DESCRIPTION AND THEORETICAL ANALYSIS (USING SCHEMATA) OF
PLANNER: | -
A LANGUAGE FOR PROVING THEOREMS AND |
MANIPULATING MODELS IN A ROBOT ”

' Carl Hewitt

April 1972

. ARTIFIC IAL INT ELLIGENCE LABORATORY

I‘{ 4“3‘ LT el

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

e
inoh

Y ESERE

- ‘~..‘J

Cambridge ' " Massachusetts 02139

NC-TR - A58

Work reported herein was conducted at the Artificial Intelligence Lab-
wo"ratory, a Massachusetts Institute of Technology research program sup-
ported in part by the Advanced Research Projects Agency of the Depart-
ment of Defense and monitored by the Office of Naval. Research under
Contract Number N00014 70-A- 0362 0003

The views and conc1u51ons'contained in this document are those of the
author's and should net ‘be interpreted as necessarily representing

the official p011c1es, either expressed or implied, of the Advanced
Research Projects Agency or the U.S. Government.

P

DESCRIPTION AND THEORETICAL ANALYSIS (USING SCHEMATA) OF
PLANNER: :
A LANGUAGE FOR PROVING THEOREMS AND
MANIPULATING MODELS IN A ROBOT*

Abstract

PLANNER is a formalism for proving theorems and manipulating models
in a robot. The formalism is built out of a number of problem-solving
primitives together with a hierarchical multiprocess backtrack control
structure. Statements can be asserted and perhaps later withdrawn as
the state of the world changes. Under BACKTRACK control structure, the
hierarchy of activations of functions previously executed is maintained
so that it is possible to revert to any previous state. Thus programs
can easily manipulate elaborate hypothetical tentative states. In addi-
tion PLANNER uses multiprocessing so that there can be multiple loci of

control over the problem-solving. Conctlusions can be drawn from the various

changes in state. Goals can be established and dismissed when they are
satisfied. The deductive system of PLANNER is subordinate to the hier-
archical control structure in order to maintain the desired degree of
control. The use of a general-purpose matching language as the basis
of the deductive system increases the flexibility of the system. Instead
of explicitly naming procedures in calls, procedures can be invoked im-
plicitly by patterns of what the procedure is supposed to accomplish.
The language is being applied to solve problems faced by a robot, to
write special purpose routines from goal oriented language, to express
and prove properties of procedures, to abstract procedures from proto-
cols of their actions, and as a semantic base for English.

Thesis Supervisor: Seymour Papert, Professor of Mathematics

*This report reproduces a thesis of the same title submitted to the
Department of Mathematics, Massachusetts Institute of Technology,

- on January 29, 1971 in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

P

0.

0.

2.

3.

4.

CCNTENTS

Contents

A Fable on a Declarative Use of Imperatives

Cn the Structural Foundations of Problem Solving

Discursive Overview of PLANNER

The Pattern Matching Language MATCHLESS

4.1

4.5

s¥ntax of Identifiers and Expressions
4.1.1 Prefix COperators for Identifiers

4.1.2 Expressions

Types
Simple examples of Matching

Definition ¢f Procedures
4.4.1 PFunctional

4.4.2 Bacro
4.4.3 Actor
4.“0“ I’PQ
4.8.8.1 Union
4.4.4.2 Product
4.4.8.3 Extensionr
4.48.4.4 Sum
4.4.4.5 Homogenous
4.4.5 BExternal Interrupts

Functions in Expressions
4.5.1 Definitions of Punctions

4.5.1.1 Control Punctions
4.5.1.1.1 Comnditional
4.5.1.1.2 Block
4.5.3.1.3 Escape
4.5.1.1.4 Repetition
4.5.1. 1.5 HNulti-Process

4.5.1.2 Data Punctions

0. page 3

0. page 4

4.5.1.2.1 Specialists
4.5.1.2.1.1 Structural
4.5.1.2.1.1.1 List
4.,5%.%.2.1.1.2 Vector
4.5.1.2.1.1.3 String
“.501.201.10“ Graph
4.5.1.2.1.1.5 Class
4.5.1.2.,1.2 Atonm
4.5.1.2.1.3 ¥Word and Number
4.5.1.2.1.4 Algebraic
4.5.1.2.1.5 Locative
5.5.1.2.1.6 Stack
4.5.1.2.1.7 Ring
4,5.1.2.1.8 Input-output
4.5.1.2.2 Protection
4.5.1.2.3 Monitoring
§.5,1.2.4 Type
4.5.1.2.5 Synchronization
4.5.1.3 Identifier
4.5.1.4 Debugging
4.5.2 Bxamples of the Use of Functions

4.6 Actors in Patterns
4.6.1 Definitions of Actors

4.6.1.1 Control Actors
4.6.1.1.1 Conditional
4.6.1.1 2 Block
4.6.1.2 Data Actors
4.6.1.2.1 Specialists
4.6.1.2.1.1 Structural
4,6.1,2.1. 1 1 List

4.6.7.2.1.1.2 Vector

u.6.1.2.1.1 3 String

4,641.2.1.1.4 Graph
4.6.1.2.1.2 Atonm
4.6.1.2.1.3 Word and Number
4.6.1.2.1.48 Algebraic
4,6.1.2.1.5 Locative
“060102.1.6 Stack
4.6,1.2.1.7 BRing
4.6.1.2.1.8 Character

4.6.,%.2.2 Type

4.6.1.3 Identifier
4.6.2 Exaaples of the Use of Actors

4.7 The Irplementation Language MUBBLE

4.8 The EBditor

5.

6.

The

S.2

5.3
5.4

5.5

post gL ay

Theorea Proving Formalisa PLANNER

PLANNER Procedures

S.1.1 Hierarchical Backtrack Control Structure

5.1.2 Functional Procedures

5.1.3 Theoreas
5.1.3.1 Consequent
5.1.3.2 Antecedent
5.1.3.3 Erasing

PLANNER Functions

5.2.1 Data Fusnctions
5.2.1.1 Assertions
5.2.1.2 Erasures
5.2.1.3 Goals

5.2.2 Control Functions
5.2.2.1 PFailure
5.2.2.2 Finalization
5.2.2.3 Repetition

Clauses in PLANNER

A simple Exaagle

5.4.1 Using a Consequent Theorea
5S.4.2 Using an Antecedent theorea
5.4.3 0Using Resolution

agths about PLANNER .
+5.1 Conseguent Theorems Used Only for Working

Backwaxds
5.5.2 PLANNER Does Only Depth Pirst Search
5.5.3 Use of Pailure Implies Inefficient Search
5.5.4 PLANNER Does Only What It is Told to Do

5

Bore on PLANNKER

6.1

Siaple Bxamples in PLANNER
6.1.' Londons's Bridge

6.1.2 Analogies
6.1.2.1 Simple Analogies
6.1.2.2 Structural Analogies
6.1.3 HNathematical Induction
6.1.4 Descriptions
6.1.4.1 sStructural Descriptions
6.1.4.2 Constructing Examples of Descriptions
6.1.4.3 Descriptions of Visual Scenes
6.1.4.4 Pover Set of Intersection of Two Sets
Is the Intersection of Their Power Sets
6.1.5 Semantics of Natural lLanguage

0. page S

6.1.6 The Pcns Asinorunm

6.2 Current Problems and Future Work

7. Models of Procedures and the Teaching of Procedures

ls of Procedures .
Models in Expressions: Intentions

e
1

2 PFodels in Patterns: Aisms

3 Models of PLANNER Theorenms

7.1 _M

7.2 1ng grocedures

ling
Ey Abstracting Protoccls of Procedures

.1 Protoccls

.2 Variabalization and Formation

of Prctocol Tree
.3 1ldentification of Indistinguishable
Nodes

Examples
2.4.,1 Building a Wwall
2.4.2 Reversing a Llist
2.4,3 Finding the Description
2

2.
2

of a Stick
.4.4 Finding Fibonacci Numbers
Iteratively
7.2.2.4.5 Defining a Data Type
.3 PRy Deducing the Bodies of Canned Locps
.4 Comparison of the Methods

~ NNNaN N NN

7.2
7.2

7.3 Current Problems and Future Work

8. Theoretical Foundations

€.1. Analytic Thecrz
8.1.1 "Classes of Schemata
8.

1. Recursive Scherata

.1.1 Comparison with Program Schepmata

«1.2 Ccmgilation

1.3 Schemata with Resets

.1.4 Decompilatiocn

.1.5 Primitive Recursive Schemata

Schemata with Counters

.3 Parallel Schemata

.4 Locative Schenmata

.5 Schemata vith Selectors and
Replacement

«1.1.6 Schemata with Free Variables

0.

page 6

A :
‘ 8.1.1.7 Schemata with Fquality
8.1.1.8 Hierarchical Backtrack Schemata
€.17.1.8.1 Comgparison with Recursive
Schemata
€.1.1.8.2 Compactison with Parallel
Schemata
€.1.1.8.3 PLANNER Schemata
8.1.2 Intentions
8.1.2.1 Definiticn of Intentions
8.1.2.2 Ccmpleteness of Intenticnal Analysis
8.2. Synthetic Theory
8.2.1 Realizations
8.2.1.1 Realizations for the Quantificational
Calculus
8.2.1.2 Realizaticns of FLAKNKNER Theorenms
8.2.2 Construction of Schemata
8.2.2.1 Ccmpleteness of Procedural Abstraction
8.2.2.2 Completeness of Method of Canred Lcops
8.3. Current Prcklems and Future Work
9. Formal Definition cf PLANNER

)

10. 1Index of Erocedures

11. Bibliogracghy

12. Biography

0.

page 7

0. page 8

fedication

This paper is dedicated
to the ideas embodied in the language

LISP

0. page 9

ACKNONLEDGEMENTS

The following is a report on scme of the work that I have done
as a graduate student at Project MAC. Reproduction in full or in part
is pernitted for any purpose of the United States government. MNost of
the ideas described herein are not original with the author. Many are
simple extensions and modifications of current ideas in the coamputer
culture. Others have been suggested by people in conversatioms. I
have tried to explicitly acknowledge all the cases that I can
reaeaber. By apoligies to any one vho has been omitted. Still other
ideas have emerged in the course of debate and discussion with the
people listed belovw., I would like to thank the various systen
"hackers" that have made this work possible: D. Eastlake, R.
Greenblatt, J. Holloway, T. Knight, 6. Mitchell, S. Nelson, and J.
white, I had several useful discussions with H. V. HcIntosh and A.
Guzman on the subject ¢f pattern matching. S, Papert, T. ¥Winograd,
and M. Paterson made sugyestions for improving the presentation of the
material in this thesis. T. ¥Winograd, P. Wincton, and G. Susssan made
suggestions for improving PLANNER. Alan Kay, Jeff Rulifson, Mick
Pippinger, Bugene Charniak, John NcCarthy, Nils Nilson, Richard Pikes,
Bichard Waldinger, Julian Davies, Bruce Andersom, Jack Dennis, Bob
Yates, Danny Bobrow, Warren Teitleman, Richard Stallsan, Peter Deutch,
and Bob Balzer provided illuminating discussions on some of the fine

points. Peter Bishop, Dave Beed, Gary Peskin, Gordon Beaedict, Al

0. page 10

Solish, Chris Reeve, Gerald Sussman, Bruce Daniels, Drew McDermott,

Jeff Hill, and Dave Cressey have worked on implementations. Ira
Goldstein, Peter Bishop, Richard Wong, Steve Zilles, Bruce Daniels,
Dave Reed, Gary Peskin, Julian Davies, Gordon Benedict, and Jeff Hill
helped me to find bugs in previous versions of this document. I would
like to thank the members of my thesis committee (Seymour Papert,
Marvin Minsky, and Mike Paterson) for their help and advice. This
report represents my current imperfect state of knowldege. The above
people are in no wvay responsible for the kludges, errors, aad
misunderstandings that remain. Please send coaments, criticisas, and

errata to:

Carl Hewvitt

M. I. T. Artificial Intelligence Laboratory
545 Technology Sguare

Cambridge, B#ass.

Ue S. Ao

EY

0. page 11

Note to the Reader

This paper is crganized in what purports to be a logical
'systenatic fashion. The organization makes it difficult to get a
quick overview. The reader should not try to read the paper in a
linear fashion froam cover to cover. If he gets stuck he should "pop

up"™ one level and continue.
"YOU HAVE BEEN WARNED™

There is an index of prmiamitives at the end. There is an index to the
syntax after the function READ. The following auide is provided for
those readers who are not interested in reading the vhole paper.
Chapter 1 is a "hack". Chapter 2 gives the episterological
foundations for our approach to problem solving. Chapter 3 is a
discursive overview of the rest of the thesis using examples of some
features of the problem solving language PLANNER. Many of the
important ideas in the thesis are touched on somewhere in the chapter.
In chapter 4 ve find a detailed explanation of the structural pattern
satching language NATCHLESS., BReaders who are only peripherally
interested in pattern matching need read only sections 4.1, 4.2, 4.3,
and 4.4%. Chapter 5 begins the systesatic explanation of PLANNER. It
introduces the primitives, data structure, and control structure of

the language. In contrast to the quantificational calculus, the

0. page 12

semantics of PLANNER are expressed in teras of the properties of the

procedures which define the formsalise, In chapter 7 we éxplain how
properties of ELANNEE procedures can be expressed and proved in the
formalism itself. Also we attack the problem of how it is possible to
teach a problem solver nev knowledge. We explain how schemata give
the beginning of a theory on the comparative problea solving powver of

various computational models in chapter 8.

