AI-TR-604

INSPECTION METHODS IN
PROGRAMMING

CHARLES RICH

~June 1981

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTE LLIGENCE LABORATORY

INSPECTION METHODS IN PROGRAMMING
by

Charles Rich

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

June 1981

A revised version of thesis submitted to the Department of Electrical Engineering and
Computer Science on May 16, 1980 in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

This report describes research done at the Artificial Intelligence Laboratory of the
Massachusctts Institute of Technology. Support for the laboratory’s artificial
intelligence research has been provided in part by the Advanced Resecarch Projects
Agency of the Decpartment of Defense under Office of Naval Resecarch contracts
N00014-75-C-0643 and N00014-80-C-0505, and in part by National Science Foundation
grant MCS-7912179.

UNCLASSIFIED . .-

© SECURITY CLASSiF\CATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE CONPLLemONS _M
1. REPORT NUMBER 2. GOVT ACCESSION NO.] 3. RECIPIENT’S CATALOG NUMBER
AI-TR-604 VN AOo=HA1/1003>
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PER!OD COVER;D
Inspection Methods In Programming - . Technica1vReport

6. PERFORMING ORG. n‘EPoa*r NUMBER

Charles Rich 1 . R NOGO14-75-C-0643"
o - - | | NO0O14-80-C-0505
MCS-7912179

S. PERFORMING ORGANIZATION NAME AND ADDRESS . 10. PROGRAM ELEMENT.PROJECT TASK
Artificial Intellij igence Laboratory AREA & WORK UNIT NUMBER
545 Technology Square
Cambridge, Massachusetts 02139 .

7. AUTHOR(s) C - . . . - | ¥ CONTRACT on GRANT m.mezﬂ(-r e

1. CONTROLLING CFFICE NAME AND ADDRESS . 12, R_EPORT DATE
Advanced Research Projects Agency : . June 193]

1400 Wilson Blvd . =) N 13 NUMBER OF PAGES
Arlington, Virginia '22209 - ' '- SR 287 :

id. MONITORING AGENCZY NAME & ADDRESS(I(dllloronf from Controlling Office) IST SECURITY CLASS. {o!.lh.uvnporr))
O0ffice of Naval Research - S . UNCLASSIFIED
Information Systems ' B ' -
Arlington, Virginia 222!7 S 18a. gc'g 55"'°"‘°N/°°‘”“°“‘°'"°

8. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entersd in Block 20, i dlfferent from Report)

Distribution is unlimited

18. SUPPLEMENTARY NGTES

None ~ LT T

19. KEY WORDS (Continue on reverse aide if necessary and !dentify by block number)

Programmer's apprentice .~ Program synthesis S
Program deve]opment o o Expert vsy_s_tenjs
Planning - - o - Problem solving

Program ana]ys1s

20. ABSTRACT (Continus on reverse aide If necessary and Identity by block number)])

The work reported here lies in the area of overlap between artificial mtelhgmce and software
engineering. As research in artificial intelligence, it is a step towards a model of problem solving in the
domain of programming. In particular, this work focuses on the routine aspects of programming which
involve the application of previous experience with similar programs. 1 call this programming by
inspection.

Programming is viewed here as a kind of enginecring activity. Analysis and synthesis by inspection

———

DD ,73%™, 1473 eoimion oF 1 nov s 15 omsoLeve UNCLASSIF1ED
4 ’ S/N 0:102-014-6601) - - - - ..

SECURITY CLASSIFICATION OF THIS PAGE {Wh-n Data Entered)

PR R

are a prominent part of expert problem solving in many other engineering disciplines, such as electrical
and mechanical engineering. The notion of inspection methods in programming developed in this work d
is motivated by similar notions in other arcas of engineering.

This work is also motivated by current practical concerns in the area of software engineering. The
inadequacy of current programming technology is universally recognized. Part of the solution to this
problem will be to increase the level of automation in programming. 1 believe that the next major step in

" the evolution of more automated programming will be interactive systems which provide a mixture of
partially automated program analysis, synthesis and verification. One such system being developed at
MIT, called the programmer’s apprentice, is the immediate intended application of this work.
This report concentrates on the knowledge basc of the programmer’s apprentice, which is in the
form of a taxonomy of commonly used algorithms and data structures. To the extent that a programmer
- is able to construct and manipulate programs in terms of the forms in such a taxonomy, he may relieve
himself of many details and generally raise the conceptual level of his interaction with the system, as
compared with present day programming environments. Also, since it is practical to expend a great deal
of effort pre-analyzing the entries in a library, the difficulty of verifying the correctness of programs
~ constructed this way is correspondingly reduced. The feasibility of this approach is demonstrated by the
design of an initial library of common techniques for manipulating symbolic data,

This document also reports on the further development of a formalism called the plan calculus for
specifying computations in a programming language independent manner. This formalism combines
both data and control abstraction in a uniform framework and has facilities for representing multiple
points of view and side effects. ‘ ,Q%

T T T ST

jesitdi

INSPECTION METHODS IN PROGRAMMING
by

Charles ‘Rich

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

June 1981

A revised version of thesis submitted to the Department of Electrical Engineering and
Computer Science on May 16, 1980 in partial fulfillment of the requirements for the degree
of Doctor of Philosophy. ’

This report describes rescarch done at the Artificial Intelligence I.aboratory of the
Massachusetts Institute of Technology. Support for the laboratory’s artificial
intelligence research has been provided in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contracts
N00014-75-C-0643 and N00014-80-C-0505, and in part by National Science Foundation
grant MCS-7912179.

Abstract

The work feported here lies in the area of overlap between artificial intelligence and software
engineering. As research in artificial intelligence, it is a step towards a model of problem solving in the
domain of programming. In particular, this work focuses on the routine aspects of programming which
involve the application of previous experience with similar programs. 1 call this programming by
inspection. _) _ '

‘Programming is viewed here as a kind of engineering activity. Analysis and synthesis by inspection
are a prominent part of expert problem solving in many other engincering disciplines, such as electrical
and mechanical enginecring. The notion of inspection methods in programming developed in this work
is motivated by similar notions in other areas of engineering. .

This work is also motivated by current practical concerns in the area of software engineering. The
inadequacy of current programming technology is universally recognized. Part of the solution to this
problem will be to increasc the level of automation in programming. I believe that the next major step in

“the evolution of more automated programming will be interactive systems which provide a mixture of
partially automated program analysis, synthesis and verification. One such system being developed at
MIT, called the programmer’s apprentice, is the immediate intended application of this work.

This report concentrates on the knowledge base of the programmer’s apprentice, which is in the
form of a taxonomy of commonly used algorithms and data structures. To the extent that a programmer
is able to construct and manipulate programs in terms of the forms in such a taxonomy, he may relieve
himself of many details and generally raise the conceptual level of his interaction with the system, as
compared with present day programming environments. Also, since it is practical to expend a great deal
of effort pre-analyzing the entries in a library, the difficulty of verifying the correctness of programs
constructed this way is correspondingly reduccd. The feasibility of this approach is demonstrated by the
design of an initial library of common techniques for manipulating symbolic data.

This document also reports on the further development of a formalism called the plan calculus for
specifying computations in a programming language independent manner. This formalistn combines
both data and control abstraction in a uniform framework and has facilities for representing multiple
points of view and side effects. '

To My Father.

It is not upon you to complete the task,
But neither may you shy away from its undertaking,.

Pirke Avot

ii

it

Acknowledgements

I gratefully acknowledge my thesis supervisor, Gerry Sussman, for his intellectual
guidance and moral support at key moments, and also Hal Abelson, Carl Hewitt
and Mike Hammer, who were readers.

Many friends and colleagues at the Al Lab helped me with my ideas and writing.
1 have benefited especially from the time and energy of Dick Waters, Peter
Deutsch (who was visiting from Xerox PARC), and David McAllester. Will

Clinger, Roger Duffey, Gerry Roylance, Bill Kornfeld, Dan Shapiro and Guy

Stecle also read drafts of various parts of this work at various times. Finally, I

* would like to thank other friends who expressed their interest and support on

many occasions; Harold Goldberger, Brian Smith, Henry Licberman, David
McDonald, Eric Grimson, Ellen Hildreth, Bruce Roberts, Richard Brown,
Howard Shrobe, and Johan DcKleer.

Thank you, Candy, for everything,

iv

Table of Contents

1. Introduction 1
1.1 Inspection Methods 1

1.2 Multiple Points of View 3

1.3 The Plan Calculus ..., .5

1.4 Guide to the Reader .13

1.5 Relation to Other Work 13

PART I- OVERVIEW

2. Programmer’s Apprentice Scenario 21
3. Overview of the Plan Library —— 32
3.1 Introduction 32

3.2 Functions 36

3.3 SO et crercecrrerrrsionserenesiennmsssiaereeseseresessetasressrsssseressrasara st snsanens 40

3.4 Directed Graphs 43

3.5 Recursive Plans 47

4. The Plan Calculus 54
4.1 Introduction 54

4.2 Plans 54

4.3 Surface Plans ... 64

4.4 Overlays wvens 66

PARTIT-IN DEPTH SCENARIOS

5. Analysis by Inspection ... R 74
5.1 Why Analysis? 74

5.2 Overview 75

5.3 Surface Planscovecvnnnereeeeeenns .. 76

5.4 Loop ADalysisciceerecrnneneenvennreresnessensas 81

5.5 Bottont-up RECOZMILION vuoucverreeierererierernenensseensnnsenmesessessesssessssssansssessensssarsorsssasss 93

5.6 Top-down Recognition ... 96

6. Synthesis by Inspection SOOI | | 7,
6.1 Introduction 102
6.2 Data Structure Design 103
6.3 Procedure Synthesis .108
7. Verification by Inspection . 134
PART HI - TECHNICAL DETAILS
8. Logical Foundations 139
8.1 Introduction 139
8.2 Mutable Objects and Side Effects 139
8.3 Multiple Points of View 144
8.4 Data Plans 148
8.5 Data Overlays 152
8.6 Computations ... 153
8.7 Temporal Plans 158
8.8 Temporal Overlays e 167
8.2 Speccialization and Extension 169
8.10 Plans Involving Side Effectscceuen. 172
9. Loops and Temporal Abstraction . 176
9.1 Introduction .176
0.2 LOODS wervreerererrerereresssessaresssesssensrensrssereane 177
9.3 Temporal Abstraction 193
'9.4 RecUrSive SEIUCTUIES wvvrvvesmsensresssssssssesssessssens .. 230
Appendix. Plan Library Reference 234
Bibliography 272
Index . . venns 276

IN? RODUCTION 1

CHAPTER ONE
INTRODUCTION

1.1 Inspection Methods

Inspection methods are a distillation of the collective experience of solving many problems in a
particular domain. The essence of this experience is a taxonomy of common problem forims. The first
step of any inspection method is to recognize a familiar form embedded in a given problem. Associated
with each such problem form is either an explicit solution or, more generally, the form of the answer. In
sufficiently complex situations, debugging is also an unavoidable part of the use of inspection methods.
The role of debugging in problem solving has been investigated by Sussman [68,67]; it is not part of the
focus of this work.

For example, analysis of the termination conditions of a program is often done by inspection. If
you recognize a loop that counts up by one from an initial number up to a fixed greater number, then you
know from experience that it always terminates. Similarly, experienced programmers know a repertoire -
of standard operations on sets and their implementations for variety of set representations. In synthesis
by inspection, once a programmer recognizes that a problem calls for one of these operations, he can
implement it immediately. Program verification can also often done by inspection. Most of the difficult
deductive steps (typically the inductive arguments) can be embedded in pre-proven lemmas which are
associated with the standard forms. All that remains is to combine these lemmas appropriately in the
proof of the particular program, o '

An Fnginecring Vocabulary

Another significant characteristic of the use of inspection methods in engineering is that the
common forms acquire names which become part of the standard working vocabulary of experts in the
field. These names for intermediate level constructs supplement the primitive vocabulary of the domain.
For example, the primitive vocabulary of currents, voltages and resistances is formaily adequate for
specifying a wide range of electrical functions. Experienced electrical engineers, however, use a much
richer vocabulary including such concepts as scrics and parallel configuration, voltage divider, cascode
connection, and so on. Similarly, an experienced programmer knows rauch more than the the primitive
programming language constructs, such as tests, iterations, arrays, assignments, and so on. An
_experienced programmer is also familiar with many other more abstract concepts such as lists, hash tables,
scarch loops, and splicing.

A shared intermediate level vocabulary is very important for communication between cxperts. In
many ficlds this vocabulary has been codified and is taught as part of the standard cducation of novices.
This implies that facility with the appropriate intermediate vocabulary is an essential component of an

2 CHAPTER ONE

intelligent interactive system which is going to help experts in some field. Chapter Two illustrates this
point for the programmer’s apprentice system in particular.

Uniform General Methods

Many areas of engincering (and related fields such as applied mathematics) have over a period of
time developed powerful general methods which solve a wide range of problems of a given kind. For
example, general circuit analysis techniques involving node and cut sets and the inversion of matrices
have been known for a long time. Recently, a very powerful general method for symbolic integration has
been discovered by Risch. Why then do inspection methods continue to be of interest?

General methods gain their power by operating in a uniform way at the most primitive level of
vocabulary of the domain. This causes two serious problems: the methods are inefficient and the results
are difficult for users to interpret. For example, the Risch algorithm is usually used only as a last resort,
even by automated systems like Macsyma [42], because inspecting an integral for one of the many well-
known forms is comparatively inexpensive, and if one is recognized, the answer can be computed much
more quickly than by the algorithm. Similarly, general circuit analysis techniques involving node and cut
sets and the inversion of matrices are seldom employed by expert circuit designers because they are so
laborious in comparison to decomposing a circuit into familiar patterns with known behavior forms.
Furthermore the decomposition into standard forms usually coincides with the modules of the design
being explored. »

Recause of these difficulties, experts tend to employ uniform general methods only as a last resort.
Whenever possible they try to work with familiar special cases which can be solved by inspection. In fact,
this behavior is usually taken as one of the distinguishing characteristics of being an expert.

General methods have recently been developed in the area of programming also. For example, a
general method for program verification due originally to Floyd [26] and Hoare [35] decomposes the
problem into two steps. The first step is the generation of verification conditions, in which specifications
of the desired behavior of the program are combined with the axioms for each language primitive in the
program, yiclding a single formula to be proved valid. This formula is then passed to a general purpose
theorem prover. Unfortunately, if the program is incorrect, which is the most common case, the manner
in which the proof of the verification conditions fails provides little guidance to the user about how to
correct the original program. Verification by inspection, while it is not as powerful, does not suffer from
this problem of incomprehensibility. Errors are detected by inspection either by recognizing a known
pattern whose pre-proven properties contradict the desired specifications, or by recognizing a suspiciously
close match to a known pattern. In either case, the nature of the discrepancy can be communicated to the '
user in terms of familiar engineering vocabulary.

The analysis of programs with side effects is another area in which general methods have failed to
supplant inspection. Some work has been done on representing and reasoning about side effects in
programs [64], but the gencral methods developed thus far are clumsy and computationally expensive.
Furthermore, there is recason to belicve that there arc fundamental limitations to the cffectiveness of
general methods in this arca. Programs with an unconstrained use of side effects (such as rRrLACA and
RPLACD in Lisp) arc extremely difficult to understand even for the most expert human programmers. This

UNIFORM GENERAL METHODS 3

has led some to advocate the extreme position of banning side effects entirely ir new languages and
systems. However, there are also good arguments that side effects are crucial for the modularity and
efficiency of certain programs [66]. The resolution of this apparent conflict lies in the observation that
side effects are typically used only in very stylized forms, such as to splice nodes in and out of a linked list,
to update a global data base, and so on. By constructing a library of these standard plans and their
properties, analysis of side effects by inspection can suffice for most practical purposes.

Education

The importance of inspection methods in engineering problem solving is also reflected in
educational practices. The introductory parts of most engineering curricula first acquaint students with
the standard forms of the discipline. Only much later, after the students’ intuitions arc developed, are the
uniform general methods taught. For example, electrical engineering students are first taught how to
predict the behavior of certain standard circuits (e.g. oscillators), and how to implement certain common
signal processing functions (e.g. filters), before they are taught general tools for analyzing and
synthesizing circuits. In programming also, we begin with the craft lore of standard algorithms and data
structures before introducing any general program analysis, synthesis or verification methods.

1.2 Multiple Points of View

The range of applicability of inspection methods rests crucially on the ability to recognize familiar
forms in various contexts. There are many different ways in which the recognition of familiar forms can
be obscured. For cxample, in electrical engineering a standard circuit may not appear to be familiar
because some components are in parallel rather than in series, or vice versa. Similar difficulties also arise
in programs. For example, the placement of exit tests other than at the top or bottom of a loop can
obscure the recognition of standard loop forms.

Various techniques have been developed in different fields to overcome such complications. These
techniques are variously called equivalences, transformations, or models. All of these can be be thought
of as ways of providing the user with different points of view on a problem. Sometimes a different point
of view is necessary in order to use inspection methods at all. Sometimes several different points of view
each contribute some part of the solution. For example, in the analysis and synthesis of clectrical circuits,
equivalence theorems (such as Thevenin-Norton) are a basic tool for rearranging the topology of circuits
to match standard forms. Electrical engineers also use views in which certain features of the problem are
ignored — the so-called AC (sinusoidal stcady state) and DC (direct current) models are examples. In
one model certain components become open circuits, while in the other they become shorts. Since the
circuit in each model is simpler than in the full circuit view, the user is more likely to be able to use
inspection. (It is also an important feature of these particular two views that results derived in them can
be simply combined to give a complete analysis of the circuit.)

Multiple points of view are also important in understanding programs. Program transformations
can be used to move the position of exit tests in loops, and thercby increase the power of inspection
methods which recognize loop forms. In the area of data structures, it is often necessary to view a single

4 CHAPTER ONE

structure from two different points of view, each of which captures a different generalization. For
example, a Lisp list can be viewed both as a recursive structure (the tail of a list is a list) and as a labelled
directed graph (where the nodcs are Lisp cells connected by the cor relation and labelled by the cAR.
relation). The first view is appropriate for understanding Cons and cor as push and pop operations. The
second view brings to bear a programmer’s experience with standard graph manipulations in order to
understand RPLACD as the operation of splicing out a node. A single Lisp list may be used in both these
ways in a single program. ‘

Another example of point of view in programming is what I call the "steady state” model of loops
(and in general, recursions). In this view, exit tests are ignored in order to recognize the basic iteration
and recursion forms, such as counting, summing, CAR-CDR recursion, etc. This view is similar to the AC
model in electronic circuits, in that it can be simply combined with other views to construct a complete
description. For example, the counting part of a loop can be abstracted as generating an infinite sequence
of numbers, which is truncated by the exit test.

