e
¢ Technical Report 735 '

Structure & Interpretation
of Computer Programs

Harold Abelson
Gerald Jay Sussman

MIT Artificial Intelligence Laboratory

DRAFT: 31 JULY 1983 i

Table of Contents

1. Building Abstractions with Procedures 7
1.1. The Elements of Programming]
1.1.1, Expressions 10
1.1.2. Naming and the Environment 12
1.1.3. Evaluating Combinations ' , 13
1.1.4. Compound procedures 16
1.1.5. The Substitution Model for Procedure Evaluation 18
1.1.6. Conditional Expressions and Predicates 20
1.1.7. Example: Square Roots by Newton’s Method 23
1.1.8. Procedures as Black-Box Abstractions 26
1.2. Procedures and the Processes they Generate 30
1.2.1. Linear Recursion and lteration 31
1.2.2. Tree Recursion A 35
1.2.3. Orders of Growth 39
1.2.4. Exponentiation 40
1.2.5. Greatest Common Divisors 42
1.2.6. Example: Testing for Primality 44
1.3. Formulating Abstractions with Higher Order Procedures 48
1.3.1. Procedures as Parameters 49
1.3.2. Constructing Procedures using LAMBDA 52
1.3.3. Procedures as General Methods 56
1.3.4. Procedures as Returned Values 61
2. Building Abstractions with Data 65
2.1. Introduction to Data Abstraction 68
2.1.1. Example: Arithmetic Operators for Rational Numbers - 68
2.1.2. Abstraction Barriers 72
2.1.3. What is Data? 74
2.1.4. Example: Interval Arithmetic 76
2.2. Hierarchical Data 79
2.2.1. Representing Sequences 80
2.2.2. Representing Trees 85
2.2.3. Symbolic Expressions; The Need for QUOTE 88
2.2.4. Example: Symbolic Differentiation 91
2.2.5. Example: Representing Sets 95
2.2.6. Example: Huffman Encoding Trees ‘ 102
2.3. Multiple Representations for Abstract Data 109
2.3.1. Representations for Complex Numbers 111
2.3.2. Manifest Types : 114
2.3.3. Data-directed Programming 118

2.4. Systems with Generic Operators ' 122

i) DRAFT: 31 JULY 1983

2.4.1. Generic Arithmetic Operators
2.4.2, Combining Operands of Different Types
2.4.3. Example: Symbolic Algebra ’

3. Modularity, Objects, and State

3.1. Assignment and Local State
3.1.1. Local State Variables
3.1.2. The Costs of Introducing Assignment
3.1.3. The Benefits of Introducing Assignment

3.2. The Environment Model of Evaluation
3.2.1. The Rules for Evaluation
3.2.2. Evaluating Simple Procedures
3.2.3. Frames as the Repository of Local State
3.2.4. Internal Definitions

3.3. Modeling with Mutable Data
3.3.1. Mutable List Structure
3.3.2. Representing Queues

i 3.3.3. Representing Tables
§ 3.3.4. A Simulator for Digital Circuits

3.3.5. Propagation of Constraints

3.4. Stream Processing
3.4.1. Streams as Standard Interfaces
3.4.2. Higher Order Procedures for Streams
3.4.3. Streams and Delayed Evaluation
3.4.4. Infinitely Long Streams
3.4.5. Streams as Signals
3.4.6. Using Streams to Model Local State

4, Meta-Linguistic Abstraction

4.1. The Meta-circular Evaluator

4.1.1. The core of the evaluator: EVAL and APPLY

4.1.2. Representing Expressions

4.1.3. Representing environments

4.1.4. Running the Evaluator as a Lisp Program

4.1.5. EVAL: Treating Expressions as Programs
4.2. Variations on a Scheme

4.2.1. Alternative Binding Disciplines

4.2.2. Example: Delayed evaluation
4.3. Logic Programming

4.3.1. Deductive Information Retrieval

4.,3.2. How the Query System Works

4,3.3. The Query Evaluator

4.3.4. Is Logic Programming Mathematical Logic?
4.4, Implementing the Query System

Table of Contents

123
126
131

143

144
144
149
163
186
157
160
162
167
170
170
178
182
186
196
205
205
209
218
223
229
234
239

241
243
246
250
252
254
257
- 257
261
263
266
272
278
280
284

DRAFT: 31 JULY 1983

4.4.1. Driver Loop and Syntax Processing
4.4.2. The Evaluator

4.4.3. Pattern Matching and Finding Assertions
4.4.4, Rules and Unification

4.4.5, Maintaining the Data Base

4.4.6. Utility Procedures

5. Register Machine Model of Control

5.1. Computing with register machines

5.1.1. Register transfer machine language

5.1.2. Compound submachines

5.1.3. Sharing in machines

5.1.4. Using a stack to implement recursion

5.1.5. Problem section: A register machine simulator
5.2. The explicit control evaluator

5.2.1. Problem section: Performance Analysis of the Evaluator
5.3. Storage allocation and garbage collection

5.3.1. Memory as vectors

5.3.2. Supporting the illusion of infinite memory
5.4. Compilation

5.4.1. Our system

5.4.2. Representations

5.4.3. An example of compilation

5.4.4. Problem section: Compiled Code

5.4.5. Problem section: Compiled Lexical Lookup
5.5. Summary

Appendix |. Using Environments to Create Packages
References
Index

284

285
287
289
291
294

299

300
302
304
305
308
313
318
329
332
332
333
338
339
349
352
355
357
358

359
361
365

DRAFT: 31 JULY 1983

DRAFT: 31 JULY 1983

| List of Exercises

Chapter 1: Building Abstractions with Procedures

Exercise 1-1 22

Exercise 1-2 23

Exercise 1-3 23

Exercise 1-4 23

Exercise 1-5 25

Exercise 1-6 26

Exercise 1-7 26

Exercise 1-8 34

Exercise 1-9 34

Exercise 1-10 39
Exercise 1-11 40
Exercise 1-12 42
Exercise 1-13 42
Exercise 1-14 42
Exercise 1-15 42
Exercise 1-16 44
Exercise 1-17 47
Exercise 1-18 47
Exercise 1-19 47
Exercise 1-20 47
Exercise 1-21 47
Exercise 1-22 48
Exercise 1-23 48
Exercise 1-24 51
Exercise 1-25 51
Exercise 1-26 51
Exercise 1-27 52
Exercise 1-28 55
Exercise 1-29 56
Exercise 1-30 61
Exercise 1-31 61
Exercise 1-32 61
Exercise 1-33 63
Exercise 1-34 64
Exercise 1-35 64
Exercise 1-36 64

Chapter 2: Building Abstractions with Data

Exercise 2-1 72
Exercise 2-2 73
Exercise 2-3 756
Exercise 2-4 76
Exercise 2-5 76
Exercise 2-6 77
Exercise 2.7 77
Exercise 2-8 77
Exercise 2-9 77
Exercise 2-10 77

S FE Ut S

Exercise 2-11 78
Exercise 2-12 78
Exercise 2-13 78
Exercise 2-14 79
Exercise 2-15 79
Exercise 2-16 83
Exercise 2-17 83
Exercise 2-18 83
Exercise 2-19 83
Exercise 2-20 84
Exercise 2-21 84
Exercise 2-22 85
Exercise 2-23 87
Exercise 2-24 87
Exercise 2-25 87
Exercise 2-26 90
Exercise 2-27 91
Exercise 2-28 91
Exercise 2-29 95
Exercise 2-30 95
Exercise 2-31 97
Exercise 2-32 97
Exercise 2-33 98
Exercise 2-34 99
Exercise 2-35 101
Exercise 2-36 102
Exercise 2-37 107
Exercise 2-38 108
Exercise 2-39 108
Exercise 2-40 108
Exercise 2-41 108
Exercise 2-42 109
Exercise 2-43 120
Exercise 2-44 121
Exercise 2-45 122
Exercise 2-46 122
Exercise 2-47 124
Exercise 2-48 125
Exercise 2-49 126
Exercise 2-50 130
Exercise 2-51 130
Exercise 2-52 130
Exercise 2-53 131
Exercise 2-54 131
Exercise 2-55 131
Exercise 2-56 131
Exercise 2-57 136
Exercise 2-58 136
Exercise 2-59 136
Exercise 2-60 138

" Exercise 2-61 137

Exercise 2-62 138
Exercise 2-63 138
Exercise 2-64 139

DRAFT: 31 JULY 1983

List of Exercises

Exercise 2-65 139
Exercise 2-66 140
Exercise 2-67 140
Exercise 2-68 141

Exercise 3-1 148
Exercise 3-2 149
Exercise 3-3 149
Exercise 3-4 149
Exercise 3-5 152
Exercise 3-6 153
Exercise 3-7 155
Exercise 3-8 161
Exercise 3-9 166
Exercise 3-10 169
Exercise 3-11 173
Exercise 3-12 174
Exercise 3-13 174
Exercise 3-14 176

Exercise 3-15 177

Exercise 3-16 177
Exercise 3-17 178
Exercise 3-18 182
Exercise 3-19 182
Exercise 3-20 182
Exercise 3-21 185
Exercise 3-22 185
Exercise 3-23 185
Exercise 3-24 186
Exercise 3-25 180
Exercise 3-26 190
Exercise 3-27 190
Exercise 3-28 194
Exercise 3-29 203
Exercise 3-30 203

Exercise 3-31 203

Exercise 3-32 204
Exercise 3-33 204
Exercise 3-34 218
Exercise 3-35 216
Exercise 3-36 216
Exercise 3-37 217
Exercise 3-38 217
Exercise 3-39 222

Exercise 3-40 222

Exercise 3-41 226
Exercise 3-42 227
Exercise 3-43 227
Exercise 3-44 227
Exercise 3-45 228
Exercise 3-46 228
Exercise 3-47 228

DRAFT: 31 JULY 1983

Chapter 3: Modularity, Objects, and State

vii

viii

Exercise 3-48 230
Exercise 3-49 230
Exercise 3-50 231
Exercise 3-51 231
Exercise 3-52 232
Exercise 3-53 233
Exercise 3-54 233
Exercise 3-565 233
Exercise 3-56 233
Exercise 3-57 235
Exercise 3-58 236

DRAFT: 31 JULY 1983

Chapter 4: Meta-Linguistic Abstraction .‘

Exercise 4-1 244
Exercise 4-2 249
Exercise 4-3 249
Exercise 4-4 249
Exercise 4-5 252
Exercise 4-6 252 .
Exercise 4-7 253
Exercise 4-8 256
Exercise 4-9 260
Exercise 4-10 260
Exercise 4-11 260
Exercise 4-12 260
Exercise 4-13 262
Exercise 4-14 262
Exercise 4-15 262
Exercise 4-16 262
Exercise 4-17 268
Exercise 4-18 269
Exercise 4-19 270
Exercise 4-20 271
Exercise 4-21 271
Exercise 4-22 272
Exercise 4-23 282
Exercise 4-24 282
Exercise 4-25 283
Exercise 4-26 283
Exercise 4-27 296
Exercise 4-28 297
Exercise 4-29 297
Exercise 4-30 297

Chapter 5: Register Machine Model of Control -

Exercise 5-1 312
Exercise 5-2 313
Exercise 5-3 313
Exercise 5-4 318
Exercise 5-5 318
Exercise 5-6 318
Exercise 5-7 330
Exercise 5-8 330

List of Exercises

Exercise 5-9 331

Exercise 5-10 331
Exercise 5-11 331
Exercise 5-12 331
Exercise 5-13 338
Exercise 5-14 356
Exercise 5-15 356
Exercise 5-16 357
Exercise 5-17 358
Exercise 5-18 358

DRAFT: 31 JULY: 1983

DRAFT: 31 JULY 1983

Structure and Interpretation of Computer Programs

Harold Abelson
Gerald Jay Sussman

Department of Elecirical Engineering and Computer Science
Massachusetts Institute of Technology

DRAFT: 31 JULY 1983

Copyright (C) 1983 H. Abelson, G.J. Sgssﬁm:an'-'- All Rights Reserved. ‘

This is a preliminary draft of a book to be pubhshed in the sprmg of 1984 by the MIT Press and -
McGraw-Hill. Any comments and suggestions will be greatly appreciated. Please send them

to HAL@MIT-MC or GJS@MIT-OZ, or. mail them to Harold Abelson or Gerald Jay Sussman,

545 Technology Square, Mi T, Cambndge, Ma

I think that it’s extraordinarily important that we in
computer science keep fun in computing. When it
started out, it was an awful lot of fun. Of course, the
paying customers got shafted every now and then, and
after a while we began to take their complaints
seriously. We began to feel as if we really were
responsible for the successful, error-free perfect use
of these machines. | don't think we are. | think we’re
responsible for stretching them, setting them off in
new directions, and keeping fun in the house. | hope
the field of computer science never loses its sense of
fun. Above all, | hope we don't become missionaries.
Don't feel as if you're Bible salesmen. The world has
too many of those already. What you know about
computing other people will learn. Don't feel as if the

~ key to successful computing is only in your hands.
What's in your hands, I think and hope, is intelligence:
the ability to see the machine as more than when you
were first led up to it, that you can make it more.

-- Alan Perlis

This book is dedicated, in respect and admiration:

To the spirit that lives in the computer.

DRAFT: 31 JULY 1983 3

Prologue

A computer is like a violin. You can imagine a novice
trying first a phonograph and then a violin. The latter,
he says, sounds terrible. That is the argument we
have heard from our humanists and most of our
computer scientists. Computer programs are good,
they say, for particular purposes, but they aren'’t
flexible. Neither is a violin, or a typewriter, until you
learn how to use it.

Marvin Minsky, Why Programming is a Good
Medium for Expressing Poorly-Understood and
Sloppily-Formulated Ideas :

“The Structure and Interpretation of Computer Programs” is the entry-level subject in
Computer Science a! the Massachusetts Institutue of Technology. It is required of all
students at MIT who major in Electrical Engineering or in Computer Science, as one fourth of
the “common core curriculum,” which also includes two subjects on circuits and linear
systems and a subject on the design of digital systems. We have been involved in the
development of this subject since 1978, and we have taught this material in its present form
since the fall of 1980 to approximately 6CO students each year. Most of these students have
had little or no prior formal training in computation, although most have played with
computers a bit and a few have had extensive programming or hardware design experience.

Our design of this introductory Computer Science subject reflects two major concerns.
First, we want to establish the idea that a computer language is not just a way of getting a
computer to perform operations, but rather that it is a novel formal medium for expressing
ideas about methodology. Thus, programs must be written for people to read, and only
incidentally for machines to execute. Secondly, we believe that the essential material to be
addressed by a subject at this level, is not the syntax of particular programming language
constructs, nor clever algorithms for computing particular functions efficiently, nor even the
mathematical analysis of algorithms and the foundations of computing, but rather the
techniques used to control the intellectual complexity of large software systems.

Our goal is that a student who completes this subject should have a good feel for the
elements of style and the aesthetics of programming. He should also have command of the
major techniques for controlling complexity in a large system. He should be capable of
reading a 50 page long program, if it is written in an exemplary style. He should know what
not to read, and what he need not understand at any moment. Thus he should feel secure
about modifying & program, retaining the spirit and style ot the original author.

These skills are by no means unique to computer programming. The techniques we teach
and draw upon are common to all of engineering design. We control complexity by building
abstractions that hide details when appropriate. We control complexity by establishing
conventional interfaces that enable us to construct systems by combining standard, well-
understood pieces in a “mix and match” way. We control complexity by establishing new
languages for describing a design, each of which emphasizes particular aspects of the design
and de-emphasizes others.

4 DRAFT: 31 JULY 1983 ' Prologue

3

Underlying our approach to this subject is our conviction that “Computer Science” is not a
science, and that its significance has has little to do with computers. The computer revolution
is a revolution in the way we think, and in the way in which we express what we think. The
essence of this change is the emergence of what might best be called procedural
epistemology -- the study of the structure of knowledge from an imperative point of view, as
opposed to the more declarative point of view taken by classical mathematical subjects.
Mathematics provides a framework for precisely dealing with notions of “what is”.
Computation provides a framework for precisely dealing with notions of “how to.”

