.

One should not conclude from this that tree recursive processes are useless. For one
thing, when we consider processes that operate, not on numbers, but on hierarchically
structured data, we will find that tree-recursion is a natural and powerful tool.27 But even in
numerical operations, tree recursive processes can be useful in helping us to understand and
design programs. Notice, for instance, that although the first lb procedure is much less
efficient than the second one, it is more straightforward, being little more than a translation
into Lisp of the definition of the Fibonacci sequence, In order to formulate the iterative
algorithm we needed a bit of cleverness to notice that the computation could be recast as an
iteration with three state variables.

Example: Counting change
It takes only a bit of cleverness to come LIP with the iterative Fibonacci algorithm. In

contrast, consider the following problem: How many different ways can we make change of
$1.00 given half-dollars, quarters, dimes, nickels, and pennies? More generally, can we write
a procedure to compute the number of ways to change any given amount of money?

This poblem has a simple solution as a recursive procedure: Suppose we think of the types
of coins available as arranged in some order. Then the following relation holds:

Number of ways to change amount a using n kinds of coins
Number of ways to change amount a using all but the first kind of coin

+ Number of ways to change amount a-d using all n kinds of coins
where d is the denomination of the first kind of coin.

To see why this is true, observe that the ways to make change can be divided into two
groups: those that do not use any of the first kind of coin, and those that do. Therefore, the
total number of ways to make change for some amount is equal to the number of ways to
make change for the amount without using any of the first kind of coin, plus the number of
ways to make cha ng.e, assuming that we do use the first kind of coin. But the latter number is
.equal to the number of ways to make cange for the amount that remains after using a coin of
the first kind.

Thus we can recursively reduce the problem of changing a given amount to the problem of
changing smaller amounts using fewer kinds of coins. You houldtonsider this, reduction

27
We've already hinted at an example of this the interpreter itself evaluates expressions, usin'g a tree-recursive

process, as mentioned in section 11.3.
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rule carefully, and convince yourself that we can use it to describe an algorithm if we specify
the following degenerate cases:28

* If a is exactly we should count that as way to make change.

* If a is less than we should count that as ways to make change.

* If n is we should count that as ways to make change.

We can easily translate this description into a recursive procedure:

(define (count-change amount)
(cc amount ))

(define (cc amount kinds-of-coins)
(cond ((= aount 0) 1)

((or < amount 0) = k`inds-of-coins 0)) 0)
(else (cc (- amount

(firs-t-denomination kinds-of-coins))
k'nds-of-coins)

(cc amount
kinds-of-coins 1))))))

(define first-denomination kinds-of-coins)
(cond kinds-of-coins 1) 1)

kinds-of-coins 2 
kinds-of-coins 3 10)
kinds-of-coins 4 25)
kinds-of-coins 5) 50)))

(The f irst-deonomination procedure takes as input the number of kinds of coins available
a, nd returns the denomination of the first kind. Here we are thinking of the coins as arranged
in order from smallest to largest, but any order would do as well.) Having typed 'in our
program, we can use it to aswer our original estion about changing a dollar:

==> (count-change 100)
292

Count-change generates a tree-recursive process with redundancies similar to those in
our first implementation of f lb, (It will take quite a while for that 292 to be computed.) On the
other hand, it is not so obvious how to design a better algorithm for computing the result, and
we leave this problem as a challenge (exercise 10). The observation that a tree-recursive
process may be highly inefficient but often easy to specify and to understand has led people
to propose that one could get the best of both worlds by designing a s.mart compiler" that
can transform tree-recursive procedures into more efficient procedwras that compute the

28 -ough in detail, for example, how the reduction rule applies to the problem of making change for 0
cents using pennies and nickels.
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finsame resulting'

Exercise - 0: Design a procedure which evolves an iterative process for solving the change counting

problem. For simplicity, you may wish to start by considering only 2 or 3 kinds of coins.

1.2.3. Orders of Growth

The previous examples illustrate that processes can differ considerably in the rates'at
which they consume computational resources of time and space. One convenient way to
describe this difference is to use the notion of "order of growth" to obtain a gross measure of
the resources required by a pocess as the inputs become larger.

Let n be a parameter that measures the size of the input and let Rn) be the amount of
resources the process requires for an input size n. In our previous examples we took n to be
the number for which a given function is to be computed, but there are other possibilities. For
instance, if our goal is to compute an approximation to the square root of a number, we might
take n to be the number of digits accuracy required. For matrix mltiplication we might take n
to be the number of rows in the matrices. In general there are a number of properties of the
input with respect to which it will be desirable to analyze a given process. Similarly, RH
might measure the time required to complete the computation, the number of internal storage
registers used, the number of elementary achine operations performed, and so on.

We say that Pn) has order of growth OH), written RH = 0f(n)) (pronounced "Oh of
40') if there is some constant independent of n such that

R(n < K fn)

for any sufficiently large value of n.

For instance, with the linear recursive process for computing factorial described in section
1.2.1 the number of steps grows proportionally to te input n. Thus the time required for this
process grows as 0(n). We also saw that the space required grows as 0n). For the iterative
factorial the required time is still 0nI but the space is 00) -- that is,. constant.30 The tree-
recursive Fibonacci computation requires time 0((Pn) and space 0n).

Orders of growth provide only a crude description of the behavior of a process. For
example a process requiring n steps and a process requiring 1000n steps are both

29 This idea is not as otlandish as it may appear at first sight. One approach to coping with redundant

computations is to arrange matters so that we automatically construct a table of function values as they are
computed. Each time we are asked to compute the function on some input, we first look to see if the value is already
stored in the table, in which case we avoid performing the redundant computation. This strategy, known as
tabulation or memoization, can be implemented in a straightforward way. Tabulation can be used to transform
processes that require' exponential time (such as count-change) into processes whose space and time
requirements grow linearly with the input. See exercise 324 of Chapter 3.

30 These statements mask a great deal of oversimplification, For instance, when we identify process steps with
"time" we are making the assumption that the amount of time needed to perform, say, a multiplication is independent
of the size of the numbers to be multiplied, which is false if the numbers are sufficiently large. Similar remarks ho Id
for the estimates of space. Just as with the design and description of a process, the analysis of a process can be
carried Out at various levels of abstraction.
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considered to have 0n) order of growth.31 On the other hand, order of growth provides a
useful indication of how we may expect the behavior of the process to change as we change
the size of the input. For an 0(n) process, doubling the size will roughly double the amount of
resources used. For an exponential process, each increment in input size will multiply the
resource utilization by a constant factor. In the remainder of section 12, we'll examine two
algorithms whose order of growth is logarithmic, so that doubling the input size increases the,
resource requirement by a constant amount,

Exercise 11 1: Draw the tree illustrating the process generated by the count-change procedure of
section 12.2 in making change for 11 cents. What is the order of growth of this process as the arnount
to be changed increases?

1.2.4. Exponentiation

Consider the problem of computing the exponential of a given number. We'd like a
procedure that takes as arguments a base b and a positive integer exponent n and computes
V. One way to do this is via the recursive definition:

n n-1b b *b
bi b

which translates readily into the procedure

(def ine (expt b n)
If = n 1)

b
b (expt b (- n 1)))))

This is a linear recursive process, with time and space requirements OW. Just as with
factorial, we can readily formulate an equivalent linear iteration:

(def ine (expt b n)
(exp-iter b n 1))

(de fine (exp-iter b counter product)
(if = counter )

product
(exp-iter b

counter 1)
b product))))

31
Another drawback of order notation is that it provides only an upper bound on the growth. Because of the,

inequality sign in the definition, any process with order of growth fn) will also have order of growth g(n) for any
function g that grows faster than f. For example, any n) process is also 0n 2 ). So strictly speaking, we should,
interpret the equation Rn = 00(n)) to mean that Rn) grows at most as fast as fn). In more careful analyses of
resource utilization, one also considers estimates which say that n) grows at least as fast as fn). This is expressed,
using the notation Rn) has order of growth 00(n)), written R(n = 00(0 (pronounced "big omega of fn)") which 'is
defined to mean that there is some constant K independent of n such tat

R(n) > K fn)

for any sufficiently large value of n. In addition, the notation Rn) 00(n)) is used to mean tha R W 0 0 W) and
R(n = 90(n)), or, roughly, that R(n) grows exactly as fast as f(h).
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This version requires time On) and space i).

We can compute exponentials in fewer steps by using the idea of successive squaring. For
instance, rather than computing b as

bobob*bobebobob

we can compute it using three multiplications as follows:

b = b 1 b
4 = (b2)2b

= VPb

This method works fine for exponents that are powers of 2 We can also take advantage of
successive squaring in computing exponentials in general if we use the rule:

bn = bn,2)2 if n is even
nb = bo b-' if n is odd

We can express this method as a procedure:

(define (fast-exp b n)
(cond ((= n 0) 1)

((even?. n) (square (fast-exp b n 2)))
(else.(* b (fast-exp b (- n 1))))))

where the predicate to test whether an integer is even is defined in terms of the primitive
procedure rema inder by

(define (even? n)
(remainder n 2 0))

The process evolved by f as t-exp grows logarithmically with n in both space and time. To
see this, observe that computing (fast-exp b 2n) requires only one more multiplication
than computing (fast-exp b n). The size of the exponent we can compute therefore
doubles (approximately) with every new multiplication we are allowed.32 So the number of
multiplications required for an exponent of n grows about as fast as the logarithm of n to the
base 2 The process has O(log n) growth.33

The difference between O(log n) growth and OW growth becomes striking as n becomes
large. For example, fast-exp for n=1000 requires oly 14 multiplications-34 It is also
possible to use the successive squaring idea to devise an iterative algorithm that computes
exponentials in logarithmic time, although, as is often the case with iterative algorithms, tis is
not written down so straightforwardly as the recursive algorithm. (See exercise 112.)

32More precisely, the number of multiplications required is equal to one less than the log base 2 of n plus the
number of 1's in the binary representation of n. This total is always less than twice the log base 2 of n This
algorithm, or more precisely, the iterative version of it (see exercise 112), is very ancient. It appears in the Hindu
Chandah-sutra by Acharya Pingala, written before 200 B.C. See Knuth 24] section 46.3 for a full discussion and
analysis of this and other methods of exponentiation.

33The arbitrary constani in the definition of order notation implies that, for a logarithmic process, the base to
which logarithms are taken does not matter, so all such process are described as Oog n).

34
You may wonder why anyone would care about raising numbers to the 1000th power. See section 2.6.
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Exercise 112: Design a procedure which evolves an iterative exponentiation process that uses
successivesquaringandworksinlogarithmictime,asdoes fast-exp. (Hint:Usingthe' bservationthat
(b nl2)2 = (b 2)nl2 , keep, along with the exponent n and the base b, an additional state variable a,

n
and define the state transformation in such a way that the product ab is unchanged from state to state.
At the beginning of the process a is taken to be 1, and the answer is given by tile value of a at the end of
the process. In general, the technique of defining an invariant quantity that remains unchanged from
state to state is a powerful way to think about the design of iterative agorithms.)

Exe rci se - 3 The exponentiation algorithms in section 12.4 are based on performing exponentiation
by'Means of repeated multiplication, In a similar way, one can perform integer multiplication by means
of repeated addition. The following multiplication procedure (assume that our language can only add,
not multiply) is analogous to the exp procedure:

(def i no * a b)
(if = b 0)

0
( a a b 1)))))

This algorithm takes time linear in b. Now suppose we include, together with addition, operations
doub7e, which doubles an integer, and ha7ve wich divides an (even) integer by 2 Using these,
design a multiplication procedure analogous to fast-exp, which works in logarithmic time.

Exercise 114: Using the results of exercises 112 and 113 devise a procedure that generates an
iterative process for multiplying two integers in terms of adding, doubling, and halving, that works in
logarithmic time. 35

Exe rci se - : Prove that fib W is the closest integer to pn 5, where q = 1 + 52. (Hint: Let
= ( - 52. Use induction and the recurrence relation for the Fibonacci numbers to prove that OH
= ((Pn_ nV V 5.) Using this fact, devise a procedure that computes Fibonacci numbers in logarithmic

time. (Assume that there are primitive procedures f 7 0or and ce i 7 ing which return, respecti vely, the
closest integers below and above their argument.) Explain why this method is not likely to be practical
for computing ( f lb n) unless n is fairly small.

1.2.5. Greatest Common Divisors

The greatest common divisor, or GCD, of two integers a and b is defined to be the largest
integer that evenly divides both a and b. For example, the GCO of 16 and 28 is 4 In Chapter 2,

when we investigate how to implement rational number arithmetic, we will need to be able to
compute GCDs in order to reduce rational numbers to lowest terms. (To reduce a rational
number to lowest terms, we must divide both numerator and denominator by their GD. For
example, 16/28 reduces to 47.) One way to find the GCD of two integers is to factor them
and search for common factors. But there is a famous algorithm that is much more efficient.

The idea of the algorithm is based on the observation that, if r is the remainder when a is
divided by b, then the Comm on divisors of a and b are precisely the same as the common
divisors of b and r Thus we can use the equation

GCD(ab = GCD(br)

to successively reduce the problem of computing GCD to the problem of computing the GCD

35
This algorithm, which i's sometimes known as the "Russian peasant method" of multiplication, is extremely

ancient. Examples of its use are found in the Rhind Papyrus, one of the two oldest mathematical documents in
existence, written about 700 B.C. (and'copied from an even older document) by an Egyptian scribe name Ah-mose.
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of smaller and smaller pairs of integers. For example,

GCD(206,40 = GCD(40,6 = GCD(6,4 = GCD(4,2) GCD(2,0) 2

reduces GCD(206,40 t GCD(2,O), which is 2 It is possible to show that starting with any two
positive integers and performing repeated reductions will always eventually produce a pair
where the second number is 0. Then the GCD is the other number in the pair. This method for
computing the GCD is known as Euclid's Algorithm.36

It is easy to express Euclid's Algorithm as a procedure:

(define (gcd a b)
(if = b 0)

a
(gcd b (remainder a b))))

This generates an 'Iterative process, whose number of steps grows as the logarithm of the
numbers involved.

The fact that the number of steps required by Euclid's Algorithm has logarithmic growth-
bears an interesting relation to the Fibonacci numbers. Consider the following result:37

Lame's Theorem: If Euclid's Algorithm requires k steps to compute the GCD of some pair,
then the smaller number in the pair must be greater than or equal to the kth Fibonacci
number.38

We can use this theorem to get an order of growth estimate for Euclid's Algorithm. Let n be
the smaller of the two inputs to the procedure. If the process takes k steps, then we must

36Euclid's algorithm is so called because it appears in Euclid's Elements (Book 7 c. 300 B.C.). According to.
Knuth 24], it may be considered to be the oldest known non-trivial algorithm. The ancient E yptian method of
multiplication (exercise 114) is surely older, but, as Knuth explains, Euclid's algorithm is the oldest known to have
been presented as a general algorithm, rather than only as a set of illustrative examples.

37This. theorem was proved in 1845 by Gabriel Larrie a French mathematician and engineer known chiefly for his
contributions to mathematical physics.

38To prove the theorem, we consider pairs (a b for which Euclid's algorithm terminates in k steps. The -proof isk k
based on the claim that if (ak + ' bk + 1) -* ak' bk - ak. 1 bk- 1) are three successive pairs in the reduction
process, then we must have b �1- b + bk+1 k, k-1

To verify the claim, consider that a reduction step is defined by applying the transformation:

a bk-1 k
bk-1 remainderofakdividedbybk

The second equation means that ak = qbk + bk-1 for some positive integer q. And since q must be at least I we
have a = b + b >b + b But in the previous reduction step, we have b a Theref ore, b ak k- - k k-1 k+l= k' k+1 = k

bk + b k- 1 h is verif ies the c ai m.

Now we can prove the theorem by induction on k, the number of steps that the algorithm requires to terminate.
The result is true for k = , since this merely requires that b is at least as large as Fib(l = . Now, let's assume that the
result is true for all integers less than or equal to A and establish the result for A 1. Let (a b --+ (a k+1 k1 kv
(a b, 1) be successive pairs in the reduction process. By our induction hypotheses, we have bk-1 Fib(k_11 and
b 5 �ib(A). Thus applying the claim we just proved together with the definition of the Fibonacci numbers gives
b �:b + b Fib(k) + Fib(k-1 = Fib(k + 1) wich completes the proof of Larries theorem.k + 1 k k_1
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khave n > Fib(k) 1 . Therefore te number of steps k must be less than the logarithm (to
the base p) of n Hence the order of growth is 0(log n).

Exe rcise - 6 The process that a procedure generates is of course dependent on the rules used by
the interpreter. As an example, consider the iterative gcd procedure given in section 12-5, which has
logarithmic growth. Suppose we were to interpret this procedure using normal order evaluation, as
discussed in section 1.1.5. Using the substitution method (for normal order), illustrate the process
generated in evaluating (gcd 206 40). In general, what is the order of growth in time resources for
gcd using normal order evaluation? (Assume that the time required is proportional to the number of
r ema i n de r operations performed.)

1.2.6. Example: Testing for Primality

This section describes two methods for checking the primality of an nteger n, one with
order of growth ON n), and a "probabilistic" algorithm with order of growth 00og n). The
related exercises at the end of this section suggest programming projects based on these
algorithms.

Searching for divisors
Since ancient times, mathematicians have been fascinated by problems concerning prime

numbers, and many people have worked on the problem of determining ways to test 'if
numbers are prime. One way to test if a number is prime is to find the number's divisors. The
following program finds the smallest integral divisor (greater than 1) of a given number n It
does tis in a straightforward way, by testing n for divisibility by successive integers starting
with 2.

(define (smallest-d'visor n)
(find-divisor n 2)

(define find-d'visor n test-divisor)
(cond

((> (square test-divisor) n) n)
((divides? test-divisor n) test-d'visor)
(else (find-divisor n ( test-divisor 1)))))

(define divides? a b)
(remainder b a) 0))

We can test whether a number is prime as follows: n is prime if and only if n i's its own
smallest divisor.

(define (prime? n)
(= n (smallest-d'visor n)))

The end test for f ind-divisor is based on the fact that if n is not prime, it must have a
divisor less than or equal to -� In.39 This means that the algorithm need only test divisors
between and In. Consequently the number of steps required to identify n as prime will
have order of growth 0(,/ n).

39For if d is a divisor of n, then so is n Id. But d and n Id cannot both be greater than V n.
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The Fermat test
The 00og n) primality test is based on a result from number theory known as Fermat's Little

Theorem:

Fermat's Little Theorem: If n is a prime number and a is any positive integer less than n,
then a raised to the n-th power is congruent to a modulo n.

(Two numbers are said to be congruent modulo n if they both have the same remainder
when divided by n.)

If n is not prime then, in general, most of the numbers a < n will not satisfy the above
relation. This leads to the following algorithm: Given a number n, pick a random number a < n
and compute the remainder of a' modulo n If the result is not equal to a, then n is certainly
not prime. If it is a, then chances are good that n is prime. So now pick another random
number a and test it with the same method. If it also satisfies the equation, then we can be
even more confident that n is prime. By trying more and more values of a, we can increase
our confidence in the reSUlt. This algorithm is known as the Fermat test.

In order to implement the Fermat test, we need a procedure that computes the exponential
of a number modulo another number.-

(define (expmod b e m)
(cond ((= e 1) b)

((even? e)
(remainder (square (expmod b (/ e 2 m))

m))
(else
(remainder (* b (expmod b (- e 1) m))

MM)

This is very similar to the fast-exp procedure of section 12.4. Observe that it uses
successive squaring, so that the number of steps grows logarithmically with the exponent.40

The Fermat test-is performed by choosing at random a number a between 2 and n-1
inclusive and checking whether the remainder modulo n of n-th power of a is equal to a. The
random number a is chosen using the procedure random, which is included as a primitive in
Scheme. Random returns a non-negative integer less than'its input. Hence, to obtain a
random number between 2 and n-1, we call random with an input of n-2 and add 2 to the
resu It.

(def ine (fermat-test n)
(define a 2random (- n 2))

(expinod a n n) a))

The following procedure runs the test a given number of times, as specified by a parameter.
Its value is true if the test succeeds every time, and false otherwise.

40
The reduction steps in the cases where the exponent e is greater than are based on the fact that, for any

integers x, y, and m, we can find the remainder of x times y modulo m by computing separately the remainders of x
modulo and y modulo m, multiplying these, ad then taking the remainder of te result modulo m. For instance, in
the case where e is even, we compute the remainder of be/2 modulo m, square this, and take the remainder modulo
n.. This technique is useful because it means we can perform our computation without ever having to deal with
numbers much larger than m. (Ccimpare exercise 1-21.)
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(define (fast-prime? n times)
(or = times 

(and (fermat-test n)
(fast-prime n (- times 1)))))

(Th is proced ure uses a n d and o r in a tricky way, Remember that these operators. are speciaj
forms. The second clause of the and will be evaluated only if the first one is true, and the
second clause of the or will be evaluated only if the first one is false. This implies that
fast-prime? will return immediately if it everfinds (fermat-test n) to be false.)

Probabilistic methods
The Fermat test has a different character from most familiar algorithms, in which we

compute an answer that is guaranteed to be correct. Here, the answer obtained is only
probably correct. More precisely, if n ever fails the Fermat test, then we can be certain that a
is not prime. But the fact that n passes the test, while an extremely strong indication, is stffi
not a guarantee that n is prime. What we would like to say is that, for any number n, if we
perform the test enough times and find that n always passes the test, then the probability of
error in our primality test can be made as small as we like.

Unfortunately, this assertion is not quite correct, because there do exist numbers that fool
the Fermat test: numbers n that are not prime and yet have the property that an is congruent
to a modulo n for all integers a < n Such numbers are extremely rare, however, so the Fermat
test is quite reliable in practice. Nevertheless, te possibility of error still exists, and because
of this, mathematicians until recently tended to regard the Fermat test as a good way to show

44that a number is not prime, but not an adequate method for showing that a number is prime.

Over the past few years, mathematicians have discovered variations of the Fermat test that
cannot be fooled. In these tests, as with the Fermat method, one tests the primality of an
integer n by choosing a random integer a < n and checking the value of some quantity Fan)
that can be computed in logarithmic time. (See exercise 123 for an example of such a test.)
On the other hand, unlike with the Fermat test, one can prove that for any n, Fan) will not
have the right value for most of the integers a < n unless n is prime. This means that if a
passes te test for some random choice of a, we know that the chances are better than even
that n is prime. If n passes the test for 2 random choices of a then the odds are better than 4
to that n is prime. And by running the test with more and more randomly chosen values of a
we can make the probability of error as small as we like.

The difference between these methods and the Fermat test is not significant for practical
42purposes. On the other hand, the existence of tests for which one can prove that the

chance of error becomes arbitrarily small sparked interest in algorithms of this type, which,

41 Numbers that fool the Fermat test are called Carmichael numbers, and little is known about them, other than that,

they are extremely rare. There are 16 Carmichael numbers below 100,000. The smallest few are' 561, 106, 1729�y
2465,2821,6601.,

42 In testing primality of very large numbers chosen -at random, the chance of stumbling upon a value that fools the

Fermat test is less than the chance that cosmic radiation will cause te computer to make an error in carrying out a
"correct" algorithm. Considering an algorithm to be inadequate for the first reason but not for the second illustrates
the difference between mathematics and engineering.
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have come to be known as probabilistic algorithms. There is currently a great deal of research
activity in this area, and probabilistic algorithms have been fruitfully applied to many fields-43

Exerci sel-117: Implement the sma7 lest-divisor procedure of section 1.2.6 and use it to find the
smallest divisor of each of the following numbers: 199; 1999; 19999.

Exercise 1- 1 8: Most Lisp implementations include a primitive called run t me which returns an integer
that specifies the amount of time the system has been running (measured, for example, in
microseconds). The following timed-prime-test procedure, when called with an integer n, prints n
and checks to see if n is prime. If n is prime, the procedure prints three stars, followed by the umber of
microseconds used in performing the test.

(define (timed-prime-test n)
(define start-time (runtime))
(define found-prime? (prime? n))
(define elapsed-time (- (runtime) start-time))
(print n)
(cond (found-prime? (print

(print elapsed-time))
(else nil)))

Using this procedure, write a procedure search-for-primes which checks the primality of
consecutive odd integers in a specified range. Use your procedure to find the three -smallest primes
larger than 1000; larger than 10,000; larger than 100,000; larger than 1,000,000. Note the' time needed to
test each prime. Since the testing algorithm has order of growth (V n) you should expect that testing
for primes around 10,000 should take about V 10 times as long as testing for primes around 1000. Does
your timing data bear this out? How well does the data for 100,000 and 1,000,000 support the n
prediction?

Exercise - 9 The sma 7 7 est -di v isor procedure described in section 12.6 is doing lots of needless
testing. For after it checks to see if the number is divisible by 2 there is no point checking to see if it is
divisible by any larger even numbers. This suggests that te values used for test-divisor sould not
be 2 3 4 5 6 7 .., but rather 2 3 7 9 ... To implement this change, define a procedure next that
returns 3 if its input is equal to 2 and otherwise returns its input plus'2. Modify the sma7 7est-divisor
procedure to use (next test-divisor) instead of test-divisor 1). With
timed-prime-test incorporating this modified version of sma77est-divisor, run the test foreach

of the. 12 primes found in exercise 1-18. Since this modification halves the number of test steps, you
should expect it to run about twice as fast. Is this expectation confirmed? If not, what is the observed
ratio of the speeds of the two algorithms, and how do you explain the fact that it is different from .

Exercise 120: Implement the Fermat test as described in section 12.6. Modify the
timed-prime-test procedure of exercise 1-18 to use the Fel-mat method, and test each of the 12
primes you found in that exercise. Since the Fermat test has 00og n) growth, how would you expect the
time to test primes near 1,000,000 to compare with the time needed to test primes near 1000? Does your
data bear this out? Can you explain any discrepancy you find?

Exercise 121: Alyssa P. Hacker complains that we went to a lot of extra work in writing expmod. After
all, she says, since we already know how to compute exponentials, we could have simply written

43 One of the most striking applications of probabilistic prime testing has been to the field of cryptography. While it
is currently computationally infeasible to factor an arbitrary 200-digit number, the primality of such a number can be
checked in a few seconds with the Fermat test. This fact forms the basis of a technique for constructing
"unbreakable codes" suggested in 1977 by Ronald Rivest, Adi Shamir, and Leonard Adelman 36]. Because of this
and rated developments, the study of prime numbers, once considered to be the epitome of a topic in "pure"
mathematics to be studied only for its own sake, now turns out to have important practical applications to
cryptography, electronic funds transfer, and information retrieval.
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(define (expmod base exp m)
(remainder (fast-exp base exp) m))

Is she correct? Would this procedure serve as well for our fast prime tester? Explain.

Exercise 122: Louis Reasoner is having great difficulty doing exercise 120. His fast-prime? test
seems to run more slowly than his prime? test. Louis calls his friend Eva Lu Ator over to help. When
they examine Louis's code, they find that he has rewritten the expmod procedure to use an explicit

multiplication, rather than calling square:

(define (expmod b m)
(cond ((= 1) b)

((even? e)
(remainder (expmod b e 2 m)

(expmod b e 2 m))

(else
(remainder b (expmod b e 1) m))

MM)

"I don't see what difference that could make," says Louis. "I do." says Eva. "By writing the procedure
like that, you have transformed the 00og n) process into an 0n) process." Explain.

Exercise 123: One of the variants of the Fermat test which cannot be fooled was discovered in 1977
by Robert Solovay and Volker Strassen 38]. It proceeds by choosing a random number a < n, checking
that GCD(a, n = and then computing a number-theoretic quantity called the Jagbi symbol (an)
which is equal to ± . If n is prime then Xan) is always congruent modulo n to an- )/2 for any a such

that GCD(a, n = If n is not prime, then it can be proved that this relation does not hold for at least half
the numbers a<n. Thus if we find that the relation does not hold for some randomly chosen a, we can
assert that the chances are better tan even that n is not prime. The Jacobi symbol can be computed by
using the reductions:

if a1
2-(n 1/8

J(an) J(a/2,n)*(-l) if a is even
(a-1)(n-1)/4

J(remainder(na),a)*(-1) otherwise

Implement the Solovay-Strassen test as a procedure that runs in Oflog n) time.

1.3. Formulating Abstractions with Higher Order Procedures

We've seen that procedures are, in effect, abstractions that describe compound operations
on numbers independently of the particular numbers. For example, when we define

(define (cube x) (* x x x))

we are not talking about the cube of a particular number, but rather about a method for
obtaining the cube of any number. Of course, we could have gotten along without ever
defining this procedure, by always writing expressions such as

3 3 3)
X X X)
Y Y Y)

and never mentioning cub-e explicitly. This would place us at a serious disadvantage, forcing
us to work always at the level of the particular operations that happen to be primitives in the



1.3 DRAFT: 31 JULY 1983 I ACI
-r%7

language (multiplication, in this case), rather than in terms of igher level operations. Our
programs would be able to compute cubes, but our language would lack the ability to express
the concept of cubing. One of the things we should demand from a powerful programming
language is the ability to build abstractions by assigning names to common patterns, and then
to work in terms of the abstractions directly. Procedures provide this ability. This is why all
but the most primitive programming languages include mechanisms for defining procedures.

Yet, even in numerical processing, we will be severely limited in our ability to create
abstractions if we are restricted to procedures whose parameters must be only numbers..
Often the same programming pattern will be used with a number of different procedures. To
express such patterns as concepts we will need to construct procedures which can accept
procedures as parameters. Procedures that manipulate procedures are sometimes called
higher order procedures. This section shows how higher order procedures can serve as
powerful abstraction mechanisms, vastly increasing the expressive power of our language.

1.3.1. Procedures as Parameters

Consider the following three procedures. The first computes the sum of the integers from a
through b:

(define (sum-integers a b)
(if > a b)

0
( a sum-integors a b))))

The second computes the sum of the cubes of the integers in the gven range:

(define (sum-cubes a b)
(If > a b)

0
(+ (cube a) (sum-cubes a b))))

The tird computes the sum of a sequence of trms in the following series, which converges
to ff /8 (very slowly):44

+ + +
1#3 5 7 9,011

(define (pi-sum a b)'
(if > a b)

0
(+ a a 2)) (pi'-sum a 4 b))))

These three procedures clearly share a common underlying pattern. They are for the most
part identical, differing only in the name of the procedure, the function of a used to compute
the term, and the function that provides the next value of a. We could generate each of the

44This formula, usually.written in the equivalent form

v14 - 113 11 - 17 

is due to Leibnitz.
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procedures by filling in slots in the same template:

(def ine (<name> a b)
If > a b)

0
(+ (<term> a)

(<name> (<next> a) b))))

The presence of such a common pattern is strong evidence that there is a useful
abstraction waiting to be brought to the surface. Indeed, mathematicians have long ago
identified the abstraction of summation of a series and have invented "sigma notation"

b
I f ( n) = f (a) + f (b)
a

to express this concept. The power of sigma notation is that it allows mathematicians to deal
with the concept of summation itself, rather than only with particular sums; for example, to
formulate general results about sums that are independent of the particular series being
summed.

Similarly, as program designers, we would like our language to be powerful enough so that
we can write a procedure that expresses the concept of summation itself rather than only
writing procedures that compute particular surns. And we can readily do so in our procedural
language by taking the common template shown above and transforming the "slots" into
formal parameters:

(define (sum term a next b)
(if > a b)

0
(+ (term a)

(sum term (next a) next b))))

Notice that sum takes as its arguments upper and lower bounds a and b together with
procedures term and next. We can use sumjust as we would any procedure. For example,
we can use it to define sum-cubes,,,

(define (sum-cubes a b)-
(sum cube a b))

Using this we can compute the sum of the cubes of the integers from to 10:

(sum-cubes 1 10)
3025

We could also define p - sum in the same way:

(define (pi'-sum a b)
(define (pi-term x)

x ( x 2))
(define (pi-next x)

(+ x 4)
(sum pi-term a pi-next b))

Using these procedures, we could get an approximation tff,.,
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8 (pi'-sum 1 1000))
3.13592

Once we have sum, we can use it as a building block in formulating further concepts. For
instance, the definite integral of a function f between the limits a and b can be approximated
numerically using the formula

b
f f [f(a+dx/2) + f(a+dx+dx/2) + f(a+2dx+dx/2) + dx
a

for small values of dx. We can express this directly as a procedure:

(define (integral f a b dx)
(define (add-dx x) ( x dx))

(sum f a dx 2) add-dx b)
dx))

(Integral cube 0 1 .001)
0.250000063

Exercise 124: The sum procedure above generates a linear recursion. If we like, we can rewrite the
procedure so that the sum is performed iteratively. Show how to do this by filling in the missing
expressions in the following definition:

(define (sum term a next b),
(define (iter a result)

if <>

(iter ??>

OM
(iter <??> <??>

45Exercise 125 : The sum procedure of section 13.1 is only the simplest of a vast number of similar

abstractions that can be captured as higher order procedures. Write an analogous procedure called
product that returns the product of the values of a function at points over a given range. Write the
procedure in two forms, one which generates a recursive process and one which generates an iterative
process. Show how to define fact 06 in Also use product to compute
approximations to ir using the formula: 4

20404*606*80

4 3*30505*7070 ...

Exercise 1 -26: Show that sum (section 1.1) and produc t (exercise 125) are both special cases of a
still more general notion called a c c umu 7 a t e which combines a collection of terms, using some general

45
The intent of exercises 1-25 through 127 is to demonstrate the expressive power that is attained by sing an

appropriate abstraction to consolidate many seemingly disparate operations. However, while accumulation and

filtering are elegant ideas, our hands are somewhat tied in using them at this point, since we do not yet have data
structures to provide suitable means of combination for these abstractions. We will return to these ideas in Chapter 3
when we study data structures called streams. Streams are interfaces that allow us to combine filters and
accumulators to build even more powerful abstractions. We will see in section 34.2 how these methods really come
into their own as a powerful and elegant approach to designing programs.

4& Fhis formula was discovered'by the English mathematician John Wallace, who lived from 1616 to 1703.
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accumulation function:

(accumulate combiner null-value term a next b)

Accumulate takes as parameters the same term and range specifications as sum and product,
together with a combiner procedure (of two arguments) that specifies how the current term is to be
combined with the accumulation of the preceding terms and a nu 7 7 -va I ue that specifies what initial
value to use when the terms run out. Write accumulate (both in recursive and iterative forms) and
show how sumand product can both bedefined assimple callsto accumulate.

Exercise 127: You can obtain an even more general version of accumulate by introducing the notion
of a filter on the terms to be combined. That is, do not combine all the terms in the range, but only those
that satisfy a specified condition. The resulting f 7 tered-accumu a t e abstraction takes the same
arguments as accumulate, together with an additional predicate of one argument tat specifies the filter.
Write f 7 tared-accumu 7 a te as a procedure. Show how to express, using f i 7 tered-accumul'a te:

a. the sum of the squares of the prime numbers in given interval a to b (Assume you have a prime?
predicate already written.)

b. the product of all the positive integers a < n such that GCO(an) 1.

1.3.2. Constructing Procedures using LAMBDA

In using sum in section 13.1, it seems terribly awkward to have to define trivial procedures
such as pi-term and pi-next, just so we can use them as inputs to our higher order
procedure. Rather than defining names pi-next and pi-term (even if in a local
environment), it would be more convenient to have a way to directly specify "the procedure
that returns its input incremented by 4" and "the procedure tat returns the reciprocal of its
input times its input plus 2 We can do this by introducing the special form ambda, which
can be thought of as a de f ine anonymous." Using 7 amb da we can describe what we want
as

(lambda (x) ( x 4)

and

(lambda (x) (/ 1 (* x ( x 2))

Then our p 1-SUM procedure can be expressed without defining any auxiliary procedures as

(define (pi-sum a b)
(sum (lambda (x) (/ 1 (* x ( x 2)))

a
(lambda (x) ( x 4,
b))

Again, using 7 amb da, we can write the in tegra I procedure without having to define the
auxiliary procedure add-dx. In addition, we can include the increment dx as a parameter to
integral:

def line ( i nteg ral f a b dx)
(sum f

(+ 'a (/ dx 2)
(lambda (-a) a dx))
b)

dx))
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(integral cube 0 1 .01)
0.249987492

(integral cube 0 1 .001)
0.250000063

(The exact value of the integral of cube between and is 14.)

In general, ambda is used to define procedures in the same way as def Ine, except that
no name is specified for the procedure being defined.

(I ambd a <formal-parameters> <body>)

The resulting procedure is just as mch a procedure as any that is created using def ine.
The only difference is that it has not been associated with any name in the environment. In
fact,

(define (plus4 x) ( x 4)

is equivalent to

(define plus4 (lambda (x) ( x 4)

As with any expression which has as its value a Lisp procedure, a ambda form can be
used as the operator in a combination, such as:

((lambda (x y z) ( x y (square z))) 2 3)
12

47or, more generally, in any context where we would normally use a procedure name.

Using LET to define local variables
Another use of lambda is in defining local variables. We often need local variables in our

procedures other than those that have been bound as formal parameters. For example,
suppose we wish to compute the function

f(Xy) = Xl + Xy)2 + y_y + 1 + Xy)(,_y)

which we could also express as

a = 1xy

b 1-y

f (x, Y = xa2 + b + ab

In writing a procedure to compute f, we would like to include as local'variables not only x and
y, but also the names of intermediate quantities like a and b. One natural way to accomplish

47 It would be clearer and less intimidating to people learning Lisp if one used a name more obvious than 7 amb da,
such as procedure. Bu.t the convention is 'firmly entrenched. The notation is adopted from the X-calculus
(lambda-calculus), a mathematical formalism introduced in 1941 by the athematical logician Alonzo Church
[6]. Church developed the X-calculus to provide a rigorous foundation for studying the notions Of fnction and

function application. As such, the -calculus has become a basic tool for mathematical investigations of the
semantics of programming languages.
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this is to de f Ine these expressions locally':

(define (f x y)
(define a x y)))
(define b 1 y))
(+ x (square a))

y b)
a b)))

An alternative is to use an auxiliary procedure to bind the local variables, instead of defining
them:

(define (f x y)
(define (f-helper a b)

(+ x (square a))
y b)
a b)))

(f-helper ( 1 (* x y))

YM

Oil course, we could use a 7ambda expression to allow us to specify an anonymous
procedure for binding our local variables. The body of f then becomes a single call to that
procedure:

(define (f x y)
((lambda (a b)

(+ x (square a))
y b)
a b)))

(+ X A)
YM

This construct is so useful that there is a special form called 7et to make its use more
convenient. Using 7 et, the f procedure could be written as:

(define (f x y)
(let ((a 1 (* x y)))

(b (- 1 y)))
x (square a))
y b)
a b))))

The general form of 7 et is

(let ((<var > <exp,>)
(<var2> <exp2>)

(<var > exp >)n n
<body>)

The first part of the 7 et expression is a list of name-expression pairs. When the 7e is
evaluated, each name is associated with the value of the corresponding expression. The
body of the 7et is evaluated 'in a local environment that includes these names as local
variables. The way this happens is that the 7et expression is interpreted as an alternate
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syntax for:

1 ambda (<var > <varn>)
<body>)

<exp >

<expn>)

Notice that no new mechanism is required in the interpreter in order to provide ocal-
variables. Letissimplysyntacticsugarfortheunderlying lambda.

A let construct (or the equivalent ambda expression) is often preferable to define for
making local variables for several reasons.

0 Let allows one to construct expressions that bind variables as locally as possible
to where they are to be used. For example, one can use a 7 et expression as an
operand of a combination. The other operands and the operator will be evaluated
in the environment outside of the 1 e t, but the local variables bound by the I e t
will be available to help compute the value of that operand of the combination.
For example, we could write

(+ (let ((x 1 y)))
(+ X * X M

Y)
oln a et expression, the variables are bound simultaneously, using values

computed outside the scope of the I et, rather than being bound in sequence.
This makes a difference when the expressions that provide the values for the 7et
local variables depend upon variables having the same names the et variables
themselves.. For example, in an environment where x is bound to 2 the
expression

(let ((x 3 (y ( x 2))
X A)

will have the value 12, because, inside the scope of the I et, x will be bound to 3
and y will be bound to 4 (which is the original x plus 2 In contrast evaluating the
sequence

(define x 3)
(define (y ( x 2)

X A,
will result in 15 as the value of the last expression, since x will be bound to 3 and
y will then be bound to .

Exe rcise -28: Suppose we def ine the f ollowing procedure
(def ine (f g)

(g 2)

Then we have

(f square)
4
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(f (lambda (z) (* z ( z

What happens if we (perversely) ask the interpreter to evaluate the combination (f f Explain.

Exercise 1-29.- Ben Bitdiddle writes a program to approximate ff using the equation:

ir I dx
arctan 1 f

4 0 1 + 2

Ben defines the procedure:

(define (pi dx)
4
(integral (lambda (x) 1 ( (square x))))

0
I
dx)))

and proceeds to produce more and more accurate approximations to ff by using smaller and smaller

values of dx:

=0 (pi )
3,14242598

=0 (pi .01)
3.14160103

=0 (pi .001)
3,14159274

Ben's classmate Eva Lu Ator decides she'd like to try this herself, so she sits down at the next terminal,
types in the same p procedure and runs it. To her amazement, the results are slightly different:

=0 (pi )
3.14242595

=0 (PI' .01)
3.141601

=0 (pi .001)
3.14159256

In trying to figure out what is going on, Ben and Eva make a careful comparison of all the procedures in
their programs. The oly difference tey find is that Ben has defined integra7 to use the reCUrsive
version of sum from section 13.1 while Eva has used the iterative version. Can this account for the
difference in their esults? If so, how? (Hint/Warning: This is a "trick question," that depends on
properties of computer. arithmetic that we have not mentioned explicitly.)

1.3.3. Procedures as General Methods

We introduced compound procedures in section 1.1 4 as a mechanism for abstracting
useful numerical operations so as to make them independent of the particular numbers
involved. With higher order procedures, such as the 7'n tegra 7 procedure of section 13.1 we
began to see a more powerful kind of abstraction -- procedures used to express general
methods of computation, inde- endently of the particular mathematical functions involved. In
this section we discuss to more elaborate examples -- general methods for finding zeroes

.and maxima of functions -- and show how these methods can be expressed directly as
procedures.
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Finding roots of equations by the half -interval method
The half-interval method is a simple but powerful technique for finding roots of an equation

f(x = 0, where f is a continuous function. The idea is that if we are given points a and b such
that fa < < fb) then f must have at least one zero between a and b. To locate a zero we let x
be the average of a and b and compute fx). If fx > then f must have a zero between a and
x. If f(x < then f must have a zero between x and b. Continuing in this way, we can identify
smaller and smaller intervals on which f must have a zero. When we reach a point where the
interval is small enough, the process stops, Since the interval of uncertainty is reduced by
half at each step of the process, the number of steps required grows as 0log LIT), where L is
the length of the original interval and T is the error tolerance, that is, the size of the interval we
will consider "small enough."

Here is a procedure that implements this strategy:

(define (search f neg-point pos-point)
(let ((midpoint (average neg-point pos-point)))

(if (close-enough? neg-point pos-point)
midpoint
(let ((test-value (f midpoint)))

(cond ((positive? test-value)
(search f neg-point mdpoint))

((negative? test-value)
(search fmidpoint pos,-point))

(else mdpoint))))))

We assume that we are initially given the function f together with points on which its values
are negative and positive. We first compute the midpoint of the two given points. Next we
check to see if the given interval is small enough, and if so, we simply return the midpoint as
our answer. Otherwise, we compute as a test value the value of f at the midpoint. If the test
value is positive, then we continue the process with a new interval running from the original
negative point to the midpoint. If the test value is negative, we continue with the interval from
the midpoint to the positive point. Finally, there is the possibility that the test value is in
which case the midpoint is itself the root we are searching for.

To test whether the endpoints are "close enough" we can use a procedure similar to the
one used in section 11.7 for computing square roots.

(define (close-enough? x y)
(< (abs (- x y)) .001))

Finally, we can use the search procedure n a procedure that takes as inputs the function,
together with two endpoints. This checks to see which of the endpoints has a negative
function value and which has a positive value, and calls the search procedure accordingly. If
the function has the same sign on the two given points, the half-interval method cannot be
used, in which case the procedure signals an error-48

48 This can be accomplished using the error primitive, which takes as arguments a number of items that are
printed as error messages.,
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(define (half-interval-method f a b)
(let ((a-value (f a))

(b-value (f b)))
(cond ((and egative? a-value) positive? b-value))

(-search f a b))
((and (negative? b-value) (positive? a-value))
(search f b a))

(else
(error "Values are not of opposite sign" a b)))))

The following example shows the half-interval method used to approximate as the root
between 2 and 4 of sin x = :

==> (half-interval-method sin 2 4)
3.14111328

Here is another example, showing the half-interval method used to search for a root of the
equation x3 - 2x - 3 = between and 2,

(half-interval-method (lambda (X)
x x x) 2 x 3)

2)
1.8931

Finding the maximum of a unimodal function
Suppose we are given a function f defined on some interval and we wish to find, to within a

tolerance T, the point on the interval at which f attains its maximum value. One straightforward
way to do this is to evaluate the function at points along the interval that are evenly spaced a
distance T apart and to pick the one that has the maximum value. This exhaustive search
procedure requires evaluating the function at (LIT) points, where L is the ength of the
interval. Tis is surely not a very effective method if T is small. Fortunately, for many classes
of functions, there are much better techniques for locating the maximum. The method we
shall discuss here applies to functions that are unimodal; that is, functions that are known to
have only one "bump" on the interval in question. More formally, a unimodal function f with a
maximum on an interval from a to b has the property that there is some point m on the interval
such that f is increasing between a and m and decreasing between m ad b.

For unimodal functions, there is a process that will find the maximum, using 0og(L/T))
function evaluations. The idea is to. evaluate f at two intermediate points x and y on the
interval (with x<y) Ten, if fW is greater than fy), we can assert that the maximum must lie
on the interval between a and y, while if fW is less than fy) we can assert that the maximum
lies between x ad b. So if we choose x and y to lie towards the middle of the interval, we can
with two function evaluations cut the interval of uncertainty roughly in half, as shown in figure
1-6. Repeatedly performing this cutting will produce an interval of size, smaller than T in
0(log(L/T)) steps.
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Figure 1 6: Searching for the maximum of a unimodal function

But we can be cleverer yet. Notice tat we need to compare the function value at two
intermediate points x and y in order to reduce the interval. Thus each reduction step requires
that we find the value of the function at two intermediate points. But suppose we could
arrange things so that we could guarantee that one of the intermediate values had been
already generated by the previous reduction step. Then each new reduction step would
require only one new function evaluation. If the function is difficult to compute this would
represent a substantial savings, making our search twice as efficient.

One way to accomplish this, known as the golden section method, is to choose the
intermediate points x and y to lie at certain fixed fractions along the interval. That is, we
always choose x to lie at a fraction p of th,19way from a to b, and y to lie at a fraction q of the
way -from a to b:

x-a = P(b-a)
y-a = q-a)

The reason this is called the golden section method is that we choose the fraction q to be

q . - 2 0 6 8

which is precisely the reciprocal of the golden ratio, which described the order of growth of
the Fibonacci numbers. The number p is chosen to be q2. If we always use this rule to choose
the intermediate values x and y, then we can guarantee that one of the intermediate values to
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AO
be chosen for the next round will be either the x or the y for the current round.-"'

in summary, we carry out the golden section method by choosing as our two intermediate
points a point y which lies a fraction of the way from a to b equal to one over the golden ratio,
and a point x which lies at a fraction of one over the golden ratio squared. If f(x > fy) then the
new interval of uncertainty is from a to y, x will serve as the "y point" for this interval, and we
should compute a new "x point." If fx) < f(y) then the new interval of uncertainty is from x to
b, y will serve as the "x point" for this interval and we sould compute a new "y point." In
either case, the interval of uncertainty is reduced to at most 618 of its previous length. We
repeat the process, reducing the interval over and over, until the endpoints are close enough
for our purposes, in which case we can return any intermediate point on the interval (say, x).

The golden section method can be implemented as an iterative process described by the
following procedure reduce which maintains state variables for a, x, y, b, and the values of f
at x and y.

(def i ne reduce f a x y b f x fy)
(cond ((close-enough? a b) x)

(-(> fX fy)
(let ((new (x-point a y)))

(reduce f a new x y (f new) fx)))
(else
(let ((new (y-po'nt x b)))

(reduce f x y new b fy (f new))))))

Notice (and this is the whole point of the method) that we have to compute the value of f at
only one new point on each iteration. The new points are computed at the appropriate ratio
along the interval. The procedures to do this take as arguments the endpoints of the new
interval:

49 Here is a proof of this fact: Suppose that Ux > y). Then our new interval of uncertainty will run from a to y If
we want to use our old x as the intermediate value that lies a fraction q of the way from a to y then we should have x -
a q(y - a) or

2p(b - a) qy - a) q (b - a)

which implies that p q 2. Now consider the other case, where fx) - fy). Then our new interval will run from x to b.
If we want to use our old y as the intermediate point at a fraction p of the distance along this interval, we should have
y - x = pb - x) or

(Y - a) - x - a) = PM - a) - x - a)]

or, substituting for x -a and y-a,

q(b - a) - P(b - a) PA - a) - P(b - Q

This reduces to

2
q - p P P

2
Combining this with the relation p: q that we derived above yields

2 2 4
q -q = q q

which simplifies to

2 + 

The number q tat satisfies this relatio6 is the reciprocal of the golden ratio.
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(define (x-point a b)
( a * golden-ratio-squared b a))))

(define (y-point a b)
( a golden-ratio (- b a))))

where the golden-ratio constants are computed by

(def ine golden-ratio
(sqrt 6 1 2)

(define golden-ratio-squared (square golden-ratio))

Finally, we initialize the process with a procedure that takes as inputs the function we wish to
maximize together with the endpoints of the interval in question and calls re du ce after setting
up the initial x and y points of te interval:

(define (golden f a b)
(let ((x (x-point a b))

(y (y-point a b)))
(reduce f a x y b (f x) (f y))))

As a test, we can use our procedure to approximate w as twice the maximum point /2 of
the sine function on the interval to 3:

==> ( 2 (golden sin 3)
3.14143

Exercise 30: When we introduced the golden section method for finding the maximum of a function
on an interval, we also mentioned the brute force method of evaluating te function at evenly-spaced
points along the interval and choosing the largest value. Assuming you [lave a procedure max that
returns the larger of its two inputs, show how a brute-force search for the maximum value can be
implemented as a single call to accumu7ate (exercise 126).

Exercise 131: In finding the maximum of a unimodal function, how much faster is the golden section
method than the brute force method of evaluating the function at equally-spaced points along the
interval and choosing the largest? In particular, suppose we want to find the maximum point of a
function on the interval from to I with an accuracy to within .001. How many function evaluations
would be required using brute force? How many using the golden section method?

Exe rci se -3 2: A number x is called a fixed point of a f unction f if x satisf ies the eq uation f W = x. For
some functions f (the cosine function is an example) we can locate a fixed point by beginning with an

initial guess and applying f repeatedly:

f(X), 41W), WON))),

until the value does not change very much. Using this idea, design a procedure f ixed-po in t that
takes as inputs a function and an initial guess and poduces an approximation to a fixed point of the
function. Test your procedure by evaluating the expression

(fixed-point cos 1)

to poduce a fixed point of the cosine function.

1.3.4. Procedures as Returned Values

The previous examples show how the ability to pass procedures as parameters significantly
enhances the expressive power of our programming language. We obtain, even more
expressive power if we have the ability to create procedures wose returned values are
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themselves procedures.
3 2 This says that the derivative of the

Consider the statement that "the derivative of x is X
function whose value at x is is another function, namely the function whose value at x is
3x2. In particular, "derivative" itself can be regarded as an operator which, when applied to a
function f, returns another function Df. To describe "derivative" we can say that, if f is a
function and dx is some number, then the derivative Df of f is the function whose value at any
number a is given (in the limit of small dx by

f(x+dx) - f(x)
Df (x)

dx

Using Iamb da, we can express the derivative formula as the procedure

I ambda (x)
(- (f ( x dx)) (f x))
dx)

where dx is some small number.

Going further, we can express the idea of derivative itself as the procedure

(define (deriv f-dx)
(lambda (x)

(- (f ( x dx)) (f x))
dx)))

This is a procedure that takes as its argument a procedure f and returns as its value a
procedure (produced by the lambda) which, when applied'to a number a will produce an
approximation to the derivative of at a.

We can use our deriv procedure as follows to approximate the derivative of the cube
function at (whose exact value is 75):

==> ((deriv cube .001) 5)
75.15

Observe that the operator of the second combination above 'is itself a combination, because
the procedure to be applied to is the result of der! v applied to cube.

Newton's method for arbitrary functions
We can use der! v to build a procedure that implements Newton's method for finding the

roots of a differentiable function. This says that if y is an approximation to a root of the
function f, then a better approximation is given by:

f(Y)

Y

Df(y)



--------

1.3.4 63DRAFT: 31 JULY 1983

50This generalizes the formula that we used in section 11.7 for computing square roots. Now,
however, we are trying to compute, not only square roots, but roots of any function. It is a
general method, like the half-interval method that we described in section 13.3.

We can implement Newton's method as a straightforward generalization of the square root
program of section 11.7. As before, we start with an initial guess and improve it until it is
good enough:

(define (newton f guess)
(If (good-enough? guess f)

guess
(newton f improve guess M

Improving the guess is done using the formula given above:

(def i ne improve guess f
guess / guess)

((deriv f .001) guess))))

Finally, a guess is good enough when the value of the function at that point is very small:

(define (good-enough.? guess f)
(< (abs (f guess)) .001))

Having defined these procedures, we can now try Newton's method with any function. For
example, we can approximate the value of x for which x is equal to cos x, starting with an
initial guess of :

==> (newton (lambda (x) x (cos x))) 1)
0.7391

The idea of procedures as returned values may take some getting used to, or seem little more
than a mathematical trick. But the increase in expressive power in a language that can return
procedure values is enormous, because tis means that we can compute not only with
particular procedures, but with procedures that can evolve in response to the ongoing
computation. This ability lies at the root of some powerful programming techniques which we
shall meet in later chapters-51

Exercise 133: If f is a numerical function and n is a positive integer, then we can form the nth
repeated application of , that is, the f unction whose value at x is f f ( (x) For example,
if (x = x + 1, then the nth repeated application of f produces the function g where g(x = x + n. If f is
the operation of squaring a number, then the nth repeated application produces the operation that

Newton's method does not always converge to an answer, but it can be shown that, in favorable cases, each
iteration of the Newton formula doubles the number of digits accuracy of the approximation to the root. In such
cases, Newton's method will converge much more rapidly than the half-interval method. In the case of square roots
(which is a favorable case for Newton's method), we are trying to find a zero of the function y 2-a. Using the fact that
the derivative of this function is 2y, nd a little algebra, the above formula reduces to (112)(y+aly), which is the
formula we used in sectional.

51 In Chapter 2 (section 21.3) we shall see that in a language that allows procedures as returned values there is, in
principle, no need to include any additional machinery for handling data structures, although Lisp implementations
do include such machinery for efficiency reasons. Moreover, we shall see that allowing procedures as returned
values enables us to deal with infinite data structures via the technique of stream processing, to be introduced in
Chapter 3.
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raises its argument to the 2nth power. Write a procedure that takes as inputs a procedure f and a
positive integer n and returns te procedure wich is the nth repeated application of f. For example,
your procedure should be able to be used as follows:

=0 ((repeated square 2 6)
625

Exercise 134: The idea of smoothing a function is an important concept in signal processing. If f is a
function and dx is some small value, then the smoothed version of f is te function whose value at a
point x is the average of f(x-dx), f (x), and f (x+dx). Write a procedure smooth that takes as input a
procedure that computes f and returns a procedure that computes the smoothed f. It is sometimes
valuable to repeatedly smooth a function (that is, smooth the smoothed function, and so on) to obtained
the n-fold smoothed function. Sow how to easily generate the n-fold smoothed function of any given
function using smooth and repea ted from exercise 133.

Exercise 135: Define a procedure cubic that can be used together with the Newton's method
procedure of section 13.4 in expressions of the form

(newton (cubic a b c) 1)

3 2to approximate roots (starting with an initial guess of 1) to the cubic x ax + bx + c.

Exe rci se -3 6 Newton's method is an example of a still more general computational strategy known as
iterative improvement. An iterative improvement says that, to compute something, we start with an initial
guess for the answer, test if the guess is good enough, otherwise improve the gess and continue the
process sing the improved guess as the new guess, Write a procedure iterative-improve that

takes as arguments an initial guess, a method for telling whether a guess is good eough, and a method
for improving a guess. The procedure should return as its value an answer that is good enough.
Express Newton's method using the tera t ive - Improve procedure. Also show how the fixed-point
search (exercise 132) can be expressed as an iterative improvement.
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Chapter 2
Building Abstractions with Data

We now come to the decisive step of mathematical
abstraction: we forget about what the symbols stan .d
for. ... [The mathematicians need not be idle; there are
many operations which he may carry out with these
symbols, without ever having to look at the things they
stand for.

Hermann Weyl, The Mathematical Way of Thinking

We concentrated in Chapter on computational processes and on the role of procedures
in program design. We saw how to use primitive data (numbers) and primitive operators
(arithmetic operators). We saw how to combine procedures to form compound procedures
.. through composition, conditionals, and the use of parameters -- and how to abstract
procedures by using de f in e. We saw that a procedure can be regarded as a local pattern for
the evolution of a process, and we classified, reasoned about, -and performed simple
algorithmic analysis of some common patterns for processes as embodied in procedures. We
also saw that higher order procedures enhance the power of our language by enabling us to
manipulate, and thereby to reason in'terms of, general methods of computation. This is much
of the essence of programming.

In this chapter, we are going to look at more complex data. All of the procedures in
Chapter operate on simple numerical data, and simple data is not sufficient for any of the
problems we wish to address using computation. We typically design programs to model
complex phenomena. And more often than not, we must construct computational objects that
have several parts, in order to model real-world phenomena that have several aspects. Thus,
while our focus i the previous chapter was on building abstractions by combining
procedures to form compound procedures, we turn in this chapter to another key aspect of
any programming'language -- the means it provides for building abstractions by combining
data objects to form compound data.

Why do we want compound data in a programming language? For the same reasons that
we want compound procedures: to elevate the conceptual level at which we can design our
programs, to increase the modularity of our designs, and to enhance the expressive powe of
our language. Just as the ability to define procedures enables us to deal with processes at a
higher conceptual level than that of the primitive operations of the language, so does the
ability to construct compound data objects enable us to deal with data at a higher conceptual
level than that of the primitive data objects of the language.

Consider, for example, the problem of designing a system to perform arithmetic with
rational numbers. For instance, we could imagine an operator +rat that takes two rational
numbers as arguments and produces their sum. In terms of simple data, a rational number
can be thought of as two integers -- a numerator and denominator. So we can design a
program in which each rational number is reflected by two integers - a numerator and a
denominator -- and where +rat is implemented by two procedures, one that produces the
numerator of the sum and one that produces the denominator. But this would be awkward,
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because we would then need to explicitly keep track f which numerators correspond to
which denominators. In designing a system to perform many operations on many rational
numbers, such bookkeeping details would clutter our programs substantially, to say nothing-
of what they would do to our minds. It would be much better if we could "glue together" a
numerator and denominator to form a pair -- a compound data object -- that our programs can
manipulate in a way that is consistent with regarding a rational number as a single conceptual
unit.

Compound data also enables us to increase the modularity of our programs. If we can
manipulate rational numbers directly as objects in their own right, then we can separate the
part of our program that deals with rational numbers per se, from the details of how rational
numbers may be represented as pairs of integers. The general technique of isolating the
parts of a program that deal with how data objects are represented from the parts of a
program that deal with how data objects are used is a powerful design methodology called
data abstraction. We will see below ow data abstraction makes programs uch easier to
design, to maintain, and to modify.

Finally, compound data leads to a real increase in the expressive power of our
programming language. Consider for example the idea of forming a "linear combination"
ax b. We might like to write a procedure that accepts a, b and x as arguments and returns
the value of ax b. This is no problem if the arguments are to be numbers, because we can
readily define the procedure

(define (linear-combination a b x)
(+ a x) b))

But suppose we are not concerned only with numbers. Rather, suppose we woul d like to
express, in procedural terms, the idea that one can form linear combinations whenever
addition and multiplication are defined -- for rational numbers, complex numbers,
polynomials, or whatever. We could express this a a procedure of the form

(define (1-inear-combination a b x)
(add (mul a x) b))

where add and mu I are not the primitive procedures + and *, but rather more complex things
that will perform the appropriate operations for watever kinds of data we pass in as the
arguments a, b, and x. The key point is that the only thing that I near-comb inat on should
need to know about a, b, and x is that te operators add and mu I will perform the appropriate
manipulations. From the perspective of the 71near-combination procedure, it is
completely irrelevant what a, b, and x -are, and even more irrelevant how tey might happen to
be represented in terms of more primitive data. This same example shows why it is important
that our programming language provide the ability to manipulate compound objects
directly. For without this, there is no way for a procedure such as 7 near - comb ina t ion to
pass its arguments along to add and mu I without ever having to worry about their detailed
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. 1structure.

We begin this chapter by implementing the rational number arithmetic system mentioned
above. This will form the background for our discussion of compound data and data
abstraction, As with compound procedures, the main issue to be addressed is that of
abstraction as a technique for coping with complexity, and we will see how data abstraction
enables us to erect suitable abstraction barriers between different parts of a program.

We will see that the key to forming compound data is that a programming language should
provide some kind of "glue" that enables one to combine data objects to form more complex
data objects. There are many possible kinds of glue. Indeed, we shall discover how to form
compound data using no special "data" operations at all, but only procedures. This will
further blur the distinction between "procedure" and "data," already made tenuous towards
the end of Chapter 1. We will also explore some conventional techniques for representing
sequences, trees, and symbolic expressions, with applications to symbolic differentiation,
representing sets, and encoding information, Next, we take up the problem of working with
data that may be represented differently by different parts of a program. Complex numbers,
for example, can be represented in either rectangular or polar form, and for some applications
it may be desirable to be able to use both representations without sacrificing the ability to
work in terms of abstract "complex numbers." This leads to the problem of implementing
generic operators -such as add and =7 alluded to above, which must operate on many
different types of data. Maintaining modularity in the presence of generic operators requires
erecting more powerful abstraction barriers than can be achieved with simple data
abstraction alone, and we introduce data-directed programming as a powerful design
technique for coping with this complexity.

To illustrate the power of this approach to system design, we close the chapter by applying
what we have learned to implement a package for performing symbolic arithmetic on
polynomials, where the coefficients of the polynomials can be integers, rational numbers,
complex numbers, and even other polynomials. The design of a general-purpose polynomial
package, however, is a large enterprise, involving many mathematical and algorithmic as well
as system-design issues. Our simple polynomial package will leave much room for further
refinements and extensions.

The ability to directly manipulate procedures provides an analogous increase in the expressive'power of a
programming language. For example, in section 13.1 of Chapter we itroduced the summa t ion procedure, which
takes a procedure term as a parameter and computes the summation of the values of term over some specified
interval. In order to define summa +L ion, it is crucial that we be able to speak of a procedure such as term as an entity
in its own right, without regard for how trm might be expressed using more primitive operations. Indeed, if we did
not have the notion of "a procedure," it is doubtful that we would ever even think of the possibility of defining an
operationsuchassummation.Notice,moreover,thatinsofarasperformingthesummationisconceened,thedetails
of how term may be constructed from more primit.;ve operations are completely irrelevant.



- ---- -_- --- -

Building Abstractions with DataMo
vo DRAFT: 31 JULY 1983

2.1. Introduction to Data Abstraction

When we discussed procedures in section 11-8, we noted that a procedure used as an
element in creating a more complex procedure could be regarded not only as a collection of
particular operations but also as a procedural abstraction. That is, the details of how the
procedure was implemented could be suppressed, and the particular procedure itself could
be replaced by any other procedure with the same overall behavior. In other words, we could
make an abstraction that separates the way in which the procedure is used from the details of
how the procedure is implemented in terms of more primitive procedures. There i's an
analogous notion in using compound data. This is called data abstraction. Data abstraction
is a methodology that enables us to isolate how a compound data object is used from the.
details of how it is constructed from more primitive data objects.

The basic idea of data abstraction is to structure the programs that are to use compound
data objects so that they operate on so-called "abstract data." That is to say, our programs
should use data in such a way as to make no assumptions about the data that are not strictly
necessary for performing the task at hand. At the same time, we define a "concrete" data
representation independently of the programs that use the data. The interface between these
two parts of our system will be a set of procedures, called selectors and constructors, that
implement the abstract data in terms of the concrete representation. To illustrate this
technique, we'll show how to design a set of procedures for manipulating rational nmbers.

2.1.1. Example: Arithmetic Operators for Rational Numbers

Suppose we want to do arithmetic on rational numbers. We want to be able to add them,
subtract them, multiply them, and divide them. We want to be able to test whether two rational
numbers are equal.

Let Lis begin by assuming that we already have a way of constructing a rational number
from a numerator and a-denominator. We also assume that, given a rational number, we have
a way of extracting or selecting its numerator and its denominator. Let us further assume that
the constructor and selectors are available as procedures:

make-rat takes two integers n and d as arguments and returns the rational number
whose numerator is n and whose denominator is d

numer takes a rational number as argument and returns its numerator

denom takes a rational number as argument and returns its denominator

We are using here a powerful strategy of synthesis -- wishful thinking. We haven't yet said
how a rational nmber is represented, or how the procedures numer, denom, and make-rat
should be implemented. Even so, if we did have these three procedures, we could then add,
subtract, multiply, divide, and test equality by using the following relations:
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n n n d + n d1 2 1 2 2 1

d d d d1 2 1 2

n n2 n d - n d1 2 2 1

d d d d1 2 1 2

n n n n1 2 1 2

di d2 did2

n 1 n2 nd2

d d d n2 1 2

n n2
if and only if n *d n *d1 2 2 1

di d2

We can express these rules as Lisp procedures:

(define (+rat x y)
(make-rat ( (numer x) (denom y))

(denom x) (numer y)))
(denom x) (denom y))))

(define (-rat x y)
(make-rat (numer x) (denom y))

(denom x) (numer y)))
(denom x) (denom y))))

(def ine (*rat x y)
(make-rat (numer x) (numer y))

(denom x) (denom y))))

(define (/rat x y)
(make-rat (numerx) (denom y))

(denom x) (numer y))))

(define (=rat x y)
(numer x) (denom y
(numer y) (denom x))))

Now we have the operators on rational numbers defined 'in terms of the selector and
constructor procedures. But we don't have these defined n our computer. We haven't yet
told the computer what a numer or a denom is, nor have we told it what it must do in order to
ma k e - r a t What we need is someway to glue together a numerator and a denominator so
that they can be combined to form a rational number.
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Pai rs
To enable us to implement the more concrete level of our data abstraction, our language

provides a compound structure called a pair, which can be constructed using the primitive
procedure cons. Cons takes two arguments and returns a compound data object that
contains the two arguments as parts. Given a pair, we can extract the parts using the
primitive procedures car and cdr.2 Thus we can use cons, car, and cdr as follows:

==>(define x (cons 2)
X

==>(car x)

==>(cdr x)
2

Notice that a pair is a real data object that can be given a name and manipulated, just like any
data object. Moreover, cons can be used to form pairs whose elements are pairs, and so on:

-- >(define x (cons 2)i--
X

-- >(define y (cods 3 4)

Y

-- >(define z (cons x y))
z

---->(car (car z))

-- >(car (cdr z))
3

In section 22 below we will see how this ability to combine pairs means that pairs can be used
as g eneral-purpose building blocks to create all sorts of complex data structures. The single
compound data primitive, pa 'r, implemented by the procedures cons, car, and cdr, is the
only "glue" we need.

Representing rational numbers
Usin pairs, we have a natural way to complete the rational number system. imply

9 -
represent a rational number as a pair of two integers, a numerator and a denominator. Then
ma k e - r a t , n ume r , and de n om, are read i ly i m p lemented as:

(define (make-rat n d) (cons n d))

2
The name cons stands for "construct." The names car and cdr relate to the. original implementation of Lisp on

the IBM 704. That machine had an addressing scheme tat allowed one to reference the "address" and "decrement"
parts of a memory location. The word car stands for "Contents of Address Register" and cdr stands for "Contents
of Decrement Register,"
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(define (numer x) (car X))

(define (denom x) (cdr x)

Also, in order to display the results of our computations, we can choose to print a rational
number by printing the numerator, a slash, and the denominators

(define (print-rat x)
(newline)
(princ (nunier x))

it/it)(princ
(princ (denom x)))

Now we can try our rational number functions:

-- >(define one-half (make-rat 2)
one-half

==>(print-rat one-half)
112

-- >(define one-third (make-rat 3)
one-third

==>(print-rat (+rat one-half one-third))
516

==>(print-rat (*rat one-half one-third))
116

==>(print-rat (+rat one-third one-third))
619

As the final example shows, our rational number implementation leaves something to be
desired, since it does not reduce rational numbers to lowest terms. We can remedy this by
changing make-rat. Suppose that we have a gcd procedure like the one in section 12.5 that
produces the greatest common divisor of two integers. Then we can use 9cd to reduce the
numerator and denominator to lowest terms before constructing:

(define (make-rat n d)
(let ((g (gcd n d)))

(cons (/ n g) d g))))'

Now we have

==>(print-rat (+rat one-third one-third))
213

Pr in t andprfnc are the Scheme commands for printing data, They are similar, except thatprint starts anew
line for printing and terminates its output with a space, while prfnc does not. We implement print-rat using
princ because we want the numerator, slash,,and denominator to be printed on the same line. The Scheme
command newlinestartsanewlineforprinting. Normally, print doesthisautomatically.)
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as desired. Notice that this modification was accomplished by changing only the constructs r
make-rat without changing any of the procedures that implement the actual operators like
+rat and *rat.

Exercise 21: In point of fact, this version of make-rat is not quite correct, since make-rat might be
called with negative values for n and d, and te gcd procedure of section 12.5 works only with positive
integers. Define abetter version of make-rat, that can handle both positive and negative arguments.

2.1.2. Abstraction Barriers

Before continuing with more examples of compound data and data abstraction, let us
consider some of the issues raised by the rational number example. We defined the rational
number operators in terms of a constructor make-rat and selectors numer and denom In
general, the underlying idea of data abstraction is to identify, for each type of data object, a
basic set of operators in terms of which all manipulations of data objects of that type will be
expressed, and then to use only those operators in manipulating the data,

We can envision the structure of our system as shown in figure 21. The thick horizontal
lines represent abstraction barriers that isolate different "levels" of the system. Programs that
use rational numbers manipulate them solely in terms of the operators supplied "for public
use" by the rational arithmetic package: +rat, -rat, *rat, Irat, and =rat. These, 'in turn,
are implemented solely in terms of the constructor and selectors make-rat, numer, and
denoin, which themselves are implemented in terms of pairs. Finally, the details of how pairs
are implemented is completely irrelevant to the rest of the rational number package, so long
as pairs can be manipulated using cons, car, and cdr. In effect, procedures at each level
are the interfaces that define the abstraction barriers and connect the different levels.

--------------------------------------
Programs that use Rational Numbers

--------------------------------------

Rational Numbers in Problem Domain

-------------------------------
+rat -rat *rat /rat rat

-------------------------------

Rules for Rational Number Arithmetic

--------------------------
make-rat numer denom

--------------------------

Rational Numbers as Pairs

----------------
cons car cdr

-- - - - - - -- -- - - -

However Pairs are Implemented in Machine

Figure 2 - : Data-abstraction barriers in the rational number package
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This simple idea has many advantages. One advantage is that it makes programs much
easier to maintain and to modify. Any complex data structure can be represented in a variety
of ways using the primitive data structures provided by a programming language. The choice
of representation influences, of course, the programs tat operate on it, so that if the
representation were to be changed at some later time, all such programs might have to be
modified accordingly. This task can be time-consuming and expensive in the case of large
programs, nless the dependence on the representation is confined by design to a very few
program modules.

For example, an alternative way to address the problem of reducing rational numbers to
lowest terms is to perform the reduction whenever we access the parts of a rational number,
rather than when we construct it. This leads to different constructor and selector procedures:

(define (make-rat n d)
(cons n d))

(define (numer x)
(let ((g (gcd (car x) (cdr x))))

(car x) g)))

(def ine (denom x)
(let ((g (g-cd (car x) (cdr x))))

(/ (cdr x) g)))

The difference between this implementation and the previous one lies in when we compute
the gcd. If we examine rational numbers often, then it would be better to compute the gcd
once in constructing them. If not, we may be better off waiting until the last minute to
compute the qcd (at access time or even at print time). In any case, when we change from
one representation to the other, the operators +rat, -rat, and so on, do not have to be
modified at all.

Constraining the dependence on the representation to lie within'a few interface procedures
helps us to design programs as well as to modify them, because it allows us to maintain the
flexibility to consider alternative implementations. To continue with our simple example,
suppose we are designing a rational number package, and we can't decide initially whether to
perform the gcd at construction time or at selection time. The data abstraction methodology
gives us a way to defer that decision without losing the ability to make progress on the rest of
the system. In fact, it highlights this flexibility, which we might otherwise overlook atogether.

Exercise 22: Consider the problem of representing line segments on a two-dimensional plane. Each
segment is represented as a pair 'of points - a start-point ad a end-point. Define a constructor
make-segment and selectors start-point and end-point that define the representation of
61segments" in terms of "points." Furthermore a point can be represented is a pair of numbers, the
x-coordinate and the y-coordinate. Accordingly, specify a constructor make-point and selectors
x-coord and y-coord that define this representation. Finally, using your selectors and constructors,
define a procedure midpoint that takes a line segment as argument and returns the midpoint (that is,
the point whose coordinates are the average of the coordinates of the endpoints).
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2.1.3. What is Data?

We began the rational number implementation in section 21.1 by implementing the rational
number operators +rat, -rat, and so on, in terms of three unspecified procedures
make-rat, numer, and denom. At that point, we could tink of the operators being defined 'in
terms of "data objects" -- numerators, denominators, and rational numbers -- whose behavior
is specified by the latter three procedures.

But exactly what is this "data"'? It is not enough to say that it is "whatever is implemented
by the given selectors and constructors." For clearly, any arbitrary three procedures could
not serve as an appropriate basis for the rational number implementation. If we think about
the problem, we'll see that what we need to guarantee for rational numbers is that, if we
construct a rational number x from a pair of integers n and d, then extracting the numerator
and denominator of x and forming the quotient should yield a rational number equal to n1d In
other words, make-rat, numer, and denom are not any three arbitrary procedures. They
must satisfy the condition that, for any integers a and b if

X = (make-rat a b)

then

(numer x) a

(denom ) b

In fact, this is the only condition that make-rat, numer, and denom must fulfill in order for
them to form a suitable basis for a rational number representation, In general, we can think of
data as defined by some collection of selectors and constructors, together with specified
conditions that these procedures must fulfill in order to be a valid representation.4

This point of view can serve to define not only "high level" data objects such as rational
numbers, but lower-level objects, as well. Consider, for instance, the notion of a pair, which
we used in order to define our rational numbers. We never actually said what a pair was, only
that the language supplied operators cons, car, and cdr for operating on pairs. But the only
thing we need to know about these tree operators is that if we glue two objects together
using cons, then we can retrieve the objects using car and cdr. That is to say, the operators
satisfy the condition:

4Surprisingly, this idea is very difficult to formulate rigorously. In fact, despite an enormous amount of work in
programming language semantics, the notion of a data object, which is so important and pervasive in modern
programming practice, does not have a completely satisfactory mathematical treatment. There are two approaches
to giving such a treatment. One approach, pioneered by C.A.R. Hoare 22), is known as the method of abstract
models. It formalizes the procedures plus conditions" specification as outlined in the rational number example
above, Note that the condition on the rational number representation was stated in terms of facts about integers
(equality and division). In general, abstract models define new kinds of data objects in terms of previously defined
types of data objects. Assertions about data objects can therefore be checked by reducing them to assertions about

previously defined data objects. Another approach, introduced by J. Guttag [15], is called algebraic specification. It
regards the "operators" as elements of an abstract algebraic system, whose behavior is specified by axioms that
correspond to our "conditions," and uses te techniques of abstract algebra to check assertions about data
objects. Both methods are surveyed in the paper by Liskov and Zilles 29]. These methods work well for simple
examples, but become very complex-and even break down in complicated situations, and have problems in dealing
with "mutable" data objects, such as we will introduce in the next chapter, Resolving these problems is an active
area of current research.
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0 For any objects x and , if z is (cons x y) then (car z) 'is x and (cdr z) is y.

Indeed, we mentioned that these three operators are included as primitives n our language.
However, any triple of procedures that satisfies the above condition can be used as the, basis
for implementing pairs.

To make this point in a striking way, we'll show how we could implement cons, car, and
cdr without using any data structures at all, but only using procedures! Here are the
definitions:

(define (cons x y)
(define (dispatch m)

(cond m 0) x)
in 1) )

(else (error "Argument not or CONS" m))))
dispatch)

(def ine (car z) (z 0)

(define (cdr z) (z 1))

This is an extremely convoluted use of procedures, and certainly corresponds to nothing
like our intuitive notion of what "data" should be. Nevertheless, all that we need to do to- show
that this is a valid way to represent pairs i's to verify that these procedures satisfy the condition
given above.

The subtle point to notice is that the value returned by (cons x y) 'is a procedure,
namely, the internally defined procedure d7'spatch, which takes one argument and returns
either x or y, depending on whether the argument is or 1. Correspondingly, (car z) 'is
defined to apply z to 0. Hence if z is the procedure formed by (cons x ), then z applied to
0 will yield x. So we have shown that (car (cons x y)) yields x, as desired. Similarly,
(cdr (cons x y)) applies the procedure returned by (cons x y) to 1, which returns y.
Therefore, this "procedural implementation" of pairs is a valid implementation, and if we
access pairs using only cons, car, and cdr, we could not distinguish this implementation
from one that uses real" data structures.

The point of this is not that our language works this way (Lisp systems 'Implement pairs
directly, for efficiency reasons) but rather that it could work this way. The above
representation, although obscure, is a perfectly adequate way to represent pairs, since it
fulfills the only conditions that pairs need to fulfill. As an interesting 'Sidelight, we see that the
ability to manipulate procedures as objects automatically provides the ability to represent
compound data. You may regard this as a curiosity for now, but procedural representations
of data will play central role in our programming repertoire. This style of programming is
often called message passing, and we will be using it as a basic tool in Chapter 3 when we
address the issues of modeling and simulation.

Exercise 23: Given the following procedural representation, verify that (car (cons x y)) yields x,
for any objects x and y.

(define (cons x y)
(lambda (m) (m x y)))

(define (car z)
(z (lambda (p q) p)))
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What is the corresponding definition of cdr? (Hint: To verify that this works, make careful use of the
substitution model of section 1.1.5.)

Exercise 24: Show that we can represent pairs of non-negative integers using numbers ad arithmetic
a ,

operations only, if we represent the pair a and b as the integer that is te product 2 3 Give the
corresponding definitions of the procedures cons, car, and cdr.

Exercise 25: In case representing pairs as procedures wasn't mind-boggling enough, consider that, in
a language that can manipulate procedures, we can get by without numbers (), at least insofar as
non-negative integers are concerned, by implementing and the operation of adding as

(define zero (lambda (f) (lambda (x) x)))

(define 1 n)
(lambda () (lambda (x) (f ((n f) x)))))

Define I and 2 directly (not in terms of zero and 1+). (Hint: Use substitution to evaluate (1+ zero)).

Give a direct definition of the addition operator (without introducing any auxiliary procedures).

This representation is known as Church numerals, after its inventor Alonzo Church, the logician who
invented the X-calculus.

