
Al-TR-604

CHARLES RICH

I- ne 1981

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

I I) I

I ll� I

-, Po I""" -- ---- ----

e"I'll"F'

INSPECTION METHODS IN PROGRAMMING

by

Charles Rich

The Artificial ntelligence Laboratory

Massachusetts Institute of Technology

June 1981

revised version thesis submitted to he Department of Electrical Engineering and

Computer Science on Alay I6, 1980 in partialfuffi'llinent of the requirelnenisfor the degree

of Doctor of Philosophy.

This report describes research done at te Artificial Intelligence Laboratory of the
Massachusetts Institute of Tchnology. Support for the laboratory's artificial

intelligence research has been provided in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contracts

N00014-75-C-0643 and N00014-80-C-0505, and in part by National Science Foundation

grant MCS-7912179.

. UNCLASSIFIED

REPORT DOCUMENTATION PAGE READ INSTRUCTION§
BEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACC'ESSION NO. . RECIPIENTOS CATALOG NUMBER

AI-TR-604
4. TIT LE (and Subtitle)

TYPE OF REPORT PERIOD COVERED

Inspection Methods In Programming Technical Report.

6- PERFORMING ORG. Ft"F-PORT NUMBER

7. AU TH 0 R(m) -NI
D. CONTRACT OR GRANT

Charles Rich N00014-75-C-0643'
N00014-80-C-0505
Mr4Z-701 91 70

-I'll L4 1'� / ti- 4 1 1 ti.
9 PRFORMING ORGANIZATION NAME AND ADRESS PROGRAM ELEMENT PROJECT. T AtK

AREA & WORK UNIT NUMBERSArt ificial Intel I i9ence Laboratory,
545 Technology Square-
Cambr 'dge-, Massachuse'tts 02139

CON-TROL-L04-G1 OFFICE NAME AND ADDRESS .12. REPORT ATE

Advanced- Researlch Project.s Agency
Ju-n - 911400 Wiison Blvd

13. NUMBER OF PAGES
A I 'ngtcrt, Virginia �-22209

237
14- MON;-TCRING AGOENCY NAME ADDRESS(If different-from Controlling OffIC*) I S. SECURITY CLASS. (of this rvporf�

Off"ce of Naval Research UNCLASSIFIED
Informatio' Systems
Arl 'ington, Vrginia 22217 13 a. DECL ASSI F C ATION/ DOWN G RADI N G

SCHEDULE

16. Di ST RI SU T) N TtA TIEMEN T (of this Report)

Distr1bution f this document is unlimited.'

17 (of the abstract ent*rod in Block 20, it diffe,rent rn Report)

14. DISTRIaUrION STATE4EN

Distribution. is unlimited

IS. SUPPLEMENTArRY NOTES

None.

19. KEY WORDS (Continuo o- eerwo side it noc*&*Ary and Identify by block number)

Programmer is-apprentice Program synthesis-
Program devel'opment Expert systems
Planning Problem solvin 9
Program ana-1-ys i s-

20. ABSTRACT (Continue on reverse old* It necessary and Identify by block n=bor)

The work reported he lies in the area of overleap between artificial intelligence and software

engineering. As rsearch in rtificial intelfi(-encc, it is a step, towards a nodel of prob]0 ein solving in te
domain of programmin(Y. In particular, dais work focuses o die routine aspects of programiniing which

involve die application of previous cyperience with siniflar prograrns. J call this pogramming by
inspection.

Prograrnming is viewed here as a kind of egineering activity. Analysis ad synthesis by inspection

SECURITY CLASSIFICATION OF'THIS PAGE (ften Data Entor&dl

DD 1473 EDITION OF I NOV 6S IS 011SOLIETIC
J AN 73 UNCLASSIFIED

SIN 002-014-6,601

SKCUMITY CLASSIFICATION OF THIS PAGE (WN*'n Does Snoored)

are a prominent part of expert problem solving in many other engineering disciplines, sch as electrical

and mechanical engineering. The notion of inspection mcthods in prof-p-arnminc, developed in this work

is motivatod by similar notions in other ar%-Ias of engineering.
This work is also otivated by current practical concerns in the area of software engincerina. The

inadequacy of current programming tchnology is universally recognized. Part., of die sohition to this
problem will be to increase te level of aL t0fliation in pogramming I elieve that die next major step in
the evolution of more automated programming will be interactive sstems which provide a ixture of

partially atomated program analysis, snthesis ,and verification. One such system bcing developed at

MIT, called te programmet-s pprentice, is te immediate itended application of this work.
This riepoft concentrates on the knowledge bse of te programmerls apprentice, which is in the

form of a taxonoinji of commonly used aoorithms ad dat',-t Structures. To the extent that. a programmer
is able to constrUCt and manipulate rograms in terms of the fonns in sch taxonomy, he ay relieve
himself of man details and generally raise the conceptual level of his iteraction with the system, as
compared with present day programming environments. Also, since it is pactical to expend a great deal
of effort pre-analyzing the entries in, library, die difficulty of verifying the correctness of programs
constructed tis way is correspondingly redUced. he feasibility of this approach is demonstrated by the
design f an initial library of common techniques for inanipuLating symbolic data.

This 'document also rports, on the further developi-nont of IL- formalism called the plate calculus for
specifying compuLations in a prograrnmiln'gT, anguage ndependent manincr. This formalism csines
both data and control abstraction in a uiform framework and las facilities f-or representing multiple
points of view and side effects.

------------ ------- -----------

JQ

;MM V
air

i �J '�gUp �1

IN

IV

it

evil,

N

f;

novel,

T

,Benz

Fiji

NO

�77

INSPECTION METHODS IN PROGRAMMING

by

Charles Rich

The Artificial Intelligence Laboratory

Massachusetts nstitute of Technology

June 1981

A' revised version of thesis submitted to the Department Electrical Engineering a nd

Computer&ience n May 16, 1980 in partial Ifillment of the requirementsfor the degree

of Doctor of Philosophy.

This report describes research done at the Artificial Intelligence aboratory of the

Massachusetts Imstitute of Technology. Support for flic laboratory Is artificial

intelligence research has been provided in part, by the Advanced Research Projects

Agency of the Department of Defense uder Office of Naval Research contracts

N00014-75-C-0643 and N00014-80-C-0505, and in part by National Science Foundation

grant MCS-79121-79.

i

i

Abstract

The work reported here lies in the area of overlap between artificial intelligence and software

engineering. As research in artificial intelligence, it is a step towards a model of problem solving in the

domain of programming I particular, this work focuses on the routine aspects of programming which

involve the application of previous experience with similar programs. I call this programming by

inspection.

Programming is viewed here as a kind of engineering activity. Analysis and synthesis by inspection

are a prominent part of expert problem solving in many other engineering disciplines, such as electrical

and mechanical engineering. The otion of inspection methods in programming developed in this work

is motivated by similar notions in other areas of engineering. k

This work is also motivated by current practical concerns in the area of software engineering. The

inadequacy of current programming technology is universally recognized. Part of the solution to this

problem will be to increase the level of automation in programming. I believe that die next major step in

the evolution of more atomated programining will e interactive sstems which provid a mixture of

partially automated program analysis, synthesis and- verification. One such system being developed at

MIT, called te programmer's pprentice, is die immediate intended application of this work.

This report concentrates on the knowledge base of the programmer's apprentice, which is in the

fon- n of a taxonomy of commonly used algorithms and data structures. To theCXteDt that a programmer

is able to construct and manipulate programs in erms of te forms in sch a taxonomy, he may relieve

himself of many details and generally raise the conceptual level of his interaction with the systeth as

compared with present day programming environments. Also, since it is practical to expend a great deal

of effort pre-analyzing the entries in a library, the difficulty of verifying the correctness of programs

constructed this way is correspondingly reduccd. The feasibility of this approach is demonstrated by the

design of an initial library of common techniques for manipulating symbolic data.

This ocument also reports on die frther development of a formalism called the plan calculus for'

specifying computations in a programinin language idependent manner. This formalism combines

both data and control abstraction i a unif-orm framework and has facilities for rpresenting multiple

points of view and side effects.

ii

Pirke Avot

To My Father.

It is not upon you to complete the task,
But neither may you shy away from its undertaking.

M

Acknowledgments,

I gratefully acknowledge my thesis supervisor, Gerry Sussman, for his intellectual
guidance and oral support at key moments, and also Hat Abelson, Carl Hewitt
and Mike Hammer, who were readers.

Many friends and colleagues at the Al Lab helped me with my ideas and writing.
I have beneflted especially frorn. the time and energy of Dick Waters, Peter
Deutsch (who was visiting from Xerox PARC), and David McAllester. Will
Clinger, Roger -Duffey, erry Roylance, Bill Kornfeld, Dan Sapiro and Guy
Steele also read drafts of various parts of this work at various times. Finally, I
would like to tank other friends who expressed their interest and support on
many occasions: Harold Goldberger, Brian Smith, Henry Uebennan, David
McDonald, Eric Grimson, Ellen Hildreth', Bi-uce Roberts, Richard Brown,
Howard Shrobe, and Johan DeKleer.

Thank you, Candy, for everything.

1. Introduction .. 1

1.1 Inspection M ethods
1.2 M ultiple Points of View ... 3

1.3 The Plan Calculus .. 5
1.4 Guide tothe Reader too B

1.5 Relation to Other W ork .. 13

PART I - OVERVIEW

2. Programmer'sApprenticeScenar'o 21

3. Overview of the Plan Library 32

3.1 Introduction .. 32
3.2 Functions .. 36
3.3 Sets 41 *..** $.* - 40
3.4 Directed Graphs 43
3-5 Recursive Plans *.* 47

4. T e Plan C alculus ... 54

4.1 Introduction .. 54

4.2 Plans ... 54
4.3 Surface Plans .. 64

4.4 OverlaysO* 0... O..*O O ... **.****. 66

PART 1 - IN DEPTH SCENARIOS

5. Analysis by Inspection 74

5.1 W y Analysis.? 74
5.2 O verview ... 75
5.3 Surface Plans .. 76
5.4 Loop Analysis O-* O.......... ... 81
5.5 Bottom-up `lZecognition ... #04.0 93
5.6 'rol)-down Recognition .. 96

iv

Table of Contents

6. Synthesis by Inspection 102

6.1 Introduction 102
6.2 Data Structure Design ... 103
6.3 Procedure Synthesis 0............................ O* 108

7. Verification by Inspection 134

PART III - TE CHNICAL DETAILS

8. Logical Foundations 139

8.1 Introduction .. 139
8.2 M utable Objects and Side Effects .. 139
8.3 M ultiple Points of View ... 144
8.4 Data Plans 148
8.5 Data O verlays ... 152
8.6 Computations ... 153
8.7 Temporal Plans .. 158
8.8 Temporal O verlays ... 167
3.9 Specialization and Extension .. 169.
8.10 Plans Ivolving Side Effects .. 172

9. Loops and T em poral A bstraction .. *6.***.* 176

9.1 Introduction *..... *.* *#*0 176
9.2 Loops 177
9.3 Temporal Abstraction .. 193
9.4 Recurshe Structures .. 230

Appendix. Plan Library Reference .. 234

Bibl-iography ... 272

Index .. 276

IMIODUCTION

CHAPTER ONE

INTRODUCTION

1.1 Inspection Methods

Inspection methods are a distillation of the collective experience of solving many problems in a

particular domain. The essence of this experience is a txonomy of common problem fonns. The first

step of any inspection method is to recognize a familiar form embedded i a given problem. Associated

with each such problem fon-n is either an explicit solution or, more gnerally,, the form of the answer. In

sufficiently complex situations, debugging is also an unavoidable part of the use of inspection methods.

The role of debugging in problem solving has been investigated by Sussman [68,671- it is not part of the

focus of tis work.

For example, analysis of the termination conditions of a program is often done by inspection. If

you recognize a loop that counts up by one from an initial number up to a fixed greater number, then you

know from experience that it always terminates. Similarly, experienced programmers know a repertoire

of standard operations on sets and their implementations for variety of set representations. In synthesis

bv insnection. once a nroarammer recogni7Cs tat a problem calls for one of these operations, lie can

h-nplement it immediately. Program verification can also often done by inspection. Most of the difficult

deductive steps (typically te inductive arguments) can be embedded in pre-proven lemmas which are

associated with die, standard fon-ns. All that remains is to combine these lemmas appropriately in the.

proof of die particular program.

An gineedina Vocabulary

Another significant characteristic of the use of inspection methods in engineering is tat the

common orms acquire names which become part of the standard orking vocabulary of experts in the

field. These namcs for intermediate level constructs supplement the primitive vocabulary of the domain.

For example, te primitive vocabulary of currents, voltages and resistances is formally adequate for

specifying a wide range of electrical functions. Experienced electrical engineers, however, use a much

richer vcabulary including such concepts as serics and parallel, conviction, voltage divider, cascode

connection, and so on. Similarly, an experienced programmer knows much more tan the the primitive

programming language constnicts, such as tests, iterations, arrays, assignments, and so on.. An

experienced programmers also famiflar with many other more abstract concepts such as lists, hash tables'

search loops, and splicing.

A shared itermediate level vocabulary is very iportant for communication between experts. In

many fields this vocabulary, as been codified and is mught as part of te standard ducation of novices.

This implies that fcility with the appropriateintermediate vocabulary is an essential component of an

2 CHAPTER ONE

intelligent interactive system which is going to help experts in some field. Cha ter Two illustrates this

point for die programmer's apprentice system in particular.

Uniform General Methods

Many areas of engineering (and related fields such as applied mathematics) have over a period of

time developed powerful general methods which solve a wide range of problems of a given kind. For

example, general circuit, analysis techniques involving node and cut sets and the inversion of matrices

have been known for a long time. Recently, a very powerful general method for symbolic integration has

been discovered by Risch. Why then do inspection methods continue to be of interest?

General methods gain their power by operating in a uniform way at the most primitive level of

vocabulary of the domain. 'his causes two serious problems: the methods are inefficient and the results

are difficult for users to interpret. For example, the Risch algorithm is usually used only as a last resort,

even by automated systems like Macsyma 421, because inspecting an integral for one of the many well-

known forms is comparatively inex pensive, and if one is recognized, te answer can be computed much

more quickly tan by the algorithm. Similarly, general circuit analysis techniques involving node and cut

sets and the inversion of matrices are seldom employed by expert circuit designers because they are so

laborious in comparison to decomposing a circuit into familiar patterns with known behavior forms.

Furthermore the decomposition into standard forms usually coincides with the modules of the design

being explored.

Be'cause of these difficulties experts tend to e-.Lplo,, uniforni general mthods only a a last resort.

Whenever possible they try to work with familiar special cases which can be solved by inspection. In fact,

this behavior is usually taken as one of the distinguishing characteristics of being an expert.

General ethods have recently been developed in the area of programming also. For example, a

general method for program verification due originally to Floyd 261 and Hoare 35] decomposes the

problem ito two steps. The first step is the generation of verification conditions, in which specifications

of the desired behavior of the program are combined with the axioms for each language primitive in the

program, yielding a single formula to be proved valid. This formula is then passed to a general purpose

theorem prover. Unfortunately, if the program is incorrect, wich is the most common Case, the manner

in which the proof of the verification conditions fails provides little guidance to the user about how to

correct die original program. Verification by inspection, while it is not as powerful, does not suffer from

this problem of incomprehensibility. Errors are detected by inspection either by recognizing a known

pattern whose pre-proven properties contradict the desired specifications, or by recognizing a suspiciously

close match to a known pattern. In either case, the nature of the discrepancy can be communicated to te

user in terms of familiar engineering vocabulary.

The nalysis of programs with side effects is another area in which general methods have failed to

supplant nspection. Sorne work has been done on rpresenting and reasoning about side effects in

prograrns 641, but the general methods developed thus f are clumsy ad computationally expensive.

Furthermore, tere is reason to believe tat there are ftindamental li-Mitations to the effectiveness of

general mediods in this area. Programs wth an unconstrained use of side effects (such a RPLACA and

RPLACD in Lisp) are extremely difficult to understand ve fr te most expert hUman programmers. This

UNIFORM GENERAL METHODS 3

has led some to advocate the extreme position of banning side effects entirely i new languages and
systems. However, .there are also good arguments that side effects are cucial for the modularity and

efficiency of certain programs 66]. The resolution of this apparent conflict lies in the observation tat
side effects are typically used only in ery stylized forms, such as to splice nodes in and out of a link.ed list�
t6 update a global data base, and so on. By constructing a library of tese standard plans and their
properties, analysis of side effects by inspection can suffice for most practical purposes.

Education

The importance of inspection methods in engineering problem solving is also reflected in
educational practices. The introductory parts of most engineering curricula first acquaint students with
the standard forms of the discipline. Only much later, after te students' intuitions are developed, are the
uniform general methods taught. For example, electrical engineering students are first taught how to
predict the behavior of certain standard circuits (e.g. oscillators), and ow to implement certain common
signal processing functions (e.g. filters), before they are taught general tools for analyzing and
synthesizing circuits. In programming also, we begin with the craft lore of standard algorithms and data
structures before introducing any general program analysis, synthesis or verification methods.

t.2 Multiple Points of View

The range of applicability of ispection methods rests cruciall o the ability to recognize familiar
forms in various contexts. There are many different ways in which the recognition of familiar forms can
be obscured. For example, in electrical engineering a standard circuit may not appear to be familiar
because some components are in parallel rather than in series, or ice versa. Similar difficulties also arise
in programs. For example, the placement of exit tests other than at the top or bottom of a loop can
obscure the recognition of standard loop forms.

Various tchniques have been developed in different fields to overcome sch complications. These
techniques are variously called equivalences, transformations, or models. All of these can be be thought
of as ways of providing the user with different points of view on a problem. Sometimes a different point
of view is necessary i order to use inspection methods at all. Sometimes several different points of view
each contribute some part of the solution. For example, in the analysis and s rithesis of electrical circuits,
equivalence theorems (such as Thevenin-Norto'n) are a basic tool for rearranging the topology of circuits
to match standard forms. Electrical engineers also se views in which certain features of the problem are
ignored - die so-called AC (sinusoidal steady state) and DC (direct current) models are examples In
one model certain components become open circuits, while in die other they become shorts. Since the
circuit in each model is simpler than in the- full circuit view, the user is ore likely to be able to use
inspection. (It is also an important fature of these particular two views tat results drived in them can
be simi* combined to give a complete analysis of the circuit.)

Multiple points of view are aso important in nderstanding programs. Program transformations
can be used to move te position of exit tsts in loops, and thereby increase the power of inspection
rnediods which recognize loop orms I die area of datfi structures, it is often ncessary to view a single

-I M. m"M -I-- I I I

4 CHAPTER ONE

structure from two different points f view, each of which captures a different generalization. For

example, a Lisp list can be viewed both as a recursive structure (the tail of a list is a list) and as a labelled

directed graph (where the nodes are isp cells connected by the CDR relation and labelled by the CAR

relation). The first view is appropriate for understanding coNs and CDR as push ad pop operations. The

second view brings to bear a programmer Is experience with standard graph manipulations in order to

understand RPLACD as the operation of splicing out a node. A single Lisp list may be used in'both these

ways in a single program.

Another example of point of view in programming is what I call the steady state" model of loops

(and in general, recursions). In this view, exit tests are ignored in order to recognize the basic iteration

and recursion forms, such as counting, summing, CAR-CDR recursion, etc. This view is similar to the AC

model in electronic circuits, in that it can be simply combined with other views to construct a complete

description. For example, the counting part of a loop can be abstracted as generating an infinite sequence

of numbers, which is truncated by the exit test.

As we will see later in tis chapter, a mchanism for representing multiple points of view is an

important part of the formalization of inspection methods in programming.

Overlapping Implementations

A kind of recognition difficulty which arises often in engineering domains is when the

implementations of two distinct abstract functions overlap. This means that a single component at the
Lrn ple.m,e n ta tit o" Ant level lays a rolc in to distinct forms. 17or example a srew in a mochanica dvice may

p L Y 'I %, 11 �- &I X vl I %.1 %_ .1 Y %.1

fasten two plates together and also provide a fulcrum about wich to pivot a lever. In a radio-frequency

amplifier, an inductor may be both part of a resonant circuit in the AC model and also part of the bias

network of a transistor in Die DC model. This kind of bumming" is not just a feature -of arcane

programming - it is an essential part of good engineering.

For example, consider die following program which computes both the maximum and the

minimum of a non-empty list of numbers.

(DEruN MAX-MIN (L)
(LET ((MAX (CAR L))

(MIN (CAR L)))
(MAPC '(LAMBDA (N) (COND N MAX) (SETO MAX)

(COND N MIN) STO MIN N))))
(CDR L))

(CONS MAX MIN)))

The standard loop plan for finding die maximum (or minimurn) element of a list has three principal

parts: an itialization (here (CAR L,, an enumeration of te lements of die list (here MAPc) ad an

accumulation whi ch tests ach element to se if it is die largest (or smallest) found so far. he diagram

below indicates how MAX-MIN can be analyzed in trms of this plan.

OVERLAPPING IMPLEMENTATIONS 5

0

0 0

0 0 0 0 0

The top node in this diagram represents the entire program. At the next level, the program is

viewed as the combination of two plans, one which finds the maximum and one wich finds the

minimum. Te third level shows how the more primitive components of die program are grouped and

viewed as the implementation of these two plans. There are only five nodes at this level rather than six

because the list enumeration is shared between the implementation of maximum and of minimum. It

must be simultaneously viewed as filling a role in both plans.

This type of analysis is a violation of strictly hierarchical decomposition, wich is currently the

dominant technique in program design. We have found, however, tat it is not always possible to

maintain a strictly hierarchical analysis and at the same time capture the appropriate generalizations.

Implementation relationships are treated ere as points of view wich may overlap. Tis approach

has the advantage of allowing the efficiency of implementation exemplified by the MAX-MIN program

above (as compared to a strictly hierarchical iplementation with two separate loops), wile still

capturing the similarities between this program and programs which calculate only te maximum or only

the minimum.

L3Y TRe P"-.i Calculus

A key issue in formalizing the use of inspection methods in a particular domain is the

representation of standard forms. Part of the work reported here has been to further develop a

programming language independent formalism, called the plan calculus, for representing standard data

and control structure fbrms (called plans) in programming.

This section itroduces the plan calculus and points out some of its important features. A more
detailed definition of lans is die topic of Capter Four. he plan calculus is an out,

p rowth of earlier
work by die author in collaboration with Shrobe [55 ad Waters 56]. The important features of te plan

calculus discussed in this section are as follows.

ide Spectrum Specification

* Control at-id Dala Abstraelion

* Alutable Objects

9 1rogrannning Language Independence

e AluNple Points of View

Additivily

Verifiability

Dependencies

6 CHAPTER ONE

The p Ian calculus is made up of two major components: plans and overlays. Basically, a plan is the

specification of a computation. Overlays represent the relationship between two different points of view

on a computation, each of which is specified by a plan.

Programming is viewed here as a process involving die construction and manipulation of

specifications at various levels of abstraction. Tn this view, there is no fundamental distinction between

specifications and programs. A program (e.g. in Lisp) is merely a specification which is detailed enough

to be carried out by some particular interpreter. This view is consistent- with te current trend in

computer science towards ivide spectrum languages. Te advantage of tis approach is that various parts

of a program design can be refined to different degrees without itervening shifts of formalism.

Plans

Computations are viewed here as composed of three types of primitives: operations, tests, and data

objects. There are three corresponding typt-s of primitive specifications n die plan calculus: input-output

specifications, test specifications and object i)pe specifications. Operations are specified by input-output

specifications (preconditions and postconditions). Tests are specified by whether they succeed or fail

when a given relation olds between the inputs. The primitive object types used in this work are

numbers, sets and functions.

Hierarchy is represented by composite plans. Each composite plan specifies a set of local names for

its parts (called role names) and a st of constraints which must hold between them. There are two kinds

of cc,m...posilte pl.ans, according to the types of the parts.

Data pans specify data structures whose parts are primitive data objects or other data structures.

Data plans thus embody a kind of data abstraction. For example, List is a data plan with two roles named

Head and Tail. Te f lead of a list may be an object of any type, bt the ail is constrained to be either an

instance of List or the distinguished object, Nil ("the empty list"). Data plans are also used to represent

common implementation forms. For example, a data plan called Segment is shown in Fig. 1-1. Data

objects are indicated in plan diagrarns by ovals. his plan has tree roles named

Base (a sequence),

Upper (a atural number), and

Lower (a atural number),

and the following constraints:

(i)The Upper number is less than or eual to die length of the ase sequence.

(ii) he Lower number is less than or equal to te lngth of he Base sequence.

(iii) The Lower number is less than or equal to the Upper number.

This datd plan (and special cases of it) is commonly used to implement other data abstractions, such as

lists ad queues.

Primitive dm objcCts an d data structures rc utable. For primitive data objects, this means tat

the bhavior of die obJect can cance while its identitN, remains te same. For example, w,-_ can specify a

set addition operation in wich the identical set is both the input and output. For.data structures with

PLANS 7

.MOW "-NO
N,

OWOW
.000,

.000

oe

I CLSP (54ZIUMce-

k

I
0

i
I
I
i

I

i

I

I

I

I

I

i

I

v

I

I

I

II

I

I

I

� 0 VQ w 6 A Vf a

j

..0011
N%.. "Wft. low-

Se�VIA9Mt

'iffure'l-1 A Data Plan.

immom ON I ,

8 CHAPTER ONE

parts, such as 'instances of the Segmeat plan, mutability means that one or more of the parts may be

replaced while the identity of die data structure remains the same. For example, a common operation on

Segment data structures is to increment the Upper index. The semantics of mutability are part of the

locical foundations of the plan calculus, which are discussed later in this section.

Temporal plans specify computations whose parts are operations, tests, data structures or other

Composite computations. In addition to various logical constraints between roles, such as "less than or

equally temporal plans also include data flow and conti-olflow constraints. An example of the temporal

plan for computing absolute value is shown in Fig. 12. Operations and tests are indicated in plan

diagrams by rectangular boxes. The bottom half of test boxes are divided ito cases labelled "F" for

failure and "S" for succeed. This plan has three roles named

If (a test for less than zero),
Then (a negation operation), and

End (a join).'

Data flow constraints (solid arrows in the figure) specify correspondences between the outputs and

inputs of operations and tests. Control flow constraints atched arrows) specify which parts of a

computation are reached depending on which tests succeed or fail. Temporal plans thus embody a kind

of control abstraction.

The plan calculus is to a large degree programming language independent (for a wide class of

conventional sequential programming languages). This makes it possible to build a program

development system which is concerned with the syntactic dtails of different languages only at its most

superficial interface. In order to translate back and forth btween a gven programming language and the

plan calculus, te primitives of die programming language are divided into two categories:

(i) The primitive actions and tests of te language, such as CAR, CDR, CONS, NULL and EL in
Lisp, are represented as input-output specifications and test specifications.

(ii) The primitive cities, such as PROG, COND, SETO, Go and RETURN in Lisp, are
represented as patterns of control and data flow constraints between operations and
tests.

The translation from standard program text to an equivalent plan representation has been

implemented for reasonable subsets of isp 531, Fortran 731 and Cobol 241, The translation from

suitably restricted plans to Lisp code has also been implemented by Waters 741.

Oierlays

Overlays are the mechanism in the plan calculus for representing points of view in the

programming domain. An overlay is formally a triple mde tip of two plans and a set of correspondences

between roles of the two plans. Each plan represents a point of view;- the correspondences express the

L A join is a virtual entity which is needed in ord6r to spccify hat the output is in each case of a conditional. Joins will be
defined in Chapter our,

PLANS 9

, .M.- ..-

I

I

I

I

I

I

I

I.

I

I

I I

I

I
I

I

I

I
I

I
F

I , -- Woo-- -. 0-3000- loommom- -6400.. &ago- --Nwk

Abs
.- l-------l � - -- --- ---

Figure 12 A Temporal Plan.

10 CHAPTER ONE

s I I,relationship between the points of view. verlays are similar to Sussman, Aices-, which he uses to

represent equivalences in electronic circuit analysis and synthesis 69].

In addition to standard plans, there also standard overlays. For exaniple, consider the following

recursive Lisp program which copies a list.

(DEFINE COPYLIST
(LAMBDA (L)

(COND ((NULL L) NIL)
(T (CONS (CAR L)(COPYLIST (CDR L)))))))

This program is an example of a singly recursive program in which there is computation "on the

way up", i.e. in which the recursive invocation is not te last step in the program. Many standard

recursive computations, such as list accumulation by coNsing, can be performed either tv on te way

down" or 11 on the way up." For example, the following tail recursive program, which reverses a Lisp lis�

performs list accumulation on the way down.

(DEFINE REVERSE
(LAMBDA (L)

(REVERSE1 L IL))))

(DEFINE REVERSE1
(LAMBDA (L M)

(COND ((NULL L) M)
(T (REVERSE1 (CDR L)(CONS (CAR L) M))))))

Rudcognitioll, of the standard Lisp it accumulation plan in these two pro-giams is faCiffitated by an

overlay wich expresses how, in general, to view accumulation on die way up as accumulation the way

down with an intervening order reversal. Tis overlay is shown, in Fig. 13. Without going into details,

(For now, it is adequate just to got the idea that there are plans on both sides and correspondences

between them.) consider that the plan on te left represents accumulation on the way up; the plan on the

right represents accumulation on the way down. The four hooked lines btween the two plans specify

correspondences between die two points of view. Unlabelled correspondences (three out of the four in

Fig. 13) are equalities. Thus te initialization of the accumulation (the Init role) is the same in both

views. So are the input-output specifications of the accumulation perations (the Add role), and the final

output. The most important correspondence', however, is the oe labelled "reverse" in the figure. This is

the correspondence which specifies that die order in which the elements Of ist L are accumulated in the

COPYLIST program is te reverse of te order in which ty are gnerated by the CAR-CDR part of that

program. The Lisp in terpreter s stack- is being used to ffect the reversal.)

Notice at overlays are s minetric.1 Either side can be used as a IT pattern" (plans can be naturally

thought of as patterns), wich makes it possible to use the same overlays i both aalysis and synthesis.

The act that correspondences are frmally equalities means that iformation can propagate between

points of view in both directions. For example, analysis by inspection Of COPYLIST poceeds by first

recognizing te standard list accumulation by CONSing plan in die point of view represented by the right

1. This is not strictly true, but onl- for a reason wich i beyond the lvel of detail of this introduction

-- - - .- - I i

OVERLAYS 11

-i
I
I
I

I

I
I

I
I
I

I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I

t-mmm. mcm %Xmw,� C� %� opo V 4� Om GW 4w

'K P,; vc 5 Z> � t P - q�lw WN V\ oc I \

4Figure 13. An Overilay.

12. CHAPTER ONE

hand side of the overlay in Fig. 1-3. The kown properties of this plan include the fact that the final

output is a list whose elements are the successive inputs to the accumulation operations, in reverse order.

Propagating this information back to the original view through the correspondences and performing the

algebraic simplification,

reverse(reverse0)

leads directly to die result that the elements of the Output Of COPYLIST are the same as the elements of the

input list, in die same order.

Implementation is also represented using overlays. One side of such an overlay is the plan

representing an abstract behavior, e.g. pushing an element onto the front of a queue. The other side of

the overlay is an implementation plan, e.g. storing he element in an array and adding one to an index

pointer.' Te correspondences in such an overlay propagate information between the abstract and

concrete views. Stich overlays an be used both in analysis by inspection and in synthesis by inspection.

In analysis by inspection, one tries to recognize known implementation plans. Once such a plan is

recognized, it is replaced by (overlaid with) the corresponding abstract plan, and analysis continues

similarly. Conversely, in synthesis, by inspection one matches against abstract plans and instantiates

implementation plans.

Logical Foundations

The remaining features of plans and overlays, nam ly additivity vrifiability and dpendencies, all

relate to the logical foundations of the plan calculus. Formally, a plan is a set of axioms in a first ordcr

logic. (The details of the axiomatization are given in Chapter Eight.) Although in fact plans are not

intended to be manipulated directly as first order axioms, this logical foundation provide a semantics and

a set of proof rules against which actual manipulations can be validated.

Placing plans in the paradigm of logic has several advantages. For example, additivity is a direct

consequence of an axiomatic formalization. Combining plans has the same formal properties as the

union of axiom systems, i.e. the result of combining two non-contradictory plans is always a plan which

satisfies the constraints of both of the original plans. This is a desirable property not shared by other

formalisms, such as program schernas. Additivity also meshes well with the principle of least

commitment, which in this context mans that implementation plans sould have the minimum number

of constraints necessary to support the implemented abstract behavior.

The logical foundations of te plan calculus are also involved in inspection methods for program

verification. Verification by inspection is based on recognizing plans and applying already verified

overlays. Automating the verification of overlays is not part of te research reported here. However, the

logical foundations developed hre do establish what needs to be proven to verify an'overlay. For

example, te verification of an implementation overlay entails proving that the constraints of die abstract

plan are derivable from the constraints of the implementation plan together with the correspondences

taken as premises.

LOGICAL F&.7NDATIONS 13

In addition to simply recording that an overlay has been verified, it is useful to keep a record of
which constraints of the implementation plan were used in the proof of which constraints of the abstract
plan. This information can be extracted as a by-product of the proof process 64]. Such links are called
dependencies. Dependencies, as part of the plan calculus, are a network of links between specifications
which trace the logical derivation of one from the other. Dependencies captu re a dimension of logical
structure which is different from the hierarchical decomposition expressed by die roles of a plan.

Dependencies make it possible for.the programmer's pprentice to explain how a program works

and reason about the potential effects of a modification. For example, if you Nvant to delete a constraint
from an implementation plan, die dpendencies tell you exactly which constraints of the corresponding

abstract plan could become invalid. Similarly, if you change te abstract specifications of an already
verified overlay, die dependencies indicate which parts of the erification need to be redone and which
par ts can be carried over without any extra work. The se of dependencies in reasoning about programs,
especially in program evolution and modification, has been the focus of related work by Shrobe 64].

1.4 Guide to te Reader

The remaining chapters of this report can be grouped into three uits. The first unit, consisting of
Chapters Two, Three and Four, gives an overview of the three main areas of this work. Chapter Two is a
scenario which illustrates the use of inspection methods in understanding an example program wich
implements a simple symbol table with hashing. Capter hree outlines the scope of the current plan
library. ChnnterFour introducesthe diagrammatic notatJon whch will b used in tho rest or the repot to
define plans and overlays.

Chapters Five, Six, and Seven form a second unit, which fills in more details. Each of these chapters
is an in-depth scenario of the se of inspection methods in program analysis, synthesis or verification.-,
The example program introduced in Chapter Two is also used in each of these chapters. T style of
presentation in tese chapters is to introduce and explain nw plans as they are needed in te.example.
Also, for case of referring to previously defined plans, an index is provided at the back. If there are two
page numbers listed for each itern, the first is the page on wich the plan or overlay diagram appears; the
second is the appendix entry for that item.

The final unit� Chapters Fight, Nine ad the appendix, is die most detailed and technical. Chapter
Eight lays out the logical foundations of plans and overlays, including die formalization of plans involving
side effects. Chapteir Nine gives the detailed formalization of loop plans and temporal abstraction (a way
of viewing loops in which their specifications are easily composed). These topics are tated in a more
general way arlier. Te appendix is a rference for te plan library, in which car b found 0-ic detailed
specifications for any plans or overlays not ffilly dscribed in te text.

1.5 Relation to Other Work

It is useful to distinguish three areas of conccrn in this work. I this section I outlinc some
connections and comparisons with other work in these areas. The tree areas are:

14 CHAPTER ONE

Taxonomy - Standard programming forms and the relationships
between them.

* onnalism - For representing programming knowledge.

* Applications - Analysis, synthesis, and verification of programs.

More generally, at die end of this section, I discuss related work on aspects of programming other

than the use of inspection methods, such as debugging and deductive methods.

Program Taxonomies

Many people in the computer science and software engineering community have been calling for

the codification of standard program forms for a long time. Two major motivations for this are: to

improve software reliability and correctness, and to improve the ducation of programmers. For

example, Dijkstra in his influential Notes on Structured Progranuning 17] called for the codification of

standard program forms with associated theorems about their correctness, as follows.1

"d D;
iviffle non prop(d) do d f(a)" (6)

When a programmer considers a construction like 6) as obviously correct, he can do
so because he is familiar with the construction. I refer to regard his behavior as an
un conscious appeal to a theorem he knows, although perhaps he has never bothered to
formulate it; and oce in his life he has convinced himself of its truth, although he has
probably forgotten in which way he did it and although the way was (probably) unfit
for print. ut we could call our assertions about program 6), say, "The Linear Search
Theorem" and kowing such a name it is much easier (and more natural) to appeal to
consciously.

... it might be a useful activity to look for a body of theorems pertinent to such
programs.

More recently, Floyd in his 1978 ACM Turing Award Lecture 27] spoke as follows -about the

importance of teaching the standard forms of programming to new programmers, as compared with

emphasizing the primitive programming language constructs. (Floyd calls these forms paradigms and is

particularly iterested in very general ones, such as "divide and conquer").2

To the teacher of programming even more, I say: identify the paradigms you use, as
fully as you can, then teach tem explicitly. They will serve your students when Fortran
has replaced Latin and Sanskrit as the archetypal dead language.

1. P. 0.
2. p. 459.

PROGRAM TAXONOMIES 15

Many people have answered these calls, using a variety of expressive tools an4 covering a range of

programming areas. I group these efforts roughly into two -categories.

In the first category are those who have tried to give wide coverage of the ba-ic forms of everyday

programming, su%-Ih as the standard manipulations involving of sets, directed graphs and linear data

structures (lists and sequences). Most prominent in this category is the work of Knuth 37]. In three

volumes, Knuth uses a mixture of mathematics, example programs and expository English text to

communicate is 11 programmer's craft" in fundamental algorithms (manipulations on linear lists and

trees), semi-numerical algorithms (random numbers and arithmetic), sorting and searching. There are

also many one-volume text books [11 which have a similar ormat, but are less comprehensive.

In te second category, I put those whose have focused on a more particular programming domain.

Not surprisingly, work in this category is also characterized by more formal representations (some of

which will be discussed in the next section). Domains that have been studied in some depth include

algorithms on sequences 50,521, sorting 321, standard loop forms 49,73], set implementations 61,571,

and the implementation of associative data structures [58].

This work falls partly in both categories. The contents of the current plan library is mostly the

result of generalizing the plans required for an in-depth understanding of a particular example program

- the implementation of a symbol table using hashing, which is introduced in the scenario in Chapter

Two. This example program was chosen because it involves many different techniques which are

representative of the domain of outine symbolic manipulations (sets, lists, etc.). I believe that a library

which is adcqtiate for tis example is a ood start towards, complete coverage of the domain. Te small

fraction of plans in the current library which are not directly motivated by te symbol table example fall

into two categories. Some of these are obviously important basic plans which don't happen to be used in

the example, such as counting and accumulation loops. Other plans are included to fill gaps in the

taxonomic structure of the library, such as the plan for splicing into a list (only splicing out appears in this

particular symbol table). Barstow's work 6] is similar in depth and breadth.

Other Formalisms

Past efforts to construct knowledge bases for automatic or partially automated programming have

used the following formalisms program schemas 29], pogram transformations 15,5,12], program

refinement rules 61, and formal gammars 59]. Although each of these representations has been found

useful in certain applications, none combines all of the iportant features of the plan calculus listed

above.

For example, pogram schernas (incomplete program texts with constraints o the unfilled parts)

have been used by Wirth 761 to catalog programs based o recurrence relations, by Basu and Misra 71 to

represent typical loops for which te loop invariant is already known, and by Gerhart 291 and Misra [501

to represent ad prove the properties of various other common fori-ns. Ufortunately, the syntax of

conventional programming languages is not well srted fr te kind of gneralization needed in this

endeavor. For example, die idea of a sarch loop (a standard programming form) expressed informally

in English sould be something like te following.

16 CHAFFER ONE

A search loop is a loop with two exits in which a given predicate (the same one
each time) is applied to a succession of objects until either the predicate is
satisfied, in which case that object is made available for use outside the loop, or
the objects to be searched are exhausted.

In Lisp, as in other languages, this kind of loop can be written in innumerable forms, many of

which are syntactically (and structurally) very different, such as:

(PROG
LP (COND ehausted (RETURN NIL)))

*
(COND ((predicate current)(RETURN Crrent)))

('G6 LP))

or with only OIC RETURN instead of two,

(PROG
LP (COND ehausted NIL)

(T
(COND ((predicate current)

(RETURN Crrent)))

(GO LP)

or even recursively, e.g.

(DEFINE SEARCH
(COND (exhausted NIL)

(T ...
(COND ((predicatecurrent) current)

(T
(SEARCH))))))

The problem here is that conventional programming languages are oriented towards specifying

computations in enough detail so that a simple local interpreter can carry them out. Unfortunately a lot

of this detail is often arbitrary and conceptually unimportant. In te plan calculus, all three of te

schemas above (and many other sch variations) are expressed by a single plan.

A new generation of programming hanguages descended from Simula 161, such as CLU 38] and

Alphard 771, provide a syntax for specifying standard forms such as the search loop in a more canonical

way. However, there are two more fundamental difficulties with using program schemas to represent

standard rogram forms, which Simula and its descendants do not solve. First, programs (and therefore

program schemes) are ot in general easy to combine, nor are they additive. This means that when you

combine two program schemas, the resulting schema is not garanteed to satisfy the constraints of both of

the original scliemas, duc to such factors as destructive interactions between variable assignments.

Second, existing programming languages do ot allow multiple views of the same program or overlapping

module bicrarchies. I believe te reason for this is tat a pogram is still basically tought of, from the

standpoint of these languages, as a setolf instructions to be executed, rather than as a set of descriptions

(e.g. blueprints) which together specify a computation.

OTHER FORMALISMS 17

Another commonly used formalism for representing abstract programming forms is flowchart

scheinas. Originally developed by lanov n 1960 361, flowchart schemas are a network-like connection of
test and operation boxes. This formalism,. has the features of being programming language independent
and having logical foundations. (Manna gives an excellent tutorial on the formalization and use of
flowchart schemas in his book on the mathematical theory of computation 40].) Flowchart schemas
capture control flow abstraction in a very natural and intuitive way. owever, the only ethod they
provide for expressing te flow of data between operations is variable assignment. Unfortunately, the use

of variables in this way destroys additivity the same as for programming languages.
This problem with flowchart schemas can be fixed by combining flowchart schemas with another

network-like formalism, the dalaflow scheinas of Dennis 19]. In data flow schemas, operations have local
port names and data flow is represented by port-to-port connections. The synthesis of these two types of
schemas is essentially the temporal plan formalism used here. Tmporal plans, however, have the
additional feature that mutable objects are representable, which is not the case in data flow schemas.

A currently popular approach for specifying data abstractions is the algebraic axiom
formalism 33,39,30]. Though data plans are formally quivalent to abstract data types, in practice the,
approach in this work is somewhat different (mo§tly due to concern with mutable objects). In the
algebraic axiom framework, there are no mutable objects or side effects. For example, in te standard
algebraic axiomatization of stacks one defines the following three primitive ffinctions on stacksi

push , stack X object stack
pop: stock stack
top: stack object

and the following set of algebraic equations.

toP(PUsh_(x'Y))=Y
pop(push(xy)) = x

In this work, however, similar behavior is formalized differently. Te only primitive functions on a
data structure are its roles, which are thought of as access functions. For example, the fundamental singly
recursive data stnicture is called List. The two primitive access functions on lists are2

head: list object
tail: list list

In this framework, operations sch as Push, Pop, and Top, are non-primitive concepts which are
specified by input-output specifications roughly as follows.

(i A Push operation take as input a list and an object- its output is a list whose head is the
input object and wose tail is the input list.

1. We do not worry about the empty stack in this example.
2. Again we do not worry about the empty case, since it is not relevant to the comparison being made i this section. The
fon-nalization of data plans is presented ore completely in Chapter Fight.

18. CHAPTER ONE

(ii A Pop operation takes as input a list-, its output is the tail of the input list.
(iii A Top operation takes as input a list; its output is die head of the input list.

Side effects are specified in this framework by specifying an operation ir. which te same object is

both input and output, but in which parts of that object (he the values of primitive access functions) are

different before and after. Recently, Guttag and Horning 341 have taken a similar approach. They call

th prt of fficir system in which side effects are specified of routines it and use te predicate transformer

notation instead of preconditions and postconditions.

Other work on representing mutable data objects and side effects includes Early 231, Burstall [11]

and Yonezawa 781. Of tese, te V-graphs of Early are te ost similar to data plans. Early also takes

access paths as the only primitive functions, and specifies side effect operations as transformations on the

part structure of data objects.

Currently the most common way to represent relationships between standard fon-ns (typically

implementation/abstraction relationships) is via program transformations or program refinement

rules 6]. As compared to overlays, these formalisms have two serious problems which stem from their

lack of neutralness between analysis and synthesis. An overlay in the plan calculus, as in Fig. 14, is made

up of two plans and a set of correspondences between the parts of die two plans. Each plan represents a

point of view; the correspondences express the relationship between. the points of iew. For example, in

an implementation overlay the plan on the right and side is the abstract description and the plan on the

left hand side is an implementation. It is important, however, ttiat either plan can be sed as the

-pattern". In a typical program synthesis step using overlays the ri fit hand plan is used as the pattern

and the left hand plan is instantiated as a further implementation. Conversely, in a typical analysis step,

the left hand plan serves as the pattern and the right and plan is instantiated as a more abstract

description. With both program refinement rles and knowledge I-based' program transformations this

sort of symmetric use is not possible since te right hand side of a transform ation or refinement rule is

typically a sequence of substitutions or modifications to be performed, rather than a pattern.

A second problem stemming from the asymmetry of program transformations and refinement rules

is their lack of verifiability. The correctness of an m erlay in te plan calculus is verified by proving

essentially that the constraints of the plan on te left hand side, together with the correspondences (which

are formallv a set of equalities between terms on die left nd ten-ns on the right) imply te constraints' of

the plan on the right and side. Neither Balzer's transformation language nor Green ad Barstow's

refinement tree otation has been adequately formalized to pmit the question of correctness to be

addressed. The recent work of Broy and Ppper [10] is an improvement in tis direction, since their

transformations ave program forms on both die left and right hand sidcs, with associated proof rules.

Unfortunately, they use program schemas as the representation of te standard forms which has the

difficulties discussed above.

1. As opposed to the foldina-unfoldinp nd similar transfori-nations of Burstall and Darlington [12] which are intended to be a
small set of very general rnsformations wich are formally adequate, but lvvhich must be composed appi-opriately to construct
intuitNely rneaninpfdl iniplementallion steps.

OTHER I O.'LZMALISMS 19

Another formalism some have - ou id attractive for codifying programming knowledge is formal

grammars. For example, Ruth 591 constructed a grammar (with global switches to control conditional
expansions) which represented the class of programs expected to be handed as exercises in an
introductory PL/I programming class. This grammar was used in a combination of top-down, bottom-up

and heuristic parsing techniques in order to recognize correct and near-correct programs. Miller and
Goldstein 471 also used a grammar formalism (implemented as an augmented transition network) to
represent classes of programs in a domain of graphical programming with stick figures. The major
shortcoming of these grammars from die point of view of the proarammer's apprentice is their lack of a
clear semantics upon which a verification methodology can be based.

Computer Aided Program Development Systems

The application area to which this work is aimed can be generally described as computer aided
environments for program development. In particular, this work is part of a project 56] aimed at
developing what we call a programiner's apprentice system. What distinguishes a programmer's
apprentice from existing systems is the level of program understanding shared between the user and the

system.
Existing program development systems provide various types of services at different levels of

understanding. The level of least understanding is when the system manipulates everything as text
strings. At this level, various kinds of useful bookkeeping can be provided, such as keeping track of
versions of sourc C Co,1Je, test d.Ata send documentation [-2922].

The next level of understanding is when the system is able to parse the syntax of the user's
programming language. At tis level it is possible to provide many more useful services, such as structure
editors 20] and cross-refercncing 70]. If in addition the system can interpret the semantics -of the
programming language, then further analysis and verification assistance is possible, Sch as symbolic

interpreters 13,3] and verification condition generators [51]. A slight step above the programming
language nderstanding level are systems which support the syntax of a more abstract design

formalism 75].
I blieve that current systems are quickly approaching fundamental limitations to the services they

can provide due to fact that tey understand programs only at the level of the programming language. I
believe the next major step, represented by the programmer's apprentice, is to understanding based on a
library of standard programming forms. This will make it possible for te system to apply inspection
methods to the analysis, synthesis and verification of programs. The scenario in the next chapter
elaborates what a programmer's apprentice could do.

Other Aspects Of Programming

Inspection methods are certainly not te whole story in programming. Programmers are not always
faced with totally familiar problems. Niller 48] as studicd ad catalog some ver geral problem

decomposition methods wich programmers can apply when fced with unfamiliar problems.

20 CIIAPTER ONE

Sussman 671 has explored the role -f debtigging when plans are "almost right' Finally, Manna and

Waldinger 41] ave explored the applicability of deductive methods to programming.

Other Engi'neeflng Problem Solving

The study of problem so]-ving in other areas of engineering has had a strong ifluence on this work.

In particular te notion of the plan for a program is similar to die plans for electrical circuits in the work

of rown 9] and d Kleer [1.81. FTCiling 28] also used a similar approach in the area of rnechanical.

engineering.

PROGRAMMER'S APPRENTICE SCENARIO 21

CHAPTER TWO

PROGRAMMER'S APPRENTICE SCENARIO

2.1 Introduction

A library of plans opens up many now possibilities for what a computer aided program

development system can do to help a programmer. Tis chapter illustrates some of these new

possibilities, without going into too much detail. Chapters Five, Six and Seven go into more depth on

how te behavior illustrated here can be implemented.

Many different activities are interwoven i the programming process. These activities can be

roughly dviding into three major areas.- analysis, synthesis and verification. Aalysis activities in general

involve determining properties of a program which are not explicit in its definition (usually by

decomposing it into parts). Synthesis in general involves refining an abstract description into one which

is more detailed in the appropriate sense for some target machine. Verification in general has to do with

detecting errors and constructing arguments as to why a program works.

A program development system can aid a programmer in all three of tese areas. For a

programmer's apprentice system, in particular, this means the sarne library of pans is ued for nalysis,

synthesis and verification by inspection. For example, suppose there is a plan which captures the idea of

iteration with a "trailing" value, as illustrated by te following code.

(PROG (CURRENT PREVIOUS)

LP (SETQ CURRENT

(SETQ PREVIOUS CURRENT)
(GO LP))

If this plan is in the library, the system should be able to recognize its use in programs it hasn't seen

before; it should be able to synthesize programs using this plan; and it should be able to detect errors in

the use of this plan, such as icorrect initialization. This factorization of knowledge is an important

feature of die design 'of programmer's apprentice.

The senario in this capter portrays a system in which inspection methods for prograrn analysis,

synthesis and verification are fully integrated. At flie time of this writing, an integrated system with these

capabilities has not yet been mplemented. However, several of the major functions portrayed in the

scenario have been iplemented separately in experimental form. Waters has iplemented a system

which translates Lsp code to the plan calculus nd performs some further analysis on die resulting plans.

Shr-obe has implemented a ystem wich verifies plans by symbolic evaluation. Although a complete

synthesis system hs yet been implemented, Waters as implemented the bottom-end module for this

which translates sitably detailed pans to Lisp code. Finally, an experimental program for automatically

drawing plan diagrams fi-om te system's intcrnal representation has also ben implemented.

22 CHAPTER TWO

What we will see in this scenario) is basically the top-down, stepwise refinement style of program

development. This should not be taken as an endorsement of this mediodology to te exclusion of all

others. I believe. that the appropriate style of development depends greatly on the particular

programming task. A strongly top-down development, such as in tis scenario, is appropriate when the

programming task is vry familiar. n other occasions, a bottom-up or middle-out methodology may be

more appropriate. This research is aimed at developing the representations and basic capabilities which

are needed to support program development in any order.

2.2 The Scenario

In this scenario, we see an expert user interacting with a programmer's apprentice system to develop

tire implementation of a symbol table using hashing. Lines typed by the user are in lower case; lines

typed by the system are in upper case. The user communicates with the system in a simple English-like

command language. The important part of this language is not its syntax, but the vocabulary of

programming terms shared between the user and the system.

> let a "symbol table" be a finite set.
OK

The system initially doesn't know anything about symbol tables per se. The user thus begins by

intr oducing "symbol table" as a new term (indicated by quotation mrks). The term finite set is known to

the system.

> implement a symbol table.

APPLICABLE IMPLEMENTATIONS FOR: SYMBOL-TABLE (A FINITE-SET)
1. LIST
2. SEQUENCE
3. LABELLED-THREAD
4. DISCRIMINATION

Here the system presents a nenu of ways it knows for iplementing a finite set. A completely

menu-driven scenario is shown in Ch"apter Six. Such menus are computed dynamically by searching the

current library for overlays between finite sets and other data stnictures. At present there are only four

choices; more implementations will be added to the library in the future. The user declines to choose an

option, asking for some documentation first.

> describe a discrimination function.

A DISCRIMINATION FCTION IS A FUNCTION FROM OBJECTS TO SETS
SUCH THAT, IF AN OBJECTS IS IN A SET IN THE RANGE OF TE FUNCTIQN,
THEN THE FUNCTION APPLIED TO THE OBJECT EQUALS THE SET.

> implement a symbol table as a discrimination function.
OK

'rPE SCENARIO 23

A discrimination function is a function which partitions its domain into a disjoint set of sets (called

buckets). Discrimination functions are part of the system's library of standard forms. The formal

definition of discrimination function pre�ented above is not a canned" text string,. but is constructed

from the logical formula which defines discrimination function in die system's library.' The user's first

refinement step is ten to iniplement die symbol table as a discrimination'function.

The library also contains plans and overlays involving discrimination functions. The overlay

invoked by the user above says that a discrimination function can be viewed as iplementing a set which

is the union of its buckets.

> show code for addition to a symbol table by side effect.

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (OLD INPUT) ;MODIFIES OLD.

(PROG (BUCKET)
(SETQ BUCKET (APPLY OLD INPUT))
(UPDATE-FUNCTION OLD

BUCKET
(BUCKET-ADD BUCKET INPUT)))))

(DEFINE BUCKET-ADD
(LAMBDA (OLD INPUT)

001))

(DEFINE UPDATE-FUNCTION
(LAMBDA (OLD VALUE INPUT) ;MODIFIES OLD.

The system knows how to implement addition to a set implemented as a discrimination function.

One way of displaying this knowledge is for the system to generate code from its current plan

representation of the design thus far. As can be seen above, this code has gaps in it (indicated by three

dots). These gaps correspond to the fact that it doesn't yet know how the discrimination function or the

buckets are implemented.

The arguments to the procedure SYMBOL-TABLE-ADD are the symbol table to be modi fied (OLDj and

the entry to be added (INPUT). At this point in the design, all the systern knows is that the old symbol

table is a fnction, but ot how that fnction is implemented. Te discrimination function may later in

the design turn out to be implemented by a Lisp procedure, by a data structure, or by a combination of

the two. The code (APPLY OLD INPUT) in the first line of SYMBOL-TABLE-ADD is therefore used by the

system to express the general idea of applying the discrimination function to get the appropriate bucket in

which to add the given entry. Similarly, die procedure UPDATE-FUNCTION is a placeholder for the

operation of modifying an OLD function such that all d6main elements which used to map to a given range

VALUE (in this case the bucket before addition), will afterwards map to the INPUT (in this case the bucket

after addition).

1. See the appendix for the definition in logical form. ne technology for mking this kind of a straightforward translation
ex ists 46].

24. CHAPTER TWO

Despite the arguments made earlier as to why code is not an appropriate iternal representation for

the library of standard forms, code can still be a convenient language for communicating between the

system and the user in certain circumstances. Also code as the advantage of being more familiar to the

user than te plan calculus. Notice also that the system has annotated t code it has written with

comments. We will seelater in the scenario that the system also reads the comments on any code that the

user types in.

> describe symbol-table-add.

SET ADDITION TO A DISCRIMINATION FUNCTION IS IMPLEMENTED BY THREE STEPS
DISCRIMINATE: APPLY THE DISCRIMINATION FUNCTION,
ACTION: SET ADDITION,
UPDATE: MODIFY THE DISCRIMINATION FUNCTION WITH A NEW VALUE,

SUCH THAT
THE OUTPUT OF THE DISCRIMINATE STEP IS THE OLD SET OF TE ACTION STEP;
THE INPUT OBJECT OF THE ACTION IS TE INPUT OBJECT OF THE DISCRIMINATE STEP;
THE OUTPUT OF THE DISCRIMINATE STEP IS THE VALUE INPUT TO THE UPDATE STEP;
THE NEW SET OF THE ACTION STEP IS THE INPUT OBJECT TO THE UPDATE STEP;
AND THE DISCRIMINATION FUNCTION IS THE OLD FUNCTION INPUT TO THE UPDATE STEP.

In response to a request from the user, the system here gives a toplevel logical decomposition of the

code it has written. This description is again not "canned", txt, but can be generated from the plan

representation as needed. For this sort of information, displaying the plan diagram shown in Fig. 21 is

probably superior.

> imploment the icrimination funCtion. as a keyed discrimination.
OK

> describe keyed discrimination.

A KEYED DISCRIMINATION IS A COMPOSITION OF TWO FUNCTIONS
ONE: A FUNCTION ("THE KEY FUNCTION"),
TWO: A FUNCTION ("THE BUCKET FUNCTION"),

SUCH THAT THE COMPOSITION, VIEWED AS A FUNCTION, IS A DISCRIMINATION
FUNCTION.

The design of the symbol table continues in small steps. The next step here is to decompose the

discrimination function ito two functions: one which aps from objects to keys; and one that maps from

keys to buckets. The strings in quotation marks above are it canned" text which is attached to roles of the

plan to give better words tan it the one function" and the two function", which would be generated

automatically.

The systern knows it a bit about fnctional compositions. Foi- example, it knows that the range

of the first function must be a subset of te domain of the second function. It also knows that to update a

function implemented as die composition of two functions, it suffices to update the second function.

Both of these pieces of information will be used later in the scenario.

25ME SCENARIO

1"gur 21. Discriminate, Action ad Updat Pan for Addition to Symbol able.

- - -- _5 lll--��

26 CHAPTER TWO

> the key function of the keyed discrimination is car.
OK

> implement the bucket function of the keyed discrimination as a hashing.
�OK

> describe hashing.

A HASHING IS A COMPOSITION OF TWO FUNCTIONS
ONE: A FUNCTION ("THE HASH FUNCTION"),
TWO: AN IRREDUNDANT SEQUENCE ("THE TABLE")

The final step in the refinement of the symbol table data structure is to introduce hashing. The

basic idea of hashing is to decompose a function (in this case te function from keys to buckets) into two

functions: a many-to-one function which maps rom the domain of the original function to an initial

interval of the natural numbers; and a one-to-one function which maps from te atural numbers to the

range of the original function. (Sequences are formalized in this system as functions on initial intervals of

the natural numbers. An irredundant sequence is one in which no two terms are equal.)

> show symbol-table-add.

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.