In teaching our material we use a dialect of the programming language Lisp. We never
formally teach the language, because we don’t have to. We just use it, and students pick it up
in a few days. This is one great advantage of Lisp-like languages: They have very few ways of
forming compound expressions, and almost no syntactic structure. All of the formal
properties covered in an hour, like the rules of chess. After a short time we forget about
details of the language (because there are none) and get on with the real issues -- figuring out
what we want to compute, how we will decompose problems into manageable parts, and how
we will work on the parts. Another advantage of Lisp is that it supports (but does not enforce)
more of the large-scale strategies for modular decomposition of programs than any other
language we know. We can make procedural and data abstractions; we can use high-order
functions to capture common patterns of usage; we can model local state using assignment
and data mutation; we can link parts of a program with streams; and we can easily implement
embedded languages. All of this is embedded in an interactive environment with excellent
support for incremental program design, construction, testing, and debugging. We thank all
of the generations of Lisp wizards, starting with John McCarthy, who have fashioned a fine
tool of unprecedented power and elegance.

Scheme, the dialect of Lisp that we use, is an attempt to bring together the power and
elegance of Lisp and Algol-60. From Lisp we take the meta-linguistic power, deriving from the
simple syntax, the uniform representation of programs as data objects, and the garbage-
coliected heap-allocated data. From Algol we take the lexical scoping rule, and block
structure, which are gifts from the pioneers of programming language design who were on the
Algol-60 committee. We wish to cite John Reynolds and Peter Landin for their insights into
the relationship of Church’'s Lambda Calculus to the structure of programming languages.
We also recognize our debt to the mathematicians who scouted out this territory decades
before computers appeared on the scene. Our heroes include Alonzo Church, Barkley
Rosser, Stephen Kleene, and Haskell Curry.

Acknowledgements ,

We would like to thank all of the people who have helped us develop this book and this
curriculum,

Our subject is a clear intellectual descendant of “6.231,” a wonderful subject on
programming linguistics in the lambda calculus, taught by Jack Wozencraft and Arthur Evans,
Jr. at MIT in the late 1960's, -

We owe a great debt to Robert Fano, who reorganized the introductory curriculum around
the principles of engineering design. He led us in starting out on this enterprise, and wrote
the first set of subject notes from which this book evolved.

Much of the style and aesthetics of programming which we try to teach in 6.001 were

DRAFT: 31 JULY 1983 5

developed in conjunction with Guy Lewis Steele Jr., who collaborated with Sussman in the
initial development of the Scheme language.

Joel Moses taught us about structuring large systems. His experience with the Macsyma
system provided the insight that one should avoid complexities of control and concentrate on
organizing the data to reflect the real structure of the world being modeled.

Marvin Minsky and Seymour Papert formed many of our attitudes about programming and
its place in our intellectual lives. To them we owe the understanding that computation
provides a means of expression for exploring ideas which would otherwise be too complex to
deal with precisely. They emphasize that a student’s ability to write and modify programs
provides a powerful medium in which exploring becomes a natural activity.

To this we added an attitude from Alan Perlis that programming is lots of fun, and we had
better be careful to support the joy of programming. Part of this joy derives from observing
great artists at work. We are fortunate to have programmed at the feet of Bill Gosper and
Richard Greenblatt.

It is difficult to identify all of the people who have made particular technical contributions to
the development of our curriculum. We thank all the recitation instructors and tutors who
have worked with us over the past few years, especially Bill Siebert, Albert Meyer, Joe Stoy,
and Randy Davis, who put in many extra hours on our subject. Julie Sussman has
painstakingly read many drafts of the manuscript, working out every exercise, and catching
many bugs. (Unfortunately, we have introduced new bugs in later drafts.) Julie's incisive
comments and clear anticipation of student problems has been a major help to us in
organizing this presentation. David Turner, Peter Henderson, Dan Freidman, David Wise, and
Will Clinger have taught us many of the techniques of the functional programming community
that appear in this book. :

It is also hard to enumerate all of the people who have made particular technical
contributions to the development of the Scheme systems we use for instructional purposes.
In addition to Guy Steele, principal wizards have included Chris Hanson, Joe Bowbeer, Jim
Miller, and Guillermo Rozas. Others who have put in significant time are been: Richard
Staliman, Alan Bawden, Kent Pitman, Jon Taft, Neil Mayle, Jon Lamping, Gwyn Osnos, Tracy
Larabee, George Carrette, Soma Chaudhuri, Bill Chiarchiaro, Steven Kirsch, Leigh Klotz,
Wayne Noss, Patrick O’Donnell, Kevin Theobald, Daniel Weise, Kenneth Sinclair, Anthony
Courtmanche, and Andrew Berlin.

We are pleased that others are working on similar language implementations and we hope
that we will continue to learn from each other’s activity. We want especially to draw attention
to the work on “T” by Jon Rees Kent Pitman and others at Yale, and the work on
“Scheme-311"" by Mitch Wand, Will Clinger, Dan Friedman, and others at the University of
Indiana. "

Finally, we would like to thank all of the people who have supported and encouraged this
work, including Ira Goldstein and Joel Birnbaum at Hewlett-Packard Laboratories and Bob .
Kahn at DARPA.

DRAFT: 31 JULY 1983

DRAFT: 31 JULY 1983 ’ 7

~ Chapter 1 |
Building Abstractions with Procedures

The acts of the mind, wherein it exerts its power over
simple ideas, are chiefly these three: 1. Combining
several simple ideas into one compound one, and thus
all complex ideas are made. 2. The second is bringing
two ideas, whether simple or complex, together, and
setting them by one another so as to take a view of
them at once, without uniting them into one, by which
it gets all its ideas of relations. 3. The third is
separating them from all other ideas that accompany
them in their real existence: this is called abstraction,
and thus all its general ideas are made.

--John Locke, An Essay Concerning Human
Understanding (1690)

We are about to study the idea of a computational process. Computational processes are
abstract, almost magical beings that inhabit computers. Processes manipulate other abstract
things called data. In their tasks, processes are directed by sets of rules or patterns called
programs. Human engineers create programs to direct processes. In effect, we conjure
spirits of the computer with our spells.

A computational process is indeed very like the sorcerer’s idea of a spirit. It cannot be seen
or touched. It is not composed of matter at all. However, it is very real. It can perform
intellectual work. It can answer questions. It can affect the world by disbursing money at a
bank or by controlling a robot arm in a factory. The programs we use to conjure processes
are very much like a sorcerer’s spells. They are carefully composed from symbolic
expressions in arcane and esoteric programming languages that prescribe the tasks that we
want our processes to perform.

A computational process, in a correctly working computer, executes programs precisely
and accurately. Thus, like the proverbial sorcerer’s apprentice, the problem of the novice
programmer is to understand and to anticipate the consequences of his conjuring. Even
small errors (usually called bugs or glitches) in programs can have complex and
unanticipated consequences.

Fortunately, learning to program is considerably less dangerous than learning sorcery,
because the spirits we deal with are conveniently contained in a secure way. Real world
programming, however, requires care, expertise, and wisdom. A small bug in a computer-
aided design program, for example, can lead to the catastrophic collapse of an airplane or a
dam, or the self-destruction of an industrial robot.

A master software engineer has the ability to organize programs so that he can be
reasonably sure his processes will perform the tasks intended. He can previsualize the
behavior of his system. He knows how to structure his programs so that unanticipated
problems do not lead to’ catastrophic consequences, and when problems do arise, he can
debug his programs. Well-desighed computational systems, like well-designed automobiles

8 ’ DRAFT: 31 JULY 198Building Abstractions with Procedures

or nuclear reactors, are designed in a modular manner, so that the parts can be constructed,
replaced, and debugged separately. '

Programming in Lisp

We need an appropriate language for describing processes, and we will use for this
purpose the programming language Lisp. Just as our everyday thoughts are usually
expressed in our natural language (such as English, or French, or Japanese), and
descriptions of quantitative phenomena are expressed with mathematical notations, our
procedural thoughts will be expressed in Lisp. Lisp was invented in the late 1950’s as a
formalism for reasoning about the use of certain kinds of logical expressions, called recursiorn
equations, as a model for computation. The language was conceived by John McCarthy and
is based on his paper “Recursive Functions of Symbolic Expressions and Their Computation
by Machine” [30].

Despite its inception as a mathematical formalism, Lisp is a practical programming
language. A Lisp interpreter is a machine (commonly implemented as a program that makes.a
commercial computer simulate a machine) that carries out processes described in the Lisp
fanguage. The first Lisp interpreter was implemented by McCarthy with the help of colleagues
and students in the Artificial Intelligence Group of the MIT Research Laboratory of Electronics
and in the MIT Computation Center.’ Lisp, whose name is an acronym for LISt Processing,
was designed to provide symbol manipulating capabilities for attacking programming
problems such as the symbolic differentiation and integration of algebraic expressions. It
included for this purpose new data objects known as atoms and lists, which most strikingly set
it apart from all other languages of the period.

Lisp was not the product of a concerted design effort. Instead, it evolved informally in an
experimental manner in response to user needs and pragmatic implementation
considerations. Lisp's informal evolution has continued through the years, and the
community of Lisp users has traditionally resisted attempts to promulgate any ‘official’
definition of the language. This evolution, together with the flexibility and elegance of the
initial conception, has enabled Lisp, which is the second oldest language in widespread use
today (only Fortran is older), to continually adapt to encompass the most modern ideas about
program design. Thus Lisp is by now a family of dialects, which, while sharing most of the
original features, may differ from one another in significant ways. The dialect of Lisp used in

1The “Lisp 1 Programmer's Manual" appeared in 1960, and the “Lisp 1.5 Programmer's Manual” {31] was
published in 1962. The eaily history of Lisp is described by McCarthy in [32].

1 , DRAFT: 31 JULY 1983 9

this book is called Scheme.?

Because of its experimental character and its emphasis on symbol manipulation, Lisp was
originally inordinately inefficient for numerical computations, at least when compared to
Fortran. Over the past fifteen years, however, Lisp compilers have been developed that
translate programs into machine code that can perform numerical computations as efficiently
as code generated from any other high-level language. In spite of this, Lisp has not yet
overcome its old reputation as a hopelessly inefficient language, and its use is still localized in
a few research laboratories.

If Lisp is not a popular language, why are we using it as the framework for our discussion of
programming? Because the language possesses unique features that make it an excellent
medium for studying important programming constructs and data structures, and for relating
them to the linguistic features that support them. The most significant of these features is the
fact that Lisp descriptions of processes, called procedures, can themselves be represented
and manipulated as Lisp data. The importance of this is that there are powerful program
design techniques that rely on the ability to blur the traditional distinction between “passive’
data and “active’ processes. As we shall discover, Lisp's flexibility in handling procedures as
data makes it one of the most convenient languages in existence for exploring these
techniques. The ability to represent procedures as data also makes Lisp an excellent
language for writing programs that must manipulate other programs as data, such as the
interpreters and compilers that support computer languages. Above and beyond these
considerations, programming in Lisp is great fun.

1.1. The Elements of Programming

A powerful programming language is more than just a means for instructing a computer to
perform tasks. The language also serves as a framework within which we organize our ideas
about processes. Thus, when we describe a language, we should pay particular attention to
the means that the language provides for combining simple ideas to form more complex
ideas. Every powerful language has three mechanisms for accomplishing this:

e There are primitive expressions that represent the simplest entities with which the
language is concerned.

o There are means of combination by which compound expressions are built from
simpler ones.

2The two dialects in which most major Lisp programs of the 1970's were written are MacLisp [33], developed at the
MIT Project MAC, and Interlisp {48], developed at Bolt Beranek and Newman and the Xerox Palo Alto Research
Center. Portable Standard Lisp [18, 14] is another Lisp dialect designed to be easily portable between different
machines, and is beginning to become widely available. MacLisp has also spawned a number of sub-dialects, such
as Franz Lisp, which was developed at the University of California at Berkeley, and Lisp Machine Lisp [34], which is
based on a special-purpose processor designed at the MIT Artificial Intelligence Laboratory to run Lisp very
efficiently. Common Lisp is another Lisp dialect currently under development, which is meant to serve as a standard
for future production Lisp systems [41]. The Lisp dialect used in this book is called Scheme. It was invented in 1975
by Guy Lewis Steele Jr. and Gerald Jay Sussman of the MIT Artificial Intelligence Laboratory [39] and later
reimplemented for instructional use at MIT.

10 DRAFT: 31 JULY 1988uilding Abstractions with Procedures

e There are means of abstraction by which compound objects can be named and
manipulated as units.

In programming, there are two kinds of objects with which we deal: procedures and data
(though we will discover that they are really not so distinct). Informally, data is *‘stuff”’ that
represents specific objects that we want to manipulate, and procedures are descriptions of
the rules for manipulating the data. Thus any powerful programming language should be able
to describe primitive data and primitive procedures, and should have methods for combining
and abstracting procedures and data.

In this chapter we will deal only with simple numerical data so that we can focus on the
rules for building procedures.3 In later chapters we will see that these same rules allow us to
build procedures to manipulate compound data as well.

1.1.1. Expressions

One easy way to get started programming is to examine some typical interactibns with an
interpreter for the Scheme dialect of Lisp. Imagine that we are sitting at a computer terminal,
and that the interpreter has indicated that it is ready to serve us by displaying a prompt

==)
at the beginning of a blank line. If we respond to the prompt by typing an expression, the
interpreter responds by displaying the result of evaluating that expression.

One kind of primitive expression we might type is a number. (More precisely, the
expression that we type consists of the numerals that represent the number in base 10.) If we
present Lisp with a number

==> 486
the interpreter will respond by printing4
486

Expressions representing numbers may be combined with an expression representing a
primitive procedure (such as + or *) to form a compound expression that represents the
application of the procedure to those numbers. For example:

3The characterization of numbers as “simple data" is a barefaced bluff. In fact, the treatment of numbers is one of
the trickiest and most confusing aspects of any programming language. Some typical issues involved are: Is there a
difference between integers, such as 2, and *‘real’’ numbers, such as 2.00? Are the arithmetic operators used for
integers the same as the operators used for real numbers? Does 6 divided by 2 produce 3 or 3.0? How large a
number can we represent? How many decimal places of accuracy can we represent? Is the range of integers the
same as the range of real numbers? Above and beyond these questions, of course, lies a collection of issues
concerning roundoff and truncation errors -- the entire science of numerical analysis. Since our focus in this book is
on large-scale program design rather than on numerical technigues, we are going to ignore these problems. The
Scheme dialect of Lisp, wherever possible, does not distinguish between integers and “real’” numbers (for example,
3is equal to 3.0). The numerical examples in this chapter will exhibit the usual roundoff behavior that one observes
when using arithmetic operations that preserve about 7 decimal places of accuracy in non-integer operations. '

4Throughout this book, when we wish to emphasize the distinction between the input typed by the user and the
response printed by the interpreter, we will show the latter in italic characters.

1.1.1 DRAFT: 31 JULY 1983 11

==> (+ 137 349)
486

==> (- 1000 334)
666

==> (* 5 99)
=> (/ 10 5)

==> (/ 10 6)
1.66667

==> (+ 2.7 10)

12.7

Expressions such as these, formed by delimiting a list of expressions within parentheses,
are called combinations. The leftmost element in the list is called the operator and the other
elements are called operands. The value of a combination is obtained by applying the
procedure specified by the operator to the arguments which are the values of the operands.

The convention of placing the operator to the left of its arguments is known as prefix
notation, and it may be somewhat confusing at first because it departs significantly from the
mathematical convention to which we are accustomed. Prefix notation has several
advantages, however. One of them is that the notation can accommodate operators that may
take an arbitrary number of arguments, as in the following examples:

==> (+ 21 35 12 7)
75

==> (* 25 4 12)

1200
No ambiguity can arise, because the operator is always the leftmost element and the entire
combination is delimited by the parentheses.