As we will see later in this chapter, a mechanism for representing multiple points of view is an
important part of the formalization of inspection methods in programming,

Overlapping Implementations

A kind of recognition difficulty which arises often in engineering domains is when the
implementations of two distinct abstract functions overlap. This means that a single component at the
implementatien level plays a role in two distinct forms. For example, a screw in a mechanical device may
fasten two plates together and also provide a fulcrum about which to pivot a lever. In a radio-frequency
amplifier, an inductor may be both part of a resonant circuit in the AC model and also part of the bias
network of a transistor in the DC model. This kind of "bumming™ is not just a feature -of arcane
programming — it is an essential part of good engineering.

For example, consider the following program which computes both the maximum and the
minimum of a non-empty list of numbers.

(DEFUN MAX-MIN (L)

(LET ((MAX (CAR L))

(MIN (CAR L)))

(MAPC '(LAMBDA (N) (COND ((> N MAX) (SETQ MAX N)))

(COND ((< N MIN) (SETQ MIN N))))
(CDR L))

(CONS MAX MIN)))

The standard loop plan for finding the maximum (or minimum) element of a list has three principal
parts: an initialization (herc (CAR L)), an enumeration of the elements of the list (here MAPC), and an
accumulation which tests cach element to see if it is the largest (or smallest) found so far. The diagram
below indicates how MAX-MIN can be analyzed in terms of this plan.

OVERLAPPING IMPLEMENTATIONS 5

The top node in this diagram represents the entire program. At the next level, the program is
viewed as the combination of two plans, one which finds the maximum and one which finds the
minimum. The third level shows how the more primitive components of the program are grouped and
viewed as the implementation of these two plans. There are only five nodes at this level rather than six
because the list enumeration is shared between the implementation of maximum and of minimum. It
must be simultaneously viewed as filling a role in both plans.

This type of analysis is a violation of strictly hierarchical decomposition, which is currently the
dominant technique in program design. We have found, however, that it is not always possible to
maintain a strictly hierarchical analysis and at the same time capture the appropriate generalizations.

Implementation relationships are treated here as points of view which may overlap. This approach
has the advantage of allowing the efficiency of implementation exemplificd by the MAX-MIN program
above (as compared to a strictly hicrarchical implementation with two separate loops), while still
capturing the similarities between this program and programs which calculate only the maximum or only

~ the minimum.

1.2 The Plan Calculus

A key issue in formalizing the use of inspection methods in a particular domain is the
representation of standard forms. Part of the work reported here has been to further develop a

- programming language independent formalism, called the plan calculus, for representing standard data

and control structure forms (called p/ans) in programming. i

This section introduces the plan calculus and points out some of its important features, A more
detailed definition of plans is the topic of Chapter Four. The plan calculus is an outgrowth of earlier
work by the author in collaboration with Shrobe [55] and Waters [56]. The important features of the plan
calculus discussed in this section are as follows.

* Wide Spectrum Specification

* Control and Data Abstraction

* Mutable Objects

* Programming Language Independence
. * Multiple Points of View

* Additivity

* Verifiability

* Dependencies

6 . CHAPTER ONE

The plan calculus is made up of two major components: plans and bverla}'s. Basically, a plan is the
specification of a computation. Overlays represent the relationship between two different points of view
on a computation, each of which is specified by a plan.

Programming is viewed here as a process involving the construction and manipulation of
specifications at various levels of abstraction. In this view, there is no fundamental distinction between
specifications and programs. A program (e.g. in Lisp) is merely a specification which is detailed enough
to be carried out by some particular interpreter. This view is consistent with the current trend in
computer science towards wide spectrum languages. The advantage of this approach is that various parts
of a program design can be refined to different degrees without intervening shifts of formalism,

Plans

Computations are viewed here as composed of three types of primitives: operations, tests, and data
objects. There are three corresponding types of primitive specifications in the plan calculus: input-output
specifications, fest specifications and object type specifications. Operations are specified by input-output
specifications (preconditions and postconditions). Tests are specified by whether they succeed or fail
when a given relation holds between the inputs. The primitive object types used in this work are
~ numbers, sets and functions.

Hierarchy is represented by composite plans. Each composite plan specifies a set of local names for
its parts (called role names) and a sct of constraints which must hold between them. There are two kinds
of composite plans, according to the types of the parts.

Data plars specify data structures whose parts are primitive data objects or other data structures.
Data plans thus embody a kind of data abstraction. For example, List is a data plan with two roles named
Head and Tail. The Head of a list may be an object of any type, but the Tail is constrained to be cither an
instance of List or the distinguished object, Nil ("the empty list"). Data plans are also used to represent
common implementation forms. For cxample, a data plan called Scgment is shown in Fig. 1-1. Data
objects are indicated in plan diagrams by ovals. This plan has three roles named

Base (asequence),
Upper (a natural number), and
Lower (a natural number),

and the following constraints;

(i) The Upper number is Iess than or equal to the length of the Base sequence.
(ii) The Lower number is less than or equal to the length of the Base sequence.
(iii) The Lower number is less than or equal to the Upper number.

This data plan (and special cases of it) is commonly used to implement other data abstractions, such as
lists and queues. ,

Primitive data objccts and data structures are mutable. For primitive data objects, this means that
~ the behavior of the object can change while its identity remains the same. For example, we can specify a
set addition operation in which the identical set is both the input and output. For.data structures with

I"igure 1-1. A Data Plan.

PLANS

8 CHAPTER ONE

parts, such as instances of the Segmeat plan, mutability means that one or more of the parts may be
replaced while the identity of the data structure remains the same. For example, a common operation on
Segment data structures is to increment the Upper index. The semantics of mutability are part of the
logical foundations of the plan calculus, which are discussed later in this section.

Temporal plans specify computations whose parts are operations, tests, data structures or other
composite computations. In addition to various logical constraints between roles, such as "less than or
equal”, temporal plans also include data flow and control flow constraints. An example of the temporal
plan for computing absolute value is shown in Fig. 1-2. Operations and tests are indicated in plan
diagrams by rectangular boxes. The bottom half of test boxes are divided into cases labelled "F" for
failure and "S" for succeed. This plan has three roles named

If (a test for less than zero),
Then (a negation operation), and
End (a join).!

Data flow constraints (solid arrows in the figure) specify correspondences between the outputs and
inputs of operations and tests. Control flow constraints (hatched arrows) specify which parts of a
computation are reached depending on which tests succeed or fail. Temporal plans thus embody a kind
of control abstraction,

The plan calculus is to a large degree programming language independent (for a wide class of

conventional sequential programming languages). This makes it possible to build a program
' development system which is concerned with the syntactic details of different languages only at its most
superficial interface. In order to translate back and forth between a given programming language and the
plan calculus, the primitives of the programming language are divided into two categories:

- (i) The primitive actions and tests of the language, such as CAR, CDR, CONS, NULL and EL in
Lisp, are represented as input-output specifications and test specifications.

(ii) The primitive connectives, such as PROG, COND, SETQ, GO and RETURN in Lisp, are
represented as patterns of control and data flow constraints between operations and
tests.

The translation from standard program text to an equivalent plan representation has been
implemented for reasonable subsets of Lisp [53], Fortran[73] and Cobol[24]. The translation from
suitably restricted plans to Lisp code has also been implemented by Waters [74].

Overlays

Overlays are the mechanism in the plan calculus for representing points of view in the
programming domain. An overlay is formally a triple made up of two plans and a set of correspondences
between roles of the two plans. Each plan represents a point of view; the correspondences express the

1. A join is a virtual entity which is neceded in order to specify what the output is in each case of a conditional. Joins will be
defined in Chapter Four,

PLANS

S F

v

Ahewn
(@wegati ve)

.S .E

Figure 1-2. A Temporal Plan.

9

10 CHAPTER ONE

relationship between the points of view. Overlays are similar to Sussman’s "clices", which he uses to
represent equivalences in clectronic circuit analysis and synthesis [69].

In addition to standard plans, there also standard overlays. For example,. consider the following
recursive Lisp program which copics a list. '

(DEFINE COPYLIST
(LAMBDA (L)
(COND ((NULL L) NIL)
(T (CONS (CAR L)(COPYLIST (CDR L)))))))

This program is an example of a singly recursive program in which there is computation "on the
way up"”, i.e. in which the recursive invocation is not the last step in the program. Many standard
recursive computations, such as list accumulation by consing, can be performed either "on the way
down" or "on the way up." For cxample, the following tail recursive program, which reverses a Lisp list,
performs list accumulation on the way down.

(DEFINE REVERSE
(LAMBDA (L)
(REVERSE1 L NIL))))

(DEFINE REVERSE1
(LAMBDA (L M)
(COND ((NULL L) M)
(T (REVERSE1 (CDR L)(CONS (CAR L) M))))))

Récognition of the standard Lisp list accumulation plan in thesc two programs is facilitated by an
overlay which expresses how, in general, to view accumulation on the way up as accumulation the way
down with an intervening order reversal. This overlay is shown in Fig. 1-3. Without going into details,
(For now, it is adequate just to get the idea that there are plans on both sides and correspondences
between them.) consider that the plan on the left represents accumulation on the way up; the plan on the
right represents accumulation on the way down. The four hooked lines between the two plans specify
correspondences between the two points of view. Unlabelled correspondences (three out of the four in
Fig. 1-3) arc equalities. Thus the initialization of the accumulation (the Init role) is the same in both
views. So are the input-output specifications of the accumulation operations (the Add role), and the final
output. The most important correspondence, however, is the one labelled "reverse” in the figure. This is
the correspondence which specifies that the order in which the clements of list L are accumulated in the
COPYLIST program is the reverse of the order in which they are generated by the CArR-CDR part of that
program. (The Lisp interpreter’s stack is being used to effect the reversal.)

Notice that overlays are symmetric.1 Either side can be used as a "pattern” (plans can be naturally
thought of as patterns), which makes it possible to use the same overlays in both analysis and synthesis.
The fact that correspondences are formally equalitics means that information can propagate between
points of view in both dircctions. For example, analysis by inspection of copyList proceeds by first
recognizing the standard list accumulation by consing plan in the point of view represented by the right

1. This is not strictly true, but only for a reason which is beyond the level of detail of this introduction.

:l . s 0 l..tlal;.lls :

' . ° M
® »

L1 -
: .“v. Be o4 ; ;/'-—:/’/
{ :/J/
{) — '
(- N R
(‘ N B
.' .00!00“;004!0: : '
(. !
t i) :)
{ : ewd .]
{ . .)

. .)
‘ ."0'.....""'0.'.!" ‘
!)
{ 1

(W S AN > D W am W cvm Sy S wy Swe Y awe

@& ¢ s 0 0 40 04008

iR
FojS

-
.
-
-
.
3
-
.

AU R I B I N LR

.t . SR D ame, A S - -~

{
|
—
!
'
!
’
)
)
)
|
'
'
)
s

R R R A I A B R A B B R R)

T e s R G e e AP O T e W aw

Reverse-accomulation

CVERLAYS

oi
L3

[X X
v e s e

R E R R IR I R B

P e 0 8 T 0ea 4000 0% 00y #0000 P e tOseprerePrrn s s se v s 00

{ .

' 1|.' ."'l.“’
(.

‘ - vt LR I RO B SR
(TN

‘ : F .S

(: _ewd
N D

P P2t st pe s s r e 0 te 0o

—

—
-
e T P e e - . D - e nartt ——— . SN G G - —— - — Pw —

{
{
|
t
|
(
\
(
(
|
c
:
{
[

Tt etative-acumulation

Reverse > ctecative-azcuwmvlation

11

Figure 1-3. An Overlay.

12. CHAPTER ONE

hand side of the overlay in Fig. 1-3. The known propertics of this plan inclvde the fact that the final
output is a list whose elements are the successive inputs to the accumulation operations, in reverse order.
Propagating this information back to the original view through the correspond=nces and performing the
algebraic simplification,

reverse(reverse())) =1,

leads directly to the result that the elements of the output of CorYLIST are the same as the elements of the
input list, in the same order.

Implementation is also represented using overlays. One side of such an overlay is the plan
representing an abstract behavior, e.g. pushing an element onto the front of a queue. The other side of
the overlay is an implementation plan, e.g. storing the element in an array and adding one to an index
pointer. The correspondences in such an overlay propagate information between the abstract and
concrete views. Such overlays can be used both in analysis by inspection and in synthesis by inspection.
In analysis by inspection, one tries to recognize known implementation plans. Once such a plan is
recognized, it is replaced by (overlaid with) the corresponding abstract plan, and analysis continues
similarly. Conversely, in synthesis' by inspection one matches against abstract plans and instantiates
implementation plans.

Logical Foundations

The remaining features of plans and overlays, namely additivity, verifiability and dependencies, all
relate to the logical foundations of the plan calculus. Formally, a plan is a set of axioms in a first order
logic. (The details of the axiomatization are given in Chapter Eight.) Although in fact plans are not
intended to be manipulated directly as first order axioms, this logical foundation provide a semantics and
a set of proof rules against which actual manipulations can be validated.

Placing plans in the paradigm of logic has several advantages. For example, additivity is a direct
consequence of an axiomatic formalization. Combining plans has the same formal propertics as the
union of axiom systems, i.c. the result of combining two non-contradictory plans is always a plan which
satisfies the constraints of both of the original plans. This is a desirable property not shared by other
formalisms, such as program schemas. Additivity also meshes well with the principle of least
commitment, which in this context means that implementation plans should have the minimum number
of constraints necessary to support the implemented abstract behavior.

The logical foundations of the plan calculus arc also involved in inspection methods for program
verification. Verification by inspection is based on recognizing plans and applying alrcady verified
overlays. Automating the verification of overlays is not part of the research reported here. However, the
logical foundations developed here do establish what needs to be proven to verify an overlay. For
example, the verification of an implementation overlay entails proving that the constraints of the abstract
plan are derivable from the constraints of the implementation plan together with the correspondences
taken as premises.

LOGICAL FO:'NDATIONS 13

In addition to simply recording that an overlay has been verified, it is useful to keep a record of
which constraints of the implementation plan were used in the proof of which constraints of the abstract
plan. This information can be extracted as a by-product of the proof process [64]. Such links are called
dependencies. Dependencies, as part of the plan calculus, are a network of links between specifications
which trace the logical derivation of one from the other. Dependencies capture a dimension of logical
structure which is different from the hierarchical decomposition expressed by the roles of a plan.

Dependencies make it possible for.the programmer’s apprentice to explain how a program works
and reason about the potential effects of a modification. For example, if you want to delete a constraint
from an implementation plan, the dependencics tell you exactly which constraints of the corresponding
abstract plan could become invalid. Similarly, if you change the abstract specifications of an already
verified overlay, the dependencies indicate which parts of the verification need to be redone and which
paris can be carried over without any extra work. The use of dependencies in reasoning about programs,
especially in program evolution and modification, has been the focus of related work by Shrobe [64].

1.4 Guide to the Reader

The remaining chapters of this report can be grouped into three units. The first unit, consisting of
Chapters Two, Three and Four, gives an overview of the three main areas of this work. Chapter Two is a
scenario which illustrates the use of inspection methods in understanding an cxample program which
implements a simple symbol table with hashing. Chapter Three outlines the scope of the current plan
library. Chapter Four intreduces the diagrammatic notaticn which will be used in the rest of the report to
define plans and overlays. ,

Chapters Five, Six and Seven form a second unit, which fills in more details. Each of these chapters
is an in-depth scenario of the use of inspection methods in program analysis, synthesis or verification;
The example program introduced in Chapter Two is also used in each of these chapters. The style of
presentation in these chapters is to introduce and cxplain new plans as they are needed in the example.
Also, for ease of referring to previously defined plans, an index is provided at the back. If there are two

~ page numbers listed for each item, the first is the page on which the plan or overlay diagram appears; the
second is the appendix entry for that item.

The final unit, Chapters Eight, Nine and the appendix, is the most detailed and technical. Chapter
Eight lays out the logical foundations of plans and overlays, including the formalization of plans involving
side effects. Chapter Nine gives the detailed formalization of loop plans and temporal abstraction (a way
of viewing loops in which their specifications are easily composed). These topics are treated in a more
general way earlier. The appendix is a reference for the plan library, in which can be found the detailed
specifications for any plans or overlays not fully described in the text.

1.5 Relation to Other Work

It is uscful to distinguish three areas of concern in this work. In this section I outline some
connections and comparisons with other work in these arcas. The three areas are:

14 CHAPTER ONE

* Taxonomy - Standard programming forms and the relationships
between them.

* Formalism - For representing programming knowledge.

* Applications - Analysis, synthesis, and verification of programs.

More generally, at the end of this scction, I discuss related work on aspects of programming other
than the use of inspection methods, such as debugging and deductive methods.

Program Taxonomies

Many people in the computer science and software engineering community have been calling for
the codification of standard program forms for a long time. Two major motivations for this are: to
improve software reliability and correctness, and to improve the education of programmers. For
example, Dijkstra in his influential Notes on Structured Programming [17] called for the codification of
standard program forms with associated theorems about their correctness, as follows.}

"d:= D,
while non prop(d) do d : = f(d)" ©)

When a programmer considers a construction like (6) as obviously correct, he can do
so because he is familiar with the construction. [prefer to regard his behavior as an
£ unconscious appeal to a theorem he knows, although perhaps he has never bothered to
‘ formulate it; and once in his life he has convinced himself of its truth, although he has
probably forgotten in which way he did it and although the way was (probably) unfit
for print. But we could call our assertions about program (6), say, "The Linear Search
Theorem” and knowing such a name it is much casier (and more natural) to appeal to

consciously.
...it might be a useful activity to look for a body of theorems pertinent to such

programs.

More recently, Floyd in his 1978 ACM Turing Award Lecture [27] spoke as follows-about the
importance of teaching the standard forms of programming to new programmers, as compared with
emphasizing the primitive programming language constructs. (Floyd calls these forms paradigms and is
particularly interested in very general ones, such as "divide and conqucr").2

To the teacher of programming, even more, I say: identify the paradigms you use, as
fully as you can, then teach them explicitly. They will serve your students when Fortran
has replaced Latin and Sanskrit as the archetypal dead language.

B gt
W
o

i e
]

PROGRAM TAXONOMIES 15

Many people have answered these calls, using a variety of expressive tools and covering a range of
programming areas. I group these efforts roughly into two categories.

In the first category are those who have tried to give wide coverage of the basic forms of everyday
programming, such as the standard manipulations involving of sets, directed graphs and linear data
structures (lists and sequences). Most prominent in this category is the work of Knuth [37]. In three
volumes, Knuth uses a mixture of mathematics, cxample programs and expository English text to
communicate his "programmer’s craft” in fundamental algorithms (manipulations on linear lists and
trees), semi-numerical algorithms (random numbers and arithmetic), sorting and searching. There are
also many one-volume text books [1] which have a similar format, but are less comprehensive.