2.1.4. Example: Interval Arithmetic

Alyssa P Hacker is designing a system to help people solve engineering problems. One
feature she wants to provide in her system is the ability to manipulate inexact quantities (such
as measured parameters of physical devices) with known precision, so that when
computations are done using such approximate quantities, the results are themselves
numbers of known precision.

Some of Alyssa's users are electrical engineers who will be using her system to compute
electrical quantities. It is sometimes necessary for them to compute the value of a parallel
equivalent resistance R of two resistors R and R2 using the formula:

RP
1/11 + 1/131 2

Resistance values are usually known only up to some tolerance, guaranteed by the
manufacturer of te resistor. For example, if we buy a resistor labelled 68 Ohms wit a 0%
tolerance, we can only be sure that the resistor has a resistance between 68-.68 = 612 and
6.8 68 = 748 Ohms. Thus, if we have a 68 Ohm 10% resistor in parallel with a 47 Ohm %
resistor, the resistance of the combination can range from about 258 Ohms (if the two
resistors are at the lower bounds) to about 297 Ohms (if the two resistors are at the upper
bounds).

Alyssa's idea is to implement "interval arithmetic" as a set of primitive arithmetic operators
for combining "intervals" -- objects that represent the range of possible values of an inexact
quantity. The result of adding, subtracting, multiplying, or dividing two intervals is itself a new
interval representing the range of the result.

Alyssa postulates the existence of an abstract datum called an "interval" that has two parts,
a 7ower-bound and an upper-bound, which are the endpoints of the interval. She also
presumes that given the endpoints of an interval, she can construct the interval using the data
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constructor make-7ntervaL Alyssa first writes 7ntadd for adding two intervals. She
reasons that the minimum value the sum could be is the sum of the two lower bounds and the
maximum value it could be is the sum of the two upper bounds:

(define intadd x y)
(make-interval ( (lower-bound x) (lower-bound y))

(+ (upper-bound x) (upper-bound y))))

Alyssa also works out the product of two intervals by finding the minimum and the
maximum of the products of the bounds and using them as the bounds of the resulting
interval:

(define (intmul x y-
(let ((pl (lower-bound x) (lower-bound y)))

(p2 (lower-bound x) (upper-bound y)))
(p3 (upper-bound x) (lower-bound y)))
(p4 (upper-bound x) (upper-bound y))))

(make-interval min pl p2 p3 p4)
(max pl p2 p3 p4))))

To divide two intervals Alyssa multiplies the first by the reciprocal of the second. Note that
the bounds of the reciprocal interval are the reciprocal of the upper bound and the reciprocal
of the lower bound, in that order,

(define intdiv x. y)
(intmul x

(make-interval 1 (upper-bound y))
1 (lower-bound y)))))

Exercise 26: Alyssa's program is incomplete because she has not specified the implementation of the
interval abstraction. Here is a definition of the constructor bounds.

(define (make-interval a b) (cons a b))

Complete the implementation by defining selectors upper-bound and 7ower-bound.

Exercise 27: Using reasoning analogous to Alyssa's, describe how the difference of two- intervals may
be computed. Define a corresponding subtraction procedure, called intsub,

Exercise 28: The width of an interval is the difference between its upper and lower bounds. The width
is a measure of the uncertainty of the number specified by the interval. For some arithmetic operators
the width of the result of combining two intervals is a function only of the widths of the argument
intervals whereas for others, the width of the combination is not a function of the widths of the argument
intervals. Show that the width of the sum (or difference) of two intervals is a function only of the widths
of the intervals being added. Give examples to show that this is not true for multiplication or division.

Exercise 29: Ben Bitdiddle, an expert systems programmer, looked over Alyssa's shoulder and
commented that it is not clear what it means to divide by an interval that spans zero. Modify Alyssa's
code to check for this condition and to signal, an error if it occurs.

Exercise 210:, -in passing, Ben also cryptically commented: "By testing the signs of the endpoints to
the intervals passed to n tmu 7 it is, possible to break i n tmu 7 into nine cases, only one of which
req ui res more than two mu Itiplications." Rewrite 1 n tmu 7 using Ben's suggestion.

After debugging her program, Alyssa showed it to a potential user who complained as
usual, that her program solved the wrong problem, He wanted a program that can could with
numbers represented as 'a center value and an additive tolerance. For example, he wanted to
work with intervals such as.3.5±.15 rather than 3.35 365].
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Alyssa returned to her desk and fixed this problem by supplying an alternate constructor
and alternate selectors as follows:

(define (center-width c w)
(make-interval c w) ( c w)))

(define (center 
(+ (lower-bound i) (upper-bound i) 2)

(define (width i)
(upper-bound i) (lower-bound i) 2)

Unfortunately, most of the users really wanted to specify their intervals in terms of an error
proportional to the value of the center of the interval, as in the resistor specifications given
earlier.

Exercise 21 1: Define a constructor make-center-percent, which takes a center and a percentage
tolerance and which produces the desired interval. You must also define a selector, percent, which
produces the correct percentage tolerance for a given interval. The center selector is the same as the
one shown above.

Exercise 212: In real engineering situations we are usually dealing with measurements with only a
small uncertainty, measured as the ratio of the width of the interval to the midpoint of the interval. That is
why engineers usually specify percentage tolerances on the parameters of devices. 'Show that, under

the assumption of small percentage tolerances, there is a simple formula for the approximate
percentage tolerance of the product of two intervals in terms of the tolerances of the factors. You may
simplify the problem by assuming that all numbers are positive.

Finally, after considerable hassle, Alyssa delivers her finished system. Several years later,
after she has forgotten all about it, she gets a frenzied call from an irate user. It seems that
the user has noticed that the parallel resistors formula can be written in two algebraically
equivalent ways:

R R1 2
or k.-

1/11 + 1/11 R + R1 2 1 2

The user has written the following two programs, each of which computes the parallel
resistors formula differently:

(define (parl rl r2)
(intdiv (intmul rl r2)

(intadd rl r2)))

(define (par2 rl r2)
(let ((one (make-interval 1 1)))

(intdiv one
(intadd intdiv one rl)

(intdiv one r2)))))

The user complains that Alyssa's program gives different answers for the to ways of
computing. This is a serious problem.

Exercise 213: Demonstrate that the user is right. Investigate the behavior of the system on a variety of
expressions. For example, you should make some intervals A and B, and use them in computing the
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expressions A/A and A/B. You will get the most insight by using intervals whose width is a small
percentage of the center value. Examine the results of the computation i center-percent form.

Exe rc ise 2 - 4 Eva Lu Ator,'another user, has also noticed the problem of dif f erent intervals computed
by different but algebraically equivalent expressions. She says that a formula to compute with intervals
using Alyssa's system will produce tighter error bounds if it can be written in a form where no variable
that represents an uncertain number is repeated. Thus, she says, par2 is a "better" program for parallel
resistances than p a r 1. Is she right? Why?

Exercise 215: Explain, in general, why equivalent algebraic expressions may lead to different
answers. Can you devise an interval arithmetic package that does not have this problem, or is this task
impossible? (Warning: This problem is very difficult.)

2.2. Hierarchical Data

We've seen that pairs provide a primitive "glue" that we can use to construct compound
data objects. Figure 22 shows a standard way to visualize a pair, in this case, the pair formed
by (cons 2 In this representation, which is called box-and-pointer notation, each
object is surrounded by a box. A pair itself is represented as a double box with arrows (also
called pointers) pointing to the car and the cdr of the pair.

--- > I I -- I ---- >1 2 

------ -----
V

Figure 22: Box-and-pointer representation of (cons 2.

We've already mentioned that cons can be used to combine not only numbers, but other
pairs as well. (You made use of this fact, or should have, in doing exercise 22.) As a
consequence, pairs provide a "universal building block" from which we can construct all
sorts of data structures. Figure 23 shows two ways to use pairs to combine the numbers 21
3, and 4.

--------- --------- ---------
I I --- >1 I -- I --- >1 4 1

V V
V ----- ----- V

3 4 --------- ---------
----- -----I I - I -- I --- >1 - I - I

V V V V V
- ----- ----- ----- ----- -----

1 2 1 1 1 2 3
----- ----- ----- ----- -----

(cons (cons 2 (cons (cons I
(cons 3 4 (cons 2 3)

4)

Figu re 23: Two ways to combine 1 2 3 and 4 using pairs.
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In general, pairs enable us to represent hierarchical data -- data made up of parts, which
themselves are made up of parts, and so on. As figure 23 indicates, we can use pairs to
combine data in many different ways, and we begin this section by exploring some
conventional techniques for using pairs to represent sequences and trees. Next, we augment
the representational power of our language by introducing symbolic expressions -- data
whose "elementary parts" can be arbitrary symbols, rather than only numbers. In problem
sections, we explore various alternatives for representing sets of objects. We will find that, just
as a given numerical function can be computed by many different computational processes,
there are many ways that a given data structure can be represented in terms of simpler
objects, and the choice of representation can have significant impact on the time and space
requirements of processes that manipulate the data. We also investigate Huffman encoding
as a clever use of trees to implement efficient codes.

2.2.1. Representing Sequences

One of the useful structures that we can build with pairs is a sequence -- an ordered
collection of data objects. There, are, of course, many ways to represent sequences in terms
of pairs. One particularly straightforward representation is illustrated in figure 24, where the
sequence 1 2 3 4 is represented as a sequence of pairs. The car of each pair is the
corresponding item in the sequence, and the cdr of the pair is the next pair in te sequence.
The cdr of the final pair signals the end of the sequence by pointing to a distinguished
element, represented in box-and-pointer diagrams as a diagonal line and in Lisp programs as
the value of the symbol n i 1.

--------- --------- --------- ---------
--- >I -- I --- >1 . I -- I --- >1 . I -- I --- >1 - I I

-- I ------ -- I ------ -- I ------ -- I ------
V V V V

I 2 3 4
----- ----- - ----- -----

Figu re 24: The sequence 1 2 3 4 represented as a sequence of pairs.

Observe that this sequence is constructed by nested cons operations:

(cons
(cons 2

(cons 3
(cons 4 n'l))))

Such a sequence of pairs, formed by nested conses, 'is called a list, and Lisp provides a
primitive called I I's t to help in constructing lists.

(list 2 3 4)

In general,

1 i st <a > <a > <a,,>)1 2

is treated by the interpreter as an abbreviation for
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(cons <a > (cons <a > (cons (cons <a > nl1 2 n

Lisp conventionally prints lists by printing the sequence of elements, enclosed in parentheses.
Thus the data object in figure 24 is printed as (1 2 3 4:

==>(def ine 1-thru-4 (1 'st 2 3 4)
1-thru-4

==M-thru-4
(I 2 3 4)

We can interpret car as selecting the first item in the list and cdr as selecting the sublist
consisting of all but the first item. Nested applications of car and cdr can be used to extract
the second, third, and so on, items in the list.5 The constructor cons can be interpreted as an
operation that inserts a new item at the beginning of a list.

==>(car 1-thru-4)
1

==>(cdr 1-thru-4)
(2 3 4)

==>(car (cdr 1-thru-4))
2

==>(cons 10 1-thru-4)
(10 2 3 4)

The value of n i , used to terminate the chain of pairs, can be interpreted as a sequence of no
elements, the so-called empty-list. Indeed, "nil" is a contraction of the Latin word for
"nothing."6

List operations
Xacompanying the use of pairs to represent sequences of elements as lists, there are

conventional programming techniques for manipulating ists by successively "cdr-ing down
the sequence" until we reach the empty list. To aid in this, our language includes a primitive
predicate nu 7 ?, which tests whether its argument is the epty list. Here is a typical
procedure 7 eng th wich returns the number of items in a list:

5
Since nested applications of car and cdr are cumbersome to write, Lisp provides abbreviations for them. For

instance

(cadr arg> = (car (cdr arg>))

The names of all such procedures start with a c" and end with an "r". Each "a" between them stands for a car,
operator and each " d" for a cdr operator, to be applied in the same order in which they appear in the name.

6Because of this interpretation, Lisp implementations traditionally regard and n 7 as different, representations

of the same data object. Also, recall from section 11.6 that n 7 is the value returned by a predicate to indicate
"false." This mixing of logical operations with list operations is sometimes convenient, but more often leads to
programming errors. People who do not like Lisp regard this feature as one of their favorite things not to like.
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def i ne I ength x)
(if (null? x)

0
(+ (length (cdr x)))))

==>(define odds lst 3 7)
odds

==>(length odds)
4

Thelengthprocedureimplementsthesimplerecurs'veplan:

Te length of the empty list is .

• The length of any list is plus the length of te cdr of the list.

We could also compute I eng th in an iterative style:

(define (length x)
(define (length-iter a count)

(if (null? a)
count
(length--iter (cdr a) countfl))

(length-iter x 0))

Another useful procedure is nth, which takes as arguments a number n and a list and
returns te nth item of the list. It is customary to number the elements of the list beginning
with 0. The method for computing n t h is

• For n equal to 0, n t h should return the car of the list.

• Otherwise, the nth item of the list is obtained as the n-Ist item of the cdr of the
list.

(define (nth n x)
(if n 0)

(car x)
(nth (- n 1) (cdr x))))

==>(define squares (list 4 9 16 25))
squares

==>(nth 3 squares)
16

The procedure append takes two lists as arguments and combines their elements to make-
a new list:

==>(append squares odds)
(I 4 9 16 25 3 7)

=0(append odds squares)
(I 3 7 4 9 16 25)
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Append is also implemented using a recursive plan: To append a list x to a ist y

• If x is te empty list, then the result is just Y.

• Otherwise, app e n d the c dr of x to y, and con s the ca r of x onto the result.

(define (append x y)
(if (null? x)

Y
(cons (car x) (append (cdr x) y))))

Exercise 216: Define a procedure 7ast that returns the list that contains only the last element of a
given (non-empty) list:

==>(last squares)
(25)

Exercise 217: Define a procedure reverse that takes a list as argument and returns the same list
with the elements in reverse order:

==>(reverse squares)
(25 16 9 4 

Exercise 218: One very common pattern of usage is to apply a given procedure to each item in a list
by "cdring down.the list, consing up an answer". For a typical example, given a list of numbers,
suppose we want the list of the squares of those numbers. We need a procedure, square- I ist which
is used as follows:

=0(define 1-thru-4 (list 2 3 4)
1-thru-4

==>(square-list 1-thru-4)
(I 4 9 16)

Fill in the missing expressions to complete the definition of square I is t:

(define (square-list x)
(if (null? x)

nil
(cons (squaro M)

(square-list

Exercise2-19:LouisReasonertriedtorewritesquare-7istofexercise2-18asaniteration:

(define (square-list lst)
(define (iter list answer)

(if (null? list)
answer
(iter (cdr list)

(cons (square (car list))
answer))),)

(iter list nil))

Unfortunately,definingsquare-7!stthiswayproducedtheanswerlistinthereverseorderoftheone
desired. Why?

Louis then tried to fix his bug by interchanging the arguments to cons:
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(define (square-list list)
(define (iter list answer)

(if (null? list)
answer
(iter (cdr list)

(cons answer
(square (car list))))))

(iter list nil))

This didn't quite work either. Explain.

Exercise 220: We can improve on exercise 218 by following the method of section 13 to introduce a
higher order procedure that expresses the general operation of applying a procedure to every item in a
list, and returning the list of results. This procedure is traditionally called mapcar, that is used as
follows:

==>(mapcar square 1-thru-4)
(I 4 9 16)

==>(mapcar 1+ 1-thru-4)
(2 3 4 

Give an appropriate definition of mapcar.7

Exercise 221: Consider the change-counting program of section 12.2. It would be nice to be able to
change the currency used by the program easily, so that we could compute the number of way's to
change an British Pound, for example. As the program is written, it has the knowledge of the currency
partly distributed into the procedure f irst-denomination and partly into the procedure
count-change (which knowsthatthere are different kinds of U.S. coins). twould be nicer to be able
to supply a list of coins which could be used for making change.

We want to rewrite the essential procedure, cc, so that its second argument, k inds -of -co ins, is a list
of coins which may be used, rather than an integer specifying which coin to use. We could then have
lists which defined each kind of currency:

(define us-coins (list 50 25 10 5 1))

(define uk-coins (list 50 20 1 2 6)

We could then call cc as follows:

==>(cc 100 us-coins)
292

To do this would require that we change the program cc somewhat. It will still have the same form, but it
will access its second argument differently, as follows:

(define (cc amount kinds-of-coins)
(cond ((= amount 0) 1)

((or < amount 0) (no-more? kinds-of-coins)) 0)
(else (cc (- amount (first-denomination kinds-of-coins))

kinds-of-coins)
(cc amount

(except-first-denomination kinds-of-coins))))))

a. Define the procedures first-denomination,except-first-denomination,no-more?in
terms of the primitive operators on list structures.

b. Does the order of the list k f n ds - f - co n s eff ec t the answer prod u ced by c c? Why o r why not,?.

7 Mapcar barely hints at the expressive power to be gained by combining higher order procedures with
hierarchical data. We will have much more to say about this when we study stream processing in Chapter 3 (section
3.4.2).
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2.2.2. Representing Trees

The representation of sequences in terms of cons pairs generalizes naturally to enable us
to represent sequences whose elements may themselves be sequences. For example, we can
regard the object

=O(cons lst 2 (list 3 4)
((I 2 3 4)

as a list of three items, the first of which is itself the list ( 1 2). And indeed, this is suggested
by the form in which the result is printed by the interpreter. Figure 25 shows the
representation of this structure in terms of pairs.

(3 4)

V
--------- --------- ---------

(( 2 3 4 -- >I I -- I ---------------- >1 I -- I ---- >1 II

V v

3 4 1
V -----

O 2)-->l I

V V
----- -----

2

Figure 2 -5: Structure formed by (cons (list 2 list 3 4.

Another way to interpret sequences whose elements are sequences is as trees. The
elements of the sequence are the branches of the tree, and elements which are themselves
sequences are interpreted as subtrees. Figure 26 shows the structure in figure
2-5 interpreted as a tree. -

I -
((I 2 3 4 -----------------

3 4

Figure 26: The pair structure in figure 25, interpreted as a tree.

Exercise 222: Suppose we evaluate the combination

(list (list 2 (li'st 3 4)

Give

a. the result printed by the interpreter

b. the corresponding box-and-pointer structure

c, the interpretation of this as a tree, as in Figure 26
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Recursion is a natural tool for dealing with tree structures, since we can often reduce
operations on trees to operations on their branches, which reduce in turn to operations on the
branches of the branches, and so on, until we reach the elementary so-called atomic data that
forms the leaves of the tree. To aid in writing recursive procedures on trees, Lisp provides the
primitive predicate a t om ?, which tests wether its argument is atomic (i.e., not a pair).

As an example, compare the 7ength procedure of section 22.1 with the procedure
coun ta toms, which returns the total number of atoms at all levels of a tree:

==>(define x (cons lst 2 (list 3 4)
X

==>(length x)
3

==>(countatoms x)
4

==>(list X X)
(((I 2 3 4) ((I 2 3 4)

==>(length lst x x))
2

=O(countatoms (list X X))
8

To implement countatoms, recall the recursive plan for computing 7ength. There is a
reduction step:

Length of a list x is ILISIength of (cdr x)

that we apply successively until we reach the base case:

0 Length of n 7 is 

Countatomsissimilar. Thevalueforni7isthesame:

Countatorns of n77 isO

But in the reduction step, where we strip off the car of the list, we must take into account that
(car x) may itself be a list whose atoms we need to count. So the appropriate reduction
step is

o(countatoms x) (countatoms (car x)) + (countatoms (cdr x))

Finally, if we keep taking su s of cars we eventually get down to atoms. So we
need another base case

O ountatoms of an atornis 1.
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8Here is the complete procedure:

(define (countatoms x)
(cond ((null? x) 0)

((atom? x) 1)
(else (+ (countatoms (car x))

(countatoms (cdr x)))))

Exercise 223: Modify your reverse procedure of exercise 217 to produce a procedure
deep-reverse that takes a list as argument and returns as its value the list with its elements reversed
and with all sublists deep-reversed as well, that is

==>(define x (cons (list 2 (list 3 4)
X

==>X
( 2 3 4)

==>(reverse x)
(4 3 (I 2))

==>(deep-reverse x)
(4 3 2 1))

Exercise 224: Write a procedure fringe, that takes a list as argument and returns a list whose
elements are all the atoms appearing in the original list or any of its sublists, arranged in left to ht
order. (That is, given a tree, f r in ge returns the list of leaves of the tree.) For example,

==>(define x (cons (list 2 (list 3 4)
X

==>(fringe x)
(I 2 3 4)

==>(f ringe (1 ist x x)
(I 2 3 4 2 3 4)

Exercise 225:' A binary mobile consists of two branches, a left branch and a right branch. Each
branch is a rod of a certain length, from which hangs either a weight or another binary mobile. We can
represent a binary mobile using compound data by constructing it from two branches (for example,
using 7 is t):

(define (make-mobile left right)
(list left right))

A branch is constructed from a length (which must be a number) and a supported-structure, which may
be either a number (representing a simple weight) or another mobile:

(define (make-branch length structure)
1 i st 1 eng th st ructure)

a.Supply the corresponding selectors left-branch and right-branch, which return the
branches of a mobile, and branch-7ength and branch-structure, which return the
components of a branch.

b, Using your selectors, define a procedure tota7-wefght that returns the total weight of a
mobile.

c A mobile is said to be balanced if

8Notice that the order of the fir�t two clauses in the cond matters, since n 7 satisf ies. both nu 7 7 and a tom?.
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* The torque applied by its top-left branch is equal to that applied by its top-right branch.
That is, the length of the left rod multipled by the weight hanging from that rod is equal to

the corresponding product for the right side; and

* Each of the sub-mobiles hanging off its branches is balanced.

Design a predicate that tests whether a binary mobile is balanced.

d. Suppose we change the representation of mobiles so that the constructors are now

(define (make-mobile left right)
(cons left right))

(define (make-branch 1 ength structure)
(cons length structure))

How much of your programs do you need to change to convert to the new representation?

2.2.3. Symbolic Expressions; The Need for QUOTE

I All of the compound data we have used so far was constructed ultimately from numbers.
Now we extend the representational capability of our language by itroducing the ability to
work with arbitrary symbols as data. If we form compound data using not only numbers as
tLtoms, but rather arbitrary symbols (alphanumeric character strings) we obtain the class of
data called symbolic ex 'ressions. Some examples of symbolic expressions are

(a b c d)
23 45 17

((Bob 20) (Jane 18) Jm 2))
(* ( 23 45) (+'x ))
(define (fact x) (cond ((= x 0) 1) (else (* x (fact (- x 1))))))

In order to form symbolic expressions we need a new element in our language -- the ability
to quote a data object. To see this, suppose we want to construct the list (a b). We can't
accomplish this by

(list a b)

because the interpreter will think that we mean to combine in a list the value of a and the
value of b rather than the symbols themselves.

This problem is well known in the context of natural languages, where words and sentences
may be regarded either as semantic entities or as character strings syntactic entities). The
common practice in natural languages is to use quotation marks to indicate that a word or a
sentence is to be treated literally as a string of characters. For instance, the first letter of
"John" is clearly "J". If we tell somebody "say your name aloud" we expect to hear that
person's narne. However, if we tell somebody "say'your name' aloud" we expect to hear the
words "Your name". Note that we are forced to nest quotation marks to describe what
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somebody else might say.9

We can follow this same practice to identify lists and atoms that are to be treated as data
objects rather than as expressions to be evaluated. Our format for quoting differs, however,
from that used by natural languages, in that we place a quotation mark (traditionally, the
single quote symbol only at the beginning of the object to be quoted.10

Now we can distinguish between symbols and their values:

==>(define a 
a

==>(define b 2)
b

==>(list a b)
(I 2)

==>(list la lb)
(a b)

==>Oist 'a b)
(a 2)

Quotation also allows us to type-in compound objects, using the conventional printed

9Allowing quote in a language wreaks havoc with the ability to reason simply about the language, because it
destroys the notion that "equals can be substituted for equals." For example, three is one plus two, but the word
"three" is not "one plus two." More significantly, we will see that quote gives us a way to build expressions that
manipulate other expressions (for instance, when we write an interpreter in Chapter 4. And allowing statements in a
language that talk about other statements in that language makes it very difficult to aintain any coherent principle
of what "equals can be substituted for equals" should mean. As an example, if we know that the evening star is the

morning star then, from the statement "the evening star is Venus" we can deduce "the morning star is Venus".
However, given that "John knows that the evening star is Venus" we cannot infer that "John knows that the morning
star is Venus".

1.0
We can get away with this in Lisp syntax because we rely on the blanks and parentheses to delimit objects.

Thus the meaning of the single quote character is to quote the next object. Notice that single quote is different from
the double quote characters we have been using to enclose character strings to be printed. While single quote can
be used to denote lists or symbols, double quote is used only with character strings. In Scheme, the only use for
character strings is as items to be'printed.
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representation for lists:11

==>(car '(a b c))
a

==>(cdr '(a b c))
(b c)

One additional primitive used in manipulating symbolic expressions is eq which takes two
atomic symbols as arguments and tests whether they are the same.12 Using eq?, we can
implement a useful procedure called memq. This takes two arguments, an atom and a list. If
the atom is not contained in the list (i.e., is not eq? to any item in the list) then memq returns
n 7 Otherwise, it returns the sublist of the list beginning with the first occurrence of the
atom:

(define (memq item x)
(cond ((null? x) nil)

((eq? tem (car x)) x)
(else (memq item (cdr x)))))

-- >(memq 'apple ( 2 3 4 6)
nil

-- >(memq 'apple (x (apple sauce) y apple pair))
(app7e pair)

Exercise 226: What would the interpreter print in response to evaluating each of the following
expressions?

(list la lb 1c)

(list (list george))

(cdr ((xl x2) (yl y2)))

(cadr '((xl x2) (yl y2)))

(atom? (car '(a short lst)))

Our use of the quotation mark, strictly speaking, violates the general rule that all expressions in our language
should be represented as combinations. We can recover this consistency by introducing a special form quote,
which serves the same purpose as the quotation mark, Thus we would type (quote a) instead of a, and (quo to
(a b c) ) instead of '(a b c). In fact, this is precisely how the interpreter works. The quotation mark is just a
single character abbreviation for wrapping the next complete expression with "(quote <expression>")". This is
important becaLlSe it maintains the principle that any expression seen by the interpreter can be manipulated as a data
object. For instance, we could construct the expression

(car '(a b c)) = (car (quote (a b c)))

as

(list 'car (list 'quote '(a b c)))

12
We can consider two symbols to be "the same" if they consist of the same characters in the same order. Such a

definition skirts a deep issue, which we are not yet ready to address: the meaning of "sameness" in a programming
language. We will return to this in Chapter 3 (section 31.2).

Building Abstractions with Data
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(memq 'red '((red shoes) (blue socks)))

(memq 'red '(red shoes blue socks))

Exercise 2 27: Two lists are said to be equa 7 if they contain equal elements arranged in the same

order. For example,

(equal? '(this is a lst) '(this is a list))

is true, while

(equal? '(this is a list) '(this (is a) list))

is false.

More precisely, we can define equa I recursively in terms of the basic eq? equality of atoms by saying
that a and b are e u a 7 if either they are both atoms and the atoms are e q ?, or else they are both lists
such that (car a) is equa 7 to (car b) and (cdr a) is equa I to (cdr b). Using this idea,
implement equa 7 as a procedure.

Exercise 228: Eva Lu Ator types to the interpreter the expression

(car I 'abracadabra)

To her surprise, the interpreter prints back quo t e. Explain. What would be printed in response to

(cdddr '(this list contains '(a quote)))

2.2.4. Example: Symbolic Differentiation

As an illustration of symbol manipulation and a further illustration of data abstraction, let's
consider the problem of designing a procedure that performs symbolic differentiation of
algebraic expressions. We would like the procedure to take as arguments an expression and
a variable and to return the derivative of the expression with respect to the variable. For
example, if the arguments to the procedure are ax2 + bx + c and x then the procedure should
return 2ax + b. Symbolic differentiation is of special historical significance in Lisp. It was one
of the motivating examples behind the development of a computer language for symbol
manipulation. Furthermore, it marked the beginning of the line of research that led to the
development of powerful systems for symbolic mathematical work, which are currently being
used by a growing number of applied mathematicians and physicists.

In developing the symbolic differentiation program, we will follow thes'ame strategy of data
abstraction as we did with the rational number system of section 21.1. That is to say, we will
first define a differentiation algorithm that operates on abstract objects like "Sum .
"products, and "variables" without worrying about how these are to be represented. Only
afterwards will we address the representation problem.

The differentiation program with abstract data
In order to keep things simple, we'll consider a very simple symbolic differentiation program

that handles expressions that are built up using only the operations of addition and
multiplication with two arguments, Differentiation of any such expression can be carried out
by applying the following reduction rules:

dcldx for a constant or a variable different from x

dx1dx 1
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d(u + vldx duldx + dvldx

d(uv)ldx = udvldx) + Muldx)

Observe that the latter two rules are recursive in nature. That is, to obtain the derivative of a
sum, we first find the derivatives of the addends and add them. Each of the addends may in
tUrn be an expression that needs to be decomposed. Decomposing into smaller and smaller
pieces will eventually produce pieces that are either constants or variables, whose derivatives
will be either or .

To embody these rules in a procedure we indulge in a little "wishful thinking" just as we did
in designing the rational number implementation. If we had a means for representing
algebraic expressions, we should be able to tell the type of an expression: Is it a sum? a

product? a constant? a variable? We should be able to get the parts of an expression (e.g., for
a sum we want to be able to extract its addend and augend) and we want to construct
expressions from parts. So let us assume that we already have procedures to implement the
following selectors, constructors, and predicates:

(constant? e) Is ea constant?

(var iab le? e) Is a a variable?

(same-varfab7e? vI v2)
Are v I and v2 the same variable?

� (sum? e) Is e a sum?

(product? e) Is e a product?

(addend ) Addend of the sum .

(augend e) Augend of the sum e.

(multfp7lfer e) Multiplier of the products.

(mu 7 t ip 7 cand 9)
Multiplicand of the product .

(make-sum al a2)
Construct the sum of a I and a2.

(make-product ml m2)
Construct the product of ml and m2.

Using these operators, we can express the differentiation rules as the following procedure:'

I I I I I .. � t I i I I . t ! , �
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(deriv exp var)
((constant? exp) 0)
((variable? exp)

(if (same-variable? exp var) 1 0))
((sum? exp)

(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))

((product? exp)
(make-sum

(make-product multiplier exp)
(deriv (multiplicand exp) var))

(make-product (deriv (multiplier exp) var)
(multiplicand exp))))))

. (def ine
(cond

This procedure incorporates the complete differentiation algorithm. Since it is expressed in
terms of abstract data, it will work no matter how we choose to represent algebraic
expressions, as long as we design a proper set of selectors and constructors. This is the
issue we must address next.

Representing algebraic expressions
We can imagine many ways to use list structure to represent algebraic expressions. For

example, we could use lists of symbols that mirror the usual algebraic notation, representing
ax + b as the list (a * x + b). However, one especially straightforward choice is to use the
same parenthesized prefix notation that Lisp uses for combinations; that is, ax+ b is
represented as a x) b). Then our data representation for the differentiation
problem is as follows:

* The constants are numbers, identifiedby the primitive predicate number?.:

(define (constant.? x) (number? x))

0 The variables are symbols, identified by the primitive predicate symbo I

(def ine (vari abl e? x) (symbol x)

* Two variables are the same if the symbols representing tem are eq?:

(def ine (same-variable? v1 v2)
(and variable.? vl) variable? v2) (eq? vl v2)))

* Sums and products are constructed as lists:

(define (make-sum al a2) (list I+ al a2))

(def ine' (make-product ml m2) (list ml m2))

A sum is a list whose first element is the symbol :

(define (sum? x)
(and (not (atom? x)) (eq? (car x)

The addend is the second item of the sum st:

(define (addend s) (cadr s))

The augend is IL-he third item of the sum t:
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(def i ne augend s) (cadd r s)

• A product is a list whose first element is the symbol

(define (product? x)
(and (not (atom? x)) (eq.? (car x)

• The multiplier is the second item of te product list:

(define multiplier p) (cadr p))

• The multiplicand is the third item of the product list:

(define (multiplicand p) (caddr p))

So we need only combine these with the algorithm as embodied by der v, and we should
have a working symbolic differentiation program. And indeed the program works, sort of. Let
us look at some examples of its behavior:

-- >(deriv 1( x 3 x)
,(+ 1 0)

==>(deriv I X A 'X)
(+ * X 0) I ))

-- >(deriv x y) ( x 3 Ix)

(+ X I )
(+ * -0) * ))
( x 3)

The program produces answers that are algebraically equivalent to the correct answers.-'.
However, they are unsimplified. It is true that

d(xy)ldx = x* + 1*y

but we would like the program to know that x* = 0, 1 ey = y, and + y y. So'the answer
for the second example should have been simply y. As the third example shows, this
becomes a serious problem when the expressions are complex.

Our problem is much like the one we encountered with the rational number implementation,.,
we haven't reduced answers to lowest form. Remember that, in order to accomplish the
rational number reduction, we needed to change only the constructors and selectors of the
implementation. We can adopt a similar strategy here, We won't change der N at all.
Instead, we'll change inake-'sum so that if one of the summands is 0, then make-sum will
return the other summand. Also, if both summands are numbers, make-sum will add them
and return their sum.

(define (make-sum al a)
(cond ((and (number? al) al 0) _a2)

((and (number? a2) a2 0)) al)
((and (number? al) (number? a2)) (+ al a2))
(else lst 1+ al a2))))

Similarly, we'll change make -product to build in the rules that times anything is zero and 
times anything is the thing itself:
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(define (make-product ml
(cond ((and (number? ml) ml O-)

((and (number? m2) m2 0)) 0)
((and (number? ml)'(= ml 1)) m2)
((and (number? m2 = 1)) ml)
((and (numbe'r? -ml) (number? m2)) ml m2))
(else (list l m2))))

Here is how this version works on our three examples:

==>(deriv 1(+ x 3). I.x)

==>(deriv Al 'X)
Y

==>(deriv x y) (+ x 3)) Ix)
(+ (* x y) y ( x 3)))

Although this is quite an improvement, the third example shows that there is still a long way to
go before we get a program that puts expressions in a form that we might agree is f1simplest."
The problem of algebraic simplification is quite complex because, arnong'otherreasons a
form that may be simplest for one purpose may not be for another.

Exercise 229: Suppose we want to modify the differentiation'program'so that is works vMh algebraic
infix notation, rather than with prefix notation. Since the differentiation program is defined in t6rm of
abstract data, we can modify it to work with different representations of expressions solely by changing
the predicates, selectors, and constructors that define the representation of the algebraic expressions
on which the differentiator is to operate..

1. Show how to do this in order to differentiate algebraic expression's pres'e"nted'in infix form, sucK
as (x * (x+3 This is not difficult if we assume that and always take two arguments and that
expressions are fully parenthesized.

2. The problibm becomes substantially harder if we allow standard algebraic, notation, such as
x+3*(x+y), which drops unnecessary parentheses and assumes that multiplication is done
before addition. Can you design appropriate predicates, selectors and constructors for thi's
notation such that our derivative program still works?

Exercise 230: Show how to extend the basic differentiator to handle more kinds of expressions, For
instance, implement the differentiation rule

d(u")Idx = nun-'(duldx)

by adding a new clause to the deriv program and extending the interface to the data by defining
appropriate procedures exponentiation?, base, exponent, and make-exponentiation. (You may
use the symbol to denote the exponentiation operator.)

2.2.5. Example: Representing Sets

In the previous sections, we built representations for two knds of compound data objects,
rational numbers and 'algebraic expressions. In one of these examples, we had the choice of
simplifying (reducing) te expressions at either construction or selection time. But other than
that, the choice-of a representation for these structures in terms of lists was straightforward.
On the other hand, when'we turn to the problem of representing sets, we'll find that the choice 
of representation is not so-obvious. Indeed, we shall see that there are a number of possible
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representations, which differ significantly from one another in -several ways,_

Informally, a set is simply a collection of distinct objects. To give a more precise definition
we can employ the method of data abstraction. That is, we define "set" by specifying the
operators that are to be used on sets. These operators are: union-set,
fntersection-set, e7ement-of-set?, and adjofn-set. Element-of-set? is a
predicatethatdetermineswhetheragivenelementisamemberofaset- Adjoin-settakes
an object and a set as arguments, and returns a set that contains the elements of the original
set and also the adjoined element. Un fon-set computes the union of two sets, which is the"
setcontainingeachelementthatappearsineitherargument- Intersection-setcomputes
the intersection of two sets, which is the set containing only elements that appear in both
arguments. We will use the empty list to represent the empty set. From the point of view of
data abstraction, we are free to design any representation that implements these operators 'in
a way consistent with the interpretations given above.13

Sets as unordered lists
One way to represent a set is as a list of its elements, where no element appears more than

once. The empty set is represented by the empty list. In this representation,
e I emen t -of -set is similar to the procedure memq of section 22-3:

(define (element-of-set? x set)
(cond ((null? set) nil)

((equal? x (car set)) t)
(else (element-of-set? x (cdr set)))))

Using this, we can write adjo in -se t If the object to be ad'oined is already in the set we
just return the set. Otherwise, we use cons to add the object to the list that represents the
set:

13If we want to be more formal, we can specify "consistent with the interpretations given above" to mean that the
operators satisfy a collection of rules such as:

• For any set and any object x

(element-of-set? x (adjoin-set x S))

is true (informally: "adjoining an object to a set produces a set that contains he object").

• For any sets and T, and any object x,

(element-of-set? x (union-set T))

is equal to

(or (element-of-set? x S) (element-of-set? x T))

(informally: "the elements of union T) are the elements that are in or in ry

• For any object x

(element-of-set? x

is 7 (informally: "no object is an element of the empty set")

• and so on.
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(def line adjol'n-set x set)
(If (element-of-set? x set)

set
(cons x set)))

For `ntersection-set, we can use a recursive strategy: Suppose we have already
formed the intersection of the set2 and the cdr of setl. Then we only need to decide
whether or not to include the car of setl in this. But this depends on whether (car i)
is also in set 2. Here is the resulting procedure:

(define intersect-ion-set setl set2)
(cond ((or (null? setl) (null? set2)) nil)

A(element-of-set? (car setl) set2)
(cons (car setl)

(intersection-set (cdr setl) set2)))
.(else intersection-set (cdr setl) set2))))

Exercise 231: Give the analogous implementation of union-set.

In designing a representation, one of the 'issues we should be concerned with is how
efficient the representation is. Let's consider the time required by our set operations. Since
most of these use e7ement-of -set?, the speed of this operation has a m 'or impact on the
efficiency of the set implementation as a whole. Now in order to check whether an ob'ect is a
member of a set, e 7ement-of -set must scan the entire set. (in the worst case, the object
turns out not to be in the set). Hence if the set has n elements, e 7emen t-of -set might take
uptonsteps. SothetimerequiredgrowsasO(n). Thetimerequiredbyad'oin-set,wh'ch
uses this operation, also grows as 0n). For intersection-set, which does an
e I emen t -o f - s e t ? check for each element of se t 1, the time required grows a's the product
of the sizes of the sets involved, or OW) for two sets of size n The same will be true of
union-set.

Exercise 232: We specified that asset would be represented as a list with no duplicate elements, Now
suppose we allowed duplicates. For instance, the set J1,2,31 could be represented as the list 2 2 
3 2 2 Design procedures e7enent-of -set?, adjoin-set, un ion-set, and intersect ion-set
that operate on this representation. How does the efficiency of each compare with the corresponding
procedure for the non-duplicate representation? Are there applications for which you would use this
representation in preference to the non-duplicate one?

Ordered lists
One way to speed up our set operations is to cange the representation so that the set

elements are listed in increasing order. To do this, we need some way to compare two objects
so that we can say which is bigger. For example, we could compare symbols
lexicographically, or agree on some method for assigning a unique number to an object and
then compare the elements by comparing the corresponding numbers. To keep our
discussion simple, we'll consider only the case where the set elements are themselves
numbers, so that we can compare elements using > and < We'll represent a set of numbers
by listing its elements in increasing order. While our first representation above allowed us to
represent the set 13,6,10) by listing the elements in any order, our new representation
allows only the list (I 3 6 0).

One advantage of ordering shows up in e 7ement-of -set ?. In checking for the presence
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of an itt�rn, we no longer have to scan the entire set. If we reach aset element that is larger
than the -item we are looking for, then we know that the item is not in the set:

def ine (eleinent-of-set9 x set)
.(cond ((null? set) nil)

x (car set)) t)
x (car set)) nil)

(else (element-of-set? x (cdr set)))))

How much time does this save? In the worst case, the item we are looking for may be the
largest one in the set, so the number of steps is the same as for the unordered representation.
On the other hand, if we search for items of many different sizes we can expect that
sometimes we will be able to stop searching at a point near the beginning of the list and that
other times we will still need to examine most of the list. On the average we should expect to
have to examine about half the number of items in the set in a typical search. So the average
time required will be about n12. This is still 0n) growth, but it does save us on the average a
factor of 2 over the previous implementation.

Exe rci se 2 -33: Give an implementation of a dj o n - s e t using the ordered representation. By analogy
with e7ement-of-set? show how to take advantage of the ordering to produce a procedure that
requires on the average about half as many recursions as with the unordered representation. Compare
them by counting conses,

We obtain a more impressive speedup when we consider intersection-set. In the
2)unordered representation, this operation required time 0n because we performed a

complete scan of set2 for each element of setl. But with the ordered representation, we
can use a cleverer method: Begin by comparing the initial elements, x1 and x2, of the two
sets. If x I = x2 then that gives an element of the intersection, and the rest of the intersection
is the intersection of the cdr's of the two sets. Suppose, however, that xi is less than x2.
Since x2 is the smallest element in set 2 we can immediately conclude that x I cannot appear
anywhere in se t2 and hence is not in the intersection. Hence, the intersection is equal to the
intersection of set2 ith the cdr of setl. Similarly, if x2 is less than x1, then the
intersectionisgivp,nbytheintersectionof set1withthe cdrof set2. Hereistheprocedure:

(define (intersection-set setl set2)
(If (or (null? setl) (null? set2))

nil
(let ((xl (car setl)) (x2 (car set2)))

(cond ((= x1 x2)
(cons x1

(intersection-set (cdr setl)
(cdr set2))))'

((< x1 x2)
(intersection-set (cdr setl) set2))

x2 x1)
(intersection-set setl

(cdr set2)))))))

To estimate the time required by this process, observe that at each step we reduce the
intersection problem to computing intersections of smaller sets: removing the first element
f rom s e t 1 or s e t 2 or both. So the number of steps requ ired is at most the sum of the sizes of
setl and set2, rather than the product of the sizes as with the unordered representation.
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2)This is On) growth rather than O(n and is a considerable speedup, even for sets of
moderate sze.

Exercise 234: Give the analogous On) implementation of union-set for sets implemented as
ordered lists.

Sets as binary trees
We can do better than the ordered list representation by arranging the set elements in the

form of a tree. Each node of the tree holds one element of the set, called the "entry" at that
node, and a link to each of two other (possibly empty) nodes. The "left" link points to
elements smaller than the one at the node, and the "right" link to those elements that are
greater than the element at the node, Figure 27 shows some trees that represent the set

131597,911 1 }. Note that the same set may be represented by a tree in a number of different
ways. The only thing we require for a valid representation is that all elements in the left
subtree be smaller than the node entry and that all elements in the right subtree be larger.

7 3 5

3 9 1 7 3 9

1 7 11

Figure2-7: Variousbinarytreesthatrepresentthesetfl,3,5,7,9,11),

The advantage o f the tree representation is this: Suppose we want to check if a number x is
contained in a set. We begin by comparing x with the entry in the top node. If x is less thall
this, we know that we need only search the left subtree, while if x is greater, we need only
search the right subtree. Now if the tree is "balanced," each of these subtrees will be about
half the size of the original. So in one step, we have reduced the problem of searching a tree
of size n to searching a tree of size n12. Since the size of the tree is halved at each step, we
should expect that the number of steps needed to search a tree of size n grows as flog n14
For large sets, this will be a significant speedup over the previous representations.

We can represent trees by using lists. Each node will be a list of three items: the entry at
the node, the left subtree, and the right subtree. A left or right subtree of n will indicate that'
there is no subtree connected there. We can describe this representation by the following

14 Halving the size of the problem at each step is the distinguishing characteristic of logarithmic growth, as we saw
with the fast exponentiation algorithm of section 12.4 and the half -interval search method- of section 1.3.3.-
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procedures:

(def ine (entry tree) (car tree))

(de-fine (left-branch tree) (cadr tree))

(define (right-branch tree) (caddr tree))

(define (make-tree entry left rght)
(list entry left right))

Nowwecanwritethee7ement-of-set?procedureusingthestrategydescribedabove:

(define (eleinent-of-set? x set)
(cond ((null? set) nil)

x (entry set)) t)
x (entry set))

(element-of-set? x (left-branch set)))
((> x (entry set))
(element-of-set? x right-branch set)))))

Adjoining an item to a set is implemented similarly, and also requires 0(log n) steps. To
adjoin an item x, we compare x with the node entry to determine whether x should be added
to the right or to the left branch, and having adjoined x to the appropriate branch, we piece
this together with the original entry and the other branch. If x is equal to the entry, we just
return the original set. And if we are asked to adjoin x to an empty tree, we generate a tree
that has x as the entry and ull right and left branches.' Here is the procedure:

(define (adjoin-set x set)
(cond ((null? set) (make-tree x nil nil))

x (entry set)) set)
x etry set))

(make-tree (entry set)
(adjoin-set x

(left-branch set))
(right-branch set)))

x (entry set))
(make-tree (entry set)

(left-branch set)
(adjoin-set x

(right-branch set))))))

For large sets, the tree representation is much more efficient than the ordered or unordered
lists for searching and adjoining new elements. For computing intersections, however, it
turns out that there is no general way to proceed other than to use the sme strategy as we
did in the unordered list representation. That is, for each element in set 1, we scan to see if
this is in se t2, and, if so, adjoin it to an intersection set that we accumulate. Since the search

15
Observe that we are representing sets in terms of trees, and representing trees in terms of lists -- in effect, a data

abstraction built upon a data abstraction. We can regard the. procedures entry, 7eft-branch, right-branch,
and make-tree as a way of isolating the abstraction of "a binary tee" from the particular way we might wish to
represent such a tree in terms of lists.
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requires time roughly equal to the logarithm of the number of items in se U, and we must do
this operation for each element in setl, the total time required grows as the size of setl
times the logarithm of the size of se t2, or 0n log n) if the two sets have comparable size.
This is still much better tan for the unordered list representation, but not quite as good as the
ordered list representation. Since a typical set implementation is likely to do much more
searching than intersection, the tree representation is usually to be preferred.

Exercise 235: -How does the tree representation of sets compare with other epresentations on set

union problems?

Finally, we mention an additional problem with the tree implementation. The claim that
searching the tree can be performed in logarithmic time rests on the assumption that the tree
is "balanced," i.e., that the left and right subtrees of every tree have approximately the same
number of elements, so that each subtres contains about half the elements of its parent, But
how can we be certain that the trees we construct will be balanced? Even if we start wth a,
balanced tree, adding elements with adjoin -set may produce an unbalanced result. Snce
the position of a newly adjoined element depends on how the element compares with the
items already in the set, we could expect that if we add elements "randomly," the tree will
tend to be balanced on the average. But this is not a guarantee. For example, if we start with
an empty set and adjoin the numbers through 7 in sequence, we end up with the highly
unbalanced tree shown in figure 28. In this tree, all the left subtrees are empty, and so it has
no advantage over a simple sorted list. One way to solve this problem is to define an
operation that transforms an arbitrary tree into a balanced tree with the same elements. Then
we can perform this transformation after every few adjo in -se t operations to keep our set in
balance. There are also other ways to solve this problem, most of them involving designing
new data structures, for which searching and insertion both can be done in Oflog n) steps.16

3

4

6

6

7

Figu re 28: Unbalanced tree produced by adjoining I through 7 in sequence.

Sets and information retrieval
We have examined ptions for using lists to represent sets. This illustrated how the choice

of representation for a data object can have a large impact on the performance of the
programs tat use the data. But another Teason for concentrating on sets is that the

16
Examples of such structures include "heaps," 2-3 trees," "AVL-trees." There is a large literature on data

structures which is devoted to thi� problem.
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techniques discussed here appear again and again in applications involving in-formation
retrieval.

Consider a large data base that consists of a large number of individual records for
example, personnel files for a company, or the transactions in an accounting system. A
typical data management system spends a large amount of time accessing or modifying the
data in the records and therefore requires an efficient method for accessing records. To do
this, we identify a part of each record to serve as an identifying key. A key can be anything at
all, so long as the key uniquely identifies the record. For a personnel file, it might be a,
employee social security number. For an accounting system, it might be a transaction
number. Whatever the key is, when we define the record as a data structure, we should
include a key selector procedure, that retrieves the key associated with a given record.

Now we represent the data base as a set of records. To locate the record with a given key,
we use a procedure lookup, which takes as argument a key and a data base and returns the
record tat has that key, or n I if there is no such record. Lookup is implemented in almost
thesamewayase7ement-of-set?. Forexample,ifthesetofrecordsisimplementedasan
unordered list, then we could use:

(define (lookup given-key set-of-records)
(cond ((null? set-of-records) nil)

((equal? given-key (key (car set-of-records)))
(car set-of-records))

(else (lookup given-key (cdr set-of-records)))))

Of course, we$ve seen that there are better ways to represent large sets than as unordered
lists. Information retrieval systems in which records have to be "randomly accessed" are
typically implemented using a tree-based method such as the binary tree representation
discussed previously. In designing sch a system, the methodology of data abstraction can
be a great help. The designer can create an initial implementation using a simple,
straightforward representation such as unordered lists. This will be unsuitable for the
eventual systern,, but it can be useful in providing a "quick and dirty" data base with which to
test the rest of the system. Later on, te data representation can be modified to be more
sophisticated. And if the data base is accessed in terms of abstract selectors and
constructors, this change in representation will not require making any changes to the rest of'
the system.

Exercise 236: Give an implementation of the 7ookup procedure for the case where the set of records
is structured as a binary tree, ordered by the numerical values of the keys.

2.2.6. Example: Huffman Encoding Trees

This section provides practice using list structure and data abstraction to manipulate sets
and trees. The application is to methods for representing data as sequences of 1's and O's
(bits). For example, the ASCII standard code used to represent text in computers encodes
each character as a sequence of 7 bits. Using 7 bits allows us to distinguish Z, or 128
possible different characters. In general, if we want to distinguish N different symbols, then
we will need to use 192N bits per symbol. For example, if all our messages are made up of
the symbols A, B, C, D, E, F, G, H, then we can choose a code wth 3 bits per character, for
example:
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A 0 0 0 C 0 10 E 100 G 110
B 00 1 D 011 F 10 1 H 111

Using this code, the message

BACADAEAFABBAAAGAH

is encoded as the string of 54 bits

001000010000011000100000101000001001000000000110000111

Codes such as ASCII and the A through H code above are known as fixed-length codes,
which is to say, they represent each symbol in the message using the same number of bits, It
is sometimes advantageous to use variable-length codes, in which different symbols may be
represented by different numbers of bits. For example, Morse code does not use the same
number of dots and dashes for each letter of the alphabet. In particular, E, the most frequent
letter, is represented by a single dot. In general, if our messages are such that some symbols
appear very frequently and some symbols appear very rarely, then we can'encode data more
efficiently (i.e., using fewer bits per message) if we assign shorter codes to the frequent
symbols.

Consider the following alternative code for the letters A through 

A 0 C 1010 E 1100 G 1110
B 100 D 1011 F 1101 H 1111

With this code, the same message as above is encoded as the string

100010100101101100011010100100000111001111

which contains 42 bits, a savings of more than 20% in space over the fixed-length code shown
above.

One of te problems in using a variable-length code is knowing when you have reached the
end of a symbol in reading a sequence of O's and 1's. Morse code solves this problem by
using a special separator code (in this case, a pause) between the sequence of dots and
dashes for each letter. Another way to solve the problem is to design the code in such a way
that no complete code for any symbol is the beginning (or prefix) of the code for another
symbol. Such a code is called a prefix code. For istance, in the example above, A is
encoded by so no other symbol can have a code that begins with .

In general, we can attain significant savings if we use variable-length prefix -codes that take
advantage of the relative frequencies of the symbols in the messages to be encoded. One
particular scheme for doing this is called the Huffman Encoding Method, after its discoverer,
David Huffman.

A Huffman code can be represented as a binary tree whose leavesere the symbols that are
encoded. At each node of the tree there is a set which is the union of all the symbols 'in the
leaves that lie below the node. In addition, each symbol at a leaf is assigned a frequency
number, and each node contains a weight tat is the sum of all the frequencies of the leaves
lying below it. The weights are not used in the encoding or decoding process. We will see
below how they are used to help construct the tree.
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{A C E F G H 17

A o {B C D E F G H 
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Figure 29: A Huffman Encoding Tree

Figure 29 shows the Huffman tree for the A through H code given above. The frequency
numbers at the leaves indicate that the tree was designed for messages in wich A appears
with relative frequency 8, B appears with relative frequency 3 and the other letters each
appear with relative frequency .

Given a Huffman tree, we can find the encoding of any symbol by starting at the root of the
tree and following down until we reach the leaf that holds the symbol. Each time we move
down a left branch we add a to the code, and each time we move down a right branch we
-Add a to the code. (We can decide which branch to follow by testing to see if the symbol is
contained in the sets specified for the branches.) For example, starting from the root of the
tree in figure 29 we arrive at the leaf for D by following a right branch, then a left branch, then
a right branch, then a right branch. Hence the code for D is 101 1.

To decode a bit sequence using a Huffman tree, we begin at the root of the tree, and use
the successive O's and 1's of bit sequence to determine whether to move down the left or right
branch. Each time we come to a leaf, we have generated a new symbol in the message, at
which point we start over from the root of the tree to find the next symbol. For example,
suppose we are given the tree above, and the sequence 10001010. Starting at the root, we
move down the right branch, since the first bit of the string is 1, then down the left branch,
since the second bit is 0, then down the left branch, since te third bit is also 0. This brings us
to the leaf for B, so the filst symbol of the decoded message is B. Now we start again at the
root, and make a left move, since the next bit in the string is 0. This brings us to the leaf for
A. Then we start again at the root with the rest of te string 1 01 0 so we move right, left, rght,
left and reach C. So the entire message is BAC.



17 See the book by Hamming 16] for a discussion of the mathematical properties of Huffman codes.
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Generating Huffman trees
Now that we've seen how to use Huffman trees to encode and decode messages, the

question remains: given an "alphabet" of symbols and their relative frequencies, how do we
construct the "best" code? In other words, which tree will encode messages using the fewest
number of bits? Huffman gave an algorithm for doing this, and showed that the resulting code
is indeed the best variable-length code for messages where the relative frequency of the
symbols matches the frequencies with which the code was constructed. We will not prove

17this optimality of Huffman codes here, but we will show how Huffman trees are constructed.

The algorithm for generating a Huffman tree is in fact very simple. The idea is to arrange
the tree so that the symbols with the smallest frequency appear farthest away from the root.
We can do this as follows: Begin with the set of leaf nodes, together with their frequencies, as
determined by the initial data from which the code is to be constructed. Now find two leaves
with the smallest frequencies and "merge" them to produce a node that has these two nodes
as its left and right branches. The "weight" of the new node is the sum of the two
frequencies. Remove the two leaves from the original set, and replace them by this new node.
Now continue this process. At each step merge two nodes with the smallest weights,
removing tem from te set, and replacing them by a node which has these two as its left and
right branches. The process stops when there is only one node left, which is the root of the
entire tree.

For example, here is how the Huffman tree of figure 29 was generated:
Initial leaves <(A 8) (B 3) (C 1) (D 1) (E 1) (F 1) (G 1) (H 1)>
Merge <(A 8) (B 3) ({C DI 2) (E 1) (F 1) (G 1) (H 1)>
Merge <(A 8) (B 3) ((C D) 2) ((E Q 2) (G 1) (1 1>
Merge <(A 8) (B 3) ({C DI 2) ({E F) 2) ((G HI 2)>
Merge <(A 8) ( 3 ((C D) 2) ({E F G HI 4)>
Merge <(A 8) ({B C DI 5) ((E G HI 4)>
Merge <(A 8) ({B C D E F G HI 9>
Final merge <(fA 8 C D E F G HI 17)>

Notice that the algorithm does not result in a unique tree because there may not be nique
smallest weight nodes at each step. Also, the choice of the order in which the two nodes are
merged (which will be the right branch and which will be the left branch is arbitrary.

Representing Huffman trees
For the following exercises we will work with a system that uses Huffman trees to encode

and decode messages, and which generates Huffman trees according to the algorithm
outlined above. We'll begin by discussing how trees are represented.

Leaves of the tree are represented by a list consisting of the symbol 7 ea f, the symbol at the
leaf, and the weight:

(define (make-leaf symbol weight)
(list 'leaf symbol weight))

(define (leaf? object)
(and (not (atom? object))

(eq? (car object) 'leaf)))
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(define (symbol-leaf x) (cadr x))

(define (weight-leaf x) (caddr x))

A general tree will be a list of a left branch, a right branch, a set of symbols, and a weight.
The set of symbols will be simply a list of the symbols (rather than some more sophisticated
set representation). Observe that wen we make a tree by merging two nodes, we obtain the
weight of the tree as the sum of the weights of the nodes, and the set of symbols as the uion
of the symbols for the nodes. Since our symbol sets are represented as lists, we can form the
union by using the append procedure we defined in section 22.1.

(define (make-code-tree left right)
(list left

r i g h t
(append (symbols left) (symbols right))
(+ (weight left) (weight right))))

If we make a tree in this way, we have the following selectors:

(define (left-branch tree) (car tree))

(def ine (right-branch tree) (cadr tree))

(define (symbols tree)
(if (leaf? tree)

( 1 i st (symbol - leaf tree)
(caddr tree)))

(define (weight tree)
(if (leaf? tree)

(weight-leaf tree)
(cadddr tree)))

Observe that symbols and wght must do something slightly different depending on
whether they are called with a leaf or a general tree. These procedures are simple examples
of generic operators, about which we will have much more to say in section 23.

The decoding procedure
The following procedure implements the decoding algorithm specified above. It takes as

arguments a list of O's and s, together with a Huffman tree:

(define (decode bits tree)
(decode-1 bits tree tree))

The procedure decoder takes three arguments: the list of bits, the tree, and the curre nt
position in the tree. It keeps moving "down" the tree, choosing a left or right branch,
according to whether the next bit in the list is a or a 1. (This is done using the subprocedure
choose-branch.) When it reaches a leaf, it returns the symbol at that leaf as the next symbol
in the message (consing it onto the rest of the message) and proceeds to decode the rest of
the message, starting at the root of the tree.
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(define (decode-1 bits tree current-branch)
(if (null? bits)

10
(let ((next-branch

(choose-branch (car bits) current-branch)))
(if (leaf? next-branch)

(cons (symbol-leaf next-branch)
(decode-1 (cdr bits) tree tree))

(decode-1 (cdr bits) tree next-branch)))))

(define (choose-branch bit branch)
(cond bit 0) (left-branch branch))

bit 1) right-branch branch))
(else error "bad bt -- CHOOSE-BRANCH" bit))))

Note the error check in the final clause of choose-branch, which complains if the procedure
finds something other than a or a as input data.

Sets of weighted elements
In our repres entation of trees, each node contains a set of symbols, which we have

represented as a simple list. However, the tree-generating algorithm discussed above
requires that we also work with sets of leaves and trees, successively merging the two
smallest items. Since we will be reouired to repeatedly find the smallest item in a set, it is
convenient to use an ordered representation for this kind of set.

We'll represent a set of leaves and trees as a list of elements, arranged in increasing order
of weight. The following adjoin -set procedure for constructing sets is similar to the one
described in exercise 233, except that items are compared by comparing their we ights and
the element being added to the set 'is never already n it:

-(define (adjoin-set x set)
(cond null ? set) ( 1 ist x)

(weight x) (weight (car set))) (cons x set))
(else (cons (car set)

(adjoin-set x (cdr set))))))

The following procedure takes as its argument a list of symbol-frequency pairs, such as

((A 4 ( 2 (C 1) (D 1))

and constructs an initial ordered set of leaves, ready to be merged according to the Huffman
algorithm-,

(define (make-leaf-set pairs)
(if (null? pairs)

10
(let ((pair (car pairs)))

(adjoin-set (make-leaf (car pair) ;symbol
(cadr pair)) Jrequency

(make-leaf-set (cdr pairs))))))

Exercise 237: Define an encoding tree and a sample message:
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(define sample-tree
(make-code-tree (make-leaf 'A 4)

(make-code-tree (make-loaf 2)
(make-code-tree
(make-leaf 'D 1)
(make-leaf 'C 1)))))

(define sample-message '( I 0 0 1 0 1 0 1 1 1 0))

Use the decode procedure to decode te message, and give the result.

Exercise 238: Write an encode program that takes as argument a message and a tree and produces
the list of bits that gives the encoded message. The top level of e n c o de is as fol lows:

(define (encode message tree)
(if (null? message)

nil
(append (encode-symbol (car message) tree)

(encode (cdr message) tree))))

Encode -symbo I is a procedure, which you must write, that returns the list of bits that encodes a given
symbol according to a given tree. You should design encode-symbO so that it signals an error if the
symbol is not in the tree at all. Test your procedure by encoding te result you obtained in exercise
2-37 with the sample tree and seeing wether it is te same as the original sample message.

Exercise 239: Write a procedure that takes as argument a list of symbol-frequency pairs, and
generates a Huffman encoding tree, according to the Huffman algorithm. (Assume that no symbol
appears in more than one pair.) The top level procedure is

(define (generate-huffman-tree pairs)
(car (successive-merge (make-leaf-set airs))))

where make- 7 eaf -set is the procedure that transforms the list of pairs into an ordered set of leaves as
described above. Success i ve-merge is the procedure that you must write, using make-code- tree to
successively merge the smallest weight elements of the set until there is only one element left, which is
the desired Huffman tree.

Note: This procedure is slightly tricky, but not really complicated. If you find yourself designing a
complex procedure, then. you are almost certainly doing something wrong. You should realize that you
can make significant advantage of the fact that we are using an ordered set representation.

Exercise 240: The following 8-symbol alphabet with associated relative frequencies was designed to
efficiently encode the lyrics of 1950's rock songs. (Note that the "symbols" of an "alphabet" need not
be individual letters.)

A 2 NA 16
BOOM 1 SHA 3
GET 2 YIP 10

�JOB 2 WAH I

Generate a corresponding Huffman tree, and use it to encode the following essage:

Get a job
Sha na na na na na na na na
Get a job
Sha na. na na na na na na na
Wah yip yip yip yip yip yip yip yip yip
Sha boom

How many bits are required for the encoding? What is the smallest number of bits that would be needed
to encode this song if we used a fixed-length code for the 8-symbol alphabet'.)

Exercise 241: Suppose we have a Huffman tree for an alphabet of N symbols, and that the relative
N-i

frequencies of the symbols are 1 2 4 ... 2 Sketch te tree for N = ; for N = 0. In such a tree (for

general N) how may bits are required to encode the most frequent symbol? the least frequent symbor?
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Exercise 242: Consider the encoding procedure that you designed in exercise 238. What is the

order of growth in the number of steps needed to encode a symbol? Be sure to include the number of
steps needed to search the symbol list at each node encountered. To answer this question in general is
difficult. Consider the special case where the relative frequencies of te N symbols are as described in
exercise 241, and give the order of growth (as a function of N) of the number of steps needed to encode
the most frequent and least frequent symbols in the alphabet.

2.3. Multiple Representations for Abstract Data

We have introduced data abstraction, a methodology for structuring systems in such a way
that much of a program can be specified independently of the choices involved in
implementing the data objects that the program manipulates, For example, we saw in section
2.1.1 how to attack the problem of designing a program that uses rational numbers,
separately from the problem of implementing rational numbers in terms of the computer
language's primitive mechanisms for constructing compound data. The key idea is to erect
an abstraction barrier, in this case, the selectors and constructors for rational numbers
(make-rat, numer, denom), that isolates the way that rational numbers are used from their
underlying representation in terms of list structure. A similar abstraction barrier isolates the
details of the procedures that perform rational arithmetic (+rat, -rat, *rat, ad Irat) from
the "higher level" procedures that use rational numbers. As we saw, the resulting program
has the structure shown in figure 21.

These data abstraction barriers are powerful tools for controlling complexity. By isolating
the underlying representations of data objects, we can divide the problem of designing a large
program into smaller problems that can be solved separately. But the kind of data abstraction
we have presented is not yet powerful enough. In a large system it may not make sense to
speak of "the underlying representation" of a data object. To take a simple example, complex
numbers may be represented in two almost-equivalent ways -- in rectangular form (real and
imaginary parts) and in polar form (magnitude and angle). Sometimes rectangular form is
more appropriate and sometimes polar form is more appropriate. Indeed, it is perfectly
plausible to imagine a system in which complex numbers are represented in both ways, and in
which the operators for manipulating complex numbers will work with either representation,

Now we will learn how to cope with data that may be represented in different ways by
different parts of a program. This requires constructing generic operators -- that is,
procedures that can operate on data that may be represented in more than one way. Our main
technique for building generic operators will be to work in terms of data objects that have
manifest types, that is, data objects that include explicit information about how they are to be
processed. We will also discuss data-directed programming, a powerful and convenient
implementation strategy for systems of generic operators.

We begin our discussion with the simple complex number example. We will see how
manifest types and data-directed style enable us to design separate rectangular and polar
representations for complex numbers, while still maintaining the notion of an abstract
"complex number" data object. We will accomplish this by dfining arithmetic operators for
complex numbers c, -c, *c, and /c, in terms of generic selectors that access parts of a
complex number independently of how the number is represented. The resulting complex
number system, as shown in figure 210, contains two different kinds of abstraction barriers.
.The "horizontal" abstraction barriers play the same role as the ones i in figure 21 Tey
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isolate "higher level" operations from "lower level" representations. In addition, there is a
"vertical" barrier that gives us the ability to separately design and install alternative
representations.

Use of Complex Numbers

------------------
+c - * 

------------------

Complex Arithmetic Package

Rectangular Representation Polar Representation

List Structure and Primitive Machine Arithmetic

Figu re 2- 1 0: Data abstraction barriers in complex number system

In section 24 we will show how to use manifest types and data-directed style to develop a
generic arithmetic package. This provides operators add, mu , and so on, which can be used
to manipulate all sorts of "numbers," and which can be easily extended when a new kind of
number is needed. Figure 211 shows the structure of the system we shall build. Notice the
abstraction barriers: from the perspectiv e of someone using "numbers," there is a single
operator add that operates on whatever numbers are supplied. In fact, add is a "generic
interface" that allows the separate real, rational, and complex arithmetic packages to be
accessed uniformly by programs that use numbers. Moreover, any individual arithmetic
package (such as the complex package) may itself be accessed through generic operators
(such as c) that combine packages designed for different representations. Of particular
importance to the system designer is the fact that one can design the individual arithmetic
packages separately, and combine them to produce a generic arithmetic package by using
data-directed style as a conventional interface.
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Use of Numbers

----------------------
add sub mul div

-----------------------

Generic Arithmetic Package

------------ ----------------- -----------
===I+rat -rat j==========1+c -c *c /c +

I*rat /rat I 11 ----------------- 11 -----------
------------ Complex Arithmetic

Rational Real
Arithmetic Arithmetic

Rectangular Polar

List Structure and Primitive Machine Arithmetic

Figure 21 1: Generic arithmetic system

2.3.1. Representations for Complex Numbers

We will develop a system that performs arithmetic operations on complex numbers as a
simple, albeit somewhat unrealistic, example of a program that uses generic operators. We
begin by discussing two plausible representations for complex numbers as ordered pairs
-- rectangular form (real part and imaginary part) and polar form (magnitude and angle),.1 In
section 23.2 we show how both both representations can be made to coexist in a sinle
system, through the use of manifest types and generic operators. In section 2. we
introduce data-directed programming style as an technique for organizing systems that use
generic operators.

Like rational numbers, complex numbers are naturally represented as ordered pairs. The
set of complex numbers can be thought of as a two-dimensional spacewith two orthogonal
axes, the "real" axis arid the "imaginary" axis. (See figure 212.) From this point of view, the
complex number

Z = x + i where 11 = 

can be thought of as the vector whose real coordinate is x and whose imaginary coordinate is
y. Addition of complex numbers reduces in this representation to addition of coordinates.
That is,

Re.al-part(zi 4-Z 2 = Real-part(zj + Real-part(zd

Imaginary-part(zi +Z 2) Imaginary-part(z,) + Imaginary-part(zd

18In atual computational systems, rectangular form is preferable to polar form most of the time becau-se of
round-off errors in conversion between rectangular and polar form. This is why the complex number example is
unrealistic. Nevertheless, it provides a clear illustration of the design of a system using generic operators, as wef as
a good introduction to the more substantial systems developed later in tis chapter.
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Figure 212: Complex numbers as vectors

When mltiplying complex numbers, it is more natural to think in terms of representing a
complex number in polar form, as a magnitude and an angle as shown in figure 212. The
product of two complex numbers is the vector obtained by stretching one complex number by
the length of the other and then rotating it through the angle of the other. That is,

Magnitude(z *z Magnitude(zj * Magnitude(1 2 Z2)

Angle(z, *z 2) Angle(zl + Angle( Z2)

We see therefore that there are two different representations for complex numbers, which
are appropriate for different operations. And yet, from the point of view of someone writing a
program that uses complex numbers, the principle of data abstraction SLIggests that the
complex number manipulation procedures be ambiguous with respect to the actual
implementation used by the computer. For example, it is often useful to be able to find the
magnitude of a complex number that is specified by rectangular coordinates, Similarly, it is
often useful to be able to determine the real part of a complex number that is specified by
polar coordinates.

To design such a system, we can follow the same data abstraction strategy as we dd in
designing the rational number package in section 21.1. We assume that the operators on
complex numbers are implemented in terms of the following four selectors: real-part,
imag-part, magnitude, and angle. We'll also assume *that we have two procedures for
constructing complex numbers. The first, make-rectangu7ar, returns a complex number
with given real and imaginary parts, and the second, ma k e -p 7 a r, returns a complex number
with given magnitude and'angle. We have, for any complex number z-

(make-rectangular (real-part z) finag-part z)) => z

(make-polar magnitude z) (angle z)) 0 z
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Using tese constructors and selectors, we can implement complex number arithmetic
using the "abstract data" specified by te constructors and selectors, just as we did for
rational numbers in section 21.1. As shown in the formulas above, we can add and subtract
complex numbers in terms of real and imaginary parts, while multiplying and dividing complex
numbers in terms of magnitudes and angles:

(define c z1 z2)
(make-rectangular ( (real-part z1) (real-part z2))

(+ 0imag-part z1) (imag-part z2))))

(define (-c z1 z2)
(make-rectangular (real-part z1) (real-part z2))

(imag-part z1) (imag-part z2))))

(define (*c z1 z2)
(make-polar (* (magnitude z1) magnitude z2))

(+ (angle z1) (angle z2))))

(define (/c z1 z2)
(make-polar (magnitude z1) magnitude z2))

(angle z1) (angle z2))))

To complete the complex arithmetic package, we must choose a representation, and
.implement the constructors and selectors in terms of the primitive numbers and list structure.
There are two obvious possible choices. We can represent a complex number in
"rectangular form" as a pair: real part, imaginary part; or in "polar form" as a pair: magnitude,
angle. Which shall we choose? Just as in our discussion of rational numbers, we can decide
about the implementation independently of our decisions about how we support the abstract
selectors and constructors for that representation.

Let's consider the consequences of the various choices. If we represent a complex number
in rectangular form, then selecting the real and imaginary parts is straightforward, as is
constructing a complex number with a given real and imaginary part. To find the magnitude
and angle, or to construct a complex number with a given magnitude and angle, we use the
relations:

2 2x = r cos A r = sqrt( +Y
Y = r sin A A = arctan (YX)

which relate the real and imaginary parts (x, y) to the magnitude and angle (r, A). This leads to
the following selectors:

(def i ne make- rec tangular x y) (cons x y))'

(define (real-part z) (car z))

(define (imag"part, z) (cdr z))

(define (make-p'lar r a)
(cons r (cos a)) r sn a))))

(define (magnitude z)
(sqrt ( (square,(car z)) (square (cdr z)))))r
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def line ( ang 1 e z)
(atan (cdr z) (car z)))

On the other hand, we may choose to implement our complex numbers in polar form. I f so..,
then selecting the magnitude and angle will be straightforward, while we must use
trigonometry to find the real and imaginary parts. Here is the corresponding set of
procedures.-

(def line (make-rectangular x y)
c o n s(sqrt ( (square x) (square y)))

(atan y x)))

(define (real-part z)
(car z) (cos (cdr z))))

(def i ne ( imag-part z)
(car z) (sin (cdr z))))

(define (make-polar r a) (cons r a))

(define (magnitude z) (car z))

(define (angle z) (cdr z))

As usual, the discipline of data abstraction ensures that the implementation of the complex
number arithmetic operators c, -c, *c, and Ic is independent of which representation we
choose.

2.3.2. Manifest Types

One way to view data abstraction is as an application to program design of the "principle of
least ommitment." By setting up selectors and constructors as an abstraction barrier we can
defer to the last possible moment the choice of a concrete representation for our data objects,
and thus retain maximum flexibility in our system design. In fact, the principle of least
commitment can be carried to further extremes than we have seen so far. If we desire, we can
maintain the ambiguity of representation even after we have designed the selectors and
constructors, electing to rpresent some complex numbers in polar form and some in
rectangular form. But if both kinds of representations are included in a single system, we will,
need some way to distinguish data constrUcted by make-polar from data constructed by
make-rectangu I ar I Otherwise, if we were asked, for instance, to find the magn ftud of
(3 4 we wouldn't know whether to answer (interpreting the number in rectangular form)
or 3 (interpreting the number in polar form).

A straightforward way to accomplish this distinction is to include a "type" -- rectangu I ar
or po7ar -- as Dart of each complex number. Then, wen we need to manipulate a complex
number, we can use the type to decide which selector to apply.

A data object that has a type that can be recognized and tested is said to have manifest
type. In order to manipulate typed data, we will assume that we have two procedures, type
and contents, that extract from a datum the type and the actual contents (the list of
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coordinates in the case of a complex number). We will also postulate a procedure
attach-type that takes a type and a contents and produces a typed datum. A
straightforward way to implement this is to use ordinary list structure for this purpose:

(define (attach-type type contents)
(cons type contents))

(define (type datum)
(if (not (atom? datum))

(car datum)
(error "Bad typed datum TYPE" datum)))

(define (contents datum)
(if (not (atom? datum))

(cdr datum)
(error "Bad tvi)ed datum CONTENTS" datumM

Using these procedures, we can define predicates po7ar? and rectangu7ar?, which
recognize polar and rectangular numbers, respectively.

(def ine (polar? z)
(eq? (type z) polar))

(define (rectangular? z)
(eq? (type z) 'rectangular))

Now we modify the constructors for complex numbers to include the type as part of the
number to be constructed. To construct a complex number in rectangular form, given real
and imaginary parts, we use:

(def line (make-rectangular x y)
(attach-type 'rectangular (cons x y)))

To construct a complex number in polar form, given magnitude and angle, we use:19

(def ine (make-polar r a)
(attach-type 'polar (cons r a)))

Now we can use the type of a complex number to select the specific procedures for dealing
with numbers of the given type. We use contents to get at the bare, untyped datum. Our
abstract selectors for complex numbers are now defined in terms of the appropriate selectors
for the untyped complex numbers. We see that these procedures can be divided into two

packages," one for handling rectangular form and the other for polar form.

(define (real-part z)
(cond ((rectangular? z)

(real-part-rectangular (contents z)))
((polar? z)
(real-part-polar (contents z)))))

19 In our previous implementation, we also included operations for constructing a rectangular number from a

magnitude and angle, and for constructing a polar number from real and imaginary parts. These will be unnecessary
in the new system we are designing.
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(define (imag-part z)
(cond ((rectangular? z)

(imag-part-rectangular (contents z)))
((polar? z)
(imag-part-polar (contents z)))))

(define magnitude z)
(cond ((rectangular? z)

(magnitude-rectangular contents z)))
((polar? z)
(magnitude-polar (contents z)))))

(define (angle z)
(cond ((rectangular? z)

(angle-rectangular (contents z)))
((polar? z)
(angle-polar (contents z)))))

As the underlying procedures in each of the packages for handling untyped complex
numbers, we can use the selectors defined in the previous section, after renaming each
procedure so as to avoid name conflicts. Here are the selectors for the rectangular
representation:

(define (real-part-rectangular z) (car z))

(def ine ( imag-part- rectangular z) (cdr z)

(define (magnitude-rectangular z)
(sqrt ( (square (car z))

(square (cdr z)))))

def i ne ang 1 e- rectangul ar z)
(atan (cdr z) (car z)))

The selectors for the polar representation are as follows:

(define (real-part-polar z)
(car z) (cos (cdr z))))

(define (imag-part-polar z)
(car z) (sin (cdr z))))

(de-fine (magnitude-polar z) (car z))

(define (angle-polar z) (cdr z))
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Use of Complex Numbers

----------------------

+C C *C /C c
----------------------

Complex Arithmetic Package

------------------------

real-part imag-part
magnitude angle

------------------------

Rectangular Package Polar Package'

List Structure and Primitive Machine Arithmetic

Figure2-13: Structureofthegenericcomplexarithmeticsystem.

The resulting complex number system has the structure shown in figure 213. Notice that
the system can be decomposed into three relatively independent parts: the complex number
arithmetic package, the rectangular representation package, and the polar representation
package. Each of these packages could have. been designed without any knowledge of the
others. For instance, the polar and rectangular packages could have been written separately,
by two separate people, and then both cou Id be used as underlying representations by a third
programmer who implements the complex arithmetic procedures c, -c, *c, and /c, in terms
of te abstract constructor/selector interface.

Since each data object is "tagged" with its type, the abstract selectors can operate on the
data in a generic manner. That is to say, each selector may be defined to have a behavior-that
depends upon the particular type of data it is applied t. Notice the general mechanism for
interfacing the separate packages: Within a given representation package (say, the plar
package) a complex number is an untyped pair (magnitude, angle). When a generic selector
operates on a number of po I a rtype, it strips off the type and passes the untyped contents on
to the polar package. Conversely, when a number is constructed and "exported." from the
polar package, it is given a manifest type so that it can be appropriately recognized by the
higher level procedures. This discipline of stripping off and attaching types as data is passed
from level to level will be an important organizational strategy, as we shall see in section
2.4 below.

Although this way of organizing generic operators is very valuable, there are two weak
points in our system. One is that the generic interface procedures (rea I -part, 7'mag-p,,art,
magnitude, ang7e) must "know about" all the different representations. In the follcmng-
section, we will introduce data-directed programming, a technique which can be used to- deal
with this problem. Another weakness of our system is that although the separate packages
can be designed separately, we have to make sure that no two procedures in the entire
system have te same name. This is why we appended the package name to each selector
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20procedure in the example above.

2.3.3. Data-directed Programming

Using manifest types and generic operators is a powerful tool for obtaining modularity in
system design. But the techniques we have available at this moment are too weak to solve
really large-scale problems. For example, suppose someone designed a new package, using
a new representation for complex numbers, and asked us to interface this to our complex
number system. We would need to identify this new representation with a type, and then add
a clause to each of the generic interface procedures (rea 7 -part, itnag-part, inagn 7tude,
ang7e) to check for the new type and access the appropriate selector in the new package.
This is not much of a problem for the complex number system as it stands, but suppose that
there were not two, but hundreds of different representations for complex numbers. And
suppose that there were many generic selectors to be maintained in the abstract data
interface. Suppose, in fact, that no one programmer knows all the interface procedures nor
all the representations. Although this is not likely to be the case with systems that perform
arithmetic, the problem is real and must be addressed in programs such as large-scale data
base management systems and symbolic algebra systems. What we need is a means for
modularizing the system design even further. This is wat is provided by the programming
technique known as data-directed programming.

