HOWARD W. SAMS & COMPANY 22630

The Waite Group’s

MS-DOS

Developer’s Guide

Second Edition

sdnoan ayrep oy |,

0'F UOISIBA SOJ-SW Yim 8jqioduwod)
% SOA-SW -
ad;

n
A

\ }p
ANVdWO
SHYVS M CHYAOR \% TR RS S 1SN

Compatible with MS-DOS Version 4.0

The Waite Group’s

MS-DOS

Developer’s Guide

HOWARD W. SAMS & COMPANY
HAYDEN BOOKS

Related Titles

The Waite Group’s MS-DOS®
Bible, Second Edition

Steven Simrin

The Waite Group’s
Understanding MS-DOS®
Kate O’Day and John Angermeyer

The Waite Group’s Tricks of

the MS-DOS® Masters

John Angermeyer, Rich Fahringer, Kevin
Jaeger, and Dan Shafer

The Waite Group’s
Discovering MS-DOS®
Kate O’Day

The Waite Group’s MS-DOS®
Papers
The Waite Group

C Programmer’s Guide to
NetBIOS
W. David Schwaderer

Portability and the C
Language
Rex Jaeschke

Hard Disk Management
Techniques for the IBM®
Joseph-David Carrabis

The Waite Group’s C ++
Programming (Version 2.0)
Edited by The Waite Group

The Waite Group’s Microsoft®
C Bible
Naba Barkakati

The Waite Group’s Modem
Connections Bible
Carolyn Curtis, Daniel Majhor

The Waite Group’s Printer
Connections Bible
Kim G. House, Jeff Marble

Micro-Mainframe Connection
Thomas Wm. Madron

IBM® PC AT User’s Reference
Manual
Gilbert Held

IBM® PC & PC XT User’s
Reference Manual, Second
Edition

Gilbert Held

IBM® PS/2 Technical Guide

James A. Shields and Caroline M.
Halliday

For the retailer nearest you, or to order directly from the publisher,
call 800-428-SAMS. In Indiana, Alaska, and Hawaii call 317-298-5699.

The Waite Group’s

MS-DOS

Developer’s Guide
Second Edition

JOHN ANGERMEYER KEVIN JAEGER
RAs KumAr BAPNA NABAJYOTI BARKAKATI
RajacoraLAN DHESIKAN WALTER DixonN
ANDREW DUMKE JoN FLEIG MicHAEL GOLDMAN

/4

HOWARD W. SAMS & COMPANY
A Division of Macmillan, Inc.
4300 West 62nd Street
Indianapolis, Indiana 46268 USA

© 1989 by The Waite Group, Inc.

SECOND EDITION
FIRST PRINTING—1988

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent
liability is assumed with respect to the use of the information
contained herein. While every precaution has been taken in the
preparation of this book, the publisher and The Waite Group
assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the
information contained herein.

International Standard Book Number: 0-672-22630-8
Library of Congress Catalog Card Number: 88-62227

From The Waite Group:

Development Editor: James Stockford

Technical Reviewers: Blair Hendrickson, David Blossom,
and John Ferguson

Managing Editor: Scott Calamar

Content Editors: James Stockford and Mark Haas

From Howard W. Sams & Company:
Acquisitions Editor: James S. Hill
Development Editor: James Rounds
Manuscript Editor: Diana Francoeur
Cover Artist: Kevin Caddell
Illustrator: T. R. Emrick

Indexer: Ted Laux

Technical Reviewer: Mark Adler
Compositor: Photo Comp Corporation

Printed in the United States of America

To our families

All terms mentioned in this book that are known to be
trademarks or service marks are listed below. In addition, terms
suspected of being trademarks or service marks have been
appropriately capitalized. Howard W. Sams & Company or The
Waite Group, Inc., cannot attest to the aceuracy of this
information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

COMPAQ is a registered trademark of COMPAQ Computer
Corporation.

CompuPro is a trademark of Vyasin Corporation.

Concurrent CP/M-86, Concurrent PC-DOS, and CP/M are
registered trademarks and Concurrent DOS 286 is a
trademark of Digital Research, Inc.

IBM, PS/2, PC, and AT are registered trademarks and 0S/2,
PCjr, PC-DOS, and XT are trademarks of International
Business Machines, Inc.

Intel and Above Board are trademarks of Intel Corporation.

Lotus, 1-2-3, and Symphony are registered trademarks of Lotus
Development Corporation.

Microsoft, MS-DOS, and XENIX are registered trademarks of
Microsoft Corporation.

Seattle Computers is a trademark of Seattle Computer Products,
Inc.

SideKick and Turbo C are registered trademarks of Borland
International, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

WordStar is a registered trademark of MicroPro International
Corporation.

Chapter 1

Chapter 2

Chapter 3
Chapter 4

Chapter 5

Chapter 6
Chapter 7
Chapter 8
Chapter 9

Chapter 10

Chapter 11

Chapter 12

Summary of

Contents

PartI Coding and Programming

Structured Programming 1: Tools for Structured Coding 3

Structured Programming 2: The Design and Implementation

of Modular Programs 69
Program and Memory Management 115
Terminate-and-Stay-Resident Programming 191

Real-Time Programming 245

Part II Devices
Installable Device Drivers 281
Using Expanded Memory 355
Programming the Serial Port 479
Programming the EGA and VGA 487

Programming the Intel Numeric Processing Extension

Part IIT Recovery
Disk Layout and File Recovery 575

Recovering Data Lost in Memory 641

523

vii

MS-DOS Developer’s Guide

viii

Chapter 13

Appendix A
Appendix B
Appendix C

Appendix D

Part IV Compatibility

Differences between MS-DOS Versions 653

Part V Appendixes
Development Tools 691
Undocumented MS-DOS Interrupts and Functions
Bibliography 749

ASCII Cross Reference and Number Conversions

739

755

Contents

Prefacetothe Second Editioncooviiiiiini i, WA
Prefacetothe First Editionoovviin ettt i, XV
The AUtROrS. oottt e e ettt ettt et iaeenns 2AVIT

PartI Coding and Programming

Chapter 1 Structured Programming 1: Tools for Structured Coding 3

The Need for Shorthand Statements §
Introduction to Macros 6
LOCAL Labels 9
Macro Listing Directives 13
Macro Libraries 14
Macro Repeat Directives—REPT 14
More about Macro Repeat Directives—IRP and IRPC 17
Macro Summary 18
Conditional Assembly 18
Relational Operators 23
Conditional Assembly Summary 24
Conditional Assembly and Macros 25
Determining Operand Types 25
Phase Errors and Other MASM Eccentricities 27
String Matching— An Example 27
Parsing Macro Arguments 30
Warnings about Conditional Assembly and Macros in
MASM 35
Structured Control Statements in Assembly Language 35
How the Structured Control Macros Work 44

ix

MS-DOS Developer’s Guide

Chapter 2

Tricks and Warnings 45

The Pseudo case Macro 49
Data Macros 50
Code Macros 56

Conditional Macros 57

Nested Macros 59

More Macro Features 60

A Macro That Calls Subroutines 61
Using the STRUC Directive 64

Multiple Structures to Address Data 65

Structures as Subroutine Parameters 67
Summary 68

Structured Programming 2: The Design and Implementation
of Modular Programs 69

Principles of Modular Programming 71
Designing Options 72
Designing for Functional Separation 72
Designing to Minimize the Number of Parameters
Passed 73
Designing to Minimize the Number of Calls Needed
Rules for Modularization 74
References 75
Implementing Modular Programs in Assembly Language
Definition of Parameter, Argument, Variable, and
Constant 76
Parameters and Modules 76
Parameter Passing Options 77
Passing through Registers 77
Passing through Common 78
Passing through Program Memery 78
Passing on the Stack 79
Summary of Parameter Passing Options 85
Passing Parameters by Value or Address 85
Pass by Value 85
Pass by Address 86
Protecting the Integrity of Passed Data 86
Punctions versus Subroutines 87
Returning Values in Registers 87
Returning Values in Common 88
Returning Values on the Stack 88
Exception Reporting 88
Types of Coding 89
Program Code Positioning 90
Location Relative 90
Segment Relative 90
Absolute Addressing 91

73

75

Contents

Types of Program Code 91
Relocatable Code 92
Separate Data Area 93
Recursive Code 93
Reentrant Code— Local Storage Requirements 94
Local Storage on the Stack 9
The ENTER and LEAVE Instructions for Local Stack
Storage 96
Code Positioning Summary 100
Interfacing to High-Level Languages 101
The Microsoft C Calling Conventions 101
The Microsoft Pascal Calling Conventions 103
The Microsoft BASIC and FORTRAN Calling
Conventions 104
The Microsoft Segment Model 105
Allocation and Use of Local Storage in Memory 105
Introduction to MS-DOS Memory Management — 108
Memory Allocation from within High-Level Languages 110
Protecting Data and Controlling the Scope of Data 110
Local Storage versus Global Storage 111
Using Segment Registers 112
Controlling the Size of Data Access 112
Protecting the Integrity of the Stack 113
Summary 114

Chapter 3 Program and Memory Management 115

MS-DOS Memory 117
MS-DOS Physical Memory Map — 117
Expanded and Extended Memory — 118
MS-DOS Memory Utilization — 119
MS-DGCS Memory Chains 121
The Program Environment Block 129
MS-DOS Processes 131
The MS-DOS Process Context 131
The Program Segment Prefix (PSP) 131
The PSP Terminate Addresses 131
The PSP’s File Handle Table 132
SHOWMEM and the PSP’s Environment Address Pointer 139
Functions for Manipulating the PSP 139
The MS-DOS Process File: .EXE versus .COM 140
Loading a .COM Type File 141
The .EXE Program File Format 142
The .EXE Initial Memory Allocation Block 148
The MS-DOS .EXE Process Loader 144
Overlays 146
Memory Resident Programs 147
Defining a Run-Time Library — 147

xi

MS-DOS Developer’s Guide

Loading Memory Resident Routines from the Command
Line 148
Accessing Memory Resident Routines via Int 150
Determining Whether a Memory Resident Program Is
Installed 157
Removing Memory Resident Routines 158
Function 4Bh—Load and Execute Program 160
Loading and Executing Programs via MS-DOS
(Code 4Bhwith AL =0) 164
Inheritance and Control of the Child Program 165
Executing MS-DOS Commands with Punction jBh 166
An Important Warning 166
Loading Program Overlays via MS-DOS (Code 4 Bh with
AL = 3) 167
Accessing Program Overlays from the Parent
Program 168
Loading Memory Resident Programs 170
A Special Case: Part-Time Run-Time Libraries 171
Context Switching and Switching Stacks 171
Additional Considerations for Stack Switching 17}
Underpinnings for Memory Residency 175
ROM-BIOS versus a Loadable BIOS 176
Interrupt versus Polled Systems 176
Patching into the Interrupt Vectors — 177
REMOVE — An Integrated Program Example 180
Summary 189

Chapter4 Terminate and Stay Resident Programming 191

Overview 193
Dealing with PC Hardware 194
Hardware Interrupts 195
Software Interrupts 196
The Timer Interrrupt 196
The Keyboard 196
The Display Hardware 198
The MDA and the CGA 199
Writing to Display Memory 199
ROM-BIOS Video Support 200
Capturing an Interrupt 201
Setting Up a Hot Key 201
Capturing Int 16h 201
Polling the Keyboard Buffer with Timer Interrupt
Int 1ch 202
Trapping Int9 20;
Monitoring Keyboard Status 205
An Alternative to Capturing Int ich 206
Managing the Display 208

xii

Chapter 5

Contents

Working with and around DOS 209

The DOS 1/0 Data Structure 210
The “List of Lists” 210
The System File Table 211
The Program Segment Prefix (PSP) 21}
The Job File Table (JFT) 21}
The BIOS Dispatcher, Int 21h 217
Character 1/0 Routines 218
DOS Global Variables 218
Break Processing 219
Critical Error Processing 220
Loading a Program 220
Program Termination 221
Loading and Initializing a TSR 222
Checking for DOS Version — 223
Locating Resident Copies of a TSR~ 223
Recording the PSP Address 227
Recording the Critical Section (INDOS) and
Critical Error Addresses 228
Capturing Interrupt Vectors 229
Checking the Display Type 231
Freeing the Environment 231
Program Termination 232
Reactivation and DOS Architecture and Services 233
Determining Whether Reactivation Is Safe 233
Stack Switching and Saving Register Contents 235
Trapping Breaks and Critical Errors 235
Dealing with DOS Global Variables 237
Background Processing Using Int 28h 238
Removing a TSR from Memory 242
Summary 243

Real-Time Programming under MS-DOS 245

Overview of Real-Time Programming 247
What Is Real Time? 248
Characteristics of Real-Time Systems 248
Basic Types of Real-Time Systems 249
Unidirectional Systems 249
Bidirectional Stable Systems 250
Bidirectional Potentially Unstable Systems 251
Typical Timing Requirements and Real-Time
Solutions 252
MS-DOS for Real-Time Applications 254
How Fast Is MS-DOS? 25}
MS-DOS Clock Frequencies 254
Data Transfer in MS-DOS 256
Polled Data Transfer 260

xiii

MS-DOS Developer’s Guide

xiv

Chapter 6

DMA Data Transfer 261
Interrupt-Driven Data Transfer 261
Comparison of Data Transfer Methods 262
Techniques for Writing Faster Programs 263
When to Use MS-DOS for Real-Time Applications 264
Designing Real-Time Systems Using MS-DOS 266
Simplified Home Control System—An Example 267
Polled System 270
Main Loop with Interrupts 271
Cyclic Schedulers 273
Deciding on a Design Method — 275
Multitasking in MS-DOS 276
Multitasking Provisions in the IBM PC AT 276
Summary 277
Bibliography 278

Part II Devices

Installable Device Drivers 281

Why Have Device Drivers? 28}
When to Use Device Drivers 285
The Limitation of MS-DOS Being Non-Reentrant — 285
Installing Device Drivers 286
The CONFIG.SYS File 288
Using ASSIGN to Replace Disk Device Drivers — 291
Types of Device Drivers 291
Accessing Device Drivers from MS-DOS 292
CP/M-Style Character Device I/O 293
Device Access Using the File Control Block 293
Using File Handles for Device IO 293
Punction 44h—1/0 Control for Devices 294
Configuration via the I/O Control Commands 295
IOCTL Bit 14: CTRL 295
IOCTL Bit 7. ISDEV 296
IOCTL Bit 5: BIN 296
IOCTL Bit 4: SPECL 297
The Generic I/0 Control Commands 297
Direct Disk Access with Interrupts 25h & 26k 297
The Verify Switch 298
I/O Summary 299
Writing Device Drivers 299
The Device Header 301
The Device Chain Pointer 301
The Device Header Attribute Word 301
The Strategy and Interrupt Entry Pointers 305
The Number of Units/Name Field 305

Contents

The Strategy Routine 306
The Interrupt Routine 307
The Driver Commands 311
INIT Command 312
Media Check Command 31}
Build BIOS Parameter Block Command 317
Input and Output Commands 320
Nondestructive Input without Wait Command 323
Status and Flush I/O Commands 324
Device Open/Close and Removable Media Commands 325
Generic IOCTL Command 326
Get and Set Logical Device Commands 327
Creating the Loadable Device Driver File — 327
Debugging Device Drivers 328
Displaying the Device Drivers in Your System 329
The Ubiquitous RAM Disk 335
Summary 353 ‘

Chapter 7 Using Expanded Memory 355

A History Lesson 359
LIMEMS 360
LIM EMS 3.2 361
LIM EMS 3.2 Concepts and Technology 361
Enhanced Expanded Memory Specification — 362
The Window Size Limitation 362
LIM EMS 4.0 363
LIM EMS 4.0vs LIM EMS 3.2vs AQAEEMS 366
Compatibility Considerations 366
Technical Considerations 367
The Expanded Memory Manager 367
EMM Punctions 368
Expanded Memory Manager Implementations 377
Expanded Memory Hardware and Software 378
80386 Hardware and Software 378
Software Only 379
IBM PS/2 80286 Memory Expansion Option 379
The EMS Application Program Interface 380
EMS Assembly Language Programming 380
Interrupt Conflict 381
High-Level Languages 381
Handling Error Conditions 382
Writing Programs That Use Expanded Memory 385
General Programming Guidelines 385
Using Expanded Memory in Transient Programs 387
Detecting the Presence of the EMM 387
Open Handle Method 387
Checking the EMS Specification Supported by the
EMM 388

XU

MS-DOS Developer’s Guide

xvi

Chapter 8

Determining the Amount of Expanded Memory
Available 389
Allocating Expanded Memory 389
Addressing Expanded Memory 390
Managing Logical Addresses 390
Managing Physical Addresses 391
Reading and Writing Expanded Memory 393
Two Ways to Specify Physical Pages 393
Sharing Expanded Memory among Programs 396
Executing Code in Expanded Memory 396
Freeing Expanded Memory — 397
System Software 398
TPransient vs Resident Programs 398
Detecting the Presence of the EMM 399
Context Management 399
Task Switching 400
Nonwvolatile Storage 401
Access Control 402
Summary 402
Bibliography 403
Low-Level Interface Routines and Sample Application 404
About the Sample Application 405
A Few Coding Highlights 405

Programming the Serial Port 479

Basics of Asynchronous Serial Communication 453
Parity and Error Detection 456
Commumnicating with the RS-232C Standard 456
Flow Control with XON/XOFF }57

A Programmer’s View of the Serial Port 458
Interrupt-Driven Serial I/O 460
Interrupts from the Serial Adapter 461
The 8259 A Programmable Interrupt Controller 462
Programming the 8259A 46

Using MS-DOS Tools to Program the Serial Port 465
Driver, TSR, or Stand-alone Program 465
Using the BIOS for Serial Communications 466

Setting Communications Parameters Using the BIOS 466
Getting the Serial Port’s Addresses 468

Setting Up for Interrupt-Driven Serial I/O 469
Handling the Interrupts from the Serial Port 471
Queues for the Interrpt Handler 472
Cleaning Up before Closing Shop 473

A Sample Program 474

Summary 485

Chapter 9 Programming the EGA and VGA 487

Monitors and EGA Capabilities 490
The Enhanced Color Display 490
Monochrome Graphics Modes 491

Installation Considerations and Presence Test

Mewmory Organization 499
Latch Registers 500

Direct Screen Writing 502

Lots of Dots 505
Using the Set/Reset Register 507
Using the EGA Write Modes 508

Reading the Bit Maps 513

EGA Color Palettes 514

The Data Rotate Register 518

VGA 256 Color Modes 519

Summary 521

Contents

493

Chapter 10 Programming the Intel Numeric Processing Extension 523

A Programmer’s View of the NPX 526
The Data Registers in the NPX 526

Floating-Point Real Number Representation in the

NPX 527

Other Data Formats Used with the NPX 529
Short Real and Long Real Data Formats 529

Word Integer, Short Integer, and Long Integer Data

Formats 530
Packed Binary-Coded Decimal (BCD) Formats
Summary of Data Types 531
The Instruction Set of the NPX 532
The FWAIT Prefix 533
Addressing Modes of the NPX 535

The FINIT and FFREE Instructions 537

Controlling the NPX 537
The NPX Control Word — 537
The NPX Status Word 539
Exception Handling in the NPX 541
Using MS-DOS Tools with the NPX 542
Using MASM and the NPX 542
MASM’s NPX Switches—/r and /e 543
NPX Data Types in MASM 544
Using DEBUG with the NPX 545
Debugging the NPX’s Registers 545
Instruction Encoding Formats 5,46
Programming Examples for the NPX with MASM
The FWAIT and FINIT Instructions 547
DUMPS87? Routine 547

530

546

xvii

MS-DOS Developer’s Guide

Using the DUMPS87 Routine 559
Using the NPX for Binary to Decimal to Binary

Conversions 559

Integer Operations 559

Floating Point Operations 560

The 2» Calculation 561

The 10~ Calculation 561

The Decimal to Real Scaling Function 562

The Real to Decimal Scaling Function 562
Summary 571

Part III Recovery

Chapter 11 Disk Layout and File Recovery 575

Principles of File Recovery 578
Layouts of 5%-Inch, 40-Track, Single-Sided Floppy
Disks 579
Layouts of 5%-Inch, 40-Track, Double-Sided Floppy
Disks 580
Layouts of 5%-Inch, 80-Track, Double-Sided Floppy
Disks 581
The Boot Sector 583
Hard Disk Partition Tables 604
The Directory Sectors 605
File Name, File Type, and File Status 606
Attribute 607
Starting Cluster 608
File Size 608
The “” and “.” Directory Entries 608
File Allocation Table (FAT) Sectors 609
Decoding the FAT Entries 612
Processing 12-Bit FAT Entries 615
Processing 16-Bit FAT Entries 617
Converting Clusters to Logical Sectors 617
An Overview of Recovery Procedures 618
Recovering Damaged Files Using CHKDSK and
RECOVER 618
Recovering Erased Files 619
The Basics 620
Recovering Erased Files the Hard Way 622
Using the RESCUE Program 623
Using Norton Utilities 638
Using Ultra Utilities 639
Summary 639

Xxviii

Contents

Chapter 12 Recovering Data Lost in Memory 641

Recovering from Word Processing/Text Editing Failures 643
Recovering BASIC Programs from Memory 647
Summary 649

Part IV Compatibility

Chapter 13 Differences between MS-DOS Versions 653

General Compatibility Recommendations 656
High-Level Language Considerations 659
MS-DOS Interrupts 660
Function Calls 661
Performing Function Calls the Standard Way 661
Performing Function Calls in Compatibility Mode 661
And Yet Another Method (MS-DOS Versions 2.00 and
Higher Only) 662
Functions Supported in Different Versions 663
Program Terminate Group 669
Standard Character Device Input/Output Group
(01h—0Ch) 670
Standard File Management Group (0Dh—24h,
27h—29h) 670
Standard Nondevice Functions (25h, 26h,
2Ah—2Eh) 670
Extended (General) Function Group (2Fh—38h, 4Ch—4Fh,
54h—5T7h, 59h—5Fh, 62h) 671
Directory Group (39h—3Bh, 47h) 671
Memory/Process Management Group (48h—4Bh) 671
Error Codes 672
Critical or Hard Error Codes (via Int 2,h) 672
FPunction Call Error-Return Codes (MS-DOS Versions 2.00
and Higher Only) 672
Function Call Extended Error Information (MS-DOS
Versions 3.0 and Higher Only) 676
Error Code 677
Error Class 677
Suggested Action 678
Locus 678
Disk Formats 679
File Manipulation 680
Using File Control Blocks (FCBs) 681
MS-DOS File Handles 682
MS-DOS and the IBM Personal Computer and
IBM Personal System 2 Series 683
Similarities 683

xix

MS-DOS Developer’s Guide

Differences 684

Compatibility with Other Operating Systems 685
CP/M-80 685
CP/M-86 and Concurrent CPIM-86 687
Concurrent PC-DOS and Concurrent DOS-286 687
XENIX and UNIX 688
0S/2 688

Summary 688

Part V Appendixes

Appendix A Development Tools 691

Using Batch Files to Automate the Assembly Process 693
Using Batch Files for Versions of MASM Prior to

Version5 693
Using Batch Files for MASM Versions 5 and Higher 695
Using the Microsoft MAKE Facility 699
Using Templates to Create .COM and .EXE Programs 701
Using Library Routines 721

Appendix B Undocumented MS-DOS Interrupts and Functions 739

Undocumented MS-DOS Interrupts 741

Interrupt 28h (40): DOS Safe Interrupt 741

Interrupt 29h (41): Console Device Output 742

Interrupts 2Ah (42) through 2Dh (45): MS-DOS Internal
Routines 742

Interrupt 2Eh (46) Back Door to COMMAND
Processor 742

Interrupts 30h (48) through FFh (255) 742

Undocumented Interrupt 21h (33) Function Calls 743

PFunction 18h (24), 1Dh (29), 1Eh (30), 20k (32): Dummy
Punctions for Compatibility with CPIM 743

Function 1Fh (31): Locate Disk Block Information for
Default Drive 743

Function 32k (50): Locate Disk Block Information for
Specified Drive Thh

Punction 34h (52): Get MS-DOS Busy Flag 744

PFunction 37h (55): Get/Set Switch Character 745

PFunction 50k (80): Set PSP Segment 745

Function 51h (81): Get PSP Segment 745

Function 52h (82): Get Address of the MS-DOS List
of Lists 746

Punction 53h (83): Translate BIOS Parameter Block
(BPB) to Disk Block 7,47

Function 55h (85): Create PSP Block L7

XX

Contents

Function 58h (88): Get/Set Memory Allocation
Strategy 747

Function 60h (96): Resolve Path String to Fully Qualified
Path String 748

Function 63h (99) Get Lead Byte Table 748

Appendix C Bibliography 749

Appendix D

Books 751
Articles 753
ASCII Cross-Reference and Number Conversions 755

Nonprintable ASCII Character Definitions 760
Hexadecimal to Decimal Conversion 762
Decimal to Hexadecimal Conversion 763

xxi

MS-DOS Developer’s Guide

xxii

Preface
to the Second Edition

The Waite Group’s MS-DOS Developer’s Guide presents powerful programming
techniques and an in-depth examination of the MS-DOS operating system. This
edition has been newly revised to cover

e MS-DOS 4.0 compatibility, including all disk and file formats and the way
in which the file allocation table (FAT) manages hard disk partitions
greater than the 32-megabyte limit

¢ The LIM EMS 4.0 standard for expanded memory capacity, including its
incorporation in MS-DOS 4.0

¢ New material on hardware control, including EGA and VGA
programming techniques, as well as programming the serial port

¢ Detailed, completely updated explanation of terminate-and-stay-resident
(TSR) programming

¢ Updated treatment of interrupts, functions, and error codes, with new
material on undocumented functions

¢ Revised material on memory management, installable device drivers,
disk layout and file recovery, real-time programming, and structured
programming, with examples of MASM 5.0 programming techniques,
as well as new tables, listings, appendixes, and an up-to-date quick
reference card

A great deal has changed since the release of the first edition of this classic
book on MS-DOS programming. At that time, MS-DOS 3.2 had just appeared,
the standard display was still the monochrome or Hercules monochrome
graphics, and the typical machine contained from 256K to 512K with a 10- or 20-
megabyte hard disk. The hot available software included WordPerfect 3.x,
dBASE III, Lotus 1-2-3 version 1.1, SideKick version 2.0, Microsoft’s C com-
piler version 4.0, and MASM version 4.0. AT-class machines were selling in rela-
tively small numbers, the term OS/2 had not appeared, EGA displays were rare
and expensive, and Lotus/Intel/ Microsoft were about to release the LIM 3.2
Enhanced Memory Specification.

Preface

Today the MS-DOS operating system has reached its 4.0 incarnation. AT-
class machines are the dominant platform, running at 10 to 16 megahertz with at
least 640K memory, often with 1 or 2 megabytes of EMS RAM, and hard disks
ranging from 40 to 100 megabytes. The EGA is the standard display, and IBM’s
model PS/2 machines have introduced the VGA standard, similar to the EGA in
design but with better resolution. WordPerfect, dBASE, Lotus 1-2-3, and Side-
Kick are still prominent in their latest versions, but the competition has stiff-
ened from the likes of a revived WordStar and Microsoft Word; Paradox,
Revelation, and Oracle; Twin, Lucid, and Excel; and a host of terminate-and-
stay-resident programs.

In a world of fiercely competing operating systems such as UNIX, Macin-
tosh, and 0S/2, MS-DOS survives partly due to its huge installed base of users
and feature-laden application programs, partly due to extensions such as Quar-
terdeck’s DesqView and Microsoft’s Windows, and partly due to much more
powerful development software such as Microsoft’s C Compiler and Macro As-
sembler, both in version 5.1 states, and Borland’s new Turbo C and Turbo
Assembler. But MS-DOS survives chiefly due to the army of MS-DOS program-
m. rs who have matured as well as MS-DOS has aged, squeezing systems to per-
formance levels that two years ago would have been unbelievable.

Acknowledgments

The Waite Group wishes first to thank the authors for their patient, knowledge-
able contributions to the revision of The Waite Group’s MS-DOS Developer’s
Guide. Readers familiar with the first edition will recognize the huge changes
this book has seen. Thanks to Michael Goldman for a creative approach to teach-
ing the use of macros and structures. Thanks to Walter Dixon for your skillful
unraveling of the I/0 mysteries of TSRs. Thanks to Raj Bapna and Raj Dhesikan
for a clear explanation of real-time programming issues. Thanks to Jon Fleig for
an exhaustive examination of the EMS standard in all its incarnations. Thanks
to Naba Barkakati for a complete lesson in communications and control of the
serial port. Thanks to Andrew Dumke for your EGA and VGA drawing in C and
your detailed explanations. Thanks to Kevin Jaeger for brilliant, accurate revi-
sions of device drivers and memory managment discussions. Thanks to John An-
germeyer for your care of the entire book project, your willingness to dig into
any level for any detail, and your sensitive interleaving and explanations
throughout the book.

The Waite Group wishes to thank Blair Henderson for your knowledgeable
technical reviews of the revised material. Thanks to John Ferguson for the tech-
nical review of Chapter 4. Thanks to David Blossom for an excellent, detailed
review of the disk layout and recovery material. Thanks to Mark Haas for con-
tent and copy editing during the development phase. Thanks to Diana Fran-
coeur for deft and careful copy editing and skillful managment of the production
of this book. Thanks to Joyce Smith of Automated Business Services whose un-
rivalled speed and accuracy in word processing allowed the editing to be com-
pleted on schedule. Thanks to Tom Emrick whose professional eye streamlined
and clarified the art presentation. Thanks to Jim Rounds for advice and good-
natured support during the turbulent conclusion of development. Thanks to Jim

Xxiii

MS-DOS Developer’s Guide

xxiv

Hill and Richard Swadley for pushing this project with the vision of what it
should be. Thanks to Scott Calamar for your constant, caring help during a sea
of erises. Thanks to Mitchell Waite for all that you have taught us—we have come
a long way.

—dJames Stockford

Preface
to the First Edition

He felt like somebody had taken the lid off life and let him look at the works.
Dashiell Hammett, The Maltese Falcon

In one sense, this book is about the technical aspects of programming in a par-
ticular manner within a specific environment. In another sense, this book is
about discovery and the process of discovery.

Too often we accept the circumstances that we see before us as absolute
limits on our world. This is especially true of devices of great complexity such as
computers. What we have worked to accomplish in this book is the removal of
some of those limits and, more importantly, to give you, the reader, the confi-
dence to go on to lift the barriers even further.

Some of the topics we have addressed are

® The fictitious conflict between structured programming and the use of
assembly language

¢ Effectively using those elusive, poorly documented, “advanced” assembly
language features, such as macros and conditional assembly

® Getting the best of two worlds by combining high-level languages with
assembly language for easy programming and readability without
sacrificing speed and compactness

¢ Customizing your system to take advantage of that old peripheral from
your previous system or that new gadget you like but nobody supports

® Writing your own “magic” functions like SuperKey and SideKick through
the use of memory resident programs

® Accessing the power of the 8087 and 80287 math coprocessors without the
expense or limitations of high-level languages or manufacturer-specific
libraries

® Recovering valuable data after the program crashes
® Rescuing erased files that you thought were gone forever

XXv

MS-DOS Developer’s Guide

xxvi

Each of these topics addresses an area that is usually left to experts, but
with the aid of this book you can become the expert. This is no empty promise,
for once you know how to learn about your system, you can continue to uncover
new mysteries.

The collection of discussions in this book is organized in a manner similar to
a compendium of articles. Each discussion is presented in its own chapter and
may be read and referenced independently of the other chapters. Each chapter
covers a topic that relates directly to program development within the MS-DOS
environment. Because of the informative nature of this book and the way it is
organized, it can also be read from beginning to end, thus yielding a greater con-
fidence in your programming endeavors.

Although we assume that readers have some familiarity with the MS-DOS
operating system, with the 8086 family of microprocessors, and with assembly
language programming, this book, with its reference style, is appropriate for
computer users with a variety of programming experience.

This book is by no means a complete presentation of application develop-
ment, nor do we necessarily have the “right” way to program. Rather, we have
tried to introduce some of the more immediate topics of programming that can
be readily applied to actual problems. Should you decide to pursue the study of
these topics, check the numerous references that can be found in some of the

¢« more specialized technical works. These references provide all the detail you de-

sire, and some of them are listed in the bibliography at the end of this book.

Acknowledgments
The authors would like to thank Kim House and Robert Lafore for their many
helpful comments, criticisms, and suggestions during the editing of our man-
uscript. Their valuable input helped in the fine-tuning of this book. We would
also like to thank Larry Skene for his valuable information about IBM PC-DOS.
Special thanks are also due to Alan Stacy for his valuable knowledge, re-
search, and writings on networking environments for MS-DOS systems.
We would also like to thank ComputerHouse of San Rafael, California, for
answering our many questions and providing MS-DOS for our CompuPro
system.)

The Authors

JOHN ANGERMEYER is a design engineer specializing in word processing
and telecommunications software and hardware. The former technical writer is
also the coauthor of CP/M Bible, MS-DOS Primer, and Tricks of the MS-DOS
Masters.

He is the author of Chapter 10, “Programming the Intel Numeric Process-
ing Extension,” Chapter 11, “Disk Layout and F'ile Recovery,” Chapter 12, “Re-
covering Data Lost in Memory,” Chapter 13, “Differences between MS-DOS
Versions,” the appendixes, and the Quick Reference Card. He is the coauthor of
Chapter 1, “Structured Programming 1: Tools for Structured Coding,” and
Chapter 2, “Structured Programming 2: The Design and Implementation of
Modular Programs.”

KEVIN JAEGER is a computer systems design engineer specializing in soft-
ware architecture. He holds a degree in computer science and has worked in the
telecommunications, graphics display, and process control industries.

He is the author of Chapter 3, “Program and Memory Management,” and
Chapter 6, “Installable Device Drivers.” He is the coauthor of Chapter 2,
“Structured Programming 2: The Design and Implementation of Modular
Programs.”

RaAs KuMAR BAPNA is a software engineer, with BSEE and MSCS degrees
from BITS and ITT in India. His current interests include operating systems,
software engineering, and real-time programming. He has experience in the
fields of networking, DBMS, and continuous system simulation languages. He
has worked for Intel Corporation in Hillsboro, Oregon.

He is the coauthor of Chapter 5, “Real-Time Programming.”

NABAJYOTI BARKAKATI works as an electronics engineer for a well-known
research laboratory. He began his programming career in 1975, and has worked

xXxvii

MS-DOS Developer’s Guide

xXxviii

extensively with FORTRAN, C, and several assembly languages (PDP-11,
80x86). He remains an avid programmer, primarily interested in developing
communications and graphics software on the IBM PC and the Macintosh. He
has a Ph.D in electrical engineering from the University of Maryland.

He is the author of Chapter 8, “Programming the Serial Port.”

RAJAGOPALAN DHESIKAN has an M.S. from IISe¢, India. His areas of inter-
est include networking software development and real-time programming. He
has experience working with Intel’s real-time operating system, RMX, and is
currently working as a software engineer at International Software, Ltd. in
India. He is also a consultant to Intel Corporation in Hillsboro, Oregon.

He is the author of Chapter 5, “Real-Time Programming.”

WALTER DIXON holds degrees in both mechanical and electrical engineering.
He is employed at General Electric Corporate Research and Development Cen-
ter in Schenectady, where he works in the areas of distributed systems and com-
puter networks. Mr. Dixon also teaches graduate computer science at Union
College in Schenectady. He has written more than ten device drivers for PC-
DOS.

He is the author of Chapter 4, “Terminate and Stay Resident Programming.”

ANDREW DUMKE is the author of an EGA-based desktop publishing pro-
gram, Laser GT, and an EGA print screen utility, Laser PR, both released by
Sterling Pacific Inc. Mr. Dumke is currently a San Francisco—based fulltime
computer industry investor with interests in microcomputers. He has owned a
variety of microcomputer systems since 1978, and has programmed in C since
1983.

