
Class Libraries Users Guide "

Microsoft® C/C++
Version 7.0

Class Libraries
User's Guide

For MS-DOS® and Windows™ Operating Systems

Microsoft Corporation

Infonnation in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software and/or databases described in this document
are furnished under a license agreement or nondisclosure agreement. The software and/or databases
may be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or nondisclosure agree­
ment. The licensee may make one copy of the software for backup purposes. No part of this manual
and/or databases may be reproduced or transmitted in any form or by any means, electronic or me­
chanical, including photocopying, recording, or information storage and retrieval systems, for any pur­
pose other than the licensee's personal use, without the express written permission of Microsoft
Corporation.

© 1991 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Microsoft, MS, MS-DOS, XENIX, CodeView, and QuickC are registered trademarks of Microsoft
Corporation.

U.S. Patent No. 4955066

Document No. LN28113-1191

10 9 8 7 6 5 4 3 2

Contents Overview

Introduction ... xv

Part 1 The Microsoft Foundation Class library Tutorial
Chapter 1 Using the Microsoft Foundation Class Library Tutorial 5
Chapter 2 Creating a Data Model with the Microsoft Foundation

Classes .. 17
Chapter 3 Windows Programming with the Microsoft Foundation

Classes .. 81
Chapter 4 Phone Book: A Simple Windows Database...... 117
Chapter 5 Phone Book: Dialog Boxes.......... 151
Chapter 6 Phone Book: Message Handlers .. 197

Part 2 The Microsoft Foundation Class library Cookbook
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17

General-Purpose Classes .. 251
The CObject Class........ 263
Collections ... 269
Files and Serialization.. 277
Diagnostics... 285
Exceptions .. 297
Application Design....... 305
Window Management 311
Dialogs and Control Windows 329
Graphics ... 343
User Input ... 351

Part 3 Microsoft iostream Class library Tutorial
Chapter 18
Chapter 19

The Fundamentals of iostream Programming.. 363
Advanced iostream Programming ... 395

Index .. 407

Contents

Introduction ... xv

The Promise of C++: Reusable Class Libraries ... xv
C++ Class Libraries vs. C Function Libraries ... xvi
How to Use a Class Library .. xvii

The Microsoft Foundation Class Library ... xviii
Windows Classes ... xviii
General-Purpose Classes .. xix

The Microsoft iostream Class Library......................... .. xx
How to Use the Class Library Documentation... xxi
Document Conventions ... xxii

Part 1 The Microsoft Foundation Class Library Tutorial

Chapter 1 Using the Microsoft Foundation Class library Tutorial... 5
1.1 What's in the Tutorial. .. 5

Topics .. 5
Programs ... 6

1.2 How to Use the Tutorial ... 6
What You Need to Know .. 6
Work Along with the Tutorial .. 7
Get Right to Your Own Code ... 7

1.3 How to Build Microsoft Foundation Programs 8
Necessary Setup .. 8
Makefiles and Build Directories ... 8
How to Build with PWB ... 9
How to Build with NMAKE ... 11
How to Switch from Release to Debug Builds ... 12

1.4 How to Run Your Program..... 13
How to Run Your DOS Program....................... ... 13
How to Run Your Windows Program.. 14

1.5 Summary ... 14

vi Contents

Chapter 2 Creating a Data Model with the Microsoft Foundation Classes 17
2.1 In This Chapter ... 17

The Data Model Program .. 18
2.2 How to Write the DMTEST Program .. 21
2.3 Design the CPerson Data Object.. .. 22

Create the Interface File .. 22
Create the Implementation File ... 24
Discussion: The CPerson Class .. 28

2.4 Design the CPersonList Object 36
Discussion: The CPersonList Class.. 39
Summary of Collection Use .. 49

2.5 Test the Data Model ... 49
Discussion: Testing the Data Model ... 58

2.6 Build the Program ... 65
2.7 Summary of the DMTEST Program .. 65
2.8 File Listings .. 66

Chapter 3 Windows Programming with the Microsoft Foundation Classes 81
3.1 In This Chapter ... 82

The Hello Program .. 82
3.2 How to Write the Hello Program ... 84
3.3 Create an Application Object ... 85

Discussion: Hello's Application Class ... 87
3.4 Put a Window on the Screen .. 90

Discussion: Creating Windows ... 91
3.5 Arrange for Communication with Windows .. 94

Discussion: Communication with Windows...... 95
3.6 Paint the Window ... 101

Discussion: Painting Text ... 101
3.7 Add an About Dialog Box .. 105

Discussion: The About Dialog Box 105
Summary of the Hello Program's Code .. 107

3.8 Prepare Supporting Files ... 107
Discussion: The Supporting Files...... 108

3.9 Build the Program ... 109
3.10 How Hello Works ... 110

A General View .. 110
A More Detailed View ... 111
How You Can Customize Your Windows Application 112

Contents vii

3.11 Summary ... 113
3.12 FileListings .. 113

Chapter 4 Phone Book: A Simple Windows Database ... 117
4.1 In This Chapter ... 117

The Phone Book Program ... 118
4.2 How to Write the Phone Book Program 120

The Steps in Writing Phone Book with the Microsoft Foundation Classes... 120
4.3 Create a Simplified Data Interface ... 122

Discussion: Class CDataBase ... 134
4.4 Applications for Class CDataBase ... 140
4.5 What's Next .. 140
4.6 File Listings .. 140

Chapter 5 Phone Book: Dialog Boxes .. 151
5.1 In This Chapter ... 151
5.2 Work from a Template ... 152
5.3 Add Dialog Boxes .. 153

Discussion: Dialog Boxes ... 162
5.4 What's Next .. 168
5.5 File Listings .. 168

Chapter 6 Phone Book: Message Handlers ... 197
6.1 In This Chapter ... 197
6.2 Determine What Messages Will Be Handled .. 197

Discussion: Message-Handler Functions .. 204
6.3 Add Message Handlers for File Menu Commands 205

Discussion: File Menu Message Handlers .. 213
6.4 Add Message Handlers for Person Menu Commands 216

Discussion: Person Menu Message Handlers ... 219
6.5 Add Message Handlers for Help Menu Commands 222

Discussion: Help Menu Message Handlers............... 223
6.6 Add Message Handlers for Creation and Sizing 224

Discussion: Creation and Sizing Member Functions.. 225
6.7 Add Scrolling Member Functions .. 227

Discussion: Scrolling Message Handlers..................... 229
6.8 Add a Keyboard and Mouse Interface ... 230

Discussion: Keyboard and Mouse Message Handlers 234

viii Contents

6.9 Add a Member Function to Handle the WM_PAINT
Message ... 235

Discussion: OnPaint .. 237
6.10 Add Utility Member Functions .. 238
6.11 Prepare Supporting Files .. 242
6.12 Build the Program ... 243
6.13 Summary ... 243
6.14 File Listings .. 244

Part 2 The Microsoft Foundation Class Library Cookbook

Chapter 7 General-Purpose Classes .. 251
7.1 Memory Management .. 251

Frame Allocation ... 251
Heap Allocation .. 252
Memory Allocation on the Heap and on the Frame 252
Resizable Memory Blocks .. 255

7.2 Date and Time .. 255
7.3 Strings ... 256

Basic Operations ... 257
CStrings Are Values .. 258
Operations Related to C-Style Strings .. 259

Chapter 8 The CObject Class .. 263
8.1 How to Derive a Class from CObject... .. 263
8.2 How to Access Run-Time Class Information .. 265

Chapter 9 Collections ... 269
9.1 How to Make a Type-Safe Collection .. 270
9.2 Accessing All Members of a Collection.. 272

How to Delete All Objects in a CObject Collection 273
How to Create a Stack Collection ... 275
How to Create a Queue Collection ... 276

Chapter 10 Files and Serialization ... 277
10.1 Files ... 277
10.2 Serialization .. 279

How to Make a Serializable Class .. 280
How to Serialize an Object ... 282

Contents ix

Chapter 11 Diagnostics ... 285
11.1 Debugging Features .. 285

Dumping Object Contents .. 286
The TRACE Macro ... 288
The ASSERT Macro ... 288
Overriding the AssertValid Function .. 289

11.2 Detecting Memory Leaks ... 290
Memory Diagnostics ... 291
Detecting a Memory Leak .. 292
Dumping Memory Statistics ... 293
Dumping All Objects .. 294
Interpreting an Object Dump .. 294

11.3 Using DEBUG_NEW to Aid Debugging .. 296

Chapter 12 Exceptions ... 297
12.1 Microsoft Foundation Classes Exception Handling 297
12.2 Catching Exceptions ... 298
12.3 Examining Exception Contents .. 299
12.4 Freeing Objects in Exceptions .. 300

Handle the Exception Locally... 301
Throw Exceptions After Destroying Objects ... 301

12.5 Throwing Exceptions from Your Own Functions 302
12.6 Exceptions in Constructors ... 303
12.7 Frame Variables and Exceptions .. 303

CString: The Problem of Deallocating Heap Space 304

Chapter 13 Application Design ... 305
13.1 U sing Microsoft Foundation Classes

to Write Windows Applications ... 305
13.2 Deriving Classes from CWinApp .. 307

Initializing Your Application .. 307
Idle Loop Processing... 309

13.3 The Resource File ... 310

Chapter 14 Window Management ... 311
14.1 Creating a Frame Window....... .. 311
14.2 Constructors for Derived Window Classes .. 312
14.3 Handling Window Messages .. 313

Menu-CommandMessages ... 314
Notification Messages from Child Windows ... 316

x Contents

Other Window Messages .. 318
14.4 Calling the Default Window Procedure

from a Message-Handler Function.. 319
14.5 Overriding Window Procedure for a Window Class 320
14.6 Scrolling .. 322
14.7 Using MDI Window Classes .. 323

Deallocating Memory Used by MDI Child Windows 323
Accessing the MDI Parent Window ... 323
Changing Frame Window Menus to Match MDI Child Windows 324

14.8 Using the AfxRegisterWndClass Function .. 324
14.9 Simple Way to Change a Window Icon .. 326
14.10 Using Member Variables Instead of cb WndExtra Bytes 327

Chapter 15 Dialogs and Control Windows .. 329
15.1 Dialog Boxes .. 329

Modal Dialog Boxes ... 329
Deriving from CDialog ... 332
Using a Dialog Box as a Main Window ... 334

15.2 Using Microsoft Foundation Control Classes .. 335
15.3 Deriving Controls from a Standard Control .. 337

Using a Derived Control in a Dialog... ... 340

Chapter 16 Graphics .. 343

16.1 Handling the Paint Message ... 343
16.2 Getting the Device Context from a CWnd Window 345
16.3 Graphic Objects .. 346

Creating and Deleting Graphic Objects... 347
Selecting a Drawing Object into a Device Context .. 348

Chapter 17 User Input .. 351
17.1 Handling a Mouse Click in a Window........... 351
17.2 Tracking the Mouse in a Window .. 353
17.3 Keyboard Events ... 356

Part 3 Microsoft iostream Class Library Tutorial
Chapter 18 The Fundamentals of iostream Programming ... 363

18.1 Introduction .. 363
What Is a Stream? ... 363

Contents xi

Microsoft CIC++ Input/Output Alternatives 364
The iostream Class Hierarchy... 365

18.2 Output Streams ... 365
Constructing Output Stream Objects .. 366
Using Insertion Operators ... 367
Format Control .. 368
Output File Stream Member Functions .. 373
The Effects of Buffering ... 377
Binary Output Files ... 378
Overloading the « Operator for Your Own Classes..................................... 380
Writing Your Own Manipulators Without Parameters.................................. 381
More Complex Manipulators .. 382

18.3 Input Streams .. 382
Constructing Input Stream Objects ... 383
U sing Extraction Operators .. 384
Testing for Extraction Errors .. 384
Input Stream Manipulators ... 385
Input Stream Member Functions.. 386
Overloading the» Operator for Your Own Classes..................................... 391

18.4 Input/Output Streams ... 392
An Input/Output Stream Example .. 392

Chapter 19 Advanced iostream Programming .. 395
19.1 Custom Manipulators with Parameters .. 395

Output Stream Manipulators with One Parameter (int or long) 395
Other One-Parameter Output Stream Manipulators 396
Output Stream Manipulators with More Than One Parameter 397
Custom Manipulators for Input Streams and 1/0 Streams 398
Using Manipulators with Derived Stream Classes ... 399

19.2 Deriving Your Own Stream Classes 399
A Straightforward Stream Class Derivation ... 400

Index .. 407

Figures and Tables

Figures
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 4.1
Figure 4.2
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Tables
Table 9.1

The Data Model and the User Interface 18
Object Class Hierarchies for Data Model Objects 21
Steps in Serializing a Person Object...................................... 35
A Person List Object and the Data Objects It Contains 40
Steps in Serializing a List of Person Objects............................... 44
Deletion and Removal of Data in a List 48
How an Exception is Handled by a Calling Function................. 62
The Output of Hello ... 83
Object Class Hierarchies for Hello 88
Window Display .. 94
How Message Maps Route Messages to Handlers 98
Sequence of Events in Hello's OnPaint Function 103
Hello's About Dialog Box ... 106
Sequence of Events When a Foundation Windows

Application Runs 111
The Output of Phone Book... 119
Role of the CDataBase Object ... 135
Phone Book's About Dialog Box .. 158
Phone Book's Find Dialog Box 158
Phone Book's Edit Dialog box 159
Phone Book's "No Database" Help Dialog Box 160
Phone Book's "No Name" Help Dialog Box 160
Phone Book's "Enter Data" Help Dialog Box 161
Phone Book File Menu.................. .. 205
How Menu Commands Are Processed 213
Phone Book Person Menu .. 216
Phone Book Help Menu... 222
A Selection in Phone Book.. 234

Shape Features ... 270

Introduction

This Class Libraries User's Guide introduction discusses C++ class libraries in
general terms and then summarizes the the two class libraries that are included
with Microsoft® C/C++ Version 7.0. These libraries include:

• The Microsoft Foundation Class Library

This library contains a full-featured set of C++ classes for Microsoft
Windows™. It includes not only Windows classes but also general-purpose
classes for collections, files, persistent storage, exceptions, diagnostics,
memory management, strings, and time.

• The Microsoft iostream Class Library

The iostream classes can be used for most input/output, but they are particularly
useful for text-mode output. These classes are popular because they have a pro­
gramming interface that is compatible with C++.

Following the class library summary is a section that tells you how to use the
library documention.

To start using this guide, you will need a basic knowledge of the C++ program­
ming language. To use the Windows Foundation classes, you should be familiar
with the C-language application programming interface to Microsoft Windows.

The Promise of C++: Reusable Class Libraries
C++ is a powerful language in its own right, but its real value lies in its ability to
be extended with class libraries. These already-written libraries of C++ classes ap­
pear as though they were part of the language.

As an example, consider the familiar C and C++ data type iot:

int i = 5;
i += 3; I I i = 8

Now suppose you had a class library that included a "string" data type called
CStriog. You could write expressions such as:

CString s = "very";
s += " easy"; II s = "very easy"

xvi Class libraries User's Guide

Notice how the CString data type, called a "class," appears to be part of the lan­
guage.

As another example, consider the cont object introduced in the C++ Tutorial. An
expression such as:

cout « "i = " « i « "\n";

depends on the Microsoft iostream Class Library because the« operator, nor­
mally used for shifting left, has been overloaded to insert values into the output
stream cont.

c++ Class libraries vs. C Function libraries
C function libraries have been available for years. Some, such as the standard run­
time libraries, are bundled with the compiler; others, such as database and user in­
terface libraries, are sold by independent software vendors.

This section compares C function libraries with C++ class libraries. The advan­
tages of the C++ language, such as inheritance and polymorphism, are discussed
in the C++ Tutorial.

Advantages of C++ Class Libraries
Class libraries have several advantages when compared with function libraries:

• Classes encapsulate code and data.

Ordinary C libraries consist of one or more discrete program modules, which
manage data in nonsystematic ways. It is generally difficult to isolate and con­
trol a particular library's data. By contrast, in C++ the data is made an integral
part of the class through "encapsulation." The class designer can control access
to the data through the class's member functions.

• New classes appear to be language extensions.

You can create objects of a library class the same way you create instances of
the C++ built-in types. Thus classes, with their special constructors and over­
loaded operators, provide a natural programming interface.

• Inheritance eliminates "code cloning."

If you need a new C function that is "similar to but different from" a library C
function, you must copy the original (assuming you have the source) and then
change its name. A C++ class allows you to add functionality through deriva­
tion without disturbing the original code. Indeed, class derivation does not re­
quire you to have the base class source code.

Introduction xvii

• Variable and function name collisions are minimized.

If two classes have identical data member names or member function names,
there is no conflict. Classes must not have the same name, however, unless they
are nested.

• Tools such as class browsers enhance source code control.

C++ adds a level of structure not possible with C function libraries. The Source
Browser in the Microsoft Programmer's WorkBench is a tool that allows you to
view your source code in the order of class hierarchy.

How to Use a Class Library
There are several ways to use a C++ class library:

• Construct objects directly from the classes provided

• Derive new classes

• Modify the class source code

Direct Use of Classes and Objects
Many class libraries provide classes that support the direct construction of useful
objects. Some even construct the objects for you prior to the execution of your
main program.

The iostream Class Library includes the predefined objects COllt and cin. Many
developers use those objects directly, and others construct their own objects from
the classes such as ifstream and ostrstream.

In the Microsoft Foundation Class Library, some classes, such as those dealing
with strings, time, and some low-level Windows functions, are most often used
directly for the construction of objects.

Derivation of New Classes
Certain classes are designed for the purpose of derivation. CObject, the root class
for most Microsoft Foundation Classes, is an example of a class that is not meant
to be used directly. Likewise, the CWnd window class (for Microsoft Windows)
is generally used as a base class for customized windows. A CWnd object can dis­
play itself and handle basic messages, but it doesn't show or accept data. A
derived class can provide the mouse and keyboard notification message functions
that make the window part of an application.

xviii Class libraries User's Guide

Other classes can be used directly or they can be derived from in order to add new
functionality. In the Microsoft Foundation Classes tutorial, you will see how a
special-purpose CPersonL i st class can be derived from the generic Microsoft
Foundation Library CObList class. The derived class adds new data members and
member functions.

Modification of Class Source Code
Sometimes you can't achieve all your customization objectives by class deriva­
tion. You may, for example, need access to a private data member. If you have the
library source code, you can modify the class directly. Even if you don't modify
the class, the source code is a useful learning and debugging resource.

The source code for the Microsoft Foundation Class Library is provided. The
source code for the Microsoft iostream Class Library is available separately.

The Microsoft Foundation Class library
The Microsoft Foundation Class Library is a C++ class library primarily designed
for developing applications for the Microsoft Windows (version 3.x) graphical
user interface. The Foundation classes, together with all necessary libraries, are in­
cluded with Microsoft C/C++ Version 7.0.

In addition to special-purpose Windows classes, the Microsoft Foundation Class
Library contains general-purpose classes that are useful both inside and outside of
the Windows environment. These general-purpose classes use functions from
standard run-time libraries, but they do not depend on Windows functions.

Windows Classes
Both Windows and C++ are object oriented, and it is natural to use an object­
oriented language to interface with an object-oriented graphical user interface. The
Windows classes in the Microsoft Foundation Class Library provide the link.
These classes offer the following features:

• Close coupling to the C-Ianguage Windows library

The Microsoft Foundation Windows classes are really a direct C++ wrapping of
the familiar C functions for Windows. This feature provides maximum speed
and storage efficiency, and it offers total programming flexibility. The resulting
programs are as fast and small as C programs, and they can incorporate
C-Ianguage function calls (including Windows calls) anywhere.

Introduction xix

• Significant reduction of programming "surface area" from C

C++ source programs for Windows are smaller and easier to understand be­
cause many complex functions are encapsulated in the classes. You derive your
own application classes from the library's base classes. These derived classes
give you access to all the base class functionality without code duplication.

• Wide array of useful window classes

The library contains ready-made, derivable classes for ordinary frame windows,
Multiple Document Interface (MOl) frame and child windows, edit controls,
list boxes, combo boxes, buttons, and so forth.

• Efficient processing of Windows messages

The Microsoft Foundation Windows classes replace error-prone case state­
ments with C++ member functions. You specify, by means of a special syntax
called a "message map," which Windows "notification" messages you expect;
then you write the necessary member functions. No space-consuming virtual
functions are necessary. C++ member functions are thus effectively reconciled
with Windows queued messages.

• Ability to derive "midlevel" window classes

If your application needs a feature, such as scrolling, repeated in many different
windows, you can write an abstract window class that contains this functional­
ity by deriving it from one of the Microsoft Foundation Classes. Then you can
further derive special-purpose classes that share the desired feature.

• Useful utility classes

There are useful classes for common Windows objects such as display contexts,
pens, brushes, menus, points, and rectangles. These classes permit you to maxi­
mize your use of the C++ language.

General-Purpose Classes
The general-purpose classes are useful both with and without Windows. All
classes are grouped in the same library because most of them share a common
base class, CObject. The general-purpose classes offer support for the following:

• Collections

The library provides efficient collection classes for ordered lists, indexed ar­
rays, and keyed maps (dictionaries). Sixteen collection variations accommodate
strings, void pointers, object pointers, bytes, words, and double words. A tem­
plate expansion tool, provided in the sample code, permits creation of cus­
tomized collection classes.

xx Class libraries User's Guide

• Strings

The CString class adds dynamically allocated strings to c++. These strings can
be manipulated with a Basic-like syntax that includes concatenation operators
and functions such as Mid, Left, and Right. They can be printed to diagnostic
output and written to (and read from) disk.

• Time and date

A time class, together with a companion time-difference class, offers date-time
arithmetic and automatic formatting of binary time values into human-readable
dates and times.

• Files

File classes offer a C++ interface to both the low-level and "stdio" input/output
files. In-memory files are also supported. The file class hierarchy allows all
three file types to be accessed polymorphically through the CFile base class.

• Exception processing

Errors can be systematically trapped using a syntax that models the proposed
ANSI C++ exception processing standard. This feature eliminates the need for
error check logic after every function call.

• Persistent objects

The object archiving feature allows objects of specified CObject-derived
classes to be stored to and loaded from a "persistent" storage medium such as a
disk. If a collection is archived, then all the members of the collection will, in
turn, be archived.

• Debugging support and diagnostics

Individual objects of selected CObject-derived classes may be printed in
human-readable form. Memory allocation statistics are available, and it is
possible to print the contents of a range of memory. Such a memory dump will
display not only object information but also the line number and source module
name where each memory block was allocated. Special "guard bytes", inserted
before and after allocated memory, allow corruption to be detected. All these di­
agnostic features are disabled in the Release versions of the library.

The Microsoft iostream Class Library
The iostream Class Library provided with the Microsoft C/C++ Compiler is based
on the AT&T C++ version 2.1 specification and thus conforms to the descriptions
in the more recent C++ textbooks. This library offers a complete input and output
capability for binary and text data and can operate in buffered or unbuffered mode.

The iostream classes are most useful for formatted text output. You are probably
familiar with the coot predefined output stream used mostly for debugging output.
The iostream classes are compatible with the Microsoft Foundation Classes.

Introduction xxi

The Microsoft iostream Class Library documentation emphasizes the following
points:

• Using the formatted stream output features

• Using stream member functions for file manipulation

• Using the input stream extractors

• Overloading« and» operators for your own classes

• Writing custom "manipulators" for special formatting

• Deriving from the streambuf class for custom processing

How to Use the Class Library Documentation
This Class Library User's Guide is divided into three parts:

Part 1

Part 2

Part 3

The Microsoft Foundation Class Library Tutorial

The Microsoft Foundation Class Library Cookbook

The Microsoft iostream Class Library Tutorial

The Class Library Reference is divided into two parts:

Part 1

Part 2

Part 3

Overview of the Microsoft Foundation Class Library

The Microsoft Foundation Class Reference

The Microsoft iostream Class Reference

If you want to learn about the Microsoft Foundation classes, read the overview
chapters in the Class Library Reference, Part 1. Then, after you have installed the
software, work through the examples in this Class Libraries User's Guide tutorial.
After you are familiar with the Foundation class basics, you can study the Class
Libraries User's Guide cookbook.

The alphabetical class reference and global function reference (Microsoft Class
Libraries Reference, Part 2) are useful during the software development process.
Remember that the reference material is also available in Help.

For input/output streams, read the Microsoft iostream Class Library tutorial in Part
3 of the Class Libraries User's Guide, then refer to Part 3 of the Class Libraries
Reference.

xxii Class Libraries User's Guide

Document Conventions
This book uses the following typographic conventions:

Example

STDIO.H

char, _setcolor,
__ far

expression

[option]

#pragma pack {I I 2}

#include <io.h>

CL [option ...] file ...

while()
{

}

Description

Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system
command level.

Bold type indicates C and C++ keywords, operators,
language-specific characters, and library routines.
Within discussions of syntax, bold type indicates that
the text must be entered exactly as shown.

Many functions and constants begin with either a
single or double underscore. These are part of the
name and are mandatory. For example, to have the
__ cplusplus manifest constant be recognized by the
compiler, you must enter the leading double
underscore.

Words in italics indicate placeholders for information
you must supply, such as a filename.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two
or more items. You must choose one of these items
unless double square brackets ([]) surround the
braces.

This font is used for examples, user input, program
output, and error messages in text. It is also used for
names of user-derived classes and members.

Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Example

CTRL+ENTER

"argument"

"C string"

Color Graphics
Adapter (CGA)

Introduction xxiii

Description

Small capital letters are used to indicate the names of
keys on the keyboard. When you see a plus sign (+)
between two key names, you should hold down the
first key while pressing the second.

The carriage-return key, sometimes marked as a bent
arrow on the keyboard, is called ENTER.

Quotation marks enclose a new term the first time it is
defined in text.

Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language
have the form " " and . . rather than " " and' '.

The first time an acronym is used, it is usually spelled
out.

Using the Microsoft Foundation
Class Library Tutorial

The first six chapters of this book (Part 1) make up the Microsoft Foundation
Class Library tutorial. Use these chapters to get a quick introduction to the
Microsoft Foundation Classes or to take a step-by-step tour through some of
their fundamentals.

1.1 What's in the Tutorial

Topics

The tutorial uses several example programs to introduce you to programming with
the Microsoft Foundation Class Library. For additional information about how to
accomplish particular programming tasks, see the cookbook (Part 2) in Chapters 7
through 17. As you work through the tutorial and explore the cookbook, you can
look up the classes, functions, and other components of the Microsoft Foundation
Class Library in the Class Libraries Reference. This information is also available
in Help.

This tutorial shows you how to:

• Design with C++ and objects.

• Use collection classes.

• Design and implement persistent objects.

• Use the diagnostic facilities ofthe class library.

• Use objects in character-based programs.

• Use objects to program Microsoft Windows.

If you want to study a more specific topic, use the cookbook chapters. If you want
to learn to build complete object-oriented programs-both character-based and
Windows-follow the tutorial.

6 Class libraries User's Guide

Programs
The tutorial presents four sample programs to demonstrate many of the classes and
facilities of the Microsoft Foundation Class Library:

• DMTEST, Chapter 2

This simple, noninteractive DOS program demonstrates the use of collection
classes, object serialization, diagnostics, and other features of the Microsoft
Foundation Class Library.

• HELLO, Chapter 3

This simple Windows program demonstrates the fundamentals of writing a
Windows program with the Microsoft Foundation Classes.

• PHBOOK, Chapters 4 through 6

This more ambitious Windows program demonstrates more complicated dialog
boxes, standard Windows version 3.1 open, save, and print dialogs, Windows
menus and menu-handler functions, basic uses of the keyboard and the mouse,
and more.

• CMDBOOK, Chapter 4

This program parallels PHBOOK but without Windows. It presents a character­
based command interface to the data model developed in Chapter 1 and used in
PHBOOK. Because of its great similarity to PHBOOK, CMDBOOK is not pre­
sented in detail but is provided if you wish to pursue character-based program­
ming with the Microsoft Foundation Class Library and C/C++.

1.2 How to Use the Tutorial
There are two ways to use this tutorial. If you learn best by typing the code your­
self, you can follow along step by step through the example programs. On the
other hand, if you prefer, you can read the discussion sections in each chapter and
build the examples from the code files provided on the distribution disks.

What You Need to Know
To make effective use of this tutorial, you should have some experience program­
ming in C and some familiarity with Microsoft Windows programming. Because
the Microsoft Foundation Class Library uses C++, the more you know about the
C++ language the better.

You can improve your understanding of Windows programming with the
Microsoft Windows SDK documentation and with books like Programming
Windows, Version 3, second edition, by Charles Petzold, and Peter Norton's
Windows 3.0 Power Programming Techniques, by Peter Norton and Paul Yao.

Using the Microsoft Foundation Class library Tutorial 7

You can improve your understanding of C++ programming with the C++ tutorial
included in your Microsoft C/C++ package or with C++ Primer, second edition,
by Stanley B. Lippman.

Chapters 3 through 6 cover Windows programming with the Microsoft Foundation
Class Library. Chapter 2 and part of Chapter 4 cover non-Windows programming.

Work Along with the Tutorial
To work along with the tutorial, follow the steps presented in the next five chap­
ters. Each chapter instructs you in putting together the necessary code files. You'll
add class declarations, member functions, and other pieces of code step by step.
Each chapter also includes complete listings of the code, which you can use to
check your work.

If you choose to follow the tutorial, make your own working directory for each ex­
ample. This keeps the files you create separate from files of the same names in the
example directories. Copy the appropriate makefile to your new directory (see
"Makefile Locations" on page 8).

At frequent intervals, you'll find discussion sections that sum up the code you've
just added to your files and explain what that code is doing. If you wish, you can
skip past any of the discussion sections to continue creating your example code
files, but you'll probably find the discussion sections worth pausing for.

Once you complete your files, you'll find instructions for building the program.
Later sections of this chapter will show you how to build your program using the
Programmer's WorkBench (PWB) or using the NMAKE utility.

Get Right to Your Own Code
If you prefer to skip the step-by-step tutorial, you should read the rest of this chap­
ter, then skim the remaining five chapters, focusing on the discussion sections. In
each chapter, you'll probably want to read the introduction and the discussion sec­
tions and look at the complete code listings.

On your Microsoft C/C++ distribution disks you'll find code files for all the tu­
torial examples, including makefiles for use with NMAKE and project files for use
with PWB. You can build the examples, modify them to try new techniques and
other classes, and then move on to your own programs.

8 Class libraries User's Guide

1.3 How to Build Microsoft Foundation Programs

Necessary Setup

This section explains how to build the example programs using either PWB or
NMAKE.

If you chose to install the Microsoft Foundation Class Library when you
installed Microsoft C/C++, you have all of the files and directories you need.
Your PATH, INCLUDE, and LIB environment variables should be set up to com­
pile programs that use the Microsoft Foundation Classes. The paths given below
are relative to where you installed Microsoft C/C++. If you installed Microsoft
C/C++ into the C700 directory, for example, the INCLUDE path given below is
C700\MFC\INCLUDE.

Your INCLUDE variable should include normal C 7.0 includes and the path to the
MFC\INCLUDE directory, which contains Microsoft Foundation Class Library in­
clude files.

Your LIB variable should include normal C run-time libraries and the path to the
MFC\LIB directory, which contains Microsoft Foundation Class Library run-time
library files.

Your INCLUDE and LIB paths do not need to be in any particular order. If you
write your own makefile for NMAKE, be sure to list the "afx" library appropriate
to your chosen memory model first in the list of libraries you link with.

Makefiles and Build Directories
This section describes where to find the make files for the tutorial example pro­
grams and explains how those makefiles are set up.

Makefile Locations
The makefiles for the tutorial examples are in the TUTORIAL directory except
those for HELLO.EXE, which is in the HELLO directory.

Note All of the tutorial programs except HELLO are placed in one directory,
MFC\SAMPLES\TUTORIAL. Because ofthis, you can't simply use the default
makefile as you can with HELLO. For these programs, you must give NMAKE a
specific makefile name.

The makefiles for building with PWB have the same base name as the example
program file, plus the .MAK extension. The makefiles for building with NMAKE
have the same base name as the example program file but no extension.

Using the Microsoft Foundation Class library Tutorial 9

Makefiles for the DMTEST, CMDBOOK, and PHBOOK examples are in the
MFC\SAMPLES\TUTORIAL directory. Makefiles for the HELLO example are in
the MFC\SAMPLES\HELLO directory.

Makefile Defaults
By default, the tutorial makefiles all build release mode programs.

If you want to build debug mode, see "How to Switch from Release to Debug
Builds" on page 12. The paths listed here and throughout the chapter are relative
paths. You'll probably want to write your own code in separate directories. In par­
ticular, if you follow the tutorial step by step and create your own code files to
match the code listings given in the chapters, you'll need to write your versions in
your own directories to avoid naming clashes with the same files provided on the
distribution disks.

After a build, you'll find the .EXE and .OBJ files for the build in these directories.

How to Build with PWB
This section outlines the basic steps needed to build a program using PWB.
For further information about using PWB, see the PWB Tutorial in Environment
and Tools.

~ To build your example program with PWB, do the following:

1. RunPWB.

• If you are running Windows, start PWB from the Program Manager.

• If you are running PWB from DOS or from a DOS command shell in
Windows, type PWB at the command line.

2. From the Project menu, choose the Open Project command.

This command displays a dialog box of the same name in which you can name
your project and select a makefile for the project.

10 Class Libraries User's Guide

3. Select the .MAK file for your program and click the OK button.

Use the following makefiles for the tutorial examples:

• For DMTEST, Chapter 2, use DMTEST.MAK.

• For HELLO, Chapter 3, use HELLO.MAK.

• For PHBOOK, Chapters 4 through 6, use PHBOOK.MAK.

• For CMDBOOK, Chapter 4, use CMDBOOK.MAK.

For the locations of these makefiles, see "Makefile Locations" on page 8.

4. From the Options menu, choose the Build Options command. The Build
Options dialog box appears. ConfIrm that "Use Release Options" is set. This is
the default provided in the tutorial's makefiles.

Note The makefiles for the tutorial examples build release versions by default.
To see how this default setup looks in PWB, choose some of the options com­
mands in the PWB Options menu and examine the dialog boxes to see which
options are selected.

5. To compile, from the Project menu, choose the Build command.

The Build command on the menu now includes your project name, for ex­
ample, "Build: DMTEST.exe."

6. When the build fInishes, the Build Results dialog box will appear, showing how
many errors and warnings occurred. If there were no errors, click the Cancel
button in the dialog box.

If you're compiling a DOS program and running PWB under DOS or Win­
dows, you can instead click the Run Program button in the dialog box. This ex­
ecutes the program from PWB. If you're compiling for Windows, see "How to
Run Your Program" on page 13.

Using the Microsoft Foundation Class Library Tutorial 11

7. If you get errors, do one of the following:

• After building a DOS program from the Build menu, choose Debug to locate
the source of the error. For more details, see your documentation for PWB in
Environment and Tools.

• After building a Windows program, switch to the Windows Program
Manager and run the Codeview debugger. See your Windows documentation
for more information.

How to Build with NIYIAKE
NMAKE is the command-line project-management facility provided with
Microsoft C/C++. This section explains how to build the tutorial programs from
the DOS command line with NMAKE. Although NMAKE isn't required for the tu­
torial examples, if you are unfamiliar with NMAKE and would like more explana­
tion, see the documentation for NMAKE in Environment and Tools.

~ To build your program with NMAKE, do the following:

1. At the DOS command line (or in a DOS command shell from Windows), type

NMAKE <makefile name>

This command is not case sensitive.

Use the appropriate makefile name for your program. The names for the tutorial
examples are shown below.

• For DMTEST, Chapter 2, use DMTEST

• For HELLO, Chapter 3, no makefile name is required (default of
MAKEFILE is used)

• For PHBOOK, Chapters 4 through 6, use PHBOOK

• For CMDBOOK, Chapter 4, use CMDBOOK

2. If you supply additional arguments to NMAKE, you must add the IF compiler
option:

NMAKE IF <makefile name> [[other arguments]]

The IF compiler option is not required when only one argument is given.

3. When the build completes, debug and rebuild the program if necessary. If you
make changes to your source files, NMAKE rebuilds the files that have
changed and any files that depend on them.

4. After a successful build, run the program to test it. For information about run­
ning your programs, see "How to Run Your Program" on page 13.

12 Class Libraries User's Guide

How to Switch from Release to Debug Builds
If you want to build the examples, or your own programs, for debugging, follow
the instructions in this section. When you build for debugging, CodeView informa­
tion is generated to help you use the Code View debugger. For more information
about CodeView, see Environment and Tools.

When you switch to debug mode, you set the _DEBUG flag so that the debugging
facilities built into the example programs are enabled. The ASSERT and TRACE
macros, explained in Chapter 2, will provide diagnostic information. Diagnostic
messages are displayed to the debugger.

Debug Mode for PWB

~ To switch from release builds to debugging builds with PWB:

1. Open the project file for the program.

2. From the Build menu, choose the Build Options command.

3. Select "Use Debug Options."

You will need to change the "Build directory" field in the same dialog box to
specify the correct directory to build into.

4. Then build the program as explained in "How to Build with PWB" on page 9.

Debug Mode for NMAKE

~ To switch from release builds to debugging builds with NMAKE:

• Add the DEBUG=l option to your NMAKE command line, as illustrated here for
the PHBOOK program:

NMAKE IF PHBOOK DEBUG=l

Note Case is significant for the DEBUG=l option. It must be uppercase.

Using the Microsoft Foundation Class Library Tutorial 13

1.4 How to Run Your Program
This section explains how to run your tutorial example programs. The process
differs depending on whether the program was built as a DOS program or a
Windows program.

The makefiles for the tutorial programs are set up for DOS or Windows. The
DMTEST program in Chapter 2 and the CMDBOOK program discussed at the
end of Chapter 4 run under DOS. The other programs, HELLO and PHBOOK,
must be run under Windows.

How to Run Your DOS Program
If you build a DOS program with PWB and you run PWB under DOS, you can
run the program directly from PWB.

~ To run a DOS program from PWB:

• When the PWB build-completion dialog box appears, click the Run Program
button.

If you build your DOS program with NMAKE, run the program from the DOS
command line.

~ To run a DOS program from the command line:

• At the DOS command line, type the name of your program's .EXE file and
press ENTER.

If necessary, supply a pathname to the .EXE file.

For example, to run the executable file for DMTEST, type the following at the
command line (assuming that DMTEST.EXE is in the \TUTORIAL directory):

DMTEST

Remember that the default makefiles for most of the tutorial programs build into
subdirectories of the MFC\SAMPLES\TUTORlAL directory, as explained in
"Makefile Locations" on page 8. Run the program from that directory, or supply a
path to that directory.

/

14 Class Libraries User's Guide

How to Run Your Windows Program
The example programs for Chapters 3 through 6 are Windows programs. They
must be run from within the Microsoft Windows environment.

Note You cannot use the Run or Debug menu commands in PWB with a
Windows program. To run your Windows program, switch to the Windows
Program Manager. To debug a Windows program, switch to the Program Manager
and execute the CodeView debugger from there.

~ To run your program in Windows:

1. From the Windows Program Manager File menu, choose the Run command.

The Run dialog box appears.

2. Type the path and program name just as you would from the DOS command
line.

1.5 Summary

For example, to run the HELLO program (assuming that HELLO.EXE is in the
C700\MFC\SAMPLES\HELLO directory), type

C:\C700\MFC\SAMPLES\HELLO\HELLO.EXE

If you prefer, you can use the New command from the Program Manager's File
menu to assign an icon to your program and tell Windows where to locate the
executable file. Then you can run the program by double-clicking its icon. For
information on this process, see your Microsoft Windows documentation.

This chapter introduced the Microsoft Foundation Class Library tutorial, shows
you how to use it, and explained how to build and run the example programs.

The next chapter explores the Microsoft Foundation Class Library's collection
classes and introduces the fundamentals of designing with objects. Even if you're
anxious to get to the Windows chapters, this chapter is worth reading.

Chapter 3 demonstrates the fundamentals of Windows programming with the
Microsoft Foundation Class Library. You'll build a simple Windows version of
the familiar "Hello, World!" program.

Chapters 4 through 6 take you deeper into Windows programming with the
Microsoft Foundation Class Library. You'll build a small but complete Windows
application called PHBOOK, which uses the data model designed in Chapter 2 to
implement a simple personal phone list program.

Using the Microsoft Foundation Class Library Tutorial 15

Chapter 4 also briefly discusses the CMDBOOK program, which provides a
character-based parallel to PHBOOK.

In addition to the tutorial and its example programs, your distribution disks
contain many other examples that use the Microsoft Foundation Classes. For non­
Windows applications, see TEMPLDEF and RES TOOL. For Windows applica­
tions, see CHART, MULTIPAD, and SHOWFONT, among others. A README
file explains what these applications do and what programming techniques they
demonstrate.

Creating a Data Model with the
Microsoft Foundation Classes

The previous chapter introduced you to the steps necessary to build programs that
use the Microsoft Foundation Class Library. This chapter assumes that you have
successfully installed the Microsoft Foundation Class Library on your system and
have read the previous chapter.

In this and the rest of the tutorial chapters, you will learn how to use the com­
ponents of the library in the design of your programs. You will see how the built­
in functionality of the Microsoft Foundation Classes can reduce the code that you
have to write to realize the goals of your programs. This chapter emphasizes the
Microsoft Foundation Class Library's "collection" classes in particular.

This chapter describes how to use Microsoft Foundation Classes to create a data
model for a simple name and phone number database program. The purpose of the
chapter is to demonstrate how the component classes from the Microsoft Founda­
tion Class Library can help you design at a high level of abstraction and greatly
simplify the implementation of your design.U se of the Microsoft Foundation Class
Library for Microsoft Windows programming is covered in the next four chapters.
This chapter explains the non-Windows classes of the Microsoft Foundation Class
Library.

2.1 In This Chapter
Follow this tutorial to write a simple program that uses an object-oriented
database. The database and the data objects stored in it are based on classes from
the Microsoft Foundation Class Library. The process can be summarized as
follows:

1. Design the data items.

2. Design a list to store the data.

3. Test the data model.

The rest of this section describes the example program.

18 Class Libraries User's Guide

The Data Model Program
In this chapter, you will develop a data model and a simple program to test it. The
example is called DMTEST.

This section is an overview of what the program does and what you will be learn­
ing about the Microsoft Foundation Class Library.

What Is a Data Model?
A data model is an abstraction that represents the structure of the data that a pro­
gram manages. The data model for this chapter, for example, consists of person ob­
jects and a list object to contain them.

The data model is completely independent of the user interface. The data model
knows nothing about how the data will be displayed to the user, nor does it know
how the user will communicate with the program. The data model communicates
with the user interface of the program through a well-defined set of member func­
tions.

One way to think of this relationship is that the data model is a server, and the user
interface is a client. The user interface interacts with the user and translates user
input into requests that the interface sends to the data model. The data model re­
sponds to the requests and sends information back to the user interface, which the
user interface then displays to the user.

Figure 2.1 shows the relationship between the user, the user interface, and the data
model. You can see that the user never directly interacts with the data model.

L-___ u_s_e_r __ ~I~L_ __ ln_~_e~_~_~_e __ ~~LI ____ ~_:_~a_e_I __ ~

Member
functions

Figure 2.1 The Data Model and the User Interface

The data model's independence from the user interface is a very important concept
in the design of resusable programs. This independence enhances the reusability of
the data model. Thus, the data model for names and phone numbers developed in
this chapter can be used with a text-only interface or with a Microsoft Windows
interface without any changes to the data model. The next chapters show how to

Creating a Data Model with the Microsoft Foundation Classes 19

develop a Windows user interface that works with the data model to create a
complete interactive program.

What the Example Does
The purpose of the example program is to manage a list of names and phone num­
bers. Each data item represents a single person and contains that person's name
and phone number. The user can add persons to the list, find all matches for a
specified name, and save and restore the data to and from a disk file. The C++
objects constituting the data model provide all of these capabilities.

The DMTEST program demonstrates these capabilities by:

• Creating a database and adding names to it.

• Serializing the database (writing it to disk).

• Deserializing the database (reading it from disk).

• Searching the database for a person.

• Disposing of the objects.

Code for the Data Model
To view the complete code for the DMTEST program, see Listings 1,2, and 3 at
the end of the chapter.

The code shown is available on the distribution disks in files PERSON.H,
PERSON.CPP, and DMTEST.CPP.

Microsoft Foundation Classes Used in the Data Model
This chapter demonstrates the use of six classes from the Microsoft Foundation
Class Library:

• Class CObject

Each record in the database is represented by an object of the class C Per son,
which is derived from the Microsoft Foundation Class CObject.The CPerson
class builds upon the functionality of CObject, adding member variables repre­
senting the name and phone number of a person. In addition, the CPerson class
overrides functions from CObject that are related to serialization so that the
name and phone number can be saved to and restored from disk.

• Class CObList

Collection classes are designed to contain collections of similar objects. The
Microsoft Foundation Class Library provides three kinds of collections: lists,
arrays, and maps (or dictionaries). In the example, a list collection is used to
contain all the CPerson objects in the database. The Microsoft Foundation

20 Class Libraries User's Guide

Classes include several useful list classes, but because we need some special­
ized list functionality, the list used in this chapter will be derived from the
Microsoft Foundation CObList class. The specialized list class makes use of
all of CObList's capabilities, but also adds some new functions, including one
that can find all elements of the list that match a specified last name.

• Class CString

CString objects represent the name and phone number member variables of a
CPerson object.

• Class CTime

A CTime object represents the last modification time and date of a CPerson
object.

• Classes CFile and CArchive

A CFile object identifies and opens the file used to serialize the database. Serial­
ization in the Microsoft Foundation Class Library is done with a CArchive ob­
ject, which uses an opened CFile object to perform the serialization.

Other Capabilities Demonstrated
The following list describes other capabilities that your data objects can use. Some
are available because your objects are derived from class CObject and some
simply because you are using the Microsoft Foundation Class Library. These capa­
bilities are demonstrated in the DMTEST program.

• Serialization

Serialization is the act of saving an object to a disk file or reading it back in
(sometimes called "deserialization"). Objects ofthe class CPerson can serialize
themselves to and from a disk file. Likewise, the collection of CPerson objects
can serialize itself and all its elements. Because a collection can automatically
serialize all its elements, the act of serializing the database is reduced to a single
function call to serialize the collection. This cuts down the amount of code you
have to write.

• Efceptions

The Microsoft Foundation Class Library's exception-handling mechanisms
"catch" exceptions that are "thrown" by the Microsoft Foundation Class Library
functions as those functions encounter errors. Exceptions provide a way for you
to respond to errors, especially by the file-handling classes. This, along with the
TRACE macro for printing messages, gives you a convenient, structured way to
process errors, both during development and in the finished program.

• Diagnostics

The TRACE macro is used throughout the code in this chapter to provide
diagnostic output to track program progress. The Microsoft Foundation Class
Library also provides an ability to dump the contents of objects to assist in

Creating a Data Model with the Microsoft Foundation Classes 21

debugging your program and facilities for testing the validity of your assump­
tions, such as whether a pointer points to a valid area of memory.

2.2 How to Write the DMTEST Program
This section gives an overview of the steps in writing the DMTEST program. As
you work through the steps, you will learn what files to prepare, where to put the
code in them, and how to compile the program.

To write the DMTEST program with the Microsoft Foundation Classes:

1. Design the (Person data object.

Derive the (Person data class from the Microsoft Foundation Class CObject.
Figure 2.2 shows the class hierarchy for (Person. For more about this step, see
"Design the CPerson Data Object" on page 22.

2. Design the (PersonL i st object.

Derive the CPerson List object from the Microsoft Foundation Class CObList.
Figure 2.2 shows the class hierarchy for CPerson List. For more about this step,
see "Design the CPersonList Object" on page 36.

3. Test the data model.

Write a small test program to demonstrate the capabilities of the data model.
For more about this step, see "Test the Data Model" on page 49.

4. Build the program.

Compile and link the data model test program. For more about this step, see
"Build the Program" on page 65.

CObject

CPerson CObList

CPersonList

Figure 2.2 Object Class Hierarchies for Data Model Objects

22 Class libraries User's Guide

2.3 Design the CPerson Data Object
This section explains the first step in writing the DMTEST program: design the
data and prepare two code files. You'll create an interface file for the data model
called PERSON.H and an implementation file called PERSON.CPP. The process
will be described in two main steps with several substeps:

1. Create the interface file.

a. Create a file PERSON.H and add directives.

b. Add a class declaration.

c. Add an #endif directive.

2. Create the implementation file.

a. Create a file PERSON.CPP and add directives.

b. Add macro invocations.

c. Add member function definitions.

Create the Interface File
PERSON.H contains a list of preprocessor directives and two C++ class declara­
tions. Class CPerson defines a class of "person objects." Class CPersonL i st de­
fines a class oflist objects capable of containing CPerson objects.

~ To create the PERSON.H interface file:

1. Create a file called PERSON.H and add the following directives at the top of
the file:

#ifndef __ PERSON_H __
#define __ PERSON_H __
1fi fdef _ DOS

#include <afx.h>
#else

#include <afxwin.h>
#endif
#include <afxcoll.h>

The directives above prevent any implementation code in PERSON.H from
being included twice, in case two files include PERSON.H and one of them
includes the other. This is a common safety measure used in all Microsoft Foun­
dation #include files. If the code were included twice, you'd get linker errors.

2. Add the following class declaration for CPerson to PERSON.H:

II class CPerson:
II Represents one person in the phone database. This class is
II derived from CObject (mostly to get access to the serialization

Creating a Data Model with the Microsoft Foundation Classes 23

II protocol).
II
class CPerson : public CObject
{

DECLARE_SERIAl(CPerson);

public:
IIConstruction

II For serializable classes, declare a constructor with no
arguments.

CPerson()
{ m_modTime = CTime::GetCurrentTime(); }

CPerson(const CPerson& a);

II For our convenience, also declare a constructor with arguments.
CPerson(const char* pszLastName,
const char* pszFirstName,
const char* pszPhoneNum);

IIAttributes
II Member functions to modify the protected member variables.
void SetLastName(const char* pszName)
{ ASSERT_VALID(this);

ASSERT(pszName != NULL);
m_LastName = pszName;
m_modTime = CTime: :GetCurrentTime(); }

const CString& GetLastName() const
{ ASSERT_VALID(this);

return m_LastName; }

void SetFirstName(const char* pszName)
{ ASSERT_VALID(this);

ASSERT(pszName != NULL);
m_FirstName = pszName;
m_modTime = CTime::GetCurrentTime(); }

const CString& GetFirstName() const
{ ASSERT_VALID(this);

return m_ Fi rstName; }

void SetPhoneNumber(const char* pszNumber)
{ ASSERT_VALID(this);

ASSERT(pszNumber != NULL);
m_PhoneNumber = pszNumber;
m_modTime = CTime::GetCurrentTime(); }

const CString& GetPhoneNumber() const
{ ASSERT_VALID(this);

return m_PhoneNumber; }

const CTime GetModTime() const

24 Class libraries User's Guide

{ ASSERT_VALlD(this);
return m_modTime; }

IIOperations
CPerson& operator=(const CPerson& b);

Illmplementation
protected:

II Member variables that hold data for person
CString
CString
CString
CTime

public:

m_LastName;
m_ Fi rstName;
m_ PhoneNumber;
m_modTime;

II Override the Serialize function
virtual void Serialize(CArchive& archive);

1tifdef _ DEBUG
II Override Dump for debugging support
virtual void Dump(CDumpContext& dc) const;
virtual void AssertValid() const;

fIend if
} ;

c++ techniques are used to derive class CPerson from the Microsoft Founda­
tion Class CObject. Notice that the class declares several constructors, an over­
loaded assignment operator, several member functions for getting and setting
the attributes of a person object, and several member variables for storing infor­
mation about a person. The class also takes advantage of CObject' s ability to
write an object's contents to disk by invoking the DECLARE_SERIAL macro
and overriding the Serialize member function. In addition, it overrides several
of CObject' s member functions to provide diagnostics during program develop­
ment. The class is discussed in detail in "Discussion: The CPerson Class" on
page 28.

3. Add the following directive as the last line of code in PERSON.H:

1tendif II __ PERSON_H __

Later you'll add the declaration for class CPersonL i st to PERSON.H. Be sure
to keep this #endif directive as the last line of code in the file.

Create the Implementation File
PERSON.CPP contains several preprocessor directives, two macro invocations to
support object serialization, and definitions for several of the member functions of
classes CPerson and CPersonL i st. Some of the member functions were defined
inline as part of the class declarations in file PERSON.H, but the longer ones were
left for definition in PERSON.CPP.

Creating a Data Model with the Microsoft Foundation Classes 25

~ To create the PERSON.CPP implementation file:

1. Create a file called PERSON.CPP and add the following directives at the top of
the file:

#include "person.h"
#include <string.h>

#ifdef _DEBUG
#undef TH I S_ FILE
static char BASED CODE THIS_FILE[J __ FILE __ ;
#endif

Besides #include directives, these directive lines provide support for debugging
when the _DEBUG flag is defined. The directives help identify which file an
error occurred in.

2. Add the following macro invocations to PERSON.CPP below the preprocessor
directives:

I I Call . IMPLEMENT SERIAL' macro for all the
II classes declared in person.h

IMPLEMENT_SERIAL(CPerson, CObject, 0)

This line adds code to support object serialization so that CPerson and
CPerson List objects can write themselves to a disk file and read themselves in
from a file. Serialization is discussed in detail in "How to Serialize a CPerson
Object" on page 33. Later you'll add a similar line for the CPerson List class.

3. Add the following member function definitions for class CPerson:

II CPerson: :CPerson
II Copy Constructor for CPerson class
II
CPerson::CPerson(const CPerson& a)
{

ASSERT_ VALlO(thi s);
ASSERT_VALID(&a);
m_LastName = a.m_LastName;
m_FirstName = a.m_FirstName;
m_PhoneNumber = a.m_PhoneNumber;
m_modTime = a.m_modTime;

II CPerson::CPerson
II Memberwise Constructor for CPerson class
II
CPerson::CPerson(const char* pszLastName,

const char* pszFirstName,
const char* pszPhoneNum)

26 Class Libraries User's Guide

{

}

ASSERT_VALID(this);
m_LastName = pszLastName;
m_FirstName = pszFirstName;
m_PhoneNumber = pszPhoneNum;
m_modTime = CTime: :GetCurrentTime();

II CPerson::operator=
II Overloaded operator= to perform assignments
II
CPerson& CPerson: :operator=(const CPerson& b)
{

}

ASSERT_VALID(this);
ASSERT_VALID(&b);
m_LastName = b.m_LastName;
m_FirstName = b.m_FirstName;
m_PhoneNumber = b.m_PhoneNumber;
m_modTime = b.m_modTime;
return *this;

II CPerson::Dump
II Write the contents of the object to a
II diagnostic context
II
II The overloaded '«' operator does all the hard work
II
Iii fdef DEBUG

void CPerson::Dump(CDumpContext& dc) const
{

}

ASSERT_VALID(this);
II Call base class function first
CObject::Dump(dc);

II Now dump data for this class
dc «"\n"
« "Last Name: " « m_LastName « "\n"
« "First Name: " « m_FirstName « "\n"
« "Phone #: " « m_PhoneNumber « "\n"
« "Modification date: " « m_modTime « "\n";

void CPerson::AssertValid() const
{

CObject::AssertValid();
}

Ifendif

Creating a Data Model with the Microsoft Foundation Classes 27

II CPerson::Serialize
II Read or write the contents of the object
II to an archive
II
void CPerson::Serialize(CArchive& archive 1
{

ASSERT_VALlD(this l;
II Call base class function first
CObject::Serialize(archive l;

II Now dump data for this class
if (archive. lsStoring() 1
{

TRACE("Serializing a CPerson out.\n" l;
archive « m_LastName « m_FirstName

else
{

« m_PhoneNumber « m_modTime;

TRACE("Serializing a CPerson in.\n" l;
archive » m_LastName » m_FirstName

» m_PhoneNumber » m_modTime;

These definitions complete the member functions declared as part of the
CPerson class declaration. They define the following member functions:

• A copy constructor-to make copies of a CPerson object

• A constructor-to create new CPerson objects with initializing information
passed as parameters

• An overloaded assignment operator-to assign one CPerson object to
another

• A Dump member function- to dump diagnostic information about CPerson
objects

• An AssertValid memberfunction-totestthevalidityofa CPerson
object

• A Seri ali ze member function-to write a CPerson object's data to a file
or read data from a file into a CPerson object

Later you'll add member function definitions for class CPersonL i st to
PERSON.CPP.

At this point, you've added all of the code for class CPerson to both files.

To continue the tutorial, see "Design the CPersonList Object" on page 36. For
more information about the steps you just completed, see "Discussion: The
CPerson Class," which follows.

28 Class libraries User's Guide

Discussion: The CPerson Class
This discussion does not instruct you to add any new code to your files. Code is
sometimes repeated to illustrate a point, but you do not need to add it.

A CPerson object is designed to manage the name and phone number of one per­
son. A C Per son object is constructed from the C Per son class. C Per son is derived
publicly from class CObject.

In effect, a CPerson object is created from a stock of existing components: a
string class, a time class, and a general object class (CObject, from which
CPerson is derived). The new CPerson class automatically inherits a great deal of
functionality from CObject and then adds to its inheritance. CPerson also relies
heavily on the built-in capabilities of CString and CTime. These component
classes encapsulate specialized kinds of data storage, control access to that data,
and cooperate in the ability of CPerson to serialize itself and to provide diagnostic
information.

The result of creating CPerson from library components is that you write less
code, and the code encapsulated by the component objects comes fully tested. This
leaves you more time to focus on high-level design issues and reduces debugging
and maintenance time and costs.

The CPerson class declaration given above requires some explanation. The discus­
sion that follows explains how to construct CPerson objects, how CPerson data is
stored and accessed, how to test a new object for validity, how to serialize a
CPerson object, and how to get a diagnostic dump of a CPerson object during
debugging.

Class CPerson Constructors
A CPerson object is constructed when one of its constructors is invoked. CPerson
has two constructors, one with parameters and one without. It also has a copy con­
structor and an overloaded assignment operator.

Constructor with Parameters You can use a constructor with parameters to con­
struct CPerson objects in your program. To initialize objects created this way, the
public constructor for CPerson takes initialization arguments, which you supply at
construction time.

Constructor Without Parameters The parameterless constructor of class
CPerson is used internally by the class to support serialization, but you must
supply it in your class declaration.

For serializable
classes, you must
define a constructor
with no arguments.

Creating a Data Model with the Microsoft Foundation Classes 29

How to Construct CPerson Objects You can construct a CPerson object in two
ways:

• You can construct a CPerson object on the frame of a function (as a local varia­
ble) as follows:

void f()
{

CPerson thePerson("Smith", "Mary", "435-8159");

II Other function code

}

• You can construct a CPerson object dynamically on the heap, using the C++
new operator, as follows:

CPerson* pPerson = new CPerson("Smith", "Mary", "435-8159");

The Copy Constructor The copy constructor is a special constructor that takes a
C++ reference to a CPerson object as its argument. The copy constructor copies
the data members of the person object whose copy constructor has been invoked
into the object passed as an argument. This allows you to make duplicates of
C Per son objects if you need to. For an important discussion, see the shaded box
"Copy Constructors" on page 30.

The Overloaded Assignment Operator Class CPerson overloads the C++
assignment operator (=) to provide correct assignment of one person object to
another. For an important discussion, see the shaded box "Copy Constructors" on
page 30.

About the Constructors For any class derived from CObject that will be serial­
ized, the Microsoft Foundation Class Library requires that you define a construc­
tor with no arguments. This constructor must at least put the object into a valid
state so that it can be safely deleted. Usually this means setting all the member
variables to some default null state. If you forget to define a constructor with no ar­
guments for a serializable class, you will get a compiler error at the line that con­
tains the IMPLEMENT_SERIAL macro.

The constructor with no arguments is used only internally for serialization. The
declaration inside class CPerson looks like this:

CPerson();

30 Class libraries User's Guide

In addition to the required constructor with no arguments, you may also declare a
constructor that takes arguments to initialize the member variables of the object, as
in CPerson:

CPerson(const char* pszLastName,
const char* pszFirstName,
const char* pszPhoneNum);

This practice of defining several variations on the constructor is common in C++
programming. You must declare at least one public constructor.

Objects constructed on the frame of a function are allocated when the function is
called. At the time of allocation, the constructor is invoked and the object initial­
ized. When the function completes, the destructors of any objects allocated on the
frame are invoked automatically to destroy the objects.

Creating a Data Model with the Microsoft Foundation Classes 31

You can construct objects dynamically on the heap at any time. Use the new opera­
tor to allocate the space. When you call new, the object's constructor is invoked
automatically and the object is initialized. The new operator returns a pointer to
the object. However, unlike allocation on the frame, allocation on the heap re­
quires that the programmer explicitly deallocate the object with the C++ delete
operator.

In the case of classes such as (Person, it is good practice for created objects to
live beyond the scope of the function where they are created, so objects are most
often created with the new operator.

How CPerson Data Is Stored and Accessed
(Person uses two Microsoft Foundation Classes to store its data in member varia­
bles. This section explains the use of classes CString and CTime.

Class CString CString is used to store the first and last names and the phone
number. The declarations of these member variables looks like this:

(String
(String
(String

m_pszLastName;
m_pszFi rstName;
m_pszPhoneNumber;

(Person uses the Microsoft Foundation Class CString to store its data in the
m_pszLastName, m_pszFi rstName, and m_pszPhoneNumber member variables. The
names of these variables follow the Microsoft Foundation Class Library conven­
tion of prefixing member variable names with "m_".

The CString class is used because CString objects are dynamic. A CString ob­
ject encapsulates a string that can automatically grow up to approximately 32,000
characters. CStrings also have the ability to serialize themselves, so when it is
time to serialize a (Person object, you can simply rely upon each CString in the
object to serialize itself without needing to know about the internal structure of the
CString. This is a considerable advantage.

Class Clime CTime is used to store date and time information. The modifica­
tion time variable in (Person is declared like this:

CTime

The (Person class also uses a CTime member variable to represent the date and
time of the last modification of each (P e r son object. The time and date are set

32 Class libraries User's Guide

when the object is created, and modified whenever any of the other member varia­
bles are changed. For example, the SetLastName member function looks like this:

void CPerson::SetLastNameC const char* pszName)
{

m_pszLastName = pszName;
m_modTime = CTime::GetCurrentTimeC);

In the body of this function, the first line sets the last name value. The second line
sets the modification time. This operation is transparent to the user of the class. It
demonstrates one of the virtues of providing a controlled interface to a class, as
discussed in the next section.

Like the name and phone number information, the modification date is serialized
with the CPerson object.

How to Access CPerson Data
Given a CPerson object, how do you examine and update its data? The class pro­
vides four pairs of member functions to set and get the values of a C Per son ob­
ject's member variables. For example, use the SetLastName member function to
set a new value for a person object's last name member. Typically, the values are
set all at once by the public constructor, which takes argumcnts and loads them
into the member variables. But you can also modify the object's data at any time
with the "Set" and "Get" member functions.

It's common in object-oriented programming to define such data-access functions.
Notice that the member functions are defined as public to invite use, while the
member variables are defined as protected to prevent outside use. Such controlled
access to protected member variables helps to ensure the data's integrity.

For example, in the CPerson class, all the member functions that set the member
variables also set the modification-date member variable to reflect the time of the
change. If it were possible to access member variables directly from outside the ob­
ject, a person object could be updated without updating its modification date. The
data could become invalid without this kind of secure encapsulation.

Validity Testing for Objects
Class C Per son demonstrates some of the facilities provided by the Microsoft
Foundation Classes for testing the validity of objects. The class uses the
ASSERT_ VALID macro and overrides the AssertValid member function of
class CObject.

Along with the ASSERT macro, which is discussed in Chapter 4, these facilites
allow you to test your assumptions. Before you use an object, it's wise to test the

Creating a Data Model with the Microsoft Foundation Classes 33

validity of its internal state. For example, if you have an object that represents a
stack data structure, you can confirm that the top and bottom of the stack are in a
valid relationship: the top is either "above" the bottom or equal to it (in the case of
an empty stack). Similarly, a pointer to an object must point to a valid area of
memory.

During debugging, you can use these assumption-testing facilities freely. If an
assumption fails the test, the program asserts, prints a diagnostic message, and
halts. When you build the program for release, the assumption testing code is not
compiled.

CPerson demonstrates the form of these facilities, but you'll need to wait until
Chapter 4 for a more meaningful example. In CPerson, the ASSERT_ VALID
macro typically tests whether the this pointer is NULL within a member function.
The override of the AssertValid member function simply calls its base class.
In class CDataBase in Chapter 4, you'll see some more serious testing of
assumptions.

For more information about assumption testing, see Chapter 11 of the cookbook.

How to Serialize a CPerson Object
The ability to serialize data to and from the disk is probably the most
important attribute of the CPerson class. To enable serialization, you can derive
your class from the CObject class, use the DECLARE_SERIAL and
IMPLEMENT_SERIAL macros, and override the virtual Serialize member
function. The version of Serialize that is defined for CObject can work with data
in the CObject class only. When you override Serialize for your class, you extend
the capability of the function so that it can handle the data in your class as well as
the data in CObject.

The Archive Object The Serialize function takes a CArchive object as its argu­
ment. CArchive is a Microsoft Foundation Class that provides a context for read­
ing and writing object data to and from a disk file. An archive uses a class's
overloaded insertion and extraction operators «< and ») to write and read object
data to and from the storage media. Notice that even though an archive uses the
same overloaded operators as the general-purpose 110 stream objects (such as cin
and cout) provided with Microsoft C, a CArchive object is different from an 110
stream:

• A CArchive object handles data in binary form, which the computer can
process efficiently.

• General-purpose 110 streams handle data in textual form, which makes it easy
for humans to interpret.

34 Class Libraries User's Guide

An individual CArchive object can be created for reading or for writing, but not
for both at the same time. Thus, each CArchive object maintains internal status in­
formation that indicates whether it is for loading (reading) or for storing (writing)
data. The Serialize function checks that status in the CArchive object passed to it
as an argument to determine whether to read or write the object data.

The TRACE Macro The code for the Seri ali ze member function in CPerson
was shown on page 27. Notice that it uses the TRACE macro to print out a debug­
ging message indicating that the function has been called. The TRACE macro is
designed so that it is activated when you build a debug version of your program,
but deactivated when you build a release version. Thus, you can sprinkle TRACE
messages liberally throughout your code to monitor program execution during
development, and they will be deactivated automatically when you build a version
of your program to ship. This means that you don't have to go back and comment
the messages out or bracket them with #ifdef _DEBUG and #endif statements.

What Serialize Does When a CPerson object is serialized, the following ac­
tions occur:

1. The CPerson object's Seri ali ze member function is called.

In the example program in this chapter, the CPerson List object that contains a
database of CPerson objects calls Seri ali ze for each object in the list.

2. The Seri al i ze member function immediately calls Serialize for its base class,
which in this example is CObject. The base class's data is thus written to disk.

By calling the base class version of Serialize first, you ensure that all the con­
tents of the base class portion of your object are correctly serialized. If the
base class is itself a derived class, the Serialize function for the base class of
CPerson is also called. Thus Serialize is called for all classes in the hierarchy
above your class. Figure 2.3 shows this sequence for CPerson.

3. The CPerson object's Seri ali ze member next writes its own data to disk.

To prepare, the Seri ali ze function calls the IsStoring member function for
the CArchive object. If the archive is for storing data, then each member varia­
ble of the CPerson object is written with the« insertion operator. If, on the
other hand, the archive is for reading, the » extraction operator is used to read
each member variable. The insertion and extraction operators perform all the
operations necessary to make sure that the member variables are correctly writ­
ten or read.

Notice that the member variables are extracted in the same order that they were
inserted. This ensures that each member variable is matched with the correct
data.

Any serializable object can be written to disk with a single line of code. As you'll
see later, a collection or list of serializable objects can also be serialized simply

Creating a Data Model with the Microsoft Foundation Classes 35

and with minimal code. Figure 2.3 shows the steps taken as a CPerson object is
serialized.

CObject 3. Base class is written to disk

2. Serialize

1. Serialize
CPerson 4. Derived class is written to disk

Figure 2.3 Steps in Serializing a Person Object

How to Dump a CPerson Object's Data
The previous section described how to override the Serialize member function to
read and write object contents to and from a CArchive object. The Dump member
function performs a similar function, but instead of writing out binary data to a
CArchive object, Dump writes a textual representation of the object data to a
CDumpContext object. A CDumpContext object is typically used for debugging
output during program development. It is similar to the general I/O streams in that
it is often directed to the screen or a log file, but a CDumpContext object can be
used only for output, not for input. A CDumpContext object's output cannot be
formatted.

The Dump function writes the contents of an object, including descriptive labels,
to a diagnostic context. If you compare it to the Serialize function, you will see
three main differences:

• Serialize operates on a CArchive object and Dump uses a CDumpContext
object.

• Dump writes out descriptive text labels along with the textual representation of
the value of each member variable, while Serialize reads and writes only the
binary value of the member variables.

• Dump is a write-only operation.

The code for the Dump member function of CPerson is shown on page 26. Notice
that it is bracketed with an #ifdef _DEBUG/#endif block so that it will not be in­
cluded in a release version of your program.

Notice also that, like Seri a1 i ze, the first statement of Dump calls the base class's
version of the function. This ensures that the contents of the base class portion of
the object get dumped ftrst. (That is, if the base class has any member variables,
they're written out before member variables of the derived class.) Then the rest of

36 Class libraries User's Guide

the Dump function uses the insertion operator to send descriptive labels and the
contents of each member variable of the CPerson class. Once again, the insertion
operator does all the hard work.

The Microsoft Foundation Class Library provides a predefined CDumpContext
object named afxDump. You can use this object as the argument to the Dump func­
tion. The afxDump dump context object writes the dump information to standard
output. For a Windows program, afxDump uses the Windows function
OutputDebugString to route the dump information to the debugger if present, or
to the auxiliary (AUX) device if not. This occurs only if tracing is enabled. For
more information, see Technical Note 7 in file TN007.TXT in your distribution
disks. The afxDump object is available only in debug mode, but class
CDumpContext can be used for programs in release mode.

For example, if you had a CPerson object, you could dump it to the predefined
dump context with the following code. The DMTEST code also calls the
SetDepth member function of class CDumpContext to specify that all data of all
objects is to be dumped. This call is discussed again in step I of "Test the Data
Model" on page 49 and "How FindPerson Is Tested" on page 58.

CPerson myPerson("Smith", "Mary", "223-9175");
myPerson.AssertValid(); II See if object contains valid data
myPerson.Dump(afxDump);

The output looks like this:

Last Name: Smith
First Name: Mary
Phone #: 223-9175
Modification date: Fri Jul 19 13:36:30 1999

2.4 Design the CPersonList Object
This section explains the second step in writing the DMTEST program: design a
collection object to hold the CPerson data. You'll be adding more code to your
PERSON.H and PERSON.CPP files. This process will be described in two main
steps:

1. Add a class declaration to file PERSON.H.

2. Add code to PERSON.CPP.

a. Add a macro invocation.

b. Add code for member functions.

Each CPerson object represents one person in the database of names and phone
numbers that you're building. You can use one ofthe collection classes from

Creating a Data Model with the Microsoft Foundation Classes 37

the Microsoft Foundation Class Library to derive your own list class to manage a
list of CPerson objects. The list class designed in this section is called
CPerson list.

~ To add the CPersonList object code to PERSON.H:

Add the following class declaration for CPersonl i st to file PERSON.H after the
. CPerson declaration:

II class CPersonlist:
II This represents a list of all persons in a phone database. This
II class is derived from COblist, a list of pointers to CObject-type
II objects.

class CPersonlist public COblist
{

DEClARE_SERIAl(CPersonlist)

public:
IIConstruction

CPersonlist()
{ m_blsDirty = FALSE; }

II Add new functions
CPersonlist* FindPerson(const char * szTarget);

II SetDirty/GetDirty
II Mark the person list as "dirty" (meaning "modified"). This
II flag can be checked later to see if the database
II needs to be saved.
II
void SetDirty(BOOl bDirty
{ ASSERT_VAlID(this);

m_blsDirty = bDirty; }

BOOl GetDi rty()
{ ASSERT_VAlID(this);

return m_blsDi rty; }

II Delete All will delete the Person objects as well as the
II pointers.
void DeleteAll();

protected:
BOOl m_blsDirty;

} ;

C++ techniques are used to derive class C Per son lis t from the Microsoft Founda­
tion Class CObList. The class declares a constructor, a member function for
searching the list, member functions for flagging changes to the list and for testing

38 Class Libraries User's Guide

that flag, and a member function for deleting the list. The class also invokes the
DECLARE_SERIAL macro to do its part in serializing the data to and
from the disk.

Note that CPersonL i st requires only a single constructor with no arguments. This
constructor is defined inline, so you don't have to add a function definition for it to
your PERSON.CPP file. The definition is taken care of as part of the declaration.
For more information about the CPersonL i st constructor, see "Discussion: The
CPersonList Class" on page 39.

This completes your PERSON.H file.