To understand how data-directed programming works, we begin with the observation that,
whenever we deal with a number of generic operators that are common to a number of
different types, we are, in effect, dealing with a two-dimensional table that contains the
possible operators on one axis and the possible types on the other axis. The entries in the
table are the procedures that implement each operator for each type of operand presented.
In the complex number system developed in the previous section, the correspondence
between operator name, data type, and actual procedure was spread out among the various
conditional clauses in the generic interface procedures. But the same information could have
been organized in a table, as shown in figure 214.

types

polar rectangular
------------------- --------------------

real-part real-part-polar real-part-rectangular
operators imag-part imag-part-polar imag-part-rectangular

magnitude magnitude-polar magnitude-rectangular
angle angle-polar angle-rectangular

Figure 214: TableofOperatorsforComplexNumberSystem

Data-directed programming is the technique of designing our programs to work with such a
table directly. Previously, we implemented the mechanism that interfaces the complex

20 There are more elegant ways to handle the name conflict problem. In Chapter 3 we will see how environments
serve as contexts that determine the meaning of names in expressions to be evaluated. We can take advantage of
this, idea to show how to design each package to be a separate environment with its own local names, and how
operators from different packages can be combined.
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arithmetic package to the two representation packages as a set of procedures. Instead, we
will implement the interface package by a single procedure that looks up the operator/type
combination in the operator table to find the correct procedure to apply, and then applies it to
the contents of the operand. If we do this, then in order to add a new representation package
to te system, we need not change any existing procedures, but only add new entries to the
table.

To implement this plan, we'll assume that we have two procedures put, and get for
manipulating the operator/type table.,

(put <type> <op> <item>)
installs <item> in the table entry indexed by <type> and op>

(get <type> op>)
looks up the <type>, <op> entry in the table and returns the item found
there. If no item is found, ge t returns n 7.

For now, we can assume that put and get are primitive operators included in our language.
In Chapter 3 (section 33-3) we will see how to implement these, and other operations for
manipulating tables.

Here is how the data-directed system works: the programmer who defined the rectangular
representation package could install it in the complex arithmetic system by adding entries to
the table that tells the system how to operate on rectangular numbers:

(put 'rectangular 'real-part real-part-rectangul'ar)
(put 'rectangular limag-part imag-part-rectangular)
(put 'rectangular 'magnitude magnitude-rectangular)
(put 'rectangular 'angle angle-rectangular)

Notice that the <item> entries in the'table are the actual procedures that are to be applied.

Meanwhile, another programmer could work on the polar form definitions, independently of
his colleague, and the ompleted definitions could be similarly interfaced to the complex

umber package:

(put 'polar 'real-part real-part-polar)
(put 'polar 'imag-part imag-part-polar)
(put 'polar 'magnitude magnitude-polar)
(put 'polar 'angle angle-polar)

The complex arithmetic package itself accesses the table by means of a general "operator"
procedure called operate. Operate "applies a generic operator to an object" by looking in
the table under the name of the operator and the type of the object, and applying the resulting
procedure if one is present:

(define (operate-op obj)
(let ((proc (get (type ob') op

(if (not (null? proc))
(proc (contents ob'))
(error "Operator undefined for this type OPERATE"

(list op obj)))))

Usingoperate,ourgenericinterfaceproceduresaredefinedasfollows:
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(define (real -part ob (operate 'real -part ob
(define (imag-part ob') (operate 'imag-part ob'))
(define (magnitude obj) (operate 'magnitude obj))
(define (angle obj) (operate 'angle obj))

In particular, these procedures do not have to be changed at all if a new representation 'is
added to the system.

The general strategy of checking the type of a datum and calling an appropriate procedure,
is called "dispatching on type," and data-directed programming is an extremely flexible way
to organize the dispatch. This kind of "conventional interface" can be used to combine
packages for representations that were separately constructed. This technique is used
regularly by expert programmers to enhance the extensibility and modularity of their systems.

Exercise 243: In section 22.4 we described a program that performs symbolic differentiation:

(define (deriv exp var)
(cond ((constant? exp) 0)

((variable? exp) -
(if (same-variable? exp var) 1 0))

((sum? exp)
(make-sum (deriv (addend exp) var)

(deriv (augend exp) var)))
((product? exp)

(make-sum
(make-product (multiplier exp)

(deriv (ultiplicand exp) var))
(make-product (deriv (multiplier exp) var)

(multiplicand exp))))

<More rules can be added here>

We can regard this program as performing a dispatch on the "type" of the expression to be
differentiated. In this situation the "type" tag of the datum is the algebraic operator symbol (such as )
and the operation being performed is der! v. We can transform this program into data-directed style by
rewriting the basic derivative procedure as follows:

(define (deriv exp var)
(cond ((constant? exp) 0)

((variable? exp)
(if (same-variable? exp var I )

(else ((get (operator exp) 'deriv) (operands exp) var))))

(define (operator exp) (car exp))
(define (operands exp) (cdr exp))

a. Explain what was done above. Why can't we assimilate the constant? and same-var?
predicates into the data-directed dispatch?

b. Write the procedures for derivatives of sums and products, and the auxiliary code required to
install them in the database used by the program above.

c. Choose any additional differentiation rule that you like, such as the one for exponents, and install
it in this data-directed system.

d. In this simple algebraic manipulator the "type" of an expression is the algebraic operator that
binds it together. Suppose, however, we indexed the procedures in the opposite way, where the
dispatch line looked like:

((get deriv (operator oxp)) (operands exp) var)

What are the corresponding required changes to the rule def initio ns?
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Exercise 244: Insatiable Enterprises, Inc. is a highly decentralized conglomerate company consisting
of a large number of independent divisions located all over the world, The company's computer facilities
have just been interconnected by means of a clever network interfacing scheme tat makes the entire

network appear to any user to be a single computer. Insatiable's president, in her first attempt to exploit
the ability of the network to extract administrative information from division files, was dismayed to

discover that while all the division files were implemented as data structures in Lisp, the particular data
structure used varied from division to division. A meeting of division managers was hastily called, to
search for a strategy to integrate the files, that would satisfy headquarter's needs while preserving the

existing autonomy of the divisions.

Show how such a strategy can be implemented using data-directed programming. As art example,
suppose that each division's personnel records are contained in a single personnel file, which contains a
set of records, keyed on employee names, where the structure of the set varies from division to division.
Furthermore, each employee record is itself a set (structured differently from division to division) that
containsinformation keyed under identifiers such as address, sa 7ary, and so on.

a. Implement for headquarters a ge t-record operator that retrieves a specified employee's record
from a specified personnel file. The operator sould be applicable to any division's file. Explain

how the individual division files should be structured. In particular, what type information must
be supplied?

b Implement f or headquarters a g e t -s a 7 a ry procedure that retu rns the salary inf ormation f rom a
given record, extracted from any division's personnel file. How should the record be structured
in order to make this operation work?

c. Implementfor headquarters a f ind-emp 7oyee-record procedure that searches all the division
files for the record of a given employee and returns the record. Assume that this procedure takes
as arguments an employee name, and a list of all the division files.

d. When Insatiable takes over a new company, what changes must be made in order to incorporate
the new personnel information into the central system?

Message Passing
The key idea of data-directed programming is that we handle generic operators in our

programs by dealing explicitly with operator/type tables, such as the table in figure 214. The
more traditional style of programming, which we used in section 23.2, organized the required
dispatching on type by having each operator take care of its own dispatching. In effect, this
style of programming decomposes the operator/type table into rows, with each generic
operator procedure representing a row of the table.

An alternative implementation strategy is to decompose the table into columns: Instead of
using "intelligent operators" that dispatch on data types, we work with "intelligent data
objects" that dispatch on operator names. We can do this by arranging things so that a data
object, such as a rectangular number, is represented as a procedure that takes as input the
required operation name, and performs the operation indicated. In such a discipline,
make-rectangu 7 ar could be written as

11 I .-
ol
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(def line (make-rectangular x y)
(define (dispatch m)

(cond ((eq? m 'real-part) x)
((eq? m 'imag-part) y)
((eq? m 'magnitude)
(sqrt ( (square x) (square y))))

((eq? m 'angle) (atan y x))
(else
(error "Unknown op -- MAKE-RECTANGULAR" m))))

dispatch)

The corresponding operate procedure, which applies a generic operation to a data
object, now simply feeds the operation name to the data object and lets the object do the
work:

(define (operate op obj) (obj op))

Note that the "data object" returned by make-rectangu7ar is a procedure -- the internal
dispatch procedure. rhis is the procedure that is invoked when operate requests an
operation to be performed.

This style of programming is called message passing. The name comes from the image
that a data object is an entity that receives the requested operation 'name as a message."
We have already seen an example of message passing, in section 21.3, where we used it to
show how cons, car, and cdr Culd be defined without using any data objects, but only
procedures. Here we see that message passing is not simply a mathematical trick, but a
useful technique for organizing systems tat must cope with generic operators. In the
remainder of this chapter, we will continue to use data-directed programming, rather than
message passing, to discuss generic arithmetic operators. In Chapter we will return to
message passing, and see that it can be a powerful tool for structuring simulation programs.

Exercise 245: Implement the constructor make-po7ar in message passing style, analogous to the
make-rectangu7ar proceduregivenabove.

Exercise 246: As a large system with generic operators evolves, we may need to add new types of
data objects, or add new operators. For each of the three organizational strategies -- "conventional"
style (as in section 23.2), data-directed style, and message passing style -- de'cribe the changes that
must be made to a system in order to add new types or new operators. Which organization would be
most appropriate for a system in which we must often add new types? Wich would be most appropriate
for a system in which we must often add ew operators?

2.4. Systems with Generic Operators

In the previous section, we saw how to design systems in which data objects can be
represented in more than one way. The key idea is to'link the package that specifies the data
operations to the several packages that implement the various representations by means of
generic interface procedures. We'll now see how to use tis same idea, not only to define
operators that are genericover different representations, but also to define operators which
are generic over different kinds of operands.

We'll consider the problem of designing a set of arithmetic operators that work on "all
different kinds of numbers." We have already seen several different packages of arithmetic
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operators. There is the primitive arithmetic built into our language, the rational
number arithmetic (+rat, -rat, *rat, Irat) that we implemented in section 21.1, and the
generic complex number arithmetic that we implemented in the previous section. We will now
use data-directed techniques to construct a package of arithmetic operators that incorporates
all of the arithmetic systems we have already constructed. Moreover, our operators will be
"extensible" in the sense that if later we come up with a new class of "numbers" we can
easily add these to the system without changing any of the programs we have already written.

2.4.1. Generic Arithmetic Operators

The problem of designing generic arithmetic operators is analogous to the problem of
designing the generic complex number operators. We would like, for instance, to have a
generic addition operator add, which acts like ordinary primitive addition on ordinary
numbers, like +rat on rational numbers, and like c on complex numbers. We can
implement add, and the other generic arithmetic operators, by following the'same strategy
that we used in the previous section to implement the generic selectors for complex numbers.
We'll attach a manifest type to each kind of number, and cause the generic operator to
dispatch to an appropriate package, according to the data type of its arguments.

Let's begin by installing a package for andling "ordinary numbers," that is, the primitive
numbers of our language. We'll refer to these as type number. The arithmetic operators in
this package are essentially the primitive arithmetic:

(define (+number x y)
(make-number ( x y)))-

(define (-number x y)
(make-number (- x y)))

(define (*number x y)
(make-number (* x y)))

(define (/number x y)
(make-number (/ x y)))

Here ma k e - n umb e r is a procedure that attaches an appropriate manifest type to its argument:

(define (make-number n)
(attach-type 'number-n))

The next step is to link the operators in the package to the generic operators add, sub,
mu 7 and di v. We do this with data-directed programming, just as in section 23.3. As before,
we place the procedures in a table, indexed under the data type and generic operator name.,

(put 'number 'add +number)
(put 'number 'sub -number)
(put 'number 'mul *number)
(put 'number div /number)

The actual generic operators are defined as follows:
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(define (add x y) (operate-2 'add x y))
(define (sub x y) (operate-2 'sub x y))
(define (mul x y) (operate-2 'mul x y))
(define (div x y) (operate-2 d'v X Y

As with the complex number selectors, our generic arithmetic operators will use a general
"operate" procedure that dispatches according to the type of the argument. However, while
the selectors for complex numbers were operators with one argument, our generic arithmetic
operators are operators with two arguments. Hence we cannot use the same operate
procedure as before (section 23-3). Instead, we use the following procedure to perform the
dispatch:

(def ine (operate-2 op arg I arg2)
(let ((tl (type argl)))

(if (eq? tl (type arg2))
(let ((proc (get tl op)))

(if (not (null? proc))
(proc (contents argl) (contents arg2))
(error
"Operator undef ined on this type OPERATE-211

list op arg 1 arg2)
(error "Operands not of same type -- OPERATE-211

(list op argl arg2))))))

.Operate-2 verifies that the two operands have the same type and, if so, dispatches to the
procedure that was installed in the table for the given type and operator, If there is no such
procedure then operate-2 signals an error.

If the two operands do not have the same type, then operate-2 signals an error This i's
not really the correct thing to do. For instance, if we try to add the (primitive) number 3 to the
(complex) number 2 4i, then operate-2 will complain that the types do not match. And yet
we should expect a "reasonable" system to produce the answer 5 + 4i. On the other hand, 'it
turns out that arranging for this kind of "reasonable" behavior opens an enormous can of
worms concerning the interactions among data of different types. We will duck this issue
now, and return to it in section 24-2.

Exercise 247: In defining the package for handling ordinary numbers, we defined operators +number,
-number, and so on, which were essentially nothing more than calls to the primitive operators etc.

It was not possible to use the primitives of the language directly because our manifest type system
requires that each data object have a type attached to it. in fact, however, Lisp implementations do have
a type system, which they use internally, and Scheme dialect of Lisp includes an operator
primitive-type,whichreturnsthe(internal)typeofadataobject. Forexample,

==>(primitive-type 3)
number

==>(primitive-type 'apple)
symbol

=0(primitive-type '(a b))
pair

Usingthisoperator,modifythedefinitionsof type,contents,andattach-typefromsection2.3.2,so
that our generic system takes advantage of the internal type system. That is to say, the system should
work as before, except that ordinary numbers are represented simply as numbers, rather than as pairs
whose car is the symbol number.
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Interfacing the omplex number package
Now that the framework of the generic arithmetic system is in place, it is easy to incorporate

the complex number package. We begin by writing a procedure that attaches the type
comp 7 ex to complex numbers, so they can befecognized outside of the complex package:

(define (make-complex z)
(attach-type 'complex z))

We next define the complex number operators to be calls to our generic complex
representation operators:

(define (+complex z1 z2) (make-complex c z1 z2)))
(define (-complex zlz2) (make-complex (-c z1 z2)))
(define (*complex z1 z2) (make-complex (*c z1 z2)))
(define (/complex z1 z2) (make-complex (/c z1 z2)))'

Finally, we install the complex arithmetic operators in the appropriate positions in the
operator table, so that the generic arithmetic operators will dispatch correctly:

(put 'complex 'add +complex)
(put 'complex 'sub -complex)
(put 'complex 'mul *complex)
(put 'complex 'div /complex)

What we have here is a two-level type system. A typical complex number is represented in
the system as.

(complex rectangular 3 4)

The outer type (comp lex) i's used to direct the number to the complex package. Once wthin
the complex package, the next type (rectangular) is used to direct the number to the
rectangular package. Strictlyspeaking, rectangular and polar are nottypes of numbers
at all, but rather types for the contents of a complex number. In a large, complicated
system, there might be many levels, each interfaced to the next by means of generic
operators. As a ddta object is passed "downward" the outer type that is used to direct it to
the appropriate package is stripped off (by applying contents) and the next level of type
becomes visible to be used for further dispatching.

Exercise 2 48: When we execute the expression

(add (make-complex (make-rectangular 3 4)
(make-complex (make-polar 1)))

what are the actual arguments sent to 0 What happened to the symbol comp I ex?' Where was it
stripped off?

Finally, observe that the operators rea7-part, imag-part, magnitude, and ang7e are
available only inside the complex number package -- they are defined only for data objects of
type rectangular -or p o I a r. On the other hand, it is easy to "export" these operators from
the package, so that they can be applied directly to objects of type comp 7 ex, and, in fact,
auto atically redispatched to the right representation type. We must first define the correct
operators:

(define (real-part-complex z)
(make-number (real-part z)))
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(define (imag-part-complex z)
(make-number (imag-part z)))

(define (magnitude-complex z)
(make-number (magnitude z)))

(define (angle-complex z)
(make-number (angle z)))

This is accomplished by simply installing these operators in the table under type complex:

(put 'complex 'real-part real-part-complex)
(put 'complex 'imag-part imag-part-complex)
(put 'complex 'magnitude magnitude-complex)
(put 'complex 'angle angle-complex)

Exercise 249: Describe in detail why this exporting method works. As an example, trace through all
the procedures called in evaluating the expression (magnitude z) where z is the object
(complex rectangu7a 3 4 In particular, how many time do we go through operate? What
procedure is dispatched to in each case?

2.4.2. Combining Operands of Different Types

We've seen how to define a unified arithmetic system that encompasses ordinary numbers,
complex numbers, rational numbers, and any other type of number we might decide to invent.
But we have ignored an important problem. The operators we have defined so far treat the
different data types as being completely independent. Thus there are separate packages for
adding, say, two ordinary numbers, or two complex numbers. What we have not yet
considered is the fact that it is meaningful to define operations tat cross the type boundaries,
such as the addition of a complex number to an ordinary number. The reason why this is a
problem is that we have gone to great pains to introduce barriers between parts of our
programs so that they can be developed and understood separately. We would like to
introduce the new operations in some carefully controlled way, so that we can support the
cross-type operations without seriously violating our module boundaries.

One way to handle cross-type operations is to design a different operator for each possible
pair of types for which the operation is valid. For instance, we could have various addition
operations number-comp7ex (which adds an ordinary number to a complex number),
+rat iona I comp lex, and so on. Then we can arrange these in a three-dimensional table
that indexes the appropriate procedure under the generic operator name, the type of the first
argument, and the type of the second argument. Support for such a table is easily introduced
byaddinganewclausetotheoperate-2 'rocedureofsection2.4.1.

This three-dimensional table method allows us to combine numbers of different types, but
at an enormous price. Observe that if there are n different types in our system, then we would
need in general to design n2 different versions of each generic operator. In such a system the
cost of introducing a new type is not just-the construction of the package of operators for that
type but also the construction and installation of the procedures that implement the cross-
type operations. This can easily be much more code than is needed to define the operators
on the type itself. If our system includes not only binary operators, but also operators on
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three, four, or more arguments that may have different types, then the penalty for introducing
a new type is even more severe.

Coercion
In the general situation of completely unrelated operations acting on completely unrelated

types, the three-dimensional table method for handling operands of different types,
cumbersome though it may be, is the best that one can hope for. Fortunately, we can usually
do better, by taking advantage of additional structure that ay be latent in our type system.
Often the different data types are not completely independent, and there may be ways by
which objects of one type may be viewed as being of another type for the purposes of
performing manipulations. This process is called "coercion." For eample, if we are asked to
arithmetically combine an ordinary number with a complex number, we can view the ordinary
number as a complex number whose imaginary part is 0. This transforms the problem to that
of combining two complex numbers, which can be handled in the ordinary way by the
complex arithmetic package.

In general, we can implement this idea by designing "coercion" procedures that transform
an object of one type to an equivalent object of another type. Here is a typical coercion
procedure, which transforms a given ordinary number to a complex number with that real part
and zero imaginary-part.

(define (number->complex n)
(make-complex (make-rectangular (contents n) 0)))

We istall these coercion procedures in a special coercion table, indexed under the names of
the two types:

(put-coercion 'number 'complex number->complex)

(We assume that 'there are procedures put-coercion and get-coercion available for
manipulating this table.) Observe that some of the slots in the table will in general be empty,
because it is not possible in general to coerce an abitrary data object of each type into all
other types. For example, there is no way to coerce an arbitrary complex number to an
ordinary number, so there will be no general comp7ex->number procedure included in the
table.

Once the coercion table has been set up, we can handle coercion in a data-directed
manner, by modifying the operate-2 procedure given on page 124 as follows. When asked
to operate on two objects objl and obj2, we first ceck to see if they have the same type. If
so, we dispatch to the procedure for handling tat type, just as before. If the types are
different, we check the coercion table to see if ob ects of type can be coerced to type 2 If
so, we coerce obj 1, and retry the operation, If objects of type cannot in general be coerced
to type 2 we try the coercion the other way around, to see if there is a way to coerce obj to
the type of objl. Finally, if there is no known way to coerce either type to the other type, we
give up. Here is the procedure:
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(define (operate-2 op objl obj2)
(let ((tl (type obj1)) (t2 (type obj2)))

(if (eq? tl t2)
(let ((proc (get tl OPM

(if (not (null? proc))
(proc (contents obj1) (contents obj2))
(error
"Operator undef ined on thi's type -- OPERATE-2"

I i st op obj 1 ob 2)
(let ((tl->t2 (get-coercion tl t2))

(t2->tl (get-coercion t2 tl)))
(cond ((not (null? tl->t2))

(operate-2 op (tl->t2 obj1) obj2))
((not (null? U->tl))
(operate-2 op ob'l (t2->tl ob'2)))

J J
(else
(error "Operands not of same type -- OPERATE-211

ist op obj 1 ob 2)

This coercion scheme for binary operators has many advantages over the unstructured
three-dimensional table method LItlined above. Although we still need to write coercion
procedures to relate the types (possibly n 2 procedures for a system with n types), we only
need to write one procedure for each pair of types, rather than a different procedure for each
pair of types and each generic operator.21 What we are counting on here is the fact that the
appropriate transformation between types depends only on the types. themselves, not on the
operator to be applied.

On the other hand, there may be applications for which our coercion scheme is not general
enough. For instance, even when neither of the objects to be combined can be converted to
the type of the other, it ay still be possible to perform the operation by converting both
objects to a third type. In order to deal with such complexity, yet preserve modularity n our
programs, it is usually necessary to build systems that take advantage of still frther structure
in the relations among types, as we discuss next.

Type hierarchies
The coercion scheme presented above relied on the existence of natural relations between

pairs of types. Often, there is more "global" structure in how the different types relate to each
other. For instance, s uppose we are bilding a generic arithmetic system to handle integers,
rational numbers, real numbers, and complex numbers. In such a system, it is quite natural to
regard integers as a special kind of rational number, 'Which is in turn a special kind of real
number, which is in turn a special kind of complex number. What we actually have is a
so-called hierarchy of types, in which, for example, integers are a subtype of rational

21 2In fact, if we are c!ever, we can usually get by with fewer than n coercion procedures. For instance, if we know
how to convert from type to type 2 and from type 2 to type 3 then we can se this to convert from type I to type .
This can greatly decrease the number of conversion procedures we need to supply explicitly when we add a new type
to the system. If we are willing to build the required amount of sophistication into our system, we can have it search
the "graph" of relations among types, and automatically generate those conversion procedures that can be inferred

from the ones that are supplied explicitly'.
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numbers, meaning that any operator which can be applied to a rational number can
automatically be applied to an integer. Conversely, we say that rational numbers form a
supertype of integers. The particular hierarchy we have here is of a very simple kind, in which
each type has at most one supertype and at most one subtype. Such a structure is called a
tower, and can be illustrated as shown in figure 215.

complex

real

rational

integer

R g u re 2 - 5: A tower of types

If we do have a tower structure, then we can greatly simplify the problem of adding a new
type to the hierarchy, for we need only specify how the new type is embedded in the next
supertype above it, and how it is the supertype of the type below it. For example, if we want to
add an integer to a complex number, we need not explicitly define a special coercion
procedure procedure integer->comp7ex. Instead, we define how an integer can be
transformed into a rational, how a rational is transformed into a real, and how a real is
transformed into a complex number. We then allow the system to transform the integer into a
complex number through these steps and then add the two complex numbers.

We can redesign our operate-2 procedure in the following way. For each type, we need
to supply a ra is e operator, which "raises" objects of that type one level in the tower. Then
when the system is required to operate on two objects of different types, it can successively
raise the lower type until the two objects are at the same level in the tower. Exercise
2-55 concerns the details of implementing such a strategy.

Another advantage of a tower is that we can easily implement the notion that every type
"inherits" all operations defined on a supertype. For instance, if we do not supply a pecial
procedure for finding the real-part of an iteger, we should nevertheless epect that
rea7 -part will be defined for integers by virtue of the fact that integers are a subtype f
complex numbers. In a hierarchy, we can arrange for this to happen by a simple modification
to the operate procedure given on page 119: If te required operator is not directly defined
for the type of the object given, we ra se the object to its supertype and try again. We thus
crawl up the hierarchy, transforming our operand as we go, until we either find a level at
which the desired operation can be performed, or we have hit the top, in which case we give
up.

A final advantage of a tower (as opposed to a more general hierarchy) is that it gives us a
simple way to "lower" a data object to the simplest representation. For example, if we add
2 3i to 4 3i, it wou.1d be nice to obtain te answer as the integer 6 rather than as the
complex number 6 OL Exercise 256 discusses a way to implement such a lowering
operation. (The trick is that we need a general way to distinguish those objects that can be
lowered, such as 6 Oi, from those which cannot, such as 6 2L)
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Problems with hierarchies
If the data types in our system can be naturally arranged --in a tower, then this greatly

simplifies the problems of dealing with generic operators on different types, as we have seen.
Unfortunately, this is usually not the case. Figure 216 illustrates a more complex
arrangement of mixed types, this one showing relations between different types of geometric
figures. We see that, in general, a type may have more than one subtype'. Triangles and
quadrilaterals, for instance, are both subtypes of polygons. In addition, a type may have more
than one supertype. For example, an isosceles right triangle may be regarded either as an
isosceles triangle or as a right triangle. This "multiple supertype" problem is particularly
thorny, since it means that there is no unique way to "raise" a type in the hierarchy. Finding
the "correct" supertype in which to apply an operator to an object may involve considerable
searching through the entire type network on the part of a procedure such as operate.
Since, in general, there are multiple subtypes for a type, there is a similar problem in coercing
a value "down" te type hierarchy. The problem of dealing with large numbers of interrelated
types while still preserving modularity in the design of large systems is a very difficult one, and
is an area of much current research.

polygons
v 

i I I

adrilaterals

trapezoid kite
triangle

p a ral l el og ram
isosceles right
triangle triangle

rectangle rhombus

equilateral isosceles
triangle right square

triangle

Figure2-16: Relationsbetweentypesofgeometricfigures

Exercise 250: The rational arithmetic package of section 21.1 can be easily ',Incorporated into our
generic arithmetic system. Make the necessary additions and modifications to the packa ge to make it
compatible with the conventions of the generic arithmetic system. Install it.

Exercise 251: Define a generic equality operator, equ? that tests the equality of two numbers and
install it as an operato$- in the generic arithmetic package. It should work for ordinary numbers, rational
numbers and complex n'mbers.

Exercise 252: Define and install in the package a generic operator -zero?, which tests if its argument
is zero.

Building Abstractions with Data
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Exercise 253: Suppose we want to include in the package complex numbers whose real parts,
imaginary parts, magnitudes, and angles can be either ordinary numbers or rational numbers, or other
numbers we might wish to add to the system. Describe and implement the changes to the system
needed to accommodate this. You will have to define operators such as sine and cosine which are
generic over ordinary numbers and rationals. You may also need to face some "simplification" issues.
For instance, it seems meaningless to have a complex number whose real part is itself complex.

Exercise 254: Suppose we are designing a generic arithmetic system for dealing with tile following
tower of types: integer, rational, real, complex. For each type (except complex), design an appro 'riate
procedure that raises objects of that type one level in the tower. Show how to install a generic ra se
operator that will work for each type (except complex).

Exercise 255: Using the raise operator of exercise 254, describe how to modify the operate-2
procedure so that it coerces its two operands to have the same type by the method of successive raising,
as discussed in section 24.2. You will need to devise a way to test which of two types is higher in the
tower. Devise a way to accomplish this in a manner which is "compatible" with the rest of the system
and, in particular, will not lead to problems in adding new levels to the tower.

Exercise 256: We outlined in this section a ethod for "simplifying" a data object in a tower of types
by lowering it in the tower as far as possible. Design a procedure drop which accomplishes this for the
tower described in exercise 254. The key problem is to decide, in some general way, whether an object
can be lowered to the next level, For example, the complex number (I 2) + Oi can be lowered as far as
r a t o n a 7 the complex nu mber 1 + Oi can be lowered as far as n t eg e r, and the complex number
2 + 3i cannot be lowered at all, Here is a plan for determining whether an object can be lowered: Begin
by defining a generic operator project that "pushes" an object down in the tower. For example,
projecting a complex number would involve throwing away the imaginary part. Then a number can be
dropped if, when we project it and raise the result back to the type we started with, we end up with
something equal to what we started with. Show how to implement this idea in detail, by writing a drop
procedure that drops an object as far as possible. You will need to design the various projection
operations, and to install project as a generic operator in the system. You will also need to make use
of a generic equality operator, such as described in exercise 251. Finally, use drop to rewrite
op e r a t e -2 f rom exercise 255 so that it "simplif ies" its answers.

2.4.3. Example: S�ymboflc Algebra

The manipulation of symbolic algebraic expressions is a complex process which illustrates
many of the hardest problems which occur in the design of large-scale systems. An algebraic
expression, in general, can be viewed as a hierarchical structure, formed as a tree of
operators applied to operands. In fact, many algebraic manipulations can be viewed as
recursive tree walks on these expressions. We have already seen an example'of this, in the
symbolic differentiation program of section 22.4.

We can construct algebraic expressions by starting with a set of primitive objects, such as
"constants" and "variables," and combining these by means of algebraic operators such as
addition and multiplication. As in other languages, we form abstractions that enable us to
refer to compound objects in simple terms. Typical abstractions in symbolic algebra are ideas
such as "linear combination," itpolynomial," "rational function," or "trigonometric function."
We can regard these as compound "types" which are often useful for directing the
processing of expressions. Our symbolic differentiation program in' fact performed just such
a dispatch according to whether the expression to be differentiated was a sumil or a

product."

On the other hand, this type hierarchy is ill-defined. Types like "sum" or "polynomial" are
not absolute like "number." They are rather a high-level combinin' form, a mathematical
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glue quite analogous to cons. For example, we can form a sum of products. Alternatively, we
can form a product of sums. We can also form more complex objects, such as

2 2 y2)sin(y + )X + cos(2y)x + cos(y - 2

which may be described as a "polynomial in x with coefficients which are trigonometric
functions of polynomials in y whose coefficients are integers."

We will not attempt to develop here a complete algebraic manipulation system. Such
systems are exceedingly complex programs, embodying deep algebraic knowledge and
elegant algorithms. What we will do is look at a simple but important part of algebraic
manipulation -- the algebra of polynomials. We will illustrate the kinds of decisions that the
designer of such a system faces, and how to apply the ideas of abstract data and generic
operators to help organize this effort.

Arithmetic on polynomials
Our first problem in designing a polynomial arithmetic system is to decide ust what a

polynomial is. Polynomials are normally defined relative to certain variables. For smplicity,
we will restrict ourselves to polynomials having just one indeterminate (so-called univariate
polynomials)-22 Usually we define a polynomial to be a sum of terms, each of which is either a
coefficient, a power of the indeterminate, or a product of a coefficient and a power of the
indeterminate. A coefficient is defined to be an algebraic expression which is not dependent
upon the indeterminate of the polynomial. So, for example,

5X2 + 3x 7

is a simple polynomial in x, while

(Y2 + 1X + (2y)x + 1

is a polynomial in x whose coefficients are polynomials in y.

Already we are skirting some thorny issues. Is the first of these polynomials the same as the
polynomial 5y2 + 3y 7 or nt? A reasonable answer might be "yes, if we are considering
a polynomial purely as a mathematical function, but no, if we are considering a polynomial to
be a syntactic form." The second polynomial is algebraically equivalent to a polynomial 'in y
whose coefficients are polynomials in x. Should our system recognize this, or not?
Furthermore, there are other ways to represent a polynomial -- for example as a product of
factors, or (for a univariate polynomial) as the set of roots, or as a listing of the values of the
polynomial at a specified set of points.23 We can finesse these questions by insisting that in
our algebraic manipulation system, we take a "polynomial" to be a particular syntactic form,

22 On the other hand, we will allow polynomials whose coefficients are themselves polynomials in other variables.
This will give us essentially the same representational power as a full multivariate system, although it does lead to

coercion problems, as'discussed below.

23 For univariate polynomials, giving the value of a polynomial at a given set of points can be a particularly good
representation. Notice that this makes polynomial arithmetic extremely simple, since to obtain, for example, the sum

of two polynomials represented in this way, we need only add the values of the polynomials at corresponding points.
To transform back to a more familiar representation, we can use the Lagrange Interpolation Formula, which shows
how to recover he coefficients of a polynomial of degree n given the values of the polynomial at n + 1 points.
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not its underlying mathematical meaning.

Now we must consider how we go about doing arithmetic on polynomials. In this simple
system, we will consider only addition and multiplication. Moreover, we will insist that two
polynomials to be combined must have the same indeterminate.

We'll approach the design of our system by following the familiar discipline of data
abstraction. We'll assume that a polynomial consists of a variable and a collection of terms,
and that we have selectors varlab7e and term-7 ist which extract those parts from a
polynomial. All arithmetic is actually done on the term lists; the variable is just an extension of
the type of the polynomial used to check for legitimate polynomial operations. We'll also
suppose that we have a constructor make -po 7ynom la 7 that assembles a polynomial from a
given variable and term list.

The following procedures are the entry points to our polynomial manipulation package:

(define (+poly pl p2)
(if (same-variable? variable pl) (variable p2))

(make-polynomial (variable pl)
(+terms (term-1 ist pl)

( term-1 i st p2 ) ) )
(error "Polys not in same var -- +POLY" list pl p2))))

(define (*poly pl p2)
(if (same-variable? (variable pl) variable p2))

(make-polynomial variable pl)
terms (term-list pl)

(term-list p2)))
(error "Pol s not in same var -- *POLY" (1 ist pl p2))

We can now use data-directed programming to install these new procedures in our generic
arithmetic system:

(put polynomial 'add +poly)
(put polynomial mul *poly)

Polynomial addition is performed termwise. Terms of the same order (that is, with the same
power of the indeterminate) must be combined. This is done by forming a new term of the
same order whose coefficient is the sum of the coefficients of the addends. Terms in one
addend for which there is no term of the same order in the other addend simply get
accumulated into the sum polynomial being constructed.

In order to manipulate term lists, we'll assume that we have a constructor, adjo n- term,
which adjoins a new term to a term list. We'll also assume that we have a procedure
empty-term7 ist? which tells if a given term list is empty, a f irst-term operator, which
extracts the highest orderterm from aterm-list a rest-terms operatorwhich returnsall but
the highest term. Given a term, we'll suppose that we have selectors order and coeff,
which return, respectively, the order and coefficient of the term. Needless to say, these
operators allow us to consider both terms and term lists as data abstractions, whose specific
representations we can worry about separately.
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Here is the operation that constructs the term list for the sum of two polynomials.24

(define (+terms Ll L2)
(cond ((empty-termlist? Ll) L2)

((empty-termlist? L2) Ll)
(else
(let ((tl first-term L1)) (t2 (first-term L2)))

(cond ((> (order t1) (order t2))
(adjoin-term (make-term (order t1)

(coeff t1))
(+terms (rest-terms U) L2)))

(order t1) (order t2))
(adjoin-term (make-term (order t2)

(coeff t2))
(+terms Ll (rest-terms L2))))

(else
(adjoin-term (make-term (order t1)

(add (coeff t1)
(coeff t2)))

(+terms (rest-terms Ll)
(rest-terms L2)))))))))

The most important point to note here is that we used the generic addition operator add to
add together -the coefficients of the terms -being combined. This has powerful consequences,
as we will see below.

In order to multiply two term lists, we multiply each term of the first list by all the terms of the
other list, repeatedly using a procedure *-term-by-aI7-terms, which multiplies a given
term by all terms in a given term list. The resulting polynomials (one for each term of the first
list) are accumulated into a sum. Multiplying two terms forms a term whose order is the sum
of the orders of the factors and whose coefficient is the product of the coefficients of the
factors:

(define (*terins Ll L2)
(if (empty-termlist? Ll)

(the ;this is a procedure that returns an
;empty term list

(+terms (*-term-by-all-terms (first-term Ll) L2)
(*terms (rest-terms Ll) L2))))

(define (*-term-by-all-terms tl L)
(If (empty-termlist? L)

(the-empty-te rml i st)
(let ((t2 (first-term L)))

(adjoin-term (make-term (order t1) (order t2))
(mul (coeff t1) (coeff t2)))

-term-by-all-terms tl (rest-terms L))))))

24
This operation is very much like the orderedunion-set operation we developed in Exercise 34. In fact, if we

think of the terms of the polynomial as a set ordered according to the power of the indeterminate, then the program-
that produces the term list for a sum is lmost identical to un on-set.
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This is really all there is to polynomial addition and multiplication. Notice that, sinc e we
operate on terms using the generic operators add and mul, our polynomial package is
automatically able to handle any type of coefficient that is known about by the generic
arithmetic package. If we include a coercion mechanism such as one of the ones discussed
in section 24.2 then we also are automatically able to handle operations on polynomials of
different coefficient types, such as

(3X2+(2+3i)x+7) * (x'+(2/3 )X2+( 5+3i))

Because we installed the polynomial addition and multiplication operators +poly and
*poly in the generic arithmetic system as the appropriate add and mul operators for type
po ynom ia 7 our system is also automatically able to handle polynomial operations such as

((Y+l)x 2+(y2+,)X+(Y-,) * ((y-2)x+(y3+7))

The reason is that when the system tries to combine coefficients, it will dispatch through add
and mu . Since the coefficients are themselves polynomials (in y) these will be combined
using p o 7y and *po ly. The result is a kind of "data-directed recursion" in which a call to,
say *p o ly, will result in recursive calls to *p o 7y in order to multiply the coefficients. If the
coefficients of the coefficients were themselves polynomials (as we might use to represent
polynomials in three variables) the data-direction would assure that the system Wuld follow

through another level of recursive calls, and so on through as many levels as the structure of
25the data dictates.

Representing term lists

Finally, we must confront the problem of implementing a good representation for term lists.

Observe that a term list is, in fact, a table of coefficients, indexed by the order of the term.

Hence any of the methods for representing, sets or tables, as discussed in section 22.5, can

be applied to this problem. On the other hand, notice that our procedures +terms and

*terms always access term lists sequentially from highest to lowest order. Thus we will use

some kind of ordered list representation.

How should we structure the list that represents a term list.) One consideration is the

"density" of the polynomials we intend to anipulate. A polynomial is said to be dense if it

has nonzero coefficients in terms of most orders, If it has lots of zero terms it is said to be

sparse. For example:

A: x6 + 2x4 + 3x - 2 -

is a dense polynomial, while

100 213: x + 2x + 1

is sparse.

25 In order to make this work completely smoothly, we should also add to our generic arithmetic system the ability
to coerce a "number" to a polynomial, by regarding it as a polynomial of degree zero whose coefficient is the
number. This is necessary if we are going to perform operations such as

2 2( ++1)X+5 + +2x+l)

which requires adding the coefficient y1 to the coefficient 2.
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The term lists of dense polynomials are most efficiently represented as lists of the
coefficients. For example, A above would be nicely represented as

2 3 2 )

The order of a term in this representation is the length of the sublist beginning with that
term's coefficient, decremented by one.

Unfortunately, this would be a terrible representation for a sparse polynomial such as B.
There would be a giant list of mostly zeros, punctuated by a few lonely non-zero terms. Since.
computer memory is not free, it would be dumb to represent sparse polynomials in this way. A
more reasonable representation of te term list of a sparse polynomial is as a list of pairs,
each representing a non-zero term. Each pair contains the order of the term and the
coefficient for that order. In such a scheme polynomial B is efficiently represented as

((100 1) 2 2 (O 1))

As most polynomial manipulations are performed on sparse polynomials, we will choose to
use this method.

Having made this decision, actually implementing the selectors ad constructors for terms
and term lists is straightforward:

(def ine (ad 'oin-term term term-1 ist)
(if (=zero? (coeff term))

term-list
(cons term term-list)))

(define (first-term term-list) (car term-list))
(define (rest-terms term-list) (cdr term-list))
(define (empty-termlist? term-11'st) (null? term-list))
(define (the-empty-termlist) 1())

( def line (make -te rm o rde r coef f ) ( 1 I's t o rde r coef f
(define (order term) (car term))
(define (coeff term) (cadr term))

Now only a few minor procedures remain to be defined.-

(define (make-polynomial variable term-list)
(attach-type 'polynomial (cons variable term-11'st)))

(define variable p) (car p))
(define (term-list p) (cdr p))

Exercise 257: Install -zero? for polynomials in the generic arithmetic package. This will allow
adjoin-termtoworkforpolynomialswith coefficientswhicharethemselvespolynomials.

Exe rci se 2 - 8: Extend the polynomial system to include subtraction of polynomials.

Exercise 259: Define procedures tat implement the term list representation described above as
appropriate for dense polynomials.

Exercise 260: Suppose we want to have a polynomial system that is efficient for both sparse and
dense polynomials. One way to do this is to allow both kinds of term list representations in our system.
The Situation is analogous to the complex number example with which we began this chapter, for which



2.4.3 DRAFT: 31 JULY 1983 137

we allowed both rectangular and polar representations. In order to allow this, we must distinguish
between different types of term lists, and make the operators on term lists be generic. Redesign the
polynomial system to implement this generalization. This is a major effort, not a local change.

Exercise 261 A univariate) polynomial can be divided by another one to produce a polynomial
quotient and a polynomial remainder, for example:

5 2 3
I (X X + x remainder x - I

Division can be performed using the standard, mechanics taught in high school. That is, divide the
high-order term of te dividend by the high-order term of the divisor: the result is the first term of the
quotient. Next multiply the result by the divisor and subtract that from the dividend and produce the rest
of the answer by (recursively dividing) the difference by the divisor. Stop when the order of the divisor
exceeds the order of the dividend and declare the dividend to be te remainder. Also, if the dividend
ever reaches zero, return zero as both quotient and remainder.

We can design a/po7y procedure on the model of po7y and poly. The procedure checks to see if
the two polynomials have the same variable. If so, 1po ly strips off the variable and passes the problem
to a procedure Iterms that performs the division operation on term lists. lPo y finally re-attaches the
variable and the type to the result supplied by Iterms. It is convenient to design Iterms to compute
both the quotient and the remainder of a division. ITerms can take two term lists as arguments and
return a list of the quotient term list and the remainder term list.

Fill in the missing expressions to complete the following definition of Iterms, and use this to implement
1po 7y, which takes two polynomials as arguments and returns a list of the quotient and remainder.

def i ne (/terms t1 1 02)
(if (empty-termlist? t1l)

(list (the-empty-termlist) (the-empty-termlist))
(let ((tl (first-term t1l))

(t2 (first-term tl2)))
(if > (order t2) (order t1))

(list (the-empty-termlist) t1l)
(let ((new-c (div (coeff t1) (coeff t2)))

(new-o (sub (order t1) (order t2))))
(let ((rest-of-result

<compute rest of result recursively>

0orm complete result>

Type hierarchies in symbolic algebra
Our polynomial system illustrates how objects of one type -(polynomials) may in fact be

complex objects that have objects of many different types as parts. This poses no real
difficulty in defining generic operators. We need only install appropriate generic operators for
performing the necessary manipulations of the parts of the compound types. In fact, we saw
that polynomials form a kind of "recursive data abstraction," in that parts of a polynomial may
themselves be polynomials. Our generic operators and data-directed programming style can
handle this complication, without much trouble.

On the other hand, polynomial algebra is an example of a system for which the data. types
cannot be naturally- arranged in a tower. For instance it is possible to have polynomials 'in x
whose coefficients are polynomials in y. It is, also possible to have polynomials 'in y whose
coefficients are polynomials in x. Neither of these types is ."above" the other in any natural
way, yet it is often necessary to add together elements from each set. There are several ways
to do this. One possibility is to convert one polynomial to the type of the other by expanding
and rearranging terms so that both polynomials have the same principal variable. One can
impose a tower-like structure on this by ordering the varialiles,'thus always converting any
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polynomial to a "canonical form" with the highest priority variable dominant and the lower'
priority variables buried in the coefficients. This strategy works fairly well except that the
conversion may expand a polynomial unnecessarily, making it hard to read and perhaps
making it less efficient to work with. The tower strategy is certainly not natural for this
domain, nor for any domain where the user can invent new types dynamically using old types
in various combining forms, such as trigonometric functions, power series, integrals, and so
on.

It should not be surprising that controlling coercion is a serious problem in the design of
large-scale algebraic manipulation systems, Much of the complexity of such systems is
concerned with relationships among diverse types. Indeed, it is fair to say that we do not yet
completely understand coercion, and, in fact, we do not yet completely understand the
concept of a data type. Nevertheless, what we know provides us with powerful structuring
and modularity principles to support the design of large systems.

Exercise 262: By imposing an ordering on variables, extend the polynomial package so that addition
and multiplication of polynomials works for polynomials in different variables. (This is not easyl)

Extended Exercise: Rational Functions
We can extend our generic arithmetic system to include rational functions-. These are

"fractions" whose numerator and denominator are polynomials, such as

X +

3X

The system should be able to add, subtract, multiply, and divide rational functions, performing
such computations as

3 2+ 1 x X + 2x + 3x + 1

3 2 4 3 - XX X X + 

Observe that the sum has been simplified by removing common factors. (Straightforward
licross multiplication" would have produced a th degree polynomial over a 5th degree
polynomial.)

If we modify our rational arithmetic package so that it uses generic operators, as suggested
in exercise 250 then would almost do precisely what we want, except for the problem -of
reducing fractions to lowest terms.

Exercise 263: Install generic rational arithmetic (if you haven't already done so), but change
make-ratsothatitdoesnotattenipttoreducefractionstolowestterms. Thusmake-ratissimply

(define (make-rat n d)
(attach-type 'rational (cons n d)))

Testyoursystembycallingtnake-ratontwopolynomials,toproducearationalfunct'on

(define pl (make-polynomial x ((2 1)(0 1))))
(define p2 (make-polynomial x ((3 1)(0 1))))
(define rf (make-rat p2 pl))

==>rf
(rational (po7ynomia x 3 1)(0 1)))

(polynomial x ((2 1)(0 1))))
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and then perform an operation, say, adding this rational function to itself:

==>(add rf rf)
(rationa7 (po7ynomla7 x (( 2( 22 2)(0 2)

(po7ynomla7 x ((4 1(2 20 1))))

As the above exercise illustrates, this kind of addition does not reduce fractions to lowest
terms. To accomplish this, we do the same thing as with integers, namely, we modify
ma k e - r a t to divide both numerator and denominator by their greatest common divisor.

The notion of "greatest common divisor" makes sense for polynomials. In fact, we can
compute the GCD of two polynomials using essentially the same Euclid's algorithm that works

26for integers:

(define (gcd a b)
(if = b 0)

a
(gcd b remainder a b))))

Using this, we could make the obvious modification to define a GCD operation that works on
term-lists:

(define (gcd-terms a b)
(if (null? b)

a
(gcd-terms b (remainder-terms a b))))

where remainder-terms picks out the remainder component of the pair returned by the
termlist division operation It erms that was implemented in exercise 261

Exercise 264: Using Iterms, implement the procedure remainder-terms and use this to define
gcd-terms as above. Now write a procedure gcd-po7y that computes the polynomial GCD of two
polynomials. (The procedure should give an error if the two polynomials are not in the same variable.)
Now install in the system a generic operator greatest-common-divisor that reduces to the Scheme
primitive gcd for numbers and to gcd-po ly for polynomials. Try

(define pl (make-polynomial x (4 1 3 1) 2 2 (I 2))
(define p2 (make-polynomial x (3 1) (1 -1))))
(greatest-common-divisor pi p2)

What result do you get? Is this correct?

Exercise 265: Suppose that is the polynomial

5 4 3 2
x - 2x + x - x + 2x -1

and that p is

5 4 3 2
X 2x + 4x 2x 6x 4

26 The fact that Euclid's algorithm works for polynomials is formalized in algebra by saying that polynomials form -a
kind of algebraic domain called a Euclidean ring. A Euclidean ring is a domain that admits addition, subtraction, and
(commutative) multiplication, together with a way of assigning to each element x of the ring a positive integer
14measure" m(x) with the properties (1) m(xy)>m(x)m(y) for any non-zero x and y, and 2 given any x and y
there exists a q such that vqx+r and either r-O or m(r)<m(x). From an abstract point of view, this is what is
needed to prove that Euclid's algorithm works. For the domain of integers the measure m of an integer is the
(absolute value of) the integer itself, For the domain of polynomials, the measure of a polynomial is its degree.



-------

140 Building Abstractions with DataDRAFT: 31 JULY 1983

2
Using di v demonstrate that these two polynomials are both divisible by (x-1) and give the quotient in
each case. In fact, (x-1)2 is the greatest-common-divisor of p3 and p4. Now, evaluate the expression

(greatest-common-divisor p3 p4)

What do you get?

Exercise 266: Exercise 264 shows tat there is a problem with our polynomial GGD program. Explain
what is going on. Suggestion: Try tracing gcd- terms while computing the example in exercise 264,
Try performing the division by hand. What problem is the poor program encountering?

We can solve the problem exhibited in exercise 264 if we use the following modification of
the GCD algorithm (which really works only in the case of polynomials with integer
coefficients). Before performing any polynomial division in the GCD computation, we can first
multiply the dividend by an integer constant factor, chosen to guarantee that no fractions will
arise during the division process. Our answer will differ from the actual quotient by an integer
constant factor, but this does not matter in the case of reducing rational functions to lowest
terms, because the same integer constant factor will appear in both the numerator and
denominator and can be eliminated at te end of the computation.

More precisely, if p and q are polynomials, let ol be the order of p (i.e., the order of the
largest term of p) and let o2 be the order of q. Let c be the leading coefficient of q. Then ' it
can be shown that, if we multiply p by the "integerizing factor" cl+ol-o2 , the resulting
polynomial can be divided by q using the Iterms algorithm without introducing any fractions.
The operation of multiplying the dividend by this constant and then dividing, is sometimes
called the pseudodivision of p by q. The remainder of the division is called the
p s eludoren7ainder.

So here is how to reduce a rational function to lowest terms:

e Compute the GCD of the numerator and denominator following Euclid's
algorithm, but use pseudo-rema inder rather than rema inder.

e When you obtain the GCD, multiply both numerator and denominator by the same
integerizing factol- before dividing through by the GCD, so that division by the
GCD will not introduce any non-integer coefficients. As the factor you can use
the leading coefficient of the GCD raised to the power I I -o2, where o2 is the
order of the GCD, and ol is the maximum of the orders of the numerator and
denominator. This will insure that dividing numerator and denominator by the
GCD will not introduce any fractions.

0 The result of this operation will be a rational function with integer coefficients.
The coefficients will normally be very large, resulting from all of the integerizing
factors. So the last step is to remove the redundant factors, by computing the
(integer) greatest common divisor of all the coefficients of the numerator and
denominator, and dividing through by this factor.

Exercise 267: Implement this algorithm as a procedure reduce, which takes two term lists n and das
arguments, and returns a pair nn, dd, which are n and d-reduced to lowest terms following the algorithm
given above. You should, of course, isolate different parts of the computation in different procedures.
Some meaningful parts are: a pseudo-remainder procedure for term lists, a procedure to compute
integerizing factors, a gcd procedure for term lists, and a pocedure to compute the common (integer)
9cd of all the coefficients of a-polynomial.



Exercise2-68: Now write amake -rat-po7y procedure that is analogous to the original make -rat for
integers, except that it uses your reduce to reduce the numerator and denominator to lowest term.
You can now easily obtain a system that handles rational expressions in either integers or polynomials

by renaming make-rat to make-rat-number and defining a new make-rat as a generic operation
that calls operate-2 with the appropriate numerator/denominator type to dispatch to- either
make-rat-po ly or make-rat-number. To test your program, try the example at the beginning of this
section:

==>(define pl (make-polynomial x '((I 1)(0 1))))
==>(define p2 (make-polynomial x ((3 1)(0 -1))))
==>(define p3 (make-polynomial x (1 1))))
==>(define p4 (make-polynomial x ( 20 -1))))

==>(define rfl (make-rat pl p2))
==>(define rf2 (make-rat p4))

=0(add rfl rf2)

and see if you get the correct answer, correctly reduced to lowest terms.

The GCD computation is at the heart of any system that does operations on rational
functions. The algorithm used above, although mathematically simple, is unfortunately
extremely slow. The slowness is partly due to the large number of division operations, and
partly to the enormous size of the intermediate coefficients generated by the ps4eudo-
divisions. One of the active areas in the development of algebraic manipulation systems is the
design of better algorithms for computing polynomial GCDs.27

27
One extremely efficient and elegant method for computing polynomial GCDs was discovered by Richard Zippel

in his Ph.D. thesis at MIT 52]. Zippel's method is a probabilistic algorithm, 'as is the fast test for primality that we
discussed in Chapter .
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Chapter 3
Modularity, Ob ects, and State

Plus ca change, plus c'est la meme chose.

Alphonse Karr

The preceding chapters introduced the basic elements from which programs are made. We
saw how primitive procedures and primitive data are combined to construct compound
entities, and we learned that abstraction is vital in helping us to cope with the complexity of
large systerns. But these tools are not sufficient for designing programs. Effective program
synthesis also requires organizational principles that can g uide us in formulating the overall
structure of a program. In particular, we need to address the problem of designing large
systems so that they will be modular, that is, so that they can be divided "naturally" into
coherent parts that can be separately developed and maintained.

One powerful design strategy, which is particularly appropriate when constructing
programs for modeling physical systems, is to base the structure of our programs on the
structure of the system being modeled. For each object in the system, we construct a
corresponding computational object. For each system action, we define a symbolic operation
in our computational model. Our hope in using this strategy is that extending the model to
accommodate new objects or new actions will require no strategic changes to the program,
only the addition of the new symbolic analogs of those objects or actions. If we have been
successful in our system organization, then adding a new feature, or debugging an old one,
will require working on only a localized part of the system.

To a large extent then, the way we organize a large program is dictated by our perception
of the system to be modeled. In this chapter, we will investigate two prominent organizational
strategies, arising from two rather different "world views" of the structure of systems. The
first organizational strategy concentrates on objects, viewing a large system as a collection of
distinct objects whose behaviors may change over time. An alternative organizabonal
strategy concentrates on the streams of information that flow in the system, much as an
electrical engineer views a signal- processing system.

Both the object-oriented approach and the stream processing approach force us to. deal
with a collection of programming linguistic issues. With objects, we must become concerned
with how a computational objectcan change and yet maintain its identity. This raises thomy
issues, and in fact will force us to abandon our old substitution model of computation
(Chapter 1, section 1.1.5) in favor of a more mechanistic but less theoretically tractable
environment mod6l of computation. The stream approach, as we shall see, can be most fully
exploited when we decouple simulated time in our model from the order of events that take
place in the computer during evaluation, which we will accomplish using a technique known
as delayed evaluation.
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3.1. Assignment and Local State
We ordinarily view the world as populated by independent objects, each of which has a

state that canges over time. An object is said to "have state" if its behavior is influenced by
its history. We can characterize an object's state by one or more state variables, which
among them maintain enough information about past history to determine the object's current
behavior. A bank account, for example, has state in that the answer to the question "Can I
withdraw one hundred dollars?" depends upon the history of deposit and withdrawal
transactions. In a simple banking system, we could characterize the state of an account by a
current balance, rather than by remembering te entire history of account transactions.

In a system composed of any objects, the objects are rarely completely independent.
They ifluence each other's states through interactions, which serve to couple the state
variables of one object to those of other objects. Indeed, the view that a system is composed
of separate objects is a useful view primarily when the state variables of the system can be
grouped into closely coupled subsystems which are only loosely coupled to other
subsystems,

The object-oriented view of a system can be a powerful framework for organizing
computational models of the system. For such a simulation to be modular, the simulation
program ShOUld be decomposed into computational objects that model the actual objects in
the system. Each computational object must have its own local state variables, which
describe the actual object's state. Furthermore, if, in te system being modeled, the states of
objects change over time, then, in the computational model, the state variables of the
computational objects must also change. If we choose to model the flow of time in the system
by the elapsed time in the computer, then we must have a way to construct computational
objects whose behaviors change as or programs run. In particular, if we wish to model state
variables by ordinary symbolic names in the programming language, then the language must
provide an assignment operator, which enables us to change the value associated with a
name-1

3.1.1. Local State Varliab-les

To illustrate what we mean by having a computational object with time-varying state, let us
model the situation of withdrawing money fom a bank account. We'll do this using a
procedure withdraw, which takes an argument amount to be withdrawn, If there is enough
money in the account to accommodate the withdrawal, then withdraw should return the
balance remaining after the withdrawal. Otherwise, withdraw should return the message
"Insufficient funds." For example, if we begin with 100 dollars in the account, we should
obtain the following sequence of responses using withdraw.

(withdraw 25)
75

Until we introduce the assignment operator, we have no way to construct computational objects whose behavior
changes over time. On te other and, we have implicitly used such objects, &.g. in the random number generator
used in Capter 1, in the operator tables of Chapter 2 and in the very fact that we can def ine new values when
interacting with the computer.
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(withdraw 25)
50

(withdraw 60)
Insuf f ic ien t funds

(withdraw 15)
35

Notice that the two expressions(with dr a w 25), both executed in the same context, yield
different values.

To implement wi th draw, we can use a variable ba ance to indicate the balance of money
in the account, and define wi thdraw as a procedure that accesses ba ance. The wthdraw
.procedure checks to see if the ba ance is at least as large as the requested amount. If so
withdraw decrements balance by amount and returns the new value of balance.
Otherwise,withdrawreturnsthe"Insufficientfunds"message.

(define balance 100)

(define (withdraw amount)
(if >= balance amount)

(sequence (set! balance balance amount))
balance)

"Insufficient funds"))

The decrementing done by withdraw is accomplished by the expression

(set! balance (- balance amount))

This uses the set I primitive, whose general form is

(setl <name> <new-value>)

Here <name> is a symbol, and <new-value> is any expression. Set I changes name so that 'Its
value is the result of evaluating new-value. In the case at hand, we are changing balanc so
that its new value will be the result of subtracting amount from the previous value of

2balance.

Withdraw also uses the sequence command to specify that the action performed 'in the
case where the if test is true should result in evaluating two forms __ first to decrement
ba ance and then to return the value of ba ance. In general, evaluating the expression

(sequence expl> eXP2> <exp,>)

causes the expressions expl> through exp,> to be evaluated in sequence, and the value 

2The name setf reflects a naming convention used in Scheme, that operations that change the values of
variables (or that change data -structures, as we will see below in section 3) are given names that end with an
exclamation point. This is similar to the convention of designating predicates by names that end with a question
mark.



146 DRAFT: 31 JULY 1983 Modularity, Objects, and State 

the final expression <exp,> to be returned as the value of the entire sequence form.3

While the wi thdraw procedure works as desired, the use of the variable ba 7ance presents
a problem. As specified above, ba 7 an ce is a name defined in the global environment, and is
freely accessible to be examined or modified by any procedure. It would be much better if we
could arrange the program so that ba ance would somehow be internal to wi thdraw, so that
wi thdraw is the only procedure that can access ba ance directly, and any other procedure
can access ba lance oly indirectly, through calls to wi thdraw. This would more accurately
model te notion tat ba 7ance is a local state variable used by wi thdraw to keep track of the
state of the account.

We can make ba lance internal to wi thdraw by rewriting the definition as follows:

(define new-withdraw
(let ((balance 100))

(lambda (amount)
(if >= balance amount)

(sequence (setl balance (- balance amount))
balance)

"Insufficient funds"))))

What we have done here is to use 7 et to establish an environment with a local variable
balance, bound to the initial value 100. Within this local environment, we use lambda to
create a procedure that.takes amount as an argument and behaves like our previous
withdraw procedure. This procedure, returned as the result of evaluating the let,
expression,isourprocedurenew-withdr-w. New-withdrawbehavesinpreciselythesame
wayaswithdraw,butitsvariablebalanceisnotaccessiblebyanyotherprocedure- 4

Combining set I with local variables is the general programming technique that we will use
for constructing computational objects with local state. Unfortunately, using this technique
raises a serious problem: When we first introduced procedures, we also introduced the
substitution model of evaluation in section 1.1.5 to provide an interpretation of what
procedure application means. Namely, we said that applying a procedure should be
interpreted as evaluating the body of the procedure with the formal parameters replaced by
their values. The problem is that, as soon as we introduce assignment into our language,
substitution is no longer an adequate model of procedure evaluation, We will see why this is
so in section 31.2. But as a consequence of this fact, we technically have no way to
understand why the new-withdraw procedure-behaves as claimed above. In order to really
understand a procedure such as ne w-wf thdraw, we will need to develop a new model of
procedure evaluation. In section 32 we will introduce such a model, together with, an

3We have already used sequence implicitly in our programs, because in Scheme, the body of a procedure can be

a sequence of forms. Also, the afternative> part of each clause in a cond expression can be a squence of forms
rather than a single form.

4In programming language jargon, the variable ba7ance is said to be encapsulated within the new-withdraw
procedure. Encapsulation reflects the general system design prin c1ple known as the hiding principle -- that a systems

can be made more modular and robust by protecting parts of. the system from each other; that is, by providing
information access only to those parts of te system tat have a "'need to know."
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explanation of set I and local variables. First, however, we examine some variations on the
theme established by new-withdraw.

The following procedure make-withdraw creates "withdrawal processors." The formal
parameter ba7ance in make-withdrawspecifiesthe initial amountof money in heaccount:5

(define (make-withdraw balance)
(lambda (amount)

(if >= balance amount)
(sequence (setl balance balance amount))

balance)
"Insufficient funds"M

Make-withdrawcanbeusedasfollowstocreatetwoobjectsWIandW2:

(define W (make-withdraw 100))
(define W2 (make-withdraw 100))

(WI 0)
50

(W2 70)
30

(WI 40)
10

(W2 40)
Insuff icient funds

Observe that WI and W2 are completely independent objects, each with ts own local state
variablebalance. Withdrawalsfromonedonotaffecttheother-

We can also create objects that handle deposits as well as withdrawals, and thus represent
simple bank accounts. Here is the resulting procedure, which returns a "bank account
object" with a specified initial balance.

5In contrast tonew-withdr a w above, we do not have to use7et to make b a 7 an ce a local variable, since formal
parameters are already local. We will see this more clearly after we have discussed the environment model of
evaluation in section 32. See also exercise 3-9.)
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(define (make-account balance)'
(define (withdraw amount)

(if >= balance amount)
(sequence (setl balance balance amount))

balance)
"Insufficient funds

(def i ne (depos t amount)
(setl balance balance amount))
balance)

(define (dispatch m)
(cond ((eq? m 'withdraw) wthdraw)

((eq? m 'deposit) deposit)
(else (error "Unknown request -- MAKE-ACCOUNT" m))))

dispatch)

Each call to make-account sets up an environment with a local state variable alance.
Within th'is environment, make-account defines two procedures deposf t and withdraw
which access b a I a n c e, and an additional procedure d f sp a t c h, which takes a message" as
input and returns one of the two local procedures. The d spatch procedure itself is returned
as the value that represents the object. This is precisely the message passing style of
programming that we saw in section 244, although here we are using it in conjunction with
the ability to modify local variables.

Make-account can be used as follows:

(define acc (make-account 100))

((acc wthdraw) 50)
50

((acc wthdraw)) 60)
Insuf f ic en t funds

=0 ((acc 'deposit) 40)
90

((acc 'withdraw) 60)
30

Notice that each call to acc returns the locally defined depos it or wf thdraw procedure,
which is then applied to the specified aount. As with make-withdraw, another call to
make-account

(def i ne acc2 (make-account 100)

will produce a completely separate account object, which maintains its own local ba lance.

Exercise 3- 1: An accumulator is a procedure that is called repeatedly with a single numeric argument
and accumulates its arguments into a Sm. Each time it is called, it returns the currently accumulated
sum. Write a procedure make-accumulator th-at generates accumulators. The input to
make-accumu7atorshouldspecifytheinitialvalueofthesum. Forexample:

(define A (make-accumulator 5))

m -- >(A 10) -
15
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==>(A 10)
25

Exercise 32: In software testing applications, it is useful to be able to count the number of times that a
given procedure is called during the course of a computation. Write a procedure make-monitored,
which takes as input a procedure f, which itself takes one input, The result returned by
make -mon tored is a third procedure, say mf, which keeps track of thle number of times it has been
called by maintaining an internal counter, If the input to mf is the special symbol how-many- ca I I s
then mf returns returns the value of the counter, If the input is the special symbol reset-count, then
mf resets the counter to zero. For any other input, mf returns the rsult of calling on that input and
increments the counter. For instance, we could make a monitored version of the s q r t procedure:

(define s (make-monitored srt))

==>(s 00)
10

==>(s 'how-many-calls?)

Exercise 33: Modify the make-account procedure so that it creates password-protected accounts.
That is, make-account should take a symbol as an additional argument, as in

(define acc (make-account 100 'secret-password))

The resulting account object should process a request only if it is accompanied by the password with
which the account was created, and otherwise print a complaint:

((acc 'secret-password 'withdraw) 40)
60

=0 ((acc 'some-other-password 'deposit) 0)
incorrect password

Exercise 34: Modify the make-account procedure of exercise 33 by adding another local state
variable, so that if an account is accessed more than seven consecutive times with an incorrect
password, it invokes the procedure ca7 7-the-cops.

3.1.2. The Costs of Introducing Assignment

We have seen how the set I operation enables us to model objects that [lave local state.
But this advantage comes at a price: Our programming language can no longer be
interpreted in terms of the substitution model of procedure evaluation that we introduced in
section 1.1.5. Moreover, no simple model with "nice" mathematical properties can be an
adequate framework for dealing with objects and assignment in programming languages.

To understand why this is true, let's consider a simplified version of the make -withdraw
procedure of section 3 .1 that does not bother to check for an insufficient amount.

(define (make-simplified-withdraw balance)
(lambda (amount)

(setl balance balance amount))
balance))

(define W (make-simpl'f'ed-withdraw 25))

==>(W 20)
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==>(W 10)

We'll contrast this procedure with the following make-decrementer procedure, which

does not use set I.,

(define (make-decrementer balance)
1 ambda (amount)

balance amount)))

Make-decrementer returns a procedure that subtracts its input from a designated amount

balance, but there is no accumulated effect over successive calls, as with

make-simple-withdraw:

(define D (make-decrementer 25))

=0 (D 20)
5

=0 ( 0)

We can use the substitution model to explain how make-decrementer works. For

instance, let us analyze the evaluation of the expression:

((make-decrementer 25) 20)

We. first simplify the operator of the combination by substituting 25 for ba I ance in the body of

make-decrementer, which reduces the expression to

((lambda (amount) (- 25 amount)) 20)

Now we apply the operator by substituting 20 for amount in the body of the I'ambda

expression:

25 20)

and the final answer is .

Observe, however, what happens if we attempt a similar substitution analysis with

make -s imp 7 f f ed-w thdraw:

((make-simplified-withdraw 2 20)

We first simplify the operator by substituting 25 for balance in the body of

make-s linp 7 ff 7'ed-wf thdraw, which reduces the expression to

((lambda (amount) (setl 25 (- 25 amount)) 2) 20)

Now we apply the operator by substituting 20 for amount in the body of the lambda

expression:

((setl 25 25 20)) 25)

If we adhered to the substitution model, we would have to say that the meaning of the

procedure application is to first set 25 to and then return 25 as the value of the expression.

This makes no sense at all.

The problem here is that substitution is based ultimately on the notion that the symbols in

our language are essentially names for values. B ut as soon as we introduce set I and the
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idea that the value of a variable can change, then a variable can no longer be simply a name.
Rather, a variable must now somehow refer to a place where a value can be stored, ad the
value stored at this place can change. In section 32 below, we'll see how environments play
this role of "place" in our computational model.

Sameness and change
The issue surfacing here is more profound than merely the breakdown of a particular model

of computation. As soon as we introduce change into our computational models, many
notions which were previously straightforward now become problematical. As an important
example, let's consider the concept of two things being "the same."

Suppose we create two procedures by calling the above make-decrementer procedure
twice with the same argument:

(define D1 (make-decrementer 25))

(define D2 (make-decrementer 25))

Now we ask: Are DI and D2 the same? An acceptable answer is to say yes, because D and
D2 have the same computational behavior -- each is a procedure that subtracts its input from
25. In fact, D Cld be SUbStituted for D2 in any computation without changing the result.
Another way to justify considering DI and D2 to be the same is to observe that, in the
substitution view'of computation, D and D2 are both names for the same expression
(make-decrement.er 25).

Contrastthi.swith making twocallstomake-simp7 if ied-withdraw:

(define W1 (make-simplified-withdraw 2)

(define W2 (make-simplified-withdraw 25))

Are WI and W2 the same? Surely not, because calls to WI and W2 have distinct effects, as
shown by the sequence of interactions-,

(W1 20)

(W1 20)
-15

=0 (W2 20)

Even though W and W2 are liequal" in the sense that they are both created by evaluating the
same expression (make '-s imp I if led-w! thdraw 25), it is not true that WI could be
substituted for W2 in any expression without changing the result of evaluating the expression.

A language that supports the concept that "equals can be substituted for equals" without
changing the values of expressions is said to, be referentially transparent. Referential
transparency is violated when we include setl in our computer language. This akes it
tricky to determine when we can simplify expressions by substituting equivalent expressions.
Consequently, reasoning about programs that use assignment becomes drastically more
difficult, and programs with assignment are susceptible to bugs that cannot occur in the types
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of programs we have been dealing with up until now.

Once we forgo referential transparency, the notion of when two computational objects are
"the same" becomes difficult to capture in a formal way. Indeed, the meaning of "the same"
in the real world which our programs model is hardly clear in itself. For in general, we can
only determine that two apparently identical objects are indeed "the same one" by modifying
one object and then observing the other object to see if it has canged in the same way. But
what do we mean by "change"? Our usual notion of change is to say that some property of
an object "has changed" if we have observed that same object twice with the particular
property differing in the two observations. So we cannot say that an object "has changed"'
unless we can determine that we are looking at "the same" object before and after the
change, and we cannot determine sameness without observing the effects of change.

As an example of how this complicates programming, consider the situation where Peter
and Paul have a bank account with 100 dollars in it. There is a substantial difference between
modeling this as

(define peter-acc (make-account 100))
(define paul-acc (make-account 100))

versus modeling the situation as

(define peter-acc (make-account 100))
( def i ne paul -acc eter-acc)

In the first situation, the two bank accounts are distinct. Transactions made by Peter will not
affectPaul'saccount,andviceversa. Butinthesecondsituation,wehavedefinedpaul-acc
to be the same thing as peter-acc. In effect, Peter and Paul now have a oint bank account,
and, if Peter makes a withdrawal from peter-acc, Paul will observe less money in pau7 -acc.
These two similar, but distinct situations. can cause confusion in building computational
models. With the shared account, in particular, it can be especially confusing that there is
one object, namely the bank account tat has two different names --- peter-acc and
paul-acc. For,ifwearesearchingforalitheplacesinlourp-logramwherepau7-acccanbe
changed, we must remember to look also at things that change peter-acc. With reference
to the previous paragraph's remarks on "sameness" and "change," observe that, if Peter and
Paul could only examine their bank balances, and not perform operations that changed the
balance, then the issue of whether the two accounts are distinct would be moot-6

Exercise 35: Consider the bank account objects created by make-account, with the associated
password protection odification described in exercise 33. Suppose that our banking system requires
the ability to make joint accounts. Define a procedure make-joint that accomplishes Oils.
Make-joint should take three arguments. The first is a password-protected account. The second
mustmatchthepasswordwithwhich theaccountwasdefined inorderforthemake-jointoperationto
proceed. The third'input is a new password. Make-joint is to create an additional access to the

6The phenomenon of a single computational object being accessed by more than one name is known as aflasing.
The joint bank account situation is a very simple example of an alias. In section .3 we will see much more complex
examples, such as "distinct" compound data structures that share parts. Bugs can occur in our programs if we
forget that a change to an object may also "as a side-effect" change "a different" object, because the two
"different" objects are actually a single object appearing undeer different aliases. These so-called side-ettect bugs
are so difficult to locate and to analyze that some people have proposed that programming languages be designed 'in
such a way as to not allow side effects or aliasing 27, 35].
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or inal account using the new password. For example, if peter-acc is a bank account with password

open-sesame, then

(define aul-acc (make-joint peter-acc
open-sesame
rosebud))

will allow one to make transactions on peter-acc using the name pau7-acc and the password
rosebud. You may wish to modify your solution to exercise -3 to accommodate this new feature.

Exercise 36: When we defined the sbstitution model of evaluation in section 1.1.5, we said that the
first step in evaluating an expression is to evaluate the subexpressions. But we never specified the order
in which the subexpressions should be evaluated (e.g., left-to-right vs. right-todeft). When we introduce
assignment, te order in which the arguments to a procedure are evaluated can ake a difference to the
result. Define a simple procedure f with the property that evaluating

(+ ( 0) (f M

will return if the arguments to are evaluated in left-to-right order, but will return if the arguments are
evaluated in right-to-Jeft order.

3.1.3. The Benefits of Introducing Assignment

Introducing assignment into our programming language leads us into a thicket of difficult
conceptual issues.. Nevertheless, viewing systems as collections of objects with local state is
a powerful technique for maintaining a modular design. As a simple example, let us consider
the design of a random number generator. This is to be a procedure rand that, whenever it is
called, returns an integer chosen at random.

Of course, it is not at all clear what is meant by "chosen at random." What we presumably
want is for successive calls to rand to produce a sequence of numbers that has statistical
properties of uniform distribution. We will not discuss methods for generating Sitable
sequences here. Rather, assume that we have a procedure, called rand-upda te, which has
the property that if we start with a given number xi and form

= rand-update x,)2
X = (rand-update x)3

then the sequence xi x will have the desired statistical properti-es.7
2 3

We can implement rand as a procedure with a local state variable x which is initialized to
some fixed value randoin- n it. Each call to rand computes rand-up-da t e of the current
value of x, returns this as the random number and also stores this as the new value of x.

7One common way to implement rand-update is to use the rule that x is updated to ax+b modulo m, where a, b,
and m are appropriately chosen integers. Knuth 24] Chapter 3 includes an extensive discussion of techniques for
generating sequences of random umbers and establishing their statistical properties. Notice that the rand-upda to

procedure computes a mathematical function -- given the same input twice, it produces the same output. Therefore,
the number sequence produced by rand-update certainly is not "random," if by "random" w isist that each
number in the sequence is unrelated to the preceding number. The relation between real randomness" and
so-called pseudo-random sequences, which are produced by well-determined computations, and yet have suitable
statistical properties, is a complex question, involving difficult problems in mathematics as well as pilosophy.
Kolmogorov, Solorrionoff. at-id Chaitin have made great progress in clarifying these problems. A discussion of these
issues can be found in [5].
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(define rand
(let ((x random-init))

(lambda
(setl x (rand-update x))

XM

Of course, we could generate the same sequence of random numbers without using
assignment, by simply calling rand-update directly. owever, this would mean that any part
of our program that used random numbers would have to explicitly remember the current
value of x to be passed as an argument to rand-upda te. To realize what an annoyance this
would be, let's consider using random numbers to implement a technique called Monte-Carlo
simulation.

The Monte-Carlo method consists of choosing sample experiments at random from a large
set and then making deductions based upon the probabilities estimated from tabulating the
results of those experiments. For example, we can approximate using the fact that 6/'ff is
the probability that two integers chosen at random will have no factors in common; i.e., that
their greatest common divisor will be equal to 1.8 To obtain the approximation to ff we
perform a large number of experiments. In each experiment we choose two random integers
and perform a test to see if their gcd is equal to 1. The fraction of times that the test is passed
gives us our estimate of 6/,7T2, and from this we obtain our approximation to ff:

(define (estimate-pi trials)
(sqrt ( 6 monte-carlo trials cesaro-test))))

(def ine (cesaro-test)
(= (gcd (rand) (rand)) 1))

(define (monte-carlo trials experiment)
(define iter trials-remaining trials-passed)

(cond trials-remaining 0)
trials-passed trials))

(experiment)
(iter (-l+ trials-remaining) trials-passed)))

(else
(iter (-l+ trials-remaining) trials-passed))))

(iter trials 0))

Now let's try the same computation using rand-upda te directly rather than rand, the way
we would be forced to proceed if we did not use assignment to model local state:

(define (estimate-pi trials)
(sqrt ( 6

(random-gcd-test trials random-init))))

8This theorem is due to E. Cesaro (1881). See Knuth 24] section 45.2 for a discussion and a proof.
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(define (random-gcd-test trials initial-x)
(define (iter trials-remaining trials-passed x)

(let ((xl (rand-update x)))
(let ((x2 (rand-update xl)))

(cond
trials-remaining 0)
trials-passed trials))
(gcd x1 x2) 1)

(iter (-l+ trials-remaining) 1 trials-passed) x2))
(else
(iter (-l+ trials-remaining) trials-passed x2))))))

(iter trials 0 initial-x))

Although this is still a simple program, it betrays some painful breaches of modularity In
our first version of the program, using rand, we are able to express the Monte Carlo method
directly as a general monte-carlo procedure which takes as a parameter an arbitrary
expe r men t procedure. In our second version of the program, with no local state for the
random number generator, random-gcd-test must explicitly manipulate the random
numbers x1 and x2 and recycle x2 through the iterative loop as the new input to
rand-update. This explicit handling of te random numbers intertwines the structure of
accumulating test results with the fact that our particular experiment uses two random
numbers, whereas other Monte Carlo experiments ight use one random number, or three.
Even the top-level procedure estimate-pi has to be concerned with supplying an initial
random number. The fact that the random number generator's insides are leaking out into
other parts of the program makes it difficult for us to abstract out the Monte-Carlo idea as one
which can be applied to other problems. In the first version of the program, assignment
encapsulates the state of the random number generator within the rand procedure, so that
the details of random number generation remain independent of the rest of the program.

It is tempting to conclude this discussion by saying that, by introducing assignment and the
technique of hiding state in local variables, we are able to structure systems in a more
modular fashion than we could if all state had to be manipulated explicitly as parameters.
Unfortunately, the story is not so simple. In section 34 we will see how the programming
technique of stream processing enables us to recover much of our lost modularity without
introducing assignment and its concomitant problems as indicated in section 31.2. But to do
so, we must adopt a very different perspective on objects and, most strikingly, a different
perspective on time in our computer programs. We will return to this discussion in section
3.4. First, however, we address the issue of providing a computational model for program
expressions that involve assignment, and explore the uses of objects in designing
simulations.

Exercise 37: It is useful to be able to reset a random number generator to produce a sequence
starting from a given value. Design a new rand procedure which is called with an argument that is
eitherthesymbol generate orthe symbol reset asfollows.

(rand 'generate)

produces a new random number.

rand I reset) <new-value>)

resets the internal state variable to the designated new-value. Thus by resetting the state, one can
generate repeatable sequences. These are very handy to have when testing and debugging program's
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that use random numbers.