A second advantage of prefix notation is that it extends in a straightforward way to allow
combinations to be nested, that is, to have combinations whose elements are themselves
combinations:

==> (+ (* 3 5) (- 10 6))
19

There is no limit (in principle) to the depth of such nesting and to the overall complexity of
the expressions that the Lisp interpreter can evaluate. It is we humans who get confused by
still relatively simple expressions such as

(+ (* 3 (+ (* 24) (+35))) (+ (- 107) 6))

which the interpreter would readily evaluate to be 57. We can help ourselves by writing such
an expression in the form

12 _ DRAFT: 31 JULY 198Building Abstractions with Procedures

(+ (> 3
(+ (* 2 4)
(+ 35)))
(+ (- 10 7)
6))
following a formatting convention known as pretty-printing, in which each long combination is
written so that the operands are aligned vertically. The resulting indentations display clearly
the structure of the expression.®
Even with complex expressions, the interpreter always operates in the same basic cycle: It
reads an expression from the terminal, it evaluates the expression, and it prints the result.
This mode of operation is often expressed by saying that the interpreter runs in a
read-eval-print loop. Observe in particular that it is not necessary to explicitly instruct the
interpreter to print the value of the expression.

1.1.2. Naming and the Environment

! A critical aspect of a programming language is the means it provides for allowing one to
use names to refer to computational objects. We say that the name identifies a variable
whose value is the object.

In the Scheme dialect of Lisp, the operator for naming things is called def ine. Typing

==> (define size 2)

size
causes the interpreter to associate the value 2 with the name s 7ze. Notice that the interpreter
responds to a def ine combination by printing the name being defined.®

Once the name size has been defined to be the number 2, we can refer to the value 2 by
name:

==> size

2

==> (* 5 size)
10

5Lisp systems typically provide features to aid the user in formatting expressions. Two especially useful features
are to automatically indent to the proper pretty-print position whenever a new line is started, and to highlight the
matching left parenthesis whenever a right parenthesis is typed.

6The symbol printed is actually the value of the def ine combination. In Lisp, one makes the convention that every
expression has a value. This requirement may seem silly, but deviating from it would cause more bothersome
complications. It also meshes nicely with the read-eval-print mode in which the interpreter operates, since it ensures
that the interpreter will have something to print in response to evaluating any expression. When there is no natural
choice for the value to be returned as the result of an operation, language implementors choose a value by -
convention, as in the case of define. The conventions for choosing such values tend to be highly implementation
dependent, and it is dangerous practice to write programs that rely on them. (The convention that every Lisp
expression have a value, together with the old reputation of Lisp as an inefficient language, is the source of the quip
by Alan Perlis that *“Lisp programmers know the value of everything but the cost of nothing.”)

1.1.2 DRAFT: 31 JULY 1983 13

Here are further examples of the use of define:
==> (define pi 3.14159)
pi

==> (define radius 10)
radius

==> (* pi (* radius radius))
314,159

==> (define circumference (* 2 pi radius))
circumference

==> circumference
62.8318

Define, as the basic mechanism for naming, is our language’'s simplest means of
abstraction. Computational objects may have very complex structures, and it would be
extremely inconvenient to have to remember and repeat their details each time we want to use
them. Indeed, complex programs are constructed by building, step by step, computational
objects of increasing complexity. The interpreter makes this step-by-step program
construction particularly convenient because name-object associations can be created
incrementally in successive interactions. This feature encourages the incremental
development and testing of programs, and is largely responsible for the fact that Lisp
programs usually consist of a large number of relatively simple procedures.

It should be clear that the possibility of associating values with symbols and later retrieving
them means that the interpreter must maintain some sort of memory that keeps track of the
name-object pairs. This memory is called the environment, or more precisely the global
environment, since we will see later that a computation may involve a number of different
environments.” '

1.1.3. Evaluating Combinations

One of our goals in this chapter is to isolate issues about thinking procedurally. As a case
in point, let us consider that, in evaluating combinations, the Lisp interpreter is itself following
a procedure. For the expressions we have discussed so far the evaluation process is simply
described. :

To evaluate a combination (other than a definition):

1. Evaluate the subexpressions of the combination.

2. Apply the procedure which is the value of the leftmost subexpression (the
operator) to the arguments which are the values of the other subexpressions (the
_operands). ‘ :

7In Chapter 3, we shall see that this notion of environment is crucial, both for understanding how the interpreter
works and for implementing interpreters.

14 DRAFT: 31 JULY 198Building Abstractions with Procedures

Even this simple rule illustrates some important points about processes in general. First,
observe that step 1 dictates that in order to accomplish the evaluation process for a
combination we must first perform the evaluation process on each element of the
combination. Thus the evaluation rule is recursive in nature; that is, it includes, as one of its
steps, the need to invoke the rule itself.8

Notice how succinctly the idea of recursion can be used to express what, in the case of a
deeply nested combination, would otherwise be viewed as a rather complicated process. For
example, evaluating :

(* (+ 2 (* 46))

(+ 3517))

requires that the evaluation rule be applied to four different combinations. We can obtain a
picture of this process by representing the combination in the form of a tree, as shown in
figure 1-1. Each combination is represented by a node, from which stem branches
corresponding to the operator and operands of the combination. The terminal nodes (that is,
nodes with no branches stemming from them) represent either operators or numbers.
Viewing evaluation in terms of the tree, we can imagine that the values of the operands
percolate upwards, starting from the terminal nodes and then combining at higher and higher
levels. In general, we shall see that recursion is a very powerful technique for dealing with
hierarchical, tree-like objects. In fact, the “percolate values upwards” form of the evaluation
rule is an example of a general kind of process known as tree accumulation.

8It may seem strange that the evaluation rule includes, as part of Step 1, that we should evaluate the leftmost
element of a combination which, so far as we have seen, can only be an operator representing a built-in primitive
procedure such as + or *. We will see later on that it is in fact useful to be able to work with combinations whose
operators are themselves compound expressions.

1.1.3 _ - DRAFT: 31 JULY 1983 _ 15

310
> 26 S
+ + 3 s L
Z 24
>*
e A

Figure 1-1: Tree representation, showing the value of each subcombination.

Next, observe that the repeated application of step 1 brings us to the point where we need
to evaluate, not combinations, but primitive expressions such as numerals, built-in operators,
or other names. We take care of the primitive cases by stipulating that:

e The values of numerals are the numbers that they name.

o The values of built-in operators are the primitive machine instruction sequences
that carry out the corresponding operations.

e The values of other names are the objects associated with those names in the
environment.

We may regard the second rule as a special case of the third one, by imagining that symbols
such as +and * are also included in the global environment, associated with the sequences ,
of machine instructions that are their “values.” The key point to notice is the role of the
environment in determining the meaning of the symbols in the expressions. In an interactive
language such as Lisp, it is in a certain sense meaningless to ask for the value of an
expression such as

(+ x 1)
without specifying any information about the environment that would provide a meaning for
the symbol “x” (or even for the symbol “+"!). As we shall see in Chapter 3, the general notion

of the environment as providing a context in which evaluation takes place will play an
important role in our understanding of program execution.

16 DRAFT: 31 JULY 1988uilding Abstractions with Procedures

Finally, notice that define is an exception to the general evaluation rule given above. For
instance, evaluating the expression

(define x 3)

does not apply define to two arguments, one of which is the value of the symbol x and the
other of which is 3, since the purpose of the def ine is precisely to associate x with a value.

Such exceptions to the general evaluation rule are called special forms. Define is the only
example of a special form which we have seen so far, but we shall meet others shortly. Each
special form has its own way in which the general evaluation rule should be modified in order
to handle it. The special forms and their associated special evaluation rules constitute the
syntax of the programming language. In comparison to most other programming languages,
Lisp has a very simple syntax; that is, the evaluation rule for expressions can be described by
a simple general rule together with specialized rules for a small number of special forms.®

1.1.4. Compound procedures
We have identified in Lisp some of the elements that must appear in any powerful
programming language:
o Numbers and arithmetic operators are primitive data and procedures.
o Nesting of combinations provides a means of combining operators.

e Using define to associate names with values provides a limited means of
abstraction.

Now we will learn about procedure definitions -- a much more powerful abstraction technigque
by which a compound operation can be given a name and then referred to as a unit.

We begin by examining how to express the idea of “squaring.” We might say, “To square
something, multiply it by itself.” This is expressed in our language as follows:

(define (square x) (* x x))
We can understand this in the following way:

(define (square x) (* X X))
To square something, multiply it by itself.

We have here a compound procedure, which has been given the name square. |t
represents the operation of multiplication of an entity by itself. The entity tc be multiplied is

gSpecial syntactic forms that are simply convenient alternative surface structure for things that can be written in
more uniform ways, are sometimes called syntactic sugar, to use a phrase coined by Peter Landin. When compared
to users of other languages, Lisp programmers, as a rule, tend to be unconcerned with matters of syntax. (By
contrast, examine any Pascal manual, and notice how much of it is devoted to descriptions of syntax.) This disdain
for syntax is partially due to the flexibility of Lisp, which makes it easy to change surface syntax, and partly due to the
observation that many *convenient”. syntactic constructs, which make the language less uniform, end up causing
more trouble than they are worth when programs become large and complex. In the words of Alan Perlis: “Syntactic
sugar causes cancer of the semicolon.”

1.1.4 DRAFT: 31 JULY 1983 17

given a local name, x, which plays the same role that a pronoun plays in natural language.

Executing the def ine form causes the specified procedure name to be associated with the
corresponding procedure definition in the environment. The interpreter responds to define
by printing the name of the procedure being defined:

==> (define (square x) (* x x))

square

The general form of a procedure definition is

(define (<name> <formal parameters>) <body>)

The <name> is a symbol to be associated with the procedure definition in the environment.'°
The <formal parameters> are the names used within the body of the procedure to refer to the
corresponding arguments of the procedure. The <body> is an expression that will yield the
value of the procedure application when the formal parameters are replaced by the actual
arguments to which the procedure is applied.11 Observe that the <name> and the <formal
parameters> are grouped within parentheses, just as they would in an actual call to the
procedure being defined.

Having defined square, we can now use it:

==> (square 21)

441

==> (square (+ 2 5))
49

==> (square (square 3))
81

We can also use square as a building block in defining other procedures. For example:
x2 +y® can be expressed as
(+ (square x) (square y))

We can easily define a procedure sum-of-squares which, given any two numbers as
arguments, produces the sum of their squares:

(define (sum-of-squares x y)
(+ (square x) (square y)))

And if we were to define the following procedure:

(define (f a)
(sum-of-squares (+ a 1) (* a 2)))

10Throughout this book, we will describe the general syntax of expressions by using italic symbols delimited by
angle brackets -- e.g., <name> to denote the “slots” in the expression to be filled in when such an expression is
actually used.

11More generally, the body of the procedure can be a sequence of combinations. In this case, the interpreter
evaluates each combination in the sequence in turn, and returns the value of the final combination as the value of the
procedure application.

18 ‘ DRAFT: 31 JULY 1988Building Abstractions with Procedures

we would have that (f §) is 62+ 102, or 136. Notice that defined procedures are used in
exactly the same way as primitive procedures. Indeed, one could not tell by looking at the
definition of sum-of-squares given above whether square was built into the interpreter or
defined as a compound procedure.

1.1.5. The Substitution Model for Procedure Evaluation

To evaluate a combination whose operator is a compound procedure, the interpreter
follows much the same process as for combinations whose operators are primitive
procedures, as we discussed in section 1.1.3. That is, the interpreter evaluates the elements
of the combination and applies the procedure (which is the value of the operator of the
combination) to the arguments (which are the values of the operands of the combination).

We can assume that the mechanism for applying primitive procedures to arguments is built
into the interpreter. For compound procedures, the application process is as follows:

" eTo apply a compound procedure to arguments, evaluate the body of the
4‘ procedure with each formal parameter replaced by the corresponding argument.
/
To illustrate this process, let's evaluate the combination
(f 5)
where f is the procedure defined in section 1.1.4 above. We begin by retrieving the body of f
(sum-of-squares (+ a 1) (* a 2)))
Then we replace the formal parameter a by the argument 5:
(sum-of-squares (+ 5 1) (* 5 2))
Thus the problem reduces to the evaluation of a combination with two operands and an
operator named sum-of-squares. Evaluating this combination involves three subproblems.
We must evaluate the operator to get the procedure to be applied, and we must evaluate the
operands to get the arguments. Now (+ 5§ 1) produces6and (* § 2) produces 10. Sowe
must apply the procedure sum-of-squares to 6 and 10. These values are substituted for the
formal parameters x and y in the body of sum-of-squares, reducing to

(+ (square 6) (square 10))

Using the definition of square, this reduces to
(+ (* 6 6) (* 10 10))

which reduces by multiplication to

(+ 36 100)
and finally to
136

The process we have just described is called the substitution mode! for procedure
evaluation, and it can be taken as a model that determines the “meaning” of procedure
application, insofar as the procedures in this chapter are concerned. However, there are two

_points that should be stressed:

1.1.5 ' DRAFT: 31 JULY 1983 19

1. The substitution model is a mode/ that allows one to think about procedure
application. Typical interpreters do not evaluate procedure applications by
operating on the text of a procedure to substitute values for the formal
parameters. In practice, the ‘'substitution” is accomplished by using a local
environment for the formal parameters. We will discuss this more fully in
Chapters 3 and 4 we will examine the implementation of an interpreter in detail.

2. The substitution model is not powerful enough to describe all of the procedures
we will consider in this book. In particular, when we address in Chapter 3 the use
of procedures with so-called “mutable data,” we will see that the substitution
model breaks down and must be replaced by a more complicated model of
procedure application. On the other hand, substitution is a straightforward idea.
it serves well for understanding all of the procedures in the first two chapters of
this book and indeed, for understanding most of the procedures one normally
encounters.' The model is a good tool to use, so long as we bear in mind that it
does have limitations.

Notice that, according to the model given above, the interpreter first evaluates the
arguments to a procedure, and then applies the procedure to the evaluated arguments. This
is not the only way to perform evaluation. An alternative substitution model would first expand
each procedure definition in terms of simpler and simpler procedures, until we obtain an
expression involving only primitive operators, and then perform the evaluation. If we used this
method, then the evaluation of

(f 5)

would proceed according to the following sequence of expansions:
(sum-of-squares (+ 5 1) (* 5 2))
(+ (square (+ 5 1)) (square (* 56 2)))

(+ (* (+51) (+51)) (*(*52)(*52)))
followed by the reductions ‘

(+ (* 6 6) (* 10 10))

(+ 36 100)

136
This gives the same answer as our previous substitution model, but the process is different.

12Despite the fact that substitution is a “straightforward idea” it turns out to be surprisingly complicated to give a
rigorous mathematical definition of the substitution process. The problem arises from the possibility of confusion
between the names used for the formal parameters of a procedure and the {possibly identical) names used in the
expressions to which the procedure may be applied. Indeed, there is a long history of erroneous definitions of
“substitution” in the literature of logic and programming semantics. See the book by Joseph Stoy [43] for a careful
discussion of substitution. And.yet, from a formal mathematical perspective, substitution is much simpler to contend
with rigorously than the more complete interpreter model that we shall discuss in later chapters, which, at the current
state of the art, seems hardly mathematically tractable at all.

e

20 DRAFT: 31 JULY 198Building Abstractions with Procedures

Notice in particular that the evaluations of (+ 5§ 1) and (* 5 2) are each performed twice
here, corresponding to the reduction of the expression

(* x x)
with x replaced respectivelyby (+ § 1)and (* § 2).