In the second category, I put those whose have focused on a more particular programming domain.
Not surprisingly, work in this category is also characterized by more formal representations (some of
which will be discussed in the next section). Domains that have been studied in some depth include
algorithms on sequences [50,52], sorting [32], standard loop forms [49,73], set implementations [61,57],
and the implementation of associative data structures [58].

This work falis partly in both categories. The contents of the current plan library is mostly the
result of generalizing the plans required for an in-depth understanding of a particular example program
— the implementation of a symbol table using hashing, which is introduced in the scenario in Chapter
Two. This example program was chosen because it involves many different techniques which are
representative of the domain of routine symbolic manipulations (sets, lists, etc.). I believe that a library
which is adequate for this example is a good start towards complete coverage of the domain. The small
fraction of plans in the current library which are not directly motivated by the symbol table example fall
into two categories. Some of these are obviously important basic plans which don’t happen to be used in
the example, such as counting and accumulation loops. Other plans are included to fill gaps in the
taxonomic structure of the library, such as the plan for splicing into a list (only splicing out appears in this
particular symbol table). Barstow’s work [6] is similar in depth and breadth.

Other Forrﬁalisms

Past efforts to construct knowledge bases for automatic or partially automated programming have
used the following formalisms: program schemas [29], program transformations [15,5,12], program
refinement rules [6], and formal grammars [59]. Although each of these representations has been found
useful in certain applications, none combines all of the important features of the plan calculus listed
above.

For example, program schemas (incomplete program texts with constraints on the unfilled parts)
have been used by Wirth [76] to catalog programs based on recurrence relations, by Basu and Misra [7] to
represent typical loops for which the loop invariant is already known, and by Gerhart [29] and Misra [50]
to represent and prove the propertics of various other common forms. Unfortunately, the syntax of
conventional programming languages is not well suited for the kind of generalization needed in this
endeavor. For cxamplc,b the idea of a scarch loop (a standard programming form) expressed informally
in English should be something like the following.

16 CHAPTER ONE

A search loop is a loop with two exits in which a given predicate (the same one
each time) is applicd to a succession of objects until either the predicate is
satisfied, in which case that object is made available for use outside the loop, or
the objects to be searched are exhausted.

In Lisp, as in other languages, this kind of loop can be written in innumerable forms, many of
which are syntactically (and structurally) very different, such as:

(PROG ()
LP (COND (exhausted (RETURN NIL)))

(COND ((predicate current)(RETURN current)))
(GO LP))
or with only one RETURN instead of two,

(PROG ()
LP (COND (exhausted NIL)
(T ...
(COND ((predicate current)
(RETURN current)))
(60 LP))))
or even recursively, e.g.

(DEFINE SEARCH ()

(COND (exhausted NIL)

(T ...

(COND ((predicate current) current)
T

(SEARCH))))))

The problem here is that conventional programming languages are oriented towards specifying
computations in enough detail so that a simple local interpreter can carry them out. Unfortunately a lot
of this detail is often arbitrary and conceptually unimportant. In the plan calculus, all three of the
schemas above (and many other such variations) are expressed by a single plan.

A new generation of programming languages descended from Simula [16], such as CLU [38] and
Alphard [77], provide a syntax for specifying standard forms such as the search loop in a more canonical
way. However, there are two more fundamental difficultics with using program schemas to represent
standard program forms, which Simula and its descendants do not solve. First, programs (and therefore
program schemas) are not in general easy to combine, nor are they additive. This means that when you
combine two program schemas, the resulting schema is not guaranteed to satisfy the constraints of both of
the original schemas, due to such factors as destructive interactions between variable assignments.
Second, existing programming languages do not allow multiple views of the same program or overlapping
module hicrarchies. I believe the reason for this is that a program is still basically thought of, from the
standpoint of these languages, as a sct of instructions to be cxecuted, rather than as a set of descriptions
(e.g. blucprints) which together specify a computation.

OTHER FORMALISMS 17

. Another commonly used formalism for representing abstract programming forms is flowchart
schemas. Originally developed by Ianov in 1960 [36], flowchart schemas arc a network-like connection of
test and operation boxes. This formalism has the features of being programming language independent
and having logical foundations. (Manna gives an excellent tutorial on the formalization and use of .
flowchart schemas in his book on the nathematical theory of computation [40].) Flowchart schemas
capture control flow abstraction in a very natural and intuitive way. However, the only method they
provide for expressing the flow of data between operations is variable assignment. Unfortunately, the use
of variables in this way destroys additivity the same as for programming languages.

This problem with flowchart schemas can be fixed by combining flowchart schemas with another
network-like formalism, the data flow schemas of Dennis [19]. In data flow schemas, operations have local
port names and data flow is represented by port-to-port connections. The synthesis of these two types of
schemas is essentially the temporal plan formalism used here. Temporal plans, however, have the
additional featurc that mutable objects are representable, which is not the case in data flow schemas.

A currently popular approach for specifying data abstractions is the algebraic axiom
formalism [33,39,30]. Though data plans are formally equivalent to abstract data types, in practice the
approach in this work is somewhat different (mostly due to concern with mutable objects). In the
algebraic axiom framework, there are no mutable objects or side effects. For example, in the standard
algebraic axiomatization of stacks one defines the following three primitive functions on stacks!

push: stack X object —> stack
pop: stack — stack
top : stack — object

and the following set of algebraic equations.
top(push(x,y))=y
pop(push(x,y))=x

In this work, however, similar behavior is formalized differently. The only primitive functions on a
data structure are its roles, which are thought of as access functions. For example, the fundamcntal singly
recursive data structure is called List. The two primitive access functions on lists are2

head: list = object
tail: list — list
In this framework, operations such as Push, Pop, and Top, are non-primitive concepts which are
specified by input-output specifications roughly as follows.

HA Push operation take as input a list and an object; its output is a list whosc head is the
input object and whose tail is the input list.

1. We do not worry about the empty stack in this example.
2. Again we do not worry about the empty case, since it is not relevant to the comparison being made in this section. The
formalization of data plans is presented more completely in Chapter Fight.

18. CHAPTER ONE

(ii) A Pop operation takes as input a list; its output is the tail of the input list,
(iii) A Top operation takes as input a list; its output is the head of the input list.

~ Side effects are specified in this framework by specifying an operation ir. which the same object is
both input and output, but in which parts of that object (i.e the values of primitive access functions) are
different before and after. Recently, Guitag and Horning [34] have taken a similar approach. They call
the part of their system in which side effects are specified "routines™ and use the predicate transformer
notation instead of preconditions and postconditions.

Other work on representing mutable data objects and side effects includes Early [23], Burstall [11]
and Yoneczawa [78]. Of these, the V-graphs of Early arc the most similar to data plans. Early also takes
access paths as the only primitive functions, and specifies side effect operations as transformations on the
part structure of data objects. ,

Currently the most common way to represent relationships between standard forms (typically
implementation/abstraction relationships) is via program transformations or program refinement
rules [6]. As compared to overlays, these formalisms have two serious problems which stem from their
lack of neutralness between analysis and synthesis. An overlay in the plan calculus, as in Fig. 1-4, is made
up of two plans and a set of correspondences between the parts of the two plans. Each plan represents a
point of view; the correspondences express the relationship between the points of view. For example, in

" an implementation overlay the plan on the right hand side is the abstract description and the plan on the
left hand side is an implementation. It is important, however, that either plan can be uvsed as the
"pattern”. In a typical program synthesis step using overlays the right hand plan is used as the pattern
and the left hand plan is instantiated as a further implementation. Conversely, in a typical analysis step,
the left hand plan serves as the pattern and the right hand plan is instantiated as a more abstract
description. With both program refinement rules and knowledge-based1 program transformations this
sort of symmetric use is not possible since the right hand side of a transformation or refinement rule is
typically a scquence of substitutions or modifications to be performed, rather than a pattern.

A second problem stemming from the asymmetry of program transformations and refincment rules
is their lack of verifiability. The correctness of an overlay in the plan calculus is verified by proving
essentially that the constraints of the plan on the left hand side, together with the correspondences (which
are formally a set of cqualities between terms on the left and terms on the right) imply the constraints of
the plan on the right hand side. Neither Balzer’s transformation language nor Green and Barstow’s
refinement tree notation has been adequately formalized to permit the question of correctness to be
addressed. The recent work of Broy and Pepper [10] is an improvement in this direction, since their
transformations have program forms on both the left and right hand sidcs, with associated proof rules.
Unfortunately, they use program schemas as the representation of the standard forms which has the
difficulties discussed above.

1. As opposed to the folding-unfolding and similar transformations of Burstall and Darlington [12] which are intended to be a
small set of very general transformations which are formally adequate, but which must be composed appropriately to construct
intuitively meaning ful implementation steps. :

OTHER I DRMALISMS 19

Another formalism some have found attractive for codifying programming knowledge is formal
grammars. For example, Ruth [59] constructed a grammar (with global switches to control conditional
expansions) which represented the class of programs expected to be handed as exercises in an
introductory PL/1 programming class. This grammar was used in a combination of top-down, bottom-up
and heuristic parsing techniques in order to recognize correct and near-correct programs. Miller and
Goldstein [47] also used a grammar formalism (implemented as an augmented transition network) to
represent classes of programs in a domain of graphical programming with stick figures. The major
shortcoming of these grammars from the point of view of the programmer’s apprentice is their lack of a
clear semantics upon which a verification methodology can be based. '

Computer Aided Program Development Systems

The application area to which this work is aimed can be generally described as computer aided
environments for program development. In particular, this work is part of a project [56] aimed at
developing what we call a programmer’s apprentice system. What distinguishes a programmer’s
apprentice from existing systems is the level of program understanding shared between the user and the
system. ‘

Fxisting program development systems provide various types of services at different levels of
‘understanding. The level of least understanding is when the system manipulates everything as text
strings. At this level, various kinds of useful bookkeeping can be provided, such as keeping track of
versions of source code, test data and documentation [2,22].

The next level of understanding is when the system is able to parse the syntax of the user’s
programming language. At this level it is possible to provide many more useful services, such as structure
editors [20] and cross-referencing [70]. If in addition the system can interpret the semantics of the
programming language, then further analysis and verification assistance is possible, such as symbolic
interpreters [13,3] and verification condition generators [S1]. A slight step abeve the programming
language understanding level are systems which support the syntax of a more abstract design
formalism [75]. '

1 believe that current systems are quickly approaching fundamental limitations to the services they
can provide due to fact that they understand programs only at the level of the programming language. I
believe the next major step, represented by the programmer’s apprentice, is to understanding based on a
library of standard programming forms. This will make it possible for the system to apply inspection
methods to the analysis, synthesis and verification of programs. The scenario in the next chapter
elaborates what a programmer’s apprentice could do. '

Other Aspects Of Programming

Inspection methods are certainly not the whole story in programming. Programmers are not always
faced with totally familiar problems. Miller [48] has studicd and catalogued some very general problem
decomposition methods which programmers can apply when faced with unfamiliar problems.

20 CHAPTER ONE

Sussman [67] has eXplored the role ~f debugging when plans are "almost rigat”. Finally, Manna and
Waldinger [41] have explored the applicability of deductive methods to programming.

Other Enginecring Problem Solving

The study of problem solving in other areas of engincering has had a strong influence on this work.
In particular, the notion of the plan for a program is similar to the plans for electrical circuits in the work
of Brown [9] and de Kleer [18]. Freiling [28] also used a similar approach in the arca of mechanical
engineering.

PROGRAMMER'S APPRENTICE SCENARIO 21

CHAPTER TWO
PROGRAMMER’S APPRENTICE SCENARIO

2.1 Introduction

A library of plans opens up many new possibilities for what a computer aided program
development system can do to help a programmer. This chapter illustrates some of these new
possibilities, without going into too much detail. Chapters Five, Six and Seven go into more depth on
how the behavior illustrated here can be implemented.

Many different activities are interwoven in the programming process. These activities can be
roughly dividing into three major areas: analysis, synthesis and verification. Analysis activities in general
involve determining properties of a program which arc not explicit in its definition (usually by
decomposing it into parts). Synthesis in general involves refining an abstract description into one which
is more detailed in the appropriate sense for some target machine. Verification in general has to do with
detecting errors and constructing arguments as to why a program works.

A program development system can aid a programmer in all three of these areas. For a
programmer’s apprentice system, in particular, this means the same library of plans is used for analysis,
synthesis and verification by inspection. For example, suppose there is a plan which captures the idea of
iteration with a "trailing" value, as illustrated by the following code.

(PROG (CURRENT PREVIOQUS)

LP (SETQ CURRENT ...)

(SETQ PREVIOUS CURRENT)
(60 LP))

If this plan is in the library, the system should be able to recognize its use in programs it hasn’t seen
before; it should be able to synthesize programs using this plan; and it should be able to detect errors in

- the use of this plan, such as incorrect initialization. This factorization of knowledge is an important

feature of the design of programmer’s apprentice.

The scenario in this chapter portrays a system in which inspection methods for program analysis,
synthesis and verification are fully integrated. At the time of this writing, an integrated system with these
capabilities has not yet been implemented. However, several of the major functions portrayed in the
scenario have been implemented Séparately in experimental form. Waters has implemented a system
which translates Lisp code to the plan calculus and performs some further analysis on the resulting plans.
Shrobe has implemented a system which verifics plans by symbolic evaluation. Although a complete
synthesis system has yet been implemented, Waters has implemented the bottom-end module for this
which translates suitably detailed plans to Lisp code. Finally, an experimental program for automatically
drawing plan diagrams from the system’s internal representation has also been implemented.

22 CHAPTER TWO

What we will see in this scenario is basically the top-down, stepwise refinement style of program
development. This should not be taken as an endorsement of this methodology to the exclusion of all
others. I believe that the appropriate style of development depends greatly on the particular
programming task. A strongly top-down development, such as in this scenario, is appropriate when the
programming task is very familiar. On other occasions, a bottom-up or middle-out methodology may be
more appropriate. This research is aimed at developing the representations and basic capabilities which
are needed to support program development in any order.

2.2 The Scenario

In this scenario, we see an expert user interacting with a programmer’s apprentice system to develop ‘
the implementation of a symbol table using hashing. Lines typed by the user are in lower case; lines
typed by the system are in upper case. The user communicates with the system in a simple English-like
command language. The important part of this language is not its syntax, but the vocabulary of
programming terms shared between the user and the system.

> let a "symbol table" be a finite set,
0K

The system initially doesn’t know anything about symbol tables per se. The user thus begins by
introducing "symbol table" as a new term (indicated by quotation marks). The term finite set is known to
the system,

> implement a symbol table.

APPLICABLE IMPLEMENTATIONS FOR: SYMBOL-TABLE (A FINITE-SET)
1. LIST
2, SEQUENCE
3. LABELLED-THREAD
4. DISCRIMINATION

T)

Here the system presents a menu of ways it knows for implementing a finite set. A completely
menu-driven scenario is shown in Chapter Six. Such menus are computed dynamically by searching the
current library for overlays between finite sets and other data structures. At present there are only four
choices; more implementations will be added to the library in the future. The user declines to choose an
option, asking for some documentation first.

> describe a discrimination function.

A DISCRIMINATION FUNCTION IS A FUNCTION FROM OBJECTS TO SETS
SUCH THAT, IF AN OBJECTS IS IN A SET IN THE RANGE OF THE FUNCTIQN,
THEN THE FUNCTION APPLIED TO THE OBJECT EQUALS THE SET.

> implement a symbol table as a discrimination function.
0K :

THE SCENARIO 23

, A discrimination function is a function which partitions its domain into a disjcint set of sets (called
buckets). Discrimination functions are part of the system’s library of standard forms. The formal
definition of discrimination function presented above is not a "canned" text string, but is constructed
from the logical formula which decfines discrimination function in the system’s librau'y.1 The user’s first
refinement step is then to implement the symbol table as a discrimination function.

The library also contains plans and overlays involving discrimination functions. The overlay
‘invoked by the user above says that a discrimination function can be viewed as implementing a set which
is the union of its buckets.

> show code for addition to a symbol table by side effect.

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (OLD INPUT) ;MODIFIES OLD.
(PROG (BUCKET)
(SETQ BUCKET (APPLY OLD INPUT))
(UPDATE-FUNCTION OLD
BUCKET
(BUCKET-ADD BUCKET INPUT)))))

(DEFINE BUCKET-ADD
(LAMBDA (OLD INPUT)
vl))

(DEFINE UPDATE-FUNCTION
(LAMBDA (OLD VALUE INPUT) ;MODIFIES OLD.

eee))

The system knows how to implement addition to a set implemented as a discrimination function.
One way of displaying this knowledge is for the system to generate code from its current plan
representation of the design thus far. As can be seen above, this code has gaps in it (indicated by three
dots). These gaps correspond to the fact that it doesn’t yet know how the discrimination function or the
buckets are implemented.

The arguments to the procedure SYMBOL-TABLE-ADD are the symbol table to be modified (oLp) and
the entry to be added (1npuT). At this point in the design, all the system knows is that the old symbol
table is a function, but not how that function is implemented. The discrimination function may later in
the design turn out to be implemented by a Lisp procedure, by a data structure, or by a combination of
the two. The code (ApPLY oLD INPUT) in the first line of SYMBOL-TABLE-ADD is therefore used by the
system to express the general idea of applying the discrimination function to get the appropriate bucket in
which to add the given entry. Similarly, the procedure UPDATE-FUNCTION is a placcholder for the
opcration of modifying an oD function such that all domain elements which used to map to a given range
VALUE (in this case the bucket before addition), will afterwards map to the 1nPUT (in this case the bucket
after addition). .

1. Sce the appendix for the definition in logical form. The technology for making this kind of a straightforward translation
exists [46). :

24. CHAPTER TWO

Despite the arguments made earlier as to why code is not an appropriate internal representation for
the library of standard forms, code can still be a convenient language for communicating between the
system and the user in certain circumstances. Also code has the advantage of being more familiar to the
user than the plan calculus. Notice also that the system has annotated the code it has written with
comments. We will see later in the scenario that the system also reads the comments on any code that the
user types in.

> describe symbol-table-add.

SET ADDITION TO A DISCRIMINATION FUNCTION IS IMPLEMENTED BY THREE STEPS --
DISCRIMINATE: APPLY THE DISCRIMINATION FUNCTION,
ACTION: SET ADDITION,
UPDATE: MODIFY THE DISCRIMINATION FUNCTION WITH A NEW VALUE,
SUCH THAT ‘
THE OUTPUT OF THE DISCRIMINATE STEP IS THE OLD SET OF THE ACTION STEP;
THE INPUT OBJECT OF THE ACTION IS THE INPUT OBJECT OF THE DISCRIMINATE STEP;
THE OUTPUT OF THE DISCRIMINATE STEP IS THE VALUE INPUT TO THE UPDATE STEP;
THE NEW SET OF THE ACTION STEP IS THE INPUT OBJECT TO THE UPDATE STEP;
AND THE DISCRIMINATION FUNCTION IS THE OLD FUNCTION INPUT TO THE UPDATE STEP.