(PROG (INDEX)
(SETQ INDEX ASH (CAR INPUT)))
(ARRAYSTORE TABLE INDEX

(BUCKET-ADD (ARRAYFETCH TABLE INDEX)
INPUT)))))

(DEFINE HASH
(LAMBDA (INPUT)

(DEFINE BUCKET-ADD
(LAMBDA (OLD INPUT)

The user has asked the system to redisplay code for SYMBOL-TABLE-ADD based on the additional

specifications provided thus far. Notice that the system still doesn't know how the buckets are

implemented, So BUCKET-ADD is still just a placcholder. However, the system does now have enough

information to ake some other implementation decisions. For example, since te hashing function does

not need to be modified, it has been implemented as a isp procedure.' lie oly function that needs to

be modified now is the table (a squence). The system. has also taken the initiative of implementing this

sequence a a Lisp vctor. Modifying a isp vector i achieved by ARRAYSTORE.

If desired, the user could ave been queried about each of these decisions. However, it is probably

preferable to have te system take die initiative at this low level and make it possible for the user to

1. There is nothing in te cm-rcnt plan librai)I, concerning what akes a good hashing function, I'his is in the domain of numerical
computation and thcory, hich js outside of the focus of this,�xork.

Tf IE SCENARIO 27

retract decisions later-2

> show code for associative retrieval from a symbol table.

(DEFINE SYMBOL-TABLE-RETRIEVE
(LAMBDA (TABLE INPUT)

(BUCKET-RETRIEVE (ARRAYFETCH TABLE (HASH INPUT))
INPUT)))

(DEFINE BUCKET-RETRIEVE
(LAMBDA (BUCKET INPUT)

(PROG (OUTPUT) ;SEARCH LOOP
(COND (.. (RETURN NIL)))
(SETQ OUTPUT ...
(COND ((EQ (CAR OUTPUT) INPUT)

(RETURN OUTPUT)))
(GO LP)))))

Associativ rtrieval is a standard specification known to the system. Conceptually, it has three

inputs: a set a key function, and a sarch key. It also has two cases: if there is a member of the set such

that the key function applied to it equals the search key, then the retrieval succeeds and its output is such

a member; otherwise, it fails.3

As can be seen from the code above, the system also knows the standard plan for mplementing

associative retrieval from a set iplemented as a kyed discrimination, namely: apply the bucket function

to the search key to obtain a bucket; and then perform associative rtrieval from the bucket sing the

same kev hinction and search key. Notice that the respective sets (either the whole table or the bucket)

and te search key (INPUT) are the formal parameters of SYMBOL-TABLE-RETRIEVE and BUCKET-RETRIEVE in

the code above, while the key function, CAR, i Coded in line. This coding does not cause any loss of

modularity, since the purpose of that particular use of CAR is preserved in the plan representation.

The gaps i BUCKET-RETRIEVE are due to the fact that the user has not yet specified how the buckets

are implemented. However, the systems does know that this procedure conceptually has two cases.

Procedures in Lisp can have only one return point. he system as dius decided to use the standard

technique of a flag to encode two cases - a return value Of NIL signals the failure case. Minor

programming techniques, such as die use of flags, can also be captured in the plan representation.

The following iustrates another kind of interaction between the user and the system. In addition

to being able to read each other's code, the user ad system can also edit each other's code. This

interaction also shows how the plan library can provide te user with a sort of" macro expansion" fdcility

for writing code more easily and correctly. For example, te user below invokes the standard plan for

generating successive elements of a Lisp list by CAR and CDR, tuncated by NULL. The code that is

generated for this plan in this context is underlined below.

2. A truth maintenance system 21,43] can facilitate this kind of retraction. Te issues involved in incremental modiricabon are an
important part of te progranimer's apprentice project in gencral, but are outside of die focus of this work.
3. Ihis way of specifying associative retrieval generalizes well to multiple key retrieval.

28. CHAPTERTWO

> insert code for truncated list generation of bucket in bucket-retrieve.

(DEFINE BUCKET-RETRIEVE
(LAMBDA (BUCKET INPUT)

(PROG (OUTPUT) ;LIST GENERATION AND SEARCH L)OP
LP (COND ((NULL BUCKET)(RETURN NIL)))

(SETQ OUTPUT (CAR BUCKET
(COND ((EQ (CAR OUTPUT) INPUT)

(RETURN OUTPUT)))
(SETQ BUCK-ET (CDR BUCKLM
(GO LP)))))

The important difference between what takes place here and a conventional macro facility is that

here the insertion of new material takes place in the plan calculus, where te benefits of additivity hold.

Only afterwards is code regenerated from the augmented plan.

Notice that te user here has indirectly told the system that the buckets of the symbol table are

implemented as lists. This gives the system enough information to complete the implementation of

BUCKET-RETRIEVE by identifying the exit test of the list generation with the failure case of the associative

retrieval, (RETURN NIL), and by setting OUTPUT to the successively generated list elements.

> show s'ymbol-table-add.

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.

(PROG (INDEX)
(SETQ INDEX (HASH (CAR INPUT)))
(ARRAYSTORE TABLE INDEX

(CONS fARRAYFETCH TABLE NDEX)
INPUT)))))

Given that buckets are iplemented as lists, the system assumes the most straightforward

implementation for BUCKET-ADD which i Simply CNS, as shown above.

> describe the implementation of a symbol table.

A SYMBOL TABLE IS IMPLEMENTED AS A DISCRIMINATION FUNCTION.

THE BUCKETS OF THE DISCRIMINATION FUNCTION ARE IMPLEMENTED AS LISTS.

THE DISCRIMINATION FUNCTION IS IMPLEMENTED AS A KEYED DISCRIMINATION,

THE KEY FUNCTION OF THE KEYED DISCRIMINATION IS CAR.
THE BUCKET FUNCTION OF THE KEYED DISCRIMINATION IS IMPLEMENTED AS A HASHING.

THE HASH FUNCTION OF THE HASHING IS IMPLEMENTED AS A LISP PROCEDURE.
THE TABLE OF THE HASHING IS IMPLEMENTED AS A LISP VECTOR.

Above we sce how the programmer's apprentice can provide an interactive documentation facility.

This can be particularly useful if more tan one prograrnmer is working on a prograrn, or if a program

needs to be modified a long time after it was written.

Tl.!: SCENARIO 29

> show code for associative deletion from a symbol table by side effect.

(DEFINE SYMBOL-TABLE-DELETE
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.

(PROG (INDEX)
(SETQ INDEX HASH INPUT))
(ARRAYSTORE TABLE INDEX

(BUCKET-DELETE (ARRAYFETCH TABLE INDEX))))))

(DEFINE BUCKET-DELETE
(LAMBDA (BUCKET INPUT)

(COND ((NULL BUCKET) NIL)
((EQ (CAAR BUCKET) INPUT)

(BUCKET-DELETE (CDR BUCKET) INPUT))
(T (CONS (CAR BUCKET)

(BUCKET-DELETE (CDR BUCKET) INPUT)))).))

Associative deletion is also a standard specification known to the system. Like associative retrieval,

it has three inputs: a set, a key fnction, and a key. Its output is the input set minus those members for

which the key function applied to tem equals the input key. The implementation of associative deletion

from a set implemented as a discrimination function is a imilar three step plan to die set addition plan

introduced earlierf namely: apply the discrimination function to get a bucket, perform the same

associative deletion on te ucket to get a new bucket, and then modify the discrimination function to

incorporate te new bucket. The system has generated code for tis plan as show' n above.

Notice that associative deletion from the bucket list is implemented by the system in the

straightforward manner which copies the list. In thc next frame, we will see that the user has something

-more clever in mind, and therefore intervenes to provide his own more efficient code for deleting from

the bucket by side effect.

> edit bucket-delete

(define bucket-delete
(lambda (bucket input) modifies bucket.

(prog (p q)
(setq p bucket)

lp (cond ((eq (caar p) input)
(rplacd q p) ;splice out.
(return bucket)))

(setq q p)
(setq p (cdr p))

(go 0M

WARNING! THE LOOP IN BUCKET-DELETE IS ALMOST A
TRAILING GENERATION AND SEARCH,

CURRENT: P
PREVIOUS: Q
EXIT: (COND ((EQ (CAAR P) ...
ACTION: (CDR P)

EXCEPT TAT THE OUTPUT OF THE ACTION IS NOT EQUAL TO THE
INPUT OF THE EXIT TEST.

Here we see an example of inspection methods used for verification. The user as attempted to

30 CHAPTER TWO

code a generation and search loop with a trailing value and has not gotten it qu' te right-' The plan in the

library for trailing generation and search has the roles for the current value, the previous value, the exit

test, and the generating action on eaci iteration, with roughly the following constraints between them:

(i) The output of the action is equal to the input of the action on te next iteration.
(ii) The output of die action is equal to the input of the exit test.

(iii) The current value is equ'al to the input of the exit test.
(iv) The current value is equal to the previous value on the next iteration.
(v) The current value and previous value are outputs of the loop.

In a near-miss recognition, most but not all of the constraints of a plan are satisfied. In this

example, constraint (ii) is not satisfied as indicated by the system in te warning message above.' The

details of how this recognition takes place are explained in Chapter Seven.

Verification by inspection yields a much more meaningful diagnostic than would be given by other

methods of detecting this rror.- For example, running the code above with certain inputs would r%-Isult in

the Lisp interpreter halting at the R P LACD with an error message such as te following.

NIL BAD ARG - RPLACD

In general, correcting errors is more difficult than detecting them. For example, it is hard for the

system to kow wether a near-miss is actually an error or just a new variation on a Ian it doesn't know

about. The programmer's apprentice will tus in general rely on die user to correct errors. rhe user's

response Lo the warning message above is sown underlined below.

> edit bucket-delete

(define bucket-delete
(lambda (bucket input) ;modifies bucket.

(prog (p q)
iseta a bucketl

11) (seto i, (dr 01
(cond ((eq (caar p) input)

(rplacd q p) ;splice out.
(return bucket)))

(setq q p)
(go IPM)

WARNINGI THE CODE (RPLACD Q P) IS NOT RECOGNIZED AS SPLICEOUT.
SUGGEST (RPLACD Q (CDR P)) ? yes

Unfortunately, there is yet another error in the user's code. Te user has asserted in a comment

above that the line with RPLACD implements splicing an element out of the list. However, the system finds

that this code does not'match its library plan for splicing out. In this case, since the user has stated his

intention i a comment, the system can go as far as offering a correction, wich the user accepts.

1. Whether or not the user should have known that this particular plan was in the library is irrelevant. The point here is to
illustrate the idea of a program understanding system that "looks over the shoulder" of the user.
2. Jhis does ot, however, mean te user's code won't work; only that the system does riot have a theory by which it can
understand what the code does.

THE SCENARIO 31

Notice that at different points in this scenario, Lisp lists have been viewed bth recursively and as

-irected graphs. The first version Of BUCKET-DELETE was a standard recursion on the tail of the list- while

the version above is in the domain of araph manipulations involving successor nod�.s and modifying arcs

between tem.

TNow that BUCKET-DELETE has been re-implemented using side effects, a more, efficient

ftnolementation Of SYMBOL-TABLE-DELETE is possible, in which thC ARRAYSTORE is necessary only if the first

element of te bucke-, is deleted.

> 3how symbol-table-delete.

(DEFINE SYMBOL-TABLE-DELETE
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.

(PROG (INDEX BUCKET)
(SETQ INDEX (HASH IPUT))
(SETO BUCKET (ARRAYFETCH TABLE INDEX))
(COND ((EQ (CAAR BUCKET) INPUT)

(ARRAYSTORE TABLE INDEX (CDR BUCKET)))
(T (BUCKET-DELETE BUCKET))))))

To come to this iriplementation, the system as done some analysis of side effects by inspection.

Specificaflly, there are plans and an overlay in the library wich say tat one way to modify a function

(change the associations between domain ad range elements by addin a new range element) is to

modify an old range lement Applied to tis program, this overlay allows the system. to view the deletion

of an element from the bucket by sde effect as th iplementation of the modification of the

discrin').ination function.

Analysis by inspection is aso in operation here. By recognizing the user5S BUCKET-DELETE code as a

trailing generation and search plan, the system derives ome important additional properties of this

proccOure. In particular, it knows that. this procedure only sarches internal nodes of te bucket list, and

that it only finds the first node which as the given key. With regard to te first property, there is a plan

in the library which combines an internal deletion with a conditional test on the first node to achieve, a

completc.deletion. Th.1 system has, used this plan to arrive at the code above. The second property is

proparr,,�ited.up to the specifications Of SYMBOL-TABLE-DELETE, as shown below.

> describe preconditions of symbol-table-delete.

THERE EXISTS A UNIQUE "V SUCH THAT X BELONGS TO THE OLD SYMBOL TABLE,
AND THE CRITERION APPLIED TO X IS TRUE.

> describe preconditions of symbol-table-insert.'

THE INPUT DOES NOT BELONG TO THE OLD SYMBOL TABLE.

'thus analysis y inspection has rvealed some important additional restrictions which the user

c1ther was not clearly aware of' or in any care, did not explicitly suatc. The propagation of restrictions

from the specificatiOlls, Of BUCKET-DELETE t SYMBOL-TA13LE-DELETE nd SYMBOL-TABLE-ADD could be

achieved b thc- use of reneral reasoning mechanisms. owever, tose are such common specializations

of die most acneral addition and deletion specifications tat they are appropriately pre-compiled in the

'ibrary.

32 CHAPTER THREE

CHAPTER THREE

OVERVIEW OF THE PLAN LIBRARY

3.1 Introduction

This chapter gives an overview of the plan library with an emphasis on taxonomy; English

descriptions and example programs are used to give a feeling for the extent and overall organization of

the knowledge in te library. Formal definitions for all library entries can be found in the appendix (see

index for page numbers) written in a notation which is explained in Chapter Eight. Chapters Five, Six

and Seven describe the use of the library in specific scenarios of aalysis, synthesis and verification by

inspection.

Methodology

My basic approach in developing a taxonomy of standard programming forms has been to start

with the technical vocabulary commonly used and understood by experienced programmers, and then to

apply my own intuitions to make appropriate generalizations and distinctions. I thus take the position

that if programmers have evolved a name for something, it is probably an important concept. is

means, for example, tat there are plans in the library which capture the meaning of trms like "trailing

pointer", "search loop" and "splice out".

Another method I have used to discover important programming concepts is to look for

abstractions which unify the explanations of how any different programs work. For example, the

concept of a directed graph makes it possible to express a number of standard algorithms independent of

how te nodes and edges are represented in a particular program. This line of argument has also lead to

including in the library a number of other farnifiar athematical objects, such as functions, relations,

sequences and sets.

Let me emphasize that the taxonomy represented in te current library is only intended to be a

beginning. he exact contents of the current library as been deterniined primarily by the requirements

of giving a complete account of one, medium-sized example program, capturing all the important

generalizations. Te example program that was chosen for this is die symbol table program introduced in

die scenario of Capter Two. Tis particular program was chosen because it contains many different

forms which are representative of common manipulations on symbolic data. I felt that a library which

was adcqu�fte for tis example would be a good suirt towards exploring die extent of this domain. I also

felt that concentrating on one example in deptli would lead to a better understanding of the relationship

between different levels of abstraction, rather than touching on only the major points of many different

proarams.

-owww"Mmm

METHODOLOGY 33

Both of these intuitions have turned out to be good. Capturing all the important generalizations in

this one program has touched upon a wide range of basic programming techniques. A complete account

of the symbol table program has required filling te library with plans starting at -i very abstract level,

such as the idea of implementing a set as a discrimination ffinction, down to the level of minor

programming techniques, such as die use of flags to encode control information in binary valued data.

The small fraction of plans in the current library which are not directly otivated by die symbol

table example fall into two categories. Some of tese are obviously important basic plans which don't

happen to be used in the example, such as counting and accumulation loops. Other plans are included to

fill obvious gaps in the taxonomic structure of the library, such as the plan for splicing into a list (whereas

only splicing out appears in the symbol table program).

Finally, while I do argue for the ma or outlines and organization of te current library, I do not

expect that any reader will agree on every last detail. Many common manipulations on symbolic data arc

missing at present. The current library also needs to be expanded in many different directions, such as to

include more general graph algoridirns, matrix manipulations, and so on. However, it will hopefully be

clear after reading tis chapter where many of these extensions fit into the existing structure.

Implementation Relationships

A vocabulary of sandard forms is not te only kind of knowledge involved in programming. A

programmer also knows many ways of implementing one form i terms of others. The idea of
JIMplementina a set s hach t1abl or of removingan eintrAr' Prol-n - splict g it out, -re examples of

'I'll 6 " y ,.L , a list b I 11

implementation relationships (represented in the lbrary by overlays). In building die library, the choice

of programming vocabulary was often influenced by the iplementation relationships. The otivation

for making a vocabulary distinction was often to separate two cases which allow different

implementafions. For example, finite and infinite sets are dstinguished in te library because

membership tests in finite sets may be implemented by a loop which enumerates die elements, which is

not a valid'implementation for infinite sets. (The set of natural numbers is an example of an inflnite set

which is part of basic programming.)

An important kind of knowledge which is not yet explicitly rpresented in die library is the relative

-cost of various computations. However I believe that in fact much of an expert programmer's knowledge

about die relative cost of computations is embedded in his vocabulary. In other words, given that cost

considerations are te primary motivation behind any standard programming ideas, the study of these

ideas is a logical starting place for developing a understanding of computational cost. For example, the

idea of a hash. tble, is motivated by h desire to speed.up various kinds of rtrieval operations. This

increase in speed is due to the fact that any single bucket in die table is smaller than the union of all the

buckets. Future research will include studying die library frther fi-om this viewpoint in order to make

this kind of knowledge more expliciL

34 CHAPTER THREE

Overall Organization

The current library contains approximately fifty input-output and test specifications, thirty data

plans, ad thirty temporal plans. These plans and specifications arc organized in two ways: in a

taxonomic hierarchy and by an interlocking network of approximately fifty overlays. There are two

taxonomic relations hips used in the library: specialization and extension. Note that a plan may be a

specialization or extension of more than one other plan, so tat the taxonomic hierarchy ay be tangled.

A plan or specification is a specialization of another plan or specification if it has te same roles, but

additional constraints. This means that the computations or data structures specified by the specialized

plan are a subset of those specified by the more general plan.

A common motivation for introducing a specialization of a plan is because the properties of the

specialization are exploited in some particular implementation. For example, consider the data plan,

Segment, introduced in Chapter One. This data plan has three roles: a base sequence, an upper index,

and a lower index. One way of implementing a mutable stack is to use an instance of Segment in which

only the lower index is varied - the upper index is always equal to te length of the base sequence. This

data plan is called Upper-segment; it is a specialization of Segment.. Upper-segment has the same role

names as Segment. Its constraints are the three constraints of Segment, i.e.

(i) The upper number is less than or equal to the length of the base sequence.
(ii) The lower number is less than or equal to die length of te, base sequence.

Gii) Te lower number is less than or equal to the u per number.

plus die following specializing constraint.

(iv) nic upper number is equal to te length of the base sequence.

The basic idea f extension is to add an additional ole to a plan or specification. The extended plan

inherits all the constraints of the old plan.

A common kind of extension is to add an additional output to a input-output specification. For

example, niread-rind is the standard input-output specification for finding a node satisfying a given

criterion in a linear directed graph (thread). It has two input roles, amed Input and Criterion, and one

output role, named Output. The Output is a node of the Input thread wich satisfies die Criterion

predicate. When Thread-find operations are uscId in conjunction with other plans, such as splicing, it is

convenient to have as output not only the node found, but also te previous node in the thread. This

extension to 'Ibread-find is called Internal-thread-rind. Internal-thread-find has the same nput roles as

Thread-fin7d, but two output roles, Output and Previous, with die additional constraint tat Previous is the

predecessor node of Output in t Iput thread.

Object Types

Part of die hierarchy of object types is shown in Fig. 31. All the names in this Figure are the names

either of primitive object types or data plans. Silar figures later in this chapter will also include the

names of input-output ad test specifications', and temporal p1ans. Solid vertical lines bem,,cen names in

these igures dnote spocialization or xtension rlationships, wit te secialized or extendcd plan always

-I,- --I - -- --- -

OBJE CT TYPES - 35

eAr o k,

h CkA V YCL\ call V.\ a
v

0 \./ "ICU I
eAm Haiti -Si v-,mc

r e- St

a f� -

I I 4F'gure3-1. Ilierarch),ofObjectTypes.

I

36 CHAPTER THREE

below. Arrows in these figures represent overlays between plans. Most o �erlays are many-to-one

mappings from instances of one plan to another. The arrow for sch overlays points from die domain to.

the range. Overlays that are one-to-one are indicated by double-headed arrows, Dotted lines indicate

ff use" relations. For example, Labelled-digraph is defined using the definition of Digraph.

Referring to Fig. 31, note tat the root node in the data object hierarchy is called Object. Below

Object are the primitiv tpes in the current library: Integer, Function, Binfunction (functions of two

arguments), ad Set. By "primitive" I mean here that systems which use thle plan library are expected to

have specific procedures for reasoning about these objects, and that this knowledge is not explicitly

represented in die library itself.

The notion of Integer used here is a standard extension of the finite integers with a maximum

element, infinity, and a minimum element, minus-infinity. Integer as specializations Natural and

Cardinal. Instances of Natural are all the integers greater than or equal to one, not including infinity.

instances of Cardinal are all the integers greater tan or equal to zero, including infinity.

Subsequent main sections of this chapter give overviews t parts of the library under the other main

nodes in this hierarchy. There is a section about plans involving functions, one about plans involving sets,

one about directed graphs' and one about recursive structures. However, these sections will not be able to

discuss every plan in the library, since that would make the figures an unreadable clutter. For example,

some plans involving minor programming techniques, such as die use of flags and various ways of

implementing predicate tests are discussed as tey arise in the later chapters (and their definitions can be

found in the -,appendix.)

Nonce the overlays in the iddle of Fig. 3-1 between Sequence, List, Tread, and Labelled-thread.

These overlays will be explained i more detail in subsequent sections. For how it is iportant just to

point out this example of how multiple of points of view are catalogued i the library. Each of these data

plans (Sequence is a specialization of the primitive object type Function) captures an alternative point of

view on what could be called linear structures.

3.2 Functions

Fig 32 shows the part of the plan library wich involves functions. Alt. the top left are three basic

input-output specifications which have functions as inputs or outputs. eaFunction is the specification for

applying afunction t an argument to get a value.

Another common operation performed on functions is to change the value associated with a given

argument. The input-output specification for this operation is called Newarg. Newarg hs three inputs.

the old function, an argument, and the new value. The output is a new function such that te given

argument maps to the Dow value and die values of all other arguments remain uchanged.

A lesscommonly used specification is Neiivalue. NewNalue also has threc, inputs: the old function,

an old value, and a ew value. The output is a nw ffinction such that all the arguments that used to map

I. The character �" is ntended to be read as "apply".

TF;.)NCTIONS 37

I

1%. erdlc"te.,1%It

".. - sq yvigmt
3

.1

I I c , 10 UV? Vvi t VA �

- f - . I---,

v 0 V�-

CT YT i i\j e- I' Tu VI ("t o V\- V\ TQ

a

VA I \-

Figure 32 Pns Involvina Fulictiolls.

38. CHAPTER THREE

to die old value now map to the new value and te values of other arguments remain unchanged.

Newvalue will be used as part of die analysis of operations on hash tables.

Notice tat these specifications make no commitment as to whether the old function is copied or

modified to got te new function. The copying and side effect versions will be treated as specializations.

The input-output specification, Old+new, of which Newarg and Newvalue are extensions, is a very

general form which makes it possible to state this idea in general. It is advantageous to work with these

more abstract specifications as much as possible, since they unify the logical structure of a larger number

of programs. These same rmarks apply to all other input-output specifications in this chapter which are

shown as extensions of Old+new. Plans involving side effects are discussed ffirther in Chapter Eight.

At the middle left of Fig. 32 are sonne plans having to do with implementing a function as the

composition of two functions, i.e. by the data plan Composed-functions.

Composed-�functions is a temporal plan for iplementing CkFunction for a function iplemented

as Composed-functions, i.e. apply the second ffinction of the composition to the output of applying the

first function to the given argument.

The plan Newvalue-composed and the overlay between it and Newvalue express the fact that a

Newvalue operation on a function implemented as Composed-functions can be iplemented by a

Newvalue operation on die second ftinction of the composition alone. This plan arises in te analysis of

the symbol table example, where te hash table is viewed as the composition of two functions: a

numerical hash ffinction which doesn't change, and an array that is modified to insert new entries.

Notice tat the 1ata plan Hashing is a sper., ia I i z'al, t. 1 o n of Composed-Functions. As we have seen in

the scCnario, the first function in this case is referred to as the hash fnction, and the second (a sequence)

is referred to as the table. A discrimination function can b implemented as a hash table, in which case

the table is a squence of sets, called the bckets. The utility of this implementation is that changes (e.g.

Ne'wvalue operations) to a discrimination implemented this wy may be achieved by changing only the

table, as specified by the Newvalue-composed plan discussed above. Discrimination fnctions will be

discussed further in te next section on sets.

Sequences

Sequences are viewed fori-nally as functions o die natural numbers which are defined on some

initial interval (Lip to the length of die sequence) and undefined elsewhere. A common specialization is

Irredundant-sequence, i.e. sequences in which o two terms are equal.

A number of common operations o linear StRICtures are most naturally specified i terms of

sequences. Fig. 32 shows several such input-output specifications. T fst two specifications, Term

and Newternil, are simply specializations of Ca)Function and Newarg to the case when die functions

involved are sequences.

The next two specifications have to do with truncating sequences according to some criterion (a

predicate). In both cases a precondition is tat tere exist some term of the input sequence wich satisfies

the criterion. The output sequence in both cases i a finite initial sbsequence of the input squence In

the case of Truncate-inclusive, all bt die last term of die output sequence ail the criterion; die last term

EQUENCES 39

-passes. In the case of Truncate, all terms of the output sequence fail the criterion and the length of the

output sequence is one less than te index of the first term in the input sequence that passes the criterion.

A closely related input-output specification is Earliest. Again the inputs are a sequence and a

criterion, and a precondition is that there exist some term of the input squence which satisfies the

criterion. The output is the earliest term of the sequence which passes te criterion, i.e. all terms with

indices lower than the index of the output fail the criterion.

The last input-output specification on sequences in Fig. 32 is lap. Its input and output are

sequences of the same length. An additional input (0p) is a function such that each term of the output is

the result of applying that function to the corresponding term of the input.

Aggregations

- This section introduces some simple algebraic structure which captures the similarity -between

programs which compute sums, products, set unions and intersections, maximums and minimums. The

inppt-output specification which is the generalization of all these operations is called Aggregate.

Aggregate takes as input a (non-empty, finite) set of objects and a function of two arguments which is

commutative, associative and has identity elements. Such a function is called an Aggregative-binfunction.

(If the function also has an inverse, then it is an Abelian group.) The output of Aggregate is the result of

composing the application of the aggregative function to the members of the input st. The algebraic

properties of aggregative functions guarantee tat the oder of tis composition doesn't matter.1

Fia. -1 n1co nnmes six common' spccializations- of Aggreg.-te for part.-Ii,cull-I ag I., I

Sum (Plus), Product (Times), Aggregate-union (Union), Aggregate-intersection (Intersection), Max

(Greater), and Min (Lesser).

Relations

Relations are treated formally as boolean valued functions. A Predicate is a booleah valued

function of one argument; a Binrel is a boolean valued function of two arguments. Correspondingly,

�Predicate is the specialization of CkFunction to predicates, and CaBinrel is the specialization of

�13infunction to binary relations.

Note in Fig. 32 the overlay between Partial-order and Aggregative-binftinction. his overlay

allows the following code

(COND ((> N MAX)(SETQ MAX N)))

to be analyzed as an application of the Lesser function which then allows a loop with tis code in the

1. Which is why the input is a set rather than a list or sequence. Also there is ome subtlety bing suppressed here concerning
.whether the input should be a set or a multiset. In the case of union, intersection, mximum and mininium, the occurrence of
duplicates doesn't matter, and therefore the set abstraction is dfinitely appropriate. Surn and product, however, do not ave this
property. Nevertheless I ague that, oncept, the input to a summation operation i a set of ojects in te �:ense that even
diough viewed a itegers they may havc the sarne bhavior, they represent conceptually distinct qantities and are therefore not
identical. See Chapter ight fr more n the notion of behavior versus identity.

I-

40 CHAPTERUIREE

body to be analyzed as the iplementation of the Min operation (and similarly, when the test is 11<11, the

implementation of Max).

3.3 Sets

Fig. 33 sows part of the plan library which involves sets. At the eft of the figure we have first
some common input-output and test specifications with sets. Member? tests whether a given object is a
member of a given set. Any is a more complicated test: given a set and a predicate as inputs, it succeeds if
there exists a member of the set which satisfies the predicate, and returns such a member as its output;
otherwise it fails. Set-rind is a related input-output speciflcation: it has the precondition that there that
there exists a member of the input set which satisfies the input predicate, ad simply re-turns such a
member as its output.

The next two input-output specifications each have a set as input and a set as output. Each is a
specification used to analyze programs like (mAPCAR 'SQRT L), where the input list, L, is viewed as a set
andSQRT is a function applied to each element of the s. to get an output set. Restrict takes as input a set
and a predicate ad returns the subset which satisfies the predicate. As in te case of functions no
commitment is made in tese specifications to whether the old st is copied or modified to get the new
SeL

Finally, Set-add and Set-remove specify addition of a given object to a set and removal of a given
obiect from a set. The very abstract specification 01d+input+new-set, of which both Set-add and Set-
remove Arespecializations, captures what the implem-cntations of th C.Sint spe flifications hav- in -ommon.

The implementation of sets is a very rich area of programming technique 62]. It is not the goal
here to be exhaustive of all of the possibilities, bt rather to sow by example how to go about
formalizing such implementations using the plan calculus. In addition to the standard simple
implementations of sets as squences and lists, tis sction presents two examples of non-trivial set
impletnentations which are involved in understanding die te symbol table program.

The overlay for viewing a list as t iplementation of a set is recursively dfined: an object is a
member of the mplemented set iff it is the head of te list or it is a member of the set impl n ented by
the tail of the list. The empty set is usually implemented by Nil. There ae al -so overlays i the'library for
viewing Push and Pop operations as Set-add and Set-remove operations. The b-nplementation of other set
operations is more naturally expressed taking te point of view of the list as a directed graph, which will
be discussed in the next section.

Discrimination

One basic idea underlying many set iplementations is the use of a function (called a
Discriminlation), whose range is a set of sets (called buckets). Such a function can be viewed 'as
implementing a set werein a given objcct is a member iff it is a Member of te bcket obtained by

applying the discrimination function to that objcct. This is te basic "divide and conquer" strategy
underlying both hsh tbles and discrimination nets.

RELATIONS 41

.-- 0--
oll

0--l

/I

I

I
i
i
i
I

, 0 t', J�

f .I f I i

RCIPCL-,

ll�p VI 0 p- -0 � Q,

14 igur 33. Plans Involving Sets.

42. CHAPTER THREE

Testing for membership in a set implemented as a discrimination is implemented by the two step

plan Discriminate+member?. The first step is to apply die discrimination function to the given object to

determine which bucket to look in. The second step is an instance of Member", with the input set being

the bucket fetched by the first step. Since any single bucket in a discrimination is sm Her than the overall
im lemented st, (except in te case of a de enerate discrimination function which maps all objects to a

p 9
single bucket), this implementation leads to a increase in speed at the cost in space for encoding the

discrimination function.

Both Set-add ad Set-remove for input and output sets implemented as discriminations are

implemented by specializations of the same tree step plan: first, apply the discrimination function to the

input object to obtain a bucket; second, perfor te appropriate operation on that bucket to got a new

bucket; and third, update the discrimination function so that all domain objects which used to map to the

old bucket now map to die new bucket (i.e. a Newvalue operation). These three steps are expressed by

the Discr'minate+action+update plan.

Associative Retrieval

Associative retrieval adds to basic set operations the concept of a key. The function which

associates members of a set with keys is called the key function. Given a et, such as the entries in a

symbol table, we are often more interested in finding a mmber with a given, key, than in just testing for

membership'. The most basic specification for associative retrieval is called Retrieve (see bottom of

Figg 339. 0i-ven a et, a k-y function and ,n Ainput ky, Retrieve has two cases: if there eXist-1 a member of

the set with te given key, then it succeeds, and its output is such a member; otherwise it fails. The other

common associative retrieval specification, Expunge, removes all members of an input set which have a

given key. Expunge-one is a common specialization of Expunge which often allows a simpler

implementation. Expunge-one as the additional precondition that there exists exactly one member of

the input set with the given key.

Keyed Discrimination

To speed up associative retrieval for a given key fnction' a discrimination function can be used

which is itsel f the coinposition of two functions. This is te data plan Keyed-discrimination (see middle of

figure). T first function is the key function. rhe Second fnction, called die bucket fnction, maps

from te set of keys to the buckets. In typical sage, the bucket function may itself be decomposed

further into a Hashing (or aother keyed discrimination, as will be discussed shortly).

The implementation of Retrieve from a keyed discrimination has die sarne two step structure as the

implementation of Membei or a discrii -nination: first, pply a function to obtain a bucket- second,

perform t appropriate oeration on te bucket. In die case of a keyed discrimination, however, the

appropriate bcket is obtained by applying the bucketffinction (WhiCh iS the SCCODd alf of te composed

functions wich implement the discrimination) to a given key istead of applying the ull discrimination

function to an object Which might be a member of die set. This plan is called Keyed-

diseriminate+retrieve.

KEYED DISCLiMINATION 43

For Set-add and Set-remove, the ft that a discrimination is ffirthcr implemented as a keyed

discrimination makes no difference.
Associative deletion (Expunge) from a keyed discrimination is implemented by a three step

temporal plan, Keved-d'iscrini'lnate+expunge+update, which is an extension of the Discriminate+action+
update plan described earlier (see figure). Kyed-discrimiiiate+expunge+update has the following three

steps. (This plan is used in the analysis of the symbol table deletion example.)

(i) First, the appropriate bucket is obtained by applying the bucket function of the keyed
discrimination to the given key.

(ii) Then, just as in Discriminate+action+update, the action on te whole set reduces to a
corresponding action on the bucket. The Action step here is an instance of Expunge.

(iii)The final Update step is similarly a Newvalue operation on the discrimination function
so that all domain objects which used to mp to the old bcket, map to the now bucket.
Furthermore, in the case of a keyed discrimination, only the bcket ffinction needs to be
updated; the key function stays unchanged.

The idea of keyed discrimination can be generalized to multiple key data bases in two ways. One
approach is to have separate discrimination functions for each key ffinction which map into a shared set
of buckets. Associative retrieval on a pattern of keys is then implemented by intersecting the appropriate
buckets. (This is the idea underlying the implementation of the Conniver data base 45].) Alternatively,
the discri-mination functions for dfferent keys cn be composed, so that each function maps to a bucket

which is itself 'pleniented as a discrimination on the ncxt key. This is the basic idea underlying

discrimination nets.

3.4 Directed Graphs

'Directed graphs ae one, of the most common programmingdata structures. A Digraph is dfined
formally in th e library as a' set of nodes and an edge relation. For example, a Lisp list may be viewed as a
directed graph wherein the odes are -Lisp clls, the edge relation is Cdr, and Car is -a function which
attaches a label to each node. The nodes of a standard Lisp binary tree structure may also b viewed as a
directed graph in which the edge relation is te nion of the Car and Cdr relations between die nodes.
This view is particularly appropriate for programs which splice ojects in and out of lists or trees.

Barstow 61 has rccently dove-loped a set of rules for generating many standard programming
algorithms for operating on directed graphs in the general case. Some time in the future his rules should
be incorporated into die present library. This section concentrate.- on the special case of acyclic graphs
with a single root, i.e. tees, nd furthermore on the linear case of trees, which are ere called threads.

Fig. 34 shows some standard specializations of Digraph. Tree is a directed gaph in which there is

44 CHAPTER THREE

�tel

di�fq \1 e-
t1� I

s Pt I ceoo b
I

+(v A kx4VA - Qj f 14N

I
ilj VI �,AA - +,q, t e-

l
tvvv-� uJuk --t�ycc(dll

I
Mt vql

I tt�ot � 6 a Jk I-3rct ?V�,
I

I a, I - -� re-e

I a � c f � d -fee -e-reA

I6A yc't iw�
I

A vl CLI V� + �XA I +� Y-,t uct - TI
T

ix-a I VA I - 3 VI e.,c al i O VI t S e a f C., v-

I'lliaur 34. Mans Involving irected Graphs.
P-3

DIRECTED GRAPHS 45

a root and no cycles.' A Bintree is a a tree in which ach node is either a terminal or it has exactly two

successors. A Tbread is a specialization f Tree in wich the successor of each node is unique. This also

means that the predecessor of ach node i a thread (if it exists) and die trminal node -are unique.

The vocabulary of partial orders is often applied to trees and threads. For example, it is common to

think of a nodes in a tree or thread being "before" other nodes. This viewpoint is formalized by an

overlay from Tree to Partial-order indicated in Fig. 34. A tree is viewed as a partial order in which two

nodes are less -than or equal iff they are sccessor* the transitive closure of the sccessor relation) in the

tree or are the same node. The root of the tree in his view becomes the minimum element of the partial

order. Furthen-nore, if the tree is a thread, then the partial order is total.

Fig. 34 also shows an overlay between Irredundant-Sequence and Thread. An irredundant

sequence can be viewed as a thread in which die first term of the sequence corresponds to the root of he

thread and any two consecutively numbered terms in the sequence are successors in the thread. Notice

also that this overlay is one-to-one, which means tat for each instance of Thread there is a unique

corresponding instance of Irredundant-Sequence, and vice versa. This allows us to se both the standard

vocabulary of sequences (such as length and the idea of the n-th element) and of directed graphs (such as

the idea of successors) as appropriate to specify properties of linear structures.

Generators

One of the' most common wavs, of iplementing directed gaphs in programming is to specify a

single nde (alled die "seed"' and a binary relation uch that the nodes of are desired graph are the

transitive closure of the given node under the given elation. This implementation is captured by the data

plan Generator.

Iterator is the specialization of Generator which generates threads. Tis constrains the binary

relation of an iterator to be many-to-one (i.e. a function) and to have no cycles within te transitive

closure of the seed. This data plan is used in the analysis of counting loops and loops whichCDRdown a

list. The effect of the generating part of such loops is abstracted further in trms of the input-output

specification Iterate, wich takes an iterator as input and otputs te sequence of generated nodes. Loop

plans ad temporal abstraction will be discussed further in the next section.

Truncated Directed Graphs

Another common way of pecifying a directed graph is as part of another directed graph. This is

particularly used for specifying finite parts of infinite graphs sch as intervals of the natural numbers.

. The most gneral data plan describing this technique is Truncated-digraph. This data plan has two

roles: the Base -graph and a Criterion predicate. The criterion must divide the nodes of the base graph

..into three sets: a set of boundary nodes which satisfy the criterion; iterior nodes, font which boundary

1. Notice that this definition of tree does not constrain a node to hav a unique predecessor, i.e. there can be shafin of

substructure in the tree. In later vrsions (if te library it will be ncessary, to distinguish btween ac3%-Iic rooted directed graphs in

which nodes do and do not haNc unique predecesson.

- � I p -.,,.

46. CHAPTER THREE

nodes can be reached (in a finite number of successor steps), and exterior nodes, which can be reached

from boundary nodes. When te base graph is a thread (Truncated-thread), this, means more simply that

some node of the tread (either the root or a finite successor of the root) satisfies the criterion. Each such

criterion thus determines a finite subgraph of interior nodes, either including or not including the

boundary nodes.

Examples of truncated directed graphs in Lisp programming are Cdr threads truncated by the Null

predicate and Car-Cdr binary trees tuncated by the Atom predicate.

A closely related way of specifying truncated threads is in terms of upper and lower bounds on

some total order. This is called an Interval. For example, the integers from 10 to 100 are specified as an

instance of Interval in which the total order is Le, the lower bound is 10, and the upper bound is 100.

Splicing Plans

Thinking in terms of directed graphs is particularly appropriate for understanding programs which

add or remove nodes in the middle of lists or trees. Tis section introduces a number of plans related to

adding or removing internal nodes of threads in particular. These plans are used for example in analyzing

the symbol table deletion program. -

At the left of Fig. 34 are some basic input-output specifications on directed graphs which are

involved in understanding splicing plans. Digrapli-add is the basic specification for adding a node to a

directed graph. It takes an old graph and a node as inputs and gives a new graph as utput. All that can

be slid at diis ofabstraction is that the input is a ,.od-. of th-.1 n%Iw graph, nd thrat a the successor

relationships in the graph not involving either the added node, its predecessors or successors remain

unchanged. Digraph-add does not specify where in te directed graph te node is to be added. Internal-

thread-add is a specialization of Digraph-add in which te old and new graphs are threads and the new

node is added anywhere but at the rooL

The basic input-output specification for removing a node from a directed graph is Digraph-remove.

Like Digraph-add, it takes an old graph ad a node as input, and returns a w graph. All te successor

relationships in the directed graph not involving the removed node remain unchanged. The successors of

the removed nod-, in the old graph bcome the successors of the predecessor of the removed node in the

new graph. Internal-thread-reniove is te specialization of Digraph-remove in which te old and new

graphs are threads and te ode to be removed is not the root.

Programs which splice nodes in or out of a thread typically have two steps. 'I'lle first step is to find

the place in te thread were te addition or removal is to occur. The output of tis step usually a pair

of successor nodes, such that either the new node is to be added between thern or the second node is the

one to be removed. If t tread is implemented as an iterator, die scond step is ten to modify the

generating function so as to ither splice in or splice out a node, as die case may be.

The input-output specification of te first step finding iternal nodes), wich is shared between

add and remove programs, is called Intermal-thread-find. Given a hread and a riterion, Intertial-thread-

find�returns a node of the ffiread (other tan the root) which satisfies te citerion ad its predecessor.

The typical implementation of this specification is to use a scarch loop wbich keeps track of both the

- , ---- I A - -- -- -.,- , i �"

S P LI TN G P LA N S 47

current and the immediately preceding node. This loop pattern is captured by the recursive temporal

plan Trailing-generation+search, which will be discussed further in the next section.

The second step implementing removal of a node is a Newarg operation in wich the association

between the node to be removed and its predecessor is odified to be an association between the

predecessor and the successor of the node to be removed. For example, in the BUCKET-DELETE program of

the scenario in Chapter Two, the node to be removed is in and its predecessor is in Q; the generating

ffinction i CDR. The code for splicing outin BUCKET-DELETE is as follows,

(RPLACD Q (CDR P))

The plate for this form of code in general is called Spliceout.

The second step iplementing addition of a node requires two Newarg operations: one to make

the now node point to its successor, and one to make die predecessor of the new node point to it. For

example, addition of a node to a Lisp list iterator might be coded as follows.

(RPLACD NEW CURRENT)
(RPLACD PREVIOUS NEW)

The plan for this form of code in general is called Splicein.

The last data plan in Fig. 34 to be discussed is Labelled-digraph. This data plan has two -roles:

Spine (a digraph) and Label (a function on the nodes of that graph). An important specialization is

Labelled-diread, in wich the spine is ffirther constrained to be a throad. This plan is used to view a Lisp

list as a Cdr thread with objects attached at each node by Car. As discussed above, this' view is

particularly natural for understanding programs which modify lists by splicing.

3.5 Recursive Plans

-Recursively deflned plans are used in the plan calculus to represent unbounded structures. A

recursive plan is one ill which one or more roles are constrained to be istances of the plan itself. This

section will discuss only the special case of singly recursive plans, since die plans and overlays for doubly

and multiply recursive structures tend to be long ad more detailed than those for singly recursive

structures, without introducing any fundamentally new ideas.

At the top of'the hierarchy of recursive plans in Fig. 35 is a minimal plan, Single-recursion, which

says nothing more than that there is a role, Tail, constrained to be either an instance of Nil or itself a

Single-recursion. N is a distinguished object used to terminate singly rcursive structures.

The most important singly recursive data plan, List, ill be discussed first in the following section.

Singly recursive tmporal plans, e.g. loops, will be discussed in die sction following that. Finally,

teniporal abstraction will be introduced as a point of view which links singly recursive temporal plans with

singly recursive data plans. Capter Nine treats loops and temporal abstraction in much more detail.

1. RPLACDismodelledasNe,�A7arg,wheret-hefirstargiiinenttoRPLACDisL'icdoniainclementandthesecondargumentisthenew
range element.

.......

48 CHAPTER THREE

Figure 35. Recursh-c Plans.

aw*uw 1-1 MMR i

, LISTS 49

Lists

List is a singly recursive data plan A ith two roles, Head and Tail. The ead may be any object, but

the tail must be an instance of List or Nii. It is important not to think of this data plan too concretely.

The List plan is trying to capture what all recursive views of data structures have in common. List is the

point of view vhich is used for making (linear) inductive arguments about data structures. Thus the

reader should not identify the data plan List too closely with, for example, the Lisp list. Think of the data
itplan List as if it were called singly recursive data structure

Two basic input-output specifications on lists are s-hown at the top left of Fig. 35. Push ta�es as

input a list (or Nil) and an object, and returns a new list, whose tail is the input list and whose head is the

input object. Pop takes a list and returns its head and tail as its two outputs.

A common implementation of lists is to se a sequence (e.g. an array) with an index to where the

current head. is stored. The data plan which captures this implementation is called Upper-segment. -This

plan is a specialization of Segment, which has three roles: the Base, which is a sequence, and the Upper

and Lower bounds, which must be valid indices for the base. Upper-segment is a specialization of

Segment in which te upper bound is equal to the length of the base sequence. Push and Pop operations

on this implementation are implemented by the two-step temporal plans, Bump+update and

Fetch+update, respectively. The second step in ach of these plans is either to add or subtract one from

the old lower bound to get a new lower bound.' 17he first stop in implementation of Push is a Newterm

operation, which makes the given object te head of the new list. he first t-Cip in te implementation of

Pop is a Teinih operation, watch fetches the current head of the list.

Multiple Views of Linear Structures

Fig. 35 also indicates overlays between lists and other linear structures, such as sequences and
ructure is viewed as a list or as

threads. For example, whether a given data st equence depends on what

we want to say about it. Certain properties are easier to specify inductively, in which case the list view is

appropriate. In other cases, explicit quantification over the indices of a squence is more cnvenient In

the overlay between List ad Sequence, the head of the list corresponds to te first term of the sequence,

and the head of the title tail of die list corresponds to the (n I th trm of the sequence.

In the overlay between ist and Labelled-thread, the nodes f the spine of the, thread are the list

and all of its tails. Te edge function o die nodes of die Spine is thc Tail function, and the label function

is Head. Thus we now 'Have two ways ofviewing Lisp cells which have Lisp cells or Nil as their Cdr We

can view such a Lisp cell as implementing a list in which the Car of the cell isits ead and the Cdr is its

tail; or we can view die same Lisp cell as the seed for generating a Cdr thread which is labelled by Car.

1. Again, at his level of abstraction no ommitment is made in these plans as to whether the instance of Upper-seg'ent is
modified by side effect or copied. Diese are treated as Tsecializations, just as te "pure" and "impure" versions of Push and Pop are
treated as specializations.

F I --
�Pmqpllwpw - � t� - ---- - -- -- II I - r p01,111 , �� . I - - -

50. CHAPTER THREE

Linear structures may also be viewed as (i.e. implement) sets. In particular, a list may be viewed as

the set whose members are the head of the list unioned with the tail of die list viewed as a set. Nil is
usually viewed as the empty set. In this view, neither the order of occurrence of elements in the list nor
the occurrence of duplicates matters. In this iew, Push and Pop operations on a list are implementations
of Set-add and Set-remove operations. Alternatively, viewing lists as labelled threads, Set-add and St-
remove may be implemented by Splicein and Spliccout plans. Both of tese points of view arc needed to
understand how entries are added and removed in the symbol table example: in SYMBOL-TABLE-ADD
entries arc added to the bucket by a Push operation implemented in isp by CONS); in BUCKET-DELETE
entries are removed by a Spliceout plan (implemented in Lisp using RPLACD).

Loops

The taxonomy of loop structures used in the library is based on Waters'[73] method for analyzing
loop programs. Waters' method decomposes loops into fragments which correspond to Vveasily
understood stereotyped fragments of looping behavior." The next section describes overlays which allow
these fragments to be logically composed, rather than interleaved (as they are in an unanalyzed loop),
which makes their net ffect easier to understand. For example, consider the following program, which
sums up the non-nil elements of a list.

(DEFINE SIGMA
(LAMBDA (L)

(PROG (S N)
(SETQ S 0)

LP (COND ((NULL L)(RETURN S)))
(SETQ N (CAR L))
(COND (N (SETQ S (PLUS NM)
(SETQ L (CDR L))
(GO LP))))

Waters distinguishes three types of fragments (he calls them plan building ethods i -loops with
one exit test. The first type he calls "basic loops". A basic loop is caracterized by te fact that all of the
computation 'in the body of die loop can potentially affect the ten-nination of the loop. For xample. the
basic loop part Of SIGMA i d1C following.

(LAMBDA (L)

LP (COND ((NULL L ...

(SETQ L (CDR L))
(GO LP)))

Basic loops are further decomposed into a gneration part (e.g. the part involving CDR above) and a
termination part (e.g. te NULL test above). The temporal plan whicli captures the form of die generating
part of loops in general is calfed Iterative-generation. I'lie plan which captures the form of single exit
telsts is called Iterative-terinination. Both of tese are extensions of Sinole-rectirsion (see Fig. 35). 11h,
advantage of this hirther decomposition is it allows us to capture the similmity between loops which have
the same generation pkart but different trminations. 1`or exainple, om cn fcrni many ifferent loops

LOOPS 51

.with Counting as the generation part, but with different terminations. (Counting is a a specialization of

Iterative-generation in which the generating function is Oneplus)

Waters' second category of plan building method is called tr augmentations". Augmentations are

characterized by die fact tat they consume values produced by other part's of the loop and produce

values which may be used by other augmentations. In the library, augmentations are further divided into

application and accumulation. The distinction between these two types of augmentations rests on whether

there is any feedback", i.e. whether the. augmentation consumes its own values from previous iterations

accumulation does, application does not. For example, the following is die application part of S IGMA.

(PROG N)

LP
(Stly (CAR L))

jG6 LP))

The plan for this form of code in general is called Iterative-application. SIGMA also has an example

of accumulation, as shown below.

(PROG (S.
(SET S)

LP ... (RETURN S)...
... (SET S (PLUS S
6..
(GO LP))

The plan for this fon-n of code in eneral is called Iterlative-accumulation. Three common

specializations of Iterative-accumulation are shown in Fig 35. Iterative-set-accuniulation is a

specialization in which the accumulation operation (e.g. PLUS above) is Set-add and the -initial

accumulation is te empty set. Iterative-list-accumulation is a specialization in which the ccumulation

operation is Push and te initial accumulation is Nil. Iterative-aggregation is a specialization in.which te

accumulation operation is the application of an agregative ftinction (as discussed earlier in the section on

functions) and the initial accumulation is the identity element for that function.

Waters' final type of plan building method is called "filtering". It is the special case of an

augmentation whose body is a conditional. The purpose of filtering usually is to restrict the values that

will be consumed by some other agmentation. For example, in SIGMA te following is the filtering part

of the loop which restricts the accumulation part to consuming only the non-nil inputs.

(PROG N)

LP
(COND (N

(GO LP))

The plan for tis form of code in general is called Iterative-filtering.

52 CHAPTER THREE

Finally, the Trailina-generation+search plan at the bottom of Fig. 35) illustrates an important

feature of the taxonomy in die library, namely tat it is a tangled hierarchy. Trailing-gencration+search

combines the fatures of three plans, One of tese plans is Iterative-generation, an example of which is

the following.

(PROG (P ...

LP (SETQ P (CDR P))

(GO LP))

The second plan is Iterative-search. Iterative-search is a specialization of Iterative-termination

wherein the exit test is te application of a predicate which doesn't change as the computation proceeds,

and in which the flnal object which satisfied te exit test is available outside the loop. This plan is

suggested by the following code.

(PROG (P ...

LP
(COND P ...

**.P*O*

(RETURN

iz* LP))

The final plan is Trailing, Whilch captuncsa the idea f keping track of the hinmcdiately previous

value of some loop variable, as suggested by the following code.

(PROG (P Q)

LP (SET P
SETO Q P)

i
(GO LP))

Tailing-generation+search inherits the roles and constraints of all three of these plans. For example,

thO. combinationi of the three example fragments above gives the essential loop scture of

BUCKET-DELETE, as shown below.

(PROG (P Q)
(SETQ Q BUCKET)

LP (SETQ P (CDR 0))
(COND ((EQUAL (CAAR P)) INPUT)

(RPLACD Q (CDR P)) ;SPLICE OUT.
(RETURN BUCKET))

(SETO Q P)
(GO LP))

1. The code fragments above cannot literally be combined to getthe loop of BUCKET-DELETE. Theappropiiate domain forthis
combination is te plan calculus.

=w=-

TEMPORAL ABSTRACTION 53

Temporal Abstraction

The basic idea of temporal abstraction is to view all die objects which fill a given role at each level

in a recursive temporal plan as a single data structure. In programming language terms, this often

corresnonds to having an explicit representation for the sequence of values tken on by a particular

.variable t a particular point in a loop. This idea is also present in the work of both Waters 731 and

Shrobe 64]. Using temporal abstraction, the rcursively, defined plan for a loop can be viewed mch
-e simply as a simple cmposition of operations on sequences or sets. Ch- ter Nine explains how this

moi i ap

analysis is formalized using overlays for the various loop plans describcci in the preceding section.

Fia 35 sows some of these overlays. For example, Iterative-generation. can be temporally

abstracted as Iterate. e input to Iterate in this overlay is an iterator whose seed is the initial value of the

relevant loop variable (e.g. above) and whose generating function is te function applied each time

around the loop (e.g. CDR above). The output of Tterate corresponds to the sequence of values taken on

by te loop variable.

The relatLionship between the sequences of values consumed and produced in an instance of

Iterative-application can similarly be viewed as a Map operation. In programs were order and

occurrence of duplicates in die loop values doesn't matter, a further temporal abstraction can be made by

viewing the values consumed and produced as sets. In tis view, Iterative-application implements Each.

Similarly, Iterative-search can be viewed s implementing idier Earliest or Any, depending on

whether the inputs over time to the exit tests ae viewcd as a sequence or a set; and Iterative-filtering can

00 VICIKICU as the implicnientation of Restrict.

----- ---- l-

54 CHAPTER FOUR

CHAPTER FOUR

THE PLAN CALCULUS

4.1 Introduction

The purpose of this chapter is to give an intuitive definition of the pan calculus. (A formal

definition is given in Chapter Eight.) Practically speaking, the plan calculus is a network-like formalism.

'Mis chapter introduces a diagram notation wich will be used to define and describe the use of plans in

succeeding chapters. There are many well-known ways of storing such networks in a computer to

facilitate various kinds of updating and retrieval. Concrete storage representations of the plan calculus

will therefore, not be discussed here. Several different concrete storage representations have been

implemented and used by the author, Shrobe 64] and'Waters 721.

The plan calculus has two major components: plans and overlays. The first part of this chapter

introduces plan diagrams, followed by a dise-ussion of the rlationship between such diagrams and the

Lisp code for a program. 11c second part part of this capter introduces overlay diagiams, followed by

some general observations on the use of overlays as a preview of coming chapters.

Side effects ad mi-itable objects will c.nly be Montioned in passing in tis chapter, since a proper

discussion requires the formal foundations developed, in Capter Eight. Platis involving side effects are

also discussed ffirther in Chapter Eight.

4.2 Plans

T'he basic idea of a plan in the plan calculus cornes from can aalogy between programming and

other engineering activities 541. "Plans" of various kinds are sed by many different kinds of engineers.

For example, an lectrical gineer uses ircuit diagrains and block diagrams at various vels of

abstraction; a stnictural engineer uses ldrge-scale and detailed be prints which show both the

architectural framework of a building and also various subsysteinssuch as earing, wiring CAnd plumbing;

a. mechanical engineer uses overlapping hierarchical descriptions of the interconnections between

mechanical parts and assemblies.

A fundamental characteristic shared by all these types of engineering plans is that a each level there

Js a set of parts with onstraints between them. Sornetinies these parts correspond to discrete physical

components, such as transistors in a circuit diagram. but more often the decomposition is in terms of

function. 'For example a simple amplifier i a elect-rical block diagram has te functional description

V2= kV,, where V and V2 are the input ad otput signals, and k is the simplification factor. As far as

this level of plan is concerned the amplifiCation may be i-calized in ay number of ways. A primitive

component may be used or another plan may be piovided which decomposes the amplificr further.

11 -

PLANS 55

By analogy, plans in programming specify the parts of a computation and constraints between
them. In the plan calculus, te names of the parts of a computation are called roles. It is natural to think
of roles as selector functions. For example, consider the Segment plan discussed in Chapter One, which
has three roles named Base, Upper and Lower. To refer to the Base sequence of this plan we write
Segment.Base, to refer to the Upper index we write Segment.Upper, and so on. 'flee point (".") in this
notation has the same intuitive meaning as in its use for selecting fields of record structures in
programming languages such as PL/1.

An expression with a point in it is called a path name. If a role is filled by an instance of another
plan, the point notation can be used several times. For example, consider a plan named Bunip+update
which has a role named Old, constrained to be a Segment. he path name Bump+update.Old.Upper then
refers to the upper index of the Old segment of the plan.

All composite plans are composed (using roles and constraints) out of three primitives types:
input-output specifications, test speciflcations and primitive object types (integers, sets and functions).
Plans composed up exclusively out of objects are called data plans. Plans composed of objects, test and
input-output specifications are called tem oral plans.

Input-Output Specifications

An example of an input-output specification is shown at top of Fig. 41. An input-output
specification is drawn as a solid rectangular box with solid arrows entering at the top and leaving the
bottom. Each arrr%,.Ix.r enterina at the top represents an input; cach arrow I-aving the bottom repres-nIts an
ouAput. Each input and output has a role name.' For example, te input-output specification depicted in
Fig. 41, Neivterm, has three inputs, named Old, Arg and Input; and one output, named New.-

Input-output specifications also have preconMons andpOSIC017ditions. The preconditions involve
only the inputs; the postconditions involve both the inputs and the otputs. The simplest kind of such
conditions are restrictions on the type of each role individually. These are usually indicated in.,plan
diagrams in parentheses after the role name. For example, in Fig. 41 we see that Newten-n.Old is
expected to be a sequence; and that Newterm.Arg is expected to be a natural umber. Object as a type
,restriction, as for Newterm.hiput, means that there is no more specific restriction on the given role,

In this chapter and the following three, constraints between die inputs and outputs of an input-
output specification will be described nformally in English, as they are relevant to the current discussion.

For xample, all the ternis of Newterm.New are constrained to be identical to te corresponding ten-ris of
Newterni.Old, except for the Newterm.Argth term wich is eual to Newterm.lnput. The interested
leader may refer to the appendix for a formal statement of te preconditions ad postconditions of any
particular input-output specification (use index to find page number). These constraints are written in a
standard logicaf language defined in Chapter Eight,

1. In tis chapter input-output specifications are primitive I Chapter F-igh� however, input-output specification specifications
are teated f6mially as composite plans whose parts are objects and situations. This is why the iputs ad outputs are roles.

