Technical Report 402

Flexibility and Efficiency
in a Computer Program
for Designing Circuits

Drew Vincent Mcdermott

MIT Artificial Intelligence Laboratory

This blank page was inserted to preserve pagination,

T [t e “(Y,J.M T e e - "

T E i PR ubi ottt r"w"'""—.—_ FTTTI T

.»,5’-“- 3 fOTTET " Lo
i T ;

it

S ovindnt i DED o unii et I dci o8 St YRR
wh e o F,,.',,,‘

o fTTNT AIT T

f -

.lkvuld version of . g;m“ﬂ“m m -

f"'-_‘mm mm.'crf whvalogy

ertmant of Etectrical
mt of the requirements

This empty page was substituted for a
blank page in the original document.

PAGE 2

ABSTRACT

This report is concerned with the problem of achieving flexibility
(additivity, modularity) and efficiency (performance, expertise)

simul taneously in one Al program. It deals with the domain of elementary
electronic circuit design. The proposed solution is to provide a deduction-
driven problem solver with built-in control-structure concepts. This problem
solver and its knouledge base in the application areas of design and
electronics are described. The program embodying it is being used to explore
the solution of some modest problems in circuit design. It is concluded that
shal low reasoning about problem-solver plans is necessary for flexibility, and
can be implemented with reasonable efficiency.

PAGE 3

Acknowledgments

I thank Gerald Sussman, my advisor, for much good advice; Sussman and Allen
Broun for help with electronics; Mitch Marcus and Charles Rich for ideas on
control; Bob Moore and Arthur Nevins for predicate calculus; David Marr and
Scott Fahlman for ideological consultation; my readers Marvin Minsky and
Vaughn Pratt for useful comments; and Jon Doyle for careful reading and
substantive suggestions in the later stages of this research. Marr, Patrick
Winston, Guy Steele, and several others also made good suggestions to improve
the organization of this work.

Finally, I thank Judi for, among other things, moral support: and myse | f
for typing many drafts of what seemed |ike meaningless gibberish

Contents

I .Introduction

I.A The Problem

I1.B A Rule-Based Problem Solver

I.C Supplying Rules for Design

1.0 Relation to Previous Work
1.0.1 Problem Solving and Reasoning
1.0:2 Electronics and Design

II Expressing Knowledge in NASL

I.A The Natural History of Actions
I1.B Interpretation and Inference
I1.B.1 The NASL Interpreter
I1.B.1.1 Selecting a Task to Work On
[1.B.1.2 Executing Tasks
I1.
I

I
I

[.B.1.2.1 Primitive and Problematic Tasks
1.B8.1.2.2 Primary and Secondary Tasks
1.B.2 STP -- The Stupid Theorem Prover
Choice and Rephrasing
I.C.1 The Choice Protocol
[.C.2 Rephrasing
Dependencies Among Data and Tasks
Hand!ing Mistakes
Programmer's Guide
I.F.1 Predicate-Calculus Techniques
[.F.2 NASL Programming Techniques

III Design of Hierarchical Systems

IIT.A The Representation of Knouledge about Devices
IIT.A.1 Hierarchies of Device Types
I11.A.2 The Representation of Device Diagrams
II1.B Design Actions and Plans
B.1 DESIGN
B.2 Making Things
B.3 Constraints
B.
o

ITI.
111,
I11.
I11.B.4 Changing Devices

Composition of Partial Solutions
Constraint Collapse
P

I
I
|
I
C
D
E Programmer's Guide

Ir.
I1.
I,

PAGE &

16
22
33
33
33

30
93

101
186
187
112
114
118
120
121
126

PAGE S

IV Electronics 128
IV.A Physics : _ 128
IV.A.1 Connections and Constraints on Components 128
IV.A.2 Signals 132
IV.A.3 Multiple Models of Linear Systems 135

IV.B Electronic Design Knouledge 137
IV.B.1 Rephrasing Electronic Design Problems - 137
IV.B.2 Reconciling Partial Solutions 138
IV.B.3 Changing Circuits 141
IV.B.4 Electronics Analysis Knouledge 145

IV.C Device Schemata ' 146
IV.D Programmer’s Guide 148

V Results : 150
V.A Using DESI 150
V.A.l Loading and Running the Program 150

V.A.2 DESI Talks to You 1561

V.A.3 You Talk to DESI 1562

V.B Experimental Results 153
V.B.1 A Simple Amplifier 155

V.B.2 Converting a Square Wave into a Sine Wave 171

V.B.3 NOAH in NASL 176

VI Conclusions 178
VI.A Successes 180
V1.B Failures 186
VI.C Further Work ' 196
Appendix 1 -- NASL Syntax and Informal Semantics 134
Appendix 2 -- A Listing of DESI 2082
Appendix 3 -- A Listing of ZORCH : 216
Appendix 4 -- Details of STP for Theorem Provers 251

Bibliography ' 255

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

. Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
" Figure
Figure

ngures

.1 Redescribing a Design Problem ,

2 Tuo Circuits Suggested by Parts of the Problem
.3 A Cascade of the Tuo Partial Circuits

.4 Signal Conversion Problem

.5 Spectrum of Square Wave

.6 Spectrum of Sine Wave

.7 RC Filter

.8 A Circuit for Adding a Pole

«9 Structure of DESI

18 A Rephrasing Subtask

11 Rephrased Task Network

12 Retrieved Circuit and Constraint Task Network

I
[
I
I
I
|
1
|
I
I.
I.

2
.1 A Task Net, or "Plan"
.2 Task Netuwork with Subnets
.3 Logical Taxonomies of Tasks
.4 Life History of a Task

S Enablement Relations in Subnets
-1 Function-Structure Graph
.2 A Tuo-Stage Cascade

.3 An LC-coupled Amplifier
4 A Hierarchy of Types of Device Types
5 Devices in The Type Hierarchy
& Design Action Taxonomy
.7 Design Rephrasing Plan Schema

8

9

1

1

Rephrased Design

Quantity-Value Protection Plan Schema

@ Radio Spectrum With Two Stations

.11 Relevant Constraints

.12 Constraint Network

Terminals and Nodes

Composite Device Terminals

Inserting a Device into a Node

Ports and Nests

IV.S Fourier Transform of an Offset Square Wave
IV.6 Bias Plans

IV.7 General BJT Coupling Plan

IV.8 Common-Emitter Direct Voltage Coupling
IV.9 General and Specialized Emitter-Coupled Pairs
VI.1 Provinces of Artificial Intelligence

V1.2 The Rule-Based Utopia

I
I
I
I
I
Ir.
Il
I11
I
I
I
I
Il
I
I
I
Il
Il
l

I

I

I
I
I
|
I
I
I
[
I
I
I
I
I
I
[
I
I
v
v
v

Iv.

DAAHWN -

PAGE 6

117
122
123
124
129
138
138
131
134
142
143
144
147
181
182

This empty page was substituted for a
blank page in the original document.

]I Introduction 7

I Introduction

I.A The Problem

This thesis réports on the exploration of a classic Al confroversg
regarding the representatién and use of knouledge: the trade-off betueen
flexibility (or modularity or additivity) on the one hand, and efficiency f(or
'experfise or performance) on fhe other. It focuses on the knouledge required
for designing elementary electronic circuits. The conctusions | have reached
are that this kind of flexibilitg'reqbireg all important operations to be
mediated by explicit rules driven bg’changes to an associative data base; and
that the inevitable inefficiencg of this organization can be controlled. The
proposed approach has been'tested‘bg'jmplementation‘of.an extensible design
program called DESI. |

The theory of design that | have implemented is based on the idea of
"functional'reasoning." "(Freeman and Neuell. 1971) A problem is stated as a
property uhich an electronic.circuft fs to have. The system searches its
memory for circuits whose knoun functions fit the requirement. In the
attempt. it constrains fhe connectivity and component values of the circuit
until enough constraints have accumulated to find values which satiéfg the
original property. This simple theory must be complicated in various ways: A
requirement may not be expressed in a form which triggers suggestions‘of
familiar circuits; it may be necessary to transform the requirement until it
does. More than.one device type may be brought to mind in a situation; there
must be criteria for deciding among them, or ways of sgntﬁesizing new circuits
.that perform the‘fuﬁctions of all the ones retrieved. A suggested circuit may
not work out; the theory must specify how plans are changed.

I require that the embodiment of this theory be "additive"; that is, to

I Introduction 8

thé extent possible ‘that neu knouledgé be expressed by new formulas rather
than by changes to old. This is partly because of the ease with uhich such a
sgsfem can absorb neu iﬁformation; and partly because a creative designer
requires the abilitg to see the individual parts of its various, often
conflicting, plans and goals. For this reason, the theory is embodied as a
"rule-based" system. | |

By a "rule-based" system | mean a system uhich makes progress by pattern-
driven operations on a data base. There afe several paradigms for such
systems; the classical ones are predicate-calculus theorem provers (Nevins.
1374a), production systems (Newell, 1973a), and Al languages with pattern-
directed procedufe invocation. (Hewitt, 1972, Bobrou and Raphael, 1974) In
what follous, I will attempt a sgnthesisvof good features of all of these.

The result may be described as a system in which plans are assembled piece by
piece. The rules used resemble predicate-calculus implications. They dfffer
in these ways: they may be used to infer what tasks arebrequired or what
solutions are possible; they are less constrained in the kind of inference
rule and "self-referential" deductions allowed; they specify hou they are to
be used; and they come in Iarger; better organized chunks than is traditional
in predicate—célculus applications.

Before elaborating further on these requirements. let me bring these
probliems to life with two examples from elementary electronic design,
illustrating as | go hou DESI deats with them. The first examble shous hou
choices must often be based on knouledge of current plans. The second example
illustrates some of the other complexities | mentioned. (These informal
scenarios are meant to give you a picture of the design problems DESI is meant
to handle, not the structure of the program or its actual behavior. 1 uwill go.

over these problems again, once in this chapter to illustrate the

1 Introduction 9

representation and use of knouledge by the system, and again in Chapter V to

shou the performance of the actual implementation.)
Redescribing Problems and Choosing Solutions

Imagine that DESI is given the problem, "Design an amplifier with an input
resistance of 38 kohm and a voltage gain of 5." For nou, let us assume this
problem uill be broken into the three 3ubrequirementé. "amplifier," "input
resistance = 38 kohm," and "v-gain = 5." (This must be done with care, since
these three characteristics are of rather different kindé.) This is only part
of the problem, for these fragments of the original problem are too precise to
be suggestive; DESI must further alter the description so that these numbers
become "range descriptions" like, "high input impedance" and "moderate voltage
gain." (See Fig. [.1.)

"amplifier with input resistance = 38 kohm and
vol tage gain = 5"

N/
| | becomes
1
v
"amplifier" <---- thing to make
"input resistance 38k" <---- high input resistance
"voltage gain 5" <---- moderate v-gain

Figure 1.1 Redescribing a Design Problem
Once the problem has been-described in this form, its fragments trigger
suggestions of possible solutions. For example, in the context of making an
amplifier, "high input impedance" should suggest "common-collector amplifier,"

and "moderate voltage gain" should suggest "common-emitter amplifier." (Fig.

1.2.)

high input resistance

I Introduction 10

, POWER high voltage gain
+Vec +Vec

<convert current
biasg bias g too‘l’J?l!:DagFeiT

4 POWER

INPORT INPORT l\
. OUTPORT . ¢
bias <convert bias bias
current to
- voltage -
COMMON COLLECTOR COMMON EMITTER

Figure 1.2 Tuo Circuits Suggested by Parts of the Problem

If just one of these had been suggested, the problem would be easy: DESI
could select a standard schema for the type that came to mind and make sure
the given numerical constraints could indeed be satisfied. Nh;t must it do
when tuwo or more options occur? In some cases, all but one may be excluded on
the basis of further considerations beyond the simple problem features that
suggested the competing options; often, however, uhat is required is a
synthesis which combines two suggestions to provide the functions of both. In
this case, DESI must possess information to the effect that an option
suggested because of what it does for an amplifier’s input resistance may be
"cascaded" with another option.

So far, | have draun these circuits as if they aluways contained the parts

shown. Houwever, the notions of "common-collector" and "common-emitter"

I. Introduction 11

amplifier each corresponds to a range from general to specialized circuits.
When a common-emitter amplifier simpliciter is desired, the circuit of Fig.
1.2 is selected almost without thought. But a practiced designer knous that
the "abstract idea" of this circuit may be realized in other ways. To cascade
the two circuits of Fig. 1.2, DESI would not just "drau" the same tuwo pictures
and cram them together in some way. Instead, it chooses more general diagrams
of these circuits, and reconsiders hou they are to be biased and coupled.

This will involve further choices. The result is the circuit of Fig. 1.3.

+15V

bias ; 190kQ

convert current
10kQ§ to voltage

INPORT —— — OUTPORT
bias S 50kQ -

bias &
4k9§ couplmgzkg sets I¢c

Figure 1.3 A Cascade of the Tuo Partial Circuits
Finally, the numerical constraints set aside in favor of more revealing
descriptors are taken up again to give the component values shoun in the

figure.

I Introduction 12

Transforming Problem and Solution

In this second example, | uish to shou how much more complicated the
phases of design can get. Imagine that the problem given is

Design a netuwork which converts a lkHz square wave of amplitude 1V into a
sine wave uWith the same frequency and amplitude.

1kHz 1kHz

A) A
L= ="V
\J \J

Figure 1.4 Signal Conversion Problem

Even if you know nothing about electronics, it may be worth thinking about
this problem for a minute before going on. (You don’t have to, but the
problem can be amusing, and illustrates an interesting and common phenomenon

of problem solving.)

I Introduction 13

If you knou some elementary mathematics, it probably occurred to you to
take the Fourier series of each of these signals. In this "frequency domain,"
the problem becomes:

Desian a pnetwork which converts a signal with spectrum

height=4/n~

kH,
1 23 45 6 789 101 12 13
Figure 1.5 Spectrum of Square Wave
into a signal with spectrum
1
| bt K Hz

1 2 3456 7 8 9101 12 13
Figure I.6 Spectrum of Sine Wave
such that the amplitude of the spike at 1kHz is 1V.

If you knou some electronics, it might then have occurred to you to try a

Tow-pass Filter circuit like

I Introduction 14

R
When used for low-
Wy pass filtering above
INPORT c —— OuTPORT gutoff frequency f

7T

System Function =

1
i¥RCs
(if not loaded)
Figure 1.7 RC Filter
as your answer, and then try as before to finish the problem off by assigning
values to the primitive components (here, the capacitor and resistor) which
satisfy the constraints we have discovered.

The interesting constraints on this circuit may be stated as follous,

"Make the amplitude of the output spike at 3 kHz less than 18% of the
amplitude of the output spike at 1 kHz."

"Make RC be the reciprocal of the frequency 1 kHz (in rad/sec)."

"The ratio of the amplitudes of the outputs at tuo frequencies depends on
the amplitudes of the inputs and the selectivity of a device."

"The selectivity of an RC filter is ..."
DESI can derive these coﬁstraints from the statement of the problem (starting
uwith a lot of knouledge about RC filters and frequency-domain operations).

Unfortunately, these constraints cannot be solved simul taneously. The
circuit given will make a square wave look "rounder," but the approximation to
a sine wave Will not be good enough. The constraint that deserves the blame
invthis case is that on the selectivity of an RC filter. Houw can this be
improved? One way is by "adding a pole" to its system function with this

circuit:

I Introduction 15

connect to New
old OUTPORT c OUTPORT

New system function = old x m

(Remember to implement A.)

Figure 1.8 A Circuit for Adding a Pale
This makes DESI's vieu of the solution much more promising. (I won't pursue
this example any further, because the current implementation lacks the

competence to go any further.)

Let me list the various types of information that | appealed to in my
brief overvieuw of hou such problems may be solved. First, DESI nee&s
knouledge about transforming the problem into a tractable form; this ranges
from a relatively simple sorting out of multiple reqﬁirements. to a more
difficult transformation from a time-domain to a frequency-domain description
of a problem. Second, and quite important, there had to be a basis for
choosing among more than one approach. Third, several constraints had to be
satisfied in a consistent way. This required knouledge of the physics of
electronic circuits. Fourth, we had to be able to change plans uhen our first
try failed.

To make all these kinds of information usable, DESI has to be able to

reason about its current plans and goals. Transforming a problem may be seen

I Introduction 16

as redescribing the topmost goal. Choice of a solution to one problem often
depends on the other problems under consideration. . The calculation of a
design quantity to satisfy one constraint is pointless unless all the other
constraints on that quanéitg are taken into account. And, of course, one
cannot change plans without knowing what they are. An organization which

makes using such knouledge practical has been the goal of this research.
I1.B A Rule-Based Problem Solver

Here is my thesis: problems are solved by reducing them to subproblems.
Some of these subproblems result in action, others in constraints on action.
As the solution progresses, the way in which neuw subproblems are approached
depends more and more on the state of other subproblem solutions, that is, on
the requirements derived from the physics of the evolving solution and on the
goal structures that have already been elaborated. It is impossible to know,
as neuw facts are discovered, what subsequent subproblems will depend on them,
so all such facts must be stored in the same communal data base and accessed
whenever they become relevant to a later problem reduction.

This is accomplished by implementing DESI as a set of rules manipulated by
a rule-based problem solver called NASL. A rule-based system (Shortliffe,
1976, Davis and King, 1375) is one in which knouledge is expressed as
conceptually small units called rules.

There are tuwo sources of inefficiency in a system organized this way: the
overhead paid for storing almost all knouledge in the same associative data
base, and the nondeterminism inherent in the possibility that more than one
rule may apply to a problem. The first kind of inefficiency is the price of

flexibility, but it can be limited by proper organization. One important

I Introduction 17

principle of organization is allow rules to come in well-organized chunks. In
.DESI, these "packets" of rules (McDermott, 1975) are used to represent circuit
diagrams, signal descriptions, partial plans for solving problems, and groups
of rules for making choices.

The second source of inefficiency, nondeterminism, can be controlled by
confining it to the information retrieval module. Above this louest level,
potential nondeterminism is shut off by applying "choice rules" in ambiguous
situations.

In this section and the next, I will sketch the form and content of DESI's
rules. This sketch will be filled in in Chapters II, IIl, and IV. Chapter V
gives the results that have been obta}ned by implementing it.

In any rule-based system, each rule is associated with a pattern by which
the system accesses it. The system also maintains a data structure, the
"active procéssing site," that is intended to describe important aspects of
the current situation. Rules are matched against this structure, and rules
whose patterns match are applied in some way.

The potential advantages of a rule-based system are these: (1) the system
can see what it is doing because important steps occur at standard times in a
standard way; (2) the system can keep track of its deductions and/or actions
in order to explain or undo them; (3) the system can be augmented simply by
adding neu rules.

Realizing these potential advantages has not been easy. There are three
classic types of rule-based systems:

(lf Predicate-Calculus Theorem Provers -- Here the rules are axioms and
the currently active processing site is that rule which is being treated as a
goal. Applying a rule generates neu rules or ansuers to the probliem at hand.
(Robinson, 13965, Nilsson, 1971, Nevins, 1974a, R. Moore, 1975)

(2) Production Systems -- Here the rules are condition-action pairs, or
"productions,” and the current site is a small list called the "Short-Term

I Introduction 18

Memory," or STM. Applying a rule consists of performing manipulations on the
STM or doing simple input/output operations. (Rychener, 1376, Newell, 1973a)

(3) Artificial Intelligence Programming Languages -- These.languages may
be said to be rule based if pattern-directed procedure invocation is taken as
rule application and if such procedures are taken as rules. The processing
site is a flexible record-oriented data base, in particular, the records
currently being added, deleted, or retrieved. These languages include PLANNER
(Hewitt, 1972) and its descendants QA4 (Rulifson et. al., 1972) and Conniver
(Sussman and McDermott, 1372).

(More specific examples will be mentioned for comparison with NASL later.)

All of these systems have suffered from problems uhich have kept them from
reélizing their potential. The predicate-calculus systems are the least
deterministic of the group. The control of application of predicate-calculus
rules has not itself been rule-directed or directed by much knouledge of any
kind. However, one of their strong points is that the proofs they generate
play a natural role in keeping track of their actions or justifying them to a
human user.

‘Production systems have.verg lou-level rules. The system provides simple
symbol-manipulation ability, but each programmer must provide his oun control
concepts, starting at the level of the subroutine call. This tends to defeat
real extensibility, since tuo sets of rules probably have different calling
conventions. (Production systems have been evolving toward greater richness.)

Al languages provide more directibn and control over problem solving. but
at the cost of making "rulishness" only a token aspect of procedures. The
small patterned interface between a program and its callers is usually duarfed
by the body of the procedure. Other procedures knou that this one is there,
but they do not know uwhat it is doing.

A general problem of all these systems is- that they are insensitive to

important aspects of their oun operation. Production systems and pattern-

directed procedures generally do not manipulate themselves. (That is, systems

I. Introduction 19

built on them do not encourage or simplify this any more than the LISP
interpreter in which they are generally embedded.)

To remedy these defects, | have implémented the NASL rule-based system to
depend heavily on explicit representation of contfol. NASL's active
processing site is a PLANNER-type data base of rules, but more is stored there
than in the typical Al-language system. Besides a model of the current
probliem situation, the data base includes a representation of the "current
plan.” Rules are used, not to trigger actions directly, but to add tasks to
this representation. UWhen the rules are used in a foruard-deductive way, they
resemble productions, with an extra layer of "carefulness" betueen application .
of the rule and actual execution of the task. (Sussman, 1975) When the rules
are used - in a backuard-deductive way, when the interpreter is attempting to
find a way of carrying out a task, they augment the plan much the way a
PLANNER-T'ike language invokes procedures.