—

1. page 13

1. What Achilles Said To The Tortoise

Lesis Carrecll

Achilles had overtaken the Tortoise, and had seated hinself,
comfortably on its back.

"So you've gct to the end of our race-course?" said the
Tortoise. "Even though it does consist of an infinite series of
distances? I thought some viseacre or other had proved that the
thing couldn't be done?"

"It can be done," said Achilles. "It has teen dope! Solvitur
ambulando. You see the distances were coanstantly diminishing: and so-
-n

“But if they had been constantly increasing?" the Tortaise
interrupted. "Hov then?*®

"Then I shouldn't be here,™ Achilles modestly replied; ™and
you would have got several times round the vorld, by this timel"®

"You flatter ae-- flatten, I mean,"™ said the Tortoise; "“For
you are a heavy weight, and no mistake! Well hon, would you like to
hear of a race-course, that sost people fancy they can get to the end
of in two or three steps, while it really comsists of an infinite
nuaber of distances, each ome longer than the previous one?"

“Very much indeed!" said the Grecian varrior, as he drev froa
his helmet (few Grecian warriors possessed pockets in those days) an

enormouys note-book and a pencil. "Proceed! And speak slowly, please!

1. page 14

Short-hand isn't invented yet!"

“That bheautiful First Proposition of Euclid!" the Tortoise
murmured dreamily. ™Ycu admire Euclid?"

"passicnately! So far, at least, as one can admire a treatise
that won't be published for some centuries to conme!"

“Well, now, let's take a little bit of the argument in that
First Proposition—-just two steps, and the conclusion drawn from then.
Kindly enter them in your note-book. And, in order to refer to them

conveniently, let's call them A, B, and Z:

{(A) Things that are equal tc the same are equal to each other.

{B) The two sides of this Triangle are things that are equal
to the same. '

{Z) The two sides of this Triangle are equal to each other.

npeaders of Fuclid will grant, I suppose, that Z follows
logically from A and B, so that any one who accepts A and B as true,
must accept Z as true?"

nyndoubtedly! The ycungest child in a High School-- as soon as
High Schools are invented, which will nct be till scme two thousand
years later—--will grant that."

"And if some reader had not yet accepted A and B as true, he
might still accept the Sequence as a valid one, I sufppose?”

"No doubt such a reader might exist. He might say 'I accept
as true the Hypothetical Profposition that, if A and B be true, Z must
be true; but I don't accept A and B as true.' Such a reader would do

wisely in abandoning Euclid, and taking to football."

1. page 15

"And might there not also be scme reader who would say *'1

accept A and B as true, but I don't accept the Hypothetical®?n»

"Certainly there might., He, also, had better take to
foottall."

"And neither of these readers," the Tortoise continyed, "is as
et under any logical necessity to accept Z as true?"

"Quite so," Achilles assented.

"Hell, now, I want you to consider me as a reader of the
second kiand, and to force me, logically, to accept 2 as true."

"A tortoise playing football would be~-" Achilles was
beginning.

#--an anomaly, bf course,™ the Tortoise hastily interrupted.
"don't vander from the point. Let's have Z first, and football
aftervards!"

"I'm to force you to accept Z, am I?" Achilles saiad musingly.
"And your present position is that you accept A and B, but you don't
accept the Hypothetical--*

"Let's call it C,"” said the Tortoise.

"--but you don't accept:
(C) If A and B are ttne, Z aust be true.”
"That is ay present positon,”™ said the Tortoise.

"Then I must ask you to accept C."

"I'll do so,"™ said the Tortoise, “as soon as you've entered it

1. page 16

in that note-book of yours. What else have you got in it2"

"only a few gesoranda," said Achilles, nervously fluttering
the leaves: "a few mezoranda of--of the battles in which I have
distinguished myself!"

nplenty of blank leaves, I seel"™ the Tortoise cheerily
remarked. nye shall need them all!" (Achilles shuddered.) "Kow write

as I dictate:

(A) Things that are egqual to the same are equal each other.

(B) The two sides of this triangle are things that are egual
to the same.

(C) If A and B are true, Z must be true,

(2) The two sides of this Triangle are equal to each other."

"you should call it D, not 2," said Achilles. "It comes next
to the other three. If you accept A and B and C, you must accept z."

"and why must 12"

wpecause it follows logically from them. If A and B and C are
trve, Z must be true. You don't dispute that, I imagine?"

wIf A and B and C are true, Z must be true," the Tortoise
thoughtfully repeated. "That's another Hypothetical isn't it? And,
if I failed to see its truth, I might accept A and B and C, and still
not accept Z, mightn't I2"

"You might," the candid hero admitted; "though such obtuseness
would certainly be phenomenal. Still, the event is possible. So I
must ask you to grant one more Hypothetical."”

"Yery good. I'm quite wvilling to grant Z, as soon as you've

1. page 17

written it down. We will call it

(D) If A and B and C are true, Z must be true.

"Haie you entered that in your note-book?"

"I have!™ Achilles joyfully exclaimed, as he ran the pencil
into its sheath. "And at last we've got to the end of this ideal
race-course! Now that you accept A and B and C and D, of course you
accept Z."

"Do I?” said the Tortoise innocently. "let's make that quite
clear. I accept A and B and C aand D. Suppose I still teque to
accept 27?v

"Then Logic would take you by the throat, and force you to do
it!" Achilles triumphantly replied. "Logic would tell you can't help
yourself, Now that you've accepted A and B and C and D, you must
accept Z!' So you've no choice, you see.™

"Whatever Logic is good enough to tell me is wvorth writing
down," said the Tortcise. "So enter it in your book, please. We will

call it
(E) If R and B and C and D are true, Z must be true.
"Until T've granted that, of course, I needn't grant 2., So

it's gquite a necessary step, you see?"

"I see," said Achilles; and there vas a touch of sadness in

1. page 18

his tone.

2. page 19

2. The Structural PFoundations of Problea Solving

We vould like to develop a foundation for problem solving
analogous in some vays to the currently existing foundations for
mathematics. Thus ve need to analyze the structure of foundations
for mathematics. 1 foundation for matkematics must provide a
definitional formalism in which mathematical objects can be defined
and their existence proved. For example set theory as a foundation
provides that objects must be built out of sets. Then there must be a
deductive formalisa in which fundamental truths can be stated and the
means provided to deduce additional truths from those already 4
established. Current mathematical foundations such as set theory
seem quite natural and adequate for the vast body of classical
mathematics. The objects and reasoning of most mathematical domains
such as apalysis and algebra can be easily founded on set theory. The
existence of certain astroncaically large cardinals poses soae
problems for set theoretic foundations. However, the probleas posed
seem to be of practical importance only to certain category theorists.
Foundations of mathesatics have devoted a great deal of attention to
the probleas of consistency and cospleteness. The problea of
consistency is important since if the foundations are incomsistent
then any formula whatscever may be deduced, thus trivializiag the

foundations, Semantics for foundations of mathematics are defined

2. page 20

model theoretically in terms of the notion of satisfiability. The

problea of completeness, is that for a foundation of mathematics to be
intuitively satisfactory all the true formulas should be proveable
since a foundation for mathematics aims to be a theory of mathematical
truth,

Similar fundamental questions must be faced by a foundation
for problem solving. However there are some important differences
since a foundation for problem solving aims more tc be a theory of
actions and purposes than a theory of rmathematical truth. A
foundation for problem solving must specify a goal-oriented formalisnm
in which probleas can be stated. Furthermore there must be a
formalism for specifying the allovable methods of solution. As part
of the definition of the formalisas, the following elements must be
defined: the data structure, the control structure, and the
primitive procedures. Being a theory of actions, a foundation for
problem solving aust ccnfront the probtlem of change: How can account
be taken of the changing situation in the world? 1In order for there
to be problem solving, there must be an active agent called a problen
solver. A foundation for problem solving must consider how much
knowledge and what kind of knowledge problem solvers can have about
theaselves, In contrast to the foundation of mathematics, the
semantics for a foundation for problem solving should be defined in
terns of properties cf procedures. #e would like to see mathematical
investigations on the adequacy of the foundations for problea solving

provided by PLARNER. 1In chapter 8 we have begun one kind of such an

2. page 21

investigation.

To be more specific, a foundation for problem solving amust

concern itself with the following complex of topics:

PROCEDURAL EMBEDDING: How can "real world" knowledge be
effectively embedded in procedures. What are good ways to express
problea soluticn methods and how can plans for the solution of
praoblems be formulated?

GENERALIZED COMPILATION: What are good methods for transforming
high level goal-oriented language into efficient algorithss.

VERIFICATIQON: How can it be verified that a procedure does what
is intended.

PROCEDURAL ABSTRACTION: What are good methods for abstracting
general procedures from special casSes.

One formulation of a foundaticn for problem solving requires

that there should be two distinct formalisms:

1: A METHCDS formalism which specifies the allowable methods of
soluticn '

2: A PROBLEM SPECIFICATICN formalism in which to pose probleas.
The problem solver is expected to figure out how to combime its
available methods in order to produce a solution which satisfies the
problem specification. One of the aims of the above formulation of
problem solving is to clearly separate the methods of sclution from
the problems posed so that it is impossible to "cheat"™ and give the
problea solver the methods for solving the problem along with the
statement of the problem. We propose to bridge the chasm between the
methods formalism and the problem forralisn. Consider more carefully

the two extremes in the specification of processing:

2. page 22

A: Explicit processing {e.g. methods) is the ability to specify
and control actions down to the finest details.

B: Implicit grocessing {e.g. problems) is the ability to specify
the end result desired and not to say much about how 1t should be

achieved.

PLAENER attempts to provide a formalise in which a problem solver can
bridge the continuum betveen explicit and implicit processing. We ainm
for a maxirum of flexikility so that whatever knowledge is available
can be incorporated, even if it is fragmentary and beuristic,

PLANNER is a high level, goal-oriented forpalism in which one
can specify to a large degree vwhat one wants done rather tham how to
do it. Many ¢ the ppinitives in PLANNER are concerned with
manipulating a data base in a pattern directed fashion. Most of the
primitives have been developed as extensions to the formalism wvhen we
have found problems that could not otherwvise be solved in a natural
vay. Of course the trick is to incorporate the new primitive as a
genuine extension of wide applicability. Others have suggested
themselves as adjuncts in order to obtain useful closure properties in
the formalism. We would be grateful to any reader who could suggest
problems that would seem to require ferther extensions or
modifications to the formalisa.

There are many ways in which one can approach a description of
PLANNER. In this section we will describe PLANNER from an Information
Processing Vievpoint. To do this we will deséribe the data structure

and the control structure of the formalisnm.

GLOBAL DATA BASE

CABOVE ABJ] is not in the global
data base

State 1
[ABOVE ABJl is in the data

base of statel

State 2

State 3

PLANNER ALLOWS FOR THE SIMULTANEOUS
EXISTENCE OF INCOMPATIBLE LOCAL STATES
IN MODELS.

2. page 23

CATA STRUCTURE:

GRAPH MEMORY fcrms the basis for PLANNER's data s ace vhlch
consists of directed graphs with labeled arcs. e operation

of PUTTING and GETTING the components of data ob]ects have
been generalized to apply to any data type whatscever. For
example to PUT the value CANONICAL on the expression <+ X Y <=
X 2>> under the indicator SIMPLIFIED is one way to record that
<+ X Y <* X 2>> has been canonically simplified. Then the
degree to which an expression is simplified can be deterained
by GETTING the value under the indicator SIMPLIFIED of the
expression. The operations of PUT and GET can be implemented
efficiently using hash coding. Lists and vectors have been
introduced te gain more efficiency for common special purpose
structures. The graph memory is useful to PLANNER in many
vays. Monitoring gives PLANNER the capability of trapping
all read, write, and execute references to a particular data
object. The ponitor (which is found under the indicator
MONITOR) of the data object can then take any action that it

- sees fit in order to handle the situation. The graph meaory
can be used to retrieve the value of an identifier i of a
process p by GETTIKG the i component of p. Code can be
conmented by sinply PUTTING the actual comment under the
indicator COMMENT. Also graph memory enables urique copies of
structures to be efficiently and conveniently stored.