56 CHAPTER FOUR

tRic

Figure-4-1. An Input-Output Tecification anti It Test Specification.

e--�

INPUr-OUTPUT SPECIFICATIONS 57

To reduce the clutter in more complicated plan diagrams later in this document, some information

will be omitted when it can easily be inferred by the reader. For example, type rstrictions (especially

Object) will often be omitted for input-output specifications which should be familiar by that point in. the

discussion. Input and output role names will also sometimes be omitted, in which case the same ft-to-

right order used when the specification was first defined (which is also listed in the appendix) is to be

assumed.

Test Specifications

A test specification is drawn as a solid rectangular box with a divided bottom section, as shown in

the lower part of Fig. 41. he inputs and outputs of a test specification are notated in the same way as

th iputs and outputs of an input-output specification. For example, the test shown in Fig. 41, has two

inputs, named Universe (a set) and Criterion (a predicate). and one output named Output an object). A

test also has preconditions and postconditions just like an input-output specification.

A test specification differs from an input-output specification in that two distinct output situations

are specified. Which one occurs depends on whether or not a given -relation (called the condition of te

test) holds true between the inputs. If te test condition is true, then the test is said to succeed and the

outputs indicated on the "S" side of die box are available- otherwise the test is said tofail, and the outputs

indicated on the "P side of the box are available. For example, the test specification Any shown in

Fig. 41 succeeds if there exists a member of Any.Universe which satisfies Any.Criterion, in which case

A P. y. 0 u tul t isuch an oject; otherwise it fails and tere is no outpuf

More complicated tests with more than two cases can be represented by composing binary tests.

Alternatively, the test notation is generalizable to more than two cases.

As with iput-output specifications, die preconditions, postconditions and test conditions of test

specifications in the following tree chapters will be described informally in English in the text and

formally in the appendix.

Control Flow

Fig. 42 shows how control flow arcs (hatched arrows) are sed to connect input-output and test

specifications to specify conditional behavior. This plan, called Cond, is te basic "if-then-else" construct

in the plan calculus. Cond.If is restricted to be an instance of Test, which is die minimal test

specification, i.e. ll other. test specifications are extensions of Tst. Cond.Then and Cond.Else are

restricted to be instances of ln+Out, 'Which is te -nininial input-OLAPIlt SCCifiCation. Note that the

definition of ln+oijtl allows a degenerate action of doing nothing, so Visit conditionals with only one

branch may be represented.

I INote that at this level of abstraction, no coinmiwient is made as to wether or ot his test modifies its inputs. This constraint is
added when necessar), in a plan i w-hich an Any testk is sed.

58 CHAPTER FOUR

110-- aw"m mommo. Amolmow o&VSIA- dlmofmft� 04mwwwp IN-490. PIM, -wompo

I I

I
I I

I

I

I
I

I

I

I
140- loompow I

mmmwm -.00ow losaw .00com gav� -amp- -&I& -vamp

cov)4

Figure 42. A Conditional Plan.

,�wo " -, - i- -- I ... I .11114101m ol"

CON'-'ROL FLOW 59
I

The End role of Cond introduces a third primitive closely related to input-output and test

specification, namely join specifications-' Joins are the mirror image of tests. A join specification is

drawn as a solid rectangular box with die top part divided into fish and F" parts, corresponding to the

succeed and fail cases of the matching test. Unlike tests, however, joins do not represent any real

computation. Joins are a technical artifact used to rejoin the two branches of a conditional block, as in

Cond. join is die minimal join specification.

An extension of Join, called Join-output, will be shown later. In addition to joining control flow,

Join-output has input and output roles which specify the connection between wich branch of a

conditional is executed and which of two possible inputs is made available for further computation. For

example, in te following code the input to c comes either from. A or from. depending on the test P.

(C (COND ((P ... (A ...
(T (B

Data Flow

Intuitively, data flow specifies equality between two data roles in a temporal plan, especially

between the output of one'input-output specification or test and the input of another. Data flow is

indicated i plan diagrams by solid arrows, as sown in Fig. 43.

Fig. 43 shows the plan for the standard implementation of a membership test (Member?) on a set

implemented as a discrimination function. This plan has two roles: Discriminate and If. The

Discrimin-ae role ;,S restrieted t be an instanCe oil' �DisCdmin'ation. (��Discr'inain-tion s a spiecialization

of CaTunction in which the Op is a discrimination function and te Output is therefore a set,) The If role

is restricted to be an instance of Member?, which tests wether the Input is a mmber of the Universe set

The data flow arc between Discriminate.Output and If.Universe in the plan of Fig. 43 means that

the Universe of the test "is the same as output of the Discriminate operation. This data flow arc does noi

mean, however, that the test must immediately follow the Discriminate operation. An arbitrary amount

of computation may occur between the end of the Discriminate operation and the beginning of the test,

as long as the set involved is die same at the time the test begins as when the Discriminate operation

ended.

Teinporal Plans

Fig. 43 is an example of a temporal plan. Such plans in general have roles which are input-output,

test and join specifications with data flow and control flow constraints between diem. Temporal plans are

drawn with a dashed box enclosing the boxes which define the roles. A very natUral way of

understanding the meaning of such diagrams in terms of te propagation of data and control tokens
2through the acyclic directed graph of data and control arcs. his model is essentially the one used in

data flow schemas 191.

1. Joins were introduced into the plan calculus by Waters [73].
2. Loops are represented as tail recursions.

- -, -,-- -, - ---, ---- -7- -,-" -1-1-

60 CHAPTER FOUR

- .- I- a-- -- --- - - I

I
9

I

I

I

I

I

I
I

I

I I

I

I

I
I
I
I
I
I
I
I
I
I

I I

I
I , INW..W --meow -ON- --� .Nww ..NNW -no ..MP -NW , WAMW -NW

I I I"D SW' ", V\ ��)t V�qemo tx--?

Figure 4-3. A Temporal Plan With Data Flow.

I ... I I I -

TEMPORAL PLANS 61

e e e e e thIn the token propagation model of tomporal plans, control flow arcs ar tr at no diff r ntly an

data flow arcs. When an input-output box has received tokens on all of its incoming arcs, it is "activated"

and generates tokens with the appropriate properties (according to its input-output specifications) on all

of its outgoing arcs.' If an output oes to the inputs of several other boxes (i.e. an arc splits along its way

into two or more arcs), then tokens passing over that arc are duplicated the appropriate number of times

so that the same object is available at each input location. Control flow tokens have no properties; their

only function is to enable activitation.

A test box is activated the same way as an input-output box, i.e. when it has received tokens on all

of its incoming arcs. It then generates tokens either on all of the arcs leaving the succes s side of the box,

or on all those leaving die failure side, depending on the properties of the incoming objects. A join has'

the complementary behavior. It is not activated until it has received all the tokens on one or the other

input side. It then generates all its output tokens with properties according to its specifications (since

joins involve no computation, the output tokens are always the identical to the input tokens).

Data Plans

Data plans are plans whose roles are restricted to primitive data objects or other data plans. Data

plans are drawn as dashed ovals. Primitive data objects are drawn as solid ovals. For example, the data

plan Segment, shown in Fig. 44, has three roles named Bse, Upper and Lower, restricted to be a

sequence ad two natural numbers, respectively. The constraints between roles are that die Upper and

Loxver Pui-nb,-rs are ach loss than or equal to the length of di- Bas- seq, end, and that the Lower

number is less than or eual to the Upper number. (Again, these constraints are written formally in a

logical language, te details of which are being suppressed until Chapter Eight.)

Recursive Plans

Recursion in plan diagrams is indicated by a spiral line as shown in Fia 45. The minimal singly

recursive plan is called Single-recursion. It has only one role, Tail, which is constrained to be an instance

of itself. All other singly recursive plans are extensions of Single-recursion.

For example, the singly recursive plan in Fig. 45, called Iterative-Gencration, describes a part of a

loop in which on each iteration some function (Action.0p) is applied to an input, with the resulting

output becoming the input to the -application (Tail.Action) of the same fnction on the next iteration.

The following code fragment suggests such a computation n which the Action i CDR.

(PROG (L)
LP ...

(SET L (CDR)
(GO LP))

1. Tbus all input-output plecifications require termination.

62 1CHAPTER FOUR

.000, N
400, 0

#4 1 k

i

I cLse G Qque-tNce")
I

I
I

I i

I

i I

i

I

I I

I

I I

I oww i

I I

% i

.00'

N%. lftftft. loft-
, 6�

Se�VAZA

Figure 4-4 A Data Pan.

63RECURSIVE PLANS

I

I

ift- - -.. * -. 0 -.0 --w W..w .*.0 * " 0 -.0
I

II
I

IIII
II
t
I
t
I
I
I
I
I
I
I
I
I

I
I

In

i

I

II

I

i
i
I
I
a

I

I

I

I

I

i

k

I
i
I
I
i

GO 00'

Figure 4-5. A Recursive Plan.

q- � --I- --- . --

64. CHAPTER FOUR

4.3 Surface Plans

In conventional programming languages, such as isp, Fortran or PL/1, it is possible to construct

many different programs which, from the point of view of the plan calculus, specify the same

com putations. Difference in the names of variables is the most trivial example of this kind of

uninteresting ariability. Most programming languages also provide any different mechanisms for

achieving the flow of data from one operation to another. For example, in Lisp we could write either

(SETQ X (F ...
0 0 0
(G X)

or

(G (F ...

Similarly, te following two constructions specify essentially te same control flow.

(PROG

LP (COND (P (RETURN NIL)))

(GO LP))

(PROG

LP (C"60 (P
(T

(GO LP))))

Combining all three of these kinds of superficial variation, we can construct the following two vrsions of

the code for BUCKET-RETRIEVE (the first version is from the scenario), which illustrate how different the

same program can appear. Part of flie advantage of the plan calculus oer programming languages for
rou. purposes is that both of these versions translate to the same srface plan (shown in Ch"apter Five).

(DEFINE BUCKET-RETRIEVE
(LAMBDA (BUCKET INPUT)

(PROG (OUTPUT)
LP (COND ((NULL BUCKET)(RETURN l-)))

(SETQ OUTPUT (CAR BUCKET))
(COND ((EQUAL (CAR OUTPUT) INPUT)

(RETURN OUTPUT)))
(SETQ BUCKET (CDR BUCKET))
(GO LP))))

(DEFINE BICKET-RETRIEVE
(LAMBDA (BKT KEY)

(PROG (ENTRY)
LP (COND ((NULL BKT))

((EQUAL (CAR (SETQ ENTRY (CAR BKT))) KEY)
(RETURN NTRY))

(T (SETQ BKT (CDR BKT))
(CO LP))))))

SUR-'AO.IE PLANS 65

From the standpoint of program anc,lysis a surface plan can be thought of as an abstraction of the
data flow and control flow in a program, without abstracting die primitive data structures and operations.
From the standpoint of program synthesis, a surface plan is te lowest level representation of the program
design, which is then translated to code in a standard programming language.

Programming Language Semantics

In order to translate between a given programming language and surface plans,' the primitives of
the programming language are divided into two categories: connectives, such as PROG, COND, SETQ, Go and
RETURN in Lisp, which are concerned solely with implementing data and control flow; and te objects,
relations, and actions of the language, such as numbers, dotted pairs, arithmetic relations, CAR, CDR and
coNs. The first category of primitives is translated into the pattern of control and data flow arcs (including
tests and joins) between other specifications defined in terms of the second category of primitives.

The translation of the second category of primitives (i.e. non-connectives) into the plan calculus is
done in tree steps, each of which involves some -judgement. The first step is to identify a set of basic
object types in the language. For example, Lisp can be viewed as having four basic tpes of objects:
atoms, dotted pairs, vectors, and integers.2

The next stop is to choose an appropriate set of primitive relationships between objects. For
example, there are two primitive functions on dotted pairs, Car and Cdr, with fanctionalities as shown
below. (Datuin is the union type of atoms, dotted pairs, vectors and integers.)

Cdr: dotted-pair datum
Car: dotted-pair datum

Note that te Car and Cdr functions above are not the same as the CAR and CDR operations of the
Lisp programming language, but are the vocabulary in terms of which die effect of these ad the other
builtin Lisp operations will be specified. Due to the presence of side effects i Lisp, it is important to
distinguish carefully between the notion of a relationship like Car, which holds between two objects at a
given point in time, and an operation, like the application Of CAR, hich has an input and an output,
which are in the Car relation to each other.

The final step in translating from Lisp to surface plans is to translate the primitives operations such
as CAR, CDR, CONS, RPLACA and RPLACD, into iput-output specifications in trms of the primitive relations,
such as Car and Cdr. For example, coNs becomes a input-output specification wich takes as input two
data objects, and returns as output a dotted pair whose Car and Cdr are the first and scond inputs,
respectively. PLACA and RPLACD become input-output specification which modify the Car and Cdr
functions (i.e. specializations of Newarg).

1. This has been implemented for Lisl-,i by Waters 74).
2. rhis is the athematical notion of an integer. The dtinction between this and the fixed width computer representation of an
integer in Lisp is not ade here, because fliere are no plans in the current library, wich quire this distinction.

lmmi'lli,

66 CHAPTER OUR

Two additional primitive relations in Lisp a Null and Eq, with functionalities as shown below.

Null: datum -�- boolean
Eq: datum X datum --+ boolean

Similarly, the distinction is made between a relation and a computation which tests whether that relation
holds for a given tuple of objects. For example, code such as the following constructions withCOND is

translated into the plan calculus as test specifications (specializations of aPredicate) involving Null and

Eq, respectively.

(COND ((NULL
(COND ((EQ ...

Two more primitive functions used to model Lisp in the plan calculus are the following functions
on Lisp vectors (one dimensional arrays).

Dim: vector --3,- integer
Element: vector X integer datum

The pmitive vector creation (ARRAY) and accessing (ARRAYFETCH and ARRAYSTORE) actions of Lisp are
specified in surface plans in terms of these functions.

4.4 Overlays

An overlay is essentially a triple consisting of two plans and a set of correspondences between roles
of the two plans. An overlay can also be tought formally as a mapping from the set of computations (or
data structures) specified by one plan to the set pecified by ie other. For example, the following
overlay,1

ComposeWunction: composed-functions --+ function

is a mapping from instances of Cornposed-functions to instances of Function. Composed-functions is a
data plan whose two roles, named One and Two, are functions with the constraint tat die range of
function One is a sbset of the dornain of function Two. Given a instance of Composed-functions, the
definition of Composed>functio-n which is written out formally i die appendix) specifies how to view it
as te h-nplementation. of a single fnction from die domain of function One to the range of function
Two. '"his overlay is a many-to-one -mapping, since tere are many ways a given fn ction may be
implemented as the composition of two functions. Other overlays, sch as between ist and Sequence,
are one-to-one, which amounts to a isomorphism between the two sets of instances.

An important property of overlays is that an overlay and its inverse mapping mst both be total on

the specified domain and range. This means tat, given ay instance of die domain type, there exists a
corresponding instance of the range type. For example, using te overlay Crnpose6function in
program analysis, if we recognize an instance of Composed-functions, it is imp ortant to know that there

1. The character Y is intended to be read as "as".

OVERLAYS 67

exists a corresponding instance of Function which it implements. Conversely, for program synthesis it is

important to know tat for every instance of the range type of an overlay, tere exists an instance of the

domain type which is a valid implementation of it.

Fig. 46 shows the kind of diagram which is sed to represent a overlay between two temporal

plans. This overlay expresses how to view the composed application f two compatible functions as the

application of a composed function. An overlay diagram is divided in half by a line down the middle.

The left side shows the plan diagram for the domain of the overlay; die right hand side shows the plan

diagram for the range. Correspondences are drawn as lines �Nlith hooks on the ends which connect roles

on one side with roles on the other.

The domain of te overlay in Fig. 46 is Composed-�functions, which has tree roles: One and Two

are instances of �Function, and Composite is an instance of Composed-functions. Data flow constraints

in t Composed-ea functions plan are such tat the functions Composite.One and Composite.Two

become te inputs ne.Op and Two.0p, respectively- and One.0utput becomes Two.Input. The range

of te overlay is CwFunction.

Correspondences in overlay diagrams are both labelled and unlabelled. Unlabelled

correspondences denote equality between the indicated roles. abelled correspondences indicate equality

between the value of labelling ffinction applied to the rol e on the left and the role on the right. The

function involved in such correspondences is most often another overlay.

For example, there are three correspondences in Fig. 46. Te topmost correspondence says that

the Composite role of Composed- OTfunctions on, ffic left hand side (an instance of Composed-functions),

viewed as a function ,according to the overlay Composed> function, is equal to te Op role of ea Function

on the ight. Note that the overlay Coniposed>function, defined earlier, is being used here to define a

larger overlay wich includes composed functions. This will occur twice more later in this section.

The other two correspondences in Fig. 46 are simple qualities. The first correspondence means

that for an instance of Composed-Calunctions and an instance of aFunction related as Composed>

(q),function, Composed-�,functions.One.ln ut is equal to te object filling �)FunCtion.Input. Similarly

Composed-afunctions.Two.Output is eual to Ca,)Function.Output

The reader may note that in the formal definition of Composed>(q-Function in the appendix there

are two more correspondences which are not shown in Fig. 46: the input situation of Composed-

o-Minctions.0ne is identified with the input situation of C41unction; and the output situation of

Composed-Caffinctions.Two is identified with the otput situation of c1pFunction. To reduce clutter, such

correspondences between input and output situations will usually omitted in overlay diagrams when they

can be naturally inferred.

� Fig. 47 shows another overlay involving composed functions. This overlay, Newvalue-

compositonewialue, expresses te idea that, given a function implemented as a composition, a Newvalue

operation on component Two of the composition can be viewed as a Newvalue operation on te whole

function. This overlay is used in -die aalysis of die symbol tablc add and delete programs of Chapter

Two. he hash table in those programs is viewed as a function implemented as the composition of two

functions a numerical ash Fiction wich doesn't canges and a sequence implemented as an array),

which is modified to insert new entries.

68 CHAPTER OUR

(ID" VO S t C - � k V� kt i %N.�)

CIDVATC)Se�> �FQIACt On

iFigure 46. Applyinga Functional Composition.

I. it> VI kn)J\/ aw ,

Im

OVERLAYS 69

1%

It

I

N P\)j v Q \ ,t4 \, \ A\j e, - C-0 V�x � 0 i ie,

Figure 47. Implcment-ing Newi-alue for Composed Functions.

..Ooloom 'm l"Mm q I'll oplosom

70 CHAPTER FOUR

Notice the equality constraint 'between Old.One and New.One on the left hand side in Fig. 47.

This style of building up larger plans by making use of instances of already defined plans and

constraining certain components to correspond, allows us to be very concise. More mportant we have

separated what is novel about a particular plan, like Newvalue-composite, from what it has in common

with oer plans. Similarly notice that the Newvalue-composite>ncwvalue overlay makes use of the

Composed> function overlay twice in its definition.

A Fanifflar Example

�This section presents a second introductory example of overlays: the implementation of lists using

an array and an index. This particular implementation is included here because it is a familiar example

from many other papers o representing programming knowledge.

We begin with the idea of viewing a segment of a sequence between two bounds as a sequencer

This is formalized by te overlay Segmenbsequence, which says (see appendix) that te terms of the

implemented squence correspond to the terms of the base squence, offset by the lower bound.2

A specialization of Segment is Upper-segment, in which the upper bound is eual to the lengt of

the base sequence. Upper-segment is a data plan often used to implement a list. Te head of the

implemented list corresponds to the term of the base sequence indexed by the lower bound, and the tail

of the list is recursively defined as the list implemented by te upper segment which has the same base

sequence with one plus the lower bound. The empty list (Nil) is implemented by a sgment in wich the

lower bound meets te uppcr bound, ie. xxhen th lwer bouind is equal to the lenryth rof uie Sequence.

This iplementation is specified formally by the overlay Upper-seginent>list in the appendix.

Fig. 48 defines the overlay flunip+updatopusli, which shows how to implement a Push operation

on a list implemented as described above. The plan o the left hand side, Bump+update, has.four roles:

Bump, an instance of �Oneminus the specialization of �Function wen die Op is Oneminus); Update,

an instance of Newterm ad Old and New, instances of Upper-segment. Te essence of. this plan is to

update the term of the base sequence at one minus the lower bound. '17he correspoDdences in the overlay

specify how this plan can be viewed as a Push operation by viewing Update.Old together with the

Bump.Input as the Old input of Push implemented according to Upper-segmentAist), viewing

Update.Input as the Input of Push, and viewing Update.New together with te Bump.Output as the New

output of Push again, according to Upper-segmentAist).

Similarly, Fig 49 dfines the overlay Fetch+Updatopop, which specifies how to implement a Pop

operation on a list iplemented by Upper-segmentAist He we see diaL the base squences of die old

and new upper segments are the same. One is added to the lower bound. 17h Otput of Fetch

corresponds to die Output of Pop. T Ftch and Bmp- operations may occur in any order since nither

uses the output of the other.

1. We are skipping the tep of modelling an array a a sequence. which is part of the surface plan translation.
2. This implementation "wastes" the first and and at trms of the base squence, It cn be improved by ,adding neplus and
Onerninus in arious places, bat this would just ake the example more complicated with-out addingany new ideas.

BJ VA f U ?AMi-t -;> '�,J 5 %,,
I

--l---l-l-------- -------

A FAMILIAR EXAMPLE 71

Figure 48. Implementation of Push.

72 CHAPTER FOUR

;19

V

U�CkCM--,

Fclc'A t e > Po'

F'gur 49. Implementation of Pop.

,I -11 � I I I I -- . ol I II " 001,11 III! I opow Im , ! - - � 1 1 I -

USING OVERLAYS 73

USiDg Overlays

We will see many more examples of overlays in this and the following chapters. In Chapters Five
and Six we will also sie how overlays are used in aalysis and synthesis. For now just a few general
introductory remarks are in order.

We have aready seen that overlays are tool for codif�ing programming knowledge. An overlay can

encapsulate a chunk of implementation knowledge so that it may be used 'Many times in building up
larger chunks. Such overlays express a generalization of many specific implementation strategies.

In analysis and synthesis scenarios, overlays are invoked by pattern matching against one side. of the
overlay and instantiating the other. For xample, suppose we are in the midst of synthesizing a program
and at some point we have a plan involving an instance of Push. One thing we could do is search the plan
library for an overlay which has Push on te right hand side, for example Bump+update>push ad
instantiate die left hand' side, in this case Bump+update. The are many questions unanswered here
concerning how the search and matching is performed ad how flee instantiated plan is hooked up with
t1he existing plan structure. Some of these will be dealt with in Chapter Five.

ID. bottom-up analysis, overlays are used in a similarway to build up more abstract descriptions of
the program tinder analysis. The flrst step is to recognize known plans in the suriace plan translation of
the program. This may involve deduction, since some of the required constraints may not yet be explicit
assertions. Furthenn-ore, this rcognition process can be made more hypothesis driven by first matching
against .cnAplicit asertions ad then either trying to derive the rest of the required constraints, or assuming
them ar Odcr Io accumulatc ore vidence or ad aainst die hypod)etical aalysis. Once a plan has
been recognized, we seek to overlay it with another euivalent or more abstract plan. This is achieved by
searchina the library as above for overlays which have the given plan on the left hand side. Having found
one, an istance of the plan on right hand side is made ad add to the analysis.

Finally, overlays can be used in verification. Whether we are analyzing an existing program or have
started with initial speCifications for a new program to be synthesized, die final, ffilly verified description
is a decomposition of the program into plans and sub-plans connected by overlays. From tis standpoint
overlays are pre-vcrifled lemnias i the verification of a program. Some overlays may be quite difficult to
verify from first principles. However, once tis has been done, they can be used over and over again.
One of te goals ofthe library is to compile enough of tese pre-verified overlays so tat the verification
of routinel programs becomes mostly a matter of combining tese pieces with very little difficult
deduction remaining.

L Tere is an intended circularity here. I propose that what makes certain programs "routine" is that they are a straightforward
combination of familiar chunks.

'74 CHAPTER FIVE

CHAPTER FIVE

ANALYSIS BY INSPECTION

This chapter presents a detailed scenario of the automated analysis of a program similar to part of

the symbol table example of ChaptCT Two. The input to tis aalysis is te isp code and comments

shown in Table 5-A. The output of this analysis is a ierarchy of plans which describe te computations

performed by the given program at various levels of astraction. T topmost plans in this hierarchy

describe these computations in very abstract terms, i.e. in terms of set operations. Te bottommost plans

are very close to te code. They describe the computations in trms of the primitive data structures and

operations of Lisp, such as dotted pairs, CAR and CDR. Connections between these different levels of

description are represented using overlays.

The type of analysis shown in this chapter can be construed as a reconstruction of the top-down

design of a program. This does not mean that the given program was actually designed that way, or that

programs should be designed top-down. It only means that a top-down account is a useful way of

understanding an xisting program.

5.1 Wy Analysis?

in a programmer's apprentice system a complete reconstruction of te abstract structure of a

program as illustrated in this chapter would seldom be required, since the itermediate levels of

description would be built up incrementally as part of the dvelopment process. There are, however,

other reasons for studying this type of analysis. As a practical matter, automated analysis will b useful in

Table 5-A. Lisp Code to be Analyzed.

A SET OF ENTRIES IS IMPLEMENTED AS
A HASH TABLE ON KEYS.

THE BUCKETS ARE IMPLEMENTED AS LISTS.

(SETQ TBL (ARRAY TBLSIZE))

(DEFINE LOOKUP
(LAMBDA (KEY)

(PROG (BKT ENTRY)
(SETQ BKT (ARRAYFETCH TBL (HASH KEY)))

LP (COND ((NULL BKT)(RETURN NIL)))
(SETQ ENTRY (CAR BKT))
(COND ((EQ (CAR ENTRY) KEY)

(RETURN ENTRY)))
(SETQ BKT (CDR BKT))
(GO LP))))

(DEFINE HASH
(LAMBDA (KEY)

(REMAINDER (MAKNUM KEY) TBI-SIZE)))

. I

WFlv ANALYSIS? 75

converting from present proaramming technology, wich deals primarily w4h code, to future

technologies which will involve many lev�,,,ls of description. Furthermore fr the foreseeable future the

common medium for transfer of programs between different systems is likely to b code written in a

standard programming language. For both of these purposes, it is necessary to be able to reconstruct a

plausible design from given code. systems.

More fundamentally, many of the capabilities required for program analysis are important in other

parts of the programming process as well. For example, the ability to recognize standard computations

(analysis by inspection) at various levels of abstraction is iportant for automating both synthesis and

verification, even in an incremental system. This is because there are often several different, but equally

intuitive, ways of abstracting a given computation. For example, te symbol table LOOKUP procedure can

be abstracted either as associative retrieval (i.e. finding an entry in a set satisfying a given predicate), or as

the application of a partial) function from keys to entries. A programmer may be developing a program

along one of these viewpoints, but the system may have to reanalyze it in a different way in order to bring

the power of the plan library to bear. Furthermore, in an interactive prograrn development system, this

reanalysis need not wait until the plans involved are specific enough to be translated into code -

reanalysis can be useful at all levels of abstraction.

5.2 Overview

The overall goal of the analysis described in this chapter i to decompose a given program into parts
which a r-',I-.Iognh-,-cd from dic plan librarv. Th;,c is on,, in four major steps. The fst two steps Wre

I 1. IJ A N.,
basically algorithmic and have been implemented. he second two steps are of a more heuristic nature,

and have not yet been iplemented. In summary, while this chapter gives a fairly complete account of

what constitutes the analysis of a program, it only goes part way towards automating the process of

constructing one.

The first step in analyzing an already written program is to translate from the given program

programming language into the plan calculus. This step is viewed as a translation because it does not

involve any pogramming knowledge other than the semantics of the programming language. The plans

which are are die otput of this translation step are called srface plans. T prpose of this translation

step is to insulate the rest of die nalysis process from the syntactic differences between various

programming languages. Surface plans resulting from the translation of Lisp code were described briefly

in Chapter Four'. Code to surface plan translation has also been implemented for Fortran 3] and

Cobol 24].

The second step of analysis described in this chapter is loop analysis. The purpose of this step is to

decompose loops and recursions i a way wich makes producer-consumer relationships explicit

Furtherm.ore, the producer and consumer cornponents resulting from tis decomposition are often

specializations of suindard plans in te library. 1"or example, temporal analysis dcomposes the loop in

LOOKUP roughly ito tree parts: CDR generation, iterative application Of CAR, and iterative testing for an

entry with the give ky. These components ae onnected by data streams which rpresent te history of

values tken on by the loop variables BKT and ENTRY. The idea for tis type of lop analysis using the plan

calculus was developed ad has ben implemented by Waters.

76. CHAPTER FIVE

The final two steps of analysis in this chapter are less well worked out. he basic idea is to try to

recognize known plans, first working bottom-up and then top-down. Working bottom-up entails

regrouping parts of the surface plan and the temporal aalysis so as to match plans in the library. One

method of controlling this process is to use the t)pes of die various dscriptions involved (such as lis�

number, test, or loop) as a rst filter on the grouping and matching. Also, not all plans in the library are

considered in tis first bottom-up matching phase. For example, with the current library, bottom-up

analysis goes as far as recognizing plans which have distinctive control. flow and data flow features, but

does not include recognizing program structure having to do with the hash table. How far bottom-up

methods can proceed with a larger plan library is an issue for further study.

The final step of plan recognition in this chapter is top-down analysis by synthesis. I assume that

we are given a high level description of the program to start with. For example, for the symbol table

program we are told that it a set of entries is implemented as a ash table on keys" 1, and tat "the buckets

are implemented as lists The concepts of st, hash table, key, bucket and list are all known in the

current library. Furthermore, the names of the Lisp fnctions in Table 5-A, HASH and LOOKUP, and the

names of their arguments, KEY and ENTRY, are taken as part of th pogram documentation idicating that

these procedures iplement a hashing function and associative retrieval from the set of entries,

respectively.

The basic idea of analysis by synthesis is to use the plan library to generate possible

implementations of te given high high level description until e find one which matches the existing

bottom ,-analysis. With the current library and the sy -bol table eample, tis techinique appears to be

feasible with simple breadth-first search through te space of possible implementations. With a larger

libmtry, some additional control mchanisms will need to be developed. Fickas 25] has done some initial

work in this direction.

The approach of dividing plan recognition into a bottom-up phase and a top-down phase has the

feature that programs for which the appropriate higher level plans are not in the library can still be

partially analyzed at the lower levels. For example, if the methods described in this chapter, together with

the current plan library, were applied to analyzing an associative retrieval data base iplemented entirely

with linked lists, the top-down par t of recognition would fail, but we would still succeed in analyzing the

structure of the program at the level of search loops and list manipulations.

The ext four sections illustrate the four steps of aalysis outlined above using LOOKUP. Note that

there is not much to say about te analysis of te first two s-expressions in Table 5-A by themselves.

These expressions simply create a Lisp vector (TBL) of a specified size and define a numerical function

(HASH), both of which are used later.

5.3 Srface Plans

This section discusses the srface plan Of LOOKUP in detail, explai ning both the specifics of tis

example, and some points about surface plans in general.
The srface Ian of LOOKUP sown in Fia. 5-1 and Fig. 52. At the top level, tis plan has three

P C�
steps: application of die ashing function, ftching fi-om die hash table, and a loop with two xits- Tis

structure is shown in Fig. 5-1 as the pn named 1--ookLip-surface NIVith our roles named One, Two, Loop

--- -.-- -1- ------

SURFACEPLANS 77

- --.- - .d- -..- - - - - -.Wft ---- -�- - - - --- -I
11

I
I

I

I

I

I
I
I
I

I rI *100��l I (1006 1
I I 1001II I
I I

. (I
I I
I II. I a

%IKPYO I

I

I

I

I

I

I

I

I

I

.m .0- I
I I
I

I . I

I . I

I

I I.. II ., I

I i

I I

I
i

I
i

T wI qb I

I I 4% 1 1
40

a

I I I

I I

I I

I I I -

I

I
� I

I
I
I
A

I I
I I
I I
I

I
I
I
I
I
I

. 1, -.- -00- - �- - --Mmm- - ..- 1-0- -.00. - - -M.- -*- -- -M I

Ic -Loo�vy - v �0, CQ,

]A 'i"tire 5-1. Toplevel Surface Plan for Lookup.

Loo\-�Vv- \00F I

78 CHAPTER FIVE

I
I

I
I

I

I
I

I

I
II

I

I

I

-W w .- - - - - - - - - - - - -- - - - -- - I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I
I

I
I
I
I

I
.. j

Fiour 52. Surface Plan for Loop i Lookup.

I...... Am A.." ops 1"- I -

SURI A%--'E PLANS 79

and End. (The fourth role, End, is required to oin the two cases of the loop). The Loop role of Lookup-

surface is further described by another plan, Lookup-loop, which is shown partially in Fig. 5-1, and in full

in Fig. 52. The names of these plans and their roles are gnerated by te translation process based on

some simple conventions.

Note in these figures that inputs and outputs that are not constrained by data flow are usually either

unconstrained (as far as the larger plan is concerned) or fixed to some constant. Unconstrained inputs

and outputs are labelled with the appropriate role names in ovals. Roles that are fixed to constants are

indicated by writing the constant inside die corresponding oval. Constants can be distinguished from role

names by the absence of the point prefix. All of these notations are illustrated by Lookup-surface.One in

Fig. 5-1. The function being applied (Lookup-surfacc.Onc.0p) is a constant, Hashl, which is the

numerical function defined b HASH. The argument to the fnction (Lookup-surface.One.Input), which

corresponds to the variable KEY in the code, is unconstrained. Finally, tere is a data flow link between

Lookup-surface.One.Output and the second input of Two.

The input-output specification of Lookup-surface.0ne is Function, the application of a given

function (0p) to a given domain element (Input) to compute the corresponding range element (Output).

In the case of Lookup-surface.0ne, die function applied is Hashl.

The input-output specification of .,ookup-surface.Two is Fetch. The inputs to a Fetch operation

are, in oder from left to right, Input (a Usp vector) and Index (a valid numerical index for that vector).

The Otput is the indexed element of the input vector. Lookup-surface.Two.Input is constrained to be

Vectorl, te J.-isp vector created in T8 L.

After Lookup-surface.Two, control flows into Lookup-surface.1-oop. As can be seen in Fig. 5-1,

control exits from the loop at two different locations. These two exits correspond to the'tWO RETURN

statements in the code for LOOKUP. In one case, (RETURN ENTRY) there is also data flow out of the loop.

The surface plan for the looping part Of LOOKUP is shown in fll in Fig. 52. The most prominent

feature of this Ian is that it is recursively defined. In die plan calculus, loops are represented using

recursive definition, as suggested by the following code.

(DEFINE LOOKUP
(LAMBDA (KEY)

(PROG (BKT ENTRY)
(SETQ BKT (ARRAYFETCH TBL (HASH KEY)))
(LP))))

(DEFINE LP
(LAMBBA

(COND ((NULL BKT)(RETURN NIL)))
(SETQ ENTRY (CAR BKT))
(COND ((EQ (CAR ENTRY) KEY)

(RETURN ENTRY)))
(SETQ BKT (CDR BKT))

(LPM)

This turns out to be the most convenient representation for many purposes, especially for making

80 CHAPTER FIVE

inductive arguments in program .verilication.1 In plan diagrams. recursive definition is indicated by a

curly line, as in the lower left of Fig. 52. This notation means tat the Tail role of Lookup-loop is
defined to have te same plan as Lool-up-loop. Enough of die Tail is expanded in this diagram to specify

the onnections between one repetition of the loop and the next.
Lookup-loop has seven other roles, in addition to Tail. Three of these ne, Two and Three)2 are

applications of the primitive Lisp functions, Car and �_dr. These are die translations Of (CAR BKT),
(CAR ENTRY) and (CDR BKT) in the code. The other four roles in Lookup-loop are various kinds of tests

and joins. I
Two particular kinds of test specifications used in Lookup-loop are CaPredicate and' Binrel.

aPred-icate tests whether or not a given unary relation (Criterion) is true of given object. Similarly,
�Binrel tests whether two given objects satisfy a given binary relation (Criterion).

The first test in Lookup-loop, If-one, is constrained to be a instance of �--Predicate in which the
Criterion is Null. If-one is the translation of the code

(COND ((NULL BKT)...))

When tis test succeeds, control exits from the loop, as can be seen by the control flow arrow from
the "S" side of If-one which bypasses the Tail. When this test fails, control passes to One and then Two,
which are te translation of die following portion of the loop code.

(SETO ENTRY (CAR BKT))
... (CAR ENTRY).,-,

The output of Two feeds into input One of If-two, which is an instance of Ca.Binrel. The Criterion
of this test is the pimitive binary relation, Eq. If-two is die translation of the code

(COND ((EQ ... KEY) ...

Note that If-two.Two (KEY in the code above) is unconstrained as fr as the Lookup-loop plan is
concerned, except that it doesn't change on successive rpetitions of the loop. Te fact that input Two of
this test is the same as the agument to te hashing fnction is reflected i the constraints of Lookup-
surface, as can be scm in Fig. 5-1. f this test succeeds, control xits the loop trough End-two making
One.Output (ENTRY) available outside die loop. Otherwise, Cdr is applied to If-one.Input (BKT), with te
result feeding into the recursive invocation.

Lookup-surface.End, Lookup-loop.End-one and Lookup-loop.End-two are joins, the

complemenviry construct to tests. There are two possible ways for control to flow into a join, and one
way out.3 Joins indicate the effect of control flow on data flow. For example, the pattern of data flow
and control flow through Lookup-surface.End in Fig. 5- idicates that in one case the value returned by

1. Many Lisp interpreters and compilers execute tail re-cursive code is fficiently as code with loops in control flow, aking tese
essentially syntactic variants.
2. As in Lookup-surface, the role names in this plan are chosen by the translation process based on sonic simple conventions.
3. Note that this is not a parallelism construct. In any given computation, oly one or the otber branch of a conditional is taken.

StT14RFACE PLANS 81

LOOKUP is the entry that satisfied the second exit test of the loop (the value Of ENTRY)' in the other case it is

the constant, Nil.

5.4 Loop Analysis

The overall goal of analysis by inspection is to decompose a program into recognizable par ts In

other words, we want to figure out how te surface plan for a program could be built up out of standard

plans in die library. This section in particular is concerned with the analysis of singly recursive surface

plans, such as Lookup-loop, which represent the looping parts of a program. It is important to note,

however, that none of the analysis in this section is particular to whether a surface plan is te tanslation

of code written in Lisp versus some other conventional programming language. Although appropriate

specializations for Lisp will be emphasized for the purpose of this example, the plans and overlays

introduced in this section are all quite general.

The analysis of loops takes place in two steps. In the first step, a loop is decomposed into standard

recursively defined fragments. In the second step, the behavior of thes fgments is abstracted in such a

way tat a loop can be represented by a non-recursive plan. This allows further analysis to treat the

looping and non-looping parts of programs uniformly.

Loop Augmentations

The natural blding blocks for non-recursive temporal plains are input-output and test

specificaOons, which are composed using control flow and data flow. The plan library contains many

standard input-output ad test specifications and plans for their implementation by compositions of other

input-output and test specifications. For recursively defined temporal plans, however, a different notion

of composition is needed in order to make a library of standard building blocks. Loops are viewed here

as being constructed by a process of auginentation.1 For example, the loop Of LOOKUP can be constructed

starting with just the part that does the ORing, as suggested by te following code.

'(PROG (BKT)
(SETQ BKT

LP ...
(SETQ BKT (CDR BKT))
(GO LP))

This pattern of looping, in which a given function is repeatedly applied to the output of the

preceding application of tat function, is called Iterative-generation. Iterative-generation using Cdr is a

common building block of many loops in Lisp. This loop can be augmented by adding the code

underlined below.

1. This view of loops is tken. frorn Waters 731. In this reference, Waters also goes into a more lengthy justification of why a
different aalysis method is rquired for lops a, compared to straight-line code.

(PROG (BKT ENTRY)
(SETO BKT

LP ...
(SETO ENTRY (CAR BKIn

(SETO BKT (CDR BKT))
(GO LP))

The basic idea of augmentation is that the augmented loop does everything the unaugmented loop

does, plus something extra. For example, the augmented loop above makes available in ENTRY the CAR Of

each successive value Of BKT computed by the generation part of te loop. This pattern of augmentation

is called Iterative-application; te function being applied in tis case is Car. In general, the effect of an

augmentation is to create a new sequence of data objects (such as the values Of ENTRY) in the augmented

loop which is related in some way to a sequence of objects (such as the values Of BKT) in the unaugmented

loop. Two other kinds of augmentation, which a not illustrated in the symbol table example, are

filtering and accumulation. These will be discussed in Chapter Nine.

The addition of an xit- test to a loop, as sown underlined below, is a kind of augmentation which

is an exception to the general rule that agmentation preserves the complete behavior of the

unaugmented loop, since without the exit test� the loop generates infinite sequences of data, which is not

the case with the exit test present.

(PROG (BKT ENTRY)
(SETO BKT ...

LP (COND UNULL BKT_)(BFTURN
(SE-IQ ENTRY (CAR BKT))

(SETO BKT (CDR BKT))
(GO LP))

This kind of augmentation is called Iterative-termination. The reason an exit test is treated as a kind

qf augmentation, even though it changes the behavior of the loop, is because it effect is abstracted in the

same way as other augmentations. Adding Iterative-teri-nination creates tuncated vrsions of the

(potentially infinite) sequences wich would be generated by the lop without the exit test. More than

one iterative termination can be added to a loop, as shown underlined below.

(PROG (BKT)
(SETO BKT ...

LP (COND ((NULL BKT)(RETURN NIL)))
(SETO ENTRY (CAR BKT))
(COND ([0 (CAR ENTRY) KEYJ

(RETURN ENTRYJU
(SETQ BKT (CDR BKT))
(GO LP))

Waters as iplemented a system whic atomatically decomposes loops cording to this idea of

augmentation. he basic algoridim his system ses is to iteratively remove parts of a loop which do not

produce data objects required by te remaining parts. For example, for te oop example above (which is

part Of LOOKUP), the effect of this algorithm is to undo the agmentation steps in the reverse order they

were introduced above. The plan library contains plans for many standard agmentations. The rest of

82 CHAPTER FIVE

- - -- 1-1-- I------ "" To -lo

LOOP AUGMENTATIONS 83

this section shows some of these which are used in LOOKUP and how ty are rpresented in the plan

calculus.

The first augmentation recognized iq the LOOKUP lop is shown in Fig. 53. On te left hand side of

this figure we have the surface plan for the loop, Lookup-surface. On the right hand side is a plan from

the library called 'eriiiinate(I-'tefat've-search. This plan captures the idea of a sarch loop with two exits,

without specifying ow te sequence of objects being searched is produced. Role If-two of this plan is a

test which applies a given criterion (the same on each iteration) to the current input (provided by the rest

of the loop). When this test succeeds, the current input is made available outside the loop (as End-

two.Output). The other exit test (If-one) is for terminating the loop when there are no more objects in the

search space.

Note that the role names of a plan in the library, such as Terminated-iterative-search, are fixed at

the time the plan is catalogued. In general, role names have been chosen to have some mnemonic value

relative to the given plan, but this strategy is somewhat restricted by the fact tat specialized plans inherit

their role names from their generalizations. For example, te most general Ian for a two exit loop, of

which Terminated-iterative-search is a specialization, is Casc-,Ide-iterative-terminati'on. At the level of

generality of Cascade-iterative-termination, it is not possible to give any better names to the two exit test

roles than If-one and If-two.

The hooked lines between the left and right hand sides of Fig. 53 indicate how the Terminated-

iterative-search plan is matched against Lookup-surface: Lookup-loopff-one corresponds to Terminated-

iterative-searchff-one- Lookun-loop.lkwo corresponds to Terminated-iteratiNe-search.If-two;I and there

is a correspondence between the joins, End-one and End-two. The fact tat te corresponding roles have

the same names in this example is a coincidence. The hooked line between Lookup-loop.Tail and

Terminated-iterative-searcli.TaiI indicates that the correspondence is made recursively.

Fig. 53 is an example of a overlaY. The basic idea of overlays is re-description. The plan on the

left describes a set of computations - the istances of the plan. The correspondences in the figure

indicate how to re-describe (part oo any such computation as an instance of te plan on the right i this

case a standard plan from the library. In order for this re-description to be possible, the constraints of the

right hand plan must logically follow from the constraints of die left hand plan, substituting appropriately

for the corresponding parts. It can be seen in Fig. 53 that this condition is met for control flow and data

flow constraints (control flow is transitive).

Overlays are used to relate different levels of description in the analysis of a program. Te origin of

the term overlay" is to sggest different plans being drawn n transparent slides and laying one on top of

the other to line up the corresponding parts.2 Some overlays, such as te one in Fig. 53, are particular to

1 A detail is being skipped here, which is covered in te appendix. Lookup-loopff-two is an insurance of CaMinrel, test in which
the binary elation Eq is aplied to two nputs. 'rerminated-iterative-search.If-two is an insLance of �-Tredicate a test involving a
unary relation I order to rcognize 'I'crminated-itei-aliN�-e-search as indicated, an inten-nediate step is required in which
1_ookup-loopff-two is grouped together 1Aith Lookup-loop.T�N�o and these are viewed as the implenientation. of testing a composite
predicate of the form LAMBDA (X) (EQ (CAR X) KEY) .
2. Sussman 691 uses the trm slice" for a similar concept in the aalysis of electronic circuits.

9"Amm 4 ---

.84 CHAPTER FIVE

momA

I

I
I

I
I

I

I

t
''I
I i

I
II
f
III
I
I
II
it

I

I

I

L006V4L) oT > ttv VA'% NkcA - Li e,-�Ai � v e- - se (mk%,

fIigur 53. Termintated Search 'in LOOKU Lop

�- Iowmw I I "O -- I 11 ---k--, .--, .1

LOOP AUGMENTATIONS 85

the analysis of a specific program- others, such as those catalogued in the plat, library, express re-

descriptions of general applicability.

Recognition of die other agmentations in Lookup-loop takes place in a model of the loop in which

the exit tests are assumed to always fail. This is called the sleadj� state inodel. The relationship between

the surface plan and die steady state model is represented using an overlay which is explained in more

detail in Chapter Nine.

The flrst augmentation recognized in die steady state model of Lookup-loop is the iterative

application of Car, shown in Fig. 54. On the right hand side of this overlay is the plan from the library,

Iterative-application, which expresses the general idea of repeatedly applying a given function

(Action.0p) to an input provided by the rest of the loop (Action.Input) to produce an output

(Action.0utput) wich may be used by the rest of die loop. The correspondences between this plan and

Lookup-loop on the left indicate that Lookup-loop.One in the steady state matches tis description.

Similarly, Fig. 5-5 shows the how Lookup-loop.Three is re-described as Iterative-generation.Action,

Temporal Abstraction

Given that we have decomposed a loop plan into these standard augmentations, the question

remains of how to represent the connection between, say, the generation and the application parts of the

loop. Temporally, the components of each computation are interleaved, but it seems more logical to view

the generation and application as being composed in some way. This section shows how to construct this
viewpoint.

The basic idea of temporal abstraction is to view all the objects which fill a given role 'in a

recursively defined plan as a single data structure.' In terms of Lisp code, this often corresponds to

having an explicit representation for the sequence of values taken o by a particular variable at a

particular point in a loop. For example, in the LOOKUP loop we would like to talk about te sequence of

objects iteratively gnerated by Cdr, i.e.

Iterative-generation.Action.Input
Iterative-gencration.Tail.Action.Input,

Iterative-gencration.T'ail.Tail.Action.Input,
4..

which corresponds to the vlues Of KT at the point underlined below ach time around the loop (in the

steady state).

(,PROG (BKT)
(SETQ BKT

LP ...
(SETQ BKT (CDR BKT))
(GO LP))))

1. Both Sbrobe 64] and Waters 73] use the idea of temporal abstraction, but with slightly different formalizations than presented
here.

oAu - oot> &L eXctk%\j(z -el t OV%_
T �

I ----l- �.

86 CHAPTER FIVE

I

i
I
I
I
I
I

I

I

I

I
I

I

I

I
I
I
I
I
I

II

I

I

-0 I

I

I

I

I

I I

i

I
I

I I
I I
I I
I I
I
I I
I I
I I
I I
I I

I
I
I

I
i-W -W 4

I

I
I

I
I

1
4

1

Figure 54. Iterative Application i LOOKUP Lop.

I I LOOP AUGMENTATIONS 87

.- I

I

I
f
I
I
I
I
I
I
I
I
I
I
I

I I

I

I
I

I
I I-

UT IveLoo� too > zj "c(,4,' v

Figure 5-5. Iterative Generation ill LOOKUP LOOP

88 CHAPTER FIVE

The bottom overlay in Fig. 56 shows how this abstraction is made using the input-output
specification, Iterate, which takes as input a data structure called an iterator (which is the linear

specialization of a generator), and gives as output the generated sequence. An iterator has two parts: the
Seed (the starting value which will be te first term of te generated sequence) and the Op the function
which maps from one term to the next). As shown by the hooked lines in Fig. 56, Iteratc.lnput.Seed
corresponds to Iterative-gencration.Action.Input and Iterate.Input.Op corresponds to Iterative-
gencration.Action.0p. Iterate.Output represents the sequence of inputs to Action on each iteration, as
described above.

Iterator is an example of a data plan - the plan for a data structure. Ihis plan, together with
Iterate and the overlays in Fig. 56, are part of te current library. An important feature of the plan
calculus is that it allows the hierarchical description of data structures and temporal computations in a
single formalism.

The top overlay in Fig. 56 makes te same sort of abstraction for Iterative-application. In this
overlay, Iterative-application is viewed as die iput-output specification, Map, which takes a sequence
and a function (0p) as inputs, and -has a sequence as output. The terms of the output sequence are the
result of applying the given function to te terms of the iput sequence. In the temporal view, die input
sequence of Map is the abstraction of the inputs of the Action of Iterative-application on each iteration.
The output sequence of Map is the abstraction of die outputs of Action. Map.Op corresponds to
Action.0p. In terms of the code Of LOOKUP, Map.Input represents the values Of BKT at the point
underlined below and Map.Output represents te valuesOfENTRY in te steady state).

(PROG (BKT ENTRY)
(SETQ BKT ...

LP ...
(SETQ ENTRY (CAR BKT))

(SETQ BKT (CDR BKT))
(GO LP))))

Notice in this code that the va1ueOfBKT is the same at die underlined point as it is at the 'Input to
CDR. his means that in the temporal abstraction of Lookup-loop, the output sequence of te Iterate step
is die same as tre input sequence of the Map step.

Iterative terminations are also temporally abstracted. Te effect of the NULL exit test indIC LOOKUP

loop is odelled in die temporal view by an input-output specification called Cotruncate. Cotruncate
takes as iput two sequences (Cotruncate.hiput and Cotruncatc.Co-input) and a predicate
(Cotnincatc.Criterion). Its otput is die tuncation of the second sequence at the earliest trm for which
the corresponding term of the first sequence satisfies the given predicate. Tis may sound like a
somewhat obscure specification, but the idea of two parallel sequences is in fact ite basic. For example,
the standard plan for computing die length of a Lisp list can be naturally, viewed i tms of two parallel

temporal sequences: the natural 11 Umbers ad die sequence0f MRS of the list. I h code below, the
sequence Of WAUCS Of ENTRY at die underlined point (the output of Map) is truncated according to the
Null predicate ,applied to te squence of values Of BKTat the underlined point the output of Iterate).I

-

89TENIMPORAL ABSTRACTION

I

II

I

I
I

I
I
I
I

I
I

1
4-

,AAqp

j .

Te- M �DfAl - Nor

N

tay-)

0

it
to

lvzm.e,

Te- vlll� OVA LI

i. Figure 56. Temporlal OTerlays

90 CHAPTER FIVE

PROG (BKT ENTRY)
(SETQ BKT ...

LP (COND ((NULL BKTVRETURN NIL)))
(SETQ ENTM (CAR'6KT))

(SETQ BKT (CDR BKT))
(GO LP))))

In te next section, we will see how tis pattern of Generate, Map and Cotruncate using Car, Cdr

and Null, is recognized as the standard plan for generating a list in Lisp.

The NULL exit test above has also been recognized as part of the Terminated-iterative-search plan in

LOOKUP the other exit test i EQ). Fig. 57 sows an overlay from the library which views Te�minated-

iterative-search as the temporal implementation of a standard test on sets called Any. Given a set

(Any.Universe) and a predicate (Any.Criterion), this test succeeds if tere is a member of the set which

satisfies the predicate, and returns such an object (Any.output); otherwise it fails. In the temporal overlay

of Terminated-iterative-search as Any shown in Fig. 57, Any.Universe corresponds to the set of inputs to

the second exit test of the search.' In the code Of LOOKUP, this is the set of values of ENTRY at the point

underlined below.

(PROG (BKT ENTRY)
(SETQ BKT ...)

LP (COND ((NULL BKT)(RETURN NIL)))
(SETQ ENTRY (CAR BKT))
(COND ((EQ (CAR ENTRY) KEY)

(-RETURN ENTRY)))
(SETQ BKT (CDR BKT))
(GO LP))))

This overlay also illustrates a common form of temporal abstraction, in which we talk about the set

of objects filling a given role in a recursive plan, ignoring teir temporal order. 2 As we shall see, this

turns out to be the appropriate level of abstraction for tis example.

The relationship between the temporal. abstractions of the various parts of Lookup-loop is

illustrated in Fig. 5-8. This figure sows all four overlays discussed in this section applied to Lookup-loop

simultaneously. I order to reduce clutter, only ie data flow constraints in Lookup-loop and the

correspondences wich involve temporal abstraction are drawn. Notice that many of die temporal

sequences on the right are the abstraction of roles of Lookup-loop which are constrained by data flow to

be the same. In particular, Iterate.0utput is the same sequence as Tlap.lnput and Cotruncatc.Input, and

Map.Output is the same sequence as Cotruncate.Co-input.

Some of the temporal correspondences in Fig. 5-8 involve different steady state models. For

example, Cotruncate.Input is the temporal abstraction of Lookup-loop.One.Output in the steady state

model with 'no exit tsts- Qotruncatc.OLItpLit is the sequence which includes the effect of the Null test.

This detail cannot be sown conveniently in this figure, bt is explained i the next section.

1. More precisely, Any.Universe crresponds to he set of objects which wuld be searched if there were no member satisfying the
predicate. Tis abstraction invoNes orming a steady state model in which exit Two always fails.
2. Formally this abstraction is done in two steps: first a emporal sequence abstraction is ade- and then this ordered structure is

viewed as the hiiplernenwation of a set. This will. be explained more flly in Chapter Nine.

+-'evyroA a"3

I I I

TEMPORAL ALSTRACTION 91

I

J:Q-)

I

I

'Te-f \mimleA- (-/tevc(4 ivc- c, QfcA(\,

Figure 57 A Tem'ortaISet Overlay.

I - ... I-

92 CHAPTERFIVE

I I
Im- - i

- --- I
I- -T F It I

iwD- . �z tA (� o ve-- I
I

- .W- - -00. W -W am I

L-OO(NUp I . II
v , , -". - . - ---

Figure 5-8. Temporal Abstractions Of LOOKUP LOOP.

TEMPORAL ABSTRACTION 93

The relationship between the output sequence of Cotruncate and Any.Universe is represented by
an overlay, Sequencoset, which expresses in general how to view a sequence as a st. Such overlays
between abstract descriptions are typical as analysis progresses beyond the surface p -in.

In summary, Fig. 59 sows an overview of the plans and overlays sed in the loop analysis thus far.
The names of the plans are arranged in a hierarchy which reflects the order in wich they must be
recognized.' Each plan depends o the recognition of te plans blow it as idicated by the vertical lines
in the figure. Plans at the same level in the hierarchy may be recognized in any order. Overlays from the
library used in this analysis are drawn as vertical lines with arrow heads to suggest that once the lower
plan is recognized, te library is searched to sggest a more abstract description. The other lines
represent pattern matching that is done specifically for this example. Notice that te analysis of a
prograrri is not strictly hierarchical. Distinct nodes at one level may share parts of the same plan at a evel
below. For example, te recognition of both Iteration and Iterative-application share die Iterative-steady-
state plan. Conversely, the fact that a given plan or role has been used in one overlay, does not mak it
ineligible for use in others.

5.5 Bottom-up Recognition

It is natural to divide the analysis Of LOOKUP rughly into three layers, as shown in Fig. 5-10. he
bottorn layer is loop aalysis, as described in the preceding section. The middle and top layers are
distinguished mostly by the complexity of the data stri-ictures involved. The plans in die middle layer
involve only basic data structures su,-.h lists, squences and sets.. Te -effect of tem omal abstraction, hich
is the final step of loop analysis, is to re-describe looping computations in terms of these basic data
structures. The top layer of analysis in this example involves te relatively complex and specialized hash
table data structure.-

My intuition is that these general lyers of abstraction are not specific to this le, th
larger programs there would be more upper layers. Tis means tat the plan library itself can be roughly
divided io layers. Most of the plans in the current library are in the middle layer involving lists,
sequences, sets, ad directed graphs. Presently die only more complicated data plans have to do with
hash tables.

The tree layers of description in this example also suggest a three phase strategy for automating
analysis. The first prase is die specialized algorithm for loop analysis described i t preceding section.
The second phase can be thought of as bottom-up pattern rcognition, in which die standard plans
involving basic daw structures familiar to very experienced programmer are recognized. Tbe third phase
of analysis depends on bing given some igh level description of what die wole program is trying to do,
so tat top-down analysis by synthesis can be used. A alternative scenario, in which no top level
description is given, is not considered here.2 Tse dirce phases agree with my own itrospection and

1. Some of these steps have ben skipped oNer in tis initial exposition, but are included here for future reference.
2. Such a senario would presuniably involve a muChstrongcr control structure for hpothesis formation and testing.

---- ----

94 CHAPTER FIVE

I t t"r -'

I
I te-<-a+i x- 9 e

I
i
I

I

--1-1-1-- I - -. ��

Figure 59. 0ierview of Analysis Of LOOKUP LOOP.

.- I- 1-1.11 7 --, ---I-- - ,

95BOTTOM-UP R:'--'OGNITION

I- - - - �
III T t e--,�-c
I
I
I
I
I
I
I

Key 9a Al"s C (' VA, \A okt�zt f ti r'tz \1 ..,
I I

fN �� i P,4 e,

Ft v� Je - t

I
lv,,Ae- St

(12 11 � .) V% Ct � ov\,

. n)'SiS Of LOOKUP.Figure 5- 1 . layers in A

--- ---- ---- --

96 CHAPTER FIVE

experience in analyzing previously unseen programs. It would be interesting to conduct some

experiments to verify the psychological validity of this model.

The rest of tis section describes the particular plans in the middle layer of the analysis Of LOOKUP.,

which are recognized bottom-up. The next section describes the plans in die top laver, which are

recognized top-down, and how the two layers are connected.