3.2. The Environment Mdel of Evaldation

When we introduced compound procedures in Chapter 1, we used tile substitution model
of evaluation (Section 1.1 5) to define what is meant by applying a procedure to arguments:

To apply a compound procedure to arguments, evaluate the body of the
procedure with each formal parameter replaced by the corresponding argument.

Once we admit assignment into our programming language, such a definition is no longer
adequate. In particular, Section 31.2 argued that in the presence of assignment, a variable
can no longer be considered to be merely a name for a value. Rather, a variable must
somehow designate a place in whic 'h values can be stored. In our new model of evaluation,
these "Places" will be maintained in structures called environments.

IAn environment is a sequence of frames. Each frame is a table (possibly empty) of
bindings, which pair variables with their corresponding values. (A single frame may contai at
most one binding for any variable.) Each frame also has a pointer to its enclosing
environment, unless, for the purposes of discussion, that frame is considered to be global.
The value of a variable with respect to an environment is the value given by the binding of the
variable in the first frame in the environment tat contains a binding for that variable. If no
frame in the sequence specifies a binding for the variable, then the variable is said to be
unbound in the environment.

------------

I x 3
Y 

------------

t t
----------- ------------

I Z: 6 C D M: I
I x: 7 y: 2
----------- ------------

t t

A ts

Figure3-1: Asimpleenvironmentstructure.-

Figure 31 sh6ws a simple environment structure consisting of three frames, labeled 1,

and III. In the diagram, A, B, C, and D are pointers to environments. C and D point to the
same environment. The variables z and x are bound in frame II, while y and x are bound in
frame I. The value of x in environment D is 3. The value of x with respect to environment is
also . This is determined as follows: We examine the first frame in the sequence (frame 111)
and do not find a binding.for x, so we proceed to the enclosing environment D and find the
binding in frame 1. On the other hand, the value of x in- environment A is 7 because the frst
frame in the sequence (frame II) contains a binding of x to 7 With respect to environment A,

the binding of x to 7 in frame is said to shadow the binding of x to 3 in frame '
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The environment plays a crucial part in the evaluation process, because it determines the
context in wich an expression should be evaluated. Indeed, one could say tat expressions
in a programming language do not, in themselves, have any meaning. Rather, an expression
acquires a meaning only with respect to some environment in which it is evaluated. Even the
interpretation of an expression as straightforward as 1 1) depends on an understanding
that one is operating in a context in which is the symbol for addition and (the numeral) "l is
the symbol for (the number) 1. Thus, in our model of evaluation, we will always speak of
evaluating an expression with respect to some environment. To describe interactions with the
Lisp interpreter, we will SUppose that there is a global environment, consisting of a single
frame (with no enclosing environment) that includes values for the symbols associated with
the primitive procedures. For example, the idea that is the symbol for addition is captured
by saying that the symbol is bound in the global environment to the primitive addition
procedure.

3.2.1. The Rules for Evaluation

The overall specification of how the interpreter evaluates a combination remains the same
as we first introduced it in section 11.3:

To evaluate a combination (other than a special form):

1. Evaluate the subexpressions of'the combination.

2. Apply the value of the operator subexpression to the values of the operand
subexpressions.

The new element provided by the environment odel of evaluation is to specify what t means
to apply a compound procedure to arguments.9

In the environment model of evaluation, a procedure is always a pair consisting of some
code and a pointer to an environment. Procedures are created in one way only: by evaluating
a 7 amb da expression. This produces a procedure whose code is obtained from the text of the
7ambda expression and whose environment is the environment in which the 7ambda
expression was evaluated to produce the procedure.

For example, consider the procedure definition

(def line (square x)

X X))

evaluated in the global environment. The procedure definition syntax is just "syntactic sugar"
for a underlying implicit I aft da expression. In terms of the evaluation model, it would be
equivalent to have typed in the expression

9Assignment also introduces a subtlety into step of the evaluation ule. As shown in exercise 36, the presence
of assignment allows us to write expressions that will produce different values, depending on the order in which the
subexpressions in a combination are evaluated. Thus, to be precise, we should specify an evaluation order in step 
(e.g., left-to-right or right-to-left). However, this order should always be considered to be an implementation detail,
and one should never write programs that depend on some particular order, For instance, a compiler should be able
to feel free to optimize a program by varying the order in which subexpressions are evaluated.
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(define square
(lambda (x) (* x x)))

which instructs the computer to evaluate the expression

(lambda (x) (* x x))

and bind the variable square to the resulting value, all in the global environment.

Figure 32 shows the result of evaluating this expression. The procedure object is a patr
whose code specifies that the procedure has one formal parameter, namely x, and a
procedure body ( * x x). The environment, part of the procedure is a pointer to the global
environment, since. that is the environment in which the Iamb da expression was evaluated to
produce te procedure. The entire pocedure object is now bound to the variable square in
the global environment. This means that square is added to the global frame, with a binding
to the procedure object. In general, de f i ne creates definitions by adding bindings to frames.

-------------------------
<other variables>

global env ---- >1
square: ----

(define (square x) I

X X)) -----------

V

V
parameters: x
body: (* x x)

Figure 32: Result of evaluating (def ine (square xx x) in the global environment.

Now that we have seen how procedures are created, we can describe how procedures are
applied: To apply a procedure to arguments, create a new environment containing a fram
that binds the parameters to te actual values of the arguments, The enclosing environment
of this frame is te environment specified by the procedure. Now, within this new
environment, evaluate the procedure body.

Figure shows the environment structure created by evaluating the expression
(square 5) in the global environment, where square is the procedure generated in figure
3-2. Applying the procedure results in the creation of a new environment, labeled El in the
figure, that begins with a frame in which x, the formal parameter for the procedure, is bound
to the argument 5. The pointer leading up from this frame shows that its enclosing
environment is the global environment, since that is the environment that is part of the
square procedure. Within El, we evaluate the body of the procedure x x). Since the
value of x i El is 5, the result is ( * 5 5), or 25.
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-----------------------------------------

<other variables>
global env ----- >I

square:
(square

------------- ---------------------------
t t

V

El--> x: 5

V X X)
parameters: x
body: (* x x)

Figure 33: Environment created by evaluating (square 5) in the global environment.

We can summarize the environment model of procedure application by two rules:

Rule 1 A procedure object is applied to a set of arguments by constructing a
frame, binding the formal parameters of the procedure to the actual arguments of
the call, and then evaluating the body of the procedure in the context of the new
environment constructed. The new frame has as its enclosing environment the
environment part of the procedure object being applied.

Rule 2 A procedure is created by evaluating a lambda expression relative to a
given environment as follows: a new procedure object is formed, combining the
text of the lambda expression with a pointer to the environment in which the
procedure was created

We also specify that defining a symbol using def ine creates a binding in the current
environment frame, which assigns to the symbol the indicated value.10

Finally, we specify the behavior of set I the operation that forced us to introduce the
environment model in the first place. Evaluating the form

set! <variable> <value>)

in some environment locates the binding of the variable 'in the environment and changes that
binding to indicate te new value. That is to say, one finds te first frame in the environment
that contains a binding for the variable, and modifies that frame. If the variable is unbound in
the environment, then set I signals an error.

These evaluation rules, while considerably more complex than the substitution model, are
still reasonably straightforward, Moreover, the evaluation model, although abstract, provides
a correct description of how the interpreter evaluates expressions, and n Chapter 4 we shall
see how this model can serve as a blueprint for constructing a working interpreter. The

10
If there is already a binding for the variable in the current frame, then the binding is changed. This is convenient

because it allows redefinition of symbols, but it also means that def ine can be used to change values, thus bringing
up the problems of assignment without explicitly using set I Because of this, some people prefer redefinitions of
existing symbols to signal errors or warnings.
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following sections work through the details of the model in analyzing some llustrative
programs.

3.2-2. Evaluating Simple Procedures

When we introduced the substitution model in section 1.1-5, we showed how the
combination

(f )

evaluates to 136, given the following procedure definitions:

(def line (square x)

(* x X))

(def i ne (sum-of -squares x y)
(+ (square x) (square y)))

(define (f a)
(sum-of-squares a (* a 2))

We can analyze the same example using the environment model. Figure 34 shows the three
procedure objects created by evaluating the definitions of , square, and sum-of -squares
in the global environment. Each procedure object consists of a pointer to some code,
together with a pointer to the global environment.

------------------------------------------------

I sum-of-squares: ------------------ I
I square: ------------ I I
I f: -- I I I
------ I--------------I-------------I ------------

v t I t I t
--------- I v I v I

global --- >
env

--------- iI I -- I ----
I -- I ------

I. v
parameters: x
body: (* x x)

- - - - -- - - - I

I-i- I- -- I ---

I
v

parameters: x, y
body: ( (square x)

(square y))

I I I--

� -- I ------
I
v

parameters: a
body:(sum-of-squares

I a 
(* a 2)

Figure3-4: Procedureobjectsintheglobalframe.

In figure 35 we see the environment structure created by evaluating the expression 1
The call to f creates a new environment El beginning with a frame in which a, the formal
parameter of f , is bound to the argument 5. In El, we evaluate the body of :

(sum-of-squares (+,a 
(*-.a 2)
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global
env --- >

----------------------------------------------------------

(f 5) t t t t

I I I I
--------- ----------- ----------- -----------

El-->la: 5 I E2-->Ix: 6 1 E3-->Ix: 6 1 E4-->Ix: 10 I
--------- ly: 10 I ----------- -----------

(sum-of-squares (* x X) x X)
(+ a 1) (+ (square x)
(* a 2)) (square y))

Figure 35: Environments created by evaluating (f 5) using the procedures in figure 34.

To evaluate this combination, we first evaluate the subexpressions. The first
subexpression, sum-of -squares, has a value that is a procedure object, (Notice how this
value is found: We first look in the first frame of El, which contains no binding for
sum-of -squares. Then we proceed to te containing environment, i.e., to the global
environment, and find the binding shown in figure -4.) The other two subexpressions are
evaluated by applying the primitive operations and to evaluate the combinations a 1)
and ( a 2 to obtain 6 and 1 0 respectively.

Now we apply the procedure object sum-of -squares to the arguments 6 and 10. This
results in a new environment E2 in which the formal parameters x and y are bound to the
arguments. Within E2 we evaluate the combination

(square x) (square ))

This leads us to evaluate (square x), where square i's found in the global frame, and x is 6.
Once again, we set up an new environment E3 in which x is bound to 6 and within this, we
eval uate the body of s q u a r e, which is ( * x x).

Also as part of evaluating sum-of -squares, we MUst evaluate the subexpression
(square y), where y is 10. This second call to square creates another environment E4 in
which x, the formal parameter of square, is bound to 10. And within, E4 we must evaluate
(* X).

The important point to observe is that each call to square creates a new environment
containing a binding for x. We can see here how the different frames serve to keep separate
the different local variables all named x. Notice that each frame created by square points to
the global environment, since this is the environment indicated by the square procedu re
object.

Once all the subexpressions have been evaluated, the results are returned. The two calls to
square generate'values which are added by sum-of -squares, and this result is returned to
f. Since our focus here is on the environment structures, we will not dwell on how these
returned values are passed from call to call. However, this is also an important aspect of the
evaluation process, and we will return to it in detail in Chapter .

Exe rcise 3 -8: In section 12. 1, we used tile substitution model to analyze two procedu res f or computing
factorials, a recursive version

(define (factorial n)
(if n 1)

n (factorial (- n 1)))))
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and an iterative version

(define (factorial n)
(fact-iter I 1 n))

(define (fact-iter product counter ma'x-count)
(if > counter max-count)

product
(fact-iter (* counter product)

(+ counter 1
max-count)))

Show the environment structures created during the computation of f ac tor ia 6 by each of these
procedures.

3.2-3. Frames as the Repository of Local State

We can use the environment model to explain how procedures and assignment can be
used to represent objects with local state. As an example, we consider a "withdrawal
processor" from section 1 1, created by calling the procedure:

(def ine (make-withdraw balance)
(lambda (amount)

(if >= balance amount)
(sequence (set! balance balance amount))

balance)
"Insufficient funds"M

Let us describe the evaluation of

(define W1 (make-withdraw 100))

followed by

_0 (W 0)
50

Figure 36 shows the result of defining the make-withdraw procedure in the global
environment. This produces a procedure object that contains a pointer to the global
environment. So far, this is no different from the examples we have already seen, except that,
in this case, the body of the procedure code is itself a 7 amb da expression.

The environment model will ot clarify our claim in section 12.1 that the interpreter can execute a procedure
such as fac t - i t er in a constant amount of space using tail recursion. We will discuss tail recursion when we deal
with the control structure of the interpreter in Chapter 5, section 5.2J
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- - - - - -- - - - - - - - -- - - - - - - - - -- - - - - - - -

global env ---- >I
make-withdraw: ----

--------------------
------------

V

V
parameters: balance
body: (I ambda (amount)

(if >= balance amount)
(sequence (setl balance balance amount))

balance)
"Insufficient funds"))

Figure3-6: Resultofdefiningmake-withdrawintheglobalenvironment.

The interesting part of the computation happens when make-withdraw is applied to an
argument:

(define W1 (make-withdraw 100))

We begin as usual by setting up an environment El in which the formal parameter ba I anc is
bound to the argument 100, Within this environment, we evaluate the body of
make-withdraw, namely, the 7ambda expression. This constructs a new procedure object,
whose code is as specified by the 7ambda, and whose environment is El, the environment in
which the Iamb da was evaluated to produce the procedure. The resulting procedure object
is the value returned by the call to make-withdraw. This is bound to Wl in the global
environment, since the def ine itself is being evaluated in the global environment. Figure
3-7 shows the resulting environment structure.
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--------------------------------------------------------
global env ->I make-withdraw: ---------------------------

Wl: -- I
---------------------------------- -------------

t t

---------------
El-->lbalance: 100 I V

--------------- ---------
V t

---------------
V

parameters: balance
body:

V
parameters: amount
body: (if >= balance amount)

(sequence (set! balance balance amount))
balance)

"Insufficient funds")

Figure3-7: Resultof (define WI (make-withdraw 100)).

Now we can analyze what happens when W is applied to an argument:

==> (W 0)
50

We begin by constructing a frame in which amount, the formal param eter for W, is bound to
the argument 50. The crucial point to observe is that this frame has as its containing fram, e.
not the global environment, but rather the environment El, because this is the environment
that is specified by the WI procedure object. Within this new environment, we evaluate the
body of the procedure

(if >= balance amount)
(sequence (set! balance (- balance aount))

balance)
t'insufficient fundsit)

The resulting environment structure is shown in figure 3-8. Observe that the expression being
evaluated references both amount and balance. Amount will be found in the first frame in
the environment, while ba lance will be found by following the containing pointer to El.
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--------------------------------------------------------
global env ->I make-withdraw: ...

Wl:
-------------------------------------------------

---------------

I El-->Ibalance: 10 I Here is the balance that
I --------------- be changed by the sti.
V t t

165

--------------- ----------

-------------
jamount: I
-------------

nount (if >= balance amount)
(sequence (setl balance

(- balance amount))
balance)

"Insufficient funds")

will

- - -- - - - -

I I --

-- I -----
I
I
v

parameters: ar
body: ...

Figu re 38: Environments created by applying the procedure object WI.

When the set I instruction is executed, the binding of ba 7ance in El is changed. At th e
completion of Me call to WI, ba I ance is now 50, and the frame that contains ba 7ance is still
pointed to by the procedure object W. The local frame in which we executed the code that
changed ba7ance is no longer relevant, since the procedure call that constructed it has
terminated, and there are no pointers to that frame from other parts of te environment. The
next time W is called, this will build a new frame that binds amount, and whose containing
environment is El. We see that El serves as the "place" that holds the local state variable for
the procedure object WI. Figure 39 shows the situation after the call to WI.

--------------------------------------------------------
global env ->I make-withdraw:

Wl:
------------------------------------------------

t

---------------

El-->Ibalance-. 5 I
---------------

V t

---------------

V
parameters: amount
body.-

Figure 39: Result of calling WI in figure 38.

. . Observe what happens when we create a second "withdraw" object by making another call 



Figure 310: Using (def ine W2 (make-withdraw 100)) to create a second object.

The figure shows that W2 is a procedure object; i.e., a pair with some code and an
environment. The environment E2 for W2 was created by the call to make-wf thdraw It
contains a frame with its own local binding for ba 7ance. On the other hand, 1 and W2 share
the same code; i.e., the code of the 7ambda expression in the body of make-wf thdraw.12 We
see here why Wl and W2 behave as independent objects. Calls to Wl reference the state
variable ba 7 ance stored in El while calls to W2 reference the ba I ance stored in E2. Thus
changes to the local state of one object will not affect the other object.

Exercise3-9: Inthemake-withdrawprocedure,thelocalvariablebalanceiscreatedasaparameter
of ma k e -w t h d r a w. We cou Id also create the local state variable explicitly, using 7 e t, as f ollows:

(define (make-withdraw initial-amount)
(let ((balance initial-amount))

(lambda (amount)
(if >= balance amount)

(sequence (setl balance (- balance amount))
balance)

"Insufficient funds"M)

Recall from section 13.2 that 7 et is simply "syntactic sugar" for a procedure call:

(let ((<var> exp>)) <body>)

is interpreted as an alternate syntax for

((lambda (<var>) <body>),<exp>)

12
Whether or not WI and W2 share the same physical code stored in the computer, or whether they each keep a

copy of the code, is a detail of the implementation. For te interpreter we iplement in Chapter 4 the code is in fact
shared.
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to make -w th draw:

(def ine W2 (make-wl'thdraw 100))

This produces the environment structure shown in fgure 310.

--------------------------------------------------------

->I make-withdraw: ...
W2: --------------------------------
Wl: -- I

----------------------------- ------------------

--------------- ----------------

I El-->Ibalance: 50 1 1E2-->Ibalance: 100
I --------------- I ----------------

v t I t

global env

I I -- I ---------------
-- I ------

I -------------------
I I
v v

parameters: amount
body: ...

v I
--------- I

------- I-- I -- I -------------------
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Use this fact to analyze with the environment model the behavior of the alternate version Of
ma k e - w t h dr a w, drawing f igures like the ones above to illustrate the interactions

(define WI (make-withdraw 100))

(WI 50)

(define W2 (make-withdraw 100))

Show that the two versions of make-withdraw create objects with the same behavior. How do the
environmentstructuresfortlietwoversionsof make-withdrawdiffer?

3.2.4. Internal Definitions

In section 1.1.8 we introduced the idea that procedures can have nternal definitions, thus
leading to a "block structure" as in the following procedure to compute square roots.

(define (sqrt x)
(define (good-enough? guess)

(< (abs (- (square guess) x)) .001))

(def i ne improve guess)
(average guess (/ x guess)))

(define (sqrt-iter guess)
if (good-enough? guess)

guess
(sqrt-iter (mprove guessM)

(sqrt-iter 1)))

Now we can use the environment model to see why these internal definitions behave as
desired.

Figure 311 shows the point in the evaluation of the expression

(sqrt 2)

where the internal procedure good-enough? has been called for the first time with guess
equal to .

i , - � - I., '. � �
1, , -.. , I � � o � I .� 1 - I I - � I ., .� i , : . -� � : . 11 c � -: I , ? �-,, . - I -- �, v I '. � - - I ; �'. I I I It .1 ., -� , . I -4- , I 1, - - � : �. �,
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I

I

global -- >I sqrt:---
env I I

--------- I-----------
I t
V I

--------- I
--------- I- I

I
I <- -- -

- I

I

I

I
---------------------

El->Ix: 2 1
Igood-onough?: --- I
limprove: ... I I<---

Isqrt-'ter: ... I I I
------------------ I -- I

t t I I

I 

I

I

I----------
guess: 11
---------- I

I i i
I v I
I --------- I
I I - I -- I--
I -- I ------
I I
I v

V
parameters: x
body: (define good-enough? ...

(define improve ... )
(define srt-iter ... )
(sqrt-iter 1)

i t e r

E2-> If

call to sqrt- parameters: guess
body: < abs, ... ) .. )

-- - - - - - -- -

E3 >guess: 11
----------

call to good-enough?

Figure3-11: Sqrtprocedurewithinternaldefinitions.

Observe te structure of the environment. Sqrt itself is a symbol in the global environment
that is bound to a procedure object whose associated environment is the global environment.
When sqrt was called, it formed a new environment El, subordinate to the global
environment, in which the parameter x is bound to 2 The body of sqrt is now evaluated in
El. Since, the first expression in the body of sqrt is

(define (good-enough? guess)
(< (abs (- (square guess) x)) .001))

evaluating this expression defines the procedure good-enough? in the environment El.
More precisely, the symbol good-enough? is added to the first frame of El, and
good-enough? is bound to a procedure object whose associated environment is El.
Similarly, improve and sqrt-Iter aredefined as procedures in El. For conciseness, figure
3-11 shows only the procedure object for good-enough

After the local procedures are def ined, s q r t executes the expression

Asqrt-iter 1)

stillinenvironmentEl. Sotlieprocedureobjectboundtosqrt-iterinEliscalledwithlas
an argument. This results in creating a new environment E2,'as shown in figure 31 1, in which
guess, the parameter of sqr t - t er, is bound to 1. Srt - ter in turn calls good-enough 
with the value of guess (from E2) as the parameter for good-enough?.. This sets up another
environment E3 in which guess (the parameter of good-enough ?) is bound to 1. Notice that
although sqrt-iter and good-enough? both have a parameter named guess, these are
two distinct local variables, located in different frames. Observe also that that E2 and E3 both
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have El as their enclosing environment, because the sqrt-iter and good-enough?
procedures both have El as their environment part. One consequence of this is that the
symbol x that appears in the body of good-enough? will reference the binding of x that
appears in El, namely the value of x with which the original s q r t procedure is called.

The environment model thus explains the two key properties that make local procedure
definitions a useful technique for modularizing programs:

1. The names of the local procedures do not interfere with names external to the
enclosing procedure, because these names will be bound in the frame that the
procedure creates when it is run, rather than being bound in the global
environment.

2. The local procedures can access the arguments of the enclosing procedure,
simply by using parameter names as free variables, This is because the body of
the local procedure is evaluated in an environment that is subordinate to the
evaluation environment for the enclosing procedure.

Exercise 310: In section 32-3, we saw how the evironment model explained the evaluatio of
procedures with local state. Now we have seen how internal definitions work. A typical message
passing procedure contains both of these aspects. Consider the message passing styled bank account
procedure of section 31.1:

(define (make-account balance)
(define (withdraw amount)'

(if > balance amount)
(sequence (setl balance (- balance aount))

balance)
"Insufficient funds"))

(define (deposit amount)
(set! balance balance amount))
balance)

(define (dispatch m)
(cond (eq? m 'withdraw) wthdraw)

((eq? m 'deposit) deposit)
(else (error "Unknown request -- MAKE-ACCOUNT")

MM
dispatch)

Show the environment structure generated by the sequence of interactions

(define acc (make-account 50))

((acc 'deposit) 40)
90

=0 ((acc 'withdraw) 60)
30

Where is the local state for a c c kept? Su ppose we def ine another account

(define acc2 (make-account 100))

How are the local states for the two accounts kept distinct? Which parts of the environment structure
are shared between acc and acc2?
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3.3. 1Modeling with Mutable Data

Chapter 2 dealt with compound data as a means for constructing computational objects
that have several parts, in order to model real-world objects that have several aspects. In that
chapter, we introduced the discipline of data abstraction, according to which data structures
are specified in terms of constructors, that create data objects, and selectors, that access the
parts of compound data objects. But we now know that there is another aspect of data that
Chapter 2 did not address, We have learned that the desire to model systems composed of
objects that have changing state leads us to the need to modify compound data objects, as
well as to construct and select from them. In order to model compound objects with changing
state, we will design data abstractions to include, in addition to selectors and constructors,
operations called mutators, which modify data objects. Modeling a banking system, for
instance, requires us to change account balances. Thus a data structure for representing
bank accounts might admit an operation

(set-balance! <account> <new-value>)

that changes te balance of the designated account to the designated new value. Data
objects for which mutators are defined are known as mutable data objects.

We saw in Chapter 2 that Lisp provides pairs as a general-purpose "glue" for synthesizing
compound data. We begin this section by defining basic mutators for pairs, so that pairs can
now serve as building blocks for constructing mutable data objects. These mutators greatly
enhance the representational power of pairs, enabling us to build data structures other than
the sequences and trees that we worked with in section 22. We also present some examples
of simulations in which complex systems are modeled as collections of objects with local
state.

3.3.1. Mutable List Structure

The basic operations on pairs -- cons, car, and cdr -- can be used to construct list
structure and to select parts from lists, but they are incapable of changing existing list
structure. The same is true of the other list operations we have used so far, such as append
and 7 st, since these can bedefined in terms of cons, car, and cdr. In orderto modify list
structures we need new operations.

The primitive mutators for list structure are set-carl and set-cdrl. Set-carl takes
two arguments, the first of which must be a pair. It modifies this pair, replacing the car
pointer by a pointer to the second argument of set - car I As an example, suppose that x 'is
bound to the list ((a b) c d) and y to the list (e f ) as illustrated in fgure 312.



Figure 312: Lists x: ((a b) c d) and y: (9 f)

Evaluating te expression (set-carl x y) modifies the pair to which x i's bound,
replacing its car pointer by a pointer to y. The result of the operation is shown in figure 3-13.
The structure x has been modified, and would now be printed by the interpreter as
((e f) c d). The pairs representing the list (a b identified by the pointer tat was
replaced, are now detached from the original structural

13 We see from this that mutation operations on lists can create "garbage" tat is not part of any needed structure.

When we discuss Lisp mplementations in Chapter 5, we will see i section 5 that Lisp memory management
systems include a garbage collector, which identifies and recycles the memory space used by unneeded pairs.
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--------- --------- ---------
----------------- -- I --- >1 - I

v v

c d

--------- ---------
----------------------- >1 I -- -- >I I

v v
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--------- ---------
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> >I >
X

V V

I C d I

--------- ---------

V V

a I I b I

--------- ---------
---------------------- > I . I -- I ---- >1 . I / I

y > -- I ------ -- I ------
V V

I e f I

Figure3-13: Effectof (set-carl x y) on the lists in figure 312,

It is instructive to compare figure 31.3 with figure 314, which illustrates the result of
executing

(def -ine z (cons y (cdr x)))

with x and y bound to the original lists of figure 312. The variable z is now bound to a new
pair created by the cons operation, and the list bound to x is unchanged.

--------- --------- ---------
.X --- >I I -- I ----------------- >1 . I -- I --- >1 - I / I

------ - ------- > -- I ------ -- I ------
V V

C d I

--------- ---------
---------------- I------ >1 . I -- I ---- >1 . I I

V V

a b
z --- >1 I -- I ---------- -

--------- ---------
----------------------- >1 . I

V V

e

Figure 314: Effect of (def ine z (cons y (cdr x) on the lists in figure 3-12.

The set-cdrl operation is similar to set-carl. The only difference is that the cdr
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pointer of the pair, rather than the car pointer, is replaced. The effect of executing
(set -cdr I x y) on the lists of 312 is shown in figure -15. Here the cdr pointer of x has
been replaced by the pointer to (e f Also, the list (c d), which used to be the cdr of x is
now detached from the structure.

--------- --------- ---------

-- I ---
I
I
I
I
I
----

i

--------- ---------
------------------ >1

----------------- > --------- ---------

Y >1

V V

f

Figu re 31 5: Effect of (set-cdr I x y) on the lists in figure 312,

Observe th at c o n s bu i Ids new I ist structu re by creating new pai rs, whereas s t - c a r I and
set-cdrl modify existing pairs. Indeed, we could implement cons in terms of the two
mutatorstogetherwithaprocedure get-new-pairwhichreturnsanewpairthatisnotpart
of any existing list structure. We obtain the new pair, set its car and cdr pointers to the

14designated objects, and return the new pair as the result of the cons.

(def 1'ne (cons x y)
(let ((new (get-new-pair)))

(set-carl new x)
(set-cdrl new y)
new))

Exercise 31 1: The following procedure appends two lists:

(def ine (append x y)
(if (null? X)

Y
(cons (car x)

(append (cdr x y))

Append successively conses the elements of x onto y to form a new list. The appendl procedure is
similar to app end (if x is not n 7 but it is a mutator rather than a constructor. It appends the lists -by
actually splicing them together, modifying the final pair of x so that its cdr is now y.

14
Get-new-pair is one of the operations that must be implemented as part of the memory management required

by a Lisp implementation. We will discuss this in Chapter 5, s6etion 53.
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(define (appendl x y)
(set-cdr! (last x) y)
X)

Here I as t is a procedure that returns a pointer to the last pair in its argument:

(define (last x)
(if (null? (cdr x))

X
(last (cdr x))))

Consider the interaction

==>(define x '(a b))
X
==>(define y (c d))
y
==>(define z (append x y))
z
==>Z-
(a b c d)
==>(cdr x)
<eX >
==>('�efine w (appendl x y))
IV
==>w
a b c d
==>(cdr x)
<eXP2>

What are the expressions <exp > and exP2> printed by the interpreter? Draw box-and-pointer diagrams
to explain your answer.

Exercise 312: Consider the following make-cyc7e procedure, which uses the ast procedure
defined in exercise 31 1:

(define (make-cycle x)
(set-cdrl (last x) x)
X)

Draw a box-and-pointer diagram that shows the structure created by

(define z (make-cycle '(a b c)))

Whathappensifwetrytocompute(last z)?

Exercise 31 3 The following procedure is quite useful, although obscure:

(define (mystery x)
(define (loop x y)

(if (null? x)
y
(let ((temp (cdr x)))

(set-cdrl x y)
(loop temp x))))

(loop x nil))

Notice tat loop uses the temporary variable temp to hold the old value of the cdr of x, since the
set-cdrl on the next line destroys the cdr. Explain what mystery does in general. Sppose we
execute the commands:

==>(deflne v '(a b c d))
==>(define w ('mystery v))

What are v and w bound to now?
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Sharing and identity
We already mentioned'in section 31.2 the theoretical issues of "sameness" and "change"

raised by introducing assignment. These issues arise in practice when individual pairs are
shared among different data objects. For example, consider the structure formed by:

(def ine x (I i st I a b))
(define z1 (cons x x))

As shown in figure 316, z1 is a pair whose car and cdr both point to the same pair x. This
sharing of x by the car and cdr of z is a consequence of straightforward way in which cons
is implemented. In general, using cons to construct lists will result in an interlinked structure
of pairs, in which many individual pairs are shared by many different structures.,

zi

V V
--------- ---------

X ---- >

V vl�

I a b I

Figure 31 6 The list zi formed by (consxx).

In contrast to figure 316, figure 3-17 shows the structure created by

(define z2 (cons lst la lb) (list la lb)))

In this structure, the pairs in the two (a b) lists are distinct, athough the actual atoms are
shared.

-- - - - - - - - - -- - - - - - - - - - - -- - - -

- - -- - - - - - - - -- - -> >z2 ---- >
-- I

I

I

I

I

I

I

I
> >

7.
--------- ---------

Figure 317: Thelistz2formedby(cons (77'st la lb) (71st la lb)).

When interpreted as a list, z1 and z2 both represent "the same" list, ((a b) a b) In
general, sharing is completely undetectable provided we operate on lists using only. cons,
car, and cdr. However', if we allow mutators on list structure, sharing becomes significant.
As an example, consider the following procedure, which modifies the car of the structure to
which it i's applied.

, . , 11, " , .- ) � � �, � � , -, �,� - t, ', � -" ; "i , -" � -,',. I - i I �, , - �, I ', - � � Y. I ' .: -. c 11 1! , , 1; � �_ ., ; � -, � �j , t 11 ', " ", T 
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(def'ine (set-to-wowl X)
(set-carl (car x) 'wow)
X)

Even though z1 and z2 are "the same" tree structure, set-to-wowl applied to them yields
different results. With z1, altering the car also changes the cdr, since in z1, the car and the
cdr are the same pair. With z2, whose car and cdr are distinct, only the car is modified by
set-to-wowl:

-- >zl
((a b) a b)

-- >(Set-to-wowl z1)
((wow b) wow b)

==>z2
((a b) a b)

==>(set-to-wowl z2)
((wow b) a b)

One way to detect sharing in list structures is to use the predicate eq?, which we
introduced in section 22.3 as a way to test if two symbols are equal. More generally,
(eq? x y) tests whether x and y point to the same object. Thus, with z1 and z2 as defined
in figures 316 and 317, we would have

(eq? (car z1) (cdr z1))

is true, while

(eq? (car z2) (cdr z2))

is false.

As we will see in the following sections, we can exploit sharing to greatly extend the
repertoire of data structures that can be represented using pairs. On the other hand, sharing
can also be dangerous, since modifications made to structures will also be "visible" to other
structures tat may share the modified parts. In general, the mutation operations set-carl
and set-cdrl should be used with care; for, unless we have a good understanding of how
our data objects are shared, mutation can have unanticipated results.15

Exercis e3-14: Drawbox-and-pointerdiagrams to explain the effect ofset-to -wow Ion the structures
z I and z 2 above.

15
The problems in dealing wth sharing of mutable data objects reflect the underlying issues of "sameness" and

"change" thatwe mentioned in section 31.2. As long as we never modify data objects, we can regard a compourd
data object to be precisely the totality of its pieces. For example, a rational number is precisely specified by giving ift-
numerator and denominator. But this view is no longer valid once we allow mutation. For example, a bank account is
still the same"' bank account, even if we change the balance by making a withdrawal; and conversely, we could
have two different bank accounts with the same state information. Accordingly, a mutable compound data object -has
an "identity" that is something different from the pieces from which it is composed. In Lisp, we consider tis
"identity" to be the quafity that is tested by e q , i.e., by euality Of pointers. Since in most Lisp implementations, a

pointer is essentially a memory address, we are therefore "solving" the problem of identity by stipulating that a data.
object "itself is the information stored in some particular set of memory locations i the computer. This suff ices for
simple Lisp programs, but is ha rdly a general solution to the problem of "sameness" in computational models.
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Exercise 31 5: Ben Bitdiddle decides to write a procedure to count the number of pairs in any list
structure. "It's easy," he reasons. "The number of pairs in any structure is the number in the car plus
the number in the cdr plus one more to count the current pair. And the number of pairs for an atom
(including n 7 is zero." So Ben writes the following procedure:

(define (count-pairs x)
(if (atom? x)

0
(+ (count-pairs (car x))

(count-pairs (cdr x))

M)

Show that this procedure is not correct. In particular, draw box and pointer diagrams representing list
structures made up of exactly 3 pairs for which Ben's procedure would return 3 return 4 return 7 never
return at all.

Exercise 316: Devise a correct version of the count-pairs procedure of exercise 35 which will
return the number of distinct pairs in any structure. (Hint: Traverse the structure, maintaining an
auxiliary data structure which is used to keep track of which pairs have already been counted.)

Write a procedure that examines a list and determines
whether or not it contains a cycle, that is, it its 11tail''
points back within the list itself.

Redo exercise with an iterative process that uses
only two state variables. (This requires a very clever idea.)

Mutation is just assignment
Wh-Qn we introduced compound data in Chapter 2 we showed in section 21.3 that we

could construct compound data using only procedures as building blocks, as in the following
implementation of pairs.

(define (cons x y)
(define (dispatch m)

(cond ((eq? m 'car) x)
((eq? m cdr) y)
(else (error Undefined operation CONS" m))))

dispatch)

(define (car z) (z 'car))

(define (cdr z) (z cdr))

The same observation is true for mutable data. We can implement mutable data ob'ects as
procedures using assignment and local state. For instance, we can extend the above pair
implementation to handle set-carl and set-cdrl in a manner analogous to the way we
implemented bank accounts using make-account in section 31.1.
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(define (cons x y)
(define (set-xl v) (setl x v))
(define (set-yl v) (setl y v))
def i ne (dispatch m)

(cond ((eq? m 'car) x)
((eq? m cdr) y)
((eq? m set-carl) set-xl)
((eq? m 'set-cdrl) set-yl)
(else (error "Undef ined operation CONSO MM)

dispatch)

(define (car z) (z 'car).)

(define (cdr z) (z cdr))

(def line (set-,car I z new-value)
((Z 'set-carl) new-value)
Z)

(define (set-cdrl z new-value)
((z 'set-cdrl) new-value)
Z)

As we see, assignment is all that is needed, theoretically, to account for the behavior of
mutable data, and to illustrate all of the problems inherent in mutability. On the other hand,
from an implementation point of view, assignment requires us to modify the environment,
which is itself a mutable data structure. Thus assignment and mutation are equipotent: each
can be implemented in terms of the other. In principle, we need only one means of changing
the state of an object.

Exercise 317: Draw environment diagrams to illustrate the evaluation of the sequence

(define x (cons'l 2)
(define z (cons x x))
(set-car! (cdr z) 17)

==>(car x)
17

using the procedural implementation of pairs given above. (Compare exercise 310.)

3.3.2. Representing ueu es

The mutators se t -car'l and set-cdr I enable us to use pairs to construct data structures
that cannot be built using cons, car and cdr alone. In this section show how to use pairs to
represent a data structure called a queue. In section 33.3 we will see how to represent.
tables.

A queue is a sequence in which items are inserted at one end, called the rear of the queue,
and deleted at the other end, called the front the queue. Figure 318 shows an initially empty
queue in which the items a and b are inserted. Then a is removed, c and d are inserted, and b
is removed. Notice that itemsare always removed in the order in which they are inserted. For
this reason, a queue is sometimes called a FIFO (first in, first out) buffer.
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Operation Resulting queue

(define q (make-queue))

(insert-queuel q la) a

I(insert-quoual q b) a b

(delete-queuel q) b

(insert-quoue q c) b c

(insert-quoue q Id) b c d

(delete-queuel q) c d

Figure 318: Queue operations

In terms of data abstractions, we can regard a queue as defined by the following set of
operations

a constructor

make-queue -- Takes no inputs and returns an empty queue, i.e., a queue
containing no items.

two selectors

• empty-queue? -- Takes a queue as input, Returns t if the queue is empty and
n 1 7 otherwise.

• f ron t -- Takes a queue as input and returns the object at the front of the queue.
Signals an error if the queue is empty. Does not modify the queue.

and two mutators

0 insert-queue I -- Takes a queue and an object as inputs. Inserts the object in
the queue (at the rear of the queue). Returns the modified queue as its value.

* de 7ete-queue I -- Takes a queue as input and removes the item at the front of
the queue. Returns te modified queue as its value.

Since a queue is a sequence of items, we could certainly represent it as an ordinary list the
front of the queue would be the car of the list, and inserting an item in the queu .e would
amount to appending a new element at the end of the list. But this representation is inefficient
because, in order to insert an item, we must scan the list until we reach the end. Since the
only method we have for scanning a list is by SUccessive cdr operations, this scanning
requires OW time for a list of n items. Now we will see how making a simple modification to
the list representation avoids this problem, allowing the queue operations to be implemented
so that they require 00) time; that is, so that the time needed is independent of the length of
the queue,

The problem with the list representation lies 'in the need to scan the list, and the reason we
need to scan is that, although representing a queue as a list provides 'us with a pointer to the
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front of the list, it gives us no easily accessible pointer to the rear. So the modification that
solves the problem is to represent the queue as a list, together with an additional pointer that
indicates the final pair in the list. That way, when we go to insert an item, we can consult the
rear pointer, and so avoid the need to scan the list.

A queue is represented, then, as a pair of pointers, front-ptr and rear-ptr, which
indicate, respectively, the first and last pairs in an ordinary list. Since we would like the queue
to be considered a single object, we can use cons to combine the two pointers. Thus the
queue itself will be the cons of the two pointers. Figure 319 illustrates this representation.

q-->l I -- I --------------------
-- I ------ I

front-ptr I rear-ptr
V V

--------- ---------
I -- I --- >1 . I -- I ---- >1, I I

V V V

a b C

Figure3-19: mplemetitationofaqueueasalistwithfrontandrearpointers.

To help us define the queue operations, we use the following procedures that enable us to
select and to modify the front and rear pointers of a queue:

(define (front-ptr queue) (car queue))

(def ine (rear-ptr queue) (cdr queue))

(define (set-front-ptrl queue item) (set-carl queue item))

(define (set-rear-ptrl queue tem) (set-cdrl queue tem))

Now we can implement the actual operations. We will consider a queue to be empty if its
front pointer is n 7 .

(define (empty-queue? queue) (null? (front-ptr queue)))

The make -queue constructor returns, as an initially empty queue, a cons of two n Is.

(define (make-queue) (cons nl nil))

To select the item at the front of the queue, we return the car of the pair indicated by the front
pointer:

(define (front queue)
(if (empty-queue? queue)

(error "FRONT called with an empty queue" queue)
(car (f ront-ptr queue))))

To insert an item in a queue, we follow te method whose result is indicated in figure 320.
We first create a new pairwhose car is the item to be inserted and wose cdr is n 7 7 If the
queue was initially empty, we set the front and rear pointers of the queue to this new pair.
Otherwise, we modify the final pair in the queue to point to the new pair, 'and also set the rear
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pointer to the new pair,

(define (insert-qLjeuel queue item)
(let ((new-pair (cons item nil)))

(cond ((empty-queue? queue)
(set-front-ptr! queue new-pair)
(set-rear-ptrl queue new-pair)
queue)

(else
(set-cdrl (rear-ptr queue) new-pair)
(set-rear-ptrl queue new-pair)
queue))))

q-->l I -- I ----------------------------------
-- I ------ I

front-ptr I rear-ptr
v v

--------- --------- --------- ---------

-- I --- >1 I I

v v v v
----- ----- -----

a b C d

Figure 320: Resultof (Insert-queuel q 'd) on the queue of figure 319.

To delete the item at the front of the queue, we merely modify the front pointer, so that it
now points at the second item in the queue, which can be found by following the cdr pointer
of the first item. Note that if the first item is the final item in the queue, the front pointer will be
n 7 after the deletion, which will mark the queue as empty; we needn't worry about Updating
the rear pointer, which will still point to the deleted item. If the queue is empty before the
deletion, the procedure signals an error.

(define (delete-queuel queue)
(cond ((empty-queue? queue)

(error "Delete called wth an empty queue" queue))
(else
(set-front-ptrl queue (cdr (front-ptr queue)))
queue)))

q-->l I -- I ----------------------------------

------------
I front-ptr I rear-ptr
v v

--------- - --------- --------- ---------
I -- I --- >1 I I

v v v v

I a b C I I d

Figure 321: Result of (do 7ete-queu I q) on the queue of figure 320. I



182 DRAFT: 31 JULY 1983 Modularity, Objects, and State

Exercise 318: Ben Bitdiddle decides to test the queue implementation described above. He types in
the procedures to the Lisp interpreter and proceeds to try them out:

==>(define q1 (make-queue))
q1

==>(insert-queuel q1 'a)

((a) a)

=O(insert-queuel q1 'b)
((a b) b)

=O(delete-queuol q1)
((b) b)

=O(delete-queuel 1)
(07 b)

"It's all wrong!" he complains. "The printout shows that the last item gets inserted into the queue twice.
And when I deleted both items, the second b is still there, so the queue isn't empty, even though it's
supposed to be." Eva Lu Ator suggests that Ben has misunderstood the problem. "It's not that the items

are going into the queue twice." she explains. "It's just that te standard Lisp printer doesn't know how
to make sense of the eue representation. If you want to see the queue printed correctly, you'll have to
define your own print procedure for queues." Explain what Eva Lu is talking about. In particular, show
why Ben's queue examples produce te printout that they do. Define a procedure print-queue that
takes a queue as input and prints the sequence of items in the queue.

Exercise 319: Instead of representing a queue as a pair of pointers, we can build a queue as a
procedure with local state. The local state will consist of pointers to the front and rear of an ordinary list.
Thus the make-queue procedure will have the form

(define (make-queue)
(let ((front-ptr ...

(rear-ptr ...
<definitions of internal procedures>
(define (dispatch m) ...
dispatch))

Complete the definition of make-queue and provide implementations of the queue operations using thi's
representation.

Exercise 320 A deque ("double-ended queue") is a data structure consisting of a sequence in which
items can be inserted and deleted either at the front or the rear of the sequence. The data access�,
operations are make-deque, empty-deque?, front-deque, rear-deque, front-insert-dequel,

rear-Insert-dequel, front-de7ete-dequel, and rear-de7ete-dequel. Show how to
represent deques using pairs, and give implementations of the operations. All operations should be

accomplished in ON) time.

3.3.3. RepresentingTables

When we studied various ways of representing sets in Chapter 2 we mentioned in section
2.2.5 the problem of maintaining a table of records indexed by identifying keys, In the
implementation of data-directed programming in section 23.3, we made extensive use of
two-din7ens.ional tables, in which information is stored and retrieved using a pair of keys. Here
we see how to build tables as mutable list structures.

We first consider one-dimensional tables, in which each value is stored under a single key,
We build he table as a list of pairs <key, va 7 ue>, with an additional pair added at the
beginning of the list. Adding the extra pair, a technique known as building a headed list, is a,
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useful trick in dealing with mutable lists, since it provides us with a fixed pair to change when
we want to add something at the beginning of the list. Figure 322 shows the box-and-pointer
diagram for the table

<a, 1> <b$ 2> <c, D

table

V
--------- --------- --------- ---------

-- I ------ >1 I -- I ------ >1 I / I

V V V V
--------- --------- --------- ---------

I*tablo*l I I - I I - I I I - I I

a 1 b 2 c I
----- -----

Figure 322: A table represented as a list of pairs,

To extract iformation from a table, we use the 7ookup procedure, which takes a key as
argument and returns the associated value, or n 7 if there is no value stored under that key.
Lookup is defined in terms of the assq operation, which expects a key and a list of pairs as
arguments. Assq returns the pair that has the given key as its car. Lookup then checks to
see that the pair is not null, then returns the cdr of the pair, which, as shown in figure 322 is
the value that is stored under the key.

(define (lookup key table)
(let ((pair (assq key (cdr table))))

(if (null? pair)
nil
(cdr 'Pair))))

(define (assq key pairs)
(cond ((null? pairs) nl)

((eq? key (caar pairs)) (car pairs))
(else (assq key (cdr pairs)))))

To inserta value in' a table under a specified key, we first use assq to see if there is already
a pair in the table with this key. If not, we form a new pair by consing the key with the value,

and insert this at the head of the table's list of pairs. If there already is a pair with this key, we

set the cdr of thi.s pair to the designated new value. Note how the header of the table

provides us with a fixed item t modify in order to insert the new pair. Thus, the same pair

always starts the table, and n s e r t I needn't return a new value for the start of the table when
it adds a new pair.
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(define (insertl key value table)
(let ((pair (assq key (cdr table))))

(if (null? pair)
(set-cdrl table

(cons (cons key value) (cdr table)))
(set--cdrl pair value))))

To construct a new table, we simply create a header'pair, with the (arbitrarily chosen)
symbol * t ab I e * as its ca r.

.(def ine (make-table)
(cons '*table* nil))

Two-dimensional tables
In a two-dimensional table, each value is indexed by a pair of keys. We can construct such

a table as a one-dimensional table in which each key identifies a subtable. When we look up
an item, we se the first key to identify the correct subtable. Then we use the second key to
identify the pair within the subtable. (Note that the pair containing the first key and the
subtable serves as the header of the subtable.)

(define (lookup key-1 key-2 table)
(let ((subtable (assq key-1 (cdr table))))

(if (null? subtable)
nil
(let ((pair (assq key-2 (cdr subtable))))

(if (null? pair)
nil
(cdr pair))))))

To insert a new item under a pair of keys, we use ass q to see if there is a subtable stored
under the first key. If not, we build a new subtable containing the single pair <key-2,
va I ue> and add it to the table. If a subtable already exists for the first key, we add the new
pair to this subtable, using the insertion method for one-dimensional tables described above.

(define (insertl key-1 key-2 value table)
(let ((subtable (assq key-1 (cdr table))))

(if (null? subtable)
(set-cdrl table

(cons (cons key-1
(cons (cons key-2 value) nil))

(cdr table)))
(let ((pair (assq key-2 (cdr subtable))))

(if (null? pair)
(set-cdrl subtable

(cons (cons key-2 value)
(cdr subtable)))

(set-cdrl pair value))))))

Creating local tables
The 7ookup and insert I operations defined above take the table as an argument, which

allows us to use systems that have more than one table. Another way to deal with multiple
tables is to have separate 7ookup and insert I procedures for each table. We can do this
by representing the table procedurally as an object that maintains an internal table as a local
state variable, and which, when asked, will supply the appropriate procedures with which to
operate on the table. Here is. a generator for two-dimensional tables implemented in this
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fashion.

(define (make-table)
(lot ((local-table (cons '*table* nil)))

(define (lookup key-1 key-2)
(let ((subtable (assq key-1 (cdr local-table))))

(if (null? subtable)
nil
(let ((pair (assq ky-2 (cdr subtable))))

if ( nul 1 ? pair)
nil
(cdr pair))))))

(define (insert! key-1 key-2 value)
(let ((subtable (assq key-1 (cdr local-table))))

(if ull? subtable)
(set-cdr! local-table

(cons (cons key-I
(cons (cons key-2 value) nil))

(cdr local-table)))
(let ((pair (assq key-2 (cdr subtable))))

(if (null? pair)
(set-cdrf subtable

(cons (cons key-2 value)
(cdr subtable)))

(set-cdrl pair value))))))

(define (dispatch m)
(cond ((eq? m lookup-proc) lookup)

((eq? m 'insert-proc!) insertlj
(else (error "Unknown operation -- TABLE" m))))

dispatch))

For example, we could implement the get and put operations used in section 2.3 for
data-directed programming, as follows:

(def ine operation-table (make-table))
(define get (operation-table lookup-proc))
( def i ne put (ope rat i on- tab e inse rt-p roc I 

Get takes as'arguments two keys, and put takes as arguments two keys and a value. Both
operations access the same local table, which is encapsulated within the object created by
the call to make-tab7e.

Exercise3-21: Inthetableimplementationsabove,thekeysaretested'forequalityusingeq?. Thisis
not always the appropriate test. For instance, with numerical keys, we should test equality using v.
(Whether or not two instances of the same number are eq? (i.e., represented by equal pointers) is highly
implementation dependent.) Design a table constructor make-tab7e that takes as an argument a
same-key?procedurethatwillbeusedtotestequalityof keys. Make-tab7eshouldreturnadispatch
procedurethatcanbeusedtoaccessappropriate 7ookupand insertl proceduresforalocaltable.

Exercise 322: Generalizing one- and two-dimensional tables, show how to implement a table in which
values are stored under an arbitrary number of keys, and where different values may be stored using
different numbers of keys. The 7ookup and insert I procedures should take as input a list of keys

used to access the table.

Exercise 323: In order to search a table as implemented above, one needs to scan through the list of
keys. This is basically the unordered list representation of section 22.5, For large tables, it may be more
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efficient to structure the table in a different manner. Describe a table implementation where the (<key>
<value>) pairs are structured using a binary tree, assuming tat keys can be ordered in some way (e.g.,
numerically or alphabetically). (Compare exercise 236 of Chapter 2)

Exercise 324: Memoization (also called tabulation) is a technique that enables a procedure to record,
in a local table, various values which have previously been computed. Using this technique can make a
vast difference in the performance of a program. A memoized procedure maintains a one-dimensional
table in which values of the function are stored using, as keys, the arguments that produced the values.
When the memo-function is asked to compute a value, it first checks the table to see if tile value is
already there and, if so, just returns that value. Otherwise, it computes the new value in the ordinary way
and stores this in the table.

As an example of memoization recall from section 12.2 the exponential process for computing

Fibonacci numbers:

(define (fib n)
(cond n 0) 0)

n 1)
(else (fib n 1))

(fib n 2))))))

The memoized version of the same procedure is

(define memo-fib
(memoize (lambda (n)

(cond n 0) 0)
n 1) 1)

(else (memo-fib n 1))
(memo-fib n 2)))))

where the memoizer is defined as:

(define (memoize f)
(lot ((table (make-table)))

(lambda (x)
(let ((seen (lookup x table)))

(if (not (null? seen))
seen
(let ((ans (f x)))

(insertl x, ans table)
ans))))))

Draw an environment diagram to analyze the computation of (memo-f ib ). Explain why memo-f ib
computes the nth Fibonacci number in time proportional to n. Why must the internally defined f ib
procedure call memo-f ib rather than f ib itself in order for this scheme to work? (To run memo-f ib we
should be sure that the table operations are constructed so as to test keys for numeric equality. See
exercise 321 above.)

3.3.4 A Simulator for Digital Circuits

The design of complex digital systems, such as computers, is an important engineering
problem. Digital systems are constructed by interconnecting simple elements. Athough the
behavior of these individual elements is simple, networks of them can have very complex
behavior. Computer simulation of proposed circuit designs is an important tool used by
digital systems engineers. In this section, we design a system for performing digital logic
simulations.

Our computational model of a circuit will be composed of objects that correspond to the
elementary components from which the circuit is constructed. There are wires, which carry
.digital signals. A digital signal may at any moment have only one of two possible values, and
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1. There are also various types of digital function boxes, which'connect wires carrying input
signals to other output wires. Such boxes produce output signals computed from their input
signals. The output signal is delayed by a time which depends on the type of the function box.

For example, an inverter is a primitive function box that inverts the sense of its input. If the
input signal to an inverter changes to 0, then one inverter delay later, the inverter will change
its output signal to 1. If the input signal to an inverter changes to 1, then one inverter delay
later, the inverter will change its output signal to 0. We draw an inverter symbolically as in
figure 3-23.

inverter and-gate or-gate

Figure3-23: Primitivefunctionsinthedigitallogicsimulator.

An and-gate, also shown in figure 323, is a primitive function box with two inputs and one
output. It drive's its output signal to a value which is the logical and of the inputs. That is, if
both of its input signals are then, one and-gate delay time later, the and-gate will force its
output signal to be a , and otherwise to be a . An or-gate is 'a similar two-input primitive
function box, which drives its output signal to a value which is the logical or of the inputs.
That is, the output will become if at least one of the input signals is 1, and otherwise the
output will become .

We can connect primitive functions together to construct more complex functions. This is
accomplished by wiring the outputs of some function boxes to the inputs of other function
boxes. For example, a half-adder circuit, shown in figure 324, is a circuit consisting of an

or-gate, two and-gates, and an nverter. It takes two input signals, A and B, and as two

output signals, and C. will become whenever precisely one of A and is 1, and C will

become henever A and are both 1. We can see from the figure that, due to the delays

involved, the outputs may be generated at different times. Many of tile dfficulties in the

design of digital circuits arise from thi's fact.
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Figure3-24: Ahalf-addercircuit.

, We now build a computational model corresponding to the conceptual structure of the
digital logic circuits we wish to study. We will have computational objects modeling the wires,
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which will "hold" the signals, The function boxes will be modeled by procedures that enforce
the correct relationships among the signals.

One basic element of our simulation will be a procedure make -w ire, which constructs new
wires. For example, we can construct six wires as follows:

(define a (make-wire))
(def ine b (make-wire))
(define c (make-wire))
(define d (make -wi re)
(define e (make-wire))
(define s (make-wire))

We attach a function box to a set of wires by calling a procedure for making that kind of
box, with the wires to be attached as its arguments. For example, given that we can construct
and-ga tes, or -ga tes, and in ver ters, we can wire up the half-adder shown in figure 324:

(or-gate a b d)
(and-gate a b c)
(inverter c e)
(and-gate d e s)

Better yet, we can explicitly name this operation to be a half-adder by defining a
procedure that constructs this circuit, given the four external wires to be attached to the
half-adder:

(def line half 'adder a b s c)
(let ((d (make-wire)) (e (make-wire)))

(or-gate a b d)
(and-gate a b c)
(inverter c e)
(and-gate d e s)))

The importance of this way of proceeding is that we can now use h a 7 f - a dde r 'Itself as a
building block in creating more complex circuits. Figure 25, for example, shows a
full-adder, which is composed of two half-adders and an or-gate.16 We can construct a full-
adderas

(define (full-adder a b c-in sum c-out)
(let ((s (make-wire))

(cl (make-wire))
(c2 (make-wire)))

(hal f -adde r b c- i n s c I')
(half-adder a s sum c2)
(or-gate cl c2 c-out)))

Having defined f 7 -ad der as a procedure, we can now use it in turn as a building block for
creating still more complex circuits. (For example, see exercise 327.)

16A full-adder is a basic circ it element used in adding two binary numbers. A and'b are the bits at corresponding
positions in the two numbers to be added, and c - in is the carry bit from the addition one place to the right. The
circuit generates sum, which is te sum bit in the corresponding position, and c-out, which is the carry bit to be
propagated to te left.
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Figure 325: Afull-addercircuit.

In essence our simulator provides us with the tools to construct a language of crcuits If
we adopt the general perspective on languages with which we approached the study of Lisp
in section 1.1 , we can say that the primitive function boxes form the primitive elements of the
language, that wiring boxes together provides a means of combination, and that specifying
wiring patterns as procedures serves as a means of abstraction.

Primitive Function Boxes
The primitive function boxes implement te "forces" by which a change in te signal on

one wire influences te signals on other wires. To build these, we use the following
operations on wires:

(get-signal <wire>)
Returns the current value of the sgnal on the wire.

(set-signall <wire> <newva1ue>)
Changes the value of the signal on the wire to the new value.

(add-actionl <wire> procedureofnoarguments>)
Specifies that the designated procedure should be run whenever the
signal on the wire changes value. Such procedures are the vehicles by
which changes in the signal value on the wire are communicated to other
wires.

In addition, we will make use of a procedure, af ter-delay, which takes a time delay and a
procedure to be run, and which executes the given procedure after the given delay.

Using these procedures, we can define the primitive logic functions. o connect an Input
to an output through an Inverter, we use add-act on I to associate with the input wire a
procedure that will be run whenever the signal on the input wire changes value. The
procedure computes the 7ogica7-not of the input signal, and then, after one
inverter-de7ay,setstheoutputsignaltobethisnewvalue:i7

17
We also need a procedure og ica 7 -not:

(define (logical-no -t s)
(cond s 0) 1)

S ) 0)
(else (error "Invalid signal" sM)

together with analogous procedures 7og ica 7 -and and log fca 7-or.
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(define (inverter input output)
(define invert-input)

(let ((new-value (logical-not (get-signal nput))))
(after-delay inverter-delay

(lambda 
(set-signall output

new-val ue)
(add-actionl input invert-input))

An and-gate is more complex. The action procedure must be run if either input changes.
It computes the I og 7ca I -and of the values of the signals on the input wires and sets up a
change to the new value to occur on the output wire after one and-ga te-de lay.

(define (and-gate al a2 output)
(def ine (and-action-procedure)

(let ((new-value
(logical-and (get-signal al) (get-signal a2))))

(after-delay and-gate-delay
(lambda ()

(set-signall output new-value)))))
(add-actionl al and-action-procedure)
(add-act.ionl a2 and-action-procedure))

Exercise 325: Define an or-gate as a primitive function box. Your definition should be similar to the
one for and-gate.

Exercise 326: Another way to construct an or-gate is as a compound digital logic device, built from
and-gates and inverters. Define a procedure or-gate which accomplishes this. What is the delay time
of the or-gate in terms of and-gate-de7ay and inverter-delay'.)

Exercise 327: Figure 326 shows a ripple-carry adder formed by stringing together n full-adders. This

is the simplest form of parallel adder for adding two n-bit binary numbers. The inputs a I a2 a3 ... a n and
b Ib2 b3' bn are the two binary numbers to be added (each a k and bk is a or a 1). The circuit
generates s S2S 3 1 1 1, Sn, the n bits of the sum, and c, the carry -from the addition. Write a procedure
ripp le-carry-adder that generates this circuit. The procedure should take as arguments three Hists
of n wires each -- the a ky the b k9 and the s k " and also another wire c. The major drawback f the
ripple-carry adder is that it is slow, due to the need to wait for the carry signals to propagate. 'What is the
delay needed to obtain the complete output from an n-bit ripple-carry adder, expressed in terms of the
delays for and-gates, or-gates, and inverters?

A, A, s 
1

* FA

a 0

F'Igu re 326: A ripple-tarry adder for n-b't numbers.
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Representing wires
A wire in our simulation will be a computational object with two local state variables: a

signa7-va7ue iitially taken to be 0) and a collection of action-procedures to be run
when the signal changes value. We implement the wire as a collection of local procedures,
together with a dispatch procedure that will select the appropriate local operation, just as
we did with the simple bank account object in section 31.1.

(define (make-wire)
(let ((signal-value 0) (action ocedures nil))

.(define (set-my-signal! new-value)
(if (not (eq.? signal-value new-value))

(sequence (setl signal-value new-value)
(call-each action-procedures))

'done))

(define (accept-action-procedure proc)
(setl action-procedures

(cons proc action-procedures))
(proc))

(define dspatch m)
(cond (eq? m I get-s ignal s ignal -val ue)

((eq? m set-signalt.) set-my-signall)
((eq? m add-actionl) accept-action-procedure)
(else (error "Unknown operation -- WIREtf MM)

dispatch))

The local procedure set-my-s igna I sees if the new signal value changes the signal on the
wire. If so, it runs each of the action procedures, using the following procedure, which calls
each of the procedures in a list:

(define (call-each procedures)
(if (null? procedures)

nil
(sequence
((car procedures))
(call-each (cdr.procedures)))))

The local procedure accept-action-procedure adds the given procedure to the list of
procedures to be run, and then runs the new procedure once. (See exercise 328.)

With the local dispatch procedure set up as specified, we can provide the following
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procedures to access the local operations on wires: 18

(define (get-signal wre)
(wi re 'get-s ignal

(define (set-signall wire new-value)
((wire 'set-signall nw-value))

(define (add-action' wire action-procedure)
((wire 'add-actionl) action-procedure))

The agenda and driver loop
The only thing left to do to finish building our logic simulator is to construct af ter-de lay.

The idea here is that we maintain a data structure, called an agenda, which contains a
schedule of things to do in the simulated future. The particular agenda that we are using is
stored in the global variable the-agenda.

After-delayisaprocedurethataddsnewelementstotheagendastoredin the-a enda
using a mutator on agendas, add-to-agendal. The current simulation time is obtained
using the c u r r e n t - t me procedure.

(def line (after-del ay delay action)
(add-to-agenda! ( delay (current-tinie the-agenda))

action
the-agenda))

The simulator is driven by the procedure propagate which operates on the-agenda,
executing each procedure on the agenda in sequence. It presumes that the-agenda is a
data structure with certain operations defined on it, specifically:

,9mpty-agenda? Trueifthespecifiedagendaisempty.

first-agenda-item

Returns the first item on an agenda.

remover irst-agenda-iteml

Modifies the agenda by removing the first item.

In general, as the simulation runs, new items will be added to the agenda, and propagate

will continue the simulation as long as there are items on the agenda:

18These procedures are simply "syntactic sugar" that allow us to use ordinary procedural syntax to access the
local procedures of objects. It ay seem curious that we can interchange the role of "procedures" and "data" in
such a simple way. For example, if we write

(wire 'get-signal)

we think of wire as a procedure that is called with the message get -s Igna 7 as input. Alternatively, writing

(get-signal wire)

encourages us to think of wire as a data object that is the input to a procedure gt s igna 7 The truth of the matter
is that, in a language where we can deal with procedures as objects', there is no fundamental difference between
"Procedures" and "data," and we can choose our syntactic sugar to allow us to program in whatever style we
choose.
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(define (propagate)
(if (empty-agenda? the-agenda)

'done
(let first-item first-agenda-item the-agenda)))

(first-item)
(remove-first-agenda-iteml the-agenda)
(p ropag ate)

A sample simulation
To show the simulator in action, we use the following procedure, which places a "probe"

on a wire. This tells the wire that, whenever its signal changes value, it should print the new
signal value, together with the current time and an identifying name.

(define (probe name wire)
(add-actionl wire

(lambda
(print name)
(princ (current-time the-agenda))
(princ 11 New-value = 
(princ (get-signal wre)))'))

We begin by initializing the agenda and specifying delays for the primitive function boxes:

(define the-agenda (make-agenda))
(define inverter-delay 2)
(define and-gate-delay 3)
(def ine or-gate-del ay )

Now we define four wires, placing probes on two of them:

(define input-1 (make-wire))_
(define input-2 (make-wire
(define sum (make-wire))
(define carry (make-wire))

==>(probe 'sum sum)
�SUM 0 New-value 0

==>(probe 'carry carry
CARRY New-value 

Next, we connect the wires in a half-adder circuit, as shown in figure 324, set the signal on
input - to and run the simulation:.

(half-adder input-1 input-2 sum carry)
(set-signall input-I 1)

=0(propagate)
SUM New-va7ue I
DONE

As shown, the sum signal changes to at time 8. We are now time units from the beginning
of the simulation. At this point, we can set the signal on i npu t - 2 to and allow the values to
propagate:
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(set-signall input-2 1)

-0(propagate)
CARRY 11 New-value 1
SUM 16 New-value = 
DONE

Asshownthecarrychangestolattimellandthesumchangesto0attimel6.

Exercise 328: The internal procedure accept-action-procedure used by make-wire specifies
that whenever a new action procedure is added to a wire, the procedure is first run. Explain why this
initialization is necessary. In particular, trace through the half-adder example in the paragraphs above
and sayhowthesystem'sresponsewould differif we haddefined accept-action-procedureas

(define (accept-action-procedure proc)
(setl action-procedures (cons proc action-procedures)))

Implementing the agenda
Finally, we give details of the agenda data structure, which holds the procedures that are

scheduled for future execution. There are the following operations for manipulating agendas:

We can add a new action to an agenda to be considered at a (future) simulation tme with
(add-to-agenda I <time> <action> agenda>). We can get the current simulation time
with (current-time <agenda>). We can get the current action from the agenda with
(f irst-agenda- item <agenda>). We can delete the current action from the agenda wth
(remove-first-agenda-fteml <agenda>). And we can determine that we are finished
with (empty-agenda? <agenda>).

The agenda is made up of time segments. Each time segment is a pair consisting of a
number (the time) and an associated queue that holds the procedures that are scheduled to
be run during that time segment.

(define (make-time-segment time queue)
(cons tme queue))

(define (segment-time s) (car s))

(define (segment-queue s) (cdr s))

We will operate on the time segment queues using the queue operations described in section
3.3.2.

The agenda itself is a one-dimensional table of time segments. It differs from the tables
described in section 33.3 in that the segments will be sorted in order of increasing time. We
construct a new agenda as a headed list with an initial empty time segment at the initial time.

(define (make-agenda)
(cons '*agenda*

(cons (make-time-segment 0 (make-queve))
nil)))

The current time will always be the time associated with the first time segment on the
agenda.

(define (segments agenda) (cdr agenda))
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i i

(define ffirst-segment�'agenda) (car (segments agenda)))

(define (rest-segmentsagenda) (cdr (segments aenda)))

(define (set-segmentsl agenda segments)
(set-cdrl agenda segments))

(define (current-time agenda)
(segment-time (first-segment agenda)))

An agenda is empty when the first segment has an empty queue and there are no more
segments to be executed:

(define (et�pty-agenda?-agenda
(and (empty-queue? (segment-queue (first-segment agenda)))

(null? (rest-segments agenda))))

To add an item to the agenda, we scan the agenda looking at the tme of each segment. If
we find a segment for our appointed time, we add our action to the associated queue. If we
hit the end of the agenda, we must create's new time segment at the end. If we hit a time later
than the one we are appointed to we must ust insert a new time segment into the dg6nda
just before it, Otherwise we continue scanning. Note th -at the appointed time can ne'v'er be
earlier, than the time of the first agenda segment (the current tme).

(define (add-to-agendal,'time action agenda)
(if (segment-time (first-segment agenda)) tme)I -segment agpn.(insert-queuel (segment-queue frst d a

action)
(cond ((null? (rest-segments agenda))

(insert-new-timel time action (segments agenda)))
(se'gment-time (car (rest-segments agenda))

time)
(insert-new-timel time

action
(segments agenda))

(else -to-age ime(add ndal 1�
action
(segments agenda)))))))

Inserting anew time segment is accomplished by editing the top-level.structure of the
agenda.

(define (ins'ert-new-t'mel time action segments)
(let ((q (make-queue)))

insert-queue! q action)
(set-cdrl segments

(cons (make-time-segment time q)
(cdr segments)))))

The procedure that removes the first item front the agenda assumes the first item will
always be at the front of the queue in the first segment of the agenda.
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(def ine ( remove-f 1'.rst-ag'enda.--;i teml, agemda)
(delete-queuel (segment-queue (first-segment agenda))))

The fact that the first agenda item must always be in the first segment of the agenda is
arranged by the procedure that findsA new first item. The implementation assumes that this
procedure will not be called if the agen0a is empty.

(def line (f i rst-agenda- item agenda)
(let ((q'(segment-queue first-segment agenda))))

(if (empty-queue? q)
(sequen2cei(set-segmentsl agenda (rest-segments agenda)))

-agenda-'tem agenda))
(first

f ront q)

3.3.5. Propagation of Constraints

Computer programs are traditionally organized in terms of one-directional computations
They perform operations on pre--specified arguments to produce desired outputs. On the
other hand, we often model systems in terms of relations among quantities. For example,,A,
mathematical model of a mechanical structure might include the information that te
deflection d of a metal rod is related to the force F on the rod, the length L of the rod,,thq-;,
cross-sectional area A, and the elastic modulus E via the equation

d A E = F 'Li,.

Such an equation is not one-directi'onal. Given any four of the quantities, we can use it to
compute the fifth. Yet translating the equationinto a traditional computer language would.11
force us to choose one of the quantities to be computed in terms of the other four. Thus a
procedure for computing the area, A could not be used to compute the deflection d, even

'7 ; 19
though the computations of A and, d arise from the same equation.

In this section, we sketch the design of a language that enables us to work in terms of
relations themselves. The primitive elements of the language are primitive constraints, which
express that certain relations must hold between quantities. For example,_.,

(adder a b c)--

specifies that the quantities a, b, and c must be related by the equation ab=c. Other
primitive constraints are

(Multiplier x Z)
which expresses the constraint xy z,'and

(constant <number> x)

which says that the value of x must be equal to the designated number.

Our language provides a means of combining Orimitive constraints in order to express more

19 This idea first appeared in the incredibly forw- ard-looking SKETCHPAD system by Ivan Sutherland 1963!) [7].
A beautiful constraint propagation system was developed by Alan Borning 3 at Xerox Palo Alto Research Center

based on the Smalitalk language. Sussman, Stallman, and Steele applied this idea to electrical circuit analysis
[45, 46]. TKISolver, an excellent commercial system of this sort developed by Software Arts, Inc., became available

for use on personal computers in 1983.'
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complex relations. We combine constraints by constructing constraint networks, n which-'
constraints are joined via connectors. A connector is an ob'ect which "holds" a value that
may participate in one or more constraints. For example, we know that the relationship
between Fahrenheit and Centigrade temperatures is

9 C = 5 (F - 32)

Such a constraint can be thought of as a network, shown in figure 327, consisting of primitive
adder, multiplier, and constant constraints.

V ---------
C ------ IMI m1l ------------- Jal

I pi --------- 1P I I + sl ------- F
---- IM2 1 1 m2l-- --- Ja2 I

--------- --------- I ---------
W X I Y ------

------- ------- I 1 32 1
--- I 9 I I 6 ------

------- -------

Figure 327: The relation 9 C - (F -32) expressed as a constraint network.

In the figure, we see on the left a multiplier box with three terminals, labeled ml, m, and p.
These connect the -multiplier to the rest of the network as follows: The ml terminal is linked to
a connector C, which will hold the Centigrade temperature. The m2'terminal is linked to a
connector w, which is also connected to a constant box that holds 9 The p terminal, which
the multiplier box constrains to be the product of ml and m2, is linked to the p terminal of
another multiplier box, whose m2 is connected to a constant and whose ml 'is connected to
one of the terms in a sum.

Computation by such a network proceeds as follows: When a connector is given a value (by
the user or by a constraint box to which it is linked), it awakens all of its associated constraints
(except for the constraint that just awakened it) to inform them that it has a value. Each

.awakened constraint box then polls its connectors to see if there is enough information to
determine a value for a connector. If so, the box sets that connector, which then awakens all
of its associated constraints, and so on. For instance, in the Centigrade/Fahrenheit
conversion, w, x, and y-are immediately set by the constant boxes to 9 5, and 32, respectively.
The connectors awaken the multipliers and the adder, which determine that there is not
enough information to proceed. If the user (or some other part of the network) sets C to a
value, say 25, the leftmost multiplier will be awakened, and it wl set u to 25*9 = 225. U then
awakens the second multiplier, which then sets v to 45. V awakens the adder, which sts F to
77.

Using the constraint system
To use the constraint system to carry out the temperature computation outlined above, we

first create two connectors, C and F, by calling the constructor make-connector, and link C
and F in an appropriate network:

(define C (make-connector))
(define F (make-connector))
(centigrade-f ahrenheit-converter C F)

The procedure that creates the network is defined as follows:
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(def line (centig rade-f ah renhe it'-converter c f
(let ((u (make-connector))

(v (make-connector))
(w (make-connector))
(x (make-connector))
(y (make-connector)))

(multiplier c w u)
(multipl ier v x u)
(adder v y f)
(constant 9 w)
(constant 5 x)
(constant 32 y)))

This procedure creates the internal connectors u, v, w, x, y, and links them as shown in figure
3-27, using the primitive constraint boxes adder, inu 7 t 7p 7 er, and con .s t an t. Observe
that, just as with the digital circuit simulator of section 33.4, expressing these combinations of
primitive elements in terms of procedures automatically provides our language with a means
of abstraction for compound objects.

To watch the network in action, we can place probes on the connectors C and F using a
probe procedure similar to the one we used to monitor wires in section 33.4. Placing a
probe on a connector will cause a message to be printed whenever the connector is given a
value.

(probe "Centigrade temp C)
(probe "Fahrenheit temp F)

Next we set the value of C to 25. (The extra argument tells C that this directive comes from the
user.)

---->(set-valuel C 25 'user)
Probe: Centigrade temp = 25
Probe,: Fahrenheit temp 77
done

The probe on C awakens and reports the value. C also propagates its value through the'
network as described above, which sets F to 77, as we can see from the probe on F.

Now we can try to set F to a new value, say 212:

==>(set-valuel F 212 'user)
Errorl Contradiction 77 212)

The connector complains that it has sensed a contradiction: Its value is 77 and someone is
trying to set it to 212. If we really want to reuse the network with new values, we can tell C to
forget its old value:

==>(forget-valuel C 'user)
Probe: Centigrade temp = 
Probe: Fahrenheit temp = 
.done

C finds that the user, who set its value originally, is now retracting that value. So C agrees to
lose its value, as shown by the probe, and informs the rest of the network of this fact. This
information eventually propagates to F, which now finds that it has no reason for continuing

believe that its own value is 7. So F also gives up its value, as shown by the probe.
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Now that F has no value; we are free to set it to 212.

__>(set-valuel F 212 'user)
Probe: Fahrenheit temp = 212
Probe.- Centigrade temp = 0
done

This new value, when propagated through the network, entails that C must have a value'of
100, and this is registered by the probe on C. Notice that the very same network is being used
to compute C given F, and also F given C. Indeed, this "non-directionality of computation" is
the distinguishing feature of constraint-based systems.

Implementing the constraint system
The constraint system is implemented using procedural objects with local state 'in a manner

very similar to the digital circuit simulator of section .3.4. While the primitive objects of the
constraint system are somewhat more complex, the overall system is simpler, since there is no
concern about agendas and logic delays.

The basic operations on connectors are as follows:

(has-value? <connector>)
tells whether the connector currently has a value.

(get-va7ue <connector>)
returns the connector's current value.

(set-valuel <connector> <new-value> <nformant>
tells the connector that some informant is requesting it to set its value to a.
new value.

(forget-va7uel <connector> <retractor>)
tells the connector that some retractor is requesting it to forget its value.

(connect <connector> <new-constraint>)
tells the connector that it should participate in a new constraint.

Connectors communicate with constraints sing the procedures inform-about-value,
which tells the designated constraint that the connector has a value, and
inform-about-no-value,whichtelistheconstraintthattheconnectorhasiostitsvalue.

Here is the primitive adder constraint that is established between summands a and a2,
and a sum connector. The adder itself is implemented as a procedure with local state.
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(define (adder al a2 sum)
(define (process-new-value)

(cond ((and (has-value? al) (has-valuo? a2))
(set-valuel sum

(+ (get-value al) (get-value a2))
me))

((and (has-value? al) (has-value? sum))
(set-valuel a2

(get-value sum) (get-value al))
me))

((and (has-value? a2) (has-value? sum))
(set-valuel al

(get-value sum) (get-value a2))
me)

(def i ne p rocess-f o rget-val ue)
(forget-value! sum me)
(forget-value! al me)
(forget-valuel a2 me)
(process-new-value))

(define (me request)
(cond ((eq? request 1-have-a-value) process-new-value)

((eq? request 'I-lost-my-value) process-forget-valuo)
(else (error "Unknown request ADDER" request))))

(connect al me)
(connect a2 me)
(connect sum me)
me)

The adder's local procedureprocess-new-va7ue is called when the adder is informed that
one of its connectors has a value. The adder first checks to see if both al and 'a2 have
values. If so, it tells sum to set its value to the sum of the two addends. Notice that the
Mformant argument to set-va7uel is me, which is the adder object itself. If al and a2do
not both have values, then the adder checks to see if perhaps al and sum have values. If so,
it sets a2 to the difference of these two. Finally, if a2 and sum have values, this gives the
adder enough information to set al. If the adder is told that one of its connectors as lost a
value, it requests that all of its connectors now lose teir values. Then it runs
process-new-value. The reason for this last step is that one or more connectors maystill
have a value (e.g., the connector may have had a value that was not originally set by the
adder) and these values may need to be propagated back trough the adder.

The adder's internal me procedure acts as a dispatch to the local procedures. The
following "syntax interfaces" (see footnote in section 3.4) are used in conjunction with the
dispatch:

(define (inform-about-value constraint)
((constraint I-have-a-value)))

(define (inform-about-no-value constraint)
((constraint Ilost-my-value)))

Finally, the adder connects itself to the designated connectors, and returns as its value the
dispatch procedure me.

A u I t ip 7 er is very similar to an adder. Notice that it will set its product to if either 'of
the factors is 0, even if the other factor is not known.
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(define (multiplier ml m2 poduct)'
(def ine (process-new-value)

(cond ((or (and (has-value? ml) (get-value ml) 0))
(and (has-value? m2) (get-value m2) 0)))

(set-value! product me))
((and (has-value? ml) (has-value? m2))
(set-valuel product

(* (get-value ml) (get-value m2))
me))

((and (has-value? product) (has-value? ml))
(set-valuel m2

(/ (get-value product) (get-value ml))

me))
((and (has-value? product) (has-value? m2))
(set-valuel ml

(/ (get-value product) (get-value m2))

meM)

(define (process-forget-value)
(forget-value! product me)
(forget-valuel ml me)
(forget-valuel m2 me)
(process-new-value))

(define (me request)
(cond ((eq? request 'I-have-a-value) process-new-value)

((eq? request 'I-Iost-my-value) process-forget-value)
(else (error "Unknown request -- MULTIPLIER" request))))

(connect ml m)
(connect m m)
(connect product me)
me)

A constant constraint simply sets the value of the designated connector. Any
I-have-a-valueorl-7ost-my-valuemessagesenttotheconstantboxwillproducean
error,

(define (constant value connector)
(define (me request)

(error "Unknown request -- constant" request))

(connect connector me)
(set-valuel connector value me)
me)

Finally, a probe prints a message
connector:

(define (probe name connector)
(define (process-new-value)

(print "Probe:
(princ name)
(princ
(princ (get'value connector)))

(define'(process-forget-value)
(print "Probe:
(princ name)
(princ
(princ

about the setting or unsetting of the designated
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(define (me request)
(cond ((eq? request 'I-have-a-value) process-new-value)

((eq? request 'I-Iost-my-value) process-forget-value)
(else (error "Unknown request -- PROBE" request))))

(connect connector me)
me)

Representing connectors
A connector is represented as a procedural object with local state variables va 7 ue, the

current value of the connector, informant, the object that set the connector's value, and
cons tra in ts a list of the constraints in which the connector participates.