He is the author of Chapter 9, “Programming the EGA and VGA.”

JoN FLEIG is a software engineer with ten years of experience in program-

ming mainframe, personal, and minicomputers. The coauthor of a popular LIM

EMS 4.0 emulator product, he is currently developing real-time software for

controlling high-performance machine tools. He lives in Rochester, New York.
He is the author of Chapter 7, “Using Expanded Memory.”

MicHAEL (GOLDMAN wrote his first program in 1964 when response time
was days. He wrote his second program in 1972 While waiting for response time
to improve, he received a B.S. in physics and an M. A. in mathematics from the
University of Wisconsin. He now writes systems-level programs in C and assem-
bly language in Silicon Valley. Only assembly language feeds his insatiable ap-
petite for ever-faster response time.

He is the coauthor of Chapter 1, “Structured Programming 1: Tools for
Structured Coding.”

.
.

.
.

-
-

.

.
-

e

.

v

-

.

1 — Tools for Structured Coding

HEN hackers gather 'round their electronic campfires to discuss the mys-
teries of structured programming, comments are likely to center on a small
set of language constructs like the IFTHEN-ELSE statement. A devotee of
Pascal or C may lecture on the structured benefits of a higher-level program-
ming language versus those of assembly language. Heated arguments about the
use of GOTO may possibly ensue. In spite of all the earnest discussion, however,
the complete story is not being told. Such discussion is really focused only on
structured coding. As you will soon learn, structured programming is possible
in any language. Even some assembly languages support all those nifty high-
level control structures. One of them is Microsoft’s Macro Assembler for MS-
DOS, affectionately known as MASM.

The Need for Shorthand Statements

Before beginning our presentation of high-level control structures in assembly
language, we first look at some of the advantages of higher-level languages. At
the most basic level, anything that can be done in a higher-level language also
can be done in assembly. Everything ends up at the assembly language level
anyway. What then is gained from the use of a high-level language? Terseness!
The ability to express a programming idea in a form that is readily understood
by the coder or reader. Consider that each assembly language statement more
or less corresponds to one machine instruction. On the other hand, a single
higher-level statement may expand to tens or even hundreds of machine code in-
structions. (For anyone who doubts the hundreds, check a FORTRAN sub-
routine call with embedded argument calculations.)

Figure 1-1 shows the same fragment coded in both FORTRAN and 8086
assembly language. This fragment computes the sumof 1. . . NUM for a given
NUM. No doubt the assembly language routine could be further optimized to
reduce either the amount of object code produced or the execution time. But no
matter how you look at it, it is easier to write the routine in FORTRAN than in
assembly. To code the assembly language routine, many more decisions need to
be made. Because of the extra work involved in assembly, coding mistakes are
more likely. I may know for a fact that the FORTRAN routine will run perfectly,
but I may still harbor doubts about the assembly routine. Why do these doubts

5

Coding and Programming

FORTRAN Assembly Language

SUM = 0 mov sum,0

DO 100 I = 1, NUM mov ax,1
100 SUM = SUM + I Loop1: cmp ax,num

jg Loop1_end

add sum,ax

inc ax

jmp Lloop1
Lloop1_end:

Figure 1-1. Fortran versus assembly language.

exist? Because each line of the FORTRAN routine is an entire thought, whereas
the assembly language routine requires many lines to complete the same
thought.

In short, using higher-level constructs results in easier coding and more
reliable code. These constructs make coding less complicated, which allows the
programmer to concentrate on the logic of the program while assuming that the
actual implementation is correct. Programmers would like to have faith in their
work. Tools that support this faith make for better programmers.

Introduction to Macros

Assembly language coding thus would be greatly enhanced if there were a way to
create a shorthand for commonly used statements. MASM provides this with the
macro facility. Macros are “super-instructions” that off-load to MASM a lot of the
tedious and repetitive work in assembly language programming. With macros,
programmers define blocks of assembly statements, and then, with individual ref-
erences, direct MASM to include the respective blocks in the assembled program.
In this chapter we will introduce some of these macros and gradually build up your
ability to write your own tools. This will enable you to combine the execution
speed of assembly language with the power of a higher-level language.
Here are the two steps required to create and use a macro:

Step 1, Defining the Macro

;; Define "Function Request" as @DosCall

@DbosCall MACRO
int 21h ; call MS-DOS to perform function
ENDM

Step 2, Using the Macro
@bosCall <the macro call

1 — Tools for Structured Coding

What Appears in the Listing

@bosCall <«the macro call
1 int 21h ; call MS-DOS to perform function

When the program is assembled, the statement DosCall is replaced by the
statement int 21k, including the comment. The listing file contains the line
DosCall as a reference, but the object file contains only the code for int 21h.
This operation is known as macro substitution or macro expansion.

Note in the previous example that the assembler inserts in the listing file a
symbol denoting the expanded macro code. In MASM version 4 and higher, a 1 is
placed on the lines pertaining to the first level of macro expansion, a 2 is used for
the second level, and so on. In MASM version 3 and prior versions, all macro
expansion lines, regardless of the level, are marked with the plus (+) character.

When processed by the assembler, the macro reference is replaced by the
code that the macro represents. The macro does not generate a CALL instruc-
tion to the macro code, although macro references are sometimes referred to
that way.

Like everything else in programming, macros have to follow strict for-
mulas. The form for defining macros is

mname MACRO argument_Llist
: <body of the macro code
ENDM

The name of the macro is defined as mname, and argument_list is a list of
arguments, separated by commas. The argument list may be blank if the macro
contains no arguments (as in our example @DosCall).

This was a simple demonstration. If that were all that a macro could per-
form, it would be a sorry creature indeed. Luckily, macros may be tailored by
using the arguments section. The next macro shows an example of this tailoring.

;; Define "Print Character™ as PRINT_CHR
@PrintChr MACRO char
mov ah,05
mov dl,&char
@bosCall
ENDM
Now, when we use this macro
@PrintChr "A"' <the macro call

the following appears in our listing file:

@PrintChr "A"' <the macro call

N

Coding and Programming

1 mov ah,05
1 mov dL,'A'
2 int 21h ; call MS-DOS to perform function

The &char in the macro has been replaced with the A’ in the macro call. (Yes,
we refer to using macros as calls. It’s okay as long as you remember that no CALL
instruction is involved.) The number that appears at the beginning of the line is
MASM’s way of informing the programmer that the code is the result of a macro ex-
pansion. Note too that the macro @ PrintChr contains a reference to the previously
defined macro @DosCall, which was expanded into the int 21# statement that
@DosCall represents. MASM continues to evaluate macro calls to any level to
which they are nested until the symbol table storage area of MASM overflows. Nest-
ing is another way of saying that macros may call macros that call macros and so on.

The name char in the @ PrintChr macro is called a dummy argument.
Whenever the dummy argument char appears in this macro, char is replaced
with the value that was used in the call to the macro. In the @ PrintChr exam-
ple, replacing char means that any place in the macro that char appears, it was
replaced with the character A.

Note that any name chosen for a dummy argument is used exclusively for that
argument in the macro. Thus, if you were to choose a dummy argument with the
name AX, you would not be able to refer to the AX register in that macro!

The same warning about naming dummy arguments applies to naming the
macro itself. Should you choose to define a macro with the name add, you would
find that all references to the op-code ADD in the program would generate an
expansion of the macro add. You can even redefine MASM directives if you wish.
It is therefore very important not to create a conflict of names.

The & in front of char in the @ PrintChr macro is used to append the value
of char to the string mov dl,. The & is not needed to evaluate the dummy argu-
ment, which happens anyway, but to tell MASM that char is a dummy argu-
ment, not just part of the larger string mov dl,char. The & operator is especially
important when dummy arguments are contained in larger strings, as this next
example demonstrates.

The Macro Definition The Macro Expansion
@Example MACRO arg @Example Y
mov dl,arg 1 mov dL,Y <—correct

mov dl,&arg
mov dl,argZ
mov dl,&argz

mov dL,Y <«—correct
mov dl,argZ
mov dl,argZ

mov dl,arg&Z mov dl,YZ <«—correct
mov dl,Xarg mov dl,Xarg
mov dl,X&arg mov dl,XY <«—correct

mov dl,XargZ
mov dl,X&argZ
mov dl,Xarg&z
mov dl,X&arg&z
ENDM

mov dl,XargZ
mov dl,XargZ
mov dl,XargZ
mov dl,XYZ <—correct

[N T G S e e T Y

1 — Tools for Structured Coding

Strictly speaking, the & is not required in the @ PrintChr macro. MASM
was able to detect that char is a dummy argument because char stands alone
following a comma. However, it is a good habit to use & even when not required
because it highlights the dummy argument when you read the macro and it
makes clear to MASM just what is intended.

LOCAL Labels

So far, the macros we have used have been confined to generating simple assem-
bly instructions. However, let’s assume that we want to design a macro to choose
between the smaller of two numbers and to place that result into another loca-
tion. Such a macro might look something like this:

min MACRO result,first,second
mov &result,&first
cmp &first,&second
jL order_ok
mov &result,&second
order_ok:
ENDM

When we invoke min, it produces the proper code, but we have a problem:
Even though the macro evaluates perfectly, it can be used only once. Because
the label order_ok can be defined only once in a program, when the macro is
used in two places MASM complains that Symbol is multidefined.

We can make a small change in the macro to allow us to specify a label pa-
rameter in addition to the others:

min MACRO result,first,second,order_ok
mov &result,&first
cmp &first,&second
jL &order_ok
mov &result ,&second
order_ok&:
ENDM

When we invoke the new min, as shown in the following example, we can
specify the name to be used for the jump label. Now min can be reused again
when needed, but we still have to think of a new name for the jump label each
time. However, the actual name is quite unimportant to us because the label is
private to the min function.

min ax,bx,cx,jmp1 <the macro call
1 mov ax,bx
1 cmp bx,cx
1 jL jmp1
1 mov ax,cx
1 jmp1:

Coding and Programming

10

There’s a better way to create a new name each time that min is called.
MASM provides the LOCAL directive for just this purpose. When MASM en-
counters LOCAL, a unique label is automatically generated for that name. To
put it another way, it’s as if the LOCAL parameter were included in the MACRO
parameter list, but MASM filled in the actual argument. A word of caution.
LOCAL statements must be placed directly after the MACRO definition line!
After the LOCAL directive is included, the new min macro appears like this:

min MACRO result,first,second

LOCAL order_ok

mov &result,&first

cmp &first, &second

jL order_ok

mov &result ,&second
order_ok:

ENDM

When Wé invoke min this time, the expanded listing appears as shown in
the following example. The value of order_ok has been replaced by ?20000.
Every time we call it, order_ok is replaced by a new value generated by MASM.

min ax,bx,cx ; first call
1 mov ax ,bx
1 cmp bx,cx
1 jl 220000
1 mov ax,cx
1 270000:
min ax,bx,cx ; second call
1 mov ax,bx
1 cmp bx,cx
1 jL 220001
1 mov ax,cx
1 220001:

Of course, it is still possible to encounter a label conflict if you decide to use
labels that begin with ?2. If you avoid using labels beginning with ??, you can
call the min macro as many times as you like.

The use of LOCAL labels is not restricted to jump addresses alone.
LOCAL labels can also be used with data, as the following macros demonstrate.
In this case the macros are used to insert text strings into the data segment and
simultaneously create a reference to the string in the code segment. By compar-
ing the source code with the macro expansion in Listing 1-1, you can see how
much clearer it is to use macros.

Listing 1-1 also contains a few other useful macros to ease the task of writ-
ing .EXE programs. Once you define these macros, you need never again worry
about getting the syntax of . EXE programs correct!

1 — Tools for Structured Coding

Listing 1-1. Hello World Program

7 XRRKAKKKAKK KKK KKK KKK KKK KKK KK KKK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK KKK

; MACRO

DEFINITTION SECTION

7 RKKKKAKKK KKK KKK KK KK KKK KK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK KK KKK KKKk

-
14

@DosCall MACRO

-
’

int 21h
ENDM

@InitStk MACRO

stk_seg

stk_seg

-
’

SEGMENT stack

DB 32 dup ('stack
ENDS

ENDM

@InitPrg MACRO segment

start:

’

@Finis

’

@DisStr

4

ASSUME ds:segment

mov ax,segment
mov ds,ax

mov es ax

ENDM

MACRO

mov ax,4C00h
@DosCall

ENDM

MACRO string

mov dx,offset string
mov ah,0%h
@DbosCall

ENDM

@TypeStr MACRO string

cod_seg
dat_seg
saddr

dat_seg
cod_seg

LOCAL saddr
ENDS

SEGMENT

DB string,'$’
ENDS

SEGMENT

@DisStr saddr
ENDM

; call MS-DOS function

; define stack size

")

; initialize data segment
; main entry point

; set up data segment
, set up extra segment

; terminate process

; display string from memory

; define and display a string

; set up a local Llabel

; stop code segment

; change to data segment

; define string in data segment
; stop data segment

; return to code segment

; display string

continued

11

Coding and Programming

Listing 1-1. continued

Nr NE N N

PROGRAM SECTION

KKK KKK KKK A KKK K KKK KKK KKK KKK K KKK KK KKK KKK KKK KKK KKK AKKKK KKKk KKKk

7 RKAKKKKK KKK KK KKK KKK KKK KK KKK KKK KKK Kok K K kKKK KKKk kKK kK kKK kkkkk kKK k

@InitStk
cod_seg SEGMENT
main PROC FAR
ASSUME cs:cod_seg
register
@InitPrg dat_seg
@TypeStr "Hello world!'
@Finis
main ENDP
cod_seg ENDS
END start

N

Ns NE N

AT T TR TN 'Y

Nn

N

set up stack

define code segment

main (and only) procedure
assign code segment to CS

initialize data segment

say "hi" to the folks at home
terminate program

end procedure

end code segment

end program and ...

... define starting address

You can enter the program exactly as it appears and then assemble and run
it. The words Hello world! are displayed. Not a very impressive outcome in it-
self, but if the macros used are stored in an include file, writing . EXE programs
becomes much easier. Let’s look at the expanded program listing, shown in List-

ing 1-2.
Listing 1-2. Macro Expansion for Hello World Program

5 RRKKKKKKKKKKKKKKKKKAKKKKKKKKKAK KK KKK KK KKK KKK KK KKKKKKKKKKAKKAKK KKK KKK
; PROGRAM SECTION
3 RRKK KKK KKK KK KKK KKK KKK KKKk KK
K

@InitStk ; set up stack
1 stk_seg SEGMENT stack
1 DB 32 dup ('stack "
1 stk_seg ENDS

cod_seg SEGMENT
main PROC FAR
ASSUME cs:cod_seg

define code segment
main (and only) procedure
assign code segment to CS

register

@InitPrg dat_seg ; initialize data segment
1 start: ; main entry point
1 mov ax,dat_seg

12

1 — Tools for Structured Coding

1 mov ds,ax ; set up data segment

1 mov es, ax ; set up extra segment
@TypeStr 'Hello world!' ; say "hi" to the folks at home

1 cod_seg ENDS ; stop code segment

1 dat_seg SEGMENT ; change to data segment

1 720000 DB 'Hello world!','s$’ ; define string ...

1 dat_seg ENDS ; stop data segment

1 cod_seg SEGMENT ; return to code segment

2 mov dx,offset 2?2?0000

2 mov ah,0%h

3 int 21h ; call MS-DOS function
@Finis ; terminate program

1 mov ax,4C00h ; terminate process

2 int 21h ; call MS-DOS function

main ENDP ; end procedure

cod_seg ENDS ;> end code segment
END start ; end program and ...

The first point to notice is that the use of the LOCAL saddr in the
@TypeStr macro worked fine as a label for the data statement. When using la-
bels with data, do not use the colon (:). Next, notice how the macro expansion
uses the reserved word segment in the macro @InitPrg. No problem! Remem-
ber that the dummy argument names in the argument list override any other
MASM definitions.

Note that a number of lines weren’t included in the listing file. For one ex-
ample, the statement ASSUME ds:data_seg is missing from @InitPrg. The
statement was assembled, but MASM suppressed the complete expansion.

Both of these exceptions occur because of the way MASM processes
macros. The default condition suppresses listing source lines that do not gener-
ate code. The ASSUME statement is a MASM directive and generates no code
of its own; therefore it is not listed. On the other hand, the ENDS segment end
directives are listed and produce no code either. There are still mysteries in
MASM for all of us to ponder.

Please don’t take the code presented as a model for good programming. Al-
though the idea of using macros for the prelude and postscript of .EXE pro-
grams is a good one, it is poor practice to embed the names of important symbols
in the macros themselves. If the name of the data segment were other than
dat_seg, unnecessary confusion would be created within the program. Either
@TypeStr should be passed the name dat_seg as an argument, or @InitPrg
should always assume that the data segment is dat_seg.

Macro Listing Directives

If you wish to see the complete listing of a macro, place the MASM directive
.LALL in the assembly file. Then generate a .LST file, and compare it with the

13

Coding and Programming

original listing in our example. You will see that the ASSUME ds:data_seg is
now shown. To change the listing mode back, use the . XALL directive. This re-
stores MASM to the default mode. If you wish to suppress all macro expansions,
use the .SALL directive.

Macro Libraries

The term macro library is actually something of a misnomer. Macro libraries are
not really libraries at all in the sense that Microsoft LINK or Microsoft LIB
would understand. Macros must be included at compile time because they are
directives for MASM and MASM only. LINK and LIB do not know what to do
with them. Instead, macro libraries are really include files. They can be defined
in a separate file, called MYLIB.MAC or STANDARD.MLB or whatever (you
can choose any valid file name you like) and included in the assembly by placing
an include directive in the source file, such as:

INCLUDE C:\MASM\LIB\STANDARD.MLB

The rules regarding the file name and drive specification are the same as
for the rest of the system. Within the listing file, lines obtained from an include
file begin with a C, just as macro expansion lines begin with a + (in versions of
MASM below 4.0) or with a macro expansion level number. Of course, if you have
a large library and don’t want to clutter your .LST file with macro definitions,
turn off the listing with the . XLIST directive before the include and then turn
the listing back on with .LIST after the include.

The use of macro libraries provides justification for the next macro direc-
tive introduced. Although you very rarely define a macro in a program and then
want to “undefine” it (you would just delete it!), you quite commonly may in-
clude a macro library for the purpose of using just a few of the defined macros.
The rest of those macro definitions take up valuable storage space in the MASM
symbol table and macro storage area. The way to recover this space is with the
PURGE directive. PURGE allows you to remove definitions for specified
macros. To remove the macros defined in our previous example, we would issue
the directive:

PURGE @bosCall ,@InitStk,@InitPrg,@Finis,@DisStr, @TypeStr

This frees all the space occupied by the macro. definitions and leaves us with a
clean slate.

Macro Repeat Directives—REPT

Another macro facility provided by MASM is the ability to loop through a block
of macro code. Three loop varieties are provided, each with specific uses.

For our first example, let’s assume that we wish to create an area in the
data segment for handling files. We use the file handle method of accessing files,

14

1 — Tools for Structured Coding

and, because we may want to use more than one file, we write our routine to give
unique names to each block.

file_head MACRO fnum
file_hand_&fnum dw ? ; file handle
file_nmax_&fnum db 49 ; maximum size of file name
file_nlen_&fnum db ? ; actual Llength of file name
file_name_&fnum db 50 dup (?) ; file name buffer

ENDM

Why didn’t we use the LOCAL directive for frnum? Because the labels are
not local to the macro itself. They must be accessed from other parts of the pro-
gram to set the file name, access the file handle, ete. This macro could still be
improved. What if we want to use two files at once, say, in a file-to-file copy pro-
gram? We would need to call file_head twice:

file_head 1 ; 1st file block
file_head 2 ; 2nd file block

Instead, we can write file_head to define as many blocks as we need, using
the REPT directive. The macros appear in Listing 1-3.

Listing 1-3. Define File Access Block

fcnt = 0 ; initialize and define symbol
file_head?2 MACRO fnum
file_hand_&fnum dw ? ; file handle
file_nmax_&fnum db 49 ; maximum size of file name
file_nlen_&fnum db ? ; actual Llength of file name
file_name_&fnum db 50 dup (?) ; file name buffer
ENDM
file_head MACRO fnum
REPT fnum ; repeat block "fnum" times
file_head2 %fent ; create block #"fcnt"
fcnt = fcnt + 1
ENDM ; end of repeat block
ENDM ; end of file_head macro

As the expansion in Listing 1-4 demonstrates, when we call the file_head
macro, it calls macro file_head2 twice, each time using a different value of frum.
Of course, this macro expansion with the default listing status doesn’t show the
intermediate calls to file_head2. However, we can see the effects of the REPT in
the two file control blocks that were created. Notice that the REPT directive
must be terminated with ENDM, just like the MACRO directive. All repeat

15

Coding and Programming

16

blocks must end with ENDM. Another ENDM must also appear at the end of
each macro definition.

Listing 1-4. Define File Access Block Macro Expansion

file_head 2

3 file_hand_0 dw ? ; file handle

3 file_nmax_0 db 49 ; maximum size of file name

3 file_nlen_0 db ? ; actual Llength of file name
3 file_name_0 db 50 dup (?) ; file name buffer

3 file_hand_1 dw ? ; file handle

3 file_nmax_1 db 49 ; maximum size of file name

3 file_nlen_1 db ? ; actual length of file name
3 file_name_1 db 50 dup (?) ; file name buffer

In addition to the REPT directive, we also used a counter. Counters are
symbols that have a numeric value. They must be defined using the equate (=)
operator so that they may be changed. (In MASM, equ is used to define static
symbols that are never changed, whereas an equal sign (=) is used to define dy-
namic symbols that have values which may be changed.) The counter used with
the file_head macros is fent. The counter fent is incremented for each pass in
file_head. But why were the labels in file_head?2, file_hand_0, ete., rather than
in file_hand_fent? How did the name fent get replaced with its value? The an-
swer is in the percent sign (%) operator preceding fcnt in the call to file_head2.
The percent sign forces the replacement of a symbol with its numeric value. Be-
cause we used the percent sign, we needed two macros. If we had tried to evalu-
ate and substitute fcnt in a single macro, as with:

REPT fnum ; repeat block "fnum" times
file_hand_&%fcnt dw ? ; file handle

the operation would fail, resulting in the symbol:
file_hand_fcnt dw ? ; file handle

The percent sign operator (%) operates only on macro arguments in a macro
call! In addition, the symbol’s value must be an absolute (nonrelocatable)
constant.

Another important aspect of our macros is that the counter fent is ini-
tialized outside the macro block. This is because we don’t want to reset fent to
zero each time we call file_head (which would cause duplicate labels). However,
fent must be initialized somewhere, or the statement:

fcent = fent + 1

would cause the error message Symbol not defined.

1 — Tools for Structured Coding

More about Macro Repeat Directives—IRP and IRPC

MASM supports two other macro repeat directives in addition to the REPT di-
rective. These directives are IRP (indefinite repeat) and IRPC (indefinite re-
peat character). Neither really repeats indefinitely. Instead, each one repeats as
long as arguments remain in the argument list. Listing 1-5 shows a simple re-
peat macro called test_mac that is designed to add items to the data segment.

Listing 1-5. Simple IRP Repeat Macro and Expansion

test_mac MACRO args ; define "test_mac"
IRP dummy ,<&args>
db dummy ; add item
ENDM ; end of "IRP"
ENDM ; end of "test_mac"
test_mac 'one' <«1st call
2 db 'one' ; add item
test_mac <'two',"'three','four'> <«2nd call
2 db 'two' ; add item
2 db "three' ; add item
2 db "four' ; add item

On each pass through the repeat block, the next value in the argument list
is used for the value of dummy. By using the IRP directive, we were able to use
one macro call to do the work of three. On the second call to test_mac, the IRP
block repeated the db once for each of the three strings in the argument list.

We’ve also introduced two special symbols for macros, the angle bracket
(< and >) operators. The test_mac expects only one argument, but we want to
send it a list of arguments. The angle brackets accomplish this by making the
text inside of them into a single literal. So ‘two’, three’, four’ becomes one argu-
ment rather than three. However, MASM does not send the angle brackets to
the receiving macro. Inside test_mac, args has the value two’, three’, four’, not
<‘two’,‘three’, four’>. This is why additional angle brackets were added in the
IRP directive.

This reasoning does not apply to strings! The quotes that enclose strings
are not stripped, and adding an extra layer really confuses things. If we use the
define byte statement as

db 'dummy’ ; add item
MASM evaluates the line as

2 db "dummy ' ; add item

17

Coding and Programming

N

which would give us quite a few dummies but not what we want. We could force
the use of the actual argument through

db '&dummy ' ; add item
but MASM would be trying to evaluate
2 db "one" ; add item

This causes a special error known as Text area read past end. This error
also occurs if you accidentally create an endless recursive macro call. Essen-
tially, MASM runs out of places to store all the symbols in use. Beware! This
error message repeats endlessly until you abort MASM by pressing Control-C.

Macro Summary

From what you’ve learned, you can see that macros use a type of programming
shorthand. Thus, once you’'ve defined a block of code, you may include it repeat-
edly through a simple macro call. You've seen that macros are defined with a
MACRO statement that gives the macro its name, and optionally provides for
macro arguments. The macro definition is then ended with an ENDM state-
ment. After the definition has been completed, the macro call is made using the
macro’s name, followed by any parameters the macro requires.

You’ve also seen how MASM can generate unique labels using the LOCAL
directive and how repeat directives are used. Your knowledge of repeat direc-
tives and some of their uses is expanded in the next section.

The Microsoft Programmer’s Reference Manual for the MS-DOS Operat-
ing System contains macro definitions for each of the system calls. In addition, it
also contains some general macros for common tasks, such as moving a string.
This manual is a good place to study the use of macros and gain some additional
experience in structuring macros. You will find the following three tables use-
ful. Table 1-1 summarizes the macro directives that MASM uses, Table 1-2 lists
the special macro operators, and Table 1-3 summarizes macro listing directives.

We’re halfway to our structured control macros now. To complete the job of
creating macros for structured control, we need to control just when and what is
assembled into the program. That is the topic of the next section.

Conditional Assembly

18

When writing assembly language programs, it would be nice to be able to op-
tionally include certain sections of code. When using macros, it also would be
nice to be able to choose different code depending on the arguments passed to
the macro. MASM provides these capabilities through the use of conditional
assembly.

When can conditional assembly work for you? Assume that you are writing
a rather large program, and, like most large programs, it has some bugs. You

1 — Tools for Structured Coding

Table 1-1. Macro Directives

Directive

Variable

Explanation

mname MACRO parameter_list

ENDM

EXITM

LOCAL

PURGE

REPT

IRP

IRPC

symbol_list

macro_list

expression

dummy,<parameter_list>

dummy, string

MACRO DEFINITION

Signals the start of a macro definition
block; parameter_list defines the
dummy arguments to be used within
the block.

END MACRO

Signals the end of a MACRO definition
or of a REPT, IRP, or IRPC repeat
block. Required!

EXIT MACRO

Exits a macro expansion when
encountered. Used most often with
conditional assembly.

LOCAL SYMBOL

Defines the symbols in symbol_list as
unique symbols to the assembler.
Expanded into ??xxxx where xxxx is a
hexadecimal number.

PURGE MACRO DEFINITION
Deletes the definitions of the macros
listed in macro_list.

REPEAT

Repeats the block of instructions
between REPT and ENDM expression
number of times.

INDEFINITE REPEAT

Repeats the block of instructions
between IRP and ENDM for each
value in the parameter_list, replacing
dummy with the value of the
parameter on each expansion.

INDEFINITE REPEAT CHARACTER
Repeats the block of instructions
between IRPC and ENDM for each
character in the string, replacing
dummy with the character on each
expansion.

decide to place some debugging statements in the program to let you know what
is happening. However, once the program seems to be running right, you want
to remove the statements so that the program executes more smoothly. Of
course, because the program probably contains still more bugs, back go the de-
bugging statements. Adding and deleting statements can get rather tedious.
Conditional assembly can be used to solve this problem. Listing 1-6 shows the
effect of a switch called “DEBUG” on the statements in a conditional assembly
block. A good deal of the program has been edited and the .SALL switch used to

19

Coding and Programming

20

suppress some of the @ TypeStr macro expansion. Our interest lies only in those
lines related to conditional assembly.

Table 1-2. Special Symbols for Macros

Symbol

Explanation

&argument

55 comment text

Concatenates dummy arguments or symbols with text.
Especially required to substitute dummy arguments within
quoted strings.

Indicates a macro comment. These comments are never listed in
the macro definition.

Ichar Indicates that the next character is a literal. Used to include &,
%, etc., in macro expansions where these symbols would
otherwise be interpreted as special.

%Dsymbol Used to convert a symbol or optionally an expression to a
number in the current radix.

<text> The angle brackets (< and >) are used to define the text
between them as a literal. Everything within the brackets may
be passed as a single argument to a macro.

Table 1-3. Listing Directives for Macros

Directive Explanation

XALL List source and object code for macro expansions, except source
lines that do not generate code. The default condition is . XALL.

.LALL List all lines for macro expansions, except comments preceded
by two semicolons (;;).

.SALL List none of the code produced by macro expansion.

.LIST List source lines. Reverses . XLIST but does not change the
state of macro listing as determined by .XALL, .LALL, or
.SALL.

XLIST Suppress all listing. Overrides all other directives.

Listing 1-6. DEBUG Statements Conditional Assembly —FALSE

FALSE
TRUE
DEBUG

@TypeStr

IF

@TypeStr

; Part A--Source Listing

EQU 0
EQU OFFFFh
EQU FALSE

'hello world!’
DEBUG <begin conditional block
'Hi - I made it to this point in the program'

1 — Tools for Structured Coding

ENDIF <—end conditional block

; Part B--MASM Listing

@TypeStr 'hello world!'

1 mov dx ,offset 2?2?0000

1 mov ah,0%h

1 int 21h ; call ms-dos function
ENDIF

This example was assembled with the value of the DEBUG switch set to
FALSE. As aresult, all that appears of the conditional block in the MASM list-
ing is the ENDIF statement after the @TypeStr expansion. That is how MASM
indicates that there was a conditional block there but that it wasn’t assembled.
When the value of the DEBUG switch is changed to TRUE, MASM produces a
different program, as shown in Listing 1-7.

Listing 1-7. DEBUG Statements Conditional Assembly —TRUE

; MASM Listing

DEBUG EQU TRUE

@TypeStr "hello world!"™

1 mov dx,offset 2770001
1 mov ah,0%h
int 21h ; call ms-dos function
IF DEBUG
@TypeStr 'Hi - I made it to this point in the program'
1 mov dx,offset 27270002
1 mov ah,0%h
p int 21h ; call ms-dos function
ENDIF

This time, the debugging statements are included. MASM also includes in
the listing the line that caused the statements to be assembled. If you would like
to see all conditional assembly directives in the listing file, whether or not they
evaluate TRUE or FALSE, use the .LFCOND (list false conditions) directive.
You can later suppress the listing of FALSE conditions with the .SFCOND
(suppress false conditions) directive. Basically, a conditional assembly block

21

Coding and Programming

22

begins with some type of IF statement (see Table 1-4 for a complete listing) and
terminates with an ENDIF statement.

A common use of TRUE/FALSE switches in conditional assembly occurs
in systems programming (programming the operating system of a computer). If
you have a copy of the source assembly for your computer, take a quick look at it.
You will most likely find that conditional assembly has been used extensively.
Conditional assembly allows the designer to write one operating system and,

Table 1-4. Conditional Assembly Directives

Directive Variable

Explanation

IF expression

IFE expression

ELSE

ENDIF

IF1,IF2

IFDEF symbol
IFNDEF symbol

IFB <argument>
IFNB <argument>

IFIDN <stri>,<str2>
IFDIF <stri>,<str2>

IF TRUE

If expression evaluates to a nonzero number,
the statements in the conditional block are
assembled.

IF FALSE

- If expression evaluates to 0, the statements in

the conditional block are assembled.

ELSE

If the conditional assembly directive evaluates
FALSE (does not assemble the conditional
block), the alternative statements in the
ELSE block are assembled. Terminates the
IFxxxx block but must be followed by ENDIF.
Only valid after an IFxxxx statement.

END of IF BLOCK
Terminates an IFxxxx block or ELSE block.

IF MASM PASS 1, IF MASM PASS 2
Assembles the conditional block if the MASM
assembler is in the pass indicated. See text for
the relationship of IF1 and IF2 to IFDEF and
IFNDEF.

IF symbol DEFINED

IF symbol NOT DEFINED

Evaluates whether symbol is defined or
declared external. IFNDEF is the opposite of
IFDEF. See text for relationship to assembler
passes.

IF argument BLANK

IF argument NOT BLANK

Evaluates whether the argument is blank.
Used with macro arguments to see whether
an argument has been provided. IFNB is
the opposite of IFB. The angle brackets

are required.

IF str1 IDENTICAL TO str2

IF str1 DIFFERENT FROM str2
Evaluates whether string str? is identical to
string str2. IFDIF is the opposite of IFIDN.
The angle brackets are required.

1 — Tools for Structured Coding

through the use of conditional assembly “switches,” to configure the system to a
particular set of equipment. These switches, like the DEBUG switch in our ex-
ample, can cause the proper system to be generated (proper configuration to be
made) for a given type, number, or configuration of memory, boards, pe-
ripherals, drivers, and so forth.

For the purposes of the MASM assembler, any expression that evaluates to
zero, or has a value of zero, is considered to be FALSE. A nonzero expression is
considered TRUE. The value FFFF (hexadecimal) is commonly used for the
symbol TRUE. This allows TRUE to be used in any bit operation. For example,
the bitwise AND of 0001 and 1000 is 0000 so that, although both are true, the
AND of them would be false. Remember that MASM uses the same operators
for both logical and bit operations.

Relational Operators

In addition to using symbols with preassigned values or arithmetic expressions,
MASM supports relational operators, which may be used to control conditional
assembly statements. Relational operators are those that express the relation-
ship between two values. Less than, greater than, equal to, and not equal to are
all examples of relational operators.

These operators allow such things as range checking and special actions
and in fact support what amounts to a programming language. Through the use
of relational operators, you can create quite complex program structures that
automatically adjust themselves to a particular environment (for example, siz-
ing a data area to fit a reserved area of memory). However, when using relational
operators, MASM doesn’t always do the expected thing.

If you are used to working with signed integers, you may think of OFFFFh
and -1 as the same value. With some exceptions, MASM also uses the values
interchangeably. Although earlier versions of MASM had some problems deal-
ing with negative numbers, the newer versions (1.2 and later) do know that -1is
equal to OFFFFh. However, when comparing the magnitude of two numbers,
MASM treats them differently. A simple test illustrates:

True FFFF dw 1 gt -1 Obvious
False 0000 dw 1 gt OFFFFh 65535, not -1
True FFFF dw -1 ge OFFFFh -1=-1
False 0000 dw -1 gt OFFFFh -1notgt-1

What is demonstrated here is that MASM considers 0OFFFFh to be a posi-
tive number, 65535 to be exact, except when it is being compared with -1, at
which time OFFFFh is treated as -1. Confusing as this is, forewarned is
forearmed.