In response to a request from the user, the system here gives a toplevel logical decomposition of the
code it has written. This description is again not "canned" text, but can be generated from the plan

- representation as needed. For this sort of information, displaying the plan diagram shown in Fig. 2-1 is

probably superior.

> imploment the discrimination function as a keyed discrimination.
0K

> describe keyed discrimination,

A KEYED DISCRIMINATION IS A COMPOSITION OF TWO FUNCTIONS --

ONE: A FUNCTION ("THE KEY FUNCTION"),

TWO: A FUNCTION ("THE BUCKET FUNCTION"),
SUCH THAT THE COMPOSITION, VIEWED AS A FUNCTION, IS A DISCRIMINATION
FUNCTION.

The design of the symbol table continues in small steps. The next step here is to decompose the
discrimination funcftion into two functions: one which maps from objects to keys; and one that maps from
keys to buckets. The strings in quotation marks above are "canned" text which is attached to roles of the
plan to give better words than "the one function” and "the two function"”, which would be generated
automatically.

The system knows quite a bit about functional compositions. For example, it knows that the range
of the first function must be a subset of the domain of the sccond function. It also knows that to update a
function implemented as the composition of two functions, it suffices to update the second function.
Both of these pieces of information will be used later in the scenario.

THE SCENARIO

sociminate

(a P \3\ \:D
vkt (%) ect)

.actio
QSe‘L-u&\S

Cnewal \MD

wew (fonction)

Figure 2-1. Discriminate, Action and Update Plan for Addition to Symbol Table.

25

26 CHAPTER TWO

> the key function of the keyed discrimination is car.
oK

> implement the bucket function of the keyed discrimination as a hashing.
0K

> describe hashing.

A HASHING IS A COMPOSITION OF TWO FUNCTIONS --
ONE: A FUNCTION ("THE HASH FUNCTION"),
TWO: AN TRREDUNDANT SEQUENCE ("THE TABLE") .

The final step in the refinement of the symbol table data structure is to introduce hashing. The
basic idea of hashing is to decompose a function (in this case the function from keys to buckets) into two
functions: a many-to-onc function which maps from the domain of the original function to an initial
interval of the natural numbers; and a one-to-one function which maps from the natural numbers to the
range of the original function. (Sequences are formalized in this system as functions on initial intervals of
the natural numbers. An irredundant sequence is one in which no two terms are equal.)

> show symbol-table-add.

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.
(PROG (INDEX)
(SETQ INDEX (HASH (CAR INPUT)))
(ARRAYSTORE TABLE INDEX
(BUCKET-ADD (ARRAYFETCH TABLE INDEX)
INPUT)))))

(DEFINE HASH
(LAMBDA (INPUT)

L))

(DEFINE BUCKET-ADD
(LAMBDA (OLD INPUT)

cel))

The user has asked the system to redisplay code for SyMBoL-TABLE-ADD based on the additional
specifications provided thus far. Notice that the system still doesn’t know how the buckets are
implemented, so BUCKET-ADD is still just a placcholder. However, the system does now have enough
information to make some other implementation decisions. For example, since the hashing function does
not need to be modificd, it has been implemented as a Lisp proc<:durc.1 The only function that needs to
be modified now is the table (a sequence). The system has also taken the initiative of implementing this
sequence s a Lisp vector. Modifying a Lisp vector is achiecved by ARRAYSTORE.

If desired, the user could have been queried about each of these decisions. However, it is probably
preferable to have the system take the initiative at this low level and make it possible for the user to

1. There is nothing in the current plan library concerning what makes a good hashing function, This is in the domain of numerical
computation and theory, which is outside of the focus of this work.

THE SCENARIO 27

retract decisions later.?

> show code for associative retrieval from a symbol table.

(DEFINE SYMBOL-TABLE-RETRIEVE
(LAMBDA (TABLE INPUT)
(BUCKET-RETRIEVE (ARRAYFETCH TABLE (HASH INPUT))
INPUT)))

(DEFINE BUCKET-RETRIEVE
(LAMBDA (BUCKET INPUT)
(PROG (OUTPUT) ;SEARCH LOOP
(COND (... (RETURN NIL)))
(SETQ OUTPUT ...)
(COND ((EQ (CAR OUTPUT) INPUT)
(RETURN OUTPUT)))

(60 LP)))))

‘Associative retrieval is a standard specification known to the system. Conceptually, it has three
inputs: a set, a key function, and a scarch key. It also has two cases: if there is a member of the set such
that the key function applied to it equals the search key, then the retrieval succeeds and its output is such
a member; otherwise, it fails.3

As can be seen from the code above, the system also knows the standard plan for implementing
associative retrieval from a set implemented as a keyed discrimination, namely: apply the bucket function
' to the scarch key to obtain a bucket; and then perform associative retrieval from the bucket using the
same key function and search key. Notice that the respective sets (either the whole table or the bucket)
and the scarch key (1npuT) are the formal parameters of SYMBOL-TABLE-RETRIEVE and BUCKET-RETRIEVE in
the code above, while the key function, CAR, is coded in line. This coding docs not cause any loss of
modularity, since the purpose of that particular use of CAR is preserved in the plan representation.

The gaps in BUCKET-RETRIEVE are due to the fact that the user has not yet specified how the buckets
are implemented. However, the systems does know that this procedure conceptually has two cases.
Procedures in Lisp can have only one return point. The system has thus decided to use the standard
technique of a flag to encode two cases — a return value of NIL signals the failure case. Minor
programming techniques, such as the use of flags, can also be captured in the plan representation.

The following illustrates another kind of interaction between the user and the system. In addition
to being able to read each other’s code, the user and system can also edif each other’s code. This
interaction also shows how the plan library can provide the user with a sort of "macro expansion” facility
for writing code more easily and correctly. For example, the user below invokes the standard plan for
generating successive clements of a Lisp list by cArR and cDR, truncated by nuLL. The code that is
generated for this plan in this context is underlined below.

2. A truth maintenance system [21,43] can facilitate this kind of retraction. The issues involved in incremental modification are an
important part of the programmer’s apprentice project in general, but are outside of the focus of this work.
3. This way of specifying associative retiicval generalizes well to multiple key retrieval.

28. CHAPTER TWO

> insert code for truncated 1list generation of bucket in bucket-retrieve.

(DEFINE BUCKET-RETRIEVE
(LAMBDA (BUCKET INPUT)
(PROG (OUTPUT) ;LIST GENERATION AND SEARCH L)OP
LP (COND ((NULL BUCKET)(RETURN NIL)))
(SETQ OUTPUT (CAR BUCKET))
(COND ((EQ (CAR OUTPUT) INPUT)
(RETURN OUTPUT)))
(SETQ BUCKET (CDR_BUCKET))

(60 LP)))))

The important difference between what takes place here and a conventional macro facility is that
here the insertion of new material takes place in the plan calculus, where the benefits of additivity hold.
Only afterwards is code regenerated from the augmented plan.

Notice that the user here has indirectly told the system that the buckets of the symbol table are
implemented as lists. This gives the system enough information to complete the implementation of
BUCKET-RETRIEVE by identifying the exit test of the list generation with the failure case of the associative
retrieval, (RETURN NIL), and by setting oUTPUT to the successively gencrated list elements.

> show symbol-table-add.

(DEFINE SYMBOL-TABLE-ADD
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.
(PROG (INDEX)
(SETQ INDEX (HASH (CAR INPUT)))
(ARRAYSTORE TABLE INDEX
(CONS (ARRAYFETCH TABLE INDEX)

INPUT)))))

Given that buckets are implemented as lists, the system assumes the most straightforward
implementation for BUCKET-ADD which is simply Cons, as shown above.
> describe the implementation of a symbol table.
A SYMBOL TABLE IS IMPLEMENTED AS A DISCRIMINATION FUNCTION.
THE BUCKETS OF THE DISCRIMINATION FUNCTION ARE IMPLEMENTED AS LISTS.
THE DISCRIMINATION FUNCTION IS IMPLEMENTED AS A KEYED DISCRIMINATION.

THE KEY TUNCTION OF THE KEYED DISCRIMINATION IS CAR.
THE BUCKET FUNCTION OF THE KEYED DISCRIMINATION IS IMPLEMENTED AS A HASHING.

THE HASH FUNCTION OF THE HASHING IS IMPLEMENTED AS A LISP PROCEDURE.
THE TABLE OF THE HASHING IS IMPLEMENTED AS A LISP VECTOR.

Above we see how the programmer’s apprentice can provide an interactive documentation facility.
This can be particularly useful if more than one programmer is working on a program, or if a program
needs to be modified a long time after it was written. '

TL.E SCENARIO 29

> show code for associative deletion from a symbol table by side effect.

(DEFINE SYMBOL-TABLE-DELETE
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.
(PROG (INDEX)
(SETQ INDEX (HASH INPUT))
(ARRAYSTORE TABLE INDEX
(BUCKET-DELETE (ARRAYFETCH TABLE INDEX))))))

(DEFINE BUCKET-DELETE
(LAMBDA (BUCKET INPUT)
(COND ((NULL BUCKET) NIL)
((EQ (CAAR BUCKET) INPUT)
(BUCKET-DELETE (CDR BUCKET) INPUT))
(T (CONS (CAR BUCKET)
(BUCKET-DELETE (CDR BUCKET) INPUT))))))

Associative deletion is also a standard specification known to the system. Like associative retrieval,
it has three inputs: a set, a key function, and a key. Its output is the input set minus those members for
which the key function applied to them equals the input key. The implementation of associative deletion
from a set implemented as a discrimination function is a similar three step plan to the set addition plan
introduced earlier, namely: apply the discrimination function to get a bucket, perform the same
associative deletion on the bucket to get a new bucket, and then modify the discrimination function to
incorporate the new bucket. The system has generated code for this plan as shown above.

Notice that associative deletion from the bucket list is implemented by the system in the
straightforward manner which copies the list. In the next frame, we will see that the user has something
more clever in mind, and therefore intervenes to provide his own more efficient code for deleting from
the bucket by side effect.

> edit bucket-delete

(define bucket-delete
(1ambda (bucket input) ;modifies bucket.
(prog (p q)
(setq p bucket)
1p (cond ({eq (caar p) input)

(rplacd q p) ;splice out.
(return bucket)))

(setq q p)

(setg p (cdr p))

(go 1p))))

WARNING! THE LOOP IN BUCKET-DELETE IS ALMOST A

TRAILING GENERATION AND SEARCH,

CURRENT: P

PREVIOUS: Q

EXIT: (COND ((EQ (CAAR P) ...)))

ACTION: (CDR P)

EXCEPT THAT THE OUTPUT OF THE ACTION IS NOT EQUAL TO THE
INPUT OF THE EXIT TEST.

Here we see an example of inspection methods used for verification. The user has attempted to

30 CHAPTER TWO

code a generation and search loop with a trailing value and has not gotten it quite right.1 The plan in the
library for trailing generation and search has the roles for the current value, the previous value, the exit
test, and the generating action on each iteration, with roughly the following constraints between them;

(i) The output of the action is equal to the input of the action on the next iteration.
(ii) The output of the action is equal to the input of the exit test.
(iii) The current value is equal to the input of the exit test.
(iv) The current value is equal to the previous value on the next iteration.

(v) The current value and previous value are outputs of the loop.

In a near-miss recognition, most but not all of the constraints of a plan are satisfied. In this
example, constraint (ii) is not satisfied as indicated by the system in the warning message above.2 The
details of how this recognition takes place are explained in Chapter Seven.

Verification by inspection yields a much more meaningful diagnostic than would be given by other
methods of detecting this error.. For example, running the code above with certain inputs would result in
the Lisp interpreter halting at the RPLACD with an error message such as the following.

; NIL BAD ARG - RPLACD

In general, correcting crrors is more difficult than detecting them. For example, it is hard for the
system to know whether a near-miss is actually an error or just a new variation on a plan it doesn’t know
about. The programmer’s apprentice will thus in general rely on the user to correct errors. The user’s
responsé to the warning message above is shown underiined below.

> edit bucket-delete

(define bucket-delete
(1ambda (bucket input) imodifies bucket.
(prog (p q)
(setq q bucket)
Ip (setq p (cdr g))
(cond ((eq (caar p) input)
(rplacd q p) ;splice out.
(return bucket)))
(setq q p)
(go 1p))))

WARNING! THE CODE (RPLACD Q P) IS NOT RECOGNIZED AS SPLICEOUT.
SUGGEST (RPLACD Q (CDR P)) ? yes

Unfortunately, there is yet another error in the user’s code. The user has asserted in a comment

above that the line with RPLACD implements splicing an element out of the list. However, the system finds |
 that this code does not match its library plan for splicing out. In this case, since the user has stated his
intention in a comment, the system can go as far as offering a correction, which the user accepts.

1. Whether or not the user should have known that this particular plan was in the library is irrelevant. The point here is to
illustrate the idea of a program understanding system that "looks over the shoulder” of the user.

2. This does not, however, mecan the user’s code won't work; only that the system docs not have a theory by which it can
understand what the code does.)

THE SCENARIO 31

Notice that at different points in this scenario, Lisp lists have been viewed bath recursively and as
directed graphs. The first version of BUCKET-DELETE was a standard recursion on the tail of the list; while
the version above is in the domain of graph manipulations involving successor nodes and modifying arcs
between them.

Now that BUCKET-DELETE has been re-implemented using side effects, a more efficient
implementation of SYMBOL-TABLE-DELETE is possible, in which the ARRAYSTORE is necessary only if the first
element of the bucket is deleted.

> show symbol-table-delete.

(DEFINE SYMBOL-TABLE-DELETE
(LAMBDA (TABLE INPUT) ;MODIFIES TABLE.
(PROG (INDEX BUCKET)
(SETQ INDEX (HASH INPUT))
(SETQ BUCKET (ARRAYFETCH TABLE INDEX))
(COND ((EQ (CAAR BUCKET) INPUT)
(ARRAYSTORE TABLE INDEX (CDR BUCKET)))
(T (BUCKET-DELETE BUCKET))))))

To come to this implementation, the system has done some analysis of side effects by inspection.
Specifically, there are plans and an overlay in the library which say that one way to modify a function
(change the associations between domain and range elements by adding a new range element) is to
modify an old range clement. Applied to this program, this overlay allows the system to view the deletion
of an e¢lement from the bucket by side effect as the implementation of the modification of the
discriinination function.

Analysis by inspection is also in operation here. By recognizing the user’s BUCKET-DELETE code as a
trailing genecration and search plan, the system derives some important additional properties of this
procedure. In particular, it knows that this procedure only searches internal nodes of the bucket list, and
that it only finds the first node which has the given key. With regard to the first property, there is a plan
in the library which combines an internal deletion with a conditional test on the first node to achieve a
complcte deletion. The system has used this plan to arrive at the code above. The second property is
propagated up to the specifications of SYMBOL-TABLE-DELETE, as shown below.

> describe preconditions of symbol-table-delete.

THERE EXISTS A _UNTQUE "X" SUCH THAT X BELONGS TO THE OLD SYMBOL TABLE,
AND THE CRITERION APPLIED TO X IS TRUE,

> describe preconditions of symbol-table-insert,

THE INPUT DOES NOT BELONG TO THE OLD SYMBOL TABLE.

Thus analysis by inspection has revealed some important additional restrictions which the user
cither was not clearly aware of, or in any case, did not cxplicitly state. The propagation of restrictions
from the specifications of BUCKET-DELETE to SYMBOL-TABLE-DELETE and SYMBOL-TABLE-ADD could be
achicved by. the use of general reasoning mechanisms. However, these are such common specializations
of the most general addition and delction specifications that they are appropriately pre-compiled in the
iibrary. ’

32 CHAPTER THREE

CHAPTER THREE
OVERVIEW OF THE PLAN LIBRARY

3.1 Introduction

This chapter gives an overview of the plan library with an emphasis on taxonomy: English
descriptions and example programs are used to give a feeling for the extent and overall organization of
the knowledge in the library. Formal definitions for all library entries can be found in the appendix (see
index for page numbers) written in a notation which is explained in Chapter Eight. Chapters Five, Six
and Seven describe the use of the library in specific scenarios of analysis, synthesis and verification by
inspection.

Methodology

My basic approach in developing a taxonomy of standard programming forms has been to start
with the technical vocabulary commonly used and understood by expericnced programmers, and then to
apply my own intuitions to make appropriate generalizations and distinctions. 1 thus take the position
that if programmers have evolved a name for something, it is probably an important concept. This
means, for example, that there arc plans in the library which capture the meaning of terms like "trailing
pointer", "search loop" and "splice out".

Another method I have used to discover important programming concepts is to look for
abstractions which unify the explanations of how many different programs work. For example, the
concept of a directed graph makes it possible to express a number of standard algorithms independent of
how the nodes and cdges are represented in a particular program. This line of argument has also lead to
including in the library a number of other familiar mathematical objects, such as functions, relations,
sequences and sets. '

Let me emphasize that the taxonomy represented in the current library is only intended to be a
beginning. The exact contents of the current library has been determined primarily by the requirements
of giving a complete account of onc. medium-sized example program, capturing all the important
generalizations. The example program that was chosen for this is the symbol table program introduced in
the scenario of Chapter Two. This particular program was chosen because it contains many different v
forms which are representative of common manipulations on symbolic data. 1 felt that a library which
was adcquate for this example would be a good start towards cxploring the extent of this domain. I also
felt that concentrating on one example in depth would lead to a better understanding of the relationship
between different levels of abstraction, rather than touching on only the major points of many different
programs. '

METHODOLOGY 33

Both of these intuitions have turned out to be good. Capturing all the important generalizations in
this one program has touched upon a wide range of basic programming techniques. A complete account
" of the symbol table program has required filling the library with plans starting at a very abstract level,
such as the idea of implementing a set as a discrimination function, down to the level of minor
programming techniques, such as the use of flags to encode control information in binary valued data.

The small fraction of plans in the current library which are not directly motivated by the symbol
table example fall into two categories. Some of these are obviously important basic plans which don’t
happen to be used in the example, such as counting and accumulation loops. Other plans are included to
fill obvious gaps in the taxonomic structure of the library, such as the plan for splicing into a list (whereas
only splicing out appears in the symbol table program).

Finally, while 1 do argue for the major outlines and organization of the current library, I do not
~ expect that any reader will agree on every last detail. Many common manipulations on symbolic data are
missing at present. The current library also needs to be expanded in many different directions, such as to
include more general graph algorithms, matrix manipulations, and so on. However, it will hopefully be
clear after reading this chapter where many of these extensions fit into the existing structure.