The difference betueen a'plan and a procedure is that a plan may repreéeht
action at a more abstract level. In particular, the order of steps within and
betueen subplans is itself rule-governed. Furthermore, not all tasks
correspond to subroutine calls to bring something about or calculate
something. Some tasks are intended to represent "parasitic” actions uhich
influence the execution of other tasks, or which require occasional commitment
of resources. Examples from circuit design are the actions, "Constrain RC to
be 1/2rf," "Make sure every requirement in the given design problem is
accounted for," and "Take note of the high-gain requirement in making this
amplifier."

These secondary tasks, ‘or "policies," are particularly useful in choice
situations, in which the problem solver tries to decide among more than one

course of action. The existence of a policy often amounts to the existence of

I Introduction 28

certain rules for suggesting options or deciding among them,

Another important difference betueen Al-language procedures and NASL plans
is that plans are complefelg deterministic. All search is done in the rule-
appliers that try to retrieve, construct or choose among plans. If the
resulting plan does not work, a "mistake correction" plan must be sought uwhich
is appropriate to the kind of mistake that occurred.

Inability to retrieve a solution plan'via the simple deductive retrieval
mechanism does not cause any kind of "failure.” Instead, the system attempts |
to transform, or "rephrase," the problem until it is in a more familiar form.
This requires that the rules and records of the system bé manipulable by
rephrasing tasks. |

To explain its actions and correct its mistakes, the system must keep
records of why it did yhat it did. These are of two kinds: stored chains of
ru{e applications, and relations betueen tasks. The user may ask for an
explanation of a task in terms of theAtasks it was designed to accomplish.

The system mag_edit these netuworks of relations when it runs into trouble.

I mentioned at the beginning of this section that rule-baéed systems are
potentially "extensible," that is, able to accept neu information additivélg.
Without major reorganization. We can distinguish short- from long-range
extensibility. Over the long range, putting new information in is part of a
gsimple but important kind of learning-- "taking advice." It is not the only
part, because reorganizing descriptive structures and debugging or
disémbiguating what one is told are also crucial.

Therefore, it is easier to see the importance of extensibility over the
short range. It is common in Al research these days to assume that knouledge
is represented in large, well-organized chunks (usually called "frames").

(Minsky, 1974) Assuming this to be true, we still have the problem of

I Introduction 21

interactions of two simul taneously active chunks. This is just the
extensibility problem in the small, since each chunk appears to the other to
contain neu information that may be relevant. Unless all frame interactions
have been foreseen in advance (which is normal in most computer science, but
not in Al), the information in each chunk must be expressed in terms the other
can understand. (This is why programs appear to me to be such a poor frame
representation, since a program is just a iarge chunk of lines of code, none
of which means anything outside of its particular context.) At the very
least, a sgstem must notice potentially relevant interactions and ask for
further information when it does.

In NASL, each rule resembles a Skolemized formula of predicate calculus,
(Robinson, 1965) (In fact, few substantive restrictions on predicate calculus
have been preserved in this notation.) The rules are manipulated by a
PLANNER-1ike theorem prover. (Cf. R. Moore, 1975) Houever, the rules can come
in large chunks called "packets." (McDermott, 1975) Packets can include other
packets (since they are logically just large conjunctions of formulas). One
use of this is the implementation of hierarchies |ike those of "semantic
netuork” systems. (E.g., Bobrow and Winograd, 1976) Circuit diagrams, among
other things, are stored as packets.

There are several "framish" concepts used in implementing NASL. For
example, the active tasks of the current plan might correspond to the
"important questions" terminals of a Minskian frame. (Minsky, 1974) However, I
have felt free to diverge from the orthodox conventions of frame theory, and

one must not assume that "plans" or "packets" correspond directly to frames.

| introduction 2

oy
/

W
g

1.C Suppiying Bules for

=

s F¥aE, & °

Peom plizseseedlusls oud Yo oomelloeTsing

01 seribe ot ol sodsgus dnaeis doBae sanis Llisme el al as!

ano gﬁwﬂ - giga&sﬁan’}'néeaai s %; %’5&'{?‘3 Mt%?giﬁ%:

.\gpﬂod in the tpr- .of guin.

b :}“!ﬁéu 5 xa‘ff*!ﬁ; S Eam

~gealen Ip gensrel, opd slest gm,g st e i 5'&“%5%%
i ?&‘ by, ; ﬂ““m ﬁg‘&%g?%ﬁ el & ﬁgpﬁﬂ ‘Eﬁg,“ ,gn_ e

& Mz; zi aswgr;«;g g sarie norisinsasaas

o
.
p

imitaien gidd ot

SR ANAT

ST S 5 5 e

i2 3
’i&

i

=

erial teui ylisnigul s ped

i oaidr 2

<(_‘g'

14

esidpsagd to noiteinemalogei sl

. PR s
g Piuntsl idhtd hEnpon

sigdasg 25 bewie ew ,epnidl oerlo
5o -.3”3!*! priiimemaiasi ~i besy riceonoa "Asimest” iswzsa LR g«w}'

¥

wrl g bBrnsratus ;_ua asiyg troewis edd Yo edss) eviins sdb sidesxe

PoLemesua (8NP1 ofena Lometd melidenill 8 to elgnimael Tenoijesup inatowuai’

s L punsdd santt in saol Inswnnd achordtas sdd mont spaavib of szt 3ist averd

2nely” Jedl emuzeg Inn faus ang

siomieeg vl to shistuo gridigos sogoer rAlidk 7o,

swnot L8 3 Ltsveng Socwntd edi i-FEMAS

,ii’{m«mﬁﬁ* *stordeg” bsilss sdnuds sprpt ai

! brs woeod .0, 3 Lamsieps TAwuien

)

/

M

[NOIURD S WIS U ST S

[

\

i

| NPT NPT WSO I PR N A NETEVIDE SUT U L O N SV SR P T

Coat N

LR

W e

L..x-.‘ e At

I Introduction 23

Design Electronics Current Data
Knowledge Knowledge Pool

A

NASL Rules

LISP

E R — [NASL Plan Interpreter

EVAL CHOOSE IREPHRASE |

Figure 1.9 Structure of DESI

The program, loosely knoun as DESI, has the following hierarchical
organization (from the bottom up):

STP -- A PLANNER-|ike theorem prover

EVAL, CHOOSE, REPHRASE -- non-standard inference mechanisms

NASL -- The interpreter for plans

DESI (proper) -- A set of rules for designing hierarchical systems

ZORCH -- Rules embodying electronics knowledge

The rules themselves are highly structured. Some of them speci fy physical

relations among things like nodes and signals. Higher-level rules are used to

influence problem choice and transformation. Almost all of them have some

I Introduction 24

procedural component, in that they refer to the current task network. For
example, even the simplest statement of ﬁhm's lau, that the current through a
resistor equals its voltage over its resistance, is stated as a constraint on
the values of these physical quantities.

Most of the "raw information" in the system is stored in packets defining
knoun circuits, such as common-emitter amplifiers, voltage dividers, etc.
When a circuit of a given type is created, its packet will be instantiated.
Each such packet contains information of these kinds:

(1) Component def}nitions like

[COMPONENTS ?##VOLTAGE-DIVIDER
<(R1 ?#HVOLTAGE-DIVIDER) (R2 ?##VOLTAGE-DIVIDER)>)

(NASL formulas are always enclosed in [brackets]. See Appendix 1 for details
of this and subsequent NASL notation. The prefix "?" indicates a predicate-
calculus variable; in a packet, "?##X" refers to an object that uill be bound
later to a particular instance of the concept the packet describes.

(McOermott, 1375). Angle brackets enclose tuples.)

(2) Connection specifications like

(NODES ?##VOLTAGE-DIVIDER
<(TOPNODE ?##VOLTAGE-DIVIDER)
(MIDNODE ?##VOLTAGE-DIVIDER)
(BOTNODE ?##VOLTAGE-DIVIDER)>)
~ [NODE-TERMINALS (MIDNODE ?##VOLTAGE-DIVIDER)
<(#2 (Rl ?##VOLTAGE-DIVIDER))
(#1 (R2 ?#HVOLTAGE-DIVIDER))>]

(3) Constraints and other "frozen tasks" which will be awakened when an
instance of the packet is created. These are used to associate with a device
a description of its purposes and further requirements. The commentary
appearing around the diagrams in Figs. 1.2, 1.7, and 1.8 is represented as a
set of such tasks.

These circuits come in hierarchies of various kinds., The components of a
circuit may themselves be circuits. Circuits may be arranged in classes (such
as "amplifier") which share properties. 0One circuit may be derived from

another by assuming special conditions; for example, the specific and general

common-emitter circuits I pointed out in Sect. I.A are of this type. All of

I. Introduction 25

these hierarchies may be represented by the device of allouing packets to
include other packets.

A solution to a design problem is represented as a structure of
instantiated circuits, with primitive-component values selected. A top-level
design problem is of the form, "Find a circuit structure with property...."

It is the information required to go from property to circuit that is of
most interest. This falls into several classes: (1) knouledge about
transforming problems, (2) rules for making choices, (3) plans for altering
and improving circuits, and (4) knouledge about physical constraints on
quantities. Each of these categories is rebresented by rules in DESI and
ZORCH. DESI is a small set of design rules that are intended to be
independent of any one physical domain; it provides a vocabulérg and task
structure within which ZORCH's rules can operate.

For example, DESI provides a standard framework for rephrasing design
problems. The idea is to transform an unfamiliar design problem into the
making of a familiar kind of circuit obeying physical constraints, using more
suggestive hints like "make it linear" or "notice the high gain." (Cf. Sect.
I.A.) ZORCH provides rules to do this decomposition and then to use the hints
and constraints to zero in on a diagram.

The DESI rephrase plan contains tasks to

"Explode" the given property into "shards."

Classify shards as to whether they suggest a familiar device type. a
constraint, or a "design features" like "linearity."

Gather the suggestions into a new task netuwork.

In this process, rules like this (from ZORCH) become important:

I Introduction 26

(-/> A (D-SHARD 2+P [A (_?+V) (= (V-GAIN (/2/? _?+V)) _?+G)))
(-/> G (/> (DEN ?+G) 58)
(D-FEATURE ?7+P [RANGER V-GAIN HIGH1))]

This says that a voltage gain greater than 5@ should be noticed as "high."

The symbol "-/>" signifies implication; the letter after it identifies the way
in which the rule is to be used. (See Chapter 11. The "A" means when the
left side is recorded, record the right; the "G" means call the theorem prover
to find ansuers to the left side, and record the right side for each
substitution returned. The actual rules in Appendices 2 and 3 are more
indirect and give more information.)

Once the task netuork has been transformed, other ZORCH rules come into
play. These rules are of these kinds: (1) definitions of fundamental wiring
operations; (2) physical laus like Ohm's which constrain numerical quantities;
(3) plans and pieces of plan for biasing, coupling, and per forming other
standard operations on circuits; {(4) rules for choosing among sub-types of
inclusive circuit categories suggested by the rephrase rules.

Fundamental wiring operations are defined using the built-in relation
/:MOD-MANIP (for "model manipulation"). For example, connecting terminals to
form nodes may be defined by this rule |

[/:MOD-MANIP ?TASK (CONNECT ?T1 ?72) <>

<’ (EXISTS (N) (AND (DEV-TYPE ?N NODE)
(NODE-TERMINALS 72N <?T1 ?72>)))>].
This defines an "addlist" (Fikes and Nilsson, 1971) for this action. (lts
"deletelist" is empty.)

Physical laus are defined by rules like this:

I Introduction 27

[-/> A (DEV-TYPE ?X RESISTOR)
(EXISTS (T)
(/7:TASK ?T <>
(A () (CONSTRAIN <*(V 2X) (I ?X) (R ?2X)>
(A (VIR (=?V (x ?1 ?R)))))

<))]
which commits the designer to the given constraint. CONSTRAIN is a kind of
policy action defined in DESI; again, DESI provides the vocabulary for ZORCH.

Choice rules are used for differential diagnosis or synthesis of partial
solutions. For example, in choosing an amplifier, the rule

-/> A (/:0PTION ?C ?A1 [/:T0-DO _?+TASK (MAKE AMPLIFIER) <_7+AMP>

(MAKE COMMON-COLLECTOR)])
(-/> A (/:0PTION ?C ?A2
[/:70-DO _?+TASK (MAKE AMPLIFIER) <_?+AMP>
(MAKE COMMON-EMITTER)])
(/:RULE-TOGETHER <?Al1 ?A2>
[/:T0-DO _?+TASK (MAKE AMPLIFIER) <_?+AMP>
(MAKE (CASCADE COMMON-COLLECTOR
COMMON-EMITTER)) 1)))
This rule says that a common-collector amplifier and common-emitter amplifier
may be cascaded to accomplish the purposes of both. (The actual rule comes
closer to saying this.) The conclusion [/:RULE-TOGETHER...] is used by the
choice protocol of Fig., [.9. It is used to specify composition of separately
unsatisfactory choices; /:RULE-IN and /:RULE-OUT are used to narrow the list
of options.

Many aspects of the operation of the system cannot be brought out by this
kind of summary. In the next three chapters, I will describe its knouledge
more systematically. The major omission so far has been a good description of
the task network and its evolution. Nifhout this description, much of the
content of the rules is lost.

To compensate, let me sketch DESI’'s behavior on the second problem I used

as an example in Sect. I.A, indicating points of interest as | go along. The

problem is presented as the problem of designing a circuit to convert signals

I Introduction 28

satisfying an input predicate to those satisfying an output predicate. (See
Chapter IV.) This is written

(DESIGN
(A (CKT)
(CONVERT ?2CKT
(x (IN)
(AND (PERIODIC (TFUN ?IN) 18.8E-3)
(FORALL (T)
(AND (-/> C (/< 2T @)
(= ((ONE-PERIOD. (TFUN ?IN)) 2T)
1))
(-/> C (NOT (/< ?T @))
(= ((ONE-PERIOD (TFUN ?IN)) ?T)
-1))) 1)))
(x (IN 0uT)
(= (TFUN 20UT) (X (T) (SIN (x 2008 PI ?2T)))) 1)))]

The input predicate is just a time-domain definition of "lkHz square uave."
The output predicate defines the time function (TFUN) of the output to be a
sine wave. (C after "-/>" means: to prove the right-hand side, detach the
left as a subgoal.)

The design problem is used to start a task network or plan. The goal of
the problem solver is to accomplish every extant task. In the course of doing
. this, subtasks of various kinds may be generated, which must be gotten rid of.

In the case at hand, the complicated design problem does not match any
stored subplan directly. The resulting failure of the theorem prover causes

the NASL interpreter to set itself the task of "rephrasing" the design task.

I Introduction 29

O design...

rephrase
super-task

fmd d-features

Sgg:oge f'"d core g‘easl?en
O g devnce -_— g
property _ subnet

~— O find

constraints

Figure 1.18 A Rephrasing Subtask

This rephrasing process notices the conversion problem in the description
of the desired circuit, and spends some time trying to calculate and compare
the frequency spectra of the input and output signals. This process results
in the re-description of the problem as a low-pass filfering problem. (The
complex details of this example are described in Chapters IV and V.)

This operation of rephrasing the original problem is carried out by the
NASL interpreter, operating at a different logical level. In particular, its
‘behavior is rule-governed in the same way. The only difference is that
problems at the lower level become objects of manipulation at the higher
level. The result of this manipulation ultimately appears as a new problem
netuork at the original level.

The signal descriptions I showed earlier are subject to rules from ZORCH
which suggest lgoking at them in the frequency domain (Figs. 1.5 and 1.6), anq

looking for a simple transformation between them. The transformation

I Introduction 30

discovered, namely [LOW-PASS 10001, generates the design shards

{A (CKT) (DEV-TYPE ?CKT LOW-PASS-FILTER)]
(A (CKT) (= (LOW-CUTOFF-FREQ ?CKT) 1000))

which in turn suggest a basic device type (lou-pass filter), constrained to
reduce its output at all frequencies above 1 kHz to negligible values.

The task net has nou been "elaborated" to the structure of Fig. I.11.

O design...

make a constrain
low-pass O > O it...
filter

Figure 1.11 Rephrased Task Netuwork
The problem has become "make a lou-pass filter, and constrain it to fit the
exact desired characteristics.". The first subproblem in this structure is
much simpler than the originél. and results in the retrieval of a useful plan,
in the form of a "device schema" for an RC filter. (I will defer the

possibility of more than one schema being brought to mind until later.)

I Introduction 31

_ R O Design...
C I make . Constrain
T low-pass O O selectivity

Get select R
an RC O/ O

A\‘ (O select C

"Frozen constraints’
on R, C and System Function

Figure 1.12 Retrieved Circuit and Constraint Task Network

The problem nou (see Fig. 1.12) is to satisfy the constraints given. Some
of these came uith the problem statement, but many more tag along with the
schema for RC filter (uhich includes facts about filters in general). A
useful feature of the NASL language is that we can express the purposes of
devices in the same language the system uses to express its oun: as tasks. To
use an RC filter is to insist that its resistor and capacitor have values
compatible with its desired system function. Such tasks are called "frozen
| policies."
| Such already established tasks are not the only useful kind that ride
along in device schemata. There are also "expansion obligations" which remain
to be done. An example of this technique is the definition of "active
transistor," as a "raw" transistor plus the commitment to bias it in whatever
context it appears. In the case of the filter, the only expansion obligations
are to select values for the primitive components. These tasks (see Fig.

1.12) are carried out by interactions with the new and frozen constraints.

I Introduction 32

(ln'the current implementation, most algebraic symbol manipulation is carried
out by the human user.) Values are to be found which satisfy all the
constraints. MWhen they are found, the fact that they satisfy the constraints
is to be "protected." (Sussman, 1975) This can be a complex task in itself.
(Chapter I11.)

As ue sau before, there are no values uwhich satisfy all the constraints.
Even for engineering purposes, an RC filter cannot quite do the job. In this
case, a failure occurs, uwhich causes the insertion into the netuork of a
correction task. This task may have to edit the task network as well as the
current circuit model in order to solve the design problem adequately. (The
current implementation stops before this point.)

1 have glossed over the problem of choice in this example. It is more
obviously relevant in the case of the first example of Sect. I.A, designing a
buffered amplifier. In this case, rephrasing is relatively simple, being a
matter of unpacking a |lambda expression such as

A (X) (AND (DEV-TYPE ?X AMPLIFIER)

(= (V-GAIN ?X) 5)

(= (INPUT-R ?X) 36008))].
Houever, these fragments suggest more than one kind of amplifier, as we sau.
(Fig. 1.2) In other uwords, the system has converted a problem with no
apparent solutions into a problem with tuo apparent solutions. This
embarrassment of riches is handled by invoking the choice mechanism, a simple
"protocol" for calling the theorem prover. In this mode, a series of staccato
deductions are made which attempt to rule out alternatives, vote in favor of
alternatives, or synthesize neu ones. (See Chapter 2.) The relevant rule is
the one that says, "if you are trying to choose among different ways of making

an amplifier, and option 1 was suggested because of its input resistance, and

option 2 for some other reason, replace these options with [CASCADE |option 1]

I. Introduction 33

loption 2|1." (A simplified version of this rule appearé above.)

Other choices that occur in these examples are handled similarly. There
is a rule that the general common-emitter circuit is the starting point for
implementing a common-emitter coupled to something else. In the second
example problem, if the system is ever told about LC filters, we will also
~have to give it rules like
"Use an LC filter if the power involved is high."

"Other things equal, don't use an inductor circuit if you can help it."

For DESI’s actual behavior on these problems, see Chapter V.

I.D;Relation to Previous Work

[.0.1 Problem Solving and Reasoning

The probliems | am attacking in this research are not neu. The problems of
generality vs.lexpertise Were originally studied by Allen Neuell and his
couorkers around 1968. (Newell, 1962) Their efforts produced a "General
Problem Solver" uhich we have been trying to debug ever since. (Ernst and
Newell, 1963) GPS was a "means-ends analysis" problem solver which applied
state transformation operators to bring it to its goal. McCarthy (1959) gave
us the term "advice taker" to describe a program which can take new
information and use it to do better. The creation of such a program is still
my long-term goal and, in a sense, that of most other researchers,

While this research was in progress, a tide of "rule-based" Al programs
has risen which NASL seems to be a part of. Its ancestors are the systems |
described in Sect. 1.B. More recent, special-purpose rule-based systems have
sought to overcome their limitations. Shortliffe's (1976) MYCIN is a limitéd

but elegant medical-diagnosis system which uses a backward-chaining deductive

I Introduction 34

system. Sussman and Stallman’s (1975) EL does electronic circuit analysis by
foruard deduction. Both of these systems keep a record of deductions. EL
'uses these records to rethink deductions based on uﬁuorkable assumptions.
(StalIman and Sussman, 1976) Both systems use them to explain their deductions
to a human user.

The NASL system differs from these in that its control language is aimed
at a higher level of abstraction. Its rules, expressed in a predicate
calculus, specify conclusions rather than actions, Action is achieved by
having certain conclusions be interpreted as "required tasks" by the action
interpreter. The notion of "task" is intended to be very inclusivé.

MYCIN and NASL can both be given neu rules, uwhich, ff they are not buggy,
interact with the rest of the system in efficiené ways. However, MYCIN's rule
language is deliberately restricted to the domain of fault diagnosis in poorly
understood systems. (Davis et. al., 1975) (MYCIN is superior to NASL in
having a more developed procedure for graceful assimilation of new rules.
(Bavis, 1976)) EL’s rules have stylized LISP code bodies. They can do
anything, in principle, but the system functions most elegantly when organized
around the satisfaction of numerical constraints. MYCIN does almost entirely
backuard chaining during deduction; EL, forward chaining.

The most important conceptual problem | have found in working on NASL is
the requirement that the control structures of a problem solver ought té be
simple enough to be inspectable, but contain enough higher-level concepts to
be useful uhen inspected. The MYCIN group express this as a demand for
"stylized programming" (Davis et. al., 1975). They have achieved impressive
results in tuo areas. First, by use of "meta-rules," their diagnostic program
can guide its oun flou of control. This is something |ike my "choice

protocol" in which NASL uses choice rules to decide how to proceed. Second,

1. Introduction 35

their knouledge-acquisition program knous enough about the "stylization" to
participate in uriting and debugging neu rules. I shall make a ﬁore detailed
comparison of these two capabilities with actual and potential abilities of my
program in Chapter VI,

The main limitation of MYCIN's style of rule-based programming is that it
-is wholly oriented touard making tests and letting them "cast votes" for a
result. There is no concept of planning or even acting. Davis et. al.