This alternative “fully expand and then reduce’ evaluation method is known as normal
order evaluation, in contrast to the “evaluate the arguments and then apply” method that the
interpreter actually uses, which is called applicative order evaluation. It can be shown that, for
procedure applications that can be modeled using substitution (including all the procedures
in the first two chapters of this book) and that yield legitimate values, normal and applicative
order evaluation produce the same value. (See exercise 1-4 for an instance of an
“illegitimate”’ value where normal and applicative order evaluation would not give the same
result.) Most interpreters use applicative order evaluation, partly because of the additional
efficiency obtained from avoiding the kind of multiple evaluations of expressions illustrated
with (+ 5 1) and (* 5 2) above, and, more significantly, because normal order evaluation
becomes much more complicated to deal with when we leave the realm of procedures that
can be modeled by substitution, as we will do in Chapter 3. On the other hand, normal order
evaluation can also be a useful technique. When we tackle the problem of coping with
“infinite data structures,”’ we will use a method closely akin to normal order evaluation. '3

1.1.6. Conditional Expressions and Predicates

The expressive power of the class of procedures that we can define at this point is very
limited. For instance, we cannot define a procedure that computes the absolute value of a
number by testing whether the number is positive, negative, or zero and taking different
actions in the different cases according to the rule:

x if x >0
abs(x) = 40 if x =0
-x if x <0

This construct is called a case analysis and there is a special form in Lisp for notating such a
case analysis. It is called cond (which stands for “conditional”) and it is used as follows:
(define (abs x)
{(cond ((> x 0) x)
((= x 0) 0)
((< x 0) (= x))))

The general form of a conditional expression is

13!n Chapter 3 we will introduce the notion of delayed evaluation to provide various “intermediate grounds”
between normal and applicative orders. We will also introduce call-by-need evaluation as a general technigque for

' avoiding the multiple evaluations used in strict normal order evaluation. See Chapter 3, section 3.4.3.

1.1.6 , DRAFT: 31 JULY 1983 21

(cond (<p,> <e)
(<py <ep)

(<p,> <e,2))
in which the arguments are pairs of expressions (<p> <e>) called clauses. The first expression
in each pair is a predicate -- that is, an expression whose value is interpreted as either true or
false. In Lisp, ‘‘false” is represented by the value of the distinguished symbol nil, and any
other value is interpreted as “true.”” The symbol t is often used as a canonical non-nil
symbol to represent “true.”

Conditional expressions are evaluated as follows. The predicate <p > is evaluated first. If its
value is false (i.e., ni1) then <p,> is evaluated. If its value is also false then pyis evaluated.
This process continues until a predicate is found whose value is non-n i1, in which case the
interpreter returns the value of the corresponding <e> of the clause as the value of the
conditional expression. If none of the <p>’s is found to be true, the cond returns ni1.

The abs procedure above makes use of the primitive procedures >, <, and = These are
operators that take two numbers as arguments and return t if the first number is greater than,
less than, or equal to the second number, respectively, and n i1 otherwise. 7

Another way to write the absolute value procedure is:

(define (abs x)
(cond ({(< x 0) (- x))
(else x)))

which could be expressed in English as “if x is less than zero return -x; otherwise return x.”
Else is a special symbol that can be used in place of the ¢(p> in the final clause of a cond.
This causes the cond to return as its value the value of the corresponding <e> whenever all
previous clauses have been bypassed. In fact, any expression that always evaluates to a
non-nil value could be used here.

Here is yet another way to write the absolute value procedure:

(define (abs x)
(if (< x 0)
(- x)
x))
This uses the special form if, a restricted type of conditional that can be used when there are
precisely two cases in the case analysis. The general form of an if expression is

(if <predicate> <consequent> <alternative>)

To evaluate an 7f expression, the interpreter first evaluates the <predicate> part of the
expression. |If it is non-nil the interpreter then evaluates and returns the value of the

14Abs also uses the ""minus" operator -, which, when used with a single operand, as in (- x), indicates negation.

22 DRAFT: 31 JULY 198Building Abstractions with Procedures

3

<consequent>. Otherwise it evaluates and returns the value of the <alternative>.’®

In addition to primitive predicates such as <, =, and >, there are logical composition
operators, which enable us to construct compound predicates. The three most frequently
used are

and Takes an arbitrary number of arguments. |If none of the arguments
evaluates to ni1, the value of the and isnon-nil.

or Takes an arbitrary number of arguments. If all of the arguments evaluate
to nil, the value of the oris ni7, otherwiseitisnon-nilT,

not Takes a single argument. It returns non-nil when the argument
evaluatesto nil and nil otherwise.

For instance, the condition that a number x be in the range 5 < x < 10 may be expressed as
(and (> x 5) (< x 10))

As another example, we can define a predicate to test whether one number is greater than or
equal to another as

(define (>= x y)
(or (> xy) (= x y)))
or, alternatively, as
(define (>= x y)
(not (< x y)))

Observe that and and or are special forms, because the interpreter will not necessarily
evaluate all the arguments to these operators. [t only evaluates as many arguments as are
required to determine the value to be returned.

Exercise 1-1: Below is a sequence of expressions. What is the result printed by the interpreter in
response to each expression? You should assume that the sequence is to be evaluated in the order it is
presented.

==> 10
=) (+ 5 3 4)

==) (- 9 1)

==> (/ 6 2)

==> (+ (* 2 4) (- 4'v6))
==> (define a 3) | A
==> (define b (+ a 1)).

==> (+ a b (* ;'.'b))

15A minor difference between if and cond is that, in Scheme, the <e> part of each cond clause may be a
sequence of expressions, which are evaluated in sequence if the corresponding <p> is triggered. In an if
combination, however, the <consequent> and <alternative> clauses must be single expressions.

1.1.6 DRAFT: 31 JULY 1983 ' 23

==> (= a b)

==> (if (and (> b a) (< b (* a b)))
b _

a)
==> (cond ((= a 4) 6)
| ((= b 4) (+867a))
(else 25))

Exercise 1-2: Define a procedure that takes three numbers as arguments and returns the sum of the
squares of the two larger numbers.

Exercise 1-3: Show that any expression that uses if can be rewritten in terms of and and or. As an
example, rewrite the abs procedure to use and and or, rather than if or cond.

Exercise 1-4: Ben Bitdiddle has invented a test to determine whether the interpreter he is faced with is
using applicative order evaluation or normal order evaluation. He defines the following two procedures:

(define (p) (p))

(define (test x y)
(if (= x 0)
0
¥))
Then he evaluates the expression

(test 0 (p))

What behavior will Ben observe with an interpreter that uses applicative order evaluation? What
behavior will he observe with an interpreter that uses normal order evaluation? Explain your answer.
(Assume that the evaluation rule for the special form if is the same, whether the interpreter is using
normal or applicative order: The predicate expression is evaluated first, and the result is examined to
determine whether the evaluator will continue to evaluate the consequent or the alternative expression.)

1.1.7. Example: Square Roots by Newton’s Method

Procedures, as introduced above, are much like ordinary mathematical functions -- they
specify a value that is determined by one or more parameters. But there is an important
difference between mathematical functions and computer procedures. Procedures must be
effective.

As a case in point, let us consider the problem of computing square roots. We can define
the square root function as follows:

v x = the ysuch thaty > Oand y? = x

This describes a perfectly legitimate mathematical function. We could use it to recognize
whether one number is the square root of another, or to derive facts about square roots in
general. On the other hand, the definition does not describe a procedure. Indeed, it tells us
almost nothing about how to actually find the square root of a given number. It won't help
matters to rephrase this definition in Lisp-ese: -
(define (sqrt x)
(the y (and (>=y 0)
(= (square y) x))))
That only begs the question.

24 , DRAFT: 31 JULY 198Building Abstractions with Procedures

The contrast between function and procedure is a reflection of the general distinction
between describing properties of things and describing how to do things, or, as it is
sometimes referred to, the distinction between declarative knowledge and imperative
knowledge. In mathematics we are usually concerned with declarative, or “what is”
descriptions, while in computer science we are usually concerned with imperative, or “how
to” descriptions.'®

How does one compute square roots? The most common way is to use Newton’s method of
successive approximations, which says that whenever we have a guess y for the value of the
square root of a number x, we can perform a simple manipulation to get a better guess -- one
closer to the actual square root -- by averaging y together with x/y.17 For example, we can
compute the square root of 2 as follows. Suppose our initial guess is 1:

Guess Quotient Average

1 2/1 = 2 (2+1)/2 = 1.5

1.5 2/1.6 = 1,3333 (1.333 + 1.5)/2 = 1.4167
01,4167 2/1.4167 = 1.,4118 (1.4167 + 1,4118)/2 = 1,4142
b 1.4142

4
Continuing this process, we obtain better and better approximations to the square root.

Now let’s formalize the process in terms of procedures. We start with a value for the
radicand (the number whose square root we are trying to compute) and a value for the guess.
If the guess is good enough (for our purposes) we are done; if not, we must repeat the
process with an improved guess. We write this basic strategy as a procedure:

(define (sqrt-iter guess x)

(if (good-enough? guess x)
guess
(sqrt-iter (improve guess x)
x)))

A guess is improved by averaging it with the quotient of the radicand with old guess:

(define (improve guess x)
(average guess (/ x guess)))

16Deciarative and imperative descriptions are intimately related, as indeed are mathematics and computer
science. For instance, to say that the answer produced by a program is “correct’ is to make a declarative statement
about the program. There is a large amount of research aimed at establishing techniques for proving that pregrams
are correct, and much of the technical difficulty of this subject has to do precisely with negotiating the transition
between imperative statements (which is how the programs are formulated) and declarative statements (which can
be used to deduce things). In a related vein, an important current area in programming language design is devoted
to exploring so-called “Very High Level Languages,” in which one actually programs in terms of declarative
statements. The idea is to make interpreters sophisticated enough so that, given “what is" knowledge specified by
the programmer, the “how to” knowledge can be generated automatically. This cannot cannot be done in general,
but there are important areas where progress has been made. In Chapter 4, we shall implement such a language, a
“Logic Programming” language used for information retrieval.

17This square root algorithm is actually a special case of Newton's Method, which is a general technique for
finding roots of equations. The square root algorithm itself was developed by Heron of Alexandria in the first century.
We will see how to express the general Newton’s Method as a Lisp procedure in section 1.3.4.

1.1.7 DRAFT: 31 JULY 1983 ' 25

where

(define (average x y)
(/7 (+ x y) 2))
We alsc have to say what we mean by a guess being “good enough.” The following will do for
illustration, but it i§ not really a very good test. (See exercise 1-6.) The idea is to improve the

answer until it is close enough so that its square differs from the radicand by less than a
predetermined tolerance (here .001):18

(define (good-enough? guess x)
(< (abs (- (square guess) x)) .001))

Finally, we need a way to get started. For instance, we could always guess that the square
root of any number is 1:
(define (sqrt x)
(sqrt-iter 1 x))

If we type these definitions to the interpreter, we can use sqrt just as we can use any
procedure:

==> (sqrt 9)
3.0001

==> (sqrt (+ 100 37))
11.7047

==> (sqrt (+ (sqrt 2) (sqrt 3)))
1.7739

==> (square (sqrt 1000))
1000.0003

The sqgrt program also illustrates that the simple procedural language we have introduced
so far is sufficient for writing any purely numerical program that one could write in, say, Basic
or Fortran. This might seem surprising, since we haven't included in our language any
iterative or “looping” constructs that direct the computer to do something over and over
again. Sqrt-iter, on the other hand, demonstrates how iteration can be accomplished
using no special construct other than the ordinary ability to call a proc:edure.19

Exercise 1-5: Alyssa P. Hacker doesn’t see why 7f needs to be provided as a special form. “Why can't
I just define it as an ordinary procedure in terms of cond?" she asks. Alyssa’s friend Eva Lu Ator claims
this can indeed be done, and she defines a new version of if as follows:

(define (new-if predicate then-clause else-clause)
(cond (predicate then-clause)
(else else-clause)))

Eva demonstrat_es the program for Alyssa:

18We will use the convention of naming predicates with names whose last character is a question mark. This is

just a stylistic convention. As far as the interpreter is concerned, the question mark is just an ordinary symbol.

19Readers who are worried about the efficiency issues involved in using procedure calls to implement iteration

should note the remarks on “tail recursion” in section 1.2.1 below.

26 DRAFT: 31 JULY 198Building Abstractions with Procedures

==> (new-if (= 2 3) 0 5)
5
==> (new-if (= 1 1) 0 5)
0
Delighted, Alyssa uses new-1f to rewrite the square root program:
(define (sqrt-iter guess x)
(new-if (good-enough? guess x)
guess
(sqrt-iter (improve guess x)
x)))

What happens when Alyssa attempts to use this to compute square roots? Explain.

Exercise 1-6: The good-enough? test used in computing square roots will not be very effective if we
are ‘interested in finding the square roots of very small numbers. Also, in real computers, arithmetic
operations are almost always performed with limited precision. This makes our test inadequate for very
large numbers. Explain these statements, with examples showing how the test fails for small and large
numbers. An alternative strategy for implementing good-enough? is to watch how guess changes from
one iteration to the next, and to stop when the change is a very small fraction of the guess. Design a
square root procedure that uses this kind of end test. Does this work better for small and large
numbers?

Exercise 1-7: Newton’s method for cube roots is based on the fact that if y is an approximation to the
cube root of x, then a better approximation is given by the value:

X

-— 2y
y2

e —————

3

Use this formula to implement a cube root nrocedure analogous to the square root procedure. (In
section 1.3.4, we will see how to implement Newton's method in general as an abstraction of these
square root and cube root procedures.)

1.1.8. Procedures as Black-Box Abstractions

Sqrt is our first example of a process defined by a set of mutually defined
procedures. Notice that the definition of sqrt-iter is recursive; that is, the procedure is
defined in terms of itself. The idea of being able to define a procedure in terms of itself may
be disturbing, because it may seem unclear how such a ‘“circular” definition could make
sense at all, much less how such a definition could specify a well-defined process to be
carried out by a computer. We’ll address this issue more carefully in section 1.2. But first let’s
consider some other important points illustrated by the sqrt example.

Observe that the problem of computing square roots breaks up naturally into a humber of
subproblems: how to tell whether a guess is good enough, how to improve a guess, and so
on. Each of these tasks is accomplished by a separate procedure. The entire sqrt program
can be viewed as a cluster of procedures (shown in figure 1-2) that mirrors the decomposition
of the problem into subproblems.

1.1.8) DRAFT: 31 JULY 1983 27

sqrt
|

|
sqrt-iter
/ \

/ \
/ \
good-enough? improve
/\ |
/ N\ |
/ \ |
square abs average

Figure 1-2: Procedural decomposition of the sqrt program

The importance of this decomposition strategy is not simply that one is dividing the
program into parts. After all, we could take any large program and divide it into parts -- the
first ten lines, the next ten lines, the next ten lines, and so on. Rather, it is crucial that each
procedure accomplishes an identifiable task that can be used as a module in defining other
procedures. For example, when we define the good-enough? procedure in terms of square,
we are able to regard the square procedure as a black box. We are not at that moment
concerned with how the procedure computes its result, but only with the fact that it computes
the square. The details of how the square is computed can be suppressed, to be considered
at a later time. Indeed, as far as the good-enough? procedure is concerned, square is not
quite a procedure, but rather an abstraction of a procedure, a so-called procedural
abstraction. At this level of abstraction, any procedure that computes the square is equally
good. _

Thus, considering only the value, the following two procedures for squaring a number
should be indistinguishable. Both take a number as an input and produce the square of that
number as an output.

(define (square x) (* x x))

(define (square x)
(exp (double (log x))))

(define (double x) (+ x x))

So a procedure definition should be able to suppress detail. The user of the procedure may
not have written the procedure himself, but may have obtained it as a ‘‘black box” to perform
some function from another programmer. The user should not need to know how the
procedure is implemented in order to use it. ‘

20[1 is not even clear which of these procedures is a more efficient implementation. This depends upon the
hardware available. There are machines for which the “obvious” implementation is the less efficient. Consider a
machine which has extensive tables of logarithms and antilogarithms stored in a very efficient manner!