As we can see in Fig. 5-10, there are several plans in the middle layer which may be recognized in

any order. We begin with the plan Car+cdr+null, shown i Fig. 5-1-1, which has three steps: One (an

instance Iterate), Two (an instance of Map) and Three (an instance of Cotruncate). The data flow

between the roles in this plan is the same as between die overlays of Iterate, Map and Cotruncate on

Lookup-loop described in te preceding section ad shown in Fig. 5-8. This plan in general is called

Truncated-list-generation. Car+cdr+null is a specialization in which the gnerating function is Cdr, the

function being applied by Map is Car, and the criterion of Cotruncate is Null.'

Returning t LOOKUP, we have now come as far as recognizing that the initial input to the loop (the

initial value Of BKT) is a Lisp list The temporal abstraction of the second exit from the loop as Any goes

one step further and views this list as the implementation of a st. From the analysis Of LOKUP alone, it is

not clear whether or not.this list may contain duplicates. In the plan library, the implementation of sets as

irredundant lists is represented as a specialization of the overlay used here.

There are two more small points to be covered. The first two steps of Lookup-surface (please refer

back to Fig. 5-1) need to be analyzed as the application of a functional composition, Composed-

Calunctions, described in Chapter Four. is is a common cliche which is needed here to put the surface

plan in a form which will connect with the top-down recognition phase of te next section.

Another feature of the surface plan Of LOOKUP to be recognized bottom-up is that the final output

object (Lookup-surface.End.Out ut), which in te code is the value returned by the LAMBDA expression,

can be viewed as a flag. Flags are a minor programming tchnique (formalized in the appendix). The

basic idea is that te result of a test (in this case Any) is encoded in a data object so that te iDformation

discovered by the test can be recovered after a join. Control is joined here beCause Lisp does not allow

multiple return points.). The information encoded in -the flag is recovered later by testing the object with

a given predicate (Null in this case).

5.6 Top-down Recognition

The main point of this section to illustrate how a moderately complex data structure, such as a hash

table, is decomposed in terms of the plan library. This section also introduces an important heuristic

principle which is'ap' licable to both analysis and synthesis by inspection.

The comment at te beginning of die code for the symbol table program in Table 5-A reads: a set

of entries is implemented as a hash table on keys In die top-down part of this analysis scenario, we

make use of this comment to retrieve the top few plans in the aalysis of LOOKUP from the library.

L We always ty to recognize the most specialiZed version of a plan where possible.

IUNWW -ormoft. I.....- ..ON- ---- I

---, - -- -- - ---- --- -I- -- --- - -1 ---I ,,--- - -- -,-- -_-- �_ --- --.- --- -w-

--- - NM I I ll 1 NM,

BOTTOM-UP RECOGNITION 97

I

I

I

I

I

w --w " ,.a 'No 46 ,

*6
,o 'o, _ e e- c�, 'Ift 14

k 4
%.(.I. r I

%. 41 SWO a a a a #,
I - -

Cctv+c� r-t v� v I I .

I

I

I

I

Figure 511. Plan for eneniting a Lisp List.b

98 CHAPTER FIVE

At the highest level of abstraction, we are dealing with the implementation of a set. This set is

implemented as a hash table on keys. In the analysis presented here, this iplementation is decomposed

into three basic ideas: discrimination, hashing and keys.

According to the plan library, a discrimination function maps some domain (in this example,

flentries") onto a set of sets, Qa1led buckets. Such a ftinction can be viewed as implementing a set wherein

a given object is a member if and only if it is a ember of th e bucket obtained by applying the

discrimination function to that object. Operations on a set implemented this,�A;ay reduce to operations on

a single bucket, which is often more efficient, especially in the case of operations which involve search.

This id-ea is also part of many other data structures, sch as discrimination nets.

The basic idea of hashing is to implement a discrimination function as the composition of two

functions. The first function, called the hash function', maps the domain of the discrimination onto the

set of valid indices for a sequence. The second function is a sequence, called the table, whose indices are

the range of the hash function. The utility of this decomposition is that modifications to the

discrimination function may be achieved by modifying only te table.

Discrimination on kqs is also an implementation idea involving functional decomposition. in a

keyed discrimination, each member of te implemented set has an associated key. In the symbol table

example, the function from entries to keys is Car. The discrimination Fiction in tis implementation is

the composition of two functions: te first fnction is the key function; -the second function maps from

the set of keys to the buckets. The utility of this decomposition is that for certain operations, such as

associative retrieval we are given only the kpt of an entry, rather than the entry itself.

To summarize, all three of these ideas are combined in the symbol table example as follows. At the

top level we have a set implemented as a keyed discrimination. The key function is Car, and the function

from keys to buckets is implemented as a hash table. The hash function of the hash table is Hashl HASH);

the table is an abstraction of Vectorl (TBL), in which it is viewed as a a sequence of sets, each of which is

implemented as Lisp lists.

Being able to formally analyze a data structure design in this way is a now and important result.

This aalysis gives a deep insight into the logical structure of this implementation and captures what it has

in common with other implementations. It also dcomposes the verification of t dsign,. since each

component can be separately verified. This aspect of the plan calculus is a contribution towards current

efforts in computer science to develop a it algebra " of practical programming constructs. Others working

in this effort ave concentrated on die composition of procedural constructs 41, similar to the ideas

described in the loop analysis section, or have worked oly with simpler data structures [50].

The Maximal Sharing heuristic

Ther6 are several different plausible accounts of how the analysis described above could be derived

automatically, given te code and comments in Table 5-A, the bottom-up analysis described in the

preceding section, and the crrent plan library. All of these accounts involve using what I call the

maxiinal sharing huristic. The origin of this huristic is in program synthesis, but it lso turns out to

provide an tlegant solution to the problem in rogra aalysis of connecting bottom-up recognition with

top-down analysis by synthesis.

ll�,Wl , I- -

'111E MAXIMAL SHARING EURISTIC 99

In synthesis, the maximal sharing heuristic is applied at each implementation step. The basic idea
of the heuristic is, rather than always adding new structure for an implementation, lo reuse as many parts
as possible of other plans in the current design which satisfy the constraints of the crrent iplementation
plan. The effect of this heuristic is to cause there to be a (locally) maximal amount of sharing in the
analysis hierarchy. The motivations for tis heuristic, and its application in synthesis are elaborated in
Chapter Six.

The way to apply this heuristic in analysis is to view the parts of te bottom-tip analysis as parts of
the current desian which are available for reuse. Wenever a part of the bottom-up analysis gets used in a
top-down synthesis step, a connection has been achieved between die two phases of analysis. This holds
out the promise that a module written for automated synthesis wich obeys this heuristic may be used
without change in automated analysis.

Another nice feature of this approach is that it suggests two fairly intuitive notions of partial
analysis. One situation is when you can't find parts of the program you expect. This corresponds to when
parts of the top-down synthesis never getting connected with the bottom-up analysis. In an interactive
system, tis could signal a potential bug or at least a request for further explanation from the user. The
complementary situation is when parts of the bottom-up analysis are never used by the top-down phase.
The most natural iterpretation of tis situation is that the programmer is using plans which are not in the
current library. An interesting topic for future research is the possibility of isolating and generalizing
these novel parts of a program so that new plans can automatically be added to the library.

Returning nowtO LOOKUP, t IlSfollow one account of how te final stepS of analysis might proceed.
It may help to refer to Fig. 5-10 to follow this explanation.

The first step in the top-down analysis is to conclude that the set operation h-nplemented by LOOKUP

is associative retrieval. This could be deduced from'die name of the procedure, or by looking at the types
of its inputs and outputs and the act that it has two cases.

The library overlay for implementing associative retrieval from a keyed discrimination is shown in
Fig. 512. The input-output specification for associative rtrieval on the right and side is called Retrieve.
It is a test with three inputs, a set (Universe), the key function Key), and an iput key (Input), and one
output. If there exists a member of the set with the given key, then the test succeeds and returns such a
member; otherwise it fails. On the left hand side of te overlay we have the typical two step plan for
implementin a set operation on a discrimination: apply the discrimination ftinction to fetch the
appropriate bucket, and then perform te same operation on te bucket. This general implementation
works for adding and removing a member, and certain kinds of retrieval. It does not work for other
operations such as union or intersection.

The first step Discriminate) of te plan on die left of Fig 512 is thus constrained to be an instance
of (Wunction, in wich the unction being applied is the discrimination function from keys to buckets.
The aximal sharing heuristic suggests using the Ca'Function recognized bottom-up (see Fig. 5-10) in this
role. Recall that this �,-Vunction is itself implemented as the composition of two instances of �Function,

(ARRAYFETCH TBL (HASH KEY)),

from which wp., can conclude that te hashing fnction is Hashl and te table is Vectorl.'

100 CHAPTER FIVE

� P)

TDi six' en'tltiq,+ mt--V I w c� eA-T 1 qv9-,

el I]on.
Figure 512. Associative Retrieval from Kyed Discrim'nat'

" RIMIRM"m I I I I mm , Omit- �q --

"FIFITE MAXIMAL SHARINC EURISTIC 101

The second step (10 of the plan o 4the left of Fig. 512 is constrained to be an instance of Retrieve,

applied to the bucket fetched in step One. According to the second comment at the front of the code (see

Table 5-A), "the buckets are implemented as lists". The only implementation in the library for Retrieve

on sets other han those implemented as discriminations is as Any (an input-output specification

introduced earlier i this chapter) in which the criterion is a composite predicate. The form. of this

predicate is to test whether te key of a given object is equal to some constant. If te key ffinction is Car,

this comes down to Lisp code like te following test in LOOKUP.

(COND ((EQ (CAR ...) KEY)

The saring heuristic suggests recognizing die bottom-up Any specification as implementing the

bucket Retrieve in this way. In order for this to be the case, the key function of the hashing

implementation. must be Car.

This completes the analysis Of LOOKUP. Let rne emphasize tat the last few paragraphs are only one

of many possible accounts of how the top-down recognition could be accomplished. There are many

other strong clues in this program, particularly in the types of objects. For example, die only candidate

for the table part of the hash table (by virtue of being a vector) is Vectorl; the only candidate for the hash

function (by virtue of being a numerical function) is Hashl.

I - - I- - -11--- - � -I-,,, I --1 - -, -- I - , I - � I I - I --mom NMI sommill m"

102 CHAPTER SIX

CHAPTER SIX

SYNTHESIS BY INSPECTION

6.1 Introduction

A library of plans, such as presented in Capter Three, opens up many now possibilities for what.an

interactive program development system. can do to help a user synthesize programs. This chapter is an

exploration into some of these new possibilities. This chapter also shows te use of te plan calculus as a

design language, and picks upwhere Chapters Two and Five leave off in showing how the plans in the

current library are used together in a complete example.

In broad terms, te plan library represents a significant body of knowledge about programming

whi ch is shared between te ser and the system, which has never been &e case before. The most

advanced current program development systems (e.g. 71,14]) have some built-in knowledge of

programming language syntax and type restrictions, but none include the range or kind of knowledge

represented in the plan library.

This chapter presents a simple scenario of interactive prograrn synthesis in which die working

medium is the plan calculus rat-her than Lisp code. Code i gnerated only as a final translation of the

synthesized surface plan. The order of development-. in this scenario is primarily top-down. he user

progressively refines an initial abstract specification by application of overlays from the plan library. This

scenario is thus restricted to programs which can be completely analyzed using plans in the library alone.

This scenario also portrays an expert user wo is familiar with te plan library.

The fundamental interaction between the system and the user in this scenario is for e system to

propose a nenu of overlays from the library which are applicable to die current design plan, and for the

user to choose between them. In this way, the user guides the synthesis in top-down fashion. The user

also intervenes at certain crucial points i the development to introduce new plans from the library, and

to suggest reanalysis of the current design which leads to a more efficient implemcntation. In addition to

retrieving overlays from the library, the system also needs to be able to spontaneously propagate some

information and construct specializations of library plans appropriate to the current design. Tis implies

a deductive component in the system, wose operation will not be discussed here, since it is part of

related research reported elsewhere 64].

Deductive capabilities are also rcquired to apply the aximal sharing heuristic. he basic idea of

this heuristic, as described in Chapter Five, is to build plans which share a Much structure.as possible.1

The motivation for this heuristic is that it often leads to more efficient programs. It is applied in synthesis

each time an overlay is used to frther implement some part of te current design. ro apply te heuristic,

L Sacerdoti, in is work on general problem solving 60] ses a similar heuristic of the frm "use existing objects whenever
possible".

9 Imp " IM "IN I .., ...

INTRODUCTION 103

the system needs to know whether a subset of the roles on the left and side o.�' an overlay can be

identified with roles of other existing plants in the crrent design, while being consistent with both the

constraints of the plan on die left hand sidp of the overlay ad the existing constraints on te other roles.

With te maximal sharing heuristic in operation, synthesis using overlays becomes a mixture of

progressive refinement ad constraint. In the refinement steps, an overlay is used to expand the current

design in a tree-like fashion, by adding more detail at one of the terminal nodes. Alternatively, whenever

sharing is established in the application of an overlay, the effect to is add further constraints to the current

design.

The synthesis scenario in this section is divided into three distinct phases: data stnicture design,

procedure implementation, and code generation. In te first phase, te user lays out the iplementation

of the hash table data structure sing overlays between data plans. The second phase, procedure

implementation, involves refining the input-output specifications for associative retrieval, addition, and

deletion on te hash table down to the level of Lisp surface plans. The final pase is the generation of

Lisp code from surface plans.

The major purpose of this scenario is to demonstrate what it could be like to develop programs

interactively vvith a system that had significant programming knowledge i the form of a plan library.

The particular order of development is not in any way canonical. Any realistic such system will have to

be based on a mixed initiative odel which allows the user to tailor die order of development to the

particular programming task at hand. As in the scenario of Chapter Two, lines typed by the system are

shown in per case; lines tilved by the user are shown in lower case.

6.2 Data Structure Design

In ttis section, the user designs the main data structure of the symbol table program, sarting with a

descri tion of it as a set of entries, and clminating with its implementation as a keyed discrimination in

which die function from keys to buckets is implemented by hashing.

> let 'an entry" be a data structure.
> "symbol" (an atom) is part of an entry.
> "info" is part of an entry.

The uscr begins by defining a now data plan which is particular to the programming task at hand.

This definition becomes a part of the permanent documentation of dieprogram. An "entry" is defined as

a data structure with two fields, named Sinbol and Info. Te Symbol field contains a Lisp atom;

nothing is said about the Info field.

> let a "symbol table" be a finite set.
> for.all 11x" if x belongs to a symbol table, then x is an entry.

The ser now defines a symbol table as finite set of entries. The rest of this section is concerned

with implementing this sL

I . I - --9 -" - a,

104 CHAPTER SIX

APPLICABLE IMPLEMENTATIONS FOR: SYMBOL-TABLE (A FINITE-SET)
1. LIST
2. SEQUENCE
3. LABELLED-THREAD
4. DISCRIMINATION FUNCTION

4

The user transfers initiative temporarily to the system by typing an empty command line. The basic

action of the systern in this situation is retrieve from the library all overlays which are applicable to the

current design. In general, this includes all overlays whose right hand sides (or specializations or

extensions of tem) appear in the current design. Furthennore, the system in general first proposes

overlays for a whole plan before trying to find overlays for any of its roles. In this case, the system

retrieves four overlays: the first three are for implementing sets as lists, sequences, and labelled threads,

respectively; the fourth is for iplementing a finite set as a discrimination. The user chooses die fourth

overlay as the one to apply, and the system responds by instantiating the left hand side of the overlay,

propagating the appropriate information through the correspondences.

LET "DISCRIMINATION1" BE THE IMPLEMENTATION OF SYMBOL-TABLE AS A
DISCRIMINATION FUNCTION.

Thus Discriminationl is a discrimination function on entries, which is the implementation of

Symbol-table. Fig. 61 sows the complete implementation of Symbol-table, as it will be developed in

this section. Implementation relationships, sucb as between Discrimination'l ad Symbol-table, are

shown in this figure as vertical arrows pointing up from the instance of the left hand side to the instance

of te right hand side. (This is the same, convention as was used in Chapter Five.) In this figure, and the

other similar one is this chapter, vertical lines without arrow heads denote part-whole relationships, with

the role names indicated.

APPLICABLE IMPLEMENTATIONS FOR: DISCRIMINATIONI (A DISCRIMINATION)
1. COMPOSED-FUNCTIONS
2. UNARY-LAMBDA

?

The scenario continues with te system proposing applicable overlays for Discriminationl. In this

case, the only applicable overlays are for functions in general, of wich there are two in the current

library: a function can either be implemented as te composition of two other functions, or it can be

implemented directly i Lisp as a lambda expression. The user cooses the first option.

SPECIALIZATIONS OF: COMPOSED-FUNCTIONS
1. HASHING
2. KEYED-DISCRIMINATION

LET "KEYED-DISCRIMINATION1" BE THE IMPLEMENTATION OF DISCRIMINATION1 AS A
KEYED-DISCRIMINATION.

Boil" --- -- � -1po"W"m .1i I 1,111101"m offAm"Mimm-

105DATA STRUCTU n.1' , DESIGN

I\

I I
I.Sc,,C% VA V) at "O'n 1

tI I i,'KeY - � CVISCT Mn I

C �-+ vi 0

I -� U 'A C,, i 0 VI II

- 1%

IAO'.S�M51

i vio

V\ 0. 5 � I e- 1
I-- I- - - -

N.
u V�Ctf I A\oAct I\I taWe,-Z

I
'k A)p I

II ta�lp-3
11

Vec-iorl

\\ T 1� L "

N.

N

I
I

L t S? �

iFigur 61. Implementation of te Symbol Table.

51,VlAbol

CCkr

106 CHAPTER SIX

Before applying an overlay, te system checks in the library for any specializations or extensions of

the plan on the left hand side. If any exist, the use ' on a chance to choose one. In this case, the

system finds two specializations of Composed-functions, namely Hashing and Keyed-discrimination.

The user chooses the -second, causing the system to instantiate Keyed-discriminationl as the

implementation of Discriminationl. (The user could have. responded if no", causing the system to

instantiate an instance of Composed-functions with no further constraints.)

ELIGIBLE SHARING FOR: KEYED-DISCRIMINATION1.ONE ("THE KEY FUNCTION")
1. SYMBOL
2. INFO

LET SYMBOL BE THE KEY FUNCTION OF KEYED-DISCRIMINATION1.
LET "FUNCTION1" THE BUCKET FUNCTION OF KEYED-DISCRIMINATION1.

The instantiation of Keyed-discriminationl gives us our first opportunity to see the maximal

sharing heuristic in action. Te system above has sarched for existing objects in die current design

which could fill the roles of Keyed-discriminationl and satisfy the constraints of the Keyed-

discrimination plan. 'Me first filter on this search can be the object types - roles One and Two of a

keyed discrimination must be functions. There are three fnctions in the current design: Symbol,' Info

and Discriminationl. Discriminationl can immediately be eliminated from consideration because it is

above Keyed-discriminationl in the refinement tree, so that sharing with it would lead to a meaningless
circularity. S-mb._A1 and Info .,an be rjected for role Two o Kyeul-d;,-scr,,iniratiu-nlk, sinc, the range of

J "I
this function is constrained to be finite sets. This leaves the possibility of Symbol or Info, filling role One

of Keyed-discrimination, wich the system proposes as sown above. The user chooses a keyed

discrimination on the symbol field of entries. The system completes tis frarne of the interaction by

instantiating Functionl. a function from Lisp atorns to finite sets, to fill role Two. (Again, the user could

have responded 11no" to die question above, in which case a new object WUld be instantiated for role

One as wll as f6r role Two.)

APPLICABLE IMPLEMENTATIONS FOR: FUNCTION1 (A FUNCTION)
1. COMPOSED-FUNCTIONS
2. UNARY-LAMBDA

? 1

SPECIALIZATIONS or: COMPOSED-FUNCTIONS
1. HASHING
2. KEYED-DISCRIMINATION

?

LET "HASHING1" BE THE IMPLEMENTATION OF rUNCTION1 AS A ASHING.

In this next -frame, Functionl is implemented as a ash table, Flashingl.

1. Role names are formally functions.

� I I... -

DATA STRUCTURE DESIGN 107

LET "HASH1" E TE HASH FUNCTION OF HASHING1.
LET "TABLE1" BE THE TABLE OF HASHING1.

Since there are no existing objects which can fill the roles of Hashingl, the system nstantiated Hashl and
Tablel.

> implement the buckets of tablel.

After letting the system carry the initiative for a few steps,- the user intervenes here with a command
to retrieve overlays from die library for implementing the buckets of the discrimination (the -range
elements of Tablel).

APPLICABLE IMPLEMENTATIONS FOR: BUCKETS OF TABLE1 (A FINITE-SET)
1. LIST
2. SEQUENCE
3. LABELLED-THREAD
4. DISCRIMINATION

? 1

SPECIALIZATIONS OF: LIST
1. IRREDUNDANT-LIST

? 1

LET "TABLE2" BE THE IMPLEMENTATION OF TABLE1 SUCH TAT
FOR ALL "Itt AND X", IF TERM I OF TABLE2 EQUALS X, THEN X IS THE
IMPLEMENTATION OF TERM I OF TABLE1 AS AN IRREDUNDANT-LIST.

The user above chooses to implement the buckets as lists, and in pcarticularlists without duplicates.
The systern responds by instantiating, Table2 which is related to Tablel an overlay in which ach term of
Table2 (an irredundant list) is viewed as the corresponding term of Tablel (a finite set).

This -completes die part of the data sructure design tat is programming language independent (see
Fig. 61).

'Lisp-Speciric Data Structure Implementation

The remaining w steps in this sCction are involving with bringing the data structure, design'down
to the -level of Lisp data objects.

> implement an entry as a dotted pair, such that
entry.symbol=dotted-pair.carand entry.info=dotted-pair.cdr

Here te user specifies die implenictitation of entries as dotted pairs such that the Symbol function
is implemented by Car and te Info function by Cdr.

APPLICABLE IMPLEMENTATIONS FOR: HASH1 (A HASHING)
1. COMPOSED-FUNCTIONS
2. UNARY-LAMBDA

Hashl is to be iplemented as a Lisp procedure, wich will be cded later.

108 CHAPTER SIX

APPLICABLE IMPLEMENTATIONS FOR: BUCKETS OF TABLE2 (AN IRREDUNDANTAIST)
1. UPPER-SEGMENT
2. DOTTED-PAIR
3. LIST-GENERATION

2

LET "TABLE3" BE TE IMPLEMENTATION OF TABLE2 SUCH THAT
FOR ALL 'fit' AND `X11, AF TERM I OF TABLE3 EQUALS X, THEN X IS THE
IMPLEMENTATION OF TERM I OF TABLE2 AS A DOTTED-PAIR.

The range elements buckets) of Table2 are not yt implemented as Lisp data objects. The system

suggests tree overlays for iplementing lists. The user chooses te direct route of implementing lists as

dotted pairs.

APPLICABLE IMPLEMENTATIONS FOR: TABLE3 (A SEQUENCE)
1. SEGMENT
2. VECTOR
3. LIST

2

LET "VECTORl" BE THE IMPLEMENTATION OF TABLE3 AS A VECTOR.

Finally we implement Table3 a sequence of dotted pairs, as a Lisp vector.

6.3 Procedure Synthesis

The user now moves on to the implementation of some procedures which access the symbo I table

data structure. The flrst procedure is to retrieve die entry associated with a given symbol. Fig. 62 gives

an overview of tis iplementation. Down the left side of this figure is the data structure implementation

developed in the preceding section. As in Fig. 61, arrows in tis figure denote overlays and roles names

are labelled. In tis fgure, howeve-, many roles are left out in oder to make it more readable. The

names in parentheses are the types of the roles.

> let "symbol table retrieve" be a specialization of retrieve,
such tat the universe is a symbol table, and the key function is symbol.

The starting point for the program development is to specialize the library input-output

specification Retrieve b constraining the Universe to be a symbol table ad te key fnction. to be the

Symbol function defined earfier in the snario. In conventional terms, this would be called the
It it -ocedure. It is important to note, however, tat in die plan calculus are usual

distinction between specifications and implementations as separate formalisms does not exist. What we

have in general is plans at various levels of abstraction. he topmost pan often aounts to what would

norma]IN.--� called a specification, and te bottommost (surface) plan is certainly wat would be called an

implementation. All of these descriptions are in the same la,.12gNage, and fliere 'are implementation

relationships between the intermediate plans also. 1urflien-nore, in tis framework tere is no reason to

restrict a user's starting plan o being an input-output specification. The most natural starting description

may sometimes be multi-stcp plain.

PROCEDURE S"NTHESIS 109

S; I M� ol t (� It - 9�, i QN e,

Q x. ") V� % v tc s - /I \

s 1--i m �00� -tcOo � - I

ke� le A - Als(-Yt Nly\ct�e- -t re-+ ri - V E,

. Ai "(i M; V)ckfq

') VA ct i o YD VP")

SYY40�

VNC�Swl k -I,3
.oh .+V40

kl-\ k 15�) 1 t t\oN e- -1

I I

i St

Figur 62. Iniplementation of Symbol Itable Retrieval.

0

.

.41

, "MMI- ---- - -- "wolq�qmqp ,, I,

110 CHAPTER SIX

APPLICABLE IMPLEMENTATIONS FOR: SYMBOL-TABLE-RETRIEVE (A RETRIEVE)
1. ANY-COMPOSITE
2. DISCRIMINATE+RETRIEVE

2

In the interaction above, the system as searched the plan library for ways of iplementing

Symbol-table-retrieve (i.e. for overlays with Retrieve as their right hand side). In the current library,

there are two: 66 default iplementation as Any, and the iplementation -in which the univers is

implemented as a keyed discrimination (see Fig. 63). These are presented as options to the user, who

chooses the second.

The system at this point could have been more clever and concluded that the second choice was

indicated, since Symbol-table has already been implemented as Keyed-discriminationl. However, this

degree of automation in general may be difficult, particularly in the presence of multiple views. In any

case, once option two is chosen, either by the system or te user, the maximal sharing heuristic ensures

that Keyed-discriminationl does become part of the implementation of Symbol-table-retrieve.

LET "SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE" BE THE IMPLEMENTATION
OF SYMBOL-TABLE-RETRIEVE AS KEYED-DISCRIMINATE+RETRIEVE.

ELIGIBLE SHARING FOR: SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE.COMPOSITE
(A KEYED-DISCRIMINATION)

1. KEYED-DISCRIMINATION1

The system has created a specialized version of gic plan Keyed-discriminatc+retrieve, (wherein the

keyed discrimination is Keyed-discrim-nationl) which implements Symbol-table-retrieve (see Fig. 62).

APPLICABLE IMPLEMENTATIONS FOR:
SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE.DISCRIMINATE (AN FUNCTION)

1. COMPOSED-�FUNCTIONS

LET "SYMBOL--TABLE-COMPOSED-�FUNCTIONS" BE THE IMPLEMENTATION OF
SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE.DISCRIMINATE AS COMPOSED-�FUNCTIONS.

ELIGIBLE SHARING FOR:
SYMBOL-TABLE-COMPOSED-�FUNCTIONS.COMPOSITE (A COMPOSED-FUNCTIONS)

1. HASHING1

Since there are no overlays for implementing Symbol-table-keyed-discriminate+retrieve as a whole,

the system proposes applicable overlays for the roles, beginning with Die Discriminate role, which is

constrained to be an instance of CkFunction. There is oly one plan in die library for implementing

CaEunction, i.e. as a composition of two other instances of unction. Using the maxiindl sharing

heuristic again, these become the application of the has fnction, Flashl, Allowed by fetching from the

hash table, Tablel.

PROCEDURE S\,7HESIS III

I

�zy

lb , M, n titL- + r ct,(I " Z:"7 Fear 1, VVQ,

� Figure 63. Associative Retricv,-Il from a Keyed Discrimination.

--- -M -.-l------ -- I- -- ---1 - I

112 CHAPTER SIX

APPLICABLE IMPLEMENTAT1ONS FOR:
SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE.IF (A RETRIEVE)

1. ANY-COMPOSITE
2. DISCRIMINATE+FETRIEVE

?

LET "SYMBOL-TABLE-ANY-COMPOSITE" BE THE IMPLEMENTATION OF
SYMBOL-TABLE-KEYED-DISCRIMINATE+RETRIEVE.IF AS ANY-COMPOSITE.

Implementation of the other role (10 of Symbol-table-keyed-discriminatc+rctrieve is shown above.

This role is an instance of Retrieve applied to the bucket obtained by Discriminate. As before, the system

presents two options for implementing Retrieve. Tis time the user chooses the first option: retrieval

from the bucket is implemented as Any in which the criterion is a composite of the key function (Symbol)

and the Input to Retrieve. This is the default way of implementing Retrieve. For example, if the

Universe set is implemented as a list, Retrieve will typically be iplemented as a CAR-CDR search loop.

The overlay for this iplementation is shown in Fig. 64. The plan on tire left hand side is called

Any-composite. This overlay shows how an instance of Retrieve can be implemenved as an instance of

Any in which the Criterion predicate has a definition of the following form.

P(x) = F(xK)

This way in general of constructing a predicate, P, for a given ffinction, F, and a value, K. is

formalized as the overlay Function+valuopredicate (see appendix). In te fi-nplerrientation of Retrieve as

AD v. F corresponds to die ky function of Retrieve and K is the input key.

Loop Synthesis

We now come to the point in the synthesis where loops are introduced into the design. Note that

are maximal saring heuristic also applies to loops, i.e. for efficiency, the loop implementations of

different parts of a program should be combined into a single loop when possible. In order to achieve

this p<Irt of the scenario below, an additional temporal synthesis module (the inverse of the temporal

analysis module discussed in Chapter Five) is needed.

APPLICABLE IMPLEMENTATIONS FOR: SYMBOL-TABLE-ANY-COMPOSITE.IF (AN ANY)
1. TERM-INATED-ITERATIVE-SEARCH

To begin, Any is implemented as Terminated-iterative-search tis overlay was already discussed in

Chapter Five). Te Universe of Any is then h-npicinented as a loop augmentation which generates the

inpuLs to the second (success) exit test of this search loop. his takes place in two steps under user

guidance. In the first step, shown below, the set is implemented as a list (without duplicates).

1. Waters has written a module which does part of this work.

ANN �> \ k4yitve,

'-Ammm j - . I --

PROCEDURE SYNTHESIS 113

- -,%W

.-Ooe t t2 1 -4*4 -to 64mro-C

I

i (ivcul,"* 0-(01001) 0� - �,� I

IIgur 64. Default Implementation of Associntive Retrieval,

--- ---

114 CHAPTER SIX

APPLICABLE IMPLEMENTATIONS FOR:
SYMBOL-TABLE-ANY-COMPOSITE.ir.UNIVERSE (A rINITE-SET)

1. LIST
2. SEQUENCE
3 LABELLED-THREAD
4. DISCRIMINATION

? 1

SPECIALIZATIONS or: LIST
1. RREDUNDANT-LIST

LET "SYMBOL-TABLE-IRREDUNDANT-LIST" BE THE IMPLEMENTATION OF
SYMBOL-TABLE-ANY-COMPOSITE.IF.UNIVERSE AS AN IRREDUNDANT-LIST.

As earlier in tis scenario, the system could also be more clever here and save the user some effort
In particular, the system should realize that the finite sets which fill the Symbol-table-any-
compositeff.Universe role are h same as the buckets of Tablel, which were iplemented earlier as
irredundant lists. Finally, the irredundant lists of entries are implemented as the standard LispCARCDR

andNULL loop, as shown below.

APPLICABLE IMPLEMENTATIONS FOR:
SYMBOL-TABLE-IRREDUNDANT-LIST (AN IRREDUNDANT-LIST)

1. UPPER-SEGMENT
2. DOTTED-PAIR
3. LIST-GENERATION

3

EXTENSIONS OF: LIST-GENERATION
1. TRUNCATED-LIST-GENERATION

SPECIALIZATIONS OF: TRUNCATED-LIST-GENERATION
1. CAR+CDR+NULL

Code Generation

'rho al phase of top-down synthesis is code generation. The user has guided the iplementation
of all parts of the program down to the level of input-output and test specifications involving the
primitive functions and relations of Lisp. All that remains now to obtain a complete surface plan is to
gather tip all te control flow and data flow constraints betwee trminal nodes of Fig. 62 into a single
non-hierarchical plan ',,-nd also to add additional, arbitrarily chosen, control flow arcs as necessary to
totally order any otherwise nordered steps). The resulting surface plan is essentially the same as the
surface plan obtained in the analysisOfLOOKUPin Capter Five. This surface plan is then turned over to a
code generator-, which h-nplenients die data and control flow sing the available connective primitives in
die programming language, as sown below.

CODE GE.411RATION 115
0

> show code for symbol-table-netrieve

(DEFINE SYMBOL-TABLE-RETRIEVE
(LAMBDA (TABLE INPUT)

(PROG (BUCKET OUTPUT)
(SETQ BUCKET (ARRAYrETCH TABLE (HASH IPUT)))

LP (COND ((NULL BUCKET)(RETURN NIL)))
(SETQ OUTPUT (CAR BUCKET))
(COND (EQ (CAR OUTPUT) INPUT)

(RETURN OUTPUT)))
(SETQ BUCKET (CDR BUCKET))
(GO LP))))

A code generator for Lisp has been implemented by Waters 74]. Note that at the end of this entire

process, we get essentially the same structure as in Chapter Five, namely code for the program (perhaps

with some minor syntactic variations due to the stylistic biases of te code generator), together with a

complete hierarchical decomposition of the design in terms of plans in the library.

Synthesis of Symbol Table Addition

This section shows the synthesis of a procedure to add entries to the symbol table. Two new points

are introduced in this example. First, the plans in this example involve side effects. Second, the user

intervenes at a key point in the development in order to suggest a reanalysis which leads te system to the

desired program. An overview of the complete iplementation structure is shown in Fig. 65.

> 1(.,,t "symbol table add" be a specialization of set add by side effect
such that the old set is a symbol table, and the input does not belong to
the old set.

The starting point for this synthesis is a specialization of the input-output specification Set-add, in

which the old set is a symbol table. T first additional constraint above specializes Set-add to the side

effect version, #Set-add,' in which the now set has the same identity as the old set but different

members). Te role nafnes Old and New in this case refer to te different states of the same set before
2and after the side effect operation, rather than to different sets. Te user has also specified as a

precondition that the entry to be added is ot already in the table. This is aother standard secialization

of Set-add, called Set-add-one, which has simpler implementations in which tere is no need to check for

duplicates.

i. rhe character is intended to be read is "impure". J`hus Set-add is impur st add" r "set add by side effect".
2. 1'he fomial representation of side effects will be specified in more detail in Chapters Eight.

116 CHAPTER SIX

to�) t aa a
f,
I

5Y W6,cl -t

� r

� V i CV�., 4s�oxp,
.j C44 �V) e- \Xi

\A.v Pc-koc A �JCCAO 'I

Fiaur 65. Implernent.ation of ditimi to Symbol ra ble.

0
(Q �VA V� i 0111)�

i

- - -
"WON" I -

SYNTHESIS OF SYMBOL TABLE ADDITION 117

APPLICABLE IMPLEMENTATIONS FOR: #SYMBOL-TABLE-ADD (A SET-ADD-ONE)
1. PUSH
2. INTERNAL-THREAD-ADD
3. DISCRIMINATE+ACTI(N+UPDATE

3

LET "#SYMBOL-TABLE-D'SCRIMINATE+ACTION+UPDATE'I BE THE IMPLEMENTATION OF
#SYMBOL-TABLE-ADD AS DISCRIMINATE+ACTION+UPDATE, SUCH TAT
#SYMBOL-TABLE-DISCRIMINATE+ACTION+UPDATE.ACTION IS SET ADDITION,
AND #SYMBOL-TABLE-DISCRIMINATE+ACTION+UPDATE.UPDATE IS BY SIDE EFFECT.

The system begins by retrieving three possible implementations for #Symbol-table-add. Thl�' first

two are implementations of Set-add for sets implemented as lists or labelled threads; th tird overlay

(shown in Fig. 66) is die implementation of 01d+input+output-set (of which Set-add is a specialization)

for sets implemented as discriminations. The user chooses the third option,1 and the system responds as

usual-by specializing the lft hand side plan appropriately.

Notice that the overlay in Fig. 66 is between two plans in which no commitment has yet been made

as to whether or not side effects are involved. One of te pre-computed properties of tis overlay is that if

the right hand side is specialized to be by side effect (i.e. #Set-add or #Set-remove), then the Update

step on te left hand side is also by side effect (i.e. #Newvalue), and vice versa.

Since there are no overlays for #Symbol-table-discriminatc+action+update as a whole, the system

looks for implementations of the roles separately. Te Discriminate role is an instance of �Function, in

which Discriminationl is the function applied (Op). The further implementation of tis role is simply a

two level composition of instances of Function which mirrors die decomposition of Discriminationl

into Svnibol. Hashl and Tablel. This is shown in Fig. 65, but omitted from the scenario transcript here.

APPLICABLE IMPLEMENTATIONS FOR:
#SYMBOL-TABLE-DISCRIMINATE+ACTION+UPDAIE.ACTION (A SET-ADD-ONE)

1. PUSH
2. INTERNAL-THREAD-ADD
3. DISCRIMINATE+ACTION+UPDATE

? 1

LET "SYMBOL-TABLE-PUSH" BE THE IMPLEMENTATION OF
#SYMBOL-I'ABLE-DISCRIMINATE+ACTION+UPDATE.ACTION AS PUSH.

The user chooses to h-nplement Set-add-one operations on the buckets by pushing new lements on

the font of the lists.

1. As discussed earlier, if te system ssumes the saine set is not being implemented two different ways, it. uld choose this option
on its own initiative. However o cver implementations actually do involve iplementing the same astract data stnicture
simultaneously two different ways.

118 CHAPTER SIX

bl sc,,Ci'

VI ute-f ic,,t I' +)over

Figure 66. Addingand Renio -ving Members from 4a I)iscrimination.

- �--

SYNTHESIS OF SYMBOL TABI,,E ADDITION 119

APPLICABLE IMPLEMENTATIONS FOR:
#SYMBOL-TABLE-DISCRIMINATE+ACTION+UPDATE.UPDATE (A #NEWVALUE)

1. NEWVALUE-COMPOSITE

LET "NEWVALUE-COMPOSITE" BE THE IMPLEMENTATION OF
#SYMBOL-TABLE-DISCRIMINATE+ACTION+UPOATE.UPDATE AS NEWVALUE-COMPOSITE
BY SIDE EFFECT.

As discussed i Chapter Four, Newvalue operations on a fnction iplemented as a composition

can be implemented by Newvalue operations on the second component only. Furthermore, a property of

this implementation is that if the operation on the second component is by side effect, ten in effect te

composed function has been modified by side effect. In this case, #Newvalue operations on

Discriminationl are implemented as #Newvalue operations on Functionl. Similarly (see Fig. 65, but

not shown here), #Ncwvalue operations on Function.1 are implemented as #Ncwvalue operations on

Tablel. This completes im. lmentation of all roles of #Symbol-table-discriminate+action+update.

Prompted by the user, the system continues to suggest overlays for implementing the parts of the

design which are not yet down to the level of Lisp primitives. The two simple steps shown below are: (i)

to implement Symbol-table-push as coNs (compatible with te implementation of the buckets of the table

as Lisp lists), and (ii) to implement Term applied to Tablel a ARRAYFETCH (compatible with the

implementation of Tablel as Vectorl.)'

APPLICABLE OVERLAYS rR: SYMBOL-TABLE-PUSH (PUSH)
1. BUMP+UPDATE
2. CONS

APPLICABLE OVERLAYS FOR: SYMBOL-TABLE-COMPOSED-�FUNCTIONS.TWO (TERM)
1. FETCH

Other simple steps, omitted here, are the implementation of die application of Symbol as CAR, and

the application of Hashl as a procedure call. This leaves only #Ncwvalue applied to Tablel (see Fig. 65)

to be implemented further.

APPLICABLE IMPLEMENTATIONS FOR:
#SYMBOL-TABLE-NEWVALUE-TWO-COMPOSITE.ACTION (A #NEWVALUE)

1. NEWVALUE-COMPOSITE
no

NO APPLICABLE OVERLAYS.

L This is skipping the intennediate sps of'fable.11- and Table'3, as discus.�Cd earlier.

- mw"- - - - -milmooll 11- �

120 CHAPTER SIX

Unfortunately, the only implementation in te current library for #Newvaluel is for a function

implemented as a composition of two ffinctions, which is not what we want for Tablel. At this point the

simple refinement strategy used by the system thus far is stymied. The problem is that in order to-

implement #Newvalue as te simpler #Newarg which then bCCOMOS ARRAYSTORE for Lisp vectors), the

systern must recognize that die function involved is one-to-one (a Bijection) and that the argument which

maps to the old value has already been computed. The plan which die system recognizes is called

�Function+nelUalue and is shown on the right hand side of Fig. 67.

The basic idea of the overlay in Fig. 67 is tat in the special case of one-to-one functions, an

instance of CaFunction followed by Newvalue, as in the Discriminate+action+update plan, can be

implemented simply by an instance of Newarg. In other words, if you know that there is only one

domain element which maps to a given range element, then updating all domain elem-ents, which map to

that range element (i.e. Newvaluc) degenerates into canging the value associated with that one domain

element (i.e. Newarg). Furthermore, in terms of side effects, an ipure Update operation (#Newvalue)

in �Function+newvalue corresponds to #Newarg.

> recognize ffunction+newvalue.

LET #SYMBOL-TABLE-�FUNCTION+NEWVALUE'I BE A SPECIALIZATION OF
�FUNCTION+NEWVALUE SUCH THAT
#SYMBOL-TABLE-�FUNCTION+NEWVALUE.ACTION.OP=TABLEI

The user guides the system at this point by advising it to try to recognize an instance of the plan

�Function+newvalue somewhere in die current design. Given the focus of trying to recognize only one

particular pan, the system succeeds in noticing tat Symbol-table-composcd-Caftinctions.Two se

Fig. 65) together with the #Symbol-table-ncwvalue-two-composite.Action satisfy die constraints of
2(a)Function+newvalue. What has happened here is that parts of two different branches of the� tree have

been grouped together to recognize a plan which has a kown implementation. This is a novel feature of

this synthesis scenario as compared to te standard top-down refinement approach.

APPLICABLE IMPLEMENTATIONS FOR:
#SYMBOL--TABLE-�FUNCTION+NEWVAI-UE (A FUNCTION+NEWVALUE)

1. NEWARG-BIJECTION

LET "#SYMBOL-TABLE-NEWARG-BIJECTION" BE THE IMPLEMENTATION OF
#SYMBOL-TABLE-�F-UNCTION+NEWVALUE AS NEWARG-BIjECTION.

Now flic overlay can be applied wich implements #Newvalue as #Newarg, or in the case of a sequences

#Newterm, and finally, as #Store.

1. J�ecall that Newvaluc is the specification for udating a function such that all arguments that used to map to a given value, ap
to a ncw g- iven value.
2. Table] is an irredundant sequence, which nicans it is a one-to-one fnction.

.too,"\

N Q, w wr8 > Y� 9, w vc(kox"

121SYNTHESIS OF SYMBOL TABLE NDDITION

(bi3

Figure 67. Updtatinc a Bijection.

122 CHAPTER SIX

APPLICABLE IMPLEMENTATIONS FOR: #SYMBOL-TABLE-NEWARG-BIJECTION (A #NEWTERM)
1. #STORE

Code generation follows in a similar fashion to before.

> show code for #symbol-table-add

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.

(PROG (INDEX)
(SETQ INDEX (HASH (CAR IPUT)))
(ARRAYSTORE TABLE INDEX

(CONS (ARRAYFETCH TABLE INDEX)
INPUT)))))

Synthesis of Associative Deletion

The last procedure to be synthesized is for associative deletion of entries in the symbol table. This
procedure and its development share many features with the retrieval and addition procedures, which
have already been presented in detail. This part of the scenario will therefore be brief and will for the
most part rely on Fig. 68 rather than showing all of the system-user interactions, as in the preceding
sections.

> et "symbol table expunge" be a specialization of expunge by side effect such
that the old set is a symbol table, the key fnction is symbol,
and'the're exists a unique "x" such that xbelongs to the old set
and the key function applied to x equals the input.

These are the starting specifications. xpunge is a standard input-output specification hi the library
for deleting from a set on die basis of a given key value. The deletion here is by side effect, and there is
an additional precondition specified, namely that there is exactly one entry in the table with the given
key. This precondition specializes Expunge to Expunge-one, a standard specialization of Expunge in the
library.

APPLICABLE IMPLEMENTATIONS FOR: #SYMBOL-TABLE-EXPUNGE (AN EXPUNGE-ONE)
1. RESTRICT-COMPOSITE
2. KEYED-DISCRIMINATE+EXPUNGE+UPDATE

2

LET #SYMBOL-TABLE-KEYED-DISCRIMINATE+EXPUNGE+UPDATE" BE THE IMPLEMENTATION
OF #SYMBOL-TABLE-EXPUNGE AS KEYED-DISCRIMINATE+EXPUNGE+UPDATE.

For sets implemented as keyed discriminations, Expunge is implemented by the three step plan
1)iscrhninatc+cxpunge+update, shown in Fig 69, which is similar to Discriminate+action+update 'in the
implementation Of SYMBOL-TABLE-ADD. Like Discrim,inatc+acflon+update the pro-cornpiled side effect
analysis of this plan says that the side effect iplementation is achieve by specializing than Update step to
#Ncwvalue. Pa rt of die cleverness in this synthesis example ivolves avoiding die Update step entirely
by performing die Action by side effect instead.

1� ST�i C4zo\ t
� -

SYNTHESIS OF ASSOCIATIVE r'PLETION 123

.C)IA #5YMNp01-tcAWt -Q-XFU"5p ti

ii5 y �NJ'0 I - t COO I e, Symbol tAl-c-
-#Sjvm�ool -talole-�eykA-Ai5c "vAje

- i _ seyp ov%3 c + u � cAate,
I -

.0 ck

AI fLy-,l I at i o h i

�ty-CA- dO 5cyimiv)A in)-i

AW G
.0

� U"al O-A L
) s sym *or -

C�O" ?VS it

0 F �3sl+

�\ R5�i V\ " "
y

�h� " YN ct,

Ti

C'tvlivTv) Al i6 cod 41 VJ I

I
tA-(kl�iY\5-5 eiA P-f CA)j+ -#"I NN�" %,\ al - -t�),(�,a A -,c P, " O v -O-

3 e a rolm 1\ ,

Figure 68. 1 niplementation of Associative Deletion fronisyniwrrame.

124 CHAPTER SIX

(I<ey xJ

Ai�wim,
4

I
0p

Key (a -c I

1)'scyi m'olatt+ " pv vl�et-up A at., >e ;Kpuvig e,

Figure 69. Associative Deletion from Keyed Discrimination.

I I - -1 I'mommimom I II , m I lm " . I- - - - I - -11 � .-- I ' � I I - .151 ms- 1-10-�.,..Il

SYNTHESIS OF ASSOCIATIVE DELETION 125

The flrst step in Discriminate+expunge+update, Discriminate, is an instance of Function which

computes die appropriate bucket from the given key. The implementation of this step uses the plan

Symbol-table-col-nposed-Ca,)fuiictions, which was developed in the synthesis of SYMBOL-TABLE-RETRIEVE

(see Fig. 68).

APPLICABLE'IMPLEMENTATIONS FOR-.'
#SYMBOL-TABLE-KEYED-DISCRIMINATE+EXPUNGE+UPDATE.ACTION (AN EXPUNGE-ONE)

1. RESTRICT-COMPOSITE
KEYED-DISCRIMINATE+EXPUNGE+UPDATE

I

LET "SYMBOL-TABLE-RESTRICT-COMPOSITE" BE THE IMPLEMENTATION OF
#SYMBOL-TABLE-KEYED-DISCRIMINATE+EXPUNGE+UPDATE.ACTION AS RESTRICT-COMPOSITE.

The Expunge-one action on the buckets is implemented in the default way using Restrict, in which

the criterion is a composition of the Symbol function and #Symbol-table-expunge.Key. This overlay is'

shown in Fig. 610. It is similar to die implementation of Retrieve as Any-composite in

SYMBOL-TABLE-RETRIEVE. Furthermore, it is a property of this overlay that if the right hand side is

specialized to Expunge-one, then the Action on the left hand side is correspondingly specialized to

Restrict-one, in which there is expected to be only one member of the Universe'set which satisfies the

given Criterion.

APPLICABLE IMPLEMENTATIONS FOR:
SYMBOL-TABLE-RESTRICT-COMPOSITE.ACTION (A RESTRICT-ONE)

1. ITERATIVE-FILTERING
2. TAIL+INTERNAL

2

LET SYMBOL-TABLE-�TAIL+INTERNAL" BE THE IMPLEMENTATION F-
SYMBOL-TABLE-RESTRICT-COMPOSITE.ACTION AS TAIL+INTERNAL.

Restrict can be implemented either as a filtering loop, or as the plan TailAnternal, shown in

Fig. 611. This plan removes a member from a set implemented as an irredundant list.

Removing a member fom a set implemented as an irredundant list breaks down into two cases: if it

happens that the member to be removed is the head of the list, ten retnoval is achieved simply by a

taking diz tail of the list; otherwise, viewing the list as a labelled thread, the imernal nodc of te spine

which is labelled Nvith the given member must be found and rmoved. These two cases will ventually

manifest themselves in the code as follows:

C-�<Tu Y13 e,

126 CHAPTER SIX

100

Figure 610. Default Implementation of Associative Deletion.

-- - -

SYNTHESIS OF ASSOCIATIVE , DELETION 127

out

-NA

vk

&i. t I it �-,4 \Q� > re-st r; c--t

1 -n 611. Set Removal for Irredundant Lists.

4aww" -m

128 CHAPTER SIX

- . -..f lb-- - 1-1

.0 ." ... It%

.01
4..

f *AA(N I

------- ---

O �,l
tIA V- (

%% 0 Iew -t�AlreCkCl), --
,ft. � I -I

..w -.4 M , -.%� .k

lv\A"V\Ck\ - AJU -t�reC(- f Q-VAOV�--

-4Figure 612. nterntal Labelled- Thmad Find and Remove.

SYNTHESIS OF ASSOCIATIVIL LELETION 129

(DEFINE SYMBOL-TABLE-EXPUNGE
(LAMBDA (.. INPUT)

(PROG ... BUCKET PREVIOUS)
(SETQ PREVIOUS ...
(COND ((EQ (CAAR PREVIOUS) INPUT)

(... (CDR PREVIOUS))
(RETURN NIL)))

LP ...
(COND ((EQ (CAAR BUCKET) INPUT)

(RPLACD PREVIOUS (CDR BUCKET))
(,RETURN NIL)))

(GO LP))))

Let us first consider the overlay aTail+internal>restrict in Fig. 611, which formalizes the

breakdown into two cases described above. On the right hand side of tis overlay we have Restrict-one,

which specifles the removal of the (unique) member of a set which does not satisfy a given criterion. The

top level structure of the plan on the left, which implements these specifications, is a conditional (Cond).

The Input to the test of this conditional is the head of te irre'dundant list which iplements the Old set;

the criterion Is the complement of the criterion of Restrict-one. The output of this conditional

(End.output) is the irredundant list which implements the New st. In te Succeed case (i.e. when the

head of the input list satisfies the given criterion), this output is the resulting of taking the tail of the input

list. In the Fail case, the new list is computed by Internal-labelled-thread-find+rcmove.

Internal-lab.elled-tliread-rind+remove sown in Fig. 612, is an extension of Internal-thread-find+

remove. In this plan, the old and new lists are tought of as labelled threads. Interilal-labelled-thread-

find+remove removes an internal node from the spine of a labelled thread (Old), die label of which

satisfies a given predicate, resulting in a (New) labelled diread. As used in Caffai4internal, -the criterion

applied by Find to each node in the spine of the labelled list is composed from Updateff.Criterion. and

the label function of the list viewed as a labelled thread, according to the overlay Predicate4bfictim

predicate, given in the appendix. The basic idea of tis construction is to test the label of each node,

rather tan the node itself'. Thus for example, if the label hinction is Car (,as in the case of Lisp-lists), and

Updateff.Criterion is P ten the criterion of the Find step is Q defined as follows:

Q(.x) P(Car(.x))

APPLICABLE IMPLEMENTATIONS FOR:
SY14BOL-TABLE-�TAIL+INTERNAL.INTERNAL.FIND (AN INTERNAL-THREAD-FIND)

1. TRAII-ING-GENERATION+SEARCH

'The Find role of Iiternal-labelled-thread-find+remove, which is an instance of Intemal-thread-find,

is implei-nented as a Trailing-gUcration+search loop, as sown in Fig. 613. The Universe of Internal-

thread-,find is the tread encrated by die trailing generation, and die two otputs of the loop correspond

to the two outputs of nternal-thread-find. This plan will eventually appear i t code as follows, in

which the function being applied by the ction is Cdr, die Crrent object is in BUCKET and te Previous

object in PREVIOUS.

�
I -

I - - -- - 1- 1-1 -

130 CHAPTER SIX

I � -1 - I D i -- � - - -"- " I - v� I I ,%.,

Tv�, �L "5 - �e�k V-,�-CA ; ov) t s ea fcl� > � i- va

Haur 613 Lop to Find Location in Thread.

I
I , , i O I - .'"o '.., .." I I � " -

SYNTHESIS OF ASSOCIATIVE DELETION 131 .

(PROG ... BUCKET PREVIOUS)
(SETQ PREVIOUS . . .)

LP (SETQ BUCKET (CDR PREVIOUS)
(COND ((...BUCKET...)

... PRE�IOUS ... BUCKET ...
(RETURN NIL)))

(SETQ PREVIOUS BUCKET)
(GO LP))

The system ten proposes to implement Internal-thread-remove by splicing out� but the user

intervenes to suggest a reanalysis.

APPLICABLE IMPLEMENTATIONS FOR: SYMBOL-TABLE-�TAIL+INTERNAL.INTERNAL.REMOVE
(AN INTERNAL-THREAD-REMOVE)

1. SPLICEOUT
no

> recognize #iction+update.

LET #SYMBOL-TABLE-ACTION+UPDATE BE A SPECIALIZATION OF #ACTION+UPDATE
SUCH THAT #SYMBOL-TABLE-ACTION+UPDATE.UPDATE.OLD=FUNCTION1 .

In contrast to SYMBOL-TABLE-ADD, where advice from die user was crucial to completing the

synthesis, this intervention is merely to cause the system to come out ith a ore efficient program. In

particular we want te system to realize that, if Internal-thread-remove is implemented by side effect,

then wen the m ember of the bucket- to be deleted is not the Head, the operation to update the table is

not necessary. 'Mis piece of imple- mcntation knowledge is represented in te library by te overlay

01d+input+new>acflon+update, which will be discussed further in Chapter Eight. The basic idea of this

overlay, however, is that in general, modifying a range element amounts to modifying the function. In

order to apply this overlay, however. the system must first group together parts of plans on different

branches of the tree (see Fig. 68), as was the case in the synthesis of smBOL-TABLE-ADD.

Thus the ystem implements the Internal.Remove stop of Symbol-table-(qUai4internal s Internal-

thread-remove, which is further im as #Spliccout, as sown in Fig. 614.

Spliecout has four roles: Old and New, which are iterators with the same seed; Bump, which is an

instance of Apply- and Splice, which is an instance of Newarg. The purpose of Bump is to get the

successor of the node to be removed, which becomes the Input of Splice. The Arg of Splice is the

predecessor of tlic Input f Bump which typically comes from an instance of Internal-thread-find). The

Op of tho-''Old trror (e.g. Cdr for Lisp lists') is te Op iput to both Bump and Splice; the Op of the new

iterator is the output of'Splice. This plan will ventuall eerge as die following code.

(RPLACD PREVIOUS (CDR BUCKET))

Spliceout implements Internal-thread-remove as described b the overlay Spliceoubremove, shown

in Fig. 614. The old iterator implements the old thread, and die new iterator implements the new thread.

1"he node being deleted is the InpUt Of Bnip. Notice that te Arg input to Splice in the Spliceout plan

(the predecessor of te node deleted) has no corresponding object on die rght hand side ofthe overlay.

This means that as far as this overlay is concerned, sorne other part of the program surrounding an

132 CHAPTER SIX

SP

4 1I"gur 614. Removing from a Thread by Splicing Out

SYNTHESIS OF ASSOCIATIVE DELETION 133

instance of the left hand side (e.g. te Internal-thread-find) must provide an Arg input to Splice which

satisfies the sticcessor constraint. In other words tis is an implementation of Internal-thread-remove for

the case when we already know the location of the node to be removed.

By te fut-ther rearrangement and straightforward implementation steps, we arrive finally at a
Ln -urned over to the code generator. The resulting code is essentially the

sbrfa,--c plan which can n be IL

same as in the scenario of Chapter Two.

> show code for #symbol-table-expunge.

(DEFINE SYMBOL-TABLE-EXPUNGE
(LAMBDA (TABLE INPUT)

(PROG (INDEX BUCKET PREVIOUS)
(SETQ INDEX (HASH INPUT))
(Sr_TQ PREVIOUS (ARRAYFETCH TABLE INDEX))
(COND ((EQ (CAAR PREVIOUS) INPUT)

(ARRAYSTORE TABLE INDEX (CDR PREVIOUS))
(RETURN NIL)))

LP (SETQ BUCKET (CDR PREVIOUS))
(COND '(EQ (CAAR BUCKET) INPUT)

(RPLACD PREVIOUS (CDR BUCKET))
(RETURN NIL)))

(SETQ PREVIOUS BUCKET)
(GO LP))))

q-

134 CHAPTERSEVEN

CHAPTER SEVEN

VERIFICATION BY INSPECTION

This brief chapter outlines the applicability of inspection methods and the plan library to program

verification. Program verification has at least two main aspects:

(i) increasing confidence in the correctness of a program,

(ii) detecting potential errors.

Verifying Overlays

The use of the plan library can increase confidence in the correctness of a program by virtue of the

fact that overlays in the library can be pre-verifled. If a program is constructed entirely out of plans and

overlays from the library, then it is guaranteed to be correct (in te sense of there being no

implementation errors - the program may still not do what the programmer wanted in the ultimate

sense). To te extent that parts of a program are onstructed using t library, confidence in the

correctness of the program is increased.

A completely formal statement of the correctness conditions on overlays depends on the logical

foundations of die plan calculus developed in Chapter Fig-h.t. The basic idea, however, is to verify that

the fnction defined by an overlay and its inverse mapping are both total, i.e. they are defined on all

instances of the left and right hand hand side plans, respectively. Practically speaking, the effect of this

definition of correctness is to force all of the conditions required for the correct use of an overlay -to be

explicitly stated in the constraints of te plans on both sides.

Note that techniques for automatically verifying the correctness of overlays are not the concern of

this report. The important point established here is oly that there exists for the plan calct dus a formally

definable and usable notion of correctness, wich has not been te case for other formalisms used to

represent die sarne knowledge. Given the formal definitions in Chapter Fight, it, is possible to vrify

overlays to whatever degree of rigor is warranted, up to and icluding a step-by-step formal proof in first

order logic which might be mechanically produced). Note owever that these proofs can b quite

difficult ad idiosyncratic, depending as tey do on the athematical properties of the various

programming domains involved; but this is as one would expect. The dirust of sing inspection methods

is to take dvantage of this effort by re-using these proofs as lenimas.