(1975) acknouledge that for a domain with a more precise theory than medical
diagnosis, a different control structure is called for. | hope DESI is an
example.

Stallman and Sussman’s (1976) EL is implemented using a language called
ARSE which is embedded in LISP. The primitives in ARSE implement a system of
foruard deduction and "guessing," aimed toward finding a consistent assignment
of variable values in a constraint network. ARSE has been used ekperimentallg
on other tasks involving constraints (Mason, 1976, Doyle, 1976), and so has
modest pretensions to generality. ARSE's control structure is formally close
to NASL*s (and helped inspire it). ARSE maintains "demon queues" generated by
ongoing deductions. However, EL lacks the need or pouer to inspect these
queues efficiently. NASL embeds the control structures in an associative data
base, and generalizes the notion of queue to a task netwuork.

In this respect, the closest control structure to NASL is Sacerdoti’s
(1975) NOAH. This is a brilliant program for planning a mechanical assembly
and advising a person carrying it out. The planning part constructs a
hierarchical network of ever more detailed plans. These plans are not
programs; in particular, they do not have to be totally ordered. As parts of
the plan are expanded, their interactions with each other are noted and

corrected for by enforcing orderings.

1 Introduction 38

The main difference betueen this part of NDOAH and NASL is that.NOAH is a
pian compiler, while NASL is an interpreter; that is, it expands and executes
pieces of plan as it goes. This is necessary because NOAH has a simple
STRIPS-1ike (Fikes and Nilsson, 1971) assumption about actions which NASL
doesn’t share. In particular, NASL is not as sanguine as NOAH about expanding
a future action, because it has a limited model of the world at that point.

It qoes not attempt to summarize the effects of all tasks as state changes, so
it cannot have a domain-independent algorithm for checking interactions
betueen steps. In particular, actions like "Design..." and "Constrain...,"
whose effects depend on how they are carried out and/or what else is being
executed, do not fit into Sacerdoti's framework. This makes room for more
sophisticated knouledge about action, but it is a pity that 1 cannot use
Sacerdoti’s simple and (within their limits) powerful algorithms.

I have also profited from reading papers by Nilsson (1973) and Philip
Hayes (1975) on interleaving planning and execution. Several researchers
(Schank and Abelson, 1975, Abelson, 1975, Rieger, 1976, Charniak, 1375) have
done research on classification of plans analogous to my taxonomies of Chapter
I1. Usually, however, they have been more concerned with analyzing narratives
than with actually solving problems, uhich has led to different criteria for
classification. Perhaps some synthesis of these approaches will be possible.

A class of systems with which NASL shares certain_properties are the
"utility" Al systems which have appeared recently. These are systems which
provide data and control representations for users, who are expected to use
these facilities for problem-specific programs. Examples are the Al languages
{(Bobrou and Raphael, 1973), Bobrow and Winograd's (1376) "Knouledge
Representation Language," and Srinivasan's (1376a,b) "Meta Description

System." The Al languages provide assertion-based data bases like NASL’ s,

I - Introduction 37

(NASL.and STP are descended in this direction from the Al language Conniver.
(Sussman and McDermott, 1972)) The other tuo systems are more semantic-netuork
oriented. (Woods, 1975) This is in many ways merely a formal difference.
Other differences between these research efforts depend on heal thy differences
of focus. For example, the KRL group is more concerﬁed Wwith recognition

. problems than | have been.

A bigger philosophical difference is that NASL is an attempt to provide a
plan description language rather than a programming language. The distinction
may be wholly metaphysical; houever, | believe that several features of NASL
plans, especially the notion of "policy,” if implemented properly, belong to
plan description rather than programming. A concrete distinction betueen NASL
and the traditional "Al utility" (Hewitt, 1972) is that NASL, far from
requiring a program to specify a piece of knowledge, requires a body of
knouledge to specify a program. | believe that Srinivasan's MOS results from
a similar orientation, but he is more concerned with general puzzle solving
than capturing the knouledge in a rich domain.

In any case, the older, less pretentious Al languages are the only members
of this list of systems (NASL included) which are mature enough for their
flaus and strengths to be visible. Which features of the newer systems will
endure remains to be seen.

Unlike most of the problem solvers mentioned, NASL uses a theorem prover
to do sophisticated deductive information retrieval. This use of theorem
provers has been suggested by many people. (Travis et. al., 1972, Darlington,
1363, Moore, 1975) My theorem prover, STP, resembles most closely that of
Nevins (1974a), with features from the work of Bledsoe (1975) and Ernst (1971,
1973). Those familiar with the theorem-proving literature will enjoy Appendix‘

4, uhich describes its features,

I Introduction 38

Other people have studied somewhat different uses of theorem provers in
problem solving. (E.g., Fikes and Nilsson, 1971) In the past couple of years,
one group of people has been urging the use of a predicate-calculus theorem
prover as the only interpreter of a problem solver. (Kowalski, 1973, 1974,
Warren, 1974, Hayes, 1973b, Tarnlund, 1975) | think this view is misguided.
General ly one does not go very far with this approach before he starts adding
corruptive features; such as ordering the axioms, putting in dummy predicates
to control search, allouwing rules to refer to formulas, etc. (Warren, 1374)
My conclusion was that it is better to admit defeat from the start, so 1 put
control features in as concepts manipulable by the calculus and defined by the
interpreter, and tried to preserve some of the purity of the theorem prover
itself. [shall have more to say about the success of this attempt in the
conclusion. |

I should mention that the concepts of action and decision have concerned
philosophers for hundreds of years. Recently, a whole branch of analytic
philosophg has sprung up around them. (Langford, 1971, Brand, 1370, Danto,
1965, Goldman, 1978) Many of the workers in this field have interesting
things to say about the logic of action. For example, the computer
scientist’s notion of a "primitive" is reflected (someuhat dimly) in
statements like, "... those actions, ... performed by M, uhich he cannot be

"

said to have caused to happen ... | shall designate as basic actions." (Danto,
1965) Unfortunately, these philosophers are much too reluctant to imagine
that the mind behaves like a device with a real structure; all of their
definitions are in terms of phenomenological rather than technological
categories. For example, Goldman (1978) gives the follouing exegesis of the

notion of "basic action": A basic act is an act A such that "if § wanted to

exemplify A (at t), he would exemplify A (at t)." He then must spend no

I Introduction 39

little effort explaining away paralytics. I think that in the long run
philosophers exposed to Al ideas are most likely to arrive at useful concepts
in this field by explaining "want" and "act" in terms of hypothesized internal

constructs,
1.D.2 Electronics and Design

The usual problem domain for a researcher with my pretensions is some
class of puzzles (Ernst and Newell, 1969) or "narrative understanding. "
(McDermott, 1974a, Charniak, 1972). 1 have chosen elementary electronic
circuit design instead, for these reasons:

(1) It is not as broad and sloppy a domain as “"story understanding." One
can reach "critical mass" with a data base much faster. There are clearer
criteria for success. Electronics involves, | hope, as few mental competences
as possible in an interesting domain.

(2) On the other hand, there is room for a variety of kinds of knouledge.
The domain cannot be, and doesn’t have to be, represented fully by a state
space and a set of operators. Puzzles are both too easy and too hard at once;
they are probably a misleading example of problems that succumb to human
thinking.

(3) The subject matter is already formalized to some degree, so that | can
focus on formalizing the control knouledge that is necessary.

(4) Electronics is simpler than other engineering domains in that it
requires less knowledge of space, time, and motion. Expertise in these areas
presumably draus on innate abilities we have difficulty bringing to light.

(5) My research has had the benefit of being part of an ongoing MIT Al
laboratory project in automating electronics reasoning. Concepts used by
Sussman and Stallman (1975), Stallman and Sussman (1976), and A. Broun (1975),
have been taken over, sometimes with some modification, into DESI's knouledge
base. (This is especially true of the parts concerned with signal description
and electronic analysis.) ’

(6) My uretchedness as an electrical engineer should make it easy to
construct a program as good as its creator.

The main draubacks to electronics are

(1) It is someuwhat inaccessible to the average Al researcher or

I Introduction 40

psychologist. People lose interest in documents regarding something they knou
little about. (Who knous uhat DENDRAL (Buchanan et. al., 13963) really does?)
I have tried to keep large sections of this text independent of electronics.
Only Chapter 1V and Appendix 3 rely on it.

(2) Electronics knouledge as presented in introductory texts leans on
spatial representations to some degree, even if not as much as other branches
of engineering. Frequency-domain manipulations and pole-zero plots are
examples of this. | have tried to preserve the structure of this knouledge in
formal expressions (see Chapter IV), but I am aware that humans probably use
more "wired-in" modes of spatial reasoning, whatever that may turn out to
mean. | doubt that one could choose a better domain than electronics for
avoiding this problem, houever.

My knouledge of electronics is mainly derived from books. (Senturia and
Wedlock, 1975, Hayt and Neudeck, 1976, Watson, 1970) This is reflected in the
fact that the problems DESI has been exposed to are "problem set" problems,
not the sort that a technician would encounter in daily practice.

There is a large literature on the theory of design, artificial
intelligence and design, and "computer-aided design." So far, houever, the
intersection of these fields is almost empty. Books about the design process
(Alexander, 1964, Asimow, 1962, Buhl, 1962, Glegg, 1973) consist mainiy of
advice for avoiding overlooking things in pondering problems and working out
solutions. About proposing solutions to start uith, most of these authors say
things like this:

"What enables us to drau from the warehouse of our experience just the

right set of elements, and to put them into just the right combination so

that they have a sense of fitting the situation, we do not know, since no
definite solution exists." (Asimow, 1962, p. 45.) '
This author is certainly correct that we do not knou; programs like DESI are
only tiny steps toward a theory of creativity. 0f course, as a uorking
hypothesis, we take issue with the claim that no solution exists.
Design has attracted artificial-intelligence researchers, particularly at

Carnegie-Mellon University, for some time. ABroad|g speaking, areas |ike

automatic programming, and, indeed, all problem solving, fall under the

I . Introduction 41

heading of "design." However, the theory of design narrouly construed has
been explored by workers |ike Grason (1978), uho studied resolution of
constraints on floor plans; Eastman (1968), who did a formal pychological
study of performance on the task of redesigning a bathroom; Haney (1968), who
studied the automatic design of computer instruction sets; and Latombe (1976),
Hhose rule-based design system is an interesting alternative to mine. | have
found especially useful the theory paper by Freeman and Newell (1969) on a
general theory of design, from which | have borroued heavily. (See Chapter
I11.)

One might expect the field of "computer-aided design" (CAD) (Vlietstra and
Wielinga, 1973, Kuo and Magnuson, 1969, Furman, 1978, Rosenbrock, 1974) to
have produced many expert programs for a general Al program to compete with.
This is not yet the case; "CAD" usually has little to do with the automation
of the actual design process, but concerns itself with graphics packages,
analysis programs, and other interactive aids to it. For example, one author
distinguishes "three modes of [computer] operation:

(i) Analysis. An engineering situation is specified in full
mathematical detail by the designer, and the computer draus certain
further mathematical consequences....

(ii) Synthesis. The designer specifies in detail the properties which
his system must have, to the point where there is only one possible
solution. The computer finds this solution. An example is optimal
control,

(iii) Design. This is the creative act of a designer, guided by
calculations on the computer and interacting with them in a sequential
manner to produce a satisfactory solution."” (Rosenbrock, 1974, p. 29)

The electronics synthesis tasks to which computers have been put include very
lou-leyel operations such as printed-circuit layout (e.g., Fletcher, 1974) and
filter design (e.g., Chohan and Fidler, 1974). The approaches taken by most

people in this field are usually very "mathematical," and concentrate on

techniques for discrete or continuous optimization. For example, one approach

I Introduction 42

to circuit design in the literature (Director, 1974) consists of putting in as
many components as one deems plausible and letting the program find the
optimal component values for the task given. Many of these components will
assume null values and "vanish"; thus this approach starts-ﬁith a big circuit
and finds the subset that does the job!

CAD is only beginning to become aware of non-numerical techniques. (But
see Powers, 1373.) DESI relies almost entirely on non-numerical techniques,
and is very poor at constraint resolution and component-value optimization. A
practical system would have to combine the tuo approaches.

It is impossible to survey this field in detail here. It includes its oun

journal, Computer Aided Design, and supports periodic conferences.

I1 Expressing Knouledge in NASL 43

II Expressing Knowledge in NASL

The heart of DESI is the NASL interbreter. and the STP theorem prover
which it drives. The theorem prover gives the system a general and flexible
notation; the interpreter imposes an innate interpretation on some of the j
expressions of tﬁis notation. In this Chapter, I will give 3 discursive
introduction and overvieu of the interpreter, describing STP and other
inferential protocols as they come up. (See Fig. 1.9.)

The NASL interpreter is a problem solver of the “problem reduction” type.
(Nilsson, 1971) That is, it solves problgms'bg reducing them to simpler
subproblems. The differences betueen this structure and a programming
language are: that a problem solver must decide upon the order in which to
attack subproblems; that a probtem solver often has subproblems of the form
“reduce problem so-and-so," where a programming language has only the
subroutine call; and that a problem solver must occasional ly choose betﬁeen
alternative approaches.

The designer of a problem solver mﬁst confront the problem of search. For
problem-reduction problem solvers, this classically takes the form of a search
through an AND/OR graph of possible approaches. (Nilsson, 1971, Fahiman, 1973,
McDermott, 1974a) Whether the search strategy is depfh-first or more clever,
it depends upon being able to saQe and restore states of the problem solution
and hence of the "world model"; - this has recently tended to be implemented
using a "context" mechanism. (Sussman and McDermott, 1972)

I believe that searching will aluays be a part of Artificial Intelligence
technique.. Houever, it seems to me that search among al ternative sequences of
subproblems and'uorld models is a mistake. My principal reason for this

belief is the observation that in the normal course of human problem solving,

11 Expressing Knouledge in NASL 44

a rather different faculty is used more heavily, namely, the ability to
correct one’s errors. The difference betiueen these alterﬁatives is this: if a
"state of the world" is thought of as an internal data structure, completely
knouwn and under control, it is just as easy or easier to return to an earlier
state to try something else as it is to generate a new one. But if states of
the world are really states of the whole world, about uhich one’s information
is limited and his control slight{ quite the opposite is the case.

So the question, for electronic circuit design, is whether the unfolding
circuit model is to be thoughtvof as an internal data structure or as a
diagram on a piece of paper. A little reflection on this choice has draun me
to the second alternative.l Since useful plans uill ultimately have to be
applied to the real world, whose surprises will aluays cause mistakes and
revision, the problem of correcting errors rather than "popping them off the
context tree" will have to be faced eventually. There is.no point in
perfecting a plan doun to the last detail if circumstances will wreck it.

This is probably why people worry so little about producing optimal plans.

[f search isn’t through states of the world model, but it is necessary,
what is it that is searched? 1 think it is knowledge about courses of action.
People can correct states of the world created bgrthe wrong plan, but they
don’t normally do this as a way of stumbling on the right plan. lﬁstead. they
use knouledge |ike |

"Under circumstances ..., plan ... will work."
"lf LIS don'tdo uo-o")

Consider the difference betueen human and machine playing of chess. 1
Hill assume the reader is familiar with the usual program organization around
the idea of minimax tree search. (Slagle, 1971) A human, by contrast, learns

to play. His initial plan is simply to make a legal move, wait for his

11 Expressing Knowledge in NASLi 45

opponent’s reply, and repeat this until the opponent uins. As time goes by,
and he sees and hears more and more about the game, where does he put what he
learns? According to the theory I am presenting, it becomes part of the
advice surrounding the "make a move" step. This advice is usually in terms of
board patterns, phases of the game, etc. Eventually, more sophisticated
advice in terms of anticipating possible opponent replies is assimilated. 1If
the deductive system for manipulating this advice is adequate, simple tree
searches will appear as a trace of its manipulations. But this will never be
assimilated to the overall planning level. The planning level does not become
nondeterministic. Instead, what begin to appear there as the player becomes

- more confident of his powers are "game plans," long-term strategies which
influence his choice of moves.

This sort of search through knouledge about alternative courses of action
is worth spending a lot of effort on. It has three loci in the NASL system.
The principal one is the theorem prover STP, (Sect. 11.B.2) This is
supplemented by "choice information." (Sect. I1.C.1) If all else fails, the
system calls itself recursively to "rephrase" an action. (Sect. 11.C.2) 1
have worked hard to make these devices sophisticated. 1 have given less
thought to the problem of undoing mistakesv(Sect I1.E), and none to the
question of learning search knouledge.

Because deductions about courses of action are so central to the theory,
NASL must be a language for describing problems, plans, and physics. The
categories it uses for descriptions, and the inference algorithm it can call
upon to manipulate them, determine its abilities and limitations. The
limitations are in some ways as important asAthe abilities. The fewer ways
there are to express something, the more likely it is that the formulas

related to it will be noticed during rule application, and the more flexible

I1 Expressing-Knowledge in NASL 46

and extensible the system will be. Conversely, to the degree that each user
is forced to make up his oun control conventions, the less likely it will be
that information from one user will ever affect the system’s approach to
problems posed by another.

NASL is not a typical programming language, since the user can intermix
fragments of plans and axioms governing the physics of problem domains with
fﬁllg developed programs. Dn the other hand, it bears a stronger family
resemblance to programming languages than to anything else, so | have included
a "programmer’s guide" at the end of this chapter for those interested in

programming in NASL.
II1.A The Natural History of Actions

The fundamental concept implemented by the NASL interpreter is the concept
of task. A task is an activity to which the interpreter is committed. The
basic drive of the interpreter is to accomplish all the pending tasks.
Examples of tasks from several domains are,

"Put Block A on Block B."

"Wait here for five minutes."

"Put the male chicks in this box, the females in that one.”

"Win the war, and keep the peasants happy."

"Think of a fallible Irishman."

"Keep your promises."

"Convince yourself that all equilateral triangles are isosceles.”

In electronic design, tasks range from Wiring tuo objects together, to
designing a hi-fi system, to finding a resistance that satisfies a constraint.

The reason for the broad definition is my goal that as much as possible of
what the interpreter is doing should be explicit, so that reasoning about it

can be shallou. For the same reason, it will be important that control

information be expressed in a notation compatible with everything else. So I

I Expressing Knouledge in NASL 47

represent tasks as NASL formulas of the form
. [/:TASK |name| < -input pvars- >
(A (-vars-) Jaction|)
< -output pvars- 3]
Unfortunately, I must pause here to describe the notation, both object and
meta. NASL formulas are aluays enclosed by [brackets]. MWhen 1 am describing
a formula, I enclose syntactic variables in brackets |ike this: "Teeo " or
like this: "-...-". The second‘kind indicates that a sequenfe of syntactic
constructs is wanted. So, for example, an instance of a task might be of the
form
[/:TASK (COUPLER PLAN#71) <’ (BUFFER#72) * (AMP#73) >
(A (STAGE1 STAGE2) (COUPLE ?STAGE2 ?STAGE1))
<’ (CKTH#74) 5]
This describes a task, named [COUPLER PLAN#711, uhich requires taking the two
circuits [(AMP#73)] and [(BUFFER#72)] and COUPLing them to make something
which will be called [(CKT#74)]. (Notice that the NASL notation permits
tuples of objects delimited by <angle brackets>, and A-expressions to éxpress
functions and pfedicates.) /:TASK is a predicate of four arguments. 1t
begins Hith the prefix "/:" which indicates that it is a built-in predicate
used by the interpreter in some way. A complete 6ata|ogue of built-in
predicates and functions appears in Appendix 1.

The word "pvars," for "plan vafiables." refers to terms, such as
[(BUFFER#?Z)J and [(CKTH74)], uhich are set equal to calculated quantities in
the course of executing tasks. They acquire values by appearing in "reurite
rules" of the form

[=/> '|term| |value]|)
(Cf. (Bledsoe and Tyson, 1975), where they are called "reduction rules.") In

my example, if [=/> ' (BUFFER#72) DEV#75] and [=/> ' (AMP#73) DEVH76] appear in

the data base before execution of the task [COUPLER PLAN#71]1, DEVH76 and

I1 Expressing Knouledge in NASL 48

DEVH75 might be coupled to produce DEVH77; then the interpreter would add (=/>
*(CKT#74) DEV#77) to the data base. (For an explanation of the single quotes,
see Appendix 1 or Sect. I1.B.2.) In defining actions |ike COUPLE, 1 will
indicate their outputs with the symbol "==>" thus:

[COUPLE |ckt 1] |ckt 2|) ==> <|neu ckt]|>
to shouw what neu value formulas they leave in the data base.

Anyone familiar with the Al languages (Bobrow and Raphael, 1974, Hewitt,
1972) will recognize the concept of "present in the data base.” In NASL,
there is always a current "data pool" for formulas to reside in. Formulas
found there are suppoéed to be true; those absent have unknown truth values.
(See Sect. I1.B. The phrase "data pool" is meant to supersede the misleading
word "context." (McDermott and Sussman, 1973, Rulifson et. al., 1372))

This notion of task already embodies a complexity not found in the action
languages of Sacerdoti (1975) and others (Sussman, 1975), namely, that tasks
Hwill not be fully specified until their input pvars are knoun, and that tasks
can compute values to be used by subsequent actions. It will be seen that
this broadens the scope of the action system considerably, while making future
actions harder to analyze. It seems essential for automating design.