Implementation Relationships

A vocabulary of standard forms is not the only kind of knowledge involved in programming. A
programmer also knows many ways of implementing one form in terms of others. The idea of
implementing a set as a hash table, or of removing an entry from a list by splicing it out, are examples of
implementation relationships (represented in the library by overlays). In building the library, the choice
of programming vocabulary was often influenced by the implementation relationships. The motivation
for making a vocabulary distinction was often to separate two cases which allow different
implementations. For cxample, finite and infinite sets are distinguished in the library because
membership tests in finite sets may be implemented by a loop which enumerates the elements, which is
not a valid implementation for infinite sets. (The set of natural numbers is an cxample of an infinite set
which is part of basic programming.)

An important kind of knowledge which is not yet explicitly represented in the library is the relative
'cost of various computations. However, I believe that in fact much of an expert programmer’s knowledge
about the relative cost of computations is embedded in his vocabulary. In other words, given that cost
considerations are the primary motivation behind many standard programming ideas, the study of these
ideas is a logical starting place for developing an understanding of computational cost. For example, the
idea of a hash table is motivated by the desire to speed up various kinds of retrieval operations. This
increase in speed is due to the fact that any single bucket in the table is smaller than the union of all the
buckets. Future rescarch will include studying the library further from this viewpoint in order to make
this kind of knowledge more explicit.

34 CHAPTER THREE

Overall Organization

The current library contains approximately fifty input-output and test specifications, thirty data
plans, and thirty temporal plans. These plans and specifications are organized in two ways: in a
taxonomic hierarchy and by an interlocking network of approximately fifty overlays. There are two
taxonomic relationships used in the library: specialization and extension. Note that a plan may be a
specialization or extension of more than one other plan, so that the taxonomic hierarchy may be tangled.

A plan or specification is a specialization of another plan or specification if it has the same roles, but
additional constraints. This means that the computations or data structures specified by the specialized
plan are a subset of those specified by the more general plan.

A common motivation for introducing a specialization of a plan is because the properties of the
specialization are exploited in some particular implementation. For example, consider the data plan,
Segment, introduced in Chapter One. This data plan has three roles: a base sequence, an upper index,
and a lower index. One way of implementing a mutable stack is to use an instance of Segment in which
only the lower index is varied — the upper index is always equal to the length of the base sequence. This
data plan is called Upper-segment; it is a specialization of Segment. Upper-segment has the same role
names as Segment. Its constraints are the three constraints of Segment, i.e.

(i) The upper number is less than or equal to the length of the base sequence.
(ii) The lower number is less than or equal to the length of the base sequence.

.....

plus the following specializing constraint.
(iv) The upper number is equal to the length of the base sequence.

The basic idea of extension is to add an additional role to a plan or specification. The extended plan
inherits all the constraints of the old plan. :
. A common kind of extension is to add an additional output to an input-output speci'ﬁcation. For
example, Thread-find is the standard input-output specification for finding a node satisfying a given
criterion in a linear directed graph (thread). It has two input roles, named Input and Criterion, and one
output role, named Output. The Output is a node of the Input thread which satisfies the Criterion
predicate. When Thread-find operations are used in conjunction with other plans, such as splicing, it is
convenient to have as output not only the node found, but also the previous node in the thread. This
extension to Thread-find is called Internal-thread-find. Internal-thread-find has the same input roles as
Thread-find, but two output roles, Output and Previous, with the additional constraint that Previous is the
predecessor node of Qutput in the Input thread.

Object Types

Part of the hicrarchy of object types is shown in Fig. 3-1. All the names in this figure are the names
either of primitive object types or data plans. Similar figurcs later in this chapter will also include the
names of input-output and test specifications, and temporal plans. Solid vertical lines between names in
these figures denote specialization or extension relationships, with the specialized or extended plan always

not Uxal

OBJECT TYPES 35

/0\0;7& \
iv\+e5w —?vacﬂiomﬂ)v\ ione

cavdinal

Seduewe g

;JLLSMF\& siv\j\e_ru,wsiow doulple-recursion
(‘ i iﬂec\wdmﬂ-%riuw l
“ Yree list

\

(abelled-digraph

[abelled ~thvead

Figure 3-1. Hiecrarchy of Object Types.

36 CHAPTER THREE

below. Arrows in these figures represent overlays between plans. Most overlays are many-to-one
mappings from instances of one plan to another. The arrow for such overlays points from the domain to
the range. Overlays that are one-to-nne are indicated by double-headed arrows, Dotted lines indicate
"use" relations. For example, Labelled-digraph is defined using the definition of Digraph. '

Referring to Fig. 3-1, notc that the root node in the data object hierarchy is called Object. Below
Object are the primitive types in the current library: Integer, Function, Binfunction (functions of two
arguments), and Set. By "primitive” I mean here that systems which use the plan library are expected to
have specific procedures for reasoning about these objects, and that this knowledge is not explicitly
represented in the library itself, :

The notion of Integer used here is a standard extension of the finite integers with a maximum
element, infinity, and a minimum element, minus-infinity. Integer has specializations Natural and
Cardinal. Instances of Natural are all the integers greater than or equal to one, not including infinity.
Instances of Cardinal are all the integers greater than or equal to zero, including infinity.

Subsequent main sections of this chapter give overviews of parts of the library under the other main
nodes in this hierarchy. There is a section about plans involving functions, one about plans involving sets,
onc about directed graphs, and one about recursive structures. However, these sections will not be able to
discuss every plan in the library, since that would make the figures an unreadable clutter. For example,
some plans involving minor programming techniques, such as the use of flags and various ways of
implementing predicate tests are discussed as they arise in the later chapters (and their definitions can be
found in the appendix.)

Notice the overlays in the middle of Fig. 3-1 between Scquence, List, Thread, and Labelled-thread.
These overlays will be explained in more detail in subsequent sections. For now it is important just to
point out this example of how multiple of points of view are catalogued in the library. Each of these data
plans (Sequence is a specialization of the primitive object type Function) captures an alternative point of
view on what could be called linear structures.

3.2 Functions

Fig. 3-2 shows the part of the plan library which involves functions. At the top left are three basic
input-output specifications which have functions as inputs or outputs. @Function is the specification for
applying a function to an argument to get a value.!

Another common operation performed on functions is to change the value associated with a given
argument. The input-output specification for this operation is called Newarg. Newarg has three inputs:
the old function, an argument, and the new value. The output is a new function such that the given
argument maps to the new value and the values of all other arguments remain unchanged.

A less commonly used specification is Newvalue. Newvalue also has three inputs: the old function,
an old value, and a new value. The output is a new function such that all the arguments that uscd to map

1. The character "@" is intended to be read as “apply”.

FUNCTIONS

37

_funion
-

@fonelipn--= "7 N
. : discaminabione
oldtnew

5ec(\1ewuz_,\ Pmdiufte/
\\\ \
ireedonladt -5 qu ez\ce,‘; \ \

a~= " \\'\ @"F\”‘edm;q,—t(b

N

Obv;'\‘so&e& "?umC{\'OV\S BRI

| Y teewr T~ Ses\muxt
*\w&\r\m_cj to W terw
) | \\ truncgte uP?ex —&c\cjmcnfz
Il tonGL ~inusive
, eucli e,g't
hQ\U\M\M&'~wMFoseo? S . map
Com ?OSUL@QW\O‘(:NV\S
bintonction---- - --@bindunction
aﬁﬁveﬁa‘}iw—\oimcund{ovx, \Jivwe,\—-- - @‘ou’v\ve\
\ ~ |
]
! FQr‘t'\«\—ov&e,(

a 184 Q{Q,
//? ﬁ\\ +o"crh—ew;\e,‘<‘

MaX mIW Sowa anlu.«k aﬁgrejc{ta— qgrejd&,

alone intersechion

Figure 3-2. Plans Involving Functions.

38. CHAPTER THREE

to the old value now map to the new value and the values of other'argurr‘ents remain unchanged.
Newvalue will be used as part of the analysis of operations on hash tables.

Notice that these specifications make no commitment as to whether the old function is copied or
modified to get the new function. The copying and side effect versions will be treated as specializations.
The input-output specification, Old+new, of which Newarg and Newvalue are extensions, is a very
general form which makes it possible to statc this idea in general. It is advantageous to work with these
more abstract specifications as much as possible, since they unify the logical structure of a larger number
of programs. These same remarks apply to all other input-output specifications in this chapter which are
shown as extensions of Old+new. Plans involving side effects are discussed further in Chapter Eight.

At the middle left of Fig. 3-2 are some plans having to do with implementing a function as the
composition of two functions, i.e. by the data plan Composed-functions.

Composed-@functions is a temporal plan for implementing @Function for a function implemented
as Composed-functions, i.e. apply the second function of the compositioh to the output of applying the
first function to the given argument.

The plan Newvalue-composed and the overlay between it and Newvalue express the fact that a
Newvalue opcration on a function implemented as Composed-functions can be implemented by a
Newvalue operation on the second function of the composition alone. This plan arises in the analysis of

" the symbol table example, where the hash table is viewed as the composition of two functions: a
numerical hash function which deesn’t change, and an array that is modified to insert new entries.

Notice that the data plan Hashing is a specialization of Compoesed-Functions. As we have seen in
the scenario, the first function in this case is referred to as the hash function, and the second (a sequence)
is referred to as the table. A discrimination function can be implemented as a hash table, in which case
the table is a scquence of sets, called the buckets. The utility of this implementation is that changes (e.g.
Newvalue operations) to a discrimination implemented this way may be achieved by changing only the
table, as specified by the Newvalue-composed plan discussed above. Discrimination functions will be
discussed further in the next section on sets.

Sequences

Sequences are viewed formally as functions on the natural numbers which are defined on some
initial interval (up to the length of the sequence) and undefined elsewhere. A common specialization is
Irredundant-sequence, i.e. sequences in which no two terms are equal.

A number of common operations on lincar structures arc most naturally speciﬁed’in terms of
sequences. Fig. 3-2 shows several such input-output specifications. The first two specifications, Term
and Newterm, are simply spccializations of @Function and Newarg to the case when the functions
involved arc scquences.

The next two specifications have to do with truncating scquences according to some criterion (a
predicate). In both cases a precondition is that there exist some term of the input sequence which satisfies
the criterion. The output scquence in both cases is a finite initial subsequence of the input sequence. In
the case of Truncate-inclusive, all but the last term of the output sequence fail the criterion; the last term

- EQUENCES 39

passes. In the case of Truncate, all terms of the output sequence fail the criterion and the length of the
output sequence is one less than the index of the first term in the input sequence that passes the criterion.

A closely related input-output specification is Earliest. Again the inputs are a sequence and a
criterion, and a precondition is that there exist some term of the input scquence which satisfies the
criterion. The output is the earliest term of the sequence which passes the criterion, i.e. all terms with
indices lower than the index of the output fail the criterion.

The last input-output specification on sequences in Fig. 3-2 is Map. Its input and output are
sequences of the same length. An additional input (Op) is a function such that each term of the output is
the result of applying that function to the corresponding term of the input.

Aggregations

This section introduces some simple algebraic structure which captures the similarity between
programs which compute sums, products, set unions and intersections, maximums and minimums. The
input-output specification which is the generalization of all these opcrations is called Aggregate.
Aggregate takes as input a (non-empty, finite) set of objects and a function of two arguments which is
commutative, associative and has identity clements. Such a function is called an Aggregative-binfunction.
(If the function also has an inverse, then it is an Abelian group.) The output of Aggregate is the result of
composing the application of the aggregative function to the members of the input set. The algebraic
propertics of aggregative functions guarantee that the order of this composition doesn’t matter.!

Fig. 3-2 also names six common specializations of Aggregate for particular aggregative functions:
Sum (Plus), Product (Times), Aggregate-union (Union), Aggregate-intersection (Intersection), Max
(Greater), and Min (Lesser).

Relations

Relations are treated formally as boolean valued functions. A Predicate is a boolean valued
function of one argument; a Binrel is a boolean valued function of two arguments. Correspondingly,
@Predicate is the specialization of @Function to predicates, and @Binrel is the specialization of
@Binfunction to binary relations.

Note in Fig. 3-2 the overlay between Partial-order and Aggregative-binfunction. This overlay
allows the following code

(COND ((> N MAX)(SETQ MAX N)))

to be analyzed as an application of the Lesser function , which then allows a loop with this code in the

1. Which is why the input is a set rather than a list or sequence. Also there is some subtlety being suppressed here concerning
whether the input should be a sct or a multiset. In the case of union, interscction, maximum and minimum, the occurrence of
duplicates doesn’t matter, and therefore the set abstraction is definitely appropriate. Sum and product, however, do not have this
property. Nevertheless, I arguc that, conceptually, the input to a summation operation is a get of objects in the <ense that even
though viewed as integers they may have the same behavior, they represent conceptually distinet quantities and are therefore not
identical. See Chapter Eight for more on the notion of behavior versus identity.

40 CHAPTER THREE

body to be analyzed as the implementation of the Min operation (and similarly, when the test is "<", the
implementation of Max).

3.3 Sets

Fig. 3-3 shows part of the plan library which involves sets. At the left of the figure we have first
some common input-output and test specifications with sets. Member? tests whether a given object is a
member of a given set. Any is a more complicated test: given a set and a predicate as inputs, it succeeds if
there exists a member of the set which satisfies the predicate, and returns such a member as its output;
otherwise it fails. Set-find is a related input-output specification: it has the precondition that there that
there exists a member of the input set which satisfies the input predicate, and simply returns such a
member as its output.

The next two input-output specifications each have a set as input and a set as output. Each is a
specification used to analyze programs like (MAPCAR 'SQRT L), where the input list, L, is viewed as a set
and sQRT is a function applied to each element of the set to get an output set. Restrict takes as input a set
and a predicate and returns the subset which satisfies the predicate. As in the case of functions, no
commitment is made in these specifications to whether the old set is copied or modified to get the new
set.

Finally, Set-add and Set-remove specify addition of a given object to a set and removal of a given
object from a set. The very abstract specification Old+input+new-set, of which both Set-add and Set-
remove are specializations, captures what the implementations of these specifications have in common.

The implementation of sets is a very rich area of programming technique [62]. It is not the goal
here to be exhaustive of all of the possibilities, but rather to show by example how to go about
formalizing such implementations using the plan calculus. In addition to the standard simple
implementations of sets as sequences and lists, this section presents two examples of non-trivial set
implementations which are involved in understanding the the symbol table program. :

The overlay for viewing a list as the implcmentation of a set is recursively defined: an Ob]CCt is a
member of the implemented set iff it is the head of the list or it is a member of the set implemented by
the tail of the list. The empty set is usually implemented by Nil. There are also overlays in the library for
viewing Push and Pop operations as Sct-add and Set-remove operations. The implementation of other set
operations is more naturally expresscd taking the point of view of the list as a directed Oraph which will
be discussed in the next section.

Discrimination

One basic idea underlying many sct implementations is the use of a function (called a
Discrimination), whose range is a set of scts (called buckets). Such a function can be viewed as
implementing a set wherein a given object is a member iff it is a member of the bucket obtained by
applying the discrimination function to that object. This is the basic "divide and conquer” strategy
underlying both hash tables and discrimination nets.

- P
-—

-

-

~

Memloer ¢

,\

ol¢X+ W Pot‘\—vxew set
\ \

\ \
sai:qM Set~remov e

_.-—vse:t<

oLcsm Wi hae+m cm\r:-w7 ’
/

7

d»sw\ wminitetackion ‘3‘\-’\3 &\a‘\"ﬂ,
Com Yoszd ~fimetions

kc)wl dwsm wmc\:\ on

/!
/

Keyed.-disent \»\M«’\‘e.i—e;t?wgea—v?o\atb

{
Keyed-discéminate fretrieve,

re)fne Ne /
pinge

QNPung—Oan

\

/

- - -

RELATIONS

SQJIUQWU’_,

N QV\S
{
A 5(’1’%
(\ N
PN O\CX'\’“Q—VU o\bso(l\Ml‘«\ﬂd".iOW *
l
eacl \TQS‘N\Ct N
(\
{
{

|
?
/
/

/
/

/

/

41

Figure 3-3. Plans Involving Sets.

42. CHAPTER THREE

Testing for membership in a set implemented as a discrimination is imp'emented by the two step
plan Discriminate+member?. The first step is to apply the discrimination function to the given object to
determine which bucket to look in. The second step is an instance of Member?, with the input set being
the bucket fetched by the first step. Since any single bucket in a discrimination is smaller than the overall
implemented set, (except in the case of a degenerate discrimination function which maps all objects to a
single bucket), this implementation leads to a increase in speed at the cost in space for encoding the
discrimination function.

Both Set-add and Set-remove for input and output sets implemented as discriminations are
implemented by specializations of the same three step plan: first, apply the discrimination function to the
input object to obtain a bucket; second, perform the appropriate operation on that bucket to get a new
bucket; and third, update the discrimination function so that all domain objects which used to map to the
old bucket now map to the new bucket (i.e. a Newvalue operation). These three steps are expressed by
the Discriminate+action+update plan. '

Associative Retrieval

Associative retrieval adds to basic set operations the concept of a key. The function which
~associates members of a set with keys is called the key function. Given a set, such as the entries in a
symbol table, we are often more interested in finding a member with a given key, than in just testing for
membership. The most basic specification for associative retrieval is called Retrieve (see bottom of
Fig. 3-3). Given a set, a key function and an input key, Retricve has two cases: if there exists a member of
the set with the given key, then it succeeds, and its output is such a member; otherwise it fails. The other '
common associative retricval specification, Expunge, removes all members of an input set which have a
given key. Expunge-one is a common specialization of Expunge which often allows a simpler
implementation. Expunge-one has the additional precondition that there exists exactly one member of
the input set with the given key. '

Keyed Discrimination

To speed up associative retrieval for a given key function, a discrimination function can be used
which is itself the composition of two functions. This is the data plan Keyed-discrimination (sce middle of
figure). The first function is the key function. The second function, called the bucket function, maps
from the set of keys to the buckets. In typical usage, the bucket function may itself be decomposed
further into a Hashing (or another keyed discrimination, as will be discussed shortly).

The implementation of Retrieve from a keyed discrimination has the same two step structure as the
implementation of Member? for a discrimination: first, apply a function to obtain a bucket; second,
" perform the appropriate operation on the bucket. In the case of a keyed discrimination, however, the
appropriate bucket is obtained by applying the bucket function (which is the second half of the composed
functions which implement the discrimination) to a given key, instead of applying the full discrimination
function to an object which might be a member of the set. This plan is called Keyed-
discriminate+retrieve.

KEYED DISCL.IMINATION 43

For Set-add and Set-remove, the fact that a discrimination is further implemented as a keyed
discrimination makes no difference.