DATA BASE: What is most distinctive about the way in which
PLANNER uses data is that it has a data base in wvhich data can

be inserted and removed. For example inserting [AT B1 P2]
into the data base might signify that block B1 is at the place
P2. A coordinate of an expression is defined to be an atom in
some position. An expression is determined by its
coordinates. Assertions are stored in buckets by their
coordinates using the graph memory in order to provide
efficient retrieval. 1In addition a total ordering is iamposed
on the assertions so that the buckets can be scrted.
Imperatives as well as declaratives can be stored in the data
base. We might assert that whenever an expression of the
form [AT object? placel] is removed from the data base, then
any expression in the data base of the form [CN object1l
object2] should also be removed from the data base. The data
base can be tree structured so that it is possible to
simultaneously have several local data bases which are
incompatible. Furthermore assertions in the data base can
have varying scopes so that some vwill last the duration of a
process while cthers are temporary to a subroutine.

CONTEOL STRUCTURE: PLANNER uses a pattern directed multiprocess
backtrack control structure to tie the operation of its primitives

—

i f;'_,ES), z‘:‘;‘:ége"» & 2. page 2“

together.

BACKTRACKING: PLANNER processes have the capabilitz of)
racktracking tc previcus states. A process can backtrack into

a procedure activation (i.e. a specific instance of an
invocation of a procedure) which has already returned with a
result. Using the theory of comparative scheratology, we
have proved in chapter 8 that the use of backtrack control
enables us to achieve effects that a language (such as LISP)
vhich is limitea to recursive control cannot achieve.
Backtracking preserves the nesting of the subroutine structure
of PLANNER while allowing the consequences of elabcrate
tentative hypotheses to be explored without losing the
capability of rejecting the hypotheses and all of their
consegquences., A choice can be made on the basis of the
available knovledge and if it doesn't work, a better choice
can be made using the new information discovered wshile
investigating the first choice. Also backtrack control makes
PLANNER procedures easier to debug since they can be ruu
backwards as well as forvards enabling a problem sclver to
"zero in" on bugs.

MULTIPROCESSING gives PLANNER the capability of having more
than one locus of control in problem solving. By using
~multiple processes, atbitrary patterns of investigation
through a conceptual problem space can be carried oat.
Processes can have the power to create, read, write,
interrupt, resume, single step, and fork other processes. The
ability to single-step or to interrupt processes allows che
definition of procedures vwhich are NOT monotone in the sense
of lattice theory. Potentially the failure of monotonicity is
a serious flav in the lattice theoretic approach towards a
mathenmatical foundation for effective procedures,

PATTIRN DIRECTION combines aspects of control and data structure.
The fundamental principle of pattern directed computation is that

a procedure should be a pattern of vhat the procedure is intended
to accomplish. 1In other words a procedure should not only do the
right thing but it should appear to do the right thing as well!
PLANNER uses pattern direction for the following operations:

CONSTRUCTION of structured data objects is accomplished bi
templates. We cap construct a list vhose first element 1is

the value of x and whose second element is the value of y by
the procedure (x y). If x has the value 3 and y has the value
{A B) then (x y) will evaluate to (3 (A.B)).

DECOMPOSITION is accomplished bi natching the data object
against a structured pattern. f the pattern (x1 x2) is

2. page 25

matched against the data object ((3 4) A) then x1 will be
given the value (3 4) and x2 will be given the value A.

RETRIEVAL: An assertion is retrieved from the data base by
specifying a pattern which the assertion aust match and

thereby bind the identifiers in the pattern. For example we
can determine if there is anything in the data base of the
form [CN x A]. If [(ON B 2] is the only item in the data base,
then x is bound to B. If there is more than one item in the
data base which matches a retrieval pattern, them an arbitrary
choice is made. The fact that a choice was made is remeambered
so that if a simple failure backtracks to the decision,
another choice can be made.

INVOCATION: Procedures can_be invoked by patterns of what
they are supposed to accomplish. Suppose that we have a

stopped sink. One way we could try to solve the problesm would
be to know the name of a plumber vhom we cculd call. An
alternative which is mcre analogous to pattern directed
invocation is to advertise the fact that we have a stopped
sink and the qualifications needed to fix it. In PLANNER this
is accomplished by making the advertisement (i.e. a pattern
which represents vhat is desired) into a goal. The procedure
invoked by the pattern might or might not succeed in achieving
the goal depending on the environment in which it was called. -
The procedure invoked can be required to undo all the actions
that it tock tc try to achieve the goal. For example if ve
were unhappy with the way in which a plumber fixed our sink,
we could require that he restore the situation to its previous
state. Since many theorems aight match a goal, a
recommendation is allowed as to which of the candidate
theoreas might be useful. The recommendation is a pattern
which a candidate theorem must match.

one basic idea behind PLANNER is to exploit the duality that
we find between certain imperative and declarative sentences.
Consider the statement (implies A B}. The statement is a perfectly
good declarative. In addition, it can also have certain imperative
uses for PLANNER., It can say that wve might set up a procedare which
will note vhetlker A is ever asserted and if so to consider the visdom
of asserting B in turn. [Note: it is not always wise! Suppose we

assert <integer 0> and {implies <integer n> <integer (+ n 1)>}].

2. page 26

Furtheraore it Pe:hits us to set up a procedure that will watch to see

if it is ever our goal to try to deduce B and if so whether A should
be made a subgoal., Exactly the same observations can be made about
the contrapositive of the statement {implies A B} which is (implies
{not B} (not A}}. Statements with universal quantifiers,
conjunctions, disjunctions, etc. can also have both declarative and
imperative uses. PLANNER theorems are used as imperatives when
executed and as declaratives when used as data. The imsperative
analogues bave the advantage that they can more easily express any
procedural knowledge that we might have such as "Don't use this
theorea twice”,

Our work on PLANNER has been an investigation in PBOCEDURAL
- EPISTENOLOGY, the study of hov knovledge can be embedded in
procedures, The THESIS OF PRBOCEDURAL EMBEDDING is that intellectual
structures should be analyzed through their PROCEDURAL ANALOGUES. Ne

vill try to show vhat we mean through exasples:

DESCRIPTIONRS are procedures shich recognize hov well some
candidate fits the descriptioa.

PATTERNS are descriptions which match configurations of data.
For exaample <eitherpu <atomicd> is a procedgre which vilg ¢

recognize something which is either 4 or is atomic.

DATA TYPES are patterns used in deciaratﬁgns of the allowable
range and domain of procedures ard ideantifiers. Hore

generally, data types have analogues in the foram of procedures
vhich create, destroy, recognize, and traansforam data.

GRANNARS: The PROGRANEAR language of Terry Winograd angthet
step towards one kind of procedural analogue for vpatura

language graasar.

2. page 27

SCHEMATIC DRAWINGS have as their procedural analogue methods
for recognizing when particular figures fit within the
schemata.

PROCFS correspond to plans for recognizing and expanding valid
chains of deductions. Indeed many proofs can fruitfully be

considered to define procedures which are proved toc have
certain properties. FPor example a proof by mathematical
induction of a effective formula p[n] can Le considered to be
a proof that the following function always returns "TRUE":

p[n].:s if p[0] then "TRUE" else p[n-1]

Conversely, proofs by execution induction cf B;operties of
procedures can be used to demonstrate mathematical facts. Por

exaaple proofs by execution induction can imitate proofs by
mathematical induction:

<f n> =< e t i
£ repeat Qititidfdd i o om
Intent: p[i]
<cond
[<is? .i .m>
s"if .i is equal to .n then
exit with the value e
.n"

<.out .n>)P

< 211 <+ .1 1O

:"else incremeant i ard repeat®>

Proving the intention p[i] hg execution induction will
establish that for all n we have p[n]. Proofs by execation

induction enable global properties (such as convergemce and
equivalence) to be proved by purely local analysis.

MODELS are collectionrs of procedures for sinulating the
behavior of the system being modeled. MODELS of PROGRAMS are

procedures for defining properties of procedures and
attespting toc verify the properties so defined. Hodels of
programs can be defined by procedures which state the
relations that must hold as control passes through the
progras.

PLANS are general, goal oriented procedures for atteapting to
carry out some task.

THEORENS of the QUANTIFICATIONAL CALCULUS have as their
analogues procedures for carrying out the deductions which are

justified by the theorems. For example, consider a theorem of

2. page 28

the forms (IMPLIES x y}. One procédural analogue of the
theorem is to consider whether x should be made a subgoal in
order to try to prove something of the fors Yo

CRAWINGS: The grocgdnral analogue of a.drawing.is a procedure
for making the drawing. Rather sophisticated display

processors have been constructed for making drawings on
cathode ray tubes.

BECOMMENDATICNS: PLANNER has primitives which allow
recommendations as to how disparate secticns of goal oriented

language should be linked together in order to accomplish sone
particular task.

GCAL TREES are represented by a snapshot of the instantaneous
configuration of problem solving processes.

One corollary of the thesis of procedural embedding is that
learning entails the learning of the procedures in which the knowvledge
- to be learned is embedded. Another aspect of the thesis of procedural
enbedding is that the process of going from gemeral gcal oriemted
‘lﬁngégégnv£ié$kiéﬁéﬁpagiéﬂ6f‘;;§oiplishing scae tasklio a special
purpose, efficient, algorithss especially designed for the task should
itself be mechanized. By exrressing the properties of the special
purpose algorithm in terms of their procedural analogues, we can use
the analogues to establish that the special purpose routine does in
fact do what it is intended. |

From the above observations, we have constructed a formalisa
that permits both the imperative and declarative aspects of statements
to be easily manipulated. PLANNER uses a pattern-directed inforaation
retrieval systea. The data base is interrogated by specifying a
pattern of what is to be retrieved. Instead of having to explicitly

hame procedures which are to be called, they can be invoked implicitly

2. page 29

by a pattern (this important concept is called PATTERN-DIRECTED

INVOCATICN). Whep a statement is asserted, recommendatioas determine
what conclusions will te dravn from the assertion, Procedures can
make recommendations as to which theorems should be used in trying to
draw conclusions from an assertion, and they can recommend the order
in which the theoreams should be applied. Goals can be created and
automatically dismissed when they are satisfied. Objects can be found
from schematic or partial descriptions. Provision is made for the
fact that statements that were once true in a model may no longer be
true at some later time and that consequences must be drawn from the
fact that the state of the model has changed. Assertions and goals
created within a procedure can be dynamically protected agaiunst
inﬁerfereuce from other procedures. Unlike some other formalisas such
as GPS, PLANNEE has no explicit goal tree. Instead the computation
itself can be thought to be investigating some conceptual problenm
'space. Primitives for a multiprocess backtrack control structure
give flexibility to the vays in which the conceptual problem space can
be investigated. Procedures written in the forpmalism are extendable
in that they can make use of nevw knowledge whether it be primarily
declarative or imperative in nature. Hypotheses can be established and
later discharged. PLANNER has been used to write a bleck control
language in vhich we specify how blocks can be moved around by a
robot. ¥e would like to write a structure building formalisa in
which we could provide descriptions of structures (such as houses and

bridges) and let PLANNER figure out hov to build them. The logical

2. page 30

deductive system used by PLANNER is subordinate to the hierarchical

control structure of the language. PLANNER theorems operate within a
context consisting of return addresses, goals, assertions, biandings,
and local chaages of state that have been made to the global data
base. Through the use of this context we can guide the ccmputation
and avoid doing basically the same work over and over again. Por
example, once ve determine that ve are working within a group (in the
mathematical sense) we can restrict our attention to theoreams for
vorking on groups since we have direct control over what theoress will
be used. PLANNER has a sophisticated deductive systea in order to
give us greater power over the direction of the cosputatiom. Of
course procedures written in PLANNER are not intrinsically efficient.
A great deal of thought and effort must be put into writing efficient
ptocédures’.» PI.MINVE»B dc’»’esv prxv:ovi.vde some basic mechanisas and
primitives in which to express probleam solving procedures. The
control structure can still be used when we limit ourselves to using
resolution as the sole rule of inferemce. A uniform proof procedure
gives very little control over how or vhen a theorea is used. The
problem is one of the level of the interpreter that is used. 1
digital computer by itself will only interpret the hardware
instructions of the machine. A higher level interpeter such as LISP
will 1ntetptet assignsents and recursive functioa calls. At a still
hlghet level an ipterpreter such as MATCHLESS will ‘interpret pattetns
for constructing and decomposing structured data. PLANNER can

interpret assertions, find statements, and goals. It goes without

2. page 31

saying that code can be compiled for any of the higher level

interpeters so that it actually runs under a lower level inierpreter.
In general higher level interpreters have greater choice in the
actions that they can take since instructions are phrased more in
terms of goals to be achieved tather than in terms of explicit
elementary actions. The problem that we face is to raise the level of
the interpreter vhile at the same time keeping the actions taken by it
under control, Due to its extreme hierarchical control and its
ability to make use c¢f new imperative as well as declarative
knowledge, it is feasible to carry out very long chains of inference
in PLANNER without extreme inefficiency.