28 DRAFT: 31 JULY 198Building Abstractions with Procedures

>

Local Names and Block Structure

One detail of a procedure’s implementation that should not matter to the user of the
procedure is implementor’s choice of names for the procedure’s formal parameters. Thus the
following procedures should not be distinguishable. :

(define (square x) (* x x))

(define (square y) (*y y))

This principle, that the meaning of a procedure should be independent of the parameter
names used by its author, seems on the surface to be self-evident, but its consequences are
profound. The simplest consequence is that the parameter names of a procedure must be
local to the body of the procedure. For example, we used square in the definition of
good-enough? in our square root routine:

(define (good-enough? guess x)

(< (abs (- (square guess) x)) .001))

The intention of the author of good-enough? is to determine if the square of the first
argument is within a given tolerance of the second argument. We see that the author of
good-enough? used the name guess to refer to the first argument and x to refer to the
second argument. The argument of square is guess. If the author of square used x (as he
did above) to refer to that argument, we see that the x in good-enough? must be a different x
than the one in square. Running the procedure square must not modify the value of x
which is used by good-enough? because that value of x may be needed by good-enough?
after square is done computing. '

If the parameters were not local to the bodies of their respective procedures, so that the x
in square could be confused with the x in good-enough?, then the behavior of
good-enough? would depend upon which version of square we used. Thus square would
not be the black box we desired.

A formal parameter of a procedure has a very special role in the procedure definition, in
that it doesn’t matter what name the formal parameter has. Such a name is called a bound
variable and we say that the procedure definition binds its formal parameters. A variable is
bound in an expression if the meaning of the expression is unchanged by renaming the
variable consistently throughout the expression to another name.?" If a variable is not bound
in an expression, we say that it is free in that expression. The expressions for which a binding
defines a name is called the scope of that name. In a procedure definition, the bound
variables declared as the formal parameters of the procedure have the body of the procedure
as their scope.

In the definition of good-enough? above, guess and x are bound variables, but <, -, abs,
and square are free. The meaning of good-enough? should be independent of the names
we choose for guess and x, so long as they are distinct and different from <, -, abs, or
square. (If we renamed guess to abs we would have introduced a bug by capturing the
variable abs. It would have changed from free to bound.) The meaning of good-enough?is
not independent of the names of its free variables, however. It surely depends upon the fact

2 The concept of “consistent renaming' is actually subtle and difficult to formally define. Famous logicians have
made embarrassing errors here.

1.1.8 ' DRAFT: 31 JULY 1983 29

(external to this definition) that the symbol abs names a procedure for computing the
absolute value of a number. Good-enough? will compute a different function if we substitute

cos for abs in its definition.

Internal definitions
We have one kind of name isolation available to us so far; the formal parameters of a
procedure are local to the body of the procedure. The square root program illustrates
another way in which we would like to control the use of names. The existing program
consists of separate procedures:
(define (sqrt x)
(sqrt-iter 1 x))

(define (sqrt-iter guess x)
(if (good-enough? guess x)
guess
(sqrt-iter (improve guess x) x)))

(define (good-enough? guess x)
(< (abs (- (square guess) x)) .001))

(define (improve guess Xx)
(average guess (/ x guess)))

The problem with this program is that the only procedure important to the user of sgrt is
sqrt. The other procedures (sqrt-iter, good-enough?, and improve) only clutter up his
mind. He may not define any other procedure called good-enough? as part of another
program to work together with his square root program because he must remember that sqrt
needs it. The problem is especially severe in the construction of large systems by many
separate programmers. For example, in the construction of a large library of numerical
procedures, many numerical functions are computed as successive approximations and thus
would have procedures named good-enough? and improve, as auxiliary procedures. We
would like to Jocalize the subprocedures, hiding them inside sgrt, so that sqrt could coexist
with other successive approximations, each having its own private good-enough?
procedure. To make this possible, we allow procedures to have internal definitions that are
local to that procedure. For example, in the square root problem we can write:

(define (sqrt x) _ ' ‘ ’ -

(define (good-enough? guess x)

(< (abs (- (square guess) x)) .001))
(define (improve guess x)

(average guess (/ x guess)))

(define (sqrt-iter guess x)
(if (good-enough? guess x)
guess
(sqrt-iter (improve guess x) x)))

(sqrt-iter 1 x))

B b de ey

30 , DRAFT: 31 JULY 198Building Abstractions with Procedures

This works, and it is basically the right thing for solving the simplest name packaging
problem. But there is a better idea lurking here. In addition to internalizing the definitions of
the auxiliary procedures, we can simplify them. Since x is bound in the body of sqrt and
since the definitions of sqrt-iter, etc. are in that scope, it is not necessary to pass x
explicitly to each of them. Specifically, we allow x to be a free variable in the internal
definitions. X then gets its value from the argument with which the enclosing procedure sqrt
is called. This discipline is called lexical scoping.22

(define (sqrt x)

(define (good-enough? guess)
(< (abs (- (square guess) x)) .001))

(define (improve guess)
(average guess (/ x guess)))

(define (sqrt-iter guess)
(if (good-enough? guess)
! guess
| (sqrt-iter (improve guess))))

(sqrt-iter 1))

From now on we will use this technique of block structure quite extensively to help us break
up large programs into tractable pieces.23 The block structure idea originated with the
programming language Algol-60. It appears in most advanced programming languages and is
an important tool for helping to organize the construction of large programs.

1.2. Procedures and the Processes they Generate

We have been introduced to the elements of programming -- to primitives, combinations,
procedures, and naming. But that is not enough to say that we know how to program. Our
situation is analogous to someone who has learned the rules for how the pieces move in
chess, but knows nothing of typical openings, of tactics, or of strategy. Like the novice chess
player, we don’t yet know the common patterns of usage in our domain. We lack the "
knowledge of which moves are worth making -- which procedures are worth defining. We
lack the experience to predict the consequences of making a move, or of executing a -
procedure.

The ability to predict, or to pre-visualize, the consequences of the actions under
consideration is crucial in becoming an expert programmer, just as it is in any synthetic,
creative activity. In becoming an expert photographer, for example, one must learn how to
look at a scene and know how dark each region will appear on a print for each possible

22Lexic:al scoping dictates that free variables in a procedure are taken to refer to variables in enclosing
procedures, that is, they are looked up in the environment in which the procedure was defined. We will see how this
works in detail in Chapter 3 when we study environments and the detailed behavior of the interpreter.

23Be careful here. Those embedded definitions must come first in a definition. The management is not
responsible for the consequences of running a program that intertwines definition and use.

1.2 DRAFT: 31 JULY 1983 | e 3

2

choice of exposure and development conditions. Only then can one reason backwards,
planning framing, lighting, exposure, and development to obtain the desired effects. So it is
with programming, where we are planning the course of action to be taken by a process, and
we control the process by means of a program. To become experts, we must learn to pre-
visualize the processes engendered by various types of procedures. Only having developed
such a skill can we learn to reliably construct programs that exhibit the desired behavior.

A procedure is a pattern for the local evolution of a computational process. It specifies the
- evolution of a process in the same way that a differential equation describes the evolution of a
physical system. At each instant, the change in state of a physical system is computed from
its current state according to its equations of motion. At each step, the next state of the
process is computed from its current state according to the rules of interpreting procedures.
Much of the theory of differential equations is concerned with describing the overall, or
global, behavior of a system whose local evolution has been specified by a differential
equation. Similarly, we would like to be able to make statements about the “overall’’ behavior
of a process whose local evolution has been specified by a procedure. This is very difficult to
do in general, but we can at least try to describe some typical patterns of process evolution.

In this section, we'll examine some common “shapes’ for processes generated by simple
procedures. We'll also investigate the rates at which these processes consume the important
computational resources of time and space. The procedures we will be considering are very
simple. Their role is like that played by photographic test patterns in photography - as
oversimplified prototypical patterns, rather than as practical examples in their own right. '

1.2.1. Linear Recursion and lteration
Let’s begin by considering the factorial function, defined by
nl = ne (n-1) » (n-2) « ... *3°*2¢+1
There are many ways to compute factorials. One way is to make use of the observation that n!
is equal to n times (n-1)! for any positive integer n:
nl =ne* ((n-1) ¢« (n-2) ¢« ... *3°*2¢+1)=n¢+ (n-1)!
Thus we can compute n! by Computing (n-1)! and multiplying the result by n. If we add the
stipulation that 1! is equal to 1, this observation translates directly into a procedure: .
(define (factorial n)
(if (= n 1)
1 ,
(* n (factorial (- n 1)))))

We can use the substitution model of section 1.1.5 to watch this procedure in action
computing 6!, as shown in figure 1-3.

32 DRAFT: 31 JULY 198Building Abstractions with Procedures

(factorial 6)

(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))
(* 6 (* 5 (* 4 (factorial 3))))
(* 6 (* 5 (* 4 (* 3 (factorial 2)))))
(* 6 (*5 (* 4 (*3 (*2 (factorial 1))))))
(* 6 (*5 (*4(*3(*21)))))
(* 6 (*5 (*4(*32))))
(* 6 (*5(*46)))
(* 6 (* 5 24))
6)

Figure 1-3: A linearly recursive process for computing 6 factorial.

Now let's take a different perspective on computing factorials. We could describe a rule for
computing n factorial by specifying that we first multiply 1 times 2, then multiply the result by
3, then by 4, and so on until we reach n. More formally, we maintain a running product,
together with a counter that counts from 1 up to n. We can describe the computation by
saying that the counter and product simultaneously change from one step to the next
according to the rule:

product + counter * product
counter + counter + 1

together with the stipulation that the value of factorial is the value of the product when the
counter exceeds n.

Once again, we can recast our description as a procedure for computing factorials:2*

(define (factorial n)
(fact-iter 1 1 n))

(define (fact-iter product counter max-count)
(if (> counter max-count)
product
(fact-iter (™ counter product)
(+ counter 1)
max-count)))

As before, we can use the substitution model to visualize the process of computing 6!, as
shown in figure 1-4, '

24In a real program we would probably use the block structure introduced in the last section to hide the definition

of fact-1iter and to simplify the argument passing as follows:

(define (factorial n)
(define (iter product counter)
(if (> counter n)
product
(iter (* counter product)
(+ counter 1))))
(iter 1 1))

We did not do this here so as to minimize the number of things to think about.

1.2.1 , DRAFT: 31 JULY 1983 33

factorial 6
(factori) Gﬁ

(fact-iter 11
(fact-iter 1 2 6)
(fact-iter 2 3 6).
(fact-iter 6 4 6)
(fact-iter 24 5 8)
(fact-iter 120 6 6)
(fact-iter 720 7 6)‘V/

720

Figure 1-4: Aniterative process for computing 6 factorial.

Let us compare the two processes. From one point of view, they seem hardly different at
all. Both compute the same mathematical function on the same domain, and each requires a
number of steps proportional to n to compute n!. Indeed, both processes even carry out the
same sequence of multiplications, obtaining the same sequence of partial products. On the
other hand, when we consider the “shapes” of the two processes, we find that they evolve
quite differently.

Consider the first process. The substitution model reveals a shape of expansion followed
by contraction, indicated by the arrow in figure 1-3. The expansion occurs as the process
builds up a chain- of deferred operations, in this case, a chain of multiplications. The
contraction occurs as the arguments to each multiplication are evaluated and the
multiplication is actually performed. This type of process, characterized by a chain of
deferred operations, is called a linearly recursive process. Notice that carrying out this
process requires that the interpreter keep track of the multiplications to be performed later on.
In computing n!, the length of the chain of deferred operations, and hence the amount of
information needed to keep track of it, grows linearly with n.

By contrast, the second process does not grow and shrink. At each step, all we need to
keep track of, for any n, are the current values of the variables product, counter, and
max-count. We call this kind of process an iterative process. In general, an iterative process
is one whose state can be summarized by a fixed number of variables, called state variables,
together with a fixed rule that describes how the state variables should be updated as the
process moves from state to state, and an (optional) end test that specifies conditions under
which the process should terminate.

Here is another way to view the contrast between the two processes. In the iterative case:
the program variables provide a complete description of the state of the process at any point.
If we stopped the computation between steps, all we would need to do to resume the
computation is to supply the interpreter with the values of the three program variables. Not so
with the linearly recursive process. In this case there is some additional “hidden” data being
maintained by the interpreter, not contained in the program variables, which keeps track of

“where the process is” in negotiating the chain of deferred operations. The longer the chaln
the more information to be maintained.? :

25When we discuss the implementation of procedures on register machines, we will see that any iterative process
can be realized "in hardware” as a machine that has a fixed set of registers and no auxiliary memory. In contrast,
realizing a recursive process requires a machine that uses an auxiliary data structure known as a sfack.

34 DRAFT: 31 JULY 198Building Abstractions with Procedures

In contrasting iteration and recursion, we must be careful not to confuse the notion of a
recursive process with the notion of a recursive procedure. In general, when we describe a
procedure as recursive, we are referring to the syntactic fact that the procedure definition
refers (either directly or indirectly) to the procedure itself. But when we describe a process as
following a pattern which is, say, linearly recursive, we are speaking about how the process
evolves, not about the syntax of how a procedure is written. In particular, it may seem
disturbing that we refer to a recursive procedure such as fact-iter as generating an
iterative process. But the process really is iterative: Its state is captured completely by its
three state variables, and an interpreter need keep track of only three variables in order to
execute the process.

One reason that the distinction between process and procedure may be confusing is that
interpreters for most common languages (including Algol, Pascal, and indeed -- until recently
-- most implementations of Lisp) are designed in such a way that the interpretation of any
recursive procedure consumes an amount of memory that grows linearly with the number of
procedure calls, even when the process described is, in principle, iterative. As a
consequence, these languages can describe iterative processes only by resorting to the use
of special-purpose ‘looping constructs’ such as do, repeat, until, for, while, and so
on. The interpreter we shall exhibit in Chapter 5 does not share this defect. It will execute an
iterative process in constant space, even if the iterative process is described by a recursive
procedure. An interpreter with this property is called tail recursive. With a tail recursive
interpreter, iteration can be expressed using the ordinary procedure call mechanism, so that
special iteration constructs are useful only as syntactic sugar.26

Exercise 1-8: Each of the following two procedures defines a method for adding two positive integers
in terms of the more primitive operators 1+, which increments its argument by 1, and -1+, which
decrements its argument by 1.

(define (+ a b)
(if (= a 0)
b
(1+ (+ (-1+ a) b))))

(define (+ a b)
(if (= a 0)
b
(+ (-1+ a) (1+ b))))

Using the substitution model, illustrate the process generated by each procedure in evaluating
(+ 4 5). Arethese processes iterative or recursive?

Exercise 1-9: The following procedure computes a mathematical function called “Ackerman's
function.”

26Tail recursion has long been known as a compiler optimization trick. A coherent semantic basis for tail
recursion was provided by Carl Hewitt [21], who explained it in terms of the “"message-passing” model of
computation that we shall discuss in Chapter 3. Inspired by this, Gerald Jay Sussman and Guy Lewis Steele, Jr. [39]
constructed a tail-recursive interpreter for Scheme. Steele [40] later showed how tail recursion is a consequence of

the natural way to compile procedure calls.

1.2.1 DRAFT: 31 JULY 1983 ' 35

(define (
(cond

o~~~ o~

(Ax (-y 1))
What are the values of the following expressions?
(A1 10)

(A2 4)

(A 3 3)
Consider the following procedures, where A is the procedure defined above:
(define (f n) (A 0 n))

(define (g n) (A 1 n))
(define (h n) (A 2 n))

(define (k n) (* 6 n n))

Give a concise mathematical definition for each of the functions computed by the procedures f,g, and h,
for positive integer values of n. (For example, (k n) computes 5n°.)