The full list of relational operators in MASM appears in Table 1-5. An ex-
ample use of these operators is contained in the structured coding macros ap-
pearing at the end of this chapter. Table 1-6 shows the listing directives for
conditional assembly. ~

23

Coding and Programming

Table 1-5. Relational and Logical Operators
for Conditional Assembly

Operator Syntax Explanation

EQ expl EQ exp2 TRUE if exp1 equals exp2

NE expl NE exp2 TRUE if exp1 not equal to exp2

LT expl LT exp2 TRUE if exp1 is less than exp2

LE expl LE exp2 TRUE if exp1 is less than or equals exp2

GT expl GT exp2 TRUE if exp1 is greater than exp2

GE expl GE exp2 TRUE if exp1 is greater than or equals exp2

NOT NOT exp TRUE if exp FALSE, else FALSE

AND expl AND exp2 TRUE only if both exp1 and exp2 are TRUE

OR expl OR exp?2 TRUE if either exp1 or exp2 is TRUE

XOR expl XOR exp2 TRUE if exp1 equals logical NOT of exp2

FALSE (0000 hex) For IF TRUE, any ZERO expression is
FALSE

TRUE (FFFF hex) ’II;“%{I‘&E TRUE, any NONZERO expression is

Table 1-6. Listing Directives for Conditional Assembly

Directive Explanation

.LFCOND List conditional assemblies that evaluate to FALSE condition.

.SFCOND Suppress listing of conditional assemblies that evaluate to FALSE
condition. The default setting is .SFCOND.

.TFCOND Toggles the listing of FALSE conditional assembly as determined by
the MASM /X switch. Operates independently of the .LFCOND and
.SFCOND switches.

.LIST List source lines. Reverses . XLIST but does not change the state of
conditional assembly listing as determined by .LFCOND, .SFCOND,
or . TFCOND.

XLIST Suppress all listing. Overrides all other directives.

Conditional Assembly Summary

From a quick overview of conditional assembly, we see how it is possible to con-
trol which code is included in the assembled program. So far, we have investi-
gated the use of conditional assembly to ease the task of including optional code.
But we have only scratched the surface. Only one of the ten possible forms of
conditional operators was used in our examples. What of the rest of these opera-
tors? They are intended primarily for use with macros. To that topic, we now
turn.

24

1 — Tools for Structured Coding

Conditional Assembly and Macros

Although conditional assembly is frequently used with explicitly defined
switches, conditional assembly’s greatest potential is realized when it is com-
bined with the MASM macro facility. There are a number of features of condi-
tional assembly that are intended specifically for operation with the macro
facility. Let’s lay some groundwork to explain the possibilities of these features.

Macros may be classified into two groups. First, there are those macros
designed to create a definite structure depending upon some input, where the
structure is well defined and the input is of an expected class. The file_head
macro, designed to insert a file definition block, is an example of this classifica-
tion of macro.

The second class of macro is intended to generate a structure that is de-
pendent on information that is unavailable to programmers or that they con-
sider trivial and desire to ignore. These macros often must be able to process
many classes of arguments and must determine the argument’s class. At other
times, these macros may maintain private data or counters in order to release
the programmer from bookkeeping chores. The structured control macros con-
tained in the last part of this chapter are prime examples of the latter. Of course,
some overlap usually exists between these classes of macros.

To explain further, in one type of macro, the programmer uses the macro
facility to avoid some typing or other drudge work. In the other type, the pro-
grammer uses the macro facility as a kind of higher-level structure, depending
on the assembler to supply the missing information. The programmer inten-
tionally hides the details of implementation for the purpose of simplifying the
programming job.

One example of a higher-level macro is using macros to simplify the use of
assembler mnemonics. Although most of the 8086 processor’s instructions may
be used with either register or memory operands, quite a number do not allow
immediate operands. The PUSH instruction is one example, although the
186/188 and 286 do allow pushing immediate data onto the stack.

It is quite simple to design a pushi (push immediate) macro that transfers
the desired argument to a register and pushes the register. However, if a macro
were to be used to implement a more general push operation, it is not only desir-
able that the macro be able to push immediate data, but also desirable that the
macro be able to decide whether such an operation is even required. In other
words, the programmer would use a general pseudo-opcode that would apply to
all cases. The pseudo-opcode would actually be a macro that would evaluate the
operands and generate either a standard or extended instruction as required.

The first step in being able to write such a general-purpose macro is to be
able to determine just what the macro operands are. MASM provides a number
of special-purpose operators to accomplish this task.

Determining Operand Types

In the 8086/8088 environment there are four basic types of operands. These are
register, immediate, memory, and addresses. For those that are data oriented, a

25

Coding and Programming

26

number of subtypes are possible. Registers include the special cases of the ac-
cumulator (general register A) and the segment registers. All three data types
may be subclassified as either 8-bit or 16-bit data. Addresses may be either near
(offset only) or far (offset and segment).

How do we go about distinguishing among all these types? We use the
MASM operators .TYPE and TYPE. Table 1-7 shows the results of using these
operators with various classes of operands.

Table 1-7. The .TYPE and TYPE MASM Operators

Rules for . TYPE and TYPE
Operator Result
.TYPE bits 5and 7 8x Defined external
2x Defined local
0x Invalid reference
.TYPE bits 0 through 2 x0 Absolute mode
x1 Program related
x2 Data related
TYPE used with data variable 01 Byte variable
02 Word variable
04 Double word variable
08 Quad word variable
10 Ten-byte variable
XX Structure of size xx
TYPE used with program label FFFF Near program label
FFFE Far program label
.TYPE and TYPE Examples
Variable Type .TYPE Definition TYPE Definition
Immediate 20 Defined local 0 Invalid
Register 20 Defined local 0 Invalid
Data label 22 Defined local X Number of bytes
Near label 21 Defined local FFFF Near label
Far label 21 Defined local FFFE Farlabel
MASM op-code 00 Invalid 0 Invalid
Nonsense 00 Invalid 0 Invalid

Some further examples may be constructed. Although .TYPE recognizes
the names of the various registers, it does not recognize a register construct
such as [BX] or ARRAY[BX][SI]. Single character constants, such as A, are
recognized as locally defined variables by the .TYPE operator.

Nothing recognizes a forward reference during the first pass of the as-
sembler. IFDEF returns a not defined result, .TYPE returns an invalid, and
TYPE returns a zero length. Only one rule may be applied to forward refer-
ences: Avoid them if at all possible.

1 — Tools for Structured Coding

Phase Errors and Other MASM Eccentricities

An important warning is associated with the use of MASM operators. MASM is
a two-pass assembler that assigns values to symbols on the first pass and then
evaluates the symbols on the second pass. Program labels and data labels are
symbols. Their values are determined during the first pass and then used during
the second pass to generate the code.

Consider the following chain of events. If a forward reference occurs,
MASM does not recognize the label on the first pass and is not able to determine
its type. Attempting to reference this symbol produces the error message Sym-
bol is not defined. MASM encounters this error when processing the first pass
but suppresses it and continues the assembly. MASM is able to cover up by as-
suming the type of the symbol from the context in which the symbol appears. If
this guess is wrong, MASM may end up producing the message Phase error be-
tween passes, or MASM may shorten the instruction and place NOP instruc-
tions after it as place holders.

There are two ways that phase errors may be avoided during normal use of
MASM. In the majority of cases, MASM is able to determine the operand type
from the context. Programmers rarely jump to locations in the data segment
and don’t usually add program addresses. For those special cases where MASM
makes a wrong guess, the programmer may set the assembler straight by using
the PTR (pointer) override operator. With PTR the programmer may explicitly
specify the type of a forward reference so that MASM does not guess incorrectly.

However, by attempting to produce multipurpose instructions with
macros, we greatly increase the chance of guessing wrong in these cases. If our
multipurpose instruction is intended to be able to process any operand class, ex-
act meaning becomes more difficult to determine from context. In addition, al-
though the use of PTR may aid in some of these cases (as we shall see in the
@ PushOp macro), its use defeats the purpose of using macros to relieve the pro-
grammer of burdensome detail.

By examining how a wrong guess produces a phase error, we may more
easily avoid its occurrence. Because phase errors are the result of certain sym-
bols (such as labels) changing value between passes, it is important that macros
produce the same amount of code on each pass. This preserves the values of
those labels located after the macro and is also why MASM pads shortened in-
structions with NOP instructions. Program labels generated by the macros
must also remain constant from pass one to pass two.

String Matching—An Example

Unfortunately, the .TYPE operator’s readiness to recognize immediate oper-
ands as well as registers, etc., greatly reduces its usefulness in detecting the
type of a macro operand. Because it is especially useful to know whether an ar-
gument to a macro is a register, we must construct a method for determining
this. Knowing whether the argument is a register usually is useful only when

27

Coding and Programming

28

combined with the implicit assumption that if it’s not a register and not a defined
memory reference, the argument is assumed to be an immediate data reference.

A common use of conditional assembly with the IRP or IRPC directives is
matching. The purpose in these cases is to see whether a macro argument is a
member of some set. In this case, string matching is used to solve the problem of
determining whether an argument is a register. Because all that the .TYPE op-
erator can determine is that registers are both locally defined and absolute, a
string-matching macro is used to explicitly check for a register name. The ?reg
macro shown in Listing 1-8 accomplishes this function.

Listing 1-8. Register Name Match ?reg Macro

FALSE EQU 0
TRUE EQU OFFFFh
;; *xx% ?REG - Test to see if an argument is a register

?reg MACRO arg

?2isr8 = FALSE
?isr16 = FALSE
IRP reg,<ax,bx,cx,dx,bp,sp,si,di,cs,ds,es, ss>
IFIDN <&®>,<Rarg>
?2isr16 = TRUE
EXITM
ENDIF
ENDM ;; end IRP section
;; If match then stop here
IF (?2isr16)
EXITM
ENDIF
;; If not match yet, try the rest
IRP reg,<ah,bh,ch,dh,al,bl,cl,dl>
IFIDN <&®>,<Rarg>
?isr8 = TRUE
EXITM
ENDIF
ENDM ;; end IRP section
;; If match then stop here
IF (?2isr8)
EXITM
ENDIF
;; If not match yet, try uppercase
IRP reg,<AX,BX,CX,DX,BP,sP,sI,DI CS, DS, ES,SS>
IFIDN <&®>,<&arg>
?2isr16 = TRUE
EXITM

1 — Tools for Structured Coding

ENDIF
ENDM ;; end IRP section
;; If match then stop here
IF (?isr16)
EXITM
ENDIF
;; If not match yet, try the rest
IRP reg,<AH,BH,CH,DH, AL ,BL,CL,DL>
IFIDN <&®>,<&arg>
?2isr8 = TRUE
EXITM
ENDIF
ENDM ;; end IRP section
ENDM ;; end macro definition

The heart of this macro, as with any matching macro, consists of the three
lines:

IRP reg,<ax,bx,cx,dx,bp,sp,si,di,cs,ds,es, ss>
IFIDN <&®>,<Rargl>
?2isr16 7% TRUE

These lines may be interpreted as performing the following function:

For reg equals ax tossdo . . .
If reg equals the argument arg . . .
The argument is a register!

There are two interesting points to note here. One, it is necessary to ex-
plicitly check for the register name in both lower- and uppercase. The IFIDN
conditional assembly directive compares strings for an exact match. Even with
the extra effort, the ?reg macro is not foolproof. It does not match a register
name that has one uppercase character and one lowercase character (“aLi,” for
example). Second, two separate checks are performed: one for 16-bit registers
and one for 8-bit registers. In the current implementation, having separate
checks doesn’t gain us anything, but it will be used in the next example.

The ?reg macro has two additional syntax elements. One is the EXITM
exit macro directive. This directive is used to stop processing of the ?reg macro
when a match is found.

Less obvious is the use of the double ampersand in the IFIDN statement.
According to the Microsoft MASM manual, the user must “supply as many am-
persands as there are levels of nesting.” This rather laconic pronouncement
doesn’t do justice to the complexity of the problem. The “levels of nesting”
doesn’t apply to how many blocks deep the reference occurs but rather to how
many blocks deep the definition occurs. Thus, arg1 gets away with only one &,
whereas reg, which is defined in a nested block, requires the double ampersand,
&&. Microsoft does not state whether there is a limit to the allowed number of

29

Coding and Programming

30

nesting levels or the number of ampersands that may be required. In cases
where multiple ampersands seem indicated, the extra effort of trying a few ex-
amples to ensure proper operation is worth it.

The demonstration of the ?reg macro in Listing 1-9 shows that this macro
does function as expected. Do note that the register P, which MASM would
recognize, is rejected by ?reg. This could be construed as a coercive argument
for consistency in typing.

Listing 1-9. Test of the ?reg Register Name Match Macro

?reg ax ; is "AX" a register?

FFFF dw ?isr16é «<TRUE
?reg cs ; is "CS" a register?

FFFF dw ?isr16 <TRUE
?reg zork ; is "ZORK" a register?

0000 dw ?isr16 «—FALSE

0000 dw ?isr8 «<FALSE
?reg 01234h ; is "234" a register?

0000 dw ?isr16 «—FALSE

0000 dw ?isr8 «<~FALSE
?reg bP ; is "BP" a register?

0000 dw ?isr16 «—FALSE —case change

0000 dw ?isr8 «<FALSE

Parsing Macro Arguments

With a macro that can recognize register names, you can now implement a gen-
eral PUSH macro, which we’ll call @ PushOp (push operand). (Note: We consid-
ered the name pusha for “push all,” but PUSHA is a defined op-code in the Intel
186, 188, and 286 chips. Its use as a macro could restrict upward compatibility.
Of course, you can always implement the PUSHA instruction via a pusha macro
for 8086 or 8088 processors and be ahead of the game.)

As mentioned previously, it is necessary to make some assumptions about
the operand type in those cases where it is not defined and not a register. In the
@ PushOp macro, we assume that unknown operands are immediate data refer-
ences. @ PushOp references the macro ?reg, and ?reg must be included in the
program for @PushOp to function. See Listing 1-10 for the @ PushOp macro.

@PushOp makes use of the ?reg macro’s ability to distinguish between
16-bit and 8-bit registers. Because the PUSH instruction does not accept an
8-bit register, the IRPC macro directive is used to obtain the first character
of the register name. @ PushOp then appends an « to form the name of the 16-bit

1 — Tools for Structured Coding

Listing 1-10. @ PushOp Generalized PUSH Macro

;; xxxx @PushOp Generalized Push Operand Macro

;; If the operand is defined then it may be one of:
H register

data reference

If the operand is NOT defined, then it will be assumed to
;; be an immediate reference.
@PushOp MACRO arg

.SALL
IFDEF &arg 5, operand IS defined ...
?argtyp = .type &arg J; ... then get type
IF ((?argtyp and 3) EQ 2) ;; operand is DATA
?argsiz = ((type &arg) + 1)/2 ;; ... get size in words
?argoff = 0 ;; ... set offset to O
REPT ?argsiz J; ... repeat each word
?argadd = word ptr &arg + ?argoff ;; get type ptr
-XALL
push ?argadd ;7 -=« push memory direct
-SALL
?argoff = ?argoff + 2 ;5 ... nNext word of data
ENDM
ENDIF
IF ((?argtyp AND 3) EQ 1) ;; operand is PROGRAM
@PushImOff &arg 5, ... push lLabel offset
ENDIF
IFE (?argtyp and 3) ;; operand is ABSOLUTE
?reg &arg
IF (?isr16) ;; operand is REGISTER 16
-XALL
push &arg ;; --. push direct
.SALL
ELSE
IF (?29sr8) ;; operand is REGISTER 8
IRPC chr1,&arg1
-XALL
push &&chr18&&x ;; save short register
-SALL
EXITM
ENDM

continued

31

Coding and Programming

Listing 1-10. continued

ELSE ;; assume immediate
@PushIm &arg ;; ==« push immediate
ENDIF
ENDIF
ENDIF
ELSE ;; ... push immediate
@PushIm Rarg
ENDIF
ENDM ;; end macro definition

register, which PUSH accepts. Note that the use of double ampersands is re-
quired again in this statement and that they are required on both sides of the
dummy argument since string concatenation occurs at each end.

For those cases that are assumed to be immediate data, the @Pushlm
macro is called. This macro is more complicated than absolutely necessary be-
cause it assumes that no registers are available for use in transferring the imme-
diate data to the stack. Instead, the macro uses the base pointer (BP) to address
the stack. After saving the BP and AX on the stack, @PushlIm slides the imme-
diate data under the AX contents, swapping it with the contents of the old BP.
After restoring the BP contents to its previous location in the BP, the macro re-
trieves the contents of the AX by popping them off the stack. The @Pushim
macro is shown in Listing 1-11.

Listing 1-11. @ PushIm Immediate Data PUSH Macro

;; *xx% @PushIm Immediate Data Push Macro
@PushIm MACRO arg

-XALL

push bp J; save base pointer

mov bp,sp ;; move stack pointer to BP

push ax ;5 save accumulator

mov ax,&arg ;; get immediate data

xchg [bpl,ax ;; swap old BP and immediate data
mov bp,ax ;; restore old BP from AX

pop ax ;; restore accumulator

.SALL

ENDM ;; end macro definition

This rather convoluted operation also may be adapted to swapping items
on the stack. However, playing with the stack can be dangerous. If your compu-

32

1 — Tools for Structured Coding

ter supports interrupts, this operation should be done only with the interrupts
disabled so that the integrity of the stack is preserved.

For those cases that attempt to push program locations on the stack, we
assume that the programmer desires to save the actual offset of the label. Thus,
the @ PushImOff macro was created to push the offset of the label as immediate
data. It differs from the @ PushIm macro solely in its use of the instruction

mov ax,offset &arg

as opposed to the simple move that appears in @ PushIm. See Listing 1-12 for
the @ PushImOff macro.

Listing 1-12. @ PushImOff Offset of Immediate Data
PUSH Macro

;5 %%kx @PushImOff Offset of Immediate Data Push Macro
@PushImOff MACRO arg

. XALL

push bp ;; save base pointer

mov bp,sp ;; move stack pointer to BP

push ax ;; save accumulator

mov ax,offset &arg ;; get offset of immediate data
xchg Cbpl,ax ;5 swap old BP and immediate data
mov bp,ax ;; restore old BP from AX

pop ax ;; restore accumulator

.SALL

ENDM ;; end macro definition

The last discrete case that @PushOp recognizes is an attempt to push
memory data onto the stack directly. Here the difficulty lies in the fact that the
stack accepts only 16-bit data. By using the PTR override directive, you can
convince MASM to save the desired data one word at a time. @ PushOp contains
a loop that repeats the operation for each word of the data element being saved,
incrementing the address by two on each pass. Thus double word, quad word,
ten-byte, and structured variables may be saved onto the stack.

Finally, note that the @PushOp macro still does not process any refer-
ences that contain complex addressing (such as 2[BP], ete.). If it proves neces-
sary, you can implement such checks by using the IRPC macro directive to
check the argument for brackets, base plus index addressing, and base plus off-
set addressing.

The final test of the @ PushOp macro appears in Listing 1-13, which shows
the code that results from a few example calls of the @ PushOp macro.

This expansion shows everything as expected. The last operation in the
listing, where @ PushOp is used on a quad word variable, may not be clear. Each

33

Coding and Programming

Listing 1-13. Example Expansion of @PushOp Generalized
PUSH Macro

dat_seg SEGMENT
datq dq
dat_seg ENDS

start:
@PushOp
1
@PushOp
1
@PushOp
2
@PushOp
2
2
2
2
2
2
2
@PushOp
2
2
2
2
2
2
2
@PushOp
2
2
2
2
2
2
2
@PushOp
2
2
2
2

40404146142424343h

ax
push
cs
push
al
push
01234h
push
mov
push
mov
xchg
mov
pop
VA'
push
mov
push
mov
xchg
mov
pop
start
push
mov
push
mov
xchg
mov
pop
datq
push
push
push
push

ax
cs
AXaunw

bp

bp,sp

ax
ax,01234h
[bpl,ax
bp,ax

ax

bp
bp,sp
ax
ax,'A'
[bpl,ax
bp,ax
ax

bp
bp,sp
ax

; general register save
; segment register save
; short register save ...

; becomes general reg.
; word constant save

; byte constant save

; program label offset save

ax,offset start

Cbpl,ax
bp,ax
ax

?argadd
?argadd
?argadd
?argadd

; quad word variable save
; 1st word
; 2nd word
; 3rd word
; 4th word

34

1 — Tools for Structured Coding

push has the same argument. What isn’t visible from this trimmed listing is that
each line has a relocatable address, 0000 for the first word, 0002 for the second
word, and so forth. Unfortunately, we can’t squeeze a 132-column listing into this
book, so you’ll just have to try it out if you want to check on it.

This example is especially useful because it demonstrates one area where
macros are nearly always preferred over subroutines. When dealing with stack ma-
nipulations (as in @PushIm and @ PushImOff), macros are able to perform the op-
eration without “worrying” about the effects of the CALL instruction on the stack.
This is especially important when placing or removing data from the stack because
a subroutine cannot alter the top of the stack and return without causing major
problems.

Warnings about Conditional Assembly and Macros in MASM

When using macros, we tend to forget that macros generate in-line code and not
calls to routines. Although this has the advantages of generating fast code and of
freeing us from some restrictions in using the stack, production of in-line code
results in larger code. As a designer, your responsibility is to judge when a
macro, with its quick execution, is called for and when a subroutine, with its
space-saving ability and greater structure, is called for. Generally, use macros
when the code is small and time is critical, or when you need to configure the
routine to the individual circumstance. Use subroutines when the code is larger,
is of a general nature that can be reused, or would be convenient to have in one
place (so that it can be verified easily).

‘Another confusing issue with macros concerns the use of symbols. You re-
member that symbols are defined through the use of the equ or = operators. These
symbols are then evaluated by MASM and replaced by their values. It sometimes
happens that we programmers forget that macro arguments are not symbols and
vice versa. According to the MASM manual, macro arguments are replaced by the
actual parameters using one-for-one text substitution. Macro arguments may be
created by one macro and, using the text substitution ability, passed as a complete
text string to another macro. This is not possible with symbols. Indeed, symbols
may only be assigned text values using the equ operator, which does not allow them
to be modified. The = operator only allows symbols to be given numeric values or
TYPE attributes. An example of this limitation, and of one way to overcome it, ap-
pears in our presentation of structured control statements that follows.

Structured Control Statements in Assembly Language

Now that we have all of the tools necessary to build our structured control state-
ments, let’s do it. The most common and useful control statements are shown in
Table 1-8.

The statements in Table 1-8 are those that are used most frequently to im-
plement structured control in structured programming. Some languages have
an abundance of them; others have few. It was only recently that FORTRAN
gained use of the IFFTHEN-ELSE structure in FORTRAN-77. Out-of-the-
box assemblers almost never have these structures implemented for coding

35

Coding and Programming

36

Table 1-8. Structured Control Statements

Statement Structure

IF-THEN IF <condition> (execute if condition TRUE)
ENDIF

IF-THEN-ELSE IF <condition> (execute if condition TRUE)
ELSE (execute if condition FALSE)
ENDIF

DO-WHILE WHILE <condition> (execute if condition TRUE)
END_WHILE

REPEAT-UNTIL REPEAT (execute if condition FALSE)
UNTIL <condition>

FOR-DO FOR <wvar> = <begin> to <end> (execute for each integer

value of var between begin and end, inclusive,
incrementing or decrementing var by one each loop)
END_FOR

CASE-OF-<var> CASE <var> OF
<case A> (execute if var = A)
<case B> (execute if var = B)

<‘c.a:se N> (execute if var = N)
<default> (execute if no match)
END_CASE

purposes, even though many support IF-THEN-ELSE for conditional assem-
bly. The reason is simple: Assemblers are supposed to be at a lower level than
high-level languages. Because we have decided that these structures can make
our programming life easier, we can implement them, using the tools that we’ve
just learned about.

There is one structure that we have left out. This is the CASE statement.
The structure that we have presented is taken from PASCAL syntax but is nev-
ertheless similar to that used in C and other languages. The problem with the
CASE statement is that you must check the key variable var against each case
that appearsin the list. If the initial statement and the cases are not contained in
the same macro, you can’t know what the key variable was. Remember that
MASM does not allow strings to be used with the = symbol assignment operator.

You can create a variation of a CASE statement by listing all the possible
cases and their destination labels as arguments to one macro. This pseudo case
macro is discussed in a following section of this chapter.

The complete listing for the rest of the definitions of our structured control
macros appears in Listing 1-14. Note the heavy use of macro comments (;;) to
save room in the macro storage areas. These macros generate many symbols.
They may be used in any legal order to a theoretical limit of 89 nesting levels.
However, MASM runs out of storage long before that limit is reached. No initial-
ization is required. All symbols are self-initializing.

1 — Tools for Structured Coding

Listing 1-14. Structured Control Macros

PAGE 50,132 ; set listing to full screen

3 2 KKK KKK K KKK K K K 3k 3K 3K 3K K K K 3K 3K 3k K KoK 3K 3K K K K oK oK oK 3k 3k 3k KK KoK 3K oK 3k 3k K oK oK oK Kk KK Kok kK KK
;; MACRDO DEFINITIONS

3 5 RRHOKKKKK KK KK KKK KKK KK KKK K KKK KKK KKK K KKK K KKK KKK K KKK K KKK KKK K KKK KKK K

rrs

FALSE EQU 0 ; define "FALSE"
TRUE EQU OFFFFh ; define "TRUE"
s

,,** @TestSym X¥kkkKKKKKKKKKKKKKKKKKKkKkXKkkkXkkk SUPPORT MACRO *xkkxkx
Test to see if nesting level has been defined. If not,

then set "?SYMDEF" to initialize the counter for that level.
ALl processes normally on Pass #1 start counters at 0.

ALl symbols must be reset on the beginning of Pass #2.

Note that "?p2sw..." symbols stand for "Phase 2 SWitch".

Check that nesting level 10 is first level to be re-init.
Note: The value of 10 is chosen for the initial level to

s, reserve 2 digits for the nesting level.

Ns Ns Ns Ne N N
= Ne Nz Ns Ns Ne N

N
~

rs

@TestSym MACRO p1,p2

IF1 ;; if 1st pass then check for defined
IFNDEF &p18&p2
?2p2sw&p1&p?2 = TRUE ;; set pass two redefine switch
?symdef = FALSE ;; cause counter initialization
ELSE
?symdef = TRUE ;; allow counter increment
ENDIF ;; end symbol definition check
ENDIF ;; end 1st pass check
IF2 ;; if 2nd pass then reinitialize
IF (?p2sw&p1&p2) ;; if not reinitialized then ...
?7p2sw&p1&p2 = FALSE ;; clear 2nd pass redefine switch
IF (?p2sw&p1&10) ;; ... and check level 10 for init
.ERR ;; exit with error message
%0UT @TestSym macro: &p1 nesting level not closed
%#0UT on 2nd pass
ENDIF ;5 end Llevel 10 for init check
?symdef = FALSE ;; force reinitialize of counter
ELSE
?symdef = TRUE ;; allow counter increment

continued

37

Coding and Programming

38

Listing 1-14. continued

ENDIF ;2 end "if not reinitialized" check

ENDIF ;> end 2nd pass check

ENDM ;; end macro definition
rs
;%% @ZeroSym Xkkkkkkkkkkkkkkkxkkkkkkkkkkxxxkxx SUPPORT MACRO
;; Initialize the nesting sequence counter on 1st use
@ZeroSym MACRO p1,p2
&p1&p2 = 0

ENDM

;7 %% @IncSym Xxkxkkkkkkkkkkkkkkkkkkkkxkkkxkkxkkx SUPPORT MACRO
;; Increment nesting sequence counter
@IncSym MACRO p1,p2
&p1&p2 = &p1&p2 + 1
ENDM

rrs
53 X% @DecSym kxkxkkkkkkkkkkkkkkkkkkkkkkkkkkxkxx SUPPORT MACRO
;; Decrement nesting sequence counter
@DecSym MACRO p1,p2
&p1&p2 = &p1&p2 - 1

ENDM
rs
;3 %% @Makedmp2 Xkkkkxxkxkkkkkkkkkxkkkkkkkxkkkkkxkxkx SUPPORT MACRO
;; Insert actual JMP instruction and destination into code
@MakeJmp2 MACRO p1,p2,p3

jmp &p1&p28&p3

ENDM
;2 %% @MakeJdmp XKkKKKKKKKKKKKKKKKKKKKKKKXXKXXXX SUPPORT MACRO
;; Reformat symbols for evaluation for JMP instruction
@Makedmp MACRO p1,p2,p3
?2?2tmp = &p38&p2

@Makedmp2 p1,p2,%22tmp

ENDM

=

= Ns N

*x @MakeJmpLabel2 xkxkxkkkxkkkkkkkkkkkkkkkkkxkx SUPPORT MACRO
;; Insert actual JMP destination Llabel into code
@MakeJmpLabel2 MACRO p1,p2,p3

&p1&p28&p3:

ENDM

=

’
5 ¥k @MakeJmplabel Xxxkxkkkkkkkkkkkkkkxxkxkxxxxx SUPPORT MACRO
;; Reformat symbols for evaluation of JMP destination Llabel

@MakeJmpLabel MACRO p1,p2,p3

= Ns N»

XkkKXK

XAkkkX

Xkkkk

XkXKkXK

XKKXKX

XKKXKXKX

*kXkkX

1 — Tools for Structured Coding

?2%2tmp = &p38&p2
@MakeJmpLabel2 p1,p2,%22tmp
ENDM

rrs

;5 Xxx @IfTrue Xxkkkkkkkkkkkkkkkkkk STRUCTURED CONTROL MACRO kxkxxkxx
;5 Structured "IF" Macro - IF True
@IfTrue MACRO p1

LOCAL iftrue

j&p1 iftrue ;2 jump to "IF" section of code
IFNDEF ?if_Llevel ;; set up new level of nesting
2if_level = 10
ELSE
?2if_level = ?2if_level + 1
ENDIF
@TestSym ?if_nest,%?if_level ;; set up new sequence #
IF (?symdef)
@IncSym ?if_nest,%?if_Llevel
ELSE
@ZeroSym ?if_nest,%?if_LlLevel
ENDIF

;; Insert jump to "ELSE" or "IF NOT" section into code
@Makedmp ?2if_,%2if_level , 2if_nest

iftrue:
ENDM

rs
5 %k @IfElse XxkxXkkXXkkxkxxxxxx¥x STRUCTURED CONTROL MACRO X%X%x
;3 Structured "ELSE" macro
@IfElse MACRO
IFNDEF ?if_Llevel
; ERROR - "eIfElse'" without opening "@IfTrue" statement
EXITM
ENDIF
IF (?2if_Llevel LT 10)
; ERROR - "@IfElse" without opening "elfTrue'" statement
EXITM
ENDIF
;; Generate "e@IfElse" code
@IncSym ?if_nest,%?if_level
@MakeJmp ?2if_,%?2if_level ,?if_nest
@DecSym ?if_nest,%?if_level
@MakeJdmpLabel ?2if_,%2?2if_level,?2if_nest
@IncSym ?if_nest,%?if_level
ENDM

Ne
Ne Na

x @ITENd kkxkxXkkkkxkkkxkkkkxx%* STRUCTURED CONTROL MACRO xXxXxXxxX

N

continued

39

Coding and Programming

Listing 1-14. continued

;5 Structured "END" macro for use with "@IfTrue"
@IfEnd MACRO
IFNDEF ?if_Llevel
; ERROR - "@IfEnd" without opening "@IfTrue" statement
EXITM
ENDIF
IF (?if_level LT 10)
; ERROR - "eIfEnd" without opening "e@IfTrue" statement
EXITM
ENDIF
;; Generate "@IfEnd" Llabel
@MakeJdmpLabel 2if_,%?2if_Llevel ,?if_nest

?2if_Llevel = ?2if_level - 1
ENDM
Y
;7 %% @DoWhile Xxkkxxkkxkkkxkkxxxkxx STRUCTURED CONTROL MACRO xkxxXx
;; Structured "DO_WHILE'" macro
@DoWhile MACRO p1,p2,p3
LOCAL iftrue
IFNDEF ?do_Llevel ;; set up new level of nesting
?do_Llevel = 10
ELSE
2?do_Llevel = ?do_level + 1

ENDIF
Set up new sequence number for nesting level
@TestSym ?do_nest,%?do_Llevel

N
Ne

IF (?symdef)

@IncSym ?do_nest,%?do_Llevel
ELSE

@ZeroSym ?do_nest,%?do_Llevel
ENDIF

;; Insert top-of-loop label for jump
@MakeJmpLabel ?do_,%?do_Llevel ,?2do_nest
;; Insert condition check into code
cmp &p1,8&p3
;5 Jump to "DO_WHILE_TRUE"™ section of code
j&p2 iftrue
;; Step to next label in sequence
@IncSym ?do_nest,%?do_Llevel
;; Insert end-of-loop jump into code
@MakeJmp ?do_,%?do_Llevel ,?do_nest
5, Begin the "DO_WHILE_TRUE"™ section of code
iftrue:
ENDM

40

1 — Tools for Structured Coding

’
27 X% @DOEXit Xkxkxxkkkkxkxkkkkkxxkk STRUCTURED CONTROL MACRO X%k
5, Structured "DO_EXIT" macro for use with "@DoWhile"
@DoExit MACRO
;; Insert end-of-loop jump into code

@Makedmp ?do_,%?do_level ,2do_nest

ENDM

= Ns N

55 %% @DoEnd)kxxxkkkkkkkkkxxxxkkkk STRUCTURED CONTROL MACRO *Xxkxx
;2 Structured "DO_END'" macro for use with "@DoWhile"
;; @DoEnd macro generates the code for a structured ENDDO
@DoEnd MACRO
IFNDEF ?do_Llevel
;5 ERROR - "@DoEnd" without opening "eDoWhile" statement
EXITM
ENDIF
IF (?do_level LT 10)
; ERROR - "@DoEnd" without opening "eDoWhile" statement
EXITM
ENDIF
;; Back step to previous label in sequence
@DecSym ?do_nest,%?do_level
;; Generate jump to beginning-of-Lloop
@Makedmp ?do_,%?do_level ,?do_nest
;; Step to next label in sequence
@IncSym ?do_nest,%?do_Llevel
; Generate "@DoEnd" Llabel
@MakeJmpLabel ?do_,%?do_level ,?do_nest
2?do_Llevel = ?do_level - 1
ENDM

Nu

Ne

;

;; %% @Repeat XXkkXkkkkkkkkkx**x*kx STRUCTURED CONTROL MACRO XXx¥x
;; Structured "eRepeat" macro

;; @Repeat generates the code for a structured REPEAT-UNTIL
@Repeat MACRO

IFNDEF ?rep_level 5, set up new level of nesting
?rep_Llevel = 10

ELSE
?rep_level = ?rep_level + 1

ENDIF
;; Set up new sequence number for nesting level
@TestSym ?rep_nest,%?rep_Llevel

%

IF (?symdef)
@IncSym “?rep_nest,%?rep_Llevel
ELSE

continued

41

Coding and Programming

42

Listing 1-14. continued

@ZeroSym ?rep_nest,%?rep_Llevel
ENDIF
;; Insert top-of-loop label for jump
@MakeJmpLabel ?rep—,%?rep_Llevel ,?rep_nest
ENDM

X% @Until xkkxokxkkkkkkkkkkkxkkkkk STRUCTURED CONTROL MACRO xxxxx
Structured "@Until"™ macro for use with "@Repeat"
ntil MACRO p1,p2,p3
LOCAL iftrue
IFNDEF “?rep_Llevel
; ERROR - "eUntil"™ without opening "eRepeat" statement
EXITM
ENDIF
IF (?rep_level LT 10)
; ERROR - "eUntil" without opening "@Repeat" statement

Ne Ne N

C Nr o Ne Na

@

EXITM
ENDIF

;; Insert condition check into code
cmp &p1,8&p3

;5 Jump to "eUntil" .TRUE. section of code
j&p2 iftrue

;5 Insert beginning-of-Lloop jump into code
@Makedmp ?rep_,%?rep_level,?rep_nest

iftrue:

?rep_Llevel = ?rep_level - 1
ENDM

5 Xk @For XXkkkkKkkKKkKKkkkkkkkkk STRUCTURED CONTROL MACRO kkxx
Structured "eFor" macro. Use of this macro as follows:
@For counter begin,end,dir, step

Ne Ns N

= N
Ns N

@For MACRO p1,p2,p3,p4,p5
LOCAL first
LOCAL iftrue

IFNDEF ?for_Llevel ;;, set up new Level of nesting
2for_Llevel = 10

ELSE
?2for_Llevel = ?for_Llevel + 1

ENDIF

;; Set up new sequence number for nesting level
@TestSym ?for_nest,%?for_Llevel
IF (?symdef)
@IncSym “2for_nest,%?for_level

1 — Tools for Structured Coding

ELSE
@ZeroSym ?for_nest,%Z?for_Llevel
ENDIF
;; Insert counter initialization into code - (bypass 1st step)
mov &p1,8&p2 ; initialize Count
jmp first ; begin FOR Lloop

;; Insert top-of-loop label for jump
@MakeJmpLabel ?2for_,%?for_Llevel ,2for_nest
;; Insert step calculation into code - check for proper step at
;; same time
IFIDN <p4>,<+>

inc &p1 ; increment count
ELSE
IFIDN <p4>,<—>
dec &p1 ; decrement count
ELSE
; ERROR - Improper Step Specification in "eFor" Statement
EXITM
ENDIF
ENDIF
first: ; check for continuation
;; Insert condition check into code
cmp &p1,8&p3 ; reached end yet?