Associative deletion (Expunge) from a keyed discrimination is implemented by a three step
temporal plan, Keyed-discriminate+expunge+update, which is an extension of the Discriminate+action+
update plan described earlier (see figure). Keyed-discriminate+expunge+update has the following three
steps. (This plan is used in the analysis of the symbol table deletion example.)

(i) First, the appropriate bucket is obtained by applying the bucket function of the keyed
discrimination to the given key.

(ii) Then, just as in Discriminate+action+update, the action on the whole set reduces to a
corresponding action on the bucket. The Action step here is an instance of Expunge.

(iii) The final Update step is similarly a Newvalue operation on the discrimination function
so that all domain objects which used to map to the old bucket, map to the new bucket.
Furthermore, in the case of a keyed discrimination, only the bucket function needs to be
updated; the key function stays unchanged.

The idea of keyed discrimination can be gencralized to multiple key data bases in two ways. One
approach is to have separate discrimination functions for each key function which map into a shared set
of buckets. Associative retrieval on a pattern of keys is then implemented by intersecting the appropriate
buckets. (This is the idea underlying the implementation of the Conniver data basc [45].) Alternatively,
the discrimination functions for different keys can be composed, so that each function maps te a bucket

“which is itself a set implemented as a discrimination on the ncxt key. This is the basic idea underlying
discrimination nets. '

3.4 Directed Graphs

‘Directed graphs are one of the most common programming data structures. A Digraph is defined
formally in the library as a sct of nodes and an edge relation. For example, a Lisp list may be viewed as a
directed graph wherein the nodes are Lisp cells, the edge relation is Cdr, and Car is a function which
attaches a label to each node. The nodes of a standard Lisp binary trec structure may also be viewed as a
directed graph in which the edge relation is the union of the Car and Cdr relations between the nodes.
This view is particularly appropriate for programs which splice objects in and out of lists or trees.

Barstow [6] has recently developed a set of rules for generating many standard programming
algorithms for operating on directed graphs in the general case. Some time in the future his rules should
be incorporated into the present library. This section concentrates on the special case of acyclic graphs
with a single root, i.e. trees, and furthermore on the lincar case of trees, which are here called threads.

Fig. 3-4 shows some standard specializations of Digraph. Tree is a dirccted graph in which there is

44 CHAPTER THREE

o\d+(v\?ut+me»u

A - -’&Cﬂrq?\y(
Adigraph-add -7~ N
tapihv-a ‘ l %/Pa\,‘bia\“ovc)w

/
tnteonal - theead ~add , 4 ,fWQE,
splicein s \\ \
4 " binFree L\ genevaton
{ \
/
Aigraphh-rewove / \ ‘ '
Jp / Pareud ;&———“-\wa“‘riw
internal - theedd - rewove | . .
. \ d:exq’\L
SF\iceoo’c , / ivr@um&aﬂt—sqoem \
, . { \ \
S; A y -}-WV\(AJ(L(\L‘NS\’«F\/\ [q‘o’cmd\’dijm\oh
diaxapn-yind 7 '
% Vl hunmu-—‘\‘ftt [abe((w(v%ee

tntormal-thread - find:
twTerva You twnutul-"’f\’l"e“‘k labe[(w{”—ﬂzrwo{

't‘(a}\(‘V\ﬂ -9 enexationt search
ntexval

Figure 3-4. Plans Involving Dirccted Graphs.

DIRECVED GRAPHS 45

a root and no cycles.1 A Bintree is a a tree in which each node is cither a terminal or it has exactly two
successors. A Thread is a specialization of Tree in which the successor of each node is unique. This also
means that the predecessor of each node ir a thread (if it exists) and the terminal node-are unique.

The vocabulary of partial orders is often applied to trees and threads. For example, it is common to
think of a nodes in a tree or thread being "before” other nodes. This viewpoint is formalized by an
overlay from Tree to Partial-order indicated in Fig. 3-4. A tree is viewed as a partial order in which two
nodes are less than or equal iff they are successor* (the transitive closure of the successor relation) in the
tree or are the same node. The root of the tree in this view becomes the minimum element of the partial
order. Furthermore, if the tree is a thread, then the partial order is total. '

Fig. 3-4 also shows an overlay between Irredundant-Sequence and Thread. An irredundant
sequence can be viewed as a thread in which the first term of the sequence corresponds to the root of the
thread and any two consecutively numbered terms in the sequence are successors in the thread. Notice
also that this overlay is one-to-one, which means that for cach instance of Thread there is a unique
corresponding instance of Irredundant-Sequence, and vice versa. This allows us to use both the standard
vocabulary of sequences (such as length and the idea of the n-th element) and of directed graphs (such as
the idea of successors) as appropriate to specify properties of lincar structures.

Generators

One of the most common ways of implementing directed graphs in programming is to specify a
single node (called the "seed") and a binary relation such that the nodes of the desired graph are the
transitive closure of the given node under the given relation. This implementation is captured by the data
plan Generator.

Iterator is the specialization of Generator which generates threads. This constrains the binary
relation of an iterator to be many-to-one (i.c. a function) and to have no cycles within the transitive
closure of the seed. This data plan is used in the analysis of counting loops and loops which ¢br down a
list. The effect of the generating part of such loops is abstracted further in terms of the input-output
specification Iterate, which takes an iterator as input and outputs the sequence of generated nodes. Loop
plans and temporal abstraction will be discussed further in the next section. '

Truncated Directed Graphs

Another common way of specifying a directed graph is as part of another directed graph. This is
particularty used for specifying finite parts of infinite graphs such as intervals of the natural numbers.

The most general data plan describing this technique is Truncated-digraph. This data plan has two
roles: the Base graph and a Criterion predicate. The criterion must divide the nodes of the base graph
into three sets: a set of boundary nodes which satisfy the criterion; interior nodes, from which boundary

1. Notice that this definition of tree does not constrain a node to have a unique predecessor, i.e. there can be sharing of
substructure in the tree, In later versions of the library it will be necessary to distinguish between acyclic rooted directed graphs in
which nodes do and do not have unique predecessors.

46. CHAPTER THREE

nodes can be reached (in a finite number of successor steps); and exterior nodes, which can be reached
from boundary nodes. When the base graph is a thread (Truncated-thread), this means more simply that
some node of the thread (either the root or a finite successor of the root) satisfies the criterion. Each such
criterion thus determines a finite subgraph of interior nodes, cither including or not including the
boundary nodes. '

Examples of truncated directed graphs in Lisp programming are Cdr threads truncated by the Null
predicate and Car-Cdr binary trees truncated by the Atom predicate.

A closely related way of specifying truncated threads is in terms of upper and lower bounds on
some total order. This is called an Interval. For example, the integers from 10 to 100 are specified as an
instance of Interval in which the total order is Le, the lower bound is 10, and the upper bound is 100.

Splicing Plans

Thinking in terms of directed graphs is particularly appropriate for understanding programs which
add or remove nodes in the middle of lists or trees. This section introduces a number of plans related to
adding or removing internal nodes of threads in particular. These plans are used for example in analyzing
the symbol table deletion program.

At the left of Fig. 3-4 are some basic input-output specifications on directed graphs which are

| involved in understanding splicing plans. Digraph-add is the basic specification for adding a node to a

directed graph. It takes an old graph and a node as inputs and gives a new graph as cutput. All that can
be said at this level of abstraction is that the input is a node of the new graph, and that all the successor
relationships in the graph not involving cither the added node, its predécessors Or SUCCEssOrs remain
unchanged. Digraph-add does not specify where in the directed graph the node is to be added. Internal-

thread-add is a specialization of Digraph-add in which the old and new graphs are threads and the new

node is added anywhere but at the root.

The basic input-output specification for removing a node from a directed graph is Digraph-remove.
Like Digraph-add, it takes an old graph and a node as input, and returns a new graph. All the successor
relationships in the dirccted graph not involving the removed node remain unchanged. The successors of
the removed node in the old graph become the successors of the predecessor of the removed node in the
new graph. Internal-thread-remove is the specialization of Digraph-remove in which the old and new
graphs are threads and the node to be removed is not the root.

Programs which splice nodes in or out of a thread typically have two steps. The first step is to find
the place in the thread where the addition or removal is to occur. The output of this step is usually a pair
of successor nodes, such that either the new node is to be added between them or the second node is the
one to be removed. If the thread is implemented as an iterator, the sccond step is then to modify the
generating function so as to cither splice in or splice out a node, as the case may be.

The input-output specification of the first step (finding internal nodes), which is shared between
add and remove programs, is called Internal-thread-find. Given a thread and a criterion, Internal-thread-
find returns a»n‘ode of the thread (other than the root) which satisfies the criterion, and its predecessor.

" The typical implementation of this specification is to use a scarch loop which keeps track of both the

SPLI JING PLANS 47

current and the immediately preceding node. This loop pattern is captured by the recursive temporal
plan Trailing-generation+search, which will be discussed further in the next section.

The second step implementing removal of a node is a Newarg opcration in which the association
between the node to be removed and its predecessor is modified to be an association between the
predecessor and the successor of the node to be removed. For example, in the BUCKET-DELETE program of
the scenario in Chapter Two, the node to be removed is in P and its predecessor is in ; the generating
function is cbr. The code for splicing out in BUCKET-DELETE is as follows.!

(RPLACD Q (CDR P))

The plan for this form of code in general is called Spliceout.

The second step implementing addition of a node requires two Newarg operations: one to make
the new node point to its successor, and one to make the predecessor of the new node point to it. For
example, addition of a node to a Lisp list iterator might be coded as follows.

(RPLACD NEW CURRENT)
(RPLACD PREVIOUS NEW)

The plan for this form of code in general is called Splicein.

The last data plan in Fig. 3-4 to be discussed is Labelled-digraph. This data plan has two roles:
Spine (a digraph) and Label (a function on the nodes of that graph). An important specialization is
Labelled-thread, in which the spine is further constrained to be a thread. This plan is used to view a Lisp
list as a Cdr thread with objects attached at each node by Car. As discussed above, this view is
particularly natural for understanding programs which modify lists by splicing. :

3.5 Recursive Plans

‘Recursively defined plans are used in the plan calculus to represent unbounded structures. A
recursive plan is one in which one or more roles are constrained to be instances of the plan itself. This
section will discuss only the special case of singly recursive plans, since the plans and overlays for doubly
and multiply recursive structures tend to be long and more detailed than those for singly recursive
structures, without introducing any fundamentally new ideas.

At the top of the hierarchy of recursive plans in Fig. 3-5 is a minimal plan, Single-recursion, which
says nothing more than that there is a role, Tail, constrained to be either an instance of Nil or itself a
Single-recursion. Nil is a distinguished object used to terminate singly recursive structures.

The most important singly recursive data plan, List, will be discussed first in the following section.
Singly recursive temporal plans, e.g. loops, will be discussed in the scction following that. Finally,
temporal abstraction will be introduced as a point of view which links singly recursive temporal plans with
singly recursive data plans. Chapter Nine treats loops and temporal abstraction in much more detail.

1. RPLACD is modelled as Newarg, where the first argument to RPLACD is the domain element and the second argument is the new
" range element.

48 CHAPTER THREE

[a\'.)e/“ed—’t\f\feurl-‘- s‘mj\e,- CeCUT SIon/

set (’\
o(o\+v\ew \)QY\QQ_\ .
@) A arrle

itecative - aceomolation

Seﬂ went /
VP - sejww,vd’.\ ' ctexalive -aggvegation
S;c’vck\#u?&m g Ctexadive - Uet-accomulatbion
b\,‘m?.\. U(\Jer tt wxative-set-acawmolation

restrick \ Cacn W\q?
A NT7
Herative-§i \h’/vinj ?/Wa—i-:'\r@'qwh‘a‘bidm

vt exative-texmination

cacliest any
T Kerdle
Ltexative -searcn 2eailing

L‘twd‘r\le-j enonaEion '
CWMM% |- theead -Find

/'W\‘\"e/(na

teaili hg-g enexution+searcin

Figure 3-5. Recursive Plans.,

"LISTS 49

Lists

List is a singly recursive data plan with two roles, Head and Tail. The head may be any object, but
the tail must be an instance of List or Nii. It is important not to think of this data plan too concretely.
The List plan is trying to capture what all recursive views of data structures have in common. List is the
point of view which is used for making (linear) inductive arguments about data structures. Thus the
reader should not identify the data plan List too closely with, for example, the Lisp list. Think of the data
plan List as if it were called "singly recursive data structure”.

Two basic input-output specifications on lists are shown at the top left of Fig. 3-5. Push takes as
input a list (or Nil) and an object, and returns a new list, whose tail is the input list and whose head is the
input object. Pop takes a list and returns its head and tail as its two outputs.

A common implementation of lists is to use a sequence (e.g. an array) with an index to where the
current head is stored. The data plan which captures this implementation is called Upper-segment. ' This
plan is a specialization of Segment, which has three roles: the Base, which is a sequence, and the Upper
and Lower bounds, which must be valid indices for the base. Upper-segment is a specialization of
Segment in which the upper bound is equal to the length of the base sequence. Push and Pop operations
on this implementation are implemented by the two-step temporal plans, Bump+update and
Fetch+update, respectively. The second step in each of these plans is either to add or subtract one from
the old lower bound to get a new lower bound.! The first step in implementation of Push is a Newterm
operation, which makes the given object the head of the new list. The first step in the implementation of
Pop is a Term operation, which fetches the current head of the list.

Multiple Views of Linear Structures

Fig. 3-5 also indicates overlays between lists and other lincar structures, such as sequences and
threads. For example, whether a given data structure is viewed as a list or as a sequence depends on what
we want to say about it. Certain propérties are easier to specify inductively, in which case the list view is
appropriate. In other cases, explicit quantification over the indices of a sequence is more convenient. In
the overlay between List and Sequence, the head of the list corresponds to the first term of the sequence,
and the head of the »-th tail of the list corresponds to the (n+ I)th term of the sequence.

In the overlay between List and Labelled-thread, the nodes of the spine of the thread are the list
and all of its tails. The edge function on the nodes of the spine is the Tail function, and the label function
is Head. Thus we now have two ways of vie-wing Lisp cells which have Lisp cells or Nil as their Cdr. We
can view such a Lisp cell as implementing a list in which the Car of the cell is its head and the Cdr is its
tail; or we can view the same Lisp cell as the seed for generating a Cdr thread which is labelled by Car.

1. Again, at this level of abstraction no commitment is made in these plans as to whether the instance of Upper-segment is
modified by side effect or copicd. These arc trcated as specializations, just as the "pure” and "impure” versions of Push and Pop are

treated as specializations.

50. CHAPTER THREE

Linear structures may also be viewed as (i.e. implement) sets. In particular, a list may be viewed as
the set whose members are the head of the list unioned with the tail of the list viewed as a set. Nil is
usually viewed as the empty set. In this view, neither the order of occurrence of elements in the list nor
the occurrence of duplicates matters. In this view, Push and Pop operations on a list are implementations
of Set-add and Set-remove operations. Alternatively, viewing lists as labelled threads, Set-add and Set-
remove may be implemented by Splicein and Spliccout plans. Both of these points of view are needed to
understand how entries are added and removed in the symbol table example: in SYMBOL-TABLE-ADD
entries are added to the bucket by a Push operation (implemented in Lisp by CONS); in BUCKET-DELETE
entrics are removed by a Spliceout plan (implemented in Lisp using RPLACD).

Loops

The taxonomy of loop structures used in the library is based on Waters’ [73] method for analyzing
loop programs. Waters’ method decomposes loops into fragments which correspond to "easily
understood stereotyped fragments of looping behavior.” The next section describes overlays which allow
these fragments to be logically composed, rather than interlcaved (as they are in an unanalyzed loop),
which makes their net effect easier to understand. For example, consider the following program, which

~sums up the non-nil elements of a list.

(DEFINE SIGMA
(LAMBDA (L)
(PROG (S N)
~ (SETQ S 0)
LP (COND ((NULL L)(RETURN S)))
(SETQ N (CAR L))
(COND (N (SETQ S (PLUS S N))))
(SETQ L (CDR L))
(GO LP))))

Waters distinguishes three typces of fragments (he calls them plan building methods) in loops with
one exit test. The first type he calls "basic loops". A basic loop is characterized by the fact that all of the
computation in the body of the loop can potentially affect the termination of the loop. For example, the
basic loop part of s16MA is the following.

(LAMBDA (L)
(PROG (...)

LP (COND ((NULL L)...))

(SETQ L (CDR L))
(60 LP)))

Basic loops are further decomposed into a gencration part (e.g. the part involving ¢br above) and a
termination part (¢.g. the NULL test above). The temporal plan which captures the form of the generating
part of Joops in general is called Iterative-generation. The plan which captures the form of single exit
tests is called Iterative-termination. Both of these are extensions of Single-recursion (sce Fig. 3-3). The
advantage of this further decomposition is it allows us to capture the similarity between 100j)5 which have
the same generation part but different terminations. For example, one can form many different loops

LOOPS 51

'with Counting as the generation part, but with different terminations. (Counting is a a specialization of
Iterative-generation in which the generating function is Oneplus)

Waters’ second category of plan building method is called "augmentations”. Augmentations are
characterized by the fact that they consume values produced by other parts of the loop and produce
values which may be used by other augmentations. In the library, augmentations are further divided into
application and accumulation. The distinction between these two types of augmentations rests on whether
there is any "feedback"”, i.e. whether the augmentation consumes its own values from previous iterations
— accumulation does, application does not. For example, the following is the application part of SIGMA.

(PROG (...N)

LP ...
(SETQ N (CAR L))
(GO LP))
The plan for this form of code in general is called Iterative-application. S1GMA also has an example
of accumulation, as shown below.
(PROG (S...)
(SETQ S 0)

LP ...(RETURN S)...
...(SETQ S (PLUS S ...))...

(60 LP))

The plan for this form of code in general is called Iterative-accumulation. Three common
specializations of Iterative-accumulation are shown in Fig. 3-5. Iterative-set-accumulation is a
specialization in which the accumulation operation (e.g. pLUS above) is Set-add and the - initial
accumulation is the empty set. Iterative-list-accumulation is a specialization in which the accumulation
operation is Push and the initial accumulation is Nil. lterative-aggregation is a specialization in which the
accumulation operation is the application of an aggregative function (as discussed earlier in the section on
functions) and the initial accumulation is the identity clement for that function.

' Waters’ final type of plan building mcthod is called "filtering”. It is the special case of an
augmentation whosc body is a conditional. The purpose of filtering usually is to restrict the values that
will be consumed by some other augmentation. For example, in s16MA the following is the filtering part
of the loop which restricts the accumulation part to consuming only the non-nil inputs.

(PROG (...N)

LP ...
(COND (N ...)

(GO LP))

- The plan for this form of code in general is called Iterative-filtering.