(define (make-connector)
(let ((value nil) (informant nil) (constraints nil))

(define (set-my-value newval setter)
(cond ((not (has-value? me))

(set! value newval)
(set! informant setter)
(for-each-except setter

inform-about-value
constraints))

((not = value newval))
(error "Contradiction" (list value newval)))))

(define (forget-my-value retractor)
(if (eq? retractor iformant)

(sequence (setl informant nil)
(for-each-except retractor

in-form.-about-no-value
constraints))))

(define (connect new-constraint)
(if not (tneniq new-constraint constraints))

(setl constraints (cons new-constraint constraints)))
(if (has-value? me)

(inform-about-value new-constraint)))

(define (me request)
(cond ((eq? request 'has-value?) (not (null? informant)))

((eq? request 'value) value)
((eq? request 'set-value!) set-my-value)

.((eq? request 'forget) forget-my-valuo)
((eq? request 'connect) connect)
(else (error "Unknown 'Operation -- CONNECTOR" request))))

me))

The connector's local procedure s e t -my- va 7 ue, is called when there is a request to set
the connector' s value. If the connector does not currently have a value, it will set its value and
remember as informant the constraint that requested the' value to be set. Then the
connector will notify all of its participating constraints, except for the constraint that
requested the set. This is accomplished using the following iterator, which applies a
designated procedure to all items in a list, except for a given one:
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.(define (for-each-except exception procedure list)
(define (loop items)

(cond ((null? items) 'done)
((eq? (car items) exception) (loop (cdr items)))
(else (procedure (car items))

(loop (cdr items)))))
(loop list))

If a connector is asked to forget its value, it runs the local procedure forget-my-value,
which first checks to make sure that the request is coming from the same object that set the
value originally. If so, the connector informs its associated constraints about the loss of the
value. The local procedure connect adds the designated new constraint to the list of
constraints if it is not already in that list. Then, if the connector has a value, it informs the new
constraint of this fact.

The connector's procedure me serves as a dispatch to the other internal procedures, and
also represents the connector as an object. The following procedures provide a syntax
interface for the dispatch.

(define (has-value? connector)
(connector 'has-value?))

(define (get-value connector)
(connector 'value))

(define (forget-value! connector retractor)
((connector 'forget) retractor))

(define (set-value! connector now-value informant)
((connector 'set-value!) new-value informant))

(define (connect connector new-constraint)
((connector 'connect) new-constraint))

Exercise 329: Using primitive mu7tip7ier, adder and constant constraints, define a procedure
averages, that takes three connectors a, b, and as inputs and establishes the constraint that the
value of c is the average of the values of a and b.

Exercise 330: Louis Reasoner wants to build a squarer, a constraint device with two terminals, such
that the value of connector b on the second terminal will always be the square of the value a on the first
terminal. Heproposesthefolilowingsimpledevicemadefromamu7tl'p7ier.

(define (squarer a b)
(multipl ier a a b))

Louis realizes that his squarer will not automatically complain if b goes negative. But there is a much

more serious flaw in his idea. Explain.

Exercise 331: Ben Bitdiddle tells Louis that one way around the problem in exercise 330 is to define
squarer as a new primitive constraint. Fill in the missing portions in Ben's outline for a procedure to
implement such a constraint:

def i ne ( squa rer a b)
(define (process-now-value)

(cond ((and (has-value? b) < (get-value b) 0))
(error "square less than SQUARER" (get--value b)))

<rest of clauses>)

(def ine (process-forget-value)
(define (me request)
<rest of definition>
me)
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Exercise 332: Suppose we execute the following sequence of commands in the global environment.

(define a make-connector))
(define b (make-connector))
(define c (make-connector))
(set-value! a 'user)

At some time during the execution'of the last command, the following expression from the connector's
local procedure is evaluated:

(for-each-except setter inform-about-value constraints)

Draw an environment diagram showing the environment in which the above expression is evaluated.

Exercise 333: The centigrade-fahrenheit-converter procedure is cumbersome when
compared with a more expression-oriented style of definition, such as

(define (centigrade-fahrenheit-converter x)
(C+ (C* (C/ (c 9 (CV 5))

X)
(cv 32)))

(define C (make-connector))
(define F (centigrade-fahrenheit-converter Q)

Here c, c *, etc. are the "constraint" versions of the arithmetic operations. For example, c takes two
connectors as arguments and returns a connector that is related to these by an adder constraint:

(define (c+ x y)
.(let ((z (make-connector)))

(adder x y z)
Z))

Define analogous procedures c-, c*, cl and 26v (constant value) that enable. us to define compound
constraints as in the converter example above.

20The reason that the expression-oriented format is more convenient is that it avoids the need to explicitly name
the intermediate expressions in the computation. Our original formulation of the constraint language is cumbersome
in the same way that many languages are cumbersome when dealing with operations on compound data. For
example, if we want to compute (a+b) *(c+d) where the variables represent vectors, we cou Id work in "imperative
style" using procedures tat set the values of designated vector arguments, but which do not themselves return

vectors as values:

(v-su.m a b templ)
(v-sum c d templ)
(v-prod templ temp2 answer)

Alternatively, we could could work in terms of expressions, using procedures that return vectors as values, thus
avoiding the need to explicitly mention t emp I and t emp2:

(define answer (v-prod (v-sum a b) (v-sum c d)))

Since Lisp allows us to return compound objects as values of procedures, we can transform our imperative style
constraint language into an expression-oriented style as shown in this exercise. In languages that are impoverished
in handling compound objects, such as Algol, Basic, and Pascal nless one explicitly uses Pascal pointer variables),
one is usually stuck with the imperative'style when manipulating compound objects.
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3.4. Stream Processing
This section introduces new compound data structures called streams. We use streams to

organize computations on collections of data in a way that corresponds in spirit to an
electrical engineer's concept of a signal processing system. Organizing computations in this
way greatly enhances our ability to formulate abstractions that capture common patterns of
data manipulation. Indeed, we will see how a few elegant stream operations can succinctly
express te structural similarity of a wide range of programs. From an abstract point of view,
a stream is simply a sequence of data objects. However, we will find that the straightforw. ard
implementation of streams as lists does not allow us to fully exploit the power of stream
processing. To solve this problem, we introduce the technique of delayed evaluation, which
enables us to represent very large (even infinite) data structures as streams.

In the previous sections of this chapter we used assignment and local state to model
objects and change. In this section, we will see how streams form the basis for a very
different approach to modeling. Instead of using objects with changing local state, we
construct a stream that represents the "time history" of the system being modeled A
consequence of this strategy is that it allows us to model systems that have state,' without ever
using assignment or mutable data. This has important implications, both theoretical and
practical, for it enables us to build models that avoid the problems inherent in introducing
assignment that we discussed in section 31.2. On the other hand, the stream framework
raises problems of its own, and the question of which modeling technique leads to more
modular and easily maintained systems remains open,

3.4.1. Streams as Standard Interfaces

In Chapter 1, section 13, we saw how program abstractions, implemented as higher order.
procedures, can capture common patterns of usage in programs that deal with numerical
data. We would now like to formulate analogous operations for working with COMPOLInd data.
Unfortunately, the style in which we have been writing procedures often masks the
commonality that underlies many typical computations, Consider, for example, a procedure
that takes as argument a binary tree, all of whose leaves are integers, and computes the sum
of the squares of the leaves that are odd.

(define (sum-odd-squares tree)
(if (leaf-node? tree)

(if (odd? tree)
(square tree)
0)

(+ (sum-odd-squares (left-branch tree))
(sum-odd-squares right-branch treeffl))

On the surface, this procedure 'is very different from the following one, which constructs a
list of all the odd Fbonacci numbers F 7b (k) where k is less than or equal to a given integer
n.
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(define (odd-fibs n)
(define (next k)

(if > k n)

10
(let ((f fb k)))

(if (odd? f)
(cons f (next 1 k)))
(next 1 k))))))

(next 1))

Despite the fact that these two procedures are structurally very different, a more abstract
description of the two computations reveals a great deal of similarity:

The first program

* Enumerates the leaves of a tree;

* filters them, selecting the odd ones;

* squares each of the selected ones;

* accumulates the results by adding, using starting with .

The second program

0 Enumerates the integers from to n;

* computes the Fibonacci number for each integer;

9 filters them, selecting the odd ones;

e accumulates the results into a list, using cons, starting with the empty list.

An electrical engineer would find it easy to conceptualize these processes in terms of
signals flowing through a cascade of stages, each of which implements part of the program
plan. Te first program realizes the following signal flow plan:

-------------- ------------ ---------- ----------------
I ENUMERATE: FILTER: I MAP: I I ACCUMULATE: I
I tree I ---- >1 1---->l
I leaves odd? square 0
-------------- ------------ ---------- ---------------

We begin with an enumerator, which generates a "signal" consisting of the leaves of a given
tree. This signal is passed through a filter, which eliminates all but the odd elements. The
resulting signal is in turn passed through a map, which is a "transducer" that applies the
square procedure to each element. The output of the map is then fed to an accumulator,
which combines the elements using , starting from an initial 0. Here is dn analogous signal
flow plan for the second program:

-------------- -------- ----------- ---------------
I ENUMERATE: I I MAP: I I FILTER: I I ACCUMULATE: I

I ---- >1 I ---- >1 I ---- >1 I

integers I I fib I I odd? I I cons, () I
-------------- -------- ----------- ---------------

Unfortunately, the two procedures above fail to exhibit this signal flow structure. For
instance, if we examine the sum-odd-squares procedure, we find that the enumerate 'is
implemented partly by the I e a f - n o de ? test and partly by the tree- recursive structure of the
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procedure. Similarly, the accumulate is found partly in te test and partly in the addition
used in the recursion. In general, there are no distinct parts of either procedure that
correspond to the elements in our signal flow description, The procedures decompose the
computations in a different way, spreading the enumeration over the program, mingling it with
the map, the filter, and the accumulation. If we could organize our programs so that the
signal flow structure were manifest in the procedures we write, this would increase the
conceptual clarity of the resulting code. It would also provide identifiable enumerate, filter,
map, and accumulate program elements that we could combine in a "mix and match" way to
construct programs from standard, well-understood pieces.

Stream operations
Our traditional program organization concentrates on the order of events in a computation',

rather than on the flow of data. Thus the key to organizing programs so as to more clearly
reflect the signal flow structure is to concentrate on the "signals" that flow from one stage in
the process to the next. We will implement these signals as data structures called streams,
and we observe from our signal flow diagrams that a stream is simply a sequence of elements.
We can def ine streams abstractly, in terms of a constructor c o n s - s t re am and two selectors
head and ta i 1. These are related by the following condition:

For any objects a and b, if x is (cons-stream a b) then (head x) is a and
(ta 7 x) is b.

We will also assume that there is an object called the-empty stream, which contains no
elements, and a predicate empty-stream?, which testswhetheragiven stream isempty.

Notice that as far as this data abstraction is concerned, ordinary Lisp pairs provide a
perfectly adequate implementation for streams: cons-stream, head, and tail can be
implemented as cons, car, and cdr, respectively, the-empty-streamcan betheempty list,
and emp ty- s t ream? can be the predicate nu I I ?. Indeed, the above condition that defines
the relationship among the three stream operations is identical to the condition tat we used
to define cons, car, and cdr in section 21.3. For the moment, in fact, we will consider
streams to be ordinary lists, and cons-stream, head, and ta!7 to be simply aternative
names for cons, car, and cdr. This view of streams will be adequate until section 34-3,
when we will concern ourselves with the efficiency of using streams to represent large
aggregates of data.

Computing with streams
Now we can reformulate the two procedures above to match the signal flow diagrams. For

sum-odd-squares, we need to construct a strea tat enumerates the leaves of the tree, to
filter a stream for oddness, to square the elements of a stream, and to sum the elements of a
stream. We can enUmerate te leaves of a tree as follows:

(define (enumerate-tree tree)
(if (leaf-node'? tree)

(cons-stream tree the-empty- stream)
p (append-streams (enumerate-tree (left-branch tre.e))

(enumerate-tree right-branch tree)))))

Append-streams here is -a procedure that takes two streams as arguments and produces a
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stream that contains all the elements of its first argument followed by all the elements of its
second argument, as follows:21

(define (append-streams sl s2)
if (empty-stream? s)

s2
(cons-stream (head sl)

(append-streams (tail sl) s2))))

To filter a stream for oddness, we proceed as follows:

def i ne ( f i 1 te r-odd s)
(cond ((empty-stream? s) the-empty-stream)

((odd? (head s))
(cons-stream (head s) (filter-odd (tail s))))

(else (filter-odd tail s)))))

To square every element of a stream we can use

(define (map-square s)
(if (empty-stream? s)

the-empty-stream
(cons-stream (square (head s))

(map-square tail s)))))

And we can sum the elements of a stream with the following procedure:

(define (accumulate-+ s)
(if (empty-stream? s)

0
(+ (head s) (accumulate-+ tail s)))))

Now that we have these pieces, we can use -them to reorganize the Sum-odd-squares
computation to correspond to the signal flow diagram.

(define sum-odd-squares tree)
(accumulate-+

(map-square
(filter-odd

(enumerate-tree tree)))))

With a few more building blocks, we can reformulate the odd-f ibs procedure in the same
way. We need to enumerate an interval of the integers to form a stream. We do this using the
following procedure, which returns a stream of consecutive integers from I ow through h igh:

(def line (enumerate-interval low high)
(if > low hgh)

the-empty-stream
(cons-stream low (enumerate-interval low) hgh))))

The following procedure applies b to each element of a stream to obtain the stream of
corresponding Fibonacci numbers:

21
Notice that if we consider streams to be ordinary lists, writing cons for cons-streams, car for head, and so

on, then append-streams is precisely the append procedure that we saw in section 22.1 of Chapter 2 and in
exercise 311 of this chapter.
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(define (map-fib s)'
(if (empty-stream? s)

the-empty-stream
(cons-stream (f ib (head S))

(map-fib tail s)))))

The next procedure accumulates the items in a stream to form a list, by successively applying
cons.

(define (accumulate-cons s)
(if (empty-stream? s)

10
(cons (head s) (accumulate-cons (tail s)))))

y

Now we can rewrite odd- f ibs as follows:

(define (odd-fibs n)
(accumul ate-cons

(filter-odd
(map-fib

(enumerate-interval 1 n)))))

This may seem to be a lot of work merely to write two simple procedures. But now that the
two programs have similar structures, we can mix and match the various pieces of our
programs to construct other programs. For example, we can construct a list of the squares of
the first n Fibonacci numbers as follows:

(define (11'st-square-fibs n)
(accumulate-cons

(map-square
(map-fib

(enumerate-interval 1 n)))))

,3.4.2. Higher Order Procedures for Streams

We have seen how to capture the commonality in two simple procedures by rewriting them
in terms of stream operations. But the two procedures have even more in common than we
have yet shown. For example, the two accumulation procedures accumulate-+ and
accumulate-cons differ only in the method used to accumulate the esults and the initial
value for beginning accumulation. Thus we can express both of these procedure in terms of a
general accumulate abstraction. n Capter section 13, we saw how to formulate such
abstractions as higher order procedures. Applying this technique, we can write a general
accumulate procedure that takes as arguments a method used to combine items, an initial
value, and a stream to be accumulated:

(define (accumulate combiner initial-value stream)
(if (empty-stream? stream)

initial-value
(combiner (head stream)

(accumulate combiner
initial-value
(tail stream)))))
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Many operations can be expressed in terms of accumulations. For example, we can add
the elements in a stream with

(def ine (sum-stream stream)
(accumulate stream))

or we can multiply the elements in a stream with

(def ine (product-stream stream)
(accumulate stream))

Our accumulate-cons operation can beaccomplished by

(define (cons-up-st-ream stream)
(accumulate cons stream))

Evaluating a polynomial

a n a Xn-1 + + a x a
n n - I 1 0

at a given value of x can also be formulated as an accumulation. We evaluate the polynomial
using a well-known algorithm called Horner's rule, which structures the computation as

(anx + an-Ox + + a a 0
In other words, we start with an, multiply by x, add an-11 multiply by x, and so on, until we
reach a 22 If we assume that the coefficients of the polynomial are arranged in a stream, from0,
ao through an, then we can express Horner's rule as an accumulation along the coefficient
stream:

(define (horner-eval x coefficient-stream)
(define (add-term coeff higher-terms)

(+ coeff (* x higher-terms)))
(accumulate add-term

0
coeffic'ent-stream))

The idea of this procedure is that, for each coefficient in the stream, we multiply the (already
accumulated) higher terms by x, and add in the new coefficient.

Maps and filters
The examples above show how a single abstraction, accumulate, can capture many

different operations on strearns. We can define other abstractions in a similar manner. The
map procedure generalizes te map-square and map-f ib procedures used above in section
3.4.1. Map takes a procedure and a stream as arguments, and generates the stream formed

22 According to Knuth 241, Horner's rule was formulated by W.G. Horner early in the nineteenth century, but the
method was actually used by Newton over a hundred years earlier. Notice that Horner's rule evaluates the
polynomial using fewer additions and multiplications than does-the straightforward method of first computing a n

n-1 n
then adding an-l' , and so on. In fact, it is possible to prove that any algorithm for evaluating arbitrary
polynomials must use at least as many additions and multiplications as does Horner's rUle, and thus Horner's rule is
an optimal algorithm for polynomial evaluation. This fact was proved (for the number of additions) by AM. Ostrowski
in a 1954 paper that essentially founded the modern study of optimal algorithms. The analogous statement for
multiplications was proved by V.Y. Pan in 1966. The book by Borodin and Munro 4 provides an overview of these
and other results about optimal algorithins.
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by applying the procedure to each item in the input stream:

(def ine (map proc stream)
if (empty-stream? stream)

the-empty-stream
(cons-stream (proc (head stream))

(map proc (tail stream))))')

The other general operation we used was to filter a stream, extracting those elements that
satisfy a given predicate:

(define (filter pred stream)
(cond ((empty-stream? stream) the-empty-stream)

((pred (head stream))
(cons-stream (head stream)

(filter pred (tail stream))))
(el se ( f i I ter pred ( tai I stream)

By combining filters, maps, and accumulators, we can express new operations such as

(define (product-of-squares-of-odd-elements stream)
(accumulate

(map square
(filter odd? stream))))

We can also formulate conventional "data processing" applications in terms of streams. For
example, suppose we have a stream of personnel records, and we want to find the salary of
the highest-paid programmer. Assume that we have selectors job and sa Tary that return
the required information from a record. Then we can write

(def ine (sal ary-of -highest-paid-programmer record-stream)
(define (programmer? rcord)

(eq? (job record) 'programmer))
(accumulate max

0
(map salary

(f ilter programmer?
record-stream)

These two examples give just a hint of the vast range of operations that can be expressed in
this way.23

Another useful abstraction sim'ilar to map is f or-each, which applies a procedure to every
item in a stream, but does not accumulate the results to form an output stream:

23As part of a 1978 Ph.D. thesis on program analysis, Richard Waters 50] developed a program that automatically
analyzes traditional FORTRAN programs, viewing them in terms of maps, filters, and accumulations. He found that
fully 60 percent of the code in the FORTRAN Scientific Subroutine Package fits neatly into this paradigm. Mdeed,
one of the reasons for the success of Lisp as a programming language is that lists are an excellent standard medium
for expressing ordered collections so that they can be manipulated in this way. The programming language APL
obtains much of its power and appeal by a similar choice. In the case of APL all data is represented as square arrays.
There is a universal and convenient set of generic operators for all sorts of array operations.
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(def ine (for-each proc stream)
(if (empty-stream? stream)

'done
(sequence (proc (head stream))

(for-each proc (tail stream)))))

For example, to print a stream, we can use 24

(def ine (print-stream s)
(for-each print s))

Nested accumulations
Consider the following problem: Given a positive integer n, find all pairs of distinct positive

integers and j less than or equal to n such that 7j is prime. For example, if n is 6 then the
pairs are

(2 1) 3 2 4 4 3 2 6 6 

Assume we use ( 7 is t 7 j) to represent the pair , j) and that we use a predicate pr Ime?
that tests primality.

One way to organize this computation is as a nested accumulation over streams. For each
7 in the stream (enume-ra te- n terva 7 n), we map along the stream of integers from
through - as follows: For each j in the stream (enumera te- in terva 7 (- 1+ i)) we
test whether 7j is prime. If so, we generate the stream containing the single item I is t i
j); if not, we generate the empty stream. Appending together all of these empty or 
element) streams produces a stream of pairs for each Appending together all of these
streams produces the required stream of all pairs f, 

We can express this nested accumulation in terms of a procedure called f 7 a tmap, which
takes as arguments an input stream and a procedure to be applied to each item of the input
stream. The procedure is assumed to return a stream each time it is applied to an argument.
F a tmap applies the procedure to each element of the input stream and combines all the
elements of the resulting streams to form a single stream.

,Using f 7 a tmap, we can generate all pairs of integers and j less then n such that is
prime, as follows:

(define (prime-sum-pairs n)
(flatmap (lambda (i)

(flatmap (lambda
(if prime? ( i

(singleton (list i j))
the-empty-stream)

(enumerate-interval 1 l+ i))))
(enumerate-interval 1 n)))

Notice that the 7ambda (j) produces a stream for each and that these streams are
combined to form a single stream by the inner f 7 a tmap. This is the stream returned for each

24If streams are represented as lists, the interpreter will automatically print them in standard list notation. If we use
other representations for streams, as we will in section 34.3, then a procedure such'as print-stream becomes
necessary, unless we build some conventional way for printing streams into the p r n t primitive.
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by the (I amb da 7) and the streams for all the ombined by the outer f I a tmap.

The s ng 7 e ton procedure generates a stream that contains a single designated item:
def line ( s ing 1 eton s)

(cons-stream s the-empty-stream))

F 7 a tma p can be defined as follows,25

(define (flatmap f s)
(if (empty-stream? s)

the-empty-stream
(let ((sl (f (head s))))

(if (empty-stream? sl)
(flatmap f (tail s))
(cons-stream (head sl)

(append-streams (flatmap f (tail s))
(tail sl)))))))

Another nested accumulation that we can handle in the same way is to find all triples of
distinct positive integers i, j, k, less than or equal to a given integer n, which sum to a given
integer . For example, with n equal to 9 and s equal to 15 the triples are: 26

(6 4 7 3 7 6 2 (8 4 3)
(8 2 ( 6 9 4 2 9 

We can organize this computation'using f I a tmap, just as in pr 7Me m-pairs. Wernap
along the interval from to n, generating a stream for each inthe interval., The stream for
each is obtained by mapping along the interval from to -I, generating a stream for each
j in the interval. The stream for each j is obtained by mapping along the 'Interval from to
j - checking the condition

(lambda (k = i k) s))

and generating either the one-element stream containing the triple 7 is t 7 k), or ese
the empty-stream. Here is the complete procedure-,

25
In section 34.4, we will learn how to work with infinitely long streams. We can use the methods of the present

section to perform nested accumulations over infinitely long streams, provided that we make a small change to the
f 7 a tmap procedure. See exercise 344. This approach to accumulation was shown to us by David Turner, whose
language KRC provides an elegant formalism for dealing with accumulations. The examples in this section (see also
exercise 337) are adapted from Turner's paper 49].

26
These triples represent all the wins i tic-tac-toe if we number the 9 positions on a tic-tac-toe board as in the

following "magic square":

4 9 2

3 5 7

8 1 6
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(def line triples n s)
(f 1 atmap

1 ambda ( '
(flatmap (lambda

(flatmap (lambda (k)
(if (= (+ i k) s)

(singleton (list i j k))
the-empty-stream) )

(enumerate-interval l+
(enumerate-interval 1 l+ i))))

(enumerate-interval 1 n)))

We can make these nested accumulations easier to write by providing some syntactic'
sugar. One possibility is to use a special form called co I I ec t, which is defined so that

(col lect <result>
(< > <Set >)
(<V2> <set2>)-

000

(<Vn> setn>)
<restriction>

is equivalent to

(flatmap (lambda (<vl>)
(flatmap (lambda (<v2>)

(flatmap (lambda (<v>)n
if <restriction>

(singleton <result>)
the-emp ty- s t ream)

<set >)n

<Se >)
<set >)

Using co 7ect, we can rewritepriMe-S=-p a! rs as

(def ine (prime-sum-pairs n)
(collect lst i j)

((i (enumerate-interval 1 n))
(enumerate-interval 1 l+

(prime? ( i

and we can rewrite t r Ip I es as

(define'(triples n s)
(collect (list i jA)

((i (enumerate-interval 1 n))
(enumerate-interval (-I+ i)))

(k (enumerate-interval 1 l+
( i ' k) s)))

These nested accumulations are similar to the "nested loops over index variables" found in
many programming languages. We can interpret the meaning of the co 7 ec t as
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for each <v > in <set > and
for each <v > in <set > and

2 2

for each <v > in <set >
n n

if all the <v > satisfy the <restriction>i
then accumulate the <result>

We can also perform accumulations over streams other than those that enumerate intervals.
For instance, consider the problem of generating all the permutations of a set of items; that
is, all the ways of ordering the items in the set. For instance, the permutations of (a b c)
are:

(a b c) (a c b) (b a c) (b c a) (c a b) (c b a)

Here is a plan for generating the permutations of S. For each each item x in S, we recursively
generate the stream of all permutations p of S-x. (The set S-x is the set of all elements of ,
excluding x.) Then for each such permutation p, we adjoin x to the front of p. This yields, for
each x in S, the stream of permutations of that begin with x, and combining these streams
gives all the permutations of S. Thus we can reduce the problem of generating permutations
of sets of n items to the problem of generating the permutations of sets of n - items. If S itself
is represented as a stream of elements, then we can reduce the problem of generating the
permutations of S to the problem of generating the permutations on shorter and shorter
streams. This leads to the following procedure:27

(define (permutations S)
(if (empty-stream? S)

(singleton the-empty-stream)
(flatmap, (lambda (x)

(flatmap (lambda (p)
(singleton (cons-stream x p)))

(permutations (remove x S))))
SM

Alternativelywecanrewritethepermutat7onsprocedureusi'ngco7lect28

(define (permutations S)
(if (empty-stream? S)

(singleton the-empty-stream)
(collect (cons-stream x p)

((X S)
(p permutations (remove x S)))))))

The remove procedure used 'in permutations returns all of the items in a given stream,
except for a given item. This can be expressed as a simple filter:

27 In the terminal case, wen we have worked our way down tothe-empty-stream, which represents a set of no

elements, we ue s i n g 7 e t o n t h e - emp ty -s t r e am) to generate as "the permutations" a stream with one item,
namely te set with no elements.

28
Observe that this c o 7 e c t f orm has no estriction> clause. We assu me that co 7 7 e c t is def ined so as to not

impose a restriction f none is specified,
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(define (remove item stream)
(filter (lambda (x) (not (equal? x tem)))

stream))

Exercise3-34: Considerthefollowingalternativeversionoftheaccumu7ateprocedure:

(define (left-accumulate combiner initial-value stream)
(if (empty-stream? stream)

initial-value
(left-accumulate combiner

(combiner initial-value (head stream))
(tail stream))))

Does(7eft-accumulate + 0 x)returnthesameresultas(accumu7ate + 0 x)foranystreamof
numbersx? Does eft-accumu7ate cons () x)returnthesameresultas (accumu7ate cons
'() x) for any'stream x? In general, for which combiner procedures will accumulate and
left-accumu7ategivethesameresult?

Exercise 335: The procedure accumulate-n is similar to accumulate, except that it takes as its

third argument a stream of streams, which are all assumed to have the same number of elements. It
applies the designated accumulation procedure to combine all the first elements of the streams, all the
second elements of the streams, and so on, and returns a stream of the results. For instance, if is a
stream containing four streams:

((1 2 3 4 6 7 ) (10 11 12))

Then (a ccumu 7 a te-n + 0 S) should return the stream 22 26 3 . Fill in the missing expressions

<exp 1 and <exP2> in the f ollowing def inition of a c c umu 7 a t -n:

(define (accumulate-n op init streams)
(if (empty-stream? (head streams))

the-empty-stream
(cons-stream
(accumulate op init exp 1>)
(accumulate-n op init <exP2>))))

Exe rcise 336: Suppose we represent vectors v = v ) as streams of numbers, and matrices m (m 1)
as streams of vectors (the rows of the matrix). For example, the matrix

2 3 4,
4 6 6
6 7 8 9

is represented as the stream (( 2 4 4 6 6 6 7 9)). With this representation, we can
use stream operations to concisely express the basic matrix and vector operations. These operations
(which are described in any book on matrix algebra) are

• (dot -product v w) is the sum iW i

• (ma t r ix - t imes-vec t or v) is the vector t, where tf= Ilivi

• (ma tr f x - t imes-ma t r ix m n) is the matrix p, where p j = IkMiknkj

• (transpose m) is the matrix n, where n 'if

Fill in the missing expressions in the following procedures for computing these operations. (The
procedure accumu7ate-nisdefined inexercise3-36.)

(define (dot-product w)
(accumulate + 0 M>))

(define (matrix-times-voctor m v)
(map <M> m))

(define (transpose m6t)
(accumulate-n M> OM mat))



3.4.2 DRAFT: 31 JULY 1983 217

(define (matrix-times-matrix m n)
(let ((cols (transpose n)))

(map ??? mM

Exercise 337: A famous puzzle, called the eight queens problem, asks how to p face queens on a
chess board so tat no queen is in check from any other (i.e., no two queens are in the same row,
column, or diagonal). Here is one possible solution:

X
X

x - - - - - - -
x

X
X

X - - - - - -
X - - - -

One way to solve the problem is to work across the chess board, placing a queen in each column.
Assuming we have already placed k -1 queens, then we must place the k-th queen in a position where it
does not check any of the queens already on the board. We can formulate this approach using a
recursive plan: Assume we have already generated the stream of a/[ possible ways to place k- I queens
in the first k - I columns of the board. We extend each of these ways by generating all the rows for
which it is safe to place a queen in the q-th row and the -th column. This produces the stream of all
ways to place k queens in the first k columns. We implement tis solution as a procedure queens,
which returns a stream of all solutions to the problem of placing n queens on an nX n chess board. This
calls a procedure queen -co 7 s, which returns the stream of all ways to place queens in first k columns
of a board of specified size.

(define (queens board-size)
(define (queen-cols k)

(if = k 0)
(singleton the-empty-stream)
(collect (cons q b)

((b (queen-cols. (-I+ k)))
(q (enumerate-interval board-size)))

(safe? q b))))
(queen-cols board-size))

In the co7 7ect used by queen-co7s, b is a way to place k-1 queens in the first k-1 columns, and q is a
proposed row in the kth column in which to place a new queen. You must complete the program by
implementing the procedure safe? Also, rewrite the queen-co7s procedure without using. co7 lect.

Exercise 338: Louis Reasoner is having a terrible time doing exercise 337. His queens procedure
seems to work, but it runs extremely slowly. (Louis never does manage to wait long enough for it to solve
even the 6X6 case.) When he asks Eva Lu Ator for help, she points out that he has interchanged two
lines in the queen-co s procedure, writing the co 7 lect form as

(collect (cons q b)
((q (enumerate-interval board-size))
(b (queen-cols (-l+ k))))

(safe? q b))))

Explain why this interchange makes the program run slowly. Estimate how long it will take Louis's
program to solve the eight queens problem, assuming that the program in exercise 337 solves the
problem in time T.
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3.4.3. Streams and Delayed Evaluation

As we have seen, streams can serve as a standard interface between program modules. By
using streams, we can formulate powerful abstractions that capture a wide variety of program
operations in a manner that is both succinct and elegant. Unfortunately, this elegance is
bought at the price of severe inefficiency with respect to both the time and space required by
our computations -- or at least this will be the case if we represent streams as ordinary lists,
with cons -s tream, head, and ta I defined, respectively, as cons, car, and cdr.

If we represent streams as lists, our programs must construct and copy possibly huge data
structures at every step of a stream process. To see why this is true, let us compare two
programs for computing the sum of all the prime numbers in an interval. The first program is
written in standard iterative style:

(define (sum-primes a b)
(define (iter count accum)

(cond ((> count b) accum)
((prime? count) (iter 1 count) count accum)))
(else (iter 1 count) accum))))

(iter a 0))

The second program performs the same computation using streams:

(define (sum-primes a b).
(accumulate +

0
(filter prime?

(enumerate-interval a b))))

In carrying out the computation, the first program needs to store only the sum being
accumulated. In contrast, with streams represented as lists, the I ter in the second
program cannot do any testing until en umera te- i n terva 7 has constructed a complete list
of the numbers in the interval. The f ter itself generates another large list, which ill turn 'is
passed to accumulate before being collapsed to form a sum. Such large intermediate
storage is not needed by the first program, which we can think of as enumerating the interval
incrementally, adding each prime to the sum as it is generated.

We can see an even more extreme example of inefficiency if we imagine computing the
second prime in the interval from 10,000 to 1,000,000 interval by evaluating the expression

(head tail (f il ter prime?
(enumerate-interval 10000 1000000))))

In principle, this expression does find the second prime, but the computational overhead
seems outrageous. We construct a list of almost a million integers, filter thi's list by testing
each element for primality, and then ignore almost all of the result! In a more traditional
programming style, we would interleave the enumeration and the filtering, and stop when we
reached the second prime.

We will now see how, by changing the epresentation of streams, we can achieve the best
of both worlds: We can use the elegant stream formulation, while preserving the efficiency of
incremental computation: The basic idea is that we will arrange for cons-stream to
constru ct a stream only partially, and to pass the partial construction to the program that
consumes the stream. If the consumer attempts to access a part of the stream that has not
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yet been constructed, the stream will automatically construct -just enough more of tself t0
enable the consumer to access the required part, thus preserving the illusion that the entire
stream exists. In other words, although we will write programs as if we were processing
complete streams, we design our stream implementation to automatically and transparently
interleave the construction of the stream with its use.

'To make streams behave in this way, we will arrange for the tail of a stream to be evaluated,
not when the stream is constructed by cons -s tream, but'rather when the tail is accessed by
the ta I procedure. This implementation choice is reminiscent of our discussion of rational
numbers in Chapter 2 where we saw in section 21.2 that we can implement rational numbers
so that the reduction of numerator and denominator to lowest terms is performed either at
construction time or selection time. The two rational number implementations produce the
same data abstraction, but the choice has an effect on efficiency. There is a similar
relationship between streams and ordinary lists. As a data abstraction, streams are the same
as lists. The difference is the time at which the elements are evaluated. With ordinary lists,
both. the car and the cdr are evaluated at construction time. With streams, the ta 1 7 'is
evaluated at selection time.

Our implementation of streams will be based on a special form called de 7 ay. Evaluating
the form (de 7 ay <exp>) does not evakiate the expression <exp>, but rather returns a so-
called delayed object, which we can think of as a "promise" to evaluate <exp> at some future
time. As a companion to de I ay, we have an operator called force, which takes a delayed
object as argument, and performs the evaluation -- in effect, forcing the de 7 ay to fulfill its
promise We will see below how de I ay and force can be implemented, but first let us use
these to construct streams.

Cons -s tream is a special form defined so that

(cons-stream <a> <b>)

is equivalent to

(cons <a> (delay <b>))

What this means is that we will construct streams using pairs. but rather than placing the
value of the ta 7 into the cdr of the pair, we will put there a promise to compute the ta 1 1 if it
is ever rquested. Head and ta 7 can now be defined as procedures:

(define (head stream) (car stream))

(define (tail stream) (force (cdr stream)))

In other words, head selects the car of the pair that was constructed by cons-s tream, while
ta 77 selects the cdr of the pair and evaluates the delayed expression found there to obtain
the tail.29

29 Observe that although head and t a I can be defined asprocedures,cons-stream must be a special form. if
cons-stream were a procedure, then, according to our model of evaluation, evaluating(cons-stream >)
would automatically cause <b> to be evaluated, which is precisely what we do not want to happen. For the same
reason, d& 7 ay must be a special form. See exercise 340.
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The stream implementation in action
To see how this implementation behaves, let us analyze the outrageous" prime

computation

head ( tai 1 (f i 1 ter prime?
(enumerate-interval 10000 1000000))))

and see that, in fact, it works efficiently. The evaluation begins by calling
enumerate-interval with the arguments 10,000 and 1,000,000. Recall that
enumerate-interva7 isdefined as

(def ine (enumerate-interval low high)
(if > low high)

the-empty-stream
(cons-stream low (enumerate-interval low) high))))-

sothe result, formed bythe cons-strean. is

(cons 10000 (delay (enumerate-interval 10001 1000000)))

that is, the result is a stream represented as a pair whose car is 10000 and whose cdr is a
promise to enumerate more of the interval if so requested. This stream is now filtered for
primes, using the f 7 ter procedure:

(def ine (f ilter pred stream)
(cond ((empty-stream? stream) the-empty-stream)

((pred (head stream))
(cons-stream (head stream)

(f i I ter p red tail stream))))
(el se (f il ter pred (tai 1 stream)

F 7 t e r tests the h e a d of the stream (the ca r of the pai r, which is 1 0,000) and f inds that this
is not pri me. So f 7 t e r examines the t a I of its input stream. The call to t a ` forces
eval uation of the delayed e n ume r a t e - i n t e r va , which now returns

(cons 10001 (delay (enumerate-interval 10002 1000000)))

F! 7 ter now looks at the head of this stream, 10,001, sees thi's is not prime either, forces
another. tail, and so on, until enumerate-interva7 yields the prime 10,007, whereupon
f i 7 ter, according to its definition, returns

(cons-stream (head stream)
(f i I ter pred tail stream)

which in this caseis

(cons 10007
(delay

(filter prime?
(cons 10008

(delay (enumerate-interva'l 10009
1000000))))))

This result is now passed to tail in our original expression. Tail' forces the delayed
f I ter, which keeps forcing the delayed enumerate- interva 7 until it finds the next prime,
which is 10,009. So, finally, te result passed to head in our original expression is
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(cons 10009
del ay
(f i 1 ter prime?

(cons 10010
(delay (enumerate-interval 10011

1000000))))))

Head returns 10,009, and the computation is complete. Notice that only as many integers
were tested for primality as were necessary to find the second prime, and the interval was
enumerated only as far as was necessary to feed the prime filter.

In general, we can think of tis delayed evaluation as "demand-driven" programming,
whereby each stage in the stream process is activated only enough to satisfy the next stage.
What we have done is to decouple the actual order of events 'in the computation from the
apparent structure of our procedures. We write procedures as if the streams existed "all at
once" when, in reality, the computation is performed incrementally, as in traditional
programming styles.

Implementing DELAY and FORCE
Although delay and force may seem like powerful and complex operations, their

implementation is really quite straightforward. What we need for elay is to package an
expression so that it can be evaluated later on demand, and we can accomplish this simply by
treating the expression as the body of a procedure. Which is to say, we can regard de I ay as
a special form such that (de 7 ay <exp>) is syntactic sugar for

(I ambda () exp>)

Force simply calls the procedure (of no arguments) produced by delay, so we can
implement f or c e as a procedure:

(define (force dela ed-ob'ect)
y J

(del ayed-object) )

This implementation suffices for de I ay and f o rce to work as advertised, but there 'is an
important optimization that we can make. In many applications, we end up forcing the same
delayed object many times. This can lead to serious inefficiency in recur sive programs
involving streams. (See exercise 342.) The solution is to build a delayed object so that, the
first time it is forced, it stores the value that is computed. Sbsequent forcings will simply
return the stored value without repeating the computation. In other words, we implement
de 7 ay as a special purpose memoized procedure, similar to the one described in exercise
3-24. One way to accomplish this is to use the following procedure, which takes as argument
a procedure (of no arguments) and returns a memoized version of the.procedure:

(def ine (memo-proc proc)
(let ((already--computed? nl) (result nil))

(lambda 
(if (not already-computed?)

(sequence (set! result (proc))
(setl aeady-computed? (not nl))
result)

result))))

De I ay is then defined so that (de I ay exp>) is equivalent to
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(memo-proc (lambda (exp>))

and f orce is as previously defined.30

Exercise 339: In order to take a closer look at delayed evaluation, we will use the following
procedure, which simply returns its argument after printing it:

(define (show x)
(print x)
X)

The next procedure, similar to the n th procedure of section 22.1, extracts a given item from a stream:

(define (nth-stream n s)
(if = n 0)

(head s)
(nth-stream (-l+ n) (tail s))))

31What does the interpreter print in response to evaluating each expression in the following sequence?

(define x (map show (enumerate-interval 0 10)))

==>(nth-stream 5 x)
<printed rsponse>

=0(nth-st.ream 7 x)
<printed rsponse>

Exercise 340: Ben Bitdiddle has become severely annoyed while doing exercise 336, because he
has realized that he can not use cons-stream as an argument to a higher-order procedure.
(Supplementary exercise: Why does Ben want to do this in exercise 3-36?) To ake the best of a bad
situation, he has decided to use cons instead. To explore the effect that this will have on his programs,
he uses the how procedure of exercise 39 to compare two procedures for copying streams. The first
accumulates with cons-stream, but since Ben can't use accumu7ate explicitly, he writes out the
accumulation pattern

(define (copy-stream s)
(if (empty-stream? s)

the-empty-stream
(cons-stream (head s) (copy-stream (tail s)))))

The second program is the accumulation that Ben would have liked to have written, except that he writes
cons in place of cons-stream:

(define (*copy-stream s)
(accumulate cons the-empty-stream s))

30 There are many possible implementations of streams other than the one described in tis section. Delayed
evaluation, wich is the key to making streams practical, was inherent i Algol 60's cafl-by-narre parameter passing
method. The use of this mechanism to implement streams was first described by Landin 28] in 1965. Delayed
evaluation for streams was introduced into Lisp by Freidman and Wise [1 1 in 1976. In their implementation cons
always delays evaluating is arguments, so that lists automatically behave as streams. Te memoizing otimization is
also known as call-by-need. The Algol community would refer to our original delayed objects as call-by-name thunks
and to te optimized versions as call-by-need thunks.

31
Exercises such as these are valuable for testing our understanding of how de 7 ay works. On the other hand,

intermixing delayed evaluation with printing and, even worse, with assignment, is extremely confusing, and
professors of courses on computer languages have traditionally tormented teir students with examination questions
such the ones in this section. Needless to say, writing programs that depend on such subtleties is odious
programming style. Part of the power of stream processing is tat it lets us ignore the order in which events actually
happen in our programs. Unfortunately, this is precisely what we cannot afford to do in the presence of assignment,
which forces us to be concerned with t4ne and change.
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What does Ben see printed in response to each of the following expressions?

==>(sequence (copy-stream (map show numerate-interval 1 10)))
'done)

<printed rsponse>

==>(sequence (copy-stream (map show (enumerate-interval 1 10)))
'done)

<printed response>

3.4.4. Infinitely Long Streams

We have now seen how to support the illusion of manipulating streams as"completed
entities" even though, in actuality, we compute only as much of the stream as we need to
access. We can exploit this technique to efficiently represent sequences as streams, even if
the sequences are very long. Better yet, we can use streams to represent sequences that are
infinitely long. For instance, consider the following definition of the stream of positive
integers.-

(define (integers-starting-from n)
(cons-stream n integers-starting-from 1 n))))

def i ne i n tege rs ( i ntege rs- s ta rt i ng -f` rom 1

This makes sense because integers will be a pair whose car is and whose cdr is a
promise to produce te integers beginning with 2 This is an infinitely long stream, but i any
given tme, we can examine only a finite portion of it, so our programs will never know that the
entire infinite stream is not therel

Using integers we can define other infinite streams, such as the stream of integers that
are not divisible by 7:

(define (divisible? x y) = (remainder x y) 0))

(define no-sevens
(filter (lambda (x) (not divisible.? x 7))

integers))

2and we can use this to find the 100th integer not divisible by 73

==>(nth-stream 100 no-sevens)
117

In analogy with in tegers, we can define theinfinite stream of Fibo'nacci numbers:

(defihe ffibgen a b)
(cons-stream a fibgen b ( a b))))

def i ne f i bs f ibgen 0 1)

Fibsisapairwhosecaris0andwhosecdrisapromisetoevaluate(fibgen I 1),which,
when we evaluate it, will produce a pair whose car is and whose cdr is a promise to
evaluate (f 1bgen 2 and so on.

32 Thenth-str a am procedure was defined in exercise 339.
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For a look at a more exciting infinite stream, we can generalize the no-sevens example to
construct the infinite stream of prime numbers, using a method known as the sieve of
Eratosthenes.33 We start with the integers beginning with 2 which is the first prime. To get
the rest of the primes, we start by filtering te multiples of 2 from the rest'of the integers. This
leaves a stream beginning with 3 which is the next prime. Now we filter the multiples of 3
from the rest of this stream. This leaves a stream beginning with 5, which is the next prime,
and so on. In other words, we construct the primes by a sieving process, described as
follows: To sieve a-stream S, we form a stream whose head is the head of and whose ta 7'1
is obtained by filtering all Mltiples of the head of out of the ta 7 of and sieving the result.
This process is readily described in terms of stream operations:

(define (sieve stream)
(cons-stream

(head stream)
(sieve (filter

(lambda x) (not (divisible? x (head stream))))
(tail stream)-))))

(define primes seve integers-starting-from 2)

Now to find a particular prime, we need only ask for it:

-- >(nth-stream 50 primes)
233

It is interesting to contemplate the sgnal processing system set up by s eve, shown in the
"Henderson diagram" in figure 328.34 The input stream feeds into an "un-cons-er" that
separates the head of the stream from the ta I The head is used to construct a dvisibility
filter, through which the ta 7 is passed, and the output of the filter is fed to another sieve
box. Then the original head is cons-ed onto the output of the internal sieve to give the output
strearn. So not only is the stream infinite, but the signal processor is also infinite, because the
sieve contains a sieve within it.

33 Eratosthenes was a third century B.C. Alexandrian Greek philosopher, who is famous for giving the first
accurate estimate of te circumference of the earth, which fie computed by observing shadows cast at noon on the

day of the summer solstice. Eratosthenes' sieve method, although ancient, has formed the basis for special-purpose
hardware "sieves" that, until very recently, were the most powerful tools in existence for locating large primes. Over
the past few years, tese methods have been superseded by outgrowths of the probabilistic techniques discussed in
section 12.6 of Chapter 

34
We have named these figures after Peter Henderson, who was the first person to show us diagrams of this sort

as a way of thinking about st ream processing.
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Figure 328: The prime sieve viewed as a signal processing system.

The Integers and f ibs streams above were defined by specifying "generating"
procedures that explicitly compute the stream elements one by one. An alternative way to
specify streams is to take advantage of delayed evaluation to define streams implicitly. For
example, the following expression defines the stream ones to be an infinite stream of ones:

(define ones (cons-stream ones))

This works much like the definition of a recursive procedure: ones is a pair whose car is 
and whose cdr is a promise to evaluate ones. Evaluating the cdr gives us again a and a
promise to evaluate ones, and so on.

We can do more interesting things by using procedures such as add-streams, which
produces the element-wise sum of two given streams:

(define (add-streams sl s2)
(cond ((empty-stream? sl) s2)

((empty-stream? s2) sl)
(else.(cons-stream (+ (head sl) (head s2))

(add-streams tail s) tail s2))))))

Now we can define the integers as:.

(define ntegers (cons-stream (add-streams ones ntegers)))

This works by defining in tegers to be a stream whose head is and whose ta l is the sum
of integers and ones. So the head of the ta 7 is the head of integers plus 1, or 2 The
third element of integers is plus the second element of integers, or . And so on.
Notice that this definition works because at any point, enough of the integers stream has
been generated so that we can feed it back into the definition to produce the next integers

We can define the Fibonacci numbers in the same style:

(define fibs
(cons-stream 

.(cons-stream I
(add-streams tail fibs) fibs))))

This definition says that f ibs is a stream beginning with and 1, such that the stream can be
generated by adding it to itself shifted by one place:
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0 1 1 2 3 5 8 13 2 ...
0 1 1 2 3 5 13

-----------------------------

1 2 3 5 8 13 21 34 ...

Another useful procedure in formulating such stream definitions is sca e-s tream, which
multiplies each item in a stream by a given constant:

(def ine (scale-stream c stream)
(map (lambda (x) (* x c)) stream))

For example,

(define double (cons-stream (scale-stream 2 double)))

produces the stream of powers of 2

1, 29 49 8t 16s 329

We can also give an alternative definition of the stream of primes. The idea is that we start
with the integers and filter them by testing for primality. We will need the first prime, 2 to get
started:

(define primes
(cons-stream 2 (filter prime? tail tail ntegers)))

This looks easy to understand, except that we will test whether a number n is prime by
checking if n is divisible by a prime less or equal tol than the square root of n:

(define prime? n)
(define (iter ps)

(cond ((> (square (head ps)) n) It)
((divisible? n (head ps)) the-empty-stream)
(else (iter tail ps)))))

(iter primes))

This is a recursive definition, since pr mes is defined in terms of the pr me? predicate, which
itself uses the pr lm'es stream. The reason this procedure works is that, at any point, enough
of the prime stream has been generated to test the primality of the numbers we need to
check next-35

Exercise 341: A famous problem, first raised by R. Hamming, is to enumerate, in ascending order,
with no repetitions, all positive integers with no prime factors other than 2 3 or 5. One obvious way to
do this is to simply test each integer in turn to see whether it has any factors other than 2 3 and 5. But
this is very inefficient, since as the integers get larger increasingly fewer of them fit the requirement.
Instead, let us call the required stream of numbers S, and notice the following facts about it.

0 begins with a .

* The elements of (s ca 7 e- s tream 2 ) are also elements of S.

*Similarly for (scale-stream 3 S) and (sca 7e-stream S).

35 This is a very subtle point, and relies on the fact that p < P 2 where p, denotes the k-th prime. F-stimates
n + 1

such as these are very difficult to establish. The ancient proof by Euclid that there are an infinite number of primes

shows that p + 1, and no substantially better result was proved until 1851, when the RussiannV <P P2"'Pn.lPn.L:. �11
mathernatic an. iebyshev established that p <2p for all n. This result, originally conjectured in 1845 is

3 th
known as Bertrand's hypothesis. A proof can be foun in e book by Hardy and Wright 17] section 22.3.
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o These are all te elements of S.

So all we have to do is to combine elements from these four sources. For this we define a procedure,
merge, which combines two ordered streams into one ordered result stream, eliminating repetitions.

(de-rine (merge sl s2)
(cond ((enipty-stream? sl) s2)

((empty-stream? s2) sl)
(else
(let ((hi (head sl))

(h2 (head s2)))
(cond hi h2) (cons-stream h (merge (tail sl) s2)))

hi h2) (cons-stream h2 (merge sl (tail s2))))
(else (cons-stream h (merge (tail sl) (tail s2)))))))))

Then the required stream may be constructed using merge, as follows:

(def ine S (cons-stream I (merge M?> OM))

Fill in the missing expressions in the places marked OM above.

Exercise 342: How many additions are performed when we compute the n-th Fibonacci umber,
using the definition of f ibs based on the f ibgen procedure? Show that te number of additions would
be exponentially greater if we implemented (de 7 ay exp>) simply as I amb da () <exD>), without
using the optimization provided by the memo-proc procedure as described in section 3 43. 36

Exercise 343: Give an interpretation of the stream computed by the following procedure:

(define (expand num den radix)
(cons-stream (quotient (* num radix) den)

(expand (remainder (* num radix) den) den radix)))

What are the successive elements produced by (expand 7 10)? How about (expand 3 8 10)?

Exercise 344: In section 34.2, we learned about programs that perform nested accumulations over
streams. For example, the following program generates all pairs of elements , j, where runs through
a stream SI and j runs through a stream S2:

(define (pairs S2)
(collect (list j)

((i Si)

O S2M)

As we saw, the co 7 7 ec t form used here syntactic sugar for

(define (pairs S2)
(flatinap (lambda x)

(flatmap lambda (y)
(singleton (list x y)))

S2))

SM

Unfortunately, this ethod of accumulation is not satisfactory for very long streams (much less for
infinite streams). The problem lies in the definition of the f I a tmap procedure:

36 This exercise shows how call-by-need is closely related to ordinary memoization as described in exercise 324.
In that exercise, we used assignment to explicitly construct a local table. Or call-by-need stream optimization
effectively constructs such a table automatically, storing values in the previously forced tails of the stream.
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(define (flatmap f s)
(if (empty-stream? s)

the- empty- s t ream
(let ((sl (f (head s))))

(if (empty-stream? sl)
(flatmap f (tail s))
(cons-stream (head sl)

(append-streams (flatmap f (tail s))
(tail s1)))))))

Since f 7 a tmap appends the streams formed for successive values of the index variables, it will try to
generate the ntire stream for the first value of an index variable before proceeding to the second. This

is unsuitable for infinite strearns. For example, if we try to generate all pairs of positive integers using

(pairs integers integers)

our stream of results will first try to rut) through all pairs of integers with equal to 1, and hence will

never proceed to any other values of j.

To accumulate over infinite streams, we need to devise an order of accumulation that assures that all
elements will eventually be reached if we let our program run long enough. 37 An elegant way to

accomplish this (shown to us by David Turner) is to modify the definition of f I a tmap to use tile following
interleave procedure in place of append-streams.

(define (interleave sl s2)
(if (enipty-stream? sl)

s2
(cons-stream (head sl)

(interleave s2
(tail sl)))))

Col 7ect isdefined justas before, using this newdefinition of f latmap.

Modify f I a tmap as described, and generate the stream of all pairs of positive integers , j Wat are
the first few pairs produced? In this order of evaluation, j grows much faster than i. [low large has
become by the time reaches 10?

Exercise 345: Use nested accumulation to generate the stream of triples of positive integers , j, k
such that j > k. (Hint: If you do this in the most straightforward way, with i, j, and k, each running
through all the positive integers, your program will be extremely inefficient. Why? A better method
makes use of the fact tat k must lie in the interval between and j.)

Exercise 346: Use nested accumulation to generate the stream of all triples of positive integers , J,
2 2 3and j such that > j and + j k (Hint: To get your program to produce results, you will need to

make use of a idea like the one given in the hint for exercise 345.)

Exercise 347: In section 24.3, we saw how to implement a polynomial arithmetic system, representing
polynomials as lists of terms. In a similar way, we can work with power series, such as

5X X
sin x - x + +

3112 5*4*362

represented as streams of infinitely many terms. Using the basic constructors and selectors for terms
defined in section 24.3, design a term-stream representation for power series, analogous to the

ti

term-list representation for polynomials. Using this, implement arithme operations on power
series. In addition, ycu should be able to integrate power series termwise, using the operation

37 The precise statement of wat we want is as follows: If we are accumulating over n streams, then there should

be a function F of n variables such that the element of the result corresponding to element 1 1 of the first stream,

element 7 2 of the second stream, ..., element i n of the nth stream will appear as element number
F(liti I of the output strearb.

V ... n
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(define (integrate-terin t)
(let ((new-order (order t))))

(make-term (sign t) new-order (divide-coeff (coeff t) new-order))))

(define (integrate series)
(map integrate-term series))

If you have allowed rational numbers as coefficients, then you should be able to generate the series for
sine and cosine starting f rom a u n i t - t e rm (which represents 1) as f ollows:

(define cosine-series
(cons-stream unit-term (integrate (negate-series sine-series))))

(define sine-series
(integrate cosine-series))

3.4.5. Streams as Signals

We began our discussion of streams by describing them as computational analogues of the
lisignals" in signal-processing systems. In fact, we can use streams to model signal-
processing systems in a very direct way, representing the values of a signal at successive time
intervals as consecutive elements of a stream. For instance, we can implement an integrator
or summer, which, for an input stream x= (x an initial value C, and a small increment dt,
accumulates the sum

Si + x dt
0

and returns the stream of values S=(S,). The required procedure is' reminiscent of the
"implicit style" definition of the stream of integers in section 34.4.

(define (integral integrand initial-value dt)
(define int

(cons-stream initial-value
(add-streams (scale-stream dt integrand) 'nt)))

int)

initial-value
V
V

input ------------- --------- V
stream ------ >1 scale: dt I ------- >1 I >>>I integral

------------- I add j-----lconsj ------------- >

---------------------------

Figu re 3- 29: The i n t eg r a 7 procedure, viewed as a signal-processing system,

Figure 329 is a picture of a signal-processing system that corresponds to the integra7
procedure. The input stream is scaled by dt and passed through an adder, whose.output is
passed back through the same adder. Notice that the cons-s tream provides the delaythat
permits the internal stream int to be defined in terms of itself. (The different style line from
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in t ia I va 7 ue to the cons in the figure indicates that this is a single value transmitted,
rather than a stream of values.) The self-reference in the definition of f n t is reflected in the
figure by the feedback loop that connects the output of the adder to one of the inputs. In
general, de 7 ay is crucial for modeling signal-processing systems containing loops. Without
de I ay, we would be forced to formulate our model so that the inputs to any signal-processing
component are fully evaluated before the output can be produced, thus outlawing loops.

Exercise 348: We can model electrical systems using streams to represent the values of currents or
voltages at consecutive time intervals. For instance, suppose we have an RC circuit consisting of a
resistor and a capacitor in series, driven by a current source. The voltage response of the system to an
injected current is determined by the following formula, whose structure is shown by the
accompanying signal-f low diagram:

+ v
1 t

v Vo + --- f i dt + R i
i R C C 0

- ---------------

-- >I Scale: R I---------------------
--------------- -------

--------------- ------------ Add > v
i ----- >1 Scale: 1/C I ---- >1 Integral I ----- >1 I

-------------- ------------ -------
t
Vo

Write a procedure RC, which models this system. RC should take as inputs the values of , C and dt RC
should return a procedure that takes as inputs a stream representing the current and an initial value
for the capacitor voltage Vo, and produces as output the stream of voltages v. For example, you should
be able to use RC to model an RC circuit with R = Ohms, C = Farad, ad a .5 second time step by
evaluating

(define RC1 (RC 1 0.5))

to define RCI to be a procedure that takes a stream representing the time sequence of currents and an
initial capacitor voltage and produces the output stream of voltages.

Exercise 349: Alyssa P. Hacker is designing a system to process signals coming from pysical
sensors. One important feature she wishes to produce is a signal that describes the zero-crossings of
the input signal. That is, the resulting signal should be I whenever the input signal changes from
negative to positive, -1 whenever the input signal changes from positive to negative, and otherwise.
(Assume that the sign of a input is considered to be positive.) For example, a typical input signal with
its associated zero-crossing signal would be

2 1.5 1 0.5 -0.1 2 3 2 .5 02 3 4
0 0 0 0 0 -1 0 0 0 0 1 0 0

In Alyssa's system, the signal from the sensor is represented as a stream sense-data and the stream
zero-crossfn s is to be the corresponding stream of zero-crossings. Alyssa first writes a procedure
s ign-change-detector that takes two values as arguments and compares the signs of the values to
produce an appropriate 0, 1, or -1. She then constructs her zero-crossing stream as

(define (make-zero-crossings input-stream last-value)
(cons-stream (sign-change-detector (head input-stream) last-value)

(make-zero-crossings (tail input-stream)
(head input-stream))))

(define zero-crossings (make-zero-crossings sense-data 0))
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Alyssa's boss, Eva Lu Ator, walks by and suggests that this program is approximately equivalent to the
following one, whichuses a higher-level procedure:

(def ine zero-crossings
(map-2 sign-change-detector sense-data <xpression>))

(define (map-2 proc sl s2)
(cons-stream (proc (head sl) (head s2))

(map-2 proc (tail sl) (tail s2))))

Complete the program by supplying the indicated <expression>.

Exercise 350: Unfortunately, Alyssa's zero-crossing detector in exercise 49 proves to be
insufficient, because the signal frorn the sensor is noisy, leading to spurious zero-crossings being
produced. Lem E. Tweakit a hardware specialist, suggests that Alyssa should smooth the signal to filter
out the noise before extracting the zero-crossings. Alyssa takes his advice and decides to extract the
zero-crossings from the signal constructed by averaging each value of te sense data with the previous
value. She explains the problem to her assistant, Louis Reasoner, who implements the idea, altering
Alyssa's program from exercise 349 as follows:

(define (make-zero-crossings input-stream last-value)
(let ((avpt (/ ( (head input-;;�'stream) last-value) 2)

(cons-stream (sign-change-detector avpt last-value)
(make-zero-crossings (tail input-stream)

avpt))))

This seems to work, but a close look at the output shows that the signals are in fact too smoothl Find the
bug that Louis has installed and fix it without changing the structure of the program. Hint: You will have
to increase the number of arguments to make-zero-cross ings.

Exercise 351: Eva Lu Ator has a criticism of Louis' approach in exercise 350. The program he wrote
is not modular, because it intermixes the operation of smoothing with the zero-crossing extraction. For
example, the extractor should not have to be changed if Alyssa finds a better way to condition her input
signal. Help Luis by writing a procedure smooth that takes a stream as input and produces a stream,
each element of which is the average two successive input stream elements. Then use smooth as a
component to implement the zero-crossing detector in a more modular style.

Using DELAY to model systems with loops
The integra7 procedure shows how the de7ay built into cons-stream enables us to

model a system that contains a feedback loop as shown in figure -29. Unfortunately, stream
models of signal-processing systems with loops may require uses of de ay beyond the
"hidden de 7ay" supplied automatically by cons-s tream. For instance, figure 330 shows a
signal processing system for solving the differential equation dyldt f (y) where f is a
given mathematical functions The figure shows a map component, which applies to its input
signal, linked in a feedback loop to a integrator, in a manner very similar to analog computer
circuits that are actually used to solve such equations.

------------

dy y
integral I ---------------- >

----------

-----------
--- I map: f <----

----------

Figure3-30: An"analogcoinputercircuit"thatsolvestheequation dyldt-f(y).
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Assuming we are given an initial value y- in it for y, we could try to model this system
using the procedure:

(define (solve f y-init dt)
(define y (integral dy y-init dt))
(define dy (map f y))

Y)

But this procedure does not work, because in the first line of so I ve, the call to ntegra I
requires that the input dy be defined, which does not happen until the second line of so 7 ve.

Exercise 352: Why can't we fix the problem by simply interchanging the first two lines of solve to
define dy before y?

On the other hand, the intent of our definition does make sense, because we can, 'in
principle, begin to generate the y stream without knowing dy. Indeed, n tegra 7 and many
other stream operations have properties similar to cons-stream, in that we can generate
part of the answer given only partial information about the arguments. For in tegra 7 the
headoftheo'utputstreamisthespecified lnitia7-va7ue- Sowecangeneratetheheadof
the output stream without evaluating the integrand dy. Once we know the head of y, the map
in the second line of so I v e can begin working to generate the first element of dy, which will
produce the next element of y, and so on.

To take advantage of this idea, we'll redefine in tegra I to expect the integrand stream to
be a delayed argument. Integra 7 will force the integrand to be evaluated only when 'it 'is
required to generate more than the head of the output stream:

(define (integral delayed-integrand initial-value dt)
(define int

(cons-stream initial-value
(let ((integrand (force delayed-integrand)))

(add-streams (scale-stream dt integrand)
int))))

int)

Now we can implement our so I ve procedure by delaying the evaluation of dy in the definition
of Y:

(define (solve f yinit dt)
(define y ntegral (delay dy) yinit dt))
(define dy (map f y))
Y)

In general, every caller of in tegra 7 must now de I ay the integrand argument.

This explicit use of 'de I ay provides us with flexibility, but it is awkward. One way around
this is to define integral to be a special form, similar to cons-stream, which will
automatically wrap a de 7 ay around its first argument. This has a disadvantage, though, in
that f n tegra I will no longer be an ordinary procedure, which will cause problems if we wsh
to use ntegra 7 in conjunction with higher-order procedures. (Compare the problem with
co n s - s t re am described in eercise 340.)

A straightforward way to eliminate this problem once and for all is to make a fundamental
change in our programming language, and adopt a model of evaluation in which all
arguments to procedures are automatically delayed, and arguments are forced only when
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they are actually needed, for example, when they are required by a primitive operation. This
would transform our language to use normal order evaluation, which we first described when
we introduced the substitution model for evaluation in Chapter section 1.1.5. This provides
a uniform and elegant solution to the problem of using streams to model systems with loops,
and it would be a natural strategy to adopt if we were concerned only with stream processing.
In section 42.2, after we have studied the evaluator, we will see how to transform our
language in just this way. Unfortunately, including de I ays in procedure calls wreaks havoc
with our ability to understand programs that use assignment. Even the single delay in
cons -s t ream causes problems, as illustrated by the confusing examples in the exercises at
the end of section 34.3. As far as anyone knows, mutability and delayed evaluation do not
mix well in programming languages, a devising ways to deal with both of these at once 'is an
active area of research.

Exercise 353: The in tegra 7 procedure used above was analogous to the "implicit" definition of the
infinite stream of integers in section 34.4. Alternatively, we can give a definition of integra I that is
more like the "generating function" procedure that used in tegers -star t ing- f rom:

(define (integral integrand initial-value dt)
(cons-stream initial-value

(if (empty-stream? integrand)
the--empty-stream
(integral (tail integrand)

(+ (* dt (head integrand)) initial-value)
dt))))

When used in systems with loops, this procedure has the same problem as does our original version of
in tegra . Modify the procedure so that it expects the in tegrand as a delayed argument, and hence
can be used in the so I ve procedure shown above.

Exercise 354: Consider the problem of designing a signal-processing system to study the
homogeneous second order linear differential equation

d2y/dt 2 _ a dy/dt - by = 

The output stream, modeling y, is generated by a network that contains a loop. This is because the
value of d2y1dt 2 depends upon the values of y and dyldt and both of these are determined by

2 2integrating d y1dt . The diagram we would like to encode looks like this:

ddy ------------ dy ------------
>1 Integral Integral I ------- > y
----------- ------------

V
------- ------------

I<----1 Scale: a I
Add ------------

-- I Scale: b 1< -------------
------------

Write a procedure 2nd, that takes as arguments the constants a, b, and dt, together with initial values
y- in i t and dy- in t for y and dyldt, and generates the stream of successive values of y.

Exercise 355: Generalize the 2nd procedure of exercise 354 so that it can be used to solve general
secondorderdifferentialequationsy x f(dy1dtd2y1dt2).

Exercise 356: A series PLC-circuit consists of a resistor, a capacitor, and an inductor connected in
series. If R, L, and C measure the resistance, inductance, and capacitance, is the voltage across te
capacitor, and I the current in the inductor, then the state of the circuit is determined by the pair ofL
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differential equations:

dVc
- I L/C

dt

O L
1/1- V - R/L IC L

dt

The signal-f low diagram representing this system of differential equations is shown in figure -31.

---------------

------------ I Scale: I/L j<---

I
I
I
I
I

---------------

dV ---------------
-- >I Integral v C

---------------

---------------

I Scale: 1/C j< ---
---------------

V

---------- dI ---------------

I Add I--- �->l Integral I --- > I
---------- --------------- L

t

---------------

------------ I Scale: -R/L 1<---
---------------

Figure 331: A signal-flow diagram for the solution to a series RLC circuit.

Write a procedure, RLC, which takes as arguments the device parameters of the circuit, R, L, and C, and
the time increment dt. In a manner similar to the RC procedure of exercise 348, RLC should produce a
procedure which takes the initial values of the state variables, Vand I

co L O' and produces a pair (cons)
of the streams of states, Vc and IL. Using RLC, generate the pair of streams which models the behavior
of a series RLC cirMlit with R = Ohm, C = 02 Farad, L 1 Henry, and dt = 0.1 second, and with
initial values of the state variables, ILO = Amps, and Vco 1 0 Volts.

3.4.6. Using Streams to Model Local State

Let us now return to the beginning of this chapter on objects and state and examine it in a
new light. We introduced assignment statements and mutable objects in an attempt to
improve the modularity of programs that model systems with local state, We constructed
computational objects with local state variables, and used assignment to modify these
variables. We modeled the temporal behavior of the ob'ects in the world by the temporal
behavior of corresponding computational objects. Streams provide an alternative way to
model objects with local state. We can model a changing quantity, such as the local state of
some object, using a stream that represents the "time history" of the successive values In
essence, we represent time explicitly, using streams, so that we decouple time 'in our
simulated world from the se'quence of events that take place in the computer during
evaluation. Indeed, due to the presence of de I ay, there may be little relation between'
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simulated time in the model and the order of events in the computer.

In order to contrast these two approaches to modeling, let us return to the ro-bleim of
implementing a "withdrawal processor" that monitors the balance in a bank account In
section 31.2 we implemented a simplified version of such a processor:

(define (make-simplified-withdraw balance)
(lambda (amount)

(set! balance (- balance amount))
balance))

Calls to mak'e-slmp 7 if ied-wl thdraw produce computational objects, each with a local
state variable ba7ance, which is decremented by each successive call to the object. The
object takes an amount as an argument, and returns the new balance. We can imagine the
user of a bank account typing successive inputs to such an object and watching the
sequence of returned values shown on a display.

Alternatively, we can model our withdrawal object as a procedure that takes as input a
stream of amounts and produces the stream of successive balances in the account:

(define (stream-withdraw balance amount-stream)
(cons-stream balance

(stream-withdraw (- balance
(head amount-stream))

(tail amount-stream)))-)

Now suppose that the input amount-stream is the stream of successive values typed by the
user, and that the resulting stream of balances is displayed. Then, from the point of the user
who is typing values and watching results, the stream process has the same behavior as the
S MpNfled-wfthdrawobject- Andyet,withthestreamversion,thereisnoassignmeni4no
local state variable, and consequently none of the theoretical problems that we encountered
in section 31.2. The system appears to ave state, and yet, somehow, there is no state!ia

Exercise 357: Extend the stream-withdraw procedure to a more complete model for bank
accounts, thus producing a stream analogue of the make-account procedure of section 31.1.

Monte Carlo simul ation, revisited
As we saw in section 31-3, one of the major benefits of introducing assignment is that we

can increase the modularity of our systems by encapsulating, or "hiding," parts of the state of
a large system within local variables. Stream models can provide an equivalent modularity,
without the use of assignment. As an illustration, we can re-implement the Monte Carlo
estimation of ff, which we examined in section 31.3, from a stream-processing point of view.

Recall that the, key modularity issue was that we wished to hide the internal state of a

38 This is really remarkable, Even though stream-withdraw is a well-defined mathematical function, whose
behavior does not change, the user's perception here is that he is interacting with a system that has a changing state.
One way to resolve this paradox is to realize that it is the user's temporal existence that imposes state on the system.
For example, when we observe a oving particle, we say that the position (state) of the particle is changing.
However, from the perspective of the particle's world-line in space-time, there is no change involved. Similarly, it the
user could step back from the interaction and think in terms of streams of balances rather than individual
transactions, he could regard the system as stateless.
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random number generator from programs that used random numbers. We began with a
function rand-update, whose successive values furnished our supply of random numbers,
and used this to produce a random number generator:

(define rand
(let ((x random-init))

(lambda
(setl x (rand-update x))
XM

In the stream formulation, there is no random number generator per se, just a stream of
random numbers produced by successive calls to rand-upda to:

(define random-numbers
(cons-stream random-init

(map rand-update random-numbers)))

We use this to construct the stream of outcomes of the cesaro experiment performed on
consecutive pairs in the random-numbers stream.

(def ine cesaro-stream
(map-successive-pairs (lambda (rl r2) (gcd rl r2) 1))

random-numbers))

(def ine (map-successive-pairs f s)
(cons-stream (f (head s) (head (tail s)))

(map-successi've-pairs f (tail (tail s)))))

The cesaro-stream is now fed to a monte-car7o procedure, which produces a stream
of estimates of probabilities. The results are then converted into a stream of estimates of -.

(define (monte-carlo experiment-stream nt nf)
(define (next nt nf)
.(cons-stream (/ nt ( nt nf))

(monte-carlo (tail experiment-stream) nt nf)))
(if (head experiment-stream)

(next nt 1) nf)
(next nt ( nf 1))))

(define pi'
(map (lambda (p) (sqrt ( 6 p)

(monte-carlo cesaro-stream 0 0)))

There is considerable modularity in this approach, because we still can formulate a general
monte-carlo procedure that can deal with arbitrary experiments. Yet there is no
assignment or local state.

Exercise 358: Exercise 37 discussed generalizing the random number generator to allow one to reset
the random number sequence so as to produce repeatable sequences of "random" numbers. Produce
a stream formulation of this same generator, which operates on an input stream of requests to
generate a new random number or to reset the sequence to a specified value, and which produces
the desired stream of random numbers.
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Streams versus objects
Streams and delayed evaluation can be powerful modeling tools, providing many of the

benefits of local state and assignment. Moreover, they avoid the theoretical problems which,
as we saw in se ction 3.1-2, must accompany the introduction of assignment into a
programming language. This observation has led many current researchers to propose so-
called functional programming languages, which make heavy use of delayed evaluation, but
do not include any provision for assignment or mutable data. The functional approach is also
extremely attractive when we consider the problem of designing programming languages for
multiprocessing computers, in which many computations are carried out in parallel. The
absence of assignment means that the programmer need not be concerned with
synchronization errors caused by values being updated in the wrong order, and the possibility
of such errors poses a major problem when implementing traditional programs on
multiprocessing systems. Because of this, it seems certain that functional methods will play
an increasingly important role in the future development of programming languages and
techniques-39

On the other hand, it is an open question whether all need for assignment can be
reasonably bypassed using delayed evaluation. One particularly troublesome area arises
when we wish to design interactive systems, particularly ones that model interactions between
truly independent entities. For instance, consider the problem of implementing a banking
system that permits joint bank accounts. In a conventional system using assignment and
objects, we would model the fact that Peter and Paul share an account by having both Peter
and Paul send their transaction requests to the same bank account object, as we saw in
section 3.1.2. From the stream point of view, where there are no "objects" per se, we have
already indicated (exercise 357) that a bank account can be modeled as a process that
operates on a stream of transaction requests to produce a stream of responses. Accordingly,
we could model the fact that Peter and Paul have a joint bank account by merging Peter's
stream of transaction requests with Paul's stream of requests, and feeding the result to the
bank account strea.rn process shown in figure 332.

Peter's requests -------- >1 I bank I
I merge I--------- >1accountl ----------- >

Paul's requests -------- >1 I
--------- ---------

Figure 332: A joint bank account, modeled by merging two streams of transaction requests.

The problem with this formulation is in the notion of merge. It will not do to merge the two
streams by simply taking alternately one request from Peter and one request from Paul. For
suppose Paul accesses the account only very rarely, We could hardly force Peter to wait for
Paul to access the account before he could issue a second transaction! In order to deal with

391. John Backus, the inventor of FORTRAN, gave high visibility to the functional programming movement when he
was awarded the ACM Turing award in 1978, giving an acceptance speech 21 that strongly advocated the functional
approach. A good overview offunctional programming is given in the books by Henderson 19] and by Darlington,
Henderson, and Turner 9].
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this problem, most researchers agree that it is necessary to supplement the purely functional
basis of the language with some new constructs, One of these, known as fair erge (or
non-deterministic merge) is just what we need for the joint account problem. Roughly, the fair
merge of two streams will wait for an input to appear on either stream and produce the
received value, alternating between the two streams in some fair way whenever both of them
produce inputs. Notice that even the definition of fair merge involves introducing the notion
of time (through waiting) which is precisely what we avoid when we adopt the functional
approach. Extensions such as fair merge are troublesome from a theoretical point of view,
because they are not well-understood, and because adding too powerful a construct could
well enable us to implement assignment, thus re-introducing many of the same problems that
the functional style was meant to guard against in the first place.40

Another problem with the stream formulation is that it seems inherently biased towards
models wose components have "inputs" and "outputs." For example, one can use streams
as the basis for an elegant reformulation of the digital circuit simulator of section 33-4 in
which the elementary gates are viewed as processes on streams of O's and 1's. On the other
hand, it is unclear how to give a natural stream formulation of the constraint propagation
system of section 33.5, where in maintaining a constraint such as AB=C, there is no fixed
element that can be viewed as the output determined by the other two values. In general, it
seems that some problems are more naturally viewed in terms of clusters of communicating
entities than in terms of signal-flow. Perhaps the best that one can say at present is that
"objects" and streams both lead to powerful odeling disciplines. The choice between them
is far from clear, and the search for a uniform approach that combines the benefits of both of
these perspectives is a central concern of current research in programming methodology.

40 Even fair merge does not solve all our problems. Although we can model shared bank accounts, it is awkward to
use fair merge in more complex resource allocation problems. The resource manager, introduced by Arvind and
Brock , is a more powerful construct developed to deal with these more complex situations.
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Chapter 4
Meta-Linguistic Abstraction

... It's in words that the magic is -- Abracadabra, Open
Sesame, and the rest -- but the magic words in one
story aren't magical in the next. The real magic is to
understand which words work, and when, a nd for
what; the trick is to learn the trick.

...And those words are made from the letters of our
alphabet: a couple-dozen squiggles we can draw with
the pen. This is the key! And the treasure, too, if we
can only get our hands on it! It's as if -- as if the key to
the treasure is the treasure!

--John- Barth, Chimera

In our study of program design, we have seen that expert programmers control the
complexity of their designs by using the same general techniques as do designers of all
complex systems. They combine primitive elements to form compound objects, they abstract
Compound objects to form higher-level building blocks, and they preserve modularity by
adopting appropriate large-scale views of system structure. In illustrating these techniques,
we have used Lisp as a language for describing processes, and for constructing
computational data objects and processes to model complex phenomena in the real world.
However, as we confront increasingly complex problems, we will -find that Lsp, or indeed any
fixed programming language, is not sufficient for our needs. We must constantly turn to new
languages in order to express our ideas more effectively. Establishing new languages is a
powerful strategy for controlling complexity in engineering design; for we can often enhance
our ability to deal with a complex problem by adopting a new language that enables us to
describe (and hence to think about) the problem in a different way, using primitives, means of
combination, and means of abstraction that are particularly well-suited to the problem at
hand.

For example, electrical engineers use many different languages for describing circuits.
Two of these are the language of electrical networks and the language of electrical systems.
The network language emphasizes the physical modeling of devices in terms of discrete
electrical elements. The primitive objects of the network language are primitive electrical
elements such as resistors, capacitors, inductors, and transistors, which are characterized in
terms of physical variables called voltage and current. In contrast, the electrical system
language is concerned with the functional behavior of signal-processing modules, and signals
are manipulated without concern for their physical representation as voltages and currents.
When describing circuits in the network language', te engineer is concerned with the
physical feasibility of a design, for example, with optimizing te gain-bandwidth product of an
amplifier by choosing appropriate components. In contrast, the electrical system language
emphasizes the teleological properties of electrical devices. It is erected on the network
language, in the sense that the entities of signal processing systems are constructed from
electrical networks, but the concerns here are the large-scale organization of electrical
devices to solve a given application problem, assuming the feasibility of the parts.
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Programming is similarly endowed with a multitude of languages. There are physical
languages, such as the achine languages for particular computers. These languages are
concerned with the representation of data and control in terms of individual bits of storage
and primitive machine instructions. The machine-language programmer is concerned with
using the given hardware to erect systems and utilities for the efficient implementation of
resource-limited computations. High-level languages are erected on a machine language
substrate in much the same way that the electrical systems language is erected on a substrate
of electrical etworks. High-level languages hide concerns about the representation of data
as collections of bits and the representation of programs as sequences of primitive
instructions. Such languages have means of combination and abstraction, such as
procedure definition, appropriate to the larger scale organization of systems.

Meta-linguistic abstraction -- establishing new descriptive languages -- plays an important
role in all branches of engineering design. But it is particularly important to computer
programming because, in programming, not only can we formulate new languages, but we
can also implement these language by constructing evaluators. An evaluator (or interpreter)
for a programming language is a procedure which, when applied to an expression of the
language, performs the actions required to execute that expression (regarded as a fragment
of a program written in the language). Thus, given a language which a computer knows how
to execute, if we can implement in that language an evaluator for a second language, then OUr
computer will also be able to execute expressions of the latter language. This method of
implementing a language is renown as constructing an ebedded language.