~ To add the CPersonList object code to PERSON.CPP:

1. Add the following macro invocation to PERSON.CPP just below the similar
IMPLEMENT_SERIAL macro for CPerson:

IMPLEMENT_SERIAL(CPersonList, CObList, 0)

2. Add code for the member functions of each C Pe r s on Lis t at the end of
PERSON.CPP:

II CPersonList::FindPerson
II
CPersonList* CPersonList::FindPerson(const char * szTarget)
{

ASSERT_VALIO(this);

CPersonList* pNewList = new CPersonList;
CPerson* pNext = NULL;

II Start at front of list
POSITION pos = GetHeadPosition();

II Iterate over whole list
while(pos != NULL)
{

}

II Get next element (note cast)
pNext = (CPerson*)GetNext(pos);

II Add current element to new list if it matches
if (_strnicmp(pNext -> GetLastName(), szTarget,

strlen(szTarget)) == 0)
pNewList -> AddTail(pNext);

if pNewList -> IsEmpty()
{

}

delete pNewList;
pNewList = NULL;

Creating a Data Model with the Microsoft Foundation Classes 39

return pNewList;
}

II CPersonList::DeleteAll
II This will delete the objects in the list as the pointers.
II
void CPersonList::DeleteAll()
{

}

ASSERT_VALID(this);
PDSITION pos = GetHeadPosition();

while(pos != NULL)
{

delete GetNext(pos);
}
RemoveAll();

CPersonL i st declares four member functions to manipulate the data stored in
the list and in the member variable of C Per son Lis t. The four member functions
are Fi ndPerson, SetDi rty, GetDi rty, and Del eteA 11. SetDi rty and GetDi rty
are declared inline, so you've already added their definitions with the class dec­
laration in PERSON.H.

This completes your PERSON.CPP file.

At this point, your PERSON.H and PERSON.CPP files are complete. Check to be
sure that you have added all the #include and other compiler directives. Compare
your code to the full code listings presented in Listings 1 and 2 on page 66 and 69.
In the continuation of the tutorial, you will create a third file containing a main pro­
gram to test the data model.

To continue the tutorial, see "Test the Data Model" on page 49. For more informa­
tion about the steps you just completed, see "Discussion: The CPersonList Class, "
which follows.

Discussion: The CPersonList Class
This discussion does not instruct you to add any new code to your files. Code is
sometimes repeated to illustrate a point, but you do not need to add it.

A CPersonL i st object is a "collection" of CPerson objects. You construct a
CPersonL i st object from the CPersonL i st class declared above. CPersonL i st is
derived publicly from the Microsoft Foundation Class CObList.

40 Class Libraries User's Guide

Figure 2.4 shows a collection schematically.

CPersonList Object

•••• CPerson Objects

Figure 2.4 A Person List Object and the Data Objects It Contains

The discussion that follows explains how to construct a CPersonL i st object, how
to add person objects to it, how to serialize the whole list, and how to search the
list for all persons with a given last name.

Creating a Data Model with the Microsoft Foundation Classes 41

How to Construct a CPersonlist Object
The constructor for this class is declared publicly because you must be able to in­
voke it from outside the class. A list requires no initialization values, so you don't
need a second constructor that takes arguments. The constructor of CPerson List
simply initializes the list's IlL blsDirty member variable to FALSE, signifying
that the list currently has no unsaved changes.

~ To construct a CPersonL i st:

Use one of the two ways you construct a CPerson object:

• On the frame of a function

When a function executes, a list declared as a local variable is constructed.
When the function returns, the list's destructor is called to destroy the list. For
example, to construct a local list in a function:

void AFunction()
{

CPersonList myList; II List is constructed

II Operations on the list

II List is destroyed as function exits
}

• In the heap

A list constructed dynamically with the C++ new operator exists until
you explicitly destroy it by invoking the C++ delete operator. To create a new
CPersonL i st in the heap:

CPersonList* pMyList = new CPersonList;

This invokes the CPersonLi st constructor for pMyL i st.

How to Add Persons to the list
This section shows how to create and add person objects to a list object. You do
not need to add this code to your files.

~ To add a person object to the list:

1. Create a person object:

CPerson* pNewPerson = new CPerson("Smith",
"Mary",
"435-8159");

42 Class Libraries User's Guide

2. Add the person to the list:

pMyList -) AddHead(pNewPerson);

This code calls the AddHead member function of CPersonL i st, which the
class inherits from CObList without overriding. Because the list was created as
a pointer to a C Per son Lis t object, the -> operator is used to access the mem­
ber function.

How to Serialize the list
This section explains how to serialize the CPerson database; that is, to write the
data members of all CPerson objects in the list to disk. It also explains the reverse
process: deserializing (reading) the database back from disk. In both cases, seriali­
zation uses a CFile object and a CArchive object. These objects are discussed in
the next section below.

The process also optionally uses a CFileException object. The CFileException
object is used to return information about any file errors that may have occurred
during the attempt to open the file. For more information about serialization, see
"More on Serialization" on page 60. For more information about exceptions, see
"Exception Handling" on page 61.

~ To serialize a CPersonList:

1. Create a CFile object and call its Open member function.

In the call to Open, specify the open permissions. Because the permissions are
defined inside class CFile, you need to qualify their identifiers with the CFile
class name:

theFile.Open(pszFileName, CFile::modeCreate I CFile::modeWrite)

The arguments to Open specify the filename, the access mode
(CFile::modeRead or CFile::modeWrite), and, optionally, a preconstructed
CFileException object (not used here).

Note The filename argument is a C++ reference to a CString object. You can
pass an ordinary null-terminated C-Ianguage string in a CString argument, as is
done with the szFi 1 eName string in DMTEST.CPP. For more information
about CString, see the Class Libraries Reference and Chapter 7.

2. Use the CFile object to create a CArchive object:

CArchive theOutArchive< &theOutFile, CArchive::store);

Creating a Data Model with the Microsoft Foundation Classes 43

This example shows an archive created for writing. The second argument speci­
fies whether the archive is for loading (reading) or storing (writing). For more
details, see "More on Serialization" on page 60.

3. Use the CArchive object as you would a C++ iostream, such as do or COllt:

theOutArchive « pList;

You use the overloaded insertion «<) or extraction (») operator to pass data
through the archive object. The one you use depends on whether you are writ­
ing or reading the list.

4. Close the archive object and then the file object, in that order:

theOutArchive.Close();
theOutFile.Close();

If you close them out of order, an exception is thrown.

The default serialization behavior of a collection is to serialize all its elements.
Because all the elements of a C Person List are CPerson objects, and
because CPerson objects know how to serialize themselves, you can rely on the
default behavior for a correctly serialized list. This means that you can serialize a
C Per son Lis t and all its elements to or from a CArchive with a single statement.
The code fragments below show how easily this can be done (don't add this code
to your files):

CPersonList* pList = new CPersonList;

II Add CPerson elements

II To serialize the collection out to disk
II Create a file object
CFile theOutFile;
II Open the fi 1 e
if(!theOutFile.Open(pszFileName, CFile::modeCreate I I
CFile::modeWrite), NULL
{

II Error handling
TRACE("Unable to open a file for serialization\n");
return FALSE;

}

II Create an archive object from the file object
CArchive theOutArchive(&theOutFile, CArchive::store);

II Serialize
theOutArchive « pList;

44 Class Libraries User's Guide

II Close the archive and the file, in that order
theOutArchive.Close();
theOutFile.Close();

And to deserialize the collection back in from disk:

CPersonList* pOtherList = NULL;
CFile thelnFile;
if(!thelnFile.Open(pszFileName, CFile::modeRead))
{

II Error handling
}

II Create an archive object for reading
CArchive thelnArchive(&thelnFile, CArchive::load);

II Deserialize
thelnArchive » pOtherList;
II Close the archive and the file, in that order

As the code shows, a single insertion or extraction statement is sufficient to
completely serialize the entire collection. Type-safety is maintained during the seri­
alization operation. Thus, the serialization mechanism checks the type of each ob­
ject in the file before it is added to the list and throws an exception if it encounters
an incorrect object type. Figure 2.5 shows the steps in serializing a list of objects.

CPersonList Object

1. Serialize -::>...:;...-~ 2. Serialize

3. Objects serialize themselves

CPerson Objects

Figure 2.5 Steps in Serializing a List of Person Objects

Note You must use the DECLARE_SERIAL macro in the declaration
of a class for the class to be serializable. Look at the declarations of
CPerson and CPersonL i st discussed previously. You must also use the
IMPLEMENT_SERIAL macro in the .CPP file that defines the member
functions declared in your .R file.

Creating a Data Model with the Microsoft Foundation Classes 45

The Microsoft Foundation Class Library provides class CFile and class CArchive
for working with disk files. You can still use standard C 110 routines, but these
classes are a good alternative because they encapsulate file handling in objects.
For more information about CFile, CArchive, and serialization, see "More on
Serialization" on page 60.

How to Search the List
This section explains how to search the CPerson List for a particular person. In
the example program, the last name is used as the key for the search. The steps are
described below:

~ To search a CPersonList:

1. Call the target list's Fin d Per son member function:

CPersonList* pFound = pDataBase -> FindPerson(szLastName);

Fi ndPerson takes an argument of type CString. You can pass an initialized
CString object or a null-terminated string containing the last name to find. For
more information on the properties of a CString object, see Chapter 7.

FindPerson returns a new CPersonL i st object, pFound. If there were any
finds, pFound contains pointers to the objects found in the target list,
pDataBase.

Note The pointers in the new list point to the original objects, which are still in
the original target list.

2. Examine the returned list to see if it contains objects:

if(! pFound -> IsEmpty()
{

II Do something with the found list
}

C Per son Lis t inherits an IsEmpty member function from CObList. It returns
TRUE if the list is empty.

46 Class Libraries User's Guide

3. Delete the found list when you finish with it:

delete pFound;

The found list is allocated dynamically by Fi ndPerson, which returns a pointer
to the found list. Because pFound is allocated in the heap, you must deallocate
its storage with the delete operator.

Remember that the found list's elements are pointers to CPerson objects still
in the original target list. Don't call the Del eteA 11 member function of
pFound. That would destroy the objects in the target list. All you want to do is
delete the found list, which leaves the target list intact.

In the code for Fi ndPerson, you can see a number of objects and their member
functions in use. To iterate over the list in search of the key last name,
Fi ndPerson uses the GetHeadPosition and GetNext member functions that
CPersonL i st inherits from CObList.

GetHeadPosition is used to start at the beginning of the list, and GetNext is used
to get access to successive elements of the list. To compare the key string with the
last name member variable of each CPerson object in the list, Fi ndPerson calls
the _strnicmp run-time function and passes it the last name of the next person in
the list.

CString has several member functions for string comparison-these are com­
parable to the C run-time library functions for string comparison. To obtain the
last name of the next person in the list, Fi ndPerson calls the person object's
GetLastName member function, which you wrote as part of class CPerson.

If matching last names are found, Fi ndPerson returns a list containing pointers
to all found objects. The returned list can be useful in its own right, since it is a
CPersonL i st object with all the capabilities of the original list from which it
was built. You can display the found list, operate on it, add to it, delete from it,
and so on.

Creating a Data Model with the Microsoft Foundation Classes 47

How to Delete the Entire Database
This section explains how to delete the database and its contents after you finish
using it.

~ To delete the entire database:

1. Call the C Per son Lis t object's De 1 et eA 11 member function to delete the
contents:

pDataBase -> DeleteAll();

The Del eteA 11 member function, which you added to CPersonL i st, performs
two operations. First, it iterates through the list and invokes the delete operator
for each contained object in turn. Then it calls the CObList member function
RemoveA 11, which frees underlying storage and marks the list as empty. After
the RemoveA 11 operation, the list contains no pointers to any objects.

2. Invoke the C++ delete operator to delete the list object:

delete pDataBase;

The reason you added a Del eteA 11 member function to CPersonL i st is that delet­
ing objects from the list and removing them from the list are not the same thing. If
you delete an object from the list, the list still has a pointer to the object, but this
pointer is now invalid because the object it formerly pointed to no longer exists.

On the other hand, if you remove an object from the list, you remove the list's
pointer to the object, but the object itself still exists. Thus, if you want to keep a
list but empty it without destroying the objects it contained, use RemoveA 11. If
you want to destroy the contents of a list without destroying the list itself, use
De 1 eteA 11. If you want to destroy both the list and its contents, first call
De 1 eteA 11, then invoke delete on the list object. Figure 2.6 summarizes these
deletion processes.

48 Class Libraries User's Guide

List object with pointers
to CPerson objects

1. Invoke delete on each element

List after deleting contents
(pointers point to nothing)

2. Call RemoveAII

List after removing pointers
(list still exists but is now empty;
however, data objects still exist)

3. Call DeleteAII

List after deleting and
removing elements
(list is now empty,
data objects destroyed)

Figure 2.6 Deletion and Removal of Data in a List

The Del eteA 11 member function of class CPerson List uses two other useful
member functions inherited from class CObList. The GetHeadPosition function
returns a value of type POSITION, which provides access to the head element of
the list. The GetNext function returns the POSITION of the next element. You
can access the element with this POSITION value. To see these member

Creating a Data Model with the Microsoft Foundation Classes 49

functions in use, see the code for Del eteA 11 in file PERSON.CPP in Listing 2.
For more information about class COb List, see the Class Libraries Reference.

Summary of Collection Use
The first step in designing a data model is to declare the CPerson class. Each
CPerson object represents the name and phone number of an individual person.
Next, use one of the Microsoft Foundation Class Library's list classes to derive a
custom list class to hold a collection of CPerson objects and to search for a person
matching a specified last name.

To customize the list class, you derive from CObList and add new functions as
necessary to add new functionality. For the most part, however, you can rely on
the inherited functionality of the Microsoft Foundation list class, including the abil­
ity to serialize the collection and all its elements with a single statement.

2.5 Test the Data Model
This section explains the third step in building the data model: testing it. This
process will be described in several steps:

1. Create a file called DMTEST.CPP.

2. Create a person database.

3. Serialize the list (write it to a file).

4. Deserialize the stored data.

5. Test the Fi ndPerson function.

6. Clean up and quit.

7. Add the supporting functions.

~ To create a file called DMTEST.CPP:

1. Add the following #include directive:

#inc1ude "person.h"

2. Add the following function prototypes below the #include line:

II Function prototypes.
CPersonlist* MakeDataBase();
CFi1e* OpenForReading(const CString& rFi1eName);
CFi1e* OpenForWriting(const CString& rFi1eName);
CPersonlist* ReadDataBase(CFi1e* pFi1e);
BOOl WriteDataBase(CFi1e* pFi1e, CPersonlist* pDataBase);

50 Class Libraries User's Guide

void TestFindPerson(CPersonList* pDataBase J;
void ListDataBase(CPersonList* db J;

3. Add the beginnings of your program's main function:

void main()
{

const char szFileName[]

iii fdef _ DEBUG

"tutorial.dat";

II Prepare for display of search results
const int nDumpChildren = 1;
afxDump.SetDepth(nDumpChildren J;

flendif

The first line in the function declares a filename. The other lines prepare the
afxDump "dump context," predefined by the Microsoft Foundation Class
Library. When results of the database search test are displayed later, all objects
in the list will dump their contents. The default "depth" of 0 dumps only infor­
mation about the list, not its contents. For more information about setting the
depth, see "How FindPerson Is Tested" on page 58.

~ To create a person database:

Add the following lines to the main function:

printf("Create a person list and fill it with persons\n" J;
CPersonList* pDataBase = MakeDataBase(J;

These lines call a function to create and return a database with several person ob­
jects in it. You'll add the MakeDataBase function later.

~ To serialize the list (write it to a file):

Add the following lines of code to the main function below the lines added in the
previous step:

printf("Serialize the person list\n" J;
CFile* pFile; II Declare a file object

TRY
{

II Could throw a file exception if can't open file
pFile = OpenForWriting(szFileName J;

Creating a Data Model with the Microsoft Foundation Classes 51

II Could throw an archive exception if can't create
WriteDataBase(pFile, pDataBase);
}

CATCH(CFileException, theException
{

printf("Unable to open file for writing\n");
exit(-1);

}
AND_CATCH(CArchiveException, theException
{

pri ntf("Unabl e to
pFile -) Closet);
delete pFile;
exit(-1);

save the database\n");
II Close up

II No exceptions, so close up
pFile -) Closet);
delete pFile;

ListDataBase(pDataBase);

printf("Delete the list and all its elements\n");
pDataBase -) DeleteAll();
ListDataBase(pDataBase);
delete pDataBase;

These lines create a file object, use it to create an archive object, use the archive
object to serialize the list, and clean up afterward. The same process was covered
briefly earlier in "How to Serialize the List" on page 42. For more information
about the roles of the CFile and CArchive objects, see "More on Serialization" on
page 60. Once the list has been serialized to disk, the list can be deleted.

Additionally, the code handles exceptions that may occur if a file can't be opened
or an archive can't be created successfully or fails while writing. The use ofthe
TRY, CATCH, AND_ CATCH, and END_ CATCH macros for exception hand­
ling is discussed in "Exception Handling" on page 61.

~ To deserialize the stored data:

Add the following lines to the main function below those added in the previous
step:

printf("Deserialize the data from disk into a new list\n");
CPersonList* pDataBase2; II Create a new, empty list

TRY
{

II Could throw a file exception if can't open file
pFile = OpenForReading(szFileName);

52 Class libraries User's Guide

II Could throw an archive exception if can't create
pDataBase2 = ReadDataBase(pFile);

}

CATCH(CFileException, theException
{

}

printf("Unable to open file for reading database\n");
exit(-1);

AND_CATCH(CArchiveException, theException
{

printf("Unable to
pFile -) Close();
delete pFile;
exit(-1);

read the database\n");
II Close up before exiting

II No exceptions, so close up
pFile -) Close();
delete pFile;

ListDataBase(pDataBase2);

As in the previous step, these lines create a file object, then an archive object, and
use the archive object to deserialize the list. After it's read in, the list is printed to
demonstrate success. Most of the real work of file object creation, file opening,
archive creation, and serialization takes place in the supporting functions
OpenForReading and ReadDataBase. You'll add these functions in the last step.

It's particularly interesting that deserialization recreates the person objects as it
reads in their data. As objects are created and reinitialized with the data from disk,
they are stored in the new, empty list, pDataBase2. Thus, the objects formerly seri­
alized are fully reconstructed by the process of deserialization. For more informa­
tion about deserialization, see "More on Serialization" on page 60.

~ To test the FindPerson function:

Add the following lines to the main function below the lines added in the previous
step:

printf("Test the FindPerson function\n");
if (pDataBase2 != NULL)

TestFindPerson(pDataBase2);

If anything has been read into the new list, these lines call the T est Fin d Per son
function, passing it a pointer to the list. You'll add Tes t Fi ndPe rson in the last
step. For more information about this testing, see "How FindPerson Is Tested" on
page 58.

Creating a Data Model with the Microsoft Foundation Classes 53

~ To clean up and quit:

Add the following lines to the main function after the lines added in the previous
step:

pri ntf("Del ete the 1 i st and all its el ements\n");
pDataBase2 -) DeleteAll();
delete pDataBase2;

TRACE("End of program\n");

These lines first delete all elements of the list, then delete the list object. Deleting
dynamically constructed objects such as the list and file objects prevents memory
leaks. These lines conclude the code for the main function. Your main function
should now match the one in Listing 3 on page 73.

~ To add the supporting functions:

1. Add the MakeDataBase function, which creates a new list object, fills it with
person objects, and returns the list:

II MakeDataBase - Create a database and add some persons
II
CPersonList* MakeDataBase()
{

}

TRACE(" Make a new person list on the heap\n");
CPersonList* pDataBase = new CPersonList;

TRACE(" Add several new persons to the list\n");
CPerson* pNewPerson1 = new CPerson("Smith", "Mary", "435-8159" l;
pDataBase -) AddHead(pNewPerson1);

CPerson* pNewPerson2 = new CPerson("Smith", "Al", "435-4505");
pDataBase -) AddHead(pNewPerson2);

CPerson* pNewPerson3 = new CPerson("Jones", "Steve",
"344-9865");

pDataBase -) AddHead(pNewPerson3);

CPerson* pNewPerson4 = new CPerson("Hart", "Mary", "287-0987");
pDataBase -) AddHead(pNewPerson4);

CPerson* pNewPerson5 = new CPerson("Meyers", "Brian",
"236-1234");

pDataBase -) AddHead(pNewPerson5 l;

TRACE(" Return the completed database to main\n");
return pDataBase;

54 Class libraries User's Guide

2. Add the OpenForReadi ng function, which creates a file object and uses it to
open the file specified by rFileName for reading:

II OpenForReading - open a file for reading
II
CFile* OpenForReading(canst CString& rFileName
{

}

CFile* pFile = new CFile;
CFileException* theException = new CFileException;
if (!pFile -> Open(rFileName, CFile: :modeRead, theException))
{

}

delete pFile;
TRACE(" Threw file exception in OpenForReading\n");
THROW(theException);

II Exit here if no exceptions
return pFil e;

3. Add the Open ForWriti ng function, which creates a file object and uses it to
open the file specified by rFileName for writing:

II OpenForWriting - open a file for writing
II
CFile* OpenForWriting(const CString& rFileName
{

CFile* pFile = new CFile;
CFileStatus status;
UINT nAccess = CFile::modeWrite;

II GetStatus will return TRUE if file exists,
liar FALSE if it doesn't exist
if (!CFile::GetStatus(rFileName, status))

nAccess 1= CFile::modeCreate;

CFileException* theException = new CFileException;
if (!pFile -> Open(rFileName, nAccess, theException))
{

}

del ete pFil e;
TRACE(" Threw a fi 1 e excepti on in OpenForWriti ng\n");
THROW(theException);

II Exit here if no errors or exceptions
TRACE(" Opened file for writing OK\n");
return pFil e;

Creating a Data Model with the Microsoft Foundation Classes 55

4. Add the ReadDataBase function, which creates an archive object and uses it to
deserialize data from the disk, creating a new list:

II ReadDataBase - read data into a person list
II
CPersonlist* ReadDataBase(CFile* pFile
{

CPersonlist* pNewDataBase = NUll;

II Create an archive from pFile for reading
CArchive archive(pFile, CArchive::load);

TRY
{

}

II and deserialize the new database from the archive
archive » pNewDataBase;

CATCH(CArchiveException, theException
{

TRACE(" Caught an archive exception in ReadDataBase\n");
1foi fdef DEBUG

theException -> Dump(afxDump);
1foend if

}

archive.Close();

II If we got part of the database then delete it so we don't
II have any Memory leaks
if (pNewDataBase l= NUll)
{

}

pNewDataBase -> DeleteAll();
delete pNewDataBase;

TH ROW_ lAST () ;

II Exit here if no errors or exceptions
archive.Close();
return pNewDataBase;

5. Add the Wri teDataBase function, which creates an archive object and uses it to
serialize the list to disk:

II WriteDataBase - write data from a person list to disk
II
BOOl WriteDataBase(CFile* pFile, CPersonlist* pDataBase
{

II Create an archive from pFile for writing
CArchive archive(pFile, CArchive::store);

TRY

56 Class Libraries User's Guide

{

}

II and serialize the data base to the archive
archive « pDataBase;

CATCH(CArchiveException, theException)
{

TRACE(" Caught an archive exception in WriteDataBase\n");
ifi fdef DEBUG

theException -> Dump(afxDump);
#endif

archive.Close();
THROW_ LAST() ;

II Exit here if no errors or exceptions
archive.Close() ;
return TRUE;

6. Add the TestFi ndPerson function, which demonstrates successful and un­
successful searches of the list, using the list's Fi nd Person function:

II TestFindPerson - test CPersonList::FindPerson
II
void TestFindPerson(CPersonList* pDataBase)
{

printf(" Looking for the name Banipuli\n");
CPersonList* pFound = pDataBase -> FindPerson("Banipuli");
if (pFound -> IsEmpty())
{

printf(" No matching persons\n");
}

else
{

printf(" Found matching persons\n");
#ifdef DEBUG

pFound -> Dump(afxDump);
ifendi f

}

delete pFound;

printf(" Looking for the name Smith\n");
pFound = pDataBase -> FindPerson("Smith");
if (pFound -> IsEmpty())
{

printf(" No matching persons\n");

else
{

printf(" Found matching persons\n");
#ifdef _DEBUG

Creating a Data Model with the Microsoft Foundation Classes 57

pFound -> Dump(afxDump);
flendif

}

II Don't DeleteAll the found list since it
II shares CPerson objects with database
delete pFound; II Deletes only the list object

7. Add the L i stDataBase member function, which writes out the contents of the
database:

void ListDataBase(CPersonList* db)
{

}

CPerson* pCurrent;
POSITION pos;

if (db -> GetCount() == 0)
printf(" List is Empty\n");

else
{

}
}

printf(" List contains:\n");
pos = db -> GetHeadPosition();
while (pos != NULL)
{

pCurrent = (CPerson*)db -> GetNext(pos);
printf("\t%s, %s\t%s\n", (const char*)pCurrent ->

GetLastName(),
(const char*)pCurrent -> GetFirstName(),
(const char*)pCurrent -> GetPhoneNumber());

Your code for the supporting functions should match that given in Listing 3 on
page 73.

Your DMTEST.CPP file is now complete. It contains one #include directive, six
function prototypes, the main function, and seven supporting functions.

To continue the tutorial and compile the program, see "Build the Program" on
page 65. For more information about the steps you just completed, see "Discus­
sion: Testing the Data Model," which follows.

58 Class Libraries User's Guide

Discussion: Testing the Data Model
This discussion does not instruct you to add any new code to your files. Code is
sometimes repeated to illustrate a point, but you do not need to add it.

The DMTEST program has no real user interface. The main function in file
DMTEST.CPP simply creates a database, fills it with person objects, and demon­
strates its capabilities. In a later chapter of the tutorial, the data model will be inte­
grated with a Microsoft Windows user interface. A sample program which
provides a character-based user interface to the database is also provided on your
distribution disks.

Previously, in the discussion of the CPersonL i st class, you saw briefly how to
add person objects to a list, how to search a list for a person, and how to delete the
list and its contents when you finished with it. The following discussion recaps
and adds to the previous discussion.

How the Database Is Created and Destroyed
Ma keDataBase is interesting primarily for how it makes and returns a filled
database. It makes the database by constructing a C Per son Lis t object dynarni­
cally in the heap, using the new operator. After filling the list with CPerson ob­
jects, also constructed in the heap with new, MakeDataBase returns a pointer to the
list object. This lets the database object and the objects stored in it persist after the
function returns.

Because the database and its contents were created as dynamic objects in the heap,
you must explicitly destroy them when you finish. Thus the last two lines in the
main function call the CPersonL i st member function Del eteA 11 to delete the
CPerson objects in the list and then use the delete operator to delete the list object
itself:

pDataBase2 -> DeleteAll(); II Delete the contents
delete pDataBase2; II Delete the list object

How FindPerson Is Tested
The Fin d Per son member function of class C Per son Lis t searches the list for a
given last name and builds a second list containing pointers to any found CPerson
objects. The function returns a pointer to the list of found objects.

The TestFi ndPerson function in DMTEST.CPP simply creates a new list and
searches it for two different last names.

Creating a Data Model with the Microsoft Foundation Classes 59

The first search looks for the name "Banipuli," which is not in the database. When
FindPerson returns an empty list, TestFindPerson uses the CPersonL i st mem­
ber function IsEmpty, inherited from the base class of CPersonL i st, COb List, to
detect the list's empty condition.

The second search looks for "Smith," a name that is in the database several times.
This time Fi ndPerson returns a list containing pointers to two CPerson objects.
These contain the names "Mary Smith" and "AI Smith."

Because the search was successful, TestFi ndPerson uses the predefined "dump
context" afxDump to dump the contents of the found list to the standard output.
Recall that, at the beginning of the main function, the afxDump object's
SetDepth member function was called to specify that not only the list object be
dumped but the list's content objects as well.

The afxDump object is used here as a simple way to display the contents of the
found list.. Note that afxDump only works if the _DEBUG flag is defined, so you
only get the dump during debugging.

The output of this dump is shown with the full program output below (for a release
version of the program).

Create a person list and fill it with persons
Serialize the person list

List contains:
Meyers, Brian
Hart, Mary
Jones, Steve
Smith, Al
Smith, Mary

236-1234
287-0987

344-9865
435-4505

435-8159

Delete the list and all its elements
Li st is Empty

Deserialize the data from disk into a new list
List contains:

Hart, Mary
Jones, Steve
Smith, Al
Smith, Mary

287-0987
344-9865

435-4505
435-8159

Test the FindPerson function
Looking for the name Banipuli
No matching persons
Looking for the name Smith
Found matching persons

Delete the list and all its elements
End of program

60 Class libraries User's Guide

More on Serialization
You've already seen the code to serialize the database to disk and to deserialize it
from disk in the steps on pages 42-44. (This topic was also discussed earlier, in
"How to Serialize the List" on page 42.) This section shows how to use CFile and
CArchive objects. The next section shows how to handle exceptions.

Recall that to serialize a C Per son Lis t you:

1. Create a CFile object and call its Open member function.

2. Create a CArchive object, passing the CFile to it as an argument.

3. Use the overloaded insertion «<) or extraction (») operator to pass data
through the archive object. The one you use depends on whether you are writ­
ing or reading the list.

4. When you finish, close the archive object and then the file object.

The objects used in this process are a CFile object, a CArchive object, and, option­
ally, a CFileException object. The CFileException object is used to return infor­
mation about any file errors that may have occurred during the attempt to open the
file. For more information on exceptions, see "Exception Handling" on page 61.

The CFile Object The Microsoft Foundation Class Library provides class CFile
and two derived classes, CStdioFile and CMemFile. CFile is for binary files,
CStdioFile is for buffered text files as defined in STDIO.H, and CMemFile is for
memory-based files. You can use these classes or your own classes derived from
them.

A file object, of any of these classes, handles file opening, closing, and other file
operations. The DMTEST program uses class CFile and its Open, Close, and
GetStatus member functions. For additional CFile capabilities, see the Class
Libraries Reference.

You can create a CFile object on the frame of a function or in the heap. The code
in DMTEST.CPP typically declares pointers to CFile objects and allocates the ob­
jects dynamically with new. See the OpenForReadi ng function in step 2.

Before you open the CFile object, you can check that the file exists by calling the
CFile object's GetStatus member function. Pass the filename and a precon­
structed CFileStatus object. CFileStatus is a Microsoft Foundation Class that
contains status information about the file when GetStatus returns. If the call to
GetStatus fails, it returns FALSE. You can examine the contents of the
CFileStatus object to see why. For more information about CFileStatus, see the
Class Libraries Reference.

Creating a Data Model with the Microsoft Foundation Classes 61

In DMTEST.CPP, if GetStatus returns FALSE, it means the file doesn't
exist. The inclusive OR assignment operator, 1=, is used to add the mode
CFile::modeCreate to the existing access parameter, nAccess, before calling
Open.

You need an opened CFile object to pass to the constructor of your CArchive ob­
ject, as in ReadDataBase. The arguments to the Open member function of class
CFile are a filename, the access mode, and an optional CFileException object.
The filename argument is a null-terminated string. The access mode argument is
one ofthe access modes defined in class CFile, such as CFile::modeRead or
CFile::modeWrite. The optional CFileException argument is an object that you
construct before you pass it to Open. When Open returns, this object contains in­
formation about any exception that is thrown. For more information on this argu­
ment, see "Exception Handling" on this page.

Be sure to close your CArchive object before you call CFile::Close.

The CArchive Object A CArchive object uses a CFile object to establish a con­
nection with a disk file. Once the connection is made, you can use the CArchive
object as a stream, much as you would use the standard C++ iostreams, dn and
cout.

Pass an already-opened CFile object to the CArchive constructor when your ar­
chive object is created. A CArchive object must be initialized for loading (read­
ing) or storing (writing). It can't be used for both. To initialize the archive for
reading, pass TRUE as the second argument to the constructor. For writing, pass
FALSE. For example, in ReadDataBase, the archive object is constructed like this:

CArchive archive(pFile, TRUE);

Class CArchive overloads the insertion «<) and extraction (») operators. To
write data with a CArchive opened for writing, do this:

archive « pDataBase;

The overloaded insertion operator causes the Serialize member functions of the
CPerson Lis t object and its CPerson elements to write the appropriate data to the
file specified when the archive was opened. The serialization process could throw a
CArchiveException. For an explanation of exceptions and how they're handled,
see the next section.

Exception Handling
This section explains the use of the Microsoft Foundation Class Library'S
exception-handling mechanism as used in DMTEST.CPP. For more information
about exception handling, see Chapter 12, and see the Class Libraries Reference
under class CException.

62 Class Libraries User's Guide

Some of the code in the Microsoft Foundation Class Library generates exceptions
when errors occur. The Microsoft Foundation Classes provide a mechanism for
handling exceptions in an object-oriented fashion. Certain error-prone operations,
such as memory allocation, file processing, and archive processing, detect errors
and "throw" exceptions. When an exception is thrown, an exception object of the
appropriate class is constructed. To process exceptions, you set up "exception
frames" with a set of predefined macros. (For more information about how to
set up exception frames, see "The Exception Frames in the Main Function" on
page 63.)

You can then "catch" the exception at any level of the hierarchy of exception
frames in your program. For example, suppose that, in your program, function A
calls function B, which calls function C. Suppose further that you set up exception
frames in functions A and C. If an exception is thrown in function C, you can
choose to catch it in C, or you can catch it in A. To view this mechanism dia­
grammatically, see Figure 2.7.

You can also explicitly throw exceptions yourself, as a way of selecting the level
at which your program responds to an error.

A I main I Catches and handles exception

I
B I OpenForReading Throws exception

I
C Open Call fails (perhaps file not found)

Figure 2.7 How an Exception is Handled by a Calling Function

The best guideline for handling exceptions is to catch them only if there is some­
thing useful to do about them. For example, if you can recover from the error that
generated an exception, or if you can at least clean up, by all means catch the ex­
ception. But if, for example, your program throws a memory-allocation exception
and there is no way you can free enough memory to make the allocation attempt
succeed if tried again, there is little point in catching the exception. Sometimes, as
in DMTEST.CPP, the only useful response to an exception is to alert the user
before the program terminates.

Creating a Data Model with the Microsoft Foundation Classes 63

The following sections explain how exception handling is used in DMTEST.CPP.

The Exception Frames in the Main Function To process an exception, set up
an "exception frame" around the code that can throw an exception. An exception
frame specifies a region of code in which you wish to catch exceptions. It also
specifies blocks of actions to take if an exception is caught. Use the TRY,
CATCH, AND_ CATCH, and END_ CATCH macros, provided by the
Microsoft Foundation Class Library.

Enclose the code that can throw an exception in a TRY block. For example, in
DMTEST.CPP, TRY blocks enclose the calls that open files and create archives.
The code that actually throws the exception could be deep in the function call
chain. For instance, main calls OpenForWri ti ng, which calls the CFile member
function Open, which could throw an exception. Those calls, and any exceptions
they throw, are enclosed in the TRY block in main. For example, in
DMTEST.CPP:

TRY
{

pFile = OpenForWriting(szFileName);

WriteDataBase(pFile, pDataBase);

Enclose code to handle, or respond to, a particular exception type in a CATCH
block. In DMTEST.CPP, code to handle a file exception is enclosed like this:

CATCH(CFileException, theException
{

II Code to handle the exception
}

The CATCH macro specifies two arguments:

• The exception type (in this case class CFileException)

• An exception object (e, the actual exception thrown)

For more information about the exception classes-CException, CFileException,
CArchiveException, and so on-see the exception classes in the Class Libraries
Reference and see Chapter 12.

If, as in DMTEST.CPP, a TRY block encloses code that could throw more than
one exception type, you can use the AND_ CA TCH macro to set up additional
CATCH blocks for the TRY block. In DMTEST.CPP, a CATCH block is used to
catch file exceptions and an AND_ CA TCH block is used to catch archive excep­
tions. The AND_ CATCH macro takes the same kinds of arguments as CATCH.

Be sure to end the TRY/CATCH exception frame with the END_ CATCH macro.

64 Class Libraries User's Guide

The main function in DMTEST.CPP uses two exception frames, one for serializa­
tion and one for deserialization.

The Exception Object Passed to CFile's Open Member Function The code for
OpenForWriting and OpenForReading shows the Open member function of class
CFile being called. Open takes three arguments (although the third is optional).
The third argument is an exception object, created previously, used to pass back
exception information for the call. The exception object argument is a pointer to a
CFileException object, created dynamically in the heap with the call

CFileException* theException = new CFileException;

When Open returns, you can examine the member variables of object e. You can
access public member variables and member functions of class CFileException to
examine the cause of the exception or to convert it to a standard error code-for
example:

TRACE(" Cause: %d\n", theException -> m_cause);

The m_cause member variable of a CFileException object contains a code identi­
fying the error type. These error types are defined in an enum declaration in class
CFileException. Open also returns a Boolean value that you can examine in the
usual way to test the results of the function call.

The THROW and THROW_lAST Macros In OpenForReadi ng, the call to Open
looks like this:

if(!pFile -> Open(rFileName, CFile: :modeRead, theException))
{

delete pFile;
TRACE(" Threw file exception in OpenForReading\n" l;
THROW(theException l;

Note that the THROW macro is invoked here inside a nested scope, which is de­
lineated by the braces of the if block. The if block, executed if the Open call fails,
cleans up by deleting the CFile object, pFi 1 e. Otherwise, it defers further pro­
cessing of the error condition for handling by the caller of OpenForReadi ng. How­
ever, because the code is in a nested scope, not the scope of 0 pen For Re a din g, it's
necessary to throw the exception out of that scope, where it can be available to
main when OpenForReadi ng returns.

You can also use the THROW macro to throw your own exceptions. These
can be of predefined types, such as CFileException, or of types you derive from
CException or any of its derived classes.

Creating a Data Model with the Microsoft Foundation Classes 65

The THROW_LAST macro is used in ReadDataBase. In that function, a
TRY/CATCH exception frame does some local handling of archive exceptions,
then uses THROW_LAST to pass the exceptions on for further handling by
main.

If de serialization of the data fails in midstream, a partially complete person list
could be left over, which results in memory leakage. The local exception frame
catches the CArchiveException, deletes any partially completed data, and then in­
vokes the THROW_LAST macro to throw the same exception again so it can be
caught again later.

You can use the exception-handling mechanism provided by the Microsoft Foun­
dation Class Library to considerable advantage. For more information about excep­
tions, see Chapter 12.

Now that your files are complete, the next section shows you how to compile the
DMTEST program.

2.6 Build the Program
To build your program, follow the instructions given in Chapter 1 of the tutorial.
The required files are PERSON.H, PERSON.CPP, and DMTEST.CPP. All are
available in the \C7\MFC\SAMPLE\TUTORIAL directory.

The Programmer's WorkBench (PWB) makefile for DMTEST is called
DMTEST.MAK. The NMAKE makefile is called DMTEST with no extension.

DMTEST builds as a DOS program, so you must run it from the DOS command
line.

2.7 Summary of the DMTEST Program
This chapter has introduced you to the Microsoft Foundation Class Library by
building a data model for a name and phone number program. You have seen how
to derive a data class from CObject and to override functions for serialization and
debugging output. You have also seen how to derive a collection class to manage a
list of CPerson objects.

This chapter also showed how to write a simple program to test the features of
the data model classes. This test program showed how to use the Microsoft
Foundation file and archive classes.

66 Class libraries User's Guide

Because CPerson and CPersonL i st are data model classes, they cannot display
themselves or interact with the user. CPerson and CPerson List are designed to
be used by a user-interface class that can get input from a user and send output
back to the user. How this interaction is implemented depends on the target operat­
ing environment of the final program. For example, the user-interface implementa­
tions will be very different for a program designed to run in a text-only
environment versus a program designed to run under Microsoft Windows.

After a chapter devoted to the fundamentals of Windows programming with the
Microsoft Foundation Class Library, the tutorial continues with three chapters that
show you how to put a Windows user interface on the data model.

2.8 File Listings
The code shown in listings 1-3 is available on your distribution disks as
PERSON.H, PERSON.CPP, and DMTEST.CPP.

Creating a Data Model with the Microsoft Foundation Classes 67

If For sertal.irabl.e classes, de~.larea
CPerson() . .
{m~modTq1l1e .,'Crime: :GetCurrent;Time():

CRerson{ const CPerson& a };

cOrjvenience, also declare a
const cha r*ps;z ta stName,

68 Class Libraries User's Guide

Creating a Data Model with the Microsoft Foundation Classes 69

70 Class Libraries User's Guide

Creating a Data Model with the Microsoft Foundation Classes 71

72 Class Libraries User's Guide

Creating a Data Model with the Microsoft Foundation Classes 73

74 Class Libraries User's Guide

1/ No exceptions, so close up
pFile -) Close();
delete pFile;

ListDataBase(pDataBase2);

Creating a Data Model with the Microsoft Foundation Classes 75

printf("Test the FindPerson function\n");
if (pDataBase2 l= NULL)
TestFindPerson(pDataBase2);

printf("DeJ:ete the 1 i st and all its el ements\n");
pDataBa~e2 -) DeleteAll();
del ete.pQ1jtaBase2;

TRACE(
}

76 Class libraries User's Guide

Creating a Data Model with the Microsoft Foundation Classes 77

II Create an archive from pfile for reading
CArchive arChive{ pFile;CArchiv~::load);

TRY

}

II and deserialize the new data base from the archive
archive> pNewDataBase;

CATCH(CArchiveException, theException
{

TRACE(" Caught an archive exception in ReadDataBase\n");
if; fdef DEBUG

theException -> Dump! afxDump };
ffend if

a relllve. C1 as e (.);

/I If we got part o.fthe database the!l delete it so W~ do.n't
II have any Memory 1eak.s

(pNewDataBase .!= NULL)

78 Class Libraries User's Guide

Creating a Data Model with the Microsoft Foundation Classes 79

Windows Programming with the
Microsoft Foundation Classes

The previous chapter showed how to use the Microsoft Foundation Class Library
to create a data model: a cooperating set of C++ objects that implements a simple
database for storing C Per son objects.

This chapter shows how you can use the Microsoft Foundation Classes to create
the key elements of a Microsoft Windows user interface. In order to use this chap­
ter, and the next, you need to know something about Windows programming.
Good sources for becoming familiar with Windows programming include the
Programming Windows, Version 3.0, by Charles Petzold, and Microsoft Windows
SDK Guide to Programming.

The purpose of this chapter is to show you how to use the Windows classes of the
Microsoft Foundation Class Library to build applications that have a complete
Windows user interface. The Microsoft Foundation Classes help you in two
principal ways.

First, the Microsoft Foundation Class Library provides classes from which you
can make objects that already have much of the Windows functionality you need.
These classes include classes of windows, controls, dialogs, and graphics objects.
The Microsoft Class Library also supplies class CWinApp, which provides most
of the essential application-level processing your program needs. To create a Win­
dows application, you use C++ techniques to derive both your own application
class from class CWinApp and your own main window class from one of the
class library's window classes.

Second, the Microsoft Foundation Class Library simplifies the message-handling
apparatus of Windows. To process messages, you add a member function to your
derived window class for each Windows message you want to handle. Then you
place an entry in a "message map" for each message-processing member function.

The chapter demonstrates these techniques by taking you step by step through the
development of a simple Windows application called Hello. As you go, you will
see how to write the necessary C++ classes and what they do. After the examples
have been developed, the chapter explains in greater detail how the Microsoft
Foundation Classes work with Windows and your objects.

82 Class Libraries User's Guide

3.1 In This Chapter
Follow this tutorial to write a simple but complete Windows application using the
Microsoft Foundation Class Library. The resulting program appears smaller and
simpler than the equivalent traditional Windows program. The process of writing
the program is essentially this:

1. Write an application class that is derived from one of the Microsoft Foundation
Classes.

2. Write a window class that is also derived from a Microsoft Foundation class.

The rest of this section describes the example program.

The Hello Program
In the first part of this chapter, you will develop a simple Windows application
using the Microsoft Foundation Classes. The example is a "Hello, W orId" pro­
gram-the simple starter program familiar to all C programmers.

This section is an overview of what the program does and what you will be learn­
ing about the Microsoft Foundation Class Library.

What the Example Does
The example program displays the text "Hello, Windows!" centered in a window
on the screen. The window has a menu bar and a set of window controls. If you
choose the About command from the Help menu, a dialog box displays informa­
tion about the program. You can drag the window around the screen or resize the
window. If you resize the window, the text is recentered. You can minimize the
window to an icon on the Windows desktop or maximize it to fill most of the
screen.

Windows Programming with the Microsoft Foundation Classes 83

Figure 3.1 shows the screen as it appears when Hello runs.

Help

Hello, Windows!

Figure 3.1 The Output of Hello

Although the example program does very little, it has a considerable amount of
functionality with very little code. Furthermore, Hello makes a good template or
skeleton on which to build more capable applications.

The Code for Hello
To view the complete code for Hello, see Listings 1 and 2. The code shown in
these listings is available on the distribution disks in files HELLO.H and
HELLO.CPP.

Microsoft Foundation Classes Used in This Chapter
This chapter demonstrates the use of five classes from the Microsoft Foundation
Class Library.

CWinApp
You derive Hello's application class from this class.

CFrameWnd
You derive Hello's main window class from this class.

CRect
You pass a CRect object as an argument to a window-creation function. The
argument specifies the rectangle in which the window is to be displayed.

CPaintDC
You construct an object of this class to create a Windows device context.

CModalDialog
You construct an object of this class to put a dialog box on the screen.

84 Class libraries User's Guide

For more information about these classes, see the Class Libraries Reference and
the discussion in this chapter.

The sections that follow take you through the components of Hello and explain
how to write them, what they consist of, and in a general way how they work. A
more detailed explanation of how they all work together is described in "How
Hello Works" on page 110.

3.2 How to Write the Hello Program
This section gives an overview of the steps in writing Hello. As you work through
the steps, you will learn what files to prepare and how to compile the program.

To write Hello with the Microsoft Foundation Classes, you must:

1. Create an application object.

The application object represents your application and is responsible for appli­
cation-level initialization. Its most important task is to construct a main window
object. For more information on this step, see "Create an Application Object"
on page 85.

2. Put a window on the screen.

It takes two steps to display a window with the Microsoft Foundation Classes.
First, construct a main window object. Second, during that construction, create
a window for display. For more information on this step, see "Put a Window on
the Screen" on page 90.

3. Arrange for communication with Windows.

Once a window has been created, it must respond to pertinent Windows mes­
sages, such as WM_PAINT or WM_COMMAND. To arrange message pro­
cessing in your window object, add a "message map" and appropriate
"message-handler" functions. For more information on this step, see "Arrange
for Communication with Windows" on page 94.

4. Paint the window.

With a window showing, paint the contents of its client area. For Hello, paint
the text "Hello, Windows!" For more information on this step, see "Paint the
Window" on page 10 1.

5. Add an About dialog box.

As a final touch, add a dialog box that displays information about the program.
The user activates this "About" dialog box by choosing the About command
from the Help menu. For more information on this step, see "Add an About
Dialog Box" on page 105. For more information on menus and other resources,
see the next step.

Windows Programming with the Microsoft Foundation Classes 85

6. Prepare supporting files.

Windows programs require some supporting files. Add a module-definition file,
a resource file, a resource include filc, and a makefile. For more information on
this step, see "Prepare Supporting Files" on page 107.

7. Build the program.

Once you have prepared all the files, compile and link the program to produce
the executable file. Remember that you must run the program from Windows.
For more information on this step, see "Build the Program" on page 109.

You will also use these same steps as a foundation for writing your own Windows
programs with the Microsoft Foundation Classes.

The sections that follow break these steps into smaller steps. At each step, the re­
lated code is presented. After the steps, a Discussion section explains what the
code does and why it was done that way. Where appropriate, additional advanced
discussion in a special box elaborates upon the code and the basic discussion.

3.3 Create an Application Object
This section explains the first step in writing Hello: the creation of the application
object. You'll create parts of two files in this section: HELLO.H and HELLO.CPP.

This process consists of two steps:

1. Derive an application class.

2. Write a Windows function.

~ To derive an application class:

1. Create a HELLO.H interface file.

a. Add the following preprocessor directives:

/fifndef __ HELlO_H __
/fdefine __ HEllO_H __

These directives are similar to the ones you used in PERSON.H in the pre­
vious chapter. They prevent multiple inclusion of any code in the HELLO.H
file.

b. Add the following class declaration to your HELLO.H file:

class CTheApp : public CWinApp
{

public:

} ;

II An override of Initlnstance
BOOl Initlnstance();

86 Class Libraries User's Guide

You derive Hello's application class, CTheApp, from the Microsoft Founda­
tion class CWinApp. The name of the derived class is your choice. For
Hello, it's called CTheApp.

Class CTheApp inherits member variables and member functions from its
base class but overrides the InitInstance member function of class
CWinApp. See the discussion under "Discussion: Hello's Application
Class" on page 87.

c. Add the following preprocessor directive to the bottom of file HELLO.H:

#endif II __ HEllO_H __

As you add more declarations to the file later, keep this directive as the last
item in the file.

2. Create a HELLO.CPP implementation file.

a. Add the following preprocessor directives at the top:

#include <afxwin.h>
#include "resource.h"
#include "hello.h"

When you program with the Microsoft Foundation Class Library, always in­
clude the file AFXWIN.H.

b. Add the following variable declaration to HELLO.CPP below the #include
directives:

CTheApp theApp;

This declares a variable of type CTheApp in order to construct the program's
one and only application object. A suitable name for this variable is theApp.

After the application object is constructed from this variable, its member
functions are called to initialize the application and to create a window
object. See the following discussion.

~ To create a window object:

1. Write your overriding Ini tInstance member function, which is where you
create a main window object.

2. Add the following function definition for I ni tI nstance to the end of your
HELLO.CPP file:

BOOl CTheApp:: Initlnstance()
{

II Construct a window object in the heap
m_pMainWnd = new CMainWindow();

II Show the window
m_pMainWnd -) ShowWindow(m_nCmdShow);

Windows Programming with the Microsoft Foundation Classes 87

II Pai nt the wi ndow
m_pMainWnd -> UpdateWindow();

return TRUE;
} ;

Since the HELLO.CPP file will eventually contain functions belonging to two
different classes, set up a section for each class.

Initlnstance is an appropriate place to construct a main window object,
which will be responsible for putting a window on the screen. Note that
putting a window on the screen is a three-step process: construct the main
window object (which creates a window), call two of its member functions
to make the new window visible, and cause its client area to be painted. This
process is explained further in the following discussion and in "Paint the
Window" on page 101.

To continue with the tutorial, see "Put a Window on the Screen" on page 90. For
more information about the code you just added, see the following discussion.

Discussion: Hello's Application Class
The primary purpose of Hello's application object is to construct a main window
object. This section discusses that process further.

The Application Class and the Application Object
Under the Microsoft Foundation Classes, the application class is used to construct
an application object. Member functions of that object are called to perform initial­
ization tasks and to run the program's Windows message loop. Typically, your ap­
plication object creates other objects, such as window objects, that do the
application's specific work.

As a class derived publicly from the Microsoft Foundation class CWinApp, your
application object inherits the member variables and functions needed to do
application-level initialization and to run the message loop. Most of the functions
are called automatically when your program runs. You can override any of
CWinApp's member functions to customize the program, including
InitApplication, Exitlnstance, and InitInstance. Typically, however, you'll
override only the Initlnstance and perhaps Exitlnstance member functions of
class CWinApp. In Hello, your overriding Ini tInstance is where you put the
code that creates and displays a window.

For more information about CWinApp, see the Class Libraries Reference and
Chapter 13 in this book. For more information about what the application object
does, see the following sections, especially "How Hello Works" on page 110.

88 Class Libraries User's Guide

Figure 3.2 shows the class hierarchy for the application class.

CObject

CTheApp CFrameWnd

The Application Class

CMainWindow

The Main Window Class

Figure 3.2 Object Class Hierarchies for Hello

Initlnstance and the Window Object
When you override InitInstance for Hello, you use the C++ new operator to
allocate and initialize a main window object. When the constructor for this object
is invoked, it creates the window data structures that Windows needs to display a
window on the screen. Initlnstance completes the window-creation task by
making the window visible and causing it to be painted.

After the CMai nWi ndow constructor returns, I nitlnstance calls two member
functions of the window object:

ShowWindow.
Makes the new window visible.

Update Window.
Causes Windows to send a W~PAINT message to the window, whose
On P a i n t member function then paints the contents of its client area. These calls
are discussed further in the discussion section following "Put a Window on the
Screen" on page 90.

Windows Programming with the Microsoft Foundation Classes 89

The m_pMainWnd identifier used in I nitI nstance is a member variable that
CTheApp inherits from the CWinApp classs. It stores a pointer to the application's
main window object.

Its name reflects a convention of the Microsoft Foundation Class Library for
naming member variables. All member variables begin with the "m_" prefix. The
rest of the variable's name reflects its purpose and its type, in familiar Windows
Hungarian variable-naming fashion. The "p" prefix in m_ pMain Wnd signifies a
pointer. When writing Microsoft Foundation programs, it's useful to follow these
conventions.

Once the application is initialized, it must put a window on the screen and cause
its initial contents, if any, to be displayed. The following sections continue that
process.

More About the Application Object
It's possible to create your window object in some other part of your
program, but In; tInstance is a logical place to do it because each running
copy of your program (recall that Windows can run multiple copies at once)
calls In; tlnstance once to perform initialization for that copy. Your
application object is a global object, so like all C++ global objects, it is
constructed early in the program initialization process. By the time Windows
calls your application's WinMain function, a fully initialized application
object exists and its member functions can be called. For more information
about this sequence of events, see "How Hello Works" on page 110.

Where is WinMain? Experienced Windows programmers are used to
writing this essential function themselves, but the Microsoft)=1oundation
Class Library provides a globally defined WinMain function for you. You
don't have to use this version of Win Main, but you'll find that it does what
you want most of the time and can be customized as well. For more
information about substituting your own version of Win Main or
customizing the Microsoft Foundation's version, see. "How You Can
Customize Your Windows Application" on page 112 and see the cookbook.

Notice that class CTheApp does not declare a constructor. Because there is
nothing to do in such a constructor, you can simply rely on the constructor
inherited frolD the base class, CWinApp, to collstruct your application
object. Of course, you could add a constructor to your program's application
class if you had something for it to do.· .

Note that you can't create any windows or make any Windows function calls
in the constructor because WinMain hasn't been called yet. ..

90 Class libraries User's Guide

3.4 Put a Window on the Screen
This section explains the second step in writing Hello: create a window. In this sec­
tion you'll add more code to the HELLO.H and HELLO.CPP files that you started
in the previous section, in order to create Hello's main window class.

~ To write Hello's main window class:

1. Derive a main window class from the Microsoft Foundation class
CFrameWnd. Add the following declaration of class CMa i nWi ndow to your
HELLO.H file:

class CMainWindow : public CFrameWnd
{

publ i c:

} ;

II Constructor
II
CMainWindow();

II Handler function for painting messages
II
afx_msg void OnPaint(); II For WM_PAINT message

II Handler function for About dialog
II
afx_msg void OnAbout();

II Macro to declare a message map
II
DECLARE_MESSAGE_MAP()

Put this declaration just below the preprocessor directives at the top of the
file.

The afLmsg modifier is similar to the virtual keyword of C++. Member
functions prefixed with afLmsg are prototyped in class CWnd and can be
overridden in derived window classes. They tie into the message map as­
sociated with the Microsoft Foundation window class.

At this point, your HELLO.H file is complete. You can check it against
Listing 1.

2. Add the following CMa i nWi ndow constructor definition to your HELLO.CPP
file:

CMainWindow::CMainWindow()
{

LoadAccelTable("MainAccelTable");
Create(NULL" "Hello Foundation Application",

Windows Programming with the Microsoft Foundation Classes 91

WS_OVERLAPPEDWINDOW, rectDefault,
NULL, "Mai nMenu");

Put the constructor in a section of the file for CMai nWi ndow member
functions. Keep this section separate from the section that contains
the Ini tInstance definition. The HELLO.CPP file in Listing 2 puts all
CMa i nWi ndow code above all CTheApp code.

To continue the tutorial, see "Arrange for Communication with Windows" on
page 94. For more information about the code you just added, see the discussion
below.

Discussion: Creating Windows
The following sections explain how Hello puts a window on the screen.

Hello's Main Window Class
Previously, you saw the process of constructing a main window object in the
I ni tI nstance member function of the application object ("Create an Application
Object" on page 85). The next step is to have that window object create a window
on the screen-a window with a caption bar, a frame, and various Windows
controls.

Part of this work is done in the application object's Initlnstance function. After
creating the window object with new, Ini tInstance calls two of the window
object's functions to display it. The rest of the work is done by the window object
itself.

The CMa i nWi ndow class is derived publicly from CFrameWnd. The Microsoft
Foundation Class Library provides several other window classes from which you
might choose to derive your own window classes, depending on your needs. For
information about the choices, see the Class Libraries Reference. CFrameWnd is
commonly chosen to represent an application's main window. Figure 3.2, on page
88, shows the class hierarchy for Hello's main window class.

CMa i nWi ndow has the following components:

• A constructor

• Two message-handler member functions

• A macro invocation

The CMainWindow Constructor When Initlnstance constructs a main
window object, the CMa i nWi ndow constructor is invoked. You saw the code for the
constructor of CMa i nWi ndow above. There are many things you could do in your

92 Class Libraries User's Guide

constructor. Hello uses the constructor to create a window for display. The win­
dow is created by a call to the Create member function that CMa i nWi ndow inherits
from its base class, CFrameWnd, and which CFrameWnd inherits in turn from
its own base class, CWnd.

The call to Create creates the window but doesn't make it visible. Create takes
the following arguments:

• A window class name.

Hello's first argument is NULL. If you pass NULL for this argument, the
Microsoft Foundation Classes select an appropriate window class and prepare
its data structures. Traditional Windows programmers are accustomed to
registering their own window classes with Windows. With the Microsoft
Foundation, you can still register classes if you need to, but the most commonly
used window classes are preregistered, and the Microsoft Foundation chooses
the most appropriate one. For more information about registering window
classes, see "How Hello Works." Note that a "window class" in traditional
Windows is not the same thing as a C++ window class, such as CFrameWnd,
in the Microsoft Foundation Class Library.

• A string specifying caption text for the window.

Hello's second argument is a null-terminated string containing the text to be dis­
played as a caption in the window's title bar.

• A window style.

Hello's third argument is a constant specifying the window style as
WS_ OVERLAPPEDWINDOW. The WS_ OVERLAPPEDWINDOW
style specifies an overlapping window with a caption, a thick-frame border, a
system menu, and minimize and maximize boxes. You'll typically pass
WS_ OVERLAPPEDWINDOW for a main program window, but you can
pass any value for this argument that you pass for the corresponding argument
in the Windows Create Window function. For more information about window
styles, see the Windows SDK Reference.

• A rectangle specifying where to display the window on the screen.

Hello's fourth argument is rectDefault. If you pass this predefined value in­
stead of your own CRect object, the Microsoft Foundation Classes use a de­
fault rectangle specified by Windows. The default position and dimensions of
the window depend on the system and on how many other applications have
been started. Class CRect is a Microsoft Foundation class designed to represent
a two-dimensional rectangle similar to the Windows RECT data type. The
class provides member functions to manipulate rectangles in a variety of ways.
For more information about CRect, see the Class Libraries Reference.

• A pointer to the parent window (of type CWnd), if any.

Hello's fifth argument is NULL. Because this is a main window, not a child
window, it has no parent window.

Windows Programming with the Microsoft Foundation Classes 93

• The name ofthe window's menu resource.

Hello's sixth argument is "MainMenu," a string that specifies the menu tem­
plate name used in file HELLO.RC to define Hello's menu.

The CMai nWi ndow constructor also calls the LoadAccelTable member function of
class CWnd. Class CMa i nWi ndow inherits this member function from CWnd. The
call to LoadAccelTable loads a Windows accelerator table, which defines the
shortcut keys (also known as accelerator keys) that the program can respond to.
The Hello program defines one shortcut key: the FI key calls up the About dialog
box. For more about resources such as accelerator tables, see the Windows SDK
Guide to Programming.

CMainWindow's Member Functions and Message-Map Macro Besides its
constructor, class C M a i n Win d ow overrides two message-handler member functions,
OnAbout and OnPaint, and invokes the DECLARE_MESSAGE_MAP macro.
These functions and the macro are discussed further in "Arrange for Communica­
tion with Windows" on page 94, in "Paint the Window" on page 101, and in "Add
an About Dialog Box" on page 105.

How Initlnstance Displays the Window
The main window constructor is invoked when Hello's In it Ins ta nee member
function allocates a CMa i nWi ndow object with new. Once the constructor
completes, control returns to Ini tInstanee. At this point, the window is ready
for display but still is not visible on the screen.

To display the window, InitInstanee calls the newly created window object's
ShowWindow member function. You'll recall that class CMa i nWi ndow didn't de­
clare a ShowWindow function. Instead, it inherits ShowWindow from
CFrameWnd.

ShowWindow makes the window visible, but nothing has yet been painted in the
new window's client area. To accomplish that, Initlnstanee calls the main win­
dow object's UpdateWindow member function. CMai nWi ndow inherits this func­
tion, like ShowWindow, from CFrameWnd. UpdateWindow causes Windows
to send a WM_ PAINT message to the window. When the window responds to
that message, it paints the text "Hello, Windows!" How the window responds to
WM_PAINT is explained in "Paint the Window" on page 101. Figure 3.3 shows
the process schematically.

After calling the ShowWindow and Update Window member functions,
InitInstanee is finished. At that point, Hello begins its message loop and is
ready to receive messages from Windows.

94 Class libraries User's Guide

the App I Creates a CMainWindow object

!
I Creates a window main window

!
the App

!
I Calls ShowWindow

the App

!
I Calls UpdateWindow

!
I Sends WM_PAINT message to window I Windows

main window I Paints the window

Figure 3.3 Window Display

3.5 Arrange for Communication with Windows
This section explains the third step in writing Hello: set up the mechanism by
which Hello responds to Windows messages.

~ To set up window message hooks for the main window:

1. Add the following message map for the new window class to your
HELLO.CPP file:

BEGIN_MESSAGE_MAP(CMainWindow, CFrameWnd)
ON_WM_PAINT()
ON_COMMAND(IDM_ABOUT, OnAbout)

END_MESSAGE_MAP()

You can put the message map with your code for the main window class. The
message map connects specific Windows messages with member functions of
your window class provided as message handlers. The message map is really a
part of your window class, so writing it is part of writing the class. It's impor­
tant to put the message map in the HELLO.CPP file rather than the HELLO.H
file to ensure that the macros comprising the map are not invoked more than
once. The macros create code and therefore allocate memory. Thus they must
not be included in more than one module.

Windows Programming with the Microsoft Foundation Classes 95

You already added the DECLARE_MESSAGE_MAP macro to your
CMa i nWi ndow class declaration. Any window class you write requires this macro
as part of its declaration. The message map in HELLO.CPP is the implementa­
tion corresponding to the message-map declaration.

2. Add message-handler functions for the Windows messages you need to
process.

For Hello, you'll add two message-handler member functions to the
CMa i nWi ndow class. The code for this step is given later in the tutorial, in "Paint
the Window" on page 101 and "Add an About Dialog Box" on page 105.

The Microsoft Foundation Class Library provides default behavior for all
messages, but you must provide CMa i nWi ndow member functions to override
the default behavior and handle the menu command for the About dialog box
and to handle the WM_PAINT message, which signals your window to paint
its contents.

To continue the tutorial, see "Paint the Window" on page 101. For more informa­
tion about the code you just added, see the following discussion.

Discussion: Communication with Windows
The Microsoft Foundation Class Library provides a communications mechanism
for connecting Windows messages to the message-handler member functions of
your windows classes. This section describes the mechanism, emphasizing the
message map.

This discussion does not instruct you to add any code to your files.

Message Maps
You write a Microsoft Foundation message map using macros from a set of prede­
fined macros. The following sections discuss the parts of a message map, where
the macros go, and how the message map connects your handlers to the Windows
messages they handle.

To write the message map, use the BEGIN_MESSAGE_MAP and
END_MESSAGE_MAP macros. Between them, add an entry for each Windows
message your main window (or dialog) will handle. The Microsoft Foundation
Class Library predefines a set of macros to use for the entries, as discussed in the
following sections.

You write the message-handler functions corresponding to your message map en­
tries. The Microsoft Foundation Class Library specifies some rules for naming
your message handlers and for specifying their argument signatures. The rules are
discussed in the following sections.

96 Class Libraries User's Guide

What the Message Map Is For Windows programs are spoken of as "event
driven." The user interacts with the windows, menus, and controls in the Windows
user interface of your program. User-generated events, such as mouse clicks and
keystrokes, place "messages," each based on the MSG structure defined for
Windows, in your application's message queue. Your application uses a message
loop to get messages from the queue and send the messages to the appropriate
window for handling.

A Windows program must have a mechanism for selecting the appropriate code to
respond to Windows messages, such as WM_CREATE, WM_PAINT, or
WM_COMMAND.

Traditional Windows programs define a window procedure for each registered
"window class." The window procedure, often called WndProc, typically con­
tains a switch statement which uses the message information passed to the window
procedure to select appropriate code to respond to the message.

The Microsoft Foundation Classes provide a mechanism for the same purpose
called a message map. These message maps are similar to C++ "v-tables" but are
more space efficient. The message map defines linkages between particular
Windows messages and corresponding member functions of the window object.

Windows Programming with the Microsoft Foundation Classes 97

For instance, the example code for Hello defines a message map with an entry
providing a connection between the constant IDM_ABOUT and the OnAbout
member function. ID~ABOUT represents the menu ID of the About menu
command, as defined in the resource file associated with Hello.

When a window procedure receives a WM_ COMMAND message for a menu
command, the window procedure's wParam parameter contains a menu ID to
identify which menu command was chosen. Hello's message map uses the
ON_COMMAND macro to associate ID~ABOUT with the OnAbout member
function.

Logically, the message map is part of the main window class, so a good place to
put it is with the CMa i nWi ndow code.

What Hello's Message Map Does The macros create entries in a table. The
message-processing mechanisms in the Microsoft Foundation Classes use the
table to locate and call the function associated with a message. Figure 3.4 shows
the process of routing messages to handlers via message maps.

What happens if there is no entry in the message map of your window class for a
given message? Each window class in the class hierarchy (CWnd, CFrameWnd,
and CMa i nWi ndow in the example) has its own message map. The message pro­
cessing mechanism can move up the hierarchy of message maps in search of a
message-to-function mapping.

Because default handlers are declared in class CWnd, a default handler will be
found at the CWnd level of the hierarchy if nowhere else. If the default behavior
for a given handler has been overridden at some level, the mechanism finds a func­
tion to execute and calls it. Because of this structure, it's a good idea to call the
base class's version of your handler function, much as you call DetWindowProc
in traditional Windows programming.

98 Class Libraries User's Guide

Base Class

Member Functions

Member Functions

Derived Class

No

No

If Class has a handler
for the message, call it.

If Derived Class can't
handle message,
check the message
map of the base class.

If Class has a handler
for the message, call it.

Figure 3.4 How Message Maps Route Messages to Handlers

Rules for Message-Handler Functions If you use the message-handling appara­
tus of the Microsoft Foundation Classes in your Windows program, there are some
guidelines and requirements for the names and parameter signatures of your mes­
sage handler functions, such as OnAbout and OnPai nt. There are three main cate­
gories of messages that a window receives:

• WM_COMMAND messages generated by user menu selections or menu­
accelerator keys.

• Notification messages from child windows, such as a message from a button to
its parent window indicating that the button has been clicked: BN_CLICKED.

Windows Programming with the Microsoft Foundation Classes 99

A notification message is a WM_ COMMAND message in which the wParam
parameter contains the control ID for the child window and the lParam parame­
ter contains a notification control code in the high-order word and the control
handle in the low-order word.

• Other W~XXX messages, such as WM_PAINT or WM_SIZE, generated
by the system or by user input.

Note You can always get to the raw Windows MSG structure by calling the
GetCurrentMsg function.

Your handler functions for menu messages and child window notification mes­
sages (the first two preceding categories) take no arguments and return no value.
No arguments are needed because your main window object stores the message in­
fonnation needed to process the message. The two categories of messages use the
information that Windows passes with the message differently, but the conven­
tions for naming your handler functions are the same.

Your handler functions for messages in the third category above, however, do re­
quire various arguments, depending on the message, and can return a value. Be­
cause the Windows messages are all standard, the names and argument signatures
required for these handler functions are predefined by the Microsoft Foundation
Classes.

For example, your handler for the W~PAINT message must be named
an P a i n t. It takes no arguments and returns no value.

Other message handlers do require arguments, and some return values. The
anSi ze handler function for a WM_SIZE message, for example, requires two ar­
guments, one oftype UINT and one of type CPoint. anSi ze returns no value. An
anEraseBkgnd handler for the W~ERASEBKGND message requires one argu­
ment, a pointer to a device context class object, and returns a BOOL.

To determine the correct argument signature and return type for your message­
handler functions, see the Class Libraries Reference. The signatures are also listed
as function prototypes in the CWnd class declaration in file AFXWIN.H. Each
prototype is preceded by the afL msg identifier. You should copy and paste these
prototypes into your own code as needed. See the additional infonnation in the
box "Default Message Handlers" on page 100.

For more infonnation about message maps, see the cookbook. For more examples,
see the next chapter.

100 Class Libraries User's Guide

The next several sections examine how to write the message handler member func­
tions for Hello's main window class. These functions correspond to the two entries
in Hello's message map above. They handle:

• Responding to an application request to paint or repaint a window's contents.

• Displaying an About dialog box.

Windows Programming with the Microsoft Foundation Classes 101

3.6 Paint the Window
This section explains the fourth step in writing Hello: paint text in the window.

~ To paint text in Hello's window:

1. Add the OnPai nt handler function for processing W~PAINT messages to
HELLO.CPP:

void CMainWindow::OnPaint()
{

}

CString 5 = "Hello, Windows!";
CPaintDC dc(this);
CRect rect;

GetClientRect(rect);
dc.SetTextAlign(TA_BASELINE ITA_CENTER);
dc.SetBkMode(TRANSPARENT);
dc.TextOut(rect.right / 2, rect.bottom / 2, 5, s.GetLength());

Put the OnPa i nt member function in your HELLO.CPP file with other
CMa i nWi ndow member functions.

2. You already added the ON_ ~PAINT macro to Hello's message map. Its
line in the message map looks like this:

ON_WM_PAINT()

Requirements for naming the On Pa i nt member function and for the macro
name are discussed below.

To continue the tutorial, see "Add an About Dialog Box" on page 105. For more
information on the code you just added, see the following discussion.

Discussion: Painting Text
What happens inside your OnPai nt member function? This discussion explains
the statements in the On Pa i nt member function and the requirements for naming
the function and for making its message map entry.

The OnPaint Name
OnPaint, as a message-handler function, is predefined in the Microsoft Founda­
tion class CWnd, where its prototype is given. OnPaint is designed to handle the
WM_PAINT message, and W~PAINT is one of the messages requiring a

102 Class Libraries User's Guide

specific parameter signature. The OnPaint function happens to take no arguments
and to return no value. Thus, its declaration in class CMa i nWi ndow looks like this:

afx_msg void OnPaint();

Its corresponding macro entry, ON_ W~PAINT, is also predefined.

Inside OnPaint
The code in Hello's OnPai nt member function has three fundamental com­
ponents. To paint the text, you do these three things:

1. Create a device context.

OnPai nt constructs a CPaintDC object. The class name stands for class "Paint
Device Context."

2. Determine the area in which to paint.

OnPa i nt uses the window object's GetClientRect member function to get a rec­
tangle corresponding to the client area ofthe window. CMa i nWi ndow inherits
GetClientRect.

3. Paint the text.

On Pa i nt uses three CPaintDC member functions to align and paint the text.

In the Windows graphical user interface, it is common to speak of anything you
display in a window, even text, as being "drawn" or "painted." In Hello, the text
"Hello, Windows!" is painted in the window, through the use of graphics func­
tions.

Your program is responsible for painting its window contents when requested by
Windows. Typically, a window is painted when the program starts, when the win­
dow is first displayed, and when the window changes size or is uncovered after
being covered by another window, when new drawing takes place. Windows
sends W~PAINT when anything happens that requires updating the window.

The OnPai nt member function handles the W~PAINT message.

When the contents of your window's client area change or when the client area
must be redrawn ("updated"), Windows sends a WM_PAINT message to the
window. What your OnPai nt message-handler function does in response to that
message depends on your needs. No matter what your program displays in its
windows, the OnPai nt handler is the place to do the drawing.

Windows Programming with the Microsoft Foundation Classes 103

What OnPaint Does
Except for its use of a "device context object," the code for On Pa i nt is straightfor­
ward Windows programming. The syntax looks cleaner, but the calls made should
be familiar to Windows programmers. Figure 3.5 shows the sequence of steps in
Hello's 0 n P a i n t member function.

window object

!
device context object

!

I Makes a device context object

I Calls BeginPaint (in constructor)

window object

!
window object

!

I Gets client area rectangle

I Asks device context to align text

device context object

!
window object

!

I Sets text alignment (centered)

I Asks device context to paint text

device context object I Paints text

!
device context object I Calls EndPaint (in destructor)

Figure 3.5 Sequence of Events in Hello's OnPaint Function

The OnPai nt member function of class CMai nWi ndow uses three local variables:

• A CString object to contain the text to paint.