52 CHAPTER THREE

Finally, the Trailing-generation+scarch plan at the bottom of Fig. 3-5 illustrates an important
feature of the taxonomy in the library, namely that it is a tangled hierarchy. Trailing-generation+search
combines the features of three plans. One of these plans is Iterative-generation, an example of which is
the following. '

(PROG (P ...)
LP (SETQ P (COR P))
(60 LP))

The sécond plan is Iterative-search. Iterative-search is a specialization of Iterative-termination
wherein the exit test is the application of a predicate which doesn’t change as the computation proceeds,
and in which the final object which satisfied the exit test is available outside the loop. This plan is
suggested by the following code.

(PROG (P ...)

LP ...

(RETURN ...)))
(60 LPY))

The final plan is Trailing, which capturcs the idea of keeping track of the immediately previous
value of some loop variable, as suggested by the following code.

(PROG (P Q)
LP (SETQ P ...)

(SETQ Q P)
(60 LP))

Tailing-generation+secarch inherits the roles and constraints of all three of these plans. For example,

the combination! of the three example fragments above gives the essential loop structure of
BUCKET-DELETE, as shown below.

(PROG (P Q)
(SETQ Q BUCKET)
LP (SETQ P (CDR Q))

(COND ((EQUAL (CAAR P)) INPUT)
(RPLACD Q (CDR P)) ;SPLICE OUT.
(RETURN BUCKET))

(SETQ Q P)

(GO LP))

1. The code fragments above cannot literaliy be combined to get the loop of BUCKET-DELETE. The appropriate domain for this
combination is the plan calculus.

TEMPORAL ABSTRACTION 53

.Temporal Abstraction

The basic idea of temporal abstraction is to view all the objects which fill a given role at each level
in a recursive temporal plan as a single data structure. In programming language terms, this often
corresponds to having an explicit representation for the sequence of values taken on by a particular
variable at a particular point in a loop. This idea is also present in the work of both Waters [73] and
Shrobe [64]. Using temporal abstraction, the recursively defined plan for a loop can be viewed much
more simply as a simple composition of operations on sequences or sets. Chapter Nine explains how this
analysis is formalized using overlays for the various loop plans descrited in the preceding section.

Fig. 3-5 shows some of these overlays. For example, Iterative-generation can be temporally
abstracted as lterate. The input to Iterate in this overlay is an iterator whose seed is the initial value of the
relevant loop variable (e.g. P above) and whose generating function is the function applied each time
around the loop (e.g. CDR above). The output of Iterate corresponds to the sequence of values taken on
by the loop variable.

The relationship between the sequences of values consumed and produced in an instance of
Iterative-application can similarly be viewed as a Map operation. In programs where order and
occurrence of duplicates in the loop values doesn’t matter, a further temporal abstraction can be made by
viewing the values consumed and produced as sets. In this view, Iterative-application implements Each.

Similarly, Iterative-scarch can be viewed as implementing either Earliest or Any, depending on
whether the inputs over time to the exit tests are viewed as a scquence or a set; and Iterative-ﬁltering can
be viewed as the implementation of Restrict.

54 CHAPTER FOUR

CHAPTER FOUR
THE PLAN CALCULUS

4.1 Introduction

The purpose of this chapter is to give an intuitive definition of the plan calculus. (A formal
definition is given in Chapter Eight.) Practically speaking, the plan calculus is a network-like formalism. -
This chapter introduces a diagram notation which will be used to define and describe the use of plans in
succeeding chapters. There are many well-known ways of storing such networks in a computer to
facilitate various kinds of updating and retrieval. Concrete storage representations of the plan calculus
will therefore not be discussed here. Several different concrete storage representations have been
implemented and used by the author, Shrobe [64] and Waters [72]. '

The plan calculus has two major components: plans and overlays. The first part of this chapter
introduces plan diagrams, followed by a discussion of the relationship between such diagrams and the
Lisp code for a program. The second part part of this chapter introduces overlay diagrams, followed by
some general observations on the use of overlays as a preview of coming chapters,

Side effects and mutable objects will enly be mentioned in passing in this chapter, since a proper
discussion requires the formal foundations developed in Chapter Eight. Plans involving side effects are
also discussed further in Chapter Eight.

4.2 Plans

The basic idea of a plan in the plan calculus comes from an analogy between programming and
other engineering activities [54]. "Plans™ of various kinds are used by many different kinds of engineers,
For example, an electrical engineer uses circuit diagrams and block diagrams at various levels of
abstraction; a structural engineer uses large-scale and detailed bluc prints which show both the
architectural framework of a building and also various subsystems such as heating, wiring and plumbing;
a mechanical engineer uses overlapping hierarchical descriptions of the interconnections between
mechanical parts and assemblies. ‘

A fundamental characteristic shared by all these types of engincering plans is that at each level there
is a set of .parts with constraints between them. Sometimes these parts correspond to discrete physical
components, such as transistors in a circuit diagram, but more often the decomposition is in terms of
function. For example, a simple amplifier in an cleciricai block diagram has the functional description
V,=kVjy, where Vy and V, arc the input and output signals, and k is the amplification factor. As far as
this level of plan is concerned the amplification may be realized in any number of ways. A primitive
component may be used or another plan may be provided which decomposes the amplificr further.

PLANS 55

By analogy, plans in programming specify the parts of a computation and constraints between
them. In the plan calculus, the names of the parts of a computation are called roles. It is natural to think
of roles as sclector functions. For example, consider the Segment plan discussed in Chapter One, which
has three roles named Base, Upper and Lower. To refer to the Base sequence of this plan we write ‘
Segment.Base, to refer to the Upper index we write Segment.Upper, and so on. The point (".") in this
notation has the same intuitive meaning as in its use for sclecting fields of record structures in
programming languages such as PL/1. A

An expression with a point in it is called a path name. If a role is filled by an instance of another
plan, the point notation can be used several times. For example, consider a plan named Bump+update
which has a role named Old, constrained to be a Segment. The path name Bump+update.Old.Upper then
refers to the upper index of the Old segment of the plan.

All composite plans are composed (using roles and constraints) out of three primitives types:
input-output specifications, fest specifications and primitive object types (integers, sets and functions).
Plans composed up exclusively out of objects are called data plans. Plans composed of objects, test and
input-output specifications are called temporal plans.

Input-Output Specifications

An example of an input-output specification is shown at top of Fig.4-1. An input-output
specification is drawn as a solid rectangular box with solid arrows entering at the top and leaving the
bottom. Each arrow entering at the top represents an input; cach arrow leaving the bottom represents an
output. Each input and output has a role name.! For example, the input-output specification depicted in
Fig. 4-1, Newterm, has three inputs, named Old, Arg and Input; and one output, named New.

Input-output specifications also have preconditions and postconditions. The preconditions involve
only the inputs; the postconditions involve both the inputs and the outputs. The simplest kind of such
conditions are restrictions on the type of each role individually. These are usually indicated in.plan
diagréms in parentheses after the role name. For example, in Fig. 4-1 we see that Newterm.Old is
expected to be a sequence; and that Newterm.Arg is expected to be a natural number. Object as a type
restriction, as for Newterm.Input, means that there is no more specific restriction cn the given role.

In this chapter and the following three, constraints befween the inputs and outputs of an input-
output specification will be described informally in English, as they are relevant to the current discussion.
For example, all the terms of Newterm.New. are constrained to be identical to the corresponding terms of
Newterm.Old, except for the Newterm.Argfh term which is egqual to Newterm.Input. The interested
reader may refer to the appendix for a formal statement of the preconditions and postconditions of any
particular input-output specification (use index to find page number). These constraints are written in a
standard logical language defined in Chapter Eight.

1. In this chapter input-output specifications are primitive. In Chapter Fight, however, input-output specification specifications
are treated formally as composite plans whose parts are objects and situations. This is why the inputs and outputs are roles.

56

CHAPTER FOUR

@‘bewuﬁa J avg(m‘\vvu\

/

@e(sd’) ; §.<x'\‘few§ow(,pmdiu'l}

Y

¥

oreneme iR,

T

N ew Loy

Any

Figare 4-1. An Inpat-Output Specification and a Test Specification.
g .

INPUT-OUTPUT SPECIFICATIONS 57

To reduce the clutter in more complicated plan diagrams later in this document, some information
will be omitted when it can easily be inferred by the reader. For example, type restrictions (especially
Object) will often be omitted for input-output specifications which should be familior by that point in the
discussion. Input and output role names will also sometimes be omitted, in which case the same left-to-
right order used when the specification was first defined (which is also listed in the appendix) is to be
assumed.

Test Specifications

A test specification is drawn as a solid rectangular box with a divided bottom section, as shown in
the lower part of Fig. 4-1. The inputs and outputs of a test specification are notated in the same way as
the inputs and outputs of an input-output specification. For example, the test shown in Fig. 4-1, has two
inputs, named Universe (a set) and Criterion (a predicate), and one output named Output (an object). A ‘
test also has preconditions and postconditions, just like an input-output specification.

A test specification differs from an input-output specification in that two distinct output situations
are specified. Which one occurs depends on whether or not a given relation (called the condition of the
test) holds true between the inputs. If the test condition is true, then the test is said to succeed and the
outputs indicated on the "S" side of the box are available; otherwise the test is said to fail, and the outputs
indicated on the "F" side of the box are available. For example, the test specification Any shown in
Fig. 4-1 succeeds if there exists a member of Any.Universe which satisfies Any.Criterion, in which case
Any.Output is such an object; otherwise it fails and there is no output.1

More complicated tests with more than two cases can be represented by composing binary tests.
Alternatively, the test notation is generalizable to more than two cases.

As with input-output specifications, the preconditions, postconditions and test conditions of test
specifications in the following three chapters will be described informally in anhsh in the text and
formally in the appendix.

Control Flow

Fig. 4-2 shows how control flow arcs (hatched arrows) are used to connect input-output and test
specifications to specify conditional behavior. This plan; called Cond, is the basic "if-then-else" construct
in the plan calculus. Cond.If is restricted to be an instance of Test, which is the minimal test
specification, ie. all other test specifications are cxtensions of Test. Cond.Then and Cond.Else are
restricted to be instances of In+Out, which is the minimal input-output specification. Note that the
definition of In+out allows a degencrate action of doing nothing, so that conditionals with only one
branch may be represented.

1. Note that at this level of abstraction, no commitment is made as to whether or not this test modifies its mputs This constraint is
added when necessary in a plan in which an Any test is used.

58 CHAPTER FOUR

Figure 4-2. A Conditional Plan,

T T T
{ [,“Y-(Test) ‘
i "o k.r ‘
| |
!
l ’ | |
A |
N G
. ~ |
‘ : .S I -F
‘ &y | d
l L |
Cond

CON 'ROL FLOW 59

The End role of Cond introduces a third primitive closely related to input-output and test
specification, namely join spcciﬁcations.l Joins are the mirror image of tests. A join specification is
drawn as a solid rectangular box with the top part divided into "S" and "F" parts, corresponding to the
succeed and fail cases of the matching test. Unlike tests, however, joins do not represent any real
computation. Joins are a technical artifact used to rejoin the two branches of a conditional block, as in
Cond. Join is the minimal join specification.

An extension of Join, called Join-output, will be shown later. In addition to joining control flow,
Join-output has input and output roles which specify the connection betwecen which branch of a
conditional is executed and which of two possible inputs is made available for further computation. For
example, in the following code the input to ¢ comes cither from A or from B depending on the test p.

(C (COND ((P ...) (A ...))
(T (B ...))))

Data Flow

Intuitively, data flow specifies equality between two data roles in a temporal plan, especially
between the output of one input-output specification or test and the input of another. Data flow is
indicated in plan diagrams by solid arrows, as shown in Fig. 4-3.

Fig. 4-3 shows the plan for the standard implementation of a membership test (Member?) on a set
implemented as a discrimination function. This plan has two roles: Discriminate and If. The
Discriminate role is restricted to be an instance of @Discrimination. (@Discrimination is a spccialization
of @Function in which the Op is a discrimination function and the Qutput is therefore a set.) The If role
is restricted to be an instance of Member?, which tests whether the Input is a member of the Universe set.

The data flow arc between Discriminate.Output and If.Universe in the plan of Fig. 4-3 means that
the Universe of the test is the same as output of the Discriminate operation. This data flow arc does not
mearn, however, that the test must immediately follow the Discriminate operation. An arbitrary amount
of computation may occur between the end of the Discriminate operation and the beginning of the test,
as long as the sct involved is the same at the time the test begins as when the Discriminate operation
ended.

Temporal Plans

Fig. 4-3 is an example of a temporal plan. Such plans in general have roles which are input-output,
test and join sprecifications with data flow and control flow constraints between them. Temporal plans are
drawn with a dashed box cnclosing the boxes which define the roles. A very natural way of
understanding the meaning of such diagrams in terms of the propagation of data and control tokens
" through the acycli02 directed graph of data and control arcs. This model is essentially the one used in
data flow schemas [19].

1. Joins were introduced into the plan calculus by Waters [73].
2. Loops are represented as tail recursions.

60

CHAPTER FOUR

s o —

.disoniwminate
(@ disevimivation)

.ouvt ?Ut A(SQ"D :

.owivense (sel) £

\ £ B

f (W\QW\\DQX?)

'S L{:

Distriminate + wemb ox !

Figure 4-3. A Temporal Plan With Data Flow.

TEMPORAL PLANS 61

. In the token propagation model of t:mporal plans, control flow arcs are treated no differently than
data flow arcs. When an input-output box has received tokens on all of its incoming arcs, it is "activated”
and generates tokens with the appropriate properties (according to its input-output specifications) on all
of its outgoing arcs.] Ifan output goes to the inputs of several other boxes (i.c. an arc splits along its way ‘
into two or more arcs), then tokens passing over that arc are duplicated the appropriate number of times
so that the same object is available at each input location. Control flow tokens have no properties; their
only function is to enable activitation.

A test box is activated the same way as an input-output box, i.e. when it has received tokens on all
of its incoming arcs. It then gencrates tokens either on all of the arcs leaving the success side of the box,
or on all those leaving the failure side, depending on the properties of the incoming objects. A join has
the complementary behavior. It is not activated until it has received all the tokens on one or the other
input side. Tt then generates all its output tokens with properties according to its specifications (since
joins involve no computation, the output tokens are always the identical to the input tokens).

Data Plans

Data plans are plans whose roles are restricted to primitive data objects or other data plans. Data
plans are drawn as dashed ovals. Primitive data objects are drawn as solid ovals. For example, the data
- plan Segment, shown in Fig. 4-4, has three roles named Base, Upper and Lower, restricted to be a
sequence and two natural numbers, respectively. The constraints between roles are that the Upper and
Lower numbers are each less than or equal to the length of the Base sequence, and that the Lower
number is less than or equal to the Upper number. (Again, these constraints are written formally in a
logical language, the details of which are being suppressed until Chapter Eight.)

Recursive Plans

Recursion in plan diagrams is indicated by a spiral line as shown in Fig. 4-5. The minimal singly
recursive plan is called Single-recursion. It has only one role, Tail, which is constrained to be an instance
of itself. All other singly recursive plans are extensions of Single-recursion.

For example, the singly recursive plan in Fig. 4-5, called Iterative-Generation, describes a part ofa
loop in which on each iteration some function (Action.Op) is applied to an input, with the resulting
output becoming the input to the application (Tail.Action) of the same function on the next iteration.
The following code fragment suggests such a computation in which the Action is CDR.

(PROG (L)
LP

(SETQ L (CDR L))
(60 LP))

1. Thus all input-output specifications require termination.

62

CHAPTER FOUR

Figure 4-4. A Data Plan,

e oy D ap W A AR Dl ot P B B WD A d oy S

° .
- . gn R S N S np . D YR S 4y W D S -

’ i

i

i

i

[}

{

i

Joction i

| @fonction) i

'

i

i

|

]

]

X]

: starl \

' (ctexdtive =

i} Sl\ﬁl’xﬂt;aa

. i

|' ackion [\

| '

m v L
'

" { . : :
'

' ' . ' .

: t : |

t s \

' Sty T G U e e e .

\ \

' '

‘.- —————— - e G e e o S S - l

Ttevcative- genevation

Figure 4-5. A Recursive Plan.

RECURSIVE PLANS

63

64. CHAPTER FOUR

)
4.3 Surface Plans
In conventional programming languages, such as Lisp, Fortran or PL/1, it is possible to construct
many different programs which, from the point of view of the plan calculus, specify the same
computations. Difference in the names of variables is the most trivial example of this kind of
uninteresting variability. Most programming languages also provide many different mechanisms for
achieving the flow of data from one operation to another. For example, in Lisp we could write either
(SETQ X (F ...))
(6%
or
(G (F ...))
Similarly, the following two constructions specify essentially the same control flow.
(PROG (...)
LP (COND (P (RETURN NIL)))
(60 LP))
(PROG (...)
f\ P (COND (P)
(T

(GO LP))))
Combining all three of these kinds of superficial variation, we can construct the following two versions of
the code for BUCKET-RETRIEVE (the first version is from the scenario), which illustrate how different the

same program can appear. Part of the advantage of the plan calculus over programming languages for
our purposcs is that both of these versions translate to the same surface plan (shown in Chapter Five).

(DEFINE BUCKET-RETRIEVE
(LAMEDA (BUCKET INPUT)
(PROG (OUTPUT)
LP (COND ((NULL BUCKET)(RETURN NIL}))
(SETQ OUTPUT (CAR BUCKET))
(COND ((EQUAL (CAR OUTPUT) INPUT)
(RETURN OUTPUT)))

(SETQ BUCKET (CDR BUCKET))
(GO LP))))

(DEFINE BUCKET-RETRIEVE
(LAMBDA (BKT KEY)
(PROG (ENTRY)
LP (COND ((NULL BKT))
: ((EQUAL (CAR (SETQ ENTRY (CAR BKT))) KEY)
(RETURN ENTRY))
(T (SCTQ BKT (CDR BKT))

(GO LP))))))

SUR.ACEPLANS 65

From the standpoint of program anclysis, a surface plan can be thought of as an abstraction of the
data flow and control flow in a program, without abstracting the primitive data structures and operations.
From the standpoint of program synthesis, a surface plan is the lowest level representation of the program
design, which is then translated to code in a standard programming language.

Programming Language Semantics

In order to translate between a given programming language and surface plans,1 the primitives of
the programming language arc divided into two categories: connectives, such as PRoOG, COND, SETQ, GO and
RETURN in Lisp, which are concerned solely with implementing data and control flow; and the objects,
relations, and actions of the language, such as numbers, dotted pairs, arithmetic relations, CAR, CDR and
cons. The first category of primitives is translated into the pattern of control and data flow arcs (including
tests and joins) between other specifications defined in terms of the second category of primitives.