We are concerned as to how a theorem prover can unify
structural problem solving methods with domain dependent algorithms
and data into a coherent prcblem solving process. By structural
methcds we mean those that are concerned with the formal structure of
the argument rather thanvvith the semantics of its domain dependent
content.

An example of a structural method is the "conseguences of the
consequent” heuristic. By the CONSECUENCES CF THE CCNSECUENT
heuristic, we mean that a problem solver should lock at the
consequences of the goal that is being attempted in order to get an
idea of some of the statements that could be useful in establishing or
rejecting the goal.

We need to discover more powerful structural methods. PLANNER

is intended to provide a computational basis for expressing structural

2. page 32

methods. One of the mcst imprortant ideas in PLANNER is that it brings

some of the structural methods of protlem solving out into the oren
where they can be analyzed and gereralized. There are a few basic
patterns of looring and recursion that are in constant use among
programmers. Examples are recursion cn binary trees as in LISP and
the FIND statement of PLANNER.V The primitive FIND will construct a
list of the objects with certain properties. For examrle we can find

five things which are on something which is green Ly evaluating

<FIND 5 x
<GOAL [ON x y]>
<GOAL [GREEN y]>>

which reads "find 5 x's such that x is ON y and y is GREEN.

The patterns c¢f looring and recursion represent common
structural methods used in ptograms. They specify how cémnands can be
repeated iteratively and recursively. Cne »f the main problems in
getting computers to write programs is how to use these structural
patterns with the particular dcmain dependent commands that are
available. It is difficult tc decide which if any of the basic
patterns is appropriate in any given problem. The problem of
synthesizing programs out of canned loops is formally identical to the
problem of finding proofs using mathematical induction. We have
approached the froblem cf comstructing procedures ocut of goal oriented
language from two directions., The first is to use canned loops {such
as tle FIND statement) vhere we assume a-priori the kind of control
structure that is needed. The second approach is to try to abstract

the procedure from protocols of its action in particular cases.

o ANTECEDENTS (WHAT
IS ALREADY KNOWN)

O o)
o)

CONSEQUENCES OF
ANTECEDENTS

/P CONSEQUENT (OUR ULTIMATE GOAL)

CS CONSEQUENCES OF
CONSEQUENT

2. page 33

Another structural method is FROGRESSIVE REFINEMENT. The way

problems are solved by progressive refinement is by repeated
evaluation. Instead of trying to do a complete investigation of the
problem space all at once, repeated refinements are made. For example
in a game like chess the same part of the game tree might be looked at
several times. Each time certain paths are more deeply explored in
the light of what other investigations have revealed tc be the key
features of the positicn. Problems in design seem to be particularly
suitable for the use of progressive refinement since proposed desigms
are often amenable to successive refinement. The way in vhich
progressive refinement typically is dome in PLANNEEF is by repeated
evaluation. Thus the expression vwhich is evaluated to sclve the
probler will itself produce as its value an expression to be |
evaluated.

The task of artificial intelligence is to program inanimate
machines to perfora tasks that require intelligence. Over the past
decade several different approaches toward A. I. have developed.
Although very pure forss of these approaches vwill seldocm be met in
practice, vwe find that it is useful for purposes of discussicn to
consider these conceptual extremes. One approach (called results mode
by S. Papert) has been to choose some specific intellectual task that
humans can perforam with facility and write a program to perfors it.
Several very fine programs have been written following this approach.
One of the first was the Logic Theorist which attempted to prove

theoreas in thke propositional calculus using the deductive systea

PROGRESSIVE REFINEMENT

SOLUTION
YES o STATE
ATTAINED

NO

X «— <EVAL X >

2. page 34

developed in Principia Mathematica. The importance of the Logic

Theorist is that it developed a body of techniques which when cleaned
up and generalized have proved to be fundamental tc furthering our
understanding qf A. I. The results mode approach offers the
potentiality of maximum efficiency in solving particular classes of
probleas., On the other hand, there have been a number of progranms
written from the results mode approach which have not advanced our
understanding although the programs achieved slightly better results
than had been achieyed before. These programs have been large,
clumsy, brute force pieces of machinery. There is a clear danger that
the results mode approach can degenerate into trying to achieve A, I.
via the "hairy kludge a month plan". The probleams with “hairy
kludges® are well kmown. It is impossible to get such programs to
comaunicate iith each other in a natural aad intilate way. They are
difficult to understand, extend, and modify because of the ad hoc vay
in vhich they are constructed,

Another approach to A. I. that has been prcminent in the last
decade is that of the uniform proof procedure. Proponents of the
approach write programs which accept declarative descriptions of
combinatorial probleams and then attempt to solve them. 1In its most
pure form the approach does not permit the machine to be givea any
information as to hovw it might solve its prchleas. The character
table approach to A. I. is a modification of the unifora procedure .
approach in which the frogram is also given a finite state table of

connections between goals and methods. The unifora procedure approach

2. page 35

offers a great deal of elegance and a raximum of a certain kind of

generality. Current prograams that implement the uniforam procedure
approach suffer from extreme inefficiency. We believe that the
inefficiency is intrinsic in the approach.

FLANNEEE is not neccessarily general in the same sense that a
unifora proof procedure is general. PLANRER is intended to be a
natural computatiosal basis for methods of solving problems in a
domain. A complete proof procedure for a guantificational calculus
is general in the sense that if one can force the probles into the
fora of the input language and is prepared to wait eons if necessary,
then the computer is guaranteed to find a solution if there is one.
The approach takem in PLANNER is to subordinate the deductive systes
to an elaborate hierarchical control structure. Although PLANNER
itself is domain independent, procedures written in it have differing
overlapping degrees of domain independence. Proporents of the uniforn
procedure approach are apt to say that PLANNER "cheats™ because
through the use of its hierarchical control structure, it is possible
to tell the program how to try ta solve its probleas. In order to
prevent this kind of "cheating®, they would restrict the iaput to
consist entirely of declaratives. But surely, it is to the credit of
a progran that it is able to accept new imperative inrormatiom and
make use of it. A problem solver needs a high level language for
expressing problem solving methods even if the language is only used
by the problem solver to express its problem solving metheds to

itself. PLAENER serves both as the language in.which probleas are

2. page 36

posed to the problem sclver and the language in which methpds of

solution are formulated, PLANKER is not intended to be a solution td
the probleam of finding general methods for reducing the ccabinatorial
search involved to test whether a given proposigion is valid or not.
It is intended to be a general formalisa in which knowledge of a
domain can be coambined and integrated. Realistic problea solving
prograss will need vast amounts of knowledge. We consider all methods
of sclving prcbleas to be legitimate, If a progras should happen to
already know the ansver to the problem that it is asked to solve, then
it is perfectly reascnable for the prcblem to be solved by table look-
up. We should use the criterion that the jroblea solving pover of a
program should increase much faster tham in direct proportion to the
number of things that it is told. The important factors in judging a

program are its power, elegance, generality, and efficiency.

3. page 37

3. Discursive Overview

This chapter contains an explanation of scme of the ideas in
PLANNER in essay fore. It is partially based on a draft written by T.
Winograd for the course 6.545. If the reader would like to see a more
systematic presentation, he can consult the subsequent chapters.

The easiest way to understand PLANNER is to watch how it
vorks, so in this section we will present a few simple examples and
explain the use of some of its most elementary features. These
examples are not iatended to represent TOY PROBLEMS to serve as test
cases for "general prokblem solvers". The toy problem paradiga is
misleading because tcy problems can be solved withoux any real
knovledge of the domain in which the toy problem is posed. Indeed, it
seems gauche to use any thing as powerful as real knowledge on such
sisple problems. In ccntrast we believe that real vofld probleas
require vast amounts of procedural knowledge for their sclution. ¥We
see it as part of our task to provide the intellectual capabilities
needed for effective problem sclving. We would like to see the toy
problen patadign replaced with an INTELLECTUAL CAPABILITY paradiga
wvhere the object is to illustrate the intellectual capabilities needed
so that knowledge can be effectively embedded in procedures,

First we will take the most venerable of traditiocnal

deduct ions:

3. page 38

Turing is a human

All humans are fallible
so

Turing is fallible.

It is easy encugh to see how this could be expressed in the

usual logical notaticn and handled by a uniform proof fprocelure.

Instead, let us express it in one possible way to PLANNER by saying:

<ASSERT [HOUMAN TURING]>

<ASSERT <DEFI E

THEOREM1
NSECUENT
<GC

REM
{Y] [FALLIBLE ?Y]
AL [HUMAN 2Y]>>>>

Function calls are enclosed between "<" and ">", The proof

would be generated by asking PLANNER to evaluate the expression:
<GCAL [FAILIBLE TURING]>

The example illustrates several points about PLANNER. First,
there are at least two different kinds of information stored in the
data base: declaratives and imperatives. WNotice that for complex
sentences containing quantifiers or logical connectives we have a
choice wiether to express the sentence by declaratives or by
imperatives.

Second, one of the mcst iamportant points about ELANNER is that
it is ar evaluator for statements. It accepts input in the form of
expressions written in the PLANNER language and evaluates thenm,
producing a value and side effects. ASSERT is a function which, when

evalvated, stores its argument iq the data rase of assertions. 1In

3. page 39

P

this example we have defined a theorem of the CONSEQUENT type [we will

see other types later]. This states that if we aver want to establish
a goal of the form [FALLIBLE ?Y], we can do this by accomplishing th=
goal [HUMAN 2?Y), where Y is an identifier. The strange prefix
character "?" is part of PLARNER's pattern matching capabilities
[which are extensive and make use of the pattern-matching language
MATCHLESS vhich is explained in chapter 4 of the dissertation]. If we
ask PLANNER to prove a goal of the fore [A Y], there is no obvious vay
of knowing whether A and Y are constants [like TURING and HUNAN in the
exanmple] or identifiers. LISP solves this problem by using the
function QUOTE to indicate constants. 1In pattern natchiag this is
inconvenient and makes most patterns much bulkier and more difficult
to read. Instead, PLANNER uses the opposite convention -- a constant
is represented by the atom itself, while an identifier must be
indicated by adding an appropriate prefix. This prefix differs
according to the exact use of the identifier in the pattern, but for
the time being let us just accept "?% as a prefix indicating an
identifier. The defipition of the theorem indicates that it has one
identifier, Y by the {Y] followving CONSEQUENT.

The third statement illuystrates the function GCAL, which
tries to prove an assertion. This can function in several ways. If
we had asked PLANRER tc evaluate <GOAL [HUMAKN TURING]> it would have
found the requested assertion iamediately in the data base and
succeeded [returning as its value some indicator that it had

succeeded]. Hovever, [FALLIBLE TURING] has not been asserted, so ve

3. page 40

must resort to theorems to prove it. Later we will see that a GUAL

statement can give PLANNER various kinds of advice on which theoreas
are applicable to the goal and should be tried. Por the moment, take
the default case, in which the evaluator tries all theoreas whose
consequent is of a form which matches the goal [i.e. a theoream w¥ith a
consequent [22 TURING] would be tried, but one of the foram [HAPPY 22}
or [FALLIBLE ?Y 22] wvould not]. Assertions can have an arbitrary list
structure for their format -- they are not limited to tvo-meamber lists
or three-member lists as in these examples. The theorem we have just
defined would be found, and in trying it, the match of the coasegquence
to the goal vould cause the identifier Y to be bound to the constant
TUR1I NG, Therefnre, the theore» sets up a new goal [HUMAN TURING] and
7~ this succeeds immediately since it is in the data base. 1In ge;etal,
the success of a thecrer vill depend on evaluating a PLANNEE prograa
of arbitrary cceplexity. In this case it contains only a single GOAL
statement, so its success causes the entire theores to succeed, and
the goal [FALLIBLE TURING] is proved. The following is the protocol

of the evaluation:

<GOAL [FALLIBLE TUBING }> [FALLIBLE TURING] is not in the data base
so atteapt to invoke a theorem to esablish the goal
enter THEORENM1
Y becomes TURING
<GOAL [HUMAN TDRING]> is satisfied since tke goal is in the
data base
return [FPALLIBLE TURING]

The vay in which identifiers are bound by matching is of key
importance to FLANNEB. Consider the guestion "Is anything fallible?",

or in logic [EXISTS X [PALLIBLE X]). This could be expressed in

3. page 41

PLANKER as:
<PROG [X] <GOAL [FALLIBLE 2X]>>

Notice that PRCG [PLANNER's equivalent of a LISF PROG] in this
case acts as an existential quantifier. It provides a binding-rlace
for the identifier X, tut dces not initialize it -- it leaves it in a
state particularly marked as unassigned. To answer the guestiocn, we
ask PLANNER to evaluate the entire PROG expression above. To do this
it starts by evaluating the GOAL expression., This searches the data
base for an assertion of the form [FALLIBLE ?X)] and fails. It then
looks for a theorem with a ccnsequent of that form, and finds the
theorem we defined abcve, Ncow when the theorem is called, the
identifier Y in the theorem is linked to the identifier X in the goal,
but since X has no value yet, Y does nct receive a value. The theoren
then sets up the goal [HUMAN 2?Y] with Y as an identifier. The PLANNER
primitive GOAL uses the data-base retrieval mechanise tc lcok for any
assertion which matches that pattern [i.e. an instantiation], and
finds the assertion [HUMAN TURING]. This causes Y [and therefore X]
to be bound to the constant TURING, and the theorer succeeds,
completing the proof and returning the value [FALLIBLE TUEING].