In point of fact, it is not too much of a distortion to regard almost any program as the
evaluator for some language. For instance, the polynomial manipulation system of section
2.4.3 embodies the rules of polynomial arithmetic and implements them in terms of computer
operations on list structured data. If we augment this system with procedures to read and
print polynomial expressions, we have the core of a special-purpose language for dealing with
problems in symbolic mathematics. The digital logic simulator of section 33.4 and the
constraint propagator of section 33.5 are legitimate languages in their own right, each with its
own primitives, means of combination, and means of abstraction. Seen from this perspective,
the technology for coping with large-scale computer systems merges ultimately with the
technology for building new computer languages, and computer science itself becomes no
more (and no' less!) than the discipline of constructing appropriate descriptive languages.

Embedded languages
We nowembark on a tour of the technology by which languages are established in terms of

other languages. In this chapter we shall use Lisp as a base, implementing evaluators as Lisp
procedures. Lisp is particularly well-suited to this task, due to its ability to represent and to
manipulate symbolic expressions. We will take the first step in understanding how languages
are implemented by building an evaluator for Lisp itself. The language implemented by our
evaluator will be a subset the Scheme dialect of Lisp that we have been using in this book.
Although the evaluator described in this chapter is written for a particular dialect of Lisp, it
contains the essential structure of an evaluator for any expression-oriented language
designed for writing programs for a sequential machine. In fact, most language processors
contain, deep within them, a little Lisp" evaluator. The evaluator has been simplified for the
purposes of illustration and discussion, and there are a number of features that have been left
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out which would be important to include in a production quality Lisp system.' Nevertheless,
this simple evaluator is adequate to execute most of the programs in this book.

Our evaluator for Lisp will be implemented as a Lisp program. It may seem circular, to think
about evaluating Lisp programs using an evaluator that is itself implemented in Lisp. Indeed,
an evaluator that can execute itself is said to be meta-circular, We will use our Lisp meta-
circular evaluator to help us to understand the basic structure of any evaluator. In essence,
evaluation is a process, and we will be using the Lisp programming language -- which i's our
tool for describing processes -- to describe the evaluation process itself. 2

An important advantage of formulating the evaluator as a Lisp program is that we can
consider alternative evaluation rules by describing these as modifications to the evaluator
program. We will use this technique in section 42 to explore variations of the Scheme dialect
of Lisp, including a language in which variables are scoped dynamically, and a language
which uses normal rather than applicative order evaluation. Both of these can be
implemented by making modest changes to the original Scheme evaluator. The final section
of this chapter presents an extended example of meta-linguistic abstraction. We implement a
logic programming language, which allows a programmer to retrieve information from data
bases by formulating queries and rules of inference. Even though te query language is'
strikingly different from Lisp (or any other procedural language) we will discover that the
evaluator for the query language contains many of the central elements found in a Lisp
evaluator.

4.1. The Meta-circular Evaluator

We will implement our evaluator as a procedure eva 7 of two arguments an expression
together with an environment in which the expression is to be evaluated. Eva I will embody,
and concretizes the environment model of evaluation that we described in Chapter 3 section
3.2. Recall that the model has two basic parts. The first part specifies that to evaluate a
compound expression (other than a special form) we

Evaluate the subexpressions, and ten apply the value of the perator
subexpression to the values of the operand subexpressions.

The second part of the evaluation model specifies that to apply a compound procedure to a
set of arguments we

0 Evaluate the body of the procedure in a new environment. This environment is
constructed by extending the environment part of the procedure ob'ect, by a
frame in which the formal parameters of the procedure are bound to the actual:

The most important of these are mechanisms for handling errors and supporting debugging.

2Even so, there will main iportant aspects of the evaluation process that are not elucidated by te meta-
circular evaluator. Most important of these are the detailed mechanisms by which procedures call other procedures
and return values to their callers. We will address these issues in Chapter 5, when we take a closer look at the
evaluation process by transforming the meta-circular evaluator into a program that runs on a very simple machine.
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arguments to which the procedure is to be applied.

These two rules describe the essence of the evaluation process, a basic cycle in which
expressions to be evaluated in environments are reduced to procedures to be applied to
arguments, which in turn are reduced to new expressions to be evaluated in new
environments, and so on, until expressions are reduced to symbols, whose values are looked
up in the environment, and to primitive procedures, wich are applied directly. This
evaluation cycle will be embodied by the interplay between the two critical procedures in the
evaluator, eva I and apply.

To model the application of primitive procedures, we assume that we have available a Lisp
procedure called apply-primitiVe-Procedure that takes as arguments a primitive
procedure and a set of values and returns the result of applying the procedure to the values

3as arguments.

In addition to the ability to apply primitives, we need operations for manipulating
environments. As explained in section .2, an environment is a sequence of frames, where
each frame is a table bindings which pair variables with their corresponding values. We
assume that we have available the following operations for manipulating environments.

(7ookup-varlab7e-value variable env)
Takes a variable and an environment as arguments. It returns the value
bound to the variable in the environment, or signals an error if the variable
is unbound.

(extend-environment variables aes base-env)

Takes a list of variables, a list of values, and an environment as
arguments. It returns a new environment, consisting of a frame in which
the variables are bound to the corresponding values, whose enclosing
environment is the specified base -en v ironmen t.

One might ask: if we grant ourselves the ability to apply primitives, then what remains for us to implement in the
evaluator? The answer to this question is that the evaluator performs three essential tasks, and it is precisely these
three things that make a language more than merely a collection of primitive operators:

1. The evaluator enables us to deal with compound expressions. For example, while tile simple mechanism
of apply-primitive-procedurewouldsufficeforevaluatingtheexpression I ),itisnotableto
handle I 2 3 , because as far as the primitive procedure is concerned, its arguments must
be numbers, and it would choke if we passed it te expression ( 2 3 as an argument. One important
role of the evaluator is to choreograph the composition of functions so that ( 2 3 is reduced to 6
before being in turn passed as an argument to .

2. The evaluator allows us to use variables. For example, the primitive procedure has no way to deal with
expressions such as x 1). We need an evaluator to keep track of variables and replace them with
their values before invoking the primitive procedures.

3. The evaluator allows us to define compound procedures. This involves keeping track of procedure
definitions, knowing how to use these definitions in evaluating expressions, and providing a mechanism
that enables procedures to accept parameters.

In other words: the job of the evaluator is not so much to specify the primitives of the language, but rather to
provide the connective tissue -- the means of combination and the means of abstraction -- that binds a collection of
primitives to form a language.
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(def Jfne-variab7el varlab7e va'lue env)
Adds a new binding to the first frame in the environment. The new Unding
associates the specified variable with the specified value,

(set-varlab7e-va7uel varfab7e va7ue env)
Changes the binding of the variable in the environment, so that the
variable is now bound to the specified value, It signals an error if the
variable is unbound.

In adherence to the discipline of data abstraction, our evaluator will operate on
environments environments using these procedures, without making any commitment to how
environments are represented, The representation of environments is discussed separately,
in section 41.3.

4.1.1. The core of the evaluator: EVAL and APPLY

There are two key procedures in the evaluator, called eva7 and app7y. The eval
procedure takes as arguments an expression and an environment. Eva7 classifies the
expression and directs its evaluation. In the case of an ordinary procedure application, this
involves finding the procedure and the evaluated arguments and setting things up for the
application. App7y handles the actual procedure application itself, both for primitive
procedures and for compound procedures. For primitive procedures this is accomplished by
calling app7y-priniltive'-procedure- For compound procedures, app7y must perform
the process dictated by the environment model of evaluation. Namely, it must construct a new
environment, and, in that environment, evaluate the procedure body. This entails calling
eva 7 with the procedure body and the new environment.

EVAL
There are various types of expressions that eva 7 must handle:

* For self-evaluating expressions, such as numbers, eva7 returns the expression
itself.

9 For quoted expressions, eva 7 returns the expression that was quoted.

* Variables must be looked up in the environment to find their values.

0 An assignment to (or a definition of) a variable, must recursively call eva to
compute the new value to be associated with the variable. The environment must
be modified to change (or create) the binding of the appropriate variable.

A lambda expression must be transformed into an applicable procedure by
attaching an environment to the specified procedure text.

* A conditional expression requires special processing of its clauses.

* Finally, the expression may be an ordinary procedure application. In this case
eva 7 must determine the procedure referred to by the operator part of the
application, and it must evaluate the operands of the application. This recursive
evaluation is performed by the auxiliary procedure 7 s t -o f - va 7 ues, and the
result is passed to app 7y.
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Eva 7 is structured as a case analysis on the syntactic type of the expression to be
evaluated. In order to keep the procedure suitably general, we express the determination of
the type of an expression abstractly, making no commitment as to how the various types of
expressions are implemented. Each type of expression has a predicate that tests for it, and an
abstract means for selecting its parts. This abstract syntax makes it easy for us to see how we
might use a similar evaluator to interpret another language.

(define (eval exp env)
(cond ((self-evaluating? exp) exp)

((quoted? exp) (text-of-quotation exp))
((variable? exp) (lookup-variable-value exp env))
((definition? exp) (eval-definition exp env))
((assignment? exp) (eval-assignment exp env))
((lambda? exp) (make-procedure exp env))
((conditional? exp) (eval-cond (clauses exp) env))
((application? exp)
(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))
(else (error "Unknown expression type -- EVAL11 exp))))

For clarity, we have implemented eva 7 as a case analysis using con d. The disadvantage or
this is that our procedure handles only a few distinguishable types of expressions, and no new
ones can be defined without editing the definition of eva . In most Lisp implementations,
dispatching on the type of an expression is done in a data-directed style. This allows a user to
add new types of expressions that eva7 can distinguish, without modifying the definition of
e va 7 itself.

Exercise 41: Rewrite eva7 so that the dispatch is done in data-directed style. You will have to
initialize an appropriate table to hold the dispatch procedures. Compare this with the data-directed
differentiation procedure of exercise 243.

APPLY
The procedure app 7y takes two inputs, a procedure to be executed, and a list of

arguments to which the procedure is to be applied. App ly classifies procedures into two'
kinds and directs their application. Primitive procedures are executed directly by
apply-primitive-procedure. Compound procedures require that the expressions
comprising the body of the procedure be sequentially executed (using an auxiliary procedure
eva I -sequence) in an environment where the parameters of the procedure are associated
with the arguments passed to the procedure.

Asso ciating te formal parameters of the procedure to the actual arguments is done using
the procedure ex tend-en v! ronmen t. Ex tend-en v f ronmen t creates a new environment,
which extends a given environment by a new set of bindings, In the case of app 7y, we extend
the environment carried by the procedure, by adjoining the association of the formal
parameters to the actual arguments.
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(define (apply procedure arguments)
(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))
A(compound-procedure? procedure)

(eval-sequence (procedure-body procedure)
(extend-environment
(parameters procedure)
arguments
(procedure-environment procedure))))

(else
(error "Unknown procedure type -- APPLY" procedure))))

Arguments to procedures
When eva7 processes a a procedure application, it uses I st-of -va7ues to produce the

list of arguments to which te procedure is to be applied. List-of-values takes as an
argument the operands of the combination. It evaluates each operand and returns the it of
corresponding values:

(define (list-of-values exps env)
(cond ((no-operands? exps) 1())

.(else. (cons (eval (first-operand exps) env)
(list-of-values (rest-operands exps)

env)))))

Sequences
The following procedure is used by app 7y to evaluate the sequence of expressions in a

procedure body. It takes as arguments a sequence of expressions and an environment, and
evaluates the expressions in the order in which they occur. Tile value returned is the value of
the final expression:

(define (eval-sequence exps env)
(cond ((last-exp? exps) (eval first-exp exps) env))

(else (eval first-exp, exps) env)
(eval-sequence (rest-exps exps) e'nv))))

Conditionals
Eva7-cond is a procedure that scans the list of clauses of a conditional expression,

evaluating the predicate part of each clause to see if it is true. If the predicate part is true, the
action sequence part of that clause is executed. If a predicate part is not true, the scan
continues. Running out of clauses causes the con d to return n I .

(define (eval-cond clist env)
(cond ((no-clauses? cl.1'st) nil)

((else-clause? (first-clause cl*st))
(eval-sequence (action-sequence (first-clause clist))

env))
((true? (eval predicate (first-clause clist)) env))
(eval-sequence (action-sequence first-clause clist))

env))
(else (eval-cond (rest-clauses clist) env))))
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Assignments to variables
The following procedure handles assignments to variables. It calls eva 7 to find the value to

be assigned, and transmits the variable and the resulting value to a procedure
se t- var lab I e-va 7 ue I that will install this information in the designated environment. (See
section 41-3.)

(define (eval-assignment exp env)
(let ((new-value (eval (assignment-value exp) env)))

(set-variable-valuet (assignment-variable exp)
new-value
env)

new-value))

Definitions of variables are handled in a similar manner.

(define (eval-definition exp env)
(define-variable! (definition-variable exp)

(eval (definition-value exp) env)
env)

(definition-variable exp))

4.1.2. Representing Expressions

The evaluator is reminiscent of the symbolic differentiation program that we discussed in
Chapter 2 section 22.4. Both programs operate on symbolic expressions. In both programs,
the result of operating on a compound expression is determined by operating recursively on
the pieces of the expression, and by combining these in a way that depends on the type of the
expression. In both programs, we used data abstraction to decouple the general rules of
operation from the details of how expressions are represented. In the differentiation program
this meant that the same differentiation procedure could deal with algebraic expressions in
prefix form, in infix form, or whatever. For the evaluator, this means that the syntax of the
language being evaluated is determined solely by the procedures that classify and extract
pieces of expressions.

The following set of procedures defines the syntax of the Lisp dialect used in this book.

• The only self-evaluating items are numbers:4

(define (self-evaluating? exp) (number? exp))

• Quotations are expressions of the form (quote <text-of-quotat1on>)5

4
Many Lisp implementations also treat the symbols nil and t as self-evaluating. In Scheme, nl and t are

ordinary symbols, which are initially bound in the global environment to appropriate values.

6
As mentioned in Chapter 2 section 22.3, this expanded quote form is the form in which the evaluator sees

quoted expressions, even if these expressions are t ped in to Lisp using the quotation mark. For example, the
expression I a would be see'n by the ev6luator as (quo t e a) See also exercise 228.
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(define (quoted? exp)
(If (atom? exp)

ni
(eq? (car exp) 'quote)))

(define (text-of-quotation exp) (cadr exp))

Variables are represented by symbols:

(define (variable? exp) (symbol.? exp))

Assignments are expressions of the form (set I <variable> <value>)

(define assignment? exp)
(if (atom? exp)

ni 1
(eq? (car exp) setl)))

(define (assignment-variable exp) (cadr exp))

(define (assignment-value exp) (caddr exp))

Definitions are expressions of the form (def Ine <variable> <value>) or of the
form

(def ine (<variable> <variable> <variable>)
<body>)

The latter form (standard procedure definition) is syntactic sugar for

(def ine <variable>
(I ambda (<variable> ... <variable>)

<body>))

Here are te corresponding syntax procedures:

(define definition? exp)
(if (atom? exp)

n 1 1
(eq? (car exp) 'define)))

(define (definition-variable exp)
(cond ((variable? (cadr exp))

(cadr exp))
(else
(caadr exp))))

(define (definition-value exp)
(cond ((variable.? (cadr exp))

(caddr exp))
(else

(cons 'lambda
(cons (cdadr exp) ;Formal parameters

(cddr exp)))))) ;body

Lambda expressions are lists that'begin with Iamb da:
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(define (lambda? exp)
(if (atom? exp)

nil
(eq? (car exp) 'lambda)))

Conditionals begin with cond and have a list of predicate-action clauses. A'
predicate is considered to be true if it is non-n i 7. A clause is an else clause ifits
predicate is the symbol e Ise.

(define (conditional? exp)
if (atom? exp)

ni
(eq? (car exp) 'cond)))

(define (clauses exp) (cdr exp))

(define (no-clauses.? clauses) (null? clauses))

(define (first-clause clauses) (car clauses))

(define (rest-clauses clauses) (cdr clauses)),

(def i ne (p, red i cate cl ause) (car cl ause)

(define (action-sequence clause) (cdr clause))

(define (true.? x) (not (null? x)))

(define (else-clause? clause)
(eq? (predicate clause) 'else))

A sequence of expressions is a list of expressions, given in the order in which
they are to be evaluated:

(define (last-exp? seq) (eq? (cdr seq) n'l))

(def i ne ( f i rst-exp seq) (car seq)

(define (rest-exps seq) (cdr seq))

A procedure application is any non-atomic expression that is not one of the above
expression types. The car of the expression is the operator, and the cdr is the
list of operands:

(define (application? exp) (not (atom? exp)))

(define (operator app) (car app))

(define (operands app) (cdr app))

(define (no-operands? args) (eq? args nil))

(def ine (f i rst-ope rand args (car args)
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(define (rest-operands args) (cdr args))

Applicable procedures are constructed from lambda expressions and
environments using the constructor make -procedure.

(define (make-procedure lambda-exp env)
(list 'procedure lambda-exp env))

(define (compound-procedure? proc)
(if atom? proc)

niH
(eq? (car proc) 'procedure)))

Since a lambda expression has the syntax

(lambda <parameters> <expl>.,. <exPn>)

the result of make -procedure is

(procedure (lambda <parameters> <expl> ... expn>) <env>)

Thus the selectors for the parts of a procedure are:

(define (parameters proc) (cadr (cadr proc)))

(define (procedure-body proc) (cddr (cadr proc)))

(def ine (procedure-environment proc) (caddr proc))

Exe rci se 4 -2 The interpreter described above supports co n d but not i f Modify the interpreter to add
i f to the language. Following the style used in the rest of the implementation, you should define
selectors that return the various parts of an i f statement, and a procedure e va 7 - i f that is analogous to
eva7-cond.

Exe rcise 43: The 7 et statement is simply syntactic sugar because

1 et (<var > <exp
(<var > eXPA2

<var > <e,n Xpn>))
<body>)

is equivalent to

((lambda (<var > <var >)
<body>)

<exp,>

<exp >)
n

Modify the evaluator to recognize and correctly handle 7 et statements.

Exercise 44: By using of data abstraction, we were able to write an eva7 procedure that is
independent of the particular syntax of the language to be evaluated. To illustrate this, design and
implement a new syntax for Lisp by modifying the procedures in this section.

/001*111
F�
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4.1.3. Representing environments

An environment is structured as a sequence of frames, where each frame is a table that
associates variables with values. We can implement a frame as a list of bindings, where each
binding pairs a variable with its associated value. If we represent bindings as Lisp pairs, then
we have the following procedures for constructing bindings, selecting the variable and value
parts of a binding, and changing the value part of a specified binding:

(define (make-binding variable value)
(cons variable value))

(define (binding-varliable binding)
(car binding))

(define (binding-value bnding)
(cdr binding))

(define (set-binding-valuel bnding value)
(set-cdr! binding value))

Since a frame is a list of bindings (pairs), we can get the binding of a variable in a gven
frame using the ass q operation, which was described in section 3.3.

(define (assq key pairs)
(cond ((null? pairs) nil)

((eq? key (caar pairs)) (car pairs))
(else (assq key (cdr pairs)))))

(define (binding-in-frame var frame)
(assq var frame))

The following procedure takes a list of variables and a list of values as arguments and
constructs the corresponding frame. It signals an error if the number of variables is not equal
to the number of values:

(define (make-frame variables values)
(cond ((and (null? variables) (null? values))

nul 1 ? vari abl es)
(error "Too any values suppl ied" values))

((null? values)
(error "Too few values supplied" variables))

(else
(cons (make-binding (car variables)

(car values))
(make-frame (cdr variables)

(cdr values))))))

An environment can be represented as a list of frames, in which case we have the following
operations for selecting the first frame in a given environment, selecting all but the first frame,
adjoining a frame to an environment, and canging te first frame of an environment:

(def ine (f i rst-f rame env) (car env))

(define (rest-frames env) (cdr env))
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(define (adjoin-frame frame env) (cons frame env))

(define (set-first-framel env new-frame)
(set-carl env new-frame))

The following procedure returns the binding of a variable in a specified environment. It
searches each frame in succession, until it finds a frame in which the variable has a non-nu7I
binding:

(define (binding-in-env var env)
(if (null? env)

n i 1
(let ((b (binding-in-frame var

(first-frame env))))
(if (not (null? b))

b
(binding-in-env var (rest-frames env))))))

The operations on environments that are required by the evaluator can now be
implemented using the above procedures as building-blocks. Looking up variable in an
environment is accomplished by finding the binding for the variable and returning the value
part of the binding.'An error is signalled if no binding is found.

(define (lookup-variable-value var env)
(let ((b (binding-in-env var env)))

(if (null? b)
(error "Unbound variable" var)
(binding-value b))))

To extend an environment by a new frame that associates variables to values, we construct
a new frame of bindings and adjoin this frame to the environment:

(define (extend-environment variables values base-env)
(adjoin-frame (make-frame variables values) base-env))

To set a variable to new value in a specified environment, we alter the value part of the
binding, or else signal an error if the variable is unbound.

(define (set-variable-valuel var val env)
(let ((b (binding-in-env var env)))

(if (null? b)
(error "Unbound variable" var)
(set-binding-value! b val))))

To define a variable, we insert a new binding pair at the head of the first frame in the
environment.

(define (define-variablel var val env)
(set-first-framel env

(cons (make-binding var val)
(first-frame env))))

As is usually the case with data structures, there are many plausible alternative ways to
reprepresent environments, and we can isolate the rest of the evaluator from the detailed
choice of representation by taking advantage of data abstraction. In a production Lp
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system, the speed of evaluator s environment operations, especially of variable lookup, has a
major impact on the performance of the system. The representation described here, although
conceptually simple, is not efficient, and would not ordinarily be used in a production system.
There are many other ways to implement environments, the best of which allow fast access to
variables when running compiled code.6

Exercise 45: Instead of representing a frame as a list of pairs, you can represent a frame as a pair of
lists, a list of names and a list of corresponding values. This speeds up procedure application, since
make-frame is now implemented simply as cons (if we ignore error checking). Rewrite the other
environment operations to use tis new representation.

Exe rc i se 4 -6: Lisp allows us to def ine new symbols by means of de f n e, but provides no way to get rid
of symbols. Implement for the interpreter an operation make-unbound, which takes a symbol as
argument and removes its binding from the current evironment.

4.1.4. Running the Evaluator as a Lisp Program

This completes the definition of the evaluator. We have used Lisp -- our chosen language
for describing processes -- to describe the process by which Lsp expressions themselves are
evaluated. In fact, we can actually run the evaluator as a Lisp program. This will provide a
working "Lisp within Lisp," which can serve as a framework for experimenting with alternative
evaluation rules, as we shall do in section 42.

If we want to run the evaluator, we need a mechanism for applying primitive procedures.
We must create an appropriate object corresponding to each primitive procedure we wish to
include in the anguage. It does not matter what these primitive objects are, so long as they
can be identified and applied by the procedures primitive-procedure? and
apply-primitive-procedure. For example, we can use the symbols primitive-car,
primftive-cdr, and so on to representthe primitiveoperators. If wedothis, then wecan
test to see whether an object is a primitive operator by seeing if it is ncluded in a given list of
primitives.

(def ine primitive-procedure'
(primitive-car primitive-ccir primitive-cons

<more primitives>

.(define (primitive-procedure? )
(memq pprimitive-procedures))

To apply a primitive procedure, we check to see which primitive it is, and perform the
application using the underlying Lisp in which the evaluator is implemented.

6The representation described above is called deep bnding. Its drawback is that in a deeply nested environment,
the evaluator may have to search through many frames in order to find the binding for a given variable. One way to
avoid this inefficiency is to make use of a strategy called called lexical addressing. We will discuss this in Chapter ,
section 54.5.
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t

(def ine (apply-primi ive-procedure p args)
(cond ((eq? p 'primitive-car) (car (car args)))

((eq? p 'primitive-cdr) (cdr (car args)))
((eq?. p 'primitive-cons) (cons (car args)

(cadr args)))
<and so on>

Observe that the args argument to this procedure is a list of arguments to which the primitive
should be applied. Thus, to apply car we take the first item in the list -- (car args) -- and
apply car.7

Next, we need to set up an appropriate global environment, which associates the primitive
objects with the names used to refer to these objects in the expressions that we will be
evaluating. The global environment should also include bindings for the symbols t and n 7.

(define primitive-procedure-names
'(car cdr cons

<names of more primitives>

(define (setup-environment)
(define initial-env

(extend-environment primitive-procedure-names
p r imi t i ve- p rocedu re s
nil))

(define-variablel nl nil initial-env)
(define-variable It (not nl) initial-env)
-initial-env)

(define the-global-environment (setup-environment))

Exercise 4-7: The above implementations of primitive-procedure? and
app 7y-pr im i t i ve -p roce dure, and construction of the initial global environment are very awkward,
because they depend on coordinating the two iists primitive-procedures and
primitive-procedure-names, and also keeping these consistent with the actual underlying
operationsusedinapp7y-primitive-proc,-odure. Thiswillbealikelysourceofbugsifwebeg'into
add new primitives to our language. Redesign the iplementation so that all information is kept in a
single, conveniently modified data structure, from which the global environment is constructed at system
start-up time. Also rewrite app7y-primitiv-1-procedure so that it will select the appropriate
underlying operation by performing a data-directed dispatch based on information included in the data
structure, and tus need not be mdified when new primitive procedures are added to the language.

Finally, we provide a driver-loop that repeatedly prints a prompt, reads an input
expression, evaluates this in the global environment, and prints the result.

7
The interface shown here to the primitives of the underlying Lisp, although straightforward, is extremely

cumbersome. Data-directed pogramming provides a better programming organization. See exercises 47 and 48.



254 DRAFT: 31 JULY 1983 Meta-Linguistic Abstraction

(def ine (driver-loop)
(newl ine)
(princ It**==>

(print (eval (read) the-global-environment))
(driver-loop))

We have chosen the prompt **==> to be distinct from the ordinary system prompt, 'so that,
when we run the interpreter, we can tell whether we are typing at our interpreter, or typing at
the underlying Lisp system.

4.1.5. EVAL: Treating Expressions as Programs

In the remainder of this chapter, we shall use our meta-circular evaluator as a too] for
exploring some alternative Lisp-like languages. But first, let us ponder the significance of a
Lisp program that evaluates Lisp expressions. In thinking about this, an analogy might be
helpful. One operational view of the meaning of a program is that a program is a description
of an abstract (perhaps infinitely large) machine. For example, consider the following
program to compute factorials:

.(define (fact n)
(if n 0)

(fact (-l+ n)) n)))

We may regard this program as the description a machine that contains a decrementer a
multiplier, a zero tester, a two-position switch, and another factorial machine. (The factorial
machine is infinite because it contains another factorial machine within it.) Figure 41 is a
flow diagram for the factorial machine, showing how the parts are wired together.

---------------------------------
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I I ------- I I I
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I * --------------- >I * I I
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Figure 41: The factorial program, viewed as an abstract machine.

In a similar way, we can regard our evaluator as a very special machine, which'takes as
input a description of a machine. Given this input, the eval figures itself to emulate
the machine described. For example, if we feed our evaluator the definition of f actor la 1 as
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shown in figure 42, then the evaluator will be able to compute factorials.

6 ----- >1 EVAL 1-----> 720

---------------

t

(define (fact n) ----------
(if n 0)

(fact (-l+ n)) n)))

Figure4-2: Theevaluator,simulatingafactorialmachine.

From this perspective, an evaluator is seen to be a universal mimic machine. It smulates
other machines when these are described as Lisp programs. This is quite striking: Try to
imagine the analog of an evaluator for electrical circuits. This would be a circuit that takes as
input a signal encoding a schematic diagram -- te plans for some other circuit, such as a
filter. Given this input, the circuit evaluator would then behave like a filter with the same
description. Such a universal electrical circuit mimic is almost unimaginably complex. It is
remarkable that the program evaluator is, in contrast, itself described by a rather smple

8program.

Another striking aspect of the evaluator is that it acts as a bridge between the data objects
that are manipulated by our programming language, and the programming language itself.
Imagine that the evaluator program (implemented in Lisp) is running, and that a user is typing
expressions to the evaluator and observing the results. From the perspective of tile user, an
input expression such as (* x x) is an expression in the programming language, which the
evaluator is to execute. On the other hand, from the perspective of the evaluator, the
expression is simply a list (in this case, a list of three symbols: *, x, and x) which is to be
manipulated according to a well-defined set of rules.

That the user's programs are the evaluator's data need not be a source of confusion. In
fact, it is sometimes convenient to ignore tis distinction, and to give the user the ability to
explicitly evaluate a data object as a Lisp expression, by making eva7 available for use 'in
programs.

Lisp provides a primitive eva I procedure, which takes as arguments an expression and an
environment, and evaluates the expression in the environment. Thus,

(eval 5 5) user-initial-envi'ronment)

and

8
Some people find it counterintuitive that an evaluator, which is implemented by a relatively simple procedure, can

simulate programs that are more complex than the evaluator itself. We are bordering here on deep questions in
mathematical logic and computation concerning issues of computability and universal machines. The beautiful book
by Hofstadter 23) explores'some'of these ideas.
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(eval (cons (list 5)) user-initial-environment)

will both return 25. 9

In addition to e va 7 Lisp systems also provide app 7y as a user-accessible operation. For
example,

(apply + lst 2 3 4)

would return 10. App 7y is useful in mplementing embedded languages, since it provides a
uniform way to access the primitives of the underlying Lisp and to incorporate these into an
embedded language, as illustrated in exercise 48.

Exercise 48: Redesign the interface between the meta-evaluator and the underlying Lisp given in
section 41.4 so tat arbitrary Lisp procedures can easily be installed as primitives in the underlying
language. Youshoulddefineaprocedurecalled insta77-primitivewhichisusedasfollows:

(install-primitive 'square (lambda (x) (* x x)))

This installs a primitive called square in the embedded Lisp, by binding it in the global environment to
an object that consists of the procedure created (in the uderlying Lisp) by the I ambda, together with a
tag that allows this to be recognized by primitive-procedure? as a primitive procedure. If this is
done, then apply-primitive-procedure can simply apply the procedure directly by calling app7y
from the underlying Lisp.

9.Warning: The eva7 primitiveisnotidentical tothe eva7 procedurethatwe implemented insection4.1, becauseit
uses the actual Scheme environments, rather than the sarnp!e environment structures that we built in section 41.3.
These actual environments can not be manipulated by user as ordinary lists, and must be accessed via eva I or other
special operations. In the MIT implementation of Scheme, user-lnitia7-environment is a symbolthat is bound
to the iitial environment in which inputs are evaluated when the system is started up. There is also a primitive
procedure called the-environment which returns te current environment. Exploiting the ability to access
environments can lead to great programming power. (We will see examples of how to use environments to package
information in section 5.1.5 and in Appendix 1.) However, as with most powerful mechanisms, manipulating
environments must be performed with care and respect.

1 One technical problem you will encounter here is that the app 7y you must call is the primitive operator app 7y,
while the meta-circular evaluator defines its own procedure app 7y that will mask the definition of the primitive. One
way around this is to rename eva7 and app7y to avoid conflicts with the names of primitive operators. A more
elegant solution, available in the MIT implementation of Scheme, is to use

(define apply-in-underlying-scheme (access apply nil))

Access is a special form that looks up the binding of a given symbol in a given environment. In this case, we are
getting the value of app7y from the system global environment. This is an'example of how the explicit use of
environments can be used to deal with the problems of name conflicts in large programs. See a Appendix L 
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4.2. Variations on a Scheme

Now that we have an evaluator expressed as a Lisp program, we can begin to experiment
with alternative choices in language design, by simply modifying the evaluator. Indeed, new
languages are often invented by first writing an evaluator which embeds the new language
within an existing high level language. Not only does this allow the evaluator to be more
easily tested and debugged, but the embedding enables the designer to snarf" features from
the underlying language, just as our embedded Lisp interpreter used primitives and control
structure from the underlying Lisp.12 Only later (if ever) need the designer go to the additional
effort to build a complete implementation in a low-level language or in hardware.

In this section, we explore two variations on the Scheme dialect of Lisp. In the first
variation, we look at a language in which variables are scoped dynamically rather than
statically. In the second variation, we implement procedures with call-by-name parameters so
that delayed evaluation is performed automatically. Both of these changes are accomplished
with minimal changes to our metacircular evaluator. In section 43, we will turn to a much
more substantial example of an embedded language.

4.2.1. Alternative Binding Disciplines

In Scheme, free variables in procedures are bound statically. A free variable in a procedure
gets its value from the environment in which the procedure is defined. This means that the
binding of a variable in a program is determined by the static structure of the program, not by
its run-time behavior. In this discipline, an occurrence of a variable in an expression always
refers to the innermost lexically apparent binding of that variable. For this reason, static
binding is also called lexical scoping.

For example, recall the sum procedure from section 13.1 of Chapter :

(def ine (sum term a next b)
(if ( a b)

0
(+ (term a)

(sum term (next a) next b))))

Sum is a simple example of a procedure that takes a procedure as an argument. It provides
a template, capturing the structure of a class of procedures. The procedural argument allows
the programmer to fill in the template, tailoring it to his needs. Using sum we can define a
procedure sum-cubes, as follows-

(define (cube x)
(expt x 3)

SNARF v. To grab, esp. a large document or file for the purpose of using it either with or without the author's
permission. See BLT. Variant: SNARF (IT) DOWN.

The above definition was snarfed from 11MC:GLS;JARGON Y by Guy L. Steele Jr., et. aL 42).

12 This is very significant in saving work for the designer. It will cost us considerable effort in Chapter building
the control structure that we avoided implementing in section 41 because we were able to snarf it from the
underlying Lisp.
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(define (sum-cubes a b)
(sum cube a b))

Surely, we could extend this idea to arbitrary powers by defining a procedure sum-powers
that takes an argument n, specifying the power to which each summand should be raised:

(define (sum-powers a b n)
.(define (nth-power x)

(expt x n))
(sum nth-power a b))

Note that the def inition of n t h -powe r is internal to s um-p owe r s, so that the n which is free in
n t h -power will be in the scope of the formal parameter n of sum-powers.

This demonstrates the real power of internal definitions. They allow us to notate a
procedure with more parametric control than just arguments. We then ave two paths to
influence its computation. We can communicate with a procedure by passing arguments
through formal parameters, and we can bind its free variables. This extra degree of freedom
is crucial in creating high-order procedural abstractions.

Dynamic binding
Traditionally, Lisp systems have been implemented so that variables are bound dynamically

rather than statically.13 In a language with dynamic binding, free variables in a procedure get
their values from the environment from which the procedure is called rather than from the
environment in which the procedure is defined. Thus, for example, the free n in nth-power
wouid get whatever value n had when sum called it. In this example, since sum does not
rebind n, the only definition of n is still the one from sum-powers, so the effect is the same. If,
on the other hand, sum bound an n of its own (for example, if it used n instead of next for its
third parameter), ten when nth-power was called, its free n would refer to sum's third
argument. Not only is this not the value we intended it to have, but in this case it is not even a
number! Dynamic binding violates the principle that changing the name of a parameter
throughout a procedure definition (in this example, changing next to n in sum) should not
change the behavior of the procedure. This is an important modularity problem because then
the user of a procedure which takes a procedural parameter must know' that the author of the
procedure he is using did not name any of his bound variables in a way wich might conflict
with the free variables occurring in the procedures being passed as arguments.

It may seem obvious from the above example that static binding is the right thing, but there
are reasons to prefer dynamic binding. The most important is that the sum-powers program
above must, in a lexically scoped language, contain the definition of the nth-power routine'
as a local procedure. Thus, if nth-power represents a common pattern of usage, its
definition will be repeated as a subdefinition in many contexts. This is, itself, a problem of
abstraction. It would be nice to be able to move the definition of nth -power to a more global
context where it can be shared among many procedures. Thus, for example, in a dynamically

13
APL also uses dynamic binding of free variables. It was thought that dynamic binding was better for interpreted

languages. Most other languages, such as those descended from ALGOL-60, are lexically scoped and statically
bound..
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bound Lisp, if we have' both sum and product accumulator procedures, we can define both
sum-powers and product-powers to share the same nth-power routine:

(define (SLIM-powers a b n)
(sum nth-power a b))

(define (product-powers a b n)
(product nth-power a b))

(define (nth-power x)
(expt x n))

It is precisely the attempt to make this work which motivated the development of dynamic
binding disciplines in traditional Lisp dialects. Unfortunately, dynamic binding must, of
necessity, have the problem of symbol conflicts where higher-order procedures capture free
variables in procedures passed as arguments.

Implementing dynamic binding
Remarkably enough, modifying our evaluator so that the language it interprets will use

dynamic binding rather than static binding requires only a tiny change. When apply builds
the environment for executing the body of a compound procedure, it extends the evaluation
environment of the combination that called for te procedure application, rather than
extending the environment of the procedure's definition. This environment must therefore be
passed from e va 7 to app 7y as an additional argument. The starred lines are the only ones
that need to be altered to implement this change:

(define (eval exp env)
(cond ((self-evaluating? exp) exp)

((quoted? exp) (text-of-quotation exp))
((,variable? exp) (lookup-var'able-value exp env))
((definition? exp) (eval-definitio-n exp env))
((assignment? exp) (eval-assignment exp env))
((lambda? exp) (make-procedure exp env))
((conditional? exp) (eval-cond (clauses exp) env))
((application? exp)
(apply (eval (operator exp) env)

(list-of-values (operands exp) env)
env))

(else (error "Unknown expression type -- EVAL11 exp))))

(define (apply procedure arguments env)
(cond ((pr1mitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))
((compound-procedure? procedure)

(e'val-sequence (procedure-body procedure)-environme(extend nt
(parameters procedure)
arguments
env)))

(else
(error "Unknown procedure type APPLY" procedure))))
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Also, in a dynamically scoped Lisp, it is unnecessary for make-procedure to attach the
definition environment to a procedure, since this is never used.

Exercise 49: Consider the following simple procedure:

(define (fact n)
(cond ((= n 0) 1)

(else (* (fact (-l+ n)) n))))

Suppose that this definition is executed in the global environment. If variables are lexically bound, how
many frames with variable n must be searched before the value of is found? What happens if variables
are dynamically bound? Draw environment diagrams to ilustrate your answer.

Exercise4-10: Dynamicallyscopedlanguagesdonotconvenientlyallowaproceduretoconstrainthe
values of free variables in a procedU re that it returns as a value. Consider the following example:

(define (make-adder increment)
(lambda (x) ( x increment)))

Whathappensifweattempttoevaluate((make-adder 3 4)inadynamicallyboundLisp?

Exercise 41 1: Despite disadvantages, there are circumstances where dynamically bound variables
can be helpful in structuring large programs, since they can simplify procedure calls by acting as implicit
parameters, Forexample,alow-leveiroutinenprintcalledbythesystemprintprocedureforprinting
numbers might reference a free variable called radix that specifies the base in which the number is to
be printed. Procedures that call npr int, such as the system print operation, should not need to know
about this feature, On'the other hand a user ight want to temporarily change the radix. He could, of
.course, set radix to a new value and later reset it. Yet if radix were a dynamic variable, the binding
mechanism could accomplish this setting and resetting automatically, in a structured way, for example:

(define (print-in-new-radix number (dynamic radix))
(print number))

(define (print frob)

<expressions that involve np r in V

(define (nprint number)

(dynamic-reference radix)

Thus, we might wish to build a Lisp system that has both static and dynamic variables. One idea is to
maintain two separate environments, one for lexical and one for dynamic variables. We used this
strategy in the example above, We specified that radix is a dynamic variable' in the
print-In-new-radix procedure, and that it was explicitly referenced as a dynamic variable by
nprint. We declared radix to be dynamic by a new syntax in the formal parameter list of
print-in-new-radix.

Starting with the lexical evaluator of section 41, extend it to include dynamic variables of tis type. This
will require implementing the dynamic-reference special form, and the dynamic declaration in
parameter lists.

Exercise 412: The disadvantage of implementing dynamic variables as in exercise 410 is that all
dynamic variables in the system are effectively global, and hence name conflicts can occur among them.

Lexical scoping prevents exactly tese conflicts. Another way to achieve the desirable effects of
dynamic binding is to use lexical variables only, but to provide a structured means for temporarily
changing the value of a variable. For example,



4.2.1 DRAFT: 31 JULY 1983 261 

(define (with-new-radix new-radix proc)'
(let ((old-radix radix))

(setl radix new-radix)
(let ((value (proc)))

(set! radix old-radix)
value)))

Show how to use with-new-radix to define the print-in-new-radix procedure of exercise 410.
Also, niodifytheevaluatorof section 41 to includeanew piece of syntactic sugar called f 70d-7etso
that with-new-radix could edefined as

(define (with-new-radix new-radix proc)
(fluid-let ((radix new-radix))

(proc)))

4.2.2. Example: Delayed evaluation

In ordinary Lisp, when a procedure is called, all the arguments to the procedure are
evaluated. This discipline, as we mentioned in Chapter section 11.5, is known as
applicative order evaluation. We also described an alternative evaluation rule, normal order
evaluation, which delays evaluation of procedure arguments until the last possible moment. A
language that does this is said to use delayed evaluation, or to pass parameters in a
call-by-name style.

For example, consider the procedure

(define (try a b)
(cond ((= a ) 1)

(else b)))

Executing try 0 (/ 1 0) generates an error in Lisp. In a delayed evaluation language,
however, there would be no error, and try would return because the argument b to try
would never be evaluated.

In Chapter 3 we introduced a special form called de 7 ay to provide a restricted kind of
delayed evaluation, and made use of this in implementing streams. We could avoid the need
for delay by transforming our language so that all parameters are passed by name. On the
other hand, delayed evaluation makes it more difficult to deal with mutation and assignment,
as we described in section 34-5. We can try to maintain the best of both worlds by including
both- kinds of parameter passing- 14 For instance, we could define if in terms of cond as
follows:

(define (if predicate (name consequent) (name alternative))
(cond (pred consequent)

(else alternative)))

Here, consequent and a7ternative are explicitly delayed when passed to ff, and
implicitly forced when they are used.

It is not difficult to modify the interpreter to transform the language to admit call-by-name
parameters. Here are some suggestions. an d hints for doing this:

1. When a procedure application is evaluated, the name arguments are not

14
Algol 60 includes both kinds'of parameter passing, known as call-by-name and call-by-value.
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evaluated. Instead, they are transformed to objects called thunks.15 A thunk is
essentially a procedure of no arguments, containing as a body tile argument that
is being passed, together with the current environment, in which the body is to be
evaluated if it is needed. Thus you should define a new data object, a thunk,
together with appropriate selectors and constructors, and a predicate that tests
for an object being a thunk.

2. When eva I evaluates an application, it evaluates only some of the arguments and
constructs thunks for the others. This means that the operator must be extracted
first, and the resulting procedure text consulted to determine which parameters
are passed by name. (Watch out here for procedures that are passed as
parameters by name!)

3. You are supposed to undelay a thunk only at the last possible moment. One last
possible moment is when it is passed to a primitive procedure. So you will have to
modify app 7y-pr 7mi t ve-procedure so that it undelays any thunks that were
passed to it. Note that undelaying is essentially evaluating the thunk body in the
thunk environment.

Exercise 413: Make the modifications outlined above to transform the interpreter to use delayed
evaluation. Test your implementation by evaluating

(define (unless predicate name default-action) (name exception))
(if (not predicate)

def aul t-act i on
exception))

(def line (fact n)
(unless n 0)

n (fact (-I+ n))

(fact 4)

Ex e rc i se 4 - 4 Consider the following:

(define (foo x)
(cond (x 0)

(else 1)))

(foo nil)

If the interpreter you implemented in exercise 413 responds with a , you probably forgot a place where
it is necessary to undelay thunks. Find it.

Exercise 41 5: In Chapter 3 we said that streams are like lists, except that the second argument to
cons-streamisdelayed. utwithcall-by-name,streamscanbeiden'ticaltolists. Thetrickisthatcons
should not undelay its arguments, as do the other primitive procedures. Modify
app7y-primitive-proceduresothatconsdoesnotundelay. (IfyoulikeyoucandowhatScheme
cons-streamdoes,andhaveconsundelayitsfirstargument,butnotitssecond.)

Exercise 416: The delayed evaluation mechanism outlined above is very inefficient, because each

15 The word "thunk" derives from the implementation of call-by-name in Algol 60. The origin of this name is
unknown to the authors, but we have heard that it refers to the sound that the data makes when pushed onto the
stack in a run ning Algol system.
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thunk may be undelayed over and over again, each time it is used by a primitive operator. As mentioned
in Chapter 3 section .4.3, this can be rectified by memorizing the thunks appropriately. Explain in detail

16
how you would modify your code to perform this optimization.

4.3. Logic Programming

In Chapter we stressed that computer science deals with imperative, or '1how to"
knowledge, as opposed to mathematics, which deals with declarative, or "what is"
knowledge, Indeed, programming languages require that the programmer express
knowledge in a form that indicates the step-by-step methods that he has selected for solving
particular problems. On the other hand, high-level languages provide, as part of the language
implementation, a substantial amount of methodological knowledge, thus allowing the user to
avoid worrying about numerous details of how the computation will progress.

Most programming languages, including Lisp, are organized around computing the values
of mathematical functions. Moreover, expression-oriented languages (such as Lisp,
FORTRAN or Algol) capitalize o the pun that an expression which describes the value of a
function may be interpreted as a means of computing that value. Because of this, most
programming languages are strongly biased toward unidirectional computation -- with well-
defined.inputs and outputs. Over the past few years, however, people have begun to
experiment with a radically different class of programming languages which relax the bias
toward unidirectional computation. We have seen one such example in the section
3.3.5 where the objects of computation are arithmetic constraints. Because the direction and
order of computation in such a system is not so well defined, the system must provide even
more of the detailed "how to" knowledge. This does not mean that the user is released from
that burden, however. There are many constraint networks that implement the same set of
constraints. The user must choose a suitable network (from the set of mathematically
equivalent networks) for a particular computation.

Logic Programming is a growing movement in Computer Science, which encourages an
even more extreme relaxation of the view that programming is about constructing algorithms
for computing unidirectional functions. It specifically advocates considering the objects of
programming to be mathematical relations, which have, in general, multiple answers for any

16
This kind of optimization is known as call-by-need parameter passing. Call-by-name causes problems in

understanding programs with assignments and in controlling the space complexity of programs. But this is
innocence itself when compared with the theoretical problems created by call-by-ne'ed in the presence of
assignments. The excellent article by Clinger 7] attempts to clarify the multiple dimensions of confusion that arise
here.
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17set of inputs.

This approach, when it works, can be a very powerful way to write programs. Part of the
power comes from the fact that a single "what is" fact, can be used to solve a number of
different problems that would have different "how to" components. As an example-, consider
the append operation on lists, which takes two lists as arguments and combines their
elements to form a single list. In a procedural language such as Lisp, we could define append
in terms of the basic list constructor cons, as follows:

(define (append x y)
(if (null? x)

Y
(cons (car x)

(append (cdr x) y))))

This procedure can be regarded as a translation into Lisp of the following two rules:

1. For any x, y, z ad t,

* if x and y append to form z

* then (cons t x) and y append to form (cons t z)

2. For any list y, (append n 7 y) is y

Using the procedure, we can answer questions such as:

Find the append of (a b) and (c d).

But notice that the same two rules are also sufficient for answering the following sorts of
questions:

Find a list y that appends with (a b) to produce (a b c d).

Find all pairs x and y such that (append x y) I's (a b c d).

17 Logic programming has grown out of a long history of research in automatic theorem proving. Early theorem
proving programs could accomplish very little, because they exhaustively searched the space of possible proofs.
The major breakthrough, which made such a search plausible, was the discovery in the early 1960's of the unification
algorithm and the resolution principle by J.A. Robinson 37]. This was used, for example, by Green and Raphael
[13, 12] as the basis for a deductive question-answering system. For a long time, researchers concentrated on

algorithms that are guaranteed to find a proof, if such exists. Such algorithms were difficult to control and to direct
toward a proof. Hewitt 20], at MIT, recognized the possibility of merging the control structure of a programming
language with the operations of aogic manipulation system. A restricted version of his idea was implemented by
Sussman, Winograd, and Charniak 44], and was used as the basis of several significant problem-solving programs,

such as [51]. At the same time that this was being done,- Colmerauer [8], in Marseille, was developing rule-based
systems for manipulating natural language. Kowalski 25, 26], in Edinburgh, recognized that such rules could
provide the basis for a programming language based on logic. The merging of these latter two strands led to the
development of Prolog, which is currently the best-known logic programming language. Thus, according to the
French, Prolog was developed at the University of Marseille, while, according to the British, it was developed at the
University of Edinburgh. According to people at MIT, Prolog was developed by both of these groups in an attempt to
figure out what Hewitt was talking about in his brilliant, but impenetrable Ph.D. thesis.
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In a logic programming language, the programmer writes an append "Procedure" by
teaching the computer te two rules about append given above. A large amount of "how to"
knowledge is provided automatically by the interpreter to allow this single pair of rules to be
used to answer all three types of questions about append.18

Logic programming is currently an extremely active field of research in computer science.
Contemporary logic programming languages (including the one we implement here) have
substantial deficiencies, in that their general "how to" methods can lead them into spurious
infinite loops or to exhibit other undesirable behavior. Most researchers believe that creating
a satisfactory (yet not hopelessly inefficient) logic programming implementation will require
the use of radically new, massively parallel computer architectures.19

In the previous chapter, we explored the technology of implementing interpreters, and
described the elements that are basic to an interpreter for a Lisp-like language, or, indeed, t-
an interpreter for any conventional language. In this chapter, we will apply these ideas to
discuss an interpreter for a logic programming language. We call this language the query
language because it is very useful for retrieving information from data bases by formulating
queries, or questions, expressed in the language. Even though the query language is very
different from Lisp, we will find it convenient to describe the language using the same general
framework that we have followed all along: as a collection of primitive elements, together with
means of combination that enable us to combine simple elements to create more complex
elements, and means of abstraction that enable us to regard complex elements as single
conceptual units. In terms of implementation, we will see that an interpreter for a gic
programming language is considerably more complex than an interpreter for a language such
as Lisp. Nevertheless, we will see that our query language interpreter contains many of the
same elements found in the interpreter of the previous chapter. In particular, there will be an
eval part of the interpreter that classifies expressions according to type, and an apply part of
the interpreter that implements the language's abstraction mechanism, procedures in the
case of Lisp, and so-called rules in the case of logic programming. We will also see that a
central role is played in the implementation by a frame data structure, w hich determines the
correspondence between symbols and their associated values. One additional interesting
aspect our query language implementation is that we make substantial use of stream
processing, which was introduced in Chapter 3.

18 This certainly does not relieve the user of the entire problem of how to compute the answer. There are many
different mathematically equivalent sets of rules for formulating the append relations Only some of them can be
turned into effective devices for, computing in any direction, In addition, sometimes "what is" information gives no
clue "how to" compute an answer. For example, consider the problem of computing the y such that y Oy - x.

19 Logic programming received a big impetus in 1981 when the Japanese government began an ambitious project
aimed at building super fast computers that are optimized to run logic programming languages. (The speed of such
comp ters is to be measured in LIPS -- Logical Inferences Per Second -- rather than the usual FLOPS
.. FLoating-point Operations Per Second.) It is interesting to note that the only languages the Japanese report
considers worth worrying about for computers of the future are Lisp and Prolog. This has proved rather
disconcerting to the bulk of the US computer industry, and to the majority of US computer scientists, who seem
entrenched in the Pascal-PL/1-Ada camp.
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4.3.1. Deductive Information Retrieval

One of the applications at which logic programming really excels is in providing interfaces
to data bases for information retrieval. The query language, which we shall implement in this
chapter, is designed to be used in this way,

In order to illustrate how the query system works, we will show how it can be used to
manage the data base of personnel records for the Itsey Bitsey Machine Corporation, a
thriving high-tech company in the greater Boston area. We'll see how the language provides
pattern-directed access to personnel information, and can also take advantage of general
rules in order to make logical deductions.

A sample data base
The personnel data base for the tsey Bitsey Machine Corporation contains assertions

about company personnel. Here is the information about Ben Bitdiddle, the resident
computer wizard:
,(address (Bitdiddle Ben) (Slumerville (Ridge Road) 10))
,(telephone (Bitdiddle Ben) 491-4371)
1(job (Bitdiddle Ben) (computer wizard))

(salary (Bitdiddle Ben) 40000)

Observe that each assertion is a list, in this case a triple, and that elements of the triple can
themselves be lists.

As resident wizard, Ben is in charge of the company's computer division, and he supervises
two programmers and one technician. Here is the information about them:

(address (Hacker Alyssa. P) (Cambridge (Massachusetts Avenue) 78))
�(telephone (Hacker Alyssa. P) 443-8080)
(job (Hacker Alyssa P) (computer programmer))
(salary (Hacker Alyssa P) 3000)
(supervisor (Hacker Alyssa P) (Bitdiddle Bn))

(address (Fect Cy D) (Cambridge (Ames Street) 3)
(telephone (Fect Cy D) 443-0123)
(job (Fect Cy D) (computer programmer))
(salary (Fect Cy D) 32000)
(supervisor (Fect Cy D) (Bitdiddle Ben))

(address (Tweakit Lem E) (Boston (Bay State Road) 22))
(telephone (Tweakit Lem E)'258-4981)
(job (Tweakit Lem E) (computer technician))
(salary (Tweakit Lem E) 15000)
(supervisor (Tweakit Lem E) (Bitdiddle Ben))

There is also a programmer trainee, who is supervised by Alyssa:

(address (Reasoner Louis) (Slumerville (Pine Tree Road) 80))
(telephone (Reasoner Louis) 735-0157)
(job (Reasoner Louis) computer programmer trainee))
(salary (Reasoner Louis) 20000)
(supervisor (Reasoner Louis) (Hacker Alyssa P))

All of these people are in the computer division, as indicated by the word computer as the
first item in their job description.

Ben i's a high-level employee. His supervisor is the company big wheel himself:
(supervisor (Bitdiddle Bn) (Warbucks Oliver))
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(address (Warbucks Oliver) (Swellesley (Top Heap Road)))
(telephone (Warbucks Oliver) unlisted)
(job (Warbucks Oliver) (administration big wheel))
(salary (Warbucks Oliver) 100000)

Besides the computer'division supervised by Ben, the company has an accounting division,
consisting of a chief accountant and his assistant:

(address (Scrooge Eben) (Weston (Shady Lane) 10))
(telephone (Scrooge Eben) 696-5656)
(job (Scrooge Eben) (accounting chief accountant))
(salary (Scrooge Eben) 69000)
(supervisor (Scrooge Eben) (Warbucks Oliver))

(address (Cratchet Robert) (Boston (Commonfilth Avenue) 52))
(telephone (Cratchet Robert) 253-1000)
(job (Cratchet Robert) (accounting scrivener))
(salary (Cratchet Robert) 12000)
(supervisor (Cratchet Robert) (Scrooge Eben))

There is also a secretary for the big wheel:
(ad-dress (Forrest Rosemary) (Slumerville (Wishbone Terrace) 5))
(telephone (Forrest Rosemary) 491-2131)
(job (Forrest Rosemary) (administration secretary))
(salary (Forrest Rosemary) 1000)
(supervisor (Forrest Rosemary) (Warbucks Oliver))

The data base also contains assertions about which kinds of jobs can be done by people
holding other kinds of jobs. For instance, a computer wizard. can do the jobs both of a
computer programmer and a computer technician:

(can-do-job (computer wizard) (computer programmer))
(can-do-job (computer wizard) (computer technician))

A computer programmer could fill in for a trainee:
(can-do-job (computer programmer) (computer programmer trainee))

Also, as is well known:
(can-do-job (administration secretary) (administration big wheel))

Formulating simple queries
The query language allows users to retrieve information from the data base by posing

queries in response to the system's prompt

query-->

For example, to find all computer programmers, one can say

query-->( 'ob ?x (computer programmer))

The system will respond by printing the items:

('ob (HackerMyssa P) (computer programmer))
(job (Fect Cy D) (computer programmer))

The input query specifies that we are looking for entries in the data base that match a
certain pattern. In this example, the pattern specifies entries consisting of three iterns of
which the first is the literal atom job, the second can be anything, and the third is the literal
list (computer programmer). The "anything" that can be the second item in the matching
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list is specified by a pattern variable x. The general form of a pattern variable 'is a symbol,
taken to be the name of the variable, preceded by a colon. We will see below why it is useful
to specify names for pattern variables.

The system responds to a query by printing on the terminal the sequence of all entries 'in
the data base that match the specified pattern.

Here are more examples of simple queries:

query-->(address ?X ?Y)

will list all the addresses. This illustrates that a pattern may have more than one variable. The
query

query-->(job ?x (computer ?type))

matches all job entries whose third item is a two-element list whose first item is computer, for
example

(job (Bitdiddle Ben) (computer wizard))
(job (Hacker Alyssa P) (computer programmer))

This same pattern does not match

(job (Reasoner Louis) (computer programmer trainee))

because the third item in the entry is a list of three elements, and the pattern's third 'Item
specifies that there should be two elements. If we wanted to change the pattern so that the
third item could be any list beginning with computer, we could specify

query-->( 'ob ?x (computer ?type))

The use of the period in this pattern is an example of dot notation, in which a period followed
by a variable in a list expression is used to designate the rest of the list. Thus, the pattern

(computer ?type)

matches the data

(computer programmer trainee)

with type as the list (programmer trainee).

Exercise 417: Give simple queries that retrieve the following information from the data base:

* all people supervised by Ben Bitdiddle

* the names and jobs of all people in the accounting division

9 the names and addresses of all people who live in Slumerville

Compound queries
Simple queries form the primitive operations of the query language. (Although, as we wl

see below, the implementation of these primitive operations is far from simple, in terms of the
primitive operations of present-day computers.) In order to form compound operations, the
query language provides means of combination. One of the things that makes the query
language a logic programming language, is that the means of combination mirror the means
of combination used in forming logical expressions: and, or, and not.

Andcanbeusedasfollowstofindtheaddressesofallthecomputerprogrammers:
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query-->(and ( 'ob ?person ('computer programmer))
(address ?.person ?where))

The resulting output is:
(and (job (Hacker yssa P) (computer programmer))

(address (Hacker A7yssa P) (Cambridge (Massachusetts Avenue) 78)))

(and (job Fct Cy D) (computer programmer))
(address (Fect Cy D) (Cambridge (Ames Street) 3)

In general, an and query

(and <pat > <pat > <pat >)1 2 n

will find all sets of values for the pattern variables that simultaneously match all the patterns in
the query. It generates a sequence consisting of copies of the original query with the
appropriate pattern variables replaced by (or, as one says, instantiated with) the appropriate
values. Note that and here is not the Lisp primitive and, but rather an operation built into the
query language.

Or is another means for constructing compound queries. For example,

query-->(or (supervisor ?x (Bitdiddle Ben))
(supervisor ?x (Hacker Alyssa P)))

will print a stream of copies of the query, with x instantiated with all values that make at least
one of the patterns match an item in the data base:

(or (supervisor (Hacker A7yssa P) (Bitdiddl Bn))
(supervisor (Hacker A7yssa P) (Hacker Alyssa P)))

(or (supervisor (Fect Cy ) (Bitdiddle Ben))
(supervisor (Fact Cy D) (Hacker Alyssa P)))

(or (supervisor (Tweakit Lem E) (Bltdiddl Bn))
(supervisor (Tweakit Lem E) (Hacker yssa P)))

(or (supervisor Reasoner Louis) (Bitdidd7a Ben))
(supervisor (Reasoner Louis) (Hacker Ayssa P)))

No t is another way to form compound queries. For example:

query-->(and (supervisor ?x Bitdiddle Ben))
(not (job ?x (computer programmer))))

finds all people supervised by Ben Bitdiddle who are not computer programmers. Not can be
thought of as a filter that filters the sequence returned by the rest of the pattern, removing all
items for which the values of the pattern variables satisfy the not clause.

The final combining form is called 7 7'SP - Va 7 ue. When included as the first element of a
pattern, it specifies that the next element is a Lisp predicate to be applied to the rest of the
(instantiated) pattern as arguments. For example, to find all people whose salary is greater
than 30000 we could query:

query-->(and alary ?person ?amoont)O..
isp-value > ?amount 30000))

Exe rcise 4- 1 8: Formulate compou nd queries that retrieve the following inf ormation:

0 the names, addresses and phone numbers of all people who live in Slurnerville
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* the names of all people who are supeIrvised by Den Bitdiddle, together with their addresses

0 all people whose salary is less than Ben Bitdiddle's, together with their salary and Ben Bitdiddle's
salary

0 all people who are supervised by someone who is not in the computer division, together with the
supervisor's name and job

Rules
In addition to primitive queries and compound queries, the query language also provides

means for abstracting compound queries. These are given by rules. The following rule:

(rule (lives-near ?person-1 ?person-2)
(and (address ?person-1 (?town ?rest-1))

(address ?.person-2 (?town ?rest-2))
(not (lisp-value equal? ?person-1 ?person-2))))

Specif ies that two people I ve - n e a r each other if they live in the same town. The final no t
clause is used to prevent the rule from saying that all people live near themselves.

The following rule declares that a person is a wheel in the organization if he supervises
someone who is in turn a supervisor:

(rule (wheel ?person)
(and (supervisor iddle-manager ?person)

(supervisor ?x iddle-manager)))

The general form of a rule is

rule <conclusion> <condition>)

This declares that the conc 7 us on should hold for any set of variable values which satisfy the
c o n d t o n We can regard a rule as a way of abstracting a compound query (the clauses
that make up the con di t ion) so that it can be referred to and manipulated as a sngle unift
(the name specif ied in the c o n c 7 u s io n).20

Once a rule has been defined, we can use it to form still more complex queries. For
instance, to find all computer programmers who live near Ben Bitdiddle, we can ask:

query-->(and (job ?x (computer programmer))
(lives-near ?x (Bitdiddle Ben)))

As with compound procedures, rules can be used as parts of other rules, or even be
defined recursively. For instance, the rule

(rule (outranked-by ?staff-person ?boss)
(or (supervisor ?staff-person ?boss)

(and supervisor ?staff-person iddle-manager)
(outranked-by iddle-manager ?boss))))

says that a staff-person is outranked by a boss in the organization if the boss is the person's
supervisor, or (recursively) if the person's supervisor is outranked by the boss.

Exercise 419: Define a rule which says that person-1 can replace person-2 if either person-1 does the

20
Wewillalsointerpretarulespecifiedwithanullconditiontomeanthattheruleconcliusionistrueforanyvalues

of the variables.
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same job as person-2, or if someone who does person-l's job can also do person-2's job, and if-person-1
and person-.2 are not the same person. Using your rule, give queries thatfind:

* all people who can replace Cy D. Fect

0 all people who can replace someone who is being paid more than they are, together with the two
salaries

Exercise 420: Define a rule that says that a person is a big-shot in a division if the person works in
the division, but the person does not have a supervisor who works in the division.

Exercise4-21:Bygivin thequery

query-->(lives-near ?person (Hacker Alyssa P)

Alyssa P. Hacker is able to find people who live near her, with whom she can carpool to work. On the
other hand, when she tries to find all pairs of people who live near each other:

query-->(lives-near ?person-1 ?person-2)

she notices that each pair of people who live nearby is listed twice, e.g.,

(lives-near (Hacker Alyssa P) (Fect Cy 0))
(lives-near (Fect Cy D) (Hacker.Alyssa P))

Why does this happen? Suggest a way (e.g., by defining a new rule) to find a list of people who live near
each other, but with each pair appearing only once.

,Logic as programs
We can regard a rule as a kind of logical im lication: If some data satisfies the condition,

then it satisfies the conclusion. Consequently we can regard the query language as having
the ability to perform logical deductions based upon the rules. As an example, consider the
append operation described at the beginning of this chapter. As we said, append can be
characterized by the following two rules:

1. For any x, y z, and t,

* if x and y append to form z

* then (cons t x) and y append to form (cons t z)

2. For any list y, (append n 7 y) 'is 

To express this our query language, we define two rules for a relation

(append-to-form-x y z)

whichwecaninterprettomean"xandyappendtoformz":

(rule (app'end-to-form (?t . ?x) ?y (?t Iz))
(append-to-form ?x ?y ?z))

(rule, (append-to-form n'l ?y ?y))

Observe that the first'rule makes use of the dot otation introduced above. The second rule
has no cond it fon part, which means that the conclusion holds for any value of x.

Given these two rules, we can formulate queries that compute the append of two lis
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query-->(append-to-form (a b) (c d) ?z)
(append-to-form (a b) (c d) (a b c d))

More strikingly, we can use the same rules to ask the question "which list, when appended t-
(a b), yields (a b c d)"

query-->(append-to-form (a b) ?y (a b c d))
(append-to-form (a b) (c d) (a b c d))

We can also ask for all pairs of lists that append to form (a b c d):

query-->(append-to-form ?x ?y (a b c d))
(append-to-form ni7 (a b c d) (a b c d))
(append-to-form (a) (b c d) (a b c d))
(append-to-form (a b) (c d) (a b c d))
(append-to-form (a b c) (d) (a b c d))
(append-to-form (a b c d) n17 (a b c d))

The query system may seem to exhibit quite a bit of intelligence in using the rules to'deduce
the answers to the queries above. Actually, as we will see in the next section, the system 'is
following a well-determined algorithm in unraveling the rules. In addition, although the
system works impressively in the append case, the general ethods may break down in more
complex cases, as we will see in section 43.4 below.

Exercise 422: Consider the following genealogical data base (cf. Genesis 4:

(wife Adam Eve)
(son Adam Cain)
(son Cain Enoch)
(son Enoch Irad)
( son Irad Mehujael)
(son Mehujael Methushaol)
(son Methushael Lamech)
(wife Lamech Ada)
(wife Lamech Zillah)
(son Ada Jabal).
(son Ada Jubal)
(son Zillah Tubal-cain)
(daughter Zillah Naamah)

Formulate rules such as "if is a son of then P is a parent of S" or "if P is a parent of and Q is a
parent of R ten Q is a grandparent of S," or "if A is married to B, and A is a parent of S, then is a
parent of S" (more true in biblical times than now) that will enable the query system to deduce
information such as

0 the grandparents of Enoch

* the sons and daughters of Lamech

* the grandparent of Tubal-cain

* the ancestors of Zillah

4.3-2. How the Query System Works

In section 44 below we will present an implementation of the query interpreter as a
collection of procedures in Scheme. In this section we give an overview which explains the
general structure of the system independently of low-level implementation details.

The query system is built around two central operations called pattern matching and
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unification. We begin by discussing pattern matching, and how this operation, together with
the organization of information in terms of streams of frames, enables us to implement both
simple and compound queries. We next discuss unification, a generalization of pattern
matching needed to implement rules. The entire query interpreter fits together through a
procedure qeval, which classifies expressions analogously to the way eval classifies
expressions for the Lisp interpreter described in the previous chapter. After describing the
implementation of the interpreter, we will be a position to understand some of its limitations,
and some of the subtle ways in which the query language's logical operations differ from the
operations of mathematical logic.

Pattern matching
A pattern matcher is a program that tests whether some datum fits a specified pattern. For

example, the data list

((a b) (a b))

matches the pattern

(? ?)

withthepatternvariablexboundtothelist(a b). Thesamedatalistmatchesthepattern

(? ? ?Z)

withxandzbothboundto(a b)andyboundtoc. talsomatches.

((?X ? c Ux ?)

with x bound to a and y bound to b But it does not match the pattern

(?x a y)

since that pattern specifies a list whose second element is the atom a.

The pattern matcher used by the query system takes as inputs a pattern, a datum, and a
frame that specifies bindings for various pattern variables. It checks to see if the datum
matches the pattern in a way that is consistent with the bindings already in the frame. If so, it
returns the given frame augmented by any bindings that ay have been determined by the
match. Otherwise it indicates that the atch has failed.

For example, using the pattern

(? ? ?X)

to match the datum (a b a) given an empty frame will return a frame specifying that x Is
bound to a and y is bound to b. Trying the match with the same pattern, the same datum, and
a frame specifying that y is bound to a will fail. Trying the match with the same pattern, the
same datum, and a frame in which y is bound to b and x is unbound will return the given
frame augmented by a binding of x to a.

The pattern matcher, whose implementation as a Lisp procedure is given in section 44.3 is
essentially all the mechanism that is needed to process simple queries. For instance, to
process the query

('ob (computer programmer))

we scan through all entries in the data base and select te assertions that match the pattern
with respect to an initially empty frame. Then, for each match we find, we use the frame
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returned by the match to instantiate the pattern with a value for x in the pattern and print the
result.

Compound queries and streams of frames
In the query system, testing patterns against frames is organized using streams. Given a

single frame, the matching process runs through the data base entries one by one. For each
data base entry, the matcher generates either a special symbol indicating that the match has
failed, or else an extension to the frame. The results for all the data base entries are collected
into a stream, which is passed through a filter to weed out the failures. The result is a stream

21of all the frames that extend the given frame via a match to some assertion in the data base.

In our system, a query is represented as a processor on an input stream of frames, that
performs the above operation for every frame in the stream, as indicated in figure 43. That Is,
for each frame in the input stream, the query generates a new stream consisting of all
extensions to that frame by matches to assertions in the data base. All of these streams are
then appended to form one huge stream, that contains all possible extensions of every frame
in the input stream. This stream is the output of the query.

input' output
stream of -------------- stream of frames,
frames I I filtered and extended

-------------- >1 query I---------- >

I (job ?x ?y)l
--------------

t

stream of assertions
from data base

Figure4-3: Queriesareimplementedasprocessorsonstreamsof frames,

To answer a simple query, we use the query with an input stream consisting of a sgle
empty frame. The resulting output stream contains all extensions to the empty frame, 'i.e., all
answers to our query. This stream of frames i's then used to generate a stream of copies of
the original query pattern, with the variables instantiated by the values in each frame, and this
is the stream that is finally printed at the terminal.

The real elegance of the stream of frames implementation comes when we deal wth
compound queries. This makes use of the ability of our matcher to demand that a match be

21
Because matching is, in general, very expensive, we would like to arrange to avoid applying the full matcher to

every element of the data base. This is usually arranged by breaking up the process into a fast, coarse match and the
final match. The coarse match is used to filter the database to produce a small set of candidates for the final
matcher. With care, we can arrange our database so that some of the work of coarse matching can be done at data
base construction time, rather then when we want to select the candidates. This is called indexing the data base.
There is a whole vast technology built around data base indexing schemes. Our implementation will contain a
simple-minded form of such an optimization, described below in section 44.5.
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consistent with a specified frame, For example, to handle the and of two queries such as

(and (can-do-job ?x (computer programmer trainee))
(job ?person ?x))

(informally, "find all people who can do the job of a computer programmer trainee") we first
find all entries that match the pattern

(can-do-job ?x (computer programmer trainee))

This produces a stream of frames, each of which contains a binding for x. Then, for each
frame in the stream, we find all patterns that match

(job ?person ?x))

in a way that is consistent with the given binding for x. Each such match will produce a frame
containing bindings for x and person. In other words, the and of two queries can be viewed
as a series combination of the two component queries, as shown in figure 44. The frames
that pass through the first query filter are then filtered and further extended by the second
query.

------------------------------------

input
�stream of

frames
-------- >

I (AND A ) I

I ------ ------ I
I I
I I I I I I I
------ >1 A B I--------- I

I I---- I I---- I I
I I
I t I
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Figure 44: The compound query AND of two queries is produded by operating on the frame stream in
series.

Figure 45 shows the analogous method for computing the or of two queries as a parallel
combination of the two component. queries.. The input stream of frames is extended
separately by each query. The two resulting streams are then merged (e.g., by appending- the
streams) to produce the final output stream.
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Figure 45: The OR combination of two queries is formed by operating on the frame stream in parallel
and merging the results.

As vague as this description is, you should already be able to see from it that processing
compound queries can be a slow process. In general, if there are D items in the data base,,
and n clauses in the compound query, we can expect to check on the order of Dn matches.
This.means that as we form more and more complex queries by compounding elementary
queries, the amount of computation required grows considerably. So, while systems for
handling only simple queries are quite practical, it is generally agreed that dealing with
complex queries will require developing new computer architectures thatallow one to apply
other strategies, based on parallel processing, to the information retrieval problem.

Unification and applying rules
In order to handle rules in the query language, we must go beyond one-sided pattern

matching, to a more general operation called unification. This is similar to pattern matching,
except that both the "pattern" and the "datum" may contain variables. A unifier takes two
patterns, each containing constants and variables, and determines whether it is possible to
place restrictions on the values of the variables which will make the two patterns be equal. If
so, it returns a frame that describes these restrictions. For example,

(unify '(?x a y) (?y ?z a))

will specify a frame in which x, y and z must all be bound to a On the other hand,

(unify '(?x ?y a) '(?x b ?y))

will fail, because there is no value for y that can make the two patterns equal. (For the second
elements of the patterns to be equal, y would have to be a, but for the third elements to be
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equal, y would have to be b2' In addition, the unifier used in the query system, like the
pattern matcher, also takes as input an initial frame, and performs unifications that are
consistent with this frame.

The unification algorithm, discussed in section 44.4 below, is the most technically difficult
part of the query system. With complex patterns, performing unification may seem to require
deduction. For example,

(unify '(?x ?x)) '((a ?y c) (a b ?z)))

has to infer that x should be (a b c), y should be b and z should be c We may think of
matching as setting up a set of equations among the pattern components. In the one-sided
match, all of the equations which contain variables are explicit and solved for the unknown
(pattern variable). In the 2-sided unify match, the equations are simultaneous and may
require substantial manipulation to solve. For example,

(unify '(?x ?x)) "(a ?y c) (a b ?z)))

may be thought of as a way of writing the following simultaneous equations:

?x = (a ?y c) and ?x = (a b ?z)

J We can see that this implies that:

(a ?y c = a-b ?z)

Which, n turn, implies that:

a a; ?y = b- and c = z

Unification is the key to the component of the query system that forms inferences from
rules.23 To see how this is accomplished, consider processing a query that involves applying
some rule, for example,

(lives-near ?x (Hacker Alyssa P))

To process this query, we first use the ordinary pattern match procedure described above to
see if there are any assertions in the data base that match this pattern. (There will not be any
in this case, since our data base includes no direct assertions about who lives near whom.)
The next step is to attempt to unify the pattern with the conclusion clause of each rule We
find that the pattern unifies with the conclusion clause of the rule

(rule (lives-near ?person-1 ?person-2)
Jand (address ?person-1 (?town ?rest-0)

(address ?person-2 (?town . ? r e s t - 2
(not (lisp-value equal? ?person-1 ?person-2))))

resultinginaframespecifyingthatperson-2shouldbeboundto(H.acker Alyssa P)and

22 Another way to think of unification is that it generates the most general pattern that is a specialization of the two
input patterns. That is, the unification of (?x a ?y) and (?y z a) is (a a 3 For our implementation, it is-more'
conven ient to think of the resu It of unif ication as being a f rame rather than a attern.

23 If we built the query system to include only matching, but not unification, ten we would be able to process both

simple and compound querkels, but not rules. Such an information retrieval system is a worthwhile program, though
not as interesting in its logical capabilities.
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that x should have the same value as person-1. Now, relative to tis frame, we evaluate the
compound query given by the body of the rule. Successful matches will extend this frame by
providing a binding for person-1, and consequently a value for x, which we can use to
instantiate the original query pattern.

In general, the query interpreter uses te following method to apply a rule in trying to
establish a query pattern (in a given frame that specifies bindings for some of the pattern
variables):

0 Unify the query with the conclusion of the rule to form, if successful, an extension
of the original frame.

* Relative to the extended frame, evaluate the query formed by the body of the rule.

Notice how similar this is to the method for applying a procedure in eva7lapply
interpreter for Lisp.

* Bind the procedure's parameters to its arguments to form a frame that extends
the original procedure frame.

* Relative to the extended frame, evaluate the expression formed by the body of the
procedure.

4.3.3. The Query Evaluator

Despite the complexity of the underlying matching operations, the general organization of
the system is much like an evaluator for any language. The procedure that coordinates the
matching operations is called qeva 7 and it plays a role analogous to that of the eva I
procedure for Lisp.

Qe va 7 takes as inputs a query together with a stream of frames. Its output is a stream of
frames consisting of successful matches to the query pattern that extend some frame in the
input stream, as indicated in figure 4-3.

Like eva7, qeval classifies the different types of expressions and dispatches to an
appropriate procedure. For example, and queries are handled by a procedure called
conjoin, Other special forms that are handled through the dispatch are or, not,
71sp-va7ueandalways-true. 24

Handling assertions
If no procedure is found under the qeva7 property of the type of the expression, the

expression ks assumed to be an ordinary query, rather than a special form, and qeva I refers
the problem to asserted?, which handles ordinary assertions. Asserted? takes as input a
pattern and a stream of frames. For each frame in the input stream, asserted? produces

24
AI ways-true is part of the internal implementation used for rules whose' conclusions are specified to be always

true (by giving a null body) as in

(rule (appond-to-form nil ?y ?y))

used in the append example in section 421.



4.3.3 DRAFT: 31 JULY 1983 279

1 a stream of extended frames, which is obtained by matching the pattern and the
given frame against all assertions in the data base (using the pattern matcher);
and

2 a stream of extended frames obtained by applying all possible rules (using the
unifier)25

Appending these two streams produces a stream that consists of all ways that the given
assertion can be satisfied consistent with the original frame. These streams (one for each
frame in the input stream) are now all combined to form one large stream, which therefore
consists of all possible ways that any of the frames in the original input stream can be
extended to produce a match with the given pattern, Details of the procedures can be found
in section 4.4.

Compound queries
Compound queries are implemented using the series-parallel' combination idea explained

in section 43.2 and illustrated in figures 44 and 45. Here, for example is the procedure
con 'o in that handles and:

(define (conjoin conjuncts frame-stream)
(cond ((empty-conjunction? conjuncts)

f rame-stream)
(else (conjoin (rest-conjuncts conjuncts)

(qeval (first-conjunct conjuncts)
frame-stream)))))

The idea is that we first filter the stream of frames by finding the stream of all possible
extensions to the first clause in the conjunction. Then, using this as the new frame stream, we
recursively con 'o in the rest of the clauses. Since at each step we produce the stream of all
possible extensions, we can be sure that we haven't missed any possibilities that might satisfy
the conjunction. Or expressions are implemented in a similar manner. (See section 44 for
details.) --

Handling NOT
From the stream of frames point of view, the not of some query acts as a filter, which

removes all frames for which the query can be satisfied. For instance, given some frame
stream, and the pattern

(not ob ?x (computer programmer)))

we attempt, for each frame in the stream, to produce extension frames that satisfy ( 'ob ?x
(computer programmer)). We remove from the input stream all frames for which such
extensions exist. The result is a stream of consisting of only those frames in which the
binding for x does not satisfy (job ?x (computer programmer)). Thus, for example, in
processing the query

25
Since unification is a generalization of matching, we could siMplify the system by using the unifier to produce

both streams. On the other hand, the full-blown unification algorithm requires much more work than the simple
matcher, and our system will run more efficiently if we use simple matching wherever we can get away with it.
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(and (supervisor ?y)
(not (ob (computer programmer))))

the first form will generate frames with bindings for x and y. Taking and with the not form will
filter these by removing all frames in which the binding for x satisfies the restriction that x is a
computer programmer.26 The I sp - va 7 ue special form is implemented as similar filter on
frame streams. (See section 44.)