Near-Miss Recognition

An inspection method for error detection is neat-iniss recognition. In near-miss recognition, most

but not all of te constraints of a plan are satisfied. If part of a user's design almost matches'a plan in the

library, te discrepancy between the two descriptions can be brought to the ser's attention as a potential

-- wo 11001.101-1 �" � - -- - -- 1 .. . I -I I

NEAR-MISS RI--'COGNITION 135 .

error. This method of error detection mkes use of the correct plans in the libra4 ry to detect errors, rather

than explicitly adding a taxonomy of errors to the "grammar" as in Ruth 59].

Like all inspection methods, error detection by inspection is not as powerful as more general

methods. However, it has the advantage that potential errors arc characterized in terms which are closer

to the engineering vocabulary of the user's design. The remainder of this chapter gives an example in

detail. The method described in this example has not yet been implemented, however the

implementation of an algorithm for near-miss pattern matching using die plan library is currently in

progress by Brotsky [8].

In the scenario of Cha ter Two, the user typed in the following code for finding an element in a list

satisfying a given criterion, and splicing it out.

(DEFINE BUCKET-DELETE
(LAMBDA (BUCKET INPUT) ;MODIFIES BUCKET.

(PROG (P'Q)
(SETQ P BUCKET)

LP (COND ((EQUAL (CAAR P) INPUT)
(RPLACD Q P) ;SPLICE OUT.
(RETURN BUCKET)))

(SET Q P)
(SETQ P (CDR P))
(GO LP))))

,There were two errors detected in this code: one in the loop that finds the element, and one in the

splicing out. This section discusses only the detection of the first error.
rst step in detecting an error is to translate the code above into the plan calculus as

Ihe fi. discussed

in Chapters Four and Five. The surface plan for the loop part Of BUCKET-DELETE (not including the splice

out after the loop) is shown on the left of Fig. 71. To make this example easier to follow, the surface plan

showhin the figure has been simplified by omitting the control flow arcs since the iportant recognition

in this example depends on the data flow), and by assuming tat the code (EQUAL (CAAR P) INPUT) has

already been analyzed as the testing of by a composite predicate made up out of te Eq relation, the

Caar function and INPUT.

The next steps are to recognize Trailing-search and Iterative-generation in the 'surface plan for

BUCKET-DELETE. Fig. 71 illustrates the recognition of Trailing-search. Tailing-search, shown on te right

hand side of the figure, is a loop plan with four roles: Exit, Tail, Current and Previous. As in all loop
2

plans, the recursively defined role is called Tail. Te Exit role is a conditional plan which groups

together the exit test (Exit.10 of the loop- and the join (ExiLEnd) it oil the w -ay up". If the exit test

succeeds, th e loop terminates (and the input to the test is available through the join as an out ut of thep

loop); otherwise it continues. The Current and PreviOLls roles are wat make this plan a trailing loop.

The Current object on each iteration is the same as the Previous object on the ncxt iteration

(Tail. Previous). The Current object i a trailing sarch loop is the input to die test; and both die Current

and die Previous object are available through the join (Exit.]-',nd) as otputs of the loop. Exit.End is an

1. Using the overlays Binrel + tw0predicate and Predicate functio0predicate (see appendix).
2. A detailed taxonomy of o0l) flans is given in Chapter Nine.

I

Vekeie- too f 'Trqi in- sectrcW

. 136 CHAPTER SEVEN

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I I

I

I

I

I

I

I

I

I

I

.1

Il tire 7,

i - - - - .
I �j � I 1

. : 1 �� i�,� , , 1 I I , i � li

, I I]�'� , ,r 1, ;
i , I

fail]) ea r c In tic
lim it 1� 1

I, 9 , - , �J , ,- ; 1 � , I A ! a i ! I 1 i 1I I I I 1 i I1! W I 1! O 1 �5 11 11 A II III! !II I I I 'V., ii i �, 11 1 4 , I !� '- I , I 11

I � I

NEAR-MISS RECOGNITION 137

instance of Join-two-outputs, an extension of Join-outputs (see Chapter Eight) in which to outputs are

joined.

The surface plan for BUCKET-DELETE, Delete-loop, can be analyzed as Trailinfr-search by identifying

Delete-loop.1f wit. Trailinpscarch.Exit.lf (in which case in die code holds to die Current object), and

identifying Delcte-loop.End WiLh Trailing-search.Exit.End (in which case Q in the code holds to the

Previous Object).

Ficy. -2 illustrates the rognition of Iterative-generation in the surface plan for BUCKET-DELETE.

Iteradye-generation is the plan for repeatedly applying a given function (the same function each time) to

.the ou tput of the p receding application of tat function. This'plan has two roles: Action and Tail. Action

is an instance of O�Functjon, in which the function is applied; Tail i the standard recursive invocation.

Delete-loop can be aalyzed as Iterative-generation by identifying Delete-loop.One with Iterative-

generation.Action, as shown in the figure.

Following te recognition of Trailing-search and Iterative-generation, te system also checks

whether any standard specializations or extensions of these plans ae applicable. In this example, the
systern Finds Trailing-v,

.1., neration+search in the library, which is an extension of both rrailing-search and

Iterative-generation. Trailing-generation+search has five roles: Exit, Current and Previous (inherited

frorn Trailing-search); Action (inherited fm Iterative-generation); and Tail (recursively defined as in

both'-frailing-search and Iterative-generation). Trailing-gcneration+scarcb also inherits all die constraints

between these roles from both Trailing-search and Iterative-gencration, and adds one more, a data flow

constraint. between ActionOtlitput and Exitfflnput.

When the system tries to recognize Trailing-gencration+search in Delete-loop, it finds that only one

constraint is missing - the data flow from Action.Output to Exit.lflnput. Furthermore, this is taken to

be a -near-miss, rather tan a simple failure to match,'- and the following message is generated warning the

programmer about a, potential error.

WARNING! TE LOOP 1k.1 BUCKET-DELETE IS ALMOST A
TRAILING GENERATION AND SEARCH,

CURRENT: P
PREVIOUS: Q
EXIT: (COND ((EQUAL (CAAR P)
ACTION: (CDR P)

EXCEPT THAT THE OUTPUT OF THE ACTION IS NOT EQUAL TO THE
JNPUT OF THE EXIT TEST.

Notice that because this wrning message is gnerated as the result of a near-miss recognition, the

programiner gets much more contextual information dan would result from detecting this error by'othcr

means (e.a. by noticino tat die variable Q could be used before it is st). In particular, the system is able

to identify the roles played by the parts of the program, i.e. and a not just any variables 'in the

program, but are te current and previous values of a trailing search, and so on. This information makes

it asier for the programmer to correct te problem.

.i-. rhe exact criteria for distinguishing in general between near-misses and failures to match x0l have to be determined
experimentally.

ill �,, ii; o

138 CHAPTER SEVEN

eo*"N

,NNW.

oxvu�-

I

v 1r VW. LAZO 0 v

ti C e t le el�F'gur Rvcognitiol!-� ra, 11,'egyenera iIlk A
1w,

Illinois

LOGICAL FOUNDATIONS 139

CHAPTER EIGHT

LOGICAL FOUNDATIONS

8.1 Introduction

The preceding chapters have focused on how the plan calculus can be used in a program

understanding system, such as a programmer's apprentice. This chapter takes a more semantic and

formal approach to plans. We begin by defining a logical language, similar to the situational calculus

used by Green[31.1 and McCarthy and Hayes[44], which is adequate for expressing the fundamental

computational concepts underlying te plan calculus.

We then use the situational calculus to provide a semantic foundation for the plan calculus by

giving ules for translating plans into sets of axioms in the situational calculus. The presentation of tese

rules will be done in two stages. First we will develop enough of te situational calculus to support the

semantics of data plans and data overlays. We will then add a notion of temporal order and give the

translation rules for temporal plans and temporal overlays.

One important reason for providing a formal semantics for te plan calculus is in order to state

precisely the rules of inference o plans. These rules of iference provide the aswers to questionssuch

as whether one plan subsumes another, and whether one plan is a correct implementation of another.

This is particularly important in order to pre-verify plans in the plan library.

In most of this chapter, examples of Lisp computations will be used to motivate various aspects of

the formalism. However, the logical framework developed here is equally applicable to other

conventional sequential programming languages.

8.2 Mutable Objects and Side-Effects

The everyday world of physical objects is a- system with mutable objects and side effects. For

example, if I drill a hole in my dining oom table, I normally coose to tink of it as flic same object ven

though it now behaves differently (i.e. has different properties). Similarly for a hierarchically structured

object, such as an automobile, changing some of die parts (for example replacing die brake linings) is

normally viewed as a side effect, rather than resulting in a new automobile which has many of the same

parts as die original.

The question of side effects is tied p with te phenomenon of naming.- As observers of the

system, we choose to use te same name or die dining rom table and the autornobile at two different

points in time, despite te fact tat they have been modified. 'Fhe notion of mutable objects thus involves

1. SIsSrnan ad Steele give a very good illustration of this point in the context of programming language interpreters in 661-
z

140 CHAPTER EIGHT

two aspects: identity and behavior. Tac identity of a mutable object is unchangeable- its behavior can

change over time.

Syntax

The language we will use to express these ideas formally is called a situational calculus.

Syntactically, this will be a standard first order logical language with constants, variables, function and

relation svinbols, logical connectives (A, V, :D and quantifiers (V and 3 and equality = and

Set theory (E and �) and integer arithmetic (Plus, Times, Gt, etc.) are taken for granted.

Basic Semantic Domains

The identity of a mutable object is embodied in its name. The set of names is called P. If p is a

namel we will commonly say "the object p rather than more precisely "the object named by p". Names

are similar to what are called pointers in computer science.

The universe of possible behaviors is called U. Think of U as a universe of mathematical entities

which are used to describe the properties of objects at given points in time. For example, suppose we

want to talk about mutable sets; U would then be the niverse of mathematical ses.' A nice feature of

this approach is that U can be treated strictly as formal domain (with an equality relation), i.e. te ormal

treatment of mutability is independent of te theory of each kind of behavior.

Time is represented as a set of situations, S. Situations are denoted in te language y constant

symbols such as s and t. In this section, we ar� interested only in a notion of time for distinguishing

different behaviors of mutable objects. In a later section, a primitive ordering relation on situations will

be introduced for specifying the flow of control in computations.

Behavior Functions

The behavior of an object at a given point in time is expressed by a behaviorfunction, which maps a

name ad a situation to a behavior.

B PXS--+U

Tbe trm B(ps), where,13 is a behavior function, may be thought of as expressing the "state of

object p at s.2 The otion of wether or not an object p exists at time s is represented by mapping the

behavior of p in some situations to a distinguished element of U called Undefined.

Generally speaking a computing system provides the user with a set of primitive names and one or

more primitive behavior ftinctions, out of which all other mutAlc objects are bilt. For xample, in Lisp

the primitive names are te pointers (addresses) of coNs cells, arrays, and atoms. he primitive behavior

functions specify die dotted pair behavior (i.e. theCAR and R) Of CONS cells at given points in time; the

1. It will later trn ow that U, and eed not disjoints but this insulation makes this nial exposition simpler to nderstand.
2. We wil! Fee ,ter tat any different behavior functions n be sed, corresponding to different views of an bject

BEHAVIOR FUNMONS 141

array behavior (i.e. the current function from indices to objects) of array pointers; and the property list of

atom pointers.

Equality

Equality in P, S and U is denoted by with the sual rule of substitution. We first consider the

intuitive meaning of equality in these three domains, and then discuss how the notion of side effect is

represented using equality.

Intuitively, p = , for two names, p and q, means that p and are different names for the same

mutable object. This could arise, for example, if we introduced two anonymous objects named p and q,

and then wanted to consider what would happen if they wre the same object.

Intuitively, s=t, for two situations, s and t, means that the behavior of all mutable objects is the

same in s and t We express this fori-nally as the Axiom of Extensionali1j, for ituations, wich has the

following form (where BC,... are behavior functions).

V st [Vp [Bp, s) = Bp, A Cps) = Qpt t) A ... I D s=1]

For a given computing system it is adequate to include only the primitive behavior functions in this

axiom. For example, for Lisp, two situations are equal in which all coNs cells have the same CAR and CDR,

all arays have the same items, and all atoms have the same property lists. ater in this chapter, we will

extend this axiom to distinguish situations which are temporally distinct, bt in which the bhavior of all

objects is the, same.

Equality in U is the equality relation for the particular mathematical domain used to represent

behavior. For example, if U is sets, then normal set equality is used.

Side Effects

We speak of a side effect having occurred when a object behaves differently in two situations.

Formally this is when for some behavior function, B, and situations s and t,

B(ps)#B(pt)

We say here tat p as been modified. For example, to describe the side ffect in which the integer

3 is removed from the utable 'set p wich originally contains the integers 1 2 and 3 we write the

following.

set(ps = 12,31
set(pt = 1,21

To say that die behavior of an object p is te same in two situations, s ad t, we write B(pS, = 3(pt).

Note that this approach to representing side effects differs fi-orn tat tken by Green, McCarthy and

Hayes. In teir calculus, an extra situational variable was added to all the function and relation symbols

which described tirrie-dependent aspects oobjects. So for xample, for a mutable set p they would write

member(xps) to assert that x is a member of p at time s. At some other time #s, it teir might be the

case tat --irncrnber(xpt).

I-- I -- -l-I 1. I - --� - ---i 1 - I - 2 - ---, - � , � . I

142 CIIAPTER EIGHT

This situational otation becomes awkward, however, when one introduces defined relationships

between objects. For example, suppose we wish to assert that between situations s and t some elements
may ave been removed from set p, but none have been added. The appropriat rlation to use here is
subset. In Green, McCarthy and Hayes' approach we are forced to define subset as follows, adding two
situational arguments:

subset(pqst) =_ Vx [member(xps),D membcr(xqt)

We the -n would then assert subset(ppts) to specify the indicated side effect. In contrast, the
situational calculus itroduced here allows us to preserve the standard algebra of set relations. So for
example we could write

set(pt) et(ps)

to specify the 'Side effect discussed above.

Behavior Types

In practice, we want to use many different mathematical domains, such as pairs, sequences, sets,
integers, lists, etc., to specify the behavior of mutable objects. These sub-domains'of U arc called
behavior types.

The details of how a behavior type is specified are not important for this level of discussion. For
now we can think of a type as providing two iings a predicate on elements of U which distinguishes
behaviors of tat type from other behaviors, and a rule foi- determining equality between behaviors of
that type. For example, for dotted pairs, the type predicate is Dotted-pairp, and the rule for equality is an
axiom which says that two dotted pairs are equal if theirCAR andCDRare equal, as shown in Table 8-A.

Associated with each behavior type we usually define a behavior function wich maps to elements
of that type. For example, Dotted-pair is the primitive behavior hinction f Lisp which specifies the
dotted pair behavior of a coNs cell at a given point in time. This function thus has the following
relationship to the type predicate Dotted-pairp. (In the following local context Greek letters will be used
for elements of U.)

Vps [a = dotted-pair(ps) D dotted-pairp(a) v a undefined

Table 8-A. Axionis for Dotted Pairs.

Axiom ofExtensionalily

VAj� dotted-pairp(x A dotted-pairp(y A car,x) carG) A cdr(x) cdr(y) D x=y

Axiom of Comprehension

Vxy[[x#undcfined Ay#undefined] ! 3z[dotted-pairp(z) Acar(z)=.x Acdi-(z)=y I

BOW -'GR TYPES 143

Alternatively, we can (and will) take the approach of considering the behavior nction ra r an

the type predicate as primitive. For example, for dotted pairs, we can define the type predicate in terms

of the behavior function as follows.

dotted-pairp(x) 3ps dotted-pair(ps) = x A x# undefined

In general, for type T (formally a behavior function), we can always write

[3ps T(ps) = x A x# undefined I.

where we need to assert a type redicate on x. Furthermore this will be abbreviated'

instance(Tx) .

Function Objects

Many plans in the library are parameterized with respect to functions and relations. For example, a

directed graph is modelled as a set of nodes and an edge relation. The accumulation loop plan abstracts

away from which particular aggregative function (e.g. Plus, Times, Union) is used. We also need to talk

about functions as mutableobjects. For example, splicing operations are viewed as side effects to the

edge relation of a graph.

In order to formalize such plans, we introduce functions as a behavior type in U. The standard

technique for doing this is in a First order language is to itroduc te ffinction symbol, Apply (and
guments, etc.), which is aviomatized ''s sown in Tab'- 8-B. 7or basi�.,

%, %I " 1XBinapply for functions of to ar, a

functions, such as Plus, Times, etc. which we want to use both as first order function symbols and as

elements of U, we introduce corresponding underlined symbols such as Plus, etc. with axioms

such as the following.

Table 8-B. Axioms for Functions.

Axiom ofExtensionalily

Vfg instance(functionf) A instanceffunctiong A Vx a ply(fj) apply(gx) f g I

Axioms of Comprehension

Vxy 3f[instanceffunctionf A apply(fx) = y

VA instanceffunctionf A instance(functiong)
:D 3h [instanceffunctionh)

A Vx apply(fix)_ undefined app1y(hX)=aPP1Y(gX)
A [apply(gx = undefined D apply(hj = apply(f,.�) I

1. Instance must be formallv treated as a syntactic abbreviation in oder to keep the lnguage first order.- 0

144 CHAPTER EIGHT

Vx apply(onevlus.x) = oneplus(x)

Furthermore, given this convention, we will usually omit the uderlining since the underlined

symbols can appear only as terms, which are syntactically distinct from function symbols in a first order

language.

Relation objects are modelled as boolean valued functions. For example, the element of U which

corresponds to the arithmetic binary relation, Gt, is axiomatized as follows;

Vxy [binapply(gtjj) = true ++ gt(xy)

Sequences are treated as functions on a range of integers (basically that a squence is a function

defined for all integers between I and the length of the sequence). This makes it convenient to model

vectors in Lisp as mutable sequence objects. For example, to describe a STORE operation in which the first

item of a vector p is changed from 3 to 4 we write the following,

apply(sequence(ps),I) = 3
apply(sequence(pt), I) = 4

As an example of mutable function objects, consider a view of Lisp in which Car and Cdr are the

names of mutable function objects, whose domains are coNs cells. In this view, RPLACA and RPLACD are

modelled as modifying the function behavior of Car and Cdr. rather than modifying the dotted pair

behavior. of a given coNs cell. The relationship between these two views is expressed by the following

axioms.

Vps applyffunction(�ars),p) = car(dotted-pair(ps))
Vps applyffunction(�drs),p) = cdr(dotted-pair(ps))

8.3 Multiple Points of View

The ability to view the behavior of an object in several different ways is fundamental to the plan

calculus. We also need to represent objects whose behavior at a given time depends on die behaviors of

other objects at the same time.

As a simple eample, suppose we are using a computing system in which mutable sets are not

provided as primitives. If mutable sequences are available (either as pimitives or themselves built out of

some other mutable objects), we can i effect implement a mutable set by viewing a sequence'as the set of

its rangc.elements. Tis point of view is defined formally as follomis.

a= sequcncc>set(ps) instance(setcr A
Va[(a E c) +-> 3i [apply(sequence(ps),i = a A a#undeflned

Sequencvset is a behavior fnction for sets. Notice that the form of this definition is to construct a

set bhavior function using a sequence behavior function, as highlighted below. I

a=scqucncosct(ps) = [...sequence(ps) ...]

W."ImWillaw"W" I - I

MULTIPLE PO NTS OF VIEW 145

We can make other definitions of this form to describe how to implement set behavior in terms of

list behavior,

(T=list>set(Ps) list(pS).. I

and sequence behavior in terms of list behavior,

0 =list> sequence(ps) ... ist(ps)...

and so on. This way of defining behavior functions in trms of other behavior functions is the key 'Idea in

representing the implementation of mutable objects.

Constants

The formal system defined. above introduces a slight problem with respect to. constants. We would

like it to be the case that definitions like tat of Sequence>set above express both the implementation.

relationship between athematical squences and mathematical sets and between mutable sequences and

mutable sets. This poblem is solved by extending the functionality of behavior functions so that eir

first argument may be either a name or an element of U.

B: (PuU)XS--+U

For each primitive bhavior function, such as St, SequenCe and List, we then define an additional

axionn which says in effect tat cnstants are immutable objects which believe like tlieniselves.'- For

example, for Sequence we have te following axiom.

VO [instance(sequenceO) --D Vs sequence(Os) =

Sharing

Related to te notion of mumble ojects ad multiple points of view is the fact that two objects can

share strutAure. T signffican�%ce of sharing is tat side effects on a object propagate to bcome side
2effects on other objects with whiCh it shares structure. For example, in Lisp, a single RPLACA can modify

the behavior of several different list objects.

Sharina arises out of implementations which involve names. In order to describe such

implementations, we need to make names part of I-J.

PCU

In other words we can have pairs of names, sts of names, squences of names, etc. Given the

convention introduced above that behaviors name themselves, this means that die functionality of

behavior functions is now simply

1. Mis is similar to thc idea i Lisp that constants such as T, I L and integers, evaluate to themselves.
2. This phenomenon is also sometimes alled "aflasing".

146 CHAPTER EGHT

B U X S --) U.

Since we still want to distinguish those elements of U which are not names; we define the set of
constants, V as

V = U-P.

The easiest way to explain how shared structure and te propagation of side effects arises from the
,use of names is by an example. Consider implementing a mutable) set as a mutable) sequence of
disjoint (mutable) sets, such that an object is a member of te implemented set iff it is a member of one of
the sets in the sequence. This is part of the idea of hash tables, in which die sets in the sequence are called
"buckets". This implementation can be defined fon-nally as follows. (In the following local context,
Greek letters will now be used to denote constants.)

0 = sequence-of-sets(ps) instance(sequenceO A
V ij [i#j D disj oint(set(apply(sequence(p, s), i),s),set(apply(sequence(p,s),J),s))

a= sequence-of-sewset(ps) instance(seta A
. V x [(x E a) 3 i (x E set(apply(sequence(ps), i),s))

Notice, as highlighted blow, -that the Set behavior function is used to obtain te set behavior of
terms in te sequence.

cr = sequence-,of-sewset(ps) ... set,�,apply(sequence(ps),...),s)...

This means that the terms in the sequence may be names. By always using behavior functions this
way, we provide for the mutability of objects.

Now let us see how this implementation leads to sharing. In particular, let us see ow a side effect
to any bucket amounts to a side effect to te implemented set. Consider a sequence named H which is
viewed as implementing a set according to the technique of Sequence-of-sets>set. Furthermore, suppose
B is some bucket of 11 at some particular time s,

apply(sequence(14,s),i =

and that die sequence H is not modified between s and

sequence(Hs = sequence(Ht)

However, if (and only B) is modified between s and t, i.e.

set(Bs)# set(Bt)

Vj[j:#i : st(apply(sequence(fl,s).j),s)=sct(appl��(sequence(Hs),]),t)I

it follows frorn the definitions above that te Sequence-of-sewset. behavior of H is also modified.

sequence-of-sets> set(lis)# sequence-of-sets> set(Ht)

SHARING 147

The general 'oint illustrated by this example is that the potential for tructure. sharing and the
propagation of side effects is introduced %Alhenever you start to manipulate names (pointers) as behaviors.

It is usual to think of sharing at the lowest level of implementation, such as at the machine language level,

or at te coNs cell level in Lisp. This example demonstrates that it may enter in at any level of

abstraction.

Sharing does not always arise when pointers are used. For example, suppose we simultaneously

view the sequence H above as iplementing a set another way, e.g. according to Sequence>set. In this

view for the same situations s and t, no side effect has occurred.

sequence> set(Hs = sequence>set(Ht),

This is because 'Sequencvset(Hs) is the set of bucket names, which doesn't change even though

one of the buckets has been odified. We could give separate names to tese two set views -of H as

follows.

Vs set(Ms) sequence-of-sewset(Hs)
V s set(K, s) sequence > st(H, s)

The set M can be thought of as the set of members of the hash table, and K the set of buckets.

'Shared List Structure in Lisp

As sond example o'sharing- we show how to rcprcsent a kind of sharing wich should be very

familiar to Lisp programmers - shared list structure. This example is more complicated than the hash

table example mostly because of the recursive nature of the, definition of list behavior. The axioms for

lists are given in Table 8-C.

Lists in Lisp are built out of dotted pairs whose Cdr is either Nil (a distinguished constant) or the

name of (pointer to) another such dotted pair. This is often called the "linked list" iplementation. It is

defined formally in terms of behavior functions as follows.

Table S-C. Axioms for ists.

Axiom ofExtensionality

V appqs [a = list(ps A list(qs A head(a) head(p) A list(tail(a),s) list(tail(,8),s)
a

Axiom ofComprehension

VXJ"S X#undefined A [.I,= nil v list(ys)#undefined
3ap [a IiSt(pj A a#undefined A head(a)= x A Mfl(a)=y

"M , , - - I I q - I � I - -

148 CHAPTER EIGHT

dotted-pairAist(ps) =_ [[X = nil A p= nil V
[instancc(list�X)
* head(X) = car(dotted-pair(ps))
* tail(X) = dotted-pair>list(cdr(dotted-pair(ps)),s)

Notice that this is a recursive definition. The tail of te implemented list is the list iplemented by

the CDR of the dotted pair (in te same way).

I To demonstrate how this implementation of lists in Lisp entails structure sharing we show an

example o how side effects are propagated. Consider three CONS cells C, D, and E CONS cells are names

with dotted pair behaviors), such that in situation s the Cdr of both C and D is E.

cdr(dotted-pair(Cs)) = E
cdr(dotted-pair(Ds)) = E

If we view C, D and E as implementing lists according to Dotted-pairAist, then by the definitions above,

C and D share tails in s, i.e.

tai1(dotted-pairAist(Cs)) = tail(dotted-pairAist(Ds))

If we now modify the Car of E (e.g. by RPLACA), without changing C and D, so that

car(dotted-pair(Es))# car(dotted-pair(Et))
dotted-pair(Cs = dotted-pair(Ct)
dotted-pair(Ds = dotted-pair(Dj)

it follows that

dotted-pair>list(Es)#dotted-pair>list(Et)

Furdierm ore, since they share structure with E viewed as a list, it follows that the list behaviors of C and

D have bot ben modified, i.e.

dotted-pairAist(Cs)# dotted-pairAst(Ct)
d6tted-pairAist(Ds)# dotted-pair> list(Dt)

8.4 Data Plans

We are now in a position to explain the meaning of data plans in terms of the formal framework

developed in die preceding sections. 'he basic idea is that a data plan defines a new type and an

associated behavior ftinction. We will first prosent an example, ad then otline the general rules for how

to translate frorn te data plan formalism to a set of axiorns in the situational calculus.

Consider die data plan. Segment, shown in Fig. 8-1, which consists of a sequence (the Base) and two

natural numbers (Upper ad Lower), vvith the constraint tat Upper and Lower are vlid idices for the

Base, and Lower is less than or equal to Upper.

. In terms of the formal frarnework developed in te preceding sections, the meaning of tis plan is

to define a nw behavior type with te two axiorns sown in Table 8-D. The first.axiorn says that two

segrnentsqre qual iff teir base sequences ad upl)cj- and lower idices are die saine. The second axiom

---- �- to-

i

DATAPLANS 149

"OW "MOW "Iftwo.
.slow 14".

.WOW
.001

10, -

j

I CLSP (-szlue-vNr-e)

N

I
I
I
I

-I
f

I

k

I

i

i

I

I

I

I

i

I

I

I

I

I

I

I

OvJW6 CA

j

N%. "Waft. "aft-

SP3VAP,\At

Figure 8- 1. Segment Data Plan.'0�
V i -

I

150 CHAPTER EIGHT

Table 8-D. Segment Data Plan,

Axiom ofExtensionality

V appqs [a = segment(ps A segment(qs)
A sequence(base(a),s) sequence(base(p),s)
A natural(lower(a),s) natural(lower(,8),s)
A natural(upper(a),s) natural(upper(fl),s I

a

Axiom ofComprehension

Vx s[[sequence(xs):#undefinedAnatural(ys)#undefinedAnatural(zs)#undefined
A e(natural(j�,s),natural(zs))
A le(natural(j, sjength(sequencc(xs)))
A le(natural(zs),Iength(sequence(x,s)))

++ 3 ap [a = segment(ps A a undefined
A base(a) = x A lower(a) = j, A upper(a) z

DataPlan Segment
roles base(sequence) ower(natural) upper(natural)
constraints e(lower,.upper)

A c(.Iowerlencrt'-h(.basc) A W.upperjength(base))

says that for any sequence and tkAo nmbers which are valid indices for that sequence, there exists a
segment with that sequence as the base and the two numbers as the upper and ower indices; and
conversely, tat the tipper and lower indices of any segment are valid indices for the base sequence and
the lower index is less than the upper.

Notice that behavior ftinctions are used throughout tese axioms to refer to the behavior of the
parts of a segnient. Tis is necessary to allow for shared structure at ay level. For example this means
that die Base of a segment can be ither a sequence of the name of a sequence.

The general rle for translating a dta plan into a set of axioms in the situational calculus has two
steps. First, th,.- name of die plan frmally becomes a behavior function, and the roles of the plan become

functions on behaviors of that type. Second, t-,Alo axioms are xArritten involving these ftinctions.
The first axiom dines equality on the new behavior type in terms of t." uality of the appropriate

behaviors of the roles. So for data plan D with roles fg,..., restricted to behavior types T.U....
respectively, die following axiom schema (called the axiom of extensionality) is written.

V appqs [a - D(ps) A D(q, s)
A T(a), s) = T(ff s) A U(g(a), s) = U (g(fl), s) A ...

D a=#

------ -

DATAPEANS 151

The second axiom involves the type restrictions on roles of a data plan and the constraints between-

roles. Formally the constraints are an n-ary relation, where each argument position corresponds to a role,

with an extra role for the situ ation argument to the bhavior functions for each role type. So for the same

data plan D as above, with constraint relation, C, the following axiom schema (called the axiom of

comprehension) is written.

Vsxy... T(xs)#undcfined A U67,s)#undeflned A... A C(sxy...
3ap [a = D(ps A a#undefined A Ra) = x A g(a)=y A ...

This axiom specifies that instances'of the plan D exist, and that all instances satisfy te role type

restrictions and constraints.

Finally, the information in the axioms for a data plan can,- be written in more compact tabular form

as sown at the bottom of Table 8-D. This is the notation that will be used in the remainder of this

document for formal plan definitions. In this notation, the definition of the constraint relation is made

easier to read by using te role names pceded with a leading point (such as ".base") instead of

quantified variables corresponding to roles, as appear in the fully written out axioms. Remaining points

In constraint formulae are interpreted as normal function application. For example, a path name like

".f.r.s", where f is a role i the plan being defined, is formally equivalent to "s(r(J))", since r and s are

other role fnctions.

An additional abbreviation used in writing constraints in data plans is to make the behavior

functions applied to role functions implicit when fhe behavior function is the same as the type restriction

on die role. For example, at the bottorn of Table 8-D,

1e(.upperlength(.base))

is an abbreviation for

le(natural(.upper,s),Iength(sequeiice(.base,s)))

The type restriction on each role of a data plan is indicated in te compact notation in parentheses

following each rolc ame. For example, the axioms for lists are rewritten using this notation as follows.

DafaPlan List
roles had(object) tail(list+nil)

The type List+nil is defined by the bhavior function shown below.

X' 1ist+nil(ps) [X = list(ps) v = nil

Tbe absence of type restriction (otber tan being defined) is idicated by die keywOrd "object of

a.fter te role ame. For example, die axioms for dotted pairs can be rewritten using this notation as

follows.

Dataffin Dotted-pair
roles ar(object) dr(object)

152 CHAPTER EIGHT

8.5 Data Overlays

Intuitively, a data overlay is a many-to-one mapping from one behavior type to another. Formally,

a data overlay is a behavior function which is defined i terms of another behavior function. For

example, Sequence>set is a data overlay for viewing a sequence as the implementation of a set.

Furthermore, because of the way overlays are used in analysis and synthesis, the mapping must be total in

both directions. For example, for the Sequence>set overlay this means that given any sequence, there

exists a set which it hrplements in this way, and conversely, given any st, there is at least one sequence

which implements it in this way. These properties are written formally as the two totality axioms shown

in Table 8-E. The definition of Sequence>set is also repeated i this table for reference.

As in the case of data plans, it is more convenient to use a compact bular notation tan to write

out the definition and axioms for a data overlay as in Table 8-E. The tabular notation that will be used in

the rest of this document for data overlays is shown at the bottom of the table. The general rules for

recovering the fully written out formal logical definition and axiorns are as follow. In general, the

definition of an overlay V from behavior type T to behavior type U,

Data Overlay V 0 T U

is of the following form.

y = Vp, s) = in stance(Uy A ..y ... T(pgs)*.*

The cumitlent of dhis definition is in dic formula reld-ti-g y and Tps) above. T"ne st-dandard prefix,

Instance(Uy), is omitted in the tabular notation. Furthermore, two totality axioms are written from the

type iformation in te header of the tabular notation. Tese axioms have te following form.

Vxs T(xs)#undefined 3j, y=V(xs)
Vys U(ys)# u ndefined 3 x y = V(xs)

Table 8-E. Sequence as Set Overlay.

Totality Axioms

Vxs sequence(xs)#undefincd :) 3y y= sequencemt(xs)

Vys set(ys)# undefined 3x [y= sequence>set(xs)

Definilion

y = sequence >set(ps) instance(setj A V a (a E i) 3 i apply(sequence(ps),) a

Data0verlay Sequence>sct: sequence --),. set
definition j = squence) set(ps = V a[(a E) -* 3 i apply(sequence(ps), i = a

- I I - - --- , � - pow"'m

COMI T-ATIONS 153

8.6 Computations

In the plan calculus, computations are thought of as structures, sonic of whose parts are lements of

S (situations) and some of whose parts are elements of U (mutable objects and constants). In order to

formally describe computations in te situational alus, we introduce a new domain, C of

computations. C is divided into types which are specifled by axioms similar to those used to specify

behavior types in U. In the rest of this section, after some formal preliminaries, we present axioms for

various computation types. In the next section we use these foundations to specify the semantics of the

temporal plan formalism.

Temporal Order

Thus far we have been using situations only as arguments to behavior functions to distinguish the

different states of objects. In order to represent temporal order in computations we introduce a new

primitive relation, called Precedes, which is formally a total order on S. ntuitively, this relation captures

the notion of states occurring "before" or "after 11 other states. This relation also makes it possible to talk

about cyclic computations in. which all objects return to the same state as at some earlier time. Formally,

this is achieved by extending the Axiom of Extensionality for Situations as follows.

V st Vp [Bpj) = Bp, A Cp, s = Qp,) A ...
A V u [precedes(su) *-> precedes(tu) s= i

BC,... here are the appropriate primitive behavior functions as before. This axiom says that two

situations are identical iff die behavior of all objects is the same and they are indistinguishable in the

temporal order.

Note that Precedes is a total order. This is because we are formally dealing with sequential

computations. As we will see shortly, however, in specifying computation types we will often leave the

order between two steps unconstrained.

Termination

Another basic feature of computations we need to deal with is ten-nination. In order to talk about

this formally, we introduce a bottom lement in S, i.e.

Vs precedcs(s,-L .

Intuitively, -L represents a computation step wich is never reached. As we shall see in the

following sections, appears in the axioms for elementary cmputation types, such as operations and

tests. The termination poperties of composite types, sch as loops, are then derived from te axioms of

die components and their connections. Important termination properties a wether or ot a given step

is reached in all instances of a computation type, and Abether there exists a instance of a computation

type in which a given step is reached. Foln-nally these properties amount to te clairn tat te situations in

question are not equal to -

154 CHAPTER EIGHT

'Operations

The most basic computation types are operations. Operations in general involve two situations, one
of which precedes the offier, and some number of input and output objects. An example of such a type is
set addition operations. Intuitively a set addition computation is an operation involving three objects:
the old set, the now set, and the ember added. This is specified formally, by the two axioms shown in

Table 8-F. These axioms involve te type predicate, Set-add, and te functions In, Out, Old, New, and
Input, on elements of the type 1�fliich act like the role functions of a data structure (e.g. Head ad Tail for
lists). For example, consider two situations, s and t, and mutable sets A and B, such that the. following
statements hold.

precedes(st)
set(As) 11,21
set(Bt) 11,2931

Formally, what we have here is a computation, a such that

set-add(a)
in(a) = s
out(a) = t
ol d(a) = A
input(a) = 3
nl?.-,% w(a) =

Table 8-F. Set Addition Operations.

Axiom ofExtensionality

Vap set-add(a A set-add(p) A in(a) in(8 A out(a) out(p)
A old(a = old(p A input(a) input(fl A new(a) new(fl) a t I

Axiom of Comprehension

Vxj,,zst precedes(st A s# _L
1 I A set(xs)#undcfined A set(j,4)#undefined A z#undefined

A (z set(yt))
A V iv [iv# z D [(w E stG�,t)) +-* (w E set(xs))

3 a [set-add(a A na) = s A out(a =
A od(a = x A new(a = A input(a = z

IOspec Set-add old(set) input(object) =:: nw(set)
postconditions (.input E nw)

A Vx [x#.input D '.input nw),e- (nput E old)

OPERATIONS 155

In the following local context Greek letters will be used to denote lements of C. Note that we will
also informally refer to elements of C as instances of a computation type, T. Fonnally, this just means

T(a).
The first axiom in Table 8-F defines equality of set addition operations i terms of equality of the

situations and objects involved. The second axiom specifies a ncessary and sfficient condition between
the objects and situations of set addition operations. These axioms amount to what is standardly called an
input-out ul specification.

Let us now pay attention to the details of te second axio ' in Table 8-F. Part of the necessary and
sufficient condition deals with the temporal order and termination properties of set addition operations,
as shown below. (This pattern of specification is followed for operations in gneral).

precedes(sf A s:# -L D [1 I A

Thus the In situation precedes the Out situation. Furthermore, if the In situation is reached, it
follows that the Out situation is reached, i.e. the operation always terminates. Notice that it follows from
this axiom and the definition of �L tha, if the In situation is never reached (i.e. s= I then the Out
situation is never reached (t= 1).

The remainder of the condition part of the second axiom specifies that te members of die New set
in die Out situation are exactly the members of te Old set in the In situation, with the sole addition of
the Input object. This relationship is conditionalized inside t I to avoid contradiction in the case wen
neither situation is reached, i.e. s = = 1.

Notice that this specification uses the Set behavior function in referring to die Old and New objects.
This means that instances of this computation type include both operations in wich the input and output
sets are distinct objects, ad those which ivolve a side ffect (e.g. suppose old(a)=new(a) in the
example above). More will be said about plans involving side effects at the end of tis chapter.

A more compact tabular notation for writing input-output specifications is shown at the bottom of
Table 8-F.. The first line of this notation lists die name of the operation type (formally a predicate on
computations), separated by a slash from the input roles, separated by a double arrow from the output
roles. Type restrictionis are idicated in parentheses following the role names, as in the compact dta plan
notation. Roles are formally fnctions on computations. To recover die formal axioms fom. this notation

for a general input-output specification, P, with input roles fg,..., and output roles mn,..., we first write an
axiom of extensionality of the following form.

Vap P(a A P(p) A in(a) = in(p A out(a) - out(fl)
A Aa)=f('fl A g(a) = gfi A ... A m(a) = rn(,8 A n(a) n(,8 A

D a=#

The constraint between roles in an input-output specification is made easier to read in die compact
tabular notation by using te role names preceded wth a leading point instead of quantified variables,
similar to the constraint notation for data plans. Embedded points are interpreted as normal functional

nesting.

IMM--

156 CHAPTER EIGHT

Like the compact notation for data plans', the application of behavior functions corresponding to

role types is also made implicit in compact input-output specifications. For example, at the bottom of

Table 8-F

(.input E new)

is an abbreviation for

(.input E set(.new,-in)).

By convention, the situational argument to sch implicit behavior function applications is either

".in" or ".out", depending on whether the role involved is an input or an output. No bhavior function is

supplied for roles, such as Input, without type restriction (indicated by the keyword Object as in data

plans).

After expanding all abbreviations as outlined above, die constraint relation is formally a relation, C,

where each argument position corresponds to a role, plus two situational arguments which correspond to

In and Out. In general for an input-output specification P with iput roles f,&.., with type restrictions

TU,..., and output roles rnn,..., with type restrictions AB,...,we then write the following axiom.

Vstxy...vw.. p recedes(s, A s# I D
t:# _ A T(xs)#undefined A UG),s)#undefined A

A A(vt)#undefined A B(w 1)# undefined A ...
A C(s,1,xy,...,vw,-..)

++ 3 a [Pa) A in(a) = s A out(a) = t
A fta)=x A g(a)=y A ... A m(a) = v A n(a) = iv A ...

Finally, note that the constraint clauses in an input-output specification are divided into those

which involve only iput roles (called preconditions), and those which involve, both input ad output

roles (called postconditions). For example, the following is te compact specification of �Function, ie

operation of applying a ffinction to an argument to get die corresponding range lement

IOspec ea Function/ opffunction) input(object) output(object)

Preconditions apply(.op,.input)#undcfined

Posteonditions apply(.op,.input) =.output

Tests

The second basic computation type in the plan calculus is tests. TesLs in general have three

situational roles a input situation, In, and two alternative following situations, Succeed and Fail, only

one of which is reached in any instance.

An example of a type of test, membership tests, is shown specified formally in Table 8-G. The first

axiom is die usual axiom of extensionality Which efines euality on a computation type in terms of

equality of its roles. The roles of a membership test are the three situational roles, I, Succeed and Fail,

and two object roles, Universe (a set) ad Input.

I i

TESTS 157

Table 8-G. Membership Tests.

Axioni ofExtensionality

V ap member?(a A mmber?(#) A in(a) = in(,8 A succeed(a) = succeed(ft A fail(a) fail(fl)
A universe(a) = u niverse(fl) A input(a) = input(p) :D a ft

Axioni ofComprehension

Vxystu precedes(st A precedcs(su A = -L V u= I
A[s I D[[t I Vu#

A x#undefined A setG1,s)#undefined
A [t# -L <-* (x E setG,,s)) I I

3 a member?(a) A in(a) = s A succee d(a) = I A fail(a) u
universe(a) = A input(a) = x

Test Member?/ universe(set) input(object)
condition (.input E universe)

The second axiom in Table 8-G says roughly that membership tests succeed if the Input is a
member of te Universe; otherwise they fail. This is expressed formally by specifying the. conditions
under which the Succeed and Fail roles are equal to , as shown below.

precedes(sl A precedes(su A [t= I V u=
A [s I t#1 V u# I I A .. A #

This is the pattern of specification used in general for tsts. At most one of either Succeed or Fail is
reached in any istance. If the condition of the test is true in the In situation, then die Succeed situation
is reached; if it is false, then die Fail situation is reached. If die In situation is never reached, it follows
that neither Succeed or Fail are eached.

In the next section, we will see how tests specified this way can be combined with'other
computations, via the notion of control flow, to constnict specifications for larger conditional

computations.
Finally, Table 8-G shows an example, of the compact notation for tests. The header line lists the

name of the computation type followed by die object role names with type restr 'ictions, similar to the
input-output specification otation introduced in die preceding section. The axiom of extensionality
Which follows from this notation in general is obvious. The axiom of comprehension for a test P? with

object roles Q,... ad type restrictionsTU,..., is of die following form.

6 � - -I I PR --- --
- ---4- -

-, - 2�- -;� .I- PN -Am � -��- I -1-11-1.1-05WRMIRWAKM --I I I ------ I M-

158 CHAPTER EIGHT

V stuxy... precedes(s, � A precedes(s, u A [t u
A [s#J- D [[I# J V u#- I

A T(xs)#undefined A U6),s)# undefined A...
A I# _L <-+ CXy,...)

++ 3 a P?(a) A in(a) = s A succeed(a) = I A fail(a) = u
A fa) = x A g(a) = y A . I

The relation C above is derived by expanding abbreviations in the condition part of the compact

test notation in the sarnc way abbreviations are expanded i the preconditions and postconditions of an

input-output specification, supplying ".in" as the situational argument to implicit behavior functions

where required.

8.7 Temporal Plans

In this section we extend C by allowing parts of computations to be not only situations and objects,

but also other computations.]'his gives us the ability to combine already defined computation types,

such as operations and tests, into the specification of larger computations. For example, we can define a

computation type wich has two steps. The first step is an instance of cabiscrimination-1 the second step

is a membership test (Member?). The temporal plan rpresentation of this computation type is shown in

Fig. 82. The axioms which are the formal translation of this plan are given in Table 8-H.

Table 8-H. Discriminate and Member Plan.

Axiom ofExtensionality

Vap discriminate+member?(a A discriminate+member?(fl)
A discriminate(a) d iscriminate(fl A if(a) if(,8) : a

Axiom fComprehension

Vap [�Aiscrimination(a) A member?(P A cflow(out(a),in(fl))
A st(outptit(a),out(a))=set(uiiiverse(p),in(,fl))
A in pu t(a) = i n) u tfl I

+ 3 [discriminate+mernber?(S A discriminate(S) a A if(S)

TemponalPlan discriminate+member?
roles discrirninate((discrii-nination) Jamember?)
constraints cflo�v(.discriminatc.out,.ifin)

A discriminate.output=.ifuniverse A Aiscriminatc.input=.ifinput

1. (Miscriniination is a specialization of CdFunction in wNch the Fiction applied p) is a discrimination, ad therefore the
Output is a set.

Nol"Ift ---- -- - , I . - I- � I -

'r'r-MPORkTF A-PLANS 159

I.- - W. oft- -- am.- . .- - - ---ft- I

I

I

I

I

I

I

I
I

I

I
I
I
I

I
I
I
.I

I
I
I
I
I
I

.�Now Imanow Immom- -"NEW

Figure 8-2 A Temporal Plan

160 CHAPTER EIGHT -

Notice tat te name of the plan, Discriminate+member?, is formally a predicate on computations.

The roles of the plan, Discriminate and If, are formally functions on computations, like Old, In, lnpu�

New, etc. in the preceding section. The ranges of these role functions, however, are computations, as can

be seen in the second axiom of Table 8-H highlighted below.

Vag [�,discrimination(a A mmber?(#) ... I
+ 3 [discriminatc+member?(6 A discriminate(S) a A if(S)

Table 8-1. Bump and Update Plan.

Axiom ofExtensionality

Vap bump+updatc(a A bump+u pdate(p A bump(a) bump(,8 A update(a) update('8)
A old(a) old(,8 A new(a) - new(fl I aI

Axiom ofComprehension

Vxyal3 [�oneminus(a A newterm(fl)
A iinper-,�egi�nent(x,in(a)):;6undefined
A upper-segmentG,,,out(p))#undefined
A cflow(out(a),in(fl))
A upper-segment(xin(a)) upper-segment(xin(fl))
A upper-segment(j, otit(a)) = upper-segment(y out(,8))
A integer(fiiput(a),in(a)) = natuL-al(lower(tipper-segiiient(x,in(a))),in(a))
A sqti%-Ince(old(p),i-i(p))=sequence(basc(lipper-segmeiit(x,in(,8))),iii(13))
A integer(output(a),out(a)) = natural(arg(p),in(p))
A integer(output(a),out(a)) = iatural(lowei-(upper-segment6),otit(a))),out(a))
A sequence(new(p),out(p)) = sequence(base(upp,,-Ir-segi-nento,, out(fl))),out(fl))

38 [bump+update(S)
A bump(S) = a A updatc(S) A old(S) x A nw(S) = y

Temporaffllan Bump+update
.ioles.bump((t�;oneminus.).update(newterm).old(upper-segment)..new(upper-segmcnt)
constraints cf[owGbumj').out,.update.in)

A old.bump.in ='old.update.in

A new.bump.out ='old.update.out
A bump.input=.old.lower
A update.old =.old.base
A buirip.output=.update.arg
A bump.output=.new.jower
A update.new =.new.base

TEMPORAL PLANS 161

In general, te type restriction on ct role in a tmporal plan is either a bcha-v-ior type formally a

behavior function) or a computation type (formally a predicate on computations). An example of a
temporal plan which has some oil both kinds of roles is shown in Fig. 83. Me Old. and New roles are

2restricted to be instances of flee Upper-segment data plan;' Bump and Update are operations. The
axioms for this plan are shown i Table 8-1. The axiom of comprehension in tis table is quite long, but is
of the same general form as the axiom of comprehension for Discriminatc+member?. The first three lines
stipulate type restrictions. For temporal roles, these are assertions of the appropriate computation type

predicates, e.g.

Cdoneminus(a A newterm(p).

For behavior type roles, the assertion of a type restriction has to include the situation in which it is

used, e.g.

upper-segment(xin(a))# undefined
upper-segment(j, out(ft))#undefined.

For data roles that are used in more than one place, additional equalities are added to guarantee
that the data object is the same in all situations of use. For example, the two lines following the control
flow constraint in te comprehension axiom of Bump+update are for this purpose.

Upper-segment(xin(a)) = upper-segment(xin(,8))
upper-c-ea,,m,--ntb,,,,),,it(a)) -uppcr-se-,mcnt(J,,oUt(P))

The remaining equalities ave to do with data flow, which will be discussed later in this section.

Control Flow

Control flow constraints (hatched arrows hi plan diagrams) are formalized in the situational calculus

as follows.

cflow(st) precedes(sl A [s= I + t=

In other words, control flow implies temporal order and trmination is preserved. However, the

two situations do not have to be equal.
Each control flow arc in a temporal plan becomes a Cflow clause in the xiom of comprehension for

the computation type. The terms in this clabse are the appropriate In, Out, Succeed or Fail roles, as read
from the diagram. For example, the control flow arc in Fig. 82 becomes the following clause in the
comprehension axiom of Table 8-H.

cfloW(out(a),in(,8))

L Upper-segment is a pecialization of Segment in which the Upper index is equal to the lngth of the sequence.
2. The specifications for �'Oncminus and Newterm can be found in the appendix.

162 CHAPTER EIGHT

I 00

*4%

14%ft

I

I

I

I

I AOW

foo

I I

I

I

I

I,

I
I
I
I
I

I

I

I

'I-- maw low Now -mm,,

-*Mao- -noun. 4OW- IVAMW '-WOW

Figur 83. Another"Femporal Plan.

DATA FLOW 163

Data Flow

A second kind of 11alue i temporal plans is data flow, Data flow arcs in general are translated into

equalities between names and behaviors in different situations. The details of this translation, however,
depend on whether the data flow is between operations and tests, or whether it also involves data plan

roles, such as Old and New in Bump+update.
We start with the simple case of the data flow arc in Discriminate+member? (Fig.8-2) from

Discriminate.Input to If.1-1put. This arc is translated into die following clause in the comprehension
axiom for tis plan.

input(a) = input(p)

This is an example of data flow between the untyped roles of two operations. In other words, what
is being passed between these two operations is being treated as a name. The other data flow arc in.

.Fig. 82 is between Discriminate.Output (a set) and H.Universe (a set). For typed roles, the rules is to
write the equality in terms of the behavior function and the appropriate situational role, such as In or

Out, e.g.

set(output(a),out(a)) = set(universe(p),in(p)) .

The distinction between wether or not a data flow equality involves a behavior function is similar
to the distinction between "call by reference" and "call by value" in some programming languages.

Ficr. 8-3 showl dnta flow involvina data plan roles. n particular, different parts of Old and New are

inputs and outputs of Bump and Update. These data flows are translated into die equalities listed on

separate lines of te comprehension axiom in Table 8-1. The first of these is

intcger(input(a),in(a)) = natural(lower(upper-segment(xin(a))),in(a)).

This is the translation of the arc frorn Old.Lower to Bump.Input in the plan representation. Notice

how the b6avior functions have been supplied on both sides above, ad that the situational aguments

are the In situation of die consuming operation.

sequence(old(fl),in(p)) = sequence(base(uppcr-segment(x,in(fl))),in(,8))

The next data flow arc, shown above, is from Old.Base to Update.01d. Here again we have

behavior fnctions on both sides, with the same situational argument, namely Update.1n. The translation

of the two data flow arcs involving New are similar, as shown below.

integer(output(a),out(a)) = natural(lower(upper-segi-nent(,,,out(a))),out(
sequence(new(),out(,8))=sequence(base(upper-segiiient(jiotit(fl))),out(p))

1. The input, and output of �,10nominus, are of �ypc integer. Natural is a specialization of Integer.

164 CHAPTER EIGHT

Finally, examples of the compact notation for writing the axioms for temporal plans are shown at

the bottom of Table 8-H and Table 8-1. In general for a temporal plan P with roles f,&.., we write the

following axiom of extensionality.

V a# P(a A P(p A Ra) = fp A g(a) = g(p) A ... I a=#]

The axiom of comprehension is of die following form, where fg,..., are tmporal roles with types

T9U1... and mn,... are data roles with types AB,... .

Vxy .. vw.. T(x A Uy) A ...
A A(v,...)#undefined A B(iv ...)#undefined A ...
A C(xy,...,yW,--- I

++ 3a [P(a A Ra)= x A g(a)=y A... A m(a)= v A m(a)= w A ...

The constraint relation C above is derived by expanding abbreviations in the constraints of the

compact notation in a similar manner to the way abbreviations are expanded in compact input-output

specifications. In particular, iplicit applications of behavior functions with appropriate situational

arguments are provided for path names which terminate in roles typed by behavior functions. For

example,

.if.universe

in the constraints of Discriminate+mcmber? is expanded to

set(.ifuniverse,.ifin) .

C also includes constraints tat guarantee an object used in more than one situation is the same in

all situations of use. Table 8-1 illustrates all these conventions. To fcilitate comparison, the constraints

of Bump+update in the compact notation are written in the same order ine by line as in the fully written

out axiom above in the table. Te first two lines of the compact notation in Table 8-1 following the

control flow constraint illustrate how situational arguments can be explicitly indicated in the compact

notation by subscripts.

Conditional Plans

Fig. 84 is an example of a conditional plan which computes absolute value.' The formal axioms

for this plan, written in compact notation, are as follow.

1. Lt-zero? is the test, for less than zero. Negative computes the negative of an integer.

CONDITIONAL PLANS 165

i

I I I
I

I

I

I

I I

I

I

I

I
I

I

I

I

I

I

I
I

Figure 84. A Conditional Plan.

- - I ---4 -II -S. , I -I PORR!"IMON01 , --.- -I I M'. 4mqw --- R"- &01 4� � I - ----

166 CHAPTER EIGHT

TenWoraffllan Abs
roles it-zero?) then(anegative) ndooin-output)
constraints 0ow(Hsucceed,then.in)

A cflow(.then.out,.cnd.succeed)
A cflow(Affail,.end.fail)
A ifinput=.thcn.input
A then.ou tpu t = end.succeed-input
A ifinput=.end.fail-input

This plan has two key fatures which are typical of conditional plans in general. First, notice the

control flow arc from If.Succeed to Then.1n. The ituitive meaning of this arc is that the CaNcgative

operation is to be performed only if the test succeeds. This is expressed formally as the following

property of te Abs plan, which follows from the way tests, operations ad control flow have been

axioniatized.

Va [abs(a) in(then(a))# I -* It(input(iRa)),0 I

Second, otice the data flow and control flow arcs involving the join (End). The meaning of these

arcs is that the output of te join is either If.Input or Then.Output, depending on whether die test

succeeds or fails. Stated formally, we want die Abs plan to have the following property.

Va abs(a) D
lt(input(iffa)),O) D output(end(a)) = negative(input(iff a))) I

A 'I'L(input"if(a)),0) :) output(end(a)) = input(if(ot))

This is achieved by axiomatizing joins (with oe output) as shown in Table 8-J. Joins are like the

mirror images of tests. Joins have three situational roles, Succeed, Fail, ad Out. Like tests, at most one

of either Succeed or Fail is reached in any instance. Unlike tests, however, joins do not represent any real

computation, since the Out situation is always equal to ither the Succeed or Fail situation, depending on

which is reached. The purpose of the join is to state, in a modular fashion, die connection between which

Table 8-J. Joining Outputs.

Axiom ofExtensionality

Vap [join-output(a) A johi-output(ftj
* succeed(a) = succeed(#) A fail(a) fail(p A out(a) = out(,B)
* succeed-input(a) = succeed-input(fl A fail-input(a) = fail-Input(p I

D a=#

Axiom of Coniprehension

Vsiux 7, I= I u= I A [= I D [s= u A x= z A [u= I s= I A x=y
+-> 3 a [joi note tp u t(a) A out(a) = s A succeed(a) = I A fail(a)u

A output((-x) = x A succeed-input(a) =.), A fiail-input(a) = z

044*"FAMW I I 1

CONDITIONAL PLANS 167

whether a test succeeds or fails and which of two possible outputs is made -Available for further

computation. The two possible outputs are the Succeed-input and Fail-input roles of the join. One of

these is equal to the Output role (which one depends on whether Succeed or Fail is reached), from which

data flow arcs to following computations emanate.

8.8 Temporal Overlays

A temporal overlay is formally a fnction from one computation type to another. Furthermore, like

data overlays, this mapping must be total in both directions. For example, consider the temporal overlay

shown in Fig. 8-5, which expresses how to view instances of the temporal plan Discriminatc+member as

implementing membership tests on a set implemented as a discrimination function.

The formal definition and totality axioms for this overlay are given in Table 8-K. Each

correspondence in the figure becomes an equality in the fon-nal definition. Unlabelled correspondences,

such as between Discriminate.Input on the left and Input on the right bcome simple equalities such as

input(,8) = input(discriminate(a))

Table 8-K. Implementing Membership in a Discrimination

Totality Axioms

V a [discriminate+mcmber?(a) :D 38 member?(P A = discriminate+member?> member?(a I

VP [mernber?(P) D 3 a [discriminate+member?(P A = discriminate+rnember?>member?(a)

Definition

/3 discriminate+member?>mcmber?(a) [member?(#)
A set(universe(p),in(p)) = discrii-niiiation>set(op(discriminate(a)),in(discriminate(a)))
A input(p) - input(discriminate(a))
A in(,B) = in(discriminate(a))
A fail(fl) = fail(iRa))
A succeed(fl) = succeed(if(a))

TetVoralOverlay Discriminate+member?>member? discriminate+member? member?
correspondences

iscrimin nber?.discriminatc.op)
member?.universe d' ation >sct(discrirninate+mci

menib� criminatc+mciiiber?.discriminate.input
A m-nber?.jn=disci�iniiiiatc+meinber?.cli�,,criminate.in
A member?.f,,iil=discriiiiinatc.+-jiienibei-?.iffaiI
A i-nei-nl)cr?.succced=discriminatc+iiieiiiber?.ifsucceed

W VA, t- we

Figure 8-5. A Temponal Overlay.