There seems’ to be something missing., So far, the data tase
has contained only the relevant objects, and therefore PLANNER has
found the right assertions immediately. Consider the problem wvwe would
get if we added new information by evaluating the statements:

<ASSERT [HUMAN SOCRATES]>
<ASSERT [GREEK SOCRATES]>

3. page #42

Our data tase nov contains the assertions:

HUMAN TURING]
HUHAE SOCRATES]
[GR

EEK SOCRATES)

and theorem1:

<CONSEQUENT [¥] [FALLIBLE ?Y
uZEcal fﬂgasn Y>>]

What if we ncw ask, "Is there a fallible Greek?" In PLANNER we

would do this by evaluating the expression:

<PROG [X]
<GOAL [PALLIELE ?2X >
<GOAL [GREEK 2X]>>

If PLANNER runs into a failure trying to evaluate an expression, then
it backtracks to the last decision that was made and dumps the
responsibility of hew to p:oceed on the procedure wvhich made the
decision. Notice what might happen. The first GOAL may be satisfied
by exactly the same deducticn as before, since we have not removed
information. If the data-base retriever happens to run into TURING
before it finds SOCRATES, the goal [HUNAN 2Y] will succeed, binding Y
and thus X to TURING. After [FALLIBLE ?X] succeeds, the PROG will
then establish the nev goal [GREEK TURING], which is doomed to fail
since it has not been asserted, and there are no applicable theoress.
If we think in LISP terams, this is a serious problem, since the
evaluation of the first GOAL has been completed before tbé second one
is called, and the "stack" now coatains only the return address for
PROG and the identifier X. If we try to go back to the beginning and

start over, it will again find TURING and so on, ad infinitusm,

3. page 43

One of the mcst important features of the PLANNER language is

that backtracking in case of failure is always possible, and moreover
this backtracking can go to the last place vhere a decision of any
sort vas made. Here, the decision was to pick a particular assertion
from the data base to match a goal. Another kind of decision is the
choice of a theorem to try to achieve a goal. PLANNER keeps enough
information to change any decision and send evaluation back dovn a new
path.

In our example the decision was made inside the theorem for
FALLIBLE, when the goal [HUMAN ?Y] vas matched to the assertionm [HUMAN
PURING]. PLANNER will retrace its steps, try to find a differemt
assertion which matches the goal, find [HUMAN SOCRATES], and continue
vith the proof. The theorem will succeed with the value [FALLIBLE
SOCRATES], and the PROG will proceed to the next expression, <GOAL
[GREEK 2X]>. Since X has been bound to SOCRATBS, this will set up the
goal [GREEK SOCRATES] which will succeed immediately by finding the
corresponding asserticn in the data base. Since there are no more
expressions in the PROG, it will succeed, returning as its value the
value of the last expression, [GREEK SOCRATES]. The whole course of
the deduction process depends on the failure mechanisa for
backtracking and trying things over [this is actually the process of
trying different branches down the comceptual goal tree.] This thea is
the PLANNER executive which establishes and sanipulates subgoals in
looking for a proof.

He would nov like to give a somevhat aore formal description

3. page 44

of the behavior of PLANKNER on the above problea. If we intoduce

suitable notation our fproblea solving protoccls can be made much more

succinct and their structure made visible. Also by formaliziag the

notions, we can make PLANNER construct and analyze protocols. This

provides one kind of tool by which PLANMER can understand its own

behavior and make generalizations on how to proceed.

In this case the protocol is:

enter PROG
2: X is rebound but not initialized _
3: <GOAL [FALLIBLE ?X)> will attempt a pattern directed
invocation since nothing in the data base matches [FALLIBLE 2X].
4: enter THEOREN1
5: match [FALLIBLE ?Y] with [FALLIBLE ?X] thus linking Y to X
the situation is shown in snapshot number 1
6: <GOAL [HUMAN ?Y]> finds [BUMAN TURING] in the data
base _
7: Y gets the value TURING thus giving X the value
TURING - '
8: return [HUMAN TURING]
9: THECBEN1 returns [FALLIBLE TURING]
10: <GOAL [GREEK TURING]> fails since it is not ia the data base
and there are no matching consegquents

Thus PLANNER must backtrack toc step 7 and try again. The situationm is

shown ip snapshot number 2. Por the convenience of the reader, we

will repeat the first six steps from above and then continue the

pratocol.

1:

enter PROG
2: X is rebound but not initialized
3: <GOAL [FALLIBLE 2X)]>
4: enter THEOREN1
S: match [PALLIBLE ?Y] with [PALLIBLE ?X] thus linking Y to X
6': <GOAL [HUMAN ?Y]> finds [HUMAN SOCRATES] in the data
base
112 Y gets the value SOCRATES thus giving X the value
SOCRATRS
12: return [FALLIBLE SOCRATES)

FORMAT OF FUNCTION ACTIVATIONS
IN SNAPSHOTS

IDENTIFIER- BINDING S

RETURN-CONTROL

EXPRESSION
BEING EVALUATED

VALUE OF
EXPRESSION

NEW
IDENTIFIER
BINDINGS

NOTE : THE IDENTIFIER-BINDINGS AND

e

BACK

| — —— —» TRACK

CONTROL

RETURN - CONTROL POINTERS OF AN
ACTIVATION ARE USUALLY THE SAME

AND THUS ARE COMBINED INTO A

DOUBLE POINTER LIKE THIS =)

SNAPSHOT OF EVALUATION OF

<¥

<.+\ ;

9> 5>

T

BN

\

|7

12

—~

4

THUS <+ <* 3 4> 5> EVALUATES TO IT.

=

< IAGNVWAHI V09 > <

[Ad 318I1TV4]

LA LN3ND3ISNOD> ==

- [S31vy20S %3349]

| [s3L1vy00s NVWNH]

[ONIYNL NVIANNH]

3sva viva

K[Xd ¥3IY9] V09>

<[Xd 31817v4] Iv09 >

[X] 908d> <€—

L 'ON LOHSdVNS

<[AINYWNHITV09 > <]

[A¢ 37817V]

[AJIN3IND3ISNOD> —e

[S31vHI0S %3349]

[S31vHI0S NVINNH]

[ONIYNL NVWNH]
‘llll,f

3sv8 viva

1ivd

<[X d ¥3349] 1V09 > <g—

<[X d 319171v4] V09>

[X] 904d > -—

¢ ON L1OHSJVNS

C S« C

KIAENVINNH]ITIV09 > <
[Ad3191MVL]
[A] LN3NDISNOD> =

[S31VHO0S XM33Y9] =

[S31vdO0S NVWNH]

‘/I.l.\

[ONIYNL NVWNH]

3svg8 vivd

KX ¢ ¥IFY9] V09> =
<[X d 3181Tv4] Iv09 >

[X] 904d> e

w1

h

o

‘ON

1OHSJVNS

3. page 45

13: THEOREM1 returns [FALLIBLE SOCRATES]
14: <GOAL [GREEK SOCRATES]>
15: return [GREEK SOCRATES] as the top level value

The situation is shown in snapshot number 3.

So far we have seen that although PLANNER is written as an
evaluatdr, it differs in several critical ways fros anything which is
normally considered a programming language. First, it is goal-
directed. Theorems can be thought of as subroutines, but they can be
called by specifying the goal which is toc be satisfied. This is like
having the abilitiy to say "Call a subroutine which will achieve the
desired result at this point." Second, the evaluator has the
mechanism of success and failure to handle the exploration of the
conceptual goal tree. In PLANNER there is no explicit geal tree. The
conceptual goal tree is rerresented by a SNAPSHOT of a CONPIGURATION
of PROCESSES. Thus PLANNER has powerful control structure primitives
to allow the conceptional goal structure to be easily and naturally
reflected in the execution of PLANNER processes. OCther evaluators,
such as LISP, with a basic recursive evaluator have no way to do this.
One of our current areas of research is to increase the richness of
the machinery provided by PLANNER to guide the movement to the goal.
Third, PLARNBB‘contains a large set of primitive commands for matching
patterns and manipulating a data base, and for handling that data base
efficiently.

On the other side, we can ask how it differs fros other
theorer provers. What is gained by writing theorems in the fora of

programs, andlgiving them powver to call other programs waich

3. page 46

manipulate data? The key is in the form of the data the theorean-

prover can accept. Most systeams take declarative informatiom, as in
predicate calculus. This is in the fora of expressions which
represent “facts" about the world. These are manipulated by the
theorem-prover according to some fixed uniform process set by the
systesn. PLANNER can make use of imperative inforsation, telling it
how to go about proving a subgoal, or to make use of an assertion.
This produces what is called HIERARCHICAL control structure. That is,
any theorem can indicate what the theorem prover is supposed to do as
it continues the procf. It has the full pover to evaluate expressions
which can depend on both the data base and the subgoal tree, amd to
use its results to control the further proof by making assertionms,
deciding vhat theorems are to be used, and specifying a sequence of
steps to be folloved. What does this mean in practical teras? In
vhat vay does it make a "better” thecream prover? ¥We will give several
exanrles of areas wvhere the approach is important.

Pirst, consider the basic probleam of deciding wvhat subgoals to
try in attempting to satisfy a goal. Very often, knowledge of the
subject matter will tell us that certain methods are very likely to
succeed, others may be useful if certain other conditions are present,
while others may be possibly valuable, but not likely. We would like
to have the ability to use heuristic programs to determine these facts
and direct the theorem prover accordingly. It should be able to
direct the search for goals and solutions in the best way possible,

and be able to bring as much intelligence as possible to bear on the

3. page 47

decision. In ELANNEP this is done by adding to our GOAL stateasent a

recommendation list which can specify that CNLY certain theoreas are
to be tried, or that certain ones are to be tried FIRST in a specified
order. Since theorems are programs, subroutines of any type cam be
called to help make this decision before establishing a new GOAL.
Each theorem has a name [in our definition on pagé 1, the theorea was
given the name THEOREM1], to facilitate referring to them explicitly.
Another important problem is that of maintaining a data base with
a reasonable amcunt of material. Consider the first examgple above.
The statement that all humans are fallible, while unambiguous in a
declarative sense is actually ambiguous in its imperative sense [i.e.
the way it is to be used by the theorem rrover]. The first way is to
simply use it whenever we are faced with the need to prove [FALLIBLE
2X J. Another way might be to watch for a statement of the fornm
[HUMAN ?X) to be asserted, and to immediately assert [PALLIBLE ?X] as
well, There is no abstract logical difference, but the impact on the
data base is tremendous. The more conclusions we draw when
information is asserted, the easier proofs vill be, since they will
not ﬁave to make the additional steps to deduce these consequences
over and over agaim. However since we don't have infinite speed and
size, it is clearly folly to think of deducing and asserting
everything possible [or even everything interesting] about the data
vhen it is entered. If ve were vorking with totally abstract
meaningless theoreas and axioms [an assusption which would not be

inéonpatible with mary theorem-proving schemes], this would be an

B

3. page 48

insoluble dilemma. But PLANNER is designed to work in the real world,

where our knowledge is puch more structured than a set of axioms and
rules of inference. We may very well, when we assert [LIKES ?2X
POETRY] want to deduce and assert [HUMAN 2X], since in deducing things
about an object, it will very often be relevant vhether that object is
humar, and we shouldn't need to deduce it each tise. On the other
hand, it would be silly to assert [HAS-AS-PART ?X SPLEEN], since there
is a horde of facts equally im;ortantvand equally limited in use.

Part of the knowledge which PLANNER should have of a subject, then, is
what facts are important, and when to dravw consequences of an

assertion, This is dcne by having theorems of an antecedent type:

<ASSERT <DEFINE THEOREM2
<ANTECEDENT [X Y] [LIKES 2X 2Y]
<ASSERT [HUMAN 2X]D>>>

This says that vwhen we assert that X likes something, wve

should also assert [HUMAN 2X]. Of course, such thecreams do not have to

be so simple., A fully general PLANNER program can be activated by an
ANTECEDERT theoresm, doing an arbitrary [that is, the programmer
whether he be man or machine has free choice] amount of deduction,
assertion, etc. Knowledge of what we are doing in a particular
problem may indicate that it is sonmetimes a good idea to do this kind
of deduction, and other times not. As with the CONSEQUEKRT theorens,
PLANNER has the full capacity vhen something is asserted, to evaluate
the current state of the data and proof, and specifically decide which
ANTECEDENT theoreams shculd be called.