• A device context object of class CPaintDC.

• A CRect object.

104 Class libraries User's Guide

The device context object, de, is the Microsoft Foundation Class Library way to
set up a Windows device context for painting on the screen. When the CPaintDC
object is constructed on the stack frame, it gets a pointer to the window object that
owns it, passed with the C++ this keyword. The CPaintDC object needs this infor­
mation to associate the device context with the window. During its initialization,
the CPaintDC object calls the Windows BeginPaint function. When the
CPaintDC object is destroyed as OnPaint exits, its destructor calls the Windows
EndPaint function.

OnPaint calls the main window object's GetClientRect member function, in­
herited from CWnd through CFrameWnd. This function returns the coordinates
of the window's client area in the reet argument.

Armed with the client area information, OnPaint then calls two member functions
of the device context object to align and paint the text. The call to the device con­
text's SetTextAlign member function (of class CPaintDC) specifies that the
coordinates given are to be considered the center of the text. Because Hello's
On Pa i nt member function gives the center ofthe window, the text is centered in
the window.

The call to the device context's SetBkMode, with an argument of
TRANSPARENT, specifies that the window background remains as it is
rather than being filled with the current background color before painting. If you
compile and run the Hello program, you can see that if the window changes size,
the text is redrawn so it is always centered.

The call to the device context's TextOut member function paints the text in the
window. To center the starting point of the text in the client area, the code divides
the right-side and bottom coordinates by 2, defining a point at the horizontal
and vertical center of the client area. The arguments passed previously to
SetTextAlign cause the output to use this point as the baseline for drawing,
and the text is also centered horizontally on the point.

All CWnd and CPaintDC member functions called in On Pa i nt closely parallel
functions of the same name in the Windows API. You could, of course, simply use
the Windows calls in your On Pa i nt member function, but using the Microsoft
Foundation Classes adds simplicity and flexibility.

The primary functionality of Hello is now in place. But Hello will have more of
the Windows look if you add an About box. The next section shows how.

Windows Programming with the Microsoft Foundation Classes 105

3.7 Add an About Dialog Box
This section explains the fifth step in writing Hello: add an About dialog box.

~ To add an About dialog box:

l. Add the OnAbout member function to handle W~COMMAND messages.
Put the following function definition in your HELLO.CPP file with other
CMa i nWi ndow member function definitions:

void CMainWindow::OnAbout()
{

CModalDialog about("AboutBox", this);
about.DoModal ();

As a message handler, OnAbout is similar in most respects to the OnPaint
member function.

2. You already added the ON_ COMMAND macro for the IDM_ABOUT menu
ID to the message map. Its line in the message map looks like this:

ON_COMMAND(IDM_ABOUT, OnAbout)

The dialog template for Hello's About dialog box was created with a dialog edi­
tor. The template is in file HELLO.DLG, which is referenced in the program's
resource script file, HELLO.RC, with a line like this:

rcinclude hello.dlg

This line points the resource compiler to the file containing the dialog template.
Note that in the dialog template created by the dialog editor the template name
"ABOUTBOX" is uppercase. However, the name is not case sensitive, as the
code for OnAbout shows.

At this point, your HELLO.H and HELLO.CPP files are complete if you have
followed all of the directions in this tutorial. You can check them against
Listings 1 and 2, respectively.

Requirements for naming the handler function and the macro were discussed in
"Rules for Message-Handler Functions" on page 98. To continue the tutorial,
see "Prepare Supporting Files" on page 107.

Discussion: The About Dialog Box
A program's About dialog box displays information about the program, usually in­
cluding the program's name and a copyright notice.

106 Class Libraries User's Guide

Figure 3.6 shows what Hello's About dialog box looks like.

~ About Hello

Microsoft Windows
Microsoft Foundation Classes

Hello. Windows!

Version 1.0

Figure 3.6 Hello's About Dialog Box

To put a dialog box on the screen, OnAbout uses an object of the CModalDialog
class. CModalDialog is a Microsoft Foundation class that displays and operates a
modal dialog box that contains controls such as buttons and text fields.
CModaiDialog provides a member function, DoModal, that operates the
dialog box. As long as DoModai has control, the user must deal with the dialog
box. The user can use any of the controls contained in the dialog box. The user can
either dismiss the dialog box, usually with a CANCEL button, or accept any
changes made, usually with an OK button. Hello's dialog box has only one
control, an OK button.

What OnAbout Does
The OnAbout member function constructs a CModalDialog object called
"about." The first argument to the constructor is a string that identifies a resource
in an associated resource file. The second argument is this, a C++ keyword that
contains a pointer to the current object. Because this code is inside a CMa i nWi ndow
member function, this refers to the CMa i nWi ndow object. Passing this pointer to

the dialog enables it to identify its parent window.

Windows Programming with the Microsoft Foundation Classes 107

Once the CModalDialog object has been constructed, OnAbout calls its
DoModal member function to display the dialog and interact with the user. In
Hello, the About dialog box closes when the user clicks the OK button.

Summary of the Hello Program's Code
At this point, you have derived the two necessary classes from Microsoft
Foundation Classes. You have written the code for their member functions. And
you have written a message map to connect Windows messages to your main
window class's handler functions.

After you set up some additional files common to Windows programming, as
detailed in the next section, you can compile Hello and then run it. If you prefer,
you can compile the version of the program already provided on the distribution
disks.

3.8 Prepare Supporting Files
Besides the two source code files, HELLO.H and HELLO.CPP, you will need
several additional files in order to compile Hello. The files will look like those
shown in Listings 3 - 5.

~ To prepare these files, do the following:

1. Create a module-definition file, with the .DEF extension.

All Windows programs require a module-definition file, with the .DEF exten­
sion. The module definition file for Hello is shown in Listing 3 and is available
on the distribution disks as HELLO.DEF.

2. Create a resource file with an .RC extension.

If you use custom resources, such as icons, you need a resource script file,
with the .RC extension, to define the resources. The resource file for Hello is
shown in listing 4 and is available on the distribution disks as HELLO.RC. For
your own icons, you also need files created with a resource editor, such as
SDKPaint. The icon resource file HELLO.lCO is furnished on the distribution
disks also.

3. Create a resource include file with an .H extension.

Hello uses an .H file to define resource ID numbers for the resources listed in
its resource file. The resource include file for Hello is shown in Listing 4 and is
available on the distribution disks as RESOURCE.H.

108 Class Libraries User's Guide

Discussion: The Supporting Files
The supporting files for Hello are given in Listings 3, 4, and 5. Listing 3 is the
module-definition file, required for all Windows programs. Listing 4 is the re­
source script file, required of Windows programs that define their own resources,
such as menus, dialogs, icons, and accelerators. Listing 5 is the resource include
file, used to declare ID numbers associated with the resources. These files are pro­
vided on the distribution disks for your use, or you can create your own files based
on the listings. The next sections explain each file.

The Module-Definition File
The module-definition file for Hello appears in Listing 3.

This file is typical for a Windows program. For more information on module­
definition files, see the Windows SDK Guide to Programming and the Windows
SDK Reference, Volume 2.

For programs that use the Microsoft Foundation Classes, always use FIXED for
the CODE and DATA segments. C++ code can't be moved by the real-mode
memory manager, so you must specify FIXED. Under protected mode, the pro­
tected-mode page manager will automatically take care of swapping the FIXED
code in and out of memory.

You can simply use the HELLO.DEF file supplied on the distribution disks and
modify it as needed for future programs. The values specified here are fairly stan­
dard for Windows programs, but you can adjust the HEAPSIZE or STACKSIZE
values, for example, to suit your needs.

The Resource Script File
The resource script for Hello is shown in Listing 4.

This file specifies four resources: a custom icon, a menu, an accelerator table, and
a dialog resource file created with a dialog editor.

The icon entry specifies an ID number, AFLIDLSTD_FRAME, with which
the icon resource can be loaded. The ID number is defined in the Microsoft Foun­
dation Class Library. The icon entry uses an ICON statement to associate the ID
number with a file that contains the icon data. If you supply an icon resource, you
also must supply the file that contains that resource: for example, HELLO.ICO.

The menu entry defines a pop-up-style menu labeled "Help" with one menu item,
labeled "About Hello ... FI" The About menu command is associated with the ID
number ID~ABOUT, defined in the RESOURCE.H file (see the next section).

Windows Programming with the Microsoft Foundation Classes 109

The accelerator table entry defines an accelerator table resource to associate keys
with menu items. For Hello, the FI function key displays the About dialog box by
causing Windows to generate a WM_ COMMAND message for the menu item.
You saw previously how the OnAbout function handles that message.

The dialog resource file, which was created with a dialog editor, refers to a .DLG
file containing a resource template. The template defines a dialog box resource to
be used for the About dialog box. The dialog box has the caption, or window title,
"About Hello" and contains several lines of text identifying the program. Hello's
About dialog template is in the file HELLO.DLG on the distribution disks.

You can simply use the resource script provided on the distribution disks in file
HELLO.RC. If you do not want to provide custom icons, you can remove the ap­
propriate lines from the resource script. You will also need to remove them from
the makefile.

The Resource Include File
Hello uses a file with the .H extension to define its application-specific resource
ID numbers. The file appears in Listing 5. Hello's file defines only one resource
ID.

This definition is used to match the About dialog resource in the .RC file with the
CModalDialog object that uses the resource to create the dialog.

You can simply use RESOURCE.H on the distribution disks.

3.9 Build the Program
To build your program, follow the instructions given in Chapter I of the tutorial.
The required files are HELLO.H, HELLO.CPP, HELLO.DEF, HELLO.RC,
HELLO.ICO, HELLO.DLG, and RESOURCE.H. All are available in the
MFC\SAMPLE\HELLO directory in your Microsoft C/C++ installation.

The Programmer's WorkBench (PWB) makefile for HELLO is called
HELLO.MAK. The NMAKE makefile is called MAKEFILE with no extension.

HELLO builds as a Windows application, so you must run it from Microsoft
Windows.

110 Class Libraries User's Guide

3.10 How Hello Works

A General View

Without a visible function called "main," as in C, or "WinMain," as in Windows,
it is hard to see how Hello does anything. Where is its entry point? What is its
sequence of execution?

This section shows Hello's sequence of execution at two levels. First, the
sequence is described at a general level to give you an overview. Second, the
sequence is described again at a more detailed level. You can skip either of these
sections, depending on your knowledge of C++ and Windows.

When Hello runs, the C++ code creates the theApp object, an object of your appli­
cation class, for example CTheApp.

After the application object is constructed, Windows calls the WinMain function.
WinMain performs some initialization chores. Then it calls your I nitlnstanee.
Finally, it starts the message loop.

Typically, as in Hello, you'll use the call to your application object's over­
riding In i tIn s tan e e member function to construct your main window. You
accomplish this by constructing a main window object of your main window
class, such as CMa i nWi ndow. Then you call three member functions of class
CWnd, such as CreateWindow, UpdateWindow, and ShowWindow.
Create Window is called from the constructor of your main window object. The
other functions are called from In it I nsta nee.

The call to CreateWindow creates the Windows data structures for a window.
The call to UpdateWindow causes Windows to send a WM_PAINT message to
the window procedure associated with your window as soon as the message loop
starts. The call to ShowWindow causes the window to appear on the screen.

When the message loop starts, the window object's message map is used to call its
OnPaint member function, which paints the string "Hello, Windows!" in the win­
dow. Then the message loop continues until a WM_QUIT message causes the
loop to end and the program to terminate.

Windows Programming with the Microsoft Foundation Classes 111

Figure 3.7 shows the sequence of events when a Microsoft Foundation Windows
application runs.

c++ Constructs global application object

!
I Calls WinMain Windows

!
WinMain Calls application object's Initlnstance

!
application object

!
I Creates main window object

application object

!
I Displays main window object

!
I Calls application object's Run WinMain

application object

!
I Runs message loop

main window object I Processes messages

Figure 3.7 Sequence of Events When a Foundation Windows Application Runs

A More Detailed View
When Hello executes, two key actions occur. First, C++ static and global objects,
such as Hello's theApp global application object, are constructed. A global
variable in the class library is set to point to the application object. Second,
when Windows initialization completes, Windows calls the WinMain function.
The Microsoft Foundation Classes supply a WinMain function that does the
traditional tasks of any Windows WinMain function. The function is responsible
for application and instance initialization and for running the application's
message loop.

112 Class Libraries User's Guide

The Win Main Function
As part of its own initialization code, WinMain checks the hPrevlnstance argu­
ment passed to it by Windows. If hPrevlnstance is NULL, WinMain calls the ap­
plication object's Ini tAppl i cati on member function to perform first-time
initialization.

Then, regardless of the value of hPrevlnstance, WinMain calls the application ob­
ject's I ni tIns tance member function to perform extra initialization for this par­
ticular program instance. In Hello, the version of In i tIn s tan c e that WinMain
calls is the version defined in class CTheApp as an override of InitInstance.

After initialization, WinMain calls the application object's Run member function
to begin the message loop. As Windows interacts with the user, it detects mouse
clicks, keystrokes, and other events. It places messages corresponding to these
events in an application message queue. The message loop retrieves messages
from the application's message queue.

Window Class Registration
In a traditional Windows WinMain function, one important initialization task is to
register one or more "window classes." Windows uses the registration information
when it creates specific windows to display on the screen.

Note that a window class in Windows is not a c++ object class, as are the window
classes derived from class CWnd in the Microsoft Foundation Classes.

A Windows application written with the Microsoft Foundation Classes registers
several standard window classes for you. You can then simply create windows
based on the registered classes. However, it is also possible to register your own
custom window classes if you need something special.

Hello works nicely with the default window class registrations supplied by the
Microsoft Foundation Class Library, so you do not need to do your own window
registration.

How You Can Customize Your Windows Application
As shown above, the Microsoft Foundation Classes supply a WinMain function
that provides several standard Windows actions for you:

• Windows application and instance initialization.

• Registration of several standard window classes.

• A message loop.

Windows Programming with the Microsoft Foundation Classes 113

The Microsoft Foundation Classes also supply several ways to customize or over­
ride the standard facilities and behavior. You can:

• Write your own Wi nMa in function and substitute it at link time for the
WinMain provided by the Microsoft Foundation Classes.

• Call a global AfxRegisterWndClass function to register your own window
classes.

• Override member functions such as InitApplication, Initlnstance, Onldle,
Run, and Exitlnstance in your derived application class.

• Make your program a Multiple Document Interface (MOl) application.

• Add dialog boxes, menus, and accelerators.

3.11 Summary
This chapter demonstrated the fundamental techniques for using the Microsoft
Foundation Class Library to write Microsoft Windows programs.

The class library helps you think about Windows programming in a more object­
oriented way. It also promotes more reusable code.

The next three chapters develop a larger Windows application, building on the
classes and techniques explored in this chapter.

3.12 File listings

Listi~J

The code shown in listings 1-5 is available on your distribution disks as
HELLO.H, HELLO.CPP, HELLO.DEF, HELLO.RC, and RESOURCE.H.

Ii HELLO.H - [lec1ares tne, tne He1l9 applicatlo\1.

fh fndef __ H~tLO~H__ i
'ifdefi.ne _-,-HE~LO~,H __

'CMaiIJWindow:
~eeHe 11 o·~ cPt:> T;gr
and fm;e mess'H/ei'map!

':', >!" :' ',,', " ',::7

pub 1 i:!:,:
'C1I1<\1 nwejndo,w(

I :'

114 Class libraries User's Guide

/I OnPaint:
II
void CMainWindow::OnPaintC)
{

CString s = "Hello, Windows!";
CPaintOC deC this);
CRect reet;

GetClientReet(reet);

Windows Programming with the Microsoft Foundation Classes 115

de.SetTextAlign(TA_BASELINE ITA_CENTER);
de.SetBkMode(TRANSPARENT);

}

de.TextOut((reet.right I 2), (rect.bottom I 2)"
5, s. GetLength ());

II OnAbout:
II
void CMainWindow::OnAbout()
{

}

CModalOialog about("AboutBox", this);
about. OoModa 10;

1/ CMainWindow message map:
//
BEGIN~MESSAGE~MAP(CMainWindow, CFrameWnd)

OU'lM_ PAl NT()
OILCOMMAND(I OM_ABOUT ,OnAbout)

ENO_MESSAGE_MAP()

1111111111//II/IIII/III/IIIIIIIIIIIIIIIIIII//II/I!111111111/1/111111/1//11111
II CTheApp

1/ Initlnstance:
Ii
BOOL CTheAp.p:: Initlnstance()
{

TRACE("HEllO WORLO\n");

1!1_pMainWnd = new CMainWindow(};
m_pMainWnd -) ShowWindow(m_nCmdShow);
m_pMa i nWnd -) UpdateWi ndow() ;

return TRUE;
}

116 Class libraries User's Guide

Phone Book: A Simple Windows
Database

Chapter 2 showed how to use the Microsoft Foundation Class Library to build a
data model for a simple name and phone number database. Chapter 3 showed how
to use the Microsoft Foundation Classes to build a simple Microsoft Windows
user interface.

This chapter and the two chapters following it show how to integrate the data
model from Chapter 2 and the Windows user interface from Chapter 3. In these
chapters, you'll write a larger Windows application to put a Windows interface on
the name and phone number database. You'll begin with the Hello program from
Chapter 3 as a template and build new functionality on top of it by adding more
menus, by creating more complicated dialog boxes, and by providing keyboard
and mouse interaction.

The three chapters cover the following topics:

• Chapter 4: How to use Hello as a template. How to create a simplified interface
to the CPerson data.

• Chapter 5: How to add dialog boxes for editing data and for file opening,
saving, and printing.

• Chapter 6: How to write the main window class and message map. How to add
message-handler functions, including handlers for menus, the keyboard, and the
mouse. How to prepare the supporting files. How to build the Phone Book
program.

4.1 In This Chapter
Follow the tutorial in this chapter to create a class of "database objects." You can
use one of these objects to provide a clean interface to the actual data. The inter­
face can be used either in a character-based program or a Windows program. At
the end of the chapter, you'll see how to use the interface for a non-Windows
database program.

118 Class libraries User's Guide

The Phone Book Program
The Phone Book program developed in the next three chapters is a simple name
and phone number database. It stores information about people: first name, last
name, and phone number. Using the Windows interface, you can create a new
database, fill it with information, and save it to a disk file. You can also open an
existing database from a file and add names, delete names, and edit information.
You can find all entries with the same last name and display the list of found en­
tries. And you can print your database files.

What the Program Does
The Phone Book program displays a window with a menu bar. The menu bar con­
tains three menus, one for file operations, one for database operations, and one for
Help.

If you create a new, empty database, the window title changes from "Phone Book"
to "Phone Book-Untitled" and you can then add entries with the Add command in
the Person menu. When you choose the Save or Save As command from the File
menu, a dialog box prompts you to enter a filename, the database is serialized to
the file, and the new filename becomes the new window title.

If you open an existing database, you are first prompted to save the existing one if
it has unsaved changes. Then a standard Windows dialog box prompts you for a
filename, the persistent data stored in the file is deserialized into an automatically
created CPersonL i st object, and the new filename replaces the old one in the title
bar. The data is displayed in the window, one line per person. If there's more data
than the window can display, scrollbars are added to the window, and you can use
them to scroll to data that isn't currently displayed. You can also scroll with the
RIGHT ARROW, LEFT ARROW, PAGE UP, PAGE DOWN, HOME, and END keys.

To delete or edit a person's information, you must first select the person's line of
information in the window. You can choose a person in the database by selecting
the person's line of information in the display, either with the mouse or with the UP

ARROW and DOWN ARROW keys.

If you add, delete, or edit the information in a database, the database is flagged in­
ternally to indicate that it has unsaved changes. When you add, delete, or edit a
person's information, the display changes to reflect the new information.

If you search the database for a name, a list of matching list elements is displayed
in the window, replacing the display of the full database. Changes to this list are re­
flected in the main list. To abandon the list of search results and display the full
database again, you choose the Find All command in the Person menu.

If you choose the Print command in the File menu, a standard Windows print
dialog box is displayed so you can select printing options.

Phone Book: A Simple Windows Database 119

If your file is unsaved and you choose the Save or Save As commands in the File
menu, a standard Windows Save dialog box is displayed so you can name the file
and select a directory for it. If the file has already been saved, you can choose the
Save command to save recent changes.

Figure 4.1 shows the screen as it appears with an open database on display.

Adams. Thomas
Adams. Nina
Brent. Zoe
Burroughs. Edgar
Jones. Allen
Keene. Carolyn
Mannheim. William
Monroe. Louise
Smith. John
Smith.

878-6789
789-5640
876-4534
767-4444
887-9809
989-0900
989-7832
767-9876
898-5439
989-1209

Figure 4.1 The Output of Phone Book

This example program does considerably more than Hello and provides you with a
larger model on which to pattern your own Windows programs written with the
Microsoft Foundation Class Library.

The Code for Phone Book
To view the complete code for Phone Book, see Listings 1 and 2 in this chapter
and Listings 1 and 2 in Chapter 5. The listings in the current chapter give the code
in files DATABASE.H and DATABASE.CPP. The listings in Chapter 5 give the
code in files VIEW.H and VIEW.CPP. To review the code for the Data Model, see
Windows Listings 1 and 2 in Chapter 2.

The code shown in Listings 1 and 2 is available on the distribution disks in files
DATABASE.H and DATABASE.CPP.

Microsoft Foundation Classes Used in This Chapter
This chapter and the two following chapters use the classes employed in Chapters
2 and 3. Many of these classes are used in the same way, since Phone Book is built
from the foundations of Hello and the Data Model program. But one class in par­
ticular, CModalDialog, is used more extensively in Chapter 5, and the CMenu
class is also employed. CMenu provides access to the menus in the menu bar and
is used for updating menus to suit the context. Menu commands unavailable in the
current context are dimmed.

120 Class Libraries User's Guide

The sections that follow take you through the components of Phone Book, explain­
ing how to write them, what they consist of, and how they work.

4.2 How to Write the Phone Book Program
This section gives an overview of the steps in writing Phone Book. As you work
through the steps, you willleam what files to prepare, where to put the code in
them, and how to compile the program. You'll build Phone Book by using Hello
as a template.

The Steps in Writing Phone Book with the Microsoft Foundation Classes
You'll write the Phone Book program with the Microsoft Foundation Classes in
14 steps, spread over three chapters of the tutorial. The 14 steps can be sum­
marized as follows:

1. Create a simplified data interface (Chapter 4).

Phone Book uses two C Per son Lis t objects, one for the database and one for
any person objects found with its search facilities. The simplest way to manage
these lists and the mechanisms needed to use them is to encapsulate the lists
and mechanisms in another object. Class CDataBase lets the program access
data through a single clean interface, regardless of which of the two lists is cur­
rent. Add class CDataBase. For more information about this step, see "Create a
Simplified Data Interface" on page 122.

2. Copy and modify the Hello files (Chapter 5).

To use Hello as a template, you need to copy HELLO.H to VIEW.H and
HELLO.CPP to VIEW.CPP. Then you need to modify some of the items in the
new copies and add other items. For more information about this step, see
"Work from a Template" on page 152.

3. Add two kinds of dialog boxes (Chapter 5).

Phone Book needs two dialog boxes: one for entering a string, used as the name
to search for, and one for entering or editing the data for a person. Add classes
for these dialog boxes. For more information about this step, see "Add Dialog
Boxes" on page 153 in Chapter 5.

4. Determine what messages will be handled (Chapter 6).

Design the application's menus and list the Windows messages your code
needs to handle. When the user chooses a command from the menu, a
WM_ COMMAND message is sent to the appropriate window along with in­
formation identifying which menu command is being generated. The applica­
tion also needs to handle other Windows messages, such as WM_ PAINT.

Phone Book: A Simple Windows Database 121

Phone Book has more than a dozen menu commands and responds to almost as
many other Windows messages. For more information about this step, see
"Determine What Messages Will Be Handled" on page 197 in Chapter 6.

5. Add message-handler functions for File menu commands (Chapter 6).

Phone Book has several File menu commands. Each command needs a handler
defined as a member function of class CMa i nWi ndow and a corresponding entry
in the message map of CMa i nWi ndow. Add these functions. For more informa­
tion about this step, see "Add Message Handlers for File Menu Commands" on
page 205 in Chapter 6.

6. Add message-handler functions for Person menu commands (Chapter 6).

Phone Book has several Person menu commands. Each command needs a han­
dler defined as a member function of class CMai nWi ndow and a corresponding
entry in the message map of CMa i nWi ndow. Add these functions. For more infor­
mation about this step, see "Add Message Handlers for Person Menu Com­
mands" on page 216 in Chapter 6.

7. Add message-handler functions for Help menu commands (Chapter 6).

Phone Book has two Help menu commands. Each command needs a handler de­
fined as a member function of class CMa i nWi ndow and a corresponding entry in
the message map of CMa i nWi ndow. You already added the handler function for
the About menu command when you copied the Hello files to start Phone
Book. Now add a function for the Help menu command. For more information
about this step, see "Add Message Handlers for Help Menu Commands" on
page 222 in Chapter 6.

8. Add message-handler functions for creation and sizing (Chapter 6).

Phone Book responds to a number of commonly handled Windows messages.
These include WM_PAINT, WM_CREATE, and WM_SIZE. Add message­
handler member functions to the CMa i nWi ndow class for these messages. For
more information about this step, see "Add Message Handlers for Creation and
Sizing" on page 224 in Chapter 6.

9. Add scrolling member functions (Chapter 6).

Phone Book handles both vertical and horizontal scrolling so the user can scroll
through an entire database. For more information about this step, see "Add
Scrolling Member Functions" on page 227 in Chapter 6.

10. Add a keyboard and mouse interface (Chapter 6).

Phone Book uses certain keystrokes and mouse clicks to set or change the selec­
tion in the window. You can use the UP ARROW and DOWN ARROW keys or the
mouse to change the selection. You can also use the DELETE key to delete a
selected person or the ENTER key to edit a selected person. In addition, you can
click the mouse in the scroll bars to scroll the list of persons. These actions re­
quire handler functions as well. Add these handlers. For more information
about this step, see "Add a Keyboard and Mouse Interface" on page 230 in
Chapter 6.

122 Class libraries User's Guide

11. Add a member function to handle the WM_PAINT message (Chapter 6).

The window that displays the database responds to this message to repaint its
client area when it becomes invalid. For more information about this step, see
"Add a Member Function to Handle the WM_PAINT Message" on page 235 in
Chapter 6.

12. Add utility member functions (Chapter 6).

Phone Book uses several utility functions. These are main window member
functions called by the main window object's message-handler functions. For
more information on this step, see "Add Utility Member Functions" on page
238 in Chapter 6.

13. Prepare supporting files (Chapter 6).

As a Windows program, Phone Book requires the same kinds of supporting
files as Hello. Add a module definition file, a resource script file, and a re­
source include file. For more information about this step, see "Prepare
Supporting Files" on page 242 in Chapter 6.

14. Build the program (Chapter 6).

With all the files prepared, compile and link the program. Remember that you
must run the program in Windows. For more information about this step, see
"Build the Program" on page 243 in Chapter 6.

The sections and chapters that follow detail the procedures involved in each of
these 14 steps. Any code related to a procedure is given within the text. Each sec­
tion (except the following one) concludes with a discussion of what the code does
and why it does it that way. Where appropriate, additional advanced discussion in
a special box elaborates on the code and the basic discussion.

4.3 Create a Simplified Data Interface
This section explains the first step in writing Phone Book: simplify the data inter­
face with a new class. This process will require several steps:

1. Create interface and implementation files for class CPerson.

2. Create an interface file for class CDataBase.

3. Design class CDatabase.

4. Create an implementation file for class CDataBase.

5. Write the member functions of class CDataBase.

Phone Book: A Simple Windows Database 123

~ To create data object files:

• Copy the PERSON.H and PERSON.CPP files that you made when designing
the data object to your working directory for the Phone Book program.

The simplified data interface object that you'll create uses these files to imple­
ment the database that it manages.

~ To create an interface file for class CDataBase:

1. Create a file called DATABASE.H and add the following lines:

II database.h - Declares the interface for the CDataBase class.
1/
#ifndef __ DATABASE_H __
#define __ DATABASE_H __

#include "person.h"

II String const for untitled database
extern const char szUntitled[J;

The #define statements ensure that the code in DATABASE.H is not included
more than once. The #include statement includes the PERSON.H file
developed in Chapter 2. PERSON.H declares classes CPerson and
CPersonL i st. These classes are used by class CDataBase. The string constant
declaration refers to a variable used by CDataBase and defined in the
VIEW.CPP file. You'll create that file in Chapter 5.

2. At the bottom of the DATABASE.H file add the line:

#endif II DATABASE H

Always keep this line at the bottom of the file, after all other code.

~ To design class CDataBase:

Class CDataBase encapsulates two CPersonList objects and manages their use.
The interface to CDataBase provides member functions to aid in accessing the
data as Phone Book must do.

• Add the following class declaration for CDataBase to your DATABASE.H file
after the lines added previously:

class CDataBase: public CObject
{

public:
II constructor
CDataBase: :CDataBase()

124 Class Libraries User's Guide

{
m_pDatalist = NUll;
m_pFindlist = NUll;
m_szFileName = "";
m szFileTitle "";

II Create/Destroy CPersonlists
BOOl New();
void Terminate();

II File handling
BOOl DoOpen(const char* pszFileName);
BOOl DoSave(const char* pszFileName NUll);
BOOl DoFind(const char* pszlastName = NUll);

II Person Handling
void AddPerson(CPerson* pNewPerson);
void ReplacePerson(CPerson* pOldPerson,

const CPerson& rNewPerson);
void DeletePerson(int nlndex);
CPerson* GetPerson(int nlndex);

II Database Attributes
int GetCount()

{

}

ASSERT_VAlID(this);
if (m_pFindlist != NUll

return m_pFindlist -> GetCount();
if (m_pDatalist != NUll)

return m_pDatalist -> GetCount();
return 0;

BOOl IsDi rty()
{ ASSERT_ VALID(thi s);

return (m_pDatalist != NUll) ? m_pDatalist ->
GetDirty() : FALSE; }

BOOl IsNamed()
{ ASSERT_VAlID(this);

return m_szFileName != szUntitled; }

const char* GetName()
{ ASSERT_VAlID(this);

return m_szFileName; }

CString GetTitle()
{ ASSERT_VAlID(this);

return "Phone Book - " + m_szFileTitle; }
void SetTitle(const char* pszTitle)

{ ASSERT_VAlID(this);
m_szFileTitle = pszTitle; }

Phone Book: A Simple Windows Database 125

BOOL IsPresent()
{ ASSERT_VALIO(this);

return m_pDataList != NULL; }

protected:
CPersonList* m_pDataList;
CPersonList* m_pFindList;
CString m_szFileName;
CString m_szFileTitle;

private:
CPersonList* ReadDataBase(CFile* pFile);
BOOL WriteDataBase(CFile* pFile);

itifdef _DEBUG
public:

void AssertValid() const;
itendif
} ;

~ To create an implementation file for class CDataBase:

• Create a file called DATABASE.CPP and add the following lines to it:

II DATABASE.CPP - Definitions for class CDataBase
II
itinclude "database.h"
itinclude <string.h>

itifdef DEBUG
#undef THIS_FILE
static char BASED CODE THIS_FILE[] = _JILE __ ;
#endif

const char szUntitled[] = "Untitled";

The #include directives make the class declaration in DATABASE.H and the
declarations in STRING.H available to the code in the new file. The #ifdef
_DEBUG lines support diagnostic reporting if you build the program in debug
mode. The "Untitled" string is defined as a constant. This is the string referred
to earlier from DATABASE.H as an externally-defined variable. It's used for
new databases that have not been named yet.

The member functions of CDataBase include a constructor and functions that
map fairly directly to some of Phone Book's menu commands as well as utility
functions designed to make it easier to use the database. The constructor and
functions GetCount, IsDi rty, IsNamed, GetName, and IsPresent are all de­
fined inline in the CDataBase class declaration. You will add function defini­
tions to your DATABASE.CPP file.

126 Class Libraries User's Guide

~ To write the member functions of CDataBase:

1. Add the New member function.

II CDataBase: :New
II Initializes the database.
/!
BOOL CDataBase: :New()
{

}

ASSERT_VALID(this);

II Clean up any old data.
Termi nate();

m_pDataList = new CPersonList;

return (m_pDataList != NULL);

New creates a new, empty database, to which the user can add persons. In the
Windows program developed in the next two chapters, New supports the New
command in the File menu.

Note the use of the ASSERT_ VALID macro to test the assumption that there
is a valid database object for which a new CPerson List data member can be
created. For more information about the ASSERT_ VALID macro, see "The
AssertValid Member Function" on page 137.

2. Add the Termi nate member function:

II CDataBase: :Terminate
II Cleans up the database.
II
void CDataBase: :Terminate()
{

}

ASSERT_VALID(this);

if (m_pDataList != NULL
m_pDataList -> DeleteAll();

delete m_pDataList;
delete m_pFindList;

m_pDataList NULL;
m_ p Fin d Lis t NUL L ;

m_szFileName = szUntitled;
m_szFileTitle = szUntitled;

Phone Book: A Simple Windows Database 127

Termi nate cleans up when the user ends the program or opens a new database
file while an old one is still open. In the Windows version of Phone Book,
Termi nate is used to support the Exit, New, and Open commands in the File
menu.

3. Add the AddPerson member function:

II COataBase::AddPerson
II Inserts a person in the appropriate position (alphabetically by
II last name) in the database.
II
void COataBase::AddPerson(CPerson* pNewPerson)
{

}

ASSERT_VALIO(this);
ASSERT_VALIO(pNewPerson);
ASSERT(pNewPerson != NULL);
ASSERT(m_pOataList != NULL);

POSITION pos = m_pOataList -> GetHeadPosition();
while (pos != NULL &&

_stricmp(((CPerson*)m_pOataList -> GetAt(pos)) ->
GetLastName(),

pNewPerson -> GetLastName()) <= 0)
m_pOataList -> GetNext(pos);

if (pos == NULL)
m_pOataList -> AddTail(pNewPerson);

else
m_pOataList -> InsertBefore(pos, pNewPerson);

m_pOataList -> SetOirty(TRUE);

AddPerson adds a given new person object to the database. In the Windows ver­
sion of Phone Book, Add is used to support the Add command in the Person
menu.

Again note the use of the ASSERT_VALID macro to test assumptions about
the validity of the current database object and about the person object passed as
an argument. Also note the use of the related ASSERT macro. During debug­
ging, this macro asserts that the expression passed to it is TRUE; if not, the pro­
gram halts with a diagnostic message that tells where the error occurred.

AddPerson calls several member functions inherited by class CPersonL i st
from its base class, CObList, to search the list for the place to add.

4. Add the GetPerson member function:

II COataBase::GetPerson
II Look up someone by index.
II
CPerson* COataBase::GetPerson(int nlndex)

128 Class Libraries User's Guide

{

}

ASSERT_VALIO(this);
ASSERT(m_pOataList != NULL);

if (m_pFindList != NULL)

else

return (CPerson*)m_pFindList -> GetAt(m_pFindList ->
Findlndex(nlndex));

return (CPerson*)m_pOataList -> GetAt(m_pOataList ->
Findlndex(nlndex));

Getperson retrieves a person from the database by index. In the Windows pro­
gram, Getperson is used to support several menu commands.

Getperson calls inherited CObList member functions to find the specified
index. The code in effect requests the database object's m_ pFi nd Lis t or its
m_ pO a taL i s t to use its GetAt member function to retrieve a C Per son object in
a CPerson List object. The specified index into the list is converted to a pointer
to the object at that index by a call to the list object's Fi ndlndex member
function.

5. Add the Del etePerson member function:

II COatabase::OeletePerson
II Removes record of person from database.
II
void COataBase::OeletePerson(int nlndex)
{

ASSERT_VALIO(this);
ASSERT(m_pOataList != NULL);

POSITION el = m_pOataList -> Findlndex(nlndex);
delete m_pOataList -> GetAt(el);
m_pOataList -> RemoveAt(el);
m_pOataList -> SetOirty(TRUE); }

Del etePerson deletes the person object at a specified index. In the Windows
program, Del etePerson is used to support the Delete command in the Person
menu.

The logic ofthis member function is similar to that of GetPerson above.

6. Add the Repl acePerson member function:

II COatabase::ReplacePerson
II Replaces an object in the list with the new object.
1/

void COataBase::ReplacePerson(CPerson* pOldPerson. canst CPerson&
rNewPerson)

{

Phone Book: A Simple Windows Database 129

ASSERT_VALID(this);

ASSERT(pOldPerson != NULL);
ASSERT(m_pDataList != NULL);

II Using the overloaded operator= for CPerson
*pOldPerson = rNewPerson;
m_pDataList-)SetDirty(TRUE);

Rep 1 a cePe rson is a utility member function that replaces an existing person ob­
ject in the database with a newly edited person object. In the Windows pro­
gram, Repl acePerson is used to support the Edit command in the Person menu.
The code takes advantage of the overloaded assignment operator supplied with
the CPerson class.

7. Add the DoFind member function:

II CDataBase: :DoFind
II Does a FindPerson call. or clears the find data.
I!
BOOL CDataBase::DoFind(const char* pszLastName 1* = NULL *1)
{

}

ASSERT_VALID(this);
ASSERT(m_pDataList != NULL);

if (pszLastName == NULL
{

}

delete m_pFindList;
m_pFindList = NULL;
return FALSE;

ASSERT(m_pFindList == NULL);
return ((m_pFi ndL i st = m_pDataL i st -)
FindPerson(pszLastName)) != NULL);

Do Fi nd searches for all person objects in the database whose last name data
members match a search string. DoFi nd calls the CPersonL i st member func­
tion Fi ndPerson, which returns a CPersonL i st object containing pointers to all
of the found person objects. In the Windows program, Do Fi nd is used to sup­
port the Find command in the Person menu.

130 Class libraries User's Guide

8. Add the DoOpen member function:

II CDataBase::DoOpen
II Reads a database from the given filename.
II
BOOL CDataBase::DoOpen(canst char* pszFileName
{

ASSERT_VALID(this);
ASSERT(pszFileName != NULL);

CFile file(pszFileName, CFile: :modeRead);

II read the object data from file
CPersonList* pNewDataBase = ReadDataBase(&file);

}

file.Close();

II get rid of current data base if new one is OK
if (pNewDataBase != NULL)
{

else

Terminate();
m_pDataList pNewDataBase;
m_pDataList -> SetDirty(FALSE);

m_szFi 1 eName
return TRUE;

return FALSE;

pszFileName;

DoOpen takes a filename as its argument, opens the file of that name, and calls
ReadDatabase (given later) to read its data into a CPersonL i st object for use as
the current database. In the Windows program, DoOpen is used to support the
Open command in the File menu.

Note that the existing database, if any, is only deleted after the new one is
successfully opened.

9. Add the DoSave member function:

II CDataBase::DoSave
II Saves the database to the given file.
/!
BOOL CDataBase::DoSave(canst char* pszFileName 1*
{

ASSERT_VALID(this);

NULL *1)

II if we were given a name store it in the object.
if (pszFil eName != NULL)

m_szFileName = pszFileName;

}

Phone Book: A Simple Windows Database 131

CFileStatus status;
int nAccess = CFile::modeWrite;

II GetStatus will return TRUE if file exists, or FALSE
II if it doesn't.
if (!CFile::GetStatus(m_szFileName, status))

nAccess 1= CFile::modeCreate;

CFile filet m_szFileName, nAccess);

II write the data base to a file
II mark it clean if write is successful
if (WriteDataBase(&file))
{

}

else
{

}

m_pDataList -> SetDirty(FALSE);
file.Close();
return TRUE;

file.Close();
return FALSE;

DoSave calls Wri teDatabase (given below) to serialize the current database to
a disk file. In the Windows program, DoSave is used to support the Save com­
mand in the File menu.

10. Add the ReadDataBase member function (you can copy it from the
DMTEST.CPP file in Chapter 2 if you like):

II CDataBase: :ReadDataBase
II Serializes in the database.
II
CPersonList* CDataBase::ReadDataBase(CFile* pFile)
{

ASSERT_VALlD(this);
CPersonList* pNewDataBase = NULL;

II Create an archive from pFile for reading.
CArchive archive(pFile, CArchive::load);

II Deserialize the new data base from the archive, or catch the
II exception.
TRY
{

archive » pNewDataBase;
}

CATCH(CArchiveException, e)

132 Class Libraries User's Guide

{

1Iifdef DEBUG

1Iendif
e -> Dump(afxDump);

archive.Close();

II If we got part of the database, then delete it.
if (pNewDataBase != NUll)
{

}

pNewDataBase -> DeleteAll();
delete pNewDataBase;

II We caught this exception, but we throw it again so our
II caller can also catch it.
TH ROW_ lAST () ;

END CATCH

II Exit here if no errors or exceptions.
archive.Close();
return pNewDataBase;

ReadDatabase serializes the current database to a disk file. In the Windows pro­
gram, ReadDatabase is used along with DoOpen to support the Open command
in the File menu.

11. Add the Wri teDataBase member function (you can copy it from the
DMTEST.CPP file in Chapter 2 if you like-but delete the second parameter,
oftype CPersonl i st):

II CDataBase: :WriteDataBase
II Serializes out the data into the given file.
II
BOOl CDataBase::WriteDataBase(CFile* pFile)
{

ASSERT_VAlID(this);
ASSERT(m_pDatalist != NUll);

II Create an archive from theFile for writing
CArchi ve a rchi ve (pFi 1 e, CArchi ve: : store);

II Archive out, or catch the exception.
TRY
{

archive « m_pDatalist;

CATCH(CArchiveException, e

Phone Book: A Simple Windows Database 133

{

Ififdef ~DEBUG
e ~> Dump(afxDump);

41end if

}

archive.Close();

II Throw this exception again for the benefit of our caller.
THROW~ LAST() ;

II Exit here if no errors or exceptions.
archive.Close();
return TRUE;

WriteDatabase deserializes a database from a disk file. In the Windows pro­
gram, WriteDatabase is used along with DoSave to support the Save and Save
As commands in the File menu.

If you copy Wri teDatabase from Chapter 2, be sure to delete the second para­
meter, pDataBase. Now that WriteDatabase has become a member function of
a CDataBase object, it has direct access to the CPersonList objectstoredin
the m~ pData List member variable. The parameter is no longer needed.

When you delete the second parameter, change the name pDataBase
throughout the member function to m~ pData List (it occurs once). Also add the
following two lines as the first two statements in the member function:

ASSERT~VALID(this);
ASSERT(m~pDataList != NULL);

12. Add the AssertValid member function:

Ififdef ~DEBUG
void CDataBase: :AssertValid() const
{

if(m~pDataList != NULL)
{

}

else

}

41endif

ASSERT~VALID(m~pDataList);
i f (m~ p Fin d Lis t ! = NUL L)

ASSERT~VALID(m~pFindList);

ASSERT(m~pFindList == NULL);

This AssertVal i d memberfunction overrides the AssertValid member func­
tion of class CObject, the base class of CDataBase. Note that the definition is
bracketed by #ifdef _DEBUG and #endif directives. The member function is
only compiled if the _DEBUG flag is defined for the build.

134 Class Libraries User's Guide

For more information about the purpose in overriding this member function,
see "The AssertValid Member Function" on page 137.

Files DATABASE.H and DAT ABASE.CPP are now complete. You can check
them against the files in Listings 1 and 2, given earlier.

To continue the tutorial, see "Add Dialog Boxes" on page 153 in the next chapter.
For explanations of the CDataBase code just added, see the discussion below,
"Discussion: Class CDataBase."

Discussion: Class CDataBase
A CDataBase object is used to encapsulate all access to the two CPersonL i st ob­
jects that store data for the application. The object provides a clear interface be­
tween your Windows code and the database. This section discusses the structure
and use of CDataBase.

This discussion does not instruct you to add any code to your files.

Purpose and Structure of CDataBase
CDataBase and the data model from Chapter 2 make a good model for Windows
programs written with C++ and the Microsoft Foundation Class Library.
CDataBase preserves the independence of the data model from the user interface,
but it also tailors access to the data model to the needs of a command-driven user
interface, such as the program's Windows user interface.

If CDataBase had not been invented; considerably more code would have to be
added directly to the main window class. The main window object would have to
store two CPersonL i st objects in its member variables (one for the database and
one to store persons found by searches), keep track of the filename for the current
database, maintain information about which of the two CPersonL i st objects to
display, keep track of unsaved changes to the database, manage file opening and
110, and more. Each of the main window object's message-handler functions
would be more complex.

With CDataBase, on the other hand, all of that database-related code is neatly en­
capsulated in a single database object. The main window object is much cleaner
and simpler than it otherwise would be. It constructs and stores only a single
CDataBase object and uses that object for all communication with the data model
objects. The interface of CDataBase-its list of public member functions-is
simple and tailored to the application's needs. Figure 4.2 shows the relationship of
CDataBase to the Windows user interface and to the CPersonL i st data model.

Phone Book: A Simple Windows Database 135

CPersonLists

DataBase 0
Getfrom ex:

MessageHandler 1 -----.. 1

Functions
Add to 0

Figure 4.2 Role of the CDataBase Object

CDataBase Member Functions

DataBase

Found list

Class CDataBase declares a constructor and a number of member functions. The
constructor creates and initializes a CDataBase object. As you can see from
its inline definition, the CDataBase constructor sets the m_pDataList and
m_ pFi ndL i st member variables of class CDataBase to NULL, signifying that the
database is empty, and sets the m_szFil eName and m_szFil eTitl e member varia­
bles to an empty string value.

Some of the CDataBase member functions are directly mapped to menu com­
mands in the Phone Book program. When the user chooses the New, Open, Save,
Close, or Exit commands in the File menu, or the Add, Delete, Find, or Edit com­
mands in the Person menu, the message-handler functions in the main window ob­
ject for those menu commands call corresponding CDataBase member functions
to do the bulk of the work. You'll see later how these functions are used.

The remaining member functions of CDataBase provide utility services, making
the database easier to use. Of these, some are database utitlities and some are file­
handling utilities.

Database Member Functions
Getperson

Returns a pointer to the CPerson object at a given index into the database

Phone Book calls this member when it needs information about a person in
the database. The member function is used in repainting the client window.

GetCount

Returns the size of the database

Phone Book calls this member when it needs to know how many people are
in the database.

IsDirty

Returns TRUE if the database has unsaved changes

Phone Book calls this member when it must know if the database needs to be
saved.

136 Class Libraries User's Guide

IsNamed
Returns TRUE if the database has been saved to a file (and thus been given the
file's name)

Phone Book calls this member to learn if the database has already been
saved or not.

GetName
Returns the current name of the database (and its file)

Phone Book calls this member to learn the name of the current database file
for use in saving the file. The member contains a full path.

IsPresent
Returns TRUE if a CPersonL i st is currently allocated for the database

Phone Book calls this function to learn if an existing database is open or not.

GetTitl e
Returns the title of the current database concatenated to the string
"Phone Book -".

Phone Book calls this function to build the window caption.

SetTitl e
Sets the value of the database title

In Phone Book, this string is set using the information returned by
CommDlg. CommDlg returns the filename and extension all in uppercase
letters with no path.

File-Handling Member Functions
The file-handling member functions are familiar. They were used in the Data
Model program in Chapter 2, where they were stand-alone functions called by
main. Here, they have become member functions of the CDataBase class. These
functions are as follows:

ReadDataBase
Deserializes CPerson data in a disk file into anew CPersonList object

WriteDataBase
Serializes the current database CPersonL i st to a disk file

Member Variables
A CDataBase object has several member variables. These store:

• The current database, if any, as a CPersonList object in m_pDataList.

If no database is currently loaded, the CDataBase m_pData List member varia­
ble is NULL, and the member function Is P res en t returns FALSE.

• The current found list, if any, as another C Per son Lis t object in the CD a taB as e
member m_pFi ndL i st.

Phone Book: A Simple Windows Database 137

This list stores pointers to any objects found by a call to the Fi ndPerson mem­
berfunction of CPersonL i st. If no found list currently is present, the variable is
NULL.

• The current filename (and database name) in the m_ s z F i 1 eN a me member varia­
ble of class CDataBase.

If no file is currently open, this variable contains an empty string. If a database
is open but has not yet been saved, the variable contains the string "Untitled".
Otherwise, it contains the filename with a full path.

• The current file title in the m_ szFi 1 eTitl e member variable of class
CDataBase.

This member variable is used to build a caption string for the window. If no file
is currently open, this variable contains an empty string. If a database is open
but has not yet been saved, the variable contains the string "Untitled". Other­
wise, it contains the filename in uppercase letters with no path. The filename is
obtained from the standard Windows open file dialog.

The Phone Book application displays whichever of the two CPersonL i st objects
is "current" according to this algorithm:

• If there is a found list (the m_pFindList of the CDataBase member is not
NULL), display it.

• Otherwise, ifthere is a database (m_pDataL i st is not NULL), display it.

• If neither list is present, no database is loaded, so display nothing.

Database display is managed by the main window object's DnPaint member func­
tion, which displays the current list. Because the mechanism for selecting the cur­
rent list is encapsulated in CDataBase, OnPa i nt doesn't have to contain code to
make the selection. Other inner workings of the database are handled similarly,
which makes the Windows user interface code much simpler than it would be if it
had to manage the details of the two lists.

The AssertValid Member Function
Programmers make many assumptions about the validity of their data. One of the
more time-consuming tasks a programmer must perform is testing those assump­
tions at appropriate points to ensure valid processing. The Microsoft Foundation
Class Library provides excellent support for this task.

Chapter 2 briefly outlined a mechanism for customizing validity testing of your
own objects. During program development, you can use the ASSERT and
ASSERT_VALID macros to test program assumptions. ASSERT simply evalu­
ates its argument and, if the result is zero, prints a diagnostic message and halts the
program. ASSERT_ VALID calls the AssertValid member function of the object

138 Class libraries User's Guide

passed as its argument. Both macros are enabled in debug mode and disabled in re­
lease mode. In release mode, they do nothing.

To illustrate, suppose you have an object that represents a linked list with pointers
to both the head and tail elements of the list. One reasonable assumption is that the
list object itself exists. Another reasonable assumption is that if the list is empty its
head and tail pointers should both be NULL.

Many of the member functions of class CDataBase invoke the ASSERT_VALID
macro to test the validity of the list objects underlying the database object.
ASSERT_ VALID simply calls the specified object's AssertVal id member func­
tion. Typically, the object you pass to ASSERT_VALID is the object pointed to
by this, but it could be any object.

A class derived from CObject, as CDataBase is, can simply inherit CObject's
version of AssertValid.

But a derived class can instead override AssertValid, as CDataBase does, to im­
plement special testing when the ASSERT_VALID macro is invoked. If so, the
overridden version is the one called through ASSERT_ VALID. Hence, the re­
sponse to the macro is customized.

CDataBase uses this mechanism to add validity tests for the objects stored in its
data members to the validity test of the CDataBase object itself. The overriding
AssertVal id of CDataBase invokes the ASSERT_VALID macro again for its
own m_pDataList and m_pFindList member variables, which hold CPersonList

objects.

The chain of validity testing might stop at this level, but in this case class
CObList, from which class CPersonL i st is derived, overrides AssertValid. This
override performs additional validity testing on the internal state of the list. If the
list is empty, its head pointer and its tail pointer must both be NULL. If not, an
assertion is performed, diagnostic messages are printed, and the program halts.
Similarly, if the list is not empty, both pointers must be non-NULL to avoid an
assertion.

Thus a validity test on a CDataBase object leads to validity tests on the two stored
C Per son Lis t objects and then to additional validity tests for the internal states of
those list objects.

This is quite a powerful mechanism when you build for debugging, and when you
subsequently build for release, the mechanism is turned off automatically. The
overriding AssertVal i d member function is not compiled in release mode, and
the ASSERT _ V ALID macro invocations do nothing. You can put all of this to
very good use, as demonstrated by CPersonList and CDataBase.

Phone Book: A Simple Windows Database 139

How CDataBase Is Used
The program's one CDataBase object stores two CPersonL i st objects, as men­
tioned earlier. It also stores the name of the current file. The program can create
new databases and store them in a file, or it can open existing database files to per­
mit operations on the data.

The program can have one of three states:

• No database is currently loaded.

This is because the user has not yet created a new database with the New com­
mand in the File menu, has not opened an existing database with the Open com­
mand in the File menu, or has closed a previously open database. There is no
database to manipulate. The user can create or open a database or exit the pro­
gram.

In this case, the database object's m_pDataList and m_pFindList membervari­
abIes are NULL. The m_szFi 1 eName member variable contains an empty string.

• A database exists, but it hasn't been saved to a file.

The user has chosen the New command in the File menu, which creates a new,
empty database. Because the database is unsaved, the string "Untitled" appears
in the title bar of the window. The user can add persons to the database, delete
persons from it, edit the data for persons already in it, search the database for a
particular last name, get information about the program, including help, save
the current database to a file, open or create a new database (and be prompted
to save the existing one first), or simply exit the program.

In this case, the CD a taB as e member variable m_ p D a taL i s t contains a
CPersonL i st object. Ifthe data has been searched, and the search results not
yet deleted, m_ pFi nd List contains a second CPerson List object. The
m_ szFi 1 eName member contains the string "Untitled".

• A database exists, and it has been saved to a file.

The window caption has been set to the filename. If the user has added, deleted,
or edited since the last save, the database is flagged as having unsaved changes.
The user can manipulate the database further, close it, open a new database
(and be prompted to save the old one if there are unsaved changes), or exit the
program.

In this case, the CDataBase object's m_ pData List member variable is not
NULL. The database object's m_pFi ndL i st member is NULL if no search
is in progress but contains a CPerson List object if the user has chosen the
Find command in the Person menu. The database object's m_szFi 1 eName

member contains the name of the file the data was saved to.

140 Class Libraries User's Guide

4.4 Applications for Class CDataBase
Keep the following image in mind: a CDataBase object is a capsule around the
complexities of managing two CPersonL i st objects and the files associated with
their contents.

Because of this encapsulated design, you can use the class in any programming en­
vironment. The next two chapters will build a Microsoft Windows user interface
around class CDataBase. But you could just as easily use the class in a character­
based DOS application.

In fact, that's just what the CMDBOOK example program does. Because
CMDBOOK so closely parallels the Phone Book program presented in the remain­
ing chapters of the tutorial, CMDBOOK will not be explored in detail here. But a
quick overview is in order.

CMDBOOK presents a command-line user interface. The user types in a com­
mand, such as "new" or "add", and a command-line interpreter calls the appro­
priate function to handle that command. The command functions, in turn, call
upon the services of a CDataBase object which is absolutely identical to the ones
used in Phone Book.

You can study this different use of CDataBase in the code provided on the distribu­
tion disk. See file CMDBOOK.CPP in the MFC\SAMPLES\TUTORIAL directory.

4.5 What's Next
This chapter got you started. It showed you how to create the beginnings of the
Phone Book program using the Hello program from Chapter 3 as a template. And
it showed you how to use a C++ object to simplify the interface between Phone
Book's Windows code and the data model code from Chapter 2.

With the data model firmly encapsulated, you can continue the tutorial in the next
chapter by developing the first parts of the user interface: the dialog boxes by
which the program interacts with the user.

4.6 File Listings
The code shown in Listings 1 and 2 is available on your distribution disks in Files
DATABASE.H andDATABASE.CPP.

Phone Book: A Simple Windows Database 141

Listing 1

II database.h : Declares the interfaces for the CDataBase class.
/!
II This is a part of the Microsoft Foundation Classes C++ library.
II Copyright (C) 1991 Microsoft Corporation
I! A 11 ri ghts reserved.
I!
II This source code is only intended as a supplement to the
II Microsoft Foundation Classes Reference and Microsoft
II QuickHelp documentation provided with the library.
II See these sources for detailed information regarding the
/1 Micr6soft Foundation Classes product.

DAT ABASL H_~
DATABASLH

··person .. h·"

I I! II!J I / !JiUI II I lUI! I I I/!I / I! I // /ltVI lUI/ I I I I III I I I I I I II/ 1/ III/ I I III f 1/ I I I

142 Class libraries User's Guide

vate:
C Person'tis't* ReadDataBaseF't: Fi Je* ".pPi Ie
BOOL WriteDataBase(

4fifdef _ DEBUG
public:

void AssertValiij() canst;
Ifendif
}.;

Phone Book: A Simple Windows Database 143

/ / till / l/III / / II / I / Ill! I! I It I I! I till / II / III/lIllY I //ll! I

144 Class libraries User's Guide

Phone Book: A Simple Windows Database 145

/////////1//////////////1///////////1/////////////
// COataBase::GetPerson
// Look up someone by index.
//
CPerson* COataBase: :GetPerson(UlNT nlndex)
{

}

ASSERT_VALlO(this);
ASSERT(m_pOataList != NULL);

if (m_pFindList != NULL)

else

return (CPerson*)m_pFindList -) GetAt(m_pFindList -)
Findlndex(nlndex));

return (CPerson*)m_pDataList -) GetAt(m_pDataList -)
Findlndex(nlndex));

/////////11//1//1///////////////////////////11////
// CDatabase::OeletePerson
// Removes record of person from database.
/!
void COataBase::OeletePerson(UlNT nlndex)
{

ASSERT_VALlO(this l;
ASSERT(m_pOataList != NULL);

if (m_pFindList != NULL)
m_pFindList -) RemoveAt(m_pFindList -) Findlndex(nlndex);

else
m_pDataList -) RemoveAt(m_pDataList -) Findlndex(nlndex l;

m_pOataList -) SetOirty(TRUE);
}

I///IIIII/ii//!/////!//IIIIIIII/II///III//////////
II COatabase::ReplacePerson
/1 Replaces an object in the list with a new object.
/!
void COataBase::ReplacePersonC CPerson* pOldPerson, const CPerson& rNewPerson)
{

}

ASSERT_ VALlO(thi s);
ASSERT(pOldPerson 1= NULL l;
ASSERT(m_pDataList != NULL);

IIUsing the overloaded operator= for CPerson
*pOldPerson = rNewPerson;
m_pOataList -) SetOirty(TRUE);

146 Class libraries User's Guide

II get rid of current data base if new one is OK
if (pNewDataBase != NULL)
{

else

Terminate();
m_pDataList pNewDataBase;
m_pDataList -> SetDirty(FALSE);

m_szFileName pszFileName;
return TRUE;

Phone Book: A Simple Windows Database 147

148 Class Libraries User's Guide

II Archive out, or catch the exception.
TRY
{

}
archive « m_pDataList;

CATCH(CArchiveException, e)
{

#ifdef _DEBUG
e -> Dump(afxDump);

#endif
archive.Close();

Phone Book: A Simple Windows Database 149

/1 Throw this exception again for the benefit of our caller.
THROW_ LAST() ;

II Exit here if no errors or exceptions.
archive.Close();
return TRUE;

}

iti fdef _ DEBUG
void CDataBase::AssertValid() const
{

if (m_pDataList 1= NULL)
{

}
else

}

tpendi f

ASSERT_VALlDC m_pDataList);
if C m_pFindList != NULL)

ASSERLVALID(m_pFindList);

ASSERT(m_pFindList NULL);

Phone Book: Dialog Boxes

The previous chapter described the Phone Book program and got you started on it.
This chapter continues development of Phone Book by adding the dialog boxes
needed to interact with the user. The next chapter will complete the program.

5.1 In This Chapter
In addition to its simple About dialog box, which is handled the same way as in
Hello, the Phone Book program requires five kinds of dialog boxes to get informa­
tion from the user. Three of these are standard Windows dialog boxes and are not
created with Microsoft Foundation Classes. These are discussed later, under
"Standard Windows Dialog Boxes" on page 167. The other two, the Find and the
Edit dialog boxes discussed below, are derived from one of the Microsoft Founda­
tion dialog classes.

Because the Find and Edit dialog boxes contain additional controls, you can't
simply construct a CModalDialog object, as in the About dialog box. Instead, you
must derive a new dialog class from CModalDialog and provide it with code to
process the controls. You'll derive two such classes, one for each of the two new
kinds of dialog boxes needed for this program.

In this chapter, you'll begin creating two files, VIEW.H and VIEW.CPP. After
you complete this chapter and the next, these files will contain the application
class and the main window class, including its message map.

The complete code for files VIEW.H and VIEW.CPP is given in Listing 1 and
Listing 2 at the end of the chapter.

152 Class Libraries User's Guide

5.2 Work from a Template
This section explains the second step in developing Phone Book from Hello:
borrow most of Hello's code for Phone Book, thus using Hello as a template to
get you started.

~ To copy and modify the Hello files:

l. Make a new directory in your\MFC\SAMPLES\TUTORIAL directory.

You'll use this directory to put together your own files for the tutorial. You
might call the directory CHAPTER5, for instance.

2. Copy HELLO.H with the name VIEW.H in your new directory and change the
"Hello" filename in the header comment of VIEW.H to "View."

3. Add or modify the header comments in VIEW.H, replacing references to
"Hello" with "View."

4. Change all other references to "Hello" in VIEW.H to "View."

5. Add the following lines to VIEW.H:

#ifndef __ VIEW_H __
#define __ VIEW_H __

6. Copy HELLO.CPP to VIEW.CPP. In VIEW.CPP, do the following:

a. Replace the #include directives copied from Hello with the following:

#include <afxwin>
#include "resource.h"
#include "database.h"
#include "view.h"

extern "C"

#include <commdlg.h>
}

#define SIZESTRING 256
#define SIZENAME 30
#define SIZEPHONE 26
#define PAGESIZE 8

II A simple way to reduce size of C run times
II Disables the use of getenv and argv/argc
extern "C" void _setargv() {}
extern "C" void _setenvp() {}

Phone Book: Dialog Boxes 153

These declarations specify include files, define preprocessor constants, and
invoke a simple technique to reduce the size of the run-time libraries that are
incorporated into the program. The extern "C" directives specify that C
code is to be used in a C++ program. The #include statement for file
COMMDLG.H causes inclusion of code for the common open, save, and
print dialog boxes, which are available in COMMDLG.DLL for Windows,
versions 3.0 and 3.l.

b. Delete the contents of the CMa i nWi ndow constructor (but leave the function
itself). You'll replace the constructor code later.

c. Remove the present contents of the 0 n P a i n t member function of class
CMa i nWi ndow (but leave the function itself). You'll replace the contents later.
Also edit the header comment for OnPai nt to remove references to Hello.

d. Replace all references to Hello in VIEW.CPP with "View."

When you complete the steps above, your files will be ready to receive additional
code for the Phone Book program. Notice that nearly all of the code copied from
Hello to the VIEW files is still perfectly usable, and it gives you a framework into
which you can add your Phone Book code.

To continue the tutorial, see the next section.

5.3 Add Dialog Boxes
This section explains the third step in writing Phone Book: arrange for interaction
with the user via dialog boxes. This process requires several steps:

1. Write the dialog classes.

2. Write dialog class member functions.

3. Create a resource script file.

4. Add dialog templates to the resource script file.

~ To write the dialog classes:

1. Add the following declaration for class C Fi ndDi a log to your VIEW.H file (if
you want your file to match Listing 2 in this chapter, put CFi ndDi a log between
the existing declarations for classes CTheApp and CMa i nWi ndow):

II CFindDialog
II This dialog is a one line entry field for getting a search
II string to use as a find filter for the database
II
class CFindDialog public CModalDialog
{

private:
CString m_szFindName;

154 Class Libraries User's Guide

public:

} ;

CFindDialog(CWnd* pParentWnd = NUll)
CModalDialog("Find", pParentWnd
{ }

virtual void OnOK();

CString& GetFindString() { return m_szFindName; }

2. Add the following declaration for class CEdi tDi a log to your VIEW.H file
(after class CFi ndDi a log):

II CEditDialog
II Used to add or edit a Person object.
II
class CEditDialog : public CModalDialog
{

private:
CPerson* m_pData;

public:

} ;

CEditDialog(CPerson* person, CWnd* pParentWnd NUll)
CModalDialog("EditPerson", pParentWnd)

{ m_pData = person; }

virtual BOOlOnlnitDialog();
virtual void OnOK();

CPerson* GetData()
{ return m_pData; }

The first kind of dialog box is used to ask the user for the name of a person to
search for in the database. This dialog box has an OK button, a Cancel button,
and an editable text field for entering a single string. You saw the declaration
forclass CFindDialog above.

The second kind of dialog box is used to display data about a person to the user
and to allow the user to edit a person's data. This dialog has an OK button, a
Cancel button, three editable text fields, one static text item to display the data's
modification date and time, and four static text fields used to label the editable
fields. You saw the declaration for class CEditDi al 09 above.

You'll add other declarations to VIEW.H later.

~ To write dialog class member functions:

1. Add the following member function definition for class C Fi ndDi a log to your
VIEW.CPP file.

Phone Book: Dialog Boxes 155

II CFindDialog::OnOK
II When the user presses OK get the data entered and store it in this
II object. Then end the dialog.
II
void CFindDialog: :OnOK()
[

GetDlgItemText(IDC_DATA,
m_szFindName.GetBuffer(SlZESTRlNG), SlZESTRlNG);

m_szFindName.ReleaseBuffer();
EndDialog(lDOK);

2. Add the following member function definitions for class CEdi tDi a log to your
VIEW.CPP file:

II CEditDialog: :OnInitDialog
II Fill in the fields with the data placed in this object
II when it was created.
II
BOOl CEditDialog: :OnlnitDialog()
{

SetDlgItemText(lDClASTNAME, m_pData -> GetLastName());
SetDlgItemText(IDC_FIRSTNAME, m_pData -> GetFirstName());
SetDlgItemText(IDC_PHONE, m_pData -> GetPhoneNumber());
SetDlgltemText(IDC_MOD, m_pData -> GetModTime().Format("%m/%d/%y

%H:%M"));
SendDlgItemMessage(IDC_lASTNAME, EM_SETSEl);

return TRUE;

II CEditDialog::OnOK
II When OK is pressed set the data to what the user has entered.
II
void CEditDialog::OnOK()
{

}

char szTmp[SIZESTRING];

GetDlgItemText(IDC_lASTNAME, szTmp, sizeof (szTmp));
m_pData -> SetlastName(szTmp);

GetDlgItemText(lDC_FlRSTNAME, szTmp, sizeof (szTmp));
m_pData -> SetFirstName(szTmp);

GetDlgItemText(IDC_PHONE, szTmp, sizeof (szTmp));
m_pData -> SetPhoneNumber(szTmp);

EndDialog(lDOK);

You'll add other items to VIEW.CPP later.

156 Class libraries User's Guide

~ To create a resource script file:

1. Create a file called PHBOOKRC and add the following lines (if you choose to
copy the HELLO.RC and HELLO.DLG files, you can modify the HELLO.RC
file to reflect these contents):

#include <windows.h>
#include <afxres.h>
#include "resource.h"

These lines specify the files to include for building the program.

Listing 2 on pages 245-6 in Chapter 6 defines the resources for Phone Book.
You can use the resource files supplied on the distribution disks
(PHBOOKRC, PHBOOK.lCO, and PHBOOKDLG) or you can use tools to
prepare your own resource script file, icon resource file, and dialog resource
file. Icon and dialog editing tools are available as part of the Windows Software
Development Kit (SDK) or from other sources.

If you choose to write your own .RC file, you will add an icon resource, a menu
resource template, an accelerator resource template, and six dialog resources to
your PHBOOKRC file.

As you add resources to PHBOOKRC, you can also add resource ID declara­
tions to a RESOURCE.H file. You can copy this file from the Hello directory
and modify it or create your own file from scratch. To see the full contents of
this file when it is complete, see Listing 2 in Chapter 6.

Note The ID numbers used in Listing 2 and throughout Phone Book begin at
101. This is arbitrary, but if you use different numbers you'll need to change
them in the code you add as well.

2. Add the following icon resource entry to PHBOOKRC after the #include lines:

AFX_IDLSTD_FRAME ICON phbook.ico

This line specifies the name of a file containing the program's icon resource.

3. Copy the menu resource template from Listing 2 on page 245 in Chapter 6 into
your PHBOOKRC file.

The template you copy is named "MainMenu." It specifies Phone Book's
menus.

4. Copy the accelerator resource template from Listing 2 on page 246 in Chapter 6
into your PHBOOKRC file.

The accelerator template you copy is named "MainAcceITable." It specifies the
shortcut keys the user can press in Phone Book.

Phone Book: Dialog Boxes 157

~ To add dialog templates to PHBOOK.RC:

• You can use a dialog editor to create a .DLG file and then refer to that file from
your resource script file with a line like this:

rcinc1ude phbook.d1g

The dialogs must have the following dialog template names:

"AboutBox"
Name of the dialog template for an About dialog box

"Find"
Name of the dialog template for a Search dialog box

"EditPerson"
Name ofthe dialog template for a dialog box in which you edit the informa­
tion for a person

"NoData"
Name of the dialog template for a Help dialog box, first of three

"NoName"
Name of the dialog template for a Help dialog box, second of three

"Enter"
Name of the dialog template for a Help dialog box, third of three

• Alternatively, you can type resource template specifications into PHBOOK.RC
as follows.

The About Box dialog template specifies a dialog window caption, text that ap­
pears in the dialog, and an OK push button.

ABOUTBOX DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME I WS_CAPTION I WS_SYSMENU
CAPTION "About Phone Book"
BEGIN

CTEXT "Mi crosoft Foundation C1 asses", -1, 0, 2, 144, 8
CTEXT "Phone Book Database", -1, 0, 12, 144,8
CTEXT "Version 1.0", -1,0,22,144,8
DEFPUSHBUTTON "OK", IDOK, 56, 56, 32, 14, WS_GROUP
ICON AFX_IDLSTDJRAME, -1, 10, 30, 16, 16

END

158 Class Libraries User's Guide

Figure 5.1 shows the About dialog box.

Microsoft Foundation Classes

Phone Book Database

Version 1.0 •
Figure 5.1 Phone Book's About Dialog Box

The Find dialog template specifies a window caption, an editable text field for
entering a string, and two push buttons labeled "OK" and "Cancel".

FIND DIALOG 22, 17, 90, 50
STYLE DS_MODALFRAME I WS_CAPTION
CAPTION "Enter the 1 ast name"
BEGIN

END

EDITTEXT
DEFPUSHBUTTON
PUSHBUTTON

IDCDATA, 5, 10, 80, 12, ES_AUTOHSCROLL
"OK", lOOK, 5, 32, 32, 14, WS_GROUP
"CANCEL", IDCANCEL, 42, 32, 32, 14, WS_GROUP

Figure 5.2 shows the Find dialog box.

ISmith

Figure 5.2 Phone Book's Find Dialog Box

The EditPerson dialog template specifies a window caption, three editable text
fields for entering or correcting person data, two push buttons, and five static
text strings to label the editable fields and to display the last modification date
and time for the person being edited.

EDITPERSON DIALOG 40, 20, 190, 100
STYLE WS_POPUP I WS_DLGFRAME
BEGIN

EDITTEXT
EDITTEXT
EDITTEXT

IDCLASTNAME, 55, 10, 100, 12
IDC_FIRSTNAME, 55, 25, 100, 12
lOCPHONE, 70, 40, 70, 12

END

DEFPUSHBUTTON
PUSHBUTTON
L TEXT

L TEXT

LTEXT

LTEXT

Phone Book: Dialog Boxes 159

"OK", roOK, 50,80,40,14
"Cancel", IDCANCEL, 120, 80, 40,12
"Last Name:", IDCSTATICLASTNAME, 5, 11,41,12,
NOT "First Name:", IDCSTATICFIRSTNAME, 5, 26,
41, 12, NOT WS~GROUP
"Phone Number:", IDC~STATICPHONE, 5, 41, 52, 14,
NOT WS~GROUP
"Last Modified:", IDC~STATICMOD, 10, 60, 50, 14,
NOT WS~ GROU P
"", IDCMOD, 64, 60, 110, 10, NOT WS GROUP

Figure 5.3 shows the Edit dialog box.

Last Name: II!lI!Im
~=====~ First Name: I Carolyn "--------;:======;------'

Phone Number: LI9_89_-0_9_0_0 __ -----'

Last Modified: 10/15/91 16:37

Figure 5.3 Phone Book's Edit Dialog box

The "NoData" dialog template specifies a window caption, one push button,
and four lines of static Help text. This dialog template is used when the user has
not yet created a database and requests help.

NODATA DIALOG 22, 17, 180, 60
STYLE DS~MODALFRAME I WS~CAPTION I WS~SYSMENU
CAPTI ON "Phone Book Help"
BEGIN

END

LTEXT

LTEXT

LTEXT

"You have not yet created a database. In order",
~1, 10,5, 180, 8
"to start using the Phone Book you must first",
~1, 10,14, 180, 8
"either Open an existing database or create",
~ 1, 10, 23,180, 8

LTEXT "a New one.", ~1, 10,32,180,8
DEFPUSHBUTTON "OK", roOK, 74, 41, 32, 14, WS~GROUP

160 Class Libraries User's Guide

Figure 5.4 shows the "No Database" Help dialog box.

You have not yet created a database. In order
to start using the Phone Book you must first
either Open an existing database or create
II New one.

Figure 5.4 Phone Book's "No Database" Help Dialog Box

The NoName dialog template specifies a window caption, two push buttons,
and four lines of static Help text. This template is used when the user has an
open database and needs instructions for entering data and saving the database.