168 CHAPTER EIGHT

--I-

1!11 I'l

TEMPORAL OVERLAYS 169

Since overlays can be used in definiag other overlays, some correspondences in temporal overlays
are labelled with the names of other overlays. For example, the correspondence between
Discriminate.Op on the left and Universe on te right is labelled with ie Discrii-ninatimset overlay.1
Intuitively, this means that Discriminate+member?.Discriminate.Op is viewed as implementing
Member?.Universe according to Discrimination>set. This is written formally in the definition of
Discriminate+member?>mcmber? as follows.

set(universe(p),in(,8)) = discrimination> set(op(discriminate(a)),,Jn(discriminate(a)))

Notice that behavior functions are supplied for typed roles with the appropriate situational
arguments as usual.. In general, the definition of an overlay V from computation type T to computation
type U, where fg,... are the role functions of U, is of the following fonn.

ft = V(a) U(P A fffl) A g(fl) a... A

In other words, there is an equality for each role of P in trms of some function of a. This form,
together with the extensionality axiom of U, guarantees the uniqueness property of the function V.

As with data overlays, it is more convenient to use a compact tabularDotation than to write out the
definition and axioms for a temporal overlay as in Table 8-K. An example of the tabular otation is
shown at the bottom of the table. In general, frorn the header line

TeiWorafflverlay V: T --+ U

tile flowing two totality axioms are written.

Va [T(a) 3 U(fl A P =V(a) I
V# [U(,8) :) 3a T(a A = V(a I

The definition of the overlay function is abbreviated in the tabular notation by listing only the
equalities and leaving behavior functions and situational arguments implicit in the usual way.

8.9 Specialization and Extension

In this section we discuss two additional ways of making use of already defined plans in defining
new ones, namely, pecialization and extension.

Specialization

The basic idea of pecialization is to define a type whose instances are a sbset of another type. A

common motivation for doing this is to exploit die properties of die subtype in some particular
implementation. For example, we ave earlier in tis capter defined a general data plan, Segment,
involving an tipper ad lower index to a base squence. One way of implementing a mutable stack is to
use an instance of Segment in which only the oNver idex is varied - t upper idex is always equal to

1. This is a data overlay similar to Sequence-of-seOset introduced earlier in this chapter.

I - - - -- �. I - I MR., --- -- --- -- I

170 CHAPTER EIGHT

the length of the base sequence. We called this plan tTpper-segment. The formal relation between

Upper-segment and Segment is captured by the following statement.

a = upper-segment(ps) M [a = segment(ps)
A nattiral(upper(u),s)=lcngth(sequence(base(u),s))]

Thus Upper-segment is Segment with an additional constraint. In tabular notation, this will be

written as follows.

DataPlan Upper-segment specialization segment
roles base(sequence) .ower(natural) upper(natural)
constraints upper = length(.base)

Notice that a specialization has the same roles as te more general plan, and that te application of

behavior functions of the appropriate type for ach role is abbreviated in the constraints in usual manner.

The specialization of computation types is similar. For example, the following is the general input-

output specifications for finding a node in a directed graph (Digraph), which satisfies a given predicate.

10specDigraph-find/.universe(digraph) criterion(predicate) * output(objcct)
preconditions 3 x [nodC(.universex A apply(.critcrionj) = true
postconditionsnodc(.universe,.output) A app1y(.criterion,.output)= true

An important special case of directed graphs are threads, in which each node has a unique successor

and there are no ycles. Findin6 nodes in d-,reads is considerably simpler than the gneral case. The

computation ty'e of such operations is specified formally as follows.

thread-find(a) digraph-find(a A thread(old(a),in(a)):#tindefined

Thus te additional constraint here is an additional type restriction on the Old role. The behavior

function, Tread is the appropriate specialization'of Digraph.) This is written in the compact tabular

notation as follows.

10spec Thrcad-find / universe(thread) criterion(predicate) * output(object)
specia lization digraph-find

Of course, computation types can also be specialized by additional constraints between roles. For

example, set addition by side ffect, #Set-add, is viewed as a specialization set addition in general. This is

expressed formally as follows.

set-add(a) set-add(a A od(a) = new(a)

In other words, instances of #Set-add are those instances of Set-add in which the Old and New set

objects are identical. In tabular otation, this will be written as follows.

IOspec Set-add old(object) input(object) ==> nw(object) specwlization set-add
posteonditions.old =.new

SPECiALIZATION 171

Notice that te type restrictions on Old and Now above are Object rather than St, as in Set-add.
This usage is essentially a syntactic trick to control the abbreviation tat will be applicable in the
postcondition above. Logically, an Object restriction is weaker than a Set restrictiorl, so no information is
added.

Extension

The basic idea of extension is to define a new type with an additional role function, such that

instances of the new type have the same constraints as the old type between those roles which are in
common. The formalization of extension is more complicated than die formalization of specialization in
the preceding section. In the case of specialization, the new behavior function or predicate on
computations can be defined simply in terms of the old one. For extension, however, new extensionality
and comprehension axioms need to be written for the new type. However, these new axioms are related-
to those of the old type in a systematic way.

A common use of extension is to add an additional output to an input-output specification. For
example, when Thread-find operations are used in conjunction with other plans, such as splicing, it is
convenient to have as output not only die node found, but also the previous node in die thread. We call
this extra role Previous, and the extended operation type Internal-thread-flnd.

Table 8-L. Internal hread Find.

Axiom of Extensionality

V a/3 internal-thread-find(a A internal-thread-find(p A in(a) in(,8 A out(a) out(#)
• niverses = universe(p A criterion(a) = criterion(fl A output(a) output(fl)
• previous(a) = previous(fl I

a

Axiom 6fComprehension

V wxyzst 3a [thread-find(a A in(a) = s A out(a) = I
A u ni v e rse(a) = w A c riterion(a) = x A outpu t(a)y

A z#undeflned
A ar)lv(nredicate(x,,�),root(thread(iil,,s)) =false
A successor(dircad6vAz.0

<-+ 3P [internal-thread-find(fl A in(fl) = s A out(fl) I
A universe(#) = w A criterion(p) = x A output(p) =y A previous(fl) z I

10spec Internal-thread-find /.universe(thread) criterion(predicate)
output(object) previous(object)

extension thread-find
preconditions apl)ly(.criterio'n,root(.universe)) = false
postconditions successor(.tiniversc,.previotis,.output)

:- - -m A-No � ------- .I I I .� -� z . I I i -I I
--I- ----

172 CHAPTER EIGHT

The axioms for Internal-thread- find are shown in Table 8-L. They are derived from the axioms of

Thread-find by adding the uderlined portions. In the axiom of extensionality, an additional equality is

added for die Previous role. The axiom of comprehension specifies the constraints on the new type by

first referring to the corresponding instance of the old type,

3 a [thread-find(a A in(a) = s A ...

and then specifying the added underlined constraints, which include the type restriction on the new role

and some additional constraints between this role and the others. One could think of this as an extension

step, followed by a specialization, but in practice one almost never adds a new role without relating it to

the old roles. As usual the more compact tabular notation is shown at the bottom of the table.

8.10 Plans Involving Side Effects

Given the logical foundations of the plan calculus described in this chapter, it is now possible to

explain a little more about plans involving side effects. This section has two basic points to make. The

first point is that, since reasoning about plans involving side effects can in general be quite difficult,' the

inspection method approach is to formalize many common forms of side effect usage as plans and

overlays in the plan 'library and use them in the aalysis, synthesis and erification of programs to bypass

general reasoning.

The second basic point is that, whenever possible, plans in the library are written at a level of

abstraction which does not make anv commitm ent to whether or not side effects are used. This principle

is exemplified by the input-output specifications shown in Table 8-M. In each case, the "impure"

specification is viewed as a specialization of the pure specification. For example, #Set-add is the

specification for adding a member to a set by side effect.

Table 8-N and Fig. 86 show an example of a very general form of side effect usage which can be

captured using plans and overlays. The right hand side of the overlay in Table 8-N is the' plan for

modifying a function (Update.Old) such that all domain lements which used to map to a given range

element (Update.Value) now map to a new element (Update.Input), where die new range element is

computed from the old 'range lment by t Action. For example, this is the structure of he

SYMBOL-TABLE-ADD procedure in Chapter Two: a new bcket is computed from an old bucket of the table

by Set-add; the table (modelled as function from indices to buckets) is then modified so that the new

bucket is Die new value of te index of the old bucket.

The overlay #01d+input+new>action+update records the fact that computing the new range

element y side effect obviates the step of modifying the function itself. This is the way the

SYMBOL-TABLE-DELETE procedure works (except for the special case andled separately before the loo--'-

the new bucket is computed from the old bucket by side effect (splicing out), so that o subsequent

1. See Shrobe 641 for an approacb to the explicit control of reasoning about plans involving side effects.
2. Note that he refix character is used to nam- impure input-output specifications as a mnemonic device.

173PLANS INVOLVING SID'F EFFECTS

io-��

:#o(d +' ac+iCAL+wf f ew'> LTC(TF

Figure 86. U ating a Function I)yI I Side Effect.

174 CHAPTER EIGHT

Table 8-M. Impure Input-Output Specifications.

IOspee old+new old(object) =;,�, nw(object)

IOspec #old+new / old(object) new(object) specialization old+new
postconditions old =.new

10spec #set-add old(set) Jnput(object) =:> nw(set)
specialization set-add #old+ncw

IOspec #Set-reinove / old(set) input(object) => nw(set)
specialization set-remove #old+new

IOspec #restrict old(sct) criterion(predi-cate) => nw(set)
specialization restrict #old+new

IOspec #ewarg / old(function) arg(object) input(object) =:> nw(function)
specialization newarg old+new

ffispec #ewyalue / old(function) valuc(object) input(object) new(function)
specialization newvalue #old+new

ARRAYSTORE is required. Other specializations and extensions of #Old+input+ncw for which this
implementation works are shown as properties of the overlay.

PLANS INVOLVING SDE EFFECTS 175

Table 8-N. Updating a Function by Side Effect.

TemporalOverfay, #old+input+new>action+update: #old+input+ncw --)' #action+update
properties VAP [P- #oId+input+ncw>action+update(A) D

[[instance(#set-addA) *-> instance(#set-addAaction)
A instance(#set-removeA) +-> instance(#set-removeRaction)
A instance(# newrightA) <> instance(# newrightPaction)
A instance(# newlef�A) <--* instance(# newleft�Aaction)]
A inw-ince(#imernal-thread-add, A) -* instance(# internal-thread-addP.action)
A instance(#interiial-thread-removeA)

<-+'inst,ance(# internal-thread-removeP.action)
correspondences # oId+input+ncw.oId = # action+update.action.old

A #oId+input+new.input,= #action+update.action.input
A #oId+input+newJn action+update.action.in
A #oId+input+new.out= #action+update.update.otit

Tempora/Plan #action+update

coi-istraints.action.old=.update.value A action.otaput=.update.input
A cflow(.action.out,update.in)

IOspec old+l'nput+new old(object) Anput(object) =:> nw(object) extension old+new

IOspec #old+input+ne-o, old(object) Anput(object) ==> new(object)
extension #old+new
specialization old+input+new

� -I � 11-1�-11�F5!Fk�'PuNfmwRRpopllF MIm I

176 CHAPTER NINE

CHAPTER NINE

LOOPS AND TEMPORAL ABSTRACTION

9.1 Introduction

The plan calculus uses self-referential (i.e. recursive) definitions to represent unbounded structures.

This chapter concentrates on the special case of singly recursive plans, and loops in particular. The

generalization of these ideas to multiple recursion will be discussed briefly at the end of the chapter.

We begin in Table 9-A with a minimal plan, Single-recursion, which says nothing more than that

there is a role, Tail, constrained to be ither Nil or itself a Single-recursion. A finite single recursion is

defined as one whose tail is Nil or eventually has a Nil tail. "Eventually" is defined by the transitive

closure tail relation, Tail*, which is in turn defined in terms of te nth tail relation, Tailn.

The most common singly recursive data plan, List, has already been discussed in Chapter Eight.

The next section in this chapter will concentrate on ow loops, the most common singly recursive

temporal plans, are represented in the plan calculus. he section following then shows how to represent

the relationship between singly recursive temporal plans (loops) and and singly recursive data plans (lists)

usina overlavs. Finally, note that the taxonomy of loops discussed in this chapter covered oDly loops with a

single jump from the end of the loop to the beginning (i.e. interleaved loops are not included).

Table 9-A. Single Recursion.

DaIaPlan single-recursion
roles tail(single-rccursion+nil)

Type single-recursion+nil unionlype single-recursion nil

DataPlan finite-single-rectirsion specialization single-recursion
roles.taii(single-rectirsion+nil)
constraints.tail = il v 3x [tail*(.Lail = x A x= nil

Function til* single-recursion object
proPerties VR [istance(single-recursioii,tail*(R)) v tail*(R)= nil
definition x = tail*(R) 3 ii tailn(tiR = x

Binfunclion ttailn : natural X single-recunsion -3� single-recursion+nil
defnition x=tailn(nR) n= I A =R.tail I x=tailn(oneminus(n),R.tai1)

I

Loops 177

9.2 Loops

Since the temporal order relation o situations (Precedes) is nt allowed to ave any cycles, loops

are represented in the plan calculus as singly recursive plans where the jump from the end of the loop to

the beginning is viewed as a recursive invocation. For example, Fig. 9-1- is the plan diagram for the

SEARCHLIST program below.

(DEFINE SEARCHLIST
(LAMBDA (L P)

(PROG (ENTRY)
LP (SETQ ENTRY (CAR L))

(COND ((FUNCALL P ENTRY)(RETURN ENTRY)))
(SETQ L (CDR L))
(GO LP))))

.The Tail role, which represents the recursive invocation of the loop body, is constrained to be an

instance of the same plan as the outside plan. This is indicated in plan diagrams by a spiral line from the

outside plan box to the recursive role. he operation boxes in the diagram are instances of C-)Function;

the test boxes are instances of oWredicate; and the join boxes are instances of Join-output. Thus we are

viewing the program as if it were coded as follows.

(DEFINE SEARCHLIST
(LAMBDA (L P)

(PROG (ENTRY)
(LP))))

(DEFINE LP
(LAMBDA

(SETQ ENTRY (CAR L))
(COND ((FUNCALL P ENTRY)(RETURN ENTRY)))
(SETQ L (CDR L))
(LP)))

This form of single ecursion, in which the recursive call is the last step of the program, is often

called "tail recursion it or "iterative" single rcursion. Many Lisp interpreters and compilers treat loops

and tail recursions as sperficial syntactic variations. For example, in Scheme a dialect of Lisp developed

by Sussman and Steele 651, the PROG With GO construction -is Provided as a macro wich expands into a

single recursion similar to the example above. The Scheme interpreter executes tail recursions without

accumulating stack depth. The compiler for Scheme also views looping constructs as' macros which

expand into singly recursive structures.

Given this view f loops, it is possible to formalize a small set of te basic plans 'Which decompose

many loops into intuitively meaningful parts. The remainder of tis section will present these plans,

along with explanations and some typical fragments of cd wich are istances. The taxonomy of loops

presented hre is an extension of te work of Waters 73].

-- --1 --- - �

178 CHAPTER NINE

..w '.. 0 a-- - - -- --.. - - - - - - - -.. - - -.0I

I

I

I

I

I

I

I
I
I

I

I

I
I
I
I

I

I
I
I

I
I

I

I
I

II

I

I

I
I
I
I
i

I
I
I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
i,
I-
I
I

I

I

I
I

I I- - -, , . - - .-, -� - m

I

AFigure 91 A Tail Recursive Temporal Plan.
o4moll",
P-

N 1, P.P.Mm ---- ----

STFADY STATE PLANS 179

Table 9-13. Iterative Steady State Plans.

TeinporalPlan iterative-application extension single-recursion
roles.action(Cwfunction) tail(iterative-application.)
constraints action.op = tail.action.op A cflow(.action.out,.tail.action.in)

TemporalPlan iterative-generation specialization iterative-application
roles.action(Ca2function.) tail(iterative-gencration)
constraitits.action.output =.tail.action.input

TemporalPlan iterative-filtering extension single-recursion
roles filter(cond) taiffiterative- filtering)
constraints instance(Cq),predicatc,.filtcr.io

A filter.ifscriterion =xail.filter.ificriterion
A cflow(.filtcr.eiid.out,.t,-til.filter.ifin)

Steady State Plans

. To begin let us ignore any exits from a loop and the question of termination. This is what I call the
"steady state" model. This viewpoint will be formalized later as an overlay which explicitly assumes that
the loop does not exit.

One of the most common coinputations in a loop is to repeatedly apply a' given ftinction the same
function each time) to the output of the preceding application- of that function. This pattern of
application is in general (i.e.. for multiple rcursive plans) called generation. The special case for loops is
called iterative generation, as shown in Table 9-13 and Fig. 92. Notice that die starting value for the
generation is Action.Inpu4 die iput to the first application. The SEARCHLIST example contains an
instance of Iterative-generation, as shown below, were the function being applied is Cdr and the variable
L holds the successive values generated.

(PROG
LP ...

(SETQ L (CDR L))
(GO LP)

Using SETQ tis way is the most common way of coding iterative generation in Lisp, but there are
other ways of achieving the necessary data flow, as illustrated below.

(DEFINE LP
(LAMBDA (L)

(LP (CDR L))))

A particularly common specialization of iterative generation is Counting, where the function
applied iS neplus and the initial input is .

180 CHAPTER NINE

ia- - .0 - . M -W -.0 -W -0 . . 0 * W .w " wI

t

v

II
I
I

I

I

I

I

I

I

I

I

I

I

i
I
I
I
f
I
I

A
I
I

w

I

I i
I
8

i
I
I
I
A

I

I
I
I
i
I
i

�e I
,;O�)i

i
I
I
a

fUU00-

a 0.0 a. ob m so m SIM OW m a* 0. 4w

0-0 SW- M 4M 00. dM 40- W 4 m SW

3em rmt�ovL

Fiatir 92. Iterative Generation Pn.b

7 I

srEADY STATE PLANS 181

TemporalPlan counting specialization iterative-generation
roles.action(��function) tail(counting)
constraints.action.op = oneplus A action.input =

The Iterative-application Ian shown in Table 9-B and Fig. 93, captures the idea of repeatedly

applying a given function to an input which is generated by some other part of te loop. The output of

this application may then be the input to some other repeated computation. rhe application role in this

plan is also called the Action.' For example ill SEARCHLIST, the function CAR is applied to current value of

L to get a nw ENTRY ach time around the loop.

(PROG (L ENTRY)
LP (SETO ENTRY (CAR L))

(''6 LP))

These two simple plans, Iterative-generation and Iterative-application, together with a number of

common specializations, such as counting and CDRing, form the backbone of many common

computations. For example, we have jst analyzed die CAR-CDRing in SEARCHLIST as iterative generation

and application. A similar programming cliche'is looping through an array:

(PROG (I)

SET I
LP

... (ARRAY-ETCH A I)...
(SET I 1))
(GO LP)

Here the iterative generation is counting and the application is fetching from the array.

The final iterative plan in Table 9-B is Iterative-filtering, also shown in Fig. 94. Typically it is used

to sefect some subset of the values of a loop ariable for special processing, as suggested by te following

code.

(PROG (A)

LP
(COND ((P A) ... A...))

(GO LP))

The non-recursive role in this plan, Filter, is a conditional structure 'Cond). F-ach time around the

loop, a given predicate (the sme one each time) is used to test some object provided by te rest of the

loop. Based on the result of this test, either te Then or the Else wings of the condition will be

executed.

1. Iterative-generation is in fact. a specialization of It-crative-application, as can be en in Table 9-B.

...... 11--l-I'�,------.�-��------------� � , 1�

182 CHAPTER NINE

I - - - 0 - -.- -- - --- --- - -I

I

I

I

I

I

I

I

I

I

I

I

I
I

I
I I

I I

I I

I I

I I.,

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I I
i

I
I I
I
I I

I I

i i
I I
I I I
I I
0 I

1
1

-. .1

0

6

-WM mow Am quo qlw. 'amp am

1. .

It e-�(Cki i \ - 0, � 0 at ' VN.

Figure 93. Iterative Application Plan.

STEADY Sl'kTE PLANS 183

list

00"N'
IF

)Y Sl'kTE PLANS 183

WV -NW -- onow 0RAW -MM -- 4mw -WMB- mmoft. -.0m.0 mw avow 4mw m

Aft- am- aft.

ve

Finurc9-4. Iterative I'Itefing Plan.

,�!-�wp
- I

184 CHAPTER NINE

Table 9-C. Iterative Termination.

TemporalPlan iterative-termination extension single-recursion
roles exit(cond) tail(iterative-termiiiation+nil)
constraints tail = nil -> xit.ifsucceed I

A cflow(.exit.iffail,.tail.exit.iLin)
A cflow(.tail.exit.end.ou�.exiLend.fail)

TeniporalPlan iterath-e-tern ination-pre(licate specialization iterative-tennination.
roles.exit(cond) taii(iterative-termination-predicate+nil)
constraints instance(Cq,,predicate,.exit.iO

A xit.ifcriterion =.tail.exit.ifcriterion

TemporalPlan iterative-termination-output specialization iterative-termination
roles.exit(cond).tail(iterative-tei-mination-output+iiil)
constraints instance(join-output,.exit.end)

A tail.exit.ond.output=.cxit.end.fail-input

TemporalPlan iterative-cotermination extension iterative-termination-predicate
roles.exit(cond).ct)-iterand(object).tail(iterative-cotermination+nil)
constraints.co-iterand:#.exit.if.input

Tj�pe iterative-termination+nil uniont erative-ten-nination nil

Tyl)e iterat've-teriiil'nation-predicatc+niI unionlj�pe iterative-ten-nination-predicatc nil

Type iterative-tei'mination-output+tiiI uniontype iterative-termination-output nil

Type iterative-cotermitiation+nil uniontype iterative-cotermination nil

Let us now consider loops that have exits. The minimal plan for a loop with a single exit is
Iterative-termination sown in Table 9-C and Fig. 95. This plan describes loops with a single exit which
are expected to terminate by tat exit. It is similar to Iterative-filterina in tat the non-recursive role,
called Exit here, is an instance of Cond, In this plan, however, die recursive invocation (Tail) is
constrained to occur between the test and te join. The scceed case of the test exit's te loop by bypassing
the recursive invocation; if the exit test fails, then die exit test of te tail must occur. Furthermore, if the

tail of te loop exits trough the end join, the wole loop ends. These control flow constraints, together
with the constrai nts of Cond, prohibit other exits from the loop and require that die loop eventually
terminates, i.e. it follows from the constraints on Iterative-ten-nination that

cflow(.cxit.if.in,.CxiLcjid.out) .

T ANS 185STEADY STATE PLA

I

- -- -- - - W-

I I
I I

I
I
I IF --- -- - -- - - - -,
I exit I I
I I (t- V)�� I I

I iI III II III II II *- aw -

t
I
I -I I
I
I I
I I
I
I I
I I
I

i

II III I
I II
I I
I I
II I
I I- ,
II
I I- --I fI
I II
I II
I II I

I I
I I

I
I I

I
I I

I
I I

I I
I

I iI
I

I

II

I A

I I
I

I

I II
I I
I I
I II

I I II
I I

I
I

I I

I
I I

I . %
I
I

I I

I I

Figure 95. Iterative Termination Plan.
A

4v

W.,-�w1pow lim, I, , � I -- I 11 II- - I j 1 �, �-, : � P,- -401,01 I

186 CHAPTER NINE

Table 9-D. Steady State Model.

TemporalPlan 'Iterative-steady-state extension single-recursion
roles step(situation) tail(iterativc-steady-state)
Constraints cow(.stcp, tail.stcp)

TemporalOverlay iterative-terini-nat'lon>steady-state .- iterative-termination iterativc-steady-state
corres ondences
iterativc-temiinatioii.cxit.if.in = iterative-steady-state.step
A iterative-tormination>steady-state(iterative-tennination.tail) = iterative-steady-state.tail

Given an instance of Iterative-tcrmination, the exit can be ignored for te purpose of steady'state
analysis by assuming that te exit test always fails. This modelling assumption is fori-nalized by the
overlay shown in Table 9-D. The Iterative-steady-state plan is introduced to represent a non-terminating
loop, i.e. there is control flow from each Stop of te iteration to the next. According to the overlay
Iterative-terminatioii>steady-state, an instance of Iterative-termination is viewed as an instance of
Iterative-steady-state in which the current Step corresponds to the input situation of the exit test. The
control flow constraint in die Iterative-steady-state plan thus amounts to assuming the exit test always
fails.

The two specializations of Iterative-tennination in Table 9-C concern wat kind of test is performed
and whettiet a final value is aailable as an otput or' the 'loop. Iterative-ten-nination-predicate is the plan
for the common case of loops where the exit tests a unary predicate that does not change as the
computation proceeds. Iteradve-termination-output is a fragment (used to build up other plans) which
expresses the pattern of data flow needed in a loop to make t fal value of some iterand available as an
output of die entire loop when it is done. For such loops, te End join is an instance of Join-output, and
the failure case of each join has data flow from the output of the End join of te tail. The final plan in
this table, Iterative-coterinination, is also a fragment used to build up other plans. In this case, a Co-
iterand role i added to Iterative-termination-prodicate, which identifies an object of interest., in the loop

other than the input to the test.
Given tese fragments, Iterative-search, shown in Table 9-E and Fig. 96, can be defined simply as a

specialization of both Iterative-termination-predicate and Iterative-ten-nination output. The only
additional constraint added to expres s die idea of a search loop is tat the output object. is the final object
that satisfied die predicate of die exit test. For exarnp1c, in theSEARCHLJSTprogram the valueOfENTRYon

the last repetition is. returned.

(PROG (ENTRY)
LP ...

(COND ((FUNCALL P ENTRY)(RETURN ENTRY)))

(GO LP))

----I---

I. STEADY STATE PLANS 187

ii

4 -1
I I iII I

I
I I

I I I
I
I I

I I

41
4 I

I I

i

I L-II
I
I
I F
I
I II
I I
I
I I
I
II

I

I

I

I
I I
I
I I
I
I I
I
I I
I i-
t

I
I
I - -
I I
I I
I
I I
I I
I
I I
I I
I
I I
4 I

I I

I II I

I I
t I
I I
1 $

1

I

I I

I

I I
I

I I
6

I
t

I 0

1
I

I I

I

I i
I

I f

I
I II
I II
I II
I II

I
I i

I

I j
I
i

I I

I II

I I
I

I I
I

I I

I I

I III i

Fiour 96. Iterative Search Plan.

--- I... I I'll"Mom =% il 11

188 CHAPTER NINE

Table 9-E. Iterative Searcb.

TeinporalPlan iterative-seareb
specialization iterative-termination-predicate iterative-termination-output
roles.exit(cond) tail(iterative-search+nil)
consit-aitits.exit.ifinput=.exit.end.succeed-input

TemporalPlan iterathle-coseareb specialization iterative-cotermination
extension iteratiNe-t,.,niiination-output
roles.exit(cond) co-iterand(object) tail(iterative-cosearch+nil)
constraints co-iterand.exiLiEin ='exit.end.succeed-input

Type iterative-search+nil uniontype iterative-search nil

Type iterative-cosearch+nil uniontj)pe iterative-cosearch nil

A closely related kind of search loop is one in which the ob ect returned is not the same as the
object tested in the exit test, as for example the program below, which calculates the length of a Lisp list.

(DEFINE LENGTH
(LAMBDA (L)

(PROG (N)
(SETQ N 0)

LP (COND ((NULL L)(RETURN N)))
(SETQ L (CDR L))
(SETQ N 1 N))
(GO LP))))

Here consecutive Values Of L (generated by CDR) are tested by NULL, while at te same time is

counting. When thC NULL test finally succeeds, the current value of is returned as te otput of the loop.

This pattern of loop tmination is formalized as te Iterative-coscarch plan sown in Table 9-E. This

plan is a specialization of Iterative-cotermination and an extension of Ierative-termination-output

(adding the Co-iterand role), in wich the output object is constrained to be the final co-iterand when the

loop exits.

A third bsic loop plan which returns an output is Iterative-accumulation, shown in Table 9-F and

Fig. 97. On cacti repetition of an accumulation loop, an operation (Add) is performed which takes an

Old object and another input, and returns a New object of the same type. Set-add and Psh are examples

Table 9-F. Iterative Accumulation.

TetnporalPlan iterathe-accumulation extension iterative-t,,-.rmiii-ition-output
roles.exit(cond).iiiit('ol�ject).add(old4-input+ilc�k,) tail(iterative-accui-ntilation)
constraints.init.=.add.old A Jnit=.cxit.cnd.succeed-input

A add.new =.Util.init A cf1ow(.cxitAffail,.add.in)
A cflow(.a,,Id.OLI�.tail.exit.ifin) A A cf1ow(.uiil.cnd.out,.cnd.fai1)

-�M�

STEADY SATE PLANS 189

el"�,

w i I - .

S & . 0 a la la - . - . 0 . . , , a, - & ta
0

6

0

I

6
6
00

00
00
04
0
0

4

004066400

6
I

I - -- - - -- i
i 0 6

4 4

"I 0
f I

0 a 0 � - , , d I . - OP 0 - .. dr 0 0 . . - 0 * . v , . , 0 0 0 :

'T A I �, - a -rUIlt P- � mvkctt�o&

Figure 9-7. terative Accumulation Plan.

.1. See overlay Binfunctio0old + input new i the appendix.

-g Om, - , p

190 CHAPTER NINE

of such operations for sets and lists. 7he Old input on the first repetition is called the Init; on successive

repetitions of die loop, the Old input of each Add is the same as the New output of the previous Add.

The Input of Add o each repetition ;s provided from the rest of the loop. For example, the following is

code for a typical accumulation loop.

(PROG (ACCUM
(SETQ ACCUM

LP (COND ((...)(RETURN ACCUM)))
0*.
(SETQ ACCUM (CONS ... ACCUM))

(GO LP))

Here te Add operations are instances of Push (implemented a's coNs for Lisp lists). The value of

A.Ccum returned from the loop Exit.End.Output) is the same as the Now output of the last n.ish, except

when the loop exits te first time, when the value Of ACCUM is deten-nined by the iitial SETQ (Init).

Specializations of Iterative-accumulation for different types of Add and Init correspond to common

programming cliche'. If the Add roles are filled by instances of Push and te Init is Nil, then we are

accumulating the Input's as a list. If die Add roles are filled by instances of Set-add and the Init is an

empty st, ten we are accumulating die Input's as a set. Applications of Plus and Times can also be

viewed as instances of Old+input+new.1 With apropriate Init's, 0 and I respectiNlely, these accumulation

loops cornpute die sum and product of the Input's. These ideas about accumulation will be formalized

further lAter n this c "ter.

Table 9-G. Two Exit Loops.

TetnporalPlan cascade-iterative-terniination extension single-recursion

roles.if-onc(test).if-tAro(test) end-oncooin).end-twoooin)

.t.�iii(cascade-iterativc--tenilination)

constraitits cfloNv(.if-oneXail,.if-twoJn A cflow(.if-one.succeed,.end-one.succeed)

A cflo,,�,(.if-two.f-Ail,.tail.if-one.in) A cflow(.if-two.stiec,---cd,.end-two.sticceed)

A cflow(.tail.cjid-oiie.ou�.end-one.fail) A cflow(.tail.eiid-t",,o.ou�.end-two.fail)

A (.tail = nil *-* (.if-one.succecd;* _L f-two.succeed# 1))

A (if-one.in I (.end-0De.OUt I nd-two.out# 1))

Teinporal0i�erlqy caseadeAterative-terniination:

cascade-iterative-termination --->. iterative-termination

comspondences

cascade-i-tei-ative-termiliation.if-one iterative-termination.exit.if

A cascade--iterative-temiination.eiid-onc'=iterative-terminatioii.exit.end

A a'scadc>iterative-teriniiiation(caseade-iterative-tei-minatioil.t-lil) = iterative-ten-nination.tail

-- : I.-,-,,- -. "o-

STEADY STATE PLANS 191

The minimal plan for two exits from a loop is Cascade-iterative-termination shown in Table 9-G
and Fig. 98. For example, the loop in the LOOKUP procedure of Chapter Five had two exits as shown

below.

(PROG

LP jEO'ND (RETURN ...

(COND (RETURN
.1,

(GO LP))

The plan for this code has two tests, If-one and If-two, and two corresponding joins, End-one' and
End-two. Each time around te loop, If-one is performed first- if it fails, then If-two is performed. If the
second test fails, the loop is repeated. If either test succeeds, te loop is ten-ninated by control flow to te
corresponding join which bypasses the recursive invocation (Tail). The final constraint on Cascade-
iterative-termination says that if the input situation of the first test occurs, then one of the output
situations of the joins will occur. This means that die loop is expected to eventually terminate on one of

its exits.
Steady state analysis of two exit loops is achieved in two steps. First a two exit loop is viewed as a

single exit loop by assuming the second exit is never taken (using te overlay CascadeAterative-
termination in Table 9-G). he first exit can then be ignored using the Iterative-ter-mination>steady-state
overlay defined earlier. as for any other single exit loop.

These few basic patterns of iterative computation, termination, application, generation,
accumulation and filtering appear over and over again in routine programming. In act, many recursive
programs are built out of nothing but these plans. Waters 73] did an analysis of 44 prograrns chosen at
random from te 220 programs which comprise the IBM Fortran Scientific Subroutine Packagc. All of
the 164 loops contained in these programs could be analyzed solely in trms of these basic patterns.

Furthermore, most of these were instances of a sall number of common specializations of die basic
plans. Out of a total of 370 instances of generation and accumulation, 82 percent were ither summation,
product aggregation, maximum, minimum, or counting.2 Out of a total of 186 loop exit tests, 89 percent
were simple comparison- with a fixed number.3

Given that we ave identified instances of these standard recursive plans in a program, the question
remains of how to rpresent die connection between, say, an generation ad a aplication. Temporally,
the components of each are interleaved, but it seems more, logical to view t gneration and application
as being composed in some way. The next section shows how to formalize tis viewpoint.

1. Several loops had more than two exits, but this is a straightfonvard generalization of the one and two exit plans pesented here.
2. Waters' analysis does not distinguish betwcen veneration and accumulation. Tbey a both categorized as augmentations
(application of a Fiction or binarN function) with cedback.
3. Fho, input being tested in most of tese exit tests was a simple sequence of numbers, most oten just counting up from one. Thus
for most of these loops trmination is obvious. This is typica! of routine programming - in ost cases the question of termination
is settled by recognition of well-known patterns.

Ca C, c 0a e ' t P, � C)A \ 4 t eN(I Ackt (O A, --

192 CHAPTER NINE

%- - - - - - - - - -- - -0 - - - - - - - - - -I

I I

I

i I

I

I

I
I

I

i

i
I
I
I
I
I
I

I I
I I
IPII

0 I

p I

f I

I I

I i
I I

I I

I I
I I
I I

i
I I
I I

I
I
I
I
I
i
i
I
I

. I

I
I
I

I

II
- - - - - - OW ... - - , - - - - - - - -

Figure 98. Two Exit Lop Man.

I _ m 001"m - --

TEMPORAL ABS 'RACTION 193

9.3 Temporal Abstraction

The basic idea of temporal abstraction is to view all the objects which fill a given role in a recursive

temporal plan as a sngle data structure.' In terms of Lisp code, this often corresponds to having an

explicit epresentation for the history of values taken on by a particular variable at a particular point in a

loop or other recursive program. For example, in die example program for sarching a list introduced

earlier, we would like to talk about the values Of L at the underlined point ach time around de loop.

(DEFINE SEARCHLIST
(LAMBDA (L P)

(PROG (ENTRY)
LP (SETQ ENTRY (CAR L))

(COND ((FUNCALL P ENTRY)(RETURN ENTRY)))
(SETQ L (CDR L))
(GO LP))))

In general, temporal abstraction gives rise to tree structures. In this section, however,, we will

discuss only loops, which give rise to linear structures. emporal abstraction is formalized using overlays.

The left side of sch an overlay is a recursive temporal plan; the rght side is a recursive data plan of the

same order (i.e. they are both singly recursive, or doubly, etc.). The definition of the overlay establishes a

correspondence between roles in the recursive tmporal plan and roles in the data plan, such that die time

behavior of a computation which is an instance of the plan on theleft, is abstracted as a data structure

which is an nstance of the plan on the right.

Stream Overlays

In the case of loops, temporal abstraction amounts to thinking of a program in terms of streams.

Streams at particular points in a loop are chosen for temporal abstraction based the analysis of the'loop,

according the taxonomy of iterative temporal plans (generation, application, ltering, etc.) introduced

earlier. For example, dic temporal abstraction of the underlined values Of L in the SEARCHLIST program

above is the stream of objects generated by iterative CDR generation. The overlay below and in Fig. 99

shows ow to express this abstraction formally.

TemporalOverlaj,, generation-streani: iterative-generation ---* list
correspondences iterative-geiieration.action.input= list.head

A gieration-stream(iterative-gencratl-'on.tail) = list.tail

The head of the list corresponds to the input of the action of the iterative generation; te tail of the

list is recursively defined as te temporal abstraction ofthe tail of te generation.

We next discuss how to abstract te temporal behavior of Iterative-application. For example, we

would like to express. the relationship i the code below between the values Of L and die values Of ENTRY at

the underlined points each time around die loop.

1. Both Shrobe 64] and Waters 73] use the idea of temporal abstraction, but with slightly different formalizations tan presented
here.

-WAR*"

194 CHAPTER NINE

Aft Ob

I

I

I

I I

I

I

I

I

I

I

I

I

I

I

f

I

* - W -. dO- - - - -

I

I

I
k.
114.

t

f6

t

4
lb

% 4

lb 4

4 4

4

4 I

6 i
A

a
I 4

4

I

k I
I
1

. - -- ,W. I
4 I

,to, I I A4

I

I

0

0

0 I f
I i
0 1
1 0
wII

I

I

- - 4w 400 4- w q -a

41

I..

L s -tII

G evN eTCLA--t 0 �) S ir ew�

Fiatire 99. Strcani Abstraction of Iterative Generation.

STREAM OVERLAYS 195

(DEFINE SEARCHLIST
(LAMBDA (L P)

(PROG (ENTRY)
LP (SETO M.RY (CAR L))

(COND ((FJNCALL P ENTRY)(RETURN ETRY)))
(SETQ L (CDR L))
(GO LP))))

This is achieved by dfining two overlays, shown in Table 9-H and Fig. 910, which temporally

abstract the input and output roles of die Action of the iterative application. The relationship between

these two streams is ten most conveniently expressed by viewing fliern as sequences, as explained in the

next section.

Temporal Sequences

�Streams viewed as squences are called temporal sequences. Making tis abstraction step allows us

to use the input-output specifications on sequences to describe the relationship between changing values

in loops. In particular, iterative application can be tought of as fi-riplementin a Map operation from the

stream of inputs of the Action role (viewed as a sequence) to the stream of outputs. This is expressed as

the Ternporal-map overlayshown in Table 91 and in Fig. 911.

On the right side of this overlay is the Map plan. inputs to te Action of the iterative

application (e.g. te values Of L above) are abstracted as the input to Map. The outputs of the Action .g.
R -responds to the

the values Of ENT'y above) are modelled as the output of Map. The Op of Map coi Op of

the Action. What we are doing in tis overlay is modelling the ime behavior of die recursive temporal

plan on the left as a single step in some other time domain represented on the right.

Iterative generation can be similarly abstracted as an Iterate operation, as shown in Table 91. The

input to the operation is an iterator wose Op is the Op of the Action of the generation (viewed as a

relation) and whose Seed is the initial Input (according to the Ternporal-iterator overlay). The output

sequence is the generated stream, as defined in the preceding section, viewed as a sequence.

Finally, note the following property of Generation-stream which ties together two different

viewpoints on generation loops that have been introduced in this chapter: if a generation loop, view'ed as

an iterator, generates a thread, ffien the 'temporally abstracted (irredundant) list of inputs to the action of

that loop, viewed as a thread, is the same thread as generated by the iterator.

Table 9-H Aplication Stream Overlays.

TeiiiporalOverlaj!applicatl'on-l'n-strelini-. iterative-application list
correspondences, iterative-applic�itioii.action.inptit = ist.head

A application-in-stream(iterative-application.tail) = list.tail

TemporalOverlaj, ,,il)pl'lc,,itl'on-out-stre-,,tlii: iterative-application --* list
corre,�I)ondei7ces ierate �7c-application.,iction.otitptit list.head

A application-out-strcam(iteritive-applicatioil.tail)=Iist.tail

pw'N"I i 41,10 I po"I 1 1 Ipq II :1, � ----- -- -

196 CHAPTER NINE

E. -. -- am am - -01 - ",I I

--- I

I

I

I

I

I
I

I

I
I

0
0

-I-

I
I

I
I

I

I

I
I i- -,w Cs

f .(�i I I
I 0 1 1

1 6
0 1 1

6I .. . - .- . q w I

I

4 % 4. .- - .10- . - -W la, lw "W W 4

\\ae _qlttc ai, - VTIl

A .0 .0 O & .

r %b

I

i

i

i

4

i

4

i

I

I

I
I

I

%. oe

Li st

R p I CA'i b l - �vl - S+fle am

AM -M 400 �b - VW -W -W MOM AM I

A I

9

4

I

I

I
I

I

I

I
a

I
I

I
I

I
I

I
I

J-
i
I

4 4w - .. ft "WI I

I -tAl I I
I I

ap 0
I I I

II Om I . Om ~ 4 &

1%

k
k
t

k

t

4

i

4

I
t - - - - . . - ow 4ow

IT I i wbot, L i 5-L

Pt PPI �ca�ic- n- o(A - S + ccl m-I -1-11111---- ,,---�,,,--�-�,-��,�- �-,--,-,,�-�-�,-�-�---�_,--�---"----,--",---"-��---�

1.figure 910. Stream Abstractions of terative Application.-

I
Te-VA � OTCA -" i U c(e ..-

.......

TEMPORAL SEQUENCES 197

I Ow 7 u em�)

Fuel

I

Te- M �of A) - VAckr

I- "W-
I
I

I
I

I
I

I
f
4
4
1
1
4
I

4
I
6 - -

I

Figure 91 1. Temporal Overlays for Application and Generation.

I -1- I- ---l-W low"ll" 1_ oppoll'"Imlop lo p I. -� pop -

198 CHAPTER NINE

Table 91. Temporal Sequence Overlays.

TemporalOverlay temporal-inap , iterative-application map
correspondences

iterative-application.action.op = map.oP'
A list>scquence(application-in-strdam(iterative-application)) = m'ap.input
A list>scqtience(applicatioii-out-sti-cam(iterative-application)) = map.output

TemporalOverlay temporal-iterate iterative-generation --)- iterate
correspondences

temporal-iterator(iterl-tive-generation) = iterate.input
A list>sequence(gencration-stream(iterative-gencration))=iterate.output
A iterative-gencration.action.in = iterate.in

TetnporalOverlaj�temporal-'Iterator, iterative-generation --+ iterator
correspondences iterative-gencration.actioii.input = iteratonseed

A function>binrel(iterative-gencration.action.op)=iterator.op

TemporalOverlay generation-stream: iterative-generation --* list
properties VI [instance(thread,genei-ator>digrapli(temporal-iterator(l)))

D Vs list>tb.read(gencration-streani(l),s) = gencrator>digraph(tomporal-iterator(l),Laction.in)

Temporal Data Flow

In this sction we further develop the notion of stream overlays in order to specify the connection
between te temporal abstractions of different parts of a loop. For example, in the SEARCHLIST example,
shown again below, te stream generated by the iterative CDR generation is the same as the input stream to
the iterative CAR. application.

(DEFINE SEARCHLIST
(LAMBDA (L P)

(PROG (ENTRY)
LP (SETO ENTRY (CAR L))

(COND ((FUNCALL P ENTRY)(RETURN ENTRY)))
(SETQ L (CDR L))
(GO LP))))

This mans that data flow btween operations in the recursive view implies data flow between
operations in the tmporally abstracted view.

For xample, Fig. 912 shows die temporal sequence analysis of SEARCHLIST. 011 die left is the
unanalyzed recursive computation. As has been pointed out before, this diagram contains an instance of
Iterative-generation the Action role corresponds to role Two of flee surface plan), of Iterative-application
(the Action ole corresponds to role One of the srface plan'), aDd of Iterative-search t Exit.lf role
corresponds to t If role of te surface pan). T right side of te figure shows the plan after
recognizing these iterative patterns and applying the Temporal-iteratc, Tomporal-map, ad Temporal-

ATENTIPORAL, D.111TA FLOW 1991

- I

199

I_WM IC C/" 1- 51- - 5 Q ,,,e I

1 1 mmp "I'mompo I -- I

14 igure 912. Temporal Analysis Of SEARCHLIST.

200 CHAPTER NINE

earliest overlays.' Temporal sequence abstractions are labelled. The objects generated by CDR are

temporally abstracted as the output sequence of One (Iterate) o the right. Furthennore, since the input

to te Action of te generation oti each repetition is the same as the input to die Car 'application, tis

sequence is therefore also te temporal abstraction of die inputs to the iterative application. Similarly,

data flow between the output of the Action of iterative application and the input to the exit test of

iterative search on each repetition in the surface plan iplies data flow from the output of the Two (Map)

to te iput of Three (Earliest) in the temporal view.

Thus we see that temporal analysis leads to a viewpoint on loops in wich there are producers,

transducers and consumers of streams. An overlay like Temporal-iterate models a part of a loop which

produces a stream; Temporal-map odels a part of a loop which consumes one stream -and produces

another (i.e. a transducer); and Temporal-earliest models a stream consumer.

The pattern of Iterate and Map in SEARCHLIST (articularly implemented temporally as iterative

generation composed with application) is a common one. This plan is called List-generation, as shown in

Table 9-J, because the output sequence of the Map operation (role Two), viewed as a list, is the same as

the labelled thread whose spine is generated by die input to the Iterate operation, and whose label is the

Table 9-J. List Generation.

TemporalPlan list-generation
properties VP [instance(list-generation, P) D

Vs list>scquence(gencration>list(P),s) sequence(P.two.outputPtwo.out)
roles onc(i terate) two(rnap)
constraiiiis.one.output=.two.input A cflow(.onc.out,.twoJn)

TetnporalOverlaj� generationAist: list-generation --> list
definition L = gonerationAist(P)

Ji -threadj)
3 7 n'tance(labelled
A digraph(TspincPone.in)=gcnerator>digraph(Pone.input.Pone.in)
A function(Tlabel, Ttwo.out) = function(P.two.opP.two.out)

TeniporalPlan car+cdr specialization list-generation
properties VP [instance(car+cdr, P) ::) dotted-pair>list(Pone.inptit.seedPone.in) generationAist(P)
roles.one(iterate) two(map)
constrain4s instanC *dr-iterator,.one.input A two.op, =car

DataPlan cdr-iterator specialization iterator
roles seed(dotted-pair) op(many-to-one)
constraints.op = function>binrel(cdr)

1. The overlay btween Iterative-search and arliest will be defined later in this section. To simpliCy-the presentation, the figure
omiL� several intermediate analysis steps.

I I . �

T. EMPORAL DATA FLOW 201

function applied in the Map oeration. Tis relationship is expressed by the overlay GenerationAist, also
shown in Table 9-J.

Car+cdr is the common special cx;e of Lisp list generation, wherein die input to Iterate is an
instance of Cdr-iterator (an iterator in which the Op is Cdr) and the function applied by Map is Car. it
thus follows tat the list generated by Car+cdr, according to the overlay GenerationAist, is the same as the
list iplemented by the dotted pair which is the seed of the iterator input to Iterate, according to the
overlay Dotted-pairAist.

Ten-nination

We move on now to the temporal abstraction of termination plans, in particular the overlays in
Table 9K ad Fig. 913, which express how to view te inputs to te exit tst of terative-termination-
predicate as a finite list.

The basic form of the Termination-in-stream overlay is the same as Application-in-stream, i.e. te
head of the list is the input OD die first repetition and the til of the list is defined recursively. In this
overlay however, the recursive definition is split into two cases:' if the exit test succeeds, then the tail of
the list is Nil; if it fails, then die tail of the list is the temporal abstraction of the tail of the termination
plan. This means that the temporal abstraction of die inputs to a termination wich exits on the first step

Table 9-K. Termination Stream Overlays.
-la -in-stream iterative-termination-predicate finite-list

TemporalOvet termination
correspondences

itcrative-termination-predicate.exit.ifinput = finite-list.head
A (if iterative-termination-predicate.taiI =nil

then nil
else termination-in-stream(iterative-termination-predicate.tail))

finite-list.tail

Teiiil)oralOverlayterinl'natioit-f-.iil-stream.- iterative-termin,,ition-predicate --), finite-list+nil
definition L = termination-fail-stream(7 =_

Vs [1ist>sequcn&(Lj) = butlkast(terniination-in-stream(7))I

TemporalOverlay steady-state-stream: iterative-temiination-predicate list
correspondences

iterative-ten-ninatioii-predic�tte.exit.if.input list.head
A steady-state-strcain(iterat'lvc-tenninatioji>steady-state(iterative-termination-predicate.tail))

I ist.tail

1. Themandard abbreviated form A= (if X thenY cseZ e par) ds into[X DA= Y A[--lX :DA= Z .

PI I --1- 1- I -1 I � - - -- I- I

202 CHAPTER NINE

(T'lo

IF
CL
0 - 0 0 0 0 O a 0,

14

I%

I %

k

i

I

i

t

4

.01

-Mo-To()V\ Pmai(.a-tt,

Te,rmivoAiOIA-'vl- Sf -eaM

- -d- _ - - -AN.

r

Om 4M., 40M MM qw �w K- .

(py,tZ f Wi i rx A 4- et). co

k

k

k

k

k

k

k

i

A

.-A

I

1-1- .1--,I-1- 1--- -
-�

iFigure 913. Streani Abstractions of terative'Fermination.

--- - . -1 . . .

TERMINATION 203

is a singleton list (one with a Nil tail), and that for all uses of Termination-in-stream the last object in the
list (i.e. the.head of the sublist with the Nil tail) satisfies the exit predicate.

Termination-fail-strearn is the overlay which abstracts die inputs to the exit te-t of a loop as seen in
an environment where the test is known to have failed. For example, the difference between
Termination-in-stream and Termination-fail-strearn is the difference between the stream of values Of L

seen at the first underlined point below versus the second.

(PROG L)

LP '::L...
�CO�D ((P L)(RETURN ...

#L.**
GO LP))

The Termination-fail stream is defined in terms of die Termination-in stream. It is die same as the
Terminat,ion-in stream, except one term shorter (this is expressed formally in terms of sequences and the
Butlast function).

Like Iterative-application, Iterative-teri-nination-predicate describes a fragment of a loop which has
some of its inputs provided by other parts of te loop. The relationship between a termination test and
the other parts of the loop is most conveniently expressed in terms of the relationship between the
Termination-in or Termination-fail streams and the stream of inputs to die test in the steady state analysis
(see Table 9-D) The stream of inputs to te test in the steady state analysis is specified by the overlay
Steady-state-stieam in Table 9-K. It has a recursive deriniLion similar to te other stream overlays for
iterative termination. In this case, however, we are talking about the stream of inputs which would be
seen -in the input situation of die exit test in a non-terminating loop.

The relationship between te steady state stream and the Termination-in and Termination-fail
streams is most conveniently expressed in terms of Truncate and Truncate-inclusive operations on
temporal sequences. For example, in the following loop the temporal sequence of values Of Nat the
underlined point under the steady state assumption is I.,2,3,..., as generated by Natural-iterator (an
iterator in whichthe Op is Oneplus and te Seed is 1). The effect of adding te termination test is to
truncate this sequence at 10 (inclusively at te point indicated).'

(PROG (N)
(SEIQ N 1)

LP ... N ...
(CO�D N 10)(RETURN
(SET N 1 N))
(GO LP))

The overlays in Table 9L, formalize this aalysis. I-et us first consider Temporal-truncAtc-inclusive
with reference to Fig. 91.4, which shows its application to die example pro rarn above. On te left is the
unanalyzed surface plan. In te center is te steady state analysis in wich an instance of Iterative-

1. In a later section, an overlay will be introduced which aptures the relationship between using N at the point indicated and a
loop that checks for N I and s N after the tesL

- - !-----------.-

204 CHAPTER NINE

I

I

I

Figure 914. Counting Program at Various Lewls of Ahstraction.

- -- ----------- "I-,,---"

TER AINATION 205

Table 9-L. Temporal Truncation.

TeniporalOverlay temporal-truncate-inclusiv : iterative-termination-predicate --> truncate-inclusive
correspondences
iterative-termination-predicate.exit.if.criterion = truncate-inclusive.critcrion
A list>sequence(steady-state-stream(iterative-termination-predicate)) = tincate.input
A list>sequence(tennination-in-stream(iterative-termination-predicate))

tnineate-inclusive.output
A iterative-termination-predicate.exit.end.out =tIlIncate-inclusive.out

TemporalOverlay temporal-truncate : iterative-termination-predicate --il, truncate
correspondences

iterative-tormination-predicate.exit.if.criterion = truncate.criterion
A list>sequence(steady-state-stream(iterative-termination-predicate)) = tnincate.input
• list>scquence(ton-nination-fail-stream(iterative-termination-predicate)) = truncate.output
• iterative-tennination-predicate.exit.ond.out = truncate.out

generation has been recognized. The temporal sequence generated by this generation is abstracted on the

right as the output of an Iterate operation. This sequence is then the input to a Truncate-inclusive

operation whose output is the sequence of values of N actually seen temporally at te underlined point.

Note that the termination constraint on die Iterative-termination plan and its specializations is consistent
OWN, with te precondition o Truncate that there exists a term of die squence which satisfies the given

criterion. The Temporal-truncate overlay is similar to Temporal-truncate-inclusive, except that the input

sequence is te Termination-fail sequence, rather than the Termination-in sequence.

Tab!e 9-M. Iterate and Truncate.

TeniporalPlan iterate4runcate
roles.one(iterate) Awo(in+out)
counts instance(irredLindant-sequence,,.one.output)

A [instance(truncate,.two) v instance(truncate-iticlusive,.two)
A one.output=.two.input A cflow(.onc.out,.two.in)

Te7nporalOverlaj, iterate+truneate>truticated-thread: iterate+truncatC --* trUncated-thread
propel ies VIT [T= iterate+truncateAi -uncated-thread(l) D

instance(truncateLtwo)
D VS t1`L1ncated>digraph(Ts) = sqLlencc>tliread(l.two.outpu�Ltwo.out)

A instance(trtincate-incltisiveLtwo)
Vs truncatcd>dicrrapli-inclusive(Ts) sequence>thread(Ltwo.outptit,I.two.out)

correspondences
sequen.cc>thread(iterate+trLincate.one.oLitput)= truncated-thread.base
iteratei tnincate.two.criterion = truncated-dircad.criterion

RON T-;------,--- -lom"IMPPOW 01-

206 CHAPTER NINE

The pattern of Iterate and Tuncate shown in Fig. 914, particularly mplemented temporally as a

loop in which te termination directly tests the current value of an iterative generation, is a common one.
The Iterate+truncate plan sown in Table 9-M expresses this in a data flow constraint between the output

sequence of the Iterate operation (One) and die input sequence of die Truncate(-inclusive) operation
(Two).

Iteratc+truncate can be further abstracted as a truncated thread, as described by the overlay in

Table 9-M. The base of the truncated thread is the irredundant sequence otput of the Iterate operation,
viewed as a thread; the criterion is the criterion of the Truncatc(-inclusive) operation. Note the property
of this overlay, which expresses the relation between die sequence and directed graph views of these
operations. In particular, the fnite graph iplemented inclusively) by the truncated tread is te same
as the output of the Truncate(-inclusive) operation, viewed as a thread.

Another temporal abstraction involving trmination is to view an iterative search loop as the
implementation of an Earliest operation, as sown in Table 9-N and Fig. 915. In this overlay, the input
sequence to the Earliest operation is te steady state stream of inputs to the test of the iterative search,
viewed as a sequence. Te output of the ending join of the search plan is the output of the Earliest
operation. Note that the termination constraint of Iterative-search is consistent with te precondition on
Earliest which states that there exists a ten-ri of te input sequence which satisfies the given criterion.

Cotermination. loops are temporally abstracted using overlays similar to those already presented for
termination loops. The overlay Cotermination-in-stream, shown in Table 90 abstracts the stream of co-
iterands.secn efore the exit test,-similar to.Termination-in-strearn. Coten-v-iinati,nln-f,-�lilA.-stre--'M.. abstracts
the stream of co-iterands seen in an environment where the test is known to have failed, similar to
Termination-fail-stream. Finally, the stream of co-iterands in the steady state is abstracted by the overlay
Steady-state-costream.

Given these overlays, Iterative-cosearch, as in thC LENGTH program below, can be modelled as the
temporal implementation of a Co-c-arlicst operation, as shown in Table 9-P. The speciflcations of Co-
earliest are similar to those of Earliest. Co-earliest takes as input two sequences (Input and Co-input),
and returns as output the trm of the Co-input sequence wich corresponds to the trm of the Input
sequence which would be returned by Earliest.

Table 9-N. reniporal Earl test.

TeinporalUi,erlaj, temporal-earliest iterative-search earliest
correspondences

iter�itive.-search.c�.it.if.criterion = arliest.criterion
A lisosequence(steady-state-sti-caiii'iterative-search)) carliest.input
A ii-ative-sc,-trcli.exit.end.output=cct-liest.output
A itei-ative-search.exit.end.out=earliest.otit

TERMINATION 207

Aomksl

207

�
i

-r-VA yo ra - a I
, n-,

A I1"'gur 915. remportal Abstraction of Searich Loop.

208 CHAPTER NINE

Table 90. Cotermination Streain Overlays.

TemporalOverlay coterinhiatl'on-in-stream, , iterative-cotermination - finite-list
correspondences

iterative-cotermination.co-iterand = finite-lisdicad
A (if iterative-cotermination.tail =nil

their nil
else cotermination-in-stream(iterative-cotermination.tail))

finite-list.Wil

TemporalOverlay cotermination-fail-stream iterative-cotermination ---> finite-list+nil
definiliot2 L=cotermination-fail-strcai-n(7)

Vs lisosequence(Ls) = butlast(coten-nination-in-stream(7))

TemporalOverlay steady-state-costream: iterative-coteri-nination list
corresIvidences

iterative-cotci-rnination.co-iterand = list.head
A steady-state-costream(iterative-ten-nination>steady-state(iterative-cotermination))

list.tail

Table 9-P. Temporal Co-earliest.

IOspee co-earliest Anput(sequence) criterion(predicatc) co-input(sequence)
output(object)

precoti&tions le(lengdi(.input),Icngth(.co-input))
A 3 i apply(.criterion,apply(.ijiput,i)) = true

posicoti&iiotis 3 i apply(xo-input, i) =.output
A apply(.criterion,apply(.input,i)) = tue

A Vj (It(jj) :) apply(.criterion,apply(.inputj)) false)

TemporalOverlay temporal-co-earliest : iterative-cosearch ---> co-earliest
correspondences

iteratiN,,c-cosearch.exit.if.criterion = co-carliest.criterion
A list>sequeiice(stead�i-state-stream(iterative-cosearch))=co-carliest.input
A list>sequence(steady-state-costream(itei-ati�,-e-coseatch)) = co-carliest.co-input
A iterative-cosearch.co-ite'rand=co-carliest.output
A iterative-cosearchxxit.end.out = co-carliest.out

I 1-- - I -- A - -1 , , - I- �

TERAINATION 209

(DEFINE LENGTH
(LAMBDA (L)

(PROG (14)
(SETQ N 0)

LP (COND ((NULL L)(RETURN N)))
(SETQ L (CDR L))
(SET N 1 N))
(GO LP))))

Thus this program can be temporally abstracted (as sown on die left of Fig. 916) as two instances

of Iterate, one with a Cdr-iterator as input, and one with Natural-iterator as input, feeding into an

instance of Co-earliest with a criterion of Null. Wat this figure also shows is how this plan implements

�Length, the computation of the length of a sequence. If the Cdr-iterator input on te left hand side is

the implementation of the spine of die sequence viewed as a labelled thread, then te output of Co-

earliest is the length of the sequence.