The translation of the second category of primitives (i.e. non-connectives) into the plan calculus is
done in three steps, each of which involves some judgement. The first step is to identify a set of basic
object types in the language. For example, Lisp can be viewed as having four basic types of objects:
atoms, dotted pairs, vectors, and integers.2

The next step is to choose an appropriate set of primitive relationships between objects. For
example, there are two primitive functions on dotted pairs, Car and Cdr, with functionalities as shown
below. (Datum is the union type of atoms, dotted pairs, vectors and integers.)

Cdr: dotted-pair — datum
Car: dotted-pair — datum

Note that the Car and Cdr functions above are not the same as the CAR and CDR operations of the
Lisp programming language, but are the vocabulary in terms of which the effect of these and the other
builtin Lisp operations will be specified. Due to the presence of side effects in Lisp, it is important to
distinguish carefully between the notion of a relationship like Car, which holds between two objects at a
given point in time, and an operation, like the application of AR, which has an input and an output,
which are in the Car relation to each other,

The final step in translating from Lisp to surface plans is to translate the primitives operations such
as CAR, CDR, CONS, RPLACA and RPLACD, into input-output specifications in terms of the primitive rclations,
such as Car and Cdr. For example, cons becomes a input-output specification which takes as input two
data objects, and returns as output a dotted pair whose Car and Cdr are the first and second inputs,
respectively. RPLACA and RPLACD become input-output specification which modify the Car and Cdr
functions (i.c. specializations of Newarg).

1. This has been implemented for Lisp by Waters [74].
2. This is the mathematical notion of an integer. The distinction between this and the fixed width computer representation of an
integer in Lisp is not made here, because there are no plans in the current library which require this distinction.

66 CHAPTER FOUR

Two additional primitive relations in Lisp are Null and Eq, with functionalities as shown below.

Null: datum — boolean
Eq: datum X datum — btoolean

Similarly, the distinction is made between a relation and a computation which tests whether that relation
holds for a given tuple of objects. For example, code such as the following constructions with conp is
translated into the plan calculus as test specifications (specializations of @Predicate) involving Null and
Eq, respectively.

(COND ((NGLL ced))
(COND ((EQ ...) ...))

Two more primitive functions used to model Lisp in the plan calculus are the following functions
on Lisp vectors (one dimensional arrays).

Dim: vector — integer
Element: vector X integer — datum

The primitive vector creation (ARRAY) and accessing (ARRAYFETCH and ARRAYSTORE) actions of Lisp are
specified in surface plans in terms of these functions.

4.4 Overlays

An overlay is essentially a triple consisting of two plans and a set of correspondences between roles
of the two plans. An overlay can also be thought formally as a mapping from the set of computations (or
data structures) specified by one plan to the set specified by the other. For example, the following
overlay,1

Composed>function: composed-functions — function

is a mapping from instances of Composed-functions to instances of Function. Composed-functions is a
data plan whose two roles, named One and Two, are functions with the constraint that the range of
function One is a subset of the domain of function Two. Given an instance of Composcd-fuﬁctions, the
definition of Composed>function (which is written out formally in the appendix) specifies how to view it
as the implementation of a single function from the domain of function One to the range of function
Two. This overlay is a many-to-one ‘mapping, since there are many ways a given function may be
implemented as the composition of two functions. Other overlays, such as between List and Sequence,
are oné-to-one, which amounts to an isomorphism between the two sets of instances.

An important property of overlays is that an overlay and its inversc mapping must both be total on
the specified domain and range. This means that, given any instance of the domain type, there exists a
corrcspohding instance of the range type. For example, using the overlay Composed>function in
program analysis, if we recognize an instance of Composed-functions, it is important to know that there

1. The character ">" is intended to be read as "as".

OVERLAYS 67

exists a corresponding instance of Function which it implements. Conversely, for program synthesis it is

important to know that for every instance of the range type of an overlay, there exists an instance of the
domain type which is a valid implementation of it.

Fig. 4-6 shows the kind of diagram which is used to represent an overlay between two temporal
plans. This overlay expresses how to view the composed application of two compatible functions as the
application of a composed function. An overlay diagram is divided in half by a line down the middle.
The left side shows the plan diagram for the domain of the overlay; the right hand side shows the plan
diagram for the range. Correspondences are drawn as lines with hooks on the ends which connect roles
on one side with roles on the other.

The domain of the overlay in Fig. 4-6 is Composed-@functions, which has three roles: One and Two
are instances of @Function, and Composite is an instance of Composed-functions. Data flow constraints
in the Composed-@functions plan are such that the functions Composite.One and Composite.Two
become the inputs One.Op and Two.Op, respectively; and One.Output becomes Two.Input. The range
of the overlay is @Function. o _

Correspondences in overlay diagrams are both labelled and unlabelled. Unlabelled
correspondences denote equality between the indicated roles. Labelled correspondences indicate equality
between the value of labelling function applied to the role on the left and the role on the right. The
function involved in such correspondences is most often another overlay.

For example, there are three correspondences in Fig. 4-6. The topmost correspondence says that
the Composite role of Composed-@functions on the left hand side (an instance of Composed-functions),
viewed as a function according to the overlay Composed>function, is equal to the Op role of @Function
on the right. Note that the overlay Composed>function, defined earlier, is being used here to define a
larger overlay which includes composed functions. This will occur twice more later in this section.

The other two correspondences in Fig. 4-6 are simple equalities. The first correspondence means
that for an instance of Composed-@functions and an instance of @Function related as Composed>
@function, Composed-@functions.One.Input is equal to the object filling @Function.Input. Similarly
Composed-@functions.Two.Output is equal to @Function.Output

The reader may note that in the formal definition of Composed>@Function in the appendix there
are two more correspondences which are not shown in Fig. 4-6: the input situation of Composed-
@functions.One is identified with the input situation of @Function; and the output situation of
Composed-@functions. Two is identified with the output situation of @Function. To reduce clutter, such
correspondences between input and output situations will usually omitted in overlay diagrams when they
can be naturally inferred.

. Fig.4-7 shows another overlay involving composed functions. This overlay, Newvalue-
composite>newvalue, expresses the idea that, given a function implemented as a composition, a Newvalue
operation on component Two of the composition can be viewed as a Newvalue operation on the whole
function. This overlay is used in the analysis of the symbol table add and delete programs of Chapter
Two. The hash table in those programs is viewed as a function implemented as the composition of two
functions: a numerical hash function which doesn’t change, and a scquence (implemented as an array),
which is modificed to insert new entries.

68

4 . comvposite \

CHAPTER FOUR

(Composed- ‘?v'\miiohs)

T e e~ - o

com?esab Lonctionv

f i;f{(;nﬁtim\’))

£ (_a\:' ot
y 'OJ;P}L

l"fW)
 (efmct ion)

CO\’Y\?USQ&“ @ functions , e Foncliown

CO\M\W.Sed > @Funckion

Figure 4-6. Applying a Functional Composition.

OVERLAYS 69

.old(co

- -

wge sed

—
~

<o o!ui]
MY—Y\:\AUUOP\

New\ra\uz-ww?osi‘fe, Newvalue

Newvalue - Cowmpost te> newvaly e

Figure 4-7. Implementing Newvalue for Composed Functions.

70 CHAPTER FOUR

Notice the equality constraint between Old.One and New.One on the left hand side in Fig. 4-7.
This style of building up larger plans by making use of instances of already defined plans and
constraining certain components to correspond, allows us to be very concise. More important, we have
separated what is novel about a particular plan, like Newvalue-composite, from what it has in common
with other plans. Similarly notice that the Newvalue-composite>newvalue overlay makes use of the
Composed>function overlay twice in its definition.

A Familiar Example

This secticn presents a second introductory example of overlays: the implementation of lists using
an array and an index. This particular implementation is included here because it is a familiar example
from many other papers on representing programming knowledge. :

We begin with the idea of viewing a segment of a sequence between two bounds as a sequence.
This is formalized by the overlay Segment>sequence, which says (see appendix) that the terms of the
implemented sequence correspond to the terms of the base sequence, offset by the lower bound.?

A specialization of Segment is Upper-segment, in which the upper bound is equal to the length of
the base sequence. Upper-segment is a data plan often used to implement a list. The head of the
implemented list corresponds to the term of the base sequence indexed by the lower bound, and the tail
of the list is recursively defined as the list implemented by the upper segment which has the same base
sequence with one plus the lower bound. The empty list (Nil) is implemented by a segment in which the
lower bound meets the upper bound, i.e. when the lower bound is equal to the length of the sequence.
This implementation is specified formally by the overlay Upper-segment>list in the appendix.

Fig. 4-8 defines the overlay Bump+update>push, which shows how to implement a Push operation
on a list implemented as described above. The plan on the left hand side, Bump+update, has-four roles:
Bump, an instance of @Oneminus (the specialization of @Function when the Op is Oneminus); Update,
an instance of Newterm; and Old and New, instances of Upper-segment. The essence of this plan is to
update the term of the base sequence at one minus the lower bound. The correspondences in the overlay
specify how this plan can be viewed as a Push operation by viewing Update.Old together with the
Bump.Input as the Old input of Push (implemented according to Upper-segmentslist), viewing
Update.Input as the Input of Push, and viewing Update.New together with the Bump.Output as the New
output of Push (again, according to Upper-segment>list).

Similarly, Fig. 4-9 defines the overlay Fetch+Update>pop, which specifies how to implement a Pop
operation on a list implemented by Upper-segment>list. Here we sce that the base sequences of the old
and new upper segments are the same. One is added to the lower bound. The Output of Fetch
corresponds to the Output of Pop. The Fetch and Bump operations may occur in any order since neither
uses the output of the other.

1

1. We are skipping the step of modelling an array as a sequence, which is part of the surface plan translation.
2. This implementation "wastes” the first and and last terms of the base sequence. It can be improved by adding Oneplus and
Oneminus in various places, but this would just make the example more complicated without adding any new ideas.

A FAMILIAK EXAMPLE

,f" - . o\d(vpyx:—sej;wt}\

o |
(\\ Qhasa) élowea /
/ - ﬁ(‘i’n’;jeﬂ \)'Y?w—seﬁvner\’t7'i5_t

Jouwm
(@oneminvs)

] . ouﬁ?wt(ivﬁ" ‘Bwj
1 Anpul . ‘
¥ :

; avj
'Y)

.\)?é\ut%

(newtecwy

uww»segmtﬂist

\ New 7z

—_— ~— -

BUW\?* upcldr\“e, : Pushe
BU\N\@% vpdate > pust

Figure 4-8. Implementation of Push.

71

72 CHAPTER FOUR

- T e

,O\CX(“T’F‘*F%D\\

y; W@St

(ihi'eje/()

v .Lv\put .
b
) -—i——ms

Vpdate
(@ov\ep\us)

'v\(?uwﬂ . outpu't,

Uppev-segment > lict

Fedcnt Upddle POF

Fetcwtu Pddte’ > ’Po:P

Figure 4-9. Implementation of Pop.

USING OVERLAYS 73

Using Overlays

We will see many more examples of overlays in this and the following chapters. In Chapters Five
and Six we will also see how overlays are used in analysis and synthesis. For now just a few general
introductory remarks are in order.

We have already seen that overlays are tool for codifying programming knowledge. An overlay can
encapsulate a chunk of implementation knowledge so that it may be used many times in building up
larger chunks. Such overlays express a gebncralization of many specific implementation strategies.

In analysis and synthesis scenarios, overlays are invoked by pattern matching against one side, of the
overlay and instantiating the other. For example, suppose we are in the midst of synthesizing a program
and at some point we have a plan involving an instance of Push. One thing we could do is search the plan
library for an overlay which has Push on the right hand side, for example Bump+update>push, and
instantiate the left hand side, in this case Bump+update. The are many questions unanswered here
concerning how the search and matching is performed and how the instantiated plan is hooked up with
the existing plan structure. Some of these will be dealt with in Chapter Five.

In bottom-up analysis, overlays are used in a similar way to build up more abstract descriptions of
the program under analysis. The first step is to recognize known plans in the surface plan translation of
the program. This may involve deduction, since some of the required constraints may not yet be explicit
- assertions. Furthermore, this recognition process can be made more hypothesis driven by first matching
against explicit assertions and then either trying to derive the rest of the required constraints, or assuming
them in order to accumulate more evidence for and against the hypothetical analysis. Once a plan has
been recognized, we seck to overlay it with another equivalent or more abstract plan. This is achieved by
searching the library as above for overlays which have the given plan on the left hand side. Having found
one, an instance of the plan on right hand side is made and add to the analysis.

Finally, overlays can be used in verification. Whether we are analyzing an existing program or have
started with initial specifications for a new program to be synthesized, the final, fully verified description
is a decomposition of the program into plans and sub-plans connected by overlays. From this standpoint,
overlays are pre-verified lemmas in the verification of a program. Some overlays may be quite difficult to
verify from first principles. However, once this has been done, they can be used over and over again.
One of the goals of the library is to compile enough of these pre-verified overlays so that the verification
of routine! programs becomes mostly a matter of combining these pieces with very little difficult
deduction remaining. '

1. There is an intended circularity here. I propose that what makes certain programs "routine" is that they are a straightforward
combination of familiar chunks.

74 CHAPTER FIVE

CHAPTER FIVE
ANALYSIS BY INSPECTION

This chapter presents a detailed scenario of the automated analysis of a program similar to part of
the symbol table example of Chapter Two. The input to this analysis is the Lisp code and comments
shown in Table 5-A. The output of this analysis is a hierarchy of plans which describe the computations
performed by the given program at various levels of abstraction. The topmost plans in this hierarchy
describe these computations in very abstract terms, i.e. in terms of set operations. The bottommost plans
are very close to the code. They describe the computations in terms of the primitive data structures and
operations of Lisp, such as dotted pairs, CAR and cbR. Connections between these different levels of
description are represented using overlays.

The type of analysis shown in this chapter can be construed as a reconstruction of the top-down
design of a program. This does not mean that the given program was actually designed that way, or that
programs should be designed top-down. It only means that a top-down account is a useful way of
understanding an existing program.

5.1 Why Analysis?

~ In a programmer’s apprentice system, a complete reconstruction of the abstract structure of a
program as illustrated in this chapter would scldom be required, since the intermediate levels of
description would be built up incrementally as part of the development process. There are, however,
other reasons for studying this type of analysis. As a practical matter, automated analysis will bé useful in

Table 5-A. Lisp Code to be Analyzed.

; A SET OF ENTRIES IS IMPLEMENTED AS
; A HASH TABLE ON KEYS.

. THE BUCKETS ARE IMPLEMENTED AS LISTS.
(SETQ TBL (ARRAY TBLSIZE))

(DEFINE LOOKUP
(LAMBDA (KEY)
(PROG (BKT ENTRY)
(SETQ BKT (ARRAYFETCH TBL (HASH KEY)))
LP (COND ((NULL BKT)(RETURN NIL)))
(SETQ ENTRY (CAR BKT))
(COND ((EQ (CAR ENTRY) KEY)
(RETURN ENTRY)))

(SETQ BKT (CDR BKT))

(GO LP))))

(DEFINE HASH
(LAMBDA (KEY)
(REMATNDER (MAKNUM KEY) TBLSIZE)))

WHY ANALYSIS? 75

converting from present programming technology, which deals primarily with code, to future
technologies which will involve many levels of description. Furthermore, for the foreseeable future the
common medium for transfer of programs between different systems is likely to be code written in a
standard programming language. For both of these purposes, it is necessary to be able to reconstruct a A
plausible design from given code. systems.

More fundamentally, many of the capabilities required for program analysis are important in other
parts of the programming process as well. For example, the ability to recognize standard computations
(analysis by inspection) at various levels of abstraction is important for automating both synthesis and
verification, even in an incremental system. This is because there are often several different, but equally
intuitive, ways of abstracting a given computation. For example, the symbol tablc Lookupr procedure can
be abstracted either as associative retrieval (i.e. finding an entry in a set satisfying a given predicate), or as
the application of a (partial) function from keys to entries. A programmer may be developing a program
along one of these viewpoints, but the system may have to reanalyze it in a different way in order to bring
the power of the plan library to bear. Furthcrmore, in an interactive program development system, this
reanalysis need not wait until the plans involved are specific enough to be translated into code —
reanalysis can be useful at all levels of abstraction.

5.2 Overview

The overall goal of the analysis described in this chapter is to decompose a given program into parts
which are recognized from the plan library. This is done in four major steps. The first two steps are
basically algorithmic and have been implemented. The second two steps are of 2 more heuristic nature,
and have not yet been implemented. In summary, while this chapter gives a fairly complete account of
what constitutes the analysis of a program, it only goes part way towards automating the process of
constructing one.

The first step in analyzing an already written program is to translate from the given program
programming language into the plan calculus. This step is viewed as a translation because it does not
involve any programming knowledge other than the semantics of the programming language. The plans
which are are the output of this translation step are called surface plans. The purpose of this translation
step is to insulate the rest of the analysis process from the syntactic differences between various -
programming languages. Surface plans resulting from the translation of Lisp code were described briefly
in Chapter Four. Code to surface plan translation has also been implemented for Fortran [73] and
Cobol [24].

The second step of analysis described in this chapter is loop analysis. The purpose of this step is to
decompose loops and recursions in a way which makes producer-consumer relationships explicit.
Furthermore, the producer and consumer components resulting from this decomposition are often
specializations of standard plans in the library. For example, temporal analysis dccomposes the loop in
Lookup roughly into three parts: CDR generation, iterative application of CAR, and iterative testing for an
entry with the given key. These components are connected by data streams which represent the history of
valucs taken on by the loop variables BkT and enTrY. The idea for this type of loop analysis using the plan
calculus was developed and has been implemented by Waters.

76. CHAPTER FIVE

The final two steps of analysis in this chapter are less well worked out. The basic idea is to try to
recognize known plans, first working bottom-up and then top-down. Working bottom-up entails
regrouping parts of the surface plan and the temporal analysis so as to match plans in the library. One
method of controlling this process is to use the fypes of the various descriptions involved (such as list,
number, test, or loop) as a first filter on the grouping and matching. Also, not all plans in the library are
considered in this first bottom-up matching phase. For example, with the current library, bottom-up
analysis goes as far as recognizing plans which have distinctive contro! flow and data flow features, but
does not include recognizing program structurc having to do with the hash table. How far bottom-up
methods can proceed with a larger plan library is an issue for further study.

The final step of plan recognition in this chapter is top-down analysis by synthesis. I assume that
we are given a high level description of the program to start with. For example, for the symbol table
program we are told that "a set of entries is implemented as a hash table on keys"”, and that "the buckets
are implemented as lists". The concepts of set, hash table, key, bucket and list are all known in the
current library. Furthermore, the names of the Lisp functions in Table 5-A, HasH and Lookup, and the
names of their arguments, KEY and ENTRY, are taken as part of the program documentation indicating that
these procedures implement a hashing function and associative retrieval f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>