NONAME DIALOG 22, 17, 200, 65
STYLE DS_MODALFRAME I WS_CAPTION WS_SYSMENU
CAPTION "Phone Book Help"
BEGIN

END

LTEXT "You are in data entry mode on an untitled
database.", -1, 10, 5, 180, 8

LTEXT "Use SaveAs to name the database and save it to
the ", -1,10, 14, 180,8

LTEXT

LTEXT

DEFPUSHBUTTON
PUSHBUTTON

"di sk. You can al so perform data entry
commands.", -1,10, 23, 180,8
"Select continue for help on the data entry
mode.", -1,10, 32, 180, 8
"Continue", IDOK, 44, 43, 32, 14, WS_GROUP
"Cancel", IDCANCEL, 120,43,32,14, WS_GROUP

Figure 5.5 shows the "No Name" Help dialog box.

You are in data entry mode on an untitled database.
Use SaveAs to name the database and save it to the
disk. You can also perform data entry commands.
Select continue for help on the data entry mode. -

Figure 5.5 Phone Book's "No Name" Help Dialog Box

Phone Book: Dialog Boxes 161

The Enter dialog template specifies a window caption, one push button, and six
lines of static Help text. This template is used when the user needs more
information about working with a database. It can be reached by way of the
Continue button in the second help dialog.

ENTER DIALOG 22, 17, 200, 75
STYLE DS_MODALFRAME I WS_CAPTION I WS_SYSMENU
CAPTION "Phone Book Help"
BEGIN

END

LTEXT "Use Person Add to add new people to the list.
Select", -I, 10, 5, 180, 8

LTEXT "a person with the mouse or arrow keys. With a
person", -I, 10, 14, 180, 8

LTEXT "selected you can Delete [menu or Delete key] or
edit", -I, 10, 23, 180, 8

LTEXT "[menu or Enter key]. The Find option will allow
you", -I, 10, 32, 180, 8

LTEXT "to select a sublist. To display the original
list", -1,10, 41, 180, 8

LTEXT "select Find All.", -I, 10, 50, 180,8
DEFPUSHBUTTON "OK", lOOK, 84, 59, 32, 14, WS_GROUP

Figure 5.6 shows the "Enter Data" dialog box.

Use Person Add to add new people to the list. Select
a person with the mouse or arrow keys. With a person
selected you can Delete [menu or Delete keYI or edit
[menu or Enter key). The Find option will allow you
to select a sublist. To display the original list
select Find All. -

Figure 5.6 Phone Book's "Enter Data" Help Dialog Box

The coding you added is for six dialog resource templates. The resource com­
piler creates dialog resources from these templates. The first template is for the
About dialog box; it's identical to the template in HELLO.RC. The next two
templates are for the Find and Edit dialog boxes. The last three templates are
for the Help dialogs.

The resource script file is discussed again in "Prepare Supporting Files" on page
242 in Chapter 6. To continue the tutorial, see "Determine What Messages Will be
Handled" on page 197 in Chapter 6. For more information about the code you
added previously, see "Discussion: Dialog Boxes" on the next page.

162 Class Libraries User's Guide

Discussion: Dialog Boxes
Windows dialog boxes are used to interact with the user. They convey messages to
the user and take user input through various kinds of controls. The Microsoft
Foundation Class Library provides two dialog classes that you can use directly or
derive your own dialog classes from. This section discusses the dialog classes used
in the Phone Book program.

This discussion does not instruct you to add any code to your files.

Phone Book: Dialog Boxes 163

The Dialog Classes
The Phone Book program uses two kinds of dialog boxes: standard Windows dial­
ogs and custom-built dialogs based on the Foundation dialog classes.

Some of the dialog boxes used in the Phone Book program are standard Microsoft
Windows dialogs. These are displayed and operated by calling a function from
COMMDLG.DLL. The Open command in the File menu uses the
GetOpenFileName function. The Save and Save As commands in the File menu
use the GetSaveFileName function. The Print command in the File menu uses the
PrintDlg function. The use of these functions is explained in "Standard Windows
Dialog Boxes" on page 167.

Other dialog boxes used in the Phone Book program are based on class
CModalDialog. You saw the About dialog in Hello, which constructs a dialog ob­
ject directly from CModalDialog. That same dialog code is used for the About
dialog box in the Phone Book program. The three Help dialogs in Phone Book
also use CModalDialog objects. See the discussion of the On He 1 p member func­
tion under "Add Message-Handlers for Help Menu Commands" on page 222 in
Chapter 6.

Several other dialog boxes in the Phone Book program are constructed from
classes derived from CModalDialog. This is because CModalDialog doesn't pro­
vide member functions to work with any controls you might define in your dialog
box, except for the OK and Cancel buttons. Class CFi ndOi al og defines a class of
dialog box objects designed to get a single string of data from the user. Class
CEdi tOi al og defines a class of dialog box objects designed to get three pieces of
data from the user. These classes add member functions to retrieve any data the
user enters in the dialog boxes.

Class CFindDialog CFi ndOi al og is derived from CModalDialog to add a con­
structor, a member variable, and two member functions. Figure 5.2 shows what
the CFi ndOi a log dialog box typically looks like on the screen.

The member variable of a CFi ndOi a log dialog object, m_ szFi ndName, stores the
data entered in the text box. The CFi ndOi a log object's constructor simply invokes
the constructor for its base class, CModalDialog. The constructor looks like this:

CFindOialog(CWnd* pParentWnd = NULL) :
CModalOialog("Find", pParentWnd)

{ };

CFi ndOi a log inherits the DoModal member function from class CModalDialog.
DoModal processes user interactions with the dialog until the user selects either
OK or Cancel, then returns the result, either IDOK or IDCANCEL. You can use
the function result to determine which button the user clicked.

164 Class Libraries User's Guide

If the user clicked the OK button, the CFi ndDi al og dialog object's OnOK message­
handler function is called. In the Phone Book program, the CFi ndDi a log object's
OnOK function overrides OnOK from class CModalDialog.

The CModalDialog version of OnOK simply ends the dialog box. The overrid­
ing C Fin d D i a log extracts the information the user entered in the dialog box and
stores it in the dialog object's m_szFi ndName member variable. It does so by
calling the CString member function GetBuffer to allocate a text buffer and then
calling the CDialog member function GetDlgItemText to retrieve the text entered
by the user. After retrieving the text, OnOK calls the dialog object's EndDialog
member function, inherited from CDialog, to terminate the modal dialog.

If the user clicked the Cancel button, the CFindDi al og dialog object's OnCancel
message-handler function is called. In the Phone Book program, CModalDialog's
version of OnCancel provides default behavior that suits Phone Book's needs.
OnCancel calls the dialog object's EndDialog member function, passing an argu­
ment of FALSE. This causes the dialog object's DoModal member to return
FALSE.

After the user dismisses your dialog and the DoModal member function
completes, you can use your own member functions to retrieve the values
from the controls in the dialog box. For the CFi ndDi a log object, you call the
GetFi ndStri ng member function to retrieve the string that the user entered in the
dialog box. GetFi ndStri ng returns the string as a CString object.

You build the controls in a dialog box by supplying a resource template in your re­
source script file. But you must also supply functions in your derived dialog class,
such as GetFi ndStri ng, to read the results of those controls. For more about the
dialog resource template, see "The Dialog Resources" on page 166.

Class CEditDialog Like CFi ndDi a log, CEditDi a log is derived from
CModalDialog. The derived class adds member functions to handle dialog
controls. These are built into the dialog box via a resource template. Figure 5.3
shows what the CEdi tDi a log dialog box looks like on the screen.

CEditDialog has one member variable, m_pData, to store a pointer to a CPerson
object. When you construct a CEditDi al og object, you pass a pointer to a
C Per son as one of the arguments to the constructor, which installs the C Per son
in the dialog object's m_ pData member. If the CPerson object passed in has data
in its member variables, these are extracted by the CEditDi al og object's

Phone Book: Dialog Boxes 165

On I n i tOi a 109 member function and displayed in the four text fields of the dialog
box. If the CPerson object is empty, nothing is displayed. You pass a filled
CPerson object when the dialog box is to be used for editing and an empty
CPerson object when the dialog box is to be used for data entry.

When the dialog is dismissed, the user has either edited the data and clicked OK or
has clicked Cancel. If OK, you can call the CEditOi a 109 dialog object's GetOata
member to retrieve the person object and store it in your database.

~E!,ith" e::jj'e:', "~nthePh'()neB00k progr~,N
: , ~,~,

166 Class Libraries User's Guide

The Dialog Resources
When you construct a dialog object, you pass the name of a dialog resource tem­
plate as an argument. Recall that when you construct an object of a derived class
in C++, you append to your constructor call a call to the constructor for your base
class. For example, in class CEdi tDi al og, the constructor looks like this:

CEditDialog(CPerson* person, CWnd* pParentWnd = NULL) :
CModalDialog("EditPerson", pParentWnd)

{ m_pData = person; }

In the second line of this code, "EditPerson" is the dialog template name. Win­
dows uses this name as its connection with the dialog template in the resource file,
which it uses to display the dialog on the screen and to operate the dialog from the
dialog object's DoModal member function.

The dialog resource template tells Windows what controls to put in the dialog box,
where to put them, what to label them, what styles they have, and what their ID
numbers are. This is where, for example, the OK button is defined as a "default
push button" placed at coordinates 5,32 in the dialog window with a height of 32
and a width of 14 units, with the WS_GROUP style and the ID number IDOK.
Some ID numbers, such as IDOK, are declared in WINDOWS.H, while
others, such as the ID for the editable text field for a person's last name,
IDC_LASTNAME, are declared in your own RESOURCE.H file.

For more information about writing and using dialog resource templates, see the
Windows SDK documentation.

Message Maps for Dialog Classes
If you look at the hierarchy diagram for the Microsoft Foundation Class Library
provided with the Class Libraries Reference, you see that CModalDialog and its
base class, CDialog, are derived from class CWnd. Thus dialog classes are
specialized window classes, and they inherit the member variables and functions
of class CWnd.

Because dialog classes, including the ones you derive, are window classes, they re­
quire message maps to connect Windows messages with the message-handler func­
tions designed to process them. Classes CDialog and CModalDialog, like all
window classes, have their own message maps.

If you provide special message-handler member functions in your derived dialog
classes, you must also provide message maps with entries for these handlers.

However, classes CFi ndDi a log and CEdi tDi al og do not require you to write
message maps. This is because you add no message-handler functions to the
classes. Each of these classes does override some message-handler functions de­
clared in CModalDialog- DnDK in both classes and Dn I n i tDi a log as well in

Phone Book: Dialog Boxes 167

CEditDi a log. These are overridden because you need to provide some special
processing for these messages. The classes don't override CModalDialog's
OnCancel member function because the default behavior is sufficient.

Because the classes add no new handlers, they need no new message map entries.
Therefore, the message map supplied with CModaiDialog does the job for them.
To save data space in your program, don't supply the message map if you don't
have any message handlers.

Standard Windows Dialog Boxes
Phone Book also uses some of the standard Windows dialog boxes. These are the
familiar Windows dialog boxes for getting a filename to open or save to and the
standard print dialog:

• Standard Open dialog box

This dialog box lets the user switch directories and select files to open.

In Phone Book, the On Open member function of the main window class in­
vokes this dialog box. See the discussion of On Open under "Discussion: File
Menu Message-Handlers" on page 213 in Chapter 6.

• Standard Save dialog box

This dialog box lets the user switch directories and save a file.

In Phone Book, the OnSave and OnSaveAs member functions of the main win­
dow class invoke this dialog box. See the discussion of On Save and OnSaveAs
under "Discussion: File Menu Message-Handlers" on page 213 in Chapter 6.

• Standard Print dialog box

This dialog lets the user select printing options and print a file.

In Phone Book, the OnPrint member function of the main window class in­
vokes this dialog box. See the discussion of On P r i nt under "Discussion: File
Menu Message-Handlers" on page 213 in Chapter 6.

Note You must include the file COMMDLG.H with an #include directive in your
VIEW.CPP file. Because you're including a standard C file in a C++ program,
place the #include directive in an "extern C" block. The file COMMDLG.DLL
must also be in your PATH when you run the program. COMDLG.DLL is a
Windows dynamic link library supplied with the Windows 3.1 SDK and with your
Microsoft C/C++, Version 7.0 package. The declaration looks like this:

extern "c"
{

}
#include <commdlg.h>

168 Class libraries User's Guide

5.4 What's Next
This chapter instructed you to add the dialog boxes that Phone Book uses to com­
municate with the user. The next chapter instructs you to add the main window
class, the message map, and the message-handler member functions that process
Windows messages.

5.5 File Listings
The code shown in listing 1 and 2 is available on the distribution disks in files
VIEW.H and VIEW.CPP.

class CFindDialog : public CModalDialog
{

private:
CString m_szFindName;

Phone Book: Dialog Boxes 169

170 Class Libraries User's Guide

/1 These routines are all menu items. User action causes
II these to be called.

void OnNew();
void OnOpen();
void OnSave(};
void OnSaveAs();
void OnDBClose();
void OnPrint();
void OnExit();
void OnAdd();
void OnDelete();

OnFind{);
On F i ndAll () ;
OnEdit() ;
OnHelp();
OnAbout();
OnUp();
OnDown();

Phone Book: Dialog Boxes 171

172 Class Libraries User's Guide

Phone Book: Dialog Boxes 173

1111111/ 111111.//1.11/(1 I.IIl! rill (I /I /I lllIHIIl/11
C~cjttnial Og;).Qn1n itO; p log
Fill in. the fjeldswith the Qata placed .in this object

/I when it was created ;
/I
BOOl CEditDialog: :OnInitOialog()
{

SetDLgUenrrextC I DC_LASTNAME, m_.pData-> GetLastNameC));
S.etDlgIternTextC IDCJIRSTNAME, m_pData -> GetFirstNameC));
SetDlgItemText(IDCPHONE, m_pData -> GetPhoneNumber(»;
SetOlgltemText(IDo.,-MOD,m_pData->. GetModTimeO. Format("%m/%d/%y %H:%M"));
SenqDl gItemMeSSageCIDClASTNAME, EM_SETSEl);

174 Class Libraries User's Guide

Phone Book: Dialog Boxes 175

176 Class libraries User's Guide

/1/1/111111/1/11111111111111/11/111/1//11111111111
1/ CMainWindow::OnDBClose

Phone Book: Dialog Boxes 177

/I Closes the current database, Checking to see if it should be
II saved first. Reset the window title and the scroll regions.
II Invalidating the entire screen causes OnPaint to repaint but
II this time without any data.
II
void CMalnWindow::OnDBClose()
{

if(lCheckForSave("File Close", "Save file before closing?"))
return;

m~people.Terminate();

SetWindowText("Phone Book");
SetMenu():
OnSize(0, m~cxClient. m~cyClient):

1111111/1/11//11111111111/111/11111/11/1/11/111111
1/ CMatnWindow::OnPrint
II Uses the commdlg print dialog to create a printer de
/I Then it uses code almost identical to the OnPaint code
II to write the data to the printer.
II
void CMainWindow::OnPrint()
{

PRINTDLG pd;

pd.1StructSize = sizeof(PRINTDLG l;
pd.hwndOwner=m~hwnd;
pd.hDevMode=(HANDLE)NULL;
pd.hDevNames~{HANDLE)Nl.JLL;

pd. Fl ag s= PD~ RETU RN DC I PD~ NOSELECTlON I PD_ NOPAGENUMS ;
pd.nFrompage=0;
pd.nToPage=0:
pd.nMinPage=0;
pd.nMaxPage=0;
pd.nCopies .. l;
pd.hIn5tance=(HANDLE1NUlL;

if (PrintDlg(.&pd.) 1=0}
{

II CommDlg returned aot 50 create a CDCobJe:ctfrom it.
ASSERT(pd. hOC 1= 0);
CDC "de:
dc .,:, CDC:! FromHandle(pd. hOC 1;

1/ Changet\l h\lurglass while pr'i T1 !ing
SetCursar(AfxGetAppO ~> ~oadStandardCursor(fO(WAIT) H

178 Class Libraries User's Guide

Phone Book: Dialog Boxes 179

szDisplay pCurrent -) GetPhoneNumber();
de -) SetTextAlign(TA_RIGHT ITA_TOP);
de -) TextOut(x + SIZENAME * nCharWidth, y, szDisplay,

szDisplay.GetLength());

szDisplay pCurrent -) GetModTime().Format("%m/%d/%y %H:%M");

}

}

}

de -) TextOut(x + (SIZENAME + SIZEPHONE) * nCharWidth, y,
szDisplay, szDisplay.GetLength());

de -) EndPage();

de -> EndDoc();
de -> DeleteDC();
SetCursor(AfxGetApp() -) LoadStandardCursor(IDC_ARROW));

/////////////11///////////////////////////////////
1/ CMainWindow::OnExit
1/
void CMainWindow::OnExitC)
{

OnCloseO;
}

11111//1111111//11111//1///1////1/11/11/11111/11/1
/1 CMainWindow::OnAdd
II Using the EditDialog fill in a new person object. If the user
1/ selects OK then add the person, call OnStze to resize the scroll
/1 regiOn, Jnd invalidate th~. screen so it will be redrawn with the
1/ new person in the correct order.
/I
void CMainWindow::QnAdd()
{

}

CPerson* person=new CPerson();

CEditDialog dlgAdd(person, this);
if (dlgAdd.DoModal() == IDOK)
{

}
else

m_people.AddPerson(person l;
OnSize(0, m_cxClient, m_cyClient);

delete person;

180 Class Libraries User's Guide

11;;1 II, I 1'lllU lit·IN I liWI I Wi: l/,~lll I trill '~I I,U '11111
I'.' c.Mia lin 1/j ;'n d ri'~: : f}nl]~ 1 e :te ,.i:!. . '.~." .i " . • :1':: .• " ..
~ < ,I ,: :+: ;TL :' II :I!: ", i' , :" ;; '1'1 , : :!I
Itlt Q:~l ~te,~,. t,n:a isurl1:entJ;!! seil' Ch~c:~.,tom

? . II,tlaw!p.es:,t .. 1:he·n"':tmd.·. o1'1;l1e ···A'1i~!O 'c'al
1~n~lth'hasrn6~ c,:patlged~.:111

1" \ ,,;;,+" ,I"" ":1" ,::,:,ii' :t,!I:' ,: J:'I
C,~a i,rWi.'~d9i~ :}n ~ $1

('\,m_ ~'se'~iec,f~ i. ~ e
I> '" :/ ,'1
Message~ox(' ,.. .,. ,.
retllrrn;··:

} ,'I ' 'i:,j ;' y:: ,:;, ", ';I!: , ,: ';':'1" '{;: ,

. m::cpe\tiple.Delet:eP'ks,~n(·.,m_FlSelrect,l.i),1 .. ' ...
. if (111- h~ erect b.i .~.~ .~~ .. it in t) m~ p,eQPl e. Ge,tCo unt ~)
,m~nS.electUne--; ..
'OnSi 2!e{~ ,m_9<Glient, J1l- CY,Cllent,

'i'} :!r ' ,'::!'/ ': 'I:

lllll)~/il Illlf/I}lllIlJl III I~'j ,it I~/ IlIII;II'~::~ l/!,it II :
:,:",//:,::'C~~i~I~li~;I~,o~'~~?,nFiF,d:;:i:\" i ,,' ~<:I' ,1> i>1):l'"" ''i

,'(,Gets .1nfQr~:~tlClFl,:'ro,m .~,:~eCF1:.l1dql.alog~'Odl!\1 dial
I l Jna!~?h'i n~' p~op le. N~tei':tl1~. A~"P <fi'i'd \.Ele l,:ete::;me~.~
II a. :flnd lsmade. nd~.:ll ls;ena'QH,d. W' •• I'", ! I.fi . ,';: " ,.. .. h'

'" ,"" i' I I

vQ!.d".c~'Cl ... i.lI.!,/i.h,t;l.oVj: (.:~
:' {I:,: 'I, ,,;;,]1 ':!!iii' ",:;,\i::,

~Fil';ld[lihalog t;l'lgFinpCthi
if.,i(d.'gFind,'.DoModal(~

Jr ';::1 ,,', '(" ,;;i:::r Ii:

'm oS e1:ee~':Lid~ l' -1'
, - i "H' ,,I" 1'1 ,

.'. CSot r i ng.1:mp·· ':. .
. t,wp .,;' ni:pe;jlpl,~~GetT1'tl~O*,'" Fo

: .. , .. "+iLdlg'Flnd.G.etFind~tring
S'etWilndowT ext C" tmP); {i,
OiMenu* /':·pMe'nu I~ GetMenu.~,)· .. iiW. " :".

: ll.Me.n:~~> Pl'na~:i eManu!Ite~r('7DMLh~6At:.~', M'F _ENAB~i'D
p'Menulih IEnabl eMen:~It~6I(:ii1D~t[lElbETEi; ~.F ~GRAYE~

.,:pMenu,:- >'Ena:bl~Men,uItem(". IDftA~D'iiMF ~GRA~I~D
.•.. OnSi zif.{ .0 . , m~ c~C11':AII:lt ') 1 J:

':11i, "!III,

111111111111111111111111/111111111111111111111/////1
/1 CMainWindow::OnFindAll

Phone Book: Dialog Boxes 181

/1 Returns to view the whole database. Add, Delete are re-enabled, and
// Find All is again disabled. OnSize is called because the list
II has changed length.
II
void CMainWindow::OnFindAll()
{

m_people.DoFind();
SetWindowText(m_people.GetTitle());
CMenu* pMenu = GetMenu();
pMenu -) EnableMenultem(IDM_FINDALL, MF_GRAYED l;
pMenu -) EnableMenultem(10M_DELETE, MF_ENABLEO);
pMenu -) EnableMenultem(IDM_ADD, MF_ENABLED 1;
OnSize(0, m_cxClient, m~cyClient 1;

1111111/11111111111/1/11/1//1//11/11/1/111111//11111
II CMainWindow::OnEdit
1I Using th.~ lllember .variable m~nSelectLine. a CEditDialog is created
II and filled with the selected person. If the dialog OK button is
II used the dialOg saves the changes into the object.
II over any old inforlllation.
/I
void CMainWindow::OnEditC)
{

if (m_nSelectLine == -1
{

MessageBox("Select a person to edit first");
return;

,}

/1 Get a pointer to the person in the list.

}

CPerson* pPerson = m_people.GetPerson(m_nSelectLine);
CPerson tmpPerson = *pPerson;

liEdit the data.
CEditDialog dlgEdit(&tmpl'erson, this);

Ili~ the ok button is pressed redraw the screen
if ('dlgEdit.DoModalO == WOK) .
{

}

m_peopTe.ReplacePerson(pPerson, tmpPerson);
InvalidateLine();

182 Class Libraries User's Guide

);

ift !m_fileopl e.l~!Namled~l)
{ I,,'),
" i' ,hi , ,,'!, "I :" 'I

CModalOialog"dJgHelpC"NoName", t.hi~);
if,l(dlgHelp.DOModal () =" IDCANC.EL)

return;

CMo,cigdoi'ol (ig til g1:le 1 fil("Ente~", this);
,dlgHelp .BoModalf); ,:1'1

)f 411)1/11 ;1//111 III)11)1 i IIIII/f II j! I /I IAII dIll! /
II leM~l rlWip'tiow: :OnAhout "'III II "I I" II "I 1

III
Vip i d CMainWi nd,dw: :OnAbollt cl)

! II' II, 1'1' I' '

CModa 1 Di aJ og til'lgAl;lou t:<
dlg~bC1l~t.DoModi'lld; ,
,,' 'i' ' :

i I /, , , ,,~ , ,I

/1.:1/ < / 11/) I I (II! / I t I I;{ I <II (.//(/1111111):111 { I 1/1 ! ~!I;.f I if I 1:1 II { II
II TneJollowirlg i'lrejitINDOW messageS ' ""I "

,I " ,I " '"

II !i:il A 1)1 {II ill ill j'I 1/1 ~;l/ill if 1/1 II)/1/1 II~ /I;' i, I
{/,ICMai nIWirldow:;~n Create' ,I
1:1 IQu~ri~sthe,!t:u,rr~nt de,termi
/1 'I' ,,>lii,jl

: ':!' I" ,!I: ,: ili~,)1

d fiy CMa'inW'~ ndbw: :OnCreate (
{ ' ':I'!; ,i' Ii:

I II,', "I , ,I ,

TEXTMETRIIC ,!tm; ,
, "\'

"il!I""" I ,ii: II,i::I"": I
t~~ ~Iexl't m~tr:~t:s,,~

:ide " 'l~etOC(); "
-> GetPext!Metri"cs(1 &tIm);

I '1';1' ,

!'Ill ~eDC,~ de); "
,j' Jill" :'

Phone Book: Dialog Boxes 183

184 Class Libraries User's Guide

11111111111111111111111111111//1/11111111111111111
II CMainWindow::OnHScrol1
II Transl ate scroll messages into Scroll increments and then

Phone Book: Dialog Boxes 185

II checks the current position to determine if scrolling is possible
/I
void CMainWindow::OnHScroll(UINT wParam, UINT pos, CWnd*)
{

int nScrolllnc;
switch (wParam
{

case SB_LINEUP:
nScrollInc -1;
break;

case SB_LINEDOWN:
n$crolllnc
break;

l' ,

case SB PAGEUP:
nScrolllnc
break;

~PAGESIZE;

case SB:... PAGEDOWN:
nScrolllnc PAGESIZE;
break;

case SB_THUMBPOSITION:

default:

}

nScrollInc pos - m_nHscrol1Pos;
break;

nScl'ol11nc 0;

if (nScrolllnc max(-m_nHscrollPos,

{

}
}

mine n$croll Inc,m_nHscrollMax - ID_nHscrollPos)})

m nHscrollPos += nScrolllnc:
ScrollWindow(-m_c:xChar * nScrolllnc~ 0/);
SetScro 11 Pps (SB_ HORZ, m_nH.s croll Pos ');

UpdateWindow();

186 Class libraries User's Guide

/1//
// CMainWindow::OnDown
// Uses Accelerator tables to link the down arrow key to this
// routine. Inc the select line with checking for scrolling
// and wrapping off the bottom of the list.
/!
void CMainWindow::OnDown()
{

InvalidateLine();

if m_nSelectLine == (int)(m_people.GetCount() - 1)
II m_nSelectLine == -1)

{

else
{

m_nSelectLine = 0;
m_nVscrollPos = 0;
Invalidate(TRUE);

m_nSelectLine++;

Phone Book: Dialog Boxes 187

if ((m_nSelectLine - m_nVscrollPos + 1) > [m_cyClient / ITLcyChat»
OnVScrol1{ SB_LINEDOWN, 0, NULL);

}

// Selection is off the screen
if ((m_nSelectLine - ID_nVscrollPos) > (m_cyClient I m_cyChar)
{

}

m_nVscrollPos = m_nSelectLine + 1 - (m_cyClient / m_cyChar l:
SetScrollPos(SB_VERT. m_nVscrollPos. TRUE);
InvalidateC TRUE l;

if ((m_nSelectLine m_nVscrollPos) < 0)
{

m_nVscrollPos = m_nSelectLine;
SetScrollPos(S8_VERT, m_nVscrollPos, TRUE);
Invalidate(TRUE 1;

InvalidateLine();
}

188 Class Libraries User's Guide

/1/1/111///1/1/1111/11/1/1111/11/11111/11//111111/
/1 CMainWindow::OnKeyDown
/1 Translates keyboard input into scroll messages
/1
void CMainWindow::OnKeyDown(UINT wParam, UINT, UINT
{

}

switch (wParam)
{

}

case VK_HOME:
OnVScroll(SB_TOP, 0, NULL);
break;

case VK_END:
OnVScroll{ SB_BOTTOM, 0, NULL);
break;

case VK_ PRIOR:
OnVScroll(SB_PAGEUP, 0, NULL);
break;

ca se VK_ NEXT:
OnVScroll(SB_PAGEDOWN, 0, NULL);
break;

caseYK_ LEFT:
OnHScroll(SB~PAGEUP, 0, NULL l;
brea k;

case VKLRIGHT:
OnHScrol1(SB_PAGEDOWN, 0, NULL l;
break:

/111/11/11111/11///1//1/1/111//1111111/1111//11///
1/ CMi~inWindow: :OnPaint
/J This routine does al1the painting for the screen.
II
void CMainWindow::OnPaint()
{

CPaintllCdc(thi.s);

Phone Book: Dialog Boxes 189

/1 Set th:e Text and background colors for the DC; also create a .Brush
CBrush bBack;
dc .SetTextCol arc Gl;tSysCo·lor(COUJR_ WI NDOWTEXTl };
dc.SetBkColor(GetSysColOf(COLO~WINDOW) l;
bBllck.CreateSolidBrush(GetSysColor{. COLOR_WINDOW l;

II Compute the lines that need to .. be redrawn
tnt. nStart.= max(0, rrLnVscrolHos + dc.m'...ps.rcPaint.top I ffi_cyChar -,. i):
-tnt nEnd = minC(intlffi_peop.le.GetCotmt(),

irtLnVscr;ol1 Pos ... -+ (dc.m_p$,rcPaint.l:lott:omi.ll1_cyChar+l)

190 Class libraries User's Guide

Phone Book: Dialog Boxes 191

192 Class Libraries User's Guide

II U I I /I/:I I / I 1I I I 1I1I1 I I // //11 I I J/ I! II I III I I I I II I I
CMainWindow: ;Save

Phone Book: Dialog Boxes 193

H~ndles any time a file needs to be saved to the disk.
Passing in FALSE for name brings up the file save as dialog
whether or not the database had a name before.

BOOL CMainWindow::Save(BOOL bIsNamed 1* = FALSE *1
{

CString szFileName, szFileTitle;
TRY
{

if (bIsNamed)

el
{

m_peop 1 e. DoSa ve ();

szFileName=~:- peop 1 e. Get Name ();
if (FileDlgC FALSE, SIZESTRING,

szFileName.GetBuffer(SIZESTRING), SIZESTRING,
szFileTi~le.GetBuffer(SIZESTRING »

s z:Pjk~;ieNameii~e 1 easeBufferrf;
mJn:!op,le.OoS.iflte(sifi reName
IILpeopJe,SetTitle(5zFi leTitl e);
SetW·jndowText(rrLpeople.GetTitle());

194 Class Libraries User's Guide

/!I/III///J////!//////////!!///!!///!/!!////////!/
/i CMainWindow::SetMenu
// Whenever the existen~e of the DataBase is changed this
// routine will reset the menus so only the possible commands
// are accessible.
/!
void CMainWindow: :SetMenu()
{

CMenu* pMenu = GetMenu():
if (m_people.IsPresent()
{

if (m_peopl e. IsNamed()
pMenu -> EnableMenuItem(1DM_SAVE, MF_ENABLED):

else
pMenu ->Enabl eMenuHem(1DM_SAVE, MF_GRAYEO);

pMertu -> Enabl eMenultem(IDM_SAVEAS, MF_ENABLED):
pMenu~> EnableMenuItem(1DM_CLOSE;MF_ENABLED);
pMenu ~> EnableMenultem(IOM3RINT, MF_ENABLED):
pMenu ~> EnableMenultem(10M_ADD, MF_ENABLEO);
pMenu -> EnableMenuItem(IDM_OELETE,MF_ENABLED).;
pM~~:U '1> Enabl enuI1J.~if\1(1D~,l.FLNQ, ~F_E.NA~tE9
pMenu :"> enultem{ IDM_~PJT, MF,-ENABLED

-> EnableMenultem(IDM,-SAVE, MF_GRAYEO. J;
~> EnableMe.rlultem(HlM_SAVEAS, MF_GRAYED);

Enabl efv1enuItemCIQM_CtO$E; MF_.GRAYED);
1tem([DM_PRINl, MFJ/GRAYED)j

1D~CADD,~LGRAYED i);
1DM_DELETE, MF_GRAYED) ;
I D~~F:DND., .i~F _ GJW'ED l;
I O~"'IFLNDAL.L.'liM Fr-'IG~AYED
I Ot>LEDIT , MF __ GRAYED Ji

Phone Book: Dialog Boxes 195

Phone Book: Message Handlers

The two previous chapters got you started on the Phone Book program. In
Chapter 4, you created the CDataBase class to provide a clean interface between
the Windows code and the CPerson data. In Chapter 5, you added several dialog
classes.

6.1 In This Chapter
This chapter completes your development of Phone Book. You'll do the following:

• Add the message map

• Add the main window class

• Add message-handler member functions to handle menu, keyboard, and mouse
commands

The next section gets you started with some analysis of what's needed.

6.2 Determine What Messages Will Be Handled
This section explains the fourth step in writing Phone Book: determine what mes­
sages will be handled and add the message map for class CMa i nWi ndow. This will
be accomplished in several steps:

1. Plan the message handlers.

2. Add the message map for class CMa i nWi ndow.

3. Add the class declaration for CMa i nWi ndow.

4. Add a constructor definition.

~ To plan the message handlers:

• Determine what message handlers are needed.

198 Class libraries User's Guide

The Phone Book program requires about twenty message-handlers, which fall into
several categories:

• Menu-command handlers will be needed. These are handler functions for
WM_ COMMAND messages. Windows passes a menu-command ID number
with each such message. These handlers will be named after the menu com­
mands they handle.

• The program requires handler functions for Windows creation and sizing mes­
sages: W~CREATE, and W~SIZE.

• The program requires handler functions for scrolling: WM_ VSCROLL and
~HSCROLL.

• The program also requires handler functions for several specific keystrokes (in­
cluding the FI function key, which is used to summon help): the UP ARROW,

DOWN ARROW, RIGHT ARROW, and LEFT ARROW keys, the PAGE UP, PAGE DOWN,

HOME, and END keys. These keys allow the user to move a "selection" from line
to line on the display and to scroll the display.

• The program also requires message handlers for mouse clicks. If the user
presses the left mouse button in the display area of the program's window, the
selection is moved to the clicked line of text. This requires a message-handler
function for the WM_LBUTTONDOWN message. If the user double-clicks
the left mouse button in a line of the display, a WM_LBUTTONDBLCLK
message invokes the Edit command in the Person menu, displaying data for the
double-clicked person.

• The program requires a handler function for the paint message, WM_PAINT.

Phone Book: Message Handlers 199

Your goal in this chapter is to create a VIEW.CPP file that matches the one in
Listing 2 in Chapter 5. In that listing, the CMa i nWi ndow member functions are
given in the following groupings:

• Menu-command handlers for all menus

Phone Book has File, Person, and Help menus.

• Creation and sizing handlers

These handle the W~CREATE and WM_SIZE messages.

• Scrolling handlers

These handle the vertical and horizontal scrollbars.

• Keyboard and mouse handlers

These handle keystrokes and mouse clicks.

• The paint handler

This handles the W~PAINT message.

• Utilities

These are member functions that support the message-handler functions but are
not themselves message-handlers.

Occasionally you'll be asked to add a function out of this order so it can be dis­
cussed with related functions. In the few such cases, you'll be told where to add
the function so your file maintains the same order as Listing 2 in Chapter 5.

~ To add the message map and message-handlers:

• Start adding code to your files by adding message map entries for the message­
handler functions. You'll add a message map to VIEW.CPP and a main win­
dow class declaration to VIEW.H.

Replace the old message map for Hello with the following message map for
class CMa i nWi ndow in your VIEW.CPP file:

BEGIN_MESSAGE_MAP(CMainWindow, CFrameWnd

II File menu commands:
ON_COMMAND(IDM_NEW, OnNew)
ON_COMMAND(IDM_OPEN, On Open
ON_COMMAND(IDM_SAVE, OnSave)
ON_COMMAND(IDM_SAVEAS, OnSaveAs
ON_COMMAND(IDM_CLOSE, OnDBClose
ON_COMMAND(IDM_PRINT, OnPrint)
ON_COMMAND(IDM_EXIT, OnExit)

II Person menu commands:
ON_COMMAND(IDM_ADD, OnAdd)
ON_COMMAND(IDM_DELETE, OnDelete

200 Class Libraries User's Guide

ON_COMMAND(IDM_EDIT, OnEdit)
ON_COMMAND(IDM_FIND, OnFind)
ON_COMMAND(IDM_FINDALL, OnFindAll

II Help menu commands:
ON_COMMAND(IDM_HELP, OnHelp)
ON_COMMAND(IDM_ABOUT, OnAbout

II Selection accelerators:
ON_COMMAND(VK_UP, OnUp)
ON_COMMAND(VK_DOWN, OnDown

II Other Windows messages:
ON_WM_CREATE()
ON_WM_CLOSE()
ON_WM_SIZE()
ON_ WM_ VSCRO Ll()
DN_WM_HSCROLl()
ON_WM_LBUTTONDOWN()
ON_WM_LBUTTONDBLCLK()
ON_WMJEYDOWN()
ON_WM_PAINTC)

END_MESSAGE_MAP()

As you saw in the Hello program, this message map connects Windows mes­
sages with message-handler member functions defined by the CMa i nWi ndow
class. Notice that the message map also provides the names of the message­
handler functions. You'll add the handler functions for these map entries in the
next several sections.

~ To add the CMainWindow class declaration:

• Add the following code to VIEW.H:

II CMainWindow
II The window object that WinApp creates. In this program we
II only use one window class. In that sense this object does
II all the work that makes our window a CPersonList viewer.
II

class CMainWindow
{

private:

Phone Book: Message Handlers 201

public CFrameWnd

II Variables that contain the window size, font size and scroll
II position.
int m_cxChar;
int m_cyChar;
int m_nHscrollPos;
int m_nVscrollPos;
int m_cxCaps;
int m_nMaxWidth;
i n t m_ c x C 1 i en t ;
i n t m_ cy C 1 i en t ;
int m_nVscrollMax;
int m_nHscrollMax;
int m_nSelectline;
CDataBase m_people;

II Private helpers for the other routines.
void SetMenu();
BOOl Save(BOOl bNamed=FAlSE);
BOOl FileDlg(BOOl bOpen, int nMaxFile, lPSTR szFile,

int nMaxFileTitle, lPSTR szFileTitle);
BOOl CheckForSave(const char* pszTitle, const char*

pszMessage);
void Invalidateline();

public:
II The CMainWindow constructor
CMainWindow();

II These routines are all overrides of CWnd. Windows messages
II cause these to be called.
afx_msg int OnCreate(lPCREATESTRUCT cs);
afx_msg void OnClose();
afx_msg void OnSize(UINT type, int x, int y);
afx_msg void OnHScroll(UINT wParam, UINT pos, CWnd* control);
afx_msg void OnVScroll(UINT wParam, UINT pos, CWnd* control);
afx_msg void OnlButtonDown(UINT wParam, CPoint location);
afx_msg void OnLButtonDblClk(UINT wParam, CPoint location);
afx_msg void OnKeyDown(UINT wParam, UINT, UINT);
afx_msg void OnPaint();

202 Class libraries User's Guide

II These routines are all menu items. User action causes
II these to be called.
afx~msg void OnNew();
afx~msg void On Open () ;
afx~msg void OnSave();
afx~msg void OnSaveAs();
afx~msg void OnDBClose();
afx~msg void OnPrint();
afx~msg void OnExit();
afx~msg void OnAdd();
afx~msg void OnDelete();
afx~msg void OnFind();
afx~msg void On Fi ndA 11 () ;
afx~msg void OnEdit() ;
afx~msg void OnHelp();
afx~msg void OnAbout();
afx~msg void OnUp();
afx~msg void On Down () ;

DECLARE~MESSAGE~MAP()

} ;

This class declaration replaces the CMa i nWi ndow declaration from Hello. It has
the same general form as Hello's version but contains many more member vari­
ables and member functions. The declaration also completes your VIEW.H file.
Make sure that the final "#endif II _ VIEW _H_" line is below all other code
in the file.

~ To add a constructor definition:

• Add the following code to file VIEW.CPP below the message map:

CMainWindow() {

}

VERIFY(LoadAccelTable("MainAccelTable"));
VERIFY(Create(NULL, "Phone Book",

WS~OVERLAPPEDWINDOW, rectDefault, NULL,
"MainMenu"));

m nSelectLine = -1;

You can simply replace the contents of Hello's CMa i nWi ndow constructor,
which you copied when you created VIEW.CPP.

The constructor demonstrates two new features. First, it's used to initialize the
m~ nSel ectL i ne member variable in the CMa i nWi ndow object, something Hello's
constructor didn't do.

Phone Book: Message Handlers 203

Second, the constructor invokes the VERIFY macro on the two calls it makes.
The result of each call-to LoadAccelTable and Create-is passed to the
VERIFY macro. VERIFY works differently depending on whether the
_DEBUG flag is set. If it is, the macro "asserts" if the result is zero (FALSE).
If the flag is not set, the macro evaluates its argument but does not assert for a
zero value. An assertion produces useful diagnostic information. Thus
VERIFY is a handy way to check the results of functions that return a Boolean
or pointer value. You can leave the VERIFY macros in place when you build a
release version. For more information about the VERIFY macro and its com­
panion, the ASSERT macro, see Chapter X in this manual.

Note The "afx_msg" prefix on the message-handlers in CMa i nWi ndow marks a
special set of member functions. The message-map code that you provide creates a
mechanism similar in effect to a C++ v-table. The mechanism maps Windows
messages to the message-handlers as if they were virtual functions. Because of this
mechanism, you can read "afx_msg" as if it meant "virtual," although the prefix
has no effect on compilation. These message-handlers are prototyped in the decla­
ration for class CWnd, in file AFXWIN.H. (This file is included in your distribu­
tion disks.) To use the message-handlers in your own class declarations, copy the
prototypes you need from AFXWIN.H and paste them into your code.

The message-handler functions from class CWnd are defaults. When you declare
your own message-handler with the same name and parameter signature, the result
is equivalent to overriding a virtual function. Some of the message-handler declara­
tions in the CMa i nWi ndow declaration list parameter types without specifying para­
meter names. The omitted names mark parameters not used in the Phone Book
implementation. If you omit the parameter names, the compiler does not allocate
space for those parameters. If you provide names for unused parameters, you'll get
compiler warnings.

You'll add the message-handler member functions themselves in subsequent sec­
tions of the tutorial. You'll probably want to check your work against Listing 2 in
Chapter 5 when you finish, so the following instructions explain where to add
each function in the VIEW.CPP file to duplicate the order of functions in that
listing. This ordering is a matter of convenience.

To continue the tutorial, see "Add Message-Handlers for File Menu Commands"
on page 205. For more information about the steps just completed, see
"Discussion: Message-Handler Functions" immediately following.

204 Class libraries User's Guide

Discussion: Message-Handler Functions
Once you've grasped the principles of handling Windows messages in your pro­
gram, the process is straightforward. This discussion reviews the process. Later
sections present the message-handler functions.

Provide Message-Handler Functions and Message-Map Entries
Your message-handler functions are declared as member functions of your
window class.

For each message-handler function, provide a corresponding macro entry in the
message map for your window class.

If you write programs with multiple windows, each different kind of window re­
quires its own set of message-handler functions and corresponding message-map.

Phone Book uses only one kind of window (other than dialogs). Class
CMa i nWi ndow declares a constructor and many message handlers. Its message
map, which you implemented in VIEW.CPP, contains matching entries.

Follow the Rules for Naming Message-Handler Functions
As discussed in Chapter 2, the message-map mechanism used in the Microsoft
Foundation Class Library to connect Windows messages with your message
handlers has certain requirements for names.

• Handler functions for W~ COMMAND messages, used primarily for menus
and accelerator keys, can be named anything you like, but usually their names
reflect their functions. Menu handlers, for example, are typically named after
the menu command they handle. These handlers take no arguments and return
no values.

In the message map, use the ON_ COMMAND macro for each of these com­
mands. The first argument to the macro is the ID number of the menu or accel­
erator key. The second argument to the macro is the handler function name,
such as OnAbout.

Note Message-handler functions in this category are not predeclared in class
CWnd. The ON_ COMMAND mechanism provides for your own messages,
which cannot be anticipated.

Phone Book: Message Handlers 205

• Handler functions for notification messages from child windows to a parent
window follow the same rules as those for W~ COMMAND messages. For
example, you might call the handler function for a BN_ CLICKED message
OnBnCl i eked.

• Handler functions for other messages, such as WM_ PAINT and
W~ CREATE, have strict requirements for names and argument signatures.
Class CWnd lists prototypes for these message handlers--each prototype is
preceded by the identifier afLmsg. Class CWnd is declared in file
AFXWIN.H.

The handler for the WM_ CREA TE message, for instance, must be named
OnCreate and must take one argument oftype LPCREATESTRUCT, a
Windows type. The function returns an int.

Note Keep in mind that your message-handler functions in this category are
overriding the predefined versions declared in class CWnd.

The macros used in message maps for these functions prefix the message
name with ON_ -for example, ON_ W~ CREATE. The macros take no
arguments.

6.3 Add Message Handlers for File Menu Commands
This section explains the fifth step in writing Phone Book: add message-handler
member functions to the CMa i nWi ndow class for File menu commands. Figure 6.1
shows the Phone Book File menu.

Figure 6.1 Phone Book File Menu

206 Class libraries User's Guide

~ To add File menu message-handler functions:

1. Add the following OnNew message-handler member function to
CMai nWi ndow section of your VIEW.CPP file. If you want your file to resemble
Listing 2 in Chapter 5, add On New just below the CMa i nWi ndow message map:

II CMainWindow: :OnNew
II After checking to see if current data needs to be stored, call
II database New and resize/repaint the window.
/!
void CMainWindow::OnNew()
{

if(! CheckForSave("Fi 1 e New", "Save fil e before New?"))
return; m_people.New();

SetMenu();
SetWindowText(m_people.GetTitle());
OnSize(0, m_cxClient, m_cyClient);

OnNew creates a new, empty database, to which the user can add persons.
OnNew calls a SetMenu utility member function. You'll add that function later
in the chapter.

2. Add the following On Open message-handler member function to the
CMainWindow section ofyourVIEW.CPP file below the OnNew member
function:

II CMainWindow::OnOpen
/!
void CMainWindow::OnOpen()
{

i f(! CheckForSave("Fi 1 e Open", "Save fi 1 e before Open?"))
return;

II Attempt to open a database file and read it.
II If a file or archive exception occurs, catch it and
II present an error message box.
CString szFileName, szFileTitle;
TRY
{

II Use CommDlg to get the filename and then call DoOpen.
II Set the Window title and menus. Resize/Repaint.
if (FileDlg(TRUE, SIZESTRING, szFileName.GetBuffer

(SIZESTRING), SIZESTRING,
szFileTitle.GetBuffer(SIZESTRING)))

szFileName.ReleaseBuffer();
szFileTitle.ReleaseBuffer();
m_people.DoOpen(szFileName);
m_people.SetTitle(szFileTitle);
SetWindowText(m_people.GetTitle());
SetMenu();
OnSize(0, m_cxClient, m_cyClient);

Phone Book: Message Handlers 207

}
}

CATCH(CFileException, e)
{

}

char ErrorMsg[25];
sprintf(ErrorMsg,"Opening %s returned a 0x%lx.",

(const char*)szFileTitle, e -> m_10sError);
MessageBox(ErrorMsg, "File Open Error");

ANo_CATCH(CArchiveException, e
{

}

char ErrorMsg[25];
sprintf(ErrorMsg,"Reading the %s archive failed.",

(const char*)szFileTitle);
MessageBox(ErrorMsg, "File Open Error");

END CATCH

OnOpen opens an existing database file and deserializes the data into the current
database. On Open calls a utility member function Fi 1 eol 9 to put up a standard
Windows file open dialog box. You'll add that utility function later in the
chapter.

3. Add the following OnSave message-handler member function to the
CMa i nWi ndow section of your VIEW.CPP file below the OnOpen member
function:

void CMainWindow::OnSave()
{

Save(m_peopl e. IsNamed());
}

OnSave responds to the Save command in the File menu to serialize the current
database to a disk file. Save is a utility member function called by a number of
other member functions. It is not a message-handler function. You'll learn what
code to add for Save later in the chapter.

4. Add the following OnSaveAs message-handler member function to the
CMainWindow section of your VIEW.CPP file below the OnSave member
function:

void CMainWindow::OnSaveAs()
{

Save();
}

OnSaveAs responds to the Save As command in the File menu. It simply calls the
Save utility member function, which you'll add to the code later.

208 Class Libraries User's Guide

5. Add the following Save member function to the CMai nWi ndow section of
VIEW.CPP. To keep your file in the same order as Listing 2 in Chapter 5, add
Sa ve to the end of the file. It's one of the group of utility member functions,
which will be kept together at the end of the file.

II CMainWindow::Save
II Handles any time a file needs to be saved to the disk.
II Passing in FALSE for name brings up the file save as dialog
II whether or not the database had a name before.
II
BOOl CMainWindow: :Save(BOOl bIsNamed 1* = FALSE *1
{

}

CString szFileName, szFileTitle;
TRY
{

}

if (blsNamed)
m_people.DoSave();

else
{

szFileName = m_people.GetName();
if (FileDlg(FALSE, SIZESTRING,

szFileName.GetBuffer(SIZESTRING),
szFileTitle.GetBuffer(SIZESTRING

else

szFileName.ReleaseBuffer();
m_people.DoSave(szFileName);
m_people.SetTitle(szFileTitle);
SetWindowText(m_people.GetTitle());

return FALSE;

CATCH(CFileException, e)
{

char ErrorMsg[25];

SIZESTRING,
))

sprintf(ErrorMsg,"Saving %s returned a 0x%lx.",
(canst char*)szFileTitle, e -> m_10sError);

MessageBox(ErrorMsg, "Fi 1 e Open Error");

AND_CATCH(CArchiveException, e)
{

}

char ErrorMsg[25];
sprintf(ErrorMsg,"Reading the %s archive failed.",

(canst char*)szFileTitle);
MessageBox(ErrorMsg, "Fi 1 e Open Error");

END CATCH
return TRUE;

Phone Book: Message Handlers 209

Although Save is a member function of class CMai nWi ndow, it is not a
message-handler function. It's a utility member function called by other mem­
ber functions when the current database needs to be saved. In particular, Save
is used to implement both On Save and OnSaveAs.

6. Add the following OnDBClose message-handler member function to the
CMai nWi ndow section of VIEW.CPP below the OnSaveAs member
function:

II CMainWindow::OnDBClose
II Closes the current database, checking to see if it should be
II saved first. Reset the window title and the scroll regions.
II Invalidating the entire screen causes OnPaint to repaint but
II this time without any data.
II
void CMainWindow: :OnDBClose()
(

if(lCheckForSave("File Close", "Save file before closing?"))
return; m_people.Terminate();

SetWindowText("Phone Book");
SetMenu();
OnSize(0, m_cxClient, m_cyClient);

OnDBClose is called in response to the Close command in the File menu. It han­
dles closing the current database and adjusting the window to reflect that no
database is open. The similarly named OnClose member function, which you'll
add next, is called during the termination process in response to the Exit com­
mand in the File menu.

7. Add the following OnClose message-handler member function to the
CMa i nWi ndow section of your VIEW.CPP file. To keep your file in the same
order as Listing 2 in Chapter 5, add OnClose just above the Save member
function that you added earlier.

II CMainWindow::OnClose
II Check to see if the current file needs to be saved. Terminate
II the database and destroy the window.
II
void CMainWindow: :OnClose()
(

i f(1 CheckForSave("Fi 1 e Exi t", "Save fi 1 e before exi t?"))
return; m_people.Terminate();

DestroyWindow();
}

Where OnDBClose simply closes the current database, OnClose also destroys
and removes the window. Because ofthis action, OnClose is placed in the file
with "Creation and Sizing" member functions, which you'll add later.

210 Class Libraries User's Guide

8. Add the following OnExi t message-handler member function to the
CMainWindow section ofyourVIEW.CPP file below the OnDBClose member
function:

II CMainWindow::OnExit
II
void CMainWindow: :OnExit()
{

OnCl ose();
}

On Exi t responds to the Exit command in the File menu. It simply calls the
OnClose member function to clean up in case there's an open database.
OnClose also destroys the window and removes it from the screen. The same
mechanism is used to process both a system WM_ CLOSE message and an
Exit command from the menu. The same cleanup is required in both instances.

9. Add the following OnPri nt message-handler member function to the
CMa i nWi ndow section of your VIEW.CPP file below the OnDBClose member
function and above OnExi t. This order keeps OnPri nt in the same sequence as
Listing 2 in Chapter 5 and in the sequence of File menu commands.

II CMainWindow: :OnPrint
II Uses the commdlg print dialog to create a printer dc
II Then it uses code almost identical to the OnPaint code
II to write the data to the printer.
II
void CMainWindow::OnPrint()
{

PRINTDLG pd;

pd.1StructSize = sizeof(PRINTDLG);
pd.hwndOwner=m_hWnd;
pd.hDevMode=(HANDLE)NULL;
pd.hDevNames=(HANDLE)NULL;
pd.Flags=PD_RETURNDC I PD_NOSELECTION I PD_NOPAGENUMS;
pd.nFromPage=0;
pd.nToPage=0;
pd.nMinPage=0;
pd.nMaxPage=0;
pd.nCopies=l;
pd.hlnstance=(HANDLE)NULL;

if (PrintDlg(&pd) != 0
{

II CommDlg returned a DC so create a CDC object from it.
ASSERT(pd.hDC != 0);
CDC * dc;
dc = CDC::FromHandle(pd.hDC);

Phone Book: Message Handlers 211

II Change to hourglass while printing
SetCursor(AfxGetApp() -) LoadStandardCursor(IDC_WAIT));

II Begin printing the document.
int rc;
char szError[50];
rc dc -) StartDoc("Phone Book");
if rc < 0)
{

}

sprintf(szError, "Unable to Begin printing - Error[%d]",
rc);

MessageBox(szError, NULL,MB_OK);
return;

int x, y;
CPerson* pCurrent;
UINT nPerson=0;
CString szDisplay;
int nStart, nEnd;

II Get Height and Width of large character
CSize extentChar = dc -) GetTextExtent("M", 1);
int nCharHeight = extentChar.cy;
int nCharWidth = extentChar.cx;

II Get Page size in # of full lines
UINT nExtPage = (dc -) GetDeviceCaps(VERTRES) - nCharHeight)

I nCharHeight;

CString szTitle;
szTitle = CString("Phone Book - ") + m_people.GetName();

while (nPerson 1= m_people.GetCount()
{

II Print a Page Header
dc -) StartPage();
dc -) SetTextAlign (TA_LEFT ITA_TOP);
dc -) TextOut(0, 0, szTitle, szTitle.GetLength());
dc -) MoveTo(0, nCharHeight);
dc -) LineTo(dc -) GetTextExtent(szTitle,

szTitle.GetLength()).cx, nCharHeight);

II Print People from start to last person or page size
II minus 2 (header size)
nEnd = mine m_people.GetCount() - nPerson, nExtPage-2);
for (nStart = 0; nStart < nEnd; nStart++, nPerson++)

212 Class libraries User's Guide

}
}

}

{

}

x 0;
y nCharHeight * (nStart+2);

pCurrent = m_people.GetPerson(nPerson);
szDisplay = " " + pCurrent -) GetLastName() +" "+

pCurrent -) GetFirstName();
de -) SetTextAlign(TA_LEFT ITA_TOP);
de -) TextOut(x, y, szDisplay,

szDisplay.GetLength())
szDisplay = pCurrent -) GetPhoneNumber();
de -) SetTextAlign(TA_RIGHT ITA_TOP);
de -) TextOut(x + SIZENAME * nCharWidth, y,

szDisplay, szDisplay.GetLength());

szDisplay = pCurrent -) GetModTime().Format(
"%m/%d/%y %H:%M");

de -) TextOut(x + (SIZENAME + SIZEPHONE) *
nCharWidth, y,
szDisplay, szDisplay.GetLength());

de -) EndPage();

de -) EndDoe();
de -) DeleteDC();
SetCursor(AfxGetApp() -) LoadStandardCursor(IDC_ARROW));

OnPri nt prints the current database in response to the Print command in the
File menu. It calls the PrintDlg function defined in COMMDLG.DLL to put up
a standard Windows print dialog.

To continue the tutorial, see "Add Message Handlers for Person Menu
Commands" on page 216. For more information on the handlers you just added,
see the discussion below, "Discussion: File Menu Message Handlers."

Phone Book: Message Handlers 213

Discussion: File Menu Message Handlers
This discussion explains the File menu message-handler member functions. Figure
6.2 shows schematically how menu commands are processed.

Windows

!
I Sends WM_COMMAND message

Main window object Dispatches message through message map

!
Message-handler function

!
I Asks database object for data

Database object

!
I Provides data-handling operations

Message-handler function I Processes message

Figure 6.2 How Menu Commands Are Processed

OnNew
When the user chooses the New command in the File menu, a WM_ COMMAND
message causes the main window object's OnNew member function to be called
through the message map. The function creates a new database if there isn't an
existing database.

If there is no open database OnNew creates a new, empty database object. To create
one, it calls the New memberfunction of the CDataBase object. This call is passed
through the m_ peop 1 e member variable of the main window object, a variable of
type CDataBase. The database object's New member function destroys the
CPerson List object for the old database if there was one (and the CPers on Lis t
for found items, if there was one), then constructs a new CPersonL i st object, stor­
ing it in the database object's m_pDataL i st member.

If there is an existing CDataBase object in the window object's m_ peopl e mem­
ber variable, On New checks to see if the database has unsaved changes. If it has,
the function displays a Windows message box to ask if the user wants to save the
old database before creating a new one. If so, OnNew calls the window object's
Save member function to serialize the old database and make it persistent. In the
process, it gets a filename from the user if the database has never been saved

214 Class Libraries User's Guide

before. Once the old database has been saved, the New member function of class
CDataBase is called as described previously.

Afterhavingits CDataBase member construct anew CPersonList,thewindow
object's OnNew member function calls the window object's SetMenu member
function to adjust the availability of menu commands. Then, because the new
database has never been saved to a file, OnNew sets the window title to "Untitled,"
calls the OnSi ze member function because the number of records in the database
has changed. OnSi ze calls the window object's Invalidate member function, in­
herited from class CWnd, to mark the window's client area invalid. This causes
Windows to send a WM_PAINT message to the window so it will be redrawn
(erased, actually, in the case of a new database).

OnOpen
When the user chooses the Open command in the File menu, the main window ob­
ject's On Open member function is called to open an existing database file. If there
is an existing database open, OnOpen, like On New, saves the existing database to a
file, if the user wishes. Then the function opens the new database.

On Open calls the Fi 1 eDl 9 member function to get a filename from the user.
Fi 1 eDl 9 is a utility member that creates and fills up an OPENFILENAME
data structure and passes it in a call to the Windows common dialog function
GetOpenFileName. Fi 1 eDl 9 also sets up a filter string that specifies what file
types are to be displayed by the Windows standard file open dialog box. OnOpen
passes a Boolean value, bOpen, to Fi 1 eDl g. If bOpen is TRUE, Fi 1 eDl 9 invokes
the standard open dialog. If it' s FALSE, Fi 1 eDl 9 invokes the standard save
dialog.

Once OnOpen obtains a filename from the user, it calls the database object's
DoOpen member function to open the file and read it into a CPersonL i st object.
The database object's DoOpen member calls its ReadDataBase member function
to do the work. You saw that function in Chapter 2 and again in Chapter 4, under
"Discussion: Class CDataBase" on page 134. ReadDataBase can throw an excep­
tion, so the window object's On Open member puts its call to

m_people.DoOpen

inside an exception frame. You saw how exception frames work in Chapter 2.

If a file has been successfully opened and read, the window object's OnOpen mem­
ber sets the window title to the filename, adjusts the menus with a call to the win­
dow object's SetMenu member, and causes the window to be updated. If there was
an exception, On Open displays a Windows message box with an error message.

Phone Book: Message Handlers 215

OnSave, OnSaveAs, and Save
When a database has unsaved changes, or has never been saved to a file, the user
can save it by choosing the Save or Save As command in the File menu. The Save
As menu command prompts the user for a filename, then saves the database to that
file. The Save command is used when the database already has a filename as­
sociated with it. The Save command serializes the C Per san Lis t in the database if
it has a filename. If not, the Save command also prompts the user for a filename.

Phone Book implements the Save As menu command with the CMa i nWi ndaw
class's OnSaveAs member function. The main window object's OnSaveAs
member simply calls the window object's member function, Save. Save is a
utility member function called by several other member functions that need to
save an open database. These include the main window object's On New, On Open,
OnDBCl ase, and OnCl ase member functions.

S a ve first checks to see if the database already has a name. It does this with a call
to the database object's IsNamed member. If it has a name, Save callsthe
database object's DoSave member function through the window object's
m_ peap 1 e member variable. This call takes no argument because the database al­
ready has a name in its m_ Fi 1 eName member variable, where DaSave can access
it. The database object's DaSave member calls its Wri teDataBase member func­
tion to do the work.

This call can throw an exception, so the main window object's Save member puts
an exception frame around the attempt to save the data. (For more information
about the database object'S DaSave member function, see "Discussion: Class
CDataBase" on page 134 in Chapter 4.) Sa ve attempts to open the file and write
the database to it.

If the database has not yet been named, Save displays a standard Windows save
dialog box asking the user for a filename. The dialog box is invoked by a call to
Fi 1 eDl g, the utility member function that was explained under "OnOpen" on page
214. If it gets a filename, it calls the CDataBase object's DaSave member function
through m_ peap 1 e, passing the filename as an argument. Then it sets the window
title to the file title stored in m_ s z F i 1 e Tit 1 e. (This is the filename in uppercase let­
ters with no path.)

OnDBClose, OnClose, and OnExit
If the user chooses the Close command in the File menu, the main window ob­
ject's OnDBCl ase member function is called to close the database. The program
continues to run. If the user chooses the Exit command in the File menu, the main
window object's OnExi t member is called. OnExi t calls OnCl ase. This sequence
of calls destroys the database and ends the program. The same cleanup is required
for the Exit command in the File menu as for the case in which Windows sends a

216 Class libraries User's Guide

WM_ CLOSE message in response to the system menu. Both sequences are
mapped to the same code.

If the database has unsaved changes, OnClose asks the user if the file should be
saved. If the user wishes to save the file, the Save member function is called to
handle writing the file.

If the database doesn't need to be saved, OnClose calls the CDataBase object's
Termi nate member function, through m_ peop 1 e, to destroy the database's
CPersonL i st objects (the main list and the found list).

6.4 Add Message Handlers for Person Menu Commands
This section explains the sixth step in writing Phone Book: add message-handler
functions for the Person menu. Figure 6.3 shows the Phone Book Person menu.

Figure 6.3 Phone Book Person Menu

~ To add the Person menu message-handlers:

1. Add the following OnAdd message-handler member function to the
CMai nWi ndow section of your VIEW.CPP file below the OnExit member
function:

II CMainWindow: :OnAdd
II Using the EditOialog fill in a new person object. If the user
II selects OK then add the person, call OnSize to resize the scroll
II region, and invalidate the screen so it will be redrawn with the
II new person in the correct order.
/!
void CMainWindow::OnAdd()
{

CPerson* person=new CPerson();

CEditDialog dlgAdd(person, this);
if (dlgAdd.DoModal() == IDOK)
{

m_people.AddPerson(person);
OnSize(0, m_cxClient, m_cyClient);

Phone Book: Message Handlers 217

else
delete person;

OnAdd implements the Add command in the Person menu. It constructs a new
CPerson object, constructs a CEditDi al og object so the user can fill in the per­
son's name and phone number, and calls member functions of the database ob­
ject to add the person object to the list.

2. Add the following OnDe 1 ete message-handler member function to the
CMa i nWi ndow section of your VIEW.CPP file below the OnAdd member
function:

II CMainWindow::OnDelete
II Deletes the current selection.
II now past the end of the list.
II length has now changed.

Check to see if the selection is
Also call OnSize since the list

/!
void CMainWindow::OnDelete()
{

if (m_nSelectLine == -1
{

MessageBox("Select a person to delete first");
return;

m_people.DeletePerson(m_nSelectLine);
if (m_nSelectLine >= (int)m_people.GetCount()

m_nSelectLine--;
OnSize(0, m_cxClient, m_cyClient);

OnDel ete works on the currently selected person in the database. It implements
the Delete command in the Person menu to delete the selected person.

3. Add the following On Fi nd message-handler member function to the
CMainWindow section ofyourVIEW.CPP file below the OnDelete member
function:

II CMainWindow::OnFind
II Gets information from the CFindDialog modal dialog box, then
II searches for matching people. Note the Add and Delete menu
II items are disabled after a find is made. Find All is enabled.
/!
void CMainWindow: :OnFind()
{

CFindDialog dlgFind(this);
if (dlgFind.DoModal() lOOK &&

dlgFind.GetFindString().GetLength() != 0)

if m_people.DoFind(dlgFind.GetFindString()))
{

m_nSelectLine = -1;

218 Class Libraries User's Guide

}

else

}

CString tmp;
tmp = m_people.GetTitle() + " Found: "

+ dlgFind.GetFindString();
SetWindowText(tmp);
CMenu* pMenu = GetMenu();
pMenu -> EnableMenuItem(IDM_FINDALL, MF_ENABLED);
pMenu -> Enabl eMenuItem(IDM_DELETE, MF_GRAYED);
pMenu -> EnableMenuItem(IDM_ADD, MF_GRAYED);
OnSize(0, m_cxClient, m_cyClient);

MessageBox("No match found in list.");

OnFi nd constructs a dialog object requesting a search string. The string is
passed to the database object's DoFi nd member function, which searches the
database and returns a list of pointers to found person objects. The window's
client area is invalidated so that the next time the window is painted, the found
list is displayed instead of the main database list.

4. Add the following On Fi ndA 11 message-handler member function to the
CMa i nWi ndow section of your VIEW.CPP file below the OnFi nd member
function:

II CMainWindow: :OnFindAll
II Returns to view the whole database. Add, Delete are re-enabled,
II and Find All is again disabled. OnSize is called because the list
II has changed length.
II
void CMainWindow::OnFindAll()
{

}

m_people.DoFind();
SetWindowText(m_people.GetTitle());
CMenu* pMenu = GetMenu();
pMenu -> Enabl eMenuItem(IDMJINDALL, MF_GRAYED);
pMenu -> EnableMenuItem(IDM_DELETE, MF_ENABLED);
pMenu -> EnableMenuItem(IDM_ADD, MF_ENABLED);
OnSize(0, m_cxClient, m_cyClient);

When a list of finds is on display, On Fi ndA 11 returns the original database list
to the display, replacing the list of found persons.

5. Add the following On Ed it message-handler member function to the
CMai nWi ndow section of your VIEW.CPP file below the OnFi ndA 11 member
function:

II CMainWindow::OnEdit
II Using the member variable m_nSelectLine a CEditDialog is created
II and filled with the selected person. If the dialog OK button is
II used the dialog saves the changes into the object.

Phone Book: Message Handlers 219

II
void CMainWindow: :OnEdit()
{

if (m_nSelectLine == -1
{

MessageBox("Select a person to edit first");
return;

II Get a pointer to the person in the list.
CPerson* pPerson = m_people.GetPerson(m_nSelectLine);
CPerson tmpPerson = *pPerson;

IIEdit the data.
CEditDialog dlgEdit(&tmpPerson, this);

Ilif the ok button is pressed redraw the screen
if (dlgEdit.DoModal() == lDOK)
{

m_people.ReplacePerson(pPerson, tmpPerson);
InvalidateLine();

On Ed it implements the Edit command in the Person menu. It constructs a
dialog object that displays the information contained in the currently-selected
person object. When the user ends the dialog, the selected person object is re­
placed by a new object containing the new information.

To continue the tutorial, see "Add Message Handlers for Help Menu Commands"
on page 222. For more information on the handlers you just added, see the discus­
sion in the next section.

Discussion: Person Menu Message Handlers
This section explains the Person menu message-handler member functions.

OnAdd
With a database open, the user can add new persons to the list. If the user chooses
the Add command in the Person menu, the main window object's OnAdd member
function is called.

OnAdd constructs a new CPerson object in the heap with new and displays a
CEdi tDi al og box to get information for the person. If the dialog returns IDOK,
the new person object is added to the database and the window is repainted.

The function uses a CEdi tDi a log dialog object to fill the new person object with
data. The dialog object is constructed on the frame of the function and its

220 Class libraries User's Guide

DoModal member function is called to run the dialog. DoModal returns IDOK if
the user clicked the OK button.

The new person object is added to the database by calling the AddPerson member
function of the CDataBase object, which is stored in the main window object's
m_ peop 1 e member variable. At this point, the function calls the main window ob­
ject's OnS i ze member to recalibrate the scroll bars for the new number of persons
in the database. (If the size of the data has exceeded the size of the window's
client area, Windows automatically adds scroll bars.) Notice this explicit use of
OnSi ze, which is normally called in response to a Windows W~SIZE message.
For more information on OnSi ze, see page 226.

After adding the new person to the database and recalibrating the scroll bars,
OnAdd invalidates the entire client area of the window.

OnDelete
In addition to adding new persons, the user can delete existing persons from the
database. If the user first selects a line of the display representing a person and
then chooses the Delete command in the Person menu, the main window object's
OnDel ete member function is called.

A person must be selected before it's possible to delete that person from the
database. So OnDel ete first checks to see if there is a current selection. If there
isn't, the m_nSel ectL ine member variable of the main window object has the
value -1. In that case, OnDel ete displays a Windows message box requesting that
the user make a selection first, and returns.

If there is a selection, the function calls its CDataBase object's Del etePerson
member, through the main window object's m_peopl e member variable, passing
the selection line number as an index to use in finding the correct person in the
database. The Delete command can only be selected from the Person menu when
the main database is being viewed. Then OnDe 1 ete locates the correct record in
the database, deletes the person object there, and removes the entry from the list.

Once the indicated person has been deleted from the database, OnDel ete con­
tinues by resetting the selection. Unless the person deleted was the last in the
database, the function moves the selection to the next person. Otherwise, it moves
the selection to the new last person. With the selection reset, OnDel ete invalidates
the client area of the window.

Phone Book: Message Handlers 221

OnEdit
Besides adding and deleting persons, the user can edit persons in the database. If
the user selects a person on the display and chooses the Edit command in the Per­
son menu (or presses the ENTER key or double clicks the line with the mouse), the
main window object's OnEdi t member function is called.

As with OnDe1 ete, a person must first be selected. If one isn't, OnEdi t displays a
Windows message box asking the user to make a selection first, then returns.

If a person is selected, OnEdi t calls the database object's GetPerson member
function, through m_ peop 1 e, passing the line number of the selection, which is
used as an index into the list. This call returns a pointer to the selected person ob­
ject.

OnEdit constructs a new, empty CPerson object, person, on the frame of the func­
tion and uses the overloaded assignment operator of class CPerson to assign the
value of the person object retrieved from the list to the new person object. This al­
lows the user to edit a copy rather than the original. Only if the user finishes
editing the copy and clicks the OK button in the edit dialog box does the copy re­
place the original person object in the list.

The function constructs a CEditDi a1 09 object, passing it a pointer to the copy.
While the dialog box runs, the user can edit the person object's first name, last
name, or phone number. If the dialog box returns IDOK, the On Ed it calls the
CDataBase object's Rep1 acePerson member to replace the original person object
with the edited one. Rep1 acePerson copies the edited person's data into the old
person object, gets the current date and time, and calls the new CPerson
object's SetModTi me member function to record the modification date.

After replacing the original person object in the database with the edited one,
On Ed it invalidates the line that was changed.

OnFind and OnFindAIl
While a database is open, the user can search it for persons with a given last name.
If the user chooses the Find command in the Person menu, the main window ob­
ject's 0 n Fin d member function is called. After 0 n Fin d has displayed a list of
found persons in the window, the user can choose the FindAll command in the Per­
son menu to redisplay the full database. This menu command calls the main win­
dow object's On Fi ndA 11 member function.

On Fin d displays a C Fin d D i a 1 09 box to get a last name to search for. The function
then passes this name string as the argument in a call to the CDataBase object's
DoFind member,through m_peop1e.Thedatabaseobject's DoFind member
function operates differently depending on the string passed to it. If the string

222 Class Libraries User's Guide

argument passed is NULL, Do F; nd deletes any existing found list from a previous
search.

If a string containing a last name is passed in, the database object's OoF; nd
member function calls the F; n d Per son member function of the C Per son L; s t
object in m_ pOa ta L; s t to return a new C Pe r son L; s t object containing pointers to
all found objects. This list is assigned to the CO a taB a s e object's m_ p F; n d L; s t
member variable.

While the search is being conducted, the window title changes to the text "Phone
Book - [database name] Found: [Search string]".

On F; nd next updates the menus, using an object of class eMenu, to enable the
Find All command in the Person menu and disable the Add and Delete commands
in the Person menu. The function constructs a eMenu object on the frame of the
function and calls the Windows function GetMenu to obtain a pointer to the pro­
gram's menus. Then the function calls member functions of the eMenu object to
adjust the menus.

After updating menus, 0 n F; n d invalidates the client area so the window will be re­
painted to display the found list.

The main window object's OnF; ndA 11 member function works similarly, except
that it doesn't need to get a search string from the user. The function calls the
COataBase object's OoF; nd member function, through m_peop1 e. The argument
in this call to OoF; nd defaults to NULL, which causes OoF; nd to destroy the
existing found list. When the window's contents are redisplayed the next time
On P a; ntis called, the full database is displayed.