1.2.2. Tree Recursion

Another common pattern of computation is called tree recursion. As an example, consider
computing the sequence of Fibonacci numbers, in which each number is the sum of the
preceding two:

0,1,1,2,3,5,8,13,21,...
In general, the Fibonacci numbers can be defined by the rule
0 if n 0

Fib(n) = {1 ifn=1
Fib(n-1)+Fib(n-2) otherwise

We can immediately translate this definition into a recursive procedure for computing
Fibonacci numbers: '
(define (fib n)
(cond ((= n 0) 0)
((=n 1) 1)
(else (+ (fib (- n 1))
(fib (- n 2))))))

Let us consider the pattern of this computation. In order to compute, say, (fib 5), we
compute (fib 4) and (fib 3). In order to compute (fib 4), we compute (fib 3) and
(fib 2). In general, the evolved process looks like a tree, as shown in figure 1-5. Notice
that the branches split into 2 at each level (except at the bottom) and this reflects the fact that
the fib procedure calls itself twice each time it is invoked. '

36 | DRAFT: 31 JULY 198Building Abstractions with Procedures

N
fibSK

fib 4

fib 3 , fib 2 fib 2
fib 2 fib 1) [fib 1| |fib 0} (fib 1 fib 0

fib 1 fib 0 1 1 0 1

Figure 1-5: The tree-recursive process generated in computing (fib §).

This procedure is instructive as a prototypical tree-recursion, but it is a terrible way to
compute Fibonacci numbers, because it does so much redundant computation. Notice in
figure 1-5 that the entire computation of (fib 3) -- almost half the work -- is duplicated. In
fact, it is not to hard to show that the number of times the procedure will compute (fib 1) or
(fib 0) (the number of leaves in the above tree, in general) is precisely Fib(n+ 1). And to
get an idea of how bad this is, one can show that the value of Fib(n) grows exponentially with
n. More precisely, (see exercise 1-15) Fib(n) is the closest integer to ¢"/+ 5, where -

p = (1++v5)/2=1.6180

is the golden ratio that satisfies the equation

(p2=(p+1

Thus the process takes an amount of time that grows exponentially with the input. On the
other hand, the space required grows only linearly with the input because we need keep track
only of which nodes are above us in the tree at any point in the computation. In general, the
time required by a tree-recursive process will be proportional to the number of nodes in the
tree, while the space required will be proportional to the maximum depth of the tree.

We can also formulate an iterative process for computing the Fibonacci numbers. The idea
is to use a pair of integers a and b, initialized to 1 and 0, and to repeatedly apply the
simultaneous transformations

a+—a+hb

b ~ a v
It is not hard to show that, after applying this transformation n times, a and b will be equal,
respectively, to Fib(n) and Fib(n-1). Thus we can compute Fibonacci numbers iteratively
using the procedure:

1.2.2 DRAFT: 31 JULY 1983 37

(define (fib n)
(fib-iter 1 0 n))

(define (fib-iter a b count)
(if (= count 0)
b

(fib-iter (+ a b) a (- count 1))))
This second method for computing fib is a linear iteration. The difference in time required

by the two methods -- one linear in n, one growing as fast as Fib(n) itself -- is enormous, even
for small inputs.
One should not conclude from this that tree recursive processes are useless. For one

thing, when we consider processes that operate, not on numbers, but on hierarchically
structured data, we will find that tree-recursion is a natural and powerful tool.?” But even in

" numerical operations, tree recursive processes can be useful in helping us to understand and

design programs. Notice, for instance, that although the first fib procedure is much less
efficient than the second one, it is more straightforward, being little more than a translation
into Lisp of the definition of the Fibonacci sequence. In order to formulate the iterative
algorithm we needed a bit of cleverness to notice that the computation could be recast as an
iteration with three state variables.

Example: Counting change

It takes only a bit of cleverness to come up with the iterative Fibonacci algorithm. In
contrast, consider the following problem: How many different ways can we make change of
$1.00 given half-dollars, quarters, dimes, nickels, and pennies? More generally, can we write
a procedure to compute the number of ways to change any given amount of money?

This problem has a simple solution as a recursive procedure: Suppose we think of the types
of coins available as arranged in some order. Then the following relation holds:

Number of ways to change amount a using n kinds of coins =
Number of ways to change amount a using all but the first kind of coin
+ Number of ways to change amount a-d using all n kinds of coins
where d is the denomination of the first kind of coin.

To see why this is true, observe that the ways to make change can be divided into two
groups: those that do not use any of the first kind of coin, and those that do. Therefore, the
total number of ways to make change for some amount is equal to the number of ways to
make change for the amount without using any of the first kind of coin, plus the number of
ways to make change, assuming that we do use the first kind of coin. But the latter number is

-equal to the number of ways to make change for the amount that remains after using a coin of

the first kind.

Thus we can recursively reduce the problem of changing a given amount to the problem of
changing smaller amounts using fewer kinds of coins. You should consider this reduction

27We've already hinted at an example of this -- the interpreter itself evaluates expressions, using a tree-recursive
process, as mentioned in section 1.1.3.

38 , DRAFT: 31 JULY 198Building Abstractions with Procedures

rule carefully, and convince yourself that we can use it to describe an algorithm if we specify
the following degenerate cases:?8

o If a is exactly O we should count that as 1 way to make change.
o If a is less than 0 we should count that as 0 ways to make change.
e If n is 0 we should count that as 0 ways to make change.

We can easily translate this description into a recursive procedure:

(define (count-change amount)
(cc amount 5))

(define (cc amount kinds-of-coins)
(cond ((= amount 0) 1)
((or (< amount 0) (= kinds-of-coins 0)) 0)
(else (+ (cc (- amount
(first-denomination kinds-of-coins))
kinds-of-coins)
' (cc amount
{ (- kinds-of-coins 1))))))

(define (first-denomination kinds-of-coins)
(cond ((= kinds-of-coins 1) 1)
((= kinds-cf-coins 2) 5)
((= kinds-of-coins 3) 10)
((= kinds-of-coins 4) 25)
((= kinds-of-coins 5) 50)))
(The first-denomination procedure takes as input the number of kinds of coins available
and returns the denomination of the first kind. Here we are thinking of the coins as arranged
in order from smallest to largest, but any order would do as well.) Having typed in our
program, we can use it to answer our original question about changing a dollar:

==> (count-change 100)
292

Count-change generates a tree-recursive process with redundancies similar to those in
our first implementation of fib. (It will take quite a while for that 292 to be computed.) On the
other hand, it is not so obvious how to design a better algorithm for computing the resuilt, and

‘we leave this problem as a challenge (exercise 1-10). The observation that a tree-recursive
process may be highly inefficient but often easy to specify and to understand has led people
to propose that one could get the best of both worlds by designing a “smart compiler’ that
can transform tree-recursive procedures into more efficient procedures that compute the

28Work through in detail, for example, how the reduction rule applies to the problem of making change for 10

cents using pennies and nickels.

1.2.2 DRAFT: 31 JULY 1983 39

same result.?®

Exercise 1-10: Design a procedure which evolves an iterative process for solving the change counting
problem. For simplicity, you may wish to start by considering only 2 or 3 kinds of coins.

1.2.3. Orders of Growth

The previous examples illustrate that processes can differ considerably in the rates at
which they consume computational resources of time and space. One convenient way to
describe this difference is to use the notion of “order of growth’ to obtain a gross measure of
the resources required by a process as the inputs become larger.

Let n be a parameter that measures the size of the input and let R(n) be the amount of
resources the process requires for an input size n. In our previous examples we took n to be
the number for which a given function is to be computed, but there are other possibilities. For
instance, if our goal is to compute an approximation to the square root of a number, we might
take n to be the number of digits accuracy required. Fcr matrix multiplication we might take n
to be the number of rows in the matrices. In general there are a number of properties of the
input with respect to which it will be desirable to analyze a given process. Similarly, R(n)
might measure the time required to complete the computation, the number of internal storage
registers used, the number of elementary machine operations performed, and so on.

We say that R(n) has order of growth O(f(n)), written R(n)=0(f(n)) (pronounced “Oh of
f(n)") if there is some constant K independent of n such that

R(n) < K t(n)
for any sufficiently large value of n.

For instance, with the linear recursive process for computing factorial described in section
1.2.1 the number of steps grows proportionally to the input n. Thus the time required for this
process grows as O(n). We also saw that the space required grows as O(n). For the iterative
factorial the required time is still O(n) but the space is O(1) -- that is, constant.®’ The tree-
recursive Fibonacci computation requires time O(¢") and space O(n).

Orders of growth provide only a crude description of the behavior of a process. For
example, a process requiring n steps and a process requiring 1000n steps are both

2gThis idea is not as outlandish as it may appear at first sight. One approach to coping with redundant
computations is to arrange matters so that we automatically construct a table of function values as they are
computed. Each time we are asked to compute the function on some input, we first look to see if the value is already
stored in the table, in which case we avoid performing the redundant computation. This strategy, known as
tabulation or memoization, can be implemented in a straightforward way. Tabulation can be used to transform
processes that require exponential time (such as count-change) into processes whose space and time
requirements grow linearly with the inpul. See exercise 3-24 of Chapter 3.

30The:se statements mask a great deal of oversimplification. For instance, when we identify process steps with
“time'' we are making the assumption that the amount of time needed to perform, say, a multiplication is independent
of the size of the numbers to be multiplied, which is false if the numbers are sufficiently large. Similar remarks hold
for the estimates of space. Just as with the design and description of a process, the analysis of a process can be
carried out at various levels of abstraction.

40 DRAFT: 31 JULY 198Building Abstractions with Procedures

considered to have O(n) order of growth.31 On the other hand, order of growth provides a
useful indication of how we may expect the behavior of the process to change as we change
the size of the input. For an O(n) process, doubling the size will roughly double the amount of
resources used. For an exponential process, each increment in input size will multiply the
resource utilization by a constant factor. In the remainder of section 1.2, we'll examine two
algorithms whose order of growth is logarithmic, so that doubling the input size increases the
resource requirement by a constant amount. '

Exercise 1-11: Draw the tree illustrating the process generated by the count-change procedure of
section 1.2.2 in making change for 11 cents. What is the order of growth of this process as the amount
to be changed increases?

1.2.4. Exponentiation

Consider the problem of computing the exponential of a given number. We'd like a
procedure that takes as arguments a base b and a positive integer exponent n and computes
b". One way to do this is via the recursive definition:

b" = b+ b™
b = b
which translates readily into the procedure

(define (expt b n)
(if (= n 1)
b

(* b (expt b (- n 1)))))
This is a linear recursive process, with time and space requirements O(n). Just as with
factorial, we can readily formulate an equivalent linear iteration:

(define (expt b n)
(exp-iter b n 1))

(define (exp-iter b counter product)
(if (= counter 0)
product
(exp-iter b
(- counter 1)
(* b product))))

81 Another drawback of order notation is that it provides only an upper bound on the growth. Because of the
inequality sign in the definition, any process with order of growth f(n) will also_have order of growth g(n) for any
function g that grows faster than f. For example, any O(n) process is also O(n“). So strictly speaking, we should
interpret the equation R(nj = 0(f(n)) to mean that R(n) grows at most as fast as f(n). In more careful analyses of
resource utilization, one also considers estimates which say that R(n) grows at least as fast as f(n). This is expressed:
using the notation R(n) has order of growth (t(n)), written R{n) = Q(f(n)) (pronounced “big cmega of /(n)”") which is
defined to mean that there is some constant K independent of n such that

R(n) 2> K t(n)

for any sufficiently large value of n. In addition, the notation R(n) = 8(f(n)) is used to mean that R{n) = O(t(n)) and
R(n) = Q(t(n})), or, roughly, that R(n) grows exactly as fast as /(n).

-

1.2.4) DRAFT: 31 JULY 1983 ' 41

This version requires time O(n) and space O(1).

We can compute exponentials i |n fewer steps by using the idea of successive squaring. For
instance, rather than computing b® as

b*bebebebebebeb
we can compute it using three multiplications as follows:

b2 =beb
b* = (b3)?
b8 = (b%)?

This method works fine for exponents that are powers of 2. We can also take advantage of
successive squaring in computing exponentials in general if we use the rule:

b" = (b™2)? if nis even
b" = b+ b™if nis odd
We can express this method as a procedure:
(define (fast-exp b n)
(cond ({(= n 0) 1)
((even? n) (square (fast-exp b (/ n 2))))
(else. (* b (fast-exp b (- n 1))))))
where the predicate to test whether an integer is even is defined in terms of the primitive
procedure remainder by

(define (even? n)
(= (remainder n 2) 0))

The process evolved by fast-exp grows logarithmically with n in both space and time. To
see this, observe that computing (fast-exp b 2n) requires only one more multiplication
than computing (fast-exp b n). The size of the exponent we can compute therefore
doubles (approximately) with every new multiplication we are allowed.3? So the number of
multiplications required for an exponent of n grows about as fast as the logarithm of n to the
base 2. The process has O(log n) growth.33

The difference between Oflog n) growth and O(n) growth becomes striking as n becomes
large. For example, fast-exp for n=1000 requires only 14 multiplications.3* It is also
possible to use the successive squaring idea to devise an iterative algorithm that computes
exponentials in logarithmic time, although, as is often the case with iterative algorithms, this is
not written down so straightforwardly as the recursive algorithm. (See exercise 1-12.)

32More precisely, the number of multiplications required is equal to one less than the log base 2 of n plus the
number of 1's in the binary representation of n. This total is always less than twice the log base 2 of n. This
algorithm, or more precisely, the iterative version of it (see exercise 1-12), is very ancient. It appears in the Hindu
Chandah-sutra by Acharya Pingala, written before 200 B.C. See Knuth [24] section 4.6.3 for a full discussion and
analysis of this and other methods of exponentiation.

33The arbitrary constant K in the definition of order notation implies that, for a logarithmic process, the base to
which logarithms are taken does not matter, so all such process are described as Oflog n).

34Yc~u may wonder why anyone would care about raising numbers to the 1000th power. See section 1.2.6.

42 ' DRAFT: 31 JULY 198Building Abstractions with Procedures

Exercise 1-12: Design a procedure which evolves an iterative exponentiation process that uses
successive squaring and works in logarithmic time, as does fast-exp. (Hint: Using the observation that
(b"/)2 = (bz)"/z, keep, along with the exponent n and the base b, an additional state variable a,
and define the state transformation in such a way that the product ab"is unchanged from state to state.
At the beginning of the process a is taken to be 1, and the answer is given by the value of a at the end of
the process. In general, the technique of defining an invariant quantity that remains unchanged from
state to state is a powerful way to think about the design of iterative algorithms.)

Exercise 1-13: The exponentiation algorithms in section 1.2.4 are based on performing exponentiation
by means of repeated multiplication. In a similar way, one can perform integer multiplication by means
of repeated addition. The following multiplication procedure (assume that our language can only add,
not multiply) is analogous to the exp procedure:

(define (* a b) -
(if (= b 0)
0
(+a(*a(->b1)))))
This algorithm takes time linear in b. Now suppose we include, together with addition, operations

doubTe, which doubles an integer, and halve, which divides an {even) integer by 2. Using these,
design a multiplication procedure analogous to fast-exp, which works in logarithmic time.

Exercise 1-14: Using the results of exercises 1-12 and 1-13 devise a procedure that generates an
iterative process_for multiplying two integers in terms of adding, doubling, and halving, that works in
logarithmic time.

Exercise 1-15: Prove that fib(n) is the closest integer to (pn/\/ 5, where ¢ = (1+ \/ 5)/2. (Hint: Let ¢
= {1- v 5)/2. Use induction and the recurrence relation for the Fibonacci numbers to prove that fib(n)
= (q)n-\[zn)/ 1/ 5.) Using this fact, devise a procedure that computes Fibonacci numbers in logarithmic
time. (Assume that there are primitive procedures floor and ceil1ing which return, respectively, the
closest integers below and above their argument.) Explain why this method is not likely to be practical
for computing (fib n) unless n is fairly small.

1.2.5. Greatest Common Divisors

The greatest common divisor, or GCD, of two integers a and b is defined to be the largest
integer that evenly divides both a and b. For example, the GCD of 16 and 28 is 4. In Chapter 2,
when we investigate how to implement rational number arithmetic, we will need to be able to
compute GCDs in order to reduce rational numbers to lowest terms. (To reduce a rational
number to lowest terms, we must divide both numerator and denominator by their GCD. For
example, 16/28 reduces to 4/7.) One way to find the GCD of two integers is to factor them
and search for common factors. But there is a famous algorithm that is much more efficient.