PLANNEE therefore allows deductions to use all sorts of

3. page 49

knowledge about the sukject matter which go far beyond the set of

axioms and basic deductive rules. PLANNER itself is subject-
independent, but its power is such that the leduction process never
needs to operate on such a level of ignorance. The programmer can put
in as much heuristic knowledge as he wants to about the subject, just
as a good teacher would help a class to understand a mathematical
theory, rather than just telling chem the axioms and then giving
theorems to prove.

Another advantage in representing knowledge in an imperative
form is the use of a theorem prover in dealing with processes |
involving a sequence of events. Consider the case of a robot
manipulating blocks on a table. It might have data of the form,
“block1 is on block2," "blcck2 is behind block3", and "if x is on y
and you put it on z, then x is on 2z, and is no longer on y unless y is
the same as 2". MNany examples in papers on theores pravers are of
this form [for exaample the classic "monkey and bananas™ problea]. The
probler is that a declarative theorem prover cannot accept a statement
like [ON B1 B2] at face value. It clearly is not an axicm of the
system, since its validity will change as the process goes on. It
usvally is put in a form [ON B1 B2 SO0] where S0 is a syambol for an
initial state of the wo:ld. The third statement might be expressed

as:

[FOR-ALL TOPBLOCK NEWSUPPORT CLDSUPPCRT S
[AND _
[ON TOPBLOCK NEWSUPPOR? [PUT TOPBLCCK NEWSUPPORT S]]
[OR
[EQUAL NEWSUPPCRT OLDSUPPOET]

3. page 50

[NCT [CN
TOPBLCCK
OLDSUPEORT
[PUT TCPBLOCK NEWSUPPORT S]}]]11]

In this representaticn, [PUT X Y S] is the state which results
from putting X on Y when the previocus state was S. We run into a
problem when we try to ask [CN Z W [PUT X Y S]] i.e. is block Z on
block W after we put X on ¥? A human knows that if we haven't touched
Z or W we could just ask [ON Z W S] but in general it may take a
complex deduction tc decide whether we have actually moved them, and
even if we haven't, it will take a whole chain of deductions [tracing
back through the time sequence] to prove they haven't been moved. 1In
PLANNER, where we specify a process directly, this whole type of
problem can be handled in an intuitively more satisfactory way by
using the primitive function ERASE.

Evaluating <ERASE [CN ?X ?Y]> removes the assertion [ON ?2X ?Y])
from the data btase. If we think of thecrem provers as working with a
set of axioms, it seems strange to have function whose purrose is to
erase axioms. If instead we think of the data base as the "state of
the world" and the operation of the prover as manipulating that state,
it allows us tc make great simplificaticns. Now we can simply assert
[ON B1 B2Z] without any explicit mention of states. We can express the
necessary theorenm as:

<ASSERT <DEFINF THEOREM3
<CCNSECUENT [TCPBLOCK NEWSUPPCRT OLDSUPPOET]

[PUT ?TCPELOCK ?NEWSUPPORT]
<GOAL [ON ?2TOPBLOCK 2CLDSUPPCRT }>
<ERASE [ON ?TOPBLOCK 2CLDSUPPORT]>
<ASSERT [ON ?TCPBLOCK 2NEWSUIPORT]>>>>

D

3. page 51

This says that whenever we want to satisfy a gcal of the fornm

[PUT ?TOPBLOCK ?NEWSUPPORT], we should first find out what thing
CLDSUPPORT the thing TCPBLOCK is sitting on, erase the fact that it is
sitting on OLDSUPPORT, and assert that it is sitting cn NEWSUPPORT.
We could also do a numker cof cther things, such as proving that it is
indeed possible to put TOPBLCCK on NEWSUPPORT, or adding a list of
specific instructions to a movement plan for an arm to actually
execute the goal. In a more complex case, other interactions might be
involved. For exanmnple, if we are keering assertions of the form
[ABOVE 2X ?Y] we would need to delete those asserticns which became
false when we erased [CN ?X ?Z)] and add those which became true when
wve added [ON 2X ?Y]. ANTECEDENT theorems would be called by the
assertion (08 7X 711 to take care of that part, and a similar group
calléd EﬁASIﬁG‘thebreis éaﬂ ﬁé‘caliéd in an exactly analogous way when
an assertion is erased, to derive covsequences of the erasure. Again
we emphasize that vhich of such theorems would be called is dependent
on the way the data base is structured, and is deterrined bj knowledge
of the subject matter. In this example, we would have to decide
vhether it was worth adding all of the ABOVE relations to the data
base, with the resultant need to check them whenever something is
moved, or instead to cait them and take time to deduce them frcm the
ON relation each time they are needed.

Thus in PLANNEE, the changing state of the world can be
mirrored in the changing state of the data base, avoiding any need to

make explicit mention of states, with the requisite overhead of

3. page 52

deductioans. This is possible since the information is given in anm

imperative form, specifying theoresas as a series of specific steps to
be executed. FPLANNEER also allows the construction of local data bases
called states which are variants of the global data base. Evaluation
of PLANNER expressiomns is carried cut relative to a local state. Thus
simultaneous consideration can be given to two inccmpatible states of
the world by explicitly calling the evaluator to evaluate statements
in the two states.

If we look back to the distinction between assertions and
theorems made at the beginning of this chapter, it would seea that we
have established that the base of assertions is the "current state of
the world", while the base of theorems is our permanent knouledgé of
how to deduce things from that state. This is not exactly true, and
one of the most excitimg possibilities in PLANNER is the capability
for the progran itself to create and modify the PLANREEF functions
wvhich make up the theorem base. Rather than simply making assertions,
a particular PLANNER function might te written to put together a new
theorem or make changes to an existing theorem, in a way dependent on
the data and current knowledge. It seems likely that meaningful
"teaching” invclves this type of behavior rather than simply modifying
parameters or adding more individual facts [assertions] to a
declarative data base.

For example suppose we are given the following protocols for a
function f£f. An expression such as "new [5 * 4]" means that ve are

introducing a new identifier which is 5 * 4 = 20.

3. page 53

<f >

: 0=0 IS TRUE sC 1
Thus <£f 0 1

> =
. . _The above expression reads, "to compute <f 0> you test 0=0
which is true sc the answer is 1w,

<f 1 : 1=0 IS FALSE
1 * new [1-1]
Thus <£ 1> = 1

Ho

<
0=0 IS TRUE SO 1

. . The above expression reads, "to compute <f 1> you test 1=0
which is false so the answer is 1 times the quantity which is coamputed

by first computing the intermediate result 1-1 then testing if 0=0
which is true so the quantity is 1.n

- <f 2> : 2=0 IS FALSE SO
2 * pew [2-1] 1=0 IS FALSE SO
1 * new [1-1] 0=0 IS TRUE SO 1
Thus <f 2> = 2 * 1 * 1 = 2

<f 3> : 3=0 Is FALSE SO
3 * new [3-1] 2=0 IS FALSE SO

2 ¥ new [2-1] 1=0 IS FALSE SC
1 * new [1-1] 0=0 IS TRUE SO 1
Thus <£ 3> = 3 * 2 * 1 % 1 = ¢

By the process of “variabalization", we conclude that the
above protocols are compatible with the following progras swshich is in

- the form of a tree [wvhich we shall call the protocol tree].

<f x0> = if xC=0 then 1
else x0 * new [[x0-1)=x1] if x1=0 then 1
else x1 * pev [[x1-1}=x2] if x2=0 then 1
else x2 * nev [[x2-1]=x3]
if x3=0 then 1
else...

Novw by identifying indistiamguishable nodes on the Frotocol tree, we
obtain:

<f x> = if x=0 then 1
else x *<f [x-1]

3. page 5S4

The reader will note that f is the factorial function. PLANNER

procedures and theorems can be taught in precisely the same fashion
[which we call procedural abstraction]. For example, the computer can
be taught to build a vall or recognize a tower froam exaamples. The
reader is cautioned that although we shall speak of the ccaputer being
"taught", ve do not assume that anything like what has been
classically described as "learning™ is taking place. We assume that
the teacher has a good working model of the student that is being
taught and that he honestly atteapts to convey a certain body of
knowledge to the student. Of course the student will be told anything
which might help him tc understand the material faster.

Procedural abstraction is one vay in which a special purpose
routine can be constructed from general goal oriented language. We
vould like to express the intended properties of the special purpose
routine so that we can establish that the routine really does what it
is supposed to do. For example ve might be interested in éstablishing

that the function divide defined below satisfies its iantentionms.

<define divide <function idivide
;"let idivide be name of this activation”
[n 4]
s"the function divide is a function of two argisents n and 4"
<repeat [[r .n] [q 0]]
s"initialize r to n and q to zero"
:"ye are in a repeat lcop which will repeatedly
execute the following expressioans"”
<cond
[€is? <less .d> .r>
;"if .r is less than .d thea"
<.idivide .q .D> .
:"exit the activation named
idivide with .q and .x" >
<assign :r <~ .r 4> '

3. page 55

;"assign r the value of r minus 4"

<assign :q <+ .q 1>

i"assign q the value of q plus 1"

i"now go back and do the body of the repeat
loop all over again™>>>

We shall express the intentions of the function DIVIDE in a
goal oriented formalism called INTENDER. INTENDER enmables us to embed
the intentions for a program in the text of the program. The easiest
way to understand INTERDER is to watch how it works. In order to
show how it works we must first define some intentions. INTENDER
intrcduces two new primitives OVERALL and INTENT to express intentions
in code. The primtive OVERALL expresses the overall inteantion of a
function or loop whereas INTENT asserts that the intended situation
really holds within the body of the function or loap. The meaning of
the intentions embedded in the function DIVIDE are explained below.
INTENDER is a giant sledge hammer to use to squash such a tiny
problenm. The reader can see this sledge haamer used on harder
probleas in chapter 7. IRTENDER needs to be able to talk about
funcéion calls in a ;attegh’directed way. We will use !' to suppress
procedural invocations. Thus whereas <#+ 3 5> evaluates to the RUNBER
8, the expression !'<+ 3 5> will evaluate to the CALL <+ 3 5>,
Assertions which contain calls constitute a still higher level
assertion than the tvo vhich we have introduced thus far. The
semantics of such assertions are detersined in part by the body of the
procedure which is called. Por exalpie the assertion that !1'<= 1¢¢<+ 1
2> 1<+ 2 1> can be established from the DEFIRITICN of ¢+. sSisilarly

in a very incestuous way, we can make assertions about PLANNER

3. page 56

procedures whose intentions are theaselves written in PLANNER and at

any given time constitute the model that PLANRER has of itself! By
using intentions expressed in PLANNER, there is nothing that in

principle PLANKER cannot be made to understand about itself.

<define divide <function idivide [n d]
<overall []
<inteation []
<and
<goal #'<is t'<greater 0> .n>>
<goal !'<is !'<greater 0> .d>>>
<and
<assert !1'<is t?'<greater 0> .n>>
<assert !%'<is t'<greater 0> .d>>>>
<repeat [[{r .n] [g 0]]
t:<intention
<goal 1'<= .n !'<+ .r 1'<* A .@>>>>
<assert !%'<= .n 1'<+ r 13<K* .3 .gO>>>>
<cond
[(<is? <less .4> .r>
<.idivide .q .r>)>
<assign :r <- .r .d>>
<assign :q <+ .gq 1>
<function [C R]
<intention []
<and
(assett !'(g « N !'(’ .R l'(* .d .Q))))
<assert !'<is? !'<less .4d> .B>>>
<and
<gocal !1t<= .n 1'<+ B 1'<* .4 .Q>>>>
<goal 1'<is? !t<less .d> .B>>>>>3>>>

The overall intenticn for the function DIVIDE is that it return two

values Q and R vhich ve assert will have the property that

1'<=,n 1'<+ R 1'<* .4 .Q>>>
The inside intent of the function DIVIDE is the goal that DIVIDE will

return two values Q and R which will have the property that

1°<=.n 1'%+ R 1'<* .4 .Q>>»

3. page 57

The body of DIVIDE is a REPEAT loop with two locals r and q vhich are

respectively ipitialized to 0 and n, The overall intention of the

REPEAT loop is the goal

1'<= .0 1'<+ . 1'<* .3 >

The REPEAT loop has an intent that asserts that

I'7<=0n 1<+ ¢ 1<% .3 .@>>>

at the top of the loop,

The intentions for DIVIDE are proved by running thea in
INTENDER. The intentions are verified abstractly. Thus they must be
true independent of what the actual arguments to the function are. We
shall use the notation x_n for the nth value of the identifier x with
x_ being an abbreviation for the initial value of x. The actions of

INTENDER on the intentions of DIVIDE are as follows:

Froa the overall all intentiion of the function we have:
<assert !'}<is !'<greater 0> n_>>
<assert 1'}<is 1'<greater 0> 4_>»

The following assertions come from the declarations of the
repeat loop

<assert '<= r_ p_>»>
<assert '<= q_ 0>>

. _¢: The intention of the repeat statement om first entry is
satisfied:
<goal !1%<=
n.
1<+
r-
19<* 4_ q_>>>»

¥#e inductively assume for the re t loo
<assert 1¢<¢= Y pea P

n-
1<+

3. page 58

r_1
11<* d_ g_1>>>>

enter intenticns of CCND .
There are two cases fnr the conditional:

Casetl: .
<assert 1%<is?