On F; ndA 11 also updates the menus, as in On F; nd, and invalidates the client area so
the window will be repainted to display the full database.

6.5 Add Message Handlers for Help Menu Commands
This section explains the seventh step in writing Phone Book: add message­
handler functions for the Help menu. Figure 6.4 shows the Phone Book Help
menu. Figures 5.4 through 5.6 in Chapter 5 show the three Help menu dialog
boxes in Phone Book.

Figure 6.4 Phone Book Help Menu

Phone Book: Message Handlers 223

~ To add the Help menu message-handlers:

1. Add the following OnHe 1 p message-handler member function to the
CMainWi ndow section of your VIEW.CPP file below the OnEdit member
function:

II CMainWindow::OnHelp
II
void CMainWindow::OnHelp()

{

}

if (!m_peopl e. IsPresent()
{

CModalDialog dlgHelp("NoData", this);
dlgHelp.DoModal ();
return;

if (!m_people.lsNamed())
{

CModalDialog dlgHelp("NoName", this);
if (dlgHelp.DoModal() == IDCANCEL)

return;

CModalDialog dlgHelp("Enter", this);
dlgHelp.DoModal();

You already have an OnAbout menu command handler for your main window
class. OnAbout is the same as it was in the Hello program. You copied it when
you copied the Hello files to start Phone Book. To keep the order of definitions
in VIEW.CPP consistent with Listing 2 in Chapter 5, you can put the definition
of the OnAbout member function after OnHel p.

To continue the tutorial, see "Add a Keyboard and Mouse Interface" on page 230.
For more information on the handlers you just added, see "Discussion: Help Menu
Message-Handlers" below.

Discussion: Help Menu Message Handlers
This section explains OnHel p, the Help menu's Help message-handler member
functions.

At any time while the Phone Book program is running, the user can choose the
U sing Phone Book command in the Help menu to get information about how to
use the program. This Help is somewhat context-sensitive. That is, different
information appears for different situations. This menu command calls the main
window object's OnHel p member function.

224 Class Libraries User's Guide

If no database is open, OnHe 1 p displays a dialog box explaining that the user can
create or open a database.

If a database is open but has not been saved, the function displays a dialog box ex­
plaining how to save it. This dialog box also has a Continue button that the user
can click to display a second dialog box explaining how to add, delete, and edit
persons in the database.

If a database is open and has no unsaved changes, the function displays the dialog
box discussed above, which explains how to add, delete, and edit persons in the
database.

Each of these dialog boxes uses a CModalDialog object. Each uses its own sepa­
rate dialog resource template in the .RC file.

6.6 Add Message Handlers for Creation and Sizing
This section explains the eighth step in writing Phone Book: add message-handler
functions to the CMai nWi ndow class forthe WM_SIZE, and WM_CREATE
messages, and add the OnClose member function.

~ To add these message-handler functions:

1. Add the following WM_ CREATE message-handler function to the
CMa i nWi ndow section of your VIEW.CPP file below your OnAbout member
function and above the OnClose member function that you added earlier. This
will preserve the same order as in Listing 2 in Chapter 5.

II CMainWindow::OnCreate
II Queries the current text metrics to determine char size.
II
int CMainWindow::OnCreate(LPCREATESTRUCT)
{

TEXTMETRIC tm;

II Get the text metrics.
CDC* dc = GetDC();
dc -> GetTextMetrics(&tm);
ReleaseDC(dc);

II Decide the statistics on how many rows, etc., we can display.
m_cxChar tm.tmAveCharWidth;
m_cxCaps = ((tm.tmPitchAndFamily & 1)? 3 : 2) * m_cxChar I 2;
m_cyChar = tm.tmHeight + tm.tmExternalLeading;
m_nMaxWidth = (SIZENAME + SIZEPHONE + 1) * m_cxCaps;
m nVscrollPos m_nHscrollPos = 0;

Phone Book: Message Handlers 225

return 0;

On Create gets and stores text metric and scroll information to be used later in
the program. It's called when Windows sends a WM_ CREATE message
when the window is created.

2. Add the following WM_SIZE message-handler function to the
CMainWindow section of your VIEW.CPP file below OnCreate and
above OnClose:

II CMainWindow::OnSize
II When resized, we need to recalculate our scrollbar ranges based on
II what part of the database is visible.
II
void CMainWindow::OnSize(UINT, int x, int y)
{

m cxClient x;
m_cyClient y;

m_nVscrollMax = max(0,
(int)(m_people.GetCount()) - m_cyClient I m_cyChar);

m_nVscrollPos = mine m_nVscrollPos, m_nVscrollMax);

SetScrollRange(SB_VERT, 0, m_nVscrollMax, FALSE);
SetScrollPos(SB_VERT, m_nVscrollPos, TRUE);

m nHscrollMax max(0, (m_nMaxWidth - m_cxClient I m cxChar);
m nHscrollPos mine m_nHscrollPos, m_nHscrollMax);

SetScrollRange(SB_HORZ, 0, m_nHscrollMax, FALSE);
SetScrollPos(SB_HORZ, m_nHscrollPos, TRUE);
Invalidate(TRUE);

OnSi ze recalculates the size of the window's client area, resets the scrollbars,
and invalidates the client area to cause repainting.

To continue the tutorial, see "Add Scrolling Member Functions" on page 227. For
more information on the handlers you just added, see the discussion in the next
section.

Discussion: Creation and Sizing Member Functions
This section discusses the OnCreate and OnSi ze message-handler member func­
tions. The OnClose member function was discussed earlier in "Add Message
Handlers for File Menu Commands" on page 205.

226 Class Libraries User's Guide

OnCreate
When the window is initially created, Windows sends it a WM_ CREATE mes­
sage. This invokes the main window object's OnCreate member function. In
Hello, there was nothing special to do for a WM_ CREA TE message, but Phone
Book uses the message to set its variables for text drawing in the main window's
On Pa i nt member function and for scroll-bar initialization. The member function
initializes member variables that store the text metrics information and the current
scroll size information.

As defined for the CMainWindow class, OnCreate uses a Windows
TEXTMETRIC structure and a Foundation device-context object of class CDC.
The device-context object is constructed on the frame of the function, then initial­
ized by a call to the Windows function GetDC. This creates a Windows device
context for the screen, which provides information on fonts and text measurements
needed for drawing text in the window.

The On Create member function calls the device-context object's GetTextMetrics
member function to fill the TEXTMETRIC structure with information. Then it re­
leases the device context by calling the Windows function ReleaseDC. Using the
text information structure, the function sets its variables. These are member varia­
bles declared in class CMa i nWi ndow.

As a local variable, the device-context object is destroyed when the function
returns.

OnSize
When Phone Book's window is resized, Windows sends the window a
WM_SIZE message. The window object's OnSi ze member function responds to
this message by recalibrating the scroll bars to fit the resized window. OnSi ze is
also called explicitly whenever the size of the data list changes. This occurs, for
example, in On De 1 ete, OnAdd, On Fi nd, and On Fi ndA 11.

Windows passes the new height and width of the window to the 0 n S i z e function.
OnSi ze uses these values to reset its client area size values and to adjust the
size of its scroll bars. Two CWnd member functions, SetScrollRange and
SetScrollPos, are used to calibrate the scroll bars. Then the window's client area
is invalidated to force an update and repaint the window, including its scroll bars.

Note The program doesn't use the Microsoft Foundation Class CScrollBar for its
scroll bars because, for a main window, Windows automatically supplies scroll
bars as needed. Class CScrollBar is a control class used to add scroll bars to a
child window enclosed by a main window.

Phone Book: Message Handlers 227

6.7 Add Scrolling Member Functions
This section explains the ninth step in writing Phone Book: add message-handler
functions for vertical and horizontal scrolling.

~ To add the scrolling message-handlers:

1. Add the following OnVScroll message-handler member function to the
CMainWindow section of your VIEW.CPP file below the OnSize member
function:

I I CMa i nWi ndow: : OnVScro 11
II Translate scroll messages into Scroll increments and then
II checks the current position to determine if scrolling is possible
II
void CMainWindow: :OnVScroll(UINT wParam, UINT pos, CWnd*)
{

short nScrolllnc;

switch (wParam)
{

case SB_ TOP:
nScrolllnc
break;

case SB_BOTTOM:

-m_nVscrollPos;

nScrolllnc m nVscrollMax - m_nVscrollPos;
break;

case SB_LINEUP:
nScrolllnc -1;
b rea k;

case SB_LINEDOWN:
nScrolllnc = 1;
break;

nScrolllnc min(-1, -m_cyClient I m_cyChar);
break;

case SB_PAGEDOWN:
nScrolllnc = max(1, m_cyClient I m_cyChar);
break;

case SB_THUMBTRACK:
nScrolllnc = pos - m_nVscrollPos;
break;

default :
nScrolllnc '" . ,

228 Class Libraries User's Guide

}

}

if nScroll Inc = max(-m_nVscroll Pos,

{

}

mint nScrollInc, m nVscrollMax - m nVscrollPos)))

m_nVscrollPos += nScrollInc;
ScrollWindow(0, -m_cyChar * nScrollInc);
SetScrollPos(SB_VERT, m_nVscrollPos);
UpdateWindow();

OnVScroll responds to mouse clicks in the vertical scrollbar.1t uses a switch
statement to determine what part of the scrollbar was clicked. It then translates
the location information into scrolling offsets and scrolls the window to match.

2. Add the following OnHScroll message-handler member function to the
CMai nWi ndow section of your VIEW.CPP file below the OnVScroll member
function:

II CMainWindow::OnHScroll
II Translate scroll messages into Scroll increments and then
II checks the current position to determine if scrolling is possible
II
void CMainWindow::OnHScroll(UINT wParam, UINT pos, CWnd*)
{

int nScroll Inc;
swi tch (wPa ram
{

}

case SB_LINEUP:
nScrollInc -1;
break;

case SB_LINEOOWN:
nScrollInc = 1;
break;

case SB_ PAGEUP:
nScrollInc -PAGESIZE;
break;

case SB_PAGEOOWN:
nScrollInc = PAGESIZE;
break;

case SB_THUMBPOSITION:
nScrollInc = pos - m_nHscrollPos;
break;

default :
nScrollInc 0· ,

Phone Book: Message Handlers 229

if (nScrolllnc = max(-m_nHscrollPos,

{

mine nScrolllnc, m_nHscrollMax - m nHscrollPos)))

m_nHscrollPos += nScrolllnc;
ScrollWindow(-m_cxChar * nScrolllnc, 0);
SetScrollPos(SB_HORZ, m_nHscrollPos);

UpdateWindow();

OnHScroll responds to the horizontal scrollbar.

To continue the tutorial, see "Add a Keyboard and Mouse Interface" on page 230.
For more information about the scrolling message-handlers, see the following
discussion.

Discussion: Scrolling Message Handlers
This section explains the message-handlers for vertical and horizontal scrolling.

OnHScroll, OnVScroll, and OnKeyOown
Phone Book provides scrolling support through both the mouse and the keyboard.

When the user clicks the mouse in the vertical scroll bar of the Phone Book win­
dow, Windows sends the window a W~ VSCROLL message, which invokes
the main window object's OnVScroll member function. Likewise, a click in the
horizontal scroll bar invokes OnHScroll for a WM_HSCROLL message.

These functions greatly resemble the code normally seen in the WndProc function
that you write for a traditional Windows program that handles scrolling for a win­
dow. Each function uses a C switch statement to select an scrolling adjustment
based on what part of the scroll bar was clicked. Each case in the switch statement
adjusts a scroll increment value appropriately. This value is used to recalculate the
"scroll position" and to scroll the window's contents accordingly. Scrolling also
forces an update to repaint the window.

In Phone Book, the scroll bars respond not only to the mouse but also to the RIGHT

ARROW, LEFT ARROW, PAGE UP, PAGE DOWN, HOME, and END keys. The arrows scroll
horizontally. PAGE UP and PAGE DOWN scroll the height of the window. HOME

scrolls to the top of the database list. END scrolls to the bottom of the database list.
The OnKeyDown member function translates these keys into scrolling actions.
These scrolling actions do not change the current selection in the window.

230 Class Libraries User's Guide

6.8 Add a Keyboard and Mouse Interface
This section explains the tenth step in writing Phone Book: add message-handler
functions for the keyboard and the mouse.

~ To add the keyboard and mouse message-handlers:

1. Add the following On Up message-handler member function to the
CMainWindow section of your VIEW.CPP file below the OnHScroll member
function:

II CMainWindow::OnUp
II Uses Accelerator tables to link the up arrow key to this
II routine. Decrements the select line with checking for scrolling
II and wrapping off the top of the list.
II
II
void CMainWindow::OnUp()
{

))

Inval idateLine();

if (m_nSelectLine <= 0)
{

}

else
{

}

m nSelectLine m_people.GetCount() - 1;
m_nVscrollPos max(0, m_nSelectLine + 1 - (m_cyClient I

m_cyChar));
Invalidate(TRUE);

m_nSelectLine--;
if (m_nSelectLine - m_nVscrollPos < 0)

OnVScroll(SB_LINEUP, 0, NULL);

II Selection is off the screen
if (m_nSelectLine - m_nVscrollPos > (m_cyClient I m_cyChar

{

}

m_nVscrollPos = m_nSelectLine + 1 - (m_cyClient I
m_cyChar);

SetScrollPos(SB_VERT, m_nVscrollPos, TRUE);
Invalidate(TRUE);

if (m_nSelectLine - m_nVscrollPos < 0)
{

}

m_nVscrollPos = m_nSelectLine;
SetScrollPos(SB_VERT, m_nVscrollPos, TRUE);
Invalidate(TRUE);

Phone Book: Message Handlers 231

InvalidateLine();

OnUp responds to the UP ARROW key. It moves the selection in the window
upward one line. At the top of the database list, the selection wraps around to
the bottom of the list. The database record that was formerly selected is un­
highlighted and the newly selected line is inverted to highlight it. OnUp calls
the Inva 1 i dateL i ne utility memberfunction to change a line's highlighting.
You'll add I nva 1 i date Line later.

2. Add the following On Down message-handler member function to the
CMai nWi ndow section of your VIEW.CPP file below the On Up member
function:

II CMainWindow::OnDown
II Uses Accelerator tables to link the down arrow key to this
II routine. Inc the select line with checking for scrolling
II and wrapping off the bottom of the list.
/!
void CMainWindow::OnDown()
{

InvalidateLine();

if m_nSelectLine == (int)(m_people.GetCount() - 1)
II m_nSelectLine == -1)

else
{

m_nSelectLine = 0;
m_nVscrollPos = 0;
Invalidate(TRUE);

m_nSel ectL ine++;
if ((m_nSelectLine - m_nVscrollPos + 1) > (m_cyClient I

m_cyChar))
OnVScroll(SB_LINEDOWN, 0, NULL);

II Selection is off the screen
if ((m_nSelectLine - m_nVscrollPos) > (m_cyClient I

m_cyChar))
{

}

m_nVscrollPos = m nSelectLine + 1 - (m_cyClient I
m_cyChar);

SetScrollPos(SB_VERT, m_nVscrollPos, TRUE);
Invalidate(TRUE);

232 Class Libraries User's Guide

}

}

if ((m_nSelectLine - m_nVscrollPos) < 0)
{

}

m_nVscrollPos = m_nSelectLine;
SetScrollPos(SB_VERT, m_nVscrollPos, TRUE);
Invalidate(TRUE);

InvalidateLine();

On Down moves the selection down one line or, if it reaches the last line of the
database information, wraps the selection around to the top.

3. Add the following OnLButtonDown message-handler member function to the
CMa i nWi ndow section of your VIEW.CPP file below the OnDown member
function:

II CMainWindow::OnLButtonDown
II Turns the location of the mouse pointer into a line number
II and stores that information in m_nSelectLine. Uses
II InvalidateLine to cause OnPaint to change the screen.
II
void CMainWindow::OnLButtonDown(UINT, CPoint location)
{

InvalidateLine();

int pos = m_nVscrollPos + location.y I m_cyChar;

}

if ((m_nSelectLine != pos
(int)m_people.GetCount()

{

}

else

m_nSelectLine = pos;
InvalidateLine();

m_nSelectLine -1;

&& (pos <
)

OnLButtonDown responds to a mouse click in the client area of the window. It
checks the location of the click and calculates the line number that was clicked.
Then it changes the selection to that line. If there is no selection, the member
variable m_ nSe 1 ectL i ne is set to -1 to indicate that status.

4. Add the following OnLButtonDbl Cl k message-handler member function to
VIEW.CPP below On LButtonDown:

II CMainWindow::OnLButtonDblClk
II Translates mouse left button double click into edit person.
II
void CMainWindow::OnLButtonDblClk(UINT wParam, CPoint location

Phone Book: Message Handlers 233

if (m_nSelectLine == -1)
OnLButtonDown(wParam, location);

OnEdit() ;

OnLButtonDbl C1 k responds to a double-click in the window's client area. A
double-click on a line of the display calls the On Ed it member function to allow
the user to edit data for the selected person.

5. Add the following OnKeyDown message-handler member function to
VIEW.CPP below OnLButtonDbl C1 k:

II CMainWindow::OnKeyDown
II Translates keyboard input into scroll messages
II
void CMainWindow: :OnKeyDown(UINT wParam, UINT, UINT
(

switch (wParam)
(

case VK_HOME:
OnVScroll(SB_ TOP, 0, NULL);
break;

case VK_ END:
OnVScrol1 (SB_BOTTOM, 0, NULL);
break;

case VK_PRIOR:
OnVScroll(SB_PAGEUP, 0, NULL);
break;

case VK_NEXT:
OnVScroll(SB_PAGEDOWN, 0, NULL);
break;

case VK_LEFT:
OnHScroll(SB_PAGEUP, 0, NULL);
break;

case VK_RIGHT:
OnHScroll(SB_PAGEDOWN, 0, NULL);
break;

OnKeyDown implements keyboard commands for scrolling. Hence it's closely re­
lated to the scrolling member functions presented in the previous section. It's
presented here as part of the keyboard interface.

To continue the tutorial, see "Add a Member Function to Handle the WM_PAINT
Message" on page 235. For more information on the handlers you just added, see
the discussion in the next section.

234 Class Libraries User's Guide

Discussion: Keyboard and Mouse Message Handlers
This section explains the keyboard and mouse message-handler member functions.

OnUp and OnDown
The Phone Book window contains lines of text, each line representing one per­
son's data. For some actions, such as deleting or editing a person, the user must
"select" a person-by selecting a line in the window-before giving a menu
command. Figure 6.5 shows the display with a person selected.

File Person Help
Adams. Thomas
Adams. Nina
Brent Zoe
Burroughs. Edgar
Jones. Allen

878-6789
789-5640
876-4534
767-4444
887-9809

eene, Carol n 989-0900
Mannheim. William
Monroe. Louise
Smith. John
Smith. Jayne

989-7832
767-9876
898-5439
989-1209

Figure 6.5 A Selection in Phone Book

101
101
1011
1011
101

101
101
101
101

There are several ways to select a person for an action. One way is to press the UP

ARROW or DOWN ARROW keys. The UP ARROW moves the selection up a line. If the
selection was already on the first person in the database, UP wraps the selection
down to the last person in the database. The DOWN ARROW moves the selection
down a line and wraps to the top. Double-clicking a line in the display both selects
the person and invokes the main window object's OnEdi t member function for it.

When the Phone Book window receives an ON_ COMMAND message contain­
ing the ID number of either of these keys (VlL UP and VlLDOWN), the mes­
sage map calls the main window object's OnUp or On Down message handler.

On Up decrements the line number of the current selection. On Down increments it.
Both functions also call a utility member function, I nva 1 i date Line to calculate
what part of the display must be repainted and to invalidate that area.

OnlButtonDown and OnlButtonDblClk
When the user presses the left mouse button over the display, the message map
converts the WM_LBUTTONDOWN message into a call to OnLButtonDown.
When the user double-clicks a line in the display, the message map converts the
WM_LBUTTONDBLCLKmessage into a call to OnLButtonDb1 C1 k.

Phone Book: Message Handlers 235

OnLButtonDown works somewhat like the keyboard handlers. It first invalidates the
rectangle containing the currently selected line, if any. Then it calculates whether
the point at which the mouse was clicked is within the range of the list of persons.
If so, it sets the new selection to the line whose rectangle contains that point and in­
validates the rectangle. The function causes an update so the window will be re­
painted with the new selection highlighted.

Similarly, when the user double-clicks the left mouse button, the window object's
OnLButtonDbl Cl k member function processes a double click in the display. lithe
mouse click location was in a line of text representing a person's data,
On LButton Db 1 Cl k invokes the On Ed it message-handler function just as if
the person had been selected and then that menu command chosen.

Generally a WM_LBUTTONDOWN message precedes a
WM_LBUTTONDBLCLKmessage, so that OnLButtonDown is called to select
the database record. The subsequent WM_LBUTTONDLBLCLK message
causes the On LButton Db 1 C 1 k member function to be called. It calls On Ed it.

Note The default window style is WS_DBLCLICK, which ensures that the
double-click message is sent by Windows.

6.9 Add a Member Function to Handle the
WM_PAINT Message

This section explains the eleventh step in writing Phone Book: add a message­
handler function to handle the WM_PAINT member function.

~ To add the OnPaint message-handler:

• Add the following OnPa i nt message-handler function to the
CMa i nWi ndow section of your VIEW.CPP file below the On Key Down
message handler and above Save:

II CMainWindow::OnPaint
II This routine does all the painting for the screen.
II
void CMainWindow::OnPaint()
{

CPaintDC dc(this);

II Set the Text and background colors for the DC also create a
II Brush
CBrush bBack;
dc.SetTextColor(GetSysColor(COLOR_WINDOWTEXT));
dc.SetBkColor(GetSysColor(COLOR_WINDOW));
bBack.CreateSolidBrush(GetSysColor(COLOR_WINDOW);

236 Class libraries User's Guide

II Compute the lines that need to be redrawn
int nStart = max(0, m_nVscrollPos + dc.m_ps.rcPaint.top I

m_cyChar - 1);
int nEnd = min((int)m_people.GetCount(),

m_nVscrollPos + (dc.m_ps.rcPaint.bottom I m_cyChar+l));

II Create a rect the width of the display.
CRect area(0, 0, m_cxClient, °);
CString szDisplay;
CPerson* pCurrent;

int x,y;
for (;nStart < nEnd; nStart++)
{

II if the current line is the select line then change the
II colors to the highlight text colors.
if (m_nSelectLine == nStart)
{

bBack.DeleteObject();
bBack.CreateSol idBrush(GetSysColor(COLOR_HIGHLIGHT));
dc.SetTextColor(GetSysColor(COLOR_HIGHLIGHTTEXT));
dc.SetBkColor(GetSysColor(COLOR_HIGHLIGHT));

II x is the number of characters horz scrolled * the width of
II char. y is the current line no. - number of lines scrolled
II times the height of a line.
x m_cxChar * (-m_nHscrollPos);
y = m_cyChar * (nStart - m_nVscrollPos);

II Set the rect to y and y + the height of the line. Fill the
II rect with the background color.
area.top = y;
area.bottom = y+ m_cyChar;
dc.FillRect(area, &bBack);

II Get the person and build a string with his name.
pCurrent = m_people.GetPerson(nStart);
szDisplay = " " + pCurrent -> GetLastName() + ", " +

pCurrent -> GetFirstName();

II Set the dc to write using the point as the left top of the
II character. Write the name.
dc.SetTextAlign(TA_LEFT ITA_TOP);
dC.TextOut (x, y,szDisplay, szDisplay.GetLength());

II Write the phone number right aligned.
szDisplay = pCurrent -> GetPhoneNumber();
dc.SetTextAlign (TA_RIGHT ITA_TOP);
dC.TextOut (x + SIZENAME * m_cxCaps, y, szDisplay,

szDisplay.GetLength());

}

II Write the time.
szDisplay = pCurrent ->

Phone Book: Message Handlers 237

GetModTime().Format("%m/%d/%y %H:%M");
dC.TextOut (x + (SIZENAME + SIZEPHONE) * m_cxCaps, y,

szDisplay, szDisplay.GetLength());

II If this is the select line then we need to reset the dc
II colors back to the original colors.
if (m_nSelectLine == nStart)
{

}

bBack.DeleteObject();
bBack.CreateSolidBrush(GetSysColor(COLOR_WINDOW));
dc.SetTextColor(GetSysColor(COLOR_WINDOWTEXT));
dc.SetBkColor(GetSysColor(COLOR_WINDOW));

OnPa i nt paints the database's lines of data in the window.

To continue the tutorial, see "Add Utility Member Functions" on page 238. For
more information about the OnPai nt member function that you just added, see the
following discussion.

Discussion: OnPaint
Recall from Hello that the main window object's OnPai nt member does all paint­
ing in the window, in response to an update, which generates a W~PAINT
message. Of course, Phone Book paints different information in the window, so
its On Pa i nt function is different from Hello's.

OnPai nt creates some utility objects, makes some initial calculations, and then
loops through the data, drawing the information for each person in the database on
its own line in the window.

The utility objects include a CPerson object to store information about the current
person being drawn, a CPaintDC device-context object to draw into, and a
CBrush object to represent the Windows brush needed to paint the window back­
ground. Recall that a CPaintDC object is like a CDC device-context object except
that it automatically calls BeginPaint and EndPaint for you.

The function calls the Windows function GetSysColor to get the background
color for the window. Then it calls the CreateSolidBrush member function of a
CBrush object to create a brush of the right color for the background. This brush
is later used to fill areas of the screen.

238 Class libraries User's Guide

Initial calculations determine the number of lines from the size of the database and
compute the dimensions of the rectangle to paint based on the line height for text
in the device context's current font.

The for loop paints lines of text for all person objects in the database. It first com­
putes the horizontal and vertical coordinates (relative to the window) of a rec­
tangle in which the next line is to be drawn. These are used to erase the area for
the line by painting it with the background brush object. Then the line is set up and
displayed in three parts.

First, the current person is retrieved from the database. The CPerson object's
member functions are used to set up a display string containing the person's last
and first names, separated by a comma and a space. Member functions of the
device-context object are called to align the text and paint it in the appropriate area.

Second, the display string is reconfigured to contain the person's phone number.
This is aligned and painted as a second column of information.

Third, the display string is reconfigured to contain the person's modification date.
This is aligned and painted as a third column of information.

If the line currently being displayed is the line containing the "selection," the rec­
tangle containing the line's text is inverted to highlight the selection. Only one per­
son (and one line of the display) can be selected at one time.

When all lines of data have been painted, 0 n P a i n t returns.

6.10 Add Utility Member Functions
This section explains the twelfth step in writing Phone Book: add utility member
functions. These are called by message-handler functions but are not message han­
dlers themselves.

~ To add the utility member functions:

1. Add the following Fi 1 eOl g utility member function to the CMa i nWi ndow
section of your VIEW.CPP file below the On Pa i nt member function and
above Save:

II CMainWindow::FileOlg
II Call the commdlg routine to display File Open or File Save As
II dialogs. The setup is the same for either. If bOpen is TRUE
II then File Open is displayed otherwise File Save As is displayed.
II The File Name and File Title are stored at the string pointer
II passed in.
II

Phone Book: Message Handlers 239

BOOL CMainWindow: :FileOlg(BOOL bOpen, int nMaxFile, LPSTR szFile,
int nMaxFileTitle, LPSTR szFileTitle)

}

OPENFILENAME of;

char szOirName[SIZESTRING];
char * szFilter[] =

"Phone Book Files (*.pb)\0"
"*.pb\0"
"\0";

szOirName[0] . '.
of.1StructSize = sizeof(OPENFILENAME);
of.hwndOwner = m_hWnd;
of.lpstrFilter = (LPSTR)szFilter;
of.lpstrCustomFilter = (LPSTR)NULL;
of.nMaxCustFilter = 0L;
of.nFilterlndex = lL;
of.lpstrFile=szFile;
of.nMaxFile=nMaxFile;
of.lpszFileTitle = szFileTitle;
of.nMaxFileTitle = nMaxFileTitle;
of.lpstrlnitialOir = szOirName;
of.lpstrTitle = (LPSTR)NULL;
of.nFileOffset = 0;
of.nFileExtension = 0;
of.lpstrOefExt = (LPSTR)"pb";
if (bOpen)
{

}

else
{

}

of.Flags = OFN_HIOEREAOONLY;
return GetOpenFileName(&of);

of.Flags = OFN_HIOEREAOONLY I OFN_OVERWRITEPROMPT;
return GetSaveFileName(&of);

Fi 1 eOl g is a utility function that displays a standard Windows open
file dialog box. If the call is to open a file, Fi 1 eOl g calls the
GetOpenFileName function defined in COMMDLG.DLL. Otherwise,
it calls the GetSaveFileName function. For more discussion of Fi 1 eOl g,
see "OnOpen" on page 214.

240 Class Libraries User's Guide

2. Add the following CheckForSave utility member function to the
CMa i nWi ndow section of your VIEW.CPP file below the Sa ve member function:

II CMainWindow::CheckForSave
II Whenever a new file is opened this routine will determine if
II there are unsaved changes in the current database. If so it
II will query the user and determine to save or not as appropriate.
II
BOOl CMainWindow::CheckForSave(const char* pszTitle" const char*
pszMessage)
{

if(m_people.IsDirty()
{

UINT nButton = Message80x(pszMessage" pszTitle"
MB_YESNOCANCEl);

if(nButton == IDYES)
{

if(lSave(m_people.IsNamed()
return FALSE;

else if(nButton == IDCANCEl
return FALSE;

return TRUE;

CheckForSave is called from a number of other member functions that need to
check for a current database with unsaved changes. If there are unsaved
changes, the function uses the MessageBox member function of class CWnd to
query the user's wishes. If the user clicks the message box' s Yes button, the
Save member function is called to do the work.

3. Add the following SetMenu utility member function to the CMa i nWi ndow sec­
tion of your VIEW.CPP file below the CheckForSave member function:

II CMainWindow: :SetMenu
II Whenever the Existence of the DataBase is changed this
II routine will reset the menus so only the possible commands
II are accessible.
II
void CMainWindow::SetMenu()
{

CMenu* pMenu = GetMenu();
if (m_people.IsPresent()
{

if (m_people.IsNamed()
pMenu -> EnableMenuItem(IDM_SAVE, MF_ENABlED);

else
pMenu -> EnableMenuItem(IDM_SAVE, MF_GRAYED);

pMenu -> EnableMenuItem(IDM_SAVEAS, MF_ENABlED);
pMenu -> EnableMenuItem(IDM_ClOSE, MF_ENABlED);
pMenu -> EnableMenuItem(IDM_PRINT, MF_ENABlED);

Phone Book: Message Handlers 241

pMenu -> EnableMenuItem(10M_ADD, MF_ENABLEO);
pMenu -> EnableMenuItem(10M_DELETE, MF_ENABLEO);
pMenu -> EnableMenuItem(10M_FIND, MF_ENABLEO);
pMenu -> Enabl eMenuItem(10M_EDIT, MF_ ENABLED) ;

else
{

pMenu -> Enabl eMenuItem(10M_SAVE, MF_GRAYEO);
pMenu -> Enabl eMenuItem(IOM_SAVEAS, MF_GRAYEO);
pMenu -> EnableMenuItem(10M_CLOSE, MF_GRAYEO);
pMenu -> EnableMenuItem(10M_PRINT, MF_GRAYEO);
pMenu -> EnableMenuItem(10M_ADD, MF_GRAYEO);
pMenu -> Enabl eMenuItem(10M_DELETE, MF_GRAYEO);
pMenu -> Enabl eMenuItem(10M_FIND, MF_GRAYEO);
pMenu -> EnableMenuItem(IOM_ FINOALL, MF_GRAYEO) ;

pMenu -> EnableMenuItem(IOM_ EDIT, MF_GRAYEO);

SetMen u is a utility function that updates the menus to reflect the current
context. It disables (grays or dims) menu commands that are not valid currently
and enables menu commands that are valid.

4. Add the following Inval idateLine utility member function to the
CMainWindow section ofyourVIEW.CPP file below the SetMenu member
function:

II CMainWindow::InvalidateLine
II Marks the screen area of the currently selected person as
II invalid causing windows to call OnPaint to redraw the area.
II This is normally used when the selected line is being changed.
II
void CMainWindow::InvalidateLine()
{

}

CRect areal 0, (m_nSelectLine - m_nVscrollPos) * m_cyChar,
m_cxCl ient,

(m_nSelectLine + 1 - m_nVscrollPos) * m_cyChar);
InvalidateRect(area);

I n val ida teL i n e is a utility function that marks the screen area of the currently
selected person as invalid. This causes Windows to send a WM_PAINT mes­
sage so that OnPa i nt is called to repaint the area in the window.

This completes the code in file VIEW.CPP. You can compare your file to Listing
2 in Chapter 5. All code for VIEW.H and VIEW.CPP is now complete.

To continue the tutorial, see the next section.

242 Class Libraries User's Guide

6.11 Prepare Supporting Files
Besides the six source code files, PERSON.H and PERSON.CPP from Chapter 2,
DATABASE.H and DATABASE.CPP from Chapter 4, and VIEW.H, and
VIEW.CPP from Chapter 5, you will need several additional files to compile
Phone Book. The files will look like those shown in Listings 1 through 3. You
already started a PHBOOKRC resource script file in Chapter 5.

~ To prepare these flies, do the following:

1. Create a module-definition file, with the .DEF extension.

The module-definition file specifies the Windows programming environment. It
sets such values as the stack size, the heap size, and the module-loading parame­
ters that Windows uses. All Windows programs require a module-definition file.

You can use the module-definition file for Phone Book, PHBOOKDEF, on the
distribution disks, or you can copy HELLO.DEF, rename the copy, and modify
it slightly. Change references to Hello, and make any other changes you want.
The file appears in Listing 1.

2. Complete the resource file, with the .RC extension, that you started earlier in
Chapter 5.

Check your PHBOOKRC file against Listing 2 and add any missing resource
templates. Listing 2 shows the complete resource script file for Phone Book.
The items in this file were explained in some detail in Chapter 5.

To build Phone Book, check that your PHBOOKRC file has the following re­
source templates (see Listing 2):

• An icon resource that specifies the file containing an icon for the program

• A menu resource that specifies the File, Person, and Help menus

• An accelerator table resource that specifies five accelerator-key mappings

• Dialog resources for an About dialog box, two data-entry dialogs, and three
&~di~~ -

3. Create a resource include file with an .H extension.

The resource include file defines resource ID numbers that the program uses to
associate resources with their templates in the .RC file.

You can use the resource include file for Phone Book, RESOURCE.H, on the
distribution disks, or you can copy RESOURCE.H from Hello and modify it.
The file appears in Listing 3.

For more information about module-definition files and resources, see the
Windows SDK Guide to Programming, the Windows SDK Reference, Volume 2,
and your Microsoft C/C++ documentation.

Phone Book: Message Handlers 243

At this point, your Phone Book files are complete if you have followed all of the
directions in this tutorial. You can check them against the same files on the dis­
tribution disks.

6.12 Build the Program
To build your program, follow the instructions given in Chapter 1 of the tutorial.
The required files to build Phone Book are PERSON.H, PERSON.CPP,
DATABASE.H, DATABASE.CPP, VIEW.H, VIEW.CPP, PHBOOK.DEF,
PHBOOKRC, PHBOOK.ICO, and PHBOOK.DLG. All are available in the
MFC\SAMPLE\TUTORIAL directory.

The Programmer's WorkBench (PWB) makefile for Phone Book is called
PHBOOKMAK The NMAKE makefile is called PHBOOK with no extension.

PHBOOKEXE builds as a Windows application, so you must run it from
Microsoft Windows.

6.13 Summary
This chapter and the two preceding chapters presented a larger, more complete
Windows application written with the Microsoft Foundation Class Library.

The principal techniques demonstrated include:

• How to integrate the data model with the Windows interface.

• How to interact with the user through dialog-box objects.

• How to respond to a wide variety of menu commands.

• How to respond to keyboard and mouse commands.

To solidify your Windows programming skills using the Microsoft Foundation
Class Library, try modifying the Phone Book program to add address information.
You'll need to modify class CPerson to hold more data, modify class
CEdi tperson to process additional dialog data-entry fields, modify the message­
handler functions of class CMa i nWi ndow wherever they access the internals of a
CPerson, and modify the dialog resource template for CEditDi al 09 to specify ad­
ditional data fields. While you're at it, improve the search capabilities as well, so
the user can search for other data items besides last name. By the time you've
made these modifications, you may be ready to write your own Windows program
with the Microsoft Foundation Class Library.

As you move on to write your own Windows programs with the Microsoft
Foundation Classes, use your work in this tutorial as a foundation or template on

244 Class libraries User's Guide

which to build other applications. Use the cookbook chapters of this manual
(chapters 7 through 17) for valuable guidance on specific Microsoft Foundation
Class Library programming tasks. And consult the Class Libraries Reference for
more information on the many capabilities of the Microsoft Foundation Classes.

6.14 File listings
The code shown in listings 1-3 is available in your distribution disks as
PHBOOK.DEF, PHBOOK.RC, and RESOURCE.H.

':'1 ;

;rh1$ is part' of the M'icrosoh Foul1oation Classe~ ctf Ltprar~,
;.;,~Copyr'.; ght (C> j991 Mi crpSOTt CorpOrat10r]
;"iA],l rignb reslerved.
'\,' "

"~"" """""":'(',lli(" ";1":" ;i i,,' ':";""" • """" I::' , ;:')' "Ii! ' :\:'''''' ,:,::
;'r This!r,sourc~ codel'i S on~y internclett' aSI a l$Upplellllent r.,to
! Mi~C fii~s9ltrr~OI,J'nd~ti 011 ~,J aS 7 R~ife.r·ence a,ndMl crosoftr

OClipkHel p .doc:,ulll.~!nt8"ti r9h pllrovided' wHh the) 1 i b;!tarY. ,
,~e~I!!i't~iies~+sour~b1.foride:tfa i led;'i1 Moirmipt; ohr~garidi n9 . the',

if\1icrosoH.FoLAnd,at1 asses pltodu'ct.· ..1. J: "h "("" ,;:J, \!\",,, 'iit ' It"'''':I:'' '''''!',

I.'A'" r:' ,i! fl. hr .B· ooirJ. ,.. i. I I~ IV"- !I :·r, iii r '"

bE~CR~:PTr,ON.i 1:'Ph~nelgOO~Da¢abi?r'se"

E~n~:~E ,~Iml0W.S
.1 $ ruB . . 'WIN STUlL E)(E'

I? i

COllE !PREL6AD FIX!!]) DISCAROAB
DAr ~PRELoe.DrFr ~i~D~U~TI ~LE , r

B~96iJ'
8095.

Phone Book: Message Handlers 245

Listing 2

PhBook.rc : Defines the resources for the application.

This is a part of the Microsoft Foundation Classes C++ Library.
Copyright eCl 1991 Microsoft Corporation
All 1'1 ghts reserved.

This source code is only intended as a supplement to the
Microsoft Foundation Classes Reference and Microsoft
QUickPlelp documentation provided with the library.
See th.ese sources for detail edi nformat.i on regard; ng the

Foundation Classes product.

246 Class Libraries User's Guide

;;1, ;reslburce.,h :,.lIIDef1.n~s t:he., res.ou.rceconStaT)·rts f'hrlhel appnC.atiq~· •

. '~defi1!le .'IDM~NEW ...
i/defihe ;ltDM OPEl'l'
fFdeHhe I IPM=sAn: .
ifdefi ne i I~M_~AVE'\\S
ft,de'f:ine IbM::~LbgE .,,
#defi ne Ii~MjPRI'NT .
;i/d e f i.1;) e{iJM~E)(~h-
, " ,LI, 'iii

l·f~d~filhe:'IDM Ado
fj,n e: I D~CD!l;U~rrE

il1'e IDMI'FI:.f.W '1.' II·
'II ' <II, ,[ii' i' :1'1

riqe fi.tle.iI Df.t Rl'.N DAW!'.
fj~.ef;.ne, r[)M~ ~iPH':.· ..

,;:," :!I,I

l!deif'l nl~ lDMII~EL:P • 11,
{Mantle I~ILABflln
i!\' I', i'~;"',' '/'" , "i

L~Fdeli ne DATA

un.
.111102',

03
I !ll4

",;:' ,,1:, :1

IIt!d,ef1i:~e.::iil D~~ sr AT~tl!}Sr~AM~·ih011~
.1fde;fi.'n·e.J HlGL LAs.+:N,if.ME.I .. ' · .. 1 111111.2513,.,

··.#dlefii:~elllD()·~SII~t~tF~~$tTN~MEI130t'l
.. ,11' Yf~;efi ,ne·. IDC_ ~~IRS~·NA!i1E,.111 . II ..• '12 ~.1'
·#dl3f~:.n~I:.i'IDt~TATlrq~o~,E· 302
{!i:lef,~n~;:rpCjHONE ,. /1:;

fIde!:! n!ree·:.J.I.D}QI~ Obill
JljA f' .. 1·D ...
1~It"e 1 n
),)'\"

General-Purpose Classes

The Microsoft Foundation Class Library provides services to make programming
easier. These services range from general-purpose memory-management services
to more advanced Windows facilities. This chapter describes how to take advan­
tage of the general-purpose services related to memory management, time and
date management, and string manipulation.

7.1 Memory Management
Memory allocation can be divided into two main categories: frame allocations and
heap allocations. One main difference between the two allocation techniques is
that with heap allocation you are always given a pointer to the memory block,
whereas with frame allocation you typically work with the actual memory block
itself. Another major difference between the two schemes is that frame objects are
automatically deleted and heap objects must be explicitly deleted by the
programmer.

The following sections describe how to use the capabilities of C and C++ to
accomplish memory allocations on the frame and on the heap.

Frame Allocation
Allocation on the frame takes its name from the "stack frame" that is set up when­
ever a function is called. The stack frame is an area of memory that temporarily
holds the arguments to the function and any local variables that are defined local
to the function. Frame variables are often called "automatic" variables because the
compiler automatically allocates the space for them.

There are two key characteristics of frame allocations. First, when you define a
local variable enough space is allocated on the stack frame to hold the entire varia­
ble, even if it is a large array or data structure. Second, frame variables are auto­
matically deleted when they go out of scope. For local function variables, this
scope transition happens when the function exits, but the scope of a frame variable

252 Class libraries User's Guide

Objects allocated on
the frame are auto­
matically deleted.

Heap Allocation

can be smaller than a function if nested braces are used (or larger, in the case of
global variables). This automatic deletion of frame variables is very important. In
the case of simple primitive types (such as int or byte), arrays, or data structures,
the automatic deletion simply reclaims the memory used by the variable. Since the
variable has gone out of scope, it cannot be accessed anyway. In the case of C++
objects, however, the process of automatic deletion is a bit more complicated.

When an object is defined as a frame variable, its constructor is automatically in­
voked at the point where the definition is encountered. When the object goes out
of scope, its destructor is automatically invoked before the memory for the object
is reclaimed. This automatic construction and destruction can be very handy, but
you must be aware of the automatic calls, especially to the destructor.

The key advantage of allocating objects on the frame is that they are automatically
deleted. When you allocate your objects on the frame, you don't have to worry
ab.out forgotten objects causing memory leaks. (For details on memory leaks, see
"Detecting Memory Leaks" on page 290.) A disadvantage of frame allocation is
that frame variables cannot be used outside their scope. Another factor in choosing
frame vs. heap allocation is that for large structures and objects, it is often better to
use the heap instead of the stack for storage, since stack space is often limited.

The heap is reserved for the memory allocation needs of the program. It is an area
apart from the program code and from the stack. Typical C programs use the func­
tions malloc and free to allocate and deallocate memory to and from the heap. The
Debug version of the Microsoft Foundation Class Library provides modified ver­
sions of the C++ built-in operators new and delete to allocate and deallocate ob­
jects in heap memory. When you use new and delete instead ofmalloc and free
you are able to take advantage of the Foundation's memory-management debug­
ging enhancements, which can be useful in detecting memory leaks. When you
build your program with the Release version of the Microsoft Foundation Class
Library, new and delete still provide an efficient way to allocate and deallocate
memory.

Memory Allocation on the Heap and on the Frame
There are three typical kinds of memory allocations:

• An array of bytes

• A data structure

• An object

General-Purpose Classes 253

The following sections describe how the Microsoft Foundation Class Library
facilities perform each of these typical tasks for both heap allocation and frame
allocation.

Allocation of an Array of Bytes

~ To allocate an array of bytes on the frame:

• Define the array as shown by the following code. The array is automatically
deleted and its memory reclaimed when the array variable exits its scope.

const int BUFF_SIZE = 128;

II allocate on the frame
char myCharArray[BUFF_SIZE];
int myIntArray[BUFF_SIZE];
II reclaimed when exiting scope

~ To allocate an array of bytes (or any primitive data type) on the heap:

• Use the new operator with the following array syntax:

const int BUFF_SIZE = 128;

II allocate on the heap
char* myCharArray = new char[BUFF_SIZE];
int* myIntArray = new int[BUFF_SIZE];

~ To deallocate the arrays from the heap:

• Use the delete operator as follows:

delete [] myCharArray;
delete [] myIntArray;

Allocation of a Data Structure

~ To allocate a data structure on the frame:

• Define the structure variable as follows:

struct MyStructType { ... };
void SomeFunc(voidl
{

II frame allocation
MyStructType myStruct;

254 Class Libraries User's Guide

}

II use the struct
myStruct.topScore = 297;

II reclaimed when exiting scope

The memory occupied by the structure is reclaimed when it exits its scope.

~ To allocate data structures on the heap:

• Use new to allocate data structures on the heap and deallocate them with delete
as shown by the following examples:

II heap allocation
MyStructType* myStruct = new MyStructType;

II use the struct through the pointer ...
myStruct->topScore = 297;

delete myStruct;

Allocation of an Object

~ To allocate an object on the frame:

• Declare the object as follows:

CPerson myPerson; II automatic constructor call here

myPerson.SomeMemberFunction(); II use the object

}

The destructor for the object is automatically invoked when the object exits its
scope.

~ To allocate an object on the heap:

• Use the new operator, which returns a pointer to the object, to allocate objects
on the heap. Use the delete operator to delete them.

II automatic constructor call here
CPerson* myPerson = new CPerson;

myPerson->SomeMemberFunction(); II use the object

delete myPerson; II destructor invoked during delete

General-Purpose Classes 255

Both the heap and the frame examples assumed that the CPerson constructor
takes no arguments. Assume that the argument for the CPerson constructor is a
pointer to char.

The statement for frame allocation is:

CPerson myPerson("Joe Smith" 1;

The statement for heap allocation is:

CPerson* MyPerson = new CPerson("Joe Smith" 1;

Resizable Memory Blocks
The new and delete operators described above are good for allocating and deallo­
cating fixed-size memory blocks and objects. Occasionally, your application may
need resizable memory blocks. You must use the standard C run-time library func­
tions malloc, realloc, and free to manage resizable memory blocks on the heap.

Mixing the new and delete operators and the resizable memory-allocation func­
tions on the same memory block will result in corrupted memory in the Debug ver­
sion of the Foundation Class Library. That is, you should not allocate a memory
block with new and deallocate it with free. Likewise, you should not use the C++
delete operator on a memory block allocated with malloc and you should not use
realloc on a memory block allocated with new.

7.2 Date and Time
The CTime class provides a way to represent date and time information easily.
The CTimeSpan class represents elapsed time, such as the difference between
two CTime objects.

Note CTime objects cannot be used to represent dates earlier than January 1,
1980. CTime objects have a resolution of 1 second.

The first procedure in this section shows how to create a CTime object and initial­
ize it with the current time. The next procedure shows how to calculate the differ­
ence between two CTime objects and get a CTimeSpan result.

~ To get the current time:

1. Allocate a CTime object, as follows:

CTime theTime;

Note Uninitialized CTime objects are automatically set to an invalid time.

256 Class Libraries User's Guide

2. Call the CTime::GetCurrentTimefunction to get the current time from the
operating system. This function returns a CTime object that can be used to set
the value of CTime, as follows:

theTime = CTime: :GetCurrentTime();

Since GetCurrentTime is a static member function from the CTime class, you
must qualify its name with the name of the class and the scope resolution opera­
tor (::), CTime: :GetCurrentTime().

Of course, the two steps outlined above could be combined into a single program
statement as follows:

CTime theTime = CTime::GetCurrentTime();

~ To calculate elapsed time:

• Use the CTime and CTimeSpan objects to calculate the elapsed time, as
follows:

CTime startTime = CTime::GetCurrentTime();

II ... perform time-consuming task ...

CTime endTime = CTime::GetCurrentTime();

CTimeSpan elapsedTime = endTime - startTime;

Once you have calculated el apsedTi me, you can use the member functions
of CTimeSpan to extract the components of the elapsed-time value.

~ To format a string representation of a time or elapsed time:

7.3 Strings

• Use the Format member function from either the CTime or CTimeSpan
classes to create a character string representation of the time or elapsed time, as
shown by the following example.

CTime t(1991, 3, 19, 22, 15, 0); II 10:15PM March 19, 1991
CString s = t.Format("%A, %B %d, %Y");
II s == "Tuesday, March 19, 1991"

The CString class provides support for manipulating strings. It is intended to re­
place and extend the functionality normally provided by the C run-time library
string package.

General-Purpose Classes 257

A CString object represents a sequence of a variable number of characters.
CString objects can be thought of as arrays of single-byte characters.

A CString object can store up to 32,766 characters. The normal C char data type
is used to get or set individual characters inside a CString object. CString objects
are automatically growable (that is, you don't have to worry about growing a
CString object to fit longer strings). A CString object also can act like a literal
C-style string (a pointer to const char).

Basic Operations
The CString class provides member functions and overloaded operators that dupli­
cate and in some case surpass the string services of the C run-time libraries (for ex­
ample, strcat). The following sections describe some of the main operations of the
CString class.

~ To create CString objects from standard C literal strings:

• Assign the value of a C literal string to a CString object:

[String myString = "This is a test";

• Assign the value of one CString to another CString:

[String oldString
[String newString

"This is a test";
oldString;

As explained more completely in the next section on value semantics, the con­
tents of a CString are copied when one string is assigned to another CString.
Thus, the two strings do not share a reference to the actual characters that make
up the string.

~ To access individual characters in a CString:

• You can access individual characters within a CString with the GetAt and
SetAt member functions. You can also use the array element operator ([]) in­
stead of GetAt to get individual characters (like accessing array elements by
index as in standard C-style strings). Index values for CString characters are
zero-based.

~ To concatenate two CStrings:

• Use the concatenation operators (+ or +=) as follows:

[String sl = "This ";
sl += "is a n;
[String s2 = "test";

((cascading concatenation

[String message = sl + "big" + s2;
//message contains "This is a big test"

258 Class Libraries User's Guide

At least one of the arguments to the concatenation operators (+ or +=) must be a
CString object, but you can use a constant character string (such as "bi g") or a
char (such as . x .) for the other argument.

~ To compare two CStrings:

• While the overloaded equality operator (==) and the Compare member func­
tions will determine if two CString objects are equivalent character for charac­
ter, you can also use the CompareNoCase and Collate member functions to do
comparisons that are case insensitive and national-language sensitive. The fol­
lowing table shows the three available CString comparison functions and their
equivalent C run-time string functions.

CString function

Compare

CompareNoCase

Collate

C run-time function

strcmp

stricmp

strcoll

The CString class overrides the relational operators «, <=, >=, >, ==, and !=)
to use the Compare function, so you can compare two CStrings using these
operators, as shown here:

CString 51("Tom" l;
CString 52("Jerry" l;
if(51 < 52 l

CStrings Are Values
Think of CString ob­
jects as actual strings.

Even though they are dynamically growable objects, CString objects act like built­
in primitive types and simple classes. Each CString object represents a unique
value. CString objects should not be thought of as pointers to strings but as the
actual strings.

The most obvious consequence of value semantics is that the string contents are
copied when you assign one CString to another. Thus, even though two CStrings
may represent the same sequence of characters, they do not share those characters.
Each CString has its own copy of the character data. When you modify one
CString object, the copied CString object is not modified, as shown by the
following example:

CString 51, 52;
51 = 52 = "hi there";

i f(51 == 52 l II TRUE - they are equal

General-Purpose Classes 259

II does not modify s2 sl.MakeUpper() ;
if(s2[0J == 'h' I I TRUE - s2 is sti 11 "hi there"

Notice in the example that the two CString objects are considered to be "equal"
because they represent the same character string. The CString class overloads the
equality operator (==) to compare two CString objects based on their value (con­
tents) rather than their identity (address).

~ To specify CString formal parameters correctly:

• For most functions that need a string argument, it is best to specify the formal
parameter in the function prototype as a pointer to const char (const char* or
const char FAR*) instead of a CString. With a formal parameter specified as
a pointer to const char, you can pass either a pointer to a char array, a literal
string ("hi there"), or a CString object. The CString will be automatically
converted to a pointer to const char. Any place you can use a pointer to char,
you can also use a CString.

• You can also specify a formal parameter as a constant string reference (that is,
const CString&) if the argument will not be modified. Drop the const modifier
if the string will be modified by the function. If a default null value is desired,
initialize it to the null string (" "), as shown below:

void AddCustomer(canst CString& name,
canst CString& address,
canst CString& comment = "");

• For most function results, you can simply return a CString objectby value.

Operations Related to C-Style Strings
It is often useful to be able to manipulate the contents of a CString object as if it
were a C-style null-terminated string.

~ To convert to C-style null-terminated strings:

• In the simplest case, you can cast a CString object to be a pointer to const
char. The const char* type conversion operator returns a read-only pointer to a
C-style null-terminated string from a CString object.

The pointer to char returned by the implicit conversion shown above points
into the data area used by the CString. If the CString goes out of scope and is
automatically deleted or something else changes the contents of the CString,
the char pointer will no longer be valid. You should treat this pointer as a tem­
porary read-only pointer. Do not directly modify the characters pointed to.

260 Class libraries User's Guide

• You can use CString functions such as SetAt to modify individual characters
in the string object, but if you need a copy of a CString object's characters that
you can modify directly, use strcpy to copy the CString object into a separate
buffer where the characters can be safely modified, as shown by the following
example:

CString theString("This is a test");
char* psz = new char[theString.GetLength()];
strcpy(psz,theString);
II ... modify psz as much as you want

Note The second argument to strcpy is declared as a constant pointer to char
(const char*). The example above passes a CString for this argument. The
C++ compiler automatically applies the conversion function defined for the
CString class that converts a CString to a const char*. The ability to define
casting operations from one type to another is one of C++'s most useful
features.

~ To work with standard C-library string functions:

• In most situations, you should be able to find CString member functions to per­
form any string operation for which you might consider using the standard C
run-time library string functions, such as strcmp.

• If you find that you must use the C run-time string functions, you can use the
techniques described in the previous procedure to copy the CString object to an
equivalent C-style string buffer, perform your operations on the buffer, and
then assign the resulting C-style string back to a CString object.

~ To modify CString contents directly with GetBuffer and ReleaseBuffer:

• In most situations, you should use CString member functions to modify the
contents of a CString object, or convert the CString to a C-style character
string as described in the pervious section.

• However, there are certain situations, such as working with operating system
functions that require a character buffer, where it is advantageous to directly
modify the CString contents.

The GetBuffer and ReleaseBuffer member functions allow you to gain access
to the internal character buffer of a CString and modify it directly. The follow­
ing steps show how to use these functions for this purpose.

1. Call GetBuffer for a CString object, specifying the length of the buffer
your require.

2. Use the pointer returned by GetBuffer to write characters directly into the
CString object.

3. Call ReleaseBuffer for the CString object to update all the internal CString
state information (such as the length of the string). After modifying a

General-Purpose Classes 261

CString object's contents directly, you must call ReleaseBuffer before
calling any other CString member functions.

~ To use CString objects with variable argument functions:

Some C functions take a variable number of arguments. A notable example is
printf. Because of the way this kind of function is declared, the compiler cannot
be sure of the type of the arguments and cannot determine which conversion opera­
tion to perform on the argument. Therefore, it is essential that you use an explicit
type cast when passing a CString object to a function that takes a variable number
of arguments.

• Explicitly cast the CString to a pointer to a constant char string, as shown here:

CString kindOfFruit = "bananas";
int howmany = 25;
printf("You have %d %s\n", howmany, (const char*lkindOfFruit 1;

The CObject Class

CObject is the root class for most of the Microsoft Foundation Class Library. The
Foundation Class CObject contains many useful features that you may want to in­
corporate into your own program objects, including support for serialization, de­
bugging output, and run-time class information. If you derive the class from
CObject, your class can exploit these CObject features.

8.1 How to Derive a Class from CObject
This section describes the minimum steps necessary to derive a class from
CObject. Other cookbook sections describe the steps needed to take advantage of
specific CObject features, such as serialization and diagnostic debugging support.

In the following discussions, the terms "interface file" and "implementation file"
are used frequently. The interface file (often called the header file, or.R file) con­
tains the class declaration and any other information needed to use the class. The
implementation file (or . CPP file) contains the code that implements the class
member functions. For example, for a class named (Person, you will typically
create an interface file named PERSON.R and an implementation file named
PERSON.CPP. For some small classes that will not be shared, it is sometimes
easier to combine the interface and implementation into a single .CPP file.

There are three levels of functionality that you can choose from when deriving a
class from CObject:

• Basic functionality that does not include run-time class information or
serialization

• Basic functionality plus run-time class information

• Basic functionality plus run-time class information plus serialization support

Classes designed for reuse should at least include run-time class support and serial­
ization support if any future serialization need is anticipated.

264 Class Libraries User's Guide

You choose the level of functionality by using specific declaration and implemen­
tation macros in the declaration and implementation of the classes you derive from
CObject. The following sections describe how to specify the level of functionality.

~ To use basic CObject functionality:

• Use the normal C++ syntax to derive your class from CObject (or from a class
derived from CObject).

The following example shows the simplest case: the derivation of a class from
CObject:

class CPerson : public CObject
{

II add CPerson-specific members and functions ...
}

Typically, however, you will want to override some of CObject's member
functions to handle the specifics of your new class. For example, you will usu­
ally want to override the Dump function of CObject to provide debugging out­
put for the contents of your class. For details on how to override Dump, see
page 286. You will also want to override the AssertValid function of CObject.
(For a description of how to override AssertValid, see the section on
AssertValid on page 289).

~ To add run-time class information:

CObject contains support for run-time class information. This means that you can
determine the exact class of an object at run-time and also determine the base class
from which it was derived. This capability is not supported directly by the C++
language. To take advantage of the run-time class information, you must do the
following three steps:

1. Derive your class from CObject, as described in the previous section.

2. Use the DECLARE_DYNAMIC macro in your class declaration, as shown
here:

class CPerson : public CObject
{

DECLARE_DYNAMIC(CPerson)

II rest of class declaration follows ...
} ;

3. Use the IMPLEMENT_DYNAMIC macro in the implementation file (.CPP)
of your class. This macro takes as arguments the name of the class and the
name of its base class, as follows:

IMPLEMENT_DYNAMIC(CPerson, CObject)

The CObject Class 265

Note The IMPLEMENT_DYNAMIC macro should be evaluated only one time
during a compilation. Do not use IMPLEMENT_DYNAMIC in an interface file
(.H) that will be included in more than one file. The best policy is to always put
IMPLEMENT_DYNAMIC in the implementation file (.CPP) for your class.

If you use these two macros as described, you can then use the
RUNTIME_ CLASS macro and IsKindOf member function to determine the
class of your objects at run-time. For a description of how to use these features of
CObject, see "How to Access Run-Time Class Information" on this page.

~ To add serialization support:

Serialization is the process of writing or reading the contents of an object to and
from a file. The following five steps are required to support serialization in your
classes.

1. Derive your class from CObject.

2. Use the DECLARE_SERIAL macro in the class declaration.

3. Define a constructor with no arguments (a default constructor).

4. Use the IMPLEMENT_SERIAL macro in the class implementation file.

5. Override the Serialize member function.

For more details on how to derive from CObject to enable serialization for your
class, see "Serialization" on page 279. Each of the steps listed above is described
in that section.

Note The serialization features necessarily include the run-time class information
features described in the previous section. If you use the DECLARE_ SERIAL
and IMPLEMENT_SERIAL macros, you do not have to use the
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros. The run­
time class macros are already included in the serialization macros.

8.2 How to Access Run-Time Class Information
If you have derived your class from CObject and used the
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros explained
previously, the CObject class has the ability to determine the exact class of an ob­
ject at run-time. This ability is an extension of the normal capabilities of C++.

The ability to determine the class of an object at run-time is most useful when
extra type checking of function arguments is needed and when you must write
special-purpose code based on the class of an object.

266 Class Libraries User's Guide

The CObject member function IsKindOf can be used to determine if a particular
object belongs to a specified class or if it is derived from a specific class. The argu­
ment to IsKindOf is a CRuntimeClass, which you can get by using the
RUNTIME_ CLASS macro with the name of the class. The use of the
RUNTIME_ CLASS macro is shown below.

~ To use the RUNTIME_ CLASS macro:

• Use RUNTIME_ CLASS with the name of the class, as shown here for the
class CObject:

CRuntimeClass* pClass = RUNTIME_CLASS(CObject);

You will rarely need to access the run-time class object directly. A more com­
mon use is to pass the run-time class object to the IsKindOffunction, as shown
in the next section.

~ To use the IsKindOf function:

IsKindOf will test an object to see if it belongs to a particular class. The following
steps show how to use IsKindOf.

1. Make sure the class has run-time class support. That is, the class must have
been derived from CObject and used the DECLARE_DYNAMIC and
IMPLEMENT_DYNAMIC macros explained previously on pages 264-265.
(Since serialization support requires run-time class support, the class may have
been defined with the DECLARE_SERIAL and IMPLEMENT_SERIAL
macros.)

2. Call the IsKindOf member function for objects of that class, using the
RUNTIME_ CLASS macro to generate the CRuntimeClass argument, as
shown here:

II in .H file
class CPerson : public CObject
{

DECLARE_DYNAMIC(CPerson)
public:

CPerson() {};

II other declaration stuff left out ...
} ;

II in .CPP file
IMPLEMENT_DYNAMIC(CPerson, CObject

CObject* myObject = new CPerson;

if(myObject->IsKindOf(RUNTIME_CLASS(CPerson)))
{

Ilif IsKindOf is true, then cast is alright

The CObject Class 267

CPerson* myPerson (CPerson*) myObject;
}

Note IsKindOf returns TRUE if the object is a member of the specified class
or of a class derived from the specified class. It only works properly in single­
inheritance hierarchies.

Collections
Chaptet~'~

l~j'.Q", ... , ... ffi

". I
, r

~,.

'"

The Microsoft Foundation Class Library provides collection classes to manage
groups of objects. A collection class is characterized by its "shape" and by the
type of its elements. The shape refers to the way the objects are organized and
stored by the collection. The Microsoft Foundation Class Library provides three
basic collection shapes: arrays, lists, and maps (also known as dictionaries). You
can pick the collection shape most suited to your particular programming problem.

Table 9.1 lists the characteristics ofthe three collection shapes provided with the
Microsoft Foundation Class Library. In the table, the term "ordered" means that
the order of the items in the collection is determined by the order in which they
were inserted and deleted. It does not mean that the items are sorted based on their
contents. The term "indexed" means that the items in the collection can be re­
trieved by an integer index, much like a typical array structure.

Each of the three provided collection shapes is described briefly below, followed
by Table 9.1, which compares the features of the shapes to help you decide which
is best for your program.

• List
The list class provides an ordered, nonindexed list of elements, implemented as
a doubly linked list. Lists have a "head" and a "tail," and adding or removing
elements from the head or tailor inserting or deleting elements in the middle is
very fast.

• Array
The array class provides a dynamically sized, ordered, and integer-indexed
array of objects.

• Map (also known as a dictionary)

A map is a collection that associates a key object with a value object.

270 Class Libraries User's Guide

Table 9.1 Shape Features

Check for
Insert an Specified Dnplicate

Shape Ordered? Indexed? Element Element Elements?

List Yes No Fast Slow Yes

Array Yes By int Slow Slow Yes

Map No By key Fast Fast No (keys)
Yes (values)

9.1 How to Make a Type-Safe Collection
The Microsoft Foundation Class Library provides predefined type-safe collections
that can be used to contain cObject, UINT, DWORD and cString elements.
You can use these predefined collections (such as COb List) to hold collections of
any objects derived from cObject. The Microsoft Foundation Class Library also
provides other predefined collections to hold primitive types such as UINT and
void pointers (void*). In general, however, it is often useful to define your own
type-safe collections to hold objects of a more specific class and its derivatives.

There are three main ways to use collections with the Microsoft Foundation Class
Library, as described by the following sections.

~ To use predefined collections:

• The easiest way to use the Microsoft Foundation collections is to use a prede­
fined collection type, such as cWordArray. You can create a cWordArray
and add UINT values to it and retrieve them. There is nothing more to do. You
just use the predefined functionality.

You can also use a predefined collection, such as COb List, to hold objects that
are derived from cObject. A cObList is defined to hold pointers to cObject.
You can put any object that is derived from cObject into a cObList. When
you retrieve an object from the list, you may have to cast the result to the
proper type, since the COb List functions return pointers to cObject. For ex­
ample, if you store CPerson objects in a cObList, you have to cast a retrieved
element to be a pointer to a CPerson object. The following example uses a
cObList to hold CPerson objects:

class CPerson : public CObject { ... };

CPerson* pI = new CPerson(...);
CObL i st myL i st;

myList.AddHead(pI); II no cast needed
CPerson* p2 = (CPerson*)myList.GetHead();

Collections 271

This technique of using a predefined collection type and casting as necessary
may be adequate for many of your collection needs. If you need further
functionality or more type safety, read the next section.

~ To derive and extend a collection:

• You can also derive your own collection class from one of the predefined col­
lection classes provided with the Microsoft Foundation Class Library. When
you derive your class, you can add type-safe wrapper functions to provide a
type-safe interface to existing functions.

For example, if you derived a list from CObList to hold CPerson objects, you
might add the wrapper functions AddHeadPerson and GetHeadPerson, as shown
below.

class CPersonList : public CObList
{

public:

} ;

void AddHeadPerson(CPerson* person)
{AddHead(person);}

CPerson* GetHeadPerson()
{return (CPerson*)GetHead();}

These wrapper functions provide a type-safe way to add and retrieve CPerson
objects from the derived list. You can see that for the GetHeadPerson function,
you are simply encapsulating the casting seen in the previous section.

You can also add new functionality by defining new functions that extend the
capabilities of the collection rather than just wrapping existing functionality in
type-safe wrappers. For example, a later section describes a function to delete
all the objects contained in a list. This function could be added to the derived
class as a member function.

~ To use templates to create new collection classes:

• The DOC directory (in your distribution disks) contains a technical note
(TN004.TXT) that describes the Microsoft Foundation Class Library tool that
you can use to create new type-safe collections from template files. These tem­
plates and tool allow you to create a version of an existing collection shape that
is customized to hold a specified data type or object type.

The SAMPLE\TEMPLDEF directory (in your distribution disks) contains a
sample program that expands templates defined using a subset of the proposed
ANSI template syntax. The Foundation collection classes were generated with
this program.

272 Class Libraries User's Guide

9.2 Accessing All Members of a Collection
The Foundation collection classes use a position indicator to describe a given posi­
tion within the collection. To access one or more members of a collection, first ini­
tialize the position indicator and then repeatedly pass that position to the collection
and ask it to return the next element. The collection is not responsible for maintain­
ing state information about the progress of the iteration. That information is kept
in the position indicator. But, given a particular position, the collection is re­
sponsible for returning the next element.

The following examples show how to iterate over the three main types of collec­
tions provided with the Microsoft Foundation Class Library.

~ To iterate an array:

• Use sequential index numbers with the GetAt member function:

CObArray myArray;

far(int i = 0; i < myArray.GetSize();i++)
{

CPersan* thePersan = (CPersan*)myArray.GetAt();

~ To iterate a list:

• Use the member functions GetHeadPosition and GetNext to work your way
through the list:

CPersanList myList;

POSITION pas = myList.GetHeadPasitian();
while(pas != NULL)
{

CPersan* thePersan myList.GetNext(pas);

~ To iterate a map:

• Use GetStartPosition to get to the beginning of the map and
GetNextAssociation to repeatedly get the next key and value from the map, as
shown by the following example:

CMapStringTaOb myMap;

POSITION pas = myMap.GetStartPasitian();
while(pas != NULL)

}

CObject* pObject;
CPerson* pPerson;
CString string;
II gets key (string) and value (pObject)
myMap.GetNextAssoc(pos, string, pObject);
if(pObject-)IsKindOf(RUNTIME_CLASS(CPerson)))
{

pPerson = (CPerson*)pObject;
II ...

How to Delete All Objects in a CObject Collection

Collections 273

To delete all the objects in a collection of cObjects (or of objects derived from
cObject), you use one of the iteration techniques described above to delete each
object in turn.

Note Note that objects in collections can be shared. That is, the collection keeps a
pointer to the object, but other parts of the program may also have pointers to the
same object. You must be careful not to delete an object that is shared until all the
parts have finished using the object.

~ To delete all objects in a cObList:

You can use the following technique to delete all objects in a COb List or a list
derived from cObList.

1. Use GetHeadPosition and GetNext to iterate through the list.

2. Use the delete operator to delete each object as it is encountered in the iteration.

3. Call the RemoveAll function to remove all elements from the list after the ob­
jects associated with those elements have been deleted.

The following example shows how to delete all objects from a list of
CPerson objects. Each object in the list is a pointer to a CPerson object that
was originally allocated on the heap.

class CPersonList : public CObList { ... };

CPersonList myList
POSITION pos = myList.GetHeadPosition();

while(pos != NULL)
{

delete myList.GetNext(pos);

myList.RemoveAll();

274 Class Libraries User's Guide

Remove an element
after its object is
deleted.

The last function call, RemoveAll, is a list member function that removes all
elements from the list. The member function RemoveAt will remove a single
element.

Notice the difference between deleting an element's object and removing the
element itself. Removing an element from the list merely removes the list's ref­
erence to the object. The object still exists in memory. When you delete an ob­
ject, its memory is reclaimed and it ceases to exist. Thus, it is important to
remove an element immediately after the element's object has been deleted so
that the list won't try to access objects that no longer exist.

~ To delete all elements in an array:

1. Use GetSize and integer index values to iterate through the array.

2. Use the delete operator to delete each element as it is encountered in the
iteration.

3. Call the RemoveAll function to remove all elements from the array after they
have been deleted.

The code for deleting all elements of an array is as follows:

CObArray myArray;

int i = 0;
while (i < myArray.GetSize())
{

delete myArray.GetAt(i++);
}

myArray.RemoveAll();

Like the list example, you can call RemoveAll to remove all elements in an
array or RemoveAt to remove an individual element.

~ To delete all elements in a map:

1. Use GetStartPosition and GetNextAssociation to iterate through the array.

2. Use the delete operator to delete the key and/or value for each map element as
it is encountered in the iteration.

3. Call the RemoveAll function to remove all elements from the map after they
have been deleted.

The code for deleting all elements of a CMapStringToOb is as follows. Each
element in the map has a string as the key and a CPerson object (derived from
CObject) as the value.

CMapStringToOb myMap;
II ... add some key-value elements ...
II now delete the elements
pas = myMap.GetStartPosition();

while(pos != NULL)
{

CObject* pObject;
CString string;
II gets key (string 1 and value (pObject)
myMap.GetNextAssoc(pos, string, pObject);
delete pObject;

myMap.RemoveAll();

Collections 275

You can call RemoveAll to remove all elements in a map or RemoveKey to
remove an individual element with the specified key.

How to Create a Stack Collection
Because the standard list collection has both a head and a tail, it is easy to create a
derived list collection that mimics the behavior of a last-in-first-out stack. A stack
is like a stack of trays in a cafeteria. As trays are added to the stack, they go on top
of the stack. The last tray added is the first to be removed. The list collection mem­
ber functions AddHead and RemoveHead can be used to add and remove ele­
ments specifically from the head of the list; thus the most recently added element
is the first to be removed.

~ To create a stack collection:

• Derive a new list class from one of the existing list classes provided with the
Foundation library and add more member functions to support the functionality
of stack operations.

The following example shows you can add member functions to push elements
on to the stack, peek at the top element of the stack, and pop the top element
from the stack:

class CTray : public CObject { ... };

class CStack : public CObList
{

publ i c:

} ;

II add element to top of stack
void Push(CTray* newTray 1

(AddHead(newTray); }

II peek at top element of stack
CTray* Peek()

(return IsEmpty() ? NULL (CTray*lGetHead();}

II pop top element off stack
CTray* Pop()

{ return (CTray*lRemoveHead(); }

276 Class libraries User's Guide

How to Create a Queue Collection
Because the standard list collection has both a head and a tail, it is also easy to cre­
ate a derived list collection that mimics the behavior of a first-in-first-out queue. A
queue is like a line of people in a cafeteria. The first person in line is the first to be
served. As more people come, they go to the end of the line to wait their turn. The
list collection member functions AddTail and RemoveHead can be used to add
and remove elements specifically from the head or tail of the list; thus the most re­
cently added element is always the last to be removed.