With just this much machinery, plus a.simple foruard deduction scheme, we
have a notation similar to that of a production system (Newell, 1973a,
Rychener, 1376). For example, we might have a deductive rule that says

((DEV-TYPE ?A COMMON-EMITTER)
> 3B(/:TASK 7B <> (A () (BIAS ?A)) <>)],

meaning, "Every common-emitter amplifier must be biased." (I have introduced
standard logical notation for implication and quantifiers. (Suppes, 1957)
Yariables are prefixed by "?"; free variables are supposed to be universally

quantified. The internal notation for implication will be explained belowu.)

Il Expressing Knowledge in NASL 49

This rule is analogous to a production in having a condition on the left and
an dction on the right, but it differs in certain crucial ways.

First, ue are not limited to condition-action pairs. The more basic case
is "condition-condition." This enables us to treat deductive information
retrieval as a process distiﬁguishable from plan execution. It can be
optimized separately, using techniques specific to the kind of search that
arises during deduction. (Moore, 1975, Fahliman, 1975b) More important, since
the system knous when it is doing deduction, and when action, it can keep more
revealing records for use in choosing courses of action, explaining what it
did, and recovery from errors. (In the future, such records could be used for
careful assimilation of new, possibly unreliable, information. Cf. (Davis,
1976, McDermott, I974a). By contrast, since the meaning of a condition-action
pair depends entirely on the meanings (some deductive, some not) given to
symbols by the behavior of the rest of the system as a uhole, it is impossible
to say whether a new rule of this kind is "correct" without extra commentary.)

Second, deducing /:TASKS before executing them gives an extra layer of
"carefulness" to the system. (Cf. (Sussman, 1975), uwhere the term "careful
mode" is introduced.) A task is always noted in the current data pool before
being executed. Here it can trigger other tasks or be available for other
deductions. Furthermore, the system can note a task some time in advance of
when it actually decides to do it. For example, a task can appear before its
pvars’ values are knoun. More generally, a formula of the form

[/:SUCCESSOR |task name 1| |task name 2|]
must mean that task 2 is to be postponed until task 1 has been "begun" (in a
sense explained belou). In this way, a network of tasks |inked by /:SUCCESSOR
relations and variable flows is created (which the interpreter will munch

"from left to right"; cf. Fig. I1.1),

~

11 Expressing Knouledge in NASL 58

*acquire speaker ()

connect them

\
/ \ verify that the
\ /

* acquire amp assembly works

blas it
*enabled tasks

Figure 11.1 A Task Net, or "Plan"

Finally, a typical production-system action is aluays a primitive that can
be carried out immediately, while some NASL tasks require must be broken doun
into subtasks in order to be executed. This requirement is what makes NASL a
problem solver. In other words, a task can be as much a part of the problem
"as of the solution; it looks like part of the solution to its superiors, and
part of the problem to its subtasks.

s Thus, a task (or action) is either primitive or problematic. An action
may be primitive in two ways. It can have a LISP program for carrying it out,
or it can have a set of model manipulation statements that hold true of it.
These statements are the same as STRIPS's add- and delete-lists. (Fikes and

_Nilsson, 1971) They are sufficient to represent completely only the simplest
of actions, but they make these actions easy to reason abouf. (Cf. Sacerdoti,
1975).

A problematic task must be "reduced" to one or more subtasks. This
relation betueen tasks is expressed by formulas of the following sort:

[/:SUBTASK |subtask name| |supertask name]]

A task can be the subtask of more than one supertask.

Il Expressing Knowledge in NASL 51

Task reduction can occur in more than one way. The deductive system can
infer a complete set of subtasks of a task in the course of foruward deduction.
However, this fails to give enough direction or pouwer to the problem-reduction
process. As described in Section 11.B, the interpreter must have the concept
of one action being a way of carrying out another, expressed |like this:

[/:TO-DO |task name| |action| < -output pvars- > |method]|l].
This is intended to mean that the method i's an effective, feasible, and
permitted way of accomplishing the task consisting of the action. Such
statements can be used in the creation of subtasks.

The "method" to which a task is reduced may consist of a single action, or
it may be a "macro action" uhich stands for an entire subnet of neuw tasks.
This requires the notion of a plan schema, an abstract object, instances of
which may be thought of as hanging as little subnets off nodes in the task
netuwork. (Fig. I1.2) The manipulation of instances of these schemata is

described in Sect. 11.B.1.2.1.

I1 Expressing Knouledge in NASL

/ Subneti’ é \
\ .

P, ‘O

‘\) —— \\/.

Figure [1.2 Task Network with Subnets
Thus tasks may be classified according to whether their actions are
primitive or problematic. These classifications form one of the taxonomies

shoun in Fig. 11.3.

52

Il Expressing Knouledge in NASL

Problematicity
Primitive
Model manipulator
Macro
Primitive policy
Problematic
Monasticism
Inferential
Worldly
Parasitism
Primary
Secondary
Figure 11.3 Logical Taxonomies of Tasks
The other two taxonomic classifications are independent of this one.

classifies tasks according to "monasticism."” Every task is either

inferential, in uhich case it consists of inferring formulas from other

53

One

. formulas supposed to be true; or "worldly," when it or some of its subtasks

per form model manipulations. This classification is expressed by means of the

predicate /:INFERENTIAL.
The last taxonomy is the important classification by "parasitism."” A

is either primary, meaning that it has steps to be pursued in order; or

task

secondary, meaning that its "execution" amounts to influencing or monitoring

the execution of primary tasks. Ongoing secondary tasks are somewhat
grandiosely called "policies." Hou they are handled is described in Sect.
I1.B. Some representative classes of policies, expressed in English, are

"Hait until ... is true."

"Notice if formula ... is removed."

"Take into account desired feature ... of the device you are
designing."

"Constrain quantities ... to satisfy ..."

I1 Expressing Knouledge in NASL 54

Policies, like primary tasks, may be primitive or problematic, worldly or
inferential.

A policy may have a scope, uhich is the primary task whose execution (or
uhose subtasks’ execution) it is intended to influence. As you might expect,
this is indicated thus:

(/:SCOPE |secondary task name| |primary task namel|]
Policies do not outlive their scopes. In drauing task netuorks, I will put a
little cloud around a task to indicate that it is the scope of one or more
policies; the policies will be tied to these clouds with a line. (Cf. Figs.
I11.7 and 111.8.) '

There is no mystery to the notion of policy. All computer programs embody
policies; the particular data-base and interrupt mechanisms | use to implemen}t
them are commonplace in Al applications. The novelty is that the notion has
been made expjicit, and, in a modest sense, put into the logical calculus.
This prevents tuo problems with the usual use of the implementat{on
mechanisms. First, typical Al-language "demons" (Charniak, 1972) fire off in
the middle of primitive data-base operations and get complete control of
operations. Without conventions, it is difficult for othér processes to know
uhat the intentions of these little mbnsters are.

Second, policies are to be used to express things like Jloop invariants"
and "program assertions" (Floyd, 1967), which are usually extraneous to actual
program text and only indirectly related to individual program steps. But a
problem solver has need of the notion of a "partially-reduced" problem, some
of whose subtasks have not been fully reduced to primitives. This is
difficult to capture uithout the concept of a policy. For example, consider a
program to count the prime numbers in a table. The text of the program

contains instructions to initialize a counting variable and increment it just

Il Expressing Knouledge in NASL 55

after a prime number has been discovered. The purpose of this variable may be
expressed by an invariant of the form "x is the number of primes in the part
of the table already looked at." What I am trying to capture is the notion of
an early, unfinished version of the program, in uhich the pieces of text do
not yet exist, and the invariant is all thefe is.

A plan is, in a sense, this kind of unfiniéhed program, uwith the
difference that it gets executed without ever getting completely written.
Comments on a plan are not there to explain an existing text or to help prove
that it works; they are there to explain an ongoing course of action, and they

must be executable. Their individual steps may indeed involve initializing

and incrementing counters; these will become subtasks of the policy.
I will conclude this section by listing some limitations of this plan
calculus. These fall into two categories: bad limitations and good

limitations.

The bad limitations are those due to the fact that | kneu the plan
language was going to be used for designing and [didn’t have the time to
implement'unnecessarg features. So I didn't put in features such as other
agents' plans, or notions like "prerequisite of an action." These and other
inadequacies are described at slightly greater length in Chapter VI.

The good limitations are those arising from these goals:

(1) Deductions about plans ought to be simple and shallou.
(2) New knouledge must be expressed in a notation compatible with old.

By deductions about plans, | mean deductions about current plans, not "proofs
of plan properties." (Cf. Sect. VI.C) It ought to be easy to deduce what you
are.doing. Otheruise, the executions of subplans cannot interact, and the
notion of policy will be meaningless. The second requirement is related to

our desire for flexibility. New knouledge is worthless unless it is expressed

11 Expressing Knouledge in NASL 56

in a familiar language. There should be just one obvious way to express any
given piece of control information. (Keep this in mind as I expand on the set
- of control concepts in the following sections.)

An example of a good limitation is that no loops and conditionals are
allowed in the language. That is, all iteration and testing is done in the
deducer. There are no gotos in the system. There are instead much higher-
level concepts like "choosing.” It remains to be seen whether l-have been
successful in inventing transparent but powerful control ideas. (I should
mention that recursion is not forbidden in the system; a plan-schema instance
can have subtasks derived from an instance of the same schema. [t probably

should be forbidden, in this general form; I use it sparingly.)
I11.B Interpretation and Inference

One thing to do with the predicates 1 introduced in the Iést section is to
put them in axioms and prove things with them. For example, many of the
electronics and design facts in Appendices 2 and 3 have conclusions of the
form [/:TASK ...], meaning, "l should be doing" Clearly, a system uhich
just proved things of this sort without acting on them would be a perfect
catatonic. Its deductions would occur in a void. Their full meaning depends
on thére being an "action system" which interprets the result of such
deductions as commands to act. 1 will call formulas like this which directly
influence action pragmatic formulas; the characteristic functions of these
formulas are pragmatic functions or, more specifically, pragmatic predicates.
I have already observed the convention that the names of such functions and
predicates aluways start with "/:" to emphasize that their meanings depend

mostly on the action system. In this section I will introduce more of them.

Il Expressing Knouledge in NASL 57

(A complete catalog appears in Appendix 1.) Al predicates not directly
influencing action mean, in some sense, only what the axioms they appear in
say they mean.

In this section I describe the operation of the interpreter and the

theorem prover it uses, called STP.
I1.B.1 The NASL Interpreter

The outer loop of the interpreter is to
Pick a task to work on;
If it is primitive,
Execute it or elaborate it;
Otheruise, find a way to work on it ("reduce' it)s
Repeat until there are no more tasks
The first step of the interpreter cycle, "picking a task," is done by a
system of forward deduction of /:SUCCESSOR relations. The axioms that supbort
these deductions are the user's responsibility. The system chooses at random
from the tasks that it is logical ly permitted to do next.
Much of the work is in the second arm of the conditional. The existence
of this step is uhat makes NASL a problem-reduction problem solver instead of

a programming-language interpreter. Reducing a task involves a call to the

theorem prover STP and some more powerful mechanisms. (Sect. I.C)
I1.B.1.1 Selecting a Task to Work Dn.

The NASL interpreter interleaves planning and execution of plans. (Cf.
(Nilsson, 1973).) Different tasks are in different states, which change as
time passes. The current state of a task is composed of its task-status, its

enablement status, and, for problematic tasks, uwhether it is reduced. (Fig.

Il Expressing Knouwledge in NASL %8

I1.4) When a task is created, its state is PENDING and BLOCKED. When a
PENDING task is ready to be executed, it becomes ENABLED. MWhile ft is being
worked on, it is ACTIVE. UWhen the interpreter is through with it, it is
FINISHED. The status of a task is expressed in a formula of the form

[=/> " (/:TASK-STATUS |task name|) |status]|]

where status is one of the three states | gave.

PENDING ACTIVE | FiNisHED
BLOCKED|ENABLEDJSUBS-ENABLED | SUCCS-ENABLED

un-REDUCED | REDUCED |

— time

Figure 11.4 Life History of a Task

Meanuhile, as a task evolves, its enablement status changes to "gate" its
subtasks and successor tasks. Recall from Sect. I1.A that the order of
execution of tasks is constrained by /:SUCCESSOR relations. In addition,
subtasks of a task may be deduced before the task itself becomes active; the
subtasks must be postponed. So there are three facts that must be true before
a task can be enabled: all its super-tasks must be ACTIVE; all of its input
pvars must be knoun; and all of its predecessors must have enablement status
"successors enabled." (Fig. I1.4) MWhen a task is FINISHED, its successors
are aiuags enabled, but the system must be flexible enough to allou execution
of successors to begin before this. For this reason, | introduce the
independent concept of enablement status,

[=/> ' (/:ENAB-STATUS |task name|) |status]],

where status is BLOCKED, ENABLED, SUBS-ENABLED, or SUCCS-ENABLED. These flags

I Expressing Knouledge in NASL 59

are synchronized uith.the ordinary task-status as shoun in Fig. I1.4. As a
task becomes active, the system checks its subtasks, and enables all those
Hith no other impediments; similarly, when the task enters SUCCS-ENABLED mode,
the system checks its successors. (It should be clear that if a task has tuo
predecessors or super-tasks or some combination, all must be in the proper
state.)

A useful service provided by the system is that as soon as all the input
pvars of a task are knoun, whether or not there are other gating conditions
remaining unsatisfied, a formula of the form

[/7: TASK-ACTION |task name| |action|)
is recorded in the data base.

Figure I1.4 also shous the transition of a problematic task from being
“unreduced" to being "reduced." When a task has been completely replaced by
subtasks, the proposition

[/:REDUCED |task name|l
is supposed to hold true of it. The system will not bother to reduce a task
if such a formula has already been deduced; this enables task netuorks to be

built up entirely by foruward deduction.

I1.B.1.2 Executing Tasks

When a task has been selected, it must be executed. If its action is of
the form [|F| ...1, 1 call F its action Function. The system can tell by
looking in the data base or on the property list of Ff uhether the task is

primitive or problematic. If it is problematic, it must be reduced.

11 Expressing Knouledge in NASL 60

11.B.1.2.1 Primitive and Problematic Tasks

An action can be primitive in one of two ways: its action function can
have a defining LISP function on its property list, or it can be defined by
model-manipulation axioms. The latter are looked for first.

The interpreter calls STP to deduce formulas of the form

{/:MOD-MANIP |task name| |action| ?DELETELIST ?ADOLIST],
where the variables ?DELETELIST and ?ADDLIST are intended to become bound to

n

tuples of "senses," or quoted facts. (See Appendix 1.) For example, we might
have

[(ON ?X ?B) >
(/:MOD-MANIP ?TASK (MOVE ?X ?A) <’ (ON ?X ?B)> <’ {ON ?X ?A)>)]

in the BLOCKS world. The meanings of the addlist and deletelist are the
traditional ones. (Fikes and Nilsson, 1971) The model (data pool) is to be

updated in the obvious way: the formulas represented by the elements of the

. deletelist are deleted, and those represented by the addlist are added. These

manipulations are called model effects.

If the primitive has a defining LISP function on its property list, that
function will just be executed. It can do something, return a value,
establish a policy, or annex a subnet. An example of the first kind is the
action [GRABBA |property|] in the design world, which creates an object with

_the property. Values are returned by deductive actions like /:FIND, which
call STP to retrieve data.

The most important kind of primitive is the "macro," which annexes a
subnet. The typical member of this class is

(/:DO-SUBNET |plan schema| |vars-map]|].

which is used to instantiate plan schemata and hang them off the net.

Il Expressing Knouledge in NASL 61

In the current implementation of NASL, plan schemata are not represented
as identifiable objects. Instead, they are defined implicitly through
statements of the form

[(/:PLAN-INSTANCE ?NAME |plan schema| ?SUPER-TASK)

> (AND (/:TASK |subtask 1] ...)
(/:TASK |subtask 2| eee)

LI

(/:SUBTASK |subtask 1| ?SUPER-TASK)
(/:SUCCESSOR |[subtask 1| |subtask 21)
-other connectivity relations-))
by which nets of subtasks are created and |inked together. Executing /:00-
SUBNET creates a new plan instance and records
[/:PLAN-INSTANCE |plan instance name| |[plan schema] lsuper task]]l.
This will trigger the foruard deduction of subtasks in the schema.

These subtasks wuill compute and use the values of plan variables
("pvars"), some of which the super-task netuofk needs; the vars-map argument
of /:00-SUBNET tells hou to map the schema's variable back to the calling
plan. To make this work, all the pvars used by the tasks in the schema must
be of the form [(jvar name| |plan instance name|)l. (For an example of the

' use of /:D0-SUBNET, see the formulas +DESI-1 and +DESI-2 in Append i x 2.)

A macro-expanded task will be FINISHED when a[l its subtasks are. It will
have enablement status SUCCS-ENABLED when all of its "main" subtasks are
FINISHED. This device is intended to capture the idea of a task reducing to
tuo kinds of subproblem: things which mﬁst be done before going on to the
successors of the task, and things which can wait. An example is biasing one
stage of a complex circuit (see Appendix 3): this will appear as a subtask of
acquiring a circuit, but it should not be done when the circuit is first
obtained; instead, it may become a successor of, e.g., coupling the circuit

to something else. Subtasks labeled /:MAIN are those whose completion is a

necessary condition for enabling a supertask’s successors. (See Fig. 11.5.)

11 Expressing. Knouledge in NASL

Acquire Stage 1

Wire it

A /7 — Successor

4
Wire it/ ——— Implicit successor due
7 to task being labeled
/sMAIN O MAIN
Bias it

Figure I1.5 Enablement Relations in Subnets

This is one of the ways in which the subtask relation differs from the

usual relation betueen a program step and its program,

Other macro actions are described in Appendix 1.

This concludes my description of the execution of macros and other

calls STP with the request

[/:T0-DO |task name| |action| < -output vars- > ?WAY]

If STP returns exactly one value for ?WAY, a neu task for the neu action is

created, enabled, and made the /:MAIN subtask of the current task (uhich

62

primitives. All other tasks have "problematic" actions. In such a case, NASL

Il Expressing Knowledge in NASL 63

becomes /:REDUCED). 1f STP does not return exactly one value, special things

must occur uhich are the topic of Sect. 11.C.

I1.B.1.2.2 Primary and Secondary Tasks

Primary tasks are those which do something or infer something. Primitive
primary tasks are those defined by /:MOD-MANIP and inferential functions.
Secondary tasks ("policies") are those which influence the execution of
primary tasks.

The principal primitive policy is
[/:MONITOR |formulal (A (|v]) |action|)],
which does nothing unless some task removes the formula as a model effect.
Then a new subtask will be created with the given action, with v bound to the
task that did the removal. This is used to implement protection.

Policies may cause the "intermittent" execution of primary actions. A
task with action [/:CONTINUE |policy task| laction|] will be executed in a
“nonstandard uway. It causes a deduction of the form

[/:TO-CONTINUE |policy task] |action] <> ?WAY]
and the resulting sub-action is attached to the original policy task node of
the task netuwork. (See the implementation of protection described in Chapter
I11.) Thus a policy may occasional ly cause execution of real actions in the
process of executing /:CONTINUEs.

A problematic task may also be primary or secondary. This is not
determined when the task is reduced, but after its /:MAIN subtasks have been
set up. At that time, if any of its subtasks are discovered to be secondary,
and to have a scope larger than it, it is declared to be a policy.

The main difference betueen the execution of primary and secondary tasks

I1 Expressing Knouledge in NASL 64

is in how they are finished. A secondary primitive will not be finished until
the task which is its scope is finished; then the interpreter executes
{/:FINISH |policy|) to clean it up. Problematic tasks of both kinds are
finished when all their subtasks are.

Here is a summary of the ways in which policies influence primary actions:

(1) The primitive policy /:MONITOR is used to implement things like
"protection.” (Sussman, 1975)

(2) The presence of formulas regarding the status of a task can license
deductions of various sorts. The conclusions can be of the form [/:TASK A
and [/:T0-DO ...], for example, and thus trigger things to do and ways of
doing them.

(3) In particular, policies often influence the “choice protocol”
described in the next section.

(4) The use of /:CONTINUE can cause intermittent execution of primary
actions. -

When policy-specifying formulas influence the interbreter's deductions; it
will record their influence in the form of /:SUBTASK assertions. That is,
when 7:TASK formulas are deduced from policy task formulas, they become
subtasks of those policies. (Sect. 11.0) Thus, a natural structure evolves
in which a task can be a subtask of "make a filter" (primary) and "keep the

cost doun" (secondary).
11.B.2 STP -- The Stupid Theorem Prover

STP is a backward-chaining, pattern-matching theorem prover. In R.
Moore’s (1975) phrase, it is a procedural deductive sgstem; Such a system may
best be thought of as a descendant of PLANNER (Hewitt, 1972) uwhich emphasizes
its logical aspects instead of emphasizing its programming-|anguage features
as most other descendants have done. By this I mean that it manipulates, not

arbitrary list structures, but formulas that are supposed to represent

Il Expressing Knouledge in NASL 65

statements about entities. There are no side effects during deducfion; the
action system is completely divorced from the operation of the theorem prover.
This means that the theorem prover can be optimized in various special uays.
(See Appendix 4.) |

STP is used by the system for two kinds of deductions: those about tasks
and actions and those about the physics of the problem domain.

STP is not particularly bright; it is to be used for information
retrieval, and it tends to balk at intricate reasoning; More sophisticated
reasoning is done as inferential tasks. (There are things to regret about
this organization. See Sect. VI.B.) Some kinds of reasoning do not naturally
fit into the theorem-proving paradigm at all. These will be discussed in
Sect. II.C.

Actually, "theorem prover" is a very misleading term. The "theorems" such
programs prove would not be recognizable to a mathematician; the way in which
they go about it would be even more incomprehensible. Nonetheless, 1 will
continue to use this term, since by now Al people are unlikely to read
anything very pretentious into it.

A theorem prover may be thought of as a problem-oriented interface between
a problem solver and bare data-base machinery, such as that described in
(McOermott, 1975). For example, an Al data-base manager iﬁplements the notion
of "data pool." This will be used to implement the higher-level notions of
"packet" and "reference point." (See below.) The calculations involved can be
made invisible to the user, who thinks in the higher-level terms.