The idea of tuncating a sequence based on the occurrence of a term satisfying a given predicate in

another (parallel) sequence is expressed by the Cotruncate specification defined in Table 9-Q. Ibis

specification is similar to Tncate, except tat the output sequence is some initial sbsequence of a

second input sequence, Co-input. Furthermore, it follows from these specifications that if an instanc of

Truncate and of Cotruncate have the same Input sequence and Criterion, the outputs are the same length.

Cotruncate is implemented temporally by Iterative-cotermination, as shown in the overlay in Table 9-Q,

which resembles the Temporal-truncate overlay.

Table 9-Q. Temporal Cotruncate.

IOspec cotruncate input(sequence) criterion(predicate) co-input(sequence)
output(finite-sequence)

properties VTC instance(truncate,7) A instance(cotruncateC)
A Tinput = C.iliput A Tcriterion = C.criterion A Tin = C.in

longtli(sequence(Totitpu�T.OL]t))=lengtli(scqLictice(C.otitpli�C.out))I
preconditions l(leiigtli(.inpuolcngtli(.co-input))

A 3iapplv(.criterion,apply(.i,,iput,i))=true
postconMons

Vi [indcx(.outpL1t.. V [e(ji) : appl�,(.criterion,apply(.iiiput,,,,)) =false

A Vi(jtidcx(.outpuLi) : apply(.output,i)=apply(.co-input4i))

A apply(.cf'iterioii,apply(.i.nptit,oneplus(letioth(.outpLit)))) = tue

TeniporalOverla),,t(!jiiporal-cotruneate: iterative-cotermination cotruncate

correspondences
iterative-coterminatioii.exit.if.criterion cotruncate.criterion
* list>scqtience(steady-state-streani('iterati�le-cotei-minc-itioii))=cotrLincate.input

* list>scquence(steady-state-costi-e��,i-.n(iter�itive-coterniiiiatioii)) cotrunuate.co-input

* list>sequence(cotermitiation-fail-st-j-c,,ii-ii(iteratiNic-cotermination))=cotnincate.output
* iterative-coten-nii-iation.exit.end.(ltjt = truncate.out

I'mmi- I � � Ogilvy 1104 MINOR 1, Imml I - -. " - M"

I

,)Io CHAPTER NINE

do,,

"o 5x

t

'left. 1%

Figure 916. Comptithig te Length of a Sequence.

.-- I I MN Mm"Mm - ly!plwop - I - I - � I

TERMINATION 211

Table 9-R. Truncated List Generation.

TeinporalPlan truncated-fist-generation etension list-generation
properties VP [instaiice(truncated-list-g(-,ncrationP)

D Vslist>sequence(trtincated-gelieration>list(P),s)=scquence(Pthree-outputPthrce.out)I
roles.one(iterate) two(map).three(cotruncatc)
consti-aitits.one.output=.threc.input A two.output=.three.co-input

A cflow(.two.out,.threcJn)

TeniporalOverlaytriinct,,Ited-generation>list: truncated-list-gencration --+ finite-list
dejInition L = trun�-.Iated--gencration>list(P =

3 TR instance(labelled-threadj) A instance(terminated-threadR)
A Vs[T= lisolabelled-thread(Ls)

A digraph(Tspincs) = truncatedAigraph(Rs)
A fianction(Tlabels)_ function(Ptwo.opAtwo.in)

digraph(R.base,s)=gcncrator>dioraph(Pone.inpu�Pone.in)
A predicate(R.criterions) = predicate(P.three.criterionPthree.in)

TemporalPlan car+cdr+null
specialization truncated-list-generation
extension car+cdr
properties VP [instance(car+cdr+nul1,P) D

dot.ted-pqit-->Iist(P.on,,-.ii-i.ptit.seed,P.one.in) truncated-generationAist(P)
roles one'i terate) two(map) three(cotruncate)
constraints three.criterion = null

One of die most common cliche's in Lisp programming,, ie. CDRing down a list until NULL, using the

.CARS, can be analyzed as die composition of an instance of Iterate, Map, and Cotruncate. The plan for

this in general is called Truncated-list-generation, as shown in Table 9-R and Fig. 917. This plan is an

extension of List-generation, discussed earlier in this section. Similar to List-generation, the final output

sequence of this plan in. this case the output of role Three), viewed as a list, is die same as the labelled

thread whos' spine isgencrated by the input to the Iterate operation ad truncated by the, criterion'of the

Cotruncate operation, and whose label is the function applied in the Map operation. Tis rlationship is

expressed by the overlay Truncated-generationAist i Table 9-R, and shown in Fig. 917.

The specialization of Tuncated-list-gencration for Lisp lists in particular, where the iterator

function is Cdr, the Map function is Car, and the Cotruncate predicate is Null, is called Car+cdr+null.

(PROG (L)

LP (COND ((NULL L)(RETURN
... (CAR_LI.**
(SETQ L (CDR L))
(GO LP))

,A I I------ I aqi"" -- --,

212 CHAPTER NINE

11

f

I,

f
. 0

f

N
I

I
f

ZZ)

3

crop d,,,,-ympwAOVA t
--- ------- -

Figure 917. runcated List Generation.

Table 9-S. Temporal Transithe Closure.

IOspec (&transitive-closure-iterator / input(iterator) -output(set)
postcotiditions output = transitive-closure(.inputdn)

TemporalOilerlay 'teratiie-temporal-tr-,insitive-closure:
iterative-generation --* Cartransitive-closure-iterator

correspondences
tei-nporal-iterator(iterative-gencration) = a)transitive-closul-c-iterator.input
* list>sct(gencration-sti-eani(itei-ative-gencration))

CT)ti-ansitive-closure-iterator-output
* iterative-generation.actionAn C�,r-,traiisitiNe-clostire-iterator.in

1. More precisch this abstraction is apropriate when order doesn't atter and either there are no duplicates or the occurrence of
duplicates doesn't matter.

TERMINATION 213

The output of role Three (an instance of Cotruncate) in ate Car+cdr+null plqn corresponds to the

sequence of values returned by CAR at the underlined point in the code above. This sequence, viewed as a

list, is te same as the list implemented by the dotted pair which is the seed of die iterator input to Iterate,

according to the overlay Dotted-pairAist.

Temporal Sets

In many programming applications, the order in which data is generated in a loop or recursion

doesn't matter. In such cases it is appropriate to take temporal abstraction one step further and talk

about the set of objects which.,fil a given role in a recursiv - temporal plan.- This abstraction step is

added to the existing temporal abstraction framework by sing the List>set overlay.

For example, a generation loop can be thought of as the temporal implementation of a transitive

closure operation, in which the binary relation being closed is many-to-one. The overlay between tese

two views is shown in Table 9-S and in Fig. 918. On te left of the overlay is a generation loop; on the

right is die application of transitive closure to an iterator. The correspondence between the iterator input

and the loop is the one already specified by Temporal-iterator, i.e. the Op of die Action (viewed as a

relation) is the Op of the iterator, and initial input to die Action is the Seed. The output set of the

transitive closure operation is the stream generated at the input of die Action (as formalized by

Generation-streani), viewed as a set.

Similar temporal overlays can be constructed for other input-output specifications with sets, such as

Each, Set-find, Rest-fict, and'Any. Iterative temporal overlays or Each and Set-find tare shown in

Table 9-T. Iterative-temporal-each is just like Temporal-map, except rather than abstracting the streams

of inputs and outputs to an iterative application as sequences, they are abstracted as sets. Iterative-

temporal-find is just like Temporal-earliest, except the steady tate strearn of inputs is also abstracted as a

set.

--- --

I - � , 11""N" NO" �"'I Iloolls ON - -- -- -

214 CHAPTER NINE

,N.w -m-

I

d

f I

I

I
I
I

I

I
I
I
I

I

Ok
I
I
I
I

.

I

lke-I-OLA e t
I\] cm

N

000

r_ - �VO r_-� Cl A_

1.f igur 918. Iterative Generation as 't-ansitive Closure.

--- �"ffow�* - - I I I I -RIIIIIII I I -- -- I I -- ---

TEN4F RAL SETS 215

rable 9-T. Temporal Each and Find

Teniporal0i;erlay iterative-temporal-eac : iterative-application --* each
correspondences

iterative-application.action.op = each.op
A list>set(application-in-stream(iterative-application)) = each.old
A list>set(application-out-stream(iterative-application)) = eachaiew

Temporal0ierlay iterative-temporal-rind: iterative-search --)-- set-find
correspondences

iterative-search.exit.if.criterion = set-find.criterion
• list>sct(steady-state-stream(iterative-search)) = set-find.universe
• itemtive-search.exit.end.output = set-find.output
• iterative-search.exit.end.out = set-find.out

Table 9-U. Temporal Restrict.

TemporalOverlay filtering-in-stream . iterative-filtering --*list
correspondences iterative-filtering.filter.ifinptit = list.head

A filtering-in-stream(iterative-filtering.tail) = list.tail

TetnporaIO'vPrIqy filterling-Succeed-stream iterative-filtering --> list
definition = filtering-succeed-stream(f)

F,.fiItcr.iffaiI# I :) S= filterincr-succeed-stream(Ftail)
A Ffilter.ifsuccced# I

:D [S.head = F. filter.i Cinput A S.tail = filtering- succeed-stream(Ftail)

Te 'oralOilerlai�'teratiie-temporal-restr'et-. iterative-filtering --)' restrict
correspondences

iterative-filtering.filter.if.criterion = restriet.criterio'n
list>sct(filtering-in-stream(it'rative-filterincr))=restrict.old

A list>sct(filtering-succeed-stream(iterative- filtering) = restrict.new

Table 9-U shows te temporal implementation of Restrict as a filtering loop. The overlays

Filtering-in-strcam and Filtering-succced-stream (see Fig. 919) describe how to temporally abstract the

stream of input values to the test.'of a filtering loop and the stream of values seen in an'environment

where the test has scceeded (i.e. in die Then role). The dfinition of Filtering-in-strearn has the same

recursive form as flic temporal overlays. for iterative generation and application introduced arlier.'

Filtering-succeed-str.eam is more complicated. The basic idea of this definition is to skip die inputs which

do ot satisfy the test predicate. This is done by defining the strearn abstraction when the test ails to be

216 CHAPTER NINE

-- ---- ----- --- ''I-1-1-----�.-- --�-�-- - ----,--"-,�------�'� ------ -- , - -

t ley-

tai

vc

%w

k

I k

k
k
I

I

i

I

I
J

. - - - "' - '' ' -

3 , ol ,R t �e,(i VI , s+mat4A-

cf ; lptrio

oil+

Ck

0 ok a

4p

-W w M NW mom w- �w CO. Iwo,

�'(N T V\

I

I

Figure 919. Stream Abstractions of Iterative Filtering.

TEMPORAUSETS 217

the same as the stream abstraction of the n 2xt time around the loop (i.e. the tail of the recursive plan).'

The last overlays in Table 9-U is Iterative-ternporal-restrict, also shown in Fig. 920. This overlay

has a similar structure to all the other teni,)oral set overlays in this section. The Old set input to Restrict

corresponds to the input values of the filter test. The New set output corresponds to the input values

selected by the succeed case. The Criterion of Restrict is the same as the Criterion of the filter test.

The last temporal overlay in this section is an example of how to temporally abstract a loop with

two exits (a specialization of Cascade-iterative-termination). In particular, we consider here the plan

Terminated-iterative-search, defined in Table 9-V and shown on the left of Fig. 921, in which the second

exit test (If-two) is perfori-ning a search. This means that this test is an instance of CaTredicate, andwhen

the test succeeds, the input tested becomes the output object of die corresponding join (End-two), just as

in Iterative-search. When the first test (If-one) succeeds, it means that the search has failed. The

following is an example of how this kind of loop might be coded for searching a finite Lisp list.

Table 9-V. Temporal Any.

TeniporalPlan terininated-iterative-search
specialization cascade-iterative-termination
roles.if-one(test) if-two(e�-pi-edicate).end-oncooin).end-twoooin-output)

tail(terininated-itei-ative-search)
constraints.if-two.input=.eiid-two.succeed-input

A tail.end-two.output=.end-two.fail-input

TemporalOverlay iterative-temporal-any terminated-iterative-search -�, any
correspondences

list-/set(termination-in-stream(cascadc>iterative-termination(terminated-iterative-se-arch))
any.universe

A terminated-iterative-searcli.if-two.ci-itei-ion=any.criterion
A teri-niiiated-iterative-searcb.ond-two.otitput- any.-Output
A terminated-iterative-search.end-oile.out=anv.faiI
A terminated-iterative-search.end-two.out=any.succeed

L This is a somewhat awkward construction, but I ould not think of a better wy of formally defining the idea of laving out parts
of te input stream. Mis way of Filling fltering is also motivated by considering the general Case of tree recursion, where the
structure of the selected inputs ba t bc, like the struCtur o t input tree with Ounks missing at various places in te middle.

11--�----,�---�,--"����,-��------�----�-,-----���--�-,----,---�,,�-�-,---��.",---�--�

218 CHAPTER NINE

~ -�. m Om -no -mm - - - I

1 4 a 0 a a 0 0 8 0 " I

io

o-k

I 9 00%; 4 I GiLl F 0
0 0 16 I

I Ia 0 0 0 0 00 0 0 0 v r *� 0

1
NW NW 4mm. .Mw go, ON'- OWN- WARM Now �ww �mw - Now �ww- I

f I .1telf Oa � l 0 - � It 4 Zf i I

'R e,. f i y i C t

yesty i t

1"gure 920. Temporal Set Abstraction of terative Filtering.

I- ,

I TEMPORAL SETS 219

a

I

I

I

I
I
I

I
I

I

I

P\M r CA -,avl

Figure 921. Temporlal Set Abstraction of rerminlated Iterative Search.

220 CHAPTER NINE

(PROG (L ENTRY)

LP (OND ((NULL L)(GO FAIL)))
(SETQ ENTRY (CAR L))
(COND ((P ENTRY)

(GO SUCCEED)))
(SETQ L (CDR L))
(GO LP)

SUCCEED ... ENTRY...

FAIL :"00)

However a more typical way of coding Terminated-iterative-search in Lisp is illustrated by the

following code from te symbol table example.

(DEFINE LOOKUP
(LAMBDA ..)

(PROG (BKT ENTRY)

LP (C"60 ((NULL BKT)(RETURN NIL)))
(SETQ ENTRY (CAR BKT))
(COND ((... ENTRY...) (RETURN ENTRY))
(SETQ BKT (CDR BKT))
(GO LP)))))

Here rather than maintaining two control flow paths to represent thc'succeed and fail cases, the

result of the search is encoded in a flag ENTRY)'- which is returned as die output of the loop. I believe this

should be understood as an artifact of te restriction in Lisp that a procedure can have only one return

point. he original two control flow paths are typically recovered wen the procedure is invoked, as in

t1lie following code.

(SETQ FOUND (LOOKUP ...
(COND (FOUND ... FOUND...)

(T

If the stream of iputs to the second test of Terminated-iterative-search is abstracted as a set, this

plan can be vic-Aved as the iplementation of die Any specification, as shown in Table 9-V ad Fig. 921.

Specifically, te Universe of Any is te (finite st of iputs to If-two under te assumption tat that xit

is nver taken. The critcrion of f-tAo corresponds to te criterion of Ay; the otput of End-two

corresponds to the output of Any; and the output situations of End-on ad End-two correspond to the

Fail ad Succeed situations of Any, respectively.

Accumulation

This section discusses various ways to abstract iterative accumulation programs such as the

following.

I. This idea of a flag is fibrinali,,,ed in the appendix.

ACCU-ULATION 221

(PROG (ACCUM ...
(SETQ ACCUM ...

LP (COND ((...)(RETURN ACCUM)))

(SETQ ACCUM (CONS ACCUM))
GO LP))

i'*

To begin, the following is the temporal overlay for viewing te Input's to te Add steps of an

accumulation loop as a list.

TemporolOverlay accumulation-stream: iterative-accumulation --> list+nil

definition = accumulation-stream(A)

[[Axxit.ifsucceed I D S= nil
A [Axxit.if. fail# _L D [S.head = A.add.input A S.tail - accumulation-in-stream(A.tail)

This definition breaks down into two cases: if the recursion terminates on the current level, then

the temporal abstraction of the inputs is Nil; otherwise, the head of the list is the current Add.Input and

the tail is defined recursively.

The special case of iterative accumulation in wich the Add roles are filled by instances of Push,

.and the Init is an instance of Nil, is called Itcrative-list-accumulation, as shown in Table 9-W. Fig. 922

show how Iterative-list-accumulation can be viewed as te operation of making the stream of Input's to

Add in the temporal viewpoint available-(in reverse order) as die out ut of an accumulation loop.

Table 9-W. List Accumulation.

Te7nporalPlan iterative-list-accumulation specialization iterative-accumulation

rolesxxit(cond) Jit(object).add(push) tail(iterative-list-accumtjlation)

constraints.init=nil

Temporal0i)erlay ite-rative-list-accumulat'on>areverse: itcrative-list-accumulation Weverse

correspondences

list>sequence(accumulation-streain(iterative-list-accumLilation)) = �,reverse.input
• list>scqticnce(iterative-list-accumulation.exit.ond.outptit) = �reverse.output

• iterative-list-accumulatioii.in = Caxeversc.in

• iterative-1ist-accumulation.out = Careverse.out

IOsl)ec reierse / op(function) Jnput(finite-scquence) output(finite-sequence)

specidlization (affuhction

preconditions.op = reverse

I 1. Reverse is a standard relation on sequences defined in the appendix.

Tte-x-qtve- ist-uCcumvULtiOW"7e m- \j e.- (s e,

"I

. . 222 CHAPTER NINE

Figure 922. Accumulating I Stream as a List.

- .19'"k-um"Opmw_m--op 1 II

ACCUMULATION 223

Thus this overlay gives a crucial crrespondence between the temporal viewpoint taken inside a

loop and objects, such as Exit.End.Outpuf which come out of the loop and are used later. For example,

the following program to reverse a Lis listi is analyzed as te temporal composition of an instance of

Car+cdr+null, which generates the stream of inputs to CONS at the point underlined below, with an

instance of Iterative-list-accumulation, which accumulates the stream in reverse order as te list in .

(DEFINE REVERSE
(LAMBDA (L)

(PROG (M)
LP (COND ttNULL L)(RETURN M)))

(SETQ M (CONS (CAR LI M)
(SETQ L (CDR L))
(GO LP))))

Similarly, the special case of iterative accumulation in wich the Add roles are filled by instances of

Set-add, and the Init is an empty st, can be viewed as te operation of making the stream of Iput's to

Add in the temporal available as a set outside the loop.2 This overlay is shown in Table 9-X and

Fig. 923.

Another special case accumulation plan which is abstracted in trms of sets is Iterative-aggregation,

shown in Table 9-Y. In this plan the Add roles are filled by applications of a aggregative function (such

as Plus, Times, or Union), and the Init of te accumulation is die identity element of that function.

Iterative-aggregation can be viewed as a temporal implementation of Aggregate, as defined by the overlay

Temporal-aggregate in Table 9-Y and- as sown in Fig. 924. The stream of Input's to Add, viewed as a

set, corresponds to die input to Aggregate. The aggregative function applied by Add is the Binop of

Aggregate. The output of the end join of the iterative plan corresponds to t otput of Aggregate.

A further overlay, not sown here, can be defined to analyze accumulation loops in which the

function applied is aggregative, but the Init is not the identity element; as for example a summation loop

Table 9-X. Set Accumulation.

TemporalPlan iterative-set-accuniulation specialization iterative-accumulation
ro1es.1-161xit(cond).init(set) add(set-add).tail(iterative-set-accuniulation)
constraints empty(.init)

Teinporal0ierlqj� iteratiie-teniporl,,il-set,.acctiiiitilati'on: iterative-set-accumulation -->set
properties VA [istancl,,-,(itei-ative-set-accumtilationA)

:D iterative-temporal-set-accumulation(A) = A.exit.end.output

corresponden�es

list>set(accumulation-stream(iterativ,,-I-set-accumtilation))=set

L In which Push is implemented as CONS.
2. Notice that at this level of abstraction, we don'tsay xactly how this set (and therefore Set-add and Empty) are implemented.

s Ck Q 0

Figure 9-2.3. Accumulating a TemporalSet.

� 1-1----,--- :111 - -------

214 CHAPTER NINE

I- M- - - --%- ---- - ..- - - I

I
I

I I
... I

I
I

I
I
I
a"
I
I I

I I.- _.

I I

i
I I

11

I I

I

I

0, I

I I

I
I'O
I
I

i��

I

I0a Ia
I

I04, I
4�

,b 1

-b I

6

I

11

I

I

6

0
* . I

I % 0 4 v * f 0 a * 0 * 0 & & 0 * 0 "

I I

I I

s Pat

ovi

_0 -

225XT TACCLNl%..ILATION

I

I - -- - - --- - -- , --" -
f
I ** 0 0 # * a 0 0 0 0 #
I

I

I

I

(I

I

I

I

I

v

I

I

I
i
I

I

0

W-

ab

0

0

6

v * & v # * 0 0 0 0 0 0 # *

i

I-- - Mo. .0 . .- --M. %". w - NW

Itero(+�%jf -q�ye5atj OA,

I em Po ol IM (ei a�e

I Figure 924. Tml)orally Aggregating a Set.
t5

226 CHAPTER NINE

Table 9-Y. Temporal Aggregate.

TeinporalPlan iterative-aggregation specialization iterative-accumulation
roles.exit(cond).init(object).add(�aggregative) tail(iterative-aggregation)
constraints identity(.add.binop,.init)

ffispec aggregative / binop(aggregative-binfunction) old(object) input(object)
new(object)

extension old+input+new
posiconditions binapply(.binop,.old,.input) =.new

TemporalOverlaj, temporal-aggregate , iterative-aggregation --3- aggregate
correspondences

list>set(accumulation-stream(iterative-agcregation)) = aggregate.input
A iterative-aggregation.add.binop = aggregate.binop
A iterative-aggregation.exit.end.output = aggregate.output
A iterative-aggregation.exit.end.out = aggregate.out

which starts with an initial sum of 5. Su 'ch loops can be abstracted as an Aggregate operation in which the

input set is obtained by adding the Init to the Accumulation-stream, viewed as a set.

Non-Iterative Temporal Abstraction

This section discusses singly recursive programs in which. there is computation "on theway up", i.e.

in which the recursive invocation is not the last step in the program. The kind of computation most

commonly perfon-ned on the way up is accumulation', sch as te following program with Lisp list

accumulation on the way up.

(DEFINE COPYLIST
(LAMBDA (L)

(COND ((NULL L) NIL)
(T (CONS (CAR L)(COPYLIST (CDR L)))))))

One way of thinking about tis programming technique is to compare the program above with the

REVERSE program of the last section, which as the same generation part, but in whi 'ch, the list

accumulation is done iteratively ("on the way down"). This comparison is ade asier by re-coding

REVERSE tail recursively as shown below.

1. The two diffCrCDt LiSP codings have the ame plan.

NON-ITERATIVE TEMPORAL AB'Z11"'ACTION 227

(DEFINE REVERSE
(LAMBDA (L)

(REVERSE1 L IL))))

(DEFINE REVERSE1
(LAMBDA (L M)

(COND ((NULL L) M)
(T (REVERSE1 (CDR L)(CONS (CAR L) M))))))

In ffect, the non-iterative program above is using the stack provided by te Lisp language

implementation' to reverse t oder of objects flowing from the list gneration to the list accumulation, in

order to cancel out the order reversal introduced by the accumulation. The rest of this section will show

how to formalize this way of understanding accumulation on the way up in terms of te corresponding

iterative accumulation with an intervening order rversal.'- Similar plans and overlays for other basic

recursive computations on the way up (generation, application, etc.) can be constructed, but are much less

common in typical programming use.2

In terms of the plan calculus, the difference between iterative and non-iterative singly recursive

(linear) temporal plans is whether there is anything but instances of Join (or Join-output) after the

recursive invocation Tail). Instances of Join and Join-output on te way up are required in iterative

plans to specify via control flow tat the entire, computation ends when any of its tails end, and to return

any final values. In the plan for the COPYLIST program above, which is non-iterative, an instance of

�,Function te Add role of the accumulafion) comes after te tail. he plans for iterative and non-

iterative linear accumulation can be compared diagrammatically on te ight and left sides, respectively,

of Fig. 925.

Table 9-Z defines these two plans as specializations of a more general plan called Linear-

accumulation. 3 The constraints on this plan require only that the accumulation function applied

(Add.Binop) be the same each time, and that the Add stop occur once at each level in the recursion Oxcept

when the exit test succeeds. Also, in both the iterative and non-iterative versions, the Init object is

returned when the recursion ten-ninates on the very first exit test.

Iterative-accumulation is obtained as a specialization of Linear-accumulation by adding the

constraint that die Add step precedes the Tail, so that accumulation is done on the way down. There is

then data flow from Add.New to Tail.Add.Old. Also. in this fon-n of accumulation, the nit at each level

is the same as te output of the preceding Add. Tis can be seen in the REVERSE program above, in which

the value returned is m, which is set to (coNs (CAR L) m by die preceding repetition.

1. The cancellation between the reversal of the order of inputs on the wy up and the reversal introduced by the iterative
accumulation is a particular property of 1-ist.-accumulation. The reversal on the way up is a general property of non-iterative
temporal abstraction.
2. In fac� even the other common accumulations oher than list. accumulation, are seldom done on the way up, since the order
reversal is immaterial when the stremiis are viewed as sets.
3. his table contains an equivalent restatement of the Iterative-accumulation plan introduced earlier, where only loops, were being

considered.

--

2 2 8 CHAPTER NINE

- -1

I

I

I
I

I
1

41

0 1

I

I

16 I

I

I

I

a

11

I
4b4, I

0

01

0, I

16 I

1
4

I!,

0 1

I
0

I

a I

I

& :

I

wI
I

I
- - - -0. -- - -.W. -.Nov - .- - - I

I
I

I

I

I

I

I

I

I

I

I

I

I
I

I
I
I
I

I
I
I
I
I I

I t
.NW �am W, - Ina mw'aw -.00 gem Wma'"m now UAW I=

. kati 0 V� I -� P- ot i N

1� 9-14 IC C159> ztlQ-Tqil v P- Lf-V w'j\(X-U o�

a

v P- - Q CCUIiwlqi�ov%

4Figure 925. Accumulation on te Way Down vs. Up.

w � � 11 --, -- � 1. I i I- -- -- --------

NON-ITERATIVE IEMPORAL APSTRAMON 229

Table 9-Z. Iterative and Non-iterative Accumulation.

TemporalPlan linear-accumulation extension iterative-termination
roles.exit(cond).init(object).add(old+iiiput+new) tail(linear-accumulation)
constraints.iiiit=.exit.end.succeed-input

A .exit.iffai1 I <-* add.in I A add.in I tail.exitJfin#_L)

TemporalPlan iterative-accumulation
specialization linear-accumulation iterative-termination-output
roles.exit(cond) init(object).add(old+input+new) tail(i.tei-ative-acclimulation)
constraints.add.old =.init A add.new -. tail.add.old A prccedes(.add.ou�.tail.add.in)

TemporalPlan reverse-accumulation specialization linear-accumulation
roles.exit(cond).iiiit(object).add(old+iiiput+ncw) tail(reverse-a6cumulation)
constraints instance0oin-output,exit.end)

A tail.exit.end.output=.add.old
A.a dd.new =.exit.end.fail-input
A init=.init.tail A precedes(.tail.add.out,.add.in)

Reverse-accumulation, the plan for the non-iterative case, is obtained as a specialization of Linear-

accumulat-ion byconstraining the Add step to follow the Tail, so tat accumulation is done of the way upq

aand adding data flow to te Add-.Old to Tal'I.Add.New, via die join of te Tafl. Also, i this fori of

accumulation, the Init is the same at each level, as can be seen in the COPYLIST program above, in which
NIL is returned from whichever recursive invocation flnally causes the COND to succeed.

Given this frw-nework, the Accurnulation-stream overlay can be generalized to apply to instances of
either Iterative-accumulation or Reverse-accumulation,

Finally, as shown in 'fable 9-AA and Fig 925, the iplicit order reversal of accumulation n te
way up (as compared to on te way down) can now be modelled as an overlay, ReverseAterative-
accumulation, which establishes a correspondence between these two versions in which the type of the
Add operations, the Init's, and final outputs correspond, bUt te accumulation input streams are reversed.

Table 9-AA. Temporal Reverse.

TemporalOverla reverse>iterative-accunitilation 0- reverse-accumulation iterative-accurnulation
correspondences

list>sc unce(reverse(accumLilation-streani(roverse-accumtilation)))
list) sequence(accui-nulatioji-stream(iterative-accumulation))

A reverse-accui -nuhaion.init = iterative-accuMUlation.init
A reverse-accuinulatioD.add=itei,-itive-acctimtilifion.add
A reversc--ccuiiitilation.exit.eiid.otitptit=itei-ative-,-icctii-nulation.exit.end.output
A rv'crse-accUInL]Iation.exit.ond.out = iteratiVO-aCCL]mulation.exit.eiid.out

I- 11-1-1-40" laws - I i ----- -- ... , - I - I I

230 CHAPTER NINE

Similar overlays can be constructed between the iterative and non-iterative versions of other recursive

plans, such as generation, application, etc.

9.4 Recursive Structures

This section sketches how the epistemology of singly recursive data structures (lists, etc.) and

temporal plans (loops, etc.) of the last two sections can be generalized to double and multiple recursion.

Only a small amount of formal definition will be presented in this section, however, since the plans and

overlays for double and multiple recursive structures tend to be longer and more detailed than those for

linear structures, without introducing any fundamentally new ideas.

Table 9-AB shows the basic idea of double recursion. Tlie data plan Double-recursion has two

roles, Left and Right, which are either themselves instances of Double-recursion, or of type Atom, which

is a primitive type used to terminate multiple recursions. Finite double recursion is defined analogously

to finite single recursion. Recursion with a varying number of recursive instances at each level can be

defined in terms of a single role which is constrained to be a set� each of which is either a recursive

instance or an atom.

The doubly recursive data structure analogous to List is Binlist (binary list), a data structure with

one head and two tails", Left ad Right. he binary data structure corresponding to Thread in the

linear case is Bintree, and in the general case, Tree. In Lisp programming, binary trees are a more

common data structure than binary lists, since a binary tree may be easily constructed out of dotted pairs,

as described. by Car-cdr-,g e nerator (see Table 9-A0. A double rcurSion may be viewCX' "a a bnary re

in which the left ad right recursive instances correspond to subtrees whose roots are successors of the

root of the binary tree, as specified by the following overlay.

Table 9-AB. Double Recursion.

DataPlan double-recursion
roles.left(double-recursion+atom).riglit(double-recursion+atom)

Type atom

Tyl)e double-recursion+atoin uniontjpe double-recursion atom

naiaPlanbinlist extension double-recursion
roles.head(object).Icft(biDlist+atom) ricrht(bin1ist+atom)

Tipe binlist+atoni uniwilipe binlist atom

RECURSIVE �q- 'RUCTURES 231

DataO i�erlqy double-recursionAintree - double- rectirsion+atom --> bintree
definition T=double-rectirsion>bintree(Rs) =

[[instance(atom,double-recursion+atom(Rs)) -> terminal(Tjoot(7))]
A [instance(double-recursion,double-recursion+atom(Rs)) D

Vxy [root(Tx A
root(double-recursioii>bintree(double-recui-sion+atom(Rs).Iefts),y)
v root(double-recursion>biiitree(double-recursion+atom(Rs).righ�s))

:D successorkT'X'Y) I I I

The basic plans for unbounded iterative computation introduced earlier in this chapter, generation,

application, termination, filtering, and accumulation, can also be generalized to double and multiple

recursion. For example, Table 9-AC and Fig. 926 show the plan for doubly recursive generation, such as

in the following code.

(DEFINE GENERATE
(LAMBDA (S)

... (GENERATE (CAR S))...

... (GENERATE (CDR S)) ...

The overlay Temporal-binary-gencrator is analogous to Temporal-iterator for loops. It specifies

how. Binary-generation can be viewed as the temporal implementation of the generator for a binary tree.

For example, this is the overlay which relates the code above to the IAsp binary tree generator Car-cdr-

generator.

,rable 9-AC. Binary Generation.

TeinporalPlan binary-generation extension double-recursion
roles.current(object) action-left(COunction.) action-right(afunction)

Jeft(binary-generation) right(binary-gencration)
constraints -current =.action-left.input A crrent =.action-rightinput

* Icft.action-left.op=.action-left.op A right.action-ri.ght.op=action-rigb.Lop
* action-left.ouLput=.Icft.current
* action-right.output=.right.current

TeinporalOverlay teniporal-binary-gencrator: binaTy-gCneration --> binary-generator
correspondences binary-gencration.current= binlary-gencrator.seed

* binary-gencration.action-left.ol) = binary-generatorAft
binary--encratioii.action-right.op = binary-generator.right

DalaPlan binary-generator
roles.seed(object .eft(function) right(function)

DataPlan car-edr-generator specializaflon binary-generator
roles.seed(dotted-p�iir).Icft(fLitiction).right(-unction)
constraints.left= car A rigbt=cdr

110114MIRMI'l .11I 91-41 IWIPRW"p��

232 CHAPTER NINE

I

I

I

I

i

I

I

W W -* . W W.

49
0

% I
% 'o

*- %. ., .. %w 0,

I I
0 1

1I I i
I

0 1

0 1

,.� a - 4w INA

t V\ k,(� q?,M4,-o r'B'
i

I i ;I I - - - - 4 . ON- ON v

I

I
-m m - 400- Op- 40- ARM. 4"Nomw -dollow mum- 4

., 1 A QTI - S tv\ ew a:+, 0 V\

I

I

I
4now 000. m 4�- -wo,I

or C(l \ (I Vick VI z e" e"'racio Y- .
Tew p - --------- ---- --l.-----l---l---,- -

Fiour 926. Binary eiieration.

RECURSIVE ""TRUCTURES 233

Notice that there are no constraints in the Binary-generation plan between tht;'order of execution of

the left and right rcursive invocations. Standard traversal orders or binary trees (such as pre- and post-

order) are represented as specializations of Binary-generation. In die temporal Njew, these traversal

orders can be viewed as overlays which "flatten" a tree into a linear stnicture in different ways.

Temporal abstraction of multiple recursive plans gives rise to tree structured streams and reverse

streams. Operations on these temporal abstractions are te generalizations of the corresponding

operations o temporal sequences, such as Iterate, Map, Truncate, and so on. A particularly important

doubly recursive temporal plan is binary tree accumulation, as in die following code.

(DEFINE COPYTREE
(L.AMBDA (S)

(COND ((ATOM S) S)
(T (CONS (COPYTREE (CAR S))

(COPYTREE (CDR S)))))))

The plan for this program is the temporal composition of binary generation with binary truncation

(on ATom), and binary accumulation in which the accumulation ffinction constructs an instance Double-

recursion from a iven left and right. For binar trees in Lisp, this construction operation is b-nplemented
by cota.

I I - W- 1 � -

234 APPENDIX

APPENDIX

PLAN LIBRARY REFERENCE

1. SETS

Type set

Function size: set cardinal

Function set-type: set --+ type
properties V SP st- type(S)P Vx (x E S) D instance(Px)

Type finite-set subtype set
definition instance(finite-se�,S) instance(set�S A flnite(sizc(,�))

1.1- Relations on Sets

Predicate empty set boolean
properties V S empty(S) *-+ size(,S) 0
definition empty(S) Vx (x S)

Predicateuniversal: set-> boolean
definition universal(S) = Vx (x E S)

Binrel disjoint: set X set boolean
definition disjoint(ST) Vx --l[(x E S) A (x E T)

Binre/subset: set X set --> boolean
properties instance(partial-ordersubset)
definition subset(S, T) V x [(x E S) D (x E 7)

1.2 Input-Output and Test Specifications with Sets

10spec set-rind universe(set) criterion(predicate) * output(object)
preconditions set-tvpe(.universe)= domain-type(criterion)

A 3x [(x universe) A apply(.criterionx) = true
postconditions (.outpu t E uni verse) A apply(.cri teri, on,otitput) = true

-- ,

SETS 235

IOspec each old(set) op(function) =: n(set)
preconditions set-type(.old) = domain-type(.op A subsct(.olddomain(.op))
postconMons set-type(.new) = range-type(.op)

A Vy [(y E new) +-> 3x [(x E old) A apply(.opx) = y

IOspec restrict old(set) criterion(predicate) =:> new(set)
preconditions set-type(old) = dornain-type(.criterion)
postcon&tions set-type(.new) = set-type(.old)

A Vx [(x E new) (x E old) A apply(.criterionx) = true

IOspec set-add old(set) input(object) : new(set)
specialization old+input+new-set
preconditions instance(set-type(.old),input)
postcon&tions set-type(.new) = set-type(.old A (.input E new)

A Vx [x#.input (x E old) +-> (x E new)

IOspec set-remove old(set) input(object) =:> new(set)
specialization old+input+new-set
preconditions instance(set-type(old),.input)
postconditions set-type(.new) = set-type(Ad A (nput new)

A Vx [x#.input:D [(x E old) +> (x E new)

Test any .-univu014finite-scO, crit1-1.1rion(predicatcl output(objcct) succeed
condition 3x f (x E universe) A apply(.criterionx) true
postconditions (.output E universe) A apply(.criterion,.output) =true

Test niember? / universe(set) input(object)
condition nput E uiverse

1.3 Aggregating a Set

IOspec aggregate Jnput(finite-set) biiiop(aggregative-binftinction) output(object)

Preconditions --,empty(Anput A subset(.input,argtype-onc(.binop).instaiices)
postconditions 3QT[instance(irreduiidaiit-sequenceQ)

A instance(irredundant-sequenceT)
A input= sequcnce)set(Qs)
A lngth(T)=Iength(Q)
A first(T) = first(Q)
A Vi [index(Ti A i I

apply(Ti) = binapply(.binop,apply(Qi),apply(Toneminus(i))) I
A output= last(7)

236 APPENDIX

IOspec sum / Anput(finite-set) binop(aggregative-binfunctioll) => .0utput(object)
specialization aggregate
precon&tions.binop plus

10spec roduct / input(finite-set) binop(aggregative-biiifunction) => output(object)
specialization aggregate
preconditions.binop = times

IOspec aggregate-union / Anput(finite-set) binop(aggregative-binfunction)
output(object)

specialization aggregate
preconditions.binop union

IOspec aggregate-intersection input(finite-set) binop(aggregative-binfunction)
output(object)

specialization aggregate
preconditions.binop = intersection

IOspec max input(finite-set) binop(aggregative-binfunction) ==> output(object)
specialization aggregate
preconditions binop greater

IOspec mirs. / input(ftnite -set) binop(aggregative-binfunct-orl.) output(object)
specialization aggregate
preconditions binop = lesser

1.4 Linear Implementations of Sets

DataOverlaj, lisbset: list+njI set
properties V Ls [list+nil(Ls) nil <-+ empty(] ist>set(Ls))
definition T=Iist>set(Ls = Vx [(x E T) x= list(Ls).head V (x E list>sct(list(Ls).tails))

Data0verlay sequencoset squence -3-� set
properties V Qs [list>set(sequcnceAi,.A(Qs) = sequence>set(Qs)

A [instance(irredundant-sequence,sequence(Qs)) D
length(sequence(Qs)) sizc(scqucnce>sct(Qs) I I

definition T= sequence> set(Qs) = V x [(x E T) *-+ 3 i a pply(sequenceWS), i) X I

Data0verla)., abelled-tbread>set labelled-thread --I- set
properties V Ls liswet(Ls) --- labelled-tliread>sct(list>labelled-thread(LS),S)
definition E=labeIlcd-thrcad>sct(Ts.)

vx [(x E J) +-* 3 [node(labelled-thrc,-id(Ts).base,j7) A applv(labelled-diread(Ts).Iabely)x

SETS 237

1.5 Implementations of Set Add'

TemporalPlan internal-labelled-thread-add
roles.old(labelled-thread) add(internal-thread-add) update(newarg)

.new(labelled-thread)
cotistraints.old.spine =.add.old A old.label =.update.old

A add.input=.update.arg
A add.new =.new.spin A update.new =.new.label

TemporalOverlay internakbread>set-add: internal-labelled-thread-add set-add
properties VP [instance(internal-labelled-thread-addP) D

instance(#internal-thread-addP.add) +-> instancc(#set-add,internal-thread>set-add(P))
correspondences

labelled-thread> set(in tornal-labelled-thread-add.old) = set-add.old
A internal-labelled-throad-add.update.input = set-add.input
A labelled-thread>sct(internal-labolled-thread-add.now)=set-add.new
A internal-labelled-tliread.add.in = set-add.in
A intcrnal-labellcd-thread.update.out= set-add.out

TemporalOverlaypush>set-add: push --* set-add
properties VP [instance(pushP) A instance(irredundant-listP.output)

:) instance(set-add-onl.-Ipush>sct-add(P))
coi-respolmdenit-el- list-/sct(push.old) = set-add.old

A push.input = set-add.input
A list>set(push.new) = set-add.new
A push.in = set-add.in
A push.out=set-add.out

1.6 Set Removal for Irredundant Lists

Tempora/Overlqv Ca tail+hitemal>restrict, �4ai4internal restrict-one
correspondences

list>sct(a)tail+intcrnal.action.inptit) = restrict-one.old
A complement((4�tail+internal.update.ifcriterion) = restrict-one.criteri on
A list>set(C)tail+iiiteriial.update.end.otitput) = restrict-one.new
A �CtaiI+intemal.acflon.in = restrict-one.in
A (q�tail+internal.update.cnd.out= restrict-one.out

L See Fig. A-1.

238 APPENDIX

llo"1111� -

i

I

� -1

Iv\+emal -i�y-ettd � set-Oa I

Minim A-1. Adding to a Set Implemented as a I-liread.

I I IM "--- OWN Iamm"I'll - - -

'SETS 239

Iospee restrict-one old(set) criterion(predicate) * nw(set)
specialization restrict
preconditions 3x [(x E old) A apply(.criterionx) = false

A Vxy [(x E old) A y E old)
A apply(.criterionx) = false A apply(.criteriony) false D x y

Tem oralPlan �tail+internal
roles.action(Cwhead) aipdate(cond)

.internal(internal-labelled-thread-find+remove)
constraints instance(((i�,,Prcdicatc,.update.io

A instance(Cq)taiI,.updatc.thcn)
A instanecooin-output,.updatc.end)
A in-stance(irrodundant-list,.action.input)
A action.output=.update.ifinptit A flow(action.outupdate.ifin)
A action.input =.update.then.input
A update.then.otitput=.tipdate.end.succeed-input
A updatexIscAn =Jnternal.find.in A updatexlse.out =.internal.remove.out
A list>labelled-thread(.actioii.input)=.internal.old
A update.ifcriterion=.internal.composite.criterion
A list>labelled-thread(.internal.new)=.update.end.fail-input

TeiiiporalPlaiiinternal-labelled-thre-#,-id-rind+reinove extension internal-thread-find+remove
role's.-A-d(tab elled-thread) .,.ic,-;v,(I,-tbcllcd-tlj-krca,-d) compositc(function+prcdicatc)

.find(internal-thread-find) remove(interna 1-diread-remove)
constraitits.old.spitic=.Fiiid.univers A new.spinc=.rcmovC.ncw

A old.label =.new.label A old.label =.composite.op
A functioii+predicate>predicatc(.composite) =.find.critcrion

TemporalPlan internal-thread-find+remove
t-oles.find(iiiternal-tlir-ad-find) r�-i-nove(internal-thread-remove)
constraints.find.universc=.remove.old A find.outptit=.remove.input

1.7 Discrimination

Type dscrimination subtype function
definition instance(discriminationF) instanceffunctionF)

* Vx [instance(domain-typc(F),x) : (x dornain(F))
bs [(b E range(F)) st- type(set(b, s)) = domai n -type(F)

Data0verlay, discrimination>set: discrimination --.* set
definition = discriminatimset(F�) domain-typeffmiction(T's))= set-type(Q)

A Vx [(x E Q) *--> (x E st(apl)ly(function(F,,s),x),s))

240 APPENDIX

1.8 Testing Membership 'in a Discrimination'

TeniporalOverlay discr'lminate+niember'.�>itiember?: discriminate+member? member?
correspondences

discriminatiow set(discrimiiiate+mcmber?.discriminate.op) = member?.universc
A discriminate+member?.discriminate.input=member?.input
A discriminate+mcmber?.ifin = member?.in
A discriminate+mcniber?.ifsLicceed = mernber?.succeed
A discriminatc+mcmber?.iffail = member?.fail

TemporalPlan discriminate+nieniber?
roles.discriminate(CMinction) Aftmembcr?)
constraints instance(discrimination,.discriminate.op

A discriminate.output=.ifuniverse A'Aiscriminate.input=Afinput
A cflow(.discriminate.out,.ifin)

1.9 Updating a Discrimination.

TemporalOverlay, d'scriminate+actl'on+update>action:
discriminate+action+uPdate --), old+input+ncw-set

properties VDA A= discriminate+action+updatc>action(D) D
-ristai-ice(se'-addD.actioii) *-), instance(set-addA)

A instance(set-add-oneAaction) <--+ instance(set-add-oneA)
A instance(set-removeAaction) + instance(set-reinoveA)]
A instance(# newvalueD.update) *-* instance(# old+input+newA)

correspondences
discrimination>set(discriminate+actioii+update.discrii-ninate.op)

old+inPut+new-set.old
A discriminatc+action+update.discriminate.iiiptit=old+inptit+ncw-set.input
A discriminatc+action+update.action.input=old+input+iiew-set.input
A discrimiiiation)sct(discrimiiiatc+action+update.update.n-n-w)

= old+inPut+new-set.new
A discriminate+action+update.discriminate.in = old+input+nCw-set.in
A discriminatc+action+update.update.out=old+inpLit+new-set.out

1. See Fig. A-2.

-1

�f

1) t, Sou(i %A

mevn�>ve?> YnerAber?

� -1

SETS 241

Figure A-2. Testing Membership in a Discrimination.

242 APPENDIX

TemporalPlan discriminate+action+update extension action+update
roles.discriminate(Cafunction) action(old+input+ncw-set).update(ncwvalue)
constraints instance(discrimination,.discriminate.op)

A discriminate.output=.action.old
A discriminate.output=.update.value
A action.new =.update.input
A discriminate.op =.update.old
A cflow(.discriminate.out,.action.in) A cflow(.action.out,updatedn)

IOspec old+input+new-set / od(set) Anput(object) =:> new(set)
specialization old+input+new

2. ASSOCIATIVE RETRIEVAL AND DELETION

Test retrieve universe(finite-set) ky(function) Anput(object) =:> output(object) .succeed
condition 3x (x E universe)- A apply(.keyx) =.input
postconMons (.output. E universe A apply(.key,output) =.input

IOspec expunge old(finite-set) key(function) input(object) ==> nw(finite-set)
extension o1d+input+ncw-set

postconditions Vx [(x E new) + [(x E old) A apply(.keyx):#.input

IOspec expunge-one old(flnitc-set) Acy(function) input(object) ==> nw(flnite-set)
specialization expunge
preconditions 3 x [(x E old) A apply(.keyx) =Anput

A V xy (x E old) A G, E old)
Aapply(.key,x)=.inputAapply(.keyy)=.input:Dx=y]

IOspec #expunge old(finite-set) Ay(function) input(object) new(finite-set)
specializzation expunge
posiconMons old =.new

2.1 Implementation of Associative Retrieval

TenipomlO. verlayany>retrieve any-composite --* retrieve
corresl7ondences any-cornposite.universe = retriONIC.Universe

A any-coniposite.composite.op = retrieve.key
A any-composite.coinposite.two=retrieve.input
A any-composite.ifoutput=retrieve.output
A aiiy-coml)osite.ifin=rcti-ieve.in
A any-composite.ifsucceed = retrieve.succeed
A any-composite.jUail = retrievehil

i I

ASSOCIATIVE REfRIENIAL AND DELETION 243

TemporalPlan any-composite
roles.compositeffunction+two) J Rany)
constraints function+two>predicatc(.composite) =.ifcriterion

2.2 Implementation of Associative Deletion

TemporalOverlay, restricbexpunge, , restrict-composite --+ expunge
properties V RE E= restrict>expunge(R) D

instance(restrict-oneR.action) <-+ instance(expunge-oneE)
A [instance(#restrictR.aCtion) +-> instance(#expungeE)

correspondences restrict-composite.old = expunge.old
A restrict-coinposite.composite.op = expunge.key
A restrict-composite.composite.two = expunge.input
A restrict-composite.action.new = expunge.ncw
A restrict-composite.action.in = expunge.in
A restrict-compogite.action.out = expunge.out

TemporalPlan restrict-composite
roles.coi-nposite(fuiiction+two) action(restrict)
constraints complement(functioii+two>prodicatc(.composite),.action.criterion)

2.3 Keyed Discrimination

DaIaPlan keyed-discrimination specialization composed-functions
properties VDs [instance(keyed-discriminationD) D instance(discrimination,composed>function(Ds))
roles.oneffunction) two(function)
constraints range-type(.twofinitc-set.)

A V Ts (T E rangc(.two)) -D set-type(sct(Ts)) domain-type(onc)

2.4 Retrieval from a Keyed Discrimination

TemporalOverlay discriminate+retrievoretrieve , keyed-discriminate+retrieve retrieve
correspondences

discriminatimset(composed> function(keyed-discriminatc+rctrieve.composite))
retrieve.universe

A keyed-discriminate+retrieve.ifkey = retrieve.key
A keyed-discrimijiatc+rctrieve.ifinput= retrieve.input
A kyed-discriminatc+rctrieve.ifoutl)ut=retrieve.output
A keyed-.discriminate+rctrieve.disci-iniinate.in = retrieve.in
A kyed-discrimiiiate+rctrieve.ifsucceed retrieve.succeed
A kyed-discrimiiiatc+rctrieve.iffail=rctrieve.faiI

244 APPENDIX

TemporalPlan keyed-discriminate+retrieve
roles composite(keyed-discrimination) discriminate(�function iretrieve)
conso s.composite.one =.ifkey A compositc.two =.discriminate.op

A discriminate.input=.ifinput
A discriminate.otitput =.ifuniverse
A cflow(.discriminate.ou�.ifin)

2.5 Associative Deletio'n from a Keyed Discrimination

Tempora'Overlay discriminate+expunge+up(late>expunge:
keyed-discriminate+cxpunge+update expunge

properties VDE [E= discriminate+expuiigc+update>cxpunge(D))
[instance(expunge-oneAaction) <-+ instance(expunge-oneE)
A [instance(# ncwvaIueD.update) ++ instance(# expungeE

correspondences
discrimination>set(composed>function(keyed-discriminate+expungc+update.old))

= xpunge

A discriminatimset
(composed>ftinction(keyed-discriminate+expunge+update.new))

= expunge.new
A keyed-discriminate+expunge-f-update.action.input=expunge.input
A kyed-di-cririiiriate+cxpunoe+u4pdate.actioii.key = xpunge.key
A keyed-discrit-ninatc+cxpunge+update.discriminate.in=cxpunge.in
A keyed-discriminate+expunge+update.update.out expunge.out

TemporalPlan keyed-discriiiiiiiate+expunge+tipdate
extension discriminate+action+update
roles discriminate(Ckfunction) action(expunge) updatc(newvalue)

old(keyed-discril-nitiation).new(keyed-discrimination)
constraints.,discriminate.op =.old.two A action.key =.old.one

A new.two =.update.new A new.one =.old.one

/000N .1
A

- I f� I

- -

FUNCTIONS AND 1� 2LATIONS 245

3. FUNCTIONS AND RELATIONS

Type function specialization object

Type bijection specialization function

definition instance(bijectionF) instance(functionF)

A V xy [apply(Ex) = apply(Fy) :) x = y

Type predicate specialization fnction

definition instance(predicateF) instance(functionF) Arange-type(F) boolean

Function domain-type: ftinction -3o- type

properties VFx [apply(rj)#undefined D instance(domain-type(F),x)

Function range-type function --), type

properties VFx [apply(Ex)#undefined :D instance(range-type(F),apply(Fx))

Function domain: function set

definition S= domain(F) Vx [(x E S) <-+ apply(Fx)#undefined

Function range-, ftinction - set

definition S= range(F) Vx [(x E S) x#-undefined A 3y apply(Fy) x

3.1 Input-Output and Test Speel'fical'ons wine Functions

IOspec function op(function) input(object). ==> output(object)

preconditioi7s (.input E doinain(.op))

posiconditions apply(.op,input) =.output

IOspec newarg / oldffunction) arg(object) Jnput(object) ==:> nwffunction)
preconditions instance(domain-type(.old),.arg A instance(range-t3ipe(.old).input)

postconditions apply(.new,arg) = input

A Vxj� [apply(oldx = y A x#.arg : apply(newx) =y

A doniain-typc(.new = domain-type(.old A range-type(.new = range-type(.old)

IO�pec newvalue / old(function) value(object) Anput(object) => nw(ftinction)

preconditions istaiice(i-aiige-typc(.old),.v�ilue) A instaiice(range-typc(.old),.input)

postconAions V x [apply(.oldx) =.value D app1v(.ncwx) =.input

* Vxj, apl)ly(.(-)Idx = j A y#.value D apply(mewx = y

Vxj) apply(.newx) =y:D apply(oldj = , [apply(.oldx) =.value A Ut]]

domain-type(.new) domain-type(.old) \ range-type(.new = range-type(.old)

Test �a',prediciate / criterion(predicate) Jnput(object)

condition apply(.criterion,input) = true

246 APPENDIX

3.2 Binary Functions

Type binfunction specialization object

Type binrel specialization binfunction
definition instance(binre],F) instance(binfunctionF A binrange-type(F) boolean

Function argtype-one: binftinction --+ type
properties VFx [binapply(Exj)#undefined instance(argtype-one(F),X)

Function argtvpe-two , binfunction -> type
properties VFx [binapply(Fxj)#undefined instance(argype-two(F),y)

Function binrange-type: binfunction - type
properties VFxY [binappIy(Fxy):#undefincd instance(biiirange-type(F),b:lnapply(Fxy))

IOspec Oinfunction / binop(binfunction) one(object) two(object = output(object)
preconditions binapply(binop,one,two.)# undefined
postconditions binapply(binop,one,two) =.output

Test binrel / criterion(binrel) one(object) two(object)
condition binapply(criterion,one,two) = tue

3.3 Partial Orders

Type partial-order specialization binrel
definition instance(partial-orderF) =- [instance(binrelF)

A argtype-one(F) = argtype-two(F)
A Vx [x#undefined D binapply(Fxx)= true
A Vxy [binapply(Exy) = tue D binapply(Ej x) = false
AVxj,7[binapply(F,,xjl)=trucAbinapply(Fyz)=ti-ue:)binapply(Fxz)=truel]

Type total-order specialization 'partial-order
definition instance(total-orderR = [instance(partial-orderR

A V.)g instance(argype-one"x A instance(argype-twoy)
bI'napply(Rxy) = true binapply(Rjx) = true

Function top partial-order - object
definition'x = top(R = Vy binappIy(Ryx) =true

Function bottom: partial-order --* object
defnitiOnx = bottom(R Vy binapply(Rxy) true

FUNCTIONS AND RELATIONS 247

3.4 Algebraic Binary Functions

Type algebraic-binfunction subtype binfunction
definition instance(algebraic-binfunctionF) instance(binfunctionF)

A argtype-one(F) - argype-two(F A argtype-two(f) = binrange-type(F)

Function identity: algebraic-binfunction -> object
definition e= identity(F) instance(binrange-type(F),E

A V x [instance(binrange-type(F),x) :D binapply(ExE) = x A binapply(Fex) x

Predicate commutative algebraic-binfunction -> boolean
definition commutative(F = Vxy binapply(Exy) binapply(ryx)

Predicate associative: algebraic-binfunction --* boolean
definition associative(F) = Vxyz binappIy(FbinappIy(Exy),z) binappIy(ExbinappIy(Fyz))

3.5 Aggregative Bnary Functions

Type aggregative-binfunction subtype algebraic-binfunction.
definition instance(aggregative-binfunctiotif') instance(algebraic-binfuilctionF)

A associative(F A commutative(F) A identity(F'# undefined

Binfunction I)Ius: integer X integer --.* integer
properties instance(aggregative-binfunction,plus) A identity(plus) = 0

Binfunction times: integer X integer--* integer
properties instance(aggregative-binfunction,times) A identity(times) =

Binfunction union: set X set -�+ set
properties instan'ce(aggregative-binfunction,union) A empty(identity(union))
definition U= union(SP, M Vx [(x E (x E S \ (x E T)

Binfunction intersection: set X set --), set
properties instance(aggregative-biiifunction,interscctioji A universal(ideiitity(intersection))
definition U= intersection(ST =_ Vx [(x E U) <-+ [(x E A x E T)

Bilifunction greater-, integer X integer -integer
Properties iiistance(aggregati�,�e-binfunctioii,gi-cater) A identity(greater) minus-infinity

A Vsbiiircl>biiiclioice(le,s)=greater
definition k = greater(ij) =_ [[j= k <-* c(ij I A i= k + le(ji)

mmw*wm�

248 APPENDIX

Binfunction lesser: integer X integer --+ integer
properties instance(aggregative-binfunction,leSSer) A identity(lesser) =infinity

A Vsbinrebbinchoice(ges)=Iesser
definition k = lesser(ij) [j= k ge(ij) A i= k -> ge(ji I I

3.6 Composed Functions

DataPlan composed-functions
roles one(function) two(function)
constraints range-type(.one) = domain-type(.two A subset(range(.one),domain(.two))

DataPlan hashing specialization composed-functions
roles.one(function) two(irredundant-sequence)

Data0verlay composedAunction , composed-functions function
definition F=composebfunction(Cs)

domain-type(F) = domain-type(function(composed-functions(Cs).one,s))
A range-type(F)=range-type(function(composed-functions(Cs).two,s))
A Vxapply(Fx)=apply(ftinction(composed-ftinctions(Cs).two,s),

apply(function(composed-furctions(Cs).oiie,s)x))

TetnporalOverlay coinposebCipfunction: composed-applies �00tiction
correspondences composed-� functions.one.input = a,,, anction.input

A composed> function(composed-(itftinctions.composite) = Ca function.op
A composed-(functions.two.output = Cafunction.output

composed qlunctions.one.in = � unction.in
A coniposed-,C�ofunctions.two.out= CaTunction.out

TemporalPlan coinposed-Vunctions
i-oles.coinposite(composed-functions) one(a function) two(ahilction)
constraints.composite.one =one.op A composite.two =.two.op,

A one.output=.two.input A cflow(.one.out,.two.in)

Ten7poralOverlay newvalue-compositoneivvalue -, neNAlvalue-6omposite --* newvalue
properties VP instance(iiewvalue-composite(P)) D

instance(# newvalueAaction) +-* instance(# nwvalue,iiewvalue-composltc>newvalue(P)
correspon'dences newvalue-composite.action.value = newvalue.value

A nwvaltic-composite.actioii.input= newvalue.input
A composeb function(newNitluc-coml)osite.old) = nwvalue.old
A composcd>function(lnewvalue-composite.new) = newvaluc.new
A newvalue-composite.action.in = newvalue.in
A newvalue-composite.action.out = ewvalue.out

- M - �- - - -, , -7 -- --, i� . .