~ To create a queue collection:

• Derive a new list class from one of the predefined list classes provided with the
Microsoft Foundation Class Library and add more member functions to support
the semantics of queue operations.

The following example shows how you can append member functions to add an
element to the end of the queue and get the element from the front of the queue.

class CPerson : public CObject { ... };

class CQueue : public CObList
{

public:
II go to the end of the line
void AddToEnd(CPerson* newPerson

{ AddTail(newPerson); }

II get first element in line
CPerson* GetFromFront()

)

II end of the queue

{ return IsEmpty() ? NULL (CPerson*)RemoveHead();}
} ;

Files and Serialization

10.1 Files

The Microsoft Foundation Class Library provides the CFile class to handle normal
file 1/0 operations. This chapter shows you how to open and close files and read
and write arbitrary data to those files. You will also learn about file status opera­
tions. You may also be interested in reading section 10.2, "Serialization", of this
chapter for a description of how to use the object-based serialization features of
the Microsoft Foundation Class Library as an alternative way of reading and
writing data in files.

The Microsoft Foundation Class Library provides the CFile class for general­
purpose binary file operations. The CStdioFile and CMemFile classes are derived
from CFile to provide more specialized file services.

In the Microsoft Foundation Class Library, the most common way to open a file is
to go through a two-stage process.

~ To open a file:

1. Create the file object without specifying a path or permission flags.

You usually create a file object by declaring a CFile variable on the frame.

2. Call the Open member function for the file object, supplying a path and permis­
sion flags.

Open will return TRUE if the file was opened successfully, or FALSE if the
specified file could not be opened.

The open flags specify which permissions, such as read-only, you want for the
file. The possible flag values are defined as enumerated constants within the
CFile class, so they are qualified with "CFile::", as in CFile::modeRead. Use
the CFile::modeCreate flag if you want to create the file.

278 Class Libraries User's Guide

The following example shows how to create a new file with read/write permis­
sion (replacing any previous file with the same path):

char* pszFileName = "\\test\\myfile.dat";
CFile myFile;

if (! myFile.Open(pszFileName,
CFile::modeCreate I CFile::modeReadWrite))

TRACE("Can't open file %s\n",pszFileName);

~ To read from and write to the file:

• Use the Read and Write member functions to read and write data in the file.

The Seek member function is also available for moving to a specific offset
within the file.

Read takes a pointer to a buffer and a UINT specifying the number of bytes to
read or write and returns a UINT with the actual number of bytes that were
processed. Write takes the same arguments but does not return the number of
bytes written. If the requested number of bytes can't be read or written, an ex­
ception is thrown. If you have a valid CFile object, you can read or write to it
with code similar to the following:

char buffer[256];
UINT actual = 0;

myFile.Write(buffer, sizeof(buffer));
myFile.Seek(0, CFile::begin);
actual = myFile.Read(buffer, sizeof(buffer));

~ To close a file:

• Use the Close member function. This function closes the file system file and
flushes buffers if neccessary.

If you allocated the CFile object on the frame (as in the examples above) it will
be automatically destroyed when it goes out of scope. It is important to close
the file before the object is deleted. Note that deleting the CFile object does not
delete the physical file in the file system.

~ To get file status:

• Use the CFile object to get and set information about a file. One useful applica­
tion is to use the CFile static member function GetStatus to determine if a file
exists. GetStatus will return FALSE if the specified file does not exist.

Thus, you could use the result of GetStatus to determine whether to use the
CFile::modeCreate flag when opening a file, as shown by the following
example.

CFile theFile;
char* szFileName "c:\\test\\myfile.dat";
BOOl fOpenOK;

CFileStatus status;
II GetStatus will return TRUE if file exists,
II or FALSE if it doesn't exist
if(CFile::GetStatus(szFileName, status))
{

else
{

II Open the file without the Create flag
fOpenOK theFile.Open(szFileName,

CFile::modeWrite);

II Open the file with the Create flag
fOpenOK theFile.Open(szFileName,

Files and Serialization 279

CFile::modeCreate I CFile::modeWrite);

10.2 Serialization
Serialization is the process of writing or reading an object to or from a persistent
storage medium, such as a disk file. The Microsoft Foundation Class Library pro­
vides built-in support for serialization in the class CObject. Thus, all classes that
are derived from CObject can take advantage of CObject' s serialization protocol.

The basic idea of serialization is that an object should be able to write its current
state, usually indicated by the value of its member variables, to persistent storage.
Later, the object can be re-created by reading, or deserializing, the object's state
from the storage. A key point here is that the object itself is responsible for reading
and writing its own state. Thus, for a class to be serializable, it must implement the
basic serialization operations. As you will see in the following sections, this
functionality is easy to add to a class.

The Microsoft Foundation Class Library uses the CArchive class to perform seri­
alization. The object performs serialization operations on the CArchive object
without regard to the exact nature of the storage medium. A CArchive object is
typically associated with a CFile object, which is normally a disk file.

A CArchive object resembles an I/O stream in that it uses overloaded insertion
«<) and extraction (») operators to perform writing and reading operations. But
the resemblance to I/O streams is merely cosmetic. Do not confuse the CArchive
class with general-purpose I/O streams. I/O streams are for formatted text and the
CArchive class is for binary format serialized objects.

280 Class libraries User's Guide

There are two main topics regarding serialization in the Microsoft Foundation
Class Library that are covered in the following sections.

1. How to make a serializable class

2. How to serialize an object to and from a file object

How to Make a Serializable Class
There are five main requirements to make a class serializable. They are listed
below and explained in the following sections.

1. Derive your class from CObject (or from some class derived from CObject.)

2. Use the DECLARE_SERIAL macro in the class declaration.

3. Define a constructor that takes no arguments.

4. Use the IMPLEMENT_SERIAL macro in the implementation file for your
class.

5. Override the Serialize member function.

Deriving Your Class from CObject and
Using the DEClARE_ SERIAL Macro
The basic serialization protocol and functionality is defined in the CObject class.
By deriving your class from CObject, (or from some class derived from CObject)
as shown in the example code below, you gain access to the serialization protocol
and functionality of CObject.

The DECLARE_SERIAL macro is required in the declaration of classes that will
support serialization, as shown here:

class CPerson : public CObject
{

DECLARE_ SERIAL(CPerson)
II rest of declaration follows ...

} ;

Defining a Constructor with No Arguments
This constructor is used by the Microsoft Foundation Class Library when it re­
creates your objects as they are deserialized (loaded from disk.) Typically, this
constructor is an empty function, since the deserialization process will fill in all
member variables with the values necessary to re-create the object.

Files and Serialization 281

This constructor can be declared public, protected, or private. If you make it pro­
tected or private, you can be sure that it will only be used by the serialization func­
tions. The constructor must put the object in a state so that it can be safely deleted
if necessary.

Note If you forget to define a constructor with no arguments in a class that uses
the DECLARE_SERIAL and IMPLEMENT_SERIAL macros, you will get a
"no default constructor available" compiler warning on the line where the
IMPLEMENT_SERIAL macro is used.

Using the IMPLEMENT_SERIAL Macro in the Implementation File
The IMPLEMENT_SERIAL macro is used to define various functions needed
when you derive a serializable class from CObject. You use this macro in the im­
plementation file (.CPP) for your class. The first two arguments to the macro are
the name of the class and the name of its immediate base class.

The third argument to this macro is a schema number. The schema number is es­
sentially a version number for objects of the class. Use an integer greater than or
equal to 0 for the schema number.

The Microsoft Foundation Class Library serialization code checks the schema
number when reading objects into memory. If the schema number of the object
on disk does not match the schema number of the class in memory, then the
Foundation will throw an exception, preventing your program from reading an
incorrect version of the object.

The following example shows how to use IMPLEMENT_SERIAL for a class,
CPerson, that is derived from CObject:

IMPLEMENT_SERIAL(CPerson, CObject, 0)

Overriding the Serialize Member Function
The Serialize member function, which is defined in the CObject class, is re­
sponsible for actually serializing the data necessary to capture an object's current
state. The Serialize function has a CArchive argument that it uses to read and
write the object data. The CArchive object has a member function, IsStoring,
which indicates whether the serialization is storing (writing data) or loading
(reading data). Using this function as a guide, you either insert your object data in
the CArchive with the insertion operator «<) or extract data with the extraction
operator (»).

282 Class Libraries User's Guide

Consider a class that is derived from CObject and has two new member variables,
a CString and a UINT. The following class declaration fragment shows the new
member variables and the declaration for the overridden Serialize member
function:

class CPerson public CObject
{

publ i c:

} ;

DECLARE_SERIAL(CPerson, CObject)
II empty constructor is necessary
CPerson (){};

CString m_name;
UINT m_number;

void Serialize(CArchive& archive);

II rest of class declaration

~ To override the Serialize member function:

• First call your base class version of Serialize to make sure that the inherited
portion of the object is serialized.

• Then insert or extract the member variables that are specific to your class.

The insertion and extraction operators do all the hard work of interacting with
the archive class to read and write the data. The following example shows how
to implement Seri ali ze for the CPerson class declared above:

void CPerson::5erialize(CArchive& archive
{

}

II call base class function first
II base class is CObject in this case
CObject::Serialize(archive);

II now do the stuff for our specific class
if(archive.lsStoring())

archive « m_name « m_number;
else

archive » m_name » m_number;

How to Serialize an Object
The previous sections showed how to make a class serializable. Once you have a
serializable class, you can serialize objects of that class to and from a CArchive
object. This section shows how to get a CArchive object and how to serialize
objects to and from the archive.

Close the archive
before you close the
file.

Files and Serialization 283

~ To create a CArchive object:

• CArchive objects are always associated with files. If you have a CFile object
or a derived CFile object, you can get a CArchive object for that file by pass­
ing the CFile object to the constructor for CArchive, as shown in the following
example:

CFile theFile;
theFile.Open(... , CFile::modeWrite);

CArchive archive(&theFile, CArchive::store);

The second argument to the CArchive constructor is an enumerated value that
specifies whether the archive will be used for loading (reading) or storing (writ­
ing) data. An archive can be for either storing or loading, but not for both. This
constructor argument sets the load-store state for the archive. The Serialize
function of an object checks this state by calling the IsStoring function for the
archive object.

~ To serialize an object:

• Once you have a CArchive object, as shown in the previous section, you can
serialize objects to and from it (depending on whether it was created for storing
or loading) by using the same insertion and extraction operators that you used
inside the Se ria 1 i z e member function described in an earlier procedure,
"Overriding the Serialize Member Function," on pages 281-282.

Assuming that CPerson is a class that has overridden the Serialize member
function, you can serialize a CPerson object to an archive as follows:

CPerson* aPerson = new CPerson("Smith");
archive « aPerson;

To flush the buffers and close the connection between the archive and the file
when you are done with the serialization operation, call the Close member func­
tion for the archive. Be sure to close the archive before you close the file, as
shown in the following example:

archive.Close() ;

theFil e. Cl ose();

284 Class Libraries User's Guide

~ To deserialize an object:

• Deserializing an object involves reading the object back in from the disk file to
which it was originally serialized. The following example shows how you can
deserialize the object:

CPerson* aPerson2;
CFil e theFil e;
theFile.Open(... , CFile::modeRead);

CArchive archive2(&theFile, CArchive::load);

archive2 » aPerson2;

archive2.Close();

theFile.Close();

Deserialization will only work if the file position is in the same state as it was
when the object was originally serialized. That means your program must keep
track of the order in which objects were serialized and deserialize them in the
same order.

The suggested way to avoid this bookkeeping problem is to place all your ob­
jects in a collection and then serialize the collection as a single object. Your
data file can then be thought of as containing a single collection object that can
be deserialized. When the collection object is deserialized, it will take care of
deserializing all its constituent objects in the proper order.

Note Note that you do not have to do any explicit memory allocation for the ob­
jects that you are deserializing. The archive allocates the memory necessary to
reconstruct the objects. You are responsible, however, for deleting the deserial­
ized objects when you are done with them.

See the tutorial in this book (Chapters 1-6) for a complete example program
that uses serialization to save and restore a name and phone-number data base
as a single collection.

Diagnostics

The Microsoft Foundation Class Library contains many diagnostic features to
help debug your program during development. These features, especially keeping
track of all memory allocations, will slow your program down. Others, such as
assertion testing, will cause your program to halt when erroneous conditions are
encountered.

In a commercial retail product, slow performance and program interruption are
clearly unacceptable. For this reason, the Microsoft Foundation Class Library pro­
vides a way to turn the debugging and diagnostic features on or off when building
your program. You typically build a debug version of your program and link with
the Debug version of the Microsoft Foundation Class Library while developing
your program. When it comes time to release your program, you build a release
version and link with the Release Foundation libraries.

11.1 Debugging Features
The following list contains the features that are included in the Debug version of
the Microsoft Foundation Class Library:

• Dump member function to dump object contents to debugging output

• Trace output

• Assertions and AssertValid member function

• Memory diagnostics to detect memory leaks

• DEBUG_NEW macro to show where objects were allocated

~ To enable the debugging features:

1. Compile with the symbol_DEBUG defined. This is typically done by passing
the ID_DEBUG flag on the compiler command line. Defining the _DEBUG
symbol allows sections of code delimited by #ifdef _DEBUG I #endifto be
compiled.

286 Class Libraries User's Guide

2. Link with the Debug versions of the Microsoft Foundation Class Library. The
Debug versions of the library have a "D" at the end of the library name. For
example, the medium-model Debug version of the Microsoft Foundation Class
Library for Windows is named MAFXCWD.LIB, and the Release version
(non-debug) is named MAFXCW.LIB.

Dumping Object Contents
When deriving a class from CObject, you can optionally override the Dump mem­
ber function to write a textual representation of the member variables of the object
to a dump context, which is similar to an I/O stream. Like an I/O stream, you can
use the insertion «<) operator to send data to a CDumpContext.

Overriding Dump is not required when deriving a class from CObject, but it is
very helpful and highly recommended when using the other diagnostic features for
debugging to be able to dump an object and view its contents.

~ To override the Dump member function:

1. Call the base class version of Dump to dump the contents of a base class object.

2. Write a textual description and value for each member variable for your derived
class.

The declaration of the Dump function in the class declaration looks like the follow­
ing example:

class CPerson public CObject
{

public:
ffifdef _ DEBUG

virtual void Dump(CDumpContext& dc) canst;
ffendif

} ;

CString m_firstName;
CString m_lastName;
II etc.

Note Since object dumping only makes sense when debugging your
programming, the declaration of the Dump function is bracketed with an
#ifdef _DEBUG I #endif block.

The Dump function's first statement should call the Dump function for its base
class. It should then write a short description of each member variable along with
the member's value to the diagnostic stream, as shown by the following example
from an implementation file for the class CPerson.

fFifdef _ DEBUG
void CPerson::DumpC CDumpContext& dc) const
{

II call base class function first
CObject::DumpC dc);

II now do the stuff for our specific class
dc «"last name: " « m lastName « "\n"

}

fFendif

« "fi rst name: " « m fi rstName

Diagnostics 287

Note Again, notice that the definition of the Dump function is bracketed by #ifdef
_DEBUG I #endif directives.

~ To send Dump output to afxDump:

• You must supply a CDumpContext argument to specify where the dump out­
put will go when you call the Dump function for an object. The Microsoft
Foundation Class Library supplies a predefined CDumpContext object named
afxDump that you will normally use for routine object dumping. The following
example shows how to use afxDump:

CPerson myPerson = new CPerson;
II set some fields of the CPerson object ...
I! ..
II now dump the contents
fFifdef _DEBUG
myPerson->DumpC afxDump);
fFendif

In Windows, afxDump output is sent to the debugger, if present. In DOS,
afxDump output is sent to stderr.

Note afxDump is defined only in the Debug version of the Microsoft
Foundation Class Library.

288 Class Libraries User's Guide

The TRACE Macro
The TRACE macro can be used to print out debugging messages from a program
during development. TRACE prints a string argument to the current diagnostic
output device. For programs with character-based output in DOS, the TRACE out­
put will go to stderr. For Windows programs, the TRACE output will be directed
to your debugger.

The TRACE macro can handle different numbers of arguments, similar to the
way printf operates. The following examples show several different ways to use
the TRACE macros:

int x = 1;
int y = 16;
float z = 32.0;
TRACE("This is a TRACE statement\n");

TRACE("The value of x is %d\n", x);

TRACE("x %d and y %d\n", x, y);

TRACE("x %d and y %x and z = %f\n", x, y, z);

The TRACE macro is active only in the Debug version of the library. After a
program has been debugged, you can build a Release version to inactivate all
TRACE calls in the program.

The ASSERT Macro
The ASSERT macro evaluates its argument, prints a diagnostic message, and halts
program execution if the argument expression is false (0). The diagnostic message
is sent to afxDump and has the form

assertion failed in file <name> in line <num>

where <name> is the name ofthe source file and <num> is the line number of the
assertion that failed in the source file. The ASSERT macro takes no action if its
argument is true (nonzero).

The ASSERT macro is typically used to identify program errors during develop­
ment. The argument given to ASSERT should be chosen so that it holds true only
if the program is operating as intended. The following example shows how the
ASSERT macro could be used to check the validity of a function's return value:

int x = SomeFunc(y);
ASSERT(x == 0); II ASSERT only if x not equal to 0

Diagnostics 289

ASSERT can also be used in combination with the IsKindOf macro to provide
extra checking for function arguments, such as in the following example. (For a
discussion of the IsKindOfmacro, see "How to Access Run-time Class
Information" on page 265).

ASSERT(objectl->IsKindOf(RUNTIME_CLASS(CPerson)));

Like the TRACE macro described in the previous section, the ASSERT macros
are only active in the Debug version of your program. Thus, you can inactivate all
ASSERT statements simply by building the Release version of your program.

Using assertions liberally throughout your programs can catch errors during
development. A good rule of thumb is that you should write assertions for any as­
sumptions you make. For example, if you assume that an argument is not NULL,
then you should use an assertion statement to check for that condition. The good
thing about the ASSERT macro is that it will catch errors when you are using the
Debug version of the Microsoft Foundation Class Library during development but
will be turned off (produce no code) when you build your program with the Re­
lease version of the library.

Note The expression argument to ASSERT will not be executed in the release ver­
sion of your program. If you want the expression to be executed in both debug and
release environments, use the VERIFY macro instead of ASSERT. In debug ver­
sions, VERIFY simply passes its expression argument to ASSERT. In release
environments, VERIFY executes the expression argument but does not check the
result.

Overriding the AssertValid Function
The AssertValid member function is provided in CObject to allow run-time
checks of an object's internal state. Although it is not required that you override
AssertValid when you derive your class from CObject, you can make using your
class safer and more reliable by overriding Assert Valid.

Typically, AssertValid performs assertions on all the object's member variables
to see if they contain valid values. For example, AssertValid can check that all
pointer member variables are not NULL. AssertValid asserts and halts the pro­
gram if it finds that the object is invalid. Because it uses the ASSERT macro,
AssertValid will have no effect when used in the Release version of the library.

290 Class Libraries User's Guide

The declaration of the AssertVal i d function in the class declaration looks like
this:

class CPerson : public CObject
{

protected:
CString m_Name;
float m_Salary;

public:
virtual void AssertValid() const;

II etc.
} ;

In your overriding AssertVa 1 i d, first call AssertValid for the base class. Then,
assert the validity of the members that are unique to your derived class, as shown
by the following example:

void CPerson::AssertValid()
{

}

I I call inherited AssertVal id fi rst
CObject::AssertValid()

II check CPerson members ...
ASSERT(m_Name 1= NULL)
ASSERT(m_Salary 1= 0)

Users of an AssertVal i d function of a given class should not rely too heavily on
the accuracy of this function. A triggered assertion indicates that the object is de­
finitely bad and execution will be halted. A lack of assertion indicates that no prob­
lem was found, but the object isn't guaranteed to be good.

11.2 Detecting Memory Leaks
A memory leak occurs when you allocate memory on the heap and never delete
that memory to make it available for reuse. This is a particular problem for pro­
grams that are intended to run for extended periods (typically weeks or months).
In a long-lived program, even a small incremental memory leak can compound it­
self, so that eventually all available memory resources are exhausted and the pro­
gram crashes. Traditionally, memory leaks have been very hard to detect.

The Microsoft Foundation Class Library provides classes and functions that you
can use to detect memory leaks during development. Basically, these functions
take a snapshot of all memory blocks before and after a particular set of opera­
tions. You can use these results to determine if all memory blocks allocated during
the operation have been deallocated.

Diagnostics 291

The size of the operation that you choose to bracket with these diagnostic func­
tions is arbitrary. It can be as small as a single program statement, or it can span
the entry and exit from your entire program. Either way, these functions will allow
you to detect memory leaks and identify the memory blocks that have not been
deallocated.

Memory Diagnostics

~ To enable or disable memory diagnostics:

• Call the AfxEnableMemoryTracking to enable or disable the diagnostic
memory allocator. Since memory diagnostics are on by default in the Debug
library, you will typically use this function to temporarily turn off memory
diagnostics to speed program execution and reduce diagnostic output.

~ To select specific memory diagnostic features with afxMemDF:

• If you want more precise control over the memory diagnostic features, you can
selectively turn inidividual memory diagnostic features on and off by setting
the value of the Microsoft Foundation Class Library global variable
afxMemDF. This variable can have the following values as specified by
the enumerated type AfxMemDF:

Value

allocMemDF

delayFreeMemDF

checkAlwaysMemDF

Meaning

Turn on debugging allocator (default).

Delay freeing memory when calling delete or
free. This will cause maximum memory stress for
your program.

Call AfxCheckMemory every time memory is
allocated or freed.

These possible values can be used in combination by performing a logical-OR
operation, as shown here:

afxMemDF 1= delayFreeMemDF 1 checkAlwaysMemDF;

292 Class Libraries User's Guide

Detecting a Memory Leak
The following instructions and examples will show you how to detect a memory
leak.

~ To detect a memory leak:

1. Create a CMemoryState object and call the Checkpoint member function to
get the initial snapshot of memory.

2. After you perform the memory allocation and deallocation operations, create
another CMemoryState object and call Checkpoint for that object to get a cur­
rent snapshot of memory usage.

3. Create a third CMemoryState object and call the Difference member function,
and supply the previous two CMemoryState objects as arguments. The
Difference function will return TRUE if there is any difference between the
two specified memory states, indicating that some memory blocks that have not
been deallocated.

The following example shows how to check for memory leaks:

II Declare the variables needed
Itifdef _ DEBUG

CMemoryState oldMemState, newMemState, diffMemState;
Itendif

#i fdef _ DEBUG
oldMemState.Checkpoint();

#endif

II do your memory allocations and deallocations ...
CString s = "This is a frame variable";
II the next object is a heap object
CPerson* p = new CPerson("Smith", "Alan", "581-0215");

#i fdef _ DEBUG
newMemState.Checkpoint();
if(diffMemState.Difference(oldMemState, newMemState))
{

}
Itendi f

TRACE("Memory leaked !\n");

Notice that the memory-checking statements are bracketed by
#ifdef _DEBUG I #endifblocks so that they are only compiled in debug
versions of your program.

Diagnostics 293

Dumping Memory Statistics
The CMemoryState member function Difference will determine the difference
between two memory-state objects. It will detect any objects that were not deallo­
cated from the heap between the beginning and end memory-state snapshots.

~ To dump memory statistics:

• The following example, continuing the example from the previous section,
shows how to call DumpStatistics to get information about the objects that
have not been deallocated.

if(diffMemState.Difference(oldMemState, newMemState))
{

}

TRACE("Memory leaked !\n");
diffMemState.DumpStatistics();

A sample dump from the example above is shown here:

o bytes in 0 Free Blocks
22 bytes in 1 Object Blocks
45 bytes in 4 Non-Object Blocks
Largest number used: 67 bytes
Total allocations: 67 bytes

• The first line describes the number of blocks whose deallocation was
delayed if afxMemDF was set to delayFreeMemDF. For a description of
afxMemDF, see the section "To select specific memory diagnostic features
with afxMemDF" on page 291.

• The second line describes how many objects still remain allocated on the
heap. .

• The third line describes how many nonobject blocks (arrays or structures al­
located with new) were allocated on the heap and not deallocated.

• The fourth line gives the maximum memory used by your program at any
one time.

• The last line lists the total amount of memory used by your program.

294 Class Libraries User's Guide

Dumping All Objects
DumpAllObjectsSince dumps out a description of all objects detected on the heap
that have not been deallocated. As the name implies, DumpAllObjectsSince will
dump all objects allocated since the last Checkpoint However, if no Checkpoint
has taken place, all objects and non-objects currently in memory will be dumped.

~ To dump all objects:

• Expanding on the code from the previous example, the following code dumps
all objects that have not been deallocated when a memory leak is detected:

if(diffMemState.Difference(oldMemState, newMemState))
{

}

TRACE("Memory leaked !\n");
diffMemState.DumpAllObjectsSince();

A sample dump from the previous code is shown as follows:

Dumping objects ->

{5} string.cpp(62) : non-object block at $00A7521A, 9 bytes long
{4} string.cpp(62) : non-object block at $00A751F8, 5 bytes long
{3} string.cpp(62) : non-object block at $00A751D6, 6 bytes long
{2} a CPerson at $51A4

Last Name: Smith
First Name: Alan
Phone #: 581-0215

{I} string.cpp(62) : non-object block at $00A7516E, 25 bytes long

The numbers in braces at the beginning of most lines specify the order in which
the objects were allocated. The most recently allocated object is displayed first.
You can use these ordering numbers to help identify allocated objects.

Interpreting an Object Dump
The preceding dump comes from the original memory checkpoint example in the
section "Detecting a Memory Leak" on page 292. Remember that there were only
two explicit allocations in that program-one on the frame and one on the heap:

II do your memory allocations and deallocations ...
CString s = "This is a frame variable";
II the next object is a heap object
CPerson* p = new CPerson("Smith", "Alan", "581-0215");

Diagnostics 295

Start with the CPerson object; its constructor takes three arguments that are point­
ers to char. The constructor uses those arguments to initialize CString member
variables for the CPerson class. In the memory dump, you can see the
CPerson object listed along with three nonobject blocks (3, 4, and 5) that hold the
characters for the CString member variables. These memory blocks will be de­
leted when the destructor for the CPerson object is invoked.

Block number 2 represents the CPerson object itself. After the CPerson
address listing, the contents of the object are displayed. This is a result of
DumpAllObjectsSince calling the Dump memberfunction for the CPerson
object.

You can guess that block number 1 is associated with the CString frame variable
because of its sequence number and its size, which matches the number of charac­
ters in the frame CString variable. The allocations associated with frame variables
are automatically deallocated when the frame variable goes out of scope.

In general, you shouldn't worry about heap objects associated with frame varia­
bles because they are automatically deallocated when the frame variables go out of
scope. In fact, you should position your calls to Checkpoint so that they are out­
side the scope of frame variables to avoid clutter in your memory diagnostic
dumps. For example, place scope brackets around the previous allocation code, as
shown here:

oldMemState.Checkpoint();
{

}

II do your memory allocations and deallocations
CString s = "This is a frame variable";
II the next object is a heap object
CPerson. p = new CPerson("Smith", "Alan", "581-0215");

newMemState.Checkpoint();

With the scope brackets in place, the memory dump for this example is as follows:

Dumping objects ->

{5} string.cpp(62) non-object block at $00A7521A, 9 bytes long
{4} string.cpp(62) non-object block at $00A751F8, 5 bytes long
{3} string.cpp(62) non-object block at $00A751D6, 6 bytes long
{2} a CPerson at $51A4

Last Name: Smith
First Name: Alan
Phone #: 581-0215

296 Class Libraries User's Guide

Notice that the memory block associated with the CString frame variable has
been deallocated automatically and does not show up as a memory leak. The auto­
matic deallocation associated with scoping rules takes care of most memory leaks
associated with frame variables.

For objects allocated on the heap, however, you must explicitly delete the object to
prevent a memory leak. To clean up the last memory leak in the previous example,
you can delete the CPerson object allocated on the heap, as follows:

{

}

II do your memory allocations and deallocations ...
CString s = "This is a frame variable";
II the next object is a heap object
CPerson* p = new CPerson("Smith", "Alan", "581-0215" l;
delete p;

11.3 Using DEBUG_ NEW to Aid Debugging
The Microsoft Foundation Class Library defines the macro DEBUG_NEW to as­
sist you in tracking down memory leaks. You can use DEBUG_NEW every­
where in your program that you would ordinarily use the new operator.

When you compile a Debug version of your program, DEBUG_NEW will keep
track of the filename and line number for each object that it allocates. Then when
you call DumpAllObjectsSince, as described in the previous section, each object
allocated with DEBUG_NEW will be shown with the file and line number where
it was allocated, thus allowing you to pinpoint the sources of memory leaks.

When you compile a Release version of your program, DEBUG_NEW will re­
solve to a simple new operation without the filename and line number informa­
tion. Thus, you pay no speed penalty in the Release version of your program.

~ To use DEBUG_NEW:

• Define a macro in your source files that replaces new with DEBUG_NEW, as
shown here:

#define new DEBUG_NEW

You can then use new for all heap allocations. The preprocessor will substitute
DEBUG_NEW when compiling your code. In the Debug version of the li­
brary, DEBUG_NEW will create debugging information for each heap block.
In the Release version, DEBUG_NEW will resolve to a standard memory allo­
cation without the extra debugging information.

Exceptions

There are three categories of outcomes that can occur when a function is called
during program execution: normal execution, erroneous execution, or abnormal
execution. Each category is described below.

Normal execution
The function may execute normally and return. Some functions return a result
code to the caller, which indicates the outcome of the function. The possible
result codes are strictly defined for the function and represent the range of
possible outcomes of the function. The result code can indicate success or
failure or can even indicate a particular type of failure that is within the normal
range of expectations. For example, a file-status function can return a code that
indicates that the file does not exist. Note that the term "error code" is not used
since a result code represents one of many expected outcomes.

Erroneous execution
The caller makes some mistake in passing arguments to the function or calls the
function in an inappropriate context. This situation causes an error, and it
should be detected by an assertion during program development. (For more
information on assertions, see page 288).

Abnormal execution
Abnormal execution includes situations where conditions outside the program's
control are influencing the outcome of the function, such as low memory or I/O
errors. Abnormal situations should be handled by catching and throwing excep­
tions.

12.1 Microsoft Foundation Classes Exception Handling
The Microsoft Foundation Class Library uses an exception-handling scheme that
is very similar to one proposed by the ANSI standards committee for C++ 2.1.
You set up an exception handler before calling functions that you think might en­
counter abnormal situations. If your program does run into abnormal conditions,
then it throws an exception. When an exception is thrown, program execution
jumps to the exception handler and execution resumes there.

298 Class Libraries User's Guide

Exceptions are represented as objects derived from the abstract class CException.
The Microsoft Foundation Class Library provides several predefined kinds of ex­
ceptions as listed below.

Exception handler

CMemoryException

CFileException
CArchiveException

CNotSupportedException

CResourceException

Meaning

Out-of-memory

File exception

ArchivelSerialization exception

Response to request for unsupported service

Windows resource allocation exception

Since many parts of the Microsoft Foundation Class Library, especially those deal­
ing with files and serialization, use exceptions to report abnormal conditions, you
will find it useful to use the Microsoft Foundation exception-handling mechanism
in the parts of your program that call those types of Microsoft Foundation Class
Library functions. For a description of each Microsoft Foundation Class Library
function and the exceptions that can possibly be thrown by that function, see the
Class Library Reference. If you see that a function can throw an exception, you
should probably surround it with an exception handler.

For a good working example of how to use exceptions with file and serialization
functions, see the "Exception Handling" section on page 61 of the tutorial.

12.2 Catching Exceptions
The following instructions and examples will show you how to catch exceptions.

~ To catch exceptions:

1. Use the TRY macro to set up a TRY block. Execute any program statements
that might throw an exception within a TRY block.

2. Use the CATCH macro to set up a CATCH block. Place exception handling
code in a CATCH block. The code in the CATCH block is executed only if the
code within the TRY block throws an exception of the type specified in the
CA TCH statement.

The following code skeleton shows how TRY and CATCH blocks are nor­
mallyarranged:

I I normal program statements

TRY
{

}
II execute some code that might throw an exception

CATCH(CException, e)
{

II handle the exception here
II "en contains information about the exception

}

II other normal program statements

Exceptions 299

Note Note the END_ CATCH macro that marks the end of the CATCH blocks.

The CATCH macro takes an exception type parameter, so you can selectively
handle different types of exceptions with sequential CATCH and
AND_ CA TCll blocks as listed below:

TRY
{

}
II execute some code that might throw an exception

CATCH(CMemoryException, e)
{

II handle the out-of-memory exception here
}

AND_CATCH(CFileException, e)
{

II handle the file exceptions here
}
AND_CATCH(CException, e)
{

II handle all other types of exceptions here

12.3 Examining Exception Contents
The CA TCll macro includes an argument that is used to hold a pointer
to a CException object (or an object derived from CException, such as
CMemoryException). Depending on the exact type of the exception, you can ex­
amine the data members of the exception object to gather information about the
specific cause of the exception.

For example, the CFileException type has the m_cause data member that con­
tains an enumerated type that specifies the cause of the file exception. Some ex­
amples of the possible return values are CFileException::flleNotFound and
CFileException: :readOnly.

300 Class libraries User's Guide

~ To examine exception contents:

• The following example shows how to examine the contents of a
CFileException Other exception types can be examined in a similar way.

TRY
{

II do something to throw a file exception
}
CATCH(CFileException, theException
{

}

if(theException->m_cause == CFileException::fileNotFound
TRACE("File not found\n");

12.4 Freeing Objects in Exceptions
The exception-handling mechanism of the Microsoft Foundation Class Library can
interrupt normal program flow. Thus, it is very important to keep close track of ob­
jects that have been created on the heap so that you can properly dispose of them
in case an exception is thrown.

There are two primary methods to do this.

• Handle exceptions locally using the TRY and CATCH macros, then destroy all
objects with one statement.

• Destroy any object in the CATCH block before the exception is thrown outside
for further handling.

These two approaches are illustrated below as solutions to the following problem­
atic example code:

void SomeFunc()
{

}

CPerson* myPerson = new CPerson;

II do something that might throw an exception
myPerson->SomeFunc();

II now destroy the object before exiting
delete myPerson;

As written above, myPerson will not be deleted if an exception is thrown by
SomeFunc. Execution jumps directly to the innermost exception handler, bypassing
the normal function exit and the code that deletes the object. As written above, the
pointer to the object goes out of scope when the exception leaves the function, and

Exceptions 301

the memory occupied by the object will never be recovered as long as the program
is running. This is known as a memory leak and would be detected by using the
memory diagnostics.

Handle the Exception Locally
The TRY/CATCH paradigm provides a good way to avoid memory leaks by pro­
gramming defensively to ensure that your objects are destroyed when exceptions
occur. For example, the previous example could be rewritten as shown below:

void SomeFunc()
{

}

CPerson* myPerson new CPerson;

TRY
{

}

II do something that might throw an exception
myPerson->SomeFunc();

CATCH(CException, e)
{

II handle the exception locally
}

END CATCH

II now destroy the object before exiting
delete myPerson;

This new example sets up an exception handler to catch the exception and handle
it locally. It then exits the function normally and destroys the object. The impor­
tant aspect of this example is that a context to catch the exception is established
with the TRY/CATCH blocks. Without a local exception frame, the function
would never know that an exception had been thrown and would not have the
chance to exit normally and destroy the object.

Throw Exceptions After Destroying Objects
Another way to handle exceptions is to pass them on to the next outermost excep­
tion-handling context. In your CATCH block, you can do some cleanup of your
locally allocated objects and then throw the exception on for further processing.
The following code shows how this can be done:

void SomeFunc()
{

CPerson* myPerson new CPerson;

TRY

302 Class Libraries User's Guide

}

II do something that might throw an exception
myPerson->SomeFunc();

CATCH(CException, e)
{

II destroy the object before passing exception on
delete myPerson;
II throw the exception to the next handler
THROW_ LAST();

END CATCH

lion normal exits, destroy the object
delete myPerson;

If you call functions that can throw exceptions, you can use TRY!CATCHblocks
to make sure that you catch the exceptions and have a chance to destroy any ob­
jects you have created. In particular, be aware that many Microsoft Foundation
Class Library functions can throw exceptions.

12.5 Throwing Exceptions from Your Own Functions
It is possible to use the Microsoft Foundation Class Library exception-handling
paradigm simply to catch exceptions thrown by functions in the Microsoft Founda­
tion Class Library or other libraries. In addition to simply catching exceptions
thrown by library code, you can throw exceptions from your own code if you are
writing functions that can encounter exceptional conditions.

~ To throw an exception:

• Use one of the Foundation Class Library helper functions, such as
AfxThrowMemoryException, listed in AFX.H. These functions throw a
preallocated exception object of the appropriate type.

When an exception is thrown, execution of the current function is aborted and
jumps directly to the CATCH block of the innermost exception frame. The ex­
ception mechanism bypasses the normal exit path from a function. Therefore,
you must be sure to delete those memory blocks that would be deleted in a nor­
mal exit. In the following example, a function tries to allocate two memory
blocks and throws an exception if either allocation fails:

char* pI = malloc(SIZE_FIRST);
if(pI == NULL)

AfxThrowMemoryException();
char* p2 = malloc(SIZE_SECOND);
if(p2 == NULL)

}

free(pI);
AfxThrowMemoryException();

II ... do something with allocated blocks ...

II in normal exit, both blocks are deleted
free(pI);
free(p2);

Exceptions 303

If the first allocation fails, you can simply throw the memory exception. If the
first allocation is successful but the second one fails, you must free the first allo­
cation block before throwing the exception. If both allocations succeed, then
you can proceed nonnally and free the blocks when exiting the function.

12.6 Exceptions in Constructors
When throwing an exception in a constructor, clean up whatever objects and
memory allocations you have made prior to throwing the exception, as explained
in the previous section.

Throwing an exception in a constructor is tricky, however, because the memory
for the object itself has already been allocated by the time the constructor is called.
There is no simple way to deallocate the memory occupied by the object from
within the constructor for that object. Thus, you will find that throwing an excep­
tion in a constructor will result in the object remaining allocated. For a discussion
of how to detect objects in your program that have not been deallocated, see
"Detecting Memory Leaks" on page 290.

If you are performing operations in your constructor that can fail, it might be a bet­
ter idea to put those operations into a separate initialization function rather than
throwing an exception in the constructor. That way, you can safely construct the
object and get a valid pointer to it. Then, you can call the initialization function for
the object. If the initialization function fails, you can delete the object directly.

12.7 Frame Variables and Exceptions
Explicitly allocated heap objects must also be deallocated before an exception is
thrown. With frame objects, the frame memory will be reclaimed automatically by
the exception mechanism. Although the memory occupied by the frame object is
reclaimed, the destructor for the frame object is not executed by the exception
mechanism.

304 Class libraries User's Guide

For most objects the reclamation of frame space is sufficient to clean up the ob­
ject, but for objects that allocate memory in addition to the frame space that they
occupy, such as CString objects, the default exception handling is not sufficient to
completely deallocate the object. In addition, objects whose destructors are an inte­
gral part of their operations need special handling during exceptions.

CString: The Problem of Deallocating Heap Space
When a CString object is allocated on the frame, its constructor also allocates
memory on the heap to hold the characters of the string. Thus, a CString occupies
space on the frame and also on the heap. When a CString frame variable is de­
stroyed normally, its destructor takes care of deallocating the heap space used by
the object. When the normal destruction of the CString is bypassed by an excep­
tion, this heap space is not deallocated, even though the frame space occupied by
the CString is reclaimed.

~ To avoid this CString memory leak:

• Call the Empty function for any CString frame variables when handling an ex­
ception. The following example shows how to do this:

{

CString sl = "This is a test";

TRY
{

}

CATCH(CMemoryException,e)
{

}

II deallocate heap space used by string
sl. Empty();

II now you can safely throw the exception
THROW_ LAST();

END CATCH

The necessity to explicitly deallocate heap resources for a frame-based object is
not limited to CStrings. Since the destructors for frame objects are not automat­
ically executed when an exception interrupts normal program flow, any frame­
based object where the destructor performs significant tasks will need special
attention during exception handling.

Application Design

The Microsoft Foundation Classes provide support for writing Windows applica­
tions. This chapter describes the specific design principles involved in using the
Microsoft Foundation Classes for Windows applications.

13.1 Using Microsoft Foundation Classes
to Write Windows Applications

A traditional Windows program that is written without the Microsoft Foundation
Class Library typically has at least the following five components:

Component

WinMain
InitApplication

InitInstance

MainWndProc
About

Purpose

Calls initialization function and processes message loop

Initializes window data and registers one or more Windows
registration classes

Saves instance handle and creates main window

Processes messages for main window

Processes messages for "About" dialog box

A Windows program that is written with the Microsoft Foundation Class Library
has a slightly different structure than a traditional Windows program. Much of the
functionality that you have to provide yourself in a traditional Windows program,
such as the WinMain function and the message loop, is provided automatically by
the Microsoft Foundation Class Library. Thus, you have fewer programming tasks
when making a Microsoft Foundation-based Windows program.

The following list shows how the parts of a traditional Windows program are re­
placed by the capabilities of the Microsoft Foundation Class Library.

306 Class libraries User's Guide

Windows component Foundation capability

WinMain Provided by Microsoft Foundation Class Library. Instead of
writing WinMain yourself, you derive an application class
from CWinApp and create an object of that derived class.

InitApplication Default implementation provided by Microsoft Foundation
Class Library. You can override the InitApplication function
of CWinApp to add your own special initialization.

InitInstance You typically override the InitInstance function of
CWinApp to create the application's main window.

MainWndProc Instead of writing a window procedure, you derive a window
class from one of the existing Foundation window classes.

About Instead of writing a dialog window procedure, you create a
CModalDialog object and let it process the user interaction.

The following list shows the typical steps you will complete to take advantage of
the Microsoft Foundation Class Library to write a Windows application:

~ To use Microsoft Foundation classes to write a Windows program:

1. Derive your own window class to serve as the main window. You typically
derive from the Microsoft Foundation class CFrameWnd or
CMDIFrameWnd. (For more information on this topic, see the cookbook
section "Deriving Frame Windows.")

2. Define a message map to associate specified window messages with member
functions of your derived window class. For a complete description of how to
define message maps, see the cookbook section "Handling Window Messages."

3. Derive your own application class from CWinApp.

4. Override the InitInstance member function of CWinApp to create a main
window.

S. Define an object of your application class. You define the application object as
a global variable in the main .CPP file for your program, as shown in the ex­
ample below. This object will be automatically initialized by the Microsoft
Foundation-provided WinMain at program startup.

II in .H file
class CTheApp : public CWinApp
{

II ... class declaration ...
}

II in .CPP file
CTheApp myApp; II define global application object

Application Design 307

For an example of how to derive the minimum necessary application and window
objects for a Microsoft Foundation-based Windows application, see the sample
program files HELLO.H and HELLO.CPP. The following section describes some
of the specific tasks that must be done by overridden member functions of the ap­
plication class. Later sections describe the functions of the window class that can
be overridden.

13.2 Deriving Classes from CWinApp
The Microsoft Foundation class CWinApp provides much of the framework of a
basic Windows application. You will typically not need to change very much of
this functionality except for the initialization parts. The following six member
functions of CWinApp are designed to be overridden in derived classes. You will
almost always override Initlnstance. The other functions can be overridden as
needed to provide special processing beyond the default behavior.

CWinApp function Purpose When to override

InitApplication One-time application Seldom
initialization

Initlnstance Creates main window Almost always

Run Message loop Seldom

PreTranslateMessage Extra message processing Seldom

Onldle Idle loop processing If needed to perform
background tasks when no
messages are pending

ExitInstance Called when program Sometimes, to perform
terminates, returns exit application cleanup
code to Windows

Initializing Your Application
Windows allows several copies of the same program to be running at the same
time. Thus, application initialization is conceptually divided into two sections: one­
time initialization that is done the first time the program runs, and instance initiali­
zation that runs each time a copy of the program runs, including the first time.

The one-time application initialization of a typical Windows program calls
RegisterClass for each of the unique Windows registration classes used by the
program. Windows programs that use the Microsoft Foundation Class Library do
not normally need to call RegisterClass, so there is typically no need to do one­
time initialization in a Microsoft Foundation-based Windows program.

308 Class libraries User's Guide

The Microsoft Foundation class CWinApp provides the member function
InitApplication, which you can override to perform anyone-time application
initialization tasks for your application. The Microsoft Foundation classes already
provide much of the default initialization (such as creating Windows registration
classes) that is normally found in traditional Windows initialization functions. If
you do not need to do any other special one-time initialization, you do not have to
override InitAppiication.

How to Initialize Each Application Instance
Each instance (copy) of a Windows program is given a chance to perform instance­
specific application initialization. Typically, each instance must at least create a
main window. The Microsoft Foundation class CWinApp provides the member
function Initlnstance that you will normally override to perform instance-specific
application initialization.

For example, the sample program in HELLO.CPP overrides InitInstance to create
a main window from the derived window class CMa i nWi ndow, and assigns the win­
dow pointer to the CWinApp member variable IlL pMain Wnd. The overriding
function In i tIn s tan c e then shows the Window and updates it, as shown here:

Ilin .H file
class CTheApp : public CWinApp
{

public:
Baal Initlnstance();

} ;

II in .CPP file
Baal CTheApp::lnitlnstance()
{

m_pMainWnd = new CMainWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();

return TRUE;

The member variable m_nCmdShow is passed to the ShowWindow function to
specify whether the window is visible or not. m_nCmdShow is the value passed
to WinMain in the nCmdShow argument.

In your derived application class, you will typically override InitInstance in much
the same way as shown, substituting your own window class for CMa i nWi ndow.
You may also use In i tIn s tan c e to perform additional initialization tasks (buffer
allocation, etc.) as well.

Application Design 309

Idle Loop Processing
Idle loop processing allows your program to perform specified tasks when there is
not pending user input or system messages. The default message loop provided by
the Microsoft Foundation Class Library calls the virtual function Onldle in class
CWinApp whenever there are no pending messages in the message queue for the
application.

If you want to do idle processing, you can override Onldle in your derived appli­
cation class. This function has a LONG argument and returns a BOOL result. By
default, it returns FALSE to indicate that no idle processing time is required. The
LONG argument indicates how many times Onldle has been called since the last
message was taken from the event queue.

Idle loop processing proceeds according to the following list of actions:

1. If the message loop in the Microsoft Foundation Class Library checks the mes­
sage queue and finds no pending messages, it calls 0 n I d 1 e for the current appli­
cation object, supplying 0 as the [Count argument.

2. On I d 1 e performs some processing, and returns TRUE if it wants to be called
again to do further processing.

3. The message loop checks the message queue again. If no messages are pending,
it calls On Idl e again, incrementing the [Count argument.

4. Eventually, On I d 1 e finishes processing all its idle tasks and returns FALSE.
This tells the message loop to stop calling 0 n I d 1 e until the next message is re­
trieved from the message queue, at which point the idle cycle restarts with the
argument reset to O.

An example may make this process clearer. Since the argument to Onldl e IS Incre­
mented each time it is called, you can essentially prioritize the idle tasks that you
want to perform. By checking the value of the argument to On I d 1 e, you can deter­
mine how long (relatively) the message queue has been empty.

For instance, assume that you have two idle tasks you want to do. The first is high
priority, and you want to do it whenever there is an idle moment. The second task
is less important, and should be done only when there is a long pause in user input.
To handle these two cases, you could implement your On I d 1 e function as shown
here. Note that you must call Onldle for the base class (CWinApp) to ensure that
the default idle processing gets done too.

BOOl CTheApp::Onldle(lONG lCount
{

CWinApp::Onldle(lCount l;

310 Class libraries User's Guide

switch(1 Count)
{

case 0:
TRACE("frequent\n");
return TRUE;

case 10000:
TRACE("infrequent\n");
return FALSE;

default:
return TRUE;

Since message processing does not occur until 0 n I d 1 e has returned control to the
message loop, you should never retain control for too long. Trying to do too much
in On I d 1 e can hamper your program's responsiveness to user input. If you have
lengthy idle processing, break it up into smaller pieces and do one piece each time
On I d 1 e is called.

13.3 The Resource File
The resource file for Windows applications based on the Microsoft Foundation
Class Library is typically the same as the resource file for an equivalent program
written without the Microsoft Foundation classes. You normally define your pro­
gram resources, such as menus and dialog boxes, in a text file (* .RC) that is
processed by the Windows resource compiler (RC.EXE) into a binary resource file
(* .RES). The binary resource file is combined with your compiled and linked pro­
gram code to form the final executable file. You can also use the dialog editor to
create dialog resources for inclusion in your program.

For example, the About dialog box for the sample program in HELLO.RC is
defined by the following text:

AboutBox DIALOG 22, 17, 144, 75

{

STYLE DS_MODALFRAME I WS_CAPTION WS_SYSMENU
CAPTION "About Hello"

CTEXT "Microsoft Windows" -1,
CTEXT "Microsoft Foundation Classes" -1,
CTEXT "Hello, Windows!" -1,
CTEXT "Versi on 1.0" -1,

0,
0,
0,
0,

DEFPUSHBUTTON "OK" lOOK, 56, 56, 32,
}

5, 144, 8
14, 144, 8
23, 144, 8
36, 144, 8

14, WS_ GROU P

See the example programs provided with the Microsoft Foundation Class Library
for sample resource definition files. Also see the Windows Software Development
Kit documentation of the resource compiler for more specific information about
resource definition formats.

Window Management

The Microsoft Foundation Classes provide support for creating and managing
Windows-based windows for displaying data and handling user input. This sup­
port is built on top of the existing Windows window types and messaging mecha­
nism. This chapter describes how to use the Microsoft Foundation Classes to
create windows and handle window messages.

14.1 Creating a Frame Window
In a traditional Windows program, you create your own Windows registration
class by filling in a WNDCLASS structure and passing it to the RegisterClass
function. If you are using the Microsoft Foundation Class Library, you typically
derive a window class from an existing Foundation class using the normal C++
syntax for class inheritance. For frame windows, the Microsoft Foundation Class
Library provides three base classes from which you can derive your frame window
classes.

Base class

CFrameWnd

CMDIFrameWnd

CMDIChildWnd

Frame window class

Standard frame window

Multiple Document Interface frame window

Multiple Document Interface child window

The Microsoft Foundation Class Library also provides other C++ classes that sup­
port other types of windows, such as dialog boxes and controls. These other
classes are covered in later sections of the cookbook. Each of these base classes
provides default functionality that is appropriate to the function of the window.

312 Class libraries User's Guide

When you derive your frame window from an existing Microsoft Foundation
frame window class, you will complete two main tasks:

1. Define a constructor for the derived class.

2. Define message-handling functions and a message map for the derived class so
that window messages coming to the derived window can be correctly routed to
the proper handler functions.

These two tasks are described in the following two sections.

14.2 Constructors for Derived Window Classes
When you derive your window class from a Microsoft Foundation base window
class, you must at least implement a constructor for your window class. To initial­
ize the class, the constructor can call the Create member function, which calls the
Windows API function that actually create the window that is displayed on screen
by Windows.

For example, the example program file HELLO.H contains a class declaration, a
fragment of which is shown here, for a derived window class and its constructor.
The example program file HELLO.CPP contains the definition for the constructor,
also shown here.

II in HELLO.H
class CMainWindow public CFrameWnd
{

publ i c:
CMainWindow();

II other parts of declaration left out ...
} ;

/1 in HELLO.CPP
CMainWindow: :CMainWindow()
{

LoadAccelTabl e("MainAccelTabl e");
Create(NULL, "Hello Foundation Application",

WS_OVERLAPPEDWINDOW, rectDefault, NULL, "MainMenu");

The constructor in the example above loads an accelerator table resource for the
window and then calls the Create member function, passing in arguments that
specify various characteristics of the window.

If you want to add other child windows to your main frame window, you can cre­
ate those windows in the frame window constructor.

Window Management 313

Note If you are defining a window class from which you plan to derive other win­
dow classes, you should not call Create in the constructor of the base class, be­
cause in derived classes more than one window will be created by successive calls
to base class constructors. Instead, you should implement Create in your base
window class.

14.3 Handling Window Messages
When you use the c++ derivation mechanism of the Microsoft Foundation Class
Library, the derived class inherits all the functionality of the base window class, in­
cluding its window procedure. The window procedure is where incoming window
messages are processed. A traditional window procedure is made up of a large
switch statement that examines the window message and its arguments to deter­
mine what action to take.

When you use the Microsoft Foundation window classes, you are still free to over­
ride the window procedure for the base window class and use switch statements to
decode incoming window messages. However, to take full advantage of the Micro­
soft Foundation Class Library functionality and to make your code more compat­
ible with future enhancements to the library and its associated programming tools,
you should use the message-map mechanism to associate specific window mes­
sages to message-handler functions that you write.

~ To use the message-map mechanism in your derived window classes:

1. Define message-handler member functions in your derived window class.

2. Use the DECLARE_MESSAGE_MAP macro in your derived window class
declaration.

3. Use the BEGIN_MESSAGE_MAP, END_MESSAGE_MAP, and message­
specific macros in the implementation file (.CPP) for your derived window
class.

You can define message-handler functions as member functions for your derived
window class. Typically, you define one message-handler function for each win­
dow message that you handle. The base window class from which you derive your
window will handle all the other window messages that you don't explicitly
handle.

There are three main categories of messages that a window receives, as listed here:

• WM_ COMMAND messages generated by user menu selection or accelerator
invocation.

• Notification messages from child windows. These are also WM_ COMMAND
messages, but the window procedure arguments contain the control ID of the

314 Class Libraries User's Guide

child window and an event code, such as BN_ CLICKED, to identify why the
child window is sending the notification.

• Other W~XXX messages, such as WM_PAINT, generated by the system or
user input.

Menu-Command Messages
When a user chooses a menu item in a Windows program, the system sends a
W~ COMMAND message to the frame window that contains the menu bar.
The arguments that are sent with the WM_ COMMAND message contain a menu­
item ID number. The ID number is the same as defined in the resource definition
file (.RC). In the Microsoft Foundation Class Library, you typically define one
messagehandler function for each menu item that your window supports. You as­
sociate these message-handler functions with specific menu-item ID numbers by
defining a message map, as explained below.

~ To handle menu-command messages:

1. Define one message-handler function for each menu item. For example, if your
menu includes two items, Open and Save, with the ID numbers IDM_ OPEN
and IDM_SA VE, you would declare your window class as follows:

class CMyWnd : public CFrameWnd
{

II constructor not shown ...

public:

} j

afx_msg void OnOpen()j
afx_msg void OnSave()j

Note The declaration of all message-handler functions should use the afx_msg
prefix to show that they will be called through the message-map mechanism,
although the prefix is not required.

Notice that message-handler functions for menu commands have no arguments
and return no value. Since they are member functions of the window class, they
have access to the other member functions and member variables of the win­
dow object to get the information they need to perform their task.

Notice also the DECLARE_MESSAGE_MAPmacro in the class declaration.
This macro is required to enable the message-map mechanism for the class.

Window Management 315

2. Once the message-handler functions are defined and the message map enabled
by the DECLARE_MESSAGE_MAPmacro, define the message map itself
to indicate which message-handler functions are to be associated with which
messages, as follows:

BEGIN_MESSAGE_MAP(CMyWnd, CFrameWnd
ON_COMMANO(IOM_OPEN, On Open)
ON_COMMANO(IOM_SAVE, OnSave)

ENO MESSAGE_MAP()

The BEGIN_MESSAGE_MAP macro has two arguments: the name of the
derived class and the name of the base class. The ON_ COMMAND message­
map entry macro takes the ID number of the menu item and a pointer to the
member function (the function pointer is produced by simply using the name of
the function). Finally, the END_MESSAGE_MAP macro has no arguments.

The above message map directs the window procedure for the base window class
to call the derived window class member function OnOpen (which you must de­
fine) when the window receives a WM_COMMAND menu message where
wParam is equal to IDM_OPEN. Likewise, the IDM_SAVE menu command is
associated with the OnSave function. Other menu item commands can be as­
sociated with other message-handler member functions in a similar manner. The
message map shown above is equivalent to the following switch statement in a
traditional window procedure:

switch(msg)
{

}

case WM_COMMANO:
{

}

if(LOWORO(1 Param 0)
{

switch(wParam
{

}

case IOM_OPEN:
OoOpen () ;
break;

case IOM_SAVE:
OoSave() ;
break;

default:
return FALSE;

break;

default:
return FALSE;

316 Class libraries User's Guide

The message-map definition macros (eg. BEGIN_MESSAGE_MAP) for a par­
ticular class should be evaluated only one time during a compilation; thus they
typically appear in the implementation file (.CPP) for your window class rather
than in the interface file (.R).

The next section shows how to use the message-map mechanism to respond to
notification messages from child windows.

Notification Messages from Child Windows
Windows programs often use a main frame window containing one or more child
windows. These child windows are often predefined control windows such as but­
tons or edit text fields. These controls communicate with their parent window by
sending WM_ COMMAND notification messages. For example, a child button
control responds to a user mouse click by sending a WM_ COMMAND message
to its parent window. The arguments to the window message procedure contain the
control ID of the button and the the constant BN_ CLICKED. Thus, the parent
window gets a notification message that tells it the ID of the control and what hap­
pened to that control.

The Microsoft Foundation Class Library provides support through message maps
for handling notification messages from child windows. A set of macros is pro­
vided to support notification messages that are generated by standard control win­
dows. For example, the message-map entry macro for a BN_ CLICKED
notification message is ON_BN_CLICKED. Macros for other notification mes­
sages are formatted in a similar fashion. For a list of available notification mes­
sage-map entry macros, see AFXMSG.R or the reference manual.

~ To handle notification messages from child windows:

• Provide for each possible message a control ID number and a function pointer
to the member function to be called when that message is received. Add entries
to the message map and member functions for your frame window class to
handle the possible notification messages for your window.

For example, assume that you have a child button window with an ID of
ID_MY_FIRST_BUTTON. The following class declaration and message­
map definition calls the member function OnMyFirstButtonClick when the
button sends a BN_ CLICKED notification message to the frame window:

class CMyWnd : public CFrameWnd
{

public:
afx_msg void OnMyFirstButtonClick();

Window Management 317

II other class declaration stuff ...

} ;

II in .CPP file
BEGIN MESSAGE_MAP(CMyWnd, CFrameWnd)

ON_BN_CLICKEO(ID_MY_FIRSLBUTTON, OnMyFirstButtonClick)
END_MESSAGE_MAP()

~ To differentiate between messages sent by several child windows:

• Use different control ID arguments to the message-map macro. For example,
you can have two different child button windows that send the same
BN_ CLICKED message. Then the message map described above would have
a second entry for another button child window, as follows:

BEGIN_MESSAGE_MAP(CMyWnd,CFrameWnd)
ON_BN_CLICKEDC ID_MY_ FIRSLBUTTON, OnMyFi rstButtonCl i ck
ON_BN_CLICKEDC ID_MY_SECOND_BUTTON, OnMySecondButtonClick

END MESSAGE_MAP()

Notice that the second message-map entry refers to a different member func­
tion, which you would have to define for your frame window class.

Like the message-handler functions for menu-command messages, all message­
handler functions for notification messages are declared with the afx_msg
prefix and take no arguments and return no value. They are similar to the
ON_ COMMAND macro used for message-map entries for menu commands. The
message-map macros for the notification messages have two arguments: the ID of
the child window and a function pointer to the user-defined message-handler
function for that message.

Dialog boxes, which are described in the "Dialogs and Controls Windows" chap­
ter of the cookbook, use this same notification mechanism: within the message­
map entries, each child window notification message is matched to a user-defined
message-handler function.

The next section shows how to use the message-map mechanism to respond to
messages that are not from menu commands or notifications from child windows.

318 Class Libraries User's Guide

Other Window Messages
Unlike the message-handler functions for menu commands and child notification
messages, the message-handler functions for other types ofWM_XXX messages,
such as WM_PAINT or WM_RBUTTONDOWN, variously take one or more
arguments and may have a return a value. The function name and the argument sig­
nature required for each of these message-handler functions is predefined by the
message-map macro for each particular message.

For example, the message-handler function for the WM_RBUTTONDOWN
message must be declared as shown here:

afx_msg void OnRButtonDown(U1NT nFlags, CPoint point);

The function prototypes for all the message handler functions are declared in the
CWnd declaration in AFXWIN.H. Note the difference here from the previous
discussions of message-handler functions for menu commands and notification
messages. For menu commands and notification messages, you are free to make
up your own name for your message-handler function. You identify the message­
handler function by passing the function name to the message-map entry macro
for that message.

For example, if you called the message-handler function for the IDM_ABOUT
menu command MyWonderful MenuCommandHandl er, your message map would look
like this:

BEG1N_MESSAGE_MAP(CMyWnd. CFrameWnd)
ON_COMMAND(1DM_ABOUT. MyWonderfulMenuCommandHandler

END_MESSAGE_MAP()

In contrast, the names for the message-handler functions for the other W~XXX
messages are predefined by the Microsoft Foundation Class Library. Thus, you
must use the Foundation-defined name and the required argument signature for
each window message that you handle through the message map. The file
AFXWIN.H contains function prototypes for all the message-handler functions
for the WM_XXX messages. You can find these prototypes by searching
AFXWIN.H for the word afx_msg. This word, when prefixed to a function
prototype, identifies the function as a message-handler function.

Note Message-handler functions prefixed with afLmsg can be thought of just
like virtual functions in that they are meant to be overridden in derived classes.
They differ from virtual functions in the way they are actually implemented and
dispatched, which is more efficient than standard virtual functions.

Window Management 319

The macro that defines the message-map entry for the WM_RBUTTONDOWN
message is named ON_ WM_RBUTTONDOWN. This macro expects to find a
message-handler member function named OnRButtonDown defined for the win­
dow class. Since the names of the message-handler functions for WM_ XXX win­
dow messages are predefined, the macros for the message-map entries for these
messages do not need any arguments, as shown in the following procedure.

~ To create a window class that responds to a right mouse button click:

• Declare a class and define a message map as follows:

class CMyWnd : public CFrameWnd
{

II constructor not shown ...

public:
afx_msg void OnRButtonDownC UINT nFlags, CPoint point);

DECLARE MESSAGE_MAPC)
} ;

II in .CPP file
BEGIN MESSAGE_MAPC CMyWnd, CFrameWnd)

ON WM RBUTTONDOWNC)
END_MESSAGE_MAPC)

The prototype function declaration for OnRButtonDown is contained in the
CWnd class declaration in AFXWIN.H. Consult this file to determine the proper
function name and argument/return value signature for the message-handler func­
tion for the message that you want to handle.

14.4 Calling the Default Window Procedure
from a Message-Handler Function

A common practice in Windows programming is to handle a particular window
message in a window procedure and then call the default window procedure,
DefWindowProc, to finish the processing for the message. If you are using the
Microsoft Foundation Class Library's message-map mechanism to handle window
messages, you call your base class's message-handler function if you want to fin­
ish processing the message in the default manner. You should not change the argu­
ments to the message handler before passing them on to the base class message
handler.

The following example shows how a derived class might handle a WM_ CHAR
message under certain circumstances and pass the message on to its base class for
further processing as necessary.

320 Class libraries User's Guide

~ To filter keystrokes to a CEdit control, allowing only digits:

1. Derive a class from CEdit and define the OnChar message-handler function to
handle WM_ CHAR messages.

2. For each WM_ CHAR message, add code to examine the incoming character
to see if it is a digit.

• If the character is a digit, call the base class version of OnChar to allow the
character to be inserted into the control in the default way. You can also
allow the BACKSPACE key and TAB keys to be processed in the default manner.

• If the character isn't a digit, simply return without calling the base class
OnChar. This will cause the character to be ignored by the control.

The following class declaration shows how this might be done:

class CNumEdit public CEdit
{

public:

} ;

afx_msg void OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{

if(« nChar <= '9') && (nChar >= '0' »
II (nChar == VK_ TAB)
II (nChar == VK_BACK »

{

CEdit::OnChar(nChar, nRepCnt, nFlags);

DECLARE_MESSAGE_MAP()

BEGIN MESSAGE_MAP(CNumEdit, CEdit)
ON_WM_CHAR()

END_MESSAGE_MAP()

For a more complete discussion of the CNumEdit example shown above, see
"Deriving Controls from a Standard Control" on page 337.

14.5 Overriding Window Procedure for a Window Class
The preferred way to handle window messages with the Microsoft Foundation
Class Library is to use message maps and message-handler functions. You can,
however, override the window procedure for a Foundation window class to use the
more traditional Windows-style switch statement to respond to window messages.

Window Management 321

~ To use a traditional window procedure in your derived window class:

1. Override base window class WindowProc.

2. Use a traditional switch statement that uses WindowProc parameters.

3. Call base class WindowProc to get message-map processing for those mes­
sages that are not handled directly.

The following example code shows how to override WindowProc for a class
derived from CEdit. Like the previous section, this derived class, named
CNumEd it, accepts only digits. You can compare the message-map version in the
previous section with this more traditional version. The first code fragment is a
partial class declaration for CNumEdi t, showing the declaration for overriding
WindowProc. After that is the implementation of the overriding Wi ndowProc.

class CNumEdit : public CEdit
{

II other declaration stuff left out ...

virtual LONG WindowProc(UINT message, UINT wParam, LONG lParam);

II other declaration details left out ...

} ;

LONG CNumEdit::WindowProc(UINT message, UINT wParam, LONG lParam)
{

switch(message)
{

}

case WM_CHAR:
if((wParam <= '9') && (wParam >= '0'))
{

else
{

return CEdit::WindowProc(message, wParam, lParam);

return FALSE;

default:
return CEdit: :WindowProc(message, wParam, lParam);

322 Class Libraries User's Guide

14.6 Scrolling
Scroll bars are typically created as special child windows in the parent frame win­
dow. They react to user mouse and keyboard events by sending notification mes­
sages to the parent window. This is similar to the mechanism used for other
control windows, which is described in the preceding section, "Notification
Messages from Child Windows," on page 316.

One difference between scroll bars and other types of control windows is that
scroll bars do not use WM_ COMMAND messages for notification. Instead,
scroll bars have their own messages, WM_ VSCROLL and WM_HSCROLL,
which are used to notify the parent window of user interaction with the scroll bar.

~ To use the Foundation's message maps to handle scrolling:

• Define functions to handle messages from the vertical and/or horizontal scroll
bars and define entries in the frame window's message map to point to these
functions. The functions must be named On VScroll and OnHScroll.

The macros that define the message-map entries are named
ON_ W~ VSCROLL and ON_ ~HSCROLL. Consider the following
class declaration and message map:

class CMyWnd : public CFrameWnd
{

public:
afx_msg void OnVScroll(UINT nSBCode, UINT nPos, CWnd* pScrollBar);
afx_msg void OnHScroll(UINT nSBCode, UINT nPos, CWnd* pScrollBar);

II other class declaration stuff ...

DECLARE_MESSAGE_MAP();
} ;

BEGIN_MESSAGE_MAP(CMyWnd, CFrameWnd)
ON_WM_ VSCROLL()
ON_WM_HSCROLL()

END_MESSAGE_MAP()

Notice that the functions OnVScroll and OnHScroll have three arguments.

• The first UINT argument contains a code that specifies which scrolling
action has been requested, such as SB_LINEDOWN, SB_PAGEUP, or
SB_ THUMBPOSITION. The possible values are the same as those for the
wParam argument to a W~ VSCROLL or WM_HSCROLL message.

• The second UINT argument contains an absolute position indicator that
applies only to SB_ THUMB POSITION and SB_ THUMB TRACK
messages.

Window Management 323

• The final argument is a CWnd pointer that points to the scroll-bar object
that sent the message. If the frame window was created with the
WS_HSCROLL or WS_ VSCROLL, then the scroll bars are not real child
windows and this argument will be NULL. If it is not NULL, you can cast
this pointer to a CScrollBar pointer and call scroll-bar member functions to
get or set information about the scroll bar.

14.7 Using MDI Window Classes
The Microsoft Foundation Class Library provides support for Multiple
Document Interface (MOl) windows programs with the base window classes
CMDIFrameWnd and CMDIChildWnd. To create an MOl program, you can
derive your main frame window class from CMDIFrameWnd. You derive child
windows from CMDIChildWnd. The derivation of these window classes is the
same as described for normal frame windows earlier in this chapter. The rest of
this section describes some of the special situations that you must allow for in
MOl programs.

Deallocating Memory Used by MOl Child Windows
Because many MOl child windows can come and go during a program's execu­
tion, it is important to define a function for your MOl child window class that
cleans up any memory used by the window when it is closed. For main frame win­
dows, this is less important since there is typically only one frame window per ap­
plication and the memory allocated by that window is automatically freed by
Windows when the application terminates.

You can respond to the WM_NCDESTROY message to free resources
and memory used by your MOl child window since this message is the last
message that the window receives before it is destroyed. To handle the
WM_NCDESTROY message, you can define the OnNcDestroy message­
handler function for your MOl child window class and include the
ON_ WM_NCDESTROY macro in your message map.

Accessing the MDI Parent Window
The function CMDIChildWnd::GetParentFrameO returns a pointer to the
MOl parent frame window for the child. Use this function rather than the normal
Windows API function GetParent. Since GetParentFrame is declared to return a
pointer to a CFrameWnd object, you will have to typecast the result to a
CMDIFrameWnd object. For an example of how to use GetParentFrame,
see the next section, "Changing Frame Window Menus to Match MOl Child
Windows."

324 Class Libraries User's Guide

Changing Frame Window Menus to Match MDI Child Windows
You will often want to change the menus of the MDI parent window to reflect the
state of the currently active MDI child window. This is especially true when there
is more than one type of child window. However, it is true even when there is only
one type of child window because menus often must change to correspond to the
state of a particular window.

~ To change an MDI window menu:

1. Use the GetParentFrame function, as explained previously in "Accessing the
MDI Parent Window."

2. Once you have the frame window, you can call the MDISetMenu member
function to change the menu state for the frame window.

The following code shows how to respond to the ~MDIACTIVATE mes­
sage with the OnMDIActivate message-map message-handler function to change
the frame window's menus. The flag argument to the handler is TRUE if the win­
dow is being activated, FALSE if it is being deactivated.

void
CMyChildWnd: :OnMDIActivate(BOOl flag, CWnd* pActive, CWnd* pDeActive
{

}

CMDIFrameWnd* pFrame = (CMDIFrameWnd*)GetParentFrame();
m_pMenuChartWindow = m_pMenuChart->GetSubMenu(CHART_MENU_POS);
m_pMenulnitWindow = m_pMenulnit->GetSubMenu(INIT_MENU_POS);

if(flag == TRUE)
{

pFrame->MDISetMenu(m_pMenuChart, m_pMenuChartWindow);
}

else
if(flag == FALSE)
{

pFrame->MDISetMenu(m_pMenulnit, m_pMenulnitWindow);
}

pFrame->DrawMenuBar();

14.8 USing the AfxRegisterWndClass Function
The attributes of a CWnd object are stored in two places, the window object and
the Windows registration class. A Windows registration class is different from a
C++ class. When Windows creates a window, it requires the name of a registration
class. All windows created with a particular registration class share the attributes
contained in that registration class.

Window Management 325

The window classes of the Microsoft Foundation Class Library also require that
the name of a Windows registration class be passed to the Create member func­
tion. Most of the time you will pass NULL for the registration class name to get
the default registration class for the particular Foundation window class that you
are using. You can use the name of a different Windows registration class if you
want to change the attributes of the window.

In traditional Windows programs, you use the Windows function RegisterClass
to create a registration class. In a Microsoft Foundation Class Library windows
program it is often easier to use the Microsoft Foundation function
AfxRegisterWndClass to create a registration class.

Although a Windows registration class has numerous fields, there are four key at­
tributes of a registration class that you will typically want to change for a window
class:

• The class style

• The default mouse cursor

• The brush used to paint the background

• The icon used to represent the minimized window

The Microsoft Foundation Class Library automatically creates Windows registra­
tion classes for its predefined window classes (CFrameWnd, CMDIFrameWnd,
and CMDIChildWnd). When you derive your own classes from one of these base
classes, you inherit the attributes defined for the base class.

For those situations where you want to change one of the four window class at­
tributes listed above, the Foundation function AfxRegisterWndClass allows you
to create a Windows registration class by specifying as arguments the class style,
cursor, background brush, and icon. When you supply NULL as the value for any
of the four arguments except the class style, you specify that you want the default
value for that attribute. Thus, it is easy to change any combination of the four
attributes.

~ To register a Windows registration class and change its four class attributes:

• Specify the arguments for class style, cursor, background brush, and icon.
AfxRegisterWndClass generates a synthetic name (it can be different each
time your program runs) and creates a Windows registration class that contains
your attribute arguments. You can use the name that is returned as an argument
to the Create member function in your derived window classes.

CString className = AfxRegisterWndClass(CS_HREORAW I CS_VREORAW,
: :LoadCursor(NULL,IOC_UPARROW),
(COLOR WINOOW+l),
NULL);

326 Class Libraries User's Guide

Note The scope resolution operator "::" is used without a class name in front of
the LoadCursor function name in the example above to show that the name re­
fers to the Windows function rather than any class member function with the
same name.

~ To pass on the attributes of a Windows registration class to CWnd::Create:

• You can assign the name of the newly registered class to a CString and then
pass the string to CWnd::Create to create a window that has the attributes de­
fined for that Windows registration class.