The basic data-base operations are three: putting things in, taking things
out, and finding things. These are handled by the three primitive (LISP)
operations RECORD, ERASE, and STP. RECORD puts a formula into a data pool.

It also does forward deductions from that formula in a way to be described.

11 Expressing Knouledge in NASL 66

The results of these deductions are recorded also, and conclusions are l|inked
by "data dependencies" to the formulas which support them. (See Sect. 11.0.)
ERASE flushes a formula and everything it supports from a data pool.

When proving theorems, STP works, like every other "theorem prover," by
matching goal formulas against "knouledge" formulas, detaching the output, and
repeating until a proof from atomic data is obtained. (Cf. (Bledsoe, 1975)
For technical reasons (R. Moore, 1975), STP really attempts to refute the.
negations of goals. See Appendix &4.)

Formulas are stored in the data base in clause form. Clauses are
implications uhose format tells hou they are to be used. The tuwo most common
" forms are |

{-/> C |p| 19|), meaning, "to prove q, prove p"
and {-/> A |p| |ql), meaning, "if p is recorded, record q."

(These correspond in an obvious way to Planner’s consequent and antecedent
theorems. (Hewitt, 1372, Moore, 1975)) The arguments p and g to these
predicates can be clauses as well; my clauses have more pragmatic structure
than thoée of a resolution theorem prover. {(Robinson, 1965)

Internally, these clauses are stored as (pragmatic) disjunctions of the
form

[/:CONSEQ |q] (NOT |pl)])
and [/:ANTEC (NOT |p]) lql)

respectively. These forms are occasionally useful externally as uell.

A third pragmatic disjunction is /:GEN. [/:GEN |p| |ql], when "recorded, "
really causes counterexamples to p to be found and, for each one found, an
instance of q to be recorded. This may be also be expressed [-/> G (NOT |pl)
|qll. For example, recording

(-/> G (DEV-TYPE ?X COMMON-EMITTER)
_(DEV-TYPE ?X AMPLIFIER))

I Expressing Knouledge in NASL 67

calls STP to find all common-emitters and record that they are aﬁplifiers. In
this way backuard deductions may be triggered in the midst of forward
chaining.

STP is oriented toward the task of information retrieval. MWhen given a
goal with free variables, it doesn’t interpret it as a request to prove that
objects exist which would satisfy the formula if substituted in; instead, it
considers it a request to find and return these objects. This is like PLANNER
(Hewitt, 1972) and QA3 (Green, 1969a,b). (See Appendix 4.)

For example, given the clauses

(P Al

(P BI]

(Q B)

[-/> C (AND (P ?2X) (Q ?X))

(R ?2X)]
and the goal: Refute INOT (R ?Y)],
STP chains backuard through the consequent clause to generate as subgoal
Refute [NOT (AND (P ?Y) (Q ?Y))).

This becomes tuwo "conjunctive goals"; "Refute INOT (P ?Y)]" and "Refute [NOT
(@ ?Y))." STP finds Y - A and Y » B as answers to the first goal, and
detaches [NOT (Q A)) and [NOT (Q B)] as alternative versions of the second.
Only the latter of these succeeds. The returned answer is therefore Y - B.

The machinery to make this work reasonably well is described
in Appendix 4.

Some other interesting features of STP_are these:

(1) Ability to call LISP functions for low-level deductions. (Cf.
(Nevins, 1974a,b).) | have made an effort to keep all such LISP-implemented

concepts completely primitive and domain-independent. These are concepts for
manipulating simple inequalities, predicates on embedded formulas, etc.

(2) "Non-monotonic" inference rules, which are implemented by having

Il Expressing Knouledge in NASL 68

certain predicates be evaluated by calling STP recursively. For example,
{7:CONSISTENTLY °*|pattern|] will be handled by calling STP to see if pattern
can be refuted. (The single quote is used to flag an expression within which
substitution of equals for equals is forbidden; such an expression is called a
"sense.") McCarthy's "presumably" operator (McCarthy and Hayes, 1969) is
defined as
((PRESUMABLY '?P ?USE) = (-/> ?USE (/:CONSISTENTLY '?P) ?P)]

meaning, "if you can't prove ?P is false, assume it’s true." Thus ue have; (vX
(BIRD ?X) > (PRESUMABLY (CAN ?X FLY) C)], which means, "If X is a bird, then
if you ever need to check if he can fly, assume he can if you can’t prove he
can’t." (If the formula had had "G" instead of "C," the attempt to refute his
ability to fly would be done at the time he was deduced to be a bird.)

(3) Pragmatic handling of equality. The usual predicate-calculus notion
. of ‘'equality does not correspond very closely to the programming notion of
evaluation. If you ask a theorem prover, "Find ?x such that 242 = ?x," it
will tell you, "?x = 2+2," which is true but useless. An action module
communicating with a deductive system must have the concept of "useful
expression.” In the midst of problem solving, some data structures are.
inherently more oriented toward getting on with things. Consequently, STP
uorks closely with an evaluvator (see Fig. 1.9), which applies rewriting rules
found in the model to expressions. MWe have already seen these rules in action
implementing pvars. They look like [=/> *(+ 2 2) 4]. The "sense" quote is a
way of forbidding applying the rules to subexpressions. (Otheruwise, the rule
would reurite itself as [=/> 4 4],)

The evaluator is used by the interpreter, by user plans which use the
/3EVAL primitive, and by STP, (See Appendices 4 and 5.) Normal equality,

[= |x| |yll, is used to express goals like, "prove tuo things are equal."

Il Expressing Knouledge in NASL 69

There is a "cheap" equality predicate called ":=". The only knouledge about
it iis [:= ?THING ?THING]. It is used in conjunctive subgoals to "set"
variables for future use. That is, the goal [:= ?X (FOO BAR)] succeeds,
setting ?X to [FOO BAR]. The system will not waste its time trying to prove a
goal like this if it doesn't succeed immediately.

When an equality is recorded in the course of trying to prove x and y
unequal, the system makes an effort to translate it into a reuriting rule;
otherwise, it will never interact with other deductions. Cf. (Bledsoe and
Tyson, 1975).

(4) "Packets." It often inconvenient to have to record a large
conjunction as a consequence of some forward deduction. For example, in
electronics, devices are of various types. If it is recorded that [DEV-TYPE
DEV#73 COHNON—EﬁITTER], this might trigger the recording (via "-/> A") of
scores of facts about DEV#73, most of which will never be looked at. This can
be avoided by uriting the relevant antecedent implication as

(-/> A (DEV-TYPE ?CE COMMON-EMITTER)

(/7:PKT CE-PKT (?CE)

| fact 1}

| fact 2|

| fact n])].
As explained in (McDermott, 1975), defining this formula will create a packet
which plays the role of the large conjunction with one free variable ?#HCE.
It is actually implemented as a "data pool layer" uhich can be added cheaply
to the current data pool. The individual facts will be closed and indexed
only as they are accessed.

(5) A "modal" notation and inference mechanism. A general deductive

system should be able to reason about hypothetical situations, other times,

other creatures’ beliefs, etc. These concepts are in the domain of "modal"

Il Expressing. Knouledge in NASL 70

lpgic (Hughes and Cressuel |, 1972), a difficult study with many problems. |
have implemented a modest system for doing some very simple modal deductions,
which uses the "data pool" mechanism to implement "reference points."
(Montague, 1974, Rescher and Urquhart, 1971)

The basic modal notation in the NASL language is [T |reference point]
term|], which stands for the value of the term with respect to the given
reference point. [n principle, these reference points could be other
creatures’ minds, arbitrary points in time, or just "possible worlds.” Under
this last interpretation, logical necessity might be taken to mean [VR (T ?R

"

eeed), or "... is true in all possible worlds." However, this would require
quantifgihg over reference points, a capability I have not had the time to
pursue. Instead, DESI confines itself to the use of constant reference
points. These are used (see Chapter 1V) for things like. the OC and
sinusoidal-steadg-state models of an electronic circuit.

This sort of mechanism is just a convenient notatipn for data pools (i.e.,
"contexts") from within the logical language. To make it work, [have
introduced some notation for "frame" axioms. (Hayes, 1973a) A reference point
is often defined in terms of the differences betueen itself and some set of
super reference points from which it inherits most of its contents. These
definitions are wuritten thus:

[FRAME |reference point| < -reference points- »] means that a statement is
to be assumed true in the given reference point if it is true in one of the
other reference points and cannot be proved false., The given reference points
are called frames of the neu one. That is,

[(FRAME ?REF ?FRAME-REES) =
(VP (3F (?F ¢ ?FRAME-REFS) A (T ?2F ?P))
> (PRESUMABLY (T ?R P) C))].
Of course, it isn't implemented in this Way. Instead, a neu data pool is

constructed using the FRAME axioms when it is required. This data pool has as
superiors the data pools corresponding to its frames.

Il Expressing Knowledge in NASL 71

IN |reference point| '|fact|) means that the given fact is not inherited
from the reference point’s frames.

Formulas of the form [T |reference point| |fact|] are used in constructing
neu reference points. Any such propositions lying around have their facts
shoved into the new data pool.

Examples of the use of these formulas are given in Chapter 1V.

II1.C Choice and Rephrasing

As sketched so far, NASL resembles some more familiar problem solvers.

Except for the imposed distinction between deduction and action, it is a lot

like PLANNER. (Heuitt, 1972) The main difference is that it does no
backtracking past model manipulations. Since it is more disciplined in many
ways, it is better able to explain its actions.

However, it suffers from some of the same problems as PLANNER-Iike
systems. In particular, a certain amount of the additivity I wanted will not
be found in this organization. Even though it is easy to add a neu plan
schema to a body of facts, the interactions of this new material with the old
are not so easily handled.

For example, if acquiring a common-collector amplifier is knoun to be a
good uway of achieving high input impedance, this fact might be lying around in
a formula of the form

("high input impedance required"
> (/:T0-D0 ?T (MAKE AMPLIFIER) <?N>
(MAKE COMMON-COLLECTOR))1J.
(For a precise version of this, see Appendix 3.) Now, say that the system is
to be told about field-effect transistors (FETs). Since they havé a high
input impedance, an exactly similar fact will be recorded regarding the FET

common-source amplifier,

I1 Expressing Knowledge in NASL 72

Nou a request to make an amplifier will cause both these facts to be

retrieved. What can be done? (Ue have already ruled out just trying one

until it fails.) One approach would be to force the user to revise one or
both of the formulas to check for information that will distinguish betueen
the tuo cases. Houwever, this will lead to large, impenetrable implications.

Furthermore, in some cases of such confusion, neither choice is preferred, but
some synthesis of the two. We need a way to represent such "differential
diagnosis" and "partial-solution composition" knouledge in an additive manner .
The solution is to face up to the necessity for treating "choice betueen
alternatives" as a basic situation of problem solving, and to create neu
pragmatic predicates for handling it. This is the subject of Sect. II.C.1.
The complementary problem that this brings to mind is when the deduct]ve
pattern-based backuward chaining of STP is unable to retrieve any possible
plans. This might be because there aren’t any, and the user must provide new
information, but it also might be because the relevant retrieval strategy
depends upon pattern-manipulation operations wuhich are less disciplined than
unification. For example, ue might want to express, "1f the problem mentions
MHz, try special high-frequency heuristics.” Here the traditional Al language
solution is to allow arbitrary list-processing operations upon formulas. (The
traditional predicate-calculus solution is to do aimless equality
substitution.) Thus, in CONNIVER (McDermott and Sussman, 1973) a method with
pattern (LAMBOA !>X !>Y) can match the calling pattern (LAMBDA (X) (F (G X}))
‘and do anything it likes with the pieces so generated. This is someuhat
abhorrent, since it tends to destroy the notion that formulas mean anything.
Who can rule on the consistency of a set of formulas that do thing§ like that?
My approach to this problem is to try to impose some discipline on this

kirnd of manipulation. The idea is to signal explicitly when the system is

Il Expressing Knouledge in NASL 73

allouwing itself to do things like that, and to impose restrictions on its
behavior and the results it computes. This idea is developed into the

"rephrasing” protocol of Sect. I1.C.2.
I1.C.1 The Choice Protocol

Under some circumstances, STP is asked to return all the ansuwers it can
find (cf. Appendix 4), but it can be asked to.return just one. In this
situation, if more than one ansuer is found, the system performs a ritual
invocation of information about choosing between them. This is called the
choice protocol. For example, this protocol is called when DESI finds more
than one possible circuit for a general concept liké "amplifier." In that
case, detailed information about the various types of amplifier interacts wuith
information about uhat is required of this amplifier to force a choice.

The first thing the chooser doés is to create an (abstract) choice
situation name and record in the data pool

[/:CHOICE |name| |context| |goal formula])
(The context is the inferential task for which more than one ansuwer is found.
In the case of the interpreter trying to deduce hou to do something, this is
just the symbol "EXEC.") For example, in trying to choose an amplifier, it
would record

(/:CHOICE C#535 EXEC

[/:TO-DO TSK#437 (MAKE AMPLIFIER) <’ (STAGEL CKT#747)>
?UAY]]
The formal resemblance of this to /:TASK formulas is suggestive; we have in
effect added a neu kind of entity, the choice. The intent is that this
formula will trigger forward deductions of the kinds to be described in a

moment. The packet machinery of (McDermott, 1975) will allow the system to

Il Expressing Knouledge in NASL 74

bring in large packets of what may loosely be called "advice" appropriate to
this situation.

The use of "brackets inside brackets" is our first encounter with the
concept of "embedded formula." (See Appendix 1). The system is treating the
goal here as a data structure to be analyzed.

For each of the possible ansuers, a formula of the form

[/:0PTION |choice name| |option name| |ansuer formulai]
is recorded in the data pool. For our amplifier example, we might have
(/:0PTION C#535 A#458
[/:T0-DO TSK#437 (MAKE AMPLIFIER) <’ (STAGE1 CKT#747)>
(MAKE COMMON-COLLECTOR)]]
[/7:0PTION C#535 A#451
[/:70-DO TSK#437 (MAKE AMPLIFIER) <' (STAGEl CKT#747)>
(MAKE FET-COMMON-SOURCE)}])

Recording these formulas will trigger the deduction of formulas of the

form
[/:RULE-OUT |option namel|l,
{/:RULE-IN |option name|],

or [/:RULE-TOGETHER < -option names- > |new answer formulal|l.

The system first searches for conclusions of the form [/:RULE-OUT ...J.
This is a call to STP, of course. 1f any are found, the options_ruled out are
removed from consideration. Next, the system looks for conclusions of the
form [/:RULE-IN ...]. 1If any of these are found, the system throws away all
options except those mentioned. Finally, it looks for /:RULE-TOGETHERs. 1If
one of these occurs, the options it mentions are discarded in favor of the neu
~answer formula.

If at any stage all options but one are eliminated, the protocol stops
with a winner. If all the options are ruled out, the system enters an error

protocol to shou the user what it did and ask for corrections of its

misinformation. [f more than one option survives, the system records

Il Expressing Knouledge in NASL 75

(/:QUIESCENCE |choice name|]
in an effort to trigger more forward deductions.

The intent of these devices is clear. Differential diagnosis is to be
per formed by the first two kinds of formula, uhile /:RULE-TOGETHERs are
intended to be one locus of composition of partial solutions in the NASL
system. (The others are problem reduction (see above) and error correction
(see Sect. II1.0) in the context of patching electronic circuits.) The
/:QUIESCENCE trick enables the user to encode advice of the form, "All other
things being equal...," as a foruard implication like

(-/> A (/:QUIESCENCE ?C) ...1l.

The choice protocol keeps track of the rules which contribute to weeding
out all but one option. These rules are used in building data dependencies
(sect. I1.0). In addition, uhen a policy is used in choosing a way to do
something, the choice is made a subtask of that policg. For example, say
there is a policy of the form "keep cosfs low," plus a deductive rule |like,

“"When trying to make a device, and trying to keep costs lou, then, all
other things being equal, if a circuit with inductors is competing as an

“option against a circuit without them, the one with inductors is ruled

out.”

Now if the task of constructing some circuit is elaborated into a device
chosen on the basis of this rule, the task of acquiring the device is subtask

of both the construction task and the costs policy. This leads to clear

explanations by the system of its behavior. (Sect. V.A)

(The choice protocol was inspired by the design of Marcus's (1973, 1975)
"wait-and-see" parser, which does similar things in choosing directions in
which to parse.)

11 Expressing Knouledge in NASL 76

11.C.2 Rephrasing

I now turn to one of the most important and least elegant subsystems of
NASL, the rephrasing protocol. This is the system which is invoked when STP
is unable to find a reduction of a task. Rephrasing consists in treating the
recalcitrant problem as an object to be transformed into a neu problem. The
pious hope is that the neu one is easier. This, of course, is precisely the
object of task reduction in the first place. So rephrasing may be thought of
as taking extraordinary measures to reduce a task.

. The way this works is as follous. When the system is unable to find a way
/:T70-D0 something, a task

[/:TASK |name| <>
(A () (/:REPHRASE |task| Jaction formula] < -output pvars- >)) <]

is created, and made a predecessor of the losing task. This task is allowued
to carry out arbitrary inferences in order to reduce the unreduceable task.
For example, the design task DES#78, with action

[DESIGN (A (X) (AND (IS AMPLIFIER ?X)
(= (VOLTAGE-GAIN ?X) 180)))]

is unlikely to trigger an indexed solution. Instead, it must be rephrased as
some set of simpler actions, by the use of electronics knouledge. So the task
[/:TASK T#843 <>
(A () (/:REPHRASE DESH#78
[DESIGN (A (X) (AND (IS AMPLIFIER ?X)
(= (VOLTAGE-GAIN ?X) 108)))]
<|result pvar]|>))
<>]
will be put in the task netuork as a predecessor of the design task. Its
effect uwill be to reduce task DESH78.

The rephrasing protocol must exist in order to provide for deductions

beyond the scope of STP's simple strategies. These fall into two categories,

Il Expressing anuledge in NASL 77

one more elegant than the other. First, because it uses the interpreter, it
can take advantage of the choice protocol, flexible planning and policy
making, and even recursive rephrasing. Thus, for example, one can make finer
choices than is alloued by just running the chooser on a set of possible
reductions.

Second, and less happily, the rephrasing protocol manipulates the action
formula' as an "embedded formula," and so is allowed to perform any operat.ion
on its representation. So one can write rephrasing plans which check to sée
if the given action refers to "WIDGETS" anywhere. In the next chapter, I will
show hou, in the course of rephrasing design problems, A -expressions are

'routinelg dismembered. This seems to be indispensable, but it would be nice
if we could insist that the pieces be put back together in a legitimate wuay.

This is a special case of the more general problem of making sure that the
interpreter and inference mechanisms actually do what they are supposed to do.
The difficulty is in speci fying what the object of a task or protocol is. For
choice, the object is fairly clear: eliminate all but one option. (Inelegancy
creeps in with /:RULE-TOGETHERS.) Elseuhere in the interpreter, | have
ignored this very important problem, except for token checks such as that
/:FINISH actually leave its task finished. In the case of rephrasing, the
problem is especially acute; rephrasing can be thought of as a device for
extending the pattern matcher by allowing arbitrary deductions about formulas.
Something like this is necessary, but it should be better constrained.

As it is, there are only a feu restrictions on the use of rephrasing: all
the actions undertaken as sybtasks of a rephrasing must be inferential, not
wor ldly; the rephrasing task must leave its target task /:REDUCED: and the
subtasks resulting from a rephrasing must be syntactically legal (i.e., not

contain A's in funny positions or have any free variables, etc.).

Il Expressing Knouledge in NASL 78

The rephrasing knouledge for the design domain. which | present in the
next chapter, is an example of what rephrasing ought to be. The formulas
involved are reduced to pieces by one task, and parsed together again by
others. | hope that this will prove to be an instance of some more general
recognition strategy that is more constrained than uhat the system nou allous.

I have nou described every module in Fig. 1.9. The search paradigm that 1
have developed may be summarized as: let the theorem prover search, but not
too far or too deeply. All searches are intended to be short and sueet; the
search is used for exactly those spots where there is no applicable knouledge.
These short searches are organized by a plan interpreter, uhich decides what
sort of knouwledge is to be accessed. It can ask for answers to questions
about hou to do things, the physics of the domain, choosing among
alternatives, or transforming its oun problem statements. Thus, as far as the
paradigm has been developed, it is in accordance with R. Moore's (1975)
observation that theorem provers are most naturally applicable to information
retrieval problems, and that other control structures are needed for more

sophisticated tasks.

11.0 Dependencies Among Data and Tasks

It is becoming generally realized that Al systems must record their
reasons for their conclusions and actions. (McDermott, 1974a, Stallman and
Sussman, 1976, Shortliffe, 1976) These records have many uses:

{1) They can be used to explain reasoning and actions to a human user.

(2) They guide the system in undoing faulty deductions.

(3) They are a guide to correcting the effects of misguided actions.

(4) They can be used in assigning the blame to incorrect rules.

The basic relation among data is the deductive data dependency.

Il Expressing Knpuledge in NASL 73

(McDermott, 1975) Every time STP or RECORD does a deduction, it attaches such
a dependency to the conclusion and the premisses; the latter become the
supporters of the dependency, the former, the supportee. (See Appendix &4.)
When the system does an ERASE, all the supportees of the erased item are
erased themselves if they have no remaining supporters.

These support relations are accessible to the problem solver as a set of
LISP-implemented predicates. In particular,

[/:SUPPORT < -formula names- > |formula name|]
is supposed to be true when the indicated dependency holds.

These support dependencies are also created by the inferential action
/:INFER (see Appendix 1}. Other inferential tasks call STP and let it build
dependencies.

These devices account for the second in the list of uses of dependencies
among data and tasks. The others are more complicated, because they involve
the relation betwueen action and the world model. Here are examples of the
kinds of relations that can occur:

(1) A task can have model effects. The relation betueen the task and its
effects is non-deductive because erasing a task is not sufficient to undo its
effects. (Besides, some of the effects are erasures.)