;5 Jump to "FOR_TRUE" section of code
IFIDN <p4>,<+>

jl iftrue ; no - continue FOR loop
ELSE ;; default to "-" step
jg iftrue ; no - continue FOR loop
ENDIF

;; Step to next Llabel in sequence
@IncSym ?for_nest,%Z?for_Llevel

;; Insert end-of-Lloop jump into code
@MakeJdmp ?for_,%2for_Level ,?2for_nest

iftrue:
ENDM
Hy
;7 %% @FOrEnd Xxxkxxxkkxxxxxkkxxxxkxk STRUCTURED CONTROL MACRO XXX
2, Structured "FOR_END" macro for use with "FOR"

;; @ForEnd generates the code for a structured FOR Lloop
@ForEnd MACRO

IFNDEF ?for_Llevel
; ERROR - "@ForEnd" without opening "FOR" statement
EXITM
ENDIF
IF (?for_level LT 10)

continued

43

Coding and Programming ’

44

How

Listing 1-14. continued

; ERROR - "aeForEnd" without opening "FOR" statement
EXITM
ENDIF
;7 Back step to previous label in sequence
@DecSym “?for_nest, %?for_Llevel
;; Generate jump to beginning-of-Lloop
@Makedmp 2for_,%?for_Llevel ,2for_nest
;; Step to next label in sequence
@IncSym ?for_nest,%?for_Llevel
;; Generate "FOREND" Llabel
@MakeJdmpLabel ?2for_,%2for_Llevel ,2for_nest
2for_level = ?2for_Level - 1
ENDM
3 5 RKKKKK KK KKKKK KK KKK KKK KK KKK KK KK KKK KK KK KKK KKK KKK KK KKK KKKk KKK KK kK

the Structured Control Macros Work

The complexity of these macros results from the need to support nested control
structures. Consider the example illustrated in Figure 1-2. Each IF-THEN-
ELSE structure requires three jump statements with three unique labels.
Because we cannot use symbols to store the unique labels generated by the
LOCAL directive, we must resort to creating our own labels from counters.
This provides the direct control required for the task.

For single levels of nesting, a simple counter would suffice. In Figure 1-2,
note how the IFF-THEN-ELSE associated with condition b uses the labels in the
sequence 3,4,5. This would be easy to implement because the labels are used in
the same order in both jump instructions and destination labels. However, a
simple counter becomes “confused” as soon as we nest the control structures. A
glance at the sequence of labels for all three IFF-THEN-ELSE statements shows
adistressing lack of order. This problem is overcome by using a separate counter
for each nesting level.

Unique labels are ensured by including three pieces of information in each
label. First, there is an identifier for the type of structure, such as ?if_us, do_,
and ?rep_. The question marks are used to reduce conflicts with user-defined
symbols or labels. The second piece of information is the nesting level, which is
used to distinguish between label number » at one nesting level and label num-
ber % at another nesting level. Lastly, the value of the counter is included to
provide a unique label for each jump at a particular nesting level.

For comparison, Listing 1-15 shows these unique three-part labels as gen-
erated by our structured control macros. The first two digits of the number are

1 — Tools for Structured Coding

CONTROL STRUCTURE ASSEMBLY LANGUAGE
i@ 1_1:
IF (condition a) [e 1%
L1 e (a) true starts —
j(b) 1.3:
- _ jmp 1_4:
IF (condition b) [La: . (b) true code
jmp 1-5:
ELSE [L_4: o (b) false code
ENDIF L_5: : (a) true ends
jmp 1_6:
ELSE —————— [L_2: . (a) false starts
i) 1.7:
IF (condition c) — [jmp 1-8:
L_7: e (c) true code
L]
jmp 1.9:
EL
SE l L_8: . (c) false code)
ENDIF L_9: (a) false ends ———
ENDIF ———— L_6:

Figure 1-2. IF control structure and corresponding
assembly language.

the nesting level, which starts at 10 so that two digits are always reserved for
the nesting level. This prevents level one, counter eleven (1-11) from being con-
fused with level eleven, counter one (11-1).

The condensed source corresponds exactly to that presented in Figure 1-2.
By taking a close look, you will see that the expanded macros created the same
structure as the assembly language section in Figure 1-2.

Because of the three-part labels, each type of structured control macro has
to maintain a set of counters. This set includes a counter symbol to indicate the
current nesting level. In order to generalize the task of maintaining these coun-
ters, we have created the following macros: testsym, zerosym, incsym, and dec-
sym. These macros are passed their arguments, which they then append to
create each counter, consisting of the type identifier (?if_) and the current nest-
ing level.

Tricks and Warnings

When the time comes to create the actual jump instructions or jump destination
labels, we use the macros mkjmp, mkjmp2, mklbl, and mklbl1. The actual la-
bels consist of the type identifiers and numbers. The only way to evaluate a sym-
bol to its numeric value in MASM is through the percent sign operator (%),

45

Coding and Programming

46

Listing 1-15. Nested IF-THEN-ELSE Structure

; Condensed Source Code

@IfTrue e
@IfTrue e
@IfElse
@IfEnd

@IfElse
@IfTrue e
@IfElse
@IfEnd

@IfEnd

@IfTrue e
je 220000
jmp ?2if_100
220000:
; execute if condition
@IfTrue e
je 220001
jmp 2if_110
220001:
; execute if condition
@IfElse
jmp 29f_111
2?2if_110:
; execute if condition
@IfEnd
29f_111:
@IfElse
jmp 211101
?2if_100:
; execute if condition
@IfTrue e
je 220002
jmp ?2if_112
220002:
; execute if condition
@IfElse
jmp 2if_113
21f_112:

; Expanded Listing

(a)

(b)

(b)

(a)

(c)

is

is

is

is

is

true

true

not true

not true

true

condition (a)

condition (b)

"else" for condition (b)
end of condition (b)
"else" for condition (a)
condition (¢)

"else" for condition (c)
end of condition (c¢)

end of condition (a)

condition (a)

condition (b)

"else" for condition (b)

end of condition (b)

"else" for condition (a)

condition (c)

"else" for condition (c)

1 — Tools for Structured Coding

; execute if condition (c) is not true

@IfEnd end of condition (c)
3 ?29f_113:

@IfEnd end of condition (a)
3 2if_101:

which is valid only when applied to an argument of a macro call. We want to eval-
uate the symbol defined by the two pieces of the counter, such as:

mkijmp2 p1,p2,%&p38&p2

However, the MASM manual informs us that the ampersand operator (&)
may not be used in macro calls. We are thus required to create a temporary vari-
able and use that.

?2?tmp = &p3&p2
mkjmp2 p1,p2,%22tmp

This brings up an interesting point. The first form, which contains the am-
persands in the macro call, does work. Choosing to use a “hidden” feature in-
volves trading off ease of use against future compatibility or even future
support. In addition, you must always ask whether an unsupported or illegal
feature can be depended on to perform consistently. The resolution of this di-
lemma is left up to the reader.

The authors used this illegal feature in a program that generates no code
but solves the famous “Towers of Hanoi” problem in a recursive manner. In addi-
tion to gaining generality, our method of creating counter symbols from their
various parts allows creation of new counters as needed. These counters must be
initialized before use, or the first attempt to increment or decrement them re-
sults in a Symbol is not defined error. Using the IFDEF conditional operator, a
check is made to see whether initialization is required on each use of a symbol.

Initialization brings up yet another warning associated with MASM. As we
have stated, MASM is a two-pass assembler that defines symbols on the first
pass and uses them on the second. This implies that symbol definitions are pre-
served from pass one to pass two. Thus, when MASM begins its second pass, all
of the counters from pass one are defined already and contain their last value. If
the symbols are not reinitialized at the beginning of the second pass, a phase
error results because the starting counter values are different.

Now, IFDEF is required to initialize the symbols on the first pass because
we have no idea just how many counters we will require, but the use of IFDEF is
insufficient for the second pass. We have solved this problem by creating the
?p2sw . . . symbols, which are checked on the second pass to see whether the
counters must be reset to their zero values. The name is derived from Phase 2

47

Coding and Programming

SWitch. This checking process also provides an opportunity to check that the
nesting levels are at the outermost level, indicating that the IF-IFEND,

DOWHILE-DOEND, ete., are properly paired.

Listing 1-16 contains sample expansions for the structured control macros
defined above. As you can see, we have suppressed those portions of the expan-
sion that do not produce code or jump labels. If you want to see the workings of
these macros in more detail, use the . LALL directive. Use only a short example
because many steps are involved in processing these macros. The number of
steps also explains why the time required to assemble a program increases.
Don’t expect fast assemblies with these macros, just fast coding.

Listing 1-16. Expanded Use of Structured Control Macros

@IfTrue e
1 je 220000
jmp ?if_100
1 270000:
; Execute if true
@IfElse
3 jmp ?2if_101
3 ?if_100:
; Execute if not true
@IfEnd
3 ?if_101:
@DoWhile ax,le, bx
3 2do_100:
1 cmp ax,bx
1 jle 220001
3 jmp ?do_101
1 220001:
; Execute while ax <= bx
@DoExit
3 jmp ?do_101
; Break out of code
@DoEnd
3 jmp 2do_100
3 ?2do_101:
; mmmmm—m— e ———— _—
@Repeat

3 ?rep_100:
; Execute until condition met
@eUntil ax,e,bx
1 cmp ax,bx
je 220002

—

48

1 — Tools for Structured Coding

jmp ?2rep_100
1 220002:

@For ax,10,20,+

1 mov ax,10 ; initialize count
1 jmp 220003 ; begin FOR loop
3 ?for_100:
1 inc ax ; increment count
1 2720003: ; check for continuation
1 cmp ax,20 ; reached end yet?
1 jl 220004 ; no - continue FOR Lloop
3 jmp ?2for_101
1 270004:

; Execute for ax = 10 to 20 by 2's

@Forknd

3 jmp ?2for_100

3 2for_101:

The Pseudo Case Macro

The last macro that we present in this chapter is the pseudo case macro, shown
in Listing 1-17. Because the macro must have “foreknowledge” of the structures
that it supports, we don’t consider this a structured control statement. Our case
macro functions more like a dispatch block, something like FORTRAN’s com-
puted GOTO.

Listing 1-17. Pseudo case Macro Definition

@Case MACRO key,case_Llist,jmp_Llabels

?2?2tmp_1 = 0
IRP match,<&case_Llist> ;; sequence through cases
2?2tmp_1 = ?22?2tmp_1 + 1 ;; set index number
cmp key ,&8match ; case match?
2%2tmp_2 = 0
IRP retl,<&jmp_Llabels> ;; sequence through jumps
2?2tmp_2 = ??tmp_2 + 1 ’J; ... Until index matches
IF (?2?2tmp_1 EQ ?22tmp_2)
je &&&retl ; Yes!
EXITM
ENDIF ;; end condition check
ENDM ;; end 2nd IRP block
ENDM ;; end 1st IRP block
ENDM ;; end macro definition

49

Coding and Programming

This macro does provide a good example of the ability to parse two lists simul-
taneously. The outer loop, irp match,< &case_list>, sequences through the ele-
ments in the case list, whereas the inner loop, irp retl,<&jmp_labels>, selects
the corresponding jump label. This technique may also be used to implement
substitution macros.

In substitution macros, the outer loop sequences through elements of a list
and looks for a match. Once a match is found, say, at the xth element, the macro
enters the inner loop and sequences to the xth element of that list. One possible
use of this would be to implement a jump-on-not-condition macro where the se-
lected jump would be replaced by its opposite. Once again, remember that addi-
tional ampersands are required in nested macro blocks.

The expansion of the @Case macro in Listing 1-18 gives the expected re-
sults. The programmer is responsible for ensuring that the same number of ele-
ments appears in each list. Otherwise, an invalid control structure could be
created.

Listing 1-18. Pseudo @Case Macro Expansion

@Case al,<'A','B','C','D'>,<subA,subB,subC,subD>

2 cmp al,'A’ ; case match?
3 je SubA ; yes!
2 cmp al,'B' ; case match?
3 je subB ; yes!
2 cmp al,'c’ ; case match?
3 je subC ; yes!
2 cmp al,'D’ ; case match?
3 je subD ; yes!
SubA:
jmp merge
subB:
jmp merge
subC:
jmp merge
subD:
jmp merge
default:
merge:

Data Macros

50

Macros can be used to generate data or code. The ideas and methods are the
same in either case, but for instructional purposes we’ll start by looking at
macros that generate only data.

The simplest example of an instruction to MASM that generates data is

1 — Tools for Structured Coding

TenBytes DB 10 DUP 4 ; reserve 10 bytes with the
; number 4 in them

This instruection is of limited use, since it is more likely that we want a se-
quence of numbers as in an indexing set. As an example, let’s reserve N words of
data with the set of the numbers from 1 to N as follows:

@FirstTry MACRO N ;; define macro with parameter N
NUMB = 0 ;; initialize the number
REPT N ;; repeat the following N times
NUMB = NUMB+1 ;7 increment index
DW NUMB ;; define word with NUMB
ENDM ;; end REPT command
ENDM ;; end macro

Note that we have an ENDM for every MACRO directive. The first vari-
able, NUMB, is set to a value using = instead of EQU in order to allow changing
the value within the REPT block.

The REPT directive is a looping structure like do . . . while in higher-level
languages. It repeats the action between the REPT and the ENDM N times. In
this case, it increments NUMB and then creates a word with that number. (Just
bear in mind that you are programming MASM to create constants that will be
assembled. You are not programming the computer to loop at execution time.)

If we put the FirstTry macro definition at the top of our program and then
use it in our data segment with N equal to 4, we have

@FirstTry 4

which means that MASM will assemble four words of numbers from 1 to 4.

This is a pretty boring example of the use of macros, so let’s make it more
interesting by creating a table of binary-coded decimal numbers that could serve
as a look-up table for hex to BCD translation.

@BCDtable MACRO N ;; define macro with parameter N
NUMB = 0 ;; initialize the numbers
HIGHBYTE = 0

REPT N ;; repeat the following N times
NUMB = NUMB+1 ;; increment index
IF (NUMB GT 9)
NUMB = 0
HIGHBYTE = HIGHBYTE + 10H
ENDIF
IF (HIGHBYTE GT 90H)
EXITM
ENDIF
BCDNUMB = (NUMB OR HIGHBYTE)
DW BCDNUMB ;; define word with NUMB

51

Coding and Programming

52

ENDM ;; end REPT command
ENDM ;; end macro

This is a bit more sophisticated but nothing too surprising for an experi-
enced programmer. Before we do a line by line analysis of these directives (we
use the term “directive” to indicate that it is an instruction to MASM and not to
the CPU), let us look at the result when we put this in our assembly program
with the parameter N set at 20:

38 @BCDtable 20

39 0004 0001 2 DW BCDNUMB ;
40 0006 0002 2 DW BCDNUMB ;
41 0008 0003 2 DW BCDNUMB ;
42 000A 0004 2 DW BCDNUMB ;
43 000C 0005 2 DW BCDNUMB ;
44 000E 0006 2 DW BCDNUMB ;
45 0010 0007 2 DW BCDNUMB ;
46 0012 0008 2 DW BCDNUMB ;
47 0014 0009 2 DW BCDNUMB ;
48 0016 0010 2 DW BCDNUMB ;
49 0018 0011 2 DW BCDNUMB ;
50 001A 0012 2 DW BCDNUMB ;
51 001C 0013 2 DW BCDNUMB ;
52 001E 0014 2 DW BCDNUMB ;
53 0020 0015 2 DW BCDNUMB ;
54 0022 0016 2 DW BCDNUMB ;
55 0024 0017 2 DW BCDNUMB ;
56 0026 0018 2 DW BCDNUMB ;
57 0028 0019 2 DW BCDNUMB ;
58 002A 0020 2 DW BCDNUMB ;

The first column is the line of our assembly listing, the second column is
the address offset from the beginning of the module, and the third column is
what we wanted —a table of BCD numbers from 1 to 20.

Let us now go through the macro line by line. First we initialize two vari-
ables. NUMB will cycle through the digits from 1 to 9, for the low byte, while
HIGHBYTE will have the high-order byte. The REPT directive governs the re-
mainder of the macro. Within the repeat block the first thing we do is increment
the NUMB variable. Then, we have counted to 10, and, if so, we reset NUMB to
0 to start the cycle again. Then we add 10h to HIGHBYTE, thereby increment-
ing the tens digit of the BCD number. Then we end the IF statement.

Next we check to see if we’ve built a BCD number bigger than one word
can hold and, if so, quit the macro. Penultimately, we create the BCD number by
bit ORing the ones digit with the tens digit. Finally, we create the word with the
desired BCD number. The first ENDM ends the REPT loop; the second one
ends the macro. We need a label to refer to this list of BCD numbers. We don’t

1 — Tools for Structured Coding

want to type a label every time we use the macro, so we’ll use the substitute op-
erator & to have MASM make our label for us:

@BCDtable MACRO N ;; define macro with parameter N
BCD1to&N label word ;; define a label
NUMB = 0 ;; initialize the numbers
HIGHBYTE = 0
REPT N ;; repeat the following N times
NUMB = NUMB+1 ;; increment index
IF (NUMB GT 9)
NUMB = 0
HIGHBYTE = HIGHBYTE + 10H
ENDIF
IF (HIGHBYTE GT 90H)
EXITM
ENDIF
BCDNUMB = (NUMB OR HIGHBYTE)
DW BCDNUMB ;; define word with NUMB
ENDM ;; end REPT command
ENDM ;; end macro

Now the list file shows our macro as follows:

31 @BCDtable 20

32 0004 1 BCD1to20 Llabel word ;define a label
33 0004 0001 2 DW BCDNUMB ;

34 0006 0002 2 DW BCDNUMB ;

35 0008 0003 2 DW BCDNUMB ;

etc.

The & in the macro definition told MASM to substitute the value of N used
in the macro invocation. But still we're not satisfied (we never are!). Having only
one label for the list of BCD numbers will force us to use an index to access the
list, since there is only one access point. What we would like is a label for every
item. The expression operator % will enable us to take the value of each of our
numbers and use it as part of a label. We rewrite our macro as the two macros
shown here:

@BCD MACRO NAME ,NUMBER ;; NAME for Llabel,
;7 «-« NUMBER for the data
BCDof&NAME DW NUMBER ;; define word with bcd NUMBER

ENDM ;; end macro

7

@BCDtable MACRO N ;; define a macro with parm. N
NUMB =0 ;; initialize the numbers

INDEX =0

53

Coding and Programming

54

HIGHBYTE =0
REPT
INDEX = INDEX + 1
NUMB = NUMB + 1 ;; increment index

IF (NUMB GT 9)

NUMB = 0

HIGHBYTE HIGHBYTE + 10H

ENDIF

IF (HIGHBYTE GT 90H)

EXITM

ENDIF
BCDNUMB = (NUMB OR HIGHBYTE)
@BCD ZINDEX,BCDNUMB ;; INDEX for Llabel

;; ... BCDNUMBER for data
ENDM ;; end REPT command
ENDM ;; end macro

;; repeat the following N times

Now when we look at the listing file, we find that each byte in our table of
BCD numbers has an appropriate label for our use, as shown in the following:

@BChtable 20

0004 0001 3 BCDof1 DW BCDNUMB ; define word with bcd NUMBER
0006 0002 3 BCDof2 DW BCDNUMB ; define word with bcd NUMBER
0008 0003 3 BCDof3 DW BCDNUMB ; define word with bcd NUMBER
000A 0004 3 BCDhof4 DW BCDNUMB ; define word with bcd NUMBER

.
.

We can create sophisticated tables in this way. If we have a formula such as
(N x M)/((P+Q) MOD T), we can let MASM create our table for us instead of
doing it by hand and typing in the results.

We should check for overflow by including in our macro code something like
the following

IFE (BCDNUMB LE OFFFFh) ;; bigger than a word can hold?
DW BCDNUMB ;; ok, small enough for a word
ELSE

%0UT ERROR IN @BCD MACRO

The OUT writes your message to the screen at assembly time—in this case
ERROR IN @BCD MACRO.

So far, we have always used parameters as individual items separated by
commas. It is also possible to have a set of items be a single parameter to the
macro for repetitive data creation. For example, if we want to set up a list of
strings of messages to display, we could code a macro set as follows:

@OptDisp MACRO OptType,Options ;; OptType = label,
;; ... Options = list

1 — Tools for Structured Coding

OptType&List db Options
ENDM ;; end macro

Then we could use it in the data segment as follows:
@OptDisp LineSpeed,<'1200sql,'2400','4800'>

LineSpeed will be substituted in the label, and each string in the angle brackets
will be put in a db directive, just as if we’d typed in

LineSpeedList db '1200"
db '2400'
db '4800"

This is of limited use, since to access a string we have to rely on the knowl-
edge that each string is 4 characters long. Much more often we have variable-
length strings terminated by an ASCII zero. So here is a macro to make such
strings:

@MakeList MACRO Name?2,messag
MESSAGE&Name?2 db CR,LF, messag,CR,LF,0
ENDM
77
@OptDisp MACRO Options ;; OptType = label, Options = Llist
Name3 = 0
IRP msg,<Options>
Name3 = Name3 +1
@MakeList %Name3,msg
ENDM
ENDM ;; end macro

We can use the strings in the data segment as follows:
@OptDisp <'Error','Waiting','Computing'>

Each string in the angle brackets will be put in a db directive, as shown in
the following listing fragment:

@OptDisp <'Error','Waiting','Computing'>
0D OA 45 72 72 6F 72 3 MESSAGE1 db CR,LF,'Error',CR,LF,0
0D OA 57 61 69 74 69 3 MESSAGE2 db CR,LF,'Waiting',CR,LF,0
0D OA 43 6F 6D 70 75 3 MESSAGE3 db CR,LF,'Computing',CR,LF,0

The instructive point in this macro is that we have used the literal-text

operator (< >) in an IRP (Indefinite RePeat) directive to repeat the string crea-
tion as many times as necessary to use up our strings. Still, we are left with the

55

Coding and Programming

problem of how to access this list of strings. We need a list of addresses. The fol-
lowing macro provides the answer.

@MakeList MACRO Name2,messag
MESSAGE&Name2 db CR,LF,messag,CR,LF,0
ENDM
@MakeNames MACRO Name5
dw MESSAGE&Name5
ENDM ;; end REPT
;7
@OptDisp MACRO Options ;; OptType = label, Options = Llist
Name3 = 0
IRP msg ,<Options>
Name3 = Name3 +1
@MakelList 7ZName3,msg
ENDM
Name4 = 0
MessagelList Label WORD
REPT Name3
Name4 = Name4 + 1
@MakeNames 7Z%Nameé4
ENDM ;; end REPT
ENDM ;; end macro

When the macro is used in the data section, we get the same result as if we
had typed

@OptDisp <'Error','Waiting','Computing'>
MESSAGE1 db CR,LF,'Error',CR,LF,0
MESSAGE2 db CR,LF,'Waiting',CR,LF,0
MESSAGE3 db CR,LF,'Computing',CR,LF,0O
Messagelist Label WORD

dw MESSAGE1
dw MESSAGE?2
dw MESSAGE3

There is much more that we can do with macros to generate data, but we
have given you a good idea of the possibilities. The same techniques can be used
to generate code as well as data. Let’s move on to code macros.

Code Macros

Macros are a very powerful way of getting the assembler to do some program-
ming for you. Just as you can write a BASIC program to make the computer do

56

1 - Tools Jor Structured Coding

work for you, so you can write a MACRO program to make the assembler pro-
gram, MASM, do some of the tedious aspects of programming for you. A simple
example of what we mean is the followmg macro designed to write a character to

a file:

@WritToFil MACRO ;; define macro
mov ah,40h ;; DOS function to write to a file
int 21h ;; DOS call
ENDM ;; end macro

Now, instead of retyping the MOV and INT instructions whenever we want to
write a character to a file, we can use WmtTonl where we would otherwise have
written the code.

Macros vs Subroutines

You can do the same thing with a subroutine that you do with a macro, but
making short pieces of code into subroutines is inefficient. The difference between
a macro and a subroutine is that the macro inserts the desired code right where the
macro is placed in the source file, while a subroutine resides elsewhere and we have
to jump to that location to execute the code. In other words, use of macros to create
repetitive in-line code avoids the execution overhead involved in calling and return-
ing from subroutines.

We use a macro instead of a subroutine for the same reason we call someone
on the phone for a short conversation instead of going across town to visit—the
time lost in going to another location isn’t justified by the brevity of our task. Thus,
code macros tend to be very short because they add to the size of the program every
time they are used. If they get too long, they should be recoded as a subroutine.
How long is too long? That depends on the overhead needed to invoke the sub-
routine, on how often you use the function, and on the relative value of memory
versus speed for your application.

Macros are faster because they don’t require saving registers, pushing pa-
rameters, ete., but a lot of repetitions of short macros can take up space in your
object and executable files. Make the code a macro at first, and if it seems to be
getting out of hand, recode it as a subroutine. Later we’ll see how you can even code
the subroutine call as a macro.

Conditional Macros

The code macro example given is fairly straightforward, so let’s dress it up a
little. Suppose that for debugging we would like to write our characters to
the screen instead of to a file. We could rewrite the macro as follows:

@WritToFil MACRO EKOFLAG ;; define INCHRIF with
;7 ==« argument EKOFLAG

57

Coding and Programming

58

IFIDN <EKOFLAG>,<EKO> ;; if argument EKOFLAG is
;; =--« IDENTICAL to
;; the 3 letters EKO, assemble
;; --. next line
mov ah,06h ;; DOS function to write to
;; ... standard output
ELSE ;; if EKOFLAG is NOT IDENTICAL
;7 ... to the 3 letters EKO,
;; ... assemble the next Lline
mov ah,40h ;; DOS func. to write to a file
int 21h ;; DOS call
ENDM ;; end macro

In this case, MASM looks at the argument EKOFLAG to determine
whether to insert mov ah,06h or mov ah,;40h, as shown in the following:

@WritToFil EKO ; MASM substitutes MOV AH,06 & INT 21H here

because the argument is identical to EKO
MASM substitutes MOV AH,40H & INT 21H here

@WritToFil NOEKO

Ne Na

. ; because the argument is NOT identical to EKO

Note that instead of NOE KO in the preceding example we could have used
PHUBAH or anything else, since the important thing is that the argument not
be EKO. The spelling of our parameter is highly arbitrary. This leaves open the
possibility that we could forget our odd spelling and mistakenly write
@WritToFil ECHO. This would give us no screen echo because we wrote ECHO
instead of EKO. We can eliminate this error possibility by limiting ourselves to
either EKO or NOEKO as follows:

@WritToFil MACRO EKOFLAG define INCHRIF with argument
... EKOFLAG
if EKOFLAG = EKO, assemble

... next line

N

Ns Ne N

IFIDN <EKOFLAG>,<EKO>

» N8 Ns Ne N
N

mov ah,06h ; DOS function to write to

;; ... standard output
ELSE ;; otherwise ...
IFIDN <EKOFLAG>,<NOEKO> ;; if EKOFLAG = NOEKO, assemble...
mov ah,40h ;; DOS func. to write to a file
ELSE ;; if argument doesn't match

;; «.. €ither then
-ERR ;; dgenerate an assembly error
ENDIF ;; end condition testing
int 21h ;; DOS call
ENDM ;; end macro

1 — Tools for Structured Coding

Nested Macros

The macros we have been defining use the DOS function to write characters to
the standard output or to a file. But we may want to check to see if a key has
been struck to interrupt the output, and, if not, we continue on. DOS function
0B hex will check to see if a key has been struck, returning AL = OFF hex if a
character is available and AL = 00 if a character is not available. We can write a
macro chkchr and then call it from our macro WritToF'il as follows:

@ChkChr MACRO ;; define macro @ChkChr
mov ah,0Bh ;; check standard input
int 21h ;; DOS call
ENDM ;; end macro

@WritToFil MACRO WAITFLAG,EKOFLAG ;; 2 arguments
LOCAL bye ;; define a dummy address
IFNB <WAITFLAG> ;; if field for WAITFLAG is not
;; ... blank, assemble the
;; ... following

@ChkChr ;; see if a character is waiting
cmp al,0 ;; al = 0 = no character waiting
je bye ;; if no character, continue on
ENDIF ;; end condition testing
IFIDN <EKOFLAG>,<EKO> ;; if EKOFLAG = EKO, assemble ...
Mov AH,06h ;; DOS function to write to
;; ... standard output
ELSE ;; otherwise ...
IFIDN <EKOFLAG>,<NOEKO> ;; if EKOFLAG = NOEKO, assemble
MOV AH,40h ;> DOS func. to write to a file
ELSE ;; if arg. doesn't match either
.ERR ;; ... generate an assembly error
ENDIF ;; end condition testing
int 21h ;; DOS call
bye:
ENDM ;; end macro

This newest version of WritToF'il has several features to discuss. The LO-
CAL directive tells MASM that the label bye is a dummy label that MASM is to
replace with a different label every time the macro is invoked within a program.
This is to avoid the problem of the same label being used twice in one program,
which would generate an assembly error. MASM will assemble the macro using
220000 the first time in a module, 220001 the second time the macro is used, ete.,
through ?? FFFF (hex), should you care to invoke the macro 65,536 times in one
program. The LOCAL directive must be the very first thing after the MACRO
directive—not even comments can be placed before it! The IJFFNB WAITFLAG
tells MASM to assemble the next three lines only if the argument WAIT-FLAG

59

Coding and Programming

60

is Not Blank. Otherwise, the code is not included and the first line assembled
will be one of the IFIDN governed lines. This gives us the option of generating
code that will either write output or just check the keys and go on if nothing is
there. The IFNB checks for the existence of WAITFLAG, not for spelling, so we
could invoke the macro by any of the following

@WritToFil WAIT,EKO
@WritToFil WAITE,EKO
@WritToFil NoWate,EKO
@WritToFil FOOBAH,EKO

and still generate code that does not wait for input. Note also that we have
nested our macros, one macro invoking another.

More Macro Features

Instead of using only the WAITFLAG to determine whether to assemble the
code for writing, we might also make it a global option that we can choose at as-
sembly time. For example, we might like it to check for a key if we’re debugging
orifthe WAITFLAG is set, but not wait otherwise. While we are extending this
macro, we'll throw in some other new stuff. The new macro definition is

@WritToFil MACRO WAITFLAG,EKOFLAG
LOCAL bye ;; define a dummy address
;; macro to get a character from the standard input
;; 2 arguments: WAITFLAG & EKOFLAG determine whether to
;; wait for a character and whether to echo the input

- XCREF ;; suppress cross-referencing of Llocal
;s ... labels, etc.
x =0 ;5 x will be our indicator
IFNDEF DEBUG ;; if parameter DEBUG is not defined,
x =1 ;; flag = 1
ENDIF ;; end condition testing
IFNB <WAITFLAG> ;; if the field for WAITFLAG is not blank
x =2 ;; flag = 2
ENDIF ;; end condition testing

IF (x EQ 1) or (x eq 2) ;; if either DEBUG is not
;; defined, or WAITFLAG is not

;; blank
@ChkChr ;; see if a character is waiting
cmp al,0 ;; al = 0 = no character waiting
je bye ;5 if no character, continue on
ENDIF ;; end condition testing

IFIDN <EKOFLAG>,<EKO> ;3 if EKOFLAG = EKO,
;; ... assemble next Lline
mov ah,06h ;; DOS func. to write to standard output

1 — Tools for Structured Coding

ELSE ;; otherwise ...
IFIDN <EKOFLAG>,<NOEKO> ;; if EKOFLAG = NOEKO, assemble
mov ah,40h ;; DOS function to write to a file

ELSE ;5 if argument doesn't match either then
-ERR ; ... generate an assembly error
%0UT Error in @WritToFil MACRO - EKOFLAG not found
ENDIF ;; end condition testing
ENDIF ;; end condition testing
int 21h ;; DOS call
bye:
.CREF ;; restore cross-referencing
ENDM ;; end macro

Now at assembly time we can use the /d option to define DEBUG:
MASM myprgm,,,; /dDEBUG

and all the invocations of WritToF'il will generate code to check for input.

We have used a flag (with = instead of equ since we redefine it in the next
two IF statements) to determine whether we wait for a character. Instead of (x
eq 1) or (x eq 2), we could have coded « gt 0 or x NE 0, since any value other than
our initial value of 0 is valid. Note that we also added a few new directives. The ;;
tells MASM the comment should not be in the assembly listing. The .XCREF
saves assembly time and cross-reference listing space by telling MASM not to
clutter up our cross-reference listing with the names used only in the macro.
The .CREF restores cross-referencing, or it would be off for the rest of the list-
ing. We have also added the %OUT directive, which will write to the screen the
error message given. Although there is plenty more that we could do to this
macro, it has become pretty fearsome, so we’ll leave it here and encourage you
to experiment with additional features.

A Macro That Calls Subroutines

One of the more powerful uses for macros is as a generalized subroutine call,
similar to the subroutine calls in higher-level languages. The task is to push
some parameters on the stack and call the subroutine. Pretty simple, except
that to be of general use the macro needs to accommodate a variable number of
parameters, and it needs to allow for variable-size parameters (byte, word, dou-
ble word, quad word, and 10-byte floating point). To handle these requirements,
we use the .TYPE and TYPE operators (note the period before the first opera-
tor). Using .TYPE allows the macro to handle a register such as BX as well as a
data word or byte. Using . TYPE x returns a byte with the bits set according to
the following scheme:

Bit0 =1ifxis code related, 0 otherwise
Bit1 =1ifxis datarelated, 0 otherwise

61

Coding and Programming

Bit5 =1ifxisdefined, 0 otherwise
Bit7 =1ifaxisexternal, 0local or public
All other bits are zero

For example, if x is data related, defined, and local, then .TYPE x returns
00100010b (22 hex); i.e., bit 1 is set, and bit 5 is set. Since we want to allow the
use of registers (which are code related) as parameters, we will use the .TYPE
operator to tell us if we have data-related parameters. Since we have to handle
data for differing lengths differently, we use the TYPE operator, which returns
the byte length of its argument, for example:

TYPEN =1if Nisabyte

TYPEN =2if Nisaword

TYPE N =4if Nisadouble word

TYPE N =8if Nisaquad word

TYPE N =10if Nis aten-byte word (e.g., floating point)

TYPE N =xxif Nis an xx-byte structure,

TYPE N =FFFF if Nis a near program label

TYPE N =FFFE if Nis a far program label

The following macro illustrates the use of the TYPE and . TYPE directives:

@FcnCall MACRO Fnctn,ParmList ;2 subroutine & parameter Llist
IRP N,<ParmList2> ;; indefinite repeat (see below)
BYTELENGTH = TYPE N ;; get Length in bytes of the

;7 <= "PUSHed" items
IF ((.TYPE N) NE 22H) ;; is N data-related and defined?

push N ;; no, assume 16-bit register
ELSE ;; otherwise, it's data ...
IF (BYTELENGTH EQ 2) ;; so, if 2-byte parameter ...
push N ;; then just push it
ELSE ;; otherwise, ...