II assign class name to intermediate CString
CString myClassName = AfxRegisterWndClass(CS_HREDRAW I CS_VREDRAW,

::LoadCursor(NULL,IDC_UPARROW),
(COLOR_WINDOW+l),
NULL) ;

CMyWnd* myWnd = new CMyWnd;
myWnd-)Create(myClassName, ...);

• Since AfxRegisterWndClass returns a pointer to the registration class name
and checks for redundant registration, it can also be used inline as the first argu­
ment to CWnd::Create, as shown by the following example from
BOUNCE.CPP in the MDI sample program:

II use class name directly
CMDIChildWnd::Create(AfxRegisterWndClass(CS_HREDRAW I CS_VREDRAW,

::LoadCursor(NULL,IDC_UPARROW),
(COLOR WINDOW+l),
NULL),

szTitle,
style,
rect,
parent) ;

14.9 Simple Way to Change a Window Icon
The previous section described how to use AfxRegisterWndClass to change the
icon that Windows uses to display a minimized window. If all you want to do is
change the icon and leave the class style, cursor, and background brush un­
changed, then you can define an icon resource with the proper 1D in your applica­
tion's resource file. The Microsoft Foundation window classes will automatically
use that icon. This technique is simpler than using AfxRegisterWndClass be­
cause you do not have to write any code; defining the icon resource is sufficient.

Window Management 327

By default, the Foundation window classes use an empty rectangle icon to
represent a minimized window. The classes CFrameWnd and CMDIChildWnd
look in the application's resource file for an icon with the ID number
AF~IDLSTD_FRAME. These classes will use that icon instead of the
default if it exists.

~ To change a window icon:

• Design an icon with the Windows Icon Editor and include it in your application
resource file with the following command taken from the sample program file
HELLO.RC:

ICON hello.ico

Within one application:

• All window classes derived from CFrameWnd and CMDIChildWnd will use
the AF~IDLSTD_FRAME icon, or the default application icon if it is not
defined.

• All windows derived from CMDIFrameWnd use the icon with the ID number
AF~IDLSTD_MDIFRAME, or the default application icon if it is not
defined.

If you have a program that uses more than one type of child window derived from
CFrameWnd or CMDIChildWnd, such as an MDI program with more than one
type of child window, the Microsoft Foundation Class Library's default mecha­
nism for choosing custom minimized icons does not support different minimized
icons for those child windows. To have a custom icon for different types of child
windows in the same application, use AfxRegisterWndClass to create a Windows
registration class for each child window class. For a description of how to use
AfxRegisterWndClass, see the section "Using the AFXRegisterWnd Class
Function" on page 324. Also, see the MDI sample program.

14.10 Using Member Variables Instead of cbWndExtra Bytes
Windows provides a mechanism by which an arbitrary number of extra bytes can
be attached to each window of a particular class. Programmers typically use these
extra bytes to store extra information about the window or the data displayed by
the window.

In a traditional Windows program, you specify the number of extra bytes for a par­
ticular window class in the cbWndExtra field of the WNDCLASS structure,
which is used when you call RegisterClass to create the Windows registration
class. For each window of that registration class that you create, Windows allo­
cates the specified number of extra bytes for the window structure. The bytes are

328 Class Libraries User's Guide

accessed as an untyped array of bytes with the GetWindowLong and
SetWindowLong functions. These bytes are allocated in the USER's heap, which
is a limited Windows resource used by all running Windows applications.

In a Windows program based on the Microsoft Foundation Class Library, you sel­
dom call RegisterClass. Instead, you derive a new window class from an existing
Foundation window class using the C++ derivation mechanism.

If you need extra data attached to each window that you have created from a
derived class, you can simply add member variables to the class declaration when
you derive the class. You can then use normal C++ syntax to access these member
variables for each window object that you create.

Access to these member variables has the advantage of being type-safe, as op­
posed to the untyped array-of-bytes method used in traditional Windows pro­
grams. In addition, the member variables are allocated in the program's data
segment, which is not as precious as the USER heap.

~ To use member variables to add extra bytes:

• Declare the member variables to hold window-specific data and then access
those members:

class CMyWnd public CFrameWnd
{

public:

} ;

II window-specific extra data
char* m_FileName;
long m_cbChars;
BOOl m_ i sDi rty;
int m_toplineDisplayed;

II other class declaration stuff ...

CMyWnd* my Wi ndow = new CMyWnd(...);

if(myWindow->m_cbChars > MAX_SIZE
II ...

Dialogs and Control Windows
Chap

:I.

" ' ;··· ... 5 .. ··.····.'. ;1~ ...•.•.. i •. ' •.• l ... Wj •• ,.jl;;.,".

!nih !~

....~ lf8\ .'1i~;
, k "" 'win

!!~i
:j.\tk"

The Microsoft Foundation classes provide support for creating and managing Win­
dows dialog boxes. The dialog classes are derived from the CWnd class described
in the "Window Management" chapter, so many of the principles described in that
chapter apply to the dialog classes as well.

15.1 Dialog Boxes
The Microsoft Foundation Class Library provides support for dialog box windows
with the window classes CDialog and CModalDialog. For simple modal dialogs,
you can sometimes use the CModalDialog class directly, such as when creating
an "About" dialog box, but most often you will have to derive your own dialog
classes in much the same way as described in "Creating a Frame Window" on
page 311.

Modal Dialog Boxes
Modal dialog boxes require that the user dismiss the dialog box before going to
another application window. The simplest example of a modal dialog box is an
About dialog box.

~ To create an About dialog box:

1. Define a dialog resource template for your dialog box and then create a
CModalDialog window to use that template. You do not need to derive your
own dialog window class box.

2. Call the DoModal member function to process user input until the user dismis­
ses the dialog.

330 Class Libraries User's Guide

The following dialog resource template is taken from HELLO.RC:

AboutBox DIALOG 22, 17, 144, 75

{

}

STYLE DS_MODALFRAME I WS_CAPTION WS_SYSMENU
CAPTION "About Hello"

CTEXT "Microsoft Windows" -1,
CTEXT "Microsoft Foundation Classes" -1,
CTEXT "Hello, Windows!" -1,
CTEXT "Version 1.0" -1,
DEFPUSHBUTTON "OK" IDOK, 56, 56, 32,

0, 5, 144, 8
0, 14, 144, 8
0, 23, 144, 8
0, 36, 144, 8
14, WS_GROUP

The following code is taken from HELLO.CPP.1t shows how the main window
message-handler function for the About menu command creates a CModalDialog
window based on the dialog template shown above and then calls DoModal for
the dialog.

The arguments to the constructor for a CModalDialog window are the name of
the dialog template and a pointer to a CWnd object which is the parent window of
the dialog box window. In the following example, the dialog can pass this as the
parent window pointer since the dialog is being created in a member function of
CMainWindow and the main window is the parent window of the dialog box:

void CMainWindow::OnAbout()
{

CModalDialog about("AboutBox", this);
about.DoModal ();

~ To initialize the modal dialog box before it is displayed:

1. Derive a dialog class from CModalDialog.

2. Override the virtual OnlnitDialog function. OnlnitDialog is called when the
dialog receives the WM_INITDIALOG message.

An example of a situation in which you would need to do this would be calculat­
ing available memory for an About dialog box.

Note Because OnlnitDialog is so commonly overridden by derived
dialog classes, it is a virtual function that is automatically called by the base
dialog class when the dialog receives a WM_INITDIALOG message.
OnlnitDialog is not called through the normal Microsoft Foundation message
map mechanism, so you are not required to have to create a message-map entry
for the W~INITDIALOG message.

Dialogs and Control Windows 331

The following class declaration shows how you might derive from CModalDialog
to handle the WM_INITDIALOG message:

class CMyModalDlg : public CModalDialog
{

} ;

II override OnlnitDialog
virtual BOOl OnlnitDialog();

BOOl CMyModalDialog::OnlnitDialog()
{

I I . ..
}

~ To customize the response of the buttons in a CModalDialog object:

1. Override the virtual CModalDialog functions OnOK and OnCancel to handle
mouse clicks in the OK and Cancel buttons of your dialog box.

2. Use the predefined control IDs IDOK and IDCANCEL for these buttons.
These two control IDs are special in CModalDialog objects in that they do not
require message-map entries. BN_CLICKED events in buttons with these IDs
are automatically sent to the OnOK and OnCancel virtual functions.

~ To customize the response to other events in your modal dialog box so that it
is the same as choosing the OK or Cancel buttons:

• Define a message-map entry for that notification event and hook it to the
OnOK or OnCancel function, as shown here for a double-click in a list box:

class CMyModalDlg : public CModalDialog
{

II override OnlnitDialog
virtual BOOlOnlnitDialog();

public:

} ;

virtual void OnOK()
{

}

II do something with list box selection ...

II and dismiss dialog
EndDialog(lDOK);

BEGlN_MESSAGE_MAP(CMyModalDlg,CModalDialog
II double-click list box aliases for OK
ON_lBN_DBlClK(lD_ TYPEFACE, OnOK)

END MESSAGE_MAP()

332 Class libraries User's Guide

The above declaration includes the DECLARE_MESSAGE_MAP macro
which is required to enable message map mechanism for the derived class.

The default implementations of OnOK and OnCancel call EndDialog to dis­
miss the modal dialog. If you override either of these functions, you should call
EndDialog in your overridden versions.

Deriving from CDialog
Unlike CModalDialog, where you have the choice of whether or not to derive
your own dialog window class box, you must derive your dialog from the CDialog
class.

~ To derive a dialog class from CDialog:

1. Define a contructor for the derived class and optionally define message-handler
functions and a message map. This is essentially the same technique as that de­
scribed for the standard frame window.

A typical constructor simply calls the Create function and supplies the name of
the dialog template and the parent window that owns the dialog.

2. Optionally, override the virtual function OnlnitDialog to perform any
necessary dialog initialization before the dialog is displayed. You do not
have to define a message-map entry for the WM_INITDIALOG message
for classes derived from CDialog. The CDialog class automatically calls the
OnlnitDialog member function when the dialog receives a
WM_ INITDIALOG message.

The advantage of a dialog derived from CDialog, as opposed to CModalDialog,
is that it can be modeless. That is, the user can switch back and forth from the
modeless dialog to other application windows.

i, ,\: "

, I ,P, ,:)1
IVIOf,8 Oil Di8rggPo](es . .,
If you wwtan eve.\l rnpre elaborate mp~al~ialog qp?, where ~~. us~t CaD;
!nti:rtactiwith severiil controls,.)youca:Qadd.1hessag~.LhaD;dler fl!c.pctiQus aM
messag~-mapentties toh.fndle notifiq'a'tiol1 e"V~nts,froiri tbedi~log,~oxc,i ',ii

. co~trQls, ~s d~scribe~iln ;;Nptifiqatipll ~~ssages ,fiorniiChild Win~ow~" on:il!" .. i.·
page ~16~ Jfany ... bf .tbe cQntrbis pther than the OK and Cancel, bn~~ong;:~low
the user to c1os~~pe dial~g,you.)qal1ipan Endpial~g in th¢ message-h~ndler

I' ' functipns fOlj tbose control ~otiflca~on~~ See thei::ex~pleiprp~r~ cQ.~e ~.
I SHOWFONT'.CPPJor ~xarnples ofdenved modal dialog boxes that Jian41e

i njJtif,ication messages ftoD;)chi~d controls., H ' • i' .i' .

Dialogs and Control Windows 333

~ To derive a simple class from CDialog:

• Use the following class declaration as a model:

class CMyDialog : public CDialog
{

} ;

public:
II constructor calls Create
CMyDialag(CWnd* parentWnd)
{

Create("MyTemplateName", parentWnd);

vi rtual BOOl OnIni tDi al ag();

Beyond these two basic tasks, you will typically define message-handler functions
and message-map entries to handle notification messages from other controls in
your dialog. This process is described in "Notification Messages from Child
Windows" on page 316.

334 Class Libraries User's Guide

Using a Dialog Box as a Main Window
Although it is possible to fill a standard frame window with one or more child con­
trol windows to imitate the look of a dialog box, using a real dialog window gives
you access to extra functionality, such as allowing the user to move between con­
trols with the TAB key, that is not easily available in a standard frame window. In
addition, when you use a dialog window, many operations on child control win­
dows, such as getting the text from an edit text control, are simplified. Thus, it is
sometimes desirable to use a dialog window as the main window of your
application.

As described in the "Cookbook" section on instance initialization, you typically
create your main application window in the InitInstance function of CWinApp.
When you are using a standard frame window, you create the window and assign
it to the m_pMainWnd member variable of the application object. When you are
using a dialog window as the main window, you still create the dialog window in
InitInstance just as you would for a normal frame window.

~ To use a dialog box as the main window:

1. Derive your main window from CDialog.

At least one of its message-handler functions should call the PostQuitMessage
function to signal that the user wishes to quit the program. A typical way to do
this is to use the WS_SYSMENU style in the dialog template and handle the
WM_ CLOSE message from the Control menu to call PostQuitMessage.

The following resource definition, class declaration, and message-map defini­
tion show how this strategy could be implemented.

main DIALOG 22, 17, 250, 120
STYLE WS_DLGFRAME I WS_CAPTION I WS_SYSMENU
CAPTION "Dialog Title"
BEGIN

/* control definitions go here ... */
END

class CMainDlgWindow : public CDialog
{

public:
CMainDlgWindow()
{

Create("mai n");
}

} ;

afx_msg void OnClose()
{

PostQuitMessage(0);

1/ in .CPP fil e

Dialogs and Control Windows 335

BEGIN_MESSAGE_MAP(CMainDlgWindow, CDialog)
ON WM ClOSE()

END_MESSAGE_MAP()

2. Create the dialog box in your application's overriding I ni t Instance function:

BOOl CMyApp::InitInstance()
{

m_pMainWnd = new CMainDlgWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

Your dialog might also have a Quit button, in which case the message-handler
function for the BN_ CLICKED message from that button would also call
PostQuitMessage.

15.2 Using Microsoft Foundation Control Classes
The Microsoft Foundation Class Library provides a set of classes that correspond
to the standard Windows control windows, such as buttons, edit text controls, and
scroll bars. You can use these control classes in any situation where you would
normally use a Windows control.

The following list shows the Microsoft Foundation control classes and the corre­
sponding Windows controls:

Foundation class Windows control

CStatic Static control

CButton Button control

CListBox List box control

CComboBox Combo box control

CEdit Edit control

CScrollBar Scroll bar control

336 Class libraries User's Guide

The Microsoft Foundation control classes require two-stage contruction. That is,
you first allocate the object and then call a separate initialization function (named
Create) to create the Windows control and attach it to the Foundation control ob­
ject. You must call Create on a Foundation control object before calling any other
member functions for the object.

~ To create a standard Microsoft Foundation control object:

1. Allocate a control object, either by

• Defining it on the frame, or by

• Calling the new operator.

2. Call the Create function for the object, supplying the necessary arguments to
create the corresponding Windows control window and attach it to the
Microsoft Foundation control object.

The following code shows how you might declare a CEdit object in the class
declaration of your derived dialog class, and then call the Create member func­
tion in OnInitDialog function. Because the CEdit object is declared as an
embedded object (not as a pointer) it is automatically allocated when the dialog
object is contructed. Although the CEdit object is constructed at the same time
as the dialog, it must still be initialized with the Create member function.

class CMyDialog : public CDialog { protected:
public: virtual BOOl OnlnitDialog(); };

The OnInitDialog function sets up a rectangle, and then calls Create to create the
Windows edit control and attach it to the uninitialized CEdit object. After creating
the edit control, you can also set the input focus to the control by calling the
SetFocus member function. Finally, you return FALSE from OnInitDialog to
show that you set the focus. If you return TRUE, the dialog manager will set the
focus to the first control item in the dialog item list.

BOOl CMyDialog: :OnlnitDialog()
{

RECT r;
r.top = 85;
r.bottom = 110;
r.left = 180;
r.right = 210;

m_edit.Create(WS_CHIlD I WS_VISIBlE I WS_TABSTOP
ES_AUTOHSCROll I WS_BORDER,

r,
this,
ID_EXTRA_EDIT) ;

Dialogs and Control Windows 337

II set input focus to new edit control
m_edit.SetFocus();

II return FALSE only if you have set the focus
return FALSE;

15.3 Deriving Controls from a Standard Control
As described in the previous section, the Microsoft Foundation control classes
provides classes that correspond to the predefined control windows supported by
Windows, such as buttons, edit controls, and scroll bars. For the most part, you
will be able to use these control classes just as they are defined since their default
behavior conforms to the normal user-interface guidelines for Windows programs.

There are some situations, however, where you may want to modify the behavior
of a control. You can often modify behavior of a control by deriving a new class
from an existing control class, as shown by the following example.

Suppose you wanted to modify the standard edit control, CEdit, so that it only ac­
cepted digits. You could call this derived control CNumEd it, since it would be good
for user-entered numeric values. In addition to modifying its behavior so that it
only accepted digits, you could add member functions to get and set its contents
by numeric value, thus encapsulating the conversion between text and numeric
values.

There are three steps to creating a derived control class, as listed here:

1. Derive your class from an existing control class and override the Create
function so that it provides the necessary arguments to the base class Create
function.

2. Provide message-handler functions and message-map entries to modify the
control's behavior in response to specific window messages.

3. Provide new member functions to extend the functionality of the control
(optional).

338 Class Libraries User's Guide

These three steps are described in the following three sections.

~ To override the Create function class:

1. Override the Create function for your derived class that takes the same argu­
ments as the base class Create and pass the arguments on to the base class and
let it do most of the default initialization of the control.

2. Perform other initialization tasks specific to your derived class. For the
CNumEdi t example, call the LimitText member function to limit the number of
characters that the derived control will accept.

class CNumEdit : public CEdit
{

public:

nID

} ;

BOOl Create(DWORD dwStyle, const RECT& rect,
CWnd* pParentWnd, UINT nID)

if (! CEdit::Create(dwStyle, rect, pParentWnd,

return FALSE;

limitText(16);
return TRUE;

}

II other class declaration stuff removed ...

~ To use message-handler functions to modify behavior:

1. Define the message-handler function On Char to examine each incoming char­
acter. If the character is a digit, the BACKSPACE key, or the TAB key, call the
On Char function of CEdit to pass it to the base class for normal processing. If
the character is not a digit, then don't call the CEdit class's OnChar function
and the base class will never see the character. The implementation of the
On C h a r member function of CNumEdit is as follows.

class CNumEdit : public CEdit
{

public:

} ;

BOOl Create(DWORD dwStyle, const RECT& rect,
CWnd* pParentWnd, UINT nID);

II filter incoming characters
afx_msg void OnChar(UINT nChar, UINT nRepCnt, UINT nFlags);

Dialogs and Control Windows 339

void CNumEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{

if(« nChar <= '9') && (nChar >= '0' »
I I (nChar VK TAB)
II (nChar == VK_BACK »

CEdit::OnChar(nChar, nRepCnt, nFlags);

}

2. Define a message-map entry for the W~ CHAR message:

BEGIN_MESSAGE_MAP(CNumEdit, CEdit)
ON_WM_CHAR()

END_MESSAGE_MAP()

3. Filtering W~ CHAR messages works fine for removing nondigits from
keyboard input, but to be complete you would also have to handle the
WM_PASTE message to filter nondigits from Clipboard data. A discussion
of how to filter Clipboard data is beyond the scope of this section.

~ To extend functionality with new member functions:

• To be truly useful, the CNumEdi t class can provide new functions to get and set
the value of the control with numeric values. That way, the code that converts
the text to a number can be encapsulated in the derived control. Programmers
who use the control can simply get and set its value without worrying about
conversion.

class CNumEdit : public CEdit
{

public:

} ;

BOOl Create(DWORD dwStyle, const RECT& rect,
CWnd* pParentWnd, UINT nID);

II filter incoming characters
afx_msg void OnChar(UINT nChar, UINT nRepCnt, UINT nFlags);

II provide Get and Set functions to deal with numeric value
lONG GetValue();
void SetValue(lONG v);

340 Class Libraries User's Guide

~ To implement GetValue and SetValue:

• Use the standard C run-time functions sscanf and sprintfto convert between
number and text. Use the CWnd member functions GetWindowText and
SetWindowText to access the text shown in the edit control. Possible im­
plementations of these functions are shown below:

LONG CNumEdit::GetValue()
{

char buff[64];
LONG v;

GetWindowText(buff, sizeof(buff));

if(sscanf(buff, "%d", &v)
{

else
{

return v;

return 0;

void CNumEdit::SetValue(LONG v)
{

char buff[64];

sprintf(buff, "%d", v);

SetWindowText(buff);

Using a Derived Control in a Dialog
Dialogs normally contain one or more control windows such as buttons, list boxes,
and edit controls. The type and position of those controls is typically specified in a
dialog template resource. If you create a derived control class as described in the
previous sections, you cannot specify the derived control in a dialog template
since the resource compiler does not know anything about your derived class.

Dialogs and Control Windows 341

~ To place a derived control in a dialog:

1. Embed an object of the derived control class in the declaration of your derived
dialog class, as shown in the following class declaration.

class CMyDialog : public CDialog { protected: CNumEdit m_numEdit;
public: virtual BOOl OnlnitDialog(); };

2. Override the OnlnitDialog message-handler function in your dialog class to
call Create for the derived control that you embedded in your dialog box. A
sample OnlnitDialog is shown here:

BOOl CMyDialog::OnlnitDialog()
{

II create the derived control
RECT r;
r.top = 50;
r.bottom = 75;
r. 1 eft = 20;
r.right = 120;

m_numEdit.Create(WS_CHIlD I WS_VISIBlE
ES_ AUTOHSCRO II
r,
this,
ID_MYNUMEDIT);

II other initialization tasks ...

return TRUE;

WS_ TABSTOP
WS_BORDER,

Because the derived controls are embedded in the dialog, they will be automat­
ically destroyed when'the dialog is destroyed.

Graphics

The Microsoft Foundation classes provide support for Windows graphics func­
tions, including device contexts, standard drawing objects such as pens, brushes,
and bitmaps, and a mechanism for handling drawing related Window messages.

16.1 Handling the Paint Message
Windows programs do most of their drawing in response to WM_ PAINT mes­
sages. Using the Microsoft Foundation classes, your derived window class can
handle the WM_PAINT message by implementing the OnPaint message handler
function and defining a message-map entry with the ON_ W~PAINT macro.
The following list describes the steps necessary to handle W~PAINT messages
using the Microsoft Foundation classes:

1. Derive your window class from a Foundation window class.

2. Define the OnPaint message-handler member function for your derived
window class.

3. Define a message-map entry with the ON_ WM_PAINT macro.

The following class declaration shows how to derive a window class from a
Microsoft Foundation window class and declare the OnPaintmessage-handier
member function necessary to handle the W~PAINT member function. It also
shows the required inclusion of the DECLARE_MESSAGE_MAP macro to
enable the Foundation message-map mechanism for the derived window class.

344 Class libraries User's Guide

class CMainWnd public CFrameWnd
{

publ i c:

} ;

II constructor is required for derived window classes
CMainWnd();

II message-handler function for WM_PAINT message
afx_msg void OnPaint();

II enable message-map mechanism
DECLARE_MESSAGE_MAP()

The OnPa i nt message-handler function for a derived window class is called when
the window receives a WM_PAINT message. In a traditional Windows program,
you call BeginPaint to get a device context for the window, draw your window
contents, and finally call EndPaint to release the device context when responding
to a WM_PAINT message.

When using the Microsoft Foundation classes, you can create a CPaintDC object
instead of calling BeginPaint and EndPaint. The constructor for this object auto­
matically calls BeginPaint and its destructor calls EndPaint. You must specify a
pointer to a CWnd object when creating the CPaintDC object. Since you typi­
cally create a CPaintDC object in the On Pa i nt member function of your derived
window class, you can pass this as the CWnd pointer argument, as shown in the
following example implementation of OnPai nt:

void CMainWnd: :OnPaint()
{

CPaintDC dc(this);

II do painting here with dc ...

When the CPaintDC object is created, its constructor calls BeginPaint. Notice
that since the CPaintDC is created on the stack, it is automatically deallocated
when you exit On Pa i nt. This automatic deallocation implies that the destructor for
the object, which calls EndPaint, will be invoked as the function terminates.

The CPaintDC device context can be used to perform any drawing operation that
you could normally do in a normal Windows device context since all the device
context GDI drawing functions are available as member function in the device con­
text class. For example, to draw text in the window, you can use the TextOut
member function, which is equivalent to the Windows Graphical Device Interface
function TextOut. The following code fragment shows how to use a CPaintDC
device context to draw in a window during the WM_PAINT message.

void CMainWnd: :OnPaint()
{

CString s = "Hello, Windows!";
CPaintDC de(this);
CReet reet;

GetClientReet(&reet);
de.SetTextAlign(TA_BASELINE ITA_CENTER);
de.TextOut((reet.right I 2), (reet.bottom I 2),

s, s.GetLength());

Graphics 345

To associate the OnPai nt message-handler function with the W~PAINT mes­
sage, you must define a message-map entry for the derived window class. The fol­
lowing message-map definition shows how this is done:

BEGIN_MESSAGE_MAP(CMainWnd, CFrameWnd)
ON_ WM_ PAl NT()

END_MESSAGE_MAP()

16.2 Getting the Device Context from a CWnd Window
Although most drawing in a Windows program occurs during WM_PAINT mes­
sage processing, there are times, such as when you are providing tracking feed­
back to mouse movement, that you want to draw directly into a window without
generating a WM_PAINT message. At these times, you can create a CClientDC
device context from a pointer to a CWnd window. You can use the CClientDC
device context to perform any graphics operation that you would typically do with
a normal Windows device context on the client area of a window. The client area
of a window is all the area not including the title bar, size border, menu bar, and
scroll bars.

Use a CClientDC device context at those times when you would use the Windows
API functions GetDC and ReleaseDC in a traditional Windows program. The con­
structor for the CClientDC device context calls GetDC and the destructor calls
ReleaseDC. If you create the CClientDC object on the stack, its destructor will
automatically ensure that the device context is properly released when you are
done with it. The following example shows how to create a CClientDC device
context in a member function of a derived window class:

CMyWnd::FeedBaek()
{

CClientDC de(this);

II do drawing here
}

346 Class Libraries User's Guide

Use CClientDC member functions for drawing in the same way that CPaintDC
member functions are used, as described in the previous section, "Handling the
Paint Message."

16.3 Graphic Objects
Windows provides a variety of drawing tools to draw within device contexts. It
provides pens to draw lines, brushes to fill interiors, and fonts to draw text. The
Microsoft Foundation classes provide graphic object classes that are equivalent to
the drawing tools in Windows. The following list shows the available Foundation
graphic object classes and the equivalent Windows GDI handle types:

Foundation Classes Windows Tools

CPen HPEN

CBrush HBRUSH

CFont HFONT

CBitmap HBITMAP

CPalette HPALLETE

CRgn HRGN

Each of the Microsoft Foundation graphic object classes has a constructor that al­
lows you to create graphic objects of that class.

The following four steps are typically used when a graphic object is needed:

1. Define a graphic object on the frame, athough you can also use the new opera­
tor. Perform initialization of the object as necessary.

2. Select the object into the current device context, saving the old graphic object
that was selected before.

3. When done with the current graphic object, select the old graphic object back
into the device context to restore state.

4. Allow the frame allocated graphic object to be automatically deleted when exit­
ing scope (or use the delete operator it if allocated with new.)

Note If you have graphic objects in your program that will be used
repeatedly, it is often a good idea to allocate the objects just one time, in the
CWinApp::Initlnstance function for example, and select them into a device
context whenever you need to use them. Delete these objects when you no longer
need them, which is typically just before the program terminates.

Graphics 347

Creating and Deleting Graphic Objects

Two-stage construc­
tion is generally safer
than single-stage
construction.

There are two techniques for creating the graphic objects of the Microsoft
Foundation Class Library. The first technique uses a single-stage constructor that
also initializes the object and performs any necessary memory allocation for the
object. The other technique uses a two-stage contruction strategy in which the ob­
ject is first constructed and then initialized with a separate function.

The advantage of single-stage construction is that it involves only a single pro­
gramming statement, but the disadvantage is that the constructor may throw an ex­
ception if incorrect arguments are provided or memory allocations fail. On the
other hand, two-stage construction will not throw an exception, but it is slightly
more bothersome in that you must write two program statements to create the ob­
ject. In either case, the method for destroying the object is the same.

The following two sections show examples of single-stage and two-stage construc­
tion of graphic objects, as well as examples of destruction.

Single-stage construction of a graphic object

~ To create a pen object

• Specify the pen style, the pen width, and the pen color to the CPen constructor.

Possible pen styles are the same as those used for traditional Windows pro­
grams and listed in the file WINDOWS.H. The pen color is specified as an
RGB color whose three components represent the relative saturation of red,
green, and blue in the color.

The following code example shows how to create a black CPen object with a
single-stage constructor.

(Pen myPen(PS_DOT, 5, RGB(0, 0, 0));

If the object is created on the frame, as in the above example, its destructor will
automatically be invoked when the object goes out of scope. If you allocate the
object on the heap with the new operator, use the delete operator to deallocate
it.

Other graphic object classes have similar constructors with different arguments to
specify the attributes necessary to construct them. Before you can use the graphic
object to draw, it must be selected into a device context. For more information on
how to do this, see "Selecting a Drawing Object in a Device Context" later in this
chapter.

348 Class Libraries User's Guide

Two-stage construction of a graphic object

~ To construct a CPen object:

• Call the constructor with no arguments.

This constructs the object and initializes it just enough so that it can be deleted
if necessary. You cannot use a pen constructed in this way until it has been ini­
tialized.

~ To initialize this CPen object:

• Use the CreatePen and CreatePenIndirectfunctions.

The following example shows how to construct the empty CPen object and
then initialize it with CreatePen. The Boolean return value from CreatePen
allows you to detect if the pen object was not successfully initialized.

CPen myPen;
if(pPen.CreatePen(PS_DOT, 5, RGB(0, 0, 0 »;

II ... use the pen

Other graphic object classes have similar two-stage constructors and initialization
functions, with different arguments to specify the attributes necessary to construct
and initialize each type of object. The next section describes how to select a
graphic object into a device context, which is necessary before you can use the
object to do any drawing.

Selecting a Drawing Object into a Device Context
The previous section described how to create Microsoft Foundation graphic ob­
jects. However, before you can use these objects to draw, you must select them
into a device context. By selecting a graphic object into a device context, you are
modifying the drawing environment for the device context. This is the standard
programming model for traditional Windows programming as well as for the
Microsoft Foundation classes.

The Microsoft Foundation device context classes (CPaintDC, CClientDC, and
CWindowDC) provide the SelectObject member function. You supply a pointer
to a graphic object and SelectObject selects the object into the device context, re­
turning a pointer to the previous graphic object for the device context.

For instance, if you call SelectObject with a CPen pointer, SelectObject will re­
turn a CPen pointer for the old device context pen. You can later select the old
pen back into the device context to restore the original drawing state. Likewise,
SelectObject will return a CFont pointer when you select a new CFont, and a
CBrush pointer when you select a new CBrush.

Graphics 349

The following example shows how to create a CPen object, select it into the
device context, do some drawing, and then restore the original pen; all in the
context of responding to a WM_ PAINT message.

void CMyWnd::OnPaint()
{

}

CPaintDC myDC(this);

II create the pen
CPen newPen(PS_SOLID, 2, RGB(0, 0, 255));

II select it into the device context
II save old pen at the same time
CPen* pOldPen = myDC.SelectObject(&newPen);

II draw some lines with the pen
myDC.MoveTo(...);
myDC.LineTo(...);
myDC.LineTo(...);
myDC.LineTo(...);

II now restore old pen
myDC.SelectObject(pOldPen);

Note The graphic object returned by SelectObject is a "temporary" object. That
is, it will be deleted by CWinApp::OnIdle the next time the program gets idle
time. As long as you use the object returned by SelectObject in a single function
without returning control to the main event loop, you will have no problem. But if
you try to use the object later, after you have exited the function and the program
has executed its event loop again, you risk having the object deleted by the idle
time handler. See "Tracking the Mouse in a Window" on page 353 for an example
of how to avoid problems when using a temporary graphic object.

User Input

Windows handles user input by sending messages to the active window. The
Microsoft Foundation classes support user input with the message map mechanism
described in the "Window Management" chapter. The current chapter describes
how to use the message map mechanism to handle specific types of user input.

17.1 Handling a Mouse Click in a Window
To handle a mouse click in your window, you need to handle the
WM_LBUTTONDOWN or WM_RBUTTONDOWN message. Using the
Microsoft Foundation classes mechanism for handling messages, you will find
the following three steps necessary to handle mouse-click messages:

1. Derive your window class from an existing Foundation window class (such as
CFrameWnd or CMDIChildWnd).

2. Define the OnLButtonDown or OnRButtonDown message-handler member
functions for your window class, depending on whether you want to handle left
or right mouse button events.

3. Define-message map entries using the ON_ WM_LBUTTONDOWN or
ON_ W~RBUTTONDOWN macros, depending on whether you want to
handle left or right mouse button events.

352 Class libraries User's Guide

The following class declaration fragment shows how to declare the
OnLButtonDown function in a derived window class. It also shows the necessary
inclusion of the DECLARE_MESSAGE_MAP macro to enable the message­
map mechanism for the derived class.

class CMainWnd : public CFrameWnd
{

II other declaration stuff left out ...

II declare message-handler function
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

} ;

The OnLButtonDown message-handler function has two arguments; a UINT
which indicates whether the CONTROL and/or SHIFT keys were pressed when the
mouse was clicked, and a CPoint argument containing the coordinates of the
mouse at the time of the click. The following function definition shows how to
look at the information in these arguments.

void CMainWnd::OnLButtonDown(UINT nFlags, CPoint point)
{

}

TRACE("LBUTTON down message, point = %d , %d\n",point.x,point.y);
if(nFl ags & MKCONTROl)

TRACE("Control key was down\n");
if (n F 1 a 9 s & M K_ S H I FT)

TRACE("Shift key was down\n");

The definition of the message-map entries for the mouse down messages is
the same as described for other messages elsewhere in this documentation. The
following example shows how to define a message-map entry for the
W~LBUTTONDOWN message for the derived window class described
in this section.

II in .CPP file
BEGIN_MESSAGE_MAP(CMainWnd, CFrameWnd)

ON_WM_LBUTTONDOWN()
END_MESSAGE_MAP()

Note You can handle the WM_RBUTTONDBLCLK or
WM_LBUTTONDBLCLKmessages for double clicks in your window.

User Input 353

17.2 Tracking the Mouse in a Window
Tracking mouse movements in a window while the mouse button is pressed in­
volves three different window messages. You must first handle the message that
signals that the mouse button has been pressed, WM_LBUTTONDOWN or
W~RBUTTONDOWN, as described in the previous section. You can then
handle WM_MOUSEMOVE messages until you get a W~LBUTTONUP or
WM_RBUTTONUP message.

The following list describes the steps necessary to track the mouse in a window.
The list assumes that you have derived a window class from an existing Founda­
tion window class, as described in the previous section on handling mouse clicks
in a window.

1. Call SetCapture in OnLButtonDown (or OnRButtonDown)

2. Handle mouse movements in OnMouseMove

3. Call ReleaseCapture in OnLButtonUp (or OnRButtonDown)

The following example shows the code necessary for a simple doodling window.
This window allows the user to draw freehand lines in the window by pressing the
left mouse button and holding it down. The code shows how to capture the mouse
and how to create a device context for drawing. It also shows how to create a pen
drawing tool as described in the section "Graphic Objects" on page 346.

The class declaration for the doodling window is shown as follows. Notice that the
class is derived from CFrameWnd and that it declares message-handler functions
to handle the three mouse messages listed in the first part of this section. Notice
also that the class declares several member variables to help with the drawing in
the window.

class CMainWnd : public CFrameWnd
{

protected:
BOOl m_bTracking;
CClientDC* m_pDCDoodle;
CPen* m_pPenDoodle;
HPEN m_hPenSaved;
int m_nPenWidth;

public:

CMainWindow();

354 Class Libraries User's Guide

1/ WM_ message handlers
afx_msg void OnLButtonDown(UINT nFlags, CPoint p);

afx_msg void OnLButtonUp(UINT nFl ags. CPoint p) ;

afx_msg void OnMouseMove(UINT nFlags, CPoint p) ;

DECLARE_MESSAGE_MAP()
} ;

As described elsewhere, you must define a message map for the window class.
The following definition is from the .CPP file for the doodle window class.

BEGIN_MESSAGE_MAP(CMainWnd, CFrameWnd)
ON_ WM_ LBUTTONDOWN ()
ON_WM_MOUSEMOVE()
ON_WM_LBUTTONUP()

END_MESSAGE_MAP()

In the OnLButtonDown message-handler function, you call SetCapture to tell
Windows that you want to retain exclusive control of the mouse while tracking its
movement. This prevents another window from getting mouse messages while
you are trying to track the mouse. You will call ReleaseCapture when the user
releases the mouse button and you stop tracking.

You also create a device context and a drawing pen for the window in response to
the ~LBUTTONDOWN message. You then call SelectObject to install your
pen in the device context. SelectObject returns a pointer to a CPen object that
represents the previous pen settings for the device context.

As mentioned in the section "Selecting a Drawing Object into a Device Context,"
on page 348, the object returned by SelectObject is a temporary object that is lia­
ble to be deleted the next time the application is idle. Since idle time can occur
while tracking the mouse (when the user stops moving the mouse), you cannot
depend on the object returned from SelectObject in the mouse down message
handler to still be around when the mouse up message is handled.

To avoid relying on the temporary Foundation CPen object returned by
SelectObject, you call GetSafeHandle to extract the HPEN handle from the
CPen returned by SelectObject. The HPEN returned by GetSafeHandle
is a permanent Windows graphical device interface object that will not be
automatically deleted.

Finally, after selecting the newly created pen into the device context, you call
MoveTo to establish the anchor point for the tracking.

The code for OnLButtonDown is shown as follows:

void CMainWnd::OnLButtonDown(UINT nFlags, CPoint p)
{

m_bTracking = TRUE;
SetCapture();

II Create the Device Context for this window
m_pDCDoodle new CClientDC(this);

II Create a new pen to draw in the window

User Input 355

m_pPenDoodle = new CPen(PS_SOLID, m_penWidth, RGB(0, 0, 0));

}

II Select the pen into the Device Context
CPen* pPenTemp = m_pDCDoodle->SelectObject(m_pPenDoodle);

II extract an HPEN from CPen to save for later restoration
m_hPenSaved = (HPEN)pPenTemp->GetSafeHandle();

II establish anchor point for doodling
m_pDCDoodle->MoveTo(p);

The message-handler function OnMouseMove is called when your window re­
ceives a WM_MOUSEMOVE message. If you are tracking, as indicated by the
Boolean member variable m_ bTracking, you call the LineTo function to draw a
line from the last anchor point to the current mouse location. Drawing the line also
establishes a new anchor point. The code for OnMouseMove is shown here:

void CMainWnd::OnMouseMove(UINT nFlags, CPoint p)
{

}

if(m_bTracking)
{

m_pDCDoodle->LineTo(p);
}

Finally, the On LButtonUp message-handler function is called when the
window receives a W~LBUTTONUP message. In this function, you call
ReleaseCapture to give other windows access to mouse messages. You also use
the HPEN saved in the OnLButtonDown function to create a CPen object that you
then use to select the original pen characteristics back into the device context of
the window, thus restoring the original drawing environment.

356 Class libraries User's Guide

Finally, you delete the doodling pen and device context that you created in
On LButtonDown, as follows:

void CMainWindow::OnLButtonUp(UINT nFlags, CPoint p)
{

if(m_bTracki ng)
{

m_bTracking = FALSE;
ReleaseCapture();

II Create a CPen from an HPEN
m_pDCDoodle->SelectObject(CPen::FromHandle(m_hPenSaved »;

}
}

delete m_pPenDoodle;
delete m_pDCDoodle;

17.3 Keyboard Events
When a user presses a key on the keyboard, Windows sends a series of messages
to the current active window. These messages include WM_KEYDOWN,
WM_KEYUP, and W~CHAR. The Foundation window classes support these
messages with message map entries and message-handler functions, just as it does
for other window messages. The keyboard messages and their associated message­
map entries and message-handler functions are shown in the following list:

Message

W~KEYDOWN

W~KEYUP

W~CHAR

Message-map macro

ON_ W~KEYDOWN
ON_W~KEYUP

ON_W~CHAR

Message-handler function

OnKeyDown
OnKeyUp

OnChar

User Input 357

~ To handle any of these key messages:

1. Derive a window class from an existing Foundation window class

2. Implement the appropriate message-handler functions

3. Define message-map entries for the messages that you want to handle

The following example shows a window class that handles the WM_ CHAR
message.

First, the class is derived from an existing Foundation window class and the
On C h a r message-handler function is declared:

class CMainWnd : public CFrameWnd
{

public:

} ;

II constructor
CMyWnd ()

void OnChar(UINT nChar, UINT nRepCnt, UINT nFlags);

Next, the message map for the window class is defined in the .CPP file for the
class:

BEGIN_MESSAGE_MAP(CMainWnd, CFrameWnd)
ON_WM_CHAR()

END_MESSAGE_MAP()

Finally, you define the OnCha r message-handler function. It has three arguments.
The first contains the ASCII code for the character typed on the keyboard, the sec­
ond contains the repeat count if the message is the result of keyboard autorepeat,
and the third contains flags that indicate various other conditions of the keyboard,
such as whether or not the ALT key was down when the key was pressed. The fol­
lowing code shows a skeleton for the OnCha r function:

void CMainWnd::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{

TRACE("The %c character was pressed\n", wChar);

The Fundamentals of iostream
Programming

The C++ Tutorial introduced the cin and COllt objects together with the insetion
«<) and extraction (») operators. Many of the C++ Tutorial programming ex­
amples use these iostream objects and operators to read input from the keyboard
and to display results on the screen. This chapter presents the theory behind
input/output (I/O) streams and gives step-by-step instructions for using these
useful tools.

18.1 Introduction
This chapter begins with a general description of the iostream classes and then de­
scribes output streams, input streams, and input/output streams. Part 3 of the Class
Libraries Reference contains an alphabetical reference that documents the techni­
cal details of the Microsoft iostream Class Library. The Class Libraries Reference
also contains a detailed class hierarchy diagram.

What Is a Stream?
If you are a C programmer, you know that the C language has no built-in input/out­
put capability. You must use C run-time library functions such as printf, _open,
_ read, fwrite, and getchar for disk, display, and keyboard I/O. Variations such as
sprintfsupport in-memory formatting.

Like C, C++ does not have built-in I/O capability. All C++ compilers, however,
come bundled with a systematic, object-oriented I/O package, known as the
"iostream classes." These stream classes are the most standard of all C++ classes
because they were developed by the authors of the C++ language.

The "stream" is the central concept in the iostream classes. You can think of a
stream object as a kind of "smart file" that acts as a source and/or destination for
bytes. A "stream" is a C++ object with characteristics determined by its specific
class and by your customized insertion and extraction operators.

364 Class libraries User's Guide

The disk operating system, through its device drivers, extends the concept of a file
to include the keyboard, display, printer, and communication ports. The iostream
classes, like the C run-time library 1/0 routines, interact with these extended files.
The Microsoft iostream Class Library, however, goes further. Built-in classes sup­
port reading and writing to and from memory with syntax identical to the syntax
for disk I/O. As you gain familiarity with the library, you can derive your own
stream classes to support, for example, interprocess communication or a graphical
user interface.

Microsoft C/C++ Input/Output Alternatives
When you use Microsoft CIC++ version 7.0, you have several options for I/O
programming:

• C run-time library direct, unbuffered I/O

The functions _open, _read, _ write, and _close, among others, interact
directly with the operating system-there is no buffering or formatting. Many
existing data management programs use these functions because they are effi­
cient and allow custom buffering schemes. These functions are oriented to the
C programmer, but they can be called from C++ programs.

• ANSI C run-time library stream 1/0

Here the word "stream" refers to the C "stdio" run-time library and does not
directly relate to the C++ 1/0 stream classes. Functions such as fopen, fread,
fwrite, and printf do their own buffering before they call the direct functions.
These functions are oriented to the C programmer, but they can be called from
C++ programs.

• Console and port direct 1/0

C run-time library functions such as _kbhit are useful in non-Windows applica­
tions because they give the programmer direct access to the hardware. There
are no C++ class equivalents.

• The Microsoft Foundation Class Library

If you are using the Microsoft Foundation Class Library, then you should use
the CFile classes for disk 1/0, particularly in the Windows environment. This
ensures that your applications are portable and extensible.

• The Microsoft iostream Class Library

The iostream classes are particularly useful for buffered, formatted text input
and output. Use them for unbuffered or binary 1/0 if you have decided not to
use the Microsoft Foundation Classes and if you need a C++ programming in­
terface. Remember that the iostream classes are an object-oriented I/O alterna­
tive to C run-time functions such as printf and _read. Their use is not
mandatory in C++ programs.

The Fundamentals of iostream Programming 365

It is possible to use the iostream classes with Microsoft Windows. The string
and file streams work without restrictions, but the character-mode stream
objects cin, cout, and cerr are inconsistent with the Windows graphical user in­
terface. If you link with the QuickWin Library (see Chapter 8 in Programming
Techniques), however, the cin, COllt, cerr, and clog objects are assigned to
special windows because they are connected to the predefined files stdin,
stdOllt, and stderr. If you are an advanced C++ programmer, you can derive
custom stream classes that interact directly with the Windows environment.

The iostream Class Hierarchy
The class hierarchy diagram shown in the Class Libraries Reference exposes the
some of the interrelationships between the iostream classes. There are further
"membership" relationships between the ios family of classes and the streambllf
family.

The hierarchy diagram is useful mainly in conjunction with Part 3, "iostream Class
Reference." Use it for locating the base classes that provide inherited member
functions for their derived classes. You don't need to understand all the interclass
relationships in order to work through the examples in this tutorial.

18.2 Output Streams
An output stream object is a destination for bytes. The three most important output
stream classes are ostream, of stream, and ostrstream, as described below.

The ostream Class
The ostream class, through the derived class ostream_ withassign, supports the
predefined stream objects:

• COllt, standard output

• cerr, standard error with limited buffering

• clog, similar to cerr but with full buffering

You will rarely construct an object from class ostream (or from class
ostream_ withassign); you will generally use the predefined objects. Under cer­
tain circumstances, you may assign these standard names to other stream objects
after program startup.

The ostream class is best suited to sequential text-mode output. All this chapter's
formatting options apply to ostream objects, and these objects can be configured
for buffered or unbuffered operation. All the functionality of the base class, ios, is
included in ostream. See the Class Libraries Reference for details.

366 Class libraries User's Guide

If you do construct an object of class ostream, then you must specify a streambuf
object to the constructor. This is an advanced use of streams that is covered in
"Deriving Your Own Stream Classes" in Chapter 19.

The of stream Class
The of stream class supports disk file output. Construct an object of class
of stream if you need an output-only disk file. You can specify whether of stream
objects accept binary or text-mode data. Indeed, you can change this mode after
you have opened the file.

If you specify a filename in the constructor, that file is automatically opened when
the object is constructed. Otherwise you can use the open member function after
invoking the void-argument constructor, or you can construct an of stream object
based on an open file that is identified by a file descriptor.

Many formatting options and member functions apply to of stream objects. All the
functionality of the base classes ios and ostream is included in of stream, and that
includes the ability to open files in either buffered or unbufferd mode. See the
iostream section of the Class Libraries Reference for details.

The ostrstream Class
The ostrstream class supports output to in-memory strings in a manner similar to
the C run-time library function sprintf. When you need to create a string in
memory using the I/O stream formatting facilities, construct an object of class
ostrstream. Because ostrstream objects are write-only, your program must
access the resulting string directly through a pointer to char.

Constructing Output Stream Objects
If you use only cout, cerr, or clog, you don't have to worry about output stream
construction. If you use file streams or string streams, then you must use
constructors.

Output File Stream Constructors
If you need an output file stream, you have three choices:

• You can use the void-argument constructor, then call the open member
function.

of stream myFile; II Static or on the stack
myFile.open("filename", iosmode l;

ofstream* pmyFile = new of stream; liOn the heap
pmyFile->open("filename", iosmode l;

The Fundamentals of iostream Programming 367

• You can specify a filename and mode flags in the constructor call, thereby open­
ing the file during the construction process.

of stream myFile("filename", iosmode);

• You can specify an integer file descriptor for a file that is already open for out­
put. In this case you have the option to specify unbuffered output or a pointer to
your own buffer.

int fd = _open("filename",
of stream myFilel(fd); II
of stream myFile2(fd, NULL,
myFile3(fd, pch, buflen);

dosmode);
Buffered mode (default)
0); II Unbuffered mode of stream
II User-supplied buffer

For a description of how to use the mode flags of the open member function, see
the Class Libraries Reference.

Output String Stream Constructors
There are two ostrstream constructors: one that dynamically allocates its own
storage and one that requires the address and size of a preallocated buffer.

• The dynamic constructor is used like this:

char* sp;
ostrstream myString « "this is a test" « ends;
sp = myString.str(); II Get a painter to the string

The ends "manipulator" in this example adds a null terminator to the string.
This terminator is necessary if the string is to be used by C run-time library
functions that expect standard strings. For a description of manipulators, see
"Format Control" on page 368.

• The use of the "preallocation" constructor is demonstrated by the following
example:

char s[32];
ostrstream myString(s, sizeof(s));
myString « "this is a test" « ends; II Text stored in s

Using Insertion Operators
The insertion «<) operator is the most familiar means of sending bytes to an out­
put stream object. This operator is preprogrammed for all the standard C++ data
types, including integers, floating-point values, null-terminated strings, addresses,
and so forth. This chapter presents examples that illustrate output format control
and the technique for creating insertion operators for your own classes.

368 Class Libraries User's Guide

Format Control
You can change the width, the justification (right or left), the precision of floating­
point values, and the radix, among others. This section explains some of the availa­
ble output stream formatting options.

This section introduces the term "manipulator." If you are interested in how
manipulators fit into the c++ language, see "Writing Your Own Manipulators
without Parameters" on page 381. Otherwise, consider the predefined manipula­
tors to be elements of the iostream syntax expressions used in conjunction with the
insertion (and extraction) operators.

Output Width
In this book, many examples show data values separated by spaces. If you need
output that is lined up in columns, you must specify the output width.

You can specify a width for each displayed item by placing the setw manipulator
in the stream or by calling the width member function. Both the setw manipulator
and the width member function take a width parameter.

Example 1
Example 1 prints a column of numbers without specifying an output width:

II exios101.cpp
II Displaying columns of numbers
#include <iostream.h>

void maine)
{

double values[] = { 1.23, 35.36, 653.7, 4358.24 };
fore int i = 0; i < 4; i++)

cout « values[i] « '\n';
}

The output looks like this:

1. 23
35.36
653.7
4358.24

Example 2
Example 2 shows how the width member function manages output width. By call­
ing the width function with an argument of 10, the program specifies that the dis­
played values are to appear right-aligned in a column at least 10 characters wide.

II exios102.cpp
II The width member function

#include <iostream.h>

void main()
[

The Fundamentals of iostream Programming 369

double values[]
fore int i = 0;
{

1.23, 35.36, 653.7, 4358.24 };
< 4; i++)

cout.width(10) ;
cout « values[i] « '\n';

The output from this example looks like this:

1. 23
35.36
653.7

4358.24

In this example, leading blanks are added to any value that is less than 10 charac­
ters wide. Later, you will learn how to replace the leading blanks with specified
padding characters.

Example 3
Sometimes you need different widths for different data elements in the same line.
The width member function provides this capability, but the setw manipulator is
more convenient, as Example 3 illustrates:

II exios103.cpp
II The width member function
#include <iostream.h>
#include <iomanip.h>

void main()
{

double values[J [1.23, 35.36, 653.7, 4358.24 };
char *names[] = "Zoot", "Jimmy", "Al", "Stan" };
fore int i = 0; < 4; i++)

cout « setw(6) «names[i]
« setw(10) « values[i] « endl;

Note that the width member function is declared in IOSTREAM.H, but if you use
the setw manipulator (or any other manipulator with parameters), you must in­
clude both IOSTREAM.H and IOMANIP.H. Also note that the newline character
('\n') has been replaced by the endl manipulator.

In the output from this example, the strings are printed with a width of six and the
integers with a width of ten.

370 Class libraries User's Guide

Zoot
Jimmy

Al
Stan

1. 23
35.36
653.7

4358.24

Neither setw nor width truncate values. If the formatted output exceeds the cur­
rent width, the entire value prints, subject to the stream's current precision setting.
You should be aware of this behavior when you design formatted displays that use
setw or width.

Note Both setw and width affect the following field only. The field width reverts
to its default behavior (the necessary width) after one field has been printed. The
other stream format options remain in effect until changed.

Padding
You can use the fill member function to set the value of the padding character for
fields that have a specified width. The default padding character is a blank.

Example 4
In Example 4 a column of numbers is padded with asterisks:

II exiosl04.cpp
II The fill member function
#include <iostream.h>

void main()
{

}

double values[] {1.23, 35.36, 653.7, 4358.24 };
for(int i = 0; < 4; i++)
{

cout.width(10);
cout.fill('*');
cout « val ues[i] « endl;

The values print as follows:

******1.23
*****35.36
*****653.7
***4358.24

Alignment
So far, all output from the example programs has printed flush right within the
width field. Output streams default to right-aligned text.

The Fundamentals of iostream Programming 371

Example 5
Suppose that you want the names in Example 3 to be left-aligned and the number
to remain right-aligned. You can use the setiosflags manipulator to specify that the
output is to be left- or right-aligned. Example 5 shows how to left-align the names:

I! exios105.cpp
II The setiosflags and resetiosflags manipulators
#include <iostream.h>
#include <iomanip.h>

void main()
{

double values[] = { 1.23, 35.36, 653.7, 4358.24 };
char *names[] = { "Zoot", "Jimmy", "Al", "Stan "};
for (int i = 0; i < 4; i++)

cout « setiosflags(ios::left)
« setw(6) «names[i]
« resetiosflags(ios::left
« setw(10) « values[i] « endl;

The output looks like this:

Zoot
Jimmy
Al
Stan

1. 23
35.36
653.7

4358.24

The example sets the left-align flag by using the setiosflags manipulator with an
argument of ios::left. This argument is an enumerator that is defined in the ios
class, so its reference must include the ios:: prefix. The resetiosflags manipulator
turns off the left-align flag to return to the default right-align mode.

Note Unlike width and setw, the effect of setiosflags and resetiosflags is per­
manent. If you turn on left-alignment, for example, it stays on until you turn it off.

Precision
Suppose you want the floating-point numbers in Example 5 to display with only
one significant digit. The setprecision manipulator tells the object to use a
specified number of digits of precision.

Example 6
Example 6 limits the displayed precision to one significant digit.

I! exios106.cpp
II The setprecision manipulator
#include <iostream.h>
#include <iomanip.h>

372 Class libraries User's Guide

void main()
{

}

double values[] = { 1.23, 35.36, 653.7, 4358.24 };
char *names[] = { "Zoot", "Jimmy", "Al", "Stan" };
fo r (i nt i = 0; i < 4; i ++)

cout « setiosflags(ios::left)
« setw(6)
« names[i]
« resetiosflags(ios::left
« setw(10)
« setprecision(1)
« values[i]
« endl;

The program prints this list:

Zoot
Jimmy
Al
Stan

1
4e+001
7e+002
4e+003

Example 7
You might want to eliminate the scientific notation in Example 6. Two flags,
ios::fixed and ios::scientific, control how a floating-point number prints. You can
set and clear these flags with the setiosflags and resetiosflags manipulators:

II exiosl07.cpp
II The fixed flag
#include <iostream.h>
#include <iomanip.h>

void maine)
{

}

double values[] = { 1.23, 35.36, 653.7, 4358.24 };
char *names[] = { "Zoot", "Jimmy", "Al", "Stan" };
cout « setiosflags(ios::fixed);
for (int i = 0; i < 4; i++)

cout « setiosflags(ios::left)
« setw(6)
« names[i]
« resetiosflags(ios::left
« setw(10)
« setprecision(1)
« values[i]
« endl;

With fixed notation, the program prints with one digit after the decimal point.

Zoot
Jimmy
Al
Stan

1.2
35.4

653.7
4358.2

The Fundamentals of iostream Programming 373

If, in Example 7, the ios::fixed flag is changed to ios::scientific, the program's
behavior changes, and it prints this:

Zoot 1.2e+000
Jimmy 3.5e+001
Al 6.5e+002
Stan 4.4e+003

Again, the program prints one digit after the decimal point. Example 7 shows that
if either the ios: : fixed flag or the ios: : scientific flag is set, then the precision value
determines the number of digits after the decimal point. If neither flag is set, then
the precision value determines the total number of significant digits.

Note The default value of precision is six. This means that a number such as
3466.9768 prints as 3466.98 unless ios::fixed or ios::scientific is set, in which
case it prints as 3466.976800 or 3.466977e+003, respectively.

Radix
The dec, oct, and hex manipulators set the default radix for both input and output.
If you insert the hex manipulator into the output stream, for example, the object
correctly translates the internal data representation of integers into a hexadecimal
(base 16) output format. The default radix is dec (decimal).

On insertion, the hex manipulator causes integers and long integers to be con­
verted to hexadecimal format. The numbers are displayed with digits a through f
in lower case if the flag ios::uppercase is clear (the default); otherwise they are
displayed in upper case. Thus, for example, the decimal integer 28 is displayed as
1 c. The ios: : uppercase flag is described in Part 3 of the Class Libraries Reference
(iostream section) under the flags member function of class ios.

Output File Stream Member Functions
You have already seen the formatting member function width. The setw manipula­
tor served as a substitute and was more convenient for formatted I/O that used the
insertion operator. There are three classes of output stream member functions:

• Member functions that are equivalent to manipulators

• Member functions that perform unformatted write operations

• Member functions that otherwise modify the stream state and have no
equivalent manipulator or insertion operator

374 Class libraries User's Guide

If you need sequential, formatted output, you might use only manipulators and in­
sertion operators, but if you need random-access binary disk output, you would
use several other member functions. In this second case, you may choose to use no
insertion operators at all.

The following member functions are particularly useful for disk output. For a
complete list of stream member functions, see Part 3 of the Class Libraries
Reference.

The open Function
If you are using an output file stream (of stream) , then you must associate that
stream with a specific disk file. You can make this association in the constructor,
or you can use the open function. The second method allows you to reuse the
same stream object with a series of separate files. In either case, the parameters
describing the file are the same.

You generally specify an open_mode flag when you open the file associated with
an output stream (there is a default mode parameter). Here is a list of the
open_mode flags defined as enumerators in the ios class. Note that the list in­
cludes flags for both input and output streams. The flags can be combined as ap­
propriate using the bitwise OR (I) operator.

Flag

ios::app

ios::ate

ios::in

ios::out

ios::nocreate

ios::noreplace

Function

Opens an output file for appending. Every output
operation occurs at the physical end of file.

Opens an existing file and seeks to the end. This
mode works with both input and output files.

Opens an input file. If you use ios: :in as an
opelLmode for an of stream file, it prevents the
truncation of an existing file.

Opens an output file. When you use ios::out for
an of stream object without ios::app, ios::ate, or
ios::in, then ios::trunc is implied.

Opens a file only if it already exists; otherwise
the open fails.

Opens a file only if it does not exist; otherwise
the open fails.

Flag

ios::trunc

ios::binary

The Fundamentals of iostream Programming 375

Function

Opens a file and deletes the old file (if it already
exists).

Opens a file in binary mode (default is text
mode). See "Binary Output Files" on page 378
for an explanation of binary mode.

Here are three common output stream situations that involve the mode options:

• You want to create a file. If it already exists, delete the old version.

ostream ofile("FILENAME"); II Default is ios::out
of stream ofile("FILENAME", ios::out); II Equivalent to above

• You want to append records to an existing file or create one it if it does not
exist.

of stream ofile("FILENAME", ios::app);

• You want to open two files, one at a time, on the same stream.

of stream ofile();
ofile.open("FILEl", ios::in);
II Do some output
ofile.close(); II FILEI closed
ofile.open("FILE2", ios::in);
II Do some more output
ofile.close(); II FILE2 closed
II when ofile goes out of scope it is destroyed

The put Function
The put function writes a single character to the output stream. The following two
statements are the same by default, but the second is affected by the stream's for­
mat parameters:

cout.put('A'); II Exactly one character written
cout« 'A'; II Format parameters 'width' and 'fill' apply

The write Function
The write member function writes a block of memory to an output file stream.
The number of bytes written is determined by the specified length parameter. The
function accommodates the complex binary data structures found in many busi­
ness and scientific applications.

376 Class Libraries User's Guide

Example 8
Example 8 shows the write member function being used to write binary data to an
output file stream.

/! exios108.cpp
II The write member function
#include <fstream.h>

struct Date
{

int mo, da, yr;
} ;

void main()
{

}

Date dt = { 6, 10, 91 };
ofstream tfile("date.dat" , ios::binary);
tfile.write((char *) &dt, sizeof dt);

The program creates an output file stream and writes the binary value of the Date
structure to it. The write function does not stop writing when it reaches a null char­
acter, so the complete class structure is written regardless of its content. For an ex­
planation ofios::binary, see "Binary Output Files" on page 378.

The write function takes two arguments: a char pointer and a count of characters
to write. Note the cast to char* before the address of the structure object. Without
this cast, the program would not compile.

The seekp and tellp Functions
An output file stream keeps an internal pointer corresponding to the position in the
file where data will be written next. The seekp member function sets that pointer
and thus allows random-access disk file output. The seekp function is often used
in conjunction with the seekg function in input/output streams. For a programming
example that uses the input stream equivalent to the seekp function, see the de­
scription for seekg in "Input Streams" on page 382.

The tellp member function returns the current file position. For a programming ex­
ample that uses the input stream equivalant to the tellp function, see the descrip­
tion for tellg in "Input Streams" on page 382.

The close Function
Use the close member function to close the disk file associated with an output file
stream. The file must be closed in order to properly update the disk. If necessary,
the of stream destructor closes the file for you, but you can use the close function
if you need to open another file for the same stream object.

The Fundamentals of iostream Programming 377

Note The output stream destructor automatically closes the stream's file only if
the file was opened by the constructor or by the open member function. If you
have passed the constructor a file descriptor for an already-open file or if you have
used the attach member function, then it is your responsibility to close the file.

Error Processing Functions
These member functions enable you to test for errors while writing to a stream:

Function

bad

fail

good

eof

clear

rdstate

Return Value

Returns TRUE if there is an unrecoverable error.

Returns TRUE if there is an unrecoverable error or an
"expected" condition, such as a conversion error or the file is
not found. Processing can often resume after a call to clear
with a zero parameter.

Returns TRUE if there is no error condition (unrecoverable
or otherwise) and the end-of-file flag is not set.

Returns TRUE on the end-of-file condition.

Sets the internal error state. If called with the default
parameters, clears all error bits.

Returns the current error state. See the Class Libraries
Reference for a complete description of error bits.

The! operator is overloaded to perform the same function as the fail function.
Thus the expression if(!cout) ... isequivalentto if(cout.fail()) ...

The void*O operator is overloaded to be the opposite of the! operator. Thus the
expression if(cout) ... is equivalent to if(!cout.fail()) ...

Note that the void*O operator is not the same as good because it doesn't test for
the end-of-file condition.

The Effects of Buffering
What are the effects of buffering? Consider Example 9. You might expect the pro­
gram to print please wa i t, wait five seconds, and then proceed. It won't neces­
sarily work as you anticipated, however, because the output is buffered.

Example 9
Example 9 clearly demonstrates the effects of buffering.

378 Class libraries User's Guide

II exios109.cpp
II A buffered stream object
#include <iostream.h>
#include <time.h>

void main()
{

}

time_t tm = time(NULL) + 5;
cout « "Please wait ... ";
while (time(NULL) < tm)

cout « "\nA 11 done" « endl;

In order to make the program work sensibly, you must somehow tell cout to
empty itself as soon as you want the message to appear. You can tell an ostream
object to flush itself by sending it the flush manipulator. To fix the program
above, change one line:

cout « "Please wait ... " « flush;

This extra step flushes the buffer, which ensures that the message prints before the
wait instead of after. You may choose to use endl instead of flush. The endl
manipulator flushes the buffer and also outputs a carriage return-linefeed
combination.

Note The cin object (along with cerr and clog) is normally tied to cout. Thus any
use of cin (or of cerr and clog) causes cout to be flushed.

Binary Output Files
Streams were originally designed for text, and thus text mode is the default output
mode. In text mode, a newline character (hexadecimal 10) always expands to a
carriage return-linefeed pair. This expansion could cause problems as shown in
Example 10:

Example 10
Example 10 demonstrates one of the chief characteristics of text file output.

II exios110.cpp
#include <fstream.h>
int iarray[2] = { 99, 10 };
void main()
{

of stream os("test.dat");
os.write((char *) iarray, sizeof(iarray));

}

The Fundamentals of iostream Programming 379

You might expect this program to output the byte sequence { 99,0, 10, ° }; actu­
ally it outputs the sequence { 99,0, 13, 10, ° }. This would clearly cause problems
for another program that expected binary input.

If you need true binary output, in which characters are written untranslated, then
you have several choices, as shown in Examples 11, 12 and 13.

Example 11
You can specify binary output by using the of stream constuctor mode parameter
as shown:

II exiosll1.cpp
II Binary example
#include <fstream.h>
#include <fcntl.h>
#include <io.h>
int iarray[2] = { 99, 10 };
void main(1
{

of stream os("test.dat", ios::binary l;
ofs.write(iarray, 4 l; II Exactly 4 bytes written

}

Example 12
You can construct a stream in the usual way, and then use the setmode member
function. This function allows you to change the mode after you have opened the
file.

II exios1l2.cpp
II Binary example 2
#include <fstream.h>
int iarray[2] = { 99, 10 };
void main(1
{

of stream ofs ("test.dat" l;
ofs.setmode(filebuf::binary l;
ofs.write(char*iarray, 4 l;

II Exactly 4 bytes written
}

As an alternative to the setmode member function, you can use the binary
manipulator:

ofs « binary;

There is a companion text manipulator that switches the stream back to text
translation mode.

380 Class Libraries User's Guide

Example 13
Finally, you can first open the file using the C run-time library _open function
with a binary mode flag:

II exios113.cpp
II Binary example 3
#include <fstream.h>
#include <fcntl.h>
#include <io.h>
int iarray[2] = { 99, 10 };
void main()
{

}

filedesc fd = _open("test.dat",
_O_BINARY I _O_CREAT I _O_WRONLY);

of stream ofs(fd);
ofs.write(char*iarray, 4); II Exactly 4 bytes written

Overloading the « Operator for Your Own Classes
Output streams use the insertion « <) operator for the standard types. Now you
will learn how to overload the« operator for your own classes.

Example 8, on page 376, illustrated the use of a Date structure. A date is an ideal
candidate for a C++ class in which the data members (month, day and year) are
hidden from view. A Date object should know how to display itself, and an out­
put stream is the logical destination.

The following code displays a date on cout in a manner consistent with the preced­
ing examples.

Date dt(1, 2, 90);
cout « dt;

To get the cout object to accept a Date object after the insertion operator, you
must overload the insertion operator to recognize an ostream object on the left
and a Date on the right. The overloaded« operator function must then be de­
clared as a friend of class Date so that it can access the private data within a
Date object.

Example 14
Example 14 overloads the «operator to accept an ostream object on the left and
a Date object on the right:

II exios114.cpp
II Overloading the « operator
#include <iostream.h>

class Date
{

int mo, da, yr;
public:

Date(int m, int d, int y)
{

mo = m; da = d; yr = y;

The Fundamentals of iostream Programming 381

friend ostream& operator« (ostream& os, Date& dt);
} ;

ostream& operator« (ostream& os, Date& dt)
{

os« dt.mo« '/'« dt.da« '/'« dt.yr;
return os;

}

void main()
{

}

Date dt(5, 6, 77);
cout « dt;

When you run this program, it prints the date:

5/6/77

Note that the overloaded operator returns a reference to the original ostream
object, which means you can combine various insertions:

cout « "The date is" « dt « flush;

Writing Your Own Manipulators Without Parameters
You have already seen some of the built-in output stream manipulators, including
flush, hex, and setw. Now you will learn how to write your own custom manipula­
tors that don't use parameters. This task requires neither class derivation nor use
of complex macros.

Suppose you have a printer that requires the sequence <ESC> [to enter boldface
mode. You could, of course, insert these characters directly into the stream like
this:

cout« "regular"« '\033' « '[' «"boldface"« endl;

A less tedious strategy is to define a manipulator bo 1 d that inserts the desired
sequence. The output statement now becomes:

cout « "regul ar " « bol d « "bol dface" « endl;

382 Class Libraries User's Guide

All that's necessary to define the bol d manipulator is the following function:

ostream& bold(ostream& os) {
return os« '\033'« '[';

The bo 1 d function is simply a globally defined function that takes an ostream ref­
erence argument and returns the ostream reference. It is not a member function or
a friend because it doesn't need access to any private class elements. The bo 1 d
function connects to the stream because the stream's« operator is overloaded to
accept that type of function by a declaration that looks something like this:

ostream& ostream: :operator« (ostream& (*_ f) (ostream&)); {
(*_f)(*this);
return *this;

}

Indeed, you could use this c++ feature to extend other overloaded operators.

It is incidental that, in this case, b old inserts characters into the stream. The func­
tion could do anything at all, but you must remember that it is called when it is in­
serted into the stream, not necessarily when the adjacent characters are printed.
Thus printing could be delayed because of the stream's buffering.

More Complex Manipulators
Chapter 19 describes the process of writing manipulators that take one or more ar­
guments. This is a more difficult process that requires use of the macros contained
in the IOMANIP.H header file.

18.3 Input Streams
An input stream object is a source of bytes. Refer to the class hierarchy diagram in
the Class Libraries Reference. The three most important input stream classes are
istream, ifstream, and istrstream as described below.

The istream Class
The istream class is best suited to sequential text-mode input. Objects of class
istream can be configured for buffered or unbuffered operation. All the functional­
ity of the base class, ios, is included in istream. See the Class Libraries Reference
for details.

Rarely will you construct an object from class istream. You will generally use the
predefined cin object (actually an object of class istream_ withassign). Under cer­
tain circumstances, you may assign cin to other stream objects after program
startup.

The Fundamentals of iostream Programming 383

All the functionality of the base class, ios, is included in istream. For details, see
Part 3 of the Class Libraries Reference.

The ifstream Class
The ifstream class supports disk file input. Construct an object of class ifstream
if you need an input-only disk file. You can specify whether ifstream objects
process binary or text-mode data.

If you specify a filename in the constructor, that file is automatically opened when
the object is constructed. Otherwise you can use the open member function after
invoking the void-argument constructor.

Many formatting options and member functions apply to ifstream objects. All the
functionality of the base classes ios and istream is included in ifstream, and that
includes the ability to open files in either buffered or unbufferd mode. See Part 3
of the Class Libraries Reference for details.

The istrstreamClass
The istrstream class supports input from in-memory strings in a manner similar to
the C run-time library function sscanf. Construct an object of class istrstream
when you need to extract data from an existing null-terminated character array (C
string). You must have allocated and initialized your string before calling the
constructor.

Constructing Input Stream Objects
If you use only cin, then you don't have to worry about input stream construction.
If you use file streams or string streams, then constructors are important.

Input File Stream Constructors
If you need an input file stream, you have three choices:

• You can use the void-argument constructor, then call the open member func­
tion.

ifstream myFile; liOn the stack
myFi 1 e. open ("fi 1 ename", i osmode);

ifstream* pmyFile = new ifstream; liOn the heap
pmyFile-)open("filename", iosmode);

• You can specify a filename and mode flags in the constructor invokation,
thereby opening the file during the construction process.

ifstream myFile("filename", iosmode);

384 Class Libraries User's Guide

• You can specify an integer file descriptor for a file that is already open for
input. In this case you have the option to specify unbuffered input or a pointer
to your own buffer.

int fd = _open("filename", dosmode);
ifstream myFile1(fd); II Buffered mode (default)
ifstream myFile2(fd, NULL, 0); II Unbuffered mode
ifstream myFile3(fd, pch, buflen); II User-supplied buffer

For a description of mode flag usage, see the description of the open member func­
tion in "Output Streams" on page 365.

Input String Stream Constructors
The input string stream constructor requires the address of preallocated, preinitial­
ized storage:

char s[] = "123.45";
double amt;
istrstream myString(s);
myString » amt; II Amt should contain 123.45

Using Extraction Operators
The extraction operator (») is the most familiar means of getting bytes from an
input stream object. This operator is preprograrnmed for all the standard c++ data
types, including integers, floating-point values, null-terminated strings, and so
forth.

Formatted text input extraction operators depend on white space to separate incom­
ing data values. This behavior is inconvenient when a text field contains multiple
words or when numbers are separated by commas. One alternative is the use the
unformatted input member function getline to read a block of text with white
space included. The block can then be parsed with special-purpose functions.
Another alternative is derivation of an input stream class with a member function
such as GetNextToken. This special-purpose function could call istream member
functions to extract and format character data.