FUNCTIONS AND RELATIONS 249

TemporalPlan nemalue-composite
roles action(newvalue) old(composed-ftinctions) new(composed- functions)
constraints.old.one=.new.on A action.old=.old.two A action.new=.new.two

3.7 Updating a Bection

TemporalOverlay ewargmemalue: newarg-bijection - Cafunction+newvalue
properties VN [instance(newarg-bijectionA) D

[nstance(# newargN) +-> instance(# newvaluenewarg> newvalue(N).update)
correspondences newarg-bijection.old = Colunction+newvalue.update.old

A newarg-bijection.arg = CafLinc6on+newvalue.action.input
A newarg-bijection.input = Cfunction+iiewvalue.update.input
A newarg-bijection.new = Cv-function+iicwvalue.update.new
A newarg-bijection.in=Ca,,function+newvalue.action.in
A newarg-bijection.out = Caftinction+newvalue.update.out

IOspec newarg-b"ection / old(bijection) arg(object) input(object)
-output(bijection)

specialization newarg

TemporalPlon �ftmctj'on+newvaIue
roles act-on((,7Junctilon) update(ncwvalue)
constraints instance(bijection,action.op A action.op =.update.old

A action.otitput=.update.valu A cflow(.action.out,.updateJn)

3.8 Binary Rehitions as Predicates'

Data0verlay binreI+hvo>predicate binrel+two predicate
definition P=binreI+two>predicate(Bs)

V x [apply(Px = true <-+ binapply(binrel(biiir'cl+two(Bs).op,s),x,binrel+two(Bs).two)= true]

DaIaPlan binrel+two
roles.op(binrel).two(object)
constraints iistance(argtype-two(.op),.two�

1. See Fig. A-3.

250 APPENDIX

f
t
q

sathrf > predt'CA4t---,
--- -- ---, --- -- " --7 - - -- - --

Figure A-3. Testinga Prediclate Implemented s a Binary Relation.

1. See Fig. A-4.

FUNCTIONS AND RELATIONS 251

Teniporal0i�erlay�binrel>predicate, Cabinrel-COMDOSAC Capredicate
correspondences

binrel,+two>predicate(abinrel-composite.composite) = Capredilcate.criterion
A CqNnrel-composite.ifone = Ca,)predicate.input
A eqbiii-el-composite.ifin,=Ca)predicate.in
A Cabinrel-composite.ifsticcced=�predicate.succeed
A Cibinrel-composite.iffail=apredicatc.faiI

TemporalPlon �binrel-coinposite
i-oles.composite(biiircl+two).iR Oinrel)
constraitils composite.op =.ifcriterion A composite.two =.iftwo

Data0verlay integeopredicate: integer --* predicate
defimitioii P= integmpredicate(is) =- Vj [apply(Pj)= true ++ = integer(is)
properties V Bs binrel+two(Bs).op = eq A instance(intecrer,binrel+two(Bs).two)

D binrel+two>predicatc(Bi) = integer>predicate(B.twos)

3.9 Functions as Binary Relatiolls

Type many-to-one subtype binrel
definition instance(many-to-oneR) instance(binrelR)

A Vxj [binapp'ly(RAJ)= tru A binapply(R-x,.�)- true y=z

Dala0verlay functionAlhirel -. function --* many-to-one
definition R functiombinrel(Fs) =- Vxy [apply(function(Es),x) =jl binapply(Rxy) true

3.10 Functions as Predicates'

Data0verlay function+two>predicate: function+two predicate
defiliftion P= faiiction+two>Predicate(Cs) =

Vx [applv(Px) = true ++ apply(fuiiction(function+two(Cs).op,s),x) function+two(Cs).two

DataPlan function4wo
roles.op(function) two(object)
constraints instance(range-type(op),two)

252 APPENDIX

.0

f

i

e w4tAi A+ evak? > p ec\ica te,

. / Figure A-4. Testing a Predicate Implernented as a Function.

FUNCTIONS AND R LATIONS 253

remporalOver,,Iaj)�ftinction+equal?>predic--,ite: Cwfunctior+equal --), Capredicate
correspondences function+two> predicate(Cfv fu nc tion+cqual.composite) �predicate.criterion

A afunction+cqual.action.input=--aprodicate.input
A Cafunction+equal.action.in = a,,predicate.in
A Ca)function+cqual.ifsuccced=Caprodicate.succeed
A Wunction+equaldffail Ca)predicate.fail

TemporalPlan Wunction+equal?
roles composite(function+two).action(a,)function) ARequal?)
constraitits.composite.op=.action.op A com osite.two=.iftwo

A action.output=dfon A cflow(.acdon.outAfin)

Test equal? one(object) two(object)
condition one =.two

3.11 Function and Predicate Composites"

Data0verlay funcfion+predicate>predicate: function+predicate predicate
definition P= function+predicatc>prodicate(Cs)

V x [apply(Px) = true -* apply(predicate(function+pr(-,dicate(Cs).criterion,s)
apply(function(ftiiietioii+pi-edicate(Cs).op,s),x)) true

DaIaPlan funcdon+predicate
roles op(function) criterion(predicate)
constraints range-typc(.op) = domain-type(.criterion)

Tempora/Ovet-layeaftinction+predl'cate>predicate: Cafunction+predicate --* Capredicate,
correspondences

function+predicate>prodicate(Cc�f�inction+pi-edicate.composite) Ca predicate.criterion
A Cafunction-�predicate.action.'Input = Ckpredicatednput
A fuiiction+pi-edicate.action.in=(q-�predicate.in
A C&function+prcdicate.ifsuccccd= Cippredicate.succeed
A Cafunction+predicate.iffail = Capredicatc.fail

TemporalPlan Caffinction+predicate
i-oles.composite(ftinction+predicate).action((q-?function).iR(&-predicate)
constraints.composite.op =.action.op A compositc.criterion =.ifcriterion

A ac6on.output=.ifinput A cflow(.action.out,ifin)

1. See Fig. A-5

254 APPENDIX

.0

ip

f

I
.i

. %b

ftt Pr eA;,Lct te -;, P fecl �

------- I -

Figure A-5. Testing a Prediclite Impleniented s a Functionand Predicate Composite.

FUNCTIONS AND RELATIONS 255

3.12 Complementary Predicates

Data0verlay complement predicate --) pedicate
properties Vxys [complement(xj) = complement6�,s) D predicatc(xs) = predicate(ys)
definition Q = complcment(Pj) = V x [apply(Qx) = true *-> apply(predicate(Ps),x) = false

Teniporo/Ovet-laj��predicate>coiiiplement: cepredicate --?. Cepredicatc
properties Vxys [�T)predicatexomplement(xs) = ea predicatexomplement(ys) x=y
definition = Cepredicate nomplement(T) =

[S.criterion = complement(Tcriterion, Tin)
A S.input = Tinput A SAn = Tin
A S.succeed Tfail A S.fail = Tsucceed

3.13 Choice Functions'

Type binchoice subtype algebraic-binfunction
definition instance(binchoiceF = instance(binfunctionF)

A V xy [binapply(Exy) = x v biiiapply(Fxy) y

DalaOi�et-la.libinrel>l)inchoice: binrcl --31- binchoice
properties V.RFs F= binrebbinclioice(Rs) A instance(partial-order,binrel(Rs))

rL rstai-cc(aggregaLive-biiifunctioiiF)A Vx[bottoiii(binre](Rs),,v),<-+x=identit.�,(i))]I
definitionF=biniel>binchoice(Rs)=Vxy[binapply(binrel(Rs),xj)=truc+-),binapply(Fxy)=y]

TemporalOverlay CaNnrebelioice -. Cwbinrel+join --+ choice
Correspondences

binrebbinchoice(o-�binrcl+join.ifcriterion)=Cachoice.binop
A C�tbiiirel+join.eiicl.outpLit=�,choice.output
A ��,,binrcl+join.ifiin = Cachoice.in
A Cci�,binrel+joiii.eiid.out=Ca)choice.out

IOspec Cc�choice / binop(binchoice) one(obj%--ct) Awo(object) = output(object)
specialization �tbinfunction

Tert7porall)latiC(�1)'Inrei+joiti specialization cnd
i-ol-s.iff(-�biiii-el).theii(i.n+out).elsc(in+out).endooin-output)
constraint5�.if-two=.end.succeed-input

ifone=.end.fail-input.

1. See Fg. A-6.

-21-1 -- ----- - --- --- I � -�- - � --- !Nlliomlllll.llll- 11 -.4. 1 1 1 11 , , , - ,I,, "i

256 APPENDIX

(S Sire� ';�cNioi ce

I - - -i �

F-116Ure A-6. Applying a Choice Function Implemented as -,t Ilimiry RelatiOn.

SEQUENCES 257

4.SEQUENCES,

Type sequence subtype function
definition instance(sequenceF) domain-type(Fnatural) A length(F):# undefined

Type irredundant-sequence subtype bijection sequence

Type rinite-sequence subtype sequence
defnition instance(finite-sequence,S) instance(sequenceS A finite(length(S))

4.1 Relations on Sequences

Function length: sequence -3-� cardinal
defin ition L = length(S = V i [apply(S, i;* u ndefined instance(natu ral, i) A le(i, L)

Binrel index-, sequence X natural --> boolean
definition index(SJ) instance(naturali) A le(ijength(S))

Function First , sequence --)- object

definition first(S) = apply(Sl)

Function last: finite-sequence --), object
definition last(S) = apply(Sjength(S))

Function utlast: finite-sequence --)-- finite-sequence
definition T= but'last(S) length(,S) = oneplus(length(T))

A VLx [index(Ti) D [apply(Sj) = x <-+ apply(Ti) x

Function r&erse finite-sequence -> finitc-sequence
-properties VS roverse(reverse(S)) = S
definition T= reverse(,S) length(S) = lengtli(T)

Via ply(,5,i)=applv(Toneplus(minits(length(S),i)))I

4.2 Input-Output Specifications wth Sequences

IOspec term op(sequence) input(natural) =:> output(object) specialization Cafunction
preconditions index(op,input)

ffispec ewterm / old(sequence) arg(natural) input(object) => nw(scquence)
specialization newarg
preconditions index(Ad,arg)

258 APPENDIX

IOspec #newterm / old(sequence) .Arg(natural) input(object) =:> new(sequence)
specialization newterm #newarg

IOspec truncate / Anput(sequence) criterion(predicate) =:> output(filifte-sequence)
precon&tions 3 i apply(.criterion,apply(.input,i)) = true
posiconditions

V i [index(.output, i) <-* Vj [le(j, i) : apply(.criterionapply(.inputj)) = false
A V I index(.output, i) D apply(.output, i) = apply(Anputi I
A apply(.criterion,apply(.iiiputoneplus(longtb(.output))))= true

spec truncate-inchisive / Anput(seqence) criterion(predicate)
==> output(finite-sequence)

preconditions 3 i apply(.criterionapply(.input, i)) = true
postconditions

V i [index(.output, i) <-> Vj [It(j, i)
apply(.criterion,apply(.inputj)) = alse:

• V i [index(.outpu t, i) D apply(.ou tput, i) = apply(Anputi)
• apply(xriterionjast(output)) = true

IOspec earliest / Anput(sequence) criterion(predicate) =�> output(object)
preconMons 3 i apply(criterionapply(.input, i)) = true
posiconMons apply(xriterion,output) = true

A 3 i [apply(Jinputi) =.output
A Vj [lt(ji) :) apply(.criterionapply(.inputj)) false I

IOspec literate input(iterator) * output(sequence)
postconditions range-type(.output) = argype-oneGinput.op)

A first(output) =Jnput.seed
A V i [apply(ou tputoneplus(i)) = successom(igencrator>digraph(.iliput),.ilipuLseed)

IOspec map Jnput(sequence) op(function) * output(sequence)
preconAions subset(range(.inptit),domain(.op))
posicondilions range-type(output) = range-type(.op)

A length(input) = length(.output)
A V i i dex(input, �) D pply(.ou tpu t, i) apply(opapply(inpu t, i))

4.3 Segments

DaIaOverlay segnienbse(luence: sevient --),sequence
definilion Q= segmenOsequence(Gs)
[Iciigth(Q)= difference(ii,-ttural(segmeiit(Cj,,s,).upper,�,',nattiral(segment(Cs).Iower,s))
A V i [in dex(Q, i) app] y(Q, i) = app'l y(segm e n t(Gs).basephi s(inattiral(segm en t(Cs).Iowers)))

SAEQUENCES 259

DataPlan segment
roles base(sequence) .ower(natural) upper(natural)
constraints index(.base,lower)

A index(.basc,.upper) A le(Jower,upper)

DataPlan upper-segment specialization segment
roles.base(sequence).Iower(natural) upper(natural)
constraints upper= length(base)

DataPlan lower-segment specialization segment
roles base(sequence) Jower(natural) upper(natural)
constrain is Jower I

5. LISTS

Type list+nil unionlype list nil

Type finite-fist specialization list finite-single-recursion

Type rinite-list+nil unibntype finite-list nil
,,test specializat' n list

DataPlan irredund" I 10
definition instance(irredundant-listL) instance(listL)

A V As tail*(Ljlf) D hcad(1ist(Afs))# Lhead
A instance(irredundant-list,list(L.tail,s))

10spec push old(list+nil) input(object) :> new(list)
specialization old+input+ncw
postcon&tions head(.new) =.input A tail(.new) =.old

A oneplus(length(.old))=lcngth(.ncw)

IOspec pop old(list) ==> nw(fist+ni 1) output(object)
postconditions head(.old) =.output A tail(.old) =.new

IOspec �head xp(ftinction) input(list) output(object)
specialization �,function
preconditions.op = head

i0spec Ctvtail / opffunction) input(list) * output(list+nil)
specialization function
preconditions.op = tail

260 APPENDIX

5.1 Upper Segment as List

Data0verlay upper-segmentAist: upper-segment -�, Est+nil
defnition L = upper-segmentAist(Cis =

[[L =nil <-* Icngth(scgmcnt(Cs).basc) = natural(segment(Gs).lowers)
A [instance(listL) D

A L.hcad = apply(sequence(secmeiit(Gs).base,s),natural(segment(Cs).Iowers))
A 3H [instance(upper-scgmcn�M

A sequence(scement(Gs).base,s)=sequence(segment(Hs).base,s)
A oeplus(natural(segment(Gs).Iower,s)) natural(segment(Hs).Iowers)
A L.tail = upper-scgmcntI-,list(Hs)

TeniporalOverlay bunip+updatc>pusb: bump+update -> push
correspondences upper-segment>list(bump+update.old) = push.old

A bump+update.update.input=push.input
A upper-seginent>list(bump+update.new)=push.new
A bump+update.bump.in = push.in
A bump+update.update.out = push.out

TeniporalPlan bump+update
roles.bump(-a,,onemintis).update(newterm).old(upper-segment).ilew(upper-segment)
Constraints cflowl.bump.out,.update.in)

-A ol,,4,.Io f r=.burnp.input
A bump.output =.update.arg
A update.old =.old.bas A updatc.new =.new.base
A nw.lower =.bump.output

IOspec oneminus / op(function.) input(integer) output(integer)
preconditions.op = oneminus

TemporalOverlay fctch+buinp>pop-. ftch+bump -31-� pop
correspondences upper-segment>list(fetch+btimp.old) = pop.old

A upper-,�cament>list(f-tcli+bump.new) = pop.new
A ftchi-btil-np.fetch.otitput=pop.output
A fbtch+bump.fctchJn = popan
A fctch+bump.bump.out=pop.out

TeinporalPlan fetch4unip
roles.fetch(tcrm) btimp(oponeplus) old(upper-segment) new(upper-segment)
coi7sti-aiii/s.old.base=.fetch.op A old.lowcr=.fctch.input

A old.lower =.bump.input
A nw.base =.old.basc A nw.lower =.bump.output

10spec Ckoneplus op(function) Anput(integer) ==> output(integer)
preconditions.op oneplus

i M.-

DIRECTt D GRAPHS 261
I

0. DIRECTED GRAPHS

DataPlan digraph
roles nodes(set) edge(binrel)

DaIaPlan tree specialization digraph
properties V G instance(tree, G) :) Vxy root(Gx A root(Gy) D x y
roles nodes(set) edge(binrel)
definition instance(trecG) instance(digraphG A 3x [root(Gx) A Vx [--1successor*(Gxx)

DataPlan bintree specialization tree
roles nodes(set) edge(binrel)
definition instanclc(bintreeT) instance(treeT)

A V x [node(Tx A --i tenninal(Tx) : size(successors(Tx)) 2

DataPlan thread specialization tree
properties VTinstance(threadT):D [Vxy [terminal(Tx) A terminal(Ty) x=y]

A Vxyz [successor(Txy A successor(Tzy) D x= z
role's.nodes(set) edge(many-to-onc)

6.1 Relations o Directed Graphs

Binrel node: digraph X object --> boolean
definition node(Gx) = (x E Gnodes)

Trirel successor: digraph X object X object boolean.
definition successor(Gxj) node(Cx A node(Cfj A binapply(Gedgexy) =true

Binflunction successors-, digraph X object --+ set
definition S= successors(Gx) = Vy [(y E S) successor(Gxy)

Trirelsuccessor*: digraph X object X object boolean
definition successor*(Gxy = 3i successorn(iGxy)

Quadrelsuccessorn: natural X digraph X object X object boolean.
,definition successorn(iGxy)

i=1 A successor(Gxy)
v 3z [successor(Gxz A successorn(oneniin.us(i),Gzy)

Binrel root: digraph X object --* boolean
definition root(Gx) Vy [(node(Gy A x#y) :) uccessor*(Gxj)

Binrel terminal: digraph X object --* boolean
definition tenninal(Gx) node(G,.x A -3j�, successor(Gxy)

262 APPENDIX

Binrel subgrap . digraph X digraph --+ boolean
properties instance(partial-ordersubgraph)
definition subgraph(GH)

Vxy [successor(Gxy) ::) successor(Hxy)
A Vxy f node(Gx A node(Gy A successor(Hxy)

:D successor(Gxy)

6.2 Input-Output Specifications with Directed Graphs

IOspec digraph-add. / old(digraph) input(object) new(digraph)
specialization old+input+ncw
postconditions (.input E new.nodes)

A Vxy x#.input A y#.input
A --,successor(.hewx,.input A --1successor(.newyJnput)
A -succcssor(.new,.inpu.tx A --,succcssor(.new,.inputy)

successor(.newxy) <-+ successor(Adxy)

10spec digraph-remove / old(digraph) input(object) => nw(digraph)
specialization old+input+new
postcon&tions (nput new.nodes)

A Vxy [x#.input A y#.input successor(.newxy) "-+ successor(Adxy)
A Vx [successor(.oIdx,.;nput)

Vy successor(.newx,y) *-> successor(Ad,input,y)

IOspec digraph-rind universe(digraph) criterion(predicate) =:> output(object)
preconditions 3 x [nodc(universe,.�. A apply(.criterionx) = true
POSICOnAtons node(.universe,output) A apply(.criterion,.output) true

6.3 Generators

DataPlan generator
roles sced(object) op(binrel)
constraints instance(argtype-onc(.op),.seed A argtype-one(.op) argtype-two(.0p)

DafaPlan iterator specialization generator
roles.seed(object) op(many-to-onc)

Data0verlay generatorAigrapli , generator --+ dgraph
properties V Rs root(geiierator>digraph(Rs),gencrator(R,,V).seed)
correspondences gencrator.op = digraph edge

A transitive-closure(generator) = digraph.nodes

-. i 0
i 1-1 4"'Mm"Now ago Pt - --*-

DIRECrED GRAPHS 263

Dala0verlay transitive-closure generator --* set
definition T= transitive-closure(Rs)

Vx [(x E) ++
x = generator(Rs).seed v 3 (y E A apply(function(generator(Rs).op,s),y) x

Datastructure natural-iterator instance iterator
componen1s.seed=1 op=oneplus

Datastructurenaturai-thread instance thread
properties Vs gncrator>digraph(natural-iterator,s) = natural-thread
components.nodes=naturals dge=functiombinrel(oneplus)

Data0verlay binary>generator: binary-generator -> generator
properties VBCTs [G=binary>generator(Bs) : instance(bintree,gencrator>digraph(GS))
correspondences binary-generator.seed = gencrator.seed

A binrel-union(function>binrel(binary-gencrator.left),
function>biiirel(binary-gencrator.right)) = gencrator.op

Binfunction binrel-union . binrel X binrel --+ binrel
d�ji'nifion T= binrel-union(R,,S)

Vxy [binapply(Txy) = true <-+ [binapply(Rxy) = true binapply(Sxy) true

6.4 Truncated Directed Graphs

DafaPlan truncated-digraph
roles.base(digraph) criterion(predicate)
constraints V x node(.bascx) [apply(criterionx) true

V 3y successor*(.basexy A apply(criteriony) = true
V 3y successor*(.bascyx A apply(xriteriony) = true

DafaPlan truncated-tree specialization truncated-dieraph
roles base(tree) criterion(predicatc)

DataPlan truncated-thread specialization truncated-tree
properties V T� [instance(truncated-threadT)

3x [nodc(digraph(Tbascs),x) t� apply(predicate(Tcriterion,s),x) =true
roles.basc(thread) criterion(predicate)

� 0- -,-- I

264 APPENDIX

6.5 Finite Subgraphs

Data0verlay truncatedAigrap , truncated-digraph --* finite-digraph
properties V TFs [F truncated>diaraph-inclusive(Ts)

instance(throad,digi-aph(truncated-digraph(Ts).base,s)) ++ instance(threadF)
A [instance(tree,digraph(truncated-digraph(Ts).base,s)) + instance(treeF)

definition F= twncated>digraph(Ts) =
[subgraph(Tdigraph(truncated-digraph(Ts).base,s))
A V x [node(I,,x) ++ [node(digraph(truncated-digraph(Ts).base,s),x)

• 3y [successor*(digraph(trtincated-digi-aph(Ts).base,s),xy)
A apply(predicate(ti-uncated-digraph(Ts).criterion,s),y) =true

• --i3z [siccessor*(digr�iph(truiicated-dicraph(Ts).base,s),zx)
A apply(predicate(truncated-digraph(Ts).criterioii,s),z)'= true

Data0verlay truncatedAigraph-inclusive: truncated-digraph --> finite-digraph
properties V TFs F= truncated> digraph-inclusive(Ts) D

instance(tliread,digraph(truncated-digraph(Ts).base,s)) + instance(threadF)
A [instance(tree,digraph(truncated-digraph(T,.�).base,s)) *+ instance(treeF)

definition F truncated>digrapli-inclusive(Ts) =
stibgraph(I'digraph(truncated-digrapli(Ts).base,s))

A Vx node(I,,x) -> [node(truncated>digraph(Ts),x)
v 3y [node(tmncated>digraph(Ts),y)

A successor digraph'Lum ted-digraphITs).bases),yx)
A apply(predicate(tnincated-digraph(Ts).criterion,s),x) true

DataPlan finite-digraph specialization digraph
roles nodes(finite-set) edge(binrel)

6.6 Trailing Plans

TenporalPlan trailing extension single-recursion
roles.current(object) preNlious(object).tail(trailing)
constraints.cufrent=.tail.previous

TemporalPlantrafling-search extension trailing iterative-search
roles.current(object) previous(object) cxit(cond) tail(trailing-search)
constraints instance(join-tNNo-outputs,.cxit.end)

A current =mit.i Einput A previous =.exit.end.succecd-input-two
A t,,iil.exit.end.output-two=.exit.eiid.f�til-inptit-two

- 1-- --- --- ---

DIRECTED GRAPHS 265

6.7 Trailing Generation ad Search

TetnporalPlan trailing-generation+search extension iterative-generation trailing-search
roles.current(object) previous(object) exit(cond) action(a fnction)

.tail(trailing-goneration+search)
coiistraints.current=.action.output A previous=.action.input

IOspec internal-thread-find / universe(thread) criterion(predicate)
output(object).previous(object)

extension digraph-find
preconditions Vx [root(.universex) ::) apply(.criterionx) = false
postconditions successor(.universe,.provious,.output)

TemporalOverlay trailing-geiieration+search>rind , trailing-iteration+scarch internal-thread-find
correspondences

generator> digraph(temporal-iterator(trailing-gencration+search))
internal-thread-find.univase

trailing-gencration+search.exit.if.criterion = internal-thread-find.criterion
trailing-generation+search.exit.eiid.output = internal-thread-find.output
trailing-goneration+,searcli.exit.end.two = internal-thread-ind.previous
trailing-gonei-ation+scarch.action.in = internal-thread-find.in
trailing-gencration+search.exit.out= internal-thread-find.out

6.8 Splicing Out of a Tbread

TeniporalPlan spliceout
roles.old(iterator) new(iterator) bump(afunction) splice(newarg)
constraints.old.op =.bump.op A new.op =.splice.out A old.seed =.new.seed

* bump.output =.splice.input
* successor(genei-ator>digi-aph(.old),.splice.arg,.bump.input)

IOspee internal-thread-remove / od(thread) input(object) =:> new(thread)
specialization digraph-remove old+input+ncw
Preconditions --iroot(oldJnput)

Teinporal0ierlay sliceoubreinove - spliccout --+ internal-diread-remove
properties VS instance(# spliceoutS) +-> instance(# iterilal-thread-remove,spliceout>rcrnovc(S))
Correspondences

geiieritor>digraph(spliccotit.old) = internal-thread-remove.old
A spliccout.btii-ni).iiiptit=interii�il-tliread-rei-nove.inp--t-
A gencrator>digi-,,ipli(spliecout.now)-internal-thi-ead-remove.new
A spliccout.bump.in = internal-thread-remove.in
A spliccout.splice.out = internal-thread.rernove.out

266 APPENDIX

TemporalPlan #spliceout specialization spliceout
roles.old(iterator).new(iterator).bump(afunction).splice(#newarg)

10spec #internal-thread-remove / old(thread) input(object) => new(threaa)
specialization internal-thread-remove #old+input+new

6.9 Splicing Into a Thread'

TeniporalPlan splicein
roles old(iterator) new(iterator) one(newarg) two(newarg)
constraints.one.arg =.two.input A one.new =.two.old

A successor(gencrator>digraph(.old),.two.arg,.one.input)

10spec internal-thread-add / old(thread) Anput(object) =:> nw(thread)
specialization digraph-add old+input+new
postconditions --1root(.new,.input)

A Vx [successor(.newx,.input)
:D Vy [successor(.oldxy) <-* successor(.new,.inputy)

TemporalOverlay spliceiwadd: splicein --* internal-thread-add
properties VS[instance(#spliceinS) ++ instance(# internal-thread-add,splicein-/add(S))
correspondences

gen orator > digraph (sp I ice i mold) = in tc mal -th read -add.old
A splicein.one.arg=internal-thread-add.input
A gnerator> digraph(splicein.new) = internal-thread-add.new
A find+splicein.one.in = internal-thread-add.in
A find+splicein.two.two.out = internal-throad-add.out

TemparalPlan #splicein specialization splicein
roles.old(iteratoi,).new(iteratoi-).one(#newarg).two(#newarg)

IOspec #internakbread-add / old(diread) Jnput(lobject) =:> nw(thread)
specialization internal-thread-add #old+input+ncw

6.1 0 Labelled Directed Graphs

DataPlan labelled-digraph
roles.spine(digraph) .abelffunction)
constraints subset(.spiiie.nodes,domain(.Iabel))

1. See Fig. A-7.

� I ce ("',Y > CIA �

i --------

DIRECTIED GRAPHS 267

?II CP- LV,

Figure A-7. Addingan Internal No(le to a Tbretad by.Splicing In.

--W I . I

268 APPENDIX

DotoPlan labelled-thread specialization labelled-digraph
roles.spine(thread) label(function)

DataPlon edr-tbread+car specialization labelled-thread
properties, VPs [instance(edr-thread+carP)

:) 3 x [root(thread(Rspines),x A list>labelled-thread(dotted-pair>list(x,s),s)P
roles spine(cdr-thread) Aabel(function)
constrain Is Jabel = car

DataPlan edr-thread specialization thread
roles.nodes(set) edge(many-to-one)
constraints set-type(modes) = dotted-pair A Vs binrel(edges) = functiombiiirel(cdrs)

6.11 Trees as Partial Orders

DatoOverlay treoorder -, tree --3- partial-ordcr+bottom
properties V TRs [R = tree> order(Ts) :D [root(tree(Ts),bottom(R))

A [instance(threadtree(T,.5)) *-* instance(total-orderR)
definition R = tree>order(Ts) Vxy [binapply(Rxy) = true <-* x y successor*(trec(Ts),xy)

Type partial-orderAottoin subtYTe partial-order
definition iiistatice(I)ai'tial-oi�dcf+bottoi-iiR) instance(partial-orderR A 3x bottom(R,_�)

6.12 Intervals

DataPlan interval
roles.base(total-order) Jower(object) upper(object)
constraints binapply(base,lowerupper) = true

Data0verlay interial>triiiielitted-thread: interval --* truncated-thread
properties V Ts [T= interval> truncatcd-thrcad([,.� D

interval(Ij).lower= bottoi-n(trec>oi-der(truiicated>digraph(Ts),�))
A interval(Is).upper= top(trcc>order(truncated>digrapli-inclusive(Ts),s))

definition T=interval>ti-uncated-thre,-id(Is)
[root(Tinterva1(1,s).1ower)
A total-order(interval(Is).base,s)=trcc>oi-der(Lhread(Tbase,s),s)
A predicate(Tcriterion,s)=integcr>predicate(interval(Is).upper,s)I

LINEARS,TRUCTURES 269

7. LINEAR STRUCTURES

Data0verlaylistmequence: list+nil --+ sequence
properties V LQs Q = list>sequence(Ls) D

[length(1ist+ni1(L-,s)) = length(Q)
A [instaiice(irredundant,-Iist,list+nil(Ls)) +* instance(irredundant-sequenccQ I I I
A V xys list >sequence(xs) =list> sequence(j),s) D list+nil(xs) = list+nil(�s)

definition Q = list>sequence(Ls)
[[length(Q) = +-> hst+ni1(Ls) = nil
A [list(Ls)#undefined :)

[first(Q) = list(Ls).head
A V ix [apply(Q, i) = x + 3 tailn(oncminus(i),1ist(Ls)) M A list(ills).head x

DataOverlay sequencolabelled-thread: finite-sequence --), labelled-truncated-natural-thread
properties Vxys [sequence>1abelled-thread(xs) = sequence>1abelled-thread(ys)

D'sequence(xs) = sequence(ys)
definition L = sequencolabelled-thread(Qs)

[function(L.Iabels) = sequence(Qs)
A 3 T digraph(L.spines) = truncatcd>digraph-inclusive(Ts)

A predicate(Tcriterioni) = integcr>predicate(lengdi(sequence(Qs)),s)

Data0vetla�;.I'st>label'lea'-"-liread: list labelled-thread
definition T=listAabclled-thread(Ls)

[V x [f x = list(L,� v tail *(Iist(Ls),x) ++ (x Tspine.nodes)
A Tspine.edge = tail A T.1abel = head

DataPlan la�elled-truncated-natural-thread specialization labelled-thread
roles.spine(thread) .abelffunction)
constraints 3 Ts[instance(truncated-threadT A Tbase = natural-thread

A spine= truneatcd>digraph-inclusive(Ts)

Data0verlay sequencothread : irredundant-sequence --> thread
properties V Q Ts T= squenco thread(Qs) D

lengt1i(sequence(Qs)) = size(set(Tnodess) A tcrminal(T,1ast(scquence(Qs)) I
A V xys [sequence > th read(xs) = squence> th read(y,,s) D sequence(xs) = sequence(ys)

definition T=sequence>thread(Qs) =
[root(Tfirst(sequence(Qs)))
A V i index(sequence(Qs),i)

successor(Tapply(sequence(Qs),i),apply(sequence(Qs),oiicplus(i)))

Dala0verlay lisotbread , irredundant-list --o- thread
properties V yjs list> thread(xs) = li st> thread(j.1,S D ist(xs) = listo I
definition T= 1istA1irc.1-(J(I,,s) =_ Vx list(Ls).hcad = x <+ root(Tx)

A Vix [T1 [tai1n(ijjst(Ls),,V A ALhead = x I <-* 3y, [root(Tj) A successorn(iTyx)

1. See Fg. A-8.

I

270 APPENDIX

8. FLAGS

DataPlan flag
roles arg(obj ect) '.cri terion(p medicate)
constraints instance(domain-type(.criterion),.arg)

Tempora/Pla eflag+output
roles xiiflagg(cond) output(flag)
constrainis instance(join-OLItpUt,.cnflag.end)

* output.arg =.enflag.end.output
* apply(.output.criterion,.enflag.eiid.succeed-input) true
* apply(.output.criterion,.cnflag.end.fail-input) =false

TemporalPlan enflagAeflag extension enflag+o'utput
roles enflag(cond) outpw(flag) deflag((predicate)
constrainis deflag.criterion =.enflag.output.criterion

A enflag.cnd.output=.deflag.input
A cPow(enflag.end.out,.deflag.in)

TemporalOverlay eMigAeflaptesti: enflag4deflag --+ test
correspondences enflag+dcflag.enflag.ifin = tst.in

cnflag-i-deflacy.deflag.succeed = test.succeed
e..aIIag+deiIag.deIag.faiI = test.fail

0 I i +a FT lq > t" t

,--I W ON 1 i - I

M-AGS 271

jAFigure A-8. Viciving Enfl.ag and Deffiag as a Test.11

272 BIBLIOGRAPHY

BIBLIOGRAPHY

[11 A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design nd Analysis ofCompuler Algorithms,
Addison-Wesley, 1974.

[2] W.S. Amey,"Computer Assisted Software Engineering (CASE) System 4th Int. Conf on
Software F,,ng., Munich, Germany, Spt., 1979.

[31 P. Asirelli et aL "A Flexible Environment for Program Development Based on a Symbolic
interpreter-", 4th Int. Con,� on Sqffivare Eng., Munich, Gemiany, Sept., 1979.

[4] J. Backus, 1977 ACM Turing Award Lecture: Can Programming Be Liberated from the Von
Neumann Style? A Functional Style and its Algebra of Programs", Comin. of the ACAI, Vol. 21,
No. 12 August, 1978.

[5] R. Balzer, ,,Transformational Implementation: An Example", I,EE Trails. oil Sofilware Eng.,
Vol. 7 No. 1, January, 1981.

[61 D.R. Barstow, Automatic Construction of Algorithms ad Data Structures Using A Knowledge
Base of Programming Rules ", Stanford AIM-308, Nov. 1977.

[71 S. Basu and J. Misra,"Some Classes of Naturally Provable Programs", 2nd Int. Conf on
Software Lng., San Francisco, Cal., ct., 1976.

"Proararn Understanding Through Cliche Recognition" (M.S. Proposal), M.T.T.
[81 D. Brotsky, In

Dept. of Elect. Eng. and Computer Si., May, 1981.
[91 A. Brown, Qualitative Knowledge, Causal Reasoning, and te Localization of Fail Ures", (Ph.D.

Thesis), MIT/AUTR-362, March, 1977.
[10] M. 1.1roy and P. Pepper, "Program Development as a Formal Activity", IE F E 'Trans. on

Sqfiivare Eng., Vol. 7 No. 1, January, 1980.
[111 R.M.. Burstall, "Some Tchniques for Proving Correctness of Programs Which Alter Data

Structures ", Machine Intelligence 7, D. Michic ad B. Meltzer, Eds., Edinburgh Uiversity Press
Edinburgh, Scotland, 1972, pp. 23-50,1972.

[12] R.M. Burstall and U. Darlington, "A Transformation Svstern or Developing Recursive
- Programs", J. of the AOI, Vol.24, No. 1, January, 1977.

[13] T.E1 Cheatham, G.H. Holloway, and J.A. Townley, "Symbolic Evaluation and tc Analysis of
Programs", ILEE Trails. on Software Eng., Vol. SE-5, No. 4 Jy 1979, pp. 42-417.

[14.] T.E Ceatham, J.A. Townley, G.H. Holloway, "A Systern for Program Refinement", 4th Int.
Conf. on Software EMg., MUnich, Germany, Spt., 1979.

[15]. T.E. Cheatham, "Program efinement by Transformation 5th Int. Conf. on Software Eng,
San Diego, Cal., March, 1981.

[16] O.J Dhl and K. Nygaard "SIMULA - An ALGOL-Based Simulation Laiigua2c", C6inm. 6f
the 4C.41, Vol. 9 No. 9 September 1966, pp. 671-678,

[17] O.J. Dahl, E. Dijkstra ad C.A.R.. Hoare, Siniclured It annning, Academic Press, 1972.
[181 J. de Keer, "Causal and'Yelcological Reasoning in Circuit Recognition (Ph.D.Thesis),

MIT/Al/l 529, Scpternber, 1979.
[19] J.B. Deimis,"First Version of a Data Fw Procedure Langi iage", 1roc. of Spnposiun on

Prog older? g, Institut de Prograrnmation, U. of Paris, April 1974, pp. 24 271.
[201 V. Donzcau-Gou et al., A Structure-Oriented Prograrn YAlitor A First Step Towards

Computer Assisted Programming 11roc. Int. Com1wing Antibes, 1975.

I-

i

f

ill--- ft- I--- --om

I .- . - . : 'I --- 4 - - I -1 I -% . - I -I- I . -- -

BiB--IOGRAPIIY 273

[211 J. Doyle, "Truth Maintenance stems for Problem Solving", MIT/Al/TR-419, January, 1978.
[221 R.S. Eares, C.K. Hitchon, R.M. Thal], and J.W. Brackett, "An Environment for Producing Well-

Engineered Microcomputer Software", h nt. Cot-if. o Softivare -,ng., Munich, Germany,
Sept., 1979.

[231 J. Earley, "Toward an Understanding of Data Structures", Comm. of the ACM, Vol. 14, No. 10,
October 1971, pp. 617-627.

[241 G. Faust, "Semiautomatic Translation of COBOL into HIBOL" (M.S. Thesis), MIT/LCS/TR-
256, March, 1981.

[25] S. Fickas and R. Brooks, "Recognition in a Program Uderstanding System", Proc. of 6th Int.
Joint Conf. on Artificial Intelligence, Tokyo, Japan, August, 1979, pp. 266-268.

[26] R.W. Floyd, "Assigning Meaning to Programs", in Mathematical Aspects of Computer Science,
J.T. Schwartz (ed.), Vol. 19 Am. Math. Soc., Providence Rhode sland, 1967, pp. 19-32.

[271 R.W. Floyd,"1978 ACM Turing Award Lecture: The Paradigms of Programming", Comin Of
the ACM, Vol. 22, No. 8, August, 1978.

[281 M.J. Freiling', "The Use of a Hierarchical Representation in the Understanding of Mechanical
Systems", Ph.D. Thesis, Mathematics Dept., M.I.T., 1977.

[291 S.L. Gerhar� "Knowledge About Pograms A Model and Case Study", -in Proc. of Int. Conf on
Reliable Software, June 1975, pp. 88-95.

[301 J.A. Goguen, J.W. Thatcher, and EG. Wagner, "An Initial Algebra Approach to the
Specification, Correctness, andIMPICInCrItation of Abstract Data Tpes," Current Trends in
Programming Methodology, V01. IV, (ed. Raymond Ych), Prentic -Hall, 1978.

[311 C. Green, "Theorem Proving by Resolution as a Basis for Question-Answering Systems,
Machine Intchlig-ence 4 D. Michic and B. Melt.Ler, Eds., Edinburgh University Press, Edinburgh,
Scotland, 1969.

[32] C. Green and D. Barstow, "On Program Synthesi's Knowledge", Atificial hitelligence, Vol. 10,
No. 3 November 1978, pp. 241-281.

[33) J. Guttag,"Abstract Dta Types a nd the Development of Data Structures", Comm. of the ACM,
Vol. 20, No. 6 June 1977, pp. 396-404.

[341 J. Guttag and JJ. Horning,"Formal Specification As a Design Too]", 7th nnua I ACM
Symposium on Principles of Programming Lnguages, Las Vegas, January, 1980, pp. 251-261.,

[35] C.A.R. Hoare, "An Axiomatic Basis for Computer Programming'% Comin. of the ACA1, Vol. 12,
No. 10, October 969, pp. 576-580,583.

[36] Y.I. lanov, The ogical Schemes of Algorithms," in Problems of Cjbernetics, Vol. Pergamon
Press, New York English Translation), pp. 82-140.

[37] D.E. Knuth, Te Art of Computer Programming, Vol. 12,3, Addison-Wesley, 1968,196911973.
[38] B. Liskov et. al., "Abstraction Mechanisms in CLU", Comm. of the ACM, Vol. 20, No. 8, August

1977, pp. 564-576.
[39] B.H. Liskov and S.N. Zilles, "an Introduction to Formal Specifications of Data Abstractions,"

Current Trends in Prograintning Methodology'Vol. 1, (cd. Raymond Yell), Prentice-Hall, 1977.
[401 Z. Manna, 11atheinatic Theory of C, mpuiation, McGraw-Hill, 1974.
[411 Z. M a na and R. Waldinger, Synthesis: Dreams = > Prograrns", IF LL Trans. Software

E ng., Vol. SE-5, No. 4 July 1979, pp. 294-327.
[421 The Mathlab Group, Afacsyma R(ference Manual, Laboratory for Computer Science, M.I.T.,

1-977.
[431 D.A. McAllester, "An Outlook on ruth Maintenance", MIT/AIM-551,, August, 1980.

274 BIBLIOGRAPHY

[44] J. McCarthy and P. Hayes, Some Philosophical Problems from die Standpoint of Artificial
Intelligence f #, 11achine ntelligence 4 D. Michic and B. Meltzer, Eds., Edinburgh University

Press, Edinburgh, Scotland, 1969.
[451 D. McDermott and G.J. Sussmah, "The Conniver Reference Manual", MIT/AIM-259A, 1973."Natural Language Produ tion as a Process of Decision-making Under[461 D.D. McDonald

Constraints", Ph.D. Thesis, Dept. of Elec. Eng ad Computer Science, M.I.T., Cambridge,
Mass., 1980.

[47] M.I-,. Miller and 1. Goldstein, "Problem Solving Grammars as Formal Tools for Intelligent
CAI Proc. of the Assoc. for Computing Machinety, 1977.

[48] M.L. Miller, "Planning ad Dbugging in Elementary Programming", Ph.D. Thesis, Dept. of
Elec. Eng. and Computer Sciencem.ur.,Cambridge, Mass., Fbruary, 1979.

[491 J. Misra, "An Approach to Formal Definitions and Proofs of Programming Principles", IL7EE
Trans. on Software Eng., Vol. SE-4, No. 5, September 1978, pp. 410-413.

[501 J. Misra, "Some Aspects of te Verification of I.,oop Computations", 1EEE Trans. on Software
Eng., Vol. SE-4, No. 6 November 1978, pp. 478-485.

[511 M.S. Moriconi "A Designer/Verifier's Assistant", 1EEE Trans. oil Software Eng. Vol. SE-5,
No. 4 July 1979, pp. 387-401.

[52] J.C. Reynolds,, "Reasoning About Arrays", Comm. of the ACA1, Vol 22, No. 5, May 1979, pp.
290-298.

[531 C. Rich and H.E. Shrobe, "Initial Report On A LISP Programmer's Apprentice", (M.S. Thesis),
MIT/Al/TR-354 Dcember 1976.

[541 C. Rich, H.E. Shrobe, R.C. Waters, G.J. Sussman, and C.E. Hewitt, "Programming Viewed as
a n E ginccriflg ACtivity", (NSF Prop0sal), MIT/AIM-459, January, 1978.

[55] C. Rich and H. Shrobe, "Initial Report on A isp Programmer's Apprentice", IEEE Trans. on
Software Eng., Vol. 4 No. 5, November, 1978.

[56] C. Rich, H.E. .Shrobe, and R.C. Waters, "An Overview of the Programmer's Apprentice", Proc.
of 6th Int. Joint Conf o A rtificial Itelligence, Tokyo, Japan, August, 1979.

[57] S.J. Rosenschein and SM. Katz, "Selection of Representations for Data Structures", Proc of
Symp. on rtificial Intelligence ad Progrannning Languages, Rochester, N.Y., August, 1977, pp.
147 154.

[581 P.D. Rovner, "Automatic Representation Selection for Associative Data Structures"', Computer
Science Dept., University of Rochester, TRIO.

[59] G. Ruth, Analysis of Algorithm Implementations", M.I.T. Project MAC Tchnical Report 130,
(Ph.D. Thesis), 1973.

[601 E.D. Sacerdoti, The Nonlinear Nature of Plans", Advance Papers of the 4th Int. Joint Conf on
Artificial Intelligence, Tblisi, Georgia, USSR, September 975, pp. 206-214.

[61] E. Schonberg,, J.T. Schwartz and M Shadr, Automatic Data Structure Selection in SETU, 6th
Annual ACIJS�wiposiutn of Principles of Ilrograninfing Languages, 979, pp. 1.97-210.

[621 J.T. Schwartz "On Programming", An Interim Report on the SETL Project, Courant Institute
of Mathematical Sciences, New York'University, June 1975.

[631 M. Shaw. W.A. Wulf, and R.I_. I_ondon, "Abstraction and Verificatio i Alphard: Defining
and Specifying Iteration and Generators Comin. of the AC-41, Vol .1-0, No. 8, August 1977, pp.
553-563.

[641 H.E. Shrobe, "Dependency Directed Reasoning for Complex Program Understanding", (Ph.D.
Thesis), MIT/AUTR-503, April, 1979.

131BLIOGRAPHY 275

[65] G.L. Steele and G.J. Sussman, The Revised Report on SCHEME: A Dialect of LISP",
MIT/AIM-452, January, 1978.

[66] G.L. Steele and G.J. Sussman, "The Art of the Interpreter, or, The Modularity Complex (Parts
Zero, One, and Two), 1T/AIM-453, May 1978.

[67] G.J. Sussman, "The Virtuous Nature of Bugs", Proc. of Cot-if. on Artificial Intelligence ad the
Siniulation of Behavior, U. of Sussex, July 1974..

[68] G.J. Sussman, A Computer Alodel ofSkill Acquisition, (Ph.D. Thesis), American Elsevier, New
York, 975.

[691 G.J. Sussman, "Slices at the Boundary Between Analysis ad Synthesis", Artificial Intelligence
and Pattern Recognition i Computer Aided Design, Latombe, ed., North-HollancL 1978.

[70] W.Teitelman, "A Display Oriented Programmer's Assistant", Proc. of5th Int. Joint Conf on
Artificial Itelligence, Ca-mbridge, Massachusetts, August 1977.

[71] W. Teitelman, Interlisp Reference Manual, Xerox Palo Alto R search Center, 1978.
[72] R.C. Waters, "Automatic Analysis of the Logical Structure of Programs", M1T/AI/TR-492,

(Ph.D. Thesis), December, 1978.
[731 R.C. Waters, "A Method for Analyzing Loop Programs", I EF�, Trans. on Software E ng., Vol.

SE-5, No. 3 May 1979, pp. 237-247.
[74] R.C. Waters, "The Programmer 9s Apprenticc: Knowledge Based Program Editing", I E,

Trans o Software Eng., Vol. SE-8, No. 1, January 1982.
[751 R.R. Willis, E.P. Jensen, Computer Aided Design of Software Systems", 4th Int. Conf on

Software F,,ng., Munich, Germany, Sept., 1979.
[76] N. Wirth, Systenialic Prograniming, An Introduction, Prentice-Hall, 1973.
F/] W.A. ,'ulf, 1-1-L. London, and M. Shaw, "An Introduction to the k-onstiruction and Verification.

of Alphard Programs", IEEE Trans. on Software Eng., SE-2, No. 4 December 1976, pp. 253-
265.

[78] A. Yonezawa and C.E. Hewitt, "Symbolic Evaluation Using Conceptual Representation's For
Programs with Side-Effects" . MIT/AIM-399, December, 1976.

"WO MwI I : � -4 � " � .w � 11 � -1, I I � i I

276 INDEX

#action+update .. 175

#expunge *...... *.* ... 242

#internal-thread-add 266

internal-thread-rem ove 266

#new arg *.* *..* *..* *.*. 174

#new term , ... 258

#new value .. 174

#old+input+ncw 4'.0 *..* 175

#old+iiiput+new>action+update 173,175

#old+new .. 174

#restrict .. 174

#set-add .. 174

#set-rem ove *....... ... 174

#splicein .. 266

#spliceout ... 266

�aggregative ... 226

Cabinfunction .. 246
ACab inrel 39,2i.+6

ea binrel+join ... 255

�,b inrel-com posite, 251

(a)binrel>choice ... 255

Cabinreb predicate ... 251

� choice ... 255

CO unction ... 36,245

q� fu nction + equ al? .. 253

Cafunction+equaM predicate s 253

�Tuncdon+ncw value 249

aTuncti on+prodicate 253

Cc �, function+predicate>predicate 253

... 259

a,onem inus .. 70,260

eaone W s so 9 o..* 260

Cq)prcdicate 399245

alpredicate>com plem ent 255

�n verse O...44 22 1

Ca)tail .. 259

.0atai4 internal .. 239

ea tail+internal>restrict so.*** 127,237.

Catransitive-closure-iterator 213

accum ulation-stream .. 221

aggregate .. $.... .399235

aggregate-interscction 39,236

aggregate-union .. 39,23 6

aggregative-binfunction 39,247

algebraic-binftinction ... 247

any ... 40,235

any-com posite ... 243

any>retricve .. 113,242

application-in-stream # 196,195

application-out-strcam # 196,195

apply ... 143

argtype-one *........... 246

arg ype-two 246

associative ... 247

atom so ... so ... 230

bijection .. 120,245

binapply ... 143

binary-generation *so o so. s.231

binary-generator ... 231

binary>generator ?.............. soo. so so. 26 3

binchoicc .. 255

binfunction ... 36,246

binlist #... 230

binlist+atom ... 230

binrange-type .. 246

binrel *** ... *..*.. o##fq##...*##6..39j246

binrel+two ***.249

binreI+two>pr,cdicate 249

binrel-union # *.. 263

binreM inchoice #.so*. 255

bintree ... 45,261

bottoni 246

,bLIM P+update............ #...... 49,260.

bLIm pupd,-ite>ptish o...... so 719260

INDEX

discrim ination>set

disjoint .. 234

dom ain 245

dom ain-type .. 245

dotted-pair ... 142

dotted-pair>list .. 148

double-recursion ... 230

double-recursion+atom ** 230

double-recursion>bintree * ... #231

each .. 40,235

earliest ... 39,258

elem ent ... 66

em pty se.. 234

enflag+dcflag ... 270

enflag+deflagA est o270

enflag+output w..**..**.*.*.270

eq .. 66

equal? O..** **..#*.***.... 253

exPunge *....... 42,242

expunge-one *.4291229,242

fetch 79

fetch+bum p .. 260

fetch+bum p>pop................... ... *.#..* o..... #260

fetch+updatc ... o.......... 49

fetch+updatc>pop 0*

filtering-in-stream0

filtering-succeed-stream 215

Finite-digraph ... 264

finite-list ... 259

finite-list+nil ... i....... 259

finite-sequence 0....... 257

finite-set *234

fi nite-single-recu rsion .. 176

first .. 257

flag .. 270

function .. 36,245

function+predicate

INDEX 277

butlast .. 257

s... so.* 65

car+cdr .. �. 200

car+cdr+null ... 0... 969211

car-cdr-generator .. 231

cardinal o... 36

cascade-iterative-term ination 190,192

cascadeAterative-term ination o 190

cdr oo 65

cdr-iterator .. 200

cdr-thread .. 268

cdr-thread+car *........ 268

co-earliest .. 208

com mutative ... 247

com pemen t............o...... o.................. oo ... 255

com posed-ea functions........ 381,67*248

composed-functions 38,66,248

composed>�fLinction 68,248

com posed> function 66,248

cond

cotermination-fail-stream. 208

coten-nination-in-strea'm o 208

cotruncate ... *� 88,209

counting *..... ... *..O ** 511,181

daturn .. o...................... 65

digraph ... 43,261

digraph-add.. .. 469262

digraph-find .. 262

digraph-remove ... 46,262

dim o....... o*.*.#o o.... ... o.... 66

discriminate+action+update 42,242

discriminate+action+tipdate>action 118,240

dis,,.-riminate+exptinge+updatc>expungcl24,244

discriminate+mbrnber? lb 42,240

discriminate+memberm ember? 240

discriminate+retrjeve>retrieve 100,243

discrimination o 40,239

/0"I'l -
I

function+predicatc>predicate 253

function+two ... 251

function+two>predicate 251

function+value>predicate 112

function>binrel ... 251

generation-stream 194,193

generation'Aist .. 200

generator s..#. 459262

gencrator>digraph .. 262

....... 247

hashing ... 38,248

identity i ioe ... oo.os 247

in+out .. 57

index .. 257

integm predicate .. 251

internal-labelled-thread-add 237

intemal-labelled-thread-flnd+rcmove... 128,239

internal-thread-add 46,266

internal-thread-find 46,265

internal-thread-flnd+remove 239

internal-thread-rem ove 46,265

internal-threa6 set-add 237

intersection ... 247

interval 46,268

intervalArunpated-thread *.***. 268

irredundant-list ... 259

irredundant-sequcnce #......... 389257

iterate ... 45,88,258

iteratc+truncate 0 0....... 10.66 205

iterate+truncate>truncated-thread 205

iterative-accumulation I...... 519189,188,229

iterative-aggregation 51,22(

iterative-application 51,82,179,182

iterative-cosearch ... 188

iterativc-cosearch+nil *** 188

iterative-cotermination+nil. 184

iterative-filtering 5IJ799183

iterative-generation 50,81,179,180

iterative-list-accumulation. 51,221

iterative-list-accumulation> Ca reverse 221

iterative-search .. 52 9187,188

iterative-search+nil *... es. see es. .. 0 0 0 0. t. sees. *es. 1 8 8

iterative-set-accumulation 51,223

iterativ�-steady-state **..* ... 186

iterative-temporal-any .. 217

iterative-temporal-each *****.* ..215

iterative-temporal-find..-.....-.,... 215

iterative-temporal-restrict 215

iterative-temporal-set-accumulation 223

iterative-temporal-transitive-closure 213

iterative-termination 50,8291849185

iterative-termination,+nil 184

iterative-termination-output 184

iterative-teriiiination-out.put+niI 184

iterative-tei-mination-predicate 184

iterative-tormiiiatioii-predicate+niI 184

iterative-terminatioii>steady-state 186

iterator 06.6* ****.O *00**..459262

join .. 59

join-output ... 59

join-two-outputs #......... 137

keyed-discrinlinate+expungc+update 43,244

keyed-discriminate+rctrieve *.......... 429244

keyed-discrim ination 42,243

labelled-digraph ... 47,266

labelled-thread ... 47,268

labelled-thread>set 00 236

labelled-truneated-natural-thread 269

last .. 257

length ... 257

lesser ... 248

linear-accumulation see es. 229

I- i-- � - I I - I .. I

iterativc-coterm ination

-- --I- - -- -- - - - i- -1 - - - I . .

I

278 INDEX

,184

AOMNW*l I
f 'A . - -,l I 1�
I-

..... O..*** ..** ** .261

279INDEX

list ... 49

list+nil ... O 259

list-generation ... 200

liso labelled-thread .. O 269

fiso sequence .. O 269

liso set ... O 236

liso thread .. O 269

lower-segm ent **O.* 259

m any-to-one .. 251

m ap ... O 3% 88�258

max 39,236

m em ber? .. O 401,235

m in ... 0...... 39,236

natural ... 36

natural-iterator...'.. 263

natural-thread .. O 263

newarg OO......... ... 365245

newarg-bijection .. O 249

newarg>newvalue O 121,249

newterm 3 8,2 5 7

newvalue ... O 36,245

newvalue-com posed .. O 3 8

newvalue-com posite O 249

newvalue-composite>newvalue 69,248

nil ... O 47

node .. O 261

null t.o..oo a.... *a.* 66

object ... O 36,55

old+input+new ... O 175

old+input+new-set #...# 409242

old+new .. 38,174

partial-order........... 19,246

partial-order+bottom O 268

plus

pop .. 491259

predicate .. O 39,245

product 399236

push ... 49,259

pushn et-add ... *so 237

range ... 245

range-type so *..*e*245

restrict .. 40,235

restrict-com posite .. 243

restrict-one .. 125,239

restrict>expunge ... 126,243

retrieve ... 42,99,242

reverse o.o.ooo

reverse-accum ulation .. 229

reversviterative-accumulation 229

root 0#0*0.6406.6.261

segm ent *.491259

segm ent 62

segm eno sequence .. 70,258

sequence ... 257

sequenceAabelled-thread, 269

sequence>set

sequencc>thread .. 269

set
set-add .. 235

SCt-flDd .. 40,234

set-rem ove *.**

set-type

single-recursion .. 47,176

single-rccursion+nil ... 176

size .. 4....... 234

splicein .. 47,266

splicein>add ... 266

spliceout ... 47,132,265

spliceout>rem ove ... 1.32,265

steady-state-costrearn

steady-state-stream .. 201

subgraph .. 262

subset

sticccssorl

times

top

total-order .. 246

trailing ... **. 52 9264

trailing-generation+search 52,130,137t265

trailing-generation+scarchA nd 130,265

trailing-search 135,264

transitive-closure *..a 263

tree #.*o**.43.)261

tree>order .. oo..6.**..268

truncate39,258

truncate-inclusive 38,258

truncated-digraph ... 45,263
truncated-generationAist 2111

truncated-list-generation 96,211

truncated-thread .. 465263
truncated'-tree., ** 263

truncatedA igraph ... 264

truncated>digraph-inclusive.... 264.'

union ... 247

universal IIA

upper-segmcnt 491,259

upper-segmentAist ... 70,260

successor
successors

....... 000.6 ... Lul

successors 261

sum 39,J236

tail* 176

tailn o 176

temporal-aggregate 4 .4 226

temporal-binary-generator O.**.. . .41. 23 2923 1

temporal-co-earliest .. 208

temporal-cotruncate 209

temporal-earliest 206

temporal-iterate 198

temporal-iterator .. 198

198

temporal-truncate ... 205

tcmporal-truncatc'inclusive 205

term 389257

terminal 261

terminated-iterative-search 83t217
termination-fail-stream 201

termination-in-stream 201

57

thread ... 45,261

..............................

280 INDEX

.261
lAl