IF (BYTELENGTH EQ 1) ;; if 1-byte parameter,
;s -.. assume AX is available

mov ah,0 ;; clear upper part of AX
mov al,N ;; make parameter a word ...
push ax s, .. SO we can push it
ELSE ;; otherwise, ...
IF (BYTELENGTH EQ 4) ;; if 4-byte parameter,
push word ptr N ;5 push 1st and
push word ptr N + 2 ;s ... 2nd words
ELSE ;; otherwise, ...
IF (BYTELENGTH EQ 8) ;; if 8-byte parameter,
push word ptr N ;; push 1st,

62

1 — Tools for Structured Coding

push word ptr N + 2 ;; ... 2nd,
push word ptr N + 4 ;5 ... 3rd, and
push word ptr N + 6 ;; --. 4th words
ELSE ;; otherwise, ...
IF (BYTELENGTH EQ 10) ;; if 10-byte param.,
push word ptr N ;; push 1st,
push word ptr N + 2 J; ... 2nd,
push word ptr N + 4 7 ... 3rd,
push word ptr N + 6 35 ... 4th, and
push word ptr N + 8 ;; ... 5th words
ELSE
.ERR
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
call Fnctn
ENDM ;; end IRP
ENDM ;5 end macro

The nice thing about this macro is that we don’t have to specify in advance
how many parameters we wish to send to the subroutine until we call it. We
could call one routine with three parameters and another routine with two pa-
rameters, for example:

@FcnCall Fcn1,<word1,word2,byte3>
@FcnCall Fcn2,<word1,byte3>

We could have a virtually unlimited number of parameters for any subroutine
call we wish.

There are numerous deficiencies in the macro. Some of these deficiencies
are that we haven’t covered all the possible values of BYTELENGTH, such as
those for program labels or structures; we rather blithely assumed that the AX
register was available for our 1-byte parameter, etc. There are fixes for many of
these deficiencies—a loop based on BYTELENGTH might handle every possi-
ble length of data—but other problems would remain and we haven’t even looked
at the inverse macro we should write to pop the data for the called routine! The
example served to illustrate the TYPE and .TYPE directives, but we need
something better for a real general-purpose function calling routine. Before
continuing with this macro, we take a short diversion to introduce the important
subject of structures.

63

Coding and Programming

H

Using the STRUC Directive

Structures are assembler directives that enable you to build complex data for-
mats composed of bytes, words, etec., in ways that make them much more mean-
ingful and accessible to you. They are very similar to C structures and Pascal
records. They differ in that indexing is harder in MASM, and nesting is not al-
lowed. For an example that we can use in a parameter-passing macro, let’s sup-
pose you are writing a program that does mathematical routines. Here’s a
structure you might create:

MathNumbers STRUC

Boolean1 DB ((0)) ; 1 byte

Boolean?2 DB) ; 1 byte

ShortlInteger1 DW) ; 1 word

ShortInteger2 DW (1)) ; 1 word

LongInteger1 DD) ; 1 double word

LongInteger?2 DD (1)) ; 1 double word

Float1 DT ((0)] ; 1 ten-byte word (for 8087)
Float?2 DT) ; 1 ten-byte word (for 8087)
MathNumbers ENDS

MathNumbers defines a type of structure. STRUC and ENDS delimit the
beginning and end of the structure definition. We can now use Math Numbers to
declare some data as in the following:

TrueFalse MathNumbers <1,0,,,,,,>

MaxMinShort MathNumbers <,,32767,-32768,,,,>
MaxMinlLong MathNumbers <,,,,2147483647 ,-2147483648, ,>
e MathNumbers <,,7,,,,2.718281828>
ListLength = 100

MathList MathNumbers ListLength dup <,,,,,,,>

Space is reserved for 104 numbers. At 34 bytes/number, this is 3536 bytes
for our list of numbers. The structures are initialized first to 0 in the definition of
the structure and then reset to various values in the data section. Structures can
be considered as a user-defined data directive. The names of the structure ele-
ments are converted by MASM to byte displacements from the beginning of the
structure. You can now refer to the numbers in a structure by the field names,
just as you might in C or Pascal. For example,

cmp MaxMinShort.ShortInteger1,ax
is equivalent to

cmp [MaxMinShort + 2],ax

64

1 — Tools for Structured Coding

As an example, if we wish to scan the entire list of numbers for the first
floating-point number less than 0, we would code

mov di,MathList ; get address of Llist
mov cx,ListLength ; length of Llist for Llooping
mov bx,(TYPE TrueFalse) ; length of structure

CmpLup: cmp [dil.Float1,0 ; floating point number > 0?
jl ExitLup ; no, search done
add di ,bx ; point to next structure
Loop CmpLup ; scan entire list of members

ExitLup:...

Multiple Structures to Address Data

One very useful feature of using structures is that you can rearrange or add to
the structure definition at any time and the names you gave the elements will be
automatically updated when you reassemble. For example, let’s change the pre-
ceding MathList structure so that it interchanges the Boolean and floating point
numbers and adds the element LibraryPtr.

MathNumbers STRUC

Float1 DT 0) ; 1 ten-byte word (for 8087)
Float?2 DT 0) ; 1 ten-byte word (for 8087)
ShortInteger1 DW) ; 1 word

ShortlInteger2 DW ((0)] ; 1 word

LongIntegeri DD (1)) ; 1 double word

LongInteger?2 DD) ; 1 double word

Boolean1 DB (1)) ; 1 byte

Boolean2 DB (0D ; 1 byte

LibraryPtr DD) ; 1 double word

MathNumbers ENDS

The advantage of using structure names in our code is that, after reassem-
bly of all the code and data elements, our new structure definition /di/. Float1
still points to the first of the floating point numbers, even though we’ve rear-
ranged the data. So, code that refers to data by structure name needn’t be re-
written. Note, however, that if we have data in our file using the old structure
definitions, then we must realign the existing data to conform to our new strue-
ture. Rearranging the structure doesn’t rearrange the existing data, only the
relative positions declared for it. We have to ensure that the actual data corre-
sponds to the data structure declaration.

Unlike C structures, MASM structures cannot contain other structure
definitions (there’s no reason they couldn’t, so maybe a later version of MASM
will allow it). However, there is no reason a structure can’t contain the address of

65

Coding and Programming

66

another structure, which is why we included LibraryPtr in the structure. Sup-
pose we have another structure called Library defined as follows:

Library STRUC

FloatLib DD (1)) ; pointer to floating point Llib.
ShortIntLib DD (%)) ; pointer to short integer Llib.
LongIntLib DD (1)} ; pointer to long integer Lib.
BooleanLib DD) ; pointer to Boolean Llib.

Library ENDS

We can now set up a set of library routines with their addresses organized
in the structures, for example:

AddLibs Library <FloatAdd ,ShortAdd,LongAdd,BooleanAdd>
SubLibs Library <FloatSub,ShortSub,LongSub,BooleanSub>
MultLibs Library <FloatMult,ShortMult,LongMult BooleanMult>

This combination of structures might be used as shown in the following
code segment:

lds si, MathListlbx1] ; addr of particular structure
push ds ; save address of data structure
push si

lds si,LibraryPtr ; addr of Llibrary addresses

call [ds:sil.LongIntLib ; go do operation

The appropriate pointers have been loaded into the structures either at as-
sembly time or at run time. The beauty of using a structure address to pass pa-
rameters and pointers to subroutines is that the calling code is always the same,
regardless of how many additions to the structure you have to make in the life of
the program. By putting into the structure pointers to other data structures, we
make it unnecessary for the program code to have too much knowledge of the
details of the data and/or operations involved. This “data hiding” is developed
and employed much more in object-oriented programming languages such as
C++ or Smalltalk, but you can do almost the same thing with the proper use of
structures. You can also apply a structure you define to a data set that you had
no hand in creating. For example, the first 22 bytes of the PSP (program seg-
ment prefix) that MS-DOS puts at the beginning of executable files could be ac-
cessed via the following structure:

PSP STRUC

INT32 DB 2 DUP (?2) ; 2 bytes
MemSize DW) ; 1 word
Reserved DB) ; 1 byte
DOSCall DB 5 DUP (?) ; 5 bytes

1 — Tools for Structured Coding

TermVctr DW 2 DUP (?) ; 2 words
BreakVctr DW 2 DUP (?) ; 2 words
ErrorVctr DW 2 DUP (?) ; 2 words
PSP ENDS

The PSP can now be accessed as in the following code fragment:

mov di,0 ; PSP begins at offset zero

push cs ; PSP segment is in cs

pop ds ; PSP segment -> ds

mov si,[dil.MemSize ; program mem. size —> extra seg.

Structures as Subroutine Parameters

We introduced structures as a way of simplifying the task of writing a gener-
alized subroutine calling procedure. Let’s return to this problem. The best way
to pass parameters to a subroutine is via a structure address. As an example,
let’s pass to our subroutine the data in one of the elements of the math list de-
fined in our discussion of structures. Addresses are always the segment and off-
set. So the macro to make subroutine calls and pass parameters is now simple:

@FcnCall MACRO Fnctn,StrucAddr ; subroutine & structure addr.
push offset StrucAddr
push segment StrucAddr
call Fnctn

It sometimes happens that you need to assemble an instruction that the as-
sembler will not handle. This came up in one of the earlier versions of MASM
with a bug that would not assemble a particular type of jump instruction. This
problem also will crop up if you are working on a new processor before MASM
has been rewritten to accommodate the new instructions. One way of solving
this problem uses macros to assemble data that would be the same as the op-
code from the Intel handbook, like the following macro that creates a short jump
instruction.

@JmpShort MACRO destin

db 0EBh ; first byte of jump instruction
n = destin - x ; calc distance to jump
IFE (n LE 255) ; too big for a byte?
db n ; distance to jump
ELSE
-ERR ; generate an assembly error
%0UT Error in @JumpShort macro.
ENDIF ; end condition testing
db 90h ; 3rd byte of short jump

; ... instruction
ENDM

67

Coding and Programming

This example was chosen for simplicity. To make more complex instrue-
tions, you need more complex macros. As a word of encouragement, note that
people have made full cross-assemblers using little more than this method.

Summary

68

Our presentation of the world of MASM macros, conditional assembly, and
structures is completed. From the examples contained in this chapter, we hope
that you have gained a feel for the design and use of the usually frustrating,
often complex, but ultimately rewarding features of the Microsoft Macro
Assembler.

In this chapter, we have presented a variety of examples of each feature,
from the simple to the complex, so that some measure of the usefulness of these
features has been conveyed. By using these examples and doing some experi-
mentation on your own, you can define the boundary between the possible and
the impossible in the MASM assembler.

But you shouldn’t lose sight of the reason for exploring macros and condi-
tional assembly. We contend that the proper use of these features can help you
program in a more organized manner, thus enhancing the readability and re-
liability of your programs and reducing the amount of time you spend debugging
your programs. We hope that the examples presented, along with friendly tips,
comments, and some warnings, have given you a sense of how to apply these two
features to advance your programming skills.

2 — Design and Implementation of Modular Programs

HE discussion in Chapter 1 focused on the tools of structured program-

ming as they can be applied to the MASM environment. In Chapter 2, we
present the methods of structured programming as they apply to MS-DOS and
the 8086/8088.

Our presentation consists of two separate yet interrelated topies. These
topics deal with the design of modular programs in assembly language and with
the implementation of that design using MASM, macros, and whatever else may
be at hand. Both these topics affect the writeability, readability, reliability, and
maintainability of your programs. In short, these methods, separately and to-
gether, can be used to structure your programs to produce better programs.

Principles of Modular Programming

When impartial analysis is made of assembly language programs, the most glar-
ing deficiency usually discovered is lack of recognizable structure. Despite the
best intentions of most assembly language programmers, their programs tend
to be intricately connected, unwieldy conglomerations of code that require al-
most divine insight to fully understand. This statement is not intended as a
slight upon these dedicated people. The lack of structure is the result of their
having to simultaneously deal with a large number of details. There are two di-
rections in which to approach this problem. One is to simplify the code, replac-
ing long complicated instruction sequences with more understandable
structures. The techniques developed in Chapter 1 go a long way toward reliev-
ing the burden of detail implicit in assembly language programming. However,
the programmer is still left to cope with a sometimes staggering number of func-
tional details.

The way out of this rat’s maze is to apply the same techniques that rescued
higher-level languages a decade ago. The concepts of decomposition and modu-
lar design should be applied to assembly language programming. These con-
cepts, referred to under the collective heading of structured design, allow the
programmer to segment the total programming task so that he or she need only
deal with a manageable number of details at one time. This is the topic for our
next discussion.

71

Coding and Programming

2

Designing Options

Modular design and decomposition refer to the process of breaking a large
problem into smaller, more manageable, subproblems. The first design step is
deciding where to draw the lines between these subproblems.

In order to derive the maximum benefits from the use of modular program-
ming, each subproblem or module must have a single entry and a single exit.
The flow of control in a program then may be readily traced. At any place in
the module it should be possible to look at the module’s entry point and say, “I
know the values of registers X, Y, and Z at this point because they are specified
as. . .,” and then trace the operation of the module without worrying about the
intrusion of rogue program flows. The single exit ensures that when a module is
invoked, the flow of control returns to the point of invocation. For this reason,
modular programs are nearly always implemented with a CALL-RET
structure. .

Using multiple RET statements in a module does not violate this rule of
single exit because all the RET instructions return to the same point. Similarly,
jumping to a common RET at the end of a module does not add to the structure
of the module but adds only code and complexity. On the other hand, jumping
into or out of a module is strictly against the rules, for it negates the greatest
advantage of modular programming: clean, maintainable program structure.

There is an exception to the rule of not jumping into a module. This arises
when jump tables are used to decide the flow of control within a program. A
jump table is used by pushing a return address of the stack, calculating the in-
dex of the desired jump address in the table, and performing a jump through
memory. An example of this technique appears in the device driver program list-
ings given in Chapter 6.

When practicing modular decomposition, you will find that a number of al-
ternatives present themselves. Before we are able to intelligently choose, we
must know the alternatives. The goal is to choose among alternatives those that
give the most workable design.

Designing for Functional Separation

When approaching a problem in the design stage, the first alternative chosen
should be functional decomposition, that is, the breaking up of a problem into
small, manageable, functional units where each unit performs a complete, read-
ily identifiable task.

There are many ways of determining what should be contained in a task.
Some common examples are units that perform an explicit function, such as ob-
taining the square root of a number; units that perform all operations relating to
a specific device, such as disk or keyboard I/0; units that perform a common
group of actions at a specific time, such as initializing data areas; and units that
are related in sequence or their use of common data elements, such as reading
and converting keyboard data to integers.

In today’s world of high-level language programming, value judgments
often are made about which is the best method to use for segmenting programs.

2 — Design and Implementation of Modular Programs

In assembly language programming, we usually cannot afford to be so critical.
Each of the preceding methods listed gives at least a starting point for breaking
up the problem. Often, you find that some modules are related by one set of cri-
teria and other modules by another set. As long as each module encompasses a
section of code that can be readily understood (usually of two pages or less),
you're off to a great start.

Designing to Minimize the Number of Parameters Passed

Sometimes, you find that after defining the modules for your program, you have
created something unwieldy. This is often the case when a module requires ac-
cess to an extensive amount of data in order to accomplish its task. This might
easily occur if you’re writing an integrated package that supports many options.
The module must accept many different variables to know the state of the pro-
gram at a given time. If this happens and you find yourself with a module that
accepts a large number of parameters, you must then ask two questions.

First, are you attempting to perform more than one function in that mod-
ule? Does the module require parameters that aie used in unrelated sections of
the module? If either applies, you must segment the module again. Second, are
you cutting across functional lines? Are the calling module and the called module
actually part of the same function? If so, put them together even if the result
looks too large. Try to segment them again in a different way.

Segmenting modules across functional lines often occurs when the pro-
grammer notices that two sections of code are identical or strongly similar. The
programmer then attempts to create from them a single module. This is not
modular programming because the resulting module has no functional cohesion.

If you find that you can do nothing to avoid using many common data refer-
ences or passing scores of parameters, go back to the original design and check
to see if you have specified the problem correctly.

Designing to Minimize the Number of Calls Needed

One of the great advantages of modular programming is that the main-level pro-
gram can often be constructed to read as a sequence of procedure calls. This en-
hances understanding of the program because the reader can become familiar
with its basic flow and operation after reading only a page or two of code.
However, this feature can also have drawbacks. One of the most overquoted sta-
tistics of programming is that typical programs spend 90 percent of their execu-
tion time in 10 percent of the code. The implications are that if this 10 percent
contains a large number of chained procedure calls, the amount of time spent in
program flow control can be a handicap to a program with severe time
constraints.

Before giving up on modularizing your programs, examine just what these
time-related statements mean. First, most programs spend the majority of ex-
ecution time waiting for something to be entered from the keyboard. Once a key
has been typed, the required functions are not usually time-consuming in a way
that humans think of time. The difference between 100 microseconds and 100

73

Coding and Programming

74

milliseconds (a 1000 times difference) is not going to be noticeable to the average
user.

Contrary to some beliefs, the actual mechanism of the CALL-RET pair is
not overly time-consuming. When compared to the jump instructions, the
CALL takes about 30 to 50 percent longer and the RET averages 1 cycle longer.
Only when the overhead of pushing parameters, saving registers, and what is
euphemistically called housekeeping is considered, do modular programs begin
to look slow by comparison. In addition, because the modules of a modular pro-
gram are usually more general than their unstructured counterparts, modules
may use memory or stack references with greater frequency. The additional
time required by effective address calculations may result in the body of the
module executing more slowly than a linearly coded specific routine.

The advantages of housekeeping and generality are that the module may
be used virtually anywhere in the program. When writing nonmodular pro-
grams, you may spend hours attempting to discover whether a registeris in use,
or worse, just what its contents are supposed to be. In modular programming,
the programmer is not concerned with which registers are currently in use as
long as the called module takes its parameters off the stack and saves the entire
register set on entry. With these kinds of advantages, it makes sense to use
these modular techniques initially to speed coding and then rework the program
to remove bottlenecks.

For those areas that are speed-sensitive, the best recommendation is to se-
lectively mainline the code. If a module is referenced only in the speed-sensitive
section of the code, the module may be included “in-line” within the calling mod-
ule. If other sections use the module, it may be copied to the calling module and
fit into place. Because the main calling module grows larger, you should add
comments that mark the included module as a block of its own. A future reader
may then read the comments to determine the module’s function and skip past it
to resume reading the main code.

Rules for Modularization

We can summarize the more notable concepts of modular programming in the
following rules:

® Divide and conquer. Divide the problem into smaller functional tasks,
each one independent of the others except for its necessary parameters.

® Single entry - single exit. The module should have only one entry point
where all calls begin. It should return control to the point in the program
flow where control was invoked. (The return address may be modified as
discussed in the following section on parameter passing.)

e KISS—keep it sweet and simple. Avoid complexity in coding. Handle
complex logic in a well-documented way that explains each step and why
it was designed that way.

¢ Hide details. Confine the details of register usage, local data structure,
ete., to the internals of the modules. Don’t let a module’s implementation
spill over into the rest of the program.

2 — Design and Implementation of Modular Programs

e If a module uses a particular variable, make that variable a
documented parameter. Document all effects that a module has on global
data.

¢ Plan for error detection and the actions to be taken if errors occur.
Responsibility for exception processing, as it is known, must be assigned
to the individual modules. Normally, lower-level modules report errors to
the calling module. The responsibility for decisions about those errors
normally is reserved to the upper-level modules.

References

What we have presented here has been a quick overview of the concepts of struc-
tured programming and modular design. We do not have the space to provide a
full treatment of the subject. However, a wealth of literature is available. If your
goal is to be a software professional, purchase some of these books and read
them. The following titles are classic works on the subject and reflect a small
sample of the excellent professional-level works available.

DeMarco, T. Structured Analysis and System Specification. New York:
Yourdon, 1978.

Kane, G., D. Hawkins and L. Leventhal. 68000 Assembly Language Program-
ming, Berkeley: Osborne/McGraw-Hill, 1981.

Tausworthe, R.C. Standardized Development of Computer Software. Part 1.
Englewood Cliffs, N.J.: Prentice-Hall, 1977.

Yourdon, E.U., and L.L. Constantine. Structured Design. Englewood Cliffs,
N.J.: Prentice-Hall, 1977.

Yourdon, E.U. Techniques of Program Structure and Design. Englewood
Cliffs, N.J.: Prentice-Hall, 1975.

Implementing Modular Programs in Assembly Language

So far, we have been speaking in the abstract about modules, parameter pass-
ing, and other such terms. Now is the time to begin relating this information to
the concrete world of MS-DOS, MASM, and 8086 assembly language.

Modules in the MASM environment are best handled by the MASM PROC
directive. We have been using this all along as a method of defining the entry and
exit points of the program. We now extend its use to define the boundaries of the
individual modules. PROC is used by MASM to define a label in the code and to
give that label either a near or far attribute. This attribute is used to generate
both the correct type of CALL instruction and the correct type of RET instrue-
tion. A detailed presentation of these types of instructions is given in a later sec-
tion, “Types of Coding.” What we are concerned with here is that the PROC

75

Coding and Programming

76

directive is a convenient way to denote a block of code with a single unique entry
and constant exit that forms the basis of the module.

Definition of Parameter, Argument, Variable, and Constant

‘We have been tossing around the words parameter, argument, and variable like
so many ping-pong balls. For the most part they have had interchangeable
meanings. Now we need to start drawing some distinctions (although some will
undoubtedly call this splitting hairs). After this chapter, we can all return to our
slothful ways, but for the moment we need to be clear-headed and clear-
thinking.

The dictionary sense of parameter is “a characteristic element.” In com-
mon use, parameter is a reference to any piece of data used by a module that is
not totally contained within that module. Why the added words, reference to?
Because a parameter is not the data itself nor even an address of the data.
Rather a parameter is a place holder (the characteristic element). For example,
consider the equation Y + 1. No module can be written to evaluate that equation
because Y is not a value! Y is a parameter that is replaced by an actual value
when it is time to evaluate it. The actual value is called an argument.

We still have not defined variables. Strictly speaking, variables are regis-
ter or memory locations that hold a piece of changeable data. In the preceding
example, Y is also a variable because it changes to fit the required circum-
stances. Thus, parameters are automatically variables (but not vice versa).

To recap, if a data object can be modified, it is a variable. If that variable is
required for a module to perform its task, it’s also a parameter. The argument is
the actual value that the variable takes on when the module is invoked.

We also need to consider the special case of constants. A constant is a data
object whose value never changes. In assembly language, constants can appear
in two ways. They may be part of the immediate data for an instruction (as in
mov al,4), or they can be located in memory like other data. When constants are
placed in memory, they differ from variables solely because they are only read,
never written.

Can a parameter also be a constant? If the constant is of the memory type,
unequivocally yes. But you encounter a problem when you try to use immediate
data constants as parameters. Immediate data may not be passed by itself to a
subroutine. Immediate data must be contained in something, either a register,
memory location, or the stack. In higher-level languages, the compiler takes
care of converting constants to locations. In assembly language you have to do it
yourself.

Parameters and Modules

We have determined that a parameter is any data that a module requires to ac-
complish its task and that is located outside the module. We have also deter-
mined that parameters are by definition variables. This brings up the second
great strength of modules. Because the inputs to a module are variables, they

2 — Design and Implementation of Modular Programs

may be changed to fit the specific case at hand. This gives great generality to
modules, enabling them to be reused in many places and in many programs.

In reality, parameters are an optional component of modular program-
ming. You can have a module that accepts no outside parameters and operates
solely on internal data. A simple routine to beep the console would have no pa-
rameters. A more common example is a simple routine to read numbers from the
keyboard. Although the number reading routine would return a value, that rou-
tine would not necessarily need any arguments passed to it.

In combination, requiring input parameters and producing output values
form four types of modules:

1. Modules that accept no inputs and produce no outputs.
2. Modules that accept inputs and produce no outputs.

3. Modules that accept no inputs and produce outputs.

4. Modules that accept inputs and produce outputs.

We typically call the first two types, which produce no output data, sub-
routines, and the last two types, which do produce output data, functions. Note
that no distinction is made as to whether they require input parameters, al-
though as a programmer, you are aware of the difference.

Parameter Passing Options

For those routines, be they subroutines or functions, that accept input param-
eters, the problem of passing data to them must be resolved. When program-
ming in a high-level language, the programmer typically has no choice in the
matter. In assembly language, many options exist. We have presented all op-
tions for consideration, although the use of some is strongly discouraged.

Passing through Registers

The most common method for passing data in assembly language programming
is via the registers. Instant accessibility and high speed make them prime candi-
dates for this task, for no matter what the program environment, registers are
always an op-code away. Nearly all MS-DOS function calls pass their data in this
manner. Short assembly language routines that interface to MS-DOS often use
the same registers to manipulate data as those required by the MS-DOS func-
tions they call. It makes sense to create a parameter in the same register that
MS-DOS expects it.

One disadvantage of this method is that there are a limited number of regi-
sters. If you have a routine that requires more variables than you have registers,
you’re in trouble. Newer microprocessors have fewer restrictions than older
ones, but the number of registers is still finite. In addition, if you ever think of
porting your code, that is, moving it from one type of processor to another, a
situation in which the two processors could share the same register set is very
unlikely. You could end up redesigning all the module interfaces.

Another drawback is that you must continually keep track of the use to
which each register is put. This game of “who’s on first” can tire even the most

7

Coding and Programming

78

dedicated bit pusher. Especially frustrating is the case when you decide that
register X is free and code your module accordingly. Later you decide you can
use the same module in another place, only register X is no longer free. So
PUSH goes X, in goes the value, the call is made, and POP goes X. Whoops, X
contained a returned value. Let’s see, what’s free now? And so it goes.

A practical limitation of passing parameters in registers is that the infor-
mation is usually limited to 16 bits, the size of the largest register. Because most
variables tend to be either bytes or words, size isn’t a big problem. When the
data to be passed exceeds the size of a register, the calling routine may pass the
address of the data instead. Of course, the called routine must know what type of
data is being pointed to in order to use it properly. MS-DOS function calls use
this pass-by-address technique whenever they require large amounts of data.

Passing through Common

The next choice for most programmers is using a prearranged data area. We use
prearranged in the sense that both the calling and called routine have “agreed”
that their data is passed in some area of general memory. Routine A knows to
put last month’s receipts in the area labeled FFOO, and routine B knows to go look
for them in FFOO. FOO is then known as a common area.

Passing through common has at least one thing going for it. Within the
physical limits of your computer, you can put as much data as you want into
memory. Passing through common puts an end to the shell game of free regis-
ters and allows data of any size, from one byte to kilobyte buffers, to be passed.

In addition, passing through common makes the data available to any mod-
ule that needs it. This is a great advantage when the data in question is being
passed from a high-level module through many intervening modules to a low-
level module. Each module doesn’t have to handle data that it does not use.

On the negative side, depending on common memory can restrict the gen-
erality and reusability of the modules. Consider a series of modules designed to
read and write files. If the modules are coded to use a common block of memory
for a data buffer, having two files open at the same time can be a problem. If the
program were designed to do a compare, the program would have to copy one set
of data from the buffer into a storage area to prevent the buffer from being over-
written. Granted, the example is simplistic, but we trust that the implications
are clear.

The last drawback to common memory results from one of its strengths.
Because the area is available to any module, it is in a way “fair game.” Protecting
the data from accidental destruction is nearly impossible. This is not normally a
great risk (unless program errors are common) but becomes a factor in the con-
sideration of reentrant programming (covered in a subsequent section, “Types
of Coding”).

Passing through Program Memory

Passing through program memory is a variant of passing data through common
data memory. The differences are, one, the data resides in program space (code
segment); and, two, the location of the data is determined by the CALL instruc-
tion because the data is located directly after the call.

2 — Design and Implementation of Modular Programs

The called routine takes the return address off the stack, uses that as a
pointer to the memory area, adds the size of the memory area to the return ad-
dress, and places it back on the stack. When the routine returns to the calling
program, the return address is the first location after the data area.

This seems convenient until we consider that the 8086 is specifically de-
signed for separate code and data areas. Passing through program memory re-
quires that the code segment and the data segment be set to the same value, as
the return address is code-segment relative.

The worst problem with this method of passing data is that it requires ma-
nipulation of the stack in what comes very close to being self-modifying code.
One rule that you should always remember is never, never modify program
memory! If you succumb to the temptation, you will find that your program be-
comes nearly impossible to debug without expensive hardware logic analyzers.

Passing on the Stack

The method used by most high-level languages for implementing procedure calls
is passing the data on the stack. In this method all required parameters are
pushed onto the stack before the call is made. After the call is made, the calling
routine accesses the data without removing it. The designers of the 8086 family
encouraged this method by providing the BP (base pointer) register. The BP has
the wonderful feature of addressing its operands relative to the stack segment.
This means that by setting the value of the BP to the proper location the con-
tents of the stack may be addressed using indexed addressing.

What is the proper location to load into the BP? This is not the SP (stack
pointer) itself because the SP is pointing to the return address on the stack. The
data actually starts at either location SP + 2 or location SP + 4. Why plus two or
plus four? Because for near procedure calls, the processor stores only the cur-
rent offset (instruction pointer) on the stack (2 bytes), whereas for far procedure
calls, the processor stores the offset and the code segment on the stack (4 bytes).
The called routine may be coded to start access at the proper location (depend-
ing on the type of routine) by using the following addressing:

NEAR FAR
mov bp,sp mov bp,sp
mov <1st arg>,[bp+2]

mov <1st arg>,[bp+4]

Note that if the contents of the BP register must be saved, as is normally
the case, the called routine must also push the BP onto the stack, changing the
address of the first parameter to [BP + 4] for near routines and to [BP + 6] for
farroutines. One means of avoiding this change in addresses is to give the calling
routine the responsibility for saving the BP, before the parameters are placed on
the stack. However, for compatibility reasons this is not recommended. Instead,
the structure shown in Listing 2-1 is the preferred method of passing param-
eters. Using this structure, which has been adopted by many high-level lan-
guages, will assist you in producing portable, reusable routines. These routines

79

Coding and Programming

80

can be gathered into a “toolkit” that may be used in many places to reduce your
coding burden and increase your productivity.

When the called routine returns, the parameters that were pushed onto
the stack must now be removed. The calling routine can remove the parameters
by either POPping them from the stack or by simply adding the size of the
stored parameters to the SP register, as in add SP,N, where N is the number of
bytes occupied by the parameters. This method, shown in Listing 2-1, effec-
tively cuts off the stack at the original location. Alternatively, the called routine
may be assigned the responsibility of clearing the stack via the RET N instruc-
tion, where N is again the number of bytes occupied by the parameters. In ei-
ther method, N is equal to the number of words PUSHed times two.

The difference between these two methods is that when the RET N in-
struetion is used, the routine must be called with exactly the proper number of
parameters. If there are not N bytes of parameters, the RET N instruction will
misalign the stack and crash the system. Alternatively, if the calling routine
clears the stack by using the add sp, N instruction, then each call to the target
routine may pass a different number of parameters. As long as the caller clears

Listing 2-1. Passing Parameters on the Stack

; The Calling Procedure

push <argument_AN> ; push last argument
push <argument_2> ; push second argument
push <argument_1> ; push first argument
call <myproc> ; call procedure

add sp,<2N> ; clear stack

; The Called Procedure

<myproc> PROC NEAR ; hear calling example
push bp ; save old BP
mov bp,sp ; reference point in stack
mov <dummy>,[bp+4] ; access to first parameter
mov <dummy>,[bp+6] ; access to second parameter
mov <dummy>,[bp+2+2N] ; access to last parameter
mov sp,bp ; restore SP
pop bp ; discard saved BP
ret ; return to caller

<myproc> ENDP

2 — Design and Implementation of Modular Programs

up properly, there will be no problem. (Of course, this dodges the issue of
whether the called routine can make use of a different number of parameters
being supplied from call to call.)

This seems like a lot of extra coding, what with PUSHes, MOVes, POPs,
ete., in place of a simple call. This is one place to put our knowledge of macros to
use and write a simple macro to perform these chores. The macros in Listing 2-2
help the calling program maintain the stack during parameter passing. Sim-
ilarly, the macros in Listing 2-3 assist the called program in accessing and re-
turning parameters on the stack. All registers used in these macros must be
wordlength because the PUSH and POP instructions do not operate on 8-bit
registers.

Listing 2-2. @CallS and @F CallS Macros for Parameters
on the Stack

;7 Xxx% @PushIm Macro: Push Immediate Data through BP register
@PushIm MACRO arg

mov cs:mem_16,8&arg
push cs:mem_16
ENDM

5, %xxx CALL SUBROUTINE Macro: calls name ,<argl1,arg2,...>
@CallS MACRO routine_name,arg_Llist

?count = 0
IRP argn,<&arg_Llist>
push &&argn ; push parameters
2count = 2count + 1
ENDM
@PushIm %?count ; push number of parameters
call &routine_name ; call routine
add sp,2x(1+2count) ; clear stack
ENDM

;; %%xx CALL FUNCTION Macro: @FCcallS name,<argl,arg?2,...>,ret
@FCallS MACRO routine_name,arg_Llist,return_val

?2count = 0
IRP argn,<Rarg_Llist>
push &&argn ; push parameters
?count = ?count + 1
ENDM
@PushIm %?count ; push number of parameters
call &routine_name ; call routine
pop &return_val ; get returned value
IF ?count ;; if nonzero ...
add sp,2%?count ; clear stack
ENDIF
ENDM

81

Coding and Programming

82

Listing 2-3. @Accept, @RetVal, and @CRet Macros for Taking
and Returning Parameters on the Stack

;; %¥xx @RetVal Macro: @RetVal register

@RetVal MACRO return_value
mov [bp+4],return_value ; return word result
ENDM

;; Xxxx @Accept Macro: pnum,<regl,reg2,...>

@Accept MACRO reg-list

push bp ; save base pointer
mov bp,sp ; set BP to access parameters
mov &pnum,Cbp+4] ; get number of parameters
2count = 0
IRP reg,<®_Llist>
2count = 2count + 1
push &® ; save register for new value
mov &®,[bp+4+2countx2] ; get parameters
ENDM
ENDM

;; ¥xxx @CRet Macro: <regl,reg2,...>
@CRet MACRO reg_Llist

IRP reg,<®_Llist>

pop &® ; restore the saved registers
ENDM

pop bp ; restore base pointer

ret ; return from program

ENDM

The @PushIm macro allows the 8086/8088 user to push immediate data on

" the stack. To use the macro, you must first define somewhere in the code seg-

ment the word location mem_16. Although using a memory location to transfer
immediate data to the stack is slower and takes more code, doing so allows more
freedom of register use.

Inthe @CallS and F'CallS macros, the symbol ?count is used to inform the
called routine of the number of parameters provided and to keep track of the
number of bytes pushed on the stack for use in clearing the stack after the call.
If the target, or called, routine already knows how many parameters are being
passed to it (which is usually the case), these macros may be modified to dis-
pense with pushing and clearing the parameter count. Note that the parameter
count also serves as a way of returning a value for function calls (the @FCallS
and @RetVal macros).

The @RetVal macro is for use with the @F CallS macro and replaces the
parameter count pushed on the stack by @FCallS with a 16-bit value to be re-
turned to the caller.

2 — Design and Implementation of Modular Programs

The target routine macro @ Accept works with either @CallS or @F CallS
to transfer the parameters from the stack to registers. This macro saves the reg-
isters it uses as it progresses. The ?count symbol is used here to determine the
offset of the next parameter within the stack. Because @ Accept works its way
up the stack (increasing offsets), this macro removes the parameters from the
stack in the reverse order from which they were pushed! Note also that both
@Accept and @PRetVal expect a near call because they allow for only a 2-byte
return address.