The idea of the algorithm is based on the observation that, if r is the remainder when a is
divided by b, then the common divisors of a and b are precisely the same as the common
divisors of b and r. Thus we can use the equation

GCD(a,b) = GCD(b,r)
to successively reduce the‘problem of computing GCD to the problem of computing the GCD

35This algorithm, which is sometimes known as the “Russian peasant method" of multiplication, is extremely
ancient. Examples of its use are found in the Rhind Papyrus. one of the two oldest mathematical documents in
existence, written about 1700 B.C. (and copied from an even older document) by an Egyptian scribe name A’h-mose.

1.2.5 ' DRAFT: 31 JULY 1983 43

of smaller and smaller pairs of integers. For example,
GCD(206,40) = GCD(40,6) = GCD(6,4) = GCD(4,2) = GCD(2,0) =

reduces GCD(206,40) to GCD(2,0), which is 2. It is possible to show that starting with any two
positive integers and performing repeated reductions will always eventually produce a pair
where the second number is 0. Then the GCD is the other number in the pair. This method for
computing the GCD is known as Euclid’s Algorithm.36

It is easy to express Euclid’s Algorithm as a procedure:
(define (gcd a b)
(if (= b 0)
a
(gecd b (remainder a b))))

This generates an iterative process, whose number of steps grows as the logarithm of the
numbers involved.

The fact that the number of steps required by Euclid’s Algorithm has logarithmic growth
bears an interesting relation to the Fibonacci numbers. Consider the following result:3”

Lamé’s Theorem: If Euclid’s Algorithm requires k steps to compute the GCD of some pair,
then the smaller number in the pair must be greater than or equal to the kth Fibonacci
number.38

We can use this theorem to get an order of growth estimate for Euclid’s Algorithm. Let n be
the smaller of the two inputs to the procedure. If the process takes k steps, then we must

36EucIid’s algorithm is so called because it appears in Euclid's Elfements (Book 7, ¢. 300 B.C.). According to
Knuth [24], it may be considered to be the oldest known non-trivial algorithm. The ancient Egyptian method of
multiplication (exercise 1-14) is surely older, but, as Knuth explains, Euclid's algorithm is the oldest known to have
been presented as a general algorithm, rather than only as a set of illustrative examples.

37This theorem was proved in 1845 by Gabriel Lamé, a French mathematician and engineer known chiefly for his
contributions to mathematical physics.

38Tc: prove the theorem, we consider pairs (a k,b k) for which Euclid's algorithm terminates in k steps. The proof is
based on the claim that if (ak+ 1 bk + 1) — (ak, bk) — (ak_1, bk-1) are three successive pairs in the reduction
process, then we must have by 4 b + by ,

To verify the claim, consider that a reduction step is defined by applying the transformation:
a 4= b, .
b, _4 = remainder of a, divided by b,
The second equation means that a = gb, + b, . for some positive integer g. And since ¢ must be at least 1 we
havea =gb, + b > b, + b, , Butin the previous reduction step, we have b = a,. Therefore, b =a
k -1 k+1 k k+1 k
> b, + by, This verifies the claim.

Now we can prove the theorem by induction on k, the number of steps that the algorithm requires to terminate.
The result is true for & = 1, since this merely requires that b is at least as large as Fib(7) = 1. Now, let's assume that the
result is true for all integers less than or equal to k and establish the result for k + 1. Let (a 1 bk + 1) —(a,,b)—

) be successive pairs in the reduction process. By our induction hypotheses, we have b p Z Fib{k-1) and
$ Fkb(k) Thus applying the claim we just proved together with the definition of the Fibonacci numbers gives
> b + b 2 Fib{k) + Fib(k-1) = Fib(k + 1), which completes the proof of Lamé's theorem. ’

44 , DRAFT: 31 JULY 198Building Abstractions with Procedures

have n > Fib(k) =< q>k. Therefore the number of steps k must be less than the logarithm (to

the base @) of n. Hence the order of growth is O(log n).

Exercise 1-16: The process that a procedure generates is of course dependent on the rules used by
the interpreter. As an example, consider the iterative gcd procedure given in section 1.2.5, which has
logarithmic growth. Suppose we were to interpret this procedure using normal order evaluation, as
discussed in section 1.1.5. Using the substitution method (for normal order), illustrate the process
generated in evaluating (gcd 206 40). in general, what is the order of growth in time resources for
gcd using normal order evaluation? (Assume that the time required is proportional to the number of
remainder operations performed.)

1.2.6. Example: Testing for Primality

This section describes two methods for checking the primality of an integer n, one with
order of growth O(+ n), and a “probabilistic”’ algorithm with order of growth O(log n). The
related exercises at the end of this section suggest programming projects based on these
algorithms.

I
Searching for divisors

Since ancient times, mathematicians have been fascinated by problems concerning prime
numbers, and many people have worked on the problem of determining ways to test if
numbers are prime. One way to test if a number is prime is to find the number’s divisors. The
following program finds the smallest integral divisor (greater than 1) of a given number n. It
does this in a straightforward way, by testing n for divisibility by successive integers starting
with 2.

(define (smallest-divisor n)
(find-divisor n 2))

(define (find-divisor n test-divisor)
(cond
((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))

(define (divides? a b)
(= (remainder b a) 0))

We can test whether a number is prime as follows: n is prime if and only if n is its own
smallest divisor. :

(define (prime? n)

(= n (smallest-divisor n)))

The end test for find-divisor is based on the fact that if n is not prime, it must have a
divisor less than or equal to v n.%° This means that the algorithm need only test divisors
between 1 and v n. Consequently the number of steps required to identify n as prime will -
have order of growth O(V n).

39For if dis a divisor of n, then sois n/d. But d and n/d cannot both be greater than \/ n.

1.2.6 DRAFT: 31 JULY 1983 45

The Fermat test
The O(log n) primality test is based on a result from number theory known as Fermat’s Little

Theorem:

Fermat’s Little Theorem: If n is a prime number and a is any positive integer less than n,
then a raised to the n-th power is congruent to a modulo n.

(Two numbers are said to be congruent modulo n if they both have the same remainder
when divided by n.)

If n is not prime then, in general, most of the numbers a < n will not satisfy the above
relation. This leads to the following algorithm: Given a number n, pick a random numbera<n
and compute the remainder of a” modulo n. If the result is not equal to a, then n is certainly
not prime. If it is a, then chances are good that n is prime. So now pick another random
number a and test it with the same method. If it also satisfies the equation, then we can be
even more confident that n is prime. By trying more and more values of a, we can increase
our confidence in the result. This algorithm is known as the Fermat test.

In order to implement the Fermat test, we need a procedure that computes the exponential
of a number modulo another number:

(define (expmod b e m)
(cond ((= e 1) b)

((even? e)

(remainder (square (expmod b (/ e 2) m))
m))

(else

(remainder (* b (expmod b (- e 1) m))
m))))

This is very similar to the fast-exp procedure of section 1.2.4. Observe that it uses
successive squaring, so that the number of steps grows logarithmically with the exponent.40

The Fermat test.is performed by choosing at random a number a between 2 and n-1
inclusive and checking whether the remainder modulo n of n-th power of ais equal to a. The
random number a is chosen using the procedure random, which is included as a primitive in
Scheme. Random returns a non-negative integer less than its input. Hence, to obtain a
random number between 2 and n-1, we call random with an input of n-2 and add 2 to the
result.

(define (fermat-test n)

(define a (+ 2 (random (- n 2))))
(= (expmod a n n) a))

The following procedure runs the test a given number of times, as specified by a parameter.

lts value is true if the test succeeds every time, and false otherwise.

40The reduction steps in the cases where the exponent ¢ is greater than 1 are based on the fact that, for any
integers x, y, and m, we can find the remainder of x times y modulo m by computing separately the remainders of x
modulo m and y modulo m, multiplying these, and then taki«}% the remainder of the result modulo m. For instance, in
the case where e is even, we compute the remainder of b8/“ modulo m, square this, and take the remainder modulo
m. This technique is useful because it means we can perform our computation without ever having to deal with
numbers much larger than m. (Compare exercise 1-21.)

46 DRAFT: 31 JULY 1988Building Abstractions with Procedures '

(define (fast-prime? n times)
(or (= times 0)
(and (fermat-test n)
(fast-prime n (- times 1)))))

(This procedure uses and and or in a tricky way. Remember that these operators. are special
forms. The second clause of the and will be evaluated only if the first one is true, and the
second clause of the or will be evaluated only if the first one is false. This implies that
fast-prime? will return immediately if it ever finds (fermat-test n) to be false.)

Probabilistic methods

The Fermat test has a different character from most familiar algorithms, in which we
compute an answer that is guaranteed to be correct. Here, the answer obtained is only
probably correct. More precisely, if n ever fails the Fermat test, then we can be certain that n
is not prime. But the fact that n passes the test, while an extremely strong indication, is stilt
not a guarantee that n is prime. What we would like to say is that, for any number n, if we
perform the test enough times and find that n always passes the test, then the probability of
error in our primality test can be made as small as we like.

Unfortunately, this assertion is not quite correct, because there do exist numbers that fool
the Fermat test: numbers n that are not prime and yet have the property that a” is congruent
to a medulo n for all integers a < n. Such numbers are extremely rare, however, so the Fermat
test is quite reliable in practice. Nevertheless, the possibility of error still exists, and because
of this, mathematicians until recently tended to regard the Fermat test as a good way to show
that a number is not prime, but not an adequate method for showing that a number is prime.‘”

Over the past few years, mathematicians have discovered variations of the Fermat test that
cannot be fooled. In these tests, as with the Fermat method, one tests the primality of am
integer n by choosing a random integer a < n and checking the value of some quantity F(a,n}
that can be computed in logarithmic time. (See exercise 1-23 for an example of such a test.}
On the other hand, unlike with the Fermat test, one can prove that for any n, F(a,n) will not
have the right value for most of the integers a < n unless n is prime. This means that if n
passes the test for some random choice of a, we know that the chances are better than even
that n is prime. If n passes the test for 2 random choices of a then the odds are better than 4
to 1 that n is prime. And by running the test with more and more randomly chosen values of a
we can make the probability of error as small as we like.

The difference between these methods and the Fermat test is not significant for practical

purposes.42 On the other hand, the existence of tests for which one can prove that the
chance of error becomes arbitrarily small sparked interest in algorithms of this type, which

41 Numbers that foo! the Fermat test are called Carmichael numbers, and little is known about them, other than that
they are extremely rare. There are 16 Carmichael numbers below 100,000. The smallest few are 561, 1105, 1728,
2465, 2821, 6601.

42[n testing primality of very large numbers chosen at random, the chance of stumbling upon a value that fools the
Fermat test is less than the chance that cosmic radiation will cause the computer to make an error in carrying out a
“correct” algorithm. Considering an algorithm to be inadequate for the first reason but not for the second illustrates
the difference between mathematics and engineering.

1.2.6 _ DRAFT: 31 JULY 1983 47

have come to be known as probabilistic algorithms. There is currently a greaf deal of research
activity in this area, and probabilistic algorithms have been fruitfully applied to many fields.*3

Exercise 1-17: Implement the smallest-divisor procedure of section 1.2.6 and use it to find the
smallest divisor of each of the following numbers: 199; 1999; 19999.

Exercise 1-18: Most Lisp implementations include a primitive called runt ime which returns an integer
that specifies the amount of time the system has been running (measured, for example, in
microseconds). The following timed-prime-test procedure, when called with an integer n, prints n
and checks to see if nis prime. If nis prime, the procedure prints three stars, followed by the number of
microseconds used in performing the test.
(define (timed-prime-test n)

(define start-time (runtime))

(define found-prime? (prime? n))

(define elapsed-time (- (runtime) start-time))

(print n)

(cond (found-prime? (print " #*#% ")

(print elapsed-time))
(else nil)))

Using this procedure, write a procedure search-for-primes which checks the primality of ‘
consecutive odd integers in a specified range. Use your procedure to find the three smallest primes
larger than 1000; larger than 10,000; larger than 100,000; larger than 1,000,000. Note the time needed to
test each prime. Since the testing algorithm has order of growth Of \/ n) you should expect that testing
for primes around 10,000 should take about w/ 10 times as long as testing for primes around 1000. Does
your timing data bear this out? How well does the data for 100,000 and 1,000,000 support the \/ n
prediction?

Exercise 1-19: The smallest-divisor procedure described in section 1.2.6 is doing lots of needless
testing. For after it checks to see if the number is divisible by 2, there is no point checking to see if it is
divisible by any larger even numbers. This suggests that the values used for test-divisor should not
be 2, 3,4,5,6,7, .., butrather 2, 3,5,7, 9, Toimplement this change, define a procedure next that
returns 3 if its input is equal to 2 and otherwise returns its input plus 2. Modify the smallest-divisor
procedure to use (next test-divisor) instead of (+ test-divisor 1). With
timed-prime-test incorporating this modified version of smallest-divisor, run the test for each
of the 12 primes found in exercise 1-18. Since this modification halves the number of test steps, you
should expect it to run about twice as fast. Is this expectation confirmed? If not, what is the observed
ratio of the speeds of the two algorithms, and how do you explain the fact that it is different from 2?

Exercise 1-20: Implement the Fermat test as described in section 1.2.6. Modify the
timed-prime-test procedure of exercise 1-18 to use the Fermat method, and test each of the 12
primes you found in that exercise. Since the Fermat test has O(log n) growth, how would you expect the
time to test primes near 1,000,000 to compare with the time needed to test primes near 1000? Does your
data bear this out? Can you explain any discrepancy you find?

Exercise 1-21: Alyssa P. Hacker complains that we went to a lot of extra work in writing expmod. After
all, she says, since we already know how to compute exponentials, we could have simply written

43One of the most striking applications of probabilistic prime testing has been to the field of cryptography. While it
is currently computationally infeasible to factor an arbitrary 200-digit number, the primality of such a number can be
checked in a few seconds with the Fermat test. This fact forms the basis of a technique for constructing
“unbreakable codes” suggested in 1977 by Ronald Rivest, Adi Shamir, and Leonard Adelman [36]. Because of this
and related developments, the study of prime numbers, once considered to be the epitome of a topic in “pure”
mathematics to be studied only for its own sake, now turns out to have important practical applications to
cryptography, electronic funds transfer, and information retrieval.

48 DRAFT: 31 JULY 198Building Abstractions with Procedures

2

(define (expmod base exp m)
(remainder (fast-exp base exp) m))

Is she correct? Would this procedure serve as well for our fast prime tester? Exblain.

Exercise 1-22: Louis Reasoner is having great difficulty doing exercise 1-20. His fast-prime? test
seems to run more slowly than his prime? test. Louis calls his friend Eva Lu Ator over to help. When
they examine Louis's code, they find that he has rewritten the expmod procedure to use an explicit
multiplication, rather than calling square:

(define (expmod b e m)
{(cond ({(= e 1) b)
((even? @)
(remainder (* (expmod b (/ e 2) m)
(expmod b (/ e 2) m))

m))

(else

(remainder (* b (expmod b (- & 1) m))
m))))

“| don't see what difference that could make,” says Louis. “l do." says Eva. "By writing the procedure
like that, you have transformed the Oflog n) process into an O(n) process.” Explain.

Exercise 1-23: One of the variants of the Fermat test which cannot be fooled was discovered in 1977
by Robert Solovay and Volker Strassen [38]. It proceeds by choosing a random number a < n, checking
that GCD(a,n)=1 and then computing a number-theoretic quantity called the Jagobi symbol J(a,n)
which is equal to z=1. If n is prime then J(a,n) is always congruent modulo n to a(n~)2 for any a such
that GCD(a,n) = 1. If nis not prime, then it can be proved that this relation does not hold for at least haif
the numbers a<n. Thus if we find that the relation does not hold for some randomly chosen a, we can
assert that the chances are better than even that n is not prime. The Jacobi symbol can be computed by
using the reductions: '

1 2 if a=1
(n®-1)/8
J(a,n) =) J(a/2,n)*(-1) if a is even
(a-1)(n-1)/4
J(remainder(n,a),a)*(-1) otherwise

Implement the Solovay-Strassen test as a procedure that runs in O(log n) time.