The driver loop
The query-driver-7oop procedure, analogous to the driver-loop procedure of the

interpreter in chapter 4 reads queries from the terminal. For each qu ery, it calls qeva I with
the query and a frame stream that consists of a single empty frame. This will produce the
stream of all possible matches (i.e., all possible extensions to tile empty frame). For each
frame in the resulting stream, we instantiate the original query using the values of the
variables found in the frame. This stream of instantiated queries is then printed, one item to a
line. In our implementation, the driver also performs some minor syntactic processing to
mediate between the form of the expression that the user types and an internal form that is
more convenient for the implementation. In addition, the driver checks for the special
command a s s e r t , which signals that the input is not a query, but rather an assertion or rule
to be added to the data base, for instance:

query-->(assertl (job (Bitdiddle Ben) (computer wizard)))

query-->(assertl
(rule (wheel ?person)

(and supervisor ?middle-manager ?person)
(supervisor ?middle-manager))))

Thereisalsoaspecial ntialize-data-basecommandthatioadsthedatabasewitha
given collection of assertions and rules.

4.3.4. Is Logic Programming Mathematical Logic?

On the face of it, the means of combination of our query language seem identical to the
operations and, or, and not or mathematical logic, and the application of query language
ru I es is done with a legitimate rule of inference.27 However, this is not quite true, because
our query language provides a control structure that interprets the logical statements
procedurally. We can often take advantage of this control structure. For example, to find all
of the supervisors of programmers we could formulate a query in either of the two logically
equivalent forms:

26
There is a subtle difference between this filter implementation of not and the usual meaning of not in

mathematical logic. See section 43.4 below.

27
The statement that a rule is a legitimate rule of inference, is not trivial. It is required to prove that, starting with

true premises, only true conclusions may be derived. The particular ule of inference we are using here is a
generalized form of modus ponens, called cut. Modus ponens is the familiar rule which says that if A is true and A
implies is true, then we may conclude that is true.
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(and (job ?x (computer programmer))
(supervisor ?x ?y)),

(and (supervisor ?x ?y)
(job ?x (computer programmer)))

If the a company has many more supervisors than programmers 28 it would be advantageous
to use the first form rather than the second one. This is because the data base must be
scanned for each intermediate result produced by the first clause of the and.

. In fact, it is the aim of Logic Programming is to provide the programmer with techniques for
decomposing a computational problem into two separate problems: what he is trying to
compute and how he wants to go about it. The idea is to select a subset of the statements of
mathematical logic which are just powerful enough to be able to describe anything one might
want to compute, but which are weak enough to have a controllable procedural interpretation.
Implications with only one consequent (called Horn clauses) meet both requirements.
Because the Horn clauses can be interpreted as statements of mathematical logic, we can
verify, using standard proof techniques, that a particular assertion means what we intend it to
and that establishing its truth in fact computes what we wanted. Thus, if a logic program
terminates, we can be sure of the result.29 Control is effected by using the order of evaluation
of the language. We arrange the order of clauses, and the order of subgoals within each
clause, so that the computation is done in an order which we deem to be effective and
efficient.

Infinite loops
A consequence of the ability to control the execution of a logic program by imposing order

on the clauses, is that it is possible to construct hopelessly inefficient programs for solving
certain problems. An extreme case of inefficiencyis occurs when the system falls into infinite
loops in making deductions. As a simple example, suppose we are setting up a data base
about famous marriages, including

query-->(assertl (married Minnie Mickey))

If we now ask

query-->(married Mickey ?who)

we will get no response, because the system doesn't know that if A is married to B, then is
married to A. So we assert the following rule:

query-->(assertl '(rule (married U ?y)
(married ?y ?x)))

and query again

query-->(married- Mickey ?who)

Unfortunatel this W_ ill drive the system nto an nfinite loop' as follows:

28
the usual case

29
Even this statement is false in our query language (and also false for programs in Prolog) because of our use of

7 sp - va I ue and no t, as described below.
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1. The system finds that the married rule is applicable, i.e., the rule conclusion,
-- (married ?x ?y) -- successfully unifies with the query to produce a frame 'in
which x is bound to Mickey. So the interpreter proceeds to evaluate the rule,
body -- (marr ied ?y x) -- in a frame in which x is bound to Mickey, in effect,
to process the query (ma r r e d ?y M ck ey

2. One answer is found directly as an assertion 'in the data base (marr 1ed
Minnie Mickey).

3. But the married rule is also applicable, because the rule conclusion
(marr ied ?x ?y) unfies with the query -- (married ?y ?x) in the frame
x bound to Ml ckey to produce a frame in which x and y are both bound to

Mickey. Now, in this new frame, the system proceeds to process the rule body
.. married ?y ?x), in effect to evaluate the query (married ffickey
Mickey).

4. Once again, the ma r r e d rule, which leads the interpreter to again evaluate the
rules body, and so on.

The system is in an infinite loop. Indeed, whether the system will find the simple answer in
step 2 above before it goes into the loop depends on implementation details concerning the
order in which it checks the items in the data base. This is a very simple example of the kinds
of loops that can occur. Collections of inter-related rules can lead to loops that are much
harder to anticipate, and the appearance of a' loop can depend on low-level details
concerning the order in which the system processes queries.30

Exercise 423: While Louis Reasoner is using the personnel data base, he mistakenly deletes ft
outranked-by rule, given above in section 418. When he realizes this, he ickly re-instals it.'
Unfortunately, he makes a slight change in the rule, typing it in as:

(rule outran ked-by ?staff-porson ?boss)
(or (supervisor ?staff-person ?boss)

(and (outranked-by ?middle-manager ?boss)
(supervisor ?staff-person ?middle-manager))))

Just after Louis types this information into the system, Rosemary Forrest comes by to find Out Who is
outranked by Ben Bitdiddle, and issues the query

(outranked-by (Bitdiddle Ben) ?who)

Instead of answering, the system goes into an infinite loop. Explain why.

Exercise 424: Cy D. Fect, looking forward to the day when he will rise in the organization, adds to Me
personnel data base the rule for determining who is a wheel:

30
Note that this is not a problem of the logic, but rather of the procedural interpretation of the logic provided by

our interpreter. One could write an interpreter that would not fall into a loop here. For example, we could, enumerate
all of the proofs derivable fr om our assertions and our rules in a breadth-first rather than a depth-first order.
However, such a system makes it more difficult to take advantage of the order of deductions in our programs. One
attempt to build sophisticated control into such a program is described in [10]. Another technique, which does not
lead to such serious control problems, is to put in special knowledge, such as detectors for particular kinds of looPS
(exercise 426). Howe'ver, that there can in general be no scheme for reliably preventing a system from tracing down
infinitepathsinperformingdeductions. Imagea(diabolical)ruleoftheform"toshowP(x)istrue,showthatO(Itx))is
true, for some suitably chosen function f.

Meta-Linguistic Abstraction
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(rule (wheel ?person)
(and (supervisor ?middle-manager ?person)

(supervisor ?x ?middle-manager)))

To test the rule, he gives a query to find all people who are wheels:

query-->(wheel ?who)

To his surprise, the system responds:

(wheel (Warbucks Oliver))
(wheel (Bitdiddle Bon))
(wheel (Warbucks Oliver))
(wheel (Warbucks Oliver))
(wheel (Warbucks Oliver))

Why is Oliver Warbucks listed four times?

Exercise 425: Den has been generalizing the query system to provide all kinds of statistics about the
company. For example, to find the total salaries of all the computer programmers, one will be able to

type:

(sum ?amount
(and (job ?x computer programmer))

(salary ?x ?amount)))

In general, Ben's new system allows expressions of the form

(accumulation-function <variable>
<query pattern>)

where accumulation-function can be things like sum, average, maximum, and so on. Ben easons that it
should be a cinch to implement this. He will simply feed the query pattern to qeva 7. This will produce a
stream of frames. He will then pass this stream through a mapping function that extracts the value of the
designated variable from each frame in the stream and feed the resulting stream of values to the
accumulation function.

Just, as Ben completes the implementation and is about to try it out, Cy walks by, still puzzling over the
whee 7 query result in exercise 424. When Cy shows Ben the system's response, Ben groans, "Oh, no,
my simple accumulation scheme won't workl"

What has Ben just realized? Outline a method that he can use to salvage the situation.

Exercise 426: Devise a way to install a loop detector in the query system so as to avoid the kinds of
simple loops illustrated above in the text and in exercise 423. The general idea is that the system should
maintain some sort of history of its current chain of deductions, and not begin processing a query that it
is already working on. Describe what kind of information (patterns and frames) is included in this
history, and how the check should be made. (After you study the details of tile query system

implementation in section 44, you may want to actually modify the system to include your loop detector.)

Problems with NOT
Another quirk in the query system concerns not. Given the data base of section.

4.3.1 Consider the two queries:

(and supervisor ?y)
(not (job ?x (computer programmer))))

(and (not (job ?x (computer programmer)))
(supervisor, ?x ?y))

The two queries do not produce the same result. The first uery begins by finding all
entries in the data' base that match (supervIsor ?x y), and then filtering these by
removing the ones in which the value of x satisfies (job ?x (computer programmer)).
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But the second query begins by checking the data base to see if there are any patterns that
satisfy ( 'ob ?x (computer programmer)). Since there are, in general, entries of this
form, the not clause returns an empty stream of frames, and consequently the entire
compound query returns an empty stream.

The problem is that our implementation of not really is meant to serve as a filter on values
for the variables. If a not clause is processed using a frame in which some of the variables
remain unbound (as does x in the example above), the system will produce unexpected
results-Similarproblemsoccurwiththeuseof Nsp-value- Seeexercise4-29.

There is also a much more serious way in which the not of the query language differs from
the not of mathematical logic. In logic, we interpret the statement "not P',' to mean that P is
not true. In the query system, however, "not P" means that P is not deducible from the
knowledge in the data base. For example, given the personnel data base of section 4.1, the
system would happily deduce all sorts of not statements, such as that Ben Bitdiddle is not a
baseball fan, that it is not raining outside, that two plus two is not four, and so on. In other
words, the not of logic programming languages reflects the so-called closed world
assumption that all relevant information has been included in the data base.

4.4 Implementing the Ouery System

Section 4.2 described, in outline, how the query system works. Now we fill in tile details,
by presenting a complete implementation of the query system as a collection of procedures in
Scheme.

4.4.1. Driver Loop and Syntax Processing

The driver loop for the query system reads expressions from the terminal. If the expression
indicates that this is a rule or assertion to be added to the data base, then the information is
added. Otherwise the expression is assumed to be a query. The driver passes this query to
the evaluator qe va 7 together with an initial frame stream consisting of a single empty frame.
The result of the evaluation is a stream of frames generated by satisfying the pattern with
variable values found in the data base. These frames are used to form a new stream,
consisting of copies of the original query, where the variables are instantiated with values
supplied by a stream of frames, and this final stream is printed at the terminal.

(define (query-driver-loop),
(newline)
(lot ((q (query-syntax-process (read 'query-->))))

(if (assertion-to-be-added? q)
(sequence (add-assertionl (add-assertion-body q))

(print "assertion added to data base")
(query-driver-loop)

(sequence
(print-stream-e.lements-on-separate-lines

(map (lambda (frame) (instantiate q frame))
(qeval q (singleton

(query-driver-loop)

In addition, before doing ahy processing on an input expression, the driver loop makes a
syntax transformation, to transform pattern variables of the form ?symbo7 into the internal
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format sytnbo 7 That is to say, a pattern such as
(job ?x ?y)

is actually represented internally by the system as

(job (? x) (? y))

This increases the efficiency of the internal processing, since it means that the system can
check to see if an expression is a pattern variable by checking whether the car of the
expression is the symbol ?, rather than having to extract characters from the symbol, which is
much less efficient. The syntax transformation is accomplished by the following procedure:31

(define (query-syntax-process exp)
(map-over-atoms expand-question-mark exp))

(define (expand-question-mark symbol)
(let ((characters (explode symbol)))

(if (eq? (car characters) )
(list (implode (cdr characters)))
symbol)))

(define (map-over-atoms proc exp)
(cond ((null? exp) nil)

((pair? exp) (cons (map-over-atoms proc (car exp))
(map-over-atoms proc (cdr exp))))

((atom? exp) (proc exp))
(else (error "unknown expression -- Map over atoms"

exp))))

(The program uses the primitives exp7ode, which separate a symbol into a list of
characters, and imp 7 ode, which assembles a list of single characters to form a new symbol.
Notice how we have abstracted out the controlstructure map-over-atoms, which applies a
procedure to every atomic symbol in a list.)

4.4.2. The Evaluator

The qe va I procedure, already described in section 43-3, is the the basic evaluator o the
query system. As described above, it takes as inputs a query and a stream of frames, and
returns a stream of extended frames. It identifies special forms by a data-directed dispatch
using get and put, just as we did in implementing generic operations in chapter 2 Any query
not identified as a special form is assumed to be a simple assertion to be checked.

(define (qeval query frame-stream)
(let ((qproc (get (type query) qeval)))

(if (not (null? qproc))
(qproc (contents query) frame-streaml
(asserted? (make-arg-list query)

frame-stream))))

31 Most Lisp systems, in fact, give the user the ability to odify the ordinary read procedure to perform such
transformations by defining reader macro characters. Quoted expressions are already handled in this way, sIncethe-
reader atomatically translates 'expreSS7on into (quote express fon) before the evaluator does any further
processing. We could arrange for express ion to be transformed into (? express ion) in' just the same way, but,
for the sake of clarity, we have included the transformation procedure here explicitly.
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Simple queries
The asserted? procedure handles simple queries. It takes an argument list containing

one assertion, together with a stream of frame, and returns the stream formed by extending
each frame by a data-base match of the query. To accomplish this, it uses the procedure
f ind-assert ions, which generates, for each frame, a stream of extended frames. To apply
f ind-assert ions to each frame in the input stream, and consolidate the output frames for
each frame into one large output stream, we ap ply the f I a tniap procedure, which was
introduced in Chapter 3 section 34.2 to perform just this kind of mapping and accumulation.
Similarly, a procedure app 7y-rules is used to generate a stream of extensions F, found by
applying rules, for each frame in the nt stream, and the results are accumulated using
f 7 a tmap. Finally, the two streams, one generated by checking te assertions and one
generated by applying the rules, are appended to form a single output stream.

(define (asserted? a frame-stream)
(append-streams
(flatmap (lambda (frame)

(find-assertions (pattern-of a) frame))
frame-stream)

(flatmap lambda (frame)
(apply-rules (pattern-of a) frame))

f rame- stream)))

Compound queries
An d queries are handled by a conjo n operation, as described above. This takes as inputs

the fist6f conjunctions and the frame stream, and returns the stream of extended frames.
(define (conjoin conducts frame-stream)

(if (empty-conjunction? conjuncts)
f rame-stream
(conjoin (rest-conjuncts con uncts)

(qeval (first-conjunct conjuncts)
frame-stream))))

The following put expression sets up qeva 7 to dispatch to con *o in when an and form is
encountered:

(put land qeval conjoin)

Or forms are handled similarly, according to te diagram in figure 45. The output streams
for the various disjuncts of the or are computed separately and then merged, using
append-streams:

(define (disjoin disjuncts frame-stream)
(if (empty-disjunction? disjuncts)

the-empty-stream
(append-streams (eval (first-disjunct disjuncts)

frame-stream)
(disjoin (rest-disjuncts dis'uncts)

frame-stream))))

(put 'or qeval disjoin)

R te rs
Negations are handled by the method outlined in section 4.3-3. We attempt to extend each

frame in the input stream, and we include a given frame in the output stream only if it cannot
be extended.
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(define (negate a frame-stream)
(f 1 atmap

(lambda (frame)
(if (empty-stream? (eval (expression-argument a)

(singleton frame)))
(singleton frame)
the-empty-stream))

frame-stream))

(put 'not qeval negate)

L7'sp-v a7ue is a filter similar tonot. For each frame 'in the stream is used to instantiate
the variables in the pattern, the indicated predicate is applied, and the frame for which the
predicate returns n 7 are filtered out of the input stream:

(define (lisp-value call frame-stream)
(flatmap

(lambda (frame)
(let ((lcall (instantiate call frame)))

(if (execute lcall)
(singleton frame)
the-empty-stream)))

frame-stream))

(put 'lisp-value qeval lisp-value)

The a I ways -true special form (which signals that the associated clause 'is always true
simply ignores the pattern, and passes through all the trames in the input stream:

(define (always-true ignore frame-stream)
f rame-stream)

(put 'always-true qeval always-true)

4.4.3. Pattern Matching and Finding Assertions

Here is the basic pattern matcher. It takes as arguments a pattern, a data object, and a
frame and returns either a stream containing the extended frame, or n 7 if the match fails:

(define (pattern-match pat dat frame)
(let ((result'(internal-match pat dat frame)))

(if (eq? result 'failed)
the-empty-stream
(singleton result))))

The main pattern-match procedure calls 7'nterna7-match, which returns either the
symbol f a 7" ed, 'or an extension of the gven frame:
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(define (internal-match pat dat frame)
(cond ((eq? frame 'failed) 'failed)

((and (number? pat) number? dat))
(cond ((= pat dat) frame)

(else 'failed)))
((atom? pat)

(cond ((eq? pat dat) frame)
(else 'failed)))

((var? pat)
(extend-if-consistent pat

dat
frame))

((atom? dat) 'failed)
(else (internal-match (cdr pat)

(cdr dat)
(internal-match (car pat)

(car dat)
frame)))))

The basic idea of the matcher is to check the pattern against the data, symbol by symbol,
accumulating bindings for the pattern variables. We first considers the case where the pattern
is an atomic symbol. If so, then either it is equal to the data -- in which case the match
succeeds and we return the frame of bindings accumulated so far -- or it is not equal to the
data -- in which case the match fails and we return f a! 7 ed. The next case is where the
pattern is a variable. If so, we extend the current frame by binding the variable to the data, so
long as this is consistent with the bindings already in the frame. The next case is where the,
pattern is not atomic, but the data is, in which case the match must fail. Finally (recursively) if
the pattern and the data are both non-atomic, we match the car of the pattern against the
car of the data to produce a frame. In this frame, we then match the cdr of the pattern
against the cdr of the data.

Here is the auxiliary procedure that extends a frame by adding a new binding binding, if this
is consistent with the bindings already in the frame-,

(define (extend-if-consistent var dat frame)
(lot ((value-cell (binding-in-frame var frame)))

(if (null? value-cell)
(extend var dat frame)
(internal-match (binding-value value-cell) dat frame))))

The check for consistency is rather subtle, If there is no binding for the variable in the frame,
we simply add the binding of the variable to the data. Otherwise we match, in the frame, the
data against the value of the variable in the frame and this will return either the original frame,,
or else a failure indication. The reason for the subsidiary match is to handle the following knd-
of situation. Suppose we have a frame that specifies that x is bound to y and y is bound to ,
and we wish to augment this frame by a binding of x to . We look up x and find that it i.
bound to y. This leads us to check for consistency by matching the value of x, that 'is, yt
against te proposed new binding, tat is, 5, in the current frame.

The matcher is used by the procedure f ind-assert ions, which takes as input a pattern
and a frarne. It returns a stream of frames, each extending the given one by a data-base
match of the given pattern. It uses a subsidiary procedure fetch-assertions which
returns a stream of all the items in the data base that should be checked for a match against
the pattern and the frame. The reason for fetch-assertions here is that we can often
apply simple tests that will eliminate many of the entries in the data base fr rorn the pool of
possible candidates for a successful match. The system would still work if we eliminated
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fetch-assertions, and simply returned a stream of all assertions n the database, but the
computation would be less efficient, since we would need to make many more calls to -the
matcher.

(define (find-assertions pattern frame)
(flatmap (lambda (datum)

(pattern-match pattern datum frame))
(fetch-assertions pattern frame)))

4.4.4. Rules and Unification

App 7y-ru7es is the rule analogue of ind-assert ions. It takes as input a pattern and a
frame, and forms the stream of extension frames formed by applying rules from the data base.
Each applicable rule may return a stream of frames, formed by a procedure app 7y-a -ru I e.
This is mapped down the stream of rules (selected by a procedure f e tch-ru 7es, analogous
to f e tch-assert ions) and the results are accumulated by f a tmap:

(def ine (apply-rules pattern frame)
(flatinap (lambda (rule)

(apply-a-rule rule pattern frame))
(fetch-rules pattern frame)))

App7y-a-ru7e applies rules using the method outlined in section 43.2. It first forms'a
rule-frame obtained by unifying the rule conclusion with the pattern in the given frame.
Then it evaluates the rule condition in this new frame. (Actually, since qe va 7 is set up to
accept a stream of frames, it passes to qe va 7 a stream consisting of this single frame.)

Before any of this happens, however, the program first renames all the variables in the rule
with unique new names. The reason for this is to prevent the annoying bug that, the frame
structures we are accumulating, typically the result of applying many rules, the variables for
different rule applications may become confused with each other. For instance, if two rules
both use a variable named x, then each one may add a binding for x to the frame when it 'is
applied. But, in fact, these two x's having nothing to do with each other, and we should not
be fooled into hinking that the two bindings must be consistent. Rather than renaming
variables, we could devise a more clever environment structure, but the renaming approach
we have chosen here is the most straightforward, even if not the most efficient. (See exercise
4-30.) Here is the resulting app 7y a -ru I e procedure.

(define (apply-a-rule rule query-pattern query-frame)
(let ((clean-rule (rename-variables-in rule)))

(let ((unify-result (unify-match query-pattern
(rule-conclusion clean-rule)
query-frame)))

(if (empty-stream? unify-res-ult)
the-empty-stream
(qeval (rule-condition clean-rule)

unify-result)))))

Generating unique variable names is accomplished by maintaining a rule counter, that is
incremented at each rule application. Thi's counter is then included as part of the original
variable narne.-
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(define (rename-variables-in rule)
(define (tree-walk exp)

(cond ((atom? exp) exp)
((var? exp) (make-new-variable exp))
(else (cons (tree-walk (car exp))

(tree-walk (cdr exp))))))
increment- rule-counter)

(tree-walk rule))

.(define rule-counter )

(define (increment-rule-counter)
(setl rule-counter rule-counter)))

(define (make-new-variable var)
(cons I? (cons rule-counter (cdr var))))

Finally, here is the unification algorithm, implemented as a procedure that takes as inputs
two patterns and a frame, and returns either a stream containing an extended frame, or else
the empty stream. The actual unification is performed by in terna I un fy, which returns
either the extended frame itself, or the symbol f a 1 ed:

(define (unify-match pl p2 frame)
(lot ((result (internal-unify pl p2 frame)))

(if (eq? result 'failed)
the-empty-stream
(singleton result))))

The unifier is just like the pattern matcher except that it is symmetrical variables are
allowed on both sides of the match. The basic program is exactly the -same, except that there
are two extra lines (marked below) which test for the possibility that the object on the
right side of the match is a variable.

(define (internal-unify pl p2 frame)
(cond ((eq? frame 'failed) 'failed)

((e'qual? pl p2) frame)
((atom? pl)

(cond ((atom? p2) 'failed)
((var? p2) (extend-if-possible p2 pl frame))
(else 'failed)))

((var? pl) (extend-if-possible pl p2 rame))
((atom? p2) 'failed)
((var? p2) (extend-if-possible p2 pl frame))
(else (internal-unify (cdr pl)

(cdr p2)
(internal-unify (car pl)

(car p2)
frame)))))

In unification, as in one-sided pattern matching, we only want to accept an extension of the
frame if the proposed extension is consistent. For the unifier, we have to consider a few
cases that cannot occur in a one-sided matcher. The interesting case arises when the same
variable occurs on both sides of a match. This can occur whenever a variable is repeated in
both patterns. Consider, for example, the following two patterns:,

pl = ?x ?x) and p2 (?y (f ?y))

In this case, first ?x is matched against ?y, making a binding-of x to ?y. Next, the same ?x is
matched against (f ?y). Since ?x is already ?y this is the same as matching ?y against f
?y). To put it another way, if we think of the unifier as finding a set of values for the pattern
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variables which make the patterns the same, then these patterns imply instructions to find a
7y such that ?y = (f ?y) .. a fixed point of f. If we could routinely solve such equations in
the matcher we would develop the solution, but this is a very difficult technical problem. Thus
we reject such a pattern with the predicate f reef or (see the line marked ##hPgbelow).

On the other hand, we do not want to rule out important special cases such as the following
renaming of the variable x to ?Y.

pl = ?x N) and p = ?y ?y)

In our unifier, we explicitly admit this case by a special check at the beginning of the frame
extender (in the line marked "$$$" below).

(define (extend-if-possible var val frame)
(if (equal? var val) ;$$$

frame
(let ((value-cell (binding-in-frame var frame)))

(if (null? value-cell)
(if (freefor? var val frame)

(extend var val frame)
'failed)

(internal-unify (binding-value value-cell)
val
frame)))))

The f reefor? test is a simple predicate tests to see if an expression proposed to. be the
value of a pattern variable contains the variable. This must be done relative to the current
frame because the expression may contain occurrences of a variable that already has a value
which might contain our test variable. The structure of f ree f or is a simple recursive tree
walk, substituting for the values of variables, whenever necessary.

(define (freefor? var exp frame)
(define (freewalk e)

(cond ((atom? e) t)
((var? )

(if (equal? var )
nil
(freewalk (lookup-in-frame e frame))))

((freewalk (car e)) (freewalk (cdr e)))
(else nil)))

(freewalk exp))

4.4.5. Maintaining the Data Base

One important problem in designing logic programming languages is that of arranging
things so as few as possible irrelevant data bases entries will be examined in checking a given'
pattern. In the present system we place all data base entries whose car's are atomic symbols
in separate streams, indexed by the symbol. To fetch an assertion that may match an 'Item, we
first check to see if the car of the item is atomic. If so, we return (to be tested using the
matcher) all stored patterns that have the same car, and also all stored patterns that have a
non-atomic car, If the pattern is non-atomic we (uncleverly) return all stored assertions.
More clever methods could aso take advantage of information in the frame, or try also to
optimize the case where the car of the pattern is not atomic.

(define THE-ASSERTIONS the-empty-stream)
(define ASSERTIONS-WITH-NON-ATOMIC-CARS the-empty-stream)
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define (fetch-assertions pattern frame)
(if (atom? (car pattern))

(get-assertions-on-list (car pattern))
(get-all-assertions)))

(define (get-all-assertions) THE-ASSERTIONS)

(define (get-assertions-on-list symbol)
(append-streams

ASSERTIONS-WITH-NON-ATOMIC-CARS
(lot ((assertion-stream (got symbol 'assertion-stream)))

(if (null? assertion-stream)
the-empty-stream
assertion-stream))))

Rules are stored similarly, using the car of the rule conclusion:
(define THE-RULES the-empty-stream)

,.(define RULES-WITH-NON-ATOMIC-CARS the-empty-stream)

'(define (fetch-rules pattern -frame)
(if (atom? (car pattern))

(get-rules-on-list (car pattern))
(get-all-rules)))

(define (get-all-rules) THE-RULES)

(define (get-rules-on-list symbol)
(append-streams

RULES-WITH-NON-ATOMIC-CARS
(let ((rule-stream (get symbol 'rule-stream)))

(if (null? rule-stream)
the-empty-stream
rule-stream))))

The data base is initialized from a big list of assertions, as follows:

(define (initialize-data-base big-list)
(define (deal-out statements rules assertions)

(if (null? statements)
(sequence (set! THE-ASSERTIONS assertions)

(setl THE-RULES rules)
'done)

(let ((s (query-syntax-process (car statements))))
(if (rule? s)

(sequence (store-rule-according-to-car s)
(deal-out (cdr statements)

(cons s rules)
assertions))

(sequence
(store-assertion-according-to-car s)
(deal-out (cdr statements)

rules
(cons s assertions))))))).

(deal-out big-li't

The following procedures are used to add simple assertions and rules-,
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(define (add-assertionl assertion)'
(if (rule? assertion)

(add-rulel assertion)
(add-simple-assertionl assertion)))

(define (add-simple-assertionl assertion)
(store-assertion-according-to-car assertion)
(let ((old-assertions THE-ASSERTIONS))

(setl THE-ASSERTIONS (cons-stream assertion old-assertions))
lok))

(define (add-rulel rule)
(cond
((rule? rule)
(store-rule-according-to-car rule)
(let ((old-rules the-rules))

(set! THE-RULES (cons-stream rule old-rules))
lok))

(else (error "badly formed rule"))))

To actually store a simple assertion, we check to see if its car is an atom. If so, we store it
on the apropriate list and also in the list of all simple assertions. Simple assertions with
non-atomic cars are kept on a special list.

(define (store-assertion-according-to-car assertion)
(cond ((not (atom? (car assertion)))

(let ((old-assertions ASSERTIONS-WITH-NON-ATOMIC-CARS))
(setl ASSERTIONS-WITH-NON-ATOMIC-CARS

(cons-stream assertion old-assertions))))
(else
(let ((current-assertion-stream

(get (car assertion) 'assertion-stream)))
(cond ((null? current-assertion-stream)

(put, (car ssertion)- 
vassertion-stream
(singleton assertion)))

.(else
(put (car assertion)

fassertion-stream
(cons-stream assertion

current-assertion-stream))))))))

Rules are stored similarly, under the car of the rule pattern:

-�O I
F4 A
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(define (store-rule-according-to-car rule)
(let ((pattern (rule-conclusion rule)))

(cond ((not (atom? (car pattern)))
(let ((old-rules RULES-WITH-NON-ATOMIC-CARS))

(setl RULES-WITH-NON-ATOMIC-CARS
(cons-stream rule old-rules))))

(else
(let ((current-rule-stream

(get (car pattern) 'rule-stream)))
(cond ((null? current-rule-stream)

(put (car pattern)
'rule-stream
(cons-stream rule

the-empty-stream)
(else

(put (car pattern)
rul e-stream

(cons-stream rule
current-ru1e-stream)))))))))

4.4.6. Utility Procedures

Finally, we need some utility procedures for performing low-level operations, implementing
streams, and so on.

The first procedure copies an expression, replacing any variablesin the expression by their
values in a given frame:

(define (instantiate exp frame)
(define (copy exp)

(cond ((atom? exp) exp)
((var? exp)
(let ((vcell (binding-in-frame exp frame)))

(cond ((not (null? vc911))
(copy (binding-value vcell)))

(else exp))))
Aelse (cons (copy (car exp))

� (copy (cdr exp))))))
(copy e))

The next procedure, used in the implementation of I sp -e va 7 evaluates an expression
who car is interpreted as the name of a Lisp procedure.

(define (execute exp)
(apply (oval (car exp) (the-environment))

(cdr exp)))

Stream operations
We make use of the following stream operations:

(define (interleave sl s2)
(if (empty-stream? sl)

s2
(cons-stream (head sl)

(interleave s2
(tail sl)))))
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(define (flatmap f s)
(if (empty-stream? s)

the-empty-stream
(let ((sl (f (head s))))

(if (empty-stream? sl)
(flatmap f (tail s))
(cons-stream (head sl)

(interleave (flatmap f (tail s))
(tail s)))))))

(define (singleton s) (cons-stream s the-empty-stream))

(define (map proc s)
(if (empty-stream? s)

the-empty-stream
(cons-stream (proc (head s))

(map proc (tail s)))))

(define (append-streams s! s2)
(if (empty-stream? sl)

S2
(cons-stream (head st)

(append-streams (tail sl) s2))))

Frame access operations
Frames are represented as lists of pairs, just as in our Lsp evaluator of section 41.3.

(define (make-binding variable value)
(cons variable value))

(define (binding-variable binding)
(car binding))

(define (binding-value bnding)
(Pdr binding))

(define (binding-in-frame variable frame)
(assoc variable frame))

(define (extend variable datum frame)
(cons (make-binding variable datum) frame))

(define (unbound? var frame)
(null? (binding-in-frame var frame)))

(define (lookup-in-ftame variable frame)
(binding-value (binding-in-frame variable frame)))

Syntax procedures
(define (type exp)

(cond ((not'(atom? exp))
(cond ((atom? (car exp)) (car exp))

(else nil)))
(else (error "unknown expression type" exp))))

(define (contents exp)
(cond ((not (atom.? exp)) (cdr exp))

(else (error "unknown expression contents" exp))))
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(define (assertion-to-be-added? oxp)'
(eq? (type ep) lassertf))

(define (add-assertion-body iDip)'('adr-e'O))

(define pattern-of car)
(define expression-argument car)'
(define (make-arg-list arg) (list''rg))

(define empty-conjunction?.nulj?)
(define first-conjunct car)
(define rest-conjuncts cdr)

(define empty-disjunction?_nu�l?)_,
(define first-disjunct car)
(define rest-disjuncts cdr)

(define (rule? statement)
(and (not (atom? statement))

(eq? (car statement) 'rule))),

(define rule-conclusion cadr),

(define (rule-condition rule)-.-
(if (null? (cddr rule))

(always-true)
(caddr rule)))

(define (var? exp) (q? (car exp) M

Printing utility
(define (print-stream-elements-on-separate-l-inest-s)

(if (empty-stream? s)
(print "done")
(sequence print (head s))

(print-stream-elements-on-separate-lines
(tail s)))))

Exercise 427: Implement for the query language a new special form called un iue. The idea of
unique is that it succeeds if there is precisely one item in the data base satisfying the specifi6d
condition. For example,

query-->(unique (job ?x (computer wizard)))

should print the stream of one item

(unique ob ,Bitdiddle Ben) (computer wizard)))

since Ben is the only computer wizard, while

query-->(unique (job ?x. (computer programmer)))

should print the empty stream, since there is more than one computer programmer. Moreover, a query
such as

query-->(and (job ?x ?j)
(unique (job ?anyone ?J)))

should list all the jobs that are filled by only one person, together with the people that fill them.

There are two parts to implementing un qu e. The f irst is to write a procedu re that handles this form,
and the second is to make qeva7 dispatch to your procedure. The second part is trivial, since qeva7
does its dispatching in a data-directed way. Assuming that your procedure is called, say
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unique 7y- asserted?, all you need do is include

(put 'unique qeval uniquely-asserted?)

andqeva7 will now dispatch to this procedure for every query whose type (c a r) is the symbolunfque.

The real problem is to write the procedureunique 7y asserted?. This should take as input the cdr of
the un que query, together with a stream of frames. What it should do is extract the pattern from the
query handed in, and then, for each frame in the stream, it should use qeva7 find the stream of aR
extensions to the frame produced by matching the pattern in the data base. Any stream that does. not
have exactly one item in it should be eliminated. For each remaining stream, its single frame should ble
passed back to be accumulated into one big stream that is the result of the query. This is similar to the
implementation of the not special form.

Test your implementation by forming a query that finds all people who supervise precisely one person.

Exercise 428: Our implementation of and as parallel combination of queries (section 43.2) is elegan-t
but inefficient. This is because, in processing the second clause of the and we must scan the data base
for each frame produced by the first query. For example, if the data base has N elements, and a typical
query produces a number of output frame proportional N, say NA, then scanning the data base for each
frame produced by the first query will require N 2Ik calls to the pattern matcher. In contrast, an
alternative structure where we process the two clauses of the a rid separately, and then look for all, pairs
of output frames that are compatible. If each query produces Nlk output frames, then this means that
we must perform N 2Ik 2 compatibility checks -- a factor of k fewer than the number of matches reqpi'red
in our current method.

Devise an implementation of and that uses this strategy. You must implement a procedure that takes
two frames as inputs, checks whether the bindings in the frame are compatible, and, if so, produces a,
frame that merges the two sets of bindings. Notice that this operation is similar to unification.

Exercise 429: In section 43.4 we saw that not and 7 sp-va7ue can cause the query language to
give "wrong" answers, if these filtering operations are applied to frames in which variables are unbound.
Devise a way to fix this problem. One idea is to perform the filtering in a "delayed" manner, by
appending to the frame a "promise" to filter that is only fulfilled when enough variables have been
bound to make the operation possible. One could wait to perform filtering until all other operations have
been performed. However, for efficiency's sake, one would like to perform filtering as soon as possible�
so as to cut down on the number of intermediate frames generated.

Exercise 430: When we implemented the Lisp evaluator in section 41, we saw how to use local
environments to avo;d name. conflicts between the parameters of procedures. For example, in
evaluating

(define (square x)

X X))

(define (sum-of-squares x y)
(+ (square x) (square x)))

==>(sum-of-squares 3 4)

there will be no confusion between the x in square and the x in sum-of-squares, because we

evaluate the body of each procedure in an environment that is specially constructed to contain binding;&
for the local variables, In the query system, we used a different strategy to avoid name conflicts in
applying rules. As explained in section 44.4, each time we apply a rule, e rename the variables new
names that are guaranteed to be unique. The analogous strategy for the Lisp evaluator would be to do
away with local environments and simply rename the variables in the body of a procedure each time vie
apply the procedure. On the other hand, we saw that the use of environments can lead to important
tools for structuring programs, because. environments furnish a context in which computations can take
place. One example of this is block structure. Another is the packaging mechanism discussed in
appendix 

Implement for the query language a rule-application method that uses environments rather than,

substitution. Now see if you can build -on your environment structure to create constructs in the query



I I I -- --- .----1 ------- -- ---- -- - -

298- DRAF7:31 JULY 1983 Meta-Linguistic Abstraction

language for dealing with large systems, such a the rule analog of -block-structured procedures. Can
you relate any of this to the problem of making deductions in a context (e.g., "if I supposed that P were
true, then I would be able to deduce A and B") as a method of problem-solving? (This problem is very
open-ended. A good answer is probably worth a Ph.D. thesis.)
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Chapter 
Register Machine Model of Control

Our examination of the meta-circular interpreter has stripped away much of the magic from
how a Lisp-like language is interpreted. But the meta-circular evaluator fails to elucidate the
mechanisms of control in a Lisp system. For example, it does not explain how the evaluation
of a subexpression manages to return its value to the expression which is waiting for that
value. This is because the meta-circular evaluator inherits the control structure of the
underlying Lisp system. In section 52 we will fill in that gap by providing an explicit model for
the mechanisms of control in a Lisp evaluator.

Specifically, we will develop an evaluator that is, implemented in a style that matches the
step-by-step operation of a traditional computer. Such a computer, or register machine,
sequentially executes instructions that manipulate the contents of a small fixed set of
registers. A typical instruction might assign to one register the result of applying a primitive
operation to the contents of one or two oher registers. Other instructions (called
"branches") conditionally continue at one of two instruction streams depending upon the

.value of a primitive predicate.

Some of the "Primitive operations" are quite simple, such as incrementing the -value of the
number stored in a register. Such an operation can be performed in easily described
hardware. Other operations we will assume here are not so simple. For example, car, cdr,
and cons are complex "memory" operations, which are primitive from the point of view of the
evaluator, but which may require an elaborate list structure storage mechanism to back them
up-' We start by assuming them to be primitive. Later, in section 53 we will study their
implementation in terms of more primitive operations.

Strategically, we will begin this chapter as a hardware architect rather than as a machine-
language' user of a- computer. We will not learn any particular computer machine language.
Instead, we will examine several algorithms we wish to compute, expressed in SCHEME, and
we will design simple computers specifically to execute those algorithms. In doing so we will
develop structures and conventional organizations for implementing particular programming
constructs, such as recursion. Our knowledge will have the flavor of aparts catalog or data
book rather than that of a user's reference manual.

We will also develop a register-transfer machine language for expressing our designs. This
will consist of two parts, the description of the data paths (registers and operators) of our
machine, and the description of te controller, which sequences those operations. When we
have acCUMUlated enough experience, we will design a machine which directly executes the
algorithm described by our meta-circular interpreter. Such a machine is a universal engine in
that it can simulate any other machine whose behavior can be expressed in SCHEME code.

Later in the chapter, once we have an interpreter, we will take our interpreter machine's
data paths to be fixed. The controller description part of our machine language will then

1
The management of list structure in a computer memory is quite an art, and there are many techniques for

dealing with this problem. On the other hand, these issues are separate from the basic operation of the interpreter
itself.
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become analogous to them, machine language of a conventional Von Neumann computer. We
will then learn about compiling controller instructions for an algorithm, for execution by the
interpreter data paths.

5.1. Computing with register machines

As a first example, let us consider how to compute the greatest common divisor, using the
process expressed by the SCHEME procedure that we first introduced in Chapter 

(define (gcd a b)
(if b 0)

(gcd b (remainder a b))))

Now, just what does it take to compute GCD's by this algorithm? We have two numbers, a
and b, and we will assume that we have them stored in two registers by those names.2 We
must be able to test if the contents of register a is zero. We must also be able to compute the
remainder of the contents of register a divided by the contents of register b This is itself a
complex process, but assume, for the nonce, that we can go out and buy a box that computes
remainders -- we will see how to fix that assumption shortly.

On each cycle of the algorithm, the contents of a is replaced by the contents of b and the
contents of,.b is replaced by the remainder of the old contents of a and the old contents of b.
It would be nice if this could be done simultaneously, but for simplicity here we will assume
that only one register can be assigned a new value at each moment in time.3 Thus, to avoid a
timing error we will need another temporary register, which we will call t 1, which will hold the
value of the remainder of the old contents of a and b after a has been assigned to the
contents of b4 We will draw this design with the following data path diagram-,

2
Of course, a number may be arbitrarily large, and any finite piece of hardware will only be able to hold a finite

number, but we will avoid that complication now: We will assume that a register can be arranged to hold any number.

3Most computer design is done in terms ofA catalog of parts and conventions called a logic family. In most ogic
families there are registers which have thl,,,� propertythat they accept a new value while putting out the old one. This
is arranged by having each register really be a double one, and by making the moments in time have a-finite width.
Such registers can be exchanged with no itermediate temporary. These clocking disciplines are important in
simplifying real hardware design, but we will not assume any such discipline here.

4If you don't understand this, try the following experiment: Hold a large object in each hand, now try to
interchange the objects without putting one of them down.
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In this diagram, the registers are indicated by a box, Each way to assign a register a value
is indicated with an arrow with an X behind the head. Each of these has a mnemonic label
(such as r<- t 1). The operator, rem computes the remainder of the contents of the registers
a and b to which it is attached. We use that value by assigning it to t I. We can think of each
of the Xs as being a button which if pushed, allows the contents of the register pointed at to
be replaced with the value from the source. In addition, the register can report whether or
not its contents is zero. We can think of the zero sensor as being connected to a ightbulb
which lights up when the contents of the register is zero.

Next, we must understand how this data path machine is controlled to produce the gcd of
two numbers. The idea is to produce control signals which push the buttons in the right
sequence. We normally think of this in terms of a finite state machine, which we draw with the
following diagram:
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start

v

Yes
>1 b=O I----- > done

N o
v

tl<-r

v

a<-b

v

b<-tl

We can think of such a diagram as a kind of maze for a marble to roll around in. When the
marble rolls into a box, it pushes the button which is named in that box, When it rolls into a
decision node, it looks at the light bulb named by that node and decides which way to go
based on that result. We start the marble at START, with values in the registers a and b, and
we wait until it gets to DONE.

We have just completely described a machine which computes gcd's. We have not
explained how the data gets into the registers in the first place, or how it is used when done,
but we now have, an entirely mechanistic notion wich requires no volition or intelligence
anywhere. We could iagine building such a computing engine with pinball-machine parts,
for example, assuming we had a part which computes remainders.

5.1.1. Register transfer machine language

Our diagrams are adequate for describing small machines, such as gcd, but they rapidly
become unwieldy for describing big machines, such as an evaluator. To make it possible to
describe big machines, we will create a special language for compactly representing our
designs.

Our language is organized around defining a compound operation on registers in te rms of
more primitive ones. Such a definition consists of two parts, a declaration section which
describes the data paths the arrangement of registers and operators which we will use to
perform the computation and a control section which describes the state machine which
wiHI be used to sequence the data paths.

First we need a means of notating operations on registers. Registers are accessed by two
special expression fragments -- f e tch and ass ign. The f e tch fragment notates the ability
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to access th e contents of a reg ister, and the a s s g n f rag ment notates the abi lity to store data
in a.register, For example, we will notate the operation of replacing the contents of register z
with the sum of the contents of registers x and y by the following syntactic form:

(assign z ( (fetch x) (fetch y)))

Our gcd machine, described above, is designed to perform the operation (assign a (gcd
( f e t ch a) ( f e t ch b) ) ). Our method of computing g c d depends upon having available
the operation assign tl (remainder (fetch a) (fetch b))). We also must be
able to make certain tests on the contents of particular registers. For example, we need to be
able to test if register b contains a zero. We will notate such a test as the fragment (zero?
(fetch b)).

The controller section for a machine will be described by a microprogram, which is a
sequence of the operations declared in the data path section. Operations in a program
sequence are assumed to be executed sequentially. Since our state machines have loops, we
need a go to instruction to continue execution a labeled place in the text of the program. We
also need a branch instruction to allow us to conditionally continue execution (based on a test
declared in the data path section) at a labeled place. We notate this with an branch form
such as (branch (zero? (fetch b)) done).

Places in a program to which control may be transferred are called entry points, They aria
labeled with mnemonic names.

For example, we can write down a description of our cd machine as follows:
(define-machine gcd

Purpose: (assign a gcd (fetch a) (fetch b)))
Side effect is to set contents of b to zero.

First we declare our data paths.
(registers a b t1) ;These are the registers we may use.
(operations ;These are the operations we may use.
(assign tl (remainder (fetch a) (fetch b)))
(assign a (fetch b))
(assign b (fetch t1))
(branch (zero? (fetch b)) gcd-done)
(goto test-b))

This is the program for the controller.
(controller
test-b ;This is a abel

(branch (zero? (fetch b)) gcd-done)
(assign t1 (remainder (fetch a) (fetch b)))
(assign a (fetch b))
(assign b (fetch t1))
(goto test-b) ;Continue at label above

gcd-done))

Despite its Lisp-like syntax, a description such as the one above is much simpler than a Lisp
procedure. An instruction, in general, is either a goto a branch, or the assignment to a
register of the value of some operation applied to the contents of registers. In particular, no
"nested procedure calls" are allowed in instructions.
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5.1-2. Compound submachines

Our gcd machine depends upon having a method of taking the remainder of the contents of
the registers a and b and putting the result into the register t 1. This may not itself be
primitive, but may be defined in terms of simpler operations like subtraction. Indeed, we may
write a SCHEME program to compute remainders in this way:

(def i ne remainder n d)
if < n d)

n
(remainder n d) d)))

If we wanted to build our gcd machine in terms of these simpler parts, we would want to
definetheoperation (assign tl remainder (fetch a) (fetch b))):

(define-submachine 9cd
(purpose (assign tl (remainder (fetch a) (fetch b))))
(registers a b t1)
(operations
(assign tl (fetch a))
(assign tl (- (fetch t1) (fetch b)))
(branch < (fetch t1) (fetch b)) rem-done)
(goto rem-loop))

(controller
(assign tl (fetch a))

rem-loop
(branch (< (fetch t1) (fetch b)) rem-done)
(assign tl (- (fetch t1) (fetch b)))
(goto rein-loop)

rem-done))

We may think of this definition of the, rema inder submachine as elaborating the definition
of the gcd machine which we defined above. It removes the remainder operator from the
data path design, replacing it with a new operator, -, and a new test, < (It could have added
new registers, too, tough this was unnecessary here. Our elaborated gcd machine data path
now looks like:

------- a<-b -------
I<x ------ II a b I ------- *-->I b= I

------- ------- I ?

I I t
X tl<-a I X b< - t I V
V

ti t1<b
?

t V V
tl<-d X ------- -

-----------

Our more detailed design-also elaborates the state machine for our gcd machine by
replacing the state which assigns to t I the remainder of a and b with a sequence of states

#01 vf% 4 DRAFT: 31 JULY 1983 Register Machine Model of Control
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which contains a loop:

start

I
v

--- ---------

\ Yes I tl<-d j< ---
b=O I----- > done --------- I

I I
--- v I

INo --------- ---- I
I \ N 0 1
----- >I tl<-a 1---->l tl<b I ----

--------- \ 
----

I Yes

---- > I

I
I 

I

v

--------

I a<-b I
--------

I
v -

b<-tl

In fact, if we had a more complex machine than gcd which used several instances of the
operation (ass ign tl (rema f nder (f etch a) (f etch b))) we imagline that each
state in which the operation is called is elaborated in this way. Thus we see th,,at defl"ning a
subt-nachine allows a designer to explain the implementation of any particular register
operation in terms of simpler operations.

5.1.3. Sharing in machines

When designing a computer to perform a particular task, it is often economical to share
hardware. For example, if we want to make a machine which uses many g%- d operations in its
algorithm, we do not usually want to duplicate the gcd hardware for each use, of it in the
description of the larger machine. This problem is explicitly not addressed by the submachine
construct described above. In fact, each mention of a submachine is intended to expand nto
a set of states in the parent state machine, and into an augmented datapath 'in that machine.

Subroutines and continuations
As usual, the hardware sharing problem has two aspects, sharing the da-ta paths and

sharing the controller. Consider, for a moment, only the problem of sharing the controller
hardware for several instances of a sequence of states, For example, suppose we have a
controllerspecificationwhichhasseveralinstancesofthe cdsequenceinit:

(controller
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gcd-1
(branch (zero? (fetch b)) after-gcd-1)
(assign tl (remainder (fetch a) (fetch b)))
(assign a (fetch b))
(assign b (fetch t1))
(goto gcd-1)
after-gcd-1

gcd-2
(branch (zero? (fetch b)) after-gcd-2)
(assign tl (remainder (fetch a) (fetch b)))
(assign a (retch b))
(assign b (fetch t1))
(goto gcd-2)
after-gcd-2

We want to merge these two sequences into one, but we still have two places in the code
which want to do a gCd operation, When each of them is done we want to continue executing
the state machine code after the place where the corresponding gcd was needed. One idea
is to distinguish the two places from which the gcd was invoked by putting a distinguishing
token into a special register, gcd-con t inue, which we will use to decide which sequente to
return to after performing the gcd operation. We then have only one copy of the gcd routine
which ends by returning to one or the other of the two invocations based on the value of the
gcd-con t inue register.

(controller

We have only one copy of the GCO routine here.
gcd
(branch (zero? (fetch b)) gcd-done)
(assign tl (remainder (fetch a) (fetch b)))
(assign a (fetch b))
(assign b (fetch t1))
(goto gcd)
gcd-done
(branch (zero? (fetch gcd-continue)) after-gcd-1)
(goto after-gcd-2)

We invoke it here for the first time.
(assign gcd-continue 0)
(goto gcd)
after-gcd-1
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We invoke it ere for the second time.
(assign gcd-continue 1)
(goto gcd)
after-gcd-2

This is a pretty good idea, but it does not easily generalize to 100 instances of gcd
computations. In addition, each subroutine sequence will require its own register to hold
continuation information. A better idea is to allocate a special continuation register which is
common among all of the subroutines in a system. The continuation register will be allowed
to hold an identification for a state in the systern. This register will contain information about
where the subroutine should continue executing when it is done.

This requires a new kind of connection between the data paths and the controller. There
must be a way of identifying a state in the controller maze, so that this identifier can be placed
in a register. We must also allow the state machine to take its next state specification from the,
continuation register rather than just from a constant. Thus there must also be a way of
taking this identifier out of the register and using it to continue execution at the state so
identified.

In order to notate these we must extend our state Machine language. We will extend the
assign operation fragment to allow a register to be assigned to a state label. We will also
extend the go to operation to allow one to continue at the state described by the contents of a
register. Thus we will allow the following sorts of operations:

(assign continue after-gcd-2)

(goto (fetch continue))

Using tese new constructs we may now rewrite our state machine program as follows:
(controller

We have only one copy of the GCD routine here.
gcd
(branch (zero? (fetch b)) gcd-done)
(assign tl (remainder (fetch a) (fetch b)))
(assign a (fetch b))
(assign b (fetch t1))
(goto gcd)
gcd-done
(goto (fetch continue))

We invoke it here for the first time,
(assign continue after-gcd-1)
(goto gcd)
after-gcd-I
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We invoke it here for the second time.
(assign continue after-gcd-2)
(goto gcd)
after-gcd-2

Argument registers and calling conventions
We note here that each invocation of the gcd subroutine gets its first argument from a, its

second argument from b and develops its answer in the a register, modifying the values of the
b and tl registers in the process. This may be convenient sometimes, but it can cause
trouble if we want several disparate sequences to call gcd. It is useful to arrange
conventional interfaces for commonly used subroutines, so that they can be safely used
without worrying about them destroying valuable data in shared registers. One way to
organize this is to establish calling conventions which specify those registers which a
subroutine will expect to find its arguments in and the registers where it is expected to stash,
its value (or values, if more than one) for the continuation to find it, These linkage registers
are then reserved for that putpose, and a program may not assume that they are free to hold
any data which may be valuable, across a subroutine call. This sort of arrangement
essentially decomposes a machine which contains several subroutines into relatively
independent parts which are loosly coupled only through the subroutine linkage registers and
the continuation register.

5.1.4. Using a stack to implement recursion

Using the ideas illustrated above, we can translate any iterative process into a register
machine. We must allocate enough registers to hold all of the state variables of the process.
The state of the process is determined by the contents of the registers, and the machine
continually executes a program loop,, changing the contents of the registers, until some
termination condition is satisfied. Implementing recursive processes, however, requires an
additional mechanism.

Consider the following recursive method for computing the sum of the first n integers:

(define (sum n)
(cond ((= n 0) 0)

(else n (sum (-l+ n))))))

If we plan to implement this procedure as a register machine, we see that computing (sum
n) requires us, as a subproblem, to compute (sum (-l+ n)). On the other hand, once we
have this value we are not yet done with our computation. We still must add the old value of 
to the answer to the subproblem. This last step was not needed in an iterative problem.

We can think of the recursive sum computer as a machine, with parts which test for zero,
add, decrement, switch values, produce constants, and compute sums. Because this
machine contains a copy of itself inside of itself it cannot be implemented with a fixed, finite
number of parts.
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We must arrange an illusion, whereby we use the same ardware for each nested instanc e
of the sum machine. Now the entire state of the sum machine is contained in its registers, and
in the place at which it will continue when the subproblem is completed. Thus the illusion can
be sustained by copying all of the relevant registers into a safe pace. This essentially
suspends the operation of the outer machine so that it can be continued later. We can then
use the hardware to compute the result of the inner machine. We then restore the state of the
outer machine and continue its execution.

In the case of sum we will need to save the old value of n, to be restored when we are
through with computing the sum of the decremented n. In addition, the value of the
subproblem must be delivered to the correct continuation of the sum machine.

In summary, the the general strategy for implementing an algorithm which has recursive
subproblems is as follows: When a recursive subproblem is encountered one must first save
the values of the registers whose current values will be required after the subproblem is
solved, then solve the recursive subproblem, and then restore the saved registers and
continue execution on the main problem.

Since there is no a priori limit on the depth of a recursive process we may need to save an
arbitrary number of values. Notice also tat the values will be restored in the inverse order to
which tey are saved, since, in a nest of recursions, the last subproblem to be entered is the
first to be finished. Thus we can save register values on a stack, or "last-in-first-out" data
structure. The stack is potentially unbounded, though any particular stack is of only finite
depth. We will later see how to implement such a structure, but for now, let us just assume
that it exists.

We now extend our register machine language to have a ttack. Values are placed on the
stack using the save operation, and restored from the stack using the restore ope ration.
After a sequence of values has been saved on the stack, a sequence of restores wl

F- 1
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5retrievethesevaluesininverseorder, Wewilideclarethoseregisterswhichmaybesavedor
restored as operations within the data path specification of a machine being designed.

In a recursive process, the con t nue register will be used to hold the current continuation.
Thiswillhavetobesavedandrestoredjustlikeanyotherregister,ifitscurrentvaluewillbe
needed later and if te operations we are about to do may lose its current value.

Here is how we use this strategy in implementing the recursive sum procedure given above.
We will define a machine with a stack and three registers, called n, va 7 and con t inue:

(define-machine sum
Purpose: (assign val (sum (fetch n)))

registers n val continue)
(operations
(assign n l+ (fetch n)))
(assign val 0) ;May specify a constant.
(assign val ( (fetch n) (fetch val)))
(assign continue after-sum)
(assign continue sum-done)
(save continue)
(restore continue)
(save n)
(restore n)
(branch (zero? (fetch n)) zero-sum)
(goto sum-loop)
(goto (fetch continue)))

(controller
(assign continue sum-done)

sum-loop
(branch (zero? (fetch n)) zero-sum)
(save continue)
(assign continue after-sum)
(save n).
(assign n l+ (fetch n)))
(goto sum-loop)

after-sum
(restore n)
(restore continue)
(assign val ( (fetch n) (fetch val)))
(goto (fetch continue))

zero-sum
(assign val 0)
(goto (fetch continue))'

sum-done))

When we begin, the highest integer to be summed should be assigned to n. con t inu is
initialized to the label sum-done which terminates the computation when the recursion is
finished. The answer will then be in va 7 Notice that va 7 is not saved in this computation
because it is used for communicating the value developed from one level of computation to
t he next. Its old value is not useful after the subroutine returns, only its new value, the value of
the subcomputation, is needed..

The diagram below is'a data-path diagram for the sum machine. We have left out most of

We can define a stack as a abstract data structure by specifying that save and restore satisfy the following
conditions: If the stack is in state s and register x has contents c, then execution of (save x) will put the stack into
state s If, when the tack is in state s we execute (restore x, the contents of register x reverts to c and the

stack reverts to state s.
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the assignment labels, showing only the ones for stack operations.

controller
n=O state

? machine

------- ------- rn --------- SC
I val J<X ------ I n I<X---X>l stack J<X --- X>1 cont I
------- sn rc --------

X ------- X X

I
V V V state

------- ------- label
+ --------- constants

------- ------

In the example above, we -implemented a linear recursive process as a register transfer
machine. In the register transfer machine, the recursion looks like an iteration. The reason is
that we have hidden all of the unbounded state in the stack data structure, leaving only a finite
amount of state on the surface to be manipulated directly. The key is that only one instance of
the sum computer need be active at any one time, hence the suspended state of the defe4rred
instances may be hidden.

A double recursion
To make sure that our use of a stack to save the state of a register so that it can be restored

later, is clearly understood, let us look at a more complex recursive process. Consider, for
example, the tree recursion used to compute Fibonacci numbers:

(define fb n)
(if < n 2)

n
(+ (fib (- n 1)) (fib (- n 2)))))

The following description is a design for a machine which implements this fibonacci
number computation:
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(define-machine fib
;;Purpose: (assign val (fib (fetch n)))
(registers n val continue)
(operations
(assign n (fetch n) 1))

a s s i g nn (fetch n 2)
a s s i g nn (fetch val))

(assign val (fetch n))
(assign val ( (fetch val) (fetch n)))
(assign continue afterfilb-n-1)
(assign continue after-fib-n-2)
(assign continue fib-done)
(save n)
(restore n)
(save val)
(restore val)
(save continue)
(restore continue)
(branch < (fetch n 2 immed-ans)
(goto fib-loop)
(goto (fetch continue)))

(controller
(assign continue fib-done)
fib-loop
(branch < (fetch n 2 iimed-ans)
(save continue)
(assign continue afterfib-n-1)
(save n) ;Save old valu(
(assign n (- (fetch n) 1)) ;Clobber it to
(goto fib-loop)
afterfib-n-1 ;VAL contains I
(restore n)
(restore continue)
(assign n (- (fetch n 2) ;n now has n-2
(save co'ntinue)
(assign continue afterfib-n-2)
(save val) ;will need fib(
(goto fib-loop)
afterfib-n-2
(assign n (fetch val)) ;shuffle regist
(restore val)
(restore continue)
(assign val ( ftch val) (fetch n)))
(goto (fetch continue))
immed-ans
(assign val (fetch n))
(goto (fetch continue))
fib-done))

e of n
n-I

f ib(n-1)

(n-1)

ters.

Exercise 5-1: For each of the following procedures, you are to specify a register machine (describing
its registers and primitive operators and tests) and a program which implements ihe procedure as a
register machine. You may assume that machine registers are allowed to hold list data, and that the
primitive list operations cons, car, cdr, atom, eq? ad nu 7 7 may be declared to be primitive in your

machines. You should draw simple diagrams showing the data paths and the controllers for each of the
machines you Implement.

a. Recursive factorial

(define .(fact n)
(if (zero? n)

1
(* n (fact (-l,+ n)))))
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b. Iterative factorial

(define (fact n)
(define (fact-iter count ans)

(if (zero? count)
ans
(fact-iter (-I+ count) count ans))))-

(fact-iter 1 1))

c. Recursive countatoms

(define (countatoms tree)
(cond ((null? tree) 

((atom? tree) 
(else (countatoms (car tree))

(countatoms, (cdr tree))))))

d. Tail-recursive countatoms

(define (countatoms tree)
(define (count-iter tree n)

(cond ((null? tree) n)
((atom? tree) 1 n))
(else (count-iter (cdr tree)

(count-iter (car tree)
n)))))

(count-iter tree 0))

Exercise 52: For each of the programs gcd, sum, and f ib in the text, "hand simulate" its behavior on
some non-trivial input (requiring execution of at least one recursive call). Assuming that the stack is
simulated with LISP lists, and that registers are simulated with LISP variables, as follows, show the
contents of the stack at each significant point in the execution of the program.

(fetch x)
==> 

(assign x y)
==> (setl X Y)

(save x)
=0 (sett stack (cons x stack))

(restore x)
(sequence (set! x (car stack))

(setl stack (cdr stack)))

Exercise 53: Ben Bitdiddle observes that the f lb machine control program in the text has an extra
s a ve and an extra r e s t o r e which may be removed to make a better program. Where are they? Explain
why tey are not really needed.

5.1.5. Problem section: A register machine smulator

To get a good understanding of the design and programming of register machines, we
need a way of testina register machine designs to see if they do what we expect them to do.
We could go on to learn how to build actual hardware to actually implement any particular
design. On the other hand, we can do many software experiments in the time required to
build ust one hardware gadget. We also know that we already have a universal machine, so
we can simulate any desired machine design with it, if we have an appropriate simulator for
that class of machine. But a simulator for a class of machines can be organized as an
evaluator for the language used to describe the machines 'in that class.

In this section we will set up a simulator (in Scheme) for our register-transfer language. We
will use it to run some of our simple programs. We will extend it and embellish it with features.

i
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Later we will use it to perform some timing experiments on our register-transfer machine for a
Scheme evaluator. This may seem a bit incestuous, but it is the usual way one does
experiments to get insight into a new design or a new language.

The simulator will take a machine description and use it to set up a model of the machine to
be simulated in the computer. The model will be a specially constructed data structure which
will have parts which correspond to the parts of the machine to be simulated. We wl be able
to simulate the machine by executing programs which manipulate the model.

The first part of the simulator is the assembler, a program which takes the machine
description and makes the model. We will assume that by some syntactic magic the
expression

(define-machine <name>
(registers <regs>)
(operations <ops>)
(controller <code>))

is converted into a call to the assembler:
(define <name> (assemble <regs> <ops> '<code>))

The assembler makes up a new machine model (which has no parts specifically designed
for our particular machine). It then builds the model registers, the model'operations, and the
model controller into our new machine model. These are performed by mutation of the
machinemodeldatastructure. Thenewmutatedmachinemodelisreturnedbyassemble.

(define (assemble registers operations controller)
(let ((machine (make-new-machine)))

(set-up-registers machine registers)
(set-up-operations machine operations)
(set-up-controller machine controller)
machine)))

The registers are set up in the target machine by means of remo t e - de f Re a mutator for
machines which sets up an association between the name of the register and the data
structure which is made up by make-register to model a register. In addition, a note is
made in the model machine of the registers which were constructed. Thi's i's done by
reinate-setl which changesthe value of anamed preexisting slot inthe machine mdel.

(define (set-up-registers machine registers)
(remote-set! machine '*registers* registers)-
(mapc (lambda (register-name)

(remote-define! machine register-name
(make-register register-name)))

registers))

Next we must set up the operations defined by the designer of our machine to desire the
legitimate instructions-,of the machine. Here w build the * i ns truc t ion -map, *, which is a
mapping between the operation expressions which are declared -by the user and the
instructions which will implement those operations in the model. 'The magic is in the
procedure instruction, which constructs the appropriate instruction to be executed. We -
will see this later.

(define (set-up-operations machine operations)
(remote-setl machine "instruction-map*

(mapcar (lambda (operation)
(list operation

(instruction machine operation)))
operations)))
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Finally, we must set up the model controller. The key here is to paste together a sequence
of instructions which will implement the operations intended by the designer. The trick is in
the disposition of labels. The labels designate certain entry points into the sequence of
instructions in the controller. These are set Lip by make -I abe . In addition, a special entry
point, cal led * s t a r t *, is set up to allow us to f ind the beginning of the controller graph.

(define (set-up-controller machine controller)
(define (loop lines)

if ( nul I? I ines

10
(let ((rest (loop (cdr lines))))

(if (symbol? (car lines)) Statement label
(sequence (make-label machine (car lines) rest)

rest)
(cons (get-instruction machine (car lines))

rest)))))
(remote-set! machine '*start* (loop controller)))

Labels are just checked to see if they are already defined in this machine, (using the special
slot called I abe I s wich accumulates the set of labels used in the achine.)

(define (make-label machine label labeled-entry)
(let ((defined-labels (remote-get machine '*labels*)))

(if (memq label defined-labels)
(error "Multiply defined label" label)
(sequence
(reniote-define! machine label labeled-entry)
(remote-sett machine

'*labels*
(cons label defined-labels))))))

Also, instructions to be inserted into the model controller program are -fetched from the
1 ns truct fon -map which was constructed from the operation declarations given earlier.

This allows the designer to check that he uses no operations which he did not declare.
(define (get-instruction machine operation)

(let ((pcell (assoc operation
(remote-get machine

1*instruction-map*))))
(if (null? pcell)

(error "Undeclared operation" operation)
(cadr pcell))))

The representation of the model machine,
This is the entire surface level of the simulation assembler. Now we have to get down to

describing how the model achine actually works, and how it is implemented!

The model register machine is represented as a Scheme environment. The registers are
cons-cells whose car will be the contents of the register and whose cdr will be the name of
the register (the cdr will not be used except for debugging reasons). Thus fetch will be

e -carl. Inthemachineenv' nt the
modell d by car and assign will be modelled by set ironme
name of each register will be bound to that register, thus simulated machine instructions can
be Scheme programs which reference those variables to get at the registers. The register
maker is thus just:

(define (make-register name)
(cons nil name))

(define fetch car)-
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Atthispointwemustunderstandmake-new-machine. tisasimpleprograrnwhichdoes,
nothing but make up an environment and return it as its value. The environment is initialized
with a bunch of variables and procedures which are going to be needed in every register
transfer machine.

(define (make-new-machine)
(make-environment
<the initial environment's contentsM

The code fragments which construct the initial environment's contents start ere. Any
code fragments in the text from this point until further notice are to be assumed to be
executed in the new environment when we make a new machine.

First we should look at how an'operation may be simulated. The simplest instructions are
register assignments. They do nothing more than change the value of the register to a new
value and then go on to execute the next instruction we will explain that a bit later.

(define (assign register value)
(set-carl register value)
(normal-next-instruction))

Other simple operations simulate the stack. We have a special register called
*the-stack* which will contain the stack pointer of our simulated machine. Save and
res tore are simple operations which proceed to the next instruction after doing their job.

(define the-stack (make-register 'the-stack))

(define (save register)
(set-car! the-stack

(cons (fetch register) (fetch the-stack)))
(normal-next-instruction))

(define (restore register)
(set-carl register (car (fetch the-stack)))
(set-carl the-stack (cdr (fetch the-stack)))
(normal-next-instruction))

The controller is represented as a sequence of instructions, each of which is a Scheme
procedure which takes no arguments, and whose body is the operation which designates
what it must do. It will have been defined in the machine environment so its free variables (the
register names and labels) will refer to the correct values in the simulated machine.

Now the register machine must have a way of knowing where it is in executing a controller
code sequence. We model this with a special register, called the program-counter, which
always points at the beginning of the sequence of instructions to be executed. Instructions
will be executed from the program counter until it runs out:

(define program-counter (make-register 'program-counter))

(define (execute-next-instruction)
(cond ((null? (fetch program-counter)) 'done)

(else
((car (fetch program-counter)))
(execute-next-instiuction))))

Each normal (non-branching) instruction calls normal-next-instruction to'get to the
next instruction. Goto is used to start executing at a given sequence. Branch is used to.
conditionally start execution at a given sequence.

(define (normal-next-instruction)
(set-car! program-counter .cdr'(fetch program-counter))))
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(define (goto now-sequence)
(set-carl program-counter new-sequence))

(define (branch predicate alternate-next)
(if predicate

(goto alternate-next)
(normal-next-instruction)))

If it is necessary to model an operation which is not a simple register operation, (such as
printing on a terminal or mutating a data structure with Scheme code) we can make it into a
normally sequencing operation using perform-,

(define (perform operation) ;Ignores argument which is value of
(nornial-next-instruction)) : of operation done for effect.

Finally, the basic machine has special slots set aside for the attachment of documentation
and debugging information,

(define *instruction-map* nil)
(define *labels* il)
(define *registers* nil)
(define *start* nil)

This is the entire contents of the initial machine environment. At this point further program
fragments are, not in the body of the make-environment expression shown above.

Building the simulation machine environment
Now that we understand how a simulated machine is constructed as an environment we

now must see how to use it to construct a simulation. This is mostly done by relarfive
evaluation (evaluation relative to the environment describing the machine). An operation is
constructed by the assembler as a procedure of no arguments defined in the simulation
environment. The assembler also must remotely access, set and define the' simutafion
variables:

(define (instruction machine operation)
(eval (list 'lambda () operation) machine))

(define (remote-get machine variable)
(eval variable machine))

(define (remote-setl machine variable value)
(oval (list setl variable (list 'quote value))

machine))

(define (remote-define! machine variable value)
(eval (list 'define variable (list quote value))

machine))

Using the simulator

Finally, we must be able t Use and interact with our simulated machine to see if'it works.
To do so we define a few useful procedures:

(define (remote-fetch machine regname)
(car (remote-get machine rgname)))

(define (remote-assign machine regname value)
(set-car! (remote-get machine regname) value))
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def i no start mach i no)
(eval '(90to *start*) machine)
((access execute-next-instruction machine)))

Exercise 54: For each of the designs you made in problem 5-1, simulate it with our simulator to verify
the design and to find bugs.

Exercise 5-5: Our simulator is not very careful about whether or not the machine being defined is, in
fact, a legitimate register machine. For example, it does not check that the only registers used are the
ones declared, or that operations use registers in only correct ways. In this problem you are to add
some error checking to the assembly process.

Add code to the assembler to check that

a. the on ly sym bo Is wh ic h are used i n a f e t c h, an a s s g n a s a v e, or a r e s t o r e operation are
ones which are declared as registers.

b. no declared register is used except in the appropriate context of a f e tch, an ass ign a save, or
a r e s t o r e operation.

c. no operation is declared twice.

d. the targets of goto operations are all declared labels or simple fetches from registers.

e. if the target of a goto operation is a fetch from a register, it is one which has an operation
declared which assigns it a declared label.

f. operations are syntactically simple and non-recursive. That is, operations may only be of the
following forms:

<operation> (ASSIGN <register> <value>)
(SAVE <register>) I (RESTORE <register>)
(<opcode> <simple-value 1> ... <simple-value )

<value> (<function> <simple-value 1> ... <simple-value 0)
<simple-value>

<simple-value> ::= (FETCH <register>) I <constant>

Exercise 56: This problem is really a rather big project, which we are now prepared to accomplish.
The problem is to implement submachine overlays like the one we used to expand the remainder part
of the 9cd machine. In this problem, you are to assume that a machine is assembled, and then a
submachine is overlayed on it to implement some specific function or opcode in the machine's
language. Youmustfigureouthowtoscanouttheplaceswherethatopcodeorfunctionisused,and
patch the code to ru te submachine instead,

5.2. The explicit control evaluator

We have seen how simple programs written 'in an expression language, like SCHEME, can
be transformed into specifications for a register machine, and how the control for such a
machine can be represented in terms of a register-transfer language. We will now perform the
same transformation on a much more complex program' -- the meta-circular interpreter that
we developed to explicate the operation of the SCHEME system (see page 244).

There are several problems that we will encounter in this process. Of immediate concern is
just what registers and register operations we will allow in our register-machine model. Our
meta-circular interpreter was written in terms of abstractly defined syntax. Thus, for example,
we wrote the eva 7 dispatch using such procedures as -se I f -eva 7 ua t ng?, quoted?, and
tex t -o f -quo ta t ion. We could easily expand these into compositions of list-structure data
primitives, because they are all of the form:
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(define (quoted? exp)
(and (not (atom? exp))

(eq? (car exp) 'quote)))

Unfortunately this would make our evaluator very long, obscuring the structure with a
plethora of details. Thus, we propose, at first, to allow any simple list-data manipulation
operations, such as quoted?, as primitives of the register machine, We will also assume, for
now, that the environment constructors, selectors, and mutators of the meta-circular
evaluator are available in our register machine primitives, even though they implement a
complex abstract table mechanism. We could, in principle, implement these as submachines,
if necessary.

But even in terms of this rather simplified and abstracted model, we will not give a complete
formal definition of the evaluator machine here. For example, we will only give a complete list
of the operations allowed in the evaluator data paths as an appendix after we look at the
controller. In fact we will really only sketch out the machine's structure and concentrate on
the details of the controller code. We will show all of the essential segments of that code so
that the flow of control and te stack discipline is clear. Later, in the section 53, we will show
how the lowest level list primitives, such as car, cdr, cons, eq?, and atom.? are implemented
in terms of a very realistic memory model.

Our Lisp evaluator machine has seven registers named exp, en v va 7 f un, arg 7 unev,
and continue. At the beginning of the evaluation of an expression exp contains the
expression to be evaluated and env contains the environment in which the evaluation is to be
performed. At the end of the evaluation va I contains the value that was developed. When
the evaluator is asked to evaluate a combination, it evaluates the operator and places the
result in the fun register. The unev register contains the unevaluated arguments. As the
arguments in unev are evaluated they are accumulated in argl. When argl is complete
(and unev is empty) the procedure in fun iscalled. The continue register is used as in the
previous section, to hold the entry at which the evaluation should continue after completing a
recursive call to the evaluator to evaluate a subexpression.

The core of the explicit controle'valuator
The evaluator starts at eva7-dispatch. This evaluates the contents of exp 'in an

environment specified by the contents of env. After evaluation is complete, the program will
return to the address stored in con t inue, and the va 7 register will hold the value of the
expression.

The sequence labeled wth eval-dispatch 'is the central element n the evaluator. It
corresponds to the eva 7 procedure of the meta-circular evaluator shown on page 244 As
with the ryieta-circular eva7, the structure of eva7-dispatch is a case analysis on the
syntactic type of the expression being evaluated. This dispatch could have been written in a
data-directed style (and in a real system probably would have been) to avoid the need to
perform sequential tests, and to allow for the definition of new expression types.
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eval-dispatch
(branch (self-evaluating? (fetch exp)) ev-return)
(branch (quoted? fetch exp)) ev-quote)
(branch (variable? (fetch exp)) ev-variable)
(branch (definition? (fetch exp)) ev-definition)
(branch (assignment? (fetch exp)) ev-assignment)
(branch (lambda? (fetch exp)) ev-1ambda)
(branch (conditional? (fetch exp)) ev-cond)
(branch (no-args? (fetch exp)) ev-no-args)
(branch (application? (fetch exp)) ev-application)
(goto unktiown-expression-typo-error)

Evaluating simple expressions
One slight difference between this evaluator and the meta-circular one is that we have

distinguished as a new expression type expressions that are applications of procedures to no
'This is for organizational reasons which lead to increased effic'

arguments. iency. We will see
more about this later.

For each type of expression, eva 7 d spa t ch goes to a particular dispatch target. Simple
expressions, such as numbers, variables, quotations, and 7ambda-expressions, have no
subexpressions to be evaluated, and thus they just stuff the correct value into the va I register
and continue wherever the subexpression was evaluated from. Remember that we assumed
that our "machine language" includes selectors and constructors such as operator,
make-procedure, variab7e?, and so on. These can be implemented- by translating the
equivalent Lisp procedures given in section 4.2. In addition, we are assuming that we may
use selectors, constructors, and mutators for environment structures. Evaluation of aill Simple
expresssions are performed by the following code:

ev-return
(assign val (fetch exp))
(goto (fetch continue))

ev-quote
(assign val text-of-quotation (fetch exp)))
(goto (fetch continue))

ev-variable
(assign val

(lookup-variable-value (fetch exp)
(fetch env)))

(goto (fetch continue))
ev-1anibda

(assign val
(make-procedure (fetch exp)

(fetch env)))
(goto (fetch continue))

Evaluating combinations
The essence of our evaluator is in the evaluation of combinations. A combination is an

expression which notates the application of an operator to operands. The operator 'is a
subexpression whose value will be a procedure and the operands are subexpressions whose
values will be the arguments of the procedure.

We start with the case of a singleton combination -- an operator with no operands. This
should be evaluated to a procedure which will be applied to no arguments. First the evaluator
must evaluate the operator part of the expression. The rest of the expression is useless and
will not be saved. The evaluation of the subexpression is accomplished 'by moving the
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subexpression into the exp register and going off to eva 7 d 'spa tch. The environment is
correct at this point. It is not saved because we will not have to use it to evaluate any other
parts of the expression before going to apply the procedure. On the other hand, the
continuationmust be saved because we will need it for evaluating the body of the procedure
later. The new continuation for the evaluation of the operator is app 7y-no-args.

ev-no-args
(assign exp (operator (fetch exp)))
(save continue)
(assign continue apply-no-args)
(goto oval-dispatch)

When the operator expression of a singleton combination has been evaluated, execution
continues at apply-no-args with the value of the operator in va7. This value (which is
hopefully an applicable procedure object) must be stashed into the f un register and the list of
arguments must be set up to be empty so that we can app 7y this procedure to its arguments.
We must remember that we have the continuation for the combination currently saved. We
will have to restore it before we return the value of the procedure.

apply-no-args
(assign fun (fetch val))
(assign argl
(goto apply-dispatch)

The operand evaluation loop
Next we must consider the general case of a combination. Here, in addition to the operator

expression to be evaluated to get the procedure, there are also operands to be evaluated in
the same environment to get the arguments. Thus, when we go off to evaluate the operator,
below, we also set up the unev register to contain the unevaluated operand parts of the
expression. We must save the unev and env registers across the evaluation of the operator.
When we finish the evaluation of the operator, execution is to continue at eva 7 args.

ev-application
(assign unev (operands (fetch exp)))
(assign exp (operator (fetch exp)))
(save continue)
(save env)
(save unev)
(assign continue eval-args)
(goto eval-dispatch)

When we have returned from evaluating the operator subexpression of a general
application, we must go on to evaluate the operands and accumulate the resulting arguments
in an argument list. First we restore the unevaluated operands and the environment (which
we will need presently. Then we stash the procedure which was the value of the operator in
f un, and sa ve it. Finally, we initialize an empty argument list which we will use to accumulate
the arguments. We then start the argument evaluation loop.

eval-args
(restore unev)
(restore env)
(assign fun (fetch val))
(save fun)
(assign argl nil)
(goto eval-arg)

The argument evaluation loop has two phases. In the first phase we set up to evaluate an
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operand. We save up the accumulated arguments (in argl), the environment, and the
unevaluated expression fragment. We set the exp register to tile operand to be evaluated,
and we go off, returning to the accumulation phase. A special case is made for the evaluation
of the last operand because its evaluation does not require saving the environment or the list
of unevaluated operands as they will no longer be needed after the last operand is evaluated,

eval -arg
(save argl)
(assign exp, (first-operand (fetch unev)))
(branch (last-operand? (fetch unev)) eval-last-arg)
(save env)
(save unev)
(assign continue accumulate-arg)
(goto eval-dispatch)

When the operand is evaluated, it must be accumulated onto the arg7. The (now
evaluated) operand is then removed from the list of unevaluated operands.

accumulate-arg
(restore unev)
(restore env)
(restore argl)
(assign argl (cons (fetch val) (fetch argl)))
(assign unev (rest-operands (fetch unev)))
(goto eval-arg)

The last operand differs from the previous ones in that there will be no need for the lst of
unevaluated operands or for the environment after the last argument is developed. Thus, we
need only return to a place which restores the argument list, adds the new argument, restores
the saved procedure, and goes off to app ly it.

eval-last-arg
(assign continue accumulate-last-arg)
(goto eval-dispatch)

accuniulate-last-arg
(restore argl)
(assign argl (cons (fetch val) (fetch argl)))
(restore fun)
(goto apply-dispatch)

Procedure application
The entry app7y-d7'spatch corresponds to the app7y procedure of the meta-circular

evaluator (page 245). By the time we get to app ly- d spa t ch, f un contains the procedure to
apply and arg 7 contains the list of evaluated arguments to which it must be applied (reversed
in order from how they appeared in the application). As with the metacircular app 7y there are
two cases to consider. Either a procedure is a primitive, in which case we pass the buck to
app7y-pritnitive-procedure (which we assume is accessible in our achine
language"), or it is a compound procedure (the result of evaluating a lambda expression).

apply-dispatch
.(branch (primitive-procedure? (fetch fun)) primitive-apply)

(branch (compound-procedurie? (fetch fun)) compound-apply)
(goto unkiown-procedure-type-error)

App 7y-pr 77t 7ve-procedure holds the magical linkage between te interpreter and the
details of the implementation of primitive procedures such as addition. What you should
imagine going on here is that the identifier of the primitive procedure, stored in fun is used to
dispatch -to a sequence of instructions which implements the primit rimitive wl
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access its arguments from a rg 7 and it will stash its value in va 7 Note that here we must
restore the continuation so that when we do the (goto (fetch con t inue) ) to return to
the caller, it will be correctly set up to be the continuation of the expression which reduced to
the application of the primitive procedure to its arguments.

primitive-apply
(assign val

(apply-primitive-procedure (fetch fun)
(fetch argl)))

(restore continue)
(goto (fetch continue))

One minorpointto noteisthatthedefinition of app7y-prim7tive-procedureg'iven for
the meta-circular evaluator in section 41.4 will not work correctly here because the arg I 'is
reversed here. The patches required to make them work are simple and will not be shown.