The last target macro @CRet restores the registers that were saved by
@Accept. Because POPs must be in reverse order from PUSHes, the argument
list for @CRet must be in reverse order from that in @Accept. The last action
that @CRet takes before RET is to restore the base pointer saved by @Accept.

These macros are presented more as examples than as working copies and
can be enhanced to provide more general coverage. For example, the parameter
PUSH, push &&argn, can be replaced with the more general @ PushOp macro
from Chapter 1 to handle immediate data parameters. One limitation of the
current version is that the mov [bp + 4],return_value instruction in macro
@ZRetVal cannot return memory variables on the stack because the 8086 family
does not support a memory-to-memory move instruction. This macro could be
enhanced to recognize a memory-to-memory move and generate a transfer
through an intermediate register.

You should note, however, that the macros presented in Listings 2-2 and
2-3 implement a calling procedure that is not compatible with any known high-
level language. Specifically, these macros pass the number of arguments to the
called procedure as an additional argument, and they return a value to the call-
ing procedure directly on the stack.

For the called routine, MASM provides some tools to simplify accessing
the data on the stack. By defining a structure that represents the data on the
stack and aligning the base pointer (BP) with the beginning of the structure,
data on the stack may be accessed symbolically, that is, by name. This helps pre-
vent disastrous coding errors, which result from specifying an incorrect offset.
Listing 2-4 demonstrates the use of the MASM STRUC directive in this context.

Listings 2-1 and 2-4 differ in three important respects. The first difference
isin the order that each example pushes its parameters onto the stack. In List-
ing 2-1, the calling program pushes its parameters from last to first, while in
Listing 2-4 they are pushed in the order of first to last. For the StackFrame
structure to work with Listing 2-1, the order of params must be reversed. (As-
signing an order of “first to last” to the parameters may appear arbitrary at this
point. The parameters are actually assigned an order from left to right, as they
would appear in a subroutine call expressed in a high-level language.)

The second difference between the examples is in the way they each clear
the passed parameters from the stack. In the example in Listing 2-1, the calling
routine clears the parameters by means of the add SP,<2N> instruction. In
Listing 2-4, the called routine clears the stack by using the ret (2N) instruction.

The last difference is that Listing 2-1 shows a near routine, while in List-
ing 2-4 the called routine is declared far. If StackFrame is used with a near

83

Coding and Programming

84

Listing 2-4. Accessing the STACK Symbolically

with the STRUC Directive

push
push
push
call
StackFrame
dw
dd
paramN dw
param2 dw
param1 dw
StackFrame
base EQU

<myproc> PROC
push
mov

mov
mov

mov

mov

pop
ret

<myproc> ENDP

; The Calling Procedure
<argument_1>
<argument_2>

push first argument
push second argument

-
4

-
4

<argument_N> ; push last argument
<myproc> ; call procedure

; The Called Procedure

STRUC ; define a template for the stack
? ; saved BP

? ; return address (use "dw" for NEAR)
? ; last parameter

? ; 2nd parameter

? ; 1st parameter

ENDS ; end of template definition

[bpl ; template base

FAR ; near calling example

bp ; save old BP

bp,sp ; reference point in stack

<dummy>,base.paraml1 ; access to first parameter
<dummy>,base.param2 ; access to second parameter

<dummy> ,base.paramN ; access to last parameter

sp,bp ; restore SP
bp ; discard saved BP
(2N) ; return to caller

procedure, the dd directive must be converted to a dw directive. This reserves
only 2 bytes in the template for the caller’s return address, rather than the
4 bytes required for a far call. On the other hand, if the structure is to be used in
an interrupt routine, then an additional dw directive must be added after the dd,
to reserve space for the processor flags that are placed on the stack by an

interrupt.

2 — Design and Implementation of Modular Programs

The STRUC directive does not add any code to the finished program. This
directive only defines offsets that are used with the BP to ease the task of refer-
encing the parameters.

The stack also provides a convenient place to store returned values, but we
delay discussion of that topic until we have discussed the differences between
functions and subroutines, which we do in later sections of this chapter.

Summary of Parameter Passing Options
There are three proper ways to pass data to modules. These are

1. Passing through registers—few parameters are allowed; best for simple
interfaces and for exception handling or returning values.

2. Passing through common—limited flexibility and generality but has the
advantage of making the data available to all modules.

3. Passing on the stack—preferred method for handling data; excels in
generality (reusable modules) and production of modular code; necessary
for interfacing with most high-level languages; demonstrates that you're
a member of the “in” crowd.

Additionally, when data is passed by any method other than common, each
module must accept as parameters the data it needs not only for itself but for
any modules that it calls in turn. This can sometimes lead to large parameter
lists for upper-level modules.

In actual use, you probably want to use a combination of these techniques
(with the exception of passing data in program memory).

Passing Parameters by Value or Address

Once a decision on how to pass the parameters has been made, you must answer
the question of what form of argument to use. You remember that “argument” is
what we have decided to call the value that is given to the parameter. This value
may be either the data itself or the address of the data.

Pass by Value

Most parameter passing in assembly language is done with pass by value. In
this method, the actual data (its value) is passed to the calling routine. The tar-
get routine receives a number, either stored in a register or pushed onto the
stack.

Data that is stored in common memory is something of a special case. In
one sense, it is passed by address because the calling and called routine access
the data by means of a common address. In another sense, the data in the com-
mon area may be either values or addresses, and the problem is simplified by
basing the decision on the nature of the data in the common block. If the dataisa
value, data is passing by value. If it is an address, data is passing by address.

If parameters consisting of immediate data are to be passed on the stack,
users of the 8086 or 8088 face some additional effort when transferring the value
to the stack. Users of the 80x86 advanced processors can use the PUSH

85

Coding and Programming

86

<immediate> instruction, but for users of the older processors, the data must be
transferred to the stack through an intermediate register. The @ PushIm macro
presented in Chapter 1 could be used, but its complexity is not called for in this
application. If the calling procedure shown in Listing 2-1 is used, the BP regis-
ter is available for transferring immediate data to the stack. In almost all con-
ventions for the 8086 architecture, the AX register is dedicated for this purpose.
Any immediate data that must be moved to the stack is transferred with the fol-
lowing two lines of code:

mov ax,<immediate_data>
push ax

Passing parameters by value inherits the limitations of register and stack
passing —restriction of the value to 16 bits. Indeed, 8-bit data may not be
pushed onto the stack at all. There are ways around this, of course, of which the
@PushOp macro from Chapter 1 is one example. Data belonging to large strue-
tures may be pushed a word at a time, but unless the called routine must receive
its parameters from the stack, to pass the address of the data is much easier.

Pass by Address

In pass by address, the called routine receives only the address of the data. All
accesses to the data are made using this address. There are a number of immedi-
ate advantages. One, unless the data resides in a different segment, all ad-
dresses may be contained in one 16-bit value, which is convenient for using
registers or the stack. Two, the routine becomes completely general because
specifying a different address yields a new set of data. Three, the data may be
directly manipulated by the called procedure to return a value to the calling rou-
tine in the same location that contained the original value.

Sometimes a problem is encountered if the values to be passed are not lo-
cated in memory (that is, immediate data). For this case (or if you find it simply
inconvenient to push all the required addresses onto the stack), a type of hybrid
parameter can be used: the argument block.

The argument or parameter block is a special form of pass by address. In
this case, the required arguments are contained in a contiguous piece of mem-
ory. However, unlike passing through common, the called procedure has no im-
plicit knowledge of this block. When the procedure is called, it is passed the
address of this block as a parameter. It still may not be convenient to place all
the required arguments into the block, but this does avoid the necessity of push-
ing all those values onto the stack. If the block already exists for another pur-
pose, passing parameters through an argument block makes a lot of sense.

Protecting the Integrity of Passed Data

There is another aspect of the pass by . . . option that is just as important as
ease of use. This aspect relates to the integrity of the data or its protection from
unintentional change or corruption.

2 — Design and Implementation of Modular Programs

In typical use, data that is passed by value is a copy of the actual data. As
such, the called routine may manipulate the data in any way without changing
the data in the calling routine. On the other hand, if the called routine receives
the address of the data, that routine may then alter the data, possibly changing the
operation of the calling routine. Data that is passed by value is then considered to
be protected, whereas data that is passed by address is considered to be at risk.

Surprisingly, variables that are passed in a register are sometimes consid-
ered to be passed by address because registers are simply specialized addresses
in hardware. This distinction is made because the data in the register is at risk if
the subroutine or function alters the data in the register and that alteration has
an effect on the main routine.

There are no hard and fast rules regarding the degree of exposure of the
data. Concepts such as pass by value and pass by address may help us to evalu-
ate the situation, but the actual decisions of the type of passing to use depend on
how valuable the data is to the calling routine (the degree of risk) and whether
the called routine has access to the original data. This in turn determines how
much protection is required for that data.

Functions versus Subroutines

It is often desirable for the called routine to return new data to the caller. As
indicated earlier, those routines that return values are called functions; those
that don’t, subroutines. In high-level languages, functions are usually re-
stricted to returning only one value. Any other information that must be re-
turned to the calling procedure is passed back by modifying one or more of the
parameters. In assembly language no such restrictions apply. Let’s examine the
options.

Returning Values in Registers

Once again, the simplest way to return a value is in a register. As with passing
parameters, this option can be limited by the number of available registers and
by the size of the data to be returned. On the positive side, the data is readily
accessible and can be tested or manipulated quite easily.

For frequently called functions, returning values in the registers makes
sense. It requires no special setup and no anticipation of memory buffers or
such. Most MS-DOS functions return their values this way. However, if all func-
tions in a program returned their data via the registers, you would be faced with
a major bookkeeping and shuffling task. In addition, because the registers are
where most computations take place, there is fierce competition for their use.

Rather, the registers should be used for those small, frequently called rou-
tines that return only a few values and for routines whose returned value must
undergo immediate calculations. A function to read character values for trans-
formation into a number would be one example of the latter case.

Most high-level languages use the technique for returning values. The AX
register is usually used for returning byte or wordlength values. If a double

87

Coding and Programming

88

word value must be returned, such as a far pointer, the least significant word (or
offset portion) is returned in the AX register, and the most significant word (or
segment portion) is returned in the DX register. In those cases where more than
two words must be returned to the calling program, the data is placed in a mem-
ory buffer, and a pointer to the buffer is returned to the calling routine. Just how
this pointer is managed depends on the individual language.

Returning Values in Common

When a routine returns values in common, no one thinks of it as a function. Nev-
ertheless, this “side effect” method provides a reasonably simple means for re-
turning large amounts of data. We call it a side effect method because the
transfer operation is not readily apparent from reading the “call” section of the
calling routine and appears to take place as an incidental result of the procedure.
Because this is not readily apparent from the call, clear documentation must be
added describing what values are returned and why.

However, if the address of the common area is instead passed in a param-
eter in either a register or the stack, the fact that returned values are expected
in that particular memory area is made more apparent to the reader. In addi-
tion, the benefits of generality are gained because the procedure may be di-
rected to return its values in any buffer location.

Returning Values on the Stack

The last method of returning values is to place them in the stack (as opposed to
on the stack). This operation requires use of the BP to address the stack (in the
same manner as passing parameters on the stack). To return a value, the value is
loaded onto the stack in one of the memory locations above the return address. If
the procedure is called with parameters, one of the parameter locations may be
used to store the return value. If the procedure is called without parameters,
the calling procedure must push a dummy argument on the stack in order to
make room for the returned value.

When values are returned on the stack, the called routine should not clear
the stack with a RET N instruction. Instead, the calling procedure should be
used to clear the stack, retrieving the returned values through simple POPs.

If the returned values are too large to conveniently fit on the stack, the
called routine may return a pointer to a memory location where the returned
values may be found. Then that memory location would contain the actual re-
turned values. In these cases, the calling routine should decide the location of
the buffer area.

Exception Reporting

During this discussion, we have alluded to returning status indications or de-
tecting and reporting errors. In many applications, a desirable option is to have
called procedures, functions, and subroutines provide some type of error indica-
tion or status code. You probably have noticed that many MS-DOS function calls
return a status code upon completion. Frequently the carry bit is used to

2 — Design and Implementation of Modular Programs

indicate the presence of an error with one or more of the registers, usually the
AX, containing detailed information on the type of error.

The carry bit is used for a number of reasons. It is easy to check (with JC or
JNCQC); easy to set, complement, or clear (with STC, CMC, and CLC); and easy to
save and restore (with PUSHF and POPF). Access to the carry flag is more
complete than for any other status bit in the 8086/8088 architecture. This com-
bination provides an ideal mechanism for indicating the presence of an excep-
tion. Of course, the programmer must remember to clear the carry bit to
indicate a proper completion if no errors occurred because the carry bit may be
already set by a normal operation.

Once the calling routine has determined that an error exists, the routine
must discover the nature of the error. Sometimes no further information is re-
quired. When more information is needed, a dedicated register for completion
codes is helpful. A logical choice is the AX register, but because so many other
operations depend on it (MUL and DIV for example), it may not be available.
Whatever choice is made, the register should contain not only error codes but
also a normal completion code. This way, if the original error indication is lost,
the program may retest the register to discover the completion status. If the in-
formation is eritical, choose a value for normal completion that is not a normal
result. What this implies is that you should not use a value of zero for normal
completion because another error could easily clear the status codes.

MS-DOS provides an error reporting service for use with programs that
run other programs. If a subprocess wishes to return an error code to the pro-
cess that invoked that subprocess, it may do so as part of the Terminate Process
function call, function 4Ch. The parent process then may obtain that return code
through MS-DOS function 4Dh, Retrieve the Return Code of a Child. This mech-
anism is for use only with programs run under the Load and Execute Program
function, 4Bh, which is introduced in Chapter 3.

Types of Coding

For most basic programming in any language, the programmer is rarely con-
cerned with the details of how the processor is executing the program. Details of
I/0 handling, memory management, and where in memory the program is ex-
ecuting are left to the operating system to manage. However, there are times
when more direct control of the program environment is desired. At these times
the programmer may need to know about, and take responsibility for, the mech-
anism used to load, position, and execute the program. Examples of this occur
when writing stand-alone programs that operate without MS-DOS present,
supporting program overlays to fit large programs into limited physical mem-
ory, and writing interrupt driven or recursive programs.

During execution, a program’s position in memory is reflected in two ways.
One of the segment registers is used to relate the program counter (also known
as the instruction pointer) or memory reference address to a block of physical
memory. Then, within that block, the actual memory reference is formed, using

89

Coding and Programming

90

an offset from the beginning of the block. This offset appears in the program
counter, in memory references, and within indirect memory references through
registers.

What does this have to do with different types of coding? These types of
references and the way that they are used determine how a program is loaded
into memory, what types of features it can use, and how the program may be
structured. We examine how these references are created and how to use the
right ones to allow us to write the best possible programs.

Program Code Positioning

Understanding the alternatives in positioning program code requires a clear un-
derstanding of both program flow control instructions (CALL, RET, and JMP)
and memory accesses in the 8086 processor. Both of these can restrict the
options available to the programmer in locating code in the available memory
space.

Program flow control instructions, often called control transfer instruc-
tions, come in two basic forms: the CALL and the JMP. Each causes the pro-
gram to begin executing code from a new place in memory, called the
destination. Each of these instructions has three implementation options for
specifying the destination location. They are: current location relative, current
segment relative, and absolute addressing.

Location Relative

Current location relative, sometimes called PC relative (program counter rela-
tive), calculates the destination address from the current address and a dis-
placement. The displacement is added to the current location to form the
destination address. Because the entire operation is totally independent of the
absolute location of the code in memory, the resulting address is position inde-
pendent. If the entire block of code is moved in memory, the new destination ad-
dress created correctly points to the new location of the destination instruction.

This method of calculating transfer addresses is used with all conditional
jumps, all intrasegment (short or near) direct JMPs, and all intrasegment
(near) direct CALLs. Direct means that the CALL instruction contains a dis-
placement as immediate data. The alternative, nondirect, is a CALL to an ad-
dress contained in a 16-bit register (offset only) or to an address contained in a
16-bit or 32-bit memory location (offset or offset and segment).

Because direct transfers involve no actual addresses, they may be located
anywhere in memory and may even be moved about within a segment as long as
both the source instruction (JMP or CALL) and destination routine are moved
together.

Segment Relative

Current segment relative addressing specifies an actual offset value to be
loaded into the instruction pointer (as in the nondirect CALL) or to be used as a
pointer to data. References made using this method always point to the same
location within the block of memory addressed by the relevant segment register.

2 — Design and Implementation of Modular Programs

As such, the code or data may not be moved within the segment. However, such
code may be moved in memory if the segment register for that block is also up-
dated. Because segments must be aligned on paragraph boundaries (address
XXXXO0 hex), the code may be moved only by increments of 16 bytes (one
paragraph).

This type of addressing is used by intrasegment (near) indirect JMPs and
CALLSs where a new destination instruction pointer value is fetched from a regi-
ster or memory location. This addressing is also used with all data references,
regardless of the segment used (DS, ES, or SS). Code that uses this type of ref-
erence is still considered relocatable as long as the segment registers are up-
dated to reflect the position of the code.

Absolute Addressing

Absolute addressing occurs when the entire physical memory address is ex-
plicitly specified. To accomplish this in the 8086 family, both the segment ad-
dress and the offset may be explicitly specified. These references point every
time to the same location in memory. Absolute addresses in the 8086 are rare.
Only a few instructions have the ability to generate absolute addresses in the
8086. These instructions are intersegment (far) JMPs and CALLS and the LDS
and LES instructions (load pointer using DS or ES). The JMP and CALL in-
structions, either direct or indirect, update not only the offset (instruction
pointer) but the code segment (CS) register as well. This specifies a physical ad-
dress in memory. Likewise, the LDS and LES instructions not only load an off-
set into a 16-bit register but load either the data segment (DS) register or the
extra segment (ES) register. Once again, this is a physical address.

One other way to create an absolute address is to use a MOV or POP in-
struction to directly load one of the segment registers with a constant. However,
note that POPping a value into the CS register is not allowed in the iAPX186,
1APX188, or iAPX286 processors and should not be done if only for com-
patibility reasons.

Types of Program Code

When discussing the properties of a program, we refer to it by the least flexible
type of addressing that it contains. If only a single absolute reference is con-
tained in a program, that program is said to have absolute addressing or to be
nonrelocatable. It may not be moved in memory.

Attentive readers may believe that an error has been made. After all, the
entry point of a MASM program is specified as far, and all .EXE programs load
the DS and ES with a MOV instruction. Both of these facts would seem to imply
a nonrelocatable program, yet MS-DOS does load our programs into memory at
different addresses as required. The key to this dilemma is that the values used
are not constants in MS-DOS. MASM and LINK treat segment and far pro-
cedure names in a special way, producing what is called a relocation map. When
a program is loaded into memory, MS-DOS reads the relocation map, and
changes the values of those references that contain segment addresses. The
important note for us as programmers is that MS-DOS does not extend such

91

Coding and Programming

92

courtesies to standard data values, and loading one of the segment registers
with a constant is not the same as using a segment or far procedure name.

Relocatable Code

MASM and LINK normally produce relocatable code. That is, in normal use,
they create programs that may be moved in memory by MS-DOS and still oper-
ate correctly. Only the contents of the segment registers change. This has uses
in a number of applications. Programs may load other programs into any area of
memory using MS-DOS function 4Bh (useful for program overlays). Multiple
programs may be loaded into memory concurrently (useful for multitasking sys-
tems or memory resident programs, such as print spoolers).

As indicated, MS-DOS accomplishes this feat by changing only the values
of the segment registers and any locations in the program code that reference
the segment name or a far procedure. We can also extend these concepts of flex-
ibility to the data areas used by a program. Normally, relocatable programs con-
tain relocatable data areas. When the MS-DOS loader brings a program into
memory, the loader assigns values to all segment references rather than just
code segment references. Listing 2-5, which is taken from a standard .EXE
type program file, shows the data segment reference used to load the data seg-
ment register. Listing 2-6 shows the equivalent code produced by MASM.

Listing 2-5. Source for .EXE Program Header

data_seg SEGMENT ; define the data segment
H ; data area & values
data_seg ENDS
code_seg SEGMENT ; define the code segment
ASSUME cs:code_seg
ASSUME ds:data_seg

main PROC FAR ; entry point for the program
start:
mov ax,data_seg ; transfer data segment address
mov ds,ax ; --. to AX and thence to ...

mov es, ax ; -.. segment registers

_ In standard use, the variable data_seg is not a constant. Rather, this vari-
able is a segment relocatable value, which is indicated in the MASM listing by
four dashes and the letter R. As it loads the program, MS-DOS inserts in the
program the actual value to be used during execution. This value is the address
of the location in memory where data_seg was loaded. So with the help of MS-
DOS, a program’s code and data areas may be moved around in physical memory.

2 — Design and Implementation of Modular Programs

Listing 2-6. Listing for .EXE Program Header

0000 code_seg SEGMENT
ASSUME cs:code_seg
ASSUME ds:data_seg

0000 main PROC FAR

0000 start:

0000 B8 -———- R mov ax,data_seg
0003 8E D8 mov ds,ax

0005 8E CO mov es,ax

Separate Data Area

If more than one data segment is defined in the program (using corresponding
ASSUME directives), it is possible for routines to have separate data areas. But
in typical programming style, each routine is limited to accessing the same data
area every time that routine is called. The data area is dedicated to the routine
and vice versa.

In normal use, dedicated areas are not a handicap because most routines
execute in a sequential manner, one after the other. But what happens when we
try to execute the same procedure more than once at the same time? Wouldn’t
the later call overwrite the earlier call’s data because the routine uses only one
data area? At this point, you may be wondering why the same procedure would
be invoked more than once simultaneously.

There are at least three cases where this occurs. First, multitasking sys-
tems may have multiple programs running, sharing common libraries of code
called run-time libraries (because the code is accessed at run-time instead of
being included during link-time). Run-time libraries have only one copy of the
code, located in memory, instead of having multiple copies located in the pro-
gram file. (See Chapter 3 for a more complete discussion of run-time libraries.)
Although they may all run the same code at the same time, run-time libraries
must have separate data areas to avoid inadvertent sharing and corruption of
data.

The second case where the same procedure may be invoked by two parties
simultaneously occurs in interrupt-driven systems. Assume that a routine is ex-
ecuting but is interrupted by some external event. The program that services
the interrupt starts executing but needs to call the routine that was inter-
rupted. Unless they have separate data areas, the interrupt procedure destroys
the data that belongs to the interrupted routine. For this reason, interrupt serv-
ice routines need to have separate data areas.

Recursive Code

The third use for separate data areas occurs when a routine needs to call itself.
This is a common tool for problem solving and is given the name recursion.

93

Coding and Programming

94

Calculating factorials is a good example of this technique. A sample recursive
solution for calculating the value of a factorial appears in Listing 2-7. The solu-
tion is not very elegant and contains no overflow checks on the multiplication,
but it suffices for values of Nup to 7.

Listing 2-7. Recursive Solution for Calculating Factorials

factor PROC NEAR ; find factorial N
cmp ax,2 ; reached end yet?
jne subfact ;> no, calculate (N - 1)!
mov ax,2 ; yes, start at the beginning
ret

subfact:
push ax ; save current value of N
sub ax,1 ; get N -1
call factor ; request (N - 1)!
pop bx ; restore value of N
mul bx ; N x (N [min] 1)! = N!
ret

factor ENDP

Reentrant Code—Local Storage Requirements

For all these cases, a routine’s data must be preserved separately from its code
in such a way that more than one procedure, each with its own data areas, may
be executing the code at the same time. If this criterion is met, the routine is
said to be reentrant. That is, the routine may be invoked (entered) by one pro-
gram flow while another program flow is still executing it. We say program flow
because we don’t really care whether the routine is called by another program,
by another routine, or even by itself (recursion).

In factor, the data to be preserved is saved on the stack by the calling rou-
tine. This is possible only in recursion because the programmer knows when
control is given to the new routine and may anticipate the need to set up a new
data area. For multiuser and interrupt handler applications, this is not suffi-
cient, and the routines must have their data protected at all times. Control may
be taken away at any time. In these cases, set up a local data area when the rou-
tine is first entered. This storage may be allocated in one of two ways: on the
stack or in memory.

Local Storage on the Stack

A block of the stack may be reserved for local storage by decrementing the stack
pointer. Then any interrupts or calls that occur continue to build on the stack,
preserving any local data belonging to the routine that was interrupted. This is
the easiest method but requires that all local variable access take place through
the BP register. (See the preceding section entitled “Passing on the Stack” for a
discussion of this.) Listing 2-8 contains an annotated example of this method.

2 — Design and Implementation of Modular Programs

Listing 2-8. Using the Stack for Local Storage

push
push
push
call
add

StackFrame
LocWord dw
LocChar db
LocIndx dw
Xamp LBP dw

dw
Param1 dw
Param2 dw
Param3 dw
StackFrame
base EQU

r

; The Calling Procedure

<argument_3>
<argument_2>
<argument_1>
Example

sp,6

; The

STRUC
?
14 dup (?)

?

L IRETS BTN BT BN

ENDS

; push third argument
; push second argument
; push first argument
; call procedure

; clear stack

Called Procedure

; define stack structure template
; local word variable

; local character array

; another Llocal word variable
saved BP

return address (NEAR call)

; 1st parameter (pushed last)

; 2nd parameter

; 3rd parameter (pushed first)

; end of template definition

Ne N

[bp-offset XamplBP]l ; aligns BP with template

Example PROC NEAR

push
mov
sub
push
push
mov
mov
pop
pop
mov
pop
ret
Example ENDP

bp
bp,sp

sp,offset XamplBP ;

si
di

; start of procedure

; save old base pointer

; align StackFrame with stack
reserve space on stack
; save any registers used

si,base.Param1 ; access to passed parameters

di
si
sp,bp
bp

al ,base.LocWord; access to local variables

; restore saved registers

; discard local variables
; restore original BP

; return and DON'T clear

; end of example procedure

95

Coding and Programming

96

Because the structure StackFrame is defined in the current segment, no
segment overrides are necessary. If offsets from another segment are used, as
in attempting to use a template from the data segment, you have to use the SS:

override in the references. Failure to do so results in the MASM error message

Can’t reach with segment reg. If you ever see this message, an explicit seg-
ment overrides to define which segment you are accessing and see whether this
solves the problem.

Iflocal storage is allocated on the stack, that storage must be freed prior to
returning from the routine. This may be accomplished by either adding the size
of local storage to the stack (reversing the sub sp,offset bp_ or restoring the SP
from a saved value (mov sp,bp). It may not be freed by using the RET N because
the current top of stack does not contain the return address!

In most high-level language compilers, the preferred method of storing lo-
cal data is by using this “temporary” storage on the stack. Variables that are
placed in this type of storage are sometimes referred to as local, dynamic, or
automatic variables. Listing 2-8 contains the typical sequence of events that is
expected to take place upon entry to a typical high-level language program. The
procedure sets up a new stack frame (saving BP and setting BP to the current
SP), allocates local storage (subtract from the SP), and saves any registers that

it might destroy.

Figure 2-1 represents the arrangement of the stack as it would appear
within the Example routine and shows how the Stack F'rame template is aligned
with the stack. Note that it is our definition of base as “[BP-offset XamplBP]”
that accomplishes the alignment. Since XamplBP is to align with the location of
the saved BP on the stack, we chose the definition such that base. XamplBP is
equal to [BP - offset XamplBP + offset XamplBP], which is the same as [BP+0].
The other important point is that the stack template structure must start with
the declarations of those items that will be located in lower memory.

The ENTER and LEAVE Instructions for Local Stack Storage
In the more advanced members of the 8086 family, Intel has provided two new
instructions to aid in using local storage on the stack. The iAPX186, iAPX188,
and iAPX286 processors all support the ENTER and LEAVE instructions. EN-
TER is used to set up local storage on the stack when first entering a routine,
and LEAVE deallocates this local storage when exiting the routine. In addition,
ENTER and LEAVE has the capability of maintaining frame pointers, which
are used in certain block structured high-level languages such as Pascal.
Because of the complexity of these instructions, we have presented their
macro equivalents in Listing 2-9. This also allows 8086/8088 users to take advan-
tage of these instructions in anticipation of an upward migration to one of the
more advanced processors. Note that the enter and leave macros deviate from
our unofficial standard of prefixing macros with an @ because they are intended
to stand in for the ENTER and LEAVE instructions when using the 8088/8086.

2 — Design and Implementation of Modular Programs

Higher Addresses
Previous
Stack Frame
3
Param3
[BP +8]
[BP +6]
Param1
[BP +4]
[BP+2]
Xamp1BP
[BP+0] StackFrame
LoclIndx
[BP-2]
LocChar
[BP —16]
LocWord
[BP—18])
Saved S|
Saved DI
Top of Stack
Available
Memory
Lower Addresses

Figure 2-1. Local stack storage and parameter access.

The ENTER instruction performs three actions on the stack when the in-
struction is executed. It always pushes the value on the BP onto the stack. If the
value of level is 1 or greater, the instruction copies the previous values of
the BP onto the stack. If the value of local is 1 or greater, the instruction opens
up space for local storage on the stack by subtracting local from the stack
pointer. The BP is always set to the location of the old BP on the stack (the first
PUSH).

The LEAVE instruction reverses the action of ENTER as long as the BP is
left at, or reset to, the original value of the BP as set by ENTER.

The most confusing phase of this operation is that relating to the frame
pointers. Figure 2-2 shows the state (and contents) of the stack for a series of
operations that consisted of four successive ENTER instructions.

97

Coding and Programming

Listing 2-9. Macro Equivalents for the ENTER and LEAVE
Instructions

MACRO DEFINITIONS FOR ENTER & LEAVE INSTRUCTIONS

Base addressing definitions for use in accessing
elements in the stack frame created by ENTER.

pbase equ [BP + 4] ;; access to parameters
Lbase equ [BP - ??tsize] 5, access to locals

fbase equ [BP - ?272fsizel ;; access to frame pointers
;; Form: ENTER local <immediate 16>, level <immediate 8>

’
ENTER--Create stack frame and allocate lLocal storage

;; Copies stack frame pointers from previous routine into
;; a new stack frame for this routine and opens up space
;; on the stack for new local storage.

.
14
..
rs
-
r

rrs

enter MACRO local,level
?2?tsize = local + level x 2
77fsize = level x 2
push bp
IF (level NE O)
IF (level GT 1)
REPT Llevel - 1

sub bp,2
push Cbpl
ENDM
ENDIF
mov bp,sp

IF (level GT 1)
add bp,(level - 1) x 2
ENDIF
push bp
ELSE
mov bp,sp
ENDIF
sub sp,local
ENDM
Form: LEAVE

Ne

N

; LEAVE--Execute procedure return removing stack frame
; and local storage set up by ENTER instruction.

= Ne Ns Na o Na

98

2 — Design and Implementation of Modular Programs

Lleave MACRO

mov sp,bp
pop bp
ENDM

Each stack entry in Figure 2-2 symbolizes 2 bytes. (For this reason, all lo-
cal parameters for ENTER are multiples of 2 bytes. This is not a restriction of
the ENTER instruction.) The arrows in the figure symbolize that an entry
points to another entry (contains the address of that entry).

The first ENTER (level one) sets up a single frame pointer, pointing to its
own frame, and opens up space on the stack for 4 bytes of storage. The second
ENTER (level two) not only creates its own frame pointer (FP #2) but copies
the frame pointer from the previous frame (FP #1). The second ENTER creates
only 2 bytes of local storage. The last ENTER (level three) carries the operation
one step further, copying the frame pointers of the previous two levels (FP #1
and FP #2).

Why does the example sequence start with a level one ENTER rather than
alevel zero ENTER? A level zero ENTER simply pushes the BP onto the stack
and subtracts the value of local from the stack pointer, setting the BP to point to
the value of the BP just pushed. No frame pointers are copied. A level zero EN-
TER is thus ideal for creating local storage on the stack. When used in conjunc-
tion with the STRUC directive, ENTER can almost automatically create local
stack storage that is easy to access. Listing 2-10 demonstrates further.

This program fragment defines, allocates, and uses local storage from the
stack. ENTER is instructed to reserve the proper amount of space through the
MASM SIZE operator. The percent mark (%) is required only with the macro
implementation of ENTER. When using the machine code version (supported
by MASM 2.0 and higher by specifying the .286C switch), the % should be omitted.

ENTER 4,1 ENTER 2,2 ENTER 4,3
XXXXXXXX XXXXXXXX XXXXXXXX
[old BP] « - [old BP] [old BP]
[FP #1] [FP #1] [FP #1)]
[local 1} [local] [local]
[local] 1 [local] [local]
[BP#1]e@é@@fw&;« onge BO#D [old BP]
- [FP#1] [FP#1]
[FP#2] [FP#2]
- [local] ~ [local]
3 ?m@%{g@ [BP#Z]4%“#%@:5;—‘@5 BP#3
[FP#1]

[FP#2]

Figure 2-2. Effects of ENTER on the stack.

99

Coding and Programming

Listing 2-10. Creating and Referencing Local Stack Storage

with ENTER
?data_1 STRUC
my_var dw ?
?data_1 ENDS

test PROC NEAR
ENTER %(size ?data_1),0 ; allocate localstorage
mov lbase.my_var,10 ; store a value in local

The symbol lbase is defined in Listing 2-9 as the base address for all local
variable accesses. The actual reference created in the MOV instruction is

mov [BP - ??tsizel.my_var,10

The symbol ??tsize is set by the macro implementation of ENTER to the
number of bytes added to the stack by the ENTER instruction, not including
the BP. This symbol is calculated as local + level *x 2. When ??tsize is subtracted
from the contents of the BP, the result is the address of the top of the stack. All
structure references are thus positive offsets from lbase. Even if you use the
machine code version of ENTER, you can easily write a macro that calculates
??tsize and creates the ENTER instruction so that this technique can be used on
the 186/188/286 processors as well.

Another symbol defined in Listing 2-9 is pbase, the base address for all ac-
cess to variables passed on the stack. The value of pbase is [BP+4] to cover the 2
bytes pushed on the stack as part of a near CALL instruction and the 2 bytes
required for the BP pushed on the stack by the ENTER instruction. Once a
structure has been defined for the stack parameters, pbase can be used with
their field names for symbolic access as in pbase.my_param.

Having described the simpler uses of ENTER, we return to the question of
the frame pointers. What are they for? Each frame pointer points to the begin-
ning of the previous routines’ stack frames. By loading the BP with the contents
of one of the frame pointers located in the current frame, access can be gained to
the previous level’s local variables. This is primarily designed for implementing
high-level languages, such as Pascal, where a routine has automatic access to
the parent routine’s variables. Unless you are very serious about high-level
structured programming in assembly languages, you probably pass by using the
frame pointer capabilities of ENTER. If you decide to try using ENTER with
frame pointer anyway, a little experimentation should give you a feel for the
operation.

Code Positioning Summary

Note that reentrant routines are not necessarily relocatable, nor are relocatable
routines necessarily reentrant. Relocation applies to the ability to position the

100

2 — Design and Implementation of Modular Programs

program in memory. Reentrant applies to a routine having secure local data
storage. Recursive routines are a type of reentrant routine with the relaxed re-
striction that the programmer knows at what point data must be preserved in
preparation for the next call.

In addition, when writing reentrant routines, don’t forget that the rou-
tines’ parameters must be reentrant also. Data must be passed to the called rou-
tine in an area that either is protected (such as the stack) or is always saved
when a new procedure or task takes control (for instance, all interrupt service
routines save all registers when invoked).

You also should remember that there are two types of relocatable code.
The first type is MS-DOS relocatable where MS-DOS, using the relocation map,
alters the values of segment variables in order to relocate the program. The sec-
ond type is self-relocatable, which simply means that no relocation map is re-
quired. Only programs that use only displacement addressing in CALLs and
JMPs may be self-relocatable.