(2) A task or pvar value can be based on choice information. We want to
record this relation, but erasing the basis of a choice does not erase the
choice, although it calls the wisdom of the choice into question,

(3) Facts in the current model can support task statements. A fact about
circuit topology supports a constraint on the physical quantities it
influences. Erasing such a model-effect formulas should cause the task
formulas to be erased too,

(4) Facts in the current model can trigger tasks. This is a quite
different situation from (3). NASL implements the common Al mechanism of
"demon" or "pattern-triggered interrupt" by allowing /:TASK and /:SUBTASK
formulas to be deduced. For example, a BLOCKS-uor!d system may for a time

have a policy to the effect that a certain block B#72 is to have a clear top.
This gets translated into the principle,

Il Expressing Knowledge in NASL 80

(vX (ON ?X B#72)
> (3T (/:TASK 2T <> (A () (REMOVE 2X BH#72)) <>))]

Let B#74 appear on B#72. This will create a task to take it off. A mode |
effect of this task is the erasure of (ON B#74 B#72) and uwith it the task!
This contradicts common sense, since once the interpreter starts to work on
something, its success should not erase it. There may even be serious errors
as a result of such an erasure, since the erased task may not have been
completed yet. In any case, the user may want to ask questions about tasks,
Without worrying about which ones erased themselves.

It is clear that this problem has to do with the treatment of time. An
activity can become a task for one reason, but stay a task for another. This
is handled by the use of the modal operator S, defined as follous: [S ' | fact]]
means "fact starts to be true." The conclusion of the given implication
should be [...(S (3T (/:TASK ?T...)))]. Exactly the same fact will end up in
the data base, but the supporting data dependency will be different. (It is a
bit wishful to call this a "modal operator" instead of a "patch." If the
modal machinery uere better developed, it could be suppor ted by axioms |ike

(T ?2R ((S "?P) A ((TIME) = ?t))
> (3i (VO (T 20 (?t < (TIME) < 2t+?i)
> ?7P)))],
but it isn't.)

To represent these nuances, the structure of data-dependencies must be
made more flexible. Before, the supporters list of a dependency was just a
list of data; now we make it a "labeled tree" of tuples of data. Each label
explains the role the supporters play in the dependency. For example, a
BLOCKS-uor Id program might execute the task

[/:TASK (FIND-DUMP) <>
(A 0 (:FIND (A (X) (IS PLACE ?X))))
<" (DUMP) 5]
in order to find a place to get rid of a nuisance block. 1f it chooses X =
TABLE because of a choice principle C, the result
[=/> ' (DUMP) TABLE]

Will be supported with the tuo labeled dependencies:

(DD-CHOICE ([IS PLACE TABLE]) (DD-CPRIN (C))) and
(DO-INFERER ([FIND-DUMP]))

where DD-CHOICE, DD-CPRIN, and DD-INFERER label the roles of the formulas they

dominate in their trees. (I am being a little casual about the format of

Il Expressing Knbuledge in NASL 81

these structures; uhen they are attached to the data, pointers to the
supporting data themselves appear in place of their formulas.)
Here are some of the implemented labels:

(DD-ACT-RESULT (|task datum|)
(DD-APRIN -action principles-)
(DD-ATRIGGER -action triggers-)) :
relates a task to its results. The action principles are general
formulas (found in the main data pool GENERAL-DPx); the action triggers are -
formulas that were true (perhaps transientiy) when the action occurred.
Erasing the latter will not disturb the suppor tee of the data dependency.

(DD-CHOICE (-inferential supporters-)
(DD-CPRIN -choice principles-)
(DD-CTRIGGER -choice triggers-))
records an inference for which an ansuer had to be chosen. The rules
which contributed to this selection are sorted into triggers and principles
just the way they are for actions, but, for choices, the supportee is immune
from disturbances to either of the kinds of choice formula.

(DD-S (-triggers-))
labels supporters uhose erasure does not affect the suppor tee.
Beducing (S *[F|] will record [|F]|) with the suppor ters insulated by a DD-S
'abe'.

(DD-INFERER (] task datum]))
is attached to formulas deduced or inferred by inferential tasks. This
is used by other inferential tasks to refer to those formulas.

(DD-ISTATE (-data-))
is used to label formulas, like /:TASK formulas and pvar value
assertions, uwhich define the state of the interpreter. These formulas are
"incorrigible," and are never erased.

(DD-EXEC (|task datum|) (-other data-))
records other miscellaneous relations betueen a task and a formula

(DD-T |data pool| (-data-))
links data across reference points. The intent is to record that the
presence of the data in the foreign data pool are responsible for the presence
of the supportee (uhich may be a DD-T itself).

This information can be dumped out in a revealing form, as described in

Chapter V.

Il Expressing. Knouledge in NASL 82

II1.E Handling Mistakes

Consider situations like the following:

You are dialing a telephone number. Halfuay through, you feel your hand
slip and you knou you have misdialed.

There is a pouwer failure. You wonder if the refrigerator will be damaged.
You flick the kitchen light suitch on to have a closer look. Nothing happens.

Someone asks you to design an amplifier with a certain high gain-banduidth
product. You confidently pick a familiar circuit topology and begin to
compute the required component values. You discover there are no component
values that will do the trick.

All of these are examples of "mistakes." (A finer classification is possible.
Cf. (Nilsson, 1973).) They all have in common, in the terms | have been
developing, that the plan for accomplishing a certain task has been shoun not
to work. In each case, it is wholly or partly useless to continue on the
plotted course.

Not enough work has been done in Al on correcting such mistakes. (But see
Nilsson, 1973, Philip Hayes, 1975, Sacerdoti, 1375.) Instead, we have spent a
lot of effort on seemingly similar search problems in which "blind alleys" are
searched, and real mistakes never occur. | discussed this briefly at the
beginning of this chapter. The problem uith even thevmost sophisticated of
mechanisms for searching through blind alleys (Staliman and Sussman, 1976) is
that they rely on the abilftg to restore previous phoice-points. Previous
discussion of the problems associated with this (e.g., McDermott and Sussman,
1972) has focused on the difficulty in choosing a choice point to restore:
here | wish to call attention to the impossibility of restoring most choice
points in any useful way. The problem is that the range of choices previously

available may be obsolete. Sometimes this is because some of the choices have -

been ruled out by other processes. This is handled nicely by Stallman and

Il Expressing Knouledge in NASL 83

Sussman’s EL (1976). A worse problem is that non-monotonic inferences made at
the time of the old choice may have been rendered incorrect by further
discoveries or changes since the old choice. (McDermott, 1374a) For example,
the range of choices available for instantiating an amplifier can change
dramatically after adjacent stages are instantiated. There is no way to
return to one choice point uithqut considering all the choices and actions in
be tueen.

The alternative scheme | am about to outline has not been implemented,
al though many of the pieces are in place.

The‘idea is to treat correcting a mistake as a task like any other. The
mistake is given a description by the primitive that failed. (For example, if
a constraint cannot be satisfied, the mistake is described as [CONSTRAINT-
COLLAPSE |losing constraint|l.) The system sets itself the task

(/:GET-RID-OF |mistake description|].
Often it will be necessary to re-describe the situation; this is a job for the
rephrasing protocol. A typical electronics-domain redescription might be
[IMPROVE ’ (GAIN (STAGE#89))1].
Plans are retrieved to carry this out. (Cf. Chapter 1.)

The difference betueen this and and a routine situation is that ?he task
netﬁork must be corrected in some way. Some of the tasks that existed before
the mistake are still "healthy," else there would be no reason to go on
living, but some of the subtasks are now "rotten," and may be replaéed; A
subtask of a /:GET-RID-OF task is allowed to alter certain parts of the task
ne tuork.,

Making the netuwork-editing machinery work is the hardest part of
implementing this scheme. The kinds of edits that must be allowed include

> Adding new subtasks to correct the problem. The commonest reaction to

Il Expressing Knouledge in NASL 84

an accidental "protection violation" (Sussman, 1975) is to re-establish the
protected fact without further fuss.

> Restarting old subtasks. For example, the string of tasks involved in
dialing the first digits of a misdialed telephone number must be resurrected.

> Detaching and redescribing old subtasks. For example, introducing too
much feedback can cause oscillation; its old description (that it did
something useful) must be discarded, and it must be seen as part of the
problem instead of part of the solution. Its old supertask must be marked un-
/:REDUCED again, and a neu way must be found to solve it. '

> Terminating active subtasks, especiailg policies, of a rotten task. In
electronics, constraints derived from circuit diagrams must be removed when an
IMPROVE task is executed and changes the topology of the circuit diagram.

The information about what edits are legal must be part of the mistake
handler. For example, the plans regarding constraint collapse (see Chapter
IT1) must specify that the highest task that is the scope of some of the
col lapsed constraints is still healthy; some louwer-level task (probably
associated with a particular canned circuit diagram) must be declared rotten
and its policies abandoned.

The reason uhy this scheme has not been implemented is that it depends on

the data-dependency machinery | described, uhich is still relatively untested

itse|]f. Undoubtedly both of these systems will grow together.
I1.F Programmer’s Guide

As | said, NASL is not exactly a programming language, but it's not a
natural language either, so it is probably best for the programmer to approach
it first as the kind of formal language he understands best. To help with
this, I include "programmer's manuals" in each of these three tough chapters;

NASL has tuwo interpreters-- the theorem prover (STP) through which all
NASL formulas must pass, and the plan interpreter (NASL proper) which takes

some conclusions to be instructions to act. The first design decision in

Il Expressing Knouledge in NASL 85

expressing a neu set of facts in NASL is whether to rely entirely on STP or to
cast them as rules which create and manipulate tasks.

In principle, everything could be handled by the theorem prover. For
example, axioms could be introduced defining a space of electronic circuits,
and constructively proving

(EXISTS (X) (AND (ELECTRONIC-CIRCUIT ?X)
(IP] ?X)))

could replace the action [DESIGN |P|].

As we all knou, houwever, all theorem provers of STP's class rely heavily
on the generate-and-test problem-solving method. Generating all circuits is
obviously ridiculous.

Here are'some more general criteria for deciding whether to represent a
body of facts as axioms or plans:

(1) As R. Moore (1975) has pointed out, it is a strong clue that a theorem
prover is out of place when side effects enter naturally into the statement of
a body of knowledge; this is certainly true for design. Any irreversible
action, such as asking a question or wiring a circuit, rules out the use of a
rau theorem prover.

(2) If you wish to take advantage of information relevant to a choice
point, the choice must come up as the choice of a way to do a task or of the
ansuer to a /:FIND. (You should verify that the information is worth the
trouble.)

(3) If subgoals arise which must interact, you must put the goals in the
data pool, i.e., make them tasks. Similarly, if you wish to manipulate goals
as data structures, you must add rephrasing knouledge for tasks of that type.

Only if it appears that only brute-force deduction is necessary or
feasible should you cast the knowledge as pure axioms. An example is the
theory of frequency-picture manipulations developed in Chapter 1V. Commonly a
class of tasks will be associated with a "mini-theory" of some characteristic
criterion for choosing betueen them; this little theory is expressed in terms

of pure axioms. For example, the theory of ordering the selection of

component values with respect to other tasks (Chapter 111) is a small set of

11 Expressing Knouledge in NASL 86

axioms. (The merits of this "clever cogitation directed by brute-force

retrieval” organization will be discussed in Chapter VI.)

I1.F.1 Predicate-Calculus Techniques

Even after you have decided to represent a body of knowledge as a set of
facts about tasks, these facts must be expressed as predicate-calculus
implications. The approach to this that I have found useful is to think of
them independently of their use first, concentrating on wuhat they are to mean.
Once this is done, the pragmatic content can be added. This approach forces
you to think about what you really mean to express. For example, when you
write an implication of the form [|P| > (/:TASK ...)], do you really intend
that this task exist only while P is true?

There are three pragmatic decisions to make: whether to express
implication as /:CONSEQ, /:ANTEC, or /:GEN; where to use packets; and uhich
version (/:=, =, or =/>) of equality to use;

The first decision is often simple. Systems of predicate-calculus rules
develop in such a way that one layer of rules "feeds" the next during foruard
and backuard deduction. The rules usually work together to record in a
foruard fashion up to a point; then backuard (consequent) rules work their way
from deductive goals to the formulas recorded by forward rules. Generative
("-/> G") rules are useful in mixing these processes up. So, for instance, it
is no use having an antecedent rule if no one records an expression matching
its left-hand side. R. Moore (1975) has given some useful hints in deciding
which way implications can be used.

/:PKT should be used instead of AND on the right-hand side of an /:ANTEC

when much of the contents of the conjunction are not looked at for most

Il Expressing Knouledge in NASL 87

ihstantiations. or if it is not necessary that they trigger further /:ANTECs
immediately. This is true, for example, of circuit diagrams, uhere
information about the purposes of components is not always accessed; but not
true of plan schemata, uwhere all the tasks and subtask relations are going to
be recorded anyuway (and the interpreter must notice every task).

It is usually clear uhich version of equality to use. Goals are usually
phrase in terms of "=," but if you knou there is only one simple ansuer, use
"/:=," uhich merely matches the tuo sides against each other. Simple "=" will
work harder in the case uhere they ddn't match. Often "=/>" does not have to
mentioned in the rules uwhere it it is used; if rules like [=/> '(F A) B] are
around, they will be applied uhen the right-hand sides of implications |like

(-/> A (P ?2X) (@ (F ?2X)))
are detached with the variables bound. That is, recording [P Al will cause [Q
. B] to be recorded.

Finally, remember that it is not aluays enough to supply axioms about
proving propositions uith a certain predicate; if you ever wish to disprove
such propositions, you must supply appropriate axioms. Often disproof
information can be summarized with a single PRESUMABLY statement. For
example, in the world of blocks, we might have

[-/> C (AND (ON ?X ?Y) (ABOVE ?Y ?Z)) (ABOVE ?X ?Z))
(-/> C (ON ?X ?Y) (ABOVE ?X ?Y)]
[PRESUMABLY ’ (NOT (ABOVE ?X ?Y)) C]
The effort to prove [NOT (ABOVE A B)] will cause (via /:CONSISTENTLY) an

effort to prove A is above B; if it fails, the conclusion is taken as true.

I1 Expressing Knouledge in NASL 88

I1.F.2 NASL Programming Techniques

In applying NASL to a neu problem domain, one must supply model-
manipulation statements to actually get things done, and indexed plan schemata

to orchestrate them.

Tasks may be reduced in a forward or backuard way. In the former, the
presence of a task can trigger deductions of subtasks. For example, in the
uorld of blocks, one could specify a plan to the clear the top of a block

thus:

[-/> A (/:TASK ?N <> (A () (CLEAR ?X)) <>)
(-/> A (=/> ' (/:TASK-STATUS ?N) ACTIVE))
{(FORALL (Y)
(-/> A (ON ?Y ?2X)
(S ' (EXISTS (M
(/:TASK ?T <>
(A () (PUTON ?Y TABLE))
<>)) NI

(Notice the use of "S" to indicate that these tasks are being triggered, not
suppor ted, by the statement [=/> ’(/:TASK-STATUS |task|) ACTIVE].)
In backuard reduction, plan schemata are instantiated via /:D0-SUBNET

calls. This requires a couple of formulas. In the same blocks world, we

might have the formulas

(/7:T0-DO ?TSK (ACHIEVE ’(ON ?2X ?Y)) <>
(/:D0-SUBNET (ACH-ON ?X ?Y) <>)]

[-/> A (/7:PLAN-INSTANCE ?P1 (ACH-ON ?X ?Y) ?SUPER-TASK)
(AND (/:TASK (CLEARER-1 ?PI) <> (A () (CLEAR ?X)) <)
(/: TASK (CLEARER-2 ?PI) <> (x () (CLEAR ?Y)) <>)
(/:TASK (PUTTER ?PI} <> (A () (PUTON ?X ?Y)) <>)
(/:SUCCESSOR (CLEARER-1 ?P1) (PUTTER ?P1))
(#:SUCCESSOR (CLEARER-2 ?PI) (PUTTER ?PI)))]

The interpreter, uhen it has decided to reduce [ACHIEVE '(ON ...)] using the
first rule, uill create an instance of the schema [ACH-ON ...]: the second

rule will then trigger the creation of several subtasks.

Il Expressing Knouledge in NASL 83

A corpus of NASL rules is often uritten as an incomplete set of plans and
axioms, which is then debugged by adding "interaction terms," i.e., knouledge
Wwhich influences the application of the first-order rules. This occurs
through the meqium of these kinds of rules:

> Rephrasing rules uhich redescribe actions, usually by breaking them into
pieces and putting them back together.

> Choice rules which influerice the way in which tasks are reduced.
> Rules specifying /:SUCCESSOR relations.

> Policies to watch for interactions betueen tasks or to influence
choices. ‘ :

Ng Will see plenty of examples of NASL plans and rules in the following

chapters.

111 Design of Hierarchical Systems 90

III Design of Hierarchical Systems

Design is the production of an object to satisfy certain requirements.
4The requirements may describe the desired object closely ("A stick 18 inches
long"), or they may be very remote from what is finally produced ("Something
to make this room look more friendly.")

Of course, designing does not mean actually manufacturing an object; what

is actually produced is a detailed description of one. In fact, design might

be described as the process of adding detail to a description until "full
detail" is reached relative to some basis.
In what follous, 1 will elaborate this theory, and then explain hou it is

implemented as a set of NASL rules. (A close relative of this theory was
outlined by Freeman and Newell (1371) in a paper called "A Model for
Functional Reasoning in Design.")

The best way to explain it is to start at the bottom, near the "basis."
The basis for a design domain is a set of primitive artifacts. For example,
it sticks are primitive, designing a stick 18 inches long is merely a matter
of "instantiating the stick primitive." ‘"lnstantiation" means creating a
symbol, such as X843, and recording that it denotes a stick. That is not all,
however. Associated with the primitive "stick" are attributes such as its
length, width, material, color, etc., which must be fixed for a concrete
instance of it. Because it is a primitive, we may assume that fixing a
stick's qualities is merely a matter of choosing them. (looden sticks are
cheaper than platinum, but [will not consider cost explicitly in this paper.
I emphasize finding any solution to a design problem, not finding the best
solution.)

So designing a stick is just a matter of picking a name, a width, and a

Il Design of Hierarchical Systems a1

length. (Assuming broun wooden sticks from now on.) If the length is
constrained to be 18 inches, that is clearly the length to pick. The width,

i f unconstrained, may be picked arbitrarily, subject to the reasonable
constraint on all sticks that their width be no more than 18X of their length.

For a primitive artifact, then, “adding detail" is just selecting values
for its "control attributes," such as length and width.

This theory of design will not account for the design of "something to
make a room more friendly," mainly because "object that makes a room look
friendly” is not a primitive artifact with a fixed set of attributes. In
general, a requ}rement may be arbitrarily remote in structure from the kind of
object that satisfies it,

So it is necesary to provide for for the 1ndexihg of partial solutions by
their important features. That is, the theory must just provide for
statements |ike, |

"Funny posters make a room more friendly."

"Plants make a room more friendly."

"If x makes a room more friendly, and y (distinct from x)

makes a room more friendly, usually the combination of x and
Yy makes a room more friendly."

etc.

A partial solution of this kind may be a primitive artifact, in which case
the problem has been solved, but more generally it consists ofva structure of
design subproblems. These subproblems must be solved in much the same way as
the original problem, and the solutions must be connected up. Eventually the

original problem will have been completely reduced to primitives. (Fig.

Ii.n

I11 Design of Hierarchical Systems 92

REQ, REQ, REQ 3

STRy<——_— ———=STR,

Connection

REQ44 REQ, o CONSTRAINTy >

\\\\\\\5_“—_'d"//////
STR11 STR1.2 —— CONSTRAINT,

Figure I11.1 Function-Structure Graph

These primitives will be connected. and constrained. Some of these
constra{nts come from the problem (e.g., "Amplifier with gain = 18"), some
from the partial solution ("A common-emitter's gain is beta X RL/RS“). some
from connections (“The current from R is the current into the collector"),
and some from descriptions of péimitives ("The resistance must be positive").
As uith the simple stick problem, the control attributes of the primitives
mqat all be selected subject to the constraints.

The design process suggested by Fig. [Il.1 neglects several complications
having to do with pragmatic knouledge of partial solutions. Some of these
Wwill be easier to talk about after I introduce the NASL implementation of this
design theory. Before | do that, | should say more about the "indexing"'of

partial solutions.

Il Design of Hierarchical Systems a3

If a design requirement is very simple, it is is plausible to imagine it
as calling to mind a partial solution tagged with "specs" which match the
requirement. For example, the design problem "Make a common-emitter
amplifier" could plausibly match the specs on the common-emitter circuit
exactly.

For more complicated problems, this will not work. The description might
contain conjunctions, disjunctions, or quantifiers. It might consist of
simple pieces whose solutions can be composed. It may be cluttered with
numbers which have to be described more suggestively, as in the example of
Chapter I, in which "gain = 18" was replaced by "moderate gain."” Final{g. the
description might just be in the wrong terms; a common example in electronics
is the translation betueen time-domain and frequency-domain descriptions of
signals.

So the theory must provide for manipulation of problem descriptions,
before the first partial solution can be proposed. This manipulation is aimed
at transforming a description into a form suitable for retrieving stored
partial solutions.

A version of this theory has been encoded in NASL. As coded, it is
independent of electronics, although enough restrictions have been placed on
it to keep me from claiming it is a complete general design theory. It is
meant to be a theory of engineering design, for which, to first order, all
effects can be.thought of as local interactions among connected modules, each
of which is designed to accomplish some part of an overall objective. It is
biased toward systems uhose interactions can be described numerically. I will
call this domain "design of hierarchical systems."