Testing for Extraction Errors
It is very important to test for errors during the extraction process. Consider, for
example, the statement:

cin » n;

The Fundamentals of iostream Programming 385

If n is a signed integer, then an input value of 33,000 (32,767 is the maximum al­
lowed value) will set the stream's fail bit. If you don't deal with the error immedi­
ately, then cin will be unusable. All subsequent extractions result in an immedate
return with no value stored.

Example 15
The error processing functions discussed under "Output Streams" apply also to
input streams. Example 15 demonstrates how the fail and clear functions can be
used with cin.

II exios115.cpp
#include <iostream.h>
int n[5], i;
void main()
{

}

cout « "Enter 5 val ues, separated by spaces" « endl;
fore i = 0; i < 5; i++) {

cin»n[i];
if(cin.eof() I I cin.bad()) break; II Tests for end-of-file

II or unrecoverable error
if(cin.fail()) { II Tests for format conversion error

cin.clear(); II Clear stream's fail bit
n[iJ = 0; II and continue processing

fore i 0; i < 5; i++) { II Prints the values just read
cout « n[i];

Input Stream Manipulators
Many manipulators, such as setprecision, are defined for the ios class and thus
technically apply to input streams. Few manipulators, however, actually affect
input stream objects. The most important are the manipulators dec, oct, and hex.
These radix manipulators determine the conversion base used with numbers from
the input stream.

On extraction, the hex manipulator enables the processing of a variety of input for­
mats. For example, the sequences c, e, Oxc, oxe, OXc, and oxe are all interpreted
as the decimal integer 12. Any character other than 0 through 9, A through F, a
through f, x, and X terminates the numeric conversion. Thus the sequence "124n5"
is converted to the number 124 with the ios::fail bit set in the process.

386 Class Libraries User's Guide

Input Stream Member Functions
The following member functions are particularly useful for disk input. See the
Class Libraries Reference for a complete list of stream member functions.

The open Function
If you are using an input file stream (ifstream), then you must associate that
stream with a specific disk file. You can make this association in the constructor,
or you can use the open function. In either case, the parameters are the same.

You generally specify an opelLmode when you open the file associated with an
input stream (the default mode is ios::in). For a list ofthe opelLmode flags, see
the description of the open function in "Output Streams" on page 365. The flags
can be combined as appropriate using the bitwise OR (I) operator.

If you want to read an existing file, you must test for the possibility that the file
does not exist. For a description of the fail member function, see "Error Pro­
cessing Functions" on page 377.

istream ifile("FILENAME", ios::nocreate);
if (ifile.fail())
II The file does not exist

The get Function
The unformatted get member function works like the » operator with two excep­
tions. First, the get function always includes white-space characters, whereas the
extractor excludes white space when the ios::skipws flag is set (the default). Sec­
ondly, the get function is less likely to cause a tied output stream (cout, for ex­
ample) to be flushed.

Example 16
Example 16 illustrates how the behavior of the extraction operator is different than
that of the get member function.

I I exi os116. cpp
II The istream get member function
#include <iostream.h>

void main()
{

char line[100], ch 0, *cp;

}

The Fundamentals of iostream Programming 387

cout « " Type a line terminated by 'x'\n>";
cp = line;
while (ch != 'x')
{

cin » ch;
if(!cin.good()) break; II Exits on EOF or failure
*cp++ = ch;

*cp='\0';
cout « ' , « 1 i ne;
cin.seekg(0L, ios::end); II Empties the input stream
cout « "\n Type another one\n>";
cp = 1 i ne;
ch = 0;
while (ch != 'x'
{

}

cin.get(ch);
if(!cin.good()) break; II Exits on EOF or failure
*cp++ = ch;

*cp='\0';
cout « ' , « line;

The program reads two strings from the keyboard one character at a time. The first
input operation uses the extraction operator, and the second one uses the get mem­
berfunction. If you type Ti me to exit for both entries, the screen would look
like this:

Type a line terminated by 'x'
Time to exit~.~--------------­
Timetoex ~.~------------------­
Type another one
Time to ex it ~.---------------­
Time to ex ~.~-----------------

Entered by you
Echoed by the program

Entered by you
Echoed by the program

You can see that the extraction operator skips over the white-space characters (be­
cause the ios::skipws flag is set by default) and the get function does not. The pro­
gram needs the x terminator because it needs to know when to stop reading.
Because dn is attached to the C run-time library stdin file, the program does not
see any characters until you type the carriage return.

Example 17
A variation of the get function allows you to specify a buffer address and the maxi­
mum number of characters to read. This is useful for limiting the number of char­
acters sent to a specific variable, as the following example code shows.

388 Class libraries User's Guide

II exios117.cpp
II Using get with a buffer and length
#include <iostream.h>

void main()
{

char line[25];
cout « " Type a line terminated by carriage return\n>";
cin.get(line, 25);
cout « . . « 1 i ne;

}

In this particular example, you can type up to 24 characters (because strings must
end with a null). If you type more than 24, the additional characters remain in the
stream and are available for later extraction.

The getline Function
The getline function works in almost the same way as the get function. Both func­
tions allow a third argument that specifies the terminating character for input. If
you do not include that argument, its default value is the newline character.

The difference between the two is that get leaves the terminating character in the
stream and getline removes the terminating character and throws it away. Both
functions reserve one character for a terminating null (in C and C++, all strings
end with a null).

Example 18
Example 18 uses the getline function with a third argument to specify a terminat­
ing character for the input stream:

II exios118.cpp
II The istream getline member function
#include <iostream.h>

void main()
{

char 1 ine[100];
cout « " Type a line terminated by 't'" « endl;
cin.getline(line, 100, 't');
cout « 1 ine;

}

If you type I 1 i ke el ephants., the program screen contains these lines:

Type a line terminated by 't'
I like elephants. ~.-----­
I 1 i ke el ephan f--------

Entered by you
Echoed by the program

The Fundamentals of iostream Programming 389

The program stops after reading the letter t and leaves the remaining characters,
starting with s, in the stream. The next extraction operation or call to get will read
the letter s.

If you had used the get member function instead of the getline function, the screen
display would be the same, but the next character retrieved would be the letter t.

The read Function
The read member function reads a sequence of bytes from a file to a specified
area of memory. The number of bytes read is determined by the specified length
parameter. Reading will otherwise stop if the physical end of file is reached or, in
the case of a text-mode file, if an embedded EOF character is read.

Example 19
Example 19 shows how to use the read function to read a binary record from a
payroll file into a structure:

II exios119.cpp
II The istream read function
#include <fstream.h>
#include <fcntl.h>
#include <io.h>

void main()
{

}

struct
{

double salary;
char name[23];

} employee;

ifstream is("payroll", ios::binary I ios::nocreate);
if(is) { II ios::operator void*()

is.read((char *) &employee, sizeof(employee));
cout « employee.name « .. « employee.salary « endl;

}

else {
cout « "ERROR: Cannot open fil e • payroll' ." « endl;

}

This program assumes that the data records are formatted exactly as specified by
the structure with no terminating carriage return or linefeed characters. For a de­
scription of binary file processing, see "Binary Output Files" on page 378.

390 Class libraries User's Guide

The seekg and tellg Functions
An input file stream keeps an internal pointer that corresponds to the position in
the file where data will be read next. The seekg member function sets that pointer.

Example 20
Example 20 opens a file, changes the input position, and then reads to end of
the file:

II exios120.cpp
II The seekg member function
#include <fstream.h>

void main()
{

}

char ch;

ifstream tfile("payroll", ios::binary I ios::nocreate);
if(tfile) {

}

tfile.seekg(8); II Seek eight bytes in (past salary)
while (tfile.good() {II EOF or failure stops the reading

}

tfile.get(ch);
if(!ch) break; I I quit on null
cout « ch;

else {
cout « "ERROR: Cannot open file 'payroll '." « endl;

}

You can use the seekg function to implement record-oriented data management
systems. Multiply the fixed-length record size by the record number to obtain the
byte position relative to the end of the file, then use the two-argument get function
to read the record.

Example 21
The tellg member function returns the current file position for reading, as
illustrated by Example 21:

II exios121.cxx
II The tellg function
#include <fstream.h>

void main()
{

char ch;

}

The Fundamentals of iostream Programming 391

ifstream tfile("payroll", ios::binary I ios::nocreate);
if(tfile) {

}

while (tfile.good()) {

}

streampos here = tfile.tellg();
tfile.get(ch);
if (ch ")

cout « "\nPosition " « here « " is a space";

else {
cout « "ERROR: Cannot open file 'payroll'." « endl;

}

The program reads the file built by an earlier example and displays messages that
show the character positions of any spaces it finds. The tellg function returns a
value of type streampos, which is a typedef defined in IOSTREAM.H.

The close Function
Use the close member function to close the disk file associated with an input file
stream. The file should be closed to free the operating system file handle. The
ifstream destructor closes the file for you (unless you called attach or passed your
own file descriptor to the constructor), but you can use the close member function
if you need to open another file for the same stream object.

Overloading the » Operator for Your Own Classes
Input streams use the extraction (») operator for the standard types. You can
write similar extraction operators for your own types, but, as with all extraction
operations, success depends on the precise use of white space.

Below is an example of an extraction operator for the Date class that was pre­
sented in Example 14 on pages 380-381:

istream& operator» (istream& is, Date& dt)
{

is » dt.mo » dt.da » dt.yr;
return is;

}

A more complete extraction operator might check the validity of the date that was
entered.

392 Class Libraries User's Guide

18.4 Input/Output Streams
An iostream object is both a source and a destination for bytes. The two most im­
portant I/O stream classes, both derived from iostream, are fstream and
strstream, as described below.

Note The fstream and strstream classes inherit the functionality of the istream
and ostream classes described earlier.

The fstream Class
The fstream class supports disk file input/output. Construct an fstream object if
you need an disk file that is to be both read from and written to in the same pro­
gram.

The strstream Class
The strstream class supports input and output of in-memory strings. Construct an
strstream object when you need to manipulate a string in memory using the
iostream formatting facilities.

An Input/Output Stream Example
An object of type fstream is a single stream with two logical substreams, one for
input and one for output. Although there are separately designated put and get posi­
tions in the underlying buffer, those positions are tied together.

If a file is not opened in append mode, changing the get position (with a seekg
call) changes the put position (returned by a tellp call).

If a file is opened in append mode, write operations always occur at the end of the
file. Each such write operation also changes the get position pointer to just past the
last character in the file. A call to seekp also changes the get position.

Example 22
Example 22 reads the text file into a character array and writes an uppercase-only
copy of the bytes at the end of the file:

II exios122.cpp
II An fstream file
#include <fstream.h>
#include <ctype.h>

void main()
{

fstream tfile("test.dat", ios::in ios::app);
char tdata[100];
int i = 0;
char ch;

}

while (i < 100) {
tfile.get(ch);

The Fundamentals of iostream Programming 393

if (tfile.istream::eof()) break;
tdata[i++] = Chi

}

tfil e. i stream: : cl ear();
for (i nt j = 0; j < i; j++) {

tfile.put(toupper(tdata[j]));
}

The program must call the clear member function before starting the write opera­
tions because the stream is at the end of the file. The clear function resets the end­
of-file flag and all other flags, which allows the program to proceed with the
output.

Advanced iostream Programming

The fundamentals of iostream programming were presented Chapter 18. This chap­
ter offers several advanced topics; in particular, parameterized manipulators and
stream class derivation.

19.1 Custom Manipulators with Parameters
Chapter 18 introduced manipulators and described the process of creating your
own manipulators without parameters on page 381. This section describes the
steps necessary to create single-parameter and multi-parameter output stream
manipulators. It also describes use of manipulators for streams other than output
streams.

Output Stream Manipulators with One Parameter (int or long)
The Microsoft iostream Class Library provides a set of macros for creating para­
meterized manipulators. Manipulators with a single int or long parameter are a
special case and will be discussed first.

Example 1
To create an output stream manipulator that accepts a single int or long parameter
(like setw), you must use the OMANIP macro, defined in IOMANIP.H. Example
1 defines a fill b 1 an k manipulator that inserts a specified number of blanks into
the stream:

I I exi os201. cpp
II A custom manipulator with an integer parameter
#include <iostream.h>
#include <ioman1p.h>

396 Class libraries User's Guide

os t ream& fb (ost ream& os, i nt 1)
{

}

for(int i=0; i < 1; i++)
os « • ';

return os;

OMANIP(int) fillblank(int 1)
{

return OMANIP(int) (fb, 1);
}

void main()
{

cout « "10 blanks follow" « fillblank(10) « ".\n";
}

The IOMANIP.H header file contains a macro that expands OMANIP(int) into a
class, __ OMANIP _jnt. This class definition includes a constructor and an over­
loaded ostream insertion operator for an object of the class. The fi 11 b 1 an k func­
tion, inserted in the stream, calls the __ OMANIP _jnt constructor in order to
return an object of class __ OMANIP _jnt. Thus fi 11 bl ank can be used with an
ostream insertion operator. The constructor, in tum, calls your fb function.

Note The OMANIP macro represents an advanced use of C++. It will ultimately
be superseded once c++ accommodates parameterized types. In the meantime, it
is easier to adapt the code above than to analyze the syntax. The expression
OMANIP(long) expands to another built-in class, __ OMANIP _long, which
accommodates functions with a long integer parameter.

Other One-Parameter Output Stream Manipulators
You can create manipulators that take arguments other than jnt and long. In addi­
tion to the OMANIP macro, you must use the IOMANIPdeclare macro, which
declares the classes for your new type.

Example 2
Example 2 uses a class money, which is a thinly disguised long type. A new
manipulator, setpi c, attaches a formatting "picture" string to the class that can be
used by the overloaded stream insertion operator of the class money. Note that the
picture string is stored as a static variable in the money class rather than as data
member of a stream class. This means you do not have to derive a new output
stream class.

II exios202.cpp
II A custom manipulator with a char* parameter
#include <iostream.h>

#include <iomanip.h>
#include <string.h>

typedef char* charp;
IOMANIPdeclare(charp);

class money {
private:

long value;
static char *szCurrentPic;

public:
money(long val) { val ue = val; }

Advanced iostream Programming 397

friend ostream& operator « (ostream& os, money m) {
II A more complete function would merge the picture
II with the value rather than simply appending it
os « m.value « '[' « money::szCurrentPic « ']';
return os;

} ;

friend ostream& setpic(ostream& os, char* szPic) {
money::szCurrentPic = new char[strlen(szPic) + 1];
strcpy(money::szCurrentPic, szPic);
return os;

}

char *money::szCurrentPic; II Static pointer to picture

OMANIP(charp) setpic(charp c)
{

return OMANIP(charp) (setpic, c);
}

void main()
{

money amt = 35235.22;
cout « setiosflags(ios::fixed);
cout « setpic("ffffff,fNfff,fNfff.fW") «"amount "« amt « endl;

}

Output Stream Manipulators with More Than One Parameter
Example 3 shows you how to write a manipulator that takes two arguments. As
you can see, it is similar to the previous example except that the character pointer
type declaration is replaced by a structure declaration.

Example 3
The following program illustrates the definition of the fi 11 manipulator, which
inserts a specified quantity of a particular character:

II exios203.cpp
II 2-argument manipulator example

398 Class Libraries User's Guide

#include <iostream.h>
#include <iomanip.h>

struct fillpair {
char ch;
int cch;

} ;

IOMANIPdeclare(fillpair);

ostream& fpC ostream& os, fillpair pair
{

}

for (int c = 0; c < pair.cch; c++) {
os « pair.ch;

}

return os;

OMANIP(fillpair) fill(char ch, int cch)
{

}

fillpair pair;

pair.cch = cch;
pair.ch = ch;
return OMANIP (fillpair)(fp, pair);

void main()
{

cout « "10 dots coming" « fill('.', 10) « "done" « endl;
}

Example 3 could be easily rewritten with the manipulator definition in a separate
program file. The header file must contain the neccesary declarations as follows:

struct fillpair {
char ch;
int cch;

} ;
IOMANIPdeclare(fillpair);
ostream& fpC ostream& 0, fillpair pair);
OMANIP(fillpair) fill(char ch, int cch);

Custom Manipulators for Input Streams and I/O Streams
The OMANIP macro works with ostream and its derived classes. The SMANIP,
lMANIP, and IOMANIP macros work with the classes ios, istream, and
iostream, respectively.

Advanced lostream Programming 399

Using Manipulators with Derived Stream Classes
If you define a custom manipulator that works with, say, the ostream class, it will
work with all classes derived from ostream. If, however, you need manipulators
that work only with a derived class xstream, then you must add the overloaded in­
sertion operator, shown below, which is not a member of the class.

xstream& operator« (xstream& xs, xstream& (*_f)(xstream&)) {
(*_fH xs);
return xs;

}

Now the manipulator code looks like this:

xstream& bold(xstream& xs) {
return xs « '\033' « '[';

}

If the manipulator needs to access xstream protected data members functions
functions, you can declare the bold function as a friend of the xs t ream class.

19.2 Deriving Your Own Stream Classes
This section is intended for C++ programmers who are experienced in deriving
classes.

A StraighHorward Stream Class Derivation
Like any C++ class, a stream class can be derived for the simple purpose of adding
new member functions, data members, or manipulators. If you need an input file
stream that tokenizes its input data, for example, you can derive from the If stream
class. This new derived class can include a member function that returns the next
token by calling its base class's public member functions or extractors. You might
need some new data members to hold the stream object's state between operations,
but you probably will not need to use the base class's protected member functions
or data members.

For the straightforward stream class deriviation, you need only write the necessary
constructors and the new member functions.

The class derivation example that follows is more complex because it exploits the
relationship between the stream class and the associated stream buffer class.

400 Class libraries User's Guide

The streambuf Class
You have probably noticed some references to a streambuf class. This class is un­
important unless you plan major customizations of the iostream library. As you ex­
plore the iostream classes, you will learn that streambuf really does most of the
work for the other stream classes. You will create a modified output stream by
deriving only a new streambuf class and connecting it to the standard ostream
class.

Why Derive a Custom streambuf Class?
The existing output streams communicate to the file system and to in-memory
strings. You can invent your own streams that address a memory-mapped video
display, a window as defined by Microsoft Windows, some new physical device,
and so forth. A simpler goal is the alteration of the byte stream as it goes to a file
system device. This customization technique, as you will see, is sufficient to pro­
duce an object-oriented interface to laser printers such as the Hewlett-Packard
LaserJet series.

A streambuf Derivation Example
Example 4 shows you how to modify the cout object such that prints in two­
column landscape (horizontal) mode on a Hewlett-Packard LaserJet printer or
other printer that uses the PCL control language. As the test driver program shows,
all the member functions and manipulators that work with the original cout also
work with the special version. The application programming interface is the same!

Example 4
The example is divided into three source files.

• HSTREAM.H-the LaserJet class declaration that must be included in both the
implementation file and your application file

• HSTREAM.CPP-the LaserJet class implementation that must be linked with
your application

• EXIOS204.CPP-the test driver program that sends output to a LaserJet printer

The HSTREAM.H file contains only the class declaration for hstreambuf. This
class is derived from fUebuf and overrides the appropriate fIlebuf virtual functions.

II htream.h - HP LaserJet output stream header
#include <fstream.h> II Accesses 'filebuf' class
#include <string.h>
#include <stdio.h> II for sprintf

Advanced iostream Programming 401

class hstreambuf public filebuf
{

public:
hstreambuf(int filed);
virtual int sync();
virtual int overflow(int ch);
~hstreambuf() ;

private:
int column, line, page;

long cnt);
char*& pd, int& jj);
char*& pd, i nt& jj);

char* buffer;
void convert(
void newline(
void heading(
void pstring(char* ph, char*& pd, int& jj);

} ;

ostream& und(ostream& os);
ostream& reg(ostream& os);

HSTREAM.CPP contains the the hstreambuf class implementation.

II hstream.cpp - HP LaserJet output stream
/finclude "hstream.h"

4fdefine REG 0x01
/fdefine UNO 0x02
/fdefine CR 0x0d
/fdefine NL 0x0a
1fdefi ne FF 0x0c
#define TAB 0x09

/fdefine LPP 57
/fdefine TABW 5

II Regular font code
II Underline font code
II Carriage return character
II Newline character
II Formfeed character
II Tab character

II Lines per Page
II Tab width

II Prolog defines printer initialization (font, orientation, etc.
char prolog[]
{ 0xlB, 0x45,

0xlB, 0x28, 0x31,
0xlB, 0x26, 0x6C,
0xlB, 0x26, 0x6C,
0xlB, 0x26, 0x6B,

0x30,
0x31,
0x38,
0x32,

0x55, II
0x4F, II
0x44,
0x53};

II Reset printer
IBM PC char set
Landscape

II 8 lines-per-inch
II Lineprinter font

II Epilog prints the final page and terminates the output
char epilog[] = { 0x0C, 0xlB, 0x45}; II Formfeed, reset

char uon[] = { 0xlB, 0x26, 0x64, 0x44, 0 }; II Underline on
char uoff[] = { 0xlB, 0x26, 0x64, 0x40, 0 };II Underline off

hstreambuf::hstreambuf(int filed) : filebuf(filed)
{

column = line = page = 0;
int size = sizeof(prolog);
setp(prolog, prolog + size);

402 Class Libraries User's Guide

}

pbump(size); II Puts the prolog in the put area
filebuf::sync(); II Sends the prolog to the output file
buffer = new char[1024]; II Allocates destination buffer

hstreambuf::~hstreambuf()

{

}

sync(); II Makes sure the current buffer is empty
delete buffer; II Free the memory
int size = sizeof(epilog);
setp(epilog, epilog + size);
pbump(size); II Puts the epilog in the put area
filebuf::sync(); II Sends the epilog to the output file

virtual int hstreambuf::sync()
{

}

long count = out_waiting();
if (count) {

convert(count);
}

return filebuf::sync();

virtual int hstreambuf::overflow(int ch)
{

}

long count = out_waiting();
if (count) {

convert(count);
}
return filebuf::overflow(ch);

11*** The following code is specific to the HP LaserJet printer ***

II Converts a buffer to HP, then writes it
void hstreambuf::convert(long cnt)
{

char *bufs, *bufd; II Source, destination pointers
int j = 0;

bufs = pbase();
bufd = buffer;
if(page == 0) {

newline(bufd, j);
}
for(int i = 0; i < cnt; i++) {

char c = *(bufs++); II Gets character from source buffer
if(c >= .•) { II Character is printable

* (bufd++) = c;
j++;
column++;

}

}

}

Advanced iostream Programming 403

else if(c == NL) { II Moves down one line
*(bufd++) = c; II Passes character through
j++;
line++;
newline(bufd, j); II Checks for page break, etc.

}

else if(c == FF) { II Ejects paper on formfeed
line = line - line % LPP + LPP;
newline(bufd, j); II Checks for page break, etc.

}

else if(c == TAB
do {

II Expands tabs

}

*(bufd++
j++;
column++;

, '. ,

} while (column % TABW);

else if(c == UND) { II Responds to 'und' manipulator
pstring(uon, bufd, j);

}
else if(c == REG) { II Responds to 'reg' manipulator

pstring(uoff, bufd, j); II
}

setp(buffer, buffer + 1024); II Sets new put area
pbump(j); II Indicates the number of characters in the dest buffer

II simple manipulators - apply to all ostream classes
ostream& und(ostream& os) II Turns on underscore mode
{

os « (char) UND; return os;
}

ostream& reg(ostream& os) II Turns off underscore mode
{

os « (char) REG; return os;
}

void hstreambuf::newline(char*& pd, int& jj
II Called for each newline character

column = 0;
if ((line % (LPP*2)) == 0) II Even page
{

page++;
pstring("\033&a+0L", pd, jj); II Set left margin to zero
heading(pd, jj); 1* print heading *1
pstring("\033*p0x77Y", pd, jj); II Cursor to (0,77) dots
}

404 Class Libraries User's Guide

if (((line % LPP) 0) && (line % (LPP*2)) != 0) II Odd page
{II prepare to move to right column
page++;
pstring("\033*p0x77Y". pd. jj); II Cursor to (0.77) dots
pstring("\033&a+88L". pd. jj); II Left margin to 88th column
}
}

void hstreambuf::heading(char*& pd. int& jj) II Prints page heading
{

char hdg[20];
i nt i;

if(page> 1) {

}

*(pd++) = FF;
jj++;

pstring("\033*p0x0Y".
pstring(uon. pd. jj) ;

pd.
II

spri ntf(hdg. "Page %-3d".
pstring(hdg. pd. jj);

fort i=0; i < 80; i++) {

*(pd++)
, , . .

jj++;
}

spri ntf(hd9. "Page %-3d".
pstring(hdg. pd. jj);

fort i=0; i < 80; i++) {

*(pd++) , , . .
jj++;

}

jj) ; II Top of page
Underline on
page) ;

II Pads with blanks

page+l) ;

II Pads with b 1 an ks

pstring(uoff. pd. jj) ; II Underline off
}

II Outputs a string to the buffer
void hstre~mbuf::pstring(char* ph. char*& pd. int& jj
{

}

int len = strlen(ph);
strncpy(pd. ph. len);
pd += len;
jj += 1en;

EXIOS204.CPP is the test driver program. It reads text lines from cin and writes
them to the modified coot.

II exios204.cpp
II hstream Driver program copies 'cin' to 'cout' until end-of-file
#include "hstream.h"

hstreambuf hsb(1); II l=stdout

void main()
{

}

Advanced iostream Programming 405

char line[200];
cout = &hsb; II Associates the HP LaserJet streambuf to cout
while(1) {

}

cin.getline(line, 200);
if(!cin.good()) break;
cout « line « endl;

Here are the main points in the code above:

• The new class hstreambuf is derived from filebuf, the buffer class for disk file
I/O. The filebuf class does the actual writing to disk in response to commands
from its associated ostream class. The hstreambuf constructor takes an argu­
ment that corresponds to the operating system file number, in this case 1 for
sdtout. This constructor is invoked by the following line:

hstreambuf hsb(1);

• The hstreambuf object is associated with cout by the ostreallL withassign as­
signment operator:

ostream& operator =(streambuf* sbp);

The following statement in EXIOS204.CPP executes the assignment.

cout = &hsb;

• The hstreambuf constructor prints the prolog that sets up the laser printer, and
it allocates a temporary print buffer.

• The destructor outputs the epilog text and frees the print buffer when the object
goes out of scope. In this example, the object goes out of scope after the exit
from main.

• The streambufvirtual overflow and sync functions do the low-level output.
The hst reambuf class overrides these functions in order to gain control of the
byte stream. The functions call the private convert member function.

• The convert function processes the characters inside the hstreambufbuffer
and stores them in the object's temporary buffer. The tempory buffer is then
processed by the filebuffunctions.

• The details of convert relate more to the PCL language than to the iostream li­
brary. Note that there are private data members that keep track of column num­
ber, line number and page number.

• The und and reg manipulators control the underscore print attribute. They
simply insert codes Ox02 and Ox03 into the stream. These codes are later trans­
lated into the printer-specific sequences by convert.

406 Class Libraries User's Guide

• Example 4 is a useful program now, but you can easily extend it to embellish
the heading, add more formatting features, and so forth.

• In a more general example, the hstreambuf class would have been derived
from streambuf rather than from filebuf. The filebuf derivation gets the most
leverage from existing iostream library code, but it makes certain assumptions
about the implementation of filebuf, particularly the overflow and sync func­
tions. Thus you could not necessarily expect the example to work with other
derived streambuf classes or with the filebuf classes provided by other soft­
ware publishers.

Index

«(insertion operator), 33, 367, 380-381
» (extraction operator), 33, 391

A
About dialog boxes, 105-107, 110
Accelerator keys. See Shortcut keys
Accelerator table, 109
Accelerator table resource template

Phone Book sample program, 198
VK_DELETE constant, 198
VK_RETURN constant, 198

Adding
CMain Window class declaration, 200-202
constructors, 202
dialog boxes, 153-161
keyboard and mouse interfaces, 230-233
member functions, scrolling, 227-229
message handlers

creation and sizing, 224-226
for menu commands, 205-224

message maps, 199-200
objects, to a list, 41
run-time class information, 264
serialization support, 265
utility member functions, 238-241
WM_PAINT message handlers, 235-237, 241

afxDump object
cookbook,287
tutorial, 36, 50, 59

AfxEnableMemoryTracking, memory diagnostics,
291

afxMemDF, memory diagnostics, 291
afx_msg modifier, 90
afx_msg prefix, 203-205
AfxRegisterWndClass function

tutorial, 113
cookbook,325

AFXWIN.H file, 203
AND_CATCH macro, 51, 63
Application class, 87
Application object

creating, 85-86
described, 89
HELLO sample program, 87

Applications, CDataBase class, 140
Arrays

elements, deleting, 274
iteration of, 272

Arrow keys, 231
ASSERT macro

cookbook,288-289
Phone Book sample program, 203
tutorial, 127, 138
validity testing, 33

Assertions, 203
ASSERT_VALID macro

tutorial, 126, 138
validity testing, 32

AssertValid member function, CObject class
debugging, used for, 138
described, 32
overriding, 289
Phone Book sample program, 133-138

Assignment operator, overloaded
CPerson class, 29-30
Phone Book sample program, 129,221

B
bad member function, of stream class, 377
BEGIN_MESSAGE_MAP macro

cookbook,313-315
tutorial, 95

Binary file operations, 277
Binary output files, 378-379
BN_CLICKED message

cookbook,316
naming conventions, 205
tutorial, 98

Bold type, use of, viii
Brackets, double, use of, viii
Buffering output streams, 377-378
Build directories, 9
Building

debug mode, 12
NMAKE, using, 11
PWB, using, 9
release mode, 12

408 Index

c
C run-time functions, CString functions,

comparison to, 258
C++

global objects, 89
techniques

classes, deriving, 24
constructors, 30
tutorial, 38
Windows programs, creating, 81

v-tables
message maps, similarity to, 96
tutorial, 203

C++ class libraries
advantages, ii
class source code, modification of, iv
classes and objects, direct use of, iii
derivation of new classes, iii
documentation, how to use, vii
introduction, 1

CArchive class
described, 20
serialization, 279

CArchive object
creating, 284
described, 61
extraction operator, 33
110,33,61
insertion operator, 33
serialization, 33

CArchiveException exception handler, 298
CATCH macro

cookbook,298-302
exception

objectargument,63
type argument, 63

tutorial, 51, 63
CButton class, 335
CComboBox class, 335
CDataBase class

applications, 140
member functions, 135-136
overview, 134-140
Phone Book sample program, 123

CDataBase constructor, 135
CDataBase object, 136
CDialog class

deriving dialog classes, 332
deriving simple classes, 333
dialog boxes, modeless, 162, 165

CDumpContext object, 35
CEdit class, 335
CEditDialog class, 163-165
CFile class, 20, 277
CFile object, 60
CFileException exception handler, 298
CFileException object, 60
CFindDialog class, 153, 163-164
CFrameWnd class, 83, 311, 323-325
CheckForSave member function, adding, 240
Checkpoint member function, CMemoryState

class, 292
Child windows messages, 316-317
Class declarations, CMain Window, adding,

200-202
Classes

See also Foundation classes; iostream classes
CDataBase

applications, 140
memberfunctions, 135-136
tutorial, 123, 134-140

CEditDialog, 163-164
CFindDialog, 153, 163-164
CMainWindow, 91,121,199
CPerson, 129

clear member function, of stream class, 377
CListBox class, 335
Close member function, CFile class, 278
close member function

istream class, 376-377
of stream class, 391

Closing files, 278
CMain Window class

database, 121
member functions, 199
message handlers, 199

CMain Window constructor
HELLO sample program, 88-91
windows, creating, 89-93

CMDBOOK sample program, 6, 140
CMDIChildWnd object, 311, 323-325
CMDIFrameWnd object, 311, 323-325
CMemoryException exception handler, 298
CMenu class, 119
CModalDialog class

cookbook,329
dialog boxes

described, 106
modal, 162-165

HELLO sample program, 83

CModalDialog object
Help dialogs, 163
Phone Book sample program, 151

CNotSupportException exception handler, 298
CObject class

AssertValid member function, 32
basic functionality, using, 264
deriving classes from, 263
described

cookbook,263
tutorial, 19

DMTEST sample program, 24, 28
functionality, levels of, 263
implementation files, 263
interface files, 263
IsKindOf function, using, 266
macros

DECLARE_DYNAMIC, 264-266
IMPLEMENT_DYNAMIC, 264-266
RUNTIME_CLASS, 265-266

run-time class information, 264-267
serialization, 265, 279

CObject collection, 273
CObList class, 20, 127
Code listings

DMTEST sample program, 66-79
HELLO sample program, 83,107,113-116
Phone Book sample program

database, 141-149
dialog boxes, 168-194
message handlers, 243-246

CodeView errors, 11
Collection classes

arrays, 40
cookbook, 269-276
lists, 40
maps, 40
summary, 49

Collection objects
described, 40
designing, 37

Collections
array elements, deleting, 274
arrays, iteration of, 272
CObject class, 273
deriving and extending, 271
lists, 272-273
maps, 272, 274
members, accessing, 272-276
predefined, using, 270
queue, 276

Collections (continued)
shapes,269
stacks, 275
templates, using, 271
type-safe, 270

Commands, menu, 135
COMMDLG.DLL file

dialog classes, 163, 167
PrintDlg function, 212

COMMDLG.H file
open dialogs, 153, 167
print dialogs, 153, 167
save dialogs, 153, 167

Compiling sample programs
DMTEST,65
HELLO,109
PHBOOK,243

Concatenation operators, 257
Constructors

adding, 202
CDataBase, 135
CMainWindow, 88-93
copy,29-30
CPerson,28
CPersonList, 41
defining, 281
derived window classes, 312
dialog resource, 166
exceptions, 303
Foundation graphics, 346
frame allocation, 252
in the frame, 29, 31, 41
in the heap, 29, 31,41
parameters, with, 28
parameters, without, 29
serialization, used for, 30

Control classes
dialog boxes, in, 340

Index 409

message handler functions, using, 338
overriding, 338
standard, deriving from, 337-339
using, 335
values, setting, 339-340

Control values, setting, 339-340
Copy constructors, 29-30
Copying, 30
CPaintDC class, 83
CPerson class

constructors, 27-28
copying, 30

410 Index

CPerson class (continued)
DMTEST sample program

declaring, 22
tutorial, 22, 28

member functions
Assert Valid, 27
Dump, 27
Serialize, 27

overloaded assignment operator
defined, 27
tutorial, 129

serialization, 33
CPerson object

constructors
in the frame, 29
in the heap, 29

described, 28
Dump, using, 35
serialization, 34

CPersonList class, 40
CPersonList object

constructing, 41
designing, 36
Phone Book sample program, 134
searching in, 45-46
tutorial, 139

Create member function
cookbook, 312, 336-337
windows, creating, 92-93

Creating
databases, 139
graphics objects, 347
queue collections, 276
stack collections, 275

Creation message handlers
adding, 224-226
Phone Book sample program, 199

CRect class, 83
CResourceException exception handler, 298
CScrollBar class, 335
CStatic class, 335
CString class

basic operations, 257
contents, modifying, 260
DMTEST sample program, 20, 28-31
formal parameters, specifying, 259
member functions

C run-time functions, comparison to, 258
tutorial, 164

serialization, 31
string manipulation, 256-261

CString objects
as actual strings, 258
exceptions, 304
filename argument, 42
operations, 259-261
with variable argument functions, 261

CTime class
date and time management, 255-256
DMTEST sample program, 20, 28-31

Customizing
AfxRegisterWndClass function, 113
OnIdle member function, 113
output stream manipulators, 381-382
Windows applications, 112-113
WinMain function, 89

CWinApp class
deriving from, 307
described, 307
HELLO sample program, 83, 86-87
member functions

InitApplication, 308
OnIdle,309-31O

overriding, 307
CWndclass

D

cookbook, 345
dialog objects, 165
message handlers, 203

Data interface, simplifying, 122-134
Data model

C++ objects, 19
creating, 17
defined, 18
DMTEST sample program, 19
implementation file, 22
interface file, 22
reusability, 19
testing, 49, 51-64
user interface, independence from, 19

Databases
creating, 58, 139
destroying, 58
member functions, 135
opening, 139
serialization, 131-133

Date management, 255-256
Deallocating heap space, 304
_DEBUG flag, 12, 25, 50, 203

Debug mode
diagnostic reporting, 125
makefile defaults, 9
NMAKE,12
PWB,12
release mode, switching from, 12

DEBUG_NEW macro, 296
Debugging

ASSERT macro, 288-289
AssertValid member function, 138
CodeView, using, 11, 14
DEBUG_NEW macro, 296
diagnostics, 285-296
features, 285
TRACE macro, 288
Windows programs, 11, 14

DECLARE_DYNAMIC macro, 264-266
DECLARE_MESSAGE_MAP macro

cookbook,313-314,343,352
tutorial, 95

DECLARE_SERIAL macro
CObject class, 24
cookbook,281
CPerson class, 33
tutorial, 38,44

Default window procedures, 319-320
Defaults

CWnd class message handler functions, 203
makefiles, 9
message handler values, 100

DefWindowProc class, 100
Delete operator, 31,41,46-47
Deleting

array elements, 274
databases, 47
graphics objects, 347
list objects, 273
map elements, 274
objects in a CObject collection, 273

Derived classes
cookbook,307
tutorial, 166

Deserialization
failure of, 65
of objects, 285
OnOpen member function, using, 207
person objects, recreation, 52
procedure, 42, 44,51-52

Device contexts
CWnd, getting from, 345
graphic objects, 348

Diagnostic messages, 127, 138
Diagnostic reporting

defined,21
Phone Book sample program, 125

Diagnostics
debugging, features of, 285-296
memory, 291

Dialog boxes
About, 105-107, 110
adding

Index 411

HELLO sample program, 105-107
Phone Book sample program, 153-161

CEditDialog class, 164
CFindDialog class, 163-164
CModalDialog class, 1 06-1 07
COMMDLG.DLLfile, 163, 167
derived controls, using in, 340
deriving from CDialog class, 332
dialog resources, 166
DoModal member function, 329
main window, using as, 334-335
message handlers, 164
modal

creating, 329
customizing, 331
initializing, 330
tutorial, 162, 165

modeless, 162, 165
open, 153, 167
Phone Book sample program

HELLO, using as a template, 152-153
tutorial, 151, 157, 162

print, 153, 167
save, 153, 167
type-safe member functions, 333
Windows programs, standard for, 167

Dialog classes
deriving from CDia10g class, 332
message handler functions, 167
message maps, 166

Dialog editors, dialog boxes, adding, 156
Dialog objects, 165
Dialog resource files, 156
Dialog resource template, 224
Dialog resources, 166
Difference member function, CMemoryState class,

292
Directives

#endif,24
extern "C", 153, 167

412 Index

Directives (continued)
#ifdef,49
#include, 49

Directories, build, 9
Disabling memory diagnostics, 291
Displaying windows, 93
Distribution disks, 7
DMTEST sample program

building, 65
CDump Context class, 36
code listings, 66-79
CPerson class, 22, 28
CPersonList object, 37
CString class, 31
CTime class, 31
data object, designing, 22
deseri~lization, 44
developing, 18
exception handling, 61-65
serialization, 42, 50
summary, 65
testing, 49-64
writing, overview, 21

Document conventions, viii
DoModal member function, CModalDialog class

cookbook, 329
tutorial, 163

DOS
command shell, 9
NMAKE, using, 1-3
PWB, using, 13
sample programs, running, 13

Dump context class, 36
Dump member function, CObject class

cookbook, 286-287
tutorial, 35

Dumping

E

memory statistics, 293
object contents, 286
objects, 294-295

Editing tools, 156
Editors, dialog. See Dialog editors
Enabling memory diagnostics, 291
Encapsulation

Phone Book sample program, 120, 134, 140
tutorial, 32

END_CATCH macro, 51, 63

END_MESS AGE_MAP macro
cookbook, 313-315
tutorial, 95

EndDialog member function, CDialog class, 164
#endif directive, 24
#endif statement, 34
Environment variables

INCLUDE, 8
LIB, 8

eof member function, of stream class, 377
Errors

exceptions, 61
extraction, 384
processing, of stream class member functions, 377
recovering from, 62

Example programs. See Sample programs
Exception handlers, predefined, 298
Exception handling, 61-65
Exception object

CATCH macro, 63
passing as parameter, 64

Exceptions
AND_CATCH macro, 51, 63
CATCH macro, 51, 63, 298-302
catching, 62, 298-299
constructors, in, 303
contents, examining, 300
CString objects

deallocating heap space, 304
described, 304

defined, 20
DMTEST sample program, 61-65
END_CATCH macro, 51, 63
frame variables, 304
frames, 62-63
memory leaks, avoiding, 304
objects, freeing

described, 300
handling locally, 301
throwing after destroying, 301

throwing
defined, 62
described, 297
from your own functions, 302
THROW macro, 64
THROW_LAST macro, 64

TRY macro, 51, 63, 298-302
Exit command, 209-210, 216
extern "c" directive, 153, 167

Extraction operators

F

input streams, 384
overloading input streams, 391
testing for, 384

IF option, 11
Fl key, 93
fail member function, of stream olass, 377
File handling member functions, 136
File menu

message handlers
adding, 205-212
described, 213-215

Phone Book sample program, 206-216
File operations, DMTEST sample program, 60
FileDlg member function, adding, 238-239
Files

AFXWIN.H, 86,203
closing, 278
COMMDLG.DLL

dialog classes, 163, 167
PrintDlg function, 212

COMMDLG.H, 153, 167
dialog resource, 156
icon resource, 156
implementation

cookbook, 282
tutorial, 22

#include, 22
interface, 22
module definition. See Module-definition (.DEF)

files
naming, 9
opening, 277
reading from, 278
resource include. See Resource include files
resource script. See Resource script files
status, getting, 279
supporting, 107-109
writing to, 278

Flags
_DEBUG, 25, 50, 203
output file stream, 374-375

Format control, 368-373
Foundation class library

application design, 305-310
debug version, 285
diagnostics, 285-296
dialogs and control windows, 329-340

Foundation class library (continued)
exception handlers, predefined, 298
exceptions, 297-304
files and serialization, 277-285
general-purpose classes, 251-260
graphics, 343-348
introduction

general-purpose classes, v
windows classes, iv

memory leaks, detecting, 290-295
release version, 289
user input, 351-357
window management, 311-327

Foundation classes
CArchive

cookbook,279
tutorial, 20

Index 413

CDialog dialog boxes, modeless, 162, 165
CFile

cookbook, 277
tutorial, 20

CFrameWnd
cookbook,311, 323, 325
tutorial, 83

CMDIChildWnd, 311, 323, 325
CMDIFrameWnd, 311, 323, 325
CMenu, 119
CModalDialog

dialog boxes, modal, 162, 165
tutorial, 83

CObject
cookbook, 263-267, 279
tutorial, 19

CObList, 20, 127
collections

See also Collections
cookbook,269-276
described, 40
predefined, 270

control
deriving from, 337-339
in dialog boxes, 340
message handler functions, using, 338
objects, creating, 336
overriding, 338
using, 335
values, setting, 339-340

CPaint DC, 83
CPersonList, 40
CRect,83

414 Index

Foundation classes (continued)
CString

cookbook, 256-261
tutorial, 20, 31

CTime
cookbook, 255-256
tutorial, 20, 31

CWinApp
cookbook, 307
tutorial, 83, 86-87

CWnd, 165,203
debugging, 296
declaring, 22
DefWindowProc,100
derived, overriding, 307
deserialization, 285
device contexts, 348
dialog classes, 166
exception handling, 297
files

closing, 278
opening, 277
reading from, 278
status, getting, 279
writing to, 278

macros
ASSERT, 288-289
CATCH, 298-302
DEBUG_NEW, 296
DECLARE_SERIAL, 281
IMPLEMENT_SERIAL, 282
TRACE, 288
TRY, 298, 300-302
VERIFY, 289

message-maps, using, 313
messages, handling, 313-319
mouse, windows classes, creating, 319
serialization, 279-285
tutorial

DMTEST sample program, 17-65
HELLO sample program, 81-114
PHBOOK sample program, database, 117-140
PHBOOK sample program, dialog boxes, 151-167
PHBOOK sample program, message handlers,

197-242
using, 5-14

windows
creating, 311
dialog boxes, 329-335
keyboard events, 356-357
messages, overriding, 320

Foundation classes (continued)
windows (continued)

mouse clicks, 351-352
mouse, tracking in, 353-356
preregistered, 92-93
registration, 112
scrolling, 322
tutorial, 92

Windows applications
idle loop processing, 309-310
initializing, 307-308
resource file, 310
writing, 305-306

Windows classes
See also Windows classes
base classes, 311
constructors for, 312
icons, changing, 326
registration, 325

Windows graphics, 343-344
Windows tools equivalents, 346

Foundation control classes (list), 335
Foundation control objects, creating, 336
Foundation graphics, 347-348
Frame allocation, 251-254
Frame variables, exceptions, 304
Frame windows

base classes, 311
changing, 324
MDI child windows, matching, 324

fstream class, 392-393
Functionality, basic levels of, 264
Functions

See also Member functions
AfxRegisterWndClass

cookbook, 325
tutorial, 113

Dump, 35
GetOpenFileName,163
GetSaveFileName,163
IsKindOf, 266
message handler

dialog classes, 167
tutorial, 204

OnCancel,331
OnIdle,309-31O
OnInitDialog, 330, 332
OnOK,331
PrintDlg, 163
WinMain, 89, 112

G
get member function, istream class, 386-388
GetBuffer member function, CString class, 260
getline member function, istream class, 388-389
GetOpenFileName function, 163
GetSaveFileName function, 163
Global objects, 89, 111
good member function, of stream class, 377
Graphic objects, 346-348
Graphics, Windows. See Windows graphics

H
Heap allocation, 252-254
HELLO sample program

application class, 87
application object, 87-89
CFrameWnd class, 83
class hierarchies, 89
CModalDialog class, 83
code listings, 83-107
compiling, required files, 109
cookbook, 307, 310,312
CPaintDC class, 83
CRect class, 83
CTheApp class, 86
CWinApp class, 83, 86-87
dialog boxes, adding, 105-107
execution, sequence of, 110-111
Fl key, 93
files, supporting, 107-108
NMAKE makefile, 109
OnPaint member function, 104
overview, 6, 82
PWB makefile, 110
template, using as, 117, 152-153
Windows, communication with, 95-101
windows

creating, 90-93
painting text in,101-102

writing
application class, 82
application object, 85-86
overview of steps, 84
window class, 82

Help dialogs, 163
Help menu message handlers, adding, 222-223

Index 415

1/0
CArchive objects, differences, 33
programming, C/C++ alternatives, 364
stream classes. See iostream classes
stream manipulators, custom, 398
stream objects, 33, 61

Icon resource files, 156
Icons, windows, changing, 326
ID numbers, 166
Idle loop processing, 309-310
#ifdef _DEBUG statement, 34
ifstream class, 383
IMPLEMENT_DYNAMIC macro, 264-266
IMPLEMENT_SERIAL macro

cookbook, 282
tutorial, 29, 33, 38, 44

Implementation file, 263
#include directive, 49
INCLUDE environment variable, 8
InitApplication member function, CWinApp class,

88,93,305
Input streams

described, 382
extraction errors, 384
extraction operators, 384, 391
ifstream class, 383
istream class, 382
istrstream class, 383
manipulators, 385, 398
objects, constructing

input file stream constructors, 383
input string stream constructors, 384

Insertion operators, 367, 380-381
Interface file, 263
Interfaces, keyboard and mouse, adding, 230-233
Invalidate member function, CWnd class, 214
InvalidateLine member function, CWnd class, 241
iostream classes

advanced programming tutorial, 395-405
flags, 374-375
fstream class, 392-393
hierarchy, 365
input streams

described, 382
extraction errors, 384
extraction operators, 384, 391
ifstream class, 383
iostream classes tutorial, 385
istream class, 382

416 Index

iostream classes (continued)
input streams (continued)

istrstream class, 383
member functions, 386-391
objects, constructing, 383-384

introduction, 363
output streams

binary output files, 378-379
buffering, effects, 377-378
deriving, 399--405
format control, 368-373
insertion operators, 367, 380-381
manipulators, 381-382, 395-399
objects, constructing, 366-367
of stream class, 366, 373-377
ostream class, 365
ostrstream class, 366

strstream class, 392-393
tutorial, 363-393

IsKindOf function, 266
IsStoring member function, 34
istream class

described, 382
member functions

close, 391
get, 386-388
getline, 388-389
open, 386
read, 389
seekg,390-391
tellg,390-391

istrstream class, 383
Italics, use of, viii
Iteration, collection classes, 272

K
Keyboard and mouse message handlers, 199,

234-235
Keyboard, Windows messages, 356-357
Keywords, c++

this, 104, 106
virtual, 90

L
LIB environment variable, 8
Lists

iteration of, 272
objects, deleting, 273

LoadAccelTable member function, CWnd class, 93

M
m_isDirty member variable, 39
Macros

AND_CATCH, 51, 63
ASSERT

cookbook, 288-289
tutorial, 33, 127, 138,203

ASSERT_VALID, 32, 126, 138
BEGIN_MESSAGE_MAP

cookbook, 313-315
tutorial, 95

CATCH
cookbook, 298-302
tutorial, 51, 63

DEBUG_NEW, 296
DECLARE_DYNAMIC, 264-266
DECLARE_MESSAGE_MAP

cookbook, 313-314, 343, 352
tutorial, 95

DECLARE_SERIAL
cookbook, 281
tutorial, 24, 33, 38, 44

END_CATCH, 51, 63
END_MESS AGE_MAP

cookbook, 313-315
tutorial, 95

IMPLEMENT_DYNAMIC, 264-266
IMPLEMENT_SERIAL

cookbook, 282
tutorial, 29, 33, 38,44

ON_COMMAND
cookbook, 315, 317
message handlers, 204

ON_ WM_CHAR, 356
ON_ WM_KEYDOWN, 356
ON_ WM_KEYUP, 356
ON_ WM_NCDESTROY,323
ON_WM]AINT

cookbook, 343
tutorial, 10 1-1 02

RUNTIME_CLASS, 265-266
THROW, 64
THROW_LAST, 64
TRACE

cookbook, 288
tutorial, 20-21, 34, 50

TRY
cookbook, 298-302
tutorial, 51, 63

Macros (continued)
VERIFY

cookbook,289
tutorial, 203

Main WndProc member function, CWinApp class,
305

Makefiles
debug mode builds, 9
defaults, 9
locations, 8
NMAKE

DMTEST, required for, 65
filenames, 8, 11
HELLO, required for, 109
tutorial,7

PWB
DMTEST, required for, 65
filenames, 8
HELLO, required for, 109
tutorial,7

release mode builds, 9
Manipulation of strings, 256-261
Manipulators

custom, input streams, 398
derived stream classes, using with, 399
input streams, 385
output stream, custom, 381-382
parameters, more than one, 397
with one parameter, 395-397

Maps
elements, deleting, 274
iteration of, 272
message. See Message maps

MDI child windows
deallocating memory, 323
frame windows, matching, 324

MDI parent windows, accessing, 323
MDI window classes, 323
Member functions

CDataBase class
CDataBase, 136

CDC class
SelectObject, 348

CDialog class
EndDialog, 164
OnInitDialog, 165

CFile class
Close, 278
Open, 277
Read,278
Write, 278

Member functions (continued)
CFrameWnd class

LoadAccelTable, 93
CMain Window class

CMainWindow, 199
OnAbout, 105-107
OnAdd, 216, 219
OnClose, 209-210, 216
OnCreate, 225-226
OnDBClose, 209, 216
OnDelete, 217
OnDown, 231, 234
OnEdit, 218, 220
OnExit, 210, 216
OnFind, 217, 221
OnFindAll, 218, 221
OnHelp, 223
OnHScroll, 228-229

Index 417

OnKeyDown, 229, 233
OnLButtonDblClk, 232, 235
OnLButtonDown, 232, 235, 351, 354-356
OnNew, 206, 213
OnOpen, 206, 214
OnPaint, 101-104,235-238,241
OnPrint, 210
OnRButtonDown, 351
OnSave, 215
OnSaveAs, 207, 215
OnSize, 225-226
OnUp, 230, 234
On VScroll, 227, 229
Save, 215, 240

CMemoryState class
Difference, 292
Checkpoint, 292

CModalDialog class
About, 305
DoModal, 163,329
OnCancel, 164
OnOK,I64

CObject class
AssertValid, 133, 138,289
Dump, 286-287
Serialize, 24, 282-284

CString class
CString, 164
GetBuffer, 260
ReleaseBuffer, 260
Seek,278

418 Index

Member functions (continued)
CWinApp class

InitApplication, 305, 308
Initlnstance, 89, 93, 305
MainWndProc, 305
OnIdle,113

CWndclass
Invalidate, 214

dialog classes, 167
File menus, 213-215
istream class

close, 391
get, 386-388
getline, 388-389
open,386
read,389
seekg, 390-391
tellg, 390-391

of stream class
bad,377
clear, 377
close, 376-377
described,373-374
eof,377
fail,377
good,377
put, 375
rdstate, 377
seekp,376
tellp, 376
write, 375-376

Phone Book sample program
database, 135
file handling, 136

scrolling, adding, 227-229
type-safe, defining, 333
utility, adding, 238-241
WinMain, 305
WM_CREATE, 224, 226
WM_SLZE,225-226

Member variables
CDataBase object, 136
extra bytes, adding, 327

Memory allocation
resizable memory blocks, 255
types, 252

Memory blocks, resizable, 255
Memory diagnostics,enabling or disabling, 291
Memory leaks

CString, avoiding, 304
DEBUG_NEW macro, 296

Memory leaks (continued)
detecting

Checkpoint member function, 292
cookbook,290-295
Difference member function, 292

Memory management
described, 251-254
frame allocation, 251
heap allocation, 252

Memory statistics, dumping, 293
Menu commands, 135, 199
Menu-command messages

described, 314-315
handling, 314

Message handler functions
See also Member functions
CWndclass

OnChar, 356
OnKeyDown, 356
OnKeyUp, 356
OnPaint, 343, 345

using to modify behavior, 338
Message handlers

afx_msg prefix, 203, 205
code listings, 243
constructors, adding, 202
creation

Phone Book sample program, 199
tutorial, 224-226

CWnd class defaults, 203
default values, 100
default window procedure, calling, 319-320
described, 95
functions, 204
guidelines and requirements, 98-99
keyboard and mouse

described, 234-235
interface, adding, 230-233
introduced, 199

menu commands, adding to, 199,205-223
message maps, adding, 199-202
mouse-click messages, 351
naming conventions, 204-205
painting, 199
Phone Book sample program, 197
planning for, 197-199
scrolling, 199
scrolling member functions, adding, 227-229
sizing

Phone Book sample program, 199
tutorial, 224-226

Message handlers (continued)
utility support, 199
WM_PAINT, adding, 235-237, 241

Message loops, 112
Message maps

adding, 199-202
BEGIN_MESSAGE_MAP macro, 95
child windows, 316-317
DECLARE_MESSAGE_MAP macro, 95
described, 96-101
dialog classes, for, 166
END _MESSAGE_MAP macro, 95
files, adding to, 94-95
in modal dialog boxes, 331
macros

BEGIN_MESSAGE_MAP, 313, 315
DECLARE_MESSAGE_MAP, 3l3-314, 352
END_MESSAGE_MAP, 3l3, 315
Foundation classes tutorial, 94-97
ON_COMMAND, 315, 317
ON_ WM_CHAR,356
ON_ WM_KEYDOWN,356
ON_ WM_KEYUP,356
ON_ WM_PAINT, 102

Phone Book sample program, 204
routing messages, 97
scrolling, 322
v-tables, similarity to, 96
Windows classes, using in, 313

Messages
BN_CLICKED, naming conventions, 205
idle loop processing, 309-310
notification

naming conventions, 205
tutorial, 98-99

system-generated, 99
user-generated,98
Windows, handling, 313-319
WM_COMMAND, naming conventions, 204
WM_CREATE, 198
WM_HSCROLL, 198
WM_LBUTTONDBLCLK, 198
WM_LBUTTONDOWN,198
WM_PAINT

Phone Book sample program, 198
tutorial, 88

WM_SIZE,198
WM_ VSCROLL, 198

Microsoft Foundation classes. See Foundation
classes

Modal dialog boxes, 162, 165

Modeless dialog boxes, 162, 165
Module-definition (.DEF) files

HELLO sample program, 107-109
preparing, 242

Mouse

N

See also Keyboard and mouse
double-clicking, 198
scrolling with, 228
tracking in windows, 353-356
Windows classes, creating, 319
windows, handling in, 351-352

Naming conventions
cookbook,286
member variables, 31, 89
message handler functions, 204-205
message maps, 205
OnPaint function, 103
tutorial,9

New command, 213
new operator

cookbook, 296
tutorial, 31, 41, 58, 88

NMAKE
building programs, 11
debug mode, 12
DOS programs, building, 13
makefiles

DMTEST sample program, 65
filenames, 8, 11
HELLO sample program, 109
tutorial,7

Index 419

Notification messages, naming conventions, 205

o
Object context, dumping, 286
Object dump, 294-295
Object-oriented programming, data-access

functions, 32
Objects

adding to a list, 41
afxDump, 287
CArchive class

CArchive,61
creating, 284

CDataBase class, 136
CFile class, 60
CFileException class, 60

420 Index

Objects (continued)
CModalDialog class

Phone Book sample program, 151
tutorial, 163

CPersonList class
Phone Book sample program, 134
tutorial, 139

CString class exceptions, 304
data model, 19
deserialization of, 285
dialog, 165
dumping, 294
global, 111
serialization

cookbook,283-285
tutorial, 44

static, 111
Windows graphics, 346

of stream class
described,366
flags, 374-375
member functions

bad,377
clear, 377
close, 376-377
described,373-374
eof,377
fail,377
good,377
open, 374
put, 375
rdstate,377
seekp, 376
tellp, 376
write, 375-376

ON_COMMAND macro
cookbook, 315,317
message handlers, 204

ON_ WM_CHAR macro, 356
ON_ WM_KEYDOWN macro, 356
ON_ WM_KEYUP macro, 356
ON_ WM_NCDESTROY macro, 323
ON_ WM] AINT macro

cookbook,343
tutorial, 102

OnAbout member function, CMain Window class,
105-107

OnAdd member function, CMain Window class
adding to menus, 216
described,219

OnCancel member function, CModalDialog class
cookbook,331
tutorial, 164

OnChar member function, CWnd class, 356
OnClose member function, CMain Window class,

209-210,216
OnCreate member function, CMain Window class

creation and sizing message handlers, 225-226
described, 226

OnDBClose member function, CMainWindow class
adding to File menu, 209
described,216

OnDelete member function, CMain Window class,
217

OnDown member function, CMainWindow class
adding, 231
described, 234

OnEdit member function, CMain Window class
adding to menus, 218
described, 220

OnExit member function, CMain Window class
adding to File menu, 210
described,216

OnFind member function, CMainWindow class
adding to menus, 217
described,221

OnFindAll member function, CMainWindow class
adding to menus, 218
described, 221

OnHelp member function, CMain Window class
adding to Help menu, 223
described, 223

OnHScroll member function, CMain Window class
adding, 228
described, 229

Onldle member function, CWinApp class
cookbook,309-310
tutorial, 113

OnlnitDialog member function, CDialog class
cookbook,330, 332
tutorial, 165

OnKeyDown member function
CMain Window class

adding, 233
described, 229

CWnd class, 356
OnKeyUp member function, CWnd class, 356
OnLButtonDblClk member function,

CMain Window class, 232, 235

OnLButtonDown member function
CMain Window class

adding, 232
described, 235

CWnd class, 351, 354-356
OnNew member function, CMainWindow class

adding to File menu, 206
described, 213

OnOK member function, CModalDialog class, 164
OnOpen member function, CMain Window class

adding to File menu, 206
described, 214
deserialization, 207

OnPaint member function, CMain Window class
adding, 235-237, 241
described, 101-104,237-238
Windows graphics, 343, 345

OnPrint member function, CMain Window class,
210

OnRButtonDown member function, CWnd class,
351

OnSave member function, CMain Window class,
215

OnSaveAs member function, CMain Window class
adding to File menu, 207
described, 215

OnSize member function, CMain Window class
creation and sizing message handlers, 225
described, 226

OnUp member function, CMain Window class
adding, 230
described, 234

On VScroll member function, CMain Window class
adding, 227
described, 229

Open command, 214
Open dialog box, standard, 167
Open member function, CFi1e class, 277
open member function

istream class, 386
of stream class, 374

Opening
databases, 139
files, 277

Operators
assignment, overloaded, 30, 221
delete, 31, 41, 46--47
extraction, 391
insertion, 380-381

Operators (continued)
new

cookbook, 296
tutorial, 31,41,58,88

Options, NMAKE, 11
ostream classes, 365
ostrstream class, 366
Output streams

binary output files, 378-379
buffering, effect, 377-378
deriving, 399--405
format control, 368-373
insertion operators, 367, 380-381
manipulators

iostream classes tutorial, 381-382
parameters, more than one, 397
with one parameter, 395-397

objects, constructing

Index 421

output file stream constructors, 366
output string stream constructors, 367

of stream class
flags, 374-375
iostream classes tutorial, 366

of stream member functions
bad, 377
clear, 377
close, 376-377
described, 373-374
eof,377
fail, 377
open, 374
put, 375
rdstate, 377
seekp,376
write, 375-376

ostream class, 365
ostrstream class, 366

OutputDebugString function, 36
Overloaded assignment operator

CPerson class, 29-30
defined, 30
Phone Book sample program, 129
tutorial, 221

Overloading
extraction operators, 391
insertion operators, 380-381

Overriding Foundation classes, 307

422 Index

p
Paint message handlers, 199
Painting

Foundation classes, using, 343-344
text, 101-102

Parameters, CString, specifying, 259
PHBOOK sample program

CMainWindow class, 121
compiling, 243
data interface, simplifying, 122-134
database

ASSERT macro, 127, 138
ASSERT_VALID macro, 126, 138
AssertValid member function, 133, 138
CDataBase class, 123, 134-140
CDataBase constructor, 135
CMenu class, 119
CObList class, 127
code listings, 119, 140-149
CPersonList object, l34
editing, 118
encapsulation, 120, 134, 140
member functions, 135
overview, 118
serialization, 131-133
tutorial, 117

dialog boxes
adding, 153-161
code listings, 151
COMMDLG.H file, 153, 167
described, 151, 162
editing tools, 156
extern "C" directive, 153, 167
HELLO, using as a template, 152-153

file handling member functions, 136
menu commands, 135
message handlers

ASSERT macro, 203
assertions, 203
CMainWindow class, 199-202
code listings, 243
constructors, adding, 202
creation and sizing, 199,224-226
described, 197
functions, 204
keyboard and mouse, 199,230-235
menu commands, adding to, 199,205-223
message maps, adding, 199-202
naming conventions, 204-205
notification messages, 205

PHBOOK sample program (continued)
message handlers (continued)

ON_COMMAND macro, 204
painting, 199
planning for, 197-199
scrolling, 199
scrolling member functions, adding, 227-229
supporting files, preparing, 242
utility member functions, adding, 238-241
VERIFY macro, 203
WM_COMMAND message, 204
WM_PAINT, adding, 235-237, 241

message maps, 204
overview, 6
writing, 120-122

Phone Book sample program. See PHBOOK
sample program

Predefined collections, using, 270
Print command, 212
Print dialog box, standard, 167
PrintDlg function, 163
Program execution outcomes, 297
Program Manager, 9
put member function, of stream class, 375
PWB

a

building programs, 9
debug mode, 12
DOS programs, running, 13
makefiles

DMTEST sample program, 65
filenames, 8
HELLO sample program, 109
tutorial, 7

Queue collections, creating, 276
Quotation marks, use of, ix

R
rdstate member function, of stream class, 377
Read member function, CFile class, 278
read member function, istream class, 389
README, 15
Registration, Windows classes

attributes
changing, 325
passing on, 326

described, 325
key attributes, 325
tutorial, 112

Release mode
debug mode, switching to, 12
makefile defaults, 9

ReleaseBuffer member function, CString class, 260
Resource include files

creating, 242
HELLO sample program, 107, 109

Resource script files
completing, 242
HELLO sample program, 107-109
tutorial, 156
Windows applications, 310

Run command, Windows Program Manager, 14
Run-time class information, 265-267
Running Windows programs, 14
RUNTIME_CLASS macro, 265-266

s
Sample programs

CMDBOOK, 140
database, 58
diagnostics, 21
distribution disks, 7
DMTEST

building, 65
CArchive class, 20
CFile class, 20
CObject class, 19
CObList class, 20
code listings, 66-79
CPerson class, 22, 28
CPersonList object, 37
CString class, 20, 31
CTime class, 20
data object, designing, 22
program capabilities, 19
summary, 65
testing, 49-64
writing, overview, 21

exceptions, 20
HELLO

code listings, 83,107,113-116
compiling, 109
cookbook, 307, 310, 312
dialog boxes, adding, 105-107
execution, sequence of, 110-111
overview, 81-84
Windows, communication with, 95-101
windows, creating, 90-93
windows, painting text in, 101-102

Sample programs (continued)
makefiles, 9-11
Phone Book

Index 423

ASSERT macro, 127, 138
ASSERT_VALID macro, 126, 138
code listings, 141-149, 168-194,243-246
data interface, simplifying, 122-134
database, Windows, 117
described, 118
dialog boxes, 151-167
message handlers, 197
writing, overview, 120, 122

running
described, 13
DOS, using, 13
Windows, using, 14

serialization, defined, 20
stream derivation, 400--405

Save As command, 207, 215
Save command, 207, 215
Save dialog box, standard, 167
Save member function, CMain Window class

adding, 240
described, 215

Scroll bars, recalibrating, 220, 226
Scrolling

keyboard commands for, 233
member functions, adding, 227-229
message handlers

described, 229
Phone Book sample program, 199

message maps, using, 322
Window messages, 322
WM_HSCROLL message, 322
WM_ VSCROLL message, 322

Searching, 45--46
Seek member function, CFile class, 278
seekg member function, istream class, 390-391
seekp member function, of stream class, 376
SelectObject member function, CDC class, 348
Serialization

CArchive object, creating, 284
CDataBase member functions, 136
classes, of, 281-283
CObject class, 29
constructors

defining, 281
tutorial, 30

CPerson object
DMTEST sample program, 33-34
tutorial, 25

424 Index

Serialization (continued)
CPersonList object, 25
CString class, 31
DECLARE_SERIAL macro, 24, 38, 44
default behavior, 43
defined, 20
described, 279
IMPLEMENLSERIAL macro, 38, 44
IsStoring member function, 34
objects, of, 283-285
Phone Book sample program, 131-133
tutorial, 50
procedure, 42, 60
Serialize member function, overriding, 282-283
support, adding, 265
TRACE macro, 50
type-safety, 44

Serialize member function
cookbook, 284
Dump member function, differences, 35
overriding, 282-283
tutorial, 24, 33

SetDepth member function, CDumpContext class,
36

SetMenu member function, CMain Window class,
240

Setup, 8
Shortcut keys, 93
Simple classes, deriving from CDialog class, 333
Sizing message handlers

adding, 224-226
Phone Book sample program, 199

Stack collections, creating, 275
Statements

#endif,34
#ifdef,34

Static objects, 111
Stream derivation sample program, 400-405
Streambuf class, output streams, deriving, 399-405
Streams, 363
String functions, standard C library, working with,

260
Strings

basic operations, 257-258
manipulation of, 256--261
null-terminated, converting to C style, 259

strstream class, 392-393
Supporting files, 242

T
Tables, accelerator, 110
tellg member function, istream class, 390--391
tellp member function, of stream class, 376
Template program (Phone Book sample program),

152-153
Templates

accelerator table resource
dialog boxes, adding, 156
Phone Book sample program, 198

collection classes, creating, 271
dialog boxes, adding, 156
dialog resource, 166, 224
menu resource, dialog boxes, adding, 156
resource (list), 242

Testing
assumptions, validity of, 33
data models, 58
DMTEST sample program, 58
for extraction operators, 384
object validity, 32
program validity, 137-138
sample programs, 49-64

this keyword, 104, 106
THROW macro, 64
THROW_LAST macro, 64
Time

current setting, 255
elapsed

calculating, 256
string representation, formatting, 256

management, described, 255-256
TRACE macro

cookbook, 288
diagnostic output, 21
DMTEST sample program, 34
exceptions, 20
tutorial, 50

TRY macro
cookbook, 298-302
tutorial, 51, 63

Type-safe member functions, 333

u
Uppercase letters, use of, viii
User input, Windows, 351-357
Utilities, message handler support, 199
Utility member functions, 238-241

v
v-table

described, 203
message maps, similarity to, 96

Variables, environment. See Environment variables
VERIFY macro, 203, 289
Virtual functions, 203
virtual keyword, 90
VK_DELETE constant, 198
VK_RETURN constant, 198

w
Windows

BEGIN_MESSAGE_MAP macro, 313, 315
child, notification messages from, 316-317
COMMDLG.DLL file, 153, 167
communication with, 95-101
control, 335
creating

CMainWindow constructor, 92-93
Create member function, 92
described, 91-92
HELLO sample program, 90-93

DECLARE_MESSAGE_MAP macro, 313-314
dialog boxes

cookbook, 329-335
derived controls, using in, 340
deriving from CDia10g class, 332
main window, using as, 334-335
modal, creating, 329
modal, customizing, 331
modal, initializing, 330
type-safe member functions 333

di~~laying HELLO sample pro~ram, 93
edItlng tools, 156
END_MESSAGE_MAPmacro, 313, 315
frame

changing, 324
creating, 311
matching to MDI child windows 324

icons, changing, 326 '
keyboard events, 356-357
management, 311-327
MDI parent, accessing, 323
mouse clicks, handling, 351-352
mouse, tracking in, 353-356
ON_COMMAND macro, 315, 317
ON_ WM_NCDESTROY macro, 323
painting text in, 101-102
procedure, traditional, using, 320

Index 425

Windows (continued)
Program Manager, 9-11,14

. simple classes, deriving from CDialog class, 333
Wmdows applications

components, Foundation classes, 305
customizing, 112-113
CWinApp class, 307
data interface, simplifying, 122, 124-134
database, Phone Book sample program, 117
debugging, 11
default window procedure, calling, 319-320
designing, 305-310
d~veloping HELLO sample program, 81
dIalog boxes, standard, 167
extra bytes, adding, 327
HELLO sample program, 81-114
idle loop processing, 309-310
initializing, 307-308
Phone Bo?k sample program message handlers, 197
resource fIles, 310
running, 14
writing, 305-306

Windows classes
cbWndExtra,327
CDialog, 332
CModalDialog, 329
creating using mouse button, 319
CWnd,345
derived

constructors for, 312
overriding, 320

deriving, 91
icons, changing, 326
MDI,323
MDI child windows, deallocation memory, 323
member variables, extra bytes, adding, 327
preregistered, 92
registration

attributes, changing, 325
attributes, passing on, 326
described, 325
key attributes, 325
tutorial, 112

Windows graphics
DECLARE_MESSAGE_MAP macro, 343
device contexts, 345
objects, 346
ON_ WM_P AINT macro, 343
paint message, 343-344
tools, Foundation classes equivalents, 346
WM]AINT message, 343-345, 349

426 Index

Windows messages
BN_CLICKED,316
categories, 313
child, differentiating between, 317
handling, 313-319
menu-command, 314-315
message maps, using, 313
scrolling, 322
traditional Windows responses, 320
WM_CHAR, 319, 356
WM_COMMAND,313-316
WM_HSCROLL,322
WM_INITDIALOG, 330, 332
WM_KEYDOWN,356
WM_KEYUP,356
WM_LBUTTONDOWN, 351, 353
WM_LBUTTONUP,356
WM_MDIACTIVATE,324
WM_MOUSEMOVE, 353, 355
WM_NCDESTROY,323
WM_PAINT, 343-345, 349
WM_RTBUTTONDOWN, 351, 353
WM_ VSCROLL,322
WM_XXX,318

WinMain member function
Foundation classes tutorial, 89-90, 112-113
message loop, 112
substituting personal version, 89-90
Windows applications, writing, 305

WM_CHAR message, 319, 356
WM_COMMAND message

cookbook, 313-316
naming conventions, 204
tutorial, 98-99

WM_CREATE message, 198,224-226
WM_HSCROLL message

cookbook, 322
Phone Book sample program, 198

WMJNITDIALOG message, 330-332
WM_KEYDOWN message, 356
WM_KEYUP message, 356
WM_LBUTTONDBLCLK message, 198
WM_LBUTTONDOWN message

cookbook, 351,353
Phone Book sample program, 198

WM_LBUTTONUP message, 356
WM_MDIACTIV ATE message, 324
WM_MOUSEMOVE message, 353, 355
WM_NCDESTROY message, 323

WM_P AINT message
cookbook, 343-345, 349
Phone Book sample program, 198,235-237,241
tutorial, 88

WM_RBUTTONDOWNmessage, 351, 353
WM_SIZE message, 198,225-226
WM_ VSCROLL message

cookbook, 322
Phone Book sample program, 198

WM_XXX messages
cookbook, 318
tutorial, 99

Write member function, CFile class, 278
write member function, of stream class, 375-376

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

1191 Part No. 28113