Interfacing to High-Level Languages

The most common use of assembly language today is as an adjunct to a high-level
language. During development a program will typically be coded using a high-
level language, with only a few modules being written in assembly language.
Assembly language is used where either speed or code size is a critical concern,
or because the high-level language does not support access to certain features or
hardware.

There are three main areas of concern when interfacing an assembly lan-
guage module to a high-level language program. These are: reconciling names
between the two modules, handling any special setups that the language and
compiler may require, and adjusting the assembly language module to the
proper calling sequence and parameter passing techniques used by the particu-
lar high-level language compiler.

In the past there were few rules governing the naming conventions and
calling sequences for high-level languages. Today the situation is much im-
proved, with many compilers following standards laid down by the American
National Standards Institute (ANSI). Because the high-level language com-
pilers offered by Microsoft are widely used and because they adhere to the
ANSI standard, we have chosen Microsoft’s BASIC, C, FORTRAN, and Pascal
compilers to illustrate common calling conventions.

The Microsoft C Calling Conventions

The calling conventions illustrated in Listing 2-8 represent a typical C program.
Were the Example program translated into C, its opening statements would ap-
pear something like this:

101

Coding and Programming

102

void Example (Param1, Param2, Param3)
int Param1, Param2, Param3 ;
{
int LocIndx ;
char LocChar [14] ;
int LocWord ;

In the C language all subroutines are also functions; any routine can return
a value to its caller. Because our function does not return a value, we have de-
clared it as function type void.

C makes use of automatic variables for the storage of local data. Note,
however, that there is no standard that dictates the order to be assigned to local
variables as they are placed on the stack.

Listing 2-8, Figure 2-1, and the preceding code fragment all show how the
C language pushes its arguments in the reverse order that they are declared.
The purpose of this method is so that if a variable number of parameters are to
be passed, the called routine can always find the leftmost parameters at a fixed
position on the stack. Paraml will always be located at [BP+4], regardless of
how many parameters were actually passed. C programs that make use of this
feature usually use the leftmost, or first, parameter to pass the total number of
parameters passed to the called routine. In this manner the called routine can
determine how many additional parameters it needs to read.

Another feature to note in the C language is that parameters are almost
always passed by value. If we call Example with the variable Foo, the contents
of Foo are placed on the stack. The called routine thus manipulates a copy of the
variable passed, rather than the variable itself. The exception to this method is
that arrays are typically passed by address. (In the C standard, an array’s iden-
tifier is its address, so this apparent exception is actually consistent with C syn-
tax.) However, C also allows the programmer to pass the address of any
variable, if desired.

The Microsoft C compiler supports one of the richest programming en-
vironments, allowing the experienced programmer complete control over the
memory module to be used. Our example represents the default C environment,
composed of near program calls and near references to data.

In spite of all of the effort just presented, we would still be unable to sub-
stitute our assembly language version of Example for the C language routine.
The obstacle to be surmounted lies in reconciling the names used between the
calling C routine and the called assembly language routine. The problem is
that the C compiler prefixes all names with an underscore (_). When the com-
piler generates a call to Example, it is really expecting that the destination rou-
tine’s name is _Example. Possibly this nomenclature is designed to prevent
collisions between the compiler’s name space and the assembler’s name space. If
both the calling and called routines are in the C language, then the compiler
translates both references, and there isn’t any trouble. When one of the refer-
ences is in assembly language, we must perform the translation ourselves. This

2 — Design and Implementation of Modular Programs

translation applies to names given to global data variables as well as program
labels.

Two items to note are that the C language limits names to 8 characters and
that in C all names are case sensitive. In C, Example and example are two sepa-
rate names. The assembly language routine should be assembled with the /mx
switch, to preserve the case of any names used.

The final requirement for a C program to be able to call an assembly lan-
guage routine is that the function be declared public in the assembly language
routine and extern in the C routine. Table 2-1 summarizes the calling conven-
tions for Microsoft C.

Table 2-1. Microsoft C Calling Conventions

Convention Description

Code references Near or far

Data references Near or far

Stack cleared by Caller

Parameters passed in Reverse order

Parameters passed by Value

Values returned in AX or DX:AX

Name length: 8 characters

All names are: Preceded by an underscore (-)

The Microsoft Pascal Calling Conventions

Where Listing 2-8 approximates the C calling syntax, the calling conventions
for Microsoft’s Pascal compiler are best expressed by the example shown in List-
ing 2-4. The Pascal equivalent of myprog could be coded somewhat like this:

procedure MyProc (Param1, Param2, Param3 : integer) ;
begin

The major difference between the C and the Pascal languages is that Pascal
performs much more stringent checks. These checks ensure that the proper
number and types of parameters are passed in calls, that function values are
used in a manner appropriate to their type, and so forth. Thus, unlike C, in Pas-
cal a routine must be declared either a procedure (a subroutine that returns no
values) or a function.

Pascal also makes use of automatic variables for the storage of local data.
As with C, there is no standard to dictate the assigned order of the local vari-
ables in the stack. Also, as with C, space for local variables is allocated on the
top of the stack upon entry to the called routine. If the MyProg procedure used
the local variables LocIndx, LocChar, and LocWord, they would be referenced
as shown in the Stack Frame structure of Listing 2-8. The Pascal equivalent code
would be something like:

103

Coding and Programming

104

procedure MyProc (Param1, Param2, Param3 : integer) ;
var

LocIndx, LocWord: integer ;

LocChar[1..14] : character ;
begin

From Listing 2-4 we can see that unlike C, Pascal pushes its arguments in
the order that they are declared, left to right. The reason that this method is
possible is that the Pascal compiler ensures that all calls to a given routine
provide the proper number and type of arguments. Pascal simply does not allow
a variable number of parameters to be passed, so the passing order used in C is
not required in Pascal.

A consequence of the strict call checks performed by Pascal is that the
called routine always receives the same number of arguments, allowing the
called routine to use the RET N instruction to clear the stack, rather than de-
pending on the caller.

In another similarity to C, the Pascal language usually passes its variables
by value but also allows variables to be passed by address if desired, using the
var declaration.

In a departure from C, the Microsoft Pascal compiler uses the LARGE
memory module, expecting far calls and far memory references. Also unlike C,
Pascal recognizes names in any case, although the assembly language function
must still be declared public and the Pascal reference must be declared extern.
Table 2-2 summarizes the calling conventions for Microsoft Pascal.

Table 2-2. Microsoft Pascal Calling Conventions

Convention Description
Code references Far

Data references Far

Stack cleared by Called (RET n)
Parameters passed in Declared order
Parameters passed by Value

Values returned in AX or DX:AX
Name length 8 characters

All names are Case-insensitive

The Microsoft BASIC and FORTRAN Calling Conventions

The standards followed by Microsoft’s BASIC and FORTRAN compilers closely
resemble those of Microsoft Pascal. Table 2-3 shows just how much similarity
there is in the calling standards. However, in a major digression from the C and
Pascal conventions, both BASIC and FORTRAN pass their arguments by refer-
ence. Because these languages pass the address of a variable, any manipulation
of a variable that is performed by the called routine also alters the value of the
variable in the caller routine.

2 — Design and Implementation of Modular Programs

In fact, the similarities between all four interfaces mean that it is just as
easy to write assembly language routines for BASIC or FORTRAN as it is for
Pascal, or even C for that matter. However, more effort is required within the
BASIC or FORTRAN program to set up the proper interface.

The BASIC equivalent of the extern statement is DECLARE, while FOR-
TRAN requires the INTERFACE statement. Each of these statements informs
its respective compiler that the associated routine name is to be found outside
the current module. Additional parameters may be needed to inform the com-
piler how to format and generate the proper call.

Table 2-3. Microsoft Calling Conventions for BASIC

and FORTRAN
Convention BASIC FORTRAN
Code references Far Far
Data references Far Near or far
Stack cleared by Called (RET n) Called (RET n)
Parameters passed in Declared order Declared order
Parameters passed by Far address Near/far address
Values returned in AX or DX:AX AXor DX:AX
Name length 40 characters 6 characters
All names are Uppercase Case-insensitive

The Microsoft Segment Model

Microsoft’s MASM version 5.0 allows the programmer to quickly specify the
proper segment names and setup for a given language with the MODEL direc-
‘tive. Even without version 5, setting up the proper assembly language template
is relatively easy. All four languages use the same primary segment names. The
code segment is _TEXT, and the data segment is _DATA. Additional segments
may be required for particular interfaces, and many Microsoft compiler models
also require that the stack be placed in the data segment. However, a simple as-
sembly language routine need not worry about such issues because it can oper-
ate off of the caller’s stack, and the high-level language main routine will handle
all necessary setup.

Allocation and Use of Local Storage in Memory

There is a third method of allocating storage for variables. We have seen storage
in global memory and storage on the stack. Now we will see storage in allocated
memory. Allocated memory must come from the unused memory of the system
(often called the memory pool). MS-DOS supplies functions that may be used to
allocate, deallocate, and size memory-system blocks. Once memory has been al-
located, the programmer can implement a personal memory management
scheme to manage the memory in smaller units. For now, however, we will con-
centrate on MS-DOS’s features, beginning with function 48h, Allocate Memory.

105

Coding and Programming

106

Once the block of memory has been obtained, the program must-be able to
address it. Memory that has been allocated through MS-DOS comes in 16-byte
chunks called paragraphs. MS-DOS returns a pointer to this memory that con-
tains the high 16 bits of the block’s memory address. Segments are also ad-
dressed as paragraphs, so the pointer should be loaded into one of the segment
registers (but not the CS register!). Usually either the data segment or the ex-
tra segment is used to gain access to the block of memory. If the routine that
allocated the memory is not the main routine of the program, the old segment
register value must be saved and restored before the routine exits. In addition,
the memory that was allocated should be returned to the system before the rou-
tine exits. MS-DOS function 49h, Free Allocated Memory, is used to return an
allocated memory block to the system. Listing 2-11 shows how a routine from an
.EXE type program would allocate, use, and free memory for use as local storage.

Listing 2-11. Allocating Local Storage through MS-DOS

common SEGMENT ; common data used by all
com_1 dw ?

com.2 db 14 DUP (?2)

common ENDS

dummy_dat STRUC ; structure definition ...
dummy_1 dw ? ; === Used with the ...
dummy_2 db 14 DUP (?) ; ... allocated memory

dummy_dat ENDS
ASSUME ds:common ; access to COMMON data

local_example PROC NEAR; example procedure
push ds ; save previous DS
B8 -—— R mov ax,common ; COMMON is MS-DOS relocatable
mov ds,ax
push es ; save previous ES
mov ah,048h ; allocate memory
mov bx,1 ; request 1 block (16 bytes)
int 21h ; call MS-DOS
jc not_alloc ; carry means allocate failed
mov es ,ax ; if allocated, address it

M
; Three examples of addressing

-
4

A1 0000 R mov ax,com_1 ; proper seg.--DS assumed
B8 0000 mov ax,dummy_1 ; wrong seg.--immediate
26: A1 0000 mov ax,es:dummy_1 ; proper seg.—--overridden
mov ah,04%9h ; free allocated memory
int 21h ; call MS-DOS
jnc free_ok ; no carry means worked
not_alloc:

2 — Design and Implementation of Modular Programs

; Error messages, if failed, allocate or deallocate

free_ok:

pop es ; restore ES
pop ds ; restore DS

ret

local_example ENDP ; end of example

Listing 2-11 contains both the Allocate Memory and Free Allocated Mem-
ory MS-DOS function calls. Instead of using the DS register to point to the
newly allocated memory, we have used the ES register, reserving the DS for ac-
cess to an area of common program variables. Note that unlike the stack exam-
ple, accesses using the structure defined here do require the segment override
operator (:). Without a segment override, mov ax,dummy_1 does not generate a
memory reference involving the ES but instead generates an immediate load of
the offset (zero here) into register AX. When the segment override is added to
the instruction, mov ax,es:dummy_1, MASM generates a memory transfer
from offset dummy_1 in the extra segment. The segment override is shown in
Listing 2-11 with the prefix byte 26:.

When using multiple data segments in a program, the programmer’s re-
sponsibility is to manage the data areas in use. For example, if routine X allo-
cates local storage and updates the DS register to access this area, the
programmer must remember that this data area is now the default data area for
all routines called by X. Common data areas that have been defined in the pro-
gram are still accessible by loading either the DS or ES registers from a seg-
ment variable as shown in Listing 2-6. Those routines that modify their segment
registers must save and restore the original segment registers to prevent their
parent routines from being confused.

Whenever more than one data or extra segment is used by a program, the
programmer must pay careful attention to the ASSUME directives used in the
program. In assembling a typical memory reference, MASM first searches its
internal symbol table for the name of the variable being accessed. If MASM
finds the variable in the symbol table, MASM tries to create the reference using
the segment in which the variable was defined. If that segment isn’t present
(through an ASSUME), MASM generates the error message Can’t reach with
segment reg.

If MASM can’t find the variable in the symbol table, MASM assumes that
it’s in the data segment. If this turns out to be wrong, MASM attempts to fix the
error during pass two by attaching a segment override prefix to the instruction.
Unfortunately, inserting this byte causes another error message, Phase error
between passes.

In case of confusion or of a forward reference where the variable name is
not yet in the symbol table, the programmer must use the segment override op-
erator (:) to more clearly define to MASM which segment is to be used. The SEG
operator is also useful for controlling accesses in a routine. This operator allows
the programmer to obtain the segment value (base address of the segment) for

107

Coding and Programming

108

any defined variable. The references that SEG creates are MS-DOS relocatable
and are useful for creating relocatable references in place of absolute ones.

Introduction to MS-DOS Memory Management

Our example in Listing 2-11 depends on there being free memory available within
the system. Unfortunately, the default MS-DOS process allocates all memory for
itself when it is loaded. The Allocate Memory call will fail because the process al-
ready has all the memory, even though it doesn’t know it. If a program wants to use
the Allocate Memory function, some of the memory that it received during the load
must be returned to the system. Typically a process will wish to return all memory
that is not occupied by the program’ code, data, or buffers.

The function that MS-DOS provides to allow a process to return part of its
allocated memory to the system is function 4Ah, Modify Allocated Memory
Block. This allows the process to trim memory from its default allocation block.

Note that there are methods to prevent a process from allocating all memory
when it is loaded, but their presentation is delayed until Chapter 3, where the
topics of program loading and MS-DOS program files are covered in more detail.

The parameters required for the Modify Allocated Memory Block function
are the segment address of the block to be modified and the new size of the
block. The segment address of the block that contains the program (whose size
we wish to modify) is given by the PSP (program segment prefix). The PSP is a
section of memory that begins every program in the MS-DOS environment. The
details of the PSP’s contents are described in Chapter 3. For now, our only con-
cern is that the segment address of the PSP is the segment address of the block
to be modified, and we need that address.

Just how we go about determining these parameters is different for .COM
type files and . EXE type files. Figure 2-3 shows the arrangement of memory for
both .COM and .EXE files. The PSP is the first entry for each type. In the
.COM type program, the PSP is contained in the first 256 bytes of the program
segment, and the program’s segment address (in all segment registers) is the
segment address of the PSP.

For .EXE files, the PSP resides in its own segment. However, whenever
an .EXE program is loaded and receives control from MS-DOS, both the DS and
ES registers contain the segment address of the PSP. So for either type of pro-
gram, the PSP address may be obtained from at least the DS and ES registers.
In addition, users of MS-DOS version 3.0 (or higher) may use the Get Program
Segment Prefix Address, function 62h, to determine the PSP address. MS-DOS
returns the value in the BX register.

Because the Modify Allocated Memory Block function expects the block
address in the ES register, the function may be called immediately upon the pro-
gram starting execution, since the ES already has the PSP address.

Once the memory block address is found, we must determine the amount of
memory to be saved. The difference between .COM programs and .EXE pro-
grams becomes much more marked here. For .EXE programs the size can be
determined by subtracting the starting segment address of the PSP from the
segment address of a dummy segment located at the end of the program, as

2 — Design and Implementation of Modular Programs

e~] N~
.COM .EXE
Lower Memory Lower Memory
0000
. PSP .
PSP e e PSP
0100
Segment A
Code & Data
Segment B
. End Program
Stack »é{i];mumwwzﬁwwﬁmmw@ Segment C
FFFE
or
High Unused Unused
Memory Memory
Memory High Memor .

Figure 2-3. MS-DOS program memory map and the program
segment prefix.

shown in Listing 2-12. Why are segment addresses used? Function 4Ah expects
the size in paragraphs, and segment addresses are actually paragraph addresses.

Listing 2-12. Function 4Ah, Modify Allocated Memory
Block—RESIZE for .EXE Programs

resize PROC NEAR

mov ax,es get PSP address

mov bx,SEG end_addr ; get next segment address
sub bx,ax ; difference is prog size
mov ah,04Ah ; modify allocated memory
int 21h ; «== MS-DOS call

jnc short resize_ok ; no carry => resized okay
mov ax,04C00h ; carry => failed--abort
int 21h

resize_ok:

ret

resize ENDP

r

-
’
-
4
-
r
-
r

.
4

The remainder of the code goes here with END_ADDR as the last
entry in the program file before the END statement. Take care
to ensure that END_ADDR is linked as the last segment if more
than one source file is used.

end_addr SEGMENT
end_addr ENDS

END

109

Coding and Programming

110

For .COM type programs, a little forethought is required. Unlike .EXE
programs, which have a definite size set by the linker, . COM programs can vary
in size. The location of the stack in a .COM program, which is set by MS-DOS,
can vary from the end of the segment (FFFE) to 256 bytes longer than the pro-
gram (the minimum size required by MS-DOS for the stack). The user can
choose between, one, accepting what MS-DOS has provided and resizing the
stack provided by MS-DOS (set size 64K [1000 hex paragraphs]) or whatever re-
mains; or, two, moving the stack and resizing based on that. The second choice
frees more memory and so is preferred and recommended by Microsoft and
IBM. Listing 2-13 contains an example of a .COM program that sets up its own
stack and resizes its initial allocation block to the more moderate size.

The only interesting part of this routine is the way that it determines the
size of the resultant program. The MASM operator SHR is used to convert the
number of bytes in the program to the number of paragraphs through what is
essentially a division by 16. What is not so obvious is why seg_org is subtracted
from the offset of last_byte. The SHR operator doesn’t work when applied to an
offset, and it produces the error message Constant was expected. However, the
difference between two offsets is considered a constant, making the expression
palatable to MASM. Note that seg_org must have an offset of zero so that the
size is relative to the beginning of the segment. Were start used instead, the last
100 hex bytes of the program would be lost. (Note that last_byte: works just as
well as last_byte equ $ for calculations.)

In addition to being useful for freeing memory, the trick of subtracting two
offsets (either Label or Number) to get a constant can be useful for all types of op-
erations where sizes are required in expressions that demand constants. We’ll see
this applied to the task of aligning a data buffer on a paragraph boundary in
Chapter 6.

Memory Allocation from within High-Level Languages

Most high-level languages handle the problems associated with allocating or re-
sizing memory blocks. You will not need to add code to resize the initial alloca-
tion block in order to make use of a language’s memory management functions.
The malloc and calloc functions in the C library, for example, will work regard-
less of a process’s initial memory allocation.

Protecting Data and Controlling the Scope of Data

The techniques used in reentrant coding lead us into another aspect of modular
programming: protecting the data in the program from accidental alteration. De-
struction of important data most often occurs when one part of the program mis-
takenly alters the data that belongs to another part of the program. The possibility
of this happening can be reduced by following some basic rules. The foremost rule
is to modularize the program data as well as the code, that is, control the range of
data that a routine may access. This is often called the scope of the data. Let’s re-
view what we have just learned and see how it may be applied to our new problem.

2 — Design and Implementation of Modular Programs

Listing 2-13. Function 4Ah, Modify Allocated Memory
Block—RESIZE for .COM Programs

code_seg SEGMENT
ASSUME cs:code_seg

ORG 0000h
seg_org EQU $
ORG 0100h
main PROC FAR
start:
mov sp,offset stack
call resize

7
; The remainder of the program can go here.

.
I 4

main ENDP

resize PROC NEAR
mov bx,(offset last_byte - seg_org + 15) shr 4
mov ah,04Ah ; modify allocated memory
int 21h ; -a. MS-DOS call
jnc short resize_ok ; no carry => resized okay
mov ax,04C00h ; carry => failed--abort
int 21h

resize_ok:
ret

resize ENDP
db 32 DUP ('stack ")

stack:

last_byte EQU $

code_seg ENDS
END start

Local Storage versus Global Storage

The human mind can deal with only a limited number of concepts at any given
time. The implication of this for programmers is that as the number of elements
to be manipulated and remembered grows, so does the number of errors. By
using local storage for subroutines, the programmer reduces the number of data
elements that must be remembered. Rather than dealing with data areas con-
taining hundreds of variables, the programmer can now deal with a data area
that contains only a handful of variables. Many small data areas may exist, each
one may be verified with the routine that uses it because each is secure in the
knowledge that no other routine interferes with it. Either of the methods pre-
sented for reentrant routines serves for the allocation of temporary local data
storage.

111

Coding and Programming

Global storage areas, also known as common areas, may be modularized.
In this case, a number of smaller data areas are created in place of a monolithic
one. Routines then can access only those portions of global data that they re-
quire. This necessitates careful attention on the part of the programmer to
ASSUME directives in the contents of the segment registers, but such explicit
handling of common data also makes clearer what is accessing and thus altering
critical data. For example, a common data area containing text strings and
character constants need not be part of a numerical calculation routine, just as a
table of sine and cosine values is not needed by a terminal input routine.

Parameters should be passed on the stack as much as possible, reducing
the number of interroutine data accesses. Whenever multiple routines must ac-
cess common data areas for parameter passing purposes, the likelihood of a mis-

take increases.

Common data usually should be defined with DEFINE DATA directives
so that the contents of the area are static and not subject to accidental deletion if

a routine makes a mistake with Free Allocated Memory.

Using Segment Registers

The segment registers allow the programmer to restrict the range of possible
data references. By changing the base of the segment that contains the data, the
architecture of the machine automatically constrains the program to a 64K ac-
cess window. If more sensitive data is located in the lower areas of memory, then
as the segment register is changed to point to a higher addressed block of mem-
ory, the data in the lower area is totally protected against any unauthorized

access.

Controlling the Size of Data Access

The programmer may further constrain this window on the data by setting up
bounds-checking on array accesses. One of the most typical data errors occurs
when an array access runs across its boundaries. Whatever data happens to
border on the array is lost. Bounds-checking may be accomplished by a simple
macro as shown in Listing 2-14. For those programmers who are working with
an 80x86 processor, the BOUND instruction has been provided to accomplish
this checking. The bound macro shown in Listing 2-14 has been written for com-

patibility with the BOUND instruction.

Listing 2-14. Checking Array Bounds with Macros

;; BOUND-Check the contents of the general register REG
;; against the two consecutive values located in memory at
;; address MEM32. This is a signed integer compare.
bound MACRO reg,mem32
LOCAL out_bound,in_bound

pushf ; save flags
cmp reg,word ptr mem32 ; check lower Llimit
jlL out_bound ; index underflow

112

2 — Design and I'mplementation of Modular Programs

cmp reg,word ptr mem32 + 2 ; check upper Limit

jle in_bound ; index is okay
out_bound:

popf ; clean up stack

INT 5 ; ACTION TO BE TAKEN
in_bound:

popf ; restore flags

ENDM

The bound macro compares the contents of a general register containing
the array index against two successive memory locations. The first memory lo-
cation is assumed to contain the lower limit of the index, and the second memory
location is assumed to contain the upper limit of the index. The BOUND instruc-
tion executes an interrupt type 5 (int 5) if the index tested is out of bounds.
Macro version users may modify bound to take whatever action they desire.

Protecting the Integrity of the Stack

The other area that is susceptible to destruction is the stack. Because the stack
mixes code and data, an error here undoubtedly will result in total failure of the
program as the processor attempts to use data as an instruction reference.

The two most common ways to destroy the stack involve problems of faulty
alignment. One way is caused by mismatching PUSH and POP operations, and
the other is through attempting to POP data that was PUSHed on the other side
of a CALL or RET. These problems may be avoided only by paying close atten-
tion to pairing the PUSHes and POPs used in a program and making sure that
such pairings do not cross routine boundaries. When reading source code, re-
member that macros often contain PUSH and POP instructions that must be
taken into account.

In the case of parameter passing, the question of which routine clears the
stack arises. Normally the rule for such occasions is that the routine that pushed
the data gets to pop the data from the stack. If this rule is followed, the pro-
grammer can verify that the stack is aligned by reading one routine’s listing
rather than two. However, rigidly following this rule prevents use of the 8086’s
RET N instruction. If the interface between two routines is fully debugged and
dependable, an acceptable risk is to use the RET N instruction.

Whenever a routine must be coded to accept a variable number of param-
eters, the RET N instruction should not be used. There are various ways to get
around the limitation of being able to clear the stack only of a set number of vari-
ables, but all of them involve tricky manipulations of the stack that are difficult
to understand and even more difficult to debug. If a routine must take a variable
number of parameters, the calling routine should clear those parameters from
the stack. In addition, the calling routine must clearly indicate to the called rou-
tine the number of parameters that have been passed to it.

113

Coding and Programming

All operations performed on the stack, except PUSH and POP, should take
place under the umbrella of the stack pointer and use the BP register to access
the stack. What this means is that the stack pointer should be set to a value be-
low the elements being manipulated. Should an interrupt take place, the data
being manipulated remains untouched. For the same reason, the stack pointer
should not be directly manipulated unless switching stacks or opening storage
on the stack. If an interrupt takes place at a time when the stack pointer is not
pointing at the true top of stack, data on the stack could be lost. What this all
adds up to is a warning not to use clever manipulations of the stack.

Summary

114

In this chapter, we have covered a variety of topics ranging from the theoretical
nature of structured programming to the details of MASM, MS-DOS, and 8086
family processor operation. We have tried to give you some alternative ap-
proaches for your structured programming needs. Although it is most unlikely
that all or even most of these techniques will appear in your small assembly lan-
guage programs, we think that many of them will find uses in your larger proj-
ects. And if only one point is remembered, let it be this: think first, code later.

Most of the more practical points about MASM and MS-DOS resurface in
subsequent chapters. Try out the examples in our sample programs and get
comfortable with their use. You’ll need many of them. Most particularly, our in-
troduction to MS-DOS memory management forms the stepping stone for Chap-
ter 3, “Program and Memory Management.”

3 — Program and Memory Management

N the previous chapters we explored the tools for creating DOS programs

() |and the various ways in which DOS programs can be internally structured.
Now we will examine how MS-DOS programs exist within the MS-DOS environ-
ment. In the course of this examination, we will backtrack to more fully explain
some of the topics hinted at in the previous chapters: the program segment pre-
fix, the working of MS-DOS’s memory allocation, and the mechanism used to
load MS-DOS programs. Lastly, we will introduce the mechanism for installing
memory resident programs, a topie that is followed up in Chapter 4, which dis-
cusses terminate and stay resident programs (TSRs).

MS-DOS Memory

The easiest way to understand the MS-DOS operating environment is to exam-
ine the MS-DOS memory map, the pattern used by MS-DOS to allocate its lim-
ited memory to all of its competing purposes. Although generic MS-DOS does
not dictate a particular memory map, the immense popularity of the IBM stan-
dard, and its consequent adoption, provides us with a de facto memory map.

MS-DOS Physical Memory Map

MS-DOS was developed on the 8086/8088 central processing unit (CPU), which
can address a total of 1 megabyte of memory. The typical uses and locations of
this memory are shown in Figure 3-1. The first ten segments (64-Kbyte
“chunks”) of this memory are referred to as the user area. This 640-Kbyte area
is where MS/PC-DOS itself and the user’s application programs reside. The re-
maining six segments, which total 384 Kbytes, are called the system area, and
are reserved for use by the ROM-BIOS, for the various device drivers contained
within the BIOS, and for communication with other boards in the system. Note
that Figure 3-1 simplifies the uses of the system area considerably. Actually,
there are many types of boards that use this area for many purposes, but we are
concerned only with the general layout.

117

Coding and Programming

ADDRESS MEMORY USE
FFFFF
System ROM
F0O000
System Use
E0000
System Use 384K
D0000 (ROM or other)
Disk Control
C0000
Video RAM
B0000
EGA Graphics
A0000
User
90000
User ONE
80000 MEGABYTE
User
70000
User
60000
User 640K
50000 User
User Area
40000
User
30000
User
20000
User
10000
System Use
00000 [

Figure 3-1. IBM PC/XT/AT standard memory map for MS-DOS.

Expanded and Extended Memory

Since the introduction of MS-DOS, more powerful central processing units have
been developed. The 80286 and 80386 have each expanded the limits of address-
able memory, allowing megabytes of memory to be placed in a single system.
What use, if any, does MS-DOS make of this additional memory? None directly,
but in many cases this additional extended memory (because it “extends” above
the 1-megabyte boundary) can often be used as a RAM disk or, more commonly,
as another type of additional MS-DOS memory, called expanded memory (be-
cause it “expands” on the basic 640-kilobyte limit of MS-DOS).

118

3 — Program and Memory Management

For MS-DOS versions 3.3 and earlier, expanded memory products are
available in three varieties. The first Expanded Memory Specification was de-
veloped jointly by Lotus, Intel, and Microsoft, and is called LIM EMS version
3.2. Soon afterward, Ashton-Tate, Quadram, and AST developed an improved
standard, AQA EEMS (the Enhanced Expanded Memory Specification). Lotus,
Intel, and Microsoft incorporated the AQA EEMS improvements in LIM EMS
version 4.0. All EMS systems consist of memory (on the motherboard or on an
expansion card) and the Enhanced Memory Manager (EMM), an installable de-
vice driver. MS-DOS interrupt 67h is reserved for the set of EMS functions.
MS-DOS versions 4.0 and above, as part of the operating system, support the
LIM EMS 4.0 standard. Hardware implementations vary between manufac-
turers. The MS-DOS 4.0 EMS software consists of an installable device driver,
and, in fact, any EMS device driver and compatible hardware combination can
be substituted for those supplied with the operating system.

Expanded memory results from the introduction to the MS-DOS world of
the established tradition of using paged or bank-switched memory. In this pro-
cess a large section of memory that lies outside the processor’s address space is
“mapped” in small pieces into a much smaller section of memory that lies within
the processor’s address space. While the processor cannot address the entire
large section of memory directly, it can select and reach any individual part,
much like selecting a page in a book.

Under the MS-DOS Expanded Memory Specification, or EMS, the larger
physical memory is mapped into the MS-DOS memory space in 16-Kbyte sec-
tions, called pages. The corresponding 16-Kbyte address space in the MS-DOS
memory space is called a page frame. The number of page frames supported,
and the locations of the page frames within the MS-DOS system, vary with the
type of expanded memory board used and the existing configuration of the
system.

Chapter 7 is dedicated to the topic of EMS memory, describing methods of
access, the EMS standard, and much more. For the purpose of our discussion,
we acknowledge the existence of EMS memory, but it does not greatly affect us.
We are concerned with how MS-DOS itself uses memory, and for us it is suffi-
cient to note that EMS memory must be mapped into the standard memory ad-
dress space in order to be accessible by MS-DOS. (There is speculation that
future versions of MS-DOS may utilize EMS memory directly, effectively break-
ing through the 640-Kbyte boundary.)

MS-DOS Memory Utilization

By this time we have established that under the current de facto standard, MS-
DOS has 640 kilobytes of memory to utilize for itself and the user’s application
programs. In a typical MS-DOS system, this memory will be allocated as shown
in Figure 3-2. You should note that most of the addresses given in Figure 3-2 are
only approximate and depend on the version of MS-DOS, the physical configura-
tion of the system, and the options specified by the user in the CONFIG.SYS
and AUTOEXEC.BAT files. In addition, the sizes of the segments given in

119

Coding and Programming

120

ADDRESS MEMORY USE
A0000 .
or Top of COMMAND.COM
User Area
Transient Usable
Program by
Area Programs
Resident Programs
COMMAND.COM User
Area
Device Drivers (640-Kbyte
maximum)
DOS Buffers
10000 to 14000
DOS Kernel
08000 to 0A000
BIOS interface
00040
Int Vectors
00000

Figure 3-2. MS/PC-DOS user memory utilization.

Figure 3-2 are not to scale but are provided to give the relative position of the
various components.

Within Figure 3-2 there are a few areas that require further explanation.
First, note that COMMAND.COM appears twice in the memory map. Are there
two copies of COMMAND.COM loaded? No, it is rather that COMMAND.COM
is loaded in two separate pieces. The piece located just above the device drivers
is kept permanent in memory and is called the resident portion. This portion is
responsible for handling program termination and any user program errors that
result in program termination. This section is the parent program of any user
programs that are run. The other section of COMMAND.COM, located at the
top of memory, is the piece that provides the user’s interface to DOS. This piece
is called the transient portion because it is present only when there are no user
programs running or when the user program is attempting to load another pro-
gram. The transient portion processes MS-DOS’s internal commands (DIR,
COPY, SET, etc.) and contains the program loader. It is used to load programs
either from the COMMAND.COM prompt (in response to external commands)
or upon request by the user program. Later in this chapter you will see how one
program can make use of this feature to load other programs or program
overlays.

The section of Figure 3-2 labeled “Resident Programs” refers to terminate
and stay resident programs, such as Borland’s Sidekick. The memory location

3 — Program and Memory Management

shown in the figure applies to TSRs that are loaded from the AUTOEXEC.BAT
file, or directly upon system initialization. Chapter 4 covers TSR programs in
greater depth.

The “Device Drivers” section refers to installable device drivers, those
that are specified by the DEVICE = command in the CONFIG.SYS file. Install-
able device drivers are the topic of Chapter 6. The default device drivers sup-
plied with the system are located in the section labeled “BIOS Interface,” where
they are used during the process of loading or “bootstrapping” the MS-DOS
system.

The “DOS Kernel” is the section of MS-DOS that processes the various
MS-DOS functions, such as the int 21h functions. It provides the bridge be-
tween the user’s program or COMMAND.COM and the various device drivers
and hardware.

The “int Vectors” section contains the system’s 256 interrupt vectors.

The remaining area is the one that we are really interested in—the “Tran-
sient Program Area,” or TPA. (The name TPA dates back to the days of CP/M,
the progenitor of MS-DOS.) It is within the TPA that the user’s program is lo-
cated and where the remainder of our attention will be focused.

In some ways Figure 3-2 is misleading. Not all of the elements shown in the
figure have their own memory block, and there are a number of elements that
are not shown that have their own discrete memory blocks. We will start by ex-
amining the TPA in more detail, beginning with the method that MS-DOS uses
to organize its sections.

MS-DOS Memory Chains

MS-DOS’s memory control begins when DOS is loaded. All MS-DOS memory
blocks, either free or allocated, begin with a memory control block, or MCB.
These control blocks, shown in Figure 3-8, identify the type and size of the mem-
ory block, and the program (or process) that owns it.

The two types of memory control blocks are chained blocks, whose type is
4D hex, and the final block of the chain, whose type is 5A hex. The type is stored
in the first byte of the MCB.

The next two bytes in the MCB are a word that identifies the owner of the
memory block. A value of zero indicates that the block is unallocated, or free. If
the owner field is nonzero, indicating that the block is allocated, then this word
contains the process identifier, or PID, of the owner process. The PID for a user
process is normally taken from the segment address of the processs program
segment prefix, or PSP.

The fourth and fifth bytes in the MCB are a word that contains the size of
the memory block that follows. This size is expressed in paragraphs (16-byte
blocks), and does not include the size of the MCB itself. The remaining eleven
bytes of the MCB are undefined.