The application of a compound procedure is very simple. Evaluation must proceed in the
environment where the, formal parameters of the procedure are bound to the arguments in
arg , built upon the environment carried by the procedure. The body of the procedure, to be
evaluated in this environment, is a sequence of expressions, and tis is handled at the entry
eva I -act ion-sequence (See below).

Compound-app7y is the only place in the interpreter where the env register is ever
assigned to a new value. The new value is composed from the environment of definition of
the procedure -and the argument list. From the point of view of the' interpreter program this is
a simple data manipulation, as the environment of definition of the procedure can be selected
from the procedure. (Remember that the procedure was constructed from the text and the
environment in the evaluation of a 7ambda expression.)

compound-apply
(assign env (make-bindings (fetch fun) (fetch argl)))
(assign unev (procedure-body (fetch fun)))
(goto eval-action-sequence)

Note that Eva 7 -act ion -sequence will expect its continuation to be saved, thus it will do
the required restore. It also expects the list of expressions to be evaluated to be in unev
and the environment for the evaluation to be set up in env.

Also notice that make-bindings is just a simple data operation on the contents of the
indicated registers:

(define (make-bindings proc args)
(extend-environment (parameters proc)

arg,
(procedure-environment proc)))

Evaluating sequ6nces of expressions
When we want to evaluate a sequence of expressions, one after another, as in the body of a

procedure or in the action sequence of a conditional, we let eva 7 ac t on -sequence do the
work. This entry, together with eva7-action-sequence-continue, forms a loop that
evaluates each expression in the sequence in turn. The list of as yet unevaluated expressions
is kept in unev.

The first expression is retrieved, and if there are no more, then we go off to 7ast-exp
wlierethecontinuationisrestoredandtheexpressionisevaluatedwiththatcontinuat'ion. If
there is more than one expression in the action sequence, then we must be able to evaluate
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the rest of the sequence with the current environment, so we save the list of expressions and
the environment, and set the continuation to be a place which will restore them, and cdr the
unev, and then continue evaluating the elements of the action sequence.

oval-action-sequence
(assign exp (first-exp (fetch unev)))
(branch (last-exp? (fetch unev)) last-exp)
(save nev)
(save env)
(assign continue oval-action-sequence-continue)
(goto eval-dispatch)

eval-action-sequence-continue
,�(restore env)

(restore unev)
(assign unev (rest-exps (fetch unev)))
(goto val-action-sequence)

last-exp
(restore continue)
(goto eval-dispatch)

Tail Recursion
Recall that in Chapter we said that the process described by a procedure such as

(define (sqrt-iter guess radicand)
(cond ((good-enough? guess radicand) guess)

(e 1 se ( sq rt- i te r imp rove gues s rad icand)
r a d i c a n d ) ) ) )

is an iterative process. Even though the procedure is syntactically recursive defined in

terms of itself -- is is not logically necessary for an evaluator to accumulate information to be

saved in passing from one call to sqr t - ter to the next. An evaluator that is able to avoid

saving unnecessary information on such a procedure call, and is thus able to execute a

procedure like sqr t - ter without using up more and more storage as sqrt - ter continues

to call itself, is called a tail recursive evaluator.

We cannot determine whether the the meta-circular evaluator is tail-recursive, because that

evaluator inherits its mechanism for saving state from the way this is accomplished in the

underlying Lisp. But in the explicit control evaluator we can explicitly trace through the

evaluation process to see whether the nested call in a procedure such as sqr t - ter causes

a net accumulation of information on the stack.

In fact, our evaluator is tail-recursive, and the reason this happens is that, on evaluating the

final expression of a sequence, eval-action-sequence goes to eval-dispatch with

nothing saved on the stack. Nothing need be saved prior to evaluating the final expression in

a sequence, since the result of the sequence is determined by the result of the final

expression. Hence, evaluating the final expression in a sequence, even if it is a procedure call

(as in s q r t - t e r) will not cause any information to be accumulated on the stack.

If we did not think to take advantage of the fact that it was unnecessary to save information

in this case, we might have implemented eva 7 -act ion-sequenc as
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eval-action-sequence
(branch (no-more-ex s? (fetch unev)) end-sequence)
(assign exp (first-exp fetch unev)))
(save unev)
(save ev)
(assign continue eval-action-sequence-continue)
(goto eval-dispiatch)

eval-action-sequence-continue
(restore env)
(restore unev)
(assign unev (rest-exps (fetch unev)))
(goto eval-action-sequence)

end-sequence
(restore continue)
(goto (fetch cntinue))

This may seem like a minor change to our previous code for evaluation of a sequence
-- only the lines commented with " * * * " are changed -- and our interpreter will give the same
results for any expression, bt this change is fatal to the tail-recursive implementation. Thus
procedures like sqrt-fter will in fact run in space proportional to the number of iterations
required to converge rather than in constant space, as in our original code. This difference
can be significant. With tail recursion, 'an "infinite loop" can be expressed using only the
procedure call mechanism, for example:

(define (count n)
(print n)
(count 1 n)))

Without tail recursion, such a procedure would eventually run' out of (stack) space, and
expressing a true iteration would require some control mechanism other than procedure call.

Our implementation of tail-recursion in eva 7 -sequence is not entirely original -- it is one
variety of the well-known compile-time, optimization that a procedure call immediately
preceding a procedure return in code is equivalent to an unconditional transfer to the
procedure entry point.

Conditionals and-other kinds of expressions
A conditional expression is special form with subexpressions. The problem is to evaluate

the predicate part of the first clause of a conditional and then to make a decision, based on
the value of that predicate, wether to evaluate the action sequence of that clause, or whether
to go on to consider the next clause. The first thing we do when encountering a conditional is
to stash away the con t in ue register because we will need it later to return to the evaluation
of the expression which is waiting for the value of the conditional. Internal to the conditional
evaluation, the continuation will be evcond-dec ide -- that piece of code which receives the
value of the predicate and will make the decision. We also set up the unev register to be the
list of pending clauses. We then fall into the code which evaluates the predicate of the first
clause of the conditional. Unless the clause is an e I se clause, we must save the environment
and the list of pending clauses (in unev) and just go off to evaluate the predicate.
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ev-cond
(save continue)
(assign continue evcond-decide)
(assign unev (clauses (fetch exp)))

evcond-pred
(assign exp (first-clause (fetch unev)))
(branch (else-clause? (fetch exp)) else-clause)
(save env)
(save unev)
(assign exp (predicate (fetch exp)))
(goto eval-dispatch)

The evaluation of the predicate part of a clause will return to evcond-decide shown
below. It restores the list of clauses and the environment (both of which will be needed
whether or not the predicate of the first cause was true). It then determines whether the
predicate was true. If so it sets up for evaluating the action sequence of that clause, and if
not, it cdrs the first clause off of the unev list and then goes around to evcond-pred to
examine the next clause,

If a predicate is found to be true, or an e Ise clause is found, the associated actions must
be evaluated sequentially and the value of -the last used as the value of the conditional
expression. By the time we get to eva7-actfon-sequence the list of unevaluated
expressions to be evaluated as te action sequence is stashed in the unev register. The
environment is in the env register, but the continuation for the conditional is not in con t inue
-- it is stills a ved on the stack -- as required for eva I act on -sequence.

evcond-decide
(restore unev)
(restore env)
(branch (true? (fetch val)) true-predicate)
(assign unev (rest-clauses (fetch unev)))
(goto evcond-pred)

true-predicato
(assign exp (first-clause (fetch unev)))

else-clause
(assign unev (action-sequence (fetch exp)))
(goto eval-action-sequence)

Assignments are handled by ev-assignment, which is reached from eval-dispatch
with the indicated assignment expression in exp. Ev-ass ignment first evaluates the value
part of the expression, and then calls an appropriate environment maintaining procedure,
with the symbol and the value to be assignment, to actually install the new value in the
environment.

ev-assignment
(assign unev (assignment-variable (fetch exp)))
(save unev)
(assign exp (assignment-value (fetch exp)))
(save env)
(save continue)
(assign continue ev-assignment-1)
(goto eval-dispatch)

ev-assignment-I
(restore continue)
(restore env)
(restore unev)
(perform (set-variable-valuel (fetch unev) (fetch val) (fetch env)))
(goto (fetch continue))

Definitions are handled similarly.

"el,

1-11,
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ev-definition
(assign unev (definition-variable (fetch exp)))
(save unev)
(assign exp (definition-value (fetch exp)))
(save env)
(save continue)
(assign continue v-definition-1)
(goto eval-dispatch)

ev-definition-I
(restore continue)
(restore env)
(restore exp)
(perform (define-variablel (fetch unev) (fetch val) (fetch nv)))
(goto (fetch continue))

Finally, we get to the driver-loop of the controller for te interpreter. This is the beginning
of the controller. We start by clearing out the stack, next we setup a continuation for the
read-eva I -pr in t loop. We also initialize va 7 to have a printable initial value. We then print
it, read the next expression, and initialize the environment from the global environment,
beforegoingtoeval-dis atch. Whenwearedoneevaluating,wewillreturntotheprint.

(controller
(perform (initialize-stack))
(assign continue done)
(assign val 'scheme-register-machine-simulator)

done
(perform (user-print (fetch val)))
(assign exp (prompting-read
(assign env the-global-onvironment)
(goto eval-dispatch)

The operations used
Here we supply the complete set

paths of the evaluator engine.
of operations which are needed to implement the data
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(operations
(assign argl nil)
(assign argl (cons (fetch val) (fetch argl)))
(assign continue accuinulate-arg)
(assign continue accumulate-last-arg)
(assign continue apply-no-args)
ass ign continue done)

(assign continue ev-assignment-1)
(assign continue ev-definition-1)
(assign continue eval-action-sequence-continue)
a s s i g ncontinue eval-args)

(assign continue evcond-decide)
(assign env (make-bindings (fetch fun) (fetch argl)))
(assign env the-global-environment)
(assign exp (assignment-value (fetch exp)))
(assign exp (definition-value (fetch exp)))
(assign exp (first-clause (fetch unev)))
(assign exp (first-exp (fetch unev)))
(assign exp (first-operand (fetch unev)))
(assign exp (operator (fetch exp)))
(assign exp (predicate (fetch exp)))
a s s i g nexp (prompting-read

(assign exp (transform-let (fetch exp)))
(assign fun (fetch val))
(assign unev (action-sequence (fetch exp)))
(assign unev (assignment-variable (fetch exp)))
(assign unev (clauses (fetch exp)))
(assign unev (definition-variable (.fetch exp)))
(assign unev (operands (fetch exp)))
(assign unev (procedure-body (fetch fun)))
(assign unev (rest-clauses (fetch unev)))
(assign unev (rest-exps (fetch unev)))
(assign unev (rest-operands (fetch u-nev)))
(assign val (apply-primitive-procedure (fetch fun) (fetch argl)))
(assign val (fetch exp))
(assign val (lookup-variable-value (fetch exp) (fetch env)))
(assign val (make-procedure (fetch exp) (fetch env)))
(assign val (text-of-quotation (fetch exp)))
(assign val 'scheme-register-machine-simulator)

(goto apply-dispatch)
(goto eval-action-seque'nce)
(goto eval-arg)
(goto eval-dispatch)
(goto evcond-pred)
(goto unknown-expression-type-error)
(goto unknown-procedure-type-error)
(goto (fetch continue))'
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(branch (application? (fetch exp)) ev-application)
(branch assignment? (fetch exp)) ev-assignment)
(branch (compound-procedure? (fetch fun)) compound-apply)
(branch (conditional? (fetch exp)) v-cond)
(branch (definition? (fetch exp)) ev-definition)
(branch (else-clause? (fetch exp)) else-clause)
(branch (lambda? (fetch exp)) ev-lambda)
(branch (last-exp? (fetch unev)) last-exp)
(branch (last-operand? (fetch unev)) eval-last-arg)
(branch (let? (fetch exp)) ev-let)
(branch (no-args? (fetch exp)) ev-no-args)
(branch (primitive-procedure? (fetch fun)) primitive-apply)
(branch (quoted? (fetch exp)) ev-quote)
(branch (self-evalUating? (fetch exp)) ev-return)
(branch (true? (fetch val)) true-predicate)
(branch (variable? (fetch exp)) ev-variable)

(perform (define-variable! (fetch unev) (fetch val) (fetch env)))
(perform (initialize-stack))
(perform (set-variable-value! (fetch unev) (fetch val) (fetch nv)))
(perform ( user-pri nt fetch val

(save argl) (restore argl)
(save continue) (restore continue)
(save env) (restore env)
(save fun) (restore fun)
(save unev) (restore unev))

5.2.1. Problem section: Performance Analysis of the Evaluator

One important factor in the performance of an evaluator is how efficiently it uses the stack.
This problem section assignment concerns the use of the stack by our model evaluator We
will instrument our evaluator, installing a "meter" that measures the number of stack
operations used in evaluating expressions. We will do this by placing features in our stack
abstraction to keep track of the number of stack operations and the maximum depth reached
by te stack.

To be able to perform these exercises we will assume that you have access to the complete
code of model evaluator machine described in this chapter. We will need these later 'in the
chapter, Listings and instructions for use of this code should also be available. We will also
assume that you have access to the stack monitoring code we will describe and use here.

A word of advice. You will using an evaluator that is implemented by the low-level register'
machine" which is itself being simulated by a Scheme program. This multiple interpretation
makes the evaluator run extremely slowly.

The monitored stack
Make-stack is a procedure which makes a message-accepting stack. The stack accepts

p u s h I p op n t a 7 i z e, and s t a t 's t i c s messages. It holds its state in various local
variables.
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(define (make-stack)
(let ((s nil) (number-pushes nil) (max-depth nil))

(lambda (message)
(cond ((eq? message 'push)

(lambda (newtop)
(set! s (cons newtop s))
(set! number-pushes number-pushes))
(setl max-depth (max (length s) max-depth))))

((eq? message 'pop)
(let ((top (car s)))

(setl s (cdr s))
top))

((eq? message 'initialize)
(setl s nil)
(setl number-pushes 
(set! max-depth 0))

((eq? message Istatistics)
(print (list 'total-pushes number-pushes))
(princ lst 'maximum-depth max-depth)))

(else
4 -- STACK" message))))))(error "Unknown request

Wedefinesaveandrestoreintermsofthisabstraction:

(define (save reg)
((the-stack 'push) (fetch reg))
(norinal-next-instruction))

(define (restore reg)
(assign reg (the-stack 'pop)))

Exe rcise 57: How does this stack work? Describe how the stack implementation does its job by going
through an example of executing each type of operation it supports.

Note that the driver-loop of our model evaluator reinitializes the stack on each interaction,
so that the statistics printed will refer only to stack operations used to evaluate the previous
expression.

Iteration and Recursion
One of the more interesting points about the Scheme interpreter is that way that it executes

"tail recursive" procedures such as

def i ne ( i f act n)
(define (iter count answer)

(cond > count n) answer)
(else (iter ( count 1) (* count answer)))))

(iter 1 1))

Even though the procedure ter is syntactically recursive, the evaluator executes this as
an iterative process, that s the amount of space required to compute (ifact n is
independent of n. Since the evaluator's space" is allocated on the stack, the space required
can be measured as the maximum depth reached by the stack during the evaluation.

ExerciseS-8:Starttheevaluatorandtypeinthedefinitionsof ifactabove. Tryitoutforvarioussmall
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numbers such as 2 3 and 4 Record the maximum depth and number of pushes required to compute
ifact foreach of these numbers.

1. You will find that the maximum depth is independent of n. What is that number.)

2. Induce from your data a formula in terms of n for the total number of push operations used in
evaluating if act n) for any n > 1. To do this, note that the number of operations used will be a
linear function of n, and thus it is determined by two constants.

Exercise 59: For comparison with the iterative version, define the following recursive version of
factorial:

(define (rfact n)
(cond ((< n 2 

(else (* n (rfact (- n 1))))))

By running this procedure with the monitored stack, determine (as a function of n, the maximum depth of
the stack and the total number of pushes used in evaluating (rfact n) for n > 2 (Again, these
functions will be linear.)

Exercise 5-10: Summarize your experiments by filling in the following table, with entries which are
appropriate expressions in n:

max depth number of pushes
----------------------------------------------

recursive
factorial

----------------------------------------------

iterative
factorial

----------------------------------------------

Note that "max depth" is essentially the space used by the evaluator in carrying out the computation,
and "number of pushes" should correlate well with the time required.

Exercise 5-1 1: Now monitor the stack operations in the double recursive Fibonacci computation:

(define (fib n)
(cond ((< n 2 n)

(else ( (fib (- n 1)) (fib (- n 2)))))

(Don't try values of n larger than, say, 6 unless you are prepared to wait a very long time.)

If you take a few data points, you should be able to answer the following questions:

1. Give a formula in terms of n for the maximum depth of the stack required to compute ib )
for n > 2 Hint: Remember we said in Chapter I that the space used by this process is linear.

2. What can you say about the total number of saves used to compute (f ib n) for n > 2? Recall
that the number of saves corresponds to the time used, and hence should grow exponentially.
Here is a hint: Let S(n) be the number of saves used in computing ib n). You should be able
to argue that there is a formula that expresses S(n) in terms of S(N-1), S(N-2) and some fixed
"overhead" constant k that is independent of n. Give the formula, and say what k is. Even
better, you should be able to use your formula to express S(n) in terms of the Fibonacci numbers.

Exercise 512: In these problems we have identified the space taken to run a program with the
maximum depth of the stack. One might truly object that perhaps we have not really accounted for all of
the space. Are we sure that in the interpretation of ifact, for example, we have not locked up an
unbounded amount of space in the environment structures?

1. Argue that the depth of the environments in a statically scoped language is bounded by a
constant. It is not the depth of calls but rather the depth in the lexical structure of the procedure.

2. Illustrate this truth by describing how to build further istrumentation, analogous to the kind we
provided for you in the monitored stacks, which monitors the construction of environment
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structures.

5.3. Storage allocation and garbage coll ection

In the evaluators that we have seen all primitive operators are either aliases for simple
combinations of primitive list operations, or they are simply implemented in hardware, like
addition, or, like stack operations, they can be implemented in terms of primitive list
operations. We have construed the LISP data manipulation primitives to be pmitive
operations of the computer. This is a good abstraction when we are studying the process of
interpretation, but it is not a realistic view of the way in wich actual computers work.
Commercially available memory systems are not organized as sets of linked list cells, but
rather as linearly indexed arrays. Additionally, commercially available memories are available
only in finite sizes (more's the pity). Now te free and wasteful throw-away use of data objects
would cause no problem if infinite memory were available, but within a realm of finite memory
it is an ecological disaster. LISP systems, which provide the user with automatic storage
allocation, ust support the illusion of an infinitely large list structured memory. This requires
that memory which was allocated for the construction of data objects that are no longer
needed be recycled for the construction of new data objects.

5.3.1. Memory as vectors

In order to model the actions that can be taken in real machine memories we introduce a
new kind of data structure, called a vector. Abstractly, we define vectors as objects which
can be quickly accessed by using a numerical index. Thus, for example, if a is a vector, then
(vector-ref a 5) gets the fifth entry in the vector, We will not need to make any vectors
in our discussion (since we will use them to model the fixed memory of the computer, which is
not dynamically constructed) however we will need to be able to mutate a vector. To change
the value of the fifth entry of the vector a to 7 we incant (vector-set a 7 Thus
vectors have two primitive operators of interest to us in this discussion:

(vector-ref <vector> <index>)
gets the <'ndex>th element of the vector <vector>.

.(vector-setl <vector> <ndex> <value>)
sets the <'ndex>th element of the vector <vector> to <value>.

What is special about vectors is thatwe should think of these operations as being very fast,
constant time, operations. This is by contrast to finding the nth element of a list, which
requires n-1 cdr operations to get to the right place in the st.

. Given that we can assume the existence of vectors, we can begin to see how one might
embed a list-structure memory in such a linear structure. Let us imagine, for the moment, that
we have an infinite memory which is divided into two vectors -- stored in registers the-cars
and the-cdrs. We will fix the infinity later. We will encode list structure as follows: A pointer
to a CONS-cell is an index into the two vectors which constitute our memory. The CAR of the
CONS-cell is the entry in the-cars with the index of our CONS-cell. The CDR of the ONS-
cell is the entry in the-cdrs with the index of our CONS-cell. Cons is performed by
allocating a new, never used index, and clobbering the-cars and the-cdrs of that index to
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be the arguments to cons. It is easy to allocate new indices into an infinite vector, since we
can count -- we presume that there is a special register, ree, which always holds the pointer
to the next available free index into our memory.

Thus we can implement the primitive list structure operations in terms of our vector memory
as follows, we replace each "primitive" register operation with one or more primitive vector
operations:

(assign <regl> (car (fetch <reg2>)))
(assign <regl> (vector-ref (fetch the-cars) (fetch <reg2>)))

(assign <regl> (cdr (fetch <reg2>)))
(assign <regl> (vector-ref (fetch the-cdrs) (fetch <reg2>)))

(set-cart (fetch <regl>) (fetch <reg2>))
(perform (vector-setl (fetch the-cars) (fetch <regl>) (fetch <reg2>)))

(set-cdr! (fetch <regl>) (fetch <reg2>))
(perform (vector-setl (fetch the-cdrs) (fetch <regl>) (fetch <reg2>)))

(assign <regl> (cons (fetch <reg2>) (fetch <reg3>)))
(perform (vector-set! (fetch the-cars) (fetch free) (fetch <reg2>)))
(perform (vector-set! (fetch the-cdrs) (fetch free) (fetch <reg3>)))
(assign <regl> (fetch free))
(assign free .l+ (fetch free)))

Stack operations are no problem since we can model them as list operations which can
themselves be implemented in terms of register and memory operations, as explained above.

(save <reg>)
(assign stack (cons (fetch <reg>) (fetch stack)))

(restore <reg>)
(assign <reg> (car (fetch <stack>)))
(assign <stack> Cdr (fetch <stack>)))

These could be further expanded 'Into our memory manipulations, completing our
implementation.

This is almost all there 'is to building list structure. The only complication is the question
about how non-list structure (such as numbers) are represented. Symbols are usually not a
problem, as they are usually compound data structures, made of list structure, which have no
special representation. The only things interesting about symbols is that the reader and
printer know about the character strings which they are represented by in printed text. One
easy but not very good answer to this is that negative numbers may not be legitimate indices
into the memory vectors. In such a scheme all non-list-structure objects must be encoded
into the negative machine numbers.

5.3.2. Supporting the illusion of infinite emory

In reality, all current memories.are of finite size, so eventually we must run out of free space
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in which to cons.6 In any case, we are in considerable luck. Most of memory which is used in
performing a computation is only constructed to old intermediate results. These results are
accessed and the cells allocated to contain them are no longer needed -- they are "garbage".
For example, if we perform the computation (accumu I ate + 0 (f I ter odd?
( e n ume r a t - 7n t e r va 7 0 n) ) ) we will eventual ly cons- up two lists, the en u meration and
the result of filtering the enumeration. On the other hand, when the accumulation is done,
these lists are no longer needed and can be re-used. In addition, if we used streams to
perform this process, we can reclaim most of that memory much earlier -- we need not finish
enumerating before we begin to filter.

Our illusion of infinite memory can thus be arranged if we collect all of the garbage
periodically, and this turns out to be about as much as we cons. The storage allocator must
have means to reclaim memory which has been allocated but which can no longer influence
the Wture of the computation. The problem, therefore, is to determine which parts of memory

7are garbage and which are still needed. Many strategies have been developed for this. The
one which we will see here is called "garbage collection" - It is based on the observation that,
at any moment in a LISP interpretation, the future of the computation is completely
determined by objects which can be reached by a sequence of primitive data access
operations starting with a few special data' structures, such as the registers and stacks,
maintained by the interpreter. This is because, in order to affect a computation, a quantity
must eventually end up in an interpreter register. However, the interpreter only accesses
quantities using the list selectors. Thus there is no way a quantity which is not so reachable
can affect the future of a computation. Thus any memory cell which is not so accessible may
be recycled.

There are many ways to accomplish garbage collection. One plan is the mark-sweep
method. In this plan we recursively trace the structure pointed atby the machine registers,
marking each cell reached as we go. Eventually we mark the entire transitive closure of the
list access operations starting with the machine registers. Thus a cell is marked if and only if
it is accessible. We then scan all of memory, and any location which is unmarked is swept up
as garbage and made reusable. Another plan is the copy and compact method. It depends
upon not having actually used up all of memory but only about half of it. The idea is that we
recursively trace all of the structure pointed at by the machine registers (the useful,
accessible data) and copy it into an auxilliary memory compactly. The memory copied frorn

6This may not be true eventually. Memory may get cheap enough so that it is basically impossible to run out of free
memory in the physical lifetime of the computer. For example, there are about pi*10t7 seconds in a year. Each has
10-t6 microseconds. Thus, if we tould cons once per microsecond, we would only'need 0t15 ciells of memory to
make a machine which would be able to run for 100 years without running out. That is only completely absurd, but
not physically impossible. On the other hand, machines are getting faster, and this kind of argument will not work 
we have large aggregates of parallel machines, so it is hard to say what the actual story is.

7
Survey article...
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8can then be reused next time to copy into.

Let's look at a stop-and-copy garbage collector algorithm to see how it works. We will
assume, for the sake of simplicity, that there is a special register, called root which contains
a pointer to a structure which eventually points at all accessible data. This can be easily
arranged by storing all interpreter registers into a pre-allocated list structure pointed at by
root just before entering the garbage-collection process. We also assume that, besides the
current working memory (represented by the contents of the registers the-cars and
the-cdrs) there is free memory to receive the clean copy of useful memory, (in the contents
of the registers new-cars and new-cdrs). We enter the garbage collector when we have run

.out of free cells in the current working memory. Te result of garbage collection is that the
root points at cells in the new memory, all things accessible from the root are in new
memory, and the f ree pointer now points at the next place in new memory where a cons an
be made. In addition, the new memory and the current memory are interchanged (flipped) so
that next time we can repeat the process:

------------------------------------------------
Mixed useful data and garbage THE-CARS

-------------------------------------------------

THE-CDRS
--------------- ---------------------------------

t t
ROOT FREE

------------------------------------------------
New free memory NEW-CARS

------------------------------------------------

NEW-CORS
------------------------------------------------

Just before garbage collecti*on

------------------------------------------------
Discarded memory NEW-CARS

------------------------------------------------

NEW-CDRS
----------------- ---------------------------------

8
This idea was invented and first implemented on the RLE PDP-1 LISP by Marvin Minsky. It was further devel[oped

by Fenichel and Yochelson to be used in the LISP on Multics. Later, Baker made a real-time version of the algorMm,
which does not require the LISP to stop during garbage collection. The Minsky-Fenichei-Yochelson algorithm is the
dominant algorithm in use for big machines now, because one need not look at all of memory, only the useful part of
memory. The MacLISP on the DEC-20/60 is really a small machine LISP, it uses a mark-sweep algorithm. This is
acceptable because a 20/60 can only address 2t 18 words of memory.
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ROOT FREE
V V

------------------------------------------------

Useful Data Free area THE-CARS
------------------------------------------------

THE-CDRS
------------------------------------------------

Just after garbage collection

In this algorithm, garbage collection proceeds by copying all of the valuable data
(reachable from the root) sequentially into a clean part of memory. The clean part of memory
is initialized with a free pointer and a scan pointer pointed at its beginning. The first thing
done is the root is relocated, This is accomplished as follows: The object pointed at by the
root is copied into that place, the free pointer is incremented, and the root is adjusted to point
at the new home. In addition, the old object which is copied is adjusted to have a forwardin 9
address pointing at the new home.

I After initialization (relocation of the root) the garbage collector enters its basic cycle. The
scan pointer (initially pointing at the new copy of the object pointed at by the root) points at
an object which has been moved, but whose car and cdr still refer to objects in the current
memory. The car and the cdr of the object pointed at by scan are each relocated, and the
scan pointer is incremented to scan the next new cell. Relocation of an object means
copying it from the current memory to a new free place, if it has not been copied already. The
cell being scanned is then adjusted to point at the new address in new memory. If the object
pointed art by scan has been copied already its car will contain a broken-heart (a unique,
recognizable object which may not ever be produced by the interpreter -- it is placed there by
the copying process) and its cdr will contain a forwarding address to the place where it has
been moved in the new memory. If it has been moved already, its forwarding address is
substituted for the object in the cell being scanned. Eventually, all of the cells which are
accessible will have been moved and scanned, thus the scan pointer will point at the next
free place in new memory, and the process will stop. When this happens, we interchange
the roles of new and current memory and continue the interpretation process.

Let's now look at the code in more detail. The only very tricky things are the ways in which
relocation happens, and in the manipulation of broken hearts and forwarding pointers.
Relocating an object, which may involve copying it from the current memory to the new
memory, is done by a subroutine called re7ocate-o7d-resu7t-in-new. It takes its
argument in the o7d register and returns the relocation of its argument'in the new register.
We invoke it by storing a return address in the register re 7oca te-return and going to the
entry relocate-old-resu7t-in-new. The garbage collector initialization does precisely
that to get the relocation of the rodt after setting up f ree and scan.-

(assign free 
(assign scan 
(assign old (fetch root))
(assign relocate-return reassign-root)
(goto relocate-old-result-in-new)

When the relocation of root has been computed, we reinstall it and then enter the main
loop of the garbage collector:
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reassign-root
(assign root (fetch now))
(goto gc-done?)

In the main loop of the garbage collector we must determine if there are any more objects
whose car or cdr fields need to be relocated. If tere are, then the scan pointer must be
pointing at one of them. If the s can pointer is coincident with the f r ee pointer then we are
done and must go off to the gc- 7 fp routine to clean up for next time. If there is indeed
material to be scanned, we should first scan the car field of the object. Thus the 7 d register
is set up with the object to be relocated, and we go off to relocate it, expecting to come back
to update-car:

gc-done?
(branch = (fetch scan) (fetch free)) gc-flip)
(assign old (vector-ref (fetch now-cars) (fetch scan)))
(assign relocate-return update-car)
(goto relocate-old-result-in-new)

At up da t e - ca r we smash away the correctly relocated value and then set up to work on
the cdr of the scan pointer. We will return to the update-cdr routine when that relocation
has been computed:

update-car
(perform (vector-setl (fetch new-cars) (fetch scan) (fetch new)))
(assign old (vector-ref (fetch new-cdrs) (fetch scan)))
(assign relocate-return update-cdr)
(goto relocate-old-result-in-new)

After having relocated the cdr of the scanned ob'ect we are finished with that ob'ect and
go on to the next one to be scanned:

update-cdr
(perform (vector-set! (fetch new-cdrs) (fetch scan) (fetch new)))
(assign scan (fetch scan)))
(goto gc-done?)

The relocations are computed by re7ocate-o7d-result-ln-new as follows. If the
object to be relocated (in 7 d) is a pointer, then it must get a relocation, otherwise, we 'ust
want it to be unchanged in the result. If it is a pointer which is pointing to an object that has
already been moved, then the car of the old place the object was contains a broken-heart
indicating that the cdr of the old place contains a relocation address which can be used as
the relocation. If the pointer in 7 d points at an as yet unmoved object, then we move it to the
first free cell in new memory (pointed at by free, and then put a relocation address and
broken heart in the current memory:
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relocate-old-result-in-new
(branch (not (pointer? (fetch old))) non-pointer)
(branch (broken-heart? (vector-ref (fetch the-cars) (fetch old)))

already-moved)
(assign new (fetch ree)) ;Will need for return
(assign free free)) ;Used one cell
;; These copy the CAR and CDR of the old cell to new memory
(perform (vector-setl (fetch now-cars) (fetch new)

(vector-ref (fetch the-cars) (fetch old))))
(pe rform (vector-setl (fetch new-cdrs) (fetch new)

(vector-ref (fetch the-cdrs) (fetch old)))')
These build the forwarding address and broken heart.

(per-form (vector-setl (fetch the-cars) (fetch old) broken-heart))
(perform (vector-setl (fetch the-cdrs) (fetch old) (fetch new)))
(goto (fetch relocate-return))

non-pointer
(assign new (fetch old))
(goto (fetch relocate-return))

a] read moved
(assign new (vector-ref (fetch the-cdrs) (fetch old)))
(goto (fetch relocate-return))

When we are all done, we interchange the current and new memories, completing the
garbage collection process:

gc-flip
(assign temp (fetch the-,cdrs))
(assign the-cdrs (fetch new-cdrs))
(assign new-cdrs (fetch temp))
(assign temp (fetch the-cars))
(assign the-cars (fetch new-cars))
(assign now-cars (fetch temp))
(goto gc-finished)

Exercise 513: What would it take to really integrate our storage allocation and garbage collecHon
scheme into the explicit control evaluator described in this chapter? How should the need for garbage
collection be triggered? -Where and how in the interpreter code should it be installed? This is a very
tricky question.

5.4. Compilation

Almost every computer is a register-transfer machine which is controlled by programs
written in a native machine language based on operations on and assignment to' registers.
There are two common strategies for bridging the gap between 'such register-transfer
languages and expression-and-procedure languages such as Lisp or Pascal. One which we
have already examined is interpretation. Now we will examine an alternative strategy,
co mpilation'.

An interpreter is an amazing program which configures a machine whose native language
is one language to simulate a machine whose native language another one. The program
being interpreted (called the source program) is a data structure of the interpreter. The
interpreter walks the source program, executing code whose effect is to simulate the intended
behavior of the source program. The interpreter implements the means of combination of the
interpreted language as a mechanism for dynamically interconnecting the implementations of
the primitive operators of the source language as directed by traversal of the data structure
representing the program being interpreted. The primitive operators of the source language
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are implemented as a library of subroutines in the native language of the gven machine.

A compiler is an equally amazing program which translates a source program written 'in one
language into an equivalent program (called the object program) written in another language.
The program to be compiled is a data structure of the compiler. The compiler walks the
source program, constructing the object program, which if executed will behave as intended
by the author of the source program, The object program will refer to the library of
procedures which implement the primitive operators of the source language in the object
language.

Implementation of a language by interpretation provides a nicer run-time environment for
interactive development and debugging of programs than is found in compiled systems. Thi's
is because in an interpreter, the source program is available as data to be manipulated by the
debugging features. In addition, the whole library is present and new programs can be
constructed and added to the system during debugging, to examine run-time data structures
which would not be interesting in a debugged program.

Compilation provides a much more efficient implementation of source programs in the
object language. This is because a compiler takes advantage of the fact that the program
being implemented is constant (not true if debugging!). An interpreter must examine the
program each time it executes it, discovering over and over again, for example, that -a
particular procedure application has only one argument. In addition, it must prepare for the
worst, saving its state before executing a subexpression, because the subexpression might, 'in
general, require an arbitrary evaluation, even if in reality evaluation of the subexpression is
trivial and needs only change the value of the VAL register, for example. A compiler looking
at the source program would compile this code as a special case.

In light of these alternative advantages of compiled and interpreted modes of
implementation, many modern systems (such as Lisp) allow compiled code to be used as
primitives in an interpreter system. This allows one to compile the parts of one's program
which are thought to be debugged, allowing one to gain the speed advantage, while retaining
the interpretive mode of execution for those parts of the program which are in the flux of
interactive development and debugging.

5.4.1. Our system

We now present a simple SCHEME compiler to show how the register transfer language
object program is constructed from the expression language source program. We will use
this to help us solidify our notion of stack discipline which i's the key by which a register
machine can perform te actions of a recursive expression evaluation. We will also interface
our compiler to our interpreter to make an integrated interpreter/compiler development
system.

Our compiler is a rather simple one. It compiles for a machine with assumed primitive
operations such as car, cdr, cons, environment lookup, and construction and other high.
level operators precisely because we are at this point interested most in understanding in
detail how a stack is. used to control recursions, and not how to implement the compound
data construction and selection procedures in term's of the more primitive machine memory.
We will have the opportunity to augment the compiler in such a way as to improve at least
some of these aspects of ompilation. But, for the nonce we will ignore many of the fner
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points of compilation, such as register allocation, open coding of primitive operators, or fancy
optimization. What we will be concerned with 'is:

1. The precise rules and conditions of stack discipline.

2. The kinds of efficiency advantages that accrue from having a prog ram studied
and summarized by our compiler, rior to execution of our summary.

We will see that whereas blind interpretation of a program requires always preparing for
any contingency, a compiler can write code that takes advantage of foreknowledge of what
will happen next, thus minimizing irrelevant preparation and cleaning up.

Compiled code and the interpreter interface
Our compiler will take source code in expression-oriented Scheme and produce object

code in the register-transfer language that our interpreter is written in. To be compatible with
interpreted code, the compiler will obey all of the conventions of register usage that the
interpreter is based on The compiled code will keep any procedures to be called in f un, and
the arguments to such procedures will be consed up in argl. In fact, the compiler will
produce object code which does what the interpreter would do in executing the same source
code. This makes it easy to build an integrated system of interpretation and compilation.
Though there are more powerful compilation strategies which yield better object code they
will not be considered here. The main oint of this section is to illustrate the compilation
process in a simplified, but still interesting, context,

To make it possible for compiled code to be executed by the interpreter system, it is
necessary to slightly modify the interpreter to accomodate the compiled code. The only
modification necessary is in app7y-dispatch where we must distinguish three cases of
procedures -- system primitives, compound (interpretive) procedures, and compiled
procedures. In the case of a compiled procedure, the interpreter just directly transfers control
to the compiled code body:

apply-dispatch
(branch (primitive-procedure? (fetch fun)) primitive-apply)
(branch (compiled-procedure? (fetch fun)) compiled-apply)
(branch (compound-procedure? (fetch fun)) compound-apply)
(goto unknown-procedure-type-error)

compiled-apply
(assign val (code-of-compiled-closure (fetch fun)))
(goto (fetch val) ..

Our compiler puts out its object code in the form of a list structure. Part of the output is the
list of instructions which comprises the compiled code, This list of instructions contains
7 abe Is which mark places in the list as the beginnings of s equences of instructions to which
the compiler has constructed transfers of control (got instructions). It is expected that there
is a "loader" program which actually defines the labeled entry points (performing what is
essentially the action of a de f en t ry). We will not go into any detail about this process.

Compilation strategy
Structurally and functionally a compiler 'is like an interpreter. It walks the expression tree

dispatching on the type of eac.h expression to a code-generator procedure for that kind of
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expression. The code generators "meta-evaluate" each kind of expression in that, rather
than executing the expression at the moment, they construct code which has the effect of
executing the expression when it is run.

After having examined an expression, a compiler knows a great deal about i t. I t knows
what registers were actually modified in executing that piece of code. For example, no
registers except va I are actually modified in executing a quoted expression or in looking up a
value of a variable in the environment. Thus such primitive operations cannot destrGy the
value of the env register, so it need not be saved before executing such an expression as a
subexpression, to be restored after the subexpression execution is finished, even the
value of the env register will be indeed needed then.

Each code generator returns a sequence of instructions as its value. An instruction
sequence contains three pieces of information: The first is the list of statements which
implements te execution of the expression which was compiled by that code generator.
These are the statements of the sequence. Secondly, we need the set of registers whose
values are modified by the sequence of instructions. This is called the ung 7 is t of the
sequence.9 Finally, we need the set of registers which much be set up with values before
enteringthis sequence. This is called the needs I st.

A sequence of instructions is constructed as either a primitive instruction (by a constmctor
like make.-register-assignment) or by appending instruction sequences using
append-Instruction-sequences. This produces the instruction sequence which is
formed from the concatenation of the statement lists of the two sequences. The resuffing
sequence (potentially) modifies the registers (potentially) modified by either subsequence. It
also needs the set of registers needed by the first sequence and those registers needed by the
second sequence which were not set up by the first. Append- instruct ion-sequeaces i's
built using Ma k e - s e q. Ma k e - s e q is the constructor for an instruction sequence with a gWen
n e e ds - 7 s t a given mu ng - 7 s t and a given list of s t a t eme n t s.

(define (append-instruction-sequences sl s2)
(make-seq (set-union (needs-list sl)

(set-difference (needs-list s2)
(mung-list sl)))

(set-union Miung-list sl) (mung-list s2))
(append (statements sl) (statements s2))))

In addition to the expression, exp, to be compiled, each code generator takes several
additional arguments. There is a compile-time environment, env, which carries a description
of the environment which will be in effect when the expression is run. This is only used in
sophisticated compilation of variable references -- we will develop this in section 54.5. The
compile-time environment is extended in the compilation of 7ambda expressions and it is
modified by the compilation of definitions. Another argument supplied to each code
generator is the target. It specifies the register which the compiler wants to use to get the
value of the expression. Finally, each code generator takes a continuation descriptor, wfich
describes how the code resulting from the compilation of the current expression should
proceed when it has finished its execution. The continuation descriptor can require that the
code:

9"Mung" is a recursive acronym standing for "Mung Until No Good". For more bad self -referentialiokes like. that
see Doug Hofstader.
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1. Re t urn to the caller.

2. Continue at the next instruction in sequence.

3. Continue at a named label.

Given such a continuation descriptor we can construct the correct way to continue at that
continuation using the procedure cont inue-at. This piece of code will be called al through
the compiler to manufacture appropriate unconditional transfer of control instructions:
Adefine (continue-at continuation)

(cond ((eq? continuation 'return)
(append-instruction-sequences
(make-restore 'continue)
(make-goto-instruction (make-fetch 'continue))))

((eq? continuation 'next)
(the-einpty-instruction-sequence))

(else
(inake-goto-instruction continuation))))

We will first go through the code of the compiler, examining the code generators for each
kind of expression. Later we will look at an example of compilation, examining the dynamic
behavior of the compiler.

The core of the compiler
The program comp le -express on is the central element in he compiler, corresponding-

to te e va I procedure of te meta-circular evaluator, and the eva 7 d spa tch procedure of
the explicit control evaluator. It takes four arguments, the expression to be compiled, a
description of the environment which will be available to the com iled code (containing the
variable names which are bund, but not their values), a target register which will get the
value of the expression, and a continuation descriptor which describes how the compiled
expression must continue when it is done.

Compile-expression is a case analysis on the syntactic type of the expression to be
compiled. For each type of expression (special form) it dispatches to a specialized code
generator for expressions of that type:

(define (compile-expression exp env target cont)
(cond ((self-evaluating? exp)

(compile-constant exp 'target cont))
((quoted? exp)
(compile-constant (text-of-quotation exp) target cont))

((variable? exp)
(compile-variable-access exp env target cont))

((assignment? exp)
(compile-assignment exp env target cont))

(,(definition? exp)
(compile-definition exp, env target cont))

((lambda? exp)
(compile-lambda exp env target cont))

((conditional? exp)
(compile-cond (clauses exp) env target cont))

((no-args? exp)
(compile-no-args exp env target cont))

((application? exp)
(compile-application exp env target cont))

(else
(error "Unknown expression type -- COMPILE" exp))))
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Simple code generators for constants and variables construct simple instruction sequences
which smash the target register with the value required and then continue at the correct
continuation:

(define (compile-constant constant target cont)
(append-instruction-sequences
(make-register-assignment target (make-constant constant))
(continue-at cont)))

(define (compile-variable-access var env target cont)
(append-instruction-sequences
(make-register-assignment target (make-variable-access var nv))
(continue-at cont)))

In these fragments we see some of the basic operations of the compiler. The code,
generator constructs an instruction sequence by appending together two saller instruction
sequences. The first is the sequence of instructions required to assign the value of interest to
the target register and the second is the sequence of instructions required to continue after
the evaluation. An instruction sequence may contain zero or more instructions. If the con t is
next, the (con t inue -a t con t) will produce an empty instruction sequence.

Preserving registers
Assignments and definitions are somewhat more complex. Before performing the variable

assignment or binding instructions, it is first necessary to compute the value of the expression
to which the variable will be bound. We compile the subexpression evaluation with the
continuation specifier next, indicating that the subexpression evaluation code should
continue at the next instruction in the sequence.

The subexpression evaluation must be performed in such a way so that the environment in
effect after the evaluation must be the same as the one in effect before the evaluation. Thus
the environment register, env must, in general, be saved and restored around the
subexpression evaluation. This is accomplished by wrapping the subexpression compilation
with a preserv Mg form.

Assignments and definitions are usually done where the value is ignored (and only the
effect matters). Thus, in these cases, we may specify a target of n 7 (for example, we will see
this targeting in the compilation of the elements of a sequence. In that case, the target is
taken to be va 7 Alternative strategies may lead to better results:

(define (compile-assignment exp env target cont)
(let ((target (if (null? target) 'val target)))

(preserving 'env
(compile-expression (assignment-value exp) env target 'next)
(append-instruction-sequences
(make-variable-assignment (assignment-variable exp)

env
(make-fetch target))

(con-tinue-at cont)))))

Assignments change the values of variables already existing in the environment of a
running program. Definitions differ from assignments in that the compilation environment
used to compile the body of a definition must be augmented to include the variable being
defined. In addition, this augmentation must be visible when we compile code which appears
later in a sequence of expressions. Thus the compiler environment must be modified by the
definition. (Note the "' which conventionally indicates a side-effect operation.)
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(define (compile-definition exp env target cont)
(let ((target (if (null? target) 'val target)))

(preserving 'env
(compile-expression (definition-value exp)

(definition-envl (definition-variable exp)
env)

target
'next)

.(append-instruction-sequences
(make-variable-definition (definition-variable exp)

env
(make-fetch target))

(continue-at cont)))))

The procedure preserving appends two instruction sequences so that the register
named as its first argument is preserved over the execution of the compiled code which is is
second argument if it is needed in the execution of the compiled code which is its third
argument. The general idea is that it wraps a save and restore of the named register
around the first sequence, if necessary. There are two ways which the save and restore
may not be necessary -- either the first code sequence does not, in fact, clobber the register
being preserved, or the second code sequence really does not need it.

In case first sequence cannot clobber the register preserved or the code after the protected
evaluation (the second sequence in the preserv ing) does not actually need the value of the
protected register there is no reason to put out the save and restore. Preserving can
check for this case by looking at the instruction sequence produced by the compilation..10
This kind of "push-pop" optimization is available in compiled code because a compiler can

study a program, discovering the special properties it has.

In general, however, preserving wraps a save and restore around the compilation of
its second argument. Preserving thus first checks a sequence of instructions to see if the
register it must preserve is in danger of being clobbered by that sequence of instructions. It
does this by looking in the mung I is t If the register is not in danger, preserving returns
the original instruction sequence; if it is in danger, preserving wraps it up in a save
.. restore pair, and returns the new instruction sequence with the preserved register
removed f rom its inu n g - s t.

(define (preserving reg seql seq2)
(if (and (iemq reg (needs-list seq2))

(inemq reg (mung-list seql)))
(append-instruction-sequences

(make-seq (needs-list sql)
(set-difference (mung-list seql) (list reg))
(append (statements (make-save reg))

(statements seql)
(statements (make-restore reg))))

seq2)
(append-instruction-sequences seql seq2)))

The compilation of sequences is quiba parallel to the evaluation of them. Each expression

10In fact, an instruction sequence as both te instructions ad a set of registers clobbered by those instructions.
Aregistercanonlybeclobberedbyan assigninstructionwhichisnotwrappedinasave--restorepair. Callsto
procedures are assumed to clobber all registers. A more, sophisticated compiler would know the properties of
important primitives, such as .
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of the sequence, except for the last one is compiled preserving the environment. The last
expression is compiled without worrying about the environment because presumably, if it
were needed, the compilation of the continuation would have compiled the sequence
preserving the environment. In addition, non-final expressions are compiled with
continuation next and target n 7 (which means we don't care) whereas the final expression
is compiledvith target the target of the sequence and with continuation the continuation of
the sequence. The instruction sequences of these are appended together to make one long
one. Here we see another kind of optimization performed by compiling a program. An
interpreter must continually check if an expression is the last one in a sequence. This must be
done each time we go to the next expression in the sequence and each time we encounter the
same sequence. The compiler needs to do this only once for each expression when
compiling the sequence. It builds code wich "knows" where in the sequence it is, thus not
needing explicit run-time tests.

(define (compile-sequence seq env target cont)
(if (last-exp? seq)

(compile-expression (first-exp seq) env target cont)
(preserving 'env

(compile-expression (first-exp seq) env 'nil 'next)
(compile-sequence (rest-exps seq) env target cont))))

Combinations
The essence of the compilation process is brought out most effectively in the context of the

compilation of ombinations. What has to be done here is that an instruction sequence has to
be formed which first computes the procedure (from the operator expression) and puts it into
fun. It then computes the arguments (from the operand expressions) and conses them up
into arg 7 Finally it must transfer control to the procedure in un with the arguments in arg .
The procedure must return to the continuation of the calling combination. The env and arg I
must be saved and restored as needed in this process. The summary is clear.-

(define (compile-application app env target cont)
(preserving 'env

(compile-expression (operator app) env 'fun 'next)
(preserving Ifun

(compile-operands (operands app) env)
(make-call target cont))))

The operator was easily computed. We targeted it to fun and continued at next. We
preserved env so we can use it to compute the arguments from the operand expressions.

The operands are a bit more tricky. There are three classes of operands. The frst
argument is computed without an a rg I allocated yet. Thus, the first argument must return to
construct the initial arg 7 A normal next argument already has an arg 7 prepared to hold it. It
must be computed preserving that arg 7 and consing itself onto that arg I when it is finished.
A final argument need not save the environment across its evaluation because the application
of the procedure will not need the environment. Comp 7 e -operands must compile the first
operand. If that is the only operand (perhaps there is only one operand) then the resulting
instruction sequence is returned. If not, then we form an instruction sequence by appending
the sequence of instructions resulting from adding operations to preserve the environment
around the compilation of the first operand to the sequence of instructions resulting from
compiling the rest of the operands:
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(define (compile-operands rands env)
(let ((fo (compile-first-oporand rAnds. nv)))

(if (last-operand? rands)
fo
(preserving 'env

fo
(compile-rest-operands (rest-operands rands) env)))))

The compilation of the first operand is to the va I register with the continuation next. The
arg I (the list of evaluated arguments) is initialized here to the singleton of the value which
appeared in va I as the value of the first operand:

(define (compile-first-operand rands env)
(append-instruction-sequences
(compile-expression (first-operand rands) env 'val 'next)
(make-register-assignment largl

(make-singleton-arglist (make-fetch 'val)))))

Each additional operand is compiled in succession, using compile-next-operand In
each case, env is only preserved around the evaluation if there are more operands to go
(which may need to get at the environment):

(define (compile-rest-operands rands env)
(let ((no (compile-next-operand rands nv)))

(if (last-operand? rands)
no
(preserving 'env

no
(compile-rest-operands (rest-operands rands) env)))))

We compile each operand (other than the first) preserving the arg7, because we must
cons up our value (in va 7 into it and because it will be used in the call of the procedure later:

(define (compile-next-operand rands env)
(preserving largl

(compile-expression (first-operand rands) env val 'next)
(make-register-assignment largl

(make-addition-to-arglist (make-fetch val)
(make-fetch largl)))))

Combinations with no operands are treated specially, as they are in the interpreter. In fact,
all that is needed is to compile the operator targeting the value to f un, initializing the arg I to
the empty argument list, and then performing a call of the procedure:

(define (compile-no-args app env target cont)
(Append-instruction-sequences
(compile-expression (operator app) env 'fun 'next)
(append-instruction-sequences
(make-register-assignment largl (make-empty-arglist))
(make-call target cont))))

Finally, the compilation of each combination must finish with a call to the procedure in un.
The form of this procedure call depends upon the target of the procedure value and upon the
type of continuation. Procedures are expected, in this system, to return their values in the
va I register. Thus, if we want the value of a procedure in a different register (say the fun
register, for example) we must output a special assignment operation to assign to the desired
target register the contents of the va 7 register after the procedure returns:
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(define (make-call target cont)
(let ((cc (make-call-result-in-val cont)))

(if (eq? target 'val)
cc
(append-instruction-sequences

cc
(make-register-assignment target (make-fetch 'val))))))

The basic procedure call (which expects the result in va 7 is compiled differently
depending upon the kind of continuation. If the caller will just return with the answer (con t =
return) then we want to transfer to the procedure in fun, allowing it to return to the real
caller. This ensures tail recursive implementation. If the caller has more to do after 'the
current procedure call, then it will either supply the statement label to continue at or the
default label next. This must be set up as a saved continuation on the stack. If the
continuation is n ex t, a label is constructed and set up as the beginning of the sequence after
the transfer to the procedure applicator. In this system the procedure applicator is
app ly-dispatch. Thus this is an abstract transfer to the interpreter entry -for applying a
procedure which is assumed to be in the fun register to arguments which are assumed to be
in the a rg I register.

(define (make-call-result-in-val cont)
(cond ((eq? cont 'return)

(make-ti-ansfer-to-procedure-appll'cator))
((eq? cont 'next)
(lot ((after-call generate-new-name 'after-call)))

(append-instruction-sequences
(make-call-return-to after-call)
(make-label after-call))))

(else
(make-call-return-to cont)))) ;A label

If the calling program expects to continue after the procedure being called is done, the
return label of the continuation must be saved on the stack because the application is beirig
done by app7y-d7'spatch which assumes that the continuation is saved and will be
restored when it will be needed.

(define (make-call-return-to retlabel)
(append-instruction-sequences
(append-instruction-sequences
(make-register-assignment 'continue retlabel)
(make-save 'continue))

(make-transfer-to-procedure-applicator)))

Conditional expressions
Compilation of conditional expressions does a considerable amount of manipulation of

labels to organize, the flow of control. The code-generator for conditionals first determines if
the conditional expression is expected to return in ine. If so, it must make up a label to
continue at, so that the various branches have a way of rejoining. If the conditional i's
supplied with a continuation label, the branches will be compiled with that label for rejoining.
If it is a re t urn continuation, each branch will be expected to return when it runs out:
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(define (compile-cond clauses env target cont)
(if (eq? cont 'next)

(let ((end-of-cond (generate-new-name 'cond-end)'))
(append-instruction-sequences
(compile-clauses clauses env target end-of-cond)
(make-label end-of-cond))) ;Output label

(compile-clauses clauses env target cont)))

The compilation of the clauses is quite straightfoward. In the general case, if there are
clauses to compile and the current clause is not an e Ise clause, then the output instruction
sequence is just a compilation of the predicate expression to va , followed by a test of the
va I register which has two alternatives, the compiled consequent and the compilation of the
rest of the clauses of the if. The compilation of the predicate continues at the branch
(n ex t). The branches of the test compile to. the target of the conditional and continue at the
continuation of the conditional. Note how it is important to preserve env around the
evaluation of the predicate -- we will need it for the consequent and the alternative.

(define (compile-clauses clauses env target cont)
(if (no-clauses? clauses)

(continue-at cont)
(let ((fc (first-clause clauses)))

(if (else-clause? fc)
(compile-sequ'nce (action-sequence fc) env target cont)
(let ((ift (generate-now-name 'true-branch)))

(preserving 'env
(compile-expression (predicate fc) env 'val 'next)
(append-instruction-sequences

(make-branch (make-fetch 'val) ift)
(join-instruction-sequences
(compile-clauses (rest-clauses clauses)

env target cont)
(append-instruction-sequences
(make-laboled-point ift)
(compile-sequence (action-sequence fc)

env target cont))))))))))

We see that here we want to make an instruction sequence which is not intended to be
executed sequentially, There are two branches to the conditional, only one of whicli may be
traversed in any particular execution. Thus, these must be appended differently than the
normal sequential instruction-sequence append:

(define (join-instruction-sequences sl s2)
(make-seq (set-union (needs-list sl) (needs-list s2))

(set-union (mung-list sl) (mung-list s2))
(append (statements s (statements s2)))

Compiling LAMBDA expressions
Lambda expressions are the only special forms we have not yet considered. A I amb da

expression is a constructor for procedures. A procedure needs to know two pieces of
information, the script it must follow, and the environment for interpretation of its free
variables. The script can be represented by the label marking the entry point to the compiled
body of the 7ambda expression. The only interesting point here is what must happen if the
continuation is next. In that case the code sequence, which contains the compilation of the
7 amb da body must jump oer the compiled body:
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(define (compile-lambda exp env ta�rget cont)
(let ((entry (generate-new-name 'entry)))

(append-instruction-sequances
(make-register-assignment target (make-procedure-maker entry))

Jif (eq? cont 'next)
(lot ((after-lambda (generate-new-name 'after-lambda)))

(append-instruction-sequences
( cont i nue-at af to r- 1 ambda)
(append-instruction-sequences
(compile-lambda-body exp env entry)
(make-label after-lambda))))

(append-instruction-sequences
(continue-at cont)
(compile-lambda-Pody exp env entry))))))

The script of a lambda expression is also straightforward. It begins with a label for the
entry point. The procedure then proceeds to switch environments to the environment of the
definition of the lambda expression (the lexical context) extended so as to include the
arguments mapped to the formal parameters. The rest is the compilation of the body of the
7ambda expression in an environment where the formal parameters of the expression are
bound. The procedure is presumed to return when its body is completed.

(define (compile-lambda-body exp env entry)
(safe-instruction-sequence
(append-instruction-sequences
(make-label entry)
(append-instruction-sequences,
(make-environment-switch (lambda-parameters exp))
(compile-sequence (lambda-body exp)

(extend-compile-time-onv (lambda-parameters exp) env)
v a 
return)

The only funny thing here is the procedure safe-instruction-sequence. This hides
the registers clobbered by the compiled body of the ambda expression from the sequence 'in
which it is embedded. This is reasonable because the body of the ambda expression 'is not
"in line" to be executed as part of the sequence. In fact the only way it can be entered is from
a procedure call, which is in general assumed to clobber all registers. Thus
safe-instruction-sequence constructs a sequence of instructions with a null
mung-listandthelistofstatementsfromthegivensequence.

5.4.2. Repre'entations

The code we have seen so far is pretty abstract. We have used no knowledge of the format
of an object code istruction. Instead, it concentrates on the ways by which instructions are
combined to make coherent programs. Eventually, however, we have to get down to the
details. The instructions we use are from the abstract machine language we defined our
explicit control evaluator in. It contains gotos, assignment to registers, fetching of
registers, and a fixed number of primitive operators. For example, to continue-at a
particular continuation, we must produce an instruction sequence which contains an
appropriate goto operation. The procedure make-instruction takes a "machine
language" instruction and makes a sequence with it as the only statement. The first argument
specifies the set of registers clobbered by that instruction. This is how the set of registers
clobberedareultimatelyspecified. Gotoinstructionsclobbernoregisters,buttheymayneed
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the val ue of a reg ister, such as c o n t 7n u e, to use as a label

(define (make-goto-instruction continuation)
(make-instruction (needs-list continuation)

10
(list 'goto (value-of continuation))))

In our abstract machine language a conditional test and branch is represented as follows:
(define (make-branch predicate if-true-label)

(make-instruction (needs-list predicate)

10
(list 'branch

(value-of predicate)
if true I abel ) ))

Indeed, it is necessary for the compiler to know some properties of the interpreter system.
We will later see a few minor modifications which must be made to the interpreter to
accomodate compiled code. In the following code we see that all of the registers are
potentially modified by calling a procedure. AI I is a list of all of the registers. Notice that
procedure application only needs f un and a rg I to work.

(define (make-transfer-to-procedure-applicator)
(make-instruction fun argl) all (goto apply-dispatch)))

Labels are simply notated. They are not used in the interpreter. We will have to make a
loader which inserts compiled code into the interpreter system. It will change a label 'Into an
en try point

(define (make-labeled-point label)
(make-instruction 1() () label))

Register assignments are the most common "machine language" statements. If the trget
register of an assignment is n we assume that there is really no need to do the assignment:

(define (make-register-assignment reg val)
(cond ((not (null? reg))

(make-instruction (needs-list val)
(list rg)
(list 'assign reg (value-of val))))

(else
(the-emt)ty-instruction-sequence))))

Besidesassignm,,..nnt,thestandardregisteroperationsareneededinthecompiler. Fetchis
a value fragment, such as an indicated constant. It has two parts. The actual value
expression (which is extracted by value-of) and the needs list (which is extracted by
needs-of). Theneedslistofaregisterfetchisasingletoncontainingjustthatregister:

(define make-fetch reg)
(make-value (list reg) (list 'fetch reg)))

The stack operations are also simple instructions. A s a ve has no needs and changes no
registers.

(define (make-save reg)
(make-instruction (list save reg)))

Actually, this is a rather unsophisticated compiler. In a more clever design, a save would be thought of as
needing the value of the register bing saved and changing the value of the-stack. This would lead to a more
coherent model of the computation which could be used to make more optimal code
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In this naive model, restore is very similar to sav-e.

def i ne make- restore reg)
(make-instruction () 1() (list 'restore reg)))

In the previous operations, fetch is different from the others in that it is not a complete
instruction, but rather it is a value fragment which is used to specify a source of data for an
instruction. We need other such fragment constructors as well:

(define (make-constant x)
(make-value () (list 'quote x)))

(define (make-variable-access var compilation-env)
(make-value '(env)

(list 'lookup-variable-value
(list 'quote var)
(value-of (make-fetch 'env)))))

Variable assignments and definitions turn into simple instructions which are probably
abstractions of rather complex processes in real machines. We use the p e r f o rm syntax to
indicate such instructions which are executed for effect on data structures or input-output
devices.

(define (make-variable-assignment var compilation-env val)
(make-instruction (set-union '(env) (needs-list val))

10
(list 'perform

(list 'set-variable-valuet
(list 'quote var)
(value-of val)
(value-of (make-fetch 'nv))))))

(define (make-variable-definition var compilation-env val)
(make-instruction (set-union '(env) (needs-list val))

10
(list 'perform

(list define-variablel
(list 'quote var)
(val ue-of val )
(value-of (make-fetch 'env))))))

There are a few other simple instruction fragments we need. Environments are extended
with the interpreter routine ex t e n d- e n v 1ronmen t.

(define (make-bindings-maker vars args env)
(make-value (list (needs-list args) (needs-list env))

(list 'extend-environment
(list 'quote vars)
(value-of args)
(value-of nv))))

Lambda expressions compile into code for the construction of procedures. Procedure
objects are constructed f rom compiled code by a -special routine,
make-compl7ed-Oosure, which combines a compiled procedure's entry point with the
current environment.

(define (make-procedure-maker entry)
(make-value '(env)

(list 'make-compiled-closure
entry
(value-of (make-fetch 'env)))))

When a compiled procedure is entered, it is necessary to switch to the environment of
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definition of the procedure-defining 7ambda expression extended by the binding of the
procedure's formal parameters to its arguments. This requires that procedure objects be
packaged up with their environment, as above. The environment is extracted from a compiled
procedure object with aspecial selector procedure, env-of comp i 7ed-c losure:

(define (make-env-ref fun)
(make-value (needs-list fun)

(list 'env-o-r-compiled-closure
(value-of fun))))

As in the interpreter, the list of evaluated arguments is started at n1l and is consed up
from pairs:

(define (make-singleton-arglist val)
(make-value (needs-list val)

(list 'cons (value-of val)

(defino (make-addition-to-arglist val args)
(make-value (set-union (needs-list val) (needs-list args))

(list 'cons (value-of val) (value-of args))))

There are just a few, low level details that have to be attended to 'in this compiler. For
example, instructions and instruction sequences must be represented:

(define (make-value needed-regs express-Ion)
(list needed-regs expression))

(define (needs-list value)
(if (symbol? value) Label

10
(car value)))

(define (value-of value)
(if (symbol? value)

value
(cadr value)))

(define (make-instruction needs mungs code)
(make-seq needs mungs (list code)))

(define (make-seq needs mungs seq)
(list needs mungs seq))

(define (the-empty-instruction-sequence)

(list 'O O M)

(define (mung-list seq) (cadr seq))
(define (statements seq) (caddr seq))

(define (safe-instruction-sequence seq)
(make-seq '() (statements sq)))

5.4-3. An example of compilation

To help us understand how our compiler actually works, it is useful to follow out the
beginning of the compilation of our simple recursive factorial program:

(def i ne ( rf act n)"
(cond ((< n 2 1).

(else (* n(rfact n 1))))))

We start up by calling the compfle procedure with the text of the definition as the
expression, compi7e just calls CMPf7e-expression (see page 342) with the given
expression, with the null environment, targeting the result to va 7 and continuing by returning
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the value developed:

(define (compile exp)
(compile-expression exp 'val 'return))

comp7le-expressionisthecompilationanalogofeva7inaninterpreter- tdispatches
on the expression type to the various code generators. We see that simple expressions like
self-evaluating, quoted expressions, and variables, are compiled on the spot. They just
compile into a sequence of a register assignment and the continuation which was specified
for the expression. The assignment is to the register which was specified in the target
argument. Since we were compiling a definition, the compiler dispatches to the specific code
generatorcompile-definition(seepage344)fordefinitions.

The code compiled is then constructed as a sequence of: The code required to evaluate the
definiens, the code required to modify the environment to install the definition, and the
continuation for after executing the definition (in this case the continuation is return,
because we are presuming a top-level definition.). Notice how the continuation of the
definiens is continued at the n ex t. In addition, the computation of the value of the definiens
isdonepreservingtheenvregister'svalue. Thisisbecausewewillneedtheenvironment
of the definition to install the newly defined variable with its value. One final point is that the
compilation of the value of the definiens is done in the environment assuming that the
definition has been done. Thus the code of te definiens can refer to the variable defined.
The compiler tries to maintain an environment parallel to the one to be available at run time.
The current compiler doesn't use its environment -- for example, for compiling variable
references -- it compiles variable references to go through the interpreter's search
mechanism. We will fix this in the last set of exercises. Thus the compilation of the definition
of factorial yields the following skeleton:

((VAL)
(<compilation of the definiens, preserving ENV, target VAD

(DEFINE-VARIABLEI IRFACT (FETCH VAL) (FETCH ENV))
.(GOTO RETURN)

Now the definiens of the definition we are compiling I's

(lambda (n)
(cond ((= n 0) 1)

(else (* n (rfact n 1))))))

so compl7e-expression dispatches to compl7e-7ambda (see page 49) where the
procedure definition is further compiled. Here, code is produced to construct the assignment
to the target register of the closure of the compiled procedure with its environment. The
sequence must then jump around the procedure body (which is given an entry-point and
compiled in-line) or it must continue at te given continuation if it is not just part of an in-line
sequence.

This compilation of the definiens; produces the following refinement of the skeleton. In the
current case, the continuation of the definiens is next so the code jumps around the body.
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((ENV CONTINUE) (VAL)
((ASSIGN VAL (MAKE-COMPILED-CLOSURE ENTRY1 (FETCH ENV)))

(GOTO AFTER-LAMBDA2)
ENTRYI
<compilation of the definiens>
AFTER-LAMBDA2
(PERFORM (DEFINE-VARIABLEI RFACT (FETCH VAL) (FETCH ENV)))
(RESTORE CONTINUE)
(GOTO (FETCH CONTINUE))))

Now the body of the lambda expression must be compiled. It must have the given entry
point, entryl, and it must bind the arguments to the formal parameters. In addition, the
presence of the lambda body in the sequence of instructions does not destroy any registers,
because that code is not executed by the sequence, only by the call. This code generator
produces the following instructions in this case:

((ENV CONTINUE) (VAL)
((ASSIGN VAL (MAKE-COMPILED-CLOSURE ENTRY1 (FETCH ENV)))

(GOTO AFTER-LAMBDA2)
ENTRY1
(ASSIGN ENV (ENV-OF-COMPILED-CLOSURE (FETCH FUN)))
(ASSIGN ENV (EXTEND-E-NVIRONMENT (N) FETCH ARGL) FETCH ENV)))
<compilation of the body of the definiens>
AFTER-LAMBDA2
(PERFORM (DEFINE-VARIABLEI RFACT FETCH VAL) (FETCH ENV)))
(RESTORE CONTINUE)
(GOTO FETCH CONTINUE))))

Ad nauseum. I will not go through any more of this code explicitly. The full compilation of
the procedure is as follows:
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((ENV CONTINUE) (VAL)
((ASSIGN VAL (MAKE-COMPILED-CLOSURE ENTRY1 FETCH ENV)))

(GOTO AFTER-LAMBDA2)
ENTRY1
(ASSIGN ENV (ENV-OF-COMPILED-CLOSURE FETCH FUN)))
(ASSIGN ENV (EXTEND-ENVIRONMENT (N) FETCH ARGQ (FETCH ENV)))
(SAVE ENV)
(ASSIGN FUN (LOOKUP-VARIABLE-VALUE < (FETCH ENV)))
(ASSIGN VAL (LOOKUP-VARIABLE-VALUE 'N (FETCH ENV)))
(ASSIGN ARGL (CONS FETCH VAL) NIL))
(ASSIGN VAL 2)
(ASSIGN ARGL (CONS (FETCH VAL) (FETCH ARGL)))
(ASSIGN CONTINUE AFTER-CALL6)
(SAVE CONTINUE)
(GOTO APPLY-DISPATCH)
AFTER-CALL6
(RESTORE ENV)
(BRANCH FETCH VAL) TRUE-BRANCH3)
(ASSIGN FUN (LOOKUP-VARIABLE-VALUE (FETCH ENV)))
(SAVE FUN)
(ASSIGN VAL (LOOKUP-VARIABLE-VALUE 'N (FETCH ENV)))
(ASSIGN ARGL (CONS (FETCH VAL) NIL))
(SAVE ARGL)
(ASSIGN FUN (LOOKUP-VARIABLE-VALUE 'FACT (FETCH ENV)))
(SAVE FUN)
(ASSIGN FUN (LOOKUP-VARIABLE-VALUE '- (FETCH ENV)))
(ASSIGN VAL (LOOKUP-VARIABLE-VALUE 'N (FETCH NV)))
(ASSIGN ARGL (CONS (FETCH VAL) NIL))
(ASSIGN VAL '1)
(ASSIGN ARGL (CONS (FETCH VAL) (FETCH ARGL)))
(ASSIGN CONTINUE AFTER-CALL5)
(SAVE CONTINUE)
(GOTO APPLY-DISPATCH)
AFTER-CALL5
(ASSIGN ARGL (CONS (FETCH VAL) NIL))
(RESTORE FUN)
(ASSIGN CONTINUE AFTER-CALL4)
(SAVE CONTINUE)
(GOTO APPLY-DISPATCH)
AFTER-CALL4
(RESTORE ARGL)
(ASSIGN ARGL (CONS (FETCH VAL) (FETCH ARGL)))
(RESTORE FUN)
(GOTO APPLY-DISPATCH)
TRUE-BRANCH3
(ASSIGN VAL 'I)

,(RESTORE CONTINUE)
(GOTO (FETCH CONTINUE))
AFTER-LAMBDA2
(PERFORM (DEFINE-VARIABLEI 'RFACT (FETCH VAL) (FETCH ENV)))
(RESTORE CONTINUE)
(GOTO (FETCH CONTINUE))))

5.4.4. Problem section: Compiled Code

This section requires that you have access to files containing the code of the compiler we
have developed in the notes.

We can compile expressions by using the Scheme procedure comp 77 e. Thus we can see
what kind of code some expression will turn into by calling comp 1 e on that expression and
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pretty-printing the answer. Thus, for example, the code above was constructed by typing at
Scheme, not the embedded model evaluator. We typed:

(define foo
'(define (rfact n)

(cond ( (< n 2 
(else (* n (rfact n 1)))))))

(pp (compile foo))

Exercise5-14: Consider the compilation of the followingprocedures for computing factorials:

(define (rfact
(cond ( (< n 2 

(else (* n (rfact - n 1))))

(define (rrfact n)
(cond ((< n 2 

(else (* (rrfact (- n 1 n)

(define (ifact n)
(define (iter count answer)

(cond ((> count n) answer)
(else (iter (+ count 1) (* count ans)))))

.(iter 2 1))

The compilation of program r f a c t is given in the notes above.

1 .Compile program rr f a c t and produce a listing of the resulting register-transfer code. Compare
the listings of the compilations of rfact and rrfact. Are the an dfferences? Explain the
differences you find in the compiled code -- why did the compiler make these differences? Which
program executes more ef f iciently?

2. Compile program if act. Annotate the listings showing the essential difference between ifact
and rfact or rrfact that makes ffact evolve iterative processes while rfact and rrfact
evolve recursive processes.

We have arranged that our evaluator to be able to call code compiled by the compiler.
Thus we can compare the performance of programs compiled with the performance of
programs interpreted..

Exercise 515: We can consider the run-time properties of compiled code as well as its static
properties. You are to make another table, similar to the one made for the interpretive versions of the
programs. We want expressions in n, the input argument to factorial, which give the approximate
numbers of pushes and the approximate maximum depth of stack generated by compiled code for
rfact and ffact. You can execute a compiled program by using the procedure compl7e-and-go
from Scheme. This should be used to,,for example, load a def ine into the model evaluator, and then
use it as follows:

--- > (compile-and-go '(define (square x) x x)))
<COMPILED-PROCIDURE>
(TOTAL-PUSHES 1) (MAXIMUM-DEPTH 
**==> (square 4)
16
(TOTAL-PUSHES 7 (MAXIMUM-DEPTH 4)
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5.4.5. Problem section: Compiled Lexical Lookup

The compiler we prepared does not do anything very special with variables, though one of
the most common optimizations made by compilers is the optimization of variable lookup.
The problem is that the interpreter lookup routines search for the variable to be accessed, by
comparing each variable in the environment with the one to be looked up. Consider, for
example, looking for the value of x in an environment which has several frames, some of
which have several variables:

((lambda (x y)
(lambda (a b c d e)

((lambda (y z) (* X y z))
a b c y)

(+ c d e))))
3
4)

In the interpreter, it is necessary for the lookup routine to search for x, noticing tat it is not
y or z or a or b or c or d or e But the compiler can know that and just realize that x i's two
frames out of the current environment and the first variable in that frame. In the last exercise
before we started on the compiler you should have observed that the environments always
have a structure which is parallel to the lexical structure of the language. That is how the
static scoping works. Here, we will augment the compiler/interpreter system to implement
"lexical addressing" in compiled code.

The idea'is that we will invent a new kind of lookup operation on environments,
lex 1ca 7 address- lookup, which will take two numbers, a frame number, telling how many
frames to pass over, and a displacement number, telling which variable to access 'in that
frame, and an environment. 7ex ica 7 address- lookup will then produce the value of the
variable stored at that lexical address relative to the current environment. The lexical address
of a variable is not constant, but depends upon where we are in the code. For example, in the
following program, in expression El the address of x is <2 0 -- two frames back and the first
variable in the frame. At that point y is at address <0 W, and c is at address <1 2 In
expression E2 the address of x is now <1 0>, y is <1 1>, and c is <1 2X

((lambda (x y)
(lambda (a b c d e)

((lambda (y z) El)
E2
(+ c d e))))

3
4)

Exercise 516: Write lexica7-address-7ookup, taking three arguments, two numbers and an
environment, which returns the value of the variable stored at the lexical address given.

Our next problem is getting the compiler to spit out the correct calls to
I ex 7ca 7 -a ddres s - 7 ookup rather than I ook up - va r i ab 7 e- va 7 ue. The basic idea is that
the compiler Mst determine, in its own environment, which is hopefully parallel to that'which
will be in effect at interpretation time, the position of the desired variable. If the variable does
not occur in the compil e'r's environment it is assumed to be global and must be searched
using the interpreter's mechanism, lookup-varlab7e-va7ue. So we need a program
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which will scan the compiler's environment, which is 'ust a list of the lists of bound variables
available, to produce a lexical address -- call it f7l'nd-varlable.

Exercise 517: For example, in the code above, at position el the compiler will have the compiler
environment ( (y z) a b c d e) (x y) ). Write f i n d- va r a b 7 to produce:

(find-variable Ic '((y z) (a b c d e) (x y))) (1 2)
(find-variable 'x '((y z) (a b c d e) (x y))) (2 0)
(find-variable '+ '((y z) (a b c d e) (x y))) NIL

Exercise 518: Now we have enough stuff to do the job. Modify make-variab7e-access to use
find-variable and output a lexical address lookup in cases where find-variab7e found the
variable in question. Install your patches into the compiler and compile i f a c t. List the resulting code
and run it to prove that it works.

5.5. Summary

We have learned a bit about the technology of computer language implementation. We
have seen a language exposed in terms of a meta-circular e va I app 7y interpreter. Such a
formulation is excellent for quickly bringing up and playing with a proposed linguistic idea. It
is an excellent medium for discussions of comparative linguistics -- for arguing about features
and bugs, For example, when we wish to discuss some aspect of a proposed modification to
Lisp with another member of the Lisp community we usually mail him a meta-circular'
interpreter implementing the change. The recipient can thus play with the new interpreter
with his machine, and then he can send back his comments as further modifications.

We have seen a LISP interpreter implemented in a simulated register-transfer language
similar to the native machine language of most computers. In this form we saw the control of
the interpreter quite clearly. We learned about using a stack to implement recursive
procedures. We learned about tail-recursion and iteration. The register-transfer level is an
excellent medium for discussing implementation issues, like the ideas of having several stacks
or the ideas of having special argument-passing registers. The only non-physical
assumptions in this model appear in the storage allocation primitives of the underlying
language. We at first assumed the existence of cons, car, and cdr as hardware primitives.

We ten examined garbage-collection, a technique designed to maintain t he illusion of an
infinite, list-structured memory in the face of a finite, linearly-organized memory. We studied a
particular storage-allocation and garbage-collection scheme comparable with a register.
transfer implementation.

Finally, we studied a simple compiler for code from surface Scheme to the register-transfer
form which we used to express our interpreter. We used this to learn about the stack
discipline and how it can be optimized. We saw how compiled code can be incorporated into
an interpretive run-time environment.
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Appendix I
Using Environments to Create Packages-

This appendix isn't written yet. See next draft.
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