1.3. Formulating Abstractions with Higher Order Procedures

We've seen that procedures are, in effect, abstractions that describe compound operations
on numbers independently of the particular numbers. For example, when we define

(define (cube x) (* x x x))

we are not talking about the cube of a particular number, but rather about a method for
obtaining the cube of any number. Of course, we could have gotten aleng without ever
defining this procedure, by always writing expressions such as

(* 333)

(* x x x)

(*yvyy

and never mentioning cube explicitly. This would place us at a serious disadvantage, forcing
us to work always at the level of the particular operations that happen to be primitives in the

1.3 DRAFT: 31 JULY 1983 ' 49

language (multiplication, in this case), rather than in terms of higher level operations. Our
programs would be able to compute cubes, but our language would lack the ability to express
the concept of cubing. One of the things we should demand from a powerful programming
language is the ability to build abstractions by assigning names to common patterns, and then
to work in terms of the abstractions directly. Procedures provide this ability. This is why all
but the most primitive programming languages include mechanisms for defining procedures.

Yet, even in numerical processing, we will be severely limited in our ability to create
abstractions if we are restricted to procedures whose parameters must be only numbers.
Often the same programming pattern will be used with a number of different procedures. To
express such patterns as concepts we will need to construct procedures which can accept
procedures as parameters. Procedures that manipulate procedures are sometimes called
higher order procedures. This section shows how higher order procedures can serve as
powerful abstraction mechanisms, vastly increasing the expressive power of our language.

1.3.1. Procedures as Parameters

Consider the following three procedures. The first computes the sum of the integers from a
through b:

(define (sum-integers a b)
(if (> ab)
0
(+ a (sum-integers (+ a 1) b))))
The second computes the sum of the cubes of the integers in the given range:
(define (sum-cubes a b)
(if (> a b)
0
(+ (cube a) (sum-cubes (+ a 1) b))))

The third computes the sum of a sequence of terms in the following series, which converges
to 7 /8 (very slowly):#*

(define (pi-sum a b)
(if (> a b)
0

(+ (/1 (* a(+a2))) (pi-sum (+ a 4) b))))

These three procedures clearly share a common underlying pattern. They are for the most
part identical, differing only in the name of the procedure, the function of a used to compute
the term, and the function that provides the next value of a. We could generate each of the

44This formula, usually written in the equivalent form
w/4=1-1/3+1/5-1/7 + ...
is due to Leibnitz.

50 . DRAFT: 31 JULY 198Building Abstractions with Procedures

procedures by filling in slots in the same template:

(define (<name> a b)
(if (> a b)
0

(+ (<term> a)
(<name> (<next> a) b))))

The presence of such a common pattern is strong evidence that there is a useful
abstraction waiting to be brought to the surface. Indeed, mathematicians have long ago
identified the abstraction of summation of a series and have invented “sigma notation”

b
S f(n) = f(a) + ... + f(b)
a

to express this concept. The power of sigma notation is that it allows mathematicians to deal
with the concept of summation itself, rather than only with particular sums; for example, to
formulate general results about sums that are independent of the particular series being
summed.

¢ Similarly, as program designers, we would like our language to be powerful enough so that
we can write a procedure that expresses the concept of summation itself rather than only
writing procedures that compute particular sums. And we can readily do so in our procedural
language by taking the common template shown above and transforming the ‘“‘slots” into
formal parameters:

(define (sum term a next b)
(if (> a b)
0

(+ (term a)
(sum term (next a) next b))))
Notice that sum takes as its arguments upper and lower bounds a and b together with
procedures termand next. We can use sum just as we would any procedure. For example,
we can use it to define sum-cubes:

(define (sum-cubes a b)
(sum cube a 1+ b))

Using this we can compute the sum of the cubes of the integers from 1 to 10:

==> (sum-cubes 1 10)
3025 '

We could also define p 1-sum in the same way:

(define (pi-sum a b)
(define (pi-term x)

(/ 1.(* x (+x2))))
(define (pi-next x)

(+ x 4))

(sum pi-term a pi-next b))
Using these procedures, we could get an approximation to #:

1.3.1 DRAFT: 31 JULY 1983 51

==>(* 8 (pi-sum 1 1000))
3.13592

Once we have sum, we can use it as a building block in formulating further concepts. For
instance, the definite integral of a function f between the limits a and b can be approximated
numerically using the formula

b
[f = [f(atdx/2) + f(a+dx+dx/2) + f(a+2dx+dx/2) + . . .] dx
a

for small values of dx. We can express this directly as a procedure:

(define (integral f a b dx)
(define (add-dx x) (+ x dx))
(* (sum f (+ a (/ dx 2)) add-dx b)
dx))

==> (integral cube 0 1 .001)
0.250000063

Exercise 1-24: The sum procedure above generates a linear recursion. If we like, we can rewrite the
procedure so that the sum is performed iteratively. Show how to do this by filling in the missing
expressions in the following definition:

(define (sum term a next b)-
(define (iter a result)
(if <??»
<D
(iter <72
?2)))
(iter <??2> <?2))

Exercise 1-25: 45 The sum procedure of section 1.3.1 is only the simplest of a vast number of similar
abstractions that can be captured as higher order procedures. Write an analogous procedure called
product that returns the product of the values of a function at points over a given range. Write the
procedure in two forms, one which generates a recursive process and one which generates an iterative
process. Show how to define factgé‘iﬂ in terms of product. Also use product to compute
approximations to 7 using the fermula:

204°4%6%6°8° ..

s
4

303¢5%5°%7°7°

Exercise 1-26: Show that sum (section 1.3.1) and product (exercise 1-25) are both special cases of a
still more general notion called accumulate which combines a collection of terms, using some general

45Th«e intent of exercises 1-25 through 1-27 is to demonstrate the expressive power that is attained by using an
appropriate abstraction to consolidate many seemingly disparate operations. However, while accumulation and
filtering are elegant ideas, our hands are somewhat tied in using them at this point, since we do not yet have data
structures to provide suitable means of combination for these abstractions. We will return to these ideas in Chapter 3
when we study data structures called streams. Streams are interfaces that allow us to combine filters and
accumulators to build even more poweriul abstractions. We will see in section 3.4.2 how these methods really come
into their own as a powerful and elegant approach to designing programs.

46This formula was discovered by the English mathematician John Wallace, who lived from 1616 to 1703.

52 DRAFT: 31 JULY 198Building Abstractions with Procedures

accumulation function:
(accumulate combiner null-value term a next b)

Accumulate takes as parameters the same term and range specifications as sum and product,
together with a combiner procedure (of two arguments) that specifies how the current term is to be
combined with the accumulation of the preceding terms and a nul7-value that specifies what initial
value to use when the terms run out. Write accumulate (both in recursive and iterative forms) and
show how sum and product can both be defined as simple calls to accumuTate.

Exercise 1-27: You can obtain an even more general version of accumulate by introducing the notion
of a filter on the terms to be combined. That is, do not combine all the terms in the range, but only those
that satisfy a specified condition. The resulting filtered-accumulate abstraction takes the same
arguments as accumulate, together with an additional predicate of one argument that specifies the filter.
Write filtered-accumulate as a procedure. Show how to express, using filtered-accumulate:

a. the sum of the squares of the prime numbers in given interval a to b {Assume you have a prime?
predicate already written.)

b. the product of all the positive integers a < n such that GCD(a,n) = 1.

1.3.2. Constructing Procedures using LAMBDA

In using sumin section 1.3.1, it seems terribly awkward to have to define trivial procedures
such as pi-term and pi-next, just so we can use them as inputs to our higher order
procedure. Rather than defining names pi-next and pi-term (even if in a local
environment), it would be more convenient to have a way to directly specify “‘the procedure
that returns its input incremented by 4,” and “the procedure that returns the reciprocal of its
input times its input plus 2.” We can do this by introducing the special form Tambda, which
can be thought of as a ““define anonymous.” Using Tambda we can describe what we want
as

(Tambda (x) (+ x 4))
and
(1ambda (x) (/ 1 (* x (+ x 2))))
Then our pi-sum procedure can be expressed without defining any auxiliary procedurés as
(define (pi-sum a b)
(sum (lambda (x) (/1 (* x (+ x 2))))

a
(Tambda (x) (+ x 4))
b))

Again, using Tambda, we can write the integral procedure without having to define the
auxiliary procedure add-dx. In addition, we can include the increment dx as a parameter to
integral:

(define (integral f a b dx)

(* (sum f
(+ a (/ dx 2))
(1ambda (a) (+ a dx))
b

dx))

- 1.8.2 , DRAFT: 31 JULY 1983 53

==> (integral cube 0 1 .01)
0.249987492

==> (integral cube 0 1 .001)
0.250000063
(The exact value of the integral of cube between 0 and 1is 1/4.)

In general, Tambda is used to define procedures in the same way as def ine, except that
no name is specified for the procedure being defined.

(1ambda <formal-parameters> <body>)

The resulting procedure is just as much a procedure as any that is created using define.
The only difference is that it has not been associated with any name in the environment. In
fact,

(define (plus4 x) (+ x 4))
is equivalent to
(define plus4 (lambda (x) (+ x 4)))

As with any expression which has as its value a Lisp procedure, a Tambda form can be
used as the operator in a combination, such as:

==> ((lambda (x y z) (+ x y (square z))) 1 2 3)
12

or, more generally, in any context where we would normally use a procedure name.*”

Using LET to define local variables

Another use of Tambda is in defining local variables. We often need local variables in our
procedures other than those that have been bound as formal parameters. For example,
suppose we wish to compute the function

flx,y) = x(1+xy)P + y(1-y) + (1+xy)(1-y)
which we could also express as
as=1+xy

b= 1y

f(x,y) = xa® + yb + ab

In writing a procedure to compute f, we would like to include as local variables not only x and
¥, but also the names of intermediate quantities like a and b. One natural way to accomplish

47It would be clearer and less intimidating to people learning Lisp if one used a name more obvious than 1ambda,
such as procedure. But the convention is firmly entrenched. The notation is adopted from the A-calculus
(lambda-calculus), a mathematical formalism introduced in 1941 by the mathematical logician Alonzo Church
[6]. Church developed the A-calculus to provide a rigorous foundation for studying the notions of function and
function application. As such, the A-calculus has become a basic tool for mathematical investigations of the
semantics of programming languages.

54 ' DRAFT: 31 JULY 198Building Abstractions with Procedures

3

this is to de f ine these expressions locally:

(define (f x y)
(define a (+ 1 (* x y)))
(define b (- 1 y))
(+ (* x (square a))
(* y b)
(* ab)))
An alternative is to use an auxiliary procedure to bind the local variables, instead of defining
them: '

(define (f x y) _
(define (f-helper a b)
(+ (* x (square a))
(* y b)
(* ab)))
(f-helper (+ 1 (* x y))
(-1y))) ;

Of course, we could use a Tambda expression to allow us to specify an anonymous
procedure for binding our local variables. The body of f then becomes a single call to tha
procedure: -

(define (f x y)

((1ambda (a b)
(+ (* x (square a))

(* y b)

*ab)))
(+ 1 (* xy))
(- 1y)))

This construct is so useful that there is a special form called Tet to make its use more
convenient. Using Tet, the f procedure could be written as:

(define (f x y)
(Tet ((a (+ 1 (* x ¥)))
(b (- 1Y¥)))
(+ (* x (square a))
(* yb)
(* ab))))

The general form of Tetis

(Tet ((<var> <expp)
(<var,> <exp,>)

.

(<var,> <exp,>))
<body>) . .

The first part of the Tet expression is a list of name-expression pairs. When the let is
evaluated, each name is associated with the value of the corresponding expression. The
body of the Tet is evaluated in a local environment that includes these names as local
variables. The way this happens is that the Tet expression is interpreted as an alternate

1.3.2 DRAFT: 31 JULY 1983 v 55

syntax for: _
((Tambda (<var> . . . <var))
<body>) : :
<exp1>

<exp,>)
Notice that no new mechanism is required in the interpreter in order to provide local
variables. Let is simply syntactic sugar for the underlying Tambda.

A Tet construct (or the equivalent Tambda expression) is often preferable to define for
making local variables for several reasons.

¢ Lot allows one to construct expressions that bind variables as locally as possible
to where they are to be used. For example, one can use a 1et expression as an
operand of a combination. The other operands and the operator will be evaluated
in the environment outside of the Tet, but the local variables bound by the Tet
will be available to help compute the value of that operand of the combination.
For example, we could write

(+ (et ((x (1+ ¥)))
(+x (* x¥)))
y)

ein a Tet expression, the variables are bound simuitaneously, using values
computed outside the scope of the Tet, rather than being bound in sequence.
This makes a difference when the expressions that provide the values for the Tet
local variables depend upon variables having the same names the Tet variables
themselves. For example, in an environment where x is bound to 2 the
expression

(Tet ((x 3) (y (+ x 2)))
(* xy))

will have the value 12, because, inside the scope of the Tet, x will be bound to 3
and y will be bound to 4 (which is the original x plus 2). In contrast evaluating the
sequence

(define x 3) ‘
(define (y (+ x 2))

(* xy) .
will result in 15 as the value of the last expression, since x will be bound to 3 and
Y will then be bound to 5.

Exercise 1-28: Suppose we define the following procedure
(define (f g))
(g 2))
Then we Have
;=> (f square)

56 , DRAFT: 31 JULY 198Building Abstractions with Procedures

==> (f (lambda (z) (* z (+ z 1))))
5 .

What happens if we (perversely) ask the interpreter to evaluate the combination (f f)? Explain.
Exercise 1-29: Ben Bitdiddle writes a program to approximate 7 using the equation:
1 dx

= arctan 1 = ——-T
0 1+ x

& 19

Ben defines the procedure:
(define (pi dx)
(* 4
(integral (lambda (x) (/ 1 (+ 1 (square x))))
. 0

1

dx)))
and proceeds to produce more and more accurate approximations to # by using smaller and smaller
values of dx:

:' ==> (pi .1)
3.14242598

==> (pi .01)
3.14160103

==> (pi .001)

3.14159274
Ben's classmate Eva Lu Ator decides she'd like to try this herself, so she sits down at the next terminal,
types in the same p i procedure and runs it. To her amazement, the results are slightly different:

==> (pi .1)
3.14242595

==> (pi .01)
3.141601

==> (pi .001)
3.14159256

In trying to figure out what is going on, Ben and Eva make a careful comparison of all the procedures in
their programs. The only difference they find is that Ben has defined integral to use the recursive
version of sum from section 1.3.1 while Eva has used the iterative version. Can this account for the
difference in their resuits? If so, how? (Hint/Warning: This is a “trick question,” that depends on
properties of computer arithmetic that we have not mentioned explicitly.}

1.3.3. Procedures as General Methods

We introduced compound procedures in section 1.1.4 as a mechanism for abstracting
useful numerical operations so as to make them independent of the particular numbers
involved. With higher order procedures, such asthe integral procedure of section 1.3.1, we
began to see a more powerful kind of abstraction -- procedures used to express general
methods of computation, independently of the particular mathematical functions involved. In
this section we discuss two more elaborate examples -- general methods for finding zeroes
and maxima of functions -- and show how these methods can be expressed directly as
procedures.

1.3.3 DRAFT: 31 JULY 1983 57

Finding roots of equations by the half-interval method _

The half-interval method is a simple but powerful technique for finding roots of an equation
f(x) = 0, where f is a continuous function. The idea is that if we are given points a and b such
that f(a) < 0 < f(b) then f must have at least one zero between a and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>