!1'<less d_>
r_1>>

From the overall intention we have:
Q becomes q_1

R becocomes t_1
<goal !'<=
n—
19<+
r_1
17°<* d_ q_1>o>>
<goal !'<is? 1'<less d_> r_1>>

Case2: .
<assert !'<is?

1'<greater= d_>
r_1>

Prom <assign :r <- .r .d>> ve get:
<assert 1!'&=

r_2
1= _1 4_>>

From <assign :g <+ .g 15> we get:
<assert !'<=
q_2

19¢s g1 D>

The recursive goal is satisfied by simplification:
<goal !¢<=

n-
17°<+

AN

* d_ g_2>>>

4. page 59

4. THE PATTERN MATCHING LANGUAGE “ATCELESS

MATCHLESS is a pattern directed language that is used in the
implementation of PLANNER. MATCHLESS is used both in the internal
workings of PLANNER and as a tool in the deductive systea itself.
MATCHLESS is similar is certain respects to cther structural pattern
matching languages such as CONVERT and SFOBOL. It has been designed
with the following consideraticas in mind:

0. The language must obey the Fundamental Principle of Pattern
Directed Computaticn: the Frocedure tody should be a pattern that
describes the purpose cf the proqedu;e. The principle has been
dévélééed even further in PLANNER where procedures are invoked on the
basis of their intent.

1. The language should be very poverful yet simple constructs
should be efficiently compiled. By incc:poratihg more knovledge into
a program, it rust be possible to increase its efficiency up to the
limits imrosed by the machine on which it runs.

2. Functions must be able to be separately compiled.

3. It should not require parsing for efficient
interpretation. Procedures should be naturally and efficiently
constructed and edited by cther procedures.

4. The language must interface with PLANNER in a natural way

since it is used as a basic part of the deductive systea, Effective

4. page 60

problea solving requires a sophisticated programmable matcher.

S. The language should treat strings, lists, vectors, taples,
and nodes sysmetrically so that for the most part the same progran
will run whether the structures are made up of vectors, tuples, nodes,
or lists. Declarations determire which form is actually used.

6. The language should harve no automatic ccercion. Any
procedures which wish to coerce their arguments should be able to do
so easily.

7. The language should have oanly one mode of evaluation for
value. Locatives should always be generated explicitly in the same
vay.

8. All the locps of the language should be guaranteed to be

properly mested.

4.1 page 61

4.1 The Syntax of Identifiers and Expressions

MATCHLESS attempts to obey the Pundamental Principle of
Pattern Directed Computation: the procedure body should be a pattern
of vhat the procedure is supposed to accoaplish. For exaaple it
allows the list (a b c) to be produced by sisply evaluating {(a b c).
In atteapting to réalize the principle we have been led to develop a

certain amount of syntax which (unfortunately!) must be described.

4.1.1 Prefix Operators for Ideatifiers

As is usual in pattern matching languages we shall allow
constants like 3, é, {adb), and (e (f g)) to match only themselves.
An identifier is indicated by a prefix operator vhich tells how the
identifier is to be used. For exaaple .x is the eleaent value of the
identifier x. If ¥ has the value (a 3) then .x will omly match (a 3).
#e need to be able to change the value of an identifier im a pattern
match. Suppose that x has the value 3. If wve match _x [the
tentative value of x] against (a b), then x is given the value (a b).
The identifier x will keep the value (a b) if the remainder of the-
pattern matches., Othervise the value of x will revert to 3. Again
suppose that x has the value 3. If ve smatch :x [the altered value of
x] against (a b), then x is given the value (a b). However the value

of x will remain (a b) whether or not the resainder of the pattern

4.1 page 62

ma tches.

The above prefix orperators are actually defined in terms of
procedure calls. We are not enamored with the syntax of the prefix
operators but they are easier to type than the procedures listed
below.

A small meta syntax is needed in order to give explanaticns of
the primitives of the language. We shall use | to delimit
meta syntatic variables which are elements and - to delimit those which
are sequences.

The following table explains the prefix operators which yield
element values:

«]x] = <VALUE (x|> the element value of the identifier x|

+1X] = <GLOBAL |x]> the element glokal value of x|

The following table explains the prefix operators which match
elements:

2]x] = <GIVEN]x|> will give)x)] the value of the matching
element if |x| does not already have a value; otherwise ?|x{ will only
match the value of |x].

2]x] = <ALTER!-PERSISTENT |x|> will alter the valoe of x to be
the matching element even if §x| already has a value.

~1x} = <ALTER!-TENTATIVE }x|> will tentatively alter the value
of |x| to be tke matching element but if a failure backs up then the

old value of]x} will be restored.

4.1 page 63

If x has the value (a 1) then (b .x 4) will evaluate to (b (a

1) 4). The character ! is the escape character. ¥We vill use !.x to
denote the segment value of the identifier Xx. For example (b !.x 4)
will evaluate to (b a 1 4). In each case preceding the prefix
operator for an identifier will result in the segment prefix operator
for that identifier. If ve match the pattern (¢ !:x d) against the
value (c 3 a d) then x will be given {3 a) as its value.

The following table explains the prefir operators which yield
segment values:

1.]x] = {VALUE |x|} the segment value of the identifier |x|

t,1x} = [GLOBAL |x|} the segment glokal value of |x|

The follbuinQ tabie explains the prefix operators which match
segnents:

12]x] = {GIVEN x} will give x the value of the zatching
segment if x does not already have a value; otherwise !2?x will only
match the value of x.

t:x = {ALTER!-PERSISTENT x} will alter the value of x to be
the matching segment even if x already has a value.

1_j§x}) = {ALTER!-TENTATIVE x|} will tentatively alter the
value of |x| to be the matching segment but if a failure backs up then
the cld value of |x] will be restored.

Gerry Sussman and I have developed the following scheae for

looking up the values of identifiers in interpreted code. On the

MECHANISM OF IDENTIFIER LOOKUP

O | BINDING - STATE |

| IDENTIFIER |

PREVIOUS

PREVIOUS

| PROCESS| STACK

|PREVIOUS - VALUE|

|IDENTIFIER |

| CURRENT-VALUE |

| IDENTIFIER |

GROW

A

.

4.1 page 64

jdentifier stack wvhen an identifier is Lound the following inforiation'

is stored:

1. the name of the identifier

2. the current value of the identifier
g. éhe place on the stack vhere the identifier was previously
oun

Associated with each binding environment and identifier ve have the

place on the identifier stack where the identifier vas last bound.
4.1.2 Syntax of Expressions

MATCHLESS uses Polish prefix nctation for function calls with
the actual call delimited by < and >, Of course we use the characters
(and) to delimit lists. VWe use the characters [and] to delinmit
vectors. For example <¢ 2 3> evaluates to 5. If y has the value 4§,
then <¢ .y 1> vwill only match 5., The value of (.y) is (8) and the
value of (<¢ .y 1> (4 a) .y) is (5 (4 a) 4. If the functiom call is
to denote a segment then it is delimited by { and }. The function
REST will return the rest of the list that it is given as an argumeat.
Por example <rest (a b c)> evaluates to (b c). But (1 {rest (a b ¢)}
e f) evaluates to (1 b c e f). Purthersore, (a b {(rest (1 (e £f) q)}
k) will omly match (a b (e £) g k). The camponents of lists, vectors,
and nodes can be selected by subscripting. Por example <2 (a b ¢)>
evaluates to b and <3 [{(a) e 5]> evaluates to 5; The expression <get

1i} x> will return the location of the (ijth comfponent of the

4.1 page 65

structure |x]. Other values are computed frcm patterns., The value of

[-Yy (@ b) .y] is [4 (@ b) 4]. Tuples are stored in the stack whereas
the vectors are garbage collected. 1lexically the scope aof a tuple is
the smallest enclosing pair of < and > or { and }. Otherwise vectors
and tuples are indistirguishable. An argument of a function may be
computed in parallel with the cther arguments by delimiting the
argument with |< and > instead of < and >. For example 7+3 could be
computed in parallel with 2+4 in the expression <* [<+ 7 3> <+ 2 Ud>.
An argument of a function MUST be able to be computed in parallel if
it is delimitted by !|< and >. 1In other words, if one branch becomes

blocked the otter must be able to continue execution-.

4.2 page 66

4.2 Types

The type hierarchy is:

<?> for the universal type.

<WORD> for primitve types which are not pointers.

PALSE for the logical type false. 11 other _data are
considered to begtrue igpcqngitiona expressions. The null

function call <> will evaluate to #FALSE,

CHARACTER for a character such as_i"a or i"U. Again ve are
using ! as an escape character. The ! converts into the

quote for a single character.

<NUMBER> for numbers.

<FIXED> for fizxed ioigt nuaber.
FIX for a small fixed point number.

BIG for a big fixed pocint nunmber.
FLCAT for floating point number.
<POINTER> for gointers.

gtggofor atoss. The following are all atoms: a, foo, and
e

<STRUCTURE> for structured data. The ogerations of taki%g the
REST of a structure and selecting the nth element are defined

on all structures including tuples, vectors, lists, and nodes.
For some structures the operations are more efficient because
of special hardware.

TUELE for a tuple of elements., Tuples ire allocated fronm
the stack cf a process and are deleted on procedure exit.

Tuples occupy contiguous blocks of memcry. Once a tuple
has been created its structure cannot be changed and its
length can not be increased.

VECTOR for a vector._ Vectors are allocated contiguons
blocks of storage which are garbage collected whei no

lornger pcinted at. Although the structure of a vector

4.2 page 67

cannot be changed, its length can be increased at the cost
of a garbage collection. Othervise vectors are identical
to tuples.

STRING for a string. This is just a vector of characters.
For example "ba%", ®3%, and "a"b" are strings

LIST for a list. Llists have the advantage over vectors
that their structure can be changed after they have been
created. They have the disadvantage that it takes a time
proportional to n to get the nth elesment.

NODE for a node which has ptoget;ies. Nodes are the most
general form of structured data in the language. The

others are included for reasons of efficiency for
specialized structures. The components of a node are
obtained by subscripting which is currently implemented by
hash coding. A vector is approximately ome third the size
of its correspondinc representation as a node. :

The following types will not be explained here. They are

included only fer completeness. The complicated types and their

abbreviations are:

JUNCTICN for junction

ACTIVATION for activation.

STATE for state.

ARC for a node arc.

BIND for bindings.

<LOCATIVE> for a locative or generalized locatiom.

YECTOR-LOCATIVE for a locative to an element of a vector.

TUPLEB-LOCATIVE for a locative to an element of a tuple,

BINDING-LOCATIVE for a loactive to the value of am identifier

4.2 page 68

LIST-LOCATIVE for a lccative to an element of a list.

LIST-REST-LOCATIVE for a locative to the rest of a list.

NODE~-LCCATIVE for a locative to an element of a node.

IABEL for a label functiocn,

PROCESS for process,

STACK for a stack

BING for a ring

ELEMENT-CALL for a eleaent call.
SEGMENT-CALL for a segment call.

SEGMENT-VALUE-CALL for a segment value

call.

4.3 page 69

4,3 simple Examples cf Matching

The idea of structural matching is fundamental to the
MATCHLESS processor. By means of the primitive functiomn <IS?
|patternj |expression|> we can determine if }jpattern| matches
jexpressionj. The functicn IS has the value true if the match
succeeds and <> ({(which is FALSE) otherwise., Pattern matching takes
place through the use of side effects to change the values of
identifiers to be those of the objects which they match. The
assignment statement in MATCHLESS is a variant of the primitive 1S.
The expression <_ {pattern} jexpression}> is vell defined only if
|pattern] matckes |expression|. The value of the function _ is the
value of Jexpression|. Below #e give some exaamples of matching where
the values of identifiers are listed after assignment statements have
been executed, We use the character - to delimit segments. For
example the list (a b c) has subsegments:

The characters < and > are used to delimit function calls.

<prog [a [!=atcm h] c¢]

;"This is a comment.
We are inside 2 prograa in vhich we have
declared a, declared h to be of type atosa,
and declared c"

+"in the test below ,
the function IS will return true
since the pattern (_a k _h !_c) matches
the value {{1) Xk b o a)"

4.3 page 70

<is? (_a k _h !'_c) ({1l) k b o a)>>

a gets the value (1)

"h gets the value b

Cc gets the value (o a)
The value of the program is true which is the value of the IS
stateerent,

< Lo C !-atcn h] a
prog [L is of gyp& aton"

<1s’ {{_c _h kX _a) (a J b k q)>
c gets the value (a Jj)

b gets the value b

a gets the value g

<progyg [first last aidd eg
<is? (_first !_nmiddle _last) (a b ¢ 4)>>

first gets the value a
middle gets the value (b c)
last gets the value d

<prog [a b]
<is? (a _b) (d)>> fails because there is only one

element in (d).