It is straightforuard to express in NASL most of the concepts I have

outlined. The first step is to implement the notions of "requirement" and

111 Design of Hierarchical Systems 94

"structure fulfilling it" as tasks and subtasks. That is, a design problem is
expressed as a task, and the terminal nodes of the function-structure graph
are to be identified with primitive tasks of the form "grab a (primitive)
component." For example, a first-pass analysis of an electronics problem may

generate this structure:

O Make a cascade

/\

Acquire .. O Couple
Stage 1 _—

Acquire Stage 2

Figure 111.2 A Tuo-Stage Cascade

Later elaboration uwill instantiate the coupling task:

I1l1 Design of Hierarchical Systems 95

STAGE 1
QA OCOUPLE
' STAGE 2 ;
/
| (:)‘-- /
| ~4
| I—=7—————71

Figure 111.3 An LC-coupled Amplifier

"Partial solutions" are implemented as a kind of plan schema. A
particularly important kind of partial solution is a device type, a packet of
facts clustered around a concept like "amplifier," or "operational amplifier,”
or "resistor." Some of these facts describe the structure of the devices of
the given type, but many of them are concerned with hou such devices are used
in solving larger design problems. This last set of facts defines a set of
tasks for elaborating a device and connecting it to its peers.

Primitive devices are those uwith no internal structure, whose elaboration
consists mainly of selecting values for their control attributes. The system
represents these obligations as a set of "SELECT-VALUE" tasks. The
constraints that accumulate during a design are implemented as policies which

influence the execution of SELECT-VALUE tasks.

111 Design of Hierarchical Systems 96

Because we are using the NASL interpreter, all design subproblems are
represented explicitly in the data base as tasks. Partial solution plans are
recovered, as for all tasks, by using STP to retrieve them. Choice rules are
used to choose among or cdmpose sets of partial solutions. Simultaneous
subproblems are represented by simultaneously active tasks. There are
frequent cases where it is important to start on one problem before another,
because the solution to the first will influence the choice of approach to the
other. This can be arranged by writing rules to cause the deduction of
/:SUCCESSOR formulas.

The manipulation of requirement descriptions when routine indexing fails
to retrieve a partial solution is handled by a special design rephrasing plan.
It says to turn a recalcitrant design task into a task network of the

follouing kind (cf. Fig. I11.8): make a device of a knoun type, and constrain

it. - The plan is to do this by tearing the given problem into pieces called
"shards" (usually conjuncts from the design requirement), each of which is
classified as specifying either the device type or a constraint. The plan
succeeds only if every shard is accounted for in one of these ways. It is
generally the responsibility of rules from domain-dependent plans to make sure
this is true. In the electronics domain, as ue shall see, there are many
ruies for manipulating shards, ranging from those which convert shards
regarding gain into control-quantity constraints, to those which change
signal-conversion shards from the time domain to the frequency domain.

This is a broad outline of the design theory encoded in the formal theory
“of DESI. (Appendix 2) A point to notice in its exposition is that | appealed
to innate control concepts to explain notions of structure, purpose, and
constraint. It will be seenn that appeals like this, appropriately formalized,

are the only kinds of knouledge of these concepts that DESI has. In a

I1l Design of Hierarchical Systems 97

primitive way, the program exhibits "machinomorphism,” the inclinatiqn to
understand other systems in terms of its own kinds of motives. This allous a.
certain computational economy, and makes assimilation of new information more
reliable by enforcing a small vocabulary. A complicated and delicate (or
electronics-dependent) theory of purpose and commi tment ddes not have to be
added by the user.

Before turning to a detailed exposition of the DESI implementation, I
should mention three issues I will have little to say about: learning, search,
and creativity. The last of these may seem the most impor tant. Many people
Hwould probably be skeptical about the ability of a machine to do design,
because creativity seems to be abéent from machines and vital to design.
Indeed, “"design" and "creativity" seem almost to be defined in terms of each
other. If this issue bothers you, let me call your attention to the
distinction betueen "routine" and "imaginative" design. Routine design is the
production of an artifact in a field (such as electronics) such that anyone
else with an ordinary mastery of the field could have produced the same thing.
This kind. of designAis the only kind I can claim to have a theory of.

DESI does not learn anything from doing a design. Although at the
beginning of this chapter | described designing as adding more detail to a
description, the description at the end of a design is not represented the
 same way as the problem description. The problem description is essentially a
A-expression, but the final result is a set of statements in the data base
about "XB843," or whatever symbol was chosen to represent the target device.

To learn, DESI would have to gather these statements together into a neu plan,
and index it under a useful generalization of the problem. Doing this is
difficult., (Cf. Sussman, 1375)

Other kinds of learning are also possible. One can imagine a program

111 Design of Hierarchical Systems 98

learning hou to order certain kinds of subproblems, or how to choose and
compose partial solution. These are examples of "trial and error” learning;
to attack them requires a theory of search.

DESI, like all NASL systems, tries never to make a choice at random, and
never backs up to undo a choice. (See the discussions in Chapter 11.) Thus;
it can be said not to search at all. This is the right organization, but it
needs to be combined with a learning system that proposes neu choice
principles by watching uhat happens after it does make an arbitrary choice.
For example, if one amplifier circuit is chosen from several that satisfy the
known choice principles, and later its impedance is discovered to be too high,
the system should not back up, but should make up a new choice principle to
rule that circuit out in case high impedance is required.

The system currently does none of these things. [f its rules get it into
trouble, it will look for a correction plan that fits the situation, but will
do the same thing all over again if the next problem is similar. This is a
serious, but (I hope) temporaray, defect in the theory, since it seems clear
that people learn something new in the course of all but the most routine
design tasks.,

As I describe in detail DESI’'s design theory, 1 uill point to the more
formal exposition of Appendix 2. By looking there, you will be able to judge
the pouer of the NASL control language. [t will be seen exactly hou often it
is directed and flexible, and hou often clumsy, arbitrary, or inextensible.
The important point at issue during this otheruise tedious exercise is one’'s
ability to represent various specialized control and debugging strategies
using the frameuork of tasks, data-dependencies, and conflicts described in
Chapter II. In uhat follous, references to the formulas of Appendix 2 are

indicated thus: <xformula-name>.

Il Design of Hierarchical Systems 99

ITI.A The Representation of Knouledge about Devices

Much of design is the manipulation of devices. A device is any
manipulable.‘“phgsical" object in a design domain. (Thus, signals will not be
devices, but nodes will be.) Familiar classes of devices that are useful are
called device-types. These classes may be formed in several ways. (Sect.
ITI.A.1)' Each device in a class is described by a set of formulas arrangéd in
certain standard ways. (Sect 111.A.2) A set of formulas describing a device
type is instantiated to form a particular device's description. Knouledge
about a device type is therefore conveniently represented as a "packet"
(McOermott, 1975) of facts which is instantiated when a particular example is
considered. This packet is called a device schema. (Unfor tunately, Broun and
Sussman (1974, A. Browun, 13975) have used the term "plan" for this purpose.
This conflicts with the usual range of meanings of this term in Al. [have
used this term in the more traditional meaning already in discussing the

interpreter.)
II1.A.1 Hierarchies of Device Types

Device types which have a rgcognizable function and circuit diagram (or
symbol) are called basic. Basic device tupes may be lumped into loose classes
called superordinate device types. <xDEVICE-CLASSES> (This terminology is
borrowed from (Bobrow and Winograd, 1976), but I am not sure I mean the same
thing by it that they do.) Sometimes such a higher class exists just because
people have a name for it and use it to specify problems. An example is
"amplifier." Sometimes there is some class of facts it is convenient to store

together, as for "2-terminals." (See Chapter 1V.)

I1l Design of Hierarchical Systems 188

Kinds of Device Type

Basic
Primitive (e.g., resistor)
Composi te (e.g., common-emitter amplifier)
General
Specialized
Ideal (e.g., current source)

Superordinate (e.g., amplifier, 2-terminal)

Figure I11.4 A Hierarchy of Tgpeé of Device Types

Basic device types may be further classified <xBASIC-DEVICE-CLASSES> as
primitive, composite, and ideal. Primitive devices are the terminals of a.
complete function-structure graph. (See below.) ldeal devices such as current
and vol tage sources behave as primitive devices, but must be "implemented."

Canned devices that are made up of simpler components are called compo;ite
device types. Textbook diagrams of things like Hartley oscillators and
common-emi tter amplifiers may be taken as standard examples of composife
device types. Often these textbook diagrams leave implicit what | take as an
important feature, that they exist in general and specialized versions. (Fig.
111.4) <xGENERAL-DEFN> The general common-emitter amplifier, for instance, is
just a transconductance treated in a certain way, uhereas the "typical common-
emitter” has biasing resistors hung all over it. (Cf. Watson, 1970) This is
expressed as

(DERIVED TYPICAL-CE GENERAL-CE].
The importance of this relation will be brought out shortly.
Thus a particular device will be at the bottom of a hierarchy of general

and superordinate devices. (Fig. I11.5)

Il Design of Hierarchical Systems ' 101

: SI — O Sig-Transer SUPERORD'NATE
= D?R-“_/g; g Amplifier
= SPEC-DEV-TYPE I

O‘ Tmitter-Coupled Pair BAS'C

Od

7 General ~ 25~
7 ECP -~
/4 / A SPECIALIZED
O Diff Amp O
Non-Inverting Inverting

Figure I11.5 Devices in The Type Hierarchy

The relation betueen the devices above the BASIC level in Fig. 111.5 is [SUB-
DEV-TYPE |dev type| |superordinate dev type|]l. Belou that level, the relation
is [SPEC-DEV-TYPE |specialized dev type| |dev type|l. Thus we would wurite
(SUB-DEV-TYPE COMMON-EMITTER AMPLIFIER] and [SPEC-DEV-TYPE TYPICAL-CE COMMON-
EMITTER]. (The DERIVED relation will be explained below, Sect. I11.A.2.)

A‘device will be of several device types, written [DEV-TYPE |dev] |type]l.
There is usually one, its MAIN-DEV-TYPE, which is the most specific category

it is knoun to fall in.
I11.A.2 The Representation of Device Diagrams
A device is either primitive or composite, depending on its main device

type. A device is specified with several kinds of information (most of them

are not necessary for primitive and ideal devices):

IIl Design of Hierarchical Systems 182

(1) The components of devices of that type. This is kept in formulas of
the form

[COMPONENTS |device| < -component names- >}

Each component is itself a device, whose main device type is expressed by a
separate formula. For example, for a voltage divider VD#21 ue might have

(COMPONENTS VD#21 <(R1 VD#21) (R2 VDH21)>)
(MAIN-DEV-TYPE (R1 VD#21) RESISTOR]
(MAIN-DEV-TYPE (R2 VD#21) RESISTORI]

(2) Connections and constraints betueen components. There can be no
domain-independent notion of connection between physical objects, since any
physical medium can be exploited. The only completely general thing that can
be said is that connecting devices "constrains" them in some way.)
(Otheruise, there would be no point in connecting them. Cf. "CONSTRAINT2" in
Fig. I11.1.) As we shall see belou, there is a rich theory of constraints
built into DESI.

(3) Control quantities. These are numerical-valued attributes of the
device that the designer has complete or partial control over. They are
represented by formulas like

[CONTROL |attribute| |device| |range| |degree of control]|].

This declares attribute to be a control attribute; it means that the quantity
[lattribute| |device|l may be assigned any value from the set of numbers
range. Since real components often vary from their nominal values, the
formula specifies the degree of control of the attribute, uhich is the
quotient of the highest and lowest possible true values compatible with the
selected value that appears in the data base. This value is actually the
(geometric) mean of highest and louest values. These uncertainties will be
taken into account in reconciling constraints. As an example, in electronics
for a transistor Q#173 we might have

[(CONTROL BETA Q#173 (INTERVAL 10 500) 18],

since the beta of a transistor is controllable only to within an order of
magni tude; while

[CONTROL POLARITY Q#173 <+1 -1> 1],

since every transistor is unambiguously PNP or NPN.

A distinction must be made between immediate control quantities and
derived control quantities, corresponding roughly to attributes of primitive
and composite devices. There are several relevant formula types for
expressing information about these matters:

(a) [IMMEDIATE-CQ ’|control quantity]]
Example: [IMMEDIATE-CQ ' (RESISTANCE R#21)]

Il Design of Hierarchical Systems 103

(b) [DERIVED-CQ ’|control quantity]]

Example: [DERIVED-CQ ' (V-GAIN AMP#34)] The actual function
relating the V-GAIN of the amplifier to the values of its components’
control quantities can be derived from constraints found in the
description of AMP#34. Often these will be found in the device schema of
which AMP#34 is an instance.

(c) [GENERIC-CA |attribute]l

Example: [GENERIC-CA THEV-R] It would be tedious and uwasteful to
derive a formula for each device or device schema relating its Thevenin
resistance to its components’ values. (A change of topology, for
instance, would force a recomputation.) Instead, some control attributes
can be declared generic, meaning the system knows houw to compute them and
Hill when they are needed. (The current system can handle this to the
point of enqueueing a CALCULATE task, but the computational techniques
required have not been implemented.)

(4) Task information. Every device has a cloud of tasks floating around
it. These will be of various sorts:

> The purposes of a device and its components are represented by a set
of finished tasks agsociated with acquiring them.

> Many devices will not function as they are supposed to without further
work ("subrequirements" in Fig. I11.1); these active tasks are called
expansion obligations. These ride along on most composite devices and even
some primitive ones; a transistor, for example, must be biased into its
intended mode.

> A device carries along monitors on the topology of the connections
inside it and from it to other devices; some of these monitors are for
protection of important relationships, and some just to notice when something
must be recomputed. ‘

These are characteristics of devices. A device schema is merely a canned
set of such formulas with a free variable to be bound to a particular device
when it is made. Device schemata are used to represent device types. They
are usually implemented as "packets." (McDermott, 1975) For example, the
packet for "voltage divider" will include the formula

[COMPONENTS ?##VD <(R1 ?##VD) (R2 ?##VD)>)
from wuhich the formula given above for VD#21 will be derived. The prefix

"?HA" specifies that ?##VD is a variable loosely bound to an "abstract vol tage

divider." The formula says, "the typical VD ?X has components [R1 ?X] and ([R2

Il Design of Hierarchical Systems 1084

?X].")

The tasks that will be liberated uhen a device schema is instantiated are
called frozen tasks, and the liberation process is called "thauing." Frozen
tasks may be thought of as mummified remnants of actions that were
(conceptual ly) executed when the device schema was first put togethen.'
(Device schemata are to be thought of as the result of previous designing
activity followed by summarizing what was learned, but this is just to help
your imagination; such a learning scheme doesn’t exist yet.) One thing that
must be left around in a schema is a record of uhy the'Qarious components were
acquired and connected as they are now found; in other words, the purposes of
the components. (If for no other reason, these are necessary in case they
have to be undone during mistake correction.)

The simplest way to accomplish this is to keep the tasks that were knowun

at the end of the (imagined) design episode in a frozen state. Some of these

Wwill have been FINISHED; for example, the tasks that acquired the components
are there just to record why they were acquired. Others are still active.
For example, there will be ACTIVE constraints and protected model

manipulations.

By way of illustration, a voltage divider may be first thought of as a way
of setting a bias voltage in a particular amplifier design problem. A voltage
divider found in a schema must be associated with a policy of keeping that
bias vol tage set.

An advantage of the frozen policy solution compared to a more specialized
implementation of purpose comments is that one mechanism is used to handle
local cooperation and conflict of tasks as well as interactions of new actions
Wwith old purposes. This is an example of the "machinomorphism” [mentioned at

the beginning of this chapter.

Il Design of Hierarchical Systems 185

Specialized device types are arranged in a hierarchy according to the
DERIVED relation. This is a more complex relation than SUB-DEV-TYPE and SPEC-
DEV-TYPE (cf. Fig. 111.5), which are used mainly to cause properties of higher
types to be inherited by louer. <xSUB-DEV-TYPE-1, SPEC-DEV-TYPE-1> Most of
the properties of a general circuit, such as its topology and components, are
not to be inherited by its specializations. Houever, there is an important
class of properties wuhich must be accessible from the specialization: the
frozen tasks of its more general counterpart. The relation betueen a general
circuit and its specialization is precisely that the expansion obligations of
the genetal circuit are fulfilled by the structure of the gpecialization.

To represent this relation, we need some more eqpipment. Every device
thawed from a schema has a "deep freeze" of frozen tasks, which are collected
for convenience as the subtasks of an abstract task called the [DEEP-FREEZE
Idevice|l. If dev-type 1 is derived from dev-type 2, then a device of type 1
Will have a "SOUL" which is a device of type 2. <xSOUL-ON-ICE> The important
relation between them is that every subtask of the soul's deep-freeze is to be
a subtask of the original device's deep-freeze. This inheritance is done via
/:CONSEQ deduction, since it is not important to see every frozen task during
normal operation; most of them will have been reduced anyway. They are mainmly
valuable in explaining the purposes of components.

For many examples of device schemata, see Appendix 3.

11l Design of Hierarchical Systems 106

~111.B Design Actions and Plans

I can go no further in talking about devices without talking about design
actions. This is because devices’ purposes are so intimately associated with
the purposes of their designer..in this case DESI; and DESI’'s purposes are
expressed as tasks.

Design actions fall naturally into these classes (see Fig. I11.6):

(1) "Design something with propertg'p": Starting with no structure or hint
of it, one is to produce such a thing.

(2) "Make an x": Here x is a device type, an example of which is to be
created. This kind of action breaks doun into subtypes, depending on what
kind of device type x is. Making a basic type tends to be a matter of
choosing which version along the specialization scale to use, then plugging in
its frozen tasks. Making a superordinate type requires more involved and
careful choice, since the sub-types to choose from usually have incompatible
properties.

(3) "Constrain something": Things that can be constrained are not devices,
but quantities. There are two classes: physical quantities such as vol tages
and currents; and the control quantities, such as resistances and power gains,
that | described above.

(4) "Change a device": Given a structure, it can be altered in various
ways. These actions include fixing a physical quantity, biasing a circuit,
adding feedback to improve stability, and coupling tuwo stages. The actions
are defined by plan schemata that often come in specialization hierarchies
like those of devices. A major subdivision of these are actions which involve
changing the previously reigning plan netuork as well, for example, altering a
control quantity which is already fixed by constraints,

This list is derived by common sense, and from perusal of 100 Ideas for
Design (Electronic Design, 1964), among other works. (Senturia and Wedlock,

13975)

The design problems which appear in books such as these include

"Design a power amplifier..

IIl Design of Hierarchical Systems

Design Actions

1 DESIGN

2 MAKE
superordinate
primitive
ideal
general
specialized

3 Constrain
CONSTRAIN -
SELECT-VALUE

4 Change
FIX quantity
BIAS
COUPLE
Patch

IMPROVE gain, input-Z, selectivity,...

Figure 111.6 Design Action Taxonomy

"Increase the current..." (Type 4)

"Isolate tuo connected devices" (Type 4)
“Make the quiescent output voltage 48V" (Type 3)
"Design a circuit with a high gain-banduidth product” (Type 1)

"Avoid loading" (Type 3)

(There are other kinds of actions, such as "simplify a circuit,"”
not counted as among these types.

plans to do so.)

I11.8.1 DESIGN

There is only one action in this class.

(DESIGN |prop|] ==> [<|name|>]

This action usually arises at the top level.

an action creates a model of a device that has property prop.

." (Type 2)

I hope they can be added, but I have no

107

which | have

Successful execution of such

In easy cases,

;gssw e%d‘! m :%s}i?rsé enc ylng =i susdl
&im»ﬁ:& <=s ligo-gi W2iesd
rioue e wisxe loteessneR Lievsl got =9 I8 eaei%egi%ﬁ;’;eg n&%f;@% gidl
SEB2EL SlebE Mol nfed I aniveh g lo §g§s=: & waigsys awliss rs

fot lous:

‘ . o . peatensd E
s . ' HisATEED
a ’ " '%&*?—-‘f"ﬁiﬁ

@ﬁa&f %
.gé !m X*'% .

W
it
iy

e

iy
’e's.u sﬁ“ #2EET

\
V
%

X e o)
o '3

e Fihus *%;Ssﬁ s 3%1,::5 wilie &3 emenll

,‘;ss:g,r sesﬁ} yﬁén fs ?.3§§“

ncs# ot ol smiq o

w1230 18,111

W
A,

Y

(SNUSESPURIREIY S .U N

0

¢

PR,

i

4

4
. ~
~

]

[, I

AN

L

RN I

s

b

183

Il Design of Hierarchical Systems

_S)se}-apis ay} op

uayj ‘sainjesy
3y} Buipaay
‘9dA}-Aop-210o E
9B, SN Xsel
ojul Jayjen

sainjeay-p puyy ()

ON O~

pieys Aiand
10} JUNO2dYy :Adij04

s)se}-apis
puly

adAy-aap-ai00 ()
3s00Yd % puly

[d+¢ NoIS3

O

a| ssewyday

Figure 111.7 Design Rephrasing Plan Schema

The'plan

This is a plan to manipulate the design problem as an object.

network is set up using a formula <x+DESI-1> uhich extracts the desired

111 Design of Hierarchical Systems 118

predicate as the value of ?+P. In this context, the embedded formulas,
prefixed with the character "_", are being used essentially as SNOBOL patterns
(Farber et. al., 1964) to tear the goal to be rephrased into manageable
pieces. So ?+P uill have value [[|prop|]l]. (See Appendix 1.)

Remember that the final aim of a rephrasing task is a revealing reduction
of its target task. A detailed analysis of the problem may be postponed; the
importént thing in rephrasing is to make it "familiar." The goal in the case

of the design rephrasing plan is to reduce the design problem to the following

net:

__— O side-tasks
D-NOTE () - O} (usually CONSTRAINS)
policies on ") O

MAKE O

Figure 111.8 Rephrased Design

The strategy of the designer is to "explode” the given predicate into "d-
shards," which are conjuncts of the original predicate. Discovering d-shards
is otcasionally straightforuard <xD-SHARD>, but usually depends upon formul3as
for the domain involved. (See Chapter IV.)

The d-shards are valuable only insofar as they lead to one of three
things:

(1) A core-device-type the MAKing of which is the simple first step of the
rephrased design plan (Fig. 111.8);

(2) Side-tasks, typically to enforce numerical constraints discovered as
d-shards;

{3) D-features, qualitative predicates used as policies in making a core-

device-type.

This fact is expressed as the policy task ACCOUNT-FOR-ALL, which says to

I11 Design of Hierarchical Systems 111

make sure that every d-shard leads to one of these three things. In the
current implementation, it is an error if a miscreant shard is discovered. A
mdre sophisticated implementation would know hou to try harder and attempt to
learn from its efforts.

The only other feature of interest in the general design rephrasing plan
is the step CORE-FINDER, during which NASL must find the core device-type to
be used. The core device type is often clear from a d-shard of the form [I[A
(lv]) (DEV-TYPE ?|v| |dev-type|)]] <xCORE-DT-1>. Houever, rules from
particular domains can and do suggest device-types based on more elaborate d-
shard processing. The interpreter must choose one. It is the responsibility
of the uriter of this knouledge to provide choice rules to get out of this
situation. However, there is one rule <x%CORE-DT-CHOOSE> which is domain-
independent: if one device type is subordinate to another, reject it. (It
should be suggested later anyway by the policies that grow out of d-features.)

"This rephrasing method may be compéred uwith the proposal of Moore and
Newell (1874) for the MERLIN program. The idea there was to be able to "vien"
any conceptual structure as another by a process of mapping the pieces of one
into the pieces of the other. DESI tries to vieu any design problem as
"making a ..., while noticing hints +++, then doing ---"; this template may be
seen as a three-slotted structure, such that every piece ("d-shard") of a
‘design problem goes into one of these slots. The process is more structured
than MERLIN; in particular, this kind of rephrasing is not an operation uhich
can aluays be done by definition; it is capable of failing. The analogy may,
houever, be revealing. (It was suggested by Marvin Minsky.) | suspect that
many rephrasing problems can be put in this paradigm form, and that the
rephrasing protocol can be made more specific. Houever, currently DESI does

things with rephrasing wuhich cannot be seen as an instance of this paradigm.

Il Design of Hierarchical Systems 112

(An example is equation solving.)

I111.B.2 Making Things

(1) [MAKE |device type|]l ==> [<|name|>)

The intent of this action is to create ("buy") a device of the indicated
type. If the device type is basic <xMAKE-BASIC-PLAN>, a task net is set up
with a primitive GRABBA action, which will just generate a neu symbo! and make
its main-dev-type be the basic type. Extra tasks are hung on the netuork,
depending on whether the device is primitive <xMAKE-PRIM>, composite <xMAKE-
COMPOSITE>, or ideal <xMAKE-IDEAL>. In the case of primitive devices, the
only commitment enqueued is to select the values of its control quantities.

In the case of composite devices, the plan subnetuork includes a subtask to
expand the device at some time in the future. Ildeal devices receive a

commi tment to be implemented. (These new tasks are not marked /:MAIN in their
task netuworks, so they do not have to be finished before the successors of
their supertasks are begun; hence, they amount to future commitments.)

Expansion of a composite circuit means wiring up a circuit diagram for it.
Usually this just means selecting a specialized device type and declaring the
circuit to be that type; this is called "specializing" the circuit.
<xSPECIALIZE-DEFN> The system has a choice of circuit diagrams from the
specialization hierarchy. If one circuit is DERIVED from another (and hence
is "specialized"; see Figs. I11.4 and II1.5), it will do the same task, but
may depend on more specialized assumptions. It is the user’s job to urite
rules that suggest circuit versions to match requirements, but the system
knouws about two peculiar specializations of a circuit: its "most general”

specialization and its default specialization. <xMOST-GENERAL-DEFN, DEFAULT-

Il Design of Hierarchical Systems 113

SPEC-DEFN> 1f either of these is available, it will be suggested. Generally,
only one specialized device type of some basic type will come up in a given
context. The user must make sure that good choice rules are available when
more than one appears. The trade-offs should be clear: a general schema
involves more work on expansion-obligations, but using a specialized version
runs the risk of having to correct the circuit topology when some assumption
proves unjustified.

If the user's rules do not sufficiently disambiguate, the system uses the
tuwo rules <xSPEC-DEV-BETTER, TNO-SPEC-DEVS—NURSE-THAN-UNE>. The first
encourages the use of a more specialized device type if it has been suggested;
the second overrides this one by ruling out conflicting suggested
specializations.

Basic device types are just canned diagrams; the choice is which version
of essentially the same circuit to take. That is why these special cases can
be distinguished. In choosing among superordinate devices, rules for zeroing

in on basic sub-types are entirely up to the user.

(2) [ACQUIRE |device type|] ==> [<|name|>]

MAKE a device type, unless there is already one around which can be used.
<xACQUIRE-DO-1, ACQUIRE-DO-2> For example, you should always re-use old
vol tage sources instead of making a new one; you should never re-use a
transistor; and you should look around to see if you can bum a node before
making a new one. (This last information is purely domain-dependent. See

Appendix 3.)

I11 Design of Hierarchical Systems 114

(3) [EXPAND |device])
| This action is required for devices which are not fully specified by their
circuit diagrams. (See below, Sect. [11.A.2.) This task doesn’t require
elaboration, but accumulates subtasks by deduction. For example, it picks up
expansion obligations from composite device schemata. These are actions uhich
become subtasks of the task of EXPANDing each instance of the device.
<xEXPANSION-0OBLS-DO> Other tasks that are created involve finding all GENERIC-
CA’s of the device that have been constrained and deriving the formulas which

define them. <xGENERIC-CAS-DO> (See Sect. IV.B.4.)

(4) [CONFIG < -types- >
(A (-vars-) < -actions- >)]

This is a "macro-action" which is an abbreviation for "ACQUIRE the types,
then bind the vars to the resulting devices to generate a list of actions to
per form." <xCONFIG-DEFN> The LISP program SET-UP-CONFIG which elaborates it is

not shoun in Appendix 2. CONFIG is used as an abbreviation in Appendix 3.
111.8.3 Constraints

(1) [CONSTRAIN < -quantities- > |pred|]

Executing this action commits the interpreter to making pred hold true of
the various physical quantities and control quantities. Thus, it is naturally
a policy. CONSTRAIN is a peculiar mixture of ACHIEVE and ASSUME. If a
quantity is under control, you are permitted to ASSUME it has any value that
doesn’t contradict what is already knoun about.it. So, when CONSTRAINing, it
is often permissible to record any equalities deducible immediately from its

constraint plus other constraints and equalities to be found in the data base.

I11 Design of Hierarchical Systems 115

(Cf. (Sussman and Stallman, 1975).) If these constraints and equalities
contradict the new constraint, the action fails. (See Sect. 111.B.)

In detail <xCONSTRAIN-DO>, this is hou CONSTRAINing is done: if the number
of unknouns is exactly one, and the main connective of the constraining
predicate is "=," then the system is to try to solve the equation
immediately. <xCONSTRAINT-RESOLVE-DO> If it is solvable, the result is to be
protected. (See belou.) In either case, the CONSTRAIN remains an established

policy (a "constraint").

Algebraic Symbol Manipulation

Several times in discussions of constraint and equality manipulation I
have assumed some sophisticated symbol-manipulation ability by the program.
The various tasks that | take for granted include solving equations, choosing
values to satisfy rather arbitrary constraints (including inequalities), and
finding the precise way that a one control quantity depends on the variation
in another (see Sect. II1.B). In the long run, it would be enlightening to
see whether the structure of the NASL system is sufficiently flexible for this
information to be encoded as a set of NASL formulas. Preliminary indications
are that this is quite feasible; very simple equations are already solved by
the tasks generated by <xEQN-SOLVE-DO>. (Other equations might be handled by
the methods of (Bundy, 1375).) My judgment has been that to explore this byuay
in more depth would bog me doun. This decision is not obvious; after all,
flexibility of application is one of the main design goals of my system.
Houwever, having an implementation of one domain is, for nouw, much preferable
to having curious fragments of several. Therefore, I depend upon calls to an
expert symbol-manipulation system to do this work for DESI. | might have used
some symbol-manipulation system like MACSYMA (Mathlab, 1974), but, for
simplicity, I chose myself as this expert subsystem. Whenever a non-trivial
symbol-manipulation problem needs solving, the system types out a request for
a solution and waits for its human interlocutor to supply it.

It is to be hoped that this is not a permanent trend in computer science,
since it tends to reverse the usual practice of having humans do the creative
Hork while machines do the tedious chores.

Il Design of Hierarchical Systems 116

(2) [SELECT-VALUE }control attribute] |primitive devicel|l

This action is to be postponed until all tasks of Types 1, 2 and & are
finished. <xSELECT-POSTPONE> DESI makes all SELECT-VALUEs subtasks of a task
SELECT-EM-ALL which is a successor of every "topology-changing task." 1t is
assumed that this kind of task is recognizable from its action function.
(MAKE and FIX (-quantity) are the only built-in topology-changers.)

When the system gets to a SELECT-VALUE task, either the control attribute
for this device already has a value; or DESI must pick a value within the
range of the control attribute which fits all the knoun constraints on it
<*SELECT-VALUE—DU>. and impose model effect |

{=/> ’(|control attribute| |primitive device|) |value|].
It then PROTECTs the fact that the value satisfies the constraints.

If there is no such value, the system is faced with a "constraint
collapse" (see Sect. 111.B): that is, it has made a mistake.

Executing SELECT-VALUE tasks causes the resolution of all remaining

constraints of a network.

(3) [PROTECT ° |proposition}]

The intent of this action is that the system should become alarmed, i.e.,
realize it has made a mistake, when the fact is no longer true in the model.
This is not as easy as it sounds or as it is usual ly implemented (Sussman,
1975), because the given fact may be only indirectly related to atomic facts.

Because data dependencies are maintained by the system, it might be
possible in principle to make this a built-in action. That is, the system
could just wait for propagating erasures to uwipe out a fact. Something
special would have to be done for the results of non-monotonic inference (that

is, using /:CONSISTENTLY), because in this case it is recording a fact that

Il Design of Hierarchical Systems 117

could upset the protected fact.

For this reason (and for the weak introspective reason that protection
does not seem to be a fool-proof operation), I have DESI treat protection as a
problematic action to be reduced to different subtasks in different cases.
This decision is under revieu.

In the design domain, ue.have need primarily of protecting values uhich
are derived from consideration of constraints. This is dbne <xQVAL-PROTECT>
by /:MONITORing the fact that the quantity has a value and /:CONTINUing the

protection policy when the value is removed. <xPROTECT-CONTINUE>

CPROTECT
' (SATISFIES (R R#71|C))]

O O

EPROTEC}

(R R#71)
changed
VERIFY L/:MONITOR
LI:MONITOR : / N

"(SATISFIES...)]
[=/>’(R R#71) 500kg]

(\(T) O
(/:CONTINUE C/:FIND

‘(PROTECT...)))] new (R R#71)]

Figure I11.9 Quantity-Value Protection Plan Schema
Notice that the variable may be getting a new value which satisfies the

constraints, so the system cannot jump to the conclusion that a protection

111 Design of Hierarchical Systems 118

violation has occurred. The decision to continue the policy is generally
postponed. Upon continuing it, if a violation has occurred, DESI realizes its

mistake.

I11.B.4 Changing Devices

This is a catch-all category uhich includes biasing, feedback, coupling,
and fixing the value of a physical quantity. These actions are described in
the next chapter. Other domains would have other actions.

The last action in this list is the only one I feel there is anything to
be said about at the rarefied level of general design. Evgn for that one,
about all that can be said is that, for almost any domain, there exist ways of
fixing physical quantities, bringing them under control, creating "boundary
conditions." For electronics, this is done with sources, voltage dividers,
etc. In mechanical engineering, it might include fastening things doun,
hooking up motors, etc. Perhaps it is worth saying that "FIXing a physical
quantity means turning it into a control quantity,” but I’m not sure hou to
say that. It is likely that the way one's knouledge of this sort of
regularity is used is in assimilating a neu domain; namely, everyone knous
that when he is learning about meta-hydraulic engineering he should be sure to
ask wuhat methods there are for fixing meta-hydraulic quantities.

Besides these actions, which arise in the course of normal problem
solving, there are actions (subsumed under "patch" in Fig. II1.6) required to
change a circuit because it is failing to meet its specifications. These are
described in Sect. [11.0; they are not implemented, because the mistake-
correction machinery to support them does not exist.

Many design plan schemata are arranged in specialization hierarchies

Ill Design of Hierarchical Systems 119

similar to hierarchies of specialized composite device types. (Sect. I11.A)
This is especially true of the circuit-alteration plans discussed in the next
chapter. The reason for this is that a circuit-alteration plan for an action
like "bias ..." is close to being a device type. The difference is that the
procedural component is larger and the plan is more anonymous; the resistors
used for biasing do not become components of a "biasing device," but of the
circuit that is being biased.

Just as devices may be related by the prediéate SPEC-DEV-TYPE, plan
schemata may be related by |

[SPEC-SCHEMA |plan schema 1| |plan schema 2|].

Any instance of the specialized schema (1) is an instance of the general
schema (2). <xSPEC-SCHEMA-DEFN> Choice rules are provided for these plan
schemata which are completely analogous to the rules (Sect. 111.B.2) for
choosing among specialized device types. <xSPEC-1S-BETTER, TWO-SPECS-WORSE -
THAN-ONE >

Tuo other useful control predicates defined in the file DESI are STASK
<xSTASK-DEFN> and REDUCE. <xREDUCE-DEFN> The first is used to abbreviate in
the common case uhere a task is defined, and made a subtask of something else,
in the same breath. The second is used to express a common interaction among
‘design plans: when one plan accomplishes part of the function of another. In
that case, saying [REDUCE < -reducers- > |reducee|] means "the reducer tasks
are all the subtasks of the reducee task; don't bother to try to execute it

any further." (Cf. Sect. I1.B.1.)

Il Design of Hierarchical Systems 128

I11.C Composition of Partial Solutions

One of the most intefesting and complex events that can happen during the
career of any problem solver is the failure of the labels attached to its
canned plans to match all of the requirements of some task. In a design task,
this situation allous unlimited scope for the study of creativity. Of course,
our knouledge of such matters is as yet very slight, so that the approach my
system takes to the handling of such problems is not terribly brilliant.

Uhen a DESIGN task does not immediately succeed, an attempt is made (Sect.
II1I1.B) to break it doun into-a core task plus several constraints and
"features." For example, the knouledge in ZORCH is sufficient to discover
that an amplifier is required given a uide rangé of requests for designs.

Then further choice information from ZORCH is used to select one that is
likely to meet all the amplifier constraints so generated. As mentioned in
Sect. 11.A, this sequence is called the "recognition protocol.” Finally, the
constraints are resolved.

Often this approach fails. It may fail in more than one way:

(1) More than one "core device-type" (see Sect. I11.A) may be discovered.

(2) There may be more than one way to implement a core device type. (See
above, especially the discussions of "superordinate" device classes and
abstract device-types.)

(3) The constraints generated may not‘actuallg be satisfiable.

All of these problems may call for composition of solutions to subproblems.
The last problem is peculiar in some ways; | devote section lll;D_to
describing constraint resolution.

The others are related by having to do with the choice protocol. For
example, problem (2) may arise if more than one amplifier fits some of the

requirements, and none fits well enough to exclude the others. In this case,

I1l Design of Hierarchical Systems 121

the response of the system when no further exclusions can be made is to record
(QUIESCENCE [choice name|] in the choice data pool.

It is here that choice rules with conclusions of the form [/:RULE-
TOGETHER...] are important. They allou options to be superseded by neu
A options. This is the most natural and painless place for composition to occur
in a NASL-based systenm.

This is the closest DESI comes to a universal composition method. This is
a defect in the system as it exists. A better system would recognize the need
for a /:RULE-TOGETHER and propose one; future episodes would exercise and
modify it. For example, some of the choice rules for amplifiers discussed in
the next chapter contain almost-general principles regarding cascading a
buffer amplifier to another amplifier when the first was picked for its input
impedance. It is not hard to see a more general principle regarding inputs
and outputs lurking behind this specific one. [t lurks there still.

For nou, you must be content with the special ized composition rules in

Chapter 1V.
II'1.D Constraint Collapse

As a design prdceeds. the current data pool fills up with formulas
speci fying components, connections, quantity values, and constraints. If
everything proceeds smoothly, eventuéllg there will be a value for every
primitive component and the problem will be solved. The most common thing to
go uwrong With this scenario is to discover that some subset of constraints
cannot be satisfied. OESI counts this as a mistake in the sense of Sect.
I1.E. All its previous machinations were based on the assumption that the

functional requirements could be reduced to constraints and satisfied. When

111 Design of Hierarchical Systems 122

this turns out not to be the case, the tagk netuork must be altered to reflect
what it should have been doing. On the other hand, as much as possible of the
netuork must be'salvaged.

As I pointed out in Sect. II.E, my theory of mistakes is as yet poor ly
developed. This section must be taken as a continuation of the detailed
proposal | made there, not as a description of existing program.

. As a concrete example, say that a lou-pass filter is required, which
filters out one radio station at 780KHz to leave the signal of another,

equal ly strong station at S00kHz.

KEEP FLUSH
A »

kH
500 700

Figure 111.18 Radio Spectrum With Tuo Stations
This problem can be represented easily using the "frequency picture" language
I will develop in Chapter IV. 1 will continue to use simple English in uhat
fol lous.
The chosen solution is an RC lou-pass filter, an instance of the schema
represented by Fig. 1.6. This schema and the frequency-domain methods used to

find it (Sect IV.B.1) generate these constraints and equalities:

Il Design of Hierarchical Systems 123

CON1 (from rephrasing of the problem):
Vo (7008 kHz) < -1V, (508kHz)
CON2 (from schema for RC filter or by analysis):

His) = 1
14RCs

CON3 (from knouledge of filters):

selectivity(ry, f)) = IHUj2nrF) |

CON4 (from knouledge of linear devices):

H(j2rF) | = VoI
vih
Figure II1.11 Relevant Constraints

From these constraints and the statement of the problem, we can build up

the following "constraint network":

111 Design of Hierarchical Systems 124

CON2(f1) CON2(f2)
R C
CON3
H(;2f,) o~
IHG2ty) [H(j2#fp)]

selectivity (f1, f2)

CON4(f1) CON4(f2)
CON1

Figure 111.12 Constraint Network
(Cf. <xCQ-CLO> in Appendix 2.}

If all the constraints are satisfiable, that is, if the output amplitude
ratio can be made small erough that the second station has negligible output
compared to the first, everything is fine. But, as it happens, there are no
values of R and C which can be picked in order to bring this off. This is
referred to as "constraint collapse." This will be noticed uhen one of the
constraints proves unsatisfiable. Which constraint it uwill be is
unpredictable; the problem is clearly a problem of the whole netuork rather
than any task.

Recall from Sect. II.E that fixing a mistake involves altering the current

Il Design of Hierarchical Systems 125

World model and the task network. In this case, there are several current
tasks that have caused the problem: the choice of an RC circuit to implement
the lowu-pass filter, and the various CONSTRAINs, some thawed from the RC
schema, which led to the trouble. DESI has a record of every choice it made
in the process of setting this netuork up, so it could find a choice point
that would make a difference, restore the state of the world at that point,
and try something else; | have already discussed and rejected this in Chaptef
IT.

The design knouledge of DESI provides us with a better method of solving
this problem. This method amounts to the following English summary:

(1) Find a control-quantity in the collapsed task network such that
changing it would get rid of the problem. This is not as easy as it sounds.
It is counterproductive to consider "mak ing Vg (508kHz) larger," for instance.
Any method for doing that will probably make VB(7BBkHz) larger as well. In

the example, the proper ansuer is "selectvity." | assume symbol manipulation
power ful enough to handle this. (Sect. 111.8.3)

(2) Introduce a neu task [IMPROVE "|losing control quantity| |direction
and magnitude|l. A task of type IMPROVE, unlike previous control-quantity
manipulators, has the aim of changing some already-set object rather than
fixing one that has yet to be set. To execute the IMPROVE task requires some
domain-dependent rephrasing, choice, etc., which by nou are routine. By one

route or another, a plan like that of Fig. 1.7 is recovered.

(3) The actual tasks associated with the IMPROVE plan perform the
acquisition and insertion of the neu pieces, an amplifier, capacitor, and
resistor, and the renaming of the output port. The resulting change in
topology flushes the old constraints on the system function and hence the
. selectivity of the device and enables the design to be completed. This is not
too painful, since the control-quantity [(H ?DEV) ?F] is marked GENERIC-CA in
the data pool; when the old stored value is flushed, a task is enqueued to
recalculate it.

Except for the initial symbol manipulation, this seems fairly simple; the
IMPROVE task is no different from any other task, such as BIAS or COUPLE,
which alters the topology and part names of a circuit. The difference, of
course, is that the policies associated with the IMPROVE plan must specify

exactly what parts of the old task network encircling the RC filter are to be

111 Design of Hierarchical Systems 126

preserved. The difficulty of implementing this scheme revolve around the

careful undoing of protections and other policies.
I11.E Programmer’s Guide

DESI is a skeletal theory of design within which the user’s domain-
dependent rules operate. These rules will fall into three classes: rephrasing
rules, device definitions, and device-choice rules.

The user's rephrasing rules can be very simple. Any declaration that a
function is a CONTROL-ATTRIBUTE will cause the cg-shard machinery to turn a d-
shard of the form [[A (X) (= (]attribute] ?X) |value|)]] into a side-task to
CONSTRAIN the given control quantity.

More complicated rules can create entire inferential subtasks to make
finer discriminations. Examples will be given in the next chapter.

In making up device schemata, the user uill have to use his intuitions.
Superordinate device types are convenient slots to put inheritable
characteristics into. A basic device type is one with a "diagra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>