<pro !-atcl a
prod [i is of éype atoa"

<1s? _a {o t)>> fails because (o t) is nct an aton,

An expression that ccnsists of the prefix operator "." followved by a

identifier will only match an object equal to the value of the

identifier.
<prog [a]
<is? (%_a t.3) (a b ¢cabc)>
a gets the value (a b ¢)
<prog [a b]
<is? (!_a x %f.a !_b) (abxdxakzxdgqg)d >
a gets the value Ta b)
a failure occurs because (!.a !_b) will not match (d x
abzx dgq)

a gets the value (a b x 4)
b gets the value (g)

An expression that consists of the prefix operaiot ? [the value given]

followed by an identifier matches the value of the identifier if it

4.3 page 71

has cne, othervise the identifier is assigned a value.

<prog [a]
<is? ?a t>>
a gets the value t

<pro 1=fix [a 5
prog [L{724x (2, 3)1]
a is declared to be of type fix and initialized to 5
on entrance to the prog. Consequently the assignment statement fails,

<prog [a!i ' . .
s? (!_a !?a) (a2 b c c k a)>> fails because once a is
assigned a value, a can only match a segment that is equal to the
value of a.
The function MATCH? is somewvhat more powerful than the
function IS? because it can match patterns against patterns.

<pro X
prog [<g£tch ?2x ?y> ‘

;"link x and y by matching them to each other®

<match ?x 3>

;:"let x have the value 3 and thus set y to 3"

-y

;"the value of y is the value of the prog"> evaluates
to 3

Bestrictions on the value of an identifier can be acquired as

the result of a match.

<prog [x]
<match ?x <less 5>>
:"x will only match numbers less than 5"
<match 6 ?x>> fails since 6 is not less than 5

Side effects can propagate through structures:

<prog [x y z]
: <match ?x [?y 1?2z}]>
<match (a b c) ?2x>
s"y gets the value a and z gets the value (b c)">

4.4 page 72

4.4 Definitions of Procedures

4.4.1 Functional Procedures

<FURCTICN

+tchecker+ tactivation-nase+ [-function-declarations-)
-expressions-> where t¢activation-name+ and ¢checker+ are optional,
vill evaluate to a function which will, when it is called, bind the
formal parameters in the |function-declarations| to the actual
parameters, evaluate the -expressions- returning the valune of the last
one as the value of the function. The +checker+ must be of the forn
<f{procedure| -arguments-> for one value or {|procedurey -arguaments-}
for multiple values. The ¥*checker+ is treated as a pattern that the
values returned must match, The match is done so that any side
effects are persistent. The |-function-declarations-}) is of one of

the following forms:

a ments-specification] which n be one of the following:
largpacntasse | thich 1, gilgujns

[-formal-garameter-specifica s-] vhere each rsa

parameter-specification is of one of the following foras:

|levaluaticn-specification| where each_ Jevaluation-
specification| must be one of the following:

*}{identifier| means that the |identifier] is to be
bound to the write protected UNEVALUATED corresponding
actual paraseter,

gidentifie:l means that the |identifier] is to be
ound to the VALUE of the corresponding actual

parameter

4.4 page 73

[tattribute-specificationy jevaluation-specification|]
where the jattrihute-specification] must be one of the
following:

lattribute]|
[-attributes-]

vhere each attribute must be one of the ﬁollosing:
~"SPECIAL"™ means that the identifier may be isea

free in other modules. The symbol -~"SPECIAL" is a
unigue striag.

géproge@utel -argurents-> meaps that the
identifier must alvays be either unassigned or

bound to an object which matches the pattern

<] procedure| -arguments->. The constraint is
enforced by PLANNEE. Any side effects of matching
the pattern against the new value of an identifier
are persistent.

-formal-parameter-specifications- -"OPTIONAL"™ -optional-
orsal-parameter-specifications-]

vhere an loptional-forlal-parangtgr—specificatior& 15
either a |[formal-parameter-specification| cr [Jattribute-

specification| [|evaluation-specification] |initial-
valuel]]l. The -"CPTIONAL®" construct is due to Chris
Reeve. It alows for optional arguments and specifies how
the identifier is to be initialized if the actual
paramater is not present.

-forsal-paraneter-specifications- -"REST" |identifier-
peciticagioa]) whicg will bind the identifier ir (ideatifier-

specificatiocn] to the tuple of the rest of the arguments
evaluated.

[-formal- graneter-sgec@fications— ~"REST" ‘'|identifier-
specification}]] which will bind the identifier in |idemtifier-

specification| to the write protected vector of tne rest of
the unevaluated arguments. The * variant is due to Garv
Peskin.

[~"BIND" |identifier-specification] Jarguments-specifcation} -
declarations-] is used to first bind the identifier in

jident ifier-specification]l to the bindings in effect when the
function is invoked. 1In almost all cases use of -~"BIND® can
be avoidea by reading the function imto a local syatactic
block so that no 1dentifier coanflicts can cccur.

e 4.4 page 74

[~"PATTERE" |calling-pattern] |arguments-specifcation]|]
defines a calling pattern for pattern directed invocationms.
The calling pattern is of the form [-declarations- |pattern]]
which declares identifiers for |pattern|.

FPor example:

<<function [-~"rest" x] <2 .x>> 11 21 33> evaluates to 21
since <2 [11 21 33> is 21

<<function [-~"rest" 'x] .x>
a

<¢ 3 W
c> evaluates to [a <+ 3 4> c]

<<function [x] .x> 3> evaluates to 3
<<function [x] .x> a> evaluates to a

.. <<function !=fix [[!=fir x]] .x> <+ 2 2>> evaluates to 4 where
1=fix is <OF-TYPE fix>

<<function 1=fix [[!=fix x]] <+ .3 1> 2> evaluates to 3

<<function !=fix [[!=fix x] [!=fix <+ oux .p>> 2 3D
evaluates tgng 1on ix [{ 10 711 X oY

<<function [x -~"opticnal® [y 3]] <+ .x .¥>> 4> evaluates to 7

<<function [x -"optional®™ [y 3]] <+ .x .¥>> 4 5> evaluates to

<<function [[!=fix 'x]] .x> 3> evaluates to 3

<<function ['x] .x> a> evaluates to a

<<fpnction [°Xx] x> <+ 2 2>> evaluates to <+ 2 2>

We would like to give a simple example of patterm directed
'invocation. Suppose that ve have a sink s which we need unstopped.
The classical solution is tc knov the name of a plumber which could be

applied to the sink. Thus for example ve might evaluate <plumber-

4.4 page 75

Perlman s>. The way we shall actually proceed is to advertise that we

need a sink unstopped. Of ccuse we won't let just anyone work on our
sink; he must come well reccmmended. For example he should be cheap

and speedy. We will evaluate

<call
[<[unstop s] 35>
<speedy> >

to offer to let some oie unstop our sink for $5 provindisg he is

speedy. Now suppose that there are a few plumbers arocund:

<define plumber-Greenklatt
<function
[~"pattern"
[[sink] [unstop ?sink]]
fee]
<cond
[{is <less $4> .fee>
<fail>]>
;"if the fee is less than $4
then fail"
<Roto-Rooter .sink>
;"othervise apply Roto-Rooter
to the sink">>

<define plumber-Perlean
<function

[~"pattern"”

[[sink] [unstop ?sink]]
fee]

<pour Drano .sink>

s"pour Drano in the sink"

<send-bill <times 2 .feed>

i"send a bill for twice the originally
agreed fee">>

To try to get our sipk unstopped we might evaluate:

<prog []
<call

{<[unstop s] $5>

4.4 page 76

<speedy> >

;"advertise for a speedy plumber to
unstop sink s for $5%

<ccnd

[<stopped-up? s>

<fail> P

s"if the sink is still stopped up
then try again"™>

Suppose that both plumber-Greenblatt and plumber-Perlman are
classified as speedy. Thus PLANKNER will chose one or the other to
invoke since both have patterns which match the calling pattern
[unstop s]. If either one fails then the other will be tried. If one
returns but the sink is still unstopped wvhen he gets back then the
mess the first created will be undone and the other tried.

A We can define the function reverse which returns a newly

constructed reverse of its argument as follows:

<define reverse <function [x]
<rule [] .x
|[<empty>
X]
[<structure>

<<{storage .x> {(reverse <rest .x>} <1 x>>]
~f"elsen
<error>>>>

Thus <reverse [a [b c] 4]> is [4 [b c] a].
Functions with an arhitrary number of arguments are
accommodated by passing a tuple which contains the evaluated

argumpents. Suppose that we already have a function PLUS which will

add two numbers together.

4.4 page 77

<define + <function pl
;"let the name of the current activation be pl™®
[~"rest" x]
;"we will receive a variable number of
arquments in the tuple x"
<for
[[result 0] n]
s"initialize the identifier result to 0"
[[~"test"
<is? [] .x>
<.pl .result>
s"exit .pl with .result"
;each time before executing
the loop test to see
if x is a null tuple and if so then
return the result")
[~"step" <chop x>]
;"after each pass through the 1loop chop X by
assigning x to the rest of x"]
<_ tresult <plus <1 .x> .result>>
:"the body of the loop is to add the first element of
x into the result">>>

<+ 3 {rest (4 £ 6)} 7> evaluates to 21

<+ 3 2 4> evaluates to 9

“<ACTCE-FUNCTICK
[lobject] |tail] |locative] jchoice] -functiom-
declarations~] -body-> is exactly like the function FUNCTION except

for the folowing:

It is treated as an actor in pattern matching.
The first argument jobject| is the matching obdect.

The second argunent |tail] is a tail of the matching cbject or <>
for an eleaen

4.4 page 78

The third argument |locative] is a locative to jobject| or <> if
none such exists.

The fourth argument |choice| is not false only if the actor-
function gets its choice hcw much to match.

The value of the actor-function is the rest of the object yet
to be matched. Actor functions are useful as in internal interface

between actors and functionms.
4.4.2 Macro Procedures

Macros are expanded by the interpreter and by the compiler.
The results are respectively interpreted and compiled. Macro
procedures look like
<MACBC
| {formal-paraseters| -exgressions-> The expansion of
the macro is thke value of the last expression. The character !°' is
used to suppress invocations. For exaxgle vhereas <+ 2 2> evaluates

to the NUMBER 4, 1'<+ 2 2> evaluates to the functiocn call <+ 2 2>,

<define cho 10f <macroc ['x]
!'<gut ocC
oX
t<rest 1'<in .x>>>>>

The macro choploc will take a location as its argusent and cause the

contents of that location to be changed to contain the rest of the
previous contents.

<choploc <at y>> expands to <putloc <at y> <rest <in <at y>>>>

4.4 page 79

We could have defined the function + as a macro as follows:

<define + <macro [-~"rest" 'x
i"let x be the vector of unevaluated arguments"

<{rule .x
[<empty>
;"if x-is <+> then the answer is O"
0]
#declare
[[first rest)
;"declare identifiers first and rest"
[:first !:rest])
;"othervise let first be the first argument and
rest be the rest of the arquments"
1'<plus .first !'<+ !l.rest>>
i"the ansver is vwritten out using
binary plus instead of +"]>>>

Thus

<+ 3 2 4> expands to <plus 3 <plus 2 <plus 4 0>>>

4. 4.3 Actor Procedures

Actors are used in patterns to match values. The primary
difference between functions and actors is that functioms produce
values while actors match them. Actors and functions take their
arguments in an exactly analogous fashion. Examples of actors are
found in section 4.5 below.

<ACTOR

tchecker+ tactivation-nanme+ |function-declarationsy -
patterns->, where +activation-name+ and +checker+ are optional,
evaluates to an actor which when it is invoked, matches an object

wvhich matches all of the -patterns- after the identifiers in the

S

4.4 page 80

|function-declarations] are bound. The |(function-declarationsj} is
interpreted EXACTLY as in FUNCTION.
<Kactor [~"rest®” x] <2 .x>> 1 a 3> matches only a
<Kactor [-"rest" 'x] <2 .x>> a <+ 3 4> c> matches only <+ 3 4>
<<actor [x] .x> 3> matches only 3
<<actor [x] .x> a> matches only a
1=fix is<§8g5%§pé:§i§>£(!=fix Xx])] .x> <+ 2 2>> matches cnly 4 where
<Kactor !=fix [[!=fix x]] <¢ .x 15> 2> matches crly 3
only S <<actor !=fix [[!=fix x] [!=fix y]] <+ .x .¥y>> 2 3> matches<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>