Although the complete list of memory control blocks is often referred to as
the memory allocation chain, the MCBs are not actually linked together, nor
does the MCB point to the allocated memory block. Rather, each MCB is di-
rectly followed in memory by the block that it controls. If an MCB and its associ-

121

Coding and Programming

122

ated memory block are not the last in the chain, then another MCB and memory
block directly follow.

Starting from a given MCB, the segment address of the next MCB in the
chain is located by adding the size (in paragraphs) of the current block to the
current MCB’s segment address, plus one more. In this manner the entire chain
of MCBs may be traversed, but only in the forward direction. Starting from a
given MCB, it is impossible to determine the address of the preceding MCB.
How then can we find out which blocks are in memory?

ADDRESS TYPE OWNER SIZE
0A00:0
0A01:0
Allocated Block Owned by MS-DOS
2001:0
4D 2013 0010
2002:0
Allocated Block Owned by Process 2013
2012:0
4D 2013 0500
2013:0
Allocated Block Owned by Process 2013
2513:0
5A 0000 7AEC
2514:0
Free Block Owned by MS-DOS
Contains Remainder of Memory to Top of Memory
9FFF:F

Figure 3-3. MS-DOS memory control blocks.

MS-DOS function 52h (int 21h) is an undocumented function that returns a
pointer to a list of DOS’s internal values. The pointer is returned in the ES:BX
register pair. Just before this list, at the word pointed to by ES:[BX- 2], is the
segment address of the first MCB. From this starting point the entire MCB
chain may be determined.

These methods are used in the SHOWMEM program, shown in Listing
3-1. The listing contains both the SHOWMEM.ASM source file and the header
file PSP.INC (of which we’ll see more). Figure 3-4 depicts a sample result from
the SHOWMEM program. Within SHOWMEM. ASM, the ShowMCBlInfo rou-
tine displays the contents of the MCB. The main procedure contains the code to
locate the initial block and, after the label show_mem, the arithmetic for finding
the next block in the chain. The additional code in ShowMCBOwner may not

3 — Program and Memory Management

make sense just yet. This code is used to display the name of the process that
owns that block of memory and is explained in subsequent sections.

There are a number of very interesting items that can be learned from
examining Figure 3-4. We can see that the author has loaded three memory
resident programs: RETRIEVE, MODE, and SWITCH. We can see that
SHOWMEM has a very large block of memory allocated to it: 555 kilobytes! And
we can see that every program that was loaded has two memory blocks allocated
toit. It is this last phenomenon that we will explain first.

SM-ShowMem, Version 1.00, © Copyright 1988

MCB Size Owner Command Line

0A01 08p7 0008 DOS

12D9 00D3 12DA [SHELL 1]

13AD 0003 0000 [available 1

13B1 0032 12DA [SHELL 1]

13E4 0004 13EA ¢:\bin\RETRIEVE.COM

13E9 00A9 13EA c:\bin\RETRIEVE.COM

1493 000F 14A4 S:\MODE.COM

14A3 0017 14A4 S:\MODE.COM

14BB 0010 14CD c:\ws2000\SWITCH.COM

14CC 0018 14CD c:\ws2000\SWITCH.COM

14E5 0011 14F8 C:\GUIDE\EXAMPLES\SHOWMEM. EXE
14F7 8B08 14F8 C:\GUIDE\EXAMPLES\SHOWMEM.EXE

Figure 3-4. Sample display from SHOWMEM.

Listing 3-1. SHOWMEM MS-DOS Memory Block
Display Program

SHOWMEM.ASM

PAGE 60,132

5 Xkkk SHOWMEM 5okokokokokokkKok KoK okok kKKK KKk KKK KoKk ok ok K K KKK K 3k K KKK ok 3k ok K K Kok ok k ok ok K K K
; ShowMem - Display MS-DOS Linked Memory Control Blocks
; This file creates the program SM.EXE

; kkx%x INCLUDES & EQUATES XkkkkkkkKKKK KK KKKKKKKKHKHKKK K K KKK KK K K KKK KK kK

r

INCLUDE stdmac.inc

INCLUDE psp.inc X
continued

123

Coding and Programming

Listing 3-1. continued

’

BlocMCB EQU 4Dh
LastMCB EQU 5Ah
FreeMCB EQU 0000h

type of chained MCB
type of last MCB
owner of free MCB

Ne Ns N

NameSig EQU 0001h ; signature of process name

’

; *%x%x% DGROUP (DATA) COMPONENT SEGMENTS skkkkkkkKKkkKKAKKKKKKKKK K KKKKKKK
7
_DATA SEGMENT BYTE PUBLIC 'DATA'
_DATA ENDS
STACK SEGMENT PARA STACK
dw 1024 dup (?2) ; 2K stack
STACK ENDS

DGROUP GROUP _DATA, STACK

4

; ¥xx% DATA STORAGE & TEMPLATES Xk¥X%KkKKKKKKKKKKKKKKKK KK KKK KKK KKKKKKK

_DATA SEGMENT BYTE PUBLIC 'DATA'
; Text Messages for Display: Format as Follows:
; "MCB Size Owner Command Line"

7 TXXXX XXXX XXXX cccececccCa..."
; "KLK mmmmmm e End of Memory Block List -------=---- >>>"

I 4

$Title db CR,LF
db 'SM-ShowMem, Version 1.00, © Copyright 1988’
db CR,LF,CR,LF

db 'MCB Size Owner Command Line'

db CR,LF

db \J — ——— 0 . S S ——— - v
db W e o e e o s \J

db CR,LF,'$’

$Space db ' $'

$Free db 'L available 1$'

$DOS db 'DOS$’

$Shell db 'L SHELL 1%’

$MCBad db CR,LF
db "xxxXkxxxk% Error in MCB Chains : Aborting List'
db ' kkkkokkkkkk '

124

8 — Program and Memory Management

$End db CR,LF
db '<<< xxkkxkkkkxkkx End of Memory Block List"'
db ' meemmm—mee—o >>>1'
db CR,LF,'$’

$Crlf

4

r

Structure Templates

’

Ne

memory control block structure
block type

block owner

block size

PROGRAM CODE STARTS HERE XXX3kX%%kkXkkkKKKKKKKKKKKKKKKKKKKKKK KKKk

cs:_TEXT, ds:DGROUP, es:DGROUP, ss:DGROUP

mcb STRUC
TypeMCB db ?
OwnerMCB dw ?
SizeMCB dw ?

mcb ENDS

;

_DATA ENDS

5 kkkx

_TEXT SEGMENT byte public 'code'
ASSUME

;
EXTRN bin2hex:NEAR

main PROC FAR
mov ax,DGROUP
mov ds,ax

N N

4
4

Display title for memory block Llist

@DisStr

Find
mov
int
sub
mov
mov
xor
cmp
jne

Loop to find

show_mem:

call
cmp
je
mov
add
inc

$Title

ah,52h

21h

bx,2
ax,word ptr
es ax

di,di

start of the memory block queue

es:[bx1]

I 4
4
-
4

4

.
’

hexadecimal display

set up data segment

get DOS parameters
return pointer in ES:BX
point to 1st MCB address

; get starting block

clear index

byte ptr es:[dil.TypeMCB,BlocMCB

bad_chain

’

4

exit if not start
... of chain

and display each memory block

ShowMCBInfo

4

dump MCB contents

byte ptr es:[dil.TypeMCB, LastMCB

done
ax,es

ax,es:[dil.SizeMCB

ax

4
’
-

4

’

exit if end of chain

; calculate next address

add block size

; plus one for ourselves

continued

125

Coding and Programming

126

Listing 3-1. continued

mov es, ax ; start of new block
cmp byte ptr es:[dil.TypeMCB,LastMCB
je show_mem ; continue if proper type
cmp byte ptr es:[dil.TypeMCB,BlocMCB
je show_mem ; continue if proper type
bad_chain: ; error in MCB "chains"
@DisStr $MCBad ; terminating message
@DisStr $Crlf
mov al 1 ; terminate w/ error
@ExitToDO0S ; terminate program
done: @DisStr $End ; terminating message
@DisStr $Crlf
mov al,0 ; normal terminate
@ExitToDOS ; terminate program
main ENDP

’
5 XkkX ShoOWMCBINTO kkKkKKKKkKKKKKKKKKKKKKKKKKKKKAK KKK KKK KKK K KKK KK KKK KKK
; ShowMCBInfo displays the block addressed by ES:DI as an MS-DOS
; Memory Control Block. Format for the display is shown above.
ShowMCBInfo PROC NEAR
mov ch,04 ; display numeric data
mov ax,es ; MCB address
call bin2hex
@DisStr $Space
mov ax,es:[dil.SizeMCB
call bin2hex
@DisStr $Space
mov ax,es:[di].OwnerMCB ; owner
push ax save owner
call bin2hex
@DisStr $Space

associated block

Ne

N

pop ax
cmp ax,FreeMCB ; is block free?
je is_free ; Yes, don't need name
call ShowMCBOwner ; no, display owner
jmp Info_Exit

;

is_free:
@DisStr $Free ; note block as free

Info_exit:

3 — Program and Memory Management

@DisStr $Crlf
ret
ShowMCBInfo ENDP

’
5 XXXk ShOWMCBOWNETr XkXKkKkKkKKKKKKKKKKKKKKKKKKKKKKKKAKKKKK KKK KKK KK KK KKK
; ShowMCBOwner extracts and displays a DOS MCB owner from an

; associated environment string. ES:DI points to a valid MCB,

; with a nonzero owner field.

;

S

howMCBOwner PROC NEAR
push es ; save MCB address
push di ; save for cleanup

s

; Obtain the PID (PSP address) that owns this memory block

mov ax,es:[dil.OwnerMCB ; get owner's PSP address
mov es ax
cmp es:[di]l.PSPExitInt,PSPSignature ; valid PSP ?
je Owner_PID ; yes, owner has PID
; Without a PSP the owner must be the DOS kernel
Owner_DOS:
@DisStr $DOS ; owner is MS-DOS
jmp Owner_Exit ; all done
’
; Extract the process's Environment Segment from the PSP
Owner_PID:
mov ax,es:[di]l.PSPEnvironment ; yes, get envir. addr
push ax ; save environment seg.

.
r

; Get the Size of the Environment Segment

dec ax ; environment MCB

mov es,ax

mov cx,es:[dil.SizeMCB ; get size of environ.
shl cx,1 ; convert paragraphs ...
shl cx,1 ; ... to bytes

shl cx,1

shl cx,1

; Proceed to search for the process name at ES:DI, length CX
; Each environment variable is terminated with a zero byte.
; The Llist of variables is terminated with a(nother) zero byte.

cld ; forward search

pop es ; restore environment

xor al,al ; search value
search:

repne scasb ; search for ASCIIZ

continued

127

Coding and Programming

jne
scasb
jne

Check to see
mov
push
push
pop
Lodsw
cmp
je

r

Listing 3-1. continued

Owner_DOS

Ne N2 N

search

if a "Signature" preceeds
si,di
ds
es
ds

Ne Ne N

al,NameSig
show_name

Ns Ns Ns

; Without a real name, the owner must be

pop
@DisStr
imp
;
; ES:DI points
show_name:
Llodsb
cmp
je
@DisChr
Loop
Owner_Pop:
pop
Owner_Exit:
pop
pop
ret

ds _
$Shell H
Owner_Exit

to a valid (0 terminated)

al,0
Owner_pQOP
al
show_name

N* N® Ne N

ds

di
es

ShowMCBOwner ENDP

;

; %kkxx END OF

;

_TEXT ENDS
END

PROGRAM :

main

stop if overrun
end of string list
continue if more

the (possible) name
transfer to SI

save string seg
transfer ES to DS

read word preceding
check for real name
valid name

the SHELL

owner is shell

process name

read Name char at a ...
... time, checking ...
... for end, and ...
... displaying

END OF FILE %XkkkkkkkkkKkKKKKKKKKkKKKKKKKKKKKk kK

; PSP.INC

7 KKK KK AR K KK Aok oK 5 3K oK 3 KK K 3K oK K 5K A oK KK KK K oK K 3K K K 3K oK oK KK K 3K K 3k oK K 3k 3K K oK K 3k 3k kK K K K K KK KKK KKK

-
14
-
4
-
4

128

PSP DEFINITIONS INCLUDE FILE
KKK AR KK KK K KK KKK KoK K K kKK 3K 3K K ok oK K oK A 3K K 3k oK KoK XK 3K oK 3K 3K oK K 3K 5K K 3K oK K 3K 5K oK oK K K Kok oK Kok kK kK K KKKk K

3 — Program and Memory Management

PSPSignature EQU 020cdh ; word begining all PSPs

r

ProgramSegmentPrefix STRUC

PSPExitInt dw ? ; int 20h exit interrupt
PSPMemTot dw ? ; top of memory
PSPResvr1 db ?

PSPDOSCall db 5 dup (?) ; call to MS-DOS
PSPTerminate dd ? ; terminate address
PSPControlC dd ? ; control-C address
PSPCritical dd ? ; critical error address
PSPParent dw ? ; parent PSP
PSPHandleTable db 20 dup (?) ; default handle table
PSPEnvironment dw ? ; environment address
PSPStack dd ? ; initial stack values
PSPHandleSize dw ? ; handle table size
PSPHandlePntr dd ? ; address of handle table
PSPResvr2 db 24 dup (?)

PSPDOSINnt db 3 dup (?) ; interrupt 21h & ret
PSPResvr3 db 9 dup (?)

PSPFCB1 db 16 dup (?) ; file control block
PSPFCB?2 db 16 dup (?) ; file control block
PSPResvr4 db 4 dup (?)

PSPCommandLen db 1 ; length of command Lline

PSPCommandBuf db 127 dup (?) ; command Lline text
ProgramSegmentPrefix ENDS

The Program Environment Block

When MS-DOS loads a program, it always prefixes the program with an en-
vironment block, stored in its own memory block. In Figure 3-4, this appears as
the first, smaller block that is associated with each program. The program’s en-
vironment block contains the program’s personal copy of the MS-DOS environ-
ment. The MS-DOS environment, in turn, is the area in MS-DOS where the
PATH, COMSPEC, and PROMPT settings are stored, along with any variables
assigned with the SET command. The generic form of an environment variable
is NAME=string. The format of an environment block is given in the example
shown in Figure 3-5.

From Figure 3-5 you can see that each entry in the environment block is
made of an ASCII string terminated with a zero byte. (This format has been
named ASCIIZ by Microsoft.) The entire list of entries is terminated with an-
other zero byte, shown as the seventh entry in Figure 3-5. The entries preceding
this list-end marker are those that are displayed whenever you use the SET
command. But what of the two entries following the list-end marker?

An undocumented feature of MS-DOS versions 3 and later is that, when-
ever a process is loaded by COMMAND.COM, either directly or in response to

129

Coding and Programming

130

COMSPEC = C:\COMMAND.COM

INCLUDE = c:\msc\include;c:\masm\include

LIB=c:\msc\lib

ECHO=OFF

PROMPT = pg

C:\GUIDE\EXAMPLES\SHOWMEM.EXE

Unused

Figure 3-5. The environment block.

the EXEC function, the process’s name is placed in the process’s environment
block. The last two entries in Figure 3-5, before the “Unused” portion, are this
undocumented process name. The process name is prefixed with the word 0001
hex. The name contains both the name and the path of the process, and is stored
in ASCIIZ format. From Figure 3-5 you can see that this environment block be-
longs to the process SHOWMEM.

One item that Figure 3-5 does not give us is the total size of the environment
block. Unlike DOS’s master environment, whose size can be controlled by param-
eters set in CONFIG.SYS, the process’s environment block is sized at program
load time to contain only the current valid portion of the environment.

Compare, in the sample SHOWMEM display of Figure 3-4, the 800-byte
size of DOS'’s environment (the second “SHELL” entry) to the environments of
RETRIEVE and SHOWMEM, at 64 and 272 bytes, respectively. Although DOS
had reserved 800 bytes, the environment contained less than 64 bytes when RE-
TRIEVE was loaded towards the front of the AUTOEXEC.BAT file. After the
AUTOEXEC.BAT file had finished setting up the PATH, PROMPT, and
various other variables, the environment had grown by around 200 bytes.

There are two reasons why each process receives its own environment
block when it is created. One, this reduces the probability that a process will
corrupt its parent’s environment —a crucial requirement if the parent process is
COMMAND.COM. Two, because the parent process has control over the en-
vironment given to the child, this allows a parent process to control the behavior

3 — Program and Memory Management

of the child. We will return to this topic again when we confront the issues of
loading and executing programs.

We have also left unresolved the question of SHOWMEM’ large memory
block. Keep that problem in mind, as we will return to it after a little more
groundwork has been laid.

MS-DOS Processes

We started this chapter with a description of how the entire memory space of a
system is mapped into sections for MS-DOS and for the BIOS and hardware sys-
tem functions. We then saw how the section managed by MS-DOS is organized
into different areas, including the transient program area, or TPA. We have also
seen how the TPA is managed through use of the memory control blocks and how
each process consists of two memory blocks: an environment block and what we
will call a process block. We are now ready to expand our view of the process
block and examine the individual components that make up an MS-DOS process.

The MS-DOS Process Context

Figure 2-3 in Chapter 2 gave us one view of the internal layouts of MS-DOS pro-
cesses for both an .EXE and a .COM type process. We can now combine that
with what we have just learned to produce a more detailed image of an MS-DOS
process in memory. This new view is shown in Figure 3-6.

There are many features illustrated by Figure 3-6 that we need to consider.
We’ll start with the program segment prefix, or PSP.)

The Program Segment Prefix (PSP)

The program segment prefix, introduced in Chapter 2, is in some ways the key-
stone of an MS-DOS process. The segment address of the PSP provides the pro-
cess identifier and serves as the identifier for a process’s memory block. Always
located at the start of a process block, the PSP also serves as the repository for a
large number of invaluable pieces of information.

The PSP is presented here in three forms: as a graphic representation in
Figure 3-7; as detailed definitions in Table 3-1; and as a MASM STRUC defini-
tionin PSP.INC, appearing in Listing 3-1. The figure enables quick location, the
table provides in-depth information, and the listing provides offsets for use in
your programs.

A quick glance at Figure 3-7 and Table 3-1 reveals a wealth of information
that can be useful to the programmer. However, a little more explanation is re-
quired for a few of the items.

The PSP Terminate Addresses

Table 3-1 shows three terminate addresses stored in bytes 0A through 15 (hex)
of the PSP. As explained, these copies of the program terminate address, Con-
trol-Break exit address, and critical error exit address are taken from the actual
interrupt vectors located in int 22h, int 23h, and int 24h. In order to affect the
behavior of the system during a terminate situation (such as trapping the

131

Coding and Programming

132

THE .COM PROCESS LOW MEMORY THE .EXE PROCESS

COMMAND or
Previous Program

COMMAND or
Previous Program

Previous Block

Environment MCB

Environment Block

Process MCB

Process Block

Free MCB 5A|0000}size|

Available
for Use

Unused Memory

HIGH MEMORY
MEMORY Allocated/Owned by Process

Figure 3-6. The MS-DOS process context in memory.

Control-Break/Control-C exit), the programmer is required to alter the master
interrupt vectors. This can be accomplished using the Set Vector (code 25h) and
Get Vector (code 35h) functions to obtain and change these addresses.

The PSP’s File Handle Table
Three of the “undocumented” entries in the program segment prefix deal with
file handles: the handle table address, the handle pointer, and the handle count.
These three are related, as you will see.

The handle table address contains a long pointer to a byte-wide table in
memory, the size of which is given by the handle count. Each byte entry in this

3 — Program and Memory Management

Table 3-1. Contents of the Program Segment Prefix

Offset Size

(hex) (hex) Contents

00 2 Int 20h. Contains an int 20h instruction (bytes CD 20 hex). Archaic
use. Programs should instead terminate using function 4Ch, int 21h.

02 2 Top of memory. Contains the address of the segment following the
program’s memory. This can be either the address past DOS memory
(such as A000) or the address of the next available memory control
block.

04 1 Reserved.

05 5 Long call to MS-DOS function dispatcher. Contains a long jump to
the MS-DOS function dispatcher, for use with CP/M type programs.
Archaic use. Programs should instead call MS-DOS using int 21h.

06 2 Available Memory. The offset portion of the long call also contains the
number of bytes available in the program’s code segment.

0A 4 Program terminate address. A copy of the int 22h address (IP,CS), to
which control is transferred when the program terminates.

0E 4 Control-Break exit address. A copy of the int 23h address (IP,CS), to
which control is transferred when Control-Break or Control-C is
entered.

12 4 Critical error exit address. A copy of the int 24h address (IP,CS), to
which control is transferred when a critical error is detected in
processing.

16 2 Parent program segment prefix. This is the segment address of the
parent process’s program segment prefix. This is the current PSP
address for processes that have no parent.

18 14 File handle table. Contains 20 single-byte “handles” (indices) into the
system’s file table. The first 5 are dedicated to STDIN, STDOUT,
STDERR, AUXIO, and LSTOUT. See text for details.

2C 2 Environment address. Segment address of the process’s environment
block.

2E 4 Stack switch storage. Used to store the process’s stack segment and
pointer (SS:SP) when the process is operating on the MS-DOS stack.

32 2 Handle count. Maximum number of entries allowable in the file
handle table. The default value is 20.

34 4 Handle table address. Long pointer to the file handle table. Default
value is offset 18 (hex) in the current PSP.

38 18 Reserved.

50 3 Punction dispatcher interrupt. Contains code for an int 21h to call the
MS-DOS function dispatcher, followed by a far RET.

53 2 Reserved.

55 7 File control block extension. Extension fields for file control block

#1. Archaic use. Programs should instead use file handles. Refer to
the MS-DOS manual for detailed information on FCBs.

continued

133

Coding and Programming

134

Table 3-1. continued

Offset Size
(hex) (hex) Contents

5C 10 File control block number one. Contains unopened FCB #1. Use is
archaic and can result in possible destruction of FCB #2 and the
command line length. File name paths are not supported. Programs
should instead use file handles. Refer to the MS-DOS manual for
detailed information on FCBs.

6C 10 File control block number two. Contains unopened FCB #2. Use is
archaic and can result in possible destruction of the command line
parameters. Programs should instead use file handles. Refer to the
MS-DOS manual for detailed information on FCBs.

7C 4 Reserved.

80 80 Default disk transfer area. Overlays the command line text string
when used.

80 1 Command line length. Length of the text string that was typed
following the program name, minus any redirection characters or
parameters.

81 7F Command line buffer. Text string that was typed following the

program name. Redirection characters (< and >) and their associated
file names do not appear in this area, since redirection is transparent
to the application.

table is a handle that can be opened to a file or device. Once opened, the handles
store indices into the system file table. Unused entries in the table are marked
with the value OFF (hex). The first five handles in a file handle table are re-
served for the STDIN, STDOUT, STDERR, AUXIO, and LSTOUT devices,
and are already opened when the process is started. All indices are calculated
from an origin of zero.

Figure 3-8 shows the state of the default file handle table following a suc-
cessful open to the file myfile. The default file handle table is a 20-byte table
located at offset 18 (hex) in the PSP. This address is stored in the handle table
address when a process is started. Because the first five handles are reserved
for standard devices, this leaves only fifteen handles available for files or other
devices.

In Figure 3-8 the value of the handle returned by the successful function
call to OPEN is 0005, which signifies that myfile was assigned the sixth entry in
the process’s file handle table. The sixth entry in turn contains the value 03,
which means that myfile has been assigned the fourth entry in the system file
table. Figure 3-8 also demonstrates, using the first three handles, that multiple
handles may be assigned to the same entry in the system file table. The max-
imum number of entries in the system file table is set by the FILES= statement
in the CONFIG.SYS file.

In most situations the user need never be aware of these arrangements,
but there are two situations where this knowledge becomes useful.

8 — Program and Memory Management

02h
Top of Memory

05h
Far Call to MS-DOS

0Ah OEh

Terminate Address Ctrl-Break Exit Address
12h 16h

Critical Error Exit Address Parent’'s PSP

18h
File Handle Table

File Handle Table (continued)

) d 2Ch 2Eh
File Handle Table (end) Environment Initial Stack Address
32h 34h
Handle Count Handle Table Pointer

3sh
Reserved Area (length 40 bytes)

55h
FCB Extension

50h
Int 21h Function

53h
Reserved

5Ch

FCB Extension (continued) File Control Block #1

File Control Block #1 (continued)

6Ch

File Control Block #1 File Control Block #2

File Control Block #2 (continued)

7Ch

File Control Block #2 Reserved Area

80h 81h
Length | Command Buffer (127 bytes long)

Figure 3-7. Structure of the PSP (program segment prefix).

One situation arises when the user’s program requires more handles than
can be opened at a given time. Since the default file handle table supports only
twenty handles, and since five handles are already assigned, this may not be
such a far-fetched proposition. In order to overcome this restriction, the pro-
gram must set up its own expanded file handle table, as the code fragment in
Listing 3-2 shows.

In the second situation, Listing 3-2 assumes that the location of the new
table is supplied to it, and it also assumes that the table has been preloaded with
OFFh, the code for an unused handle. The code first determines the location of
the PSP, using function 62h. From the PSP, the size and location of the existing
file handle table are found, and the old table is copied into the new table. The

135

Coding and Programming

136

34h Handle Table Pointer AX Handle
PS Segment:0018 (hex) v OPEN=0005

File Handle Table
STDIN |STDOUT [STDERR| AUXIO [LSTOUT | myfile (unopened)
03 FF | FF

System File Table

MYFILE 3

Unused 4

Figure 3-8. The PSP’s file handle table.

new table’s address and size are stored in the proper fields of the PSP, and the ex-
change is complete.

Another feature made possible by this mechanism is that the programmer
now has control over redirection of the program’s input and output. In MS-DOS,
redirection is accomplished by simply changing the handle associated with a par-
ticular device. This method even works to redirect input and output performed
with the older, nonhandle input and output calls (such as function 09h, Display
String).

Listing 3-3 demonstrates how StdOut is redirected to the file or device my-
file. The program first opens the name myfile and saves the handle. It then ob-
tains the PSP’s address, and from within the PSP it obtains the address of the
file handle table. Using myfile as an index into the file handle table, the pro-
gram obtains myfile’s system file table index and stores it in the index assigned
to StdOut, accomplishing the redirection. The remainder of the program re-
verses the process and finishes by closing myfile’s handle.

3 — Program and Memory Management

Listing 3-2. Code Fragment for Switching the File Handle Table

; This Llisting transfers the default File Handle Table to an
;, area specified in ES:DI. The new table size is assumed in CX.
; MS-DOS version 3.xx is assumed (for "Get PSP Address").
; The AX and BX registers are destroyed.
;
push ds ; save DS
push si ; save SI
push di ; save new table offset
push cx ; save new table size
mov ah,62h ; get program segment prefix
int 21h ; returns PSP in BX
mov ds,bx ; address the PSP
;
; Obtain current table address and size
mov bx,032h ; address of table size
mov cx,[bx] ; obtain table size
push ds ; save PSP address
lds si,[bx]2 ; obtain current table address
’
; Copy the old table from DS:SI to the new location at ES:DI
cld ; forward direction move
rep movsb ; move table to new location
’
; Restore new table location and size and update PSP
pop ds ; restore PSP address
pop cX ; restore new table size
pop di ; restore new table offset
mov [bx12,di ; store new table offset
mov [bx14,es ; store new table segment
mov Cbx1,cx ; store new table size
pop si ; restore original SI
pop ds ; restore original DS
Listing 3-3. Code Fragment for Redirecting StdOut to a File
; This Llisting opens a handle to the file or device "myfile",
; and replaces the StdOut handle with the newly opened handle.
; Entry is assumed with DS and ES pointing to the data segment.
; The following data variables are assumed to be defined:

continued

137

Coding and Programming

138

StdOut equ
Handle dw
Outhand db
MyFile db

14

4

e

; Open a handle

lea
mov
mov
int
jc

mov

Listing 3-3. continued

; code for StdOUT handle

; new handle variable

; StdOut handle variable
filename.ext',0

-« WD W) -

to the file/device found in myfile.

dx,MyFile ; name

al,2 ; read/write access
ah,03dh ; open function

21h

OpenError

Handle ,ax ; save handle

Transfer the file/device handle to the StdOUT handle.

push
mov
int
mov
les

es ; save ES

ah,62h ; get program segment prefix
21h

es bx ; ES points to PSP

bx,es:[bx].PSPHandlePntr

ES:BX now points to the File Handle Table

mov
mov
mov
mov
mov

pop

al,es:[bx].StdOut ; read StdOut handle

Outhand,al ; ... and save
di, Handle ; read handle.s index
al,es:[bx+dil ; read handle.s entry

es:[bx].StdOut,al ; store as StdOut handle
es

Restore StdOut.s original handle

push
mov
int
mov
Les

es ; save ES

ah,62h ; get program segment prefix
21h

es ,bx ; ES points to PSP

bx,es:[bxl.PSPHandlePntr

ES:BX now points to the File Handle Table

mov
mov
pop

al ,Outhand ; read StdOut Handle
es:[bx].StdOut,al ; store as StdOut handle
es

Close the redirected file

mov

bx ,Handle ; handle for file or device

3 — Program and Memory Management

mov ah,03eh ; close function
int 21h

SHOWMEN and the PSP’s Environment Address Pointer

Another of the useful values stored in the PSP is the segment address of the pro-
cess’s environment block. We are returning to this entry not because it requires
further explanation but because we are now in possession of all the information
necessary to understand the entire SHOWMEM program, including the Show-
MCBOwner routine:

¢ Find the initial memory control block using int 52h.
e Use the owner field of an MCB as the address of a PSP.
¢ Verify the PSP by checking the first 2 bytes for an int 20h.

e Ifthe MCB’s owner is a PSP, extract the environment address. If the
owner is not a PSP, then the owner must be MS-DOS.

® Subtract one from the environment’s segment address to get the
environment’s MCB, and extract from it the environment’s size.

e Search the environment for the double zero that signals the end of the
ASCIIZ strings.

® Check for the user process “signature” of 0001. If found, print the
following name. If not found, then the process must be COMMAND.COM
or equivalent shell.

¢ Ifthe current MCB is not the last one, find the next MCB by adding the
block’s size (plus one) to the MCB’s address.

¢ Repeat from the second step.

The SHOWMEM program demonstrates the interrelationships that exist
within the DOS world and shows how we can move from memory control block to
program segment prefix, to environment block, and back to the environment’s
MCB, gathering data as we progress.

Functions for Manipulating the PSP

MS-DOS contains a number of functions that directly relate to the program seg-
ment prefix. These functions are listed in Table 3-2. For those functions that get
and set the PSP, the current PSP is determined by DOS, not by which program
segment is executing at the time.

For example, let us assume a program MYPROG is running when an in-
stalled memory resident routine (TSR, if you will) receives control and issues
the Get PSP call (function 62h). In this case MS-DOS returns the PSP value for
the interrupted program MYPROG. This happens because once a memory resi-
dent routine has executed a Keep Process or Terminate and Stay Resident fune-
tion it is no longer considered active. MS-DOS considers the last program
loaded to be the currently active program.

139

Coding and Programming

140

If it is important that a TSR have access to its own PSP, the undocumented
function Set PSP (function 50h) can be used. When the TSR is first loaded, it
must save the value of its PSP. Then, when the TSR receives control at a later
time, the interrupted program’s PSP can be determined with function 62h, Get
PSP. This value should be saved, and the TSR’s own PSP activated with function
50h, Set PSP. After the TSR is done executing, it should restore the original
PSP with the Set PSP function.

Table 3-2. Int 21h Functions for the Program
Segment Prefix

Function Purpose

26h Create PSP block. Archaic use.

50h Set current PSP. Undocumented. BX contains the segment address of a
valid PSP. This function causes the new PSP (BX) to be made the MS-DOS
active PSP. Subsequent calls to DOS that reference PSP data, such as the
file handle table, will use the new PSP.

51h Get PSP segment. Undocumented. Returns the current PSP’s segment
address in the BX register. This is the same as function 62h, but is also
available in versions of MS-DOS prior to 3.00. Not safe to call from a TSR.
Recommended that function 62h be used instead.

55h Duplicate PSP. Undocumented. Functions almost identical to function 26h.
DX contains segment address of the new PSP. However, this function will also
set the parent PSP field of the new PSP to the segment address of the current
PSP. Since this is undocumented, and useful only when loading a new
program, it is recommended that function 4Bh, EXEC, be used instead.

62h Get current PSP. MS-DOS version 3.00 or later. Returns the current PSP’s
segment address in the BX register.

The MS-DOS Process File: .EXFE versus .COM

As you know, executable program files in MS-DOS come in two flavors, .COM
files and . EXF files. Figures 2-3 (in Chapter 2) and 3-6 have illustrated some of
the differences between these two formats. To MS-DOS, the differences appear
in other forms.

The .EXE type is actually the “native” mode file for MS-DOS. The MS-
DOS system and language tools have been designed to work with this type.
.COM type files were originally provided for compatibility with CP/M pro-
cesses, and the type just doesn’t seem to die. Even under today’s MS-DOS,
.COM type files are simply stripped down versions of .EXE files, with some of
the flexibility of the . EXE format replaced by . COM format default values. As a
result of this simplicity, . COM type files do load faster, but the speed differences
are trivial on modern machines.

When a process is being built, MASM does not know or care what type of
file is being assembled. During the link, LINK will detect that .COM format
files have no stack segment, but LINK will otherwise not complain. It is when
EXE2BIN is run to convert the .EXE type file into a .COM type file that the
differences begin to show up.

3 — Program and Memory Management

All object files produced by MASM and .EXE files made by LINK can con-
tain segment relocatable references. These files contain tables that list where in
the program explicit references are made to a program or code segment by its
address. Because the segment addresses in a program will depend on where it is
loaded in memory, when an .EXE program is loaded, MS-DOS must somehow
update the locations in the program where these segment references are made,
changing the values to point to the current segment. This process is called re-
locating. Before examining how relocation is performed, let’s see how this pro-
cess differs from the way a .COM type file is loaded.

When EXE2BIN converts an . EXE type file to a .COM type file, it scans
the .EXE file looking for these segment references. If it finds any explicit seg-
ment references in the code, or an implicit reference to a segment other than the
base, it produces an error message stating that the file cannot be converted. In
addition, EXE2BIN checks to make sure that the code starts at address 100
(hex), relative to the base segment. If all these conditions are met, EXE2BIN
strips the file of all relocation information and produces a .COM file. The dif-
ferences between these two program formats are summarized in Table 3-3.

Table 3-3. Differences between the .COM

and .EXE Formats
Attributes .COM Type .EXE Type
Number of segments allowed ONLY ONE Multiple segments
Segment references NONE References allowed
Stack segment NONE specified Must be defined
Program code origin ORG at 100h No ORG required
Program size Less than 64K May be any size
PSP address found in All segment regs ES and DS registers
Initial allocation block All of memory Can be sized

Loading a .COM Type File

The initial steps taken in loading and executing a .COM type program file are
identical to those in loading an .EXE type program file. In setting up the pro-
cess’s “context,” MS-DOS first initializes the environment block, taking the in-
formation either from the current system environment (the default case) or
from an environment specified by the parent process.

Once the environment has been set up, MS-DOS allocates a memory block
for the program. For .COM type programs, this memory block occupies all of
remaining memory. The minimum size required is the size of the . COM program
file, plus space for the PSP. Once the memory block is obtained, MS-DOS pro-
ceeds to build the program segment prefix for the program at the beginning of
the block. At this point the loading process used differs markedly from that used
with an .EXE type program.

The .COM file is read into memory directly above the PSP, at offset 0100
hex in the memory block, and without relocation. The segment registers are all
initialized to PSP’s segment address, the instruction pointer is set to 0100 (hex),
and the stack pointer is set to OFFFE (hex), or lower if there is less that 64K of

141

Coding and Programming

142

memory available for the process. (The minimum stack pointer value is 0100 hex.)
Control is turned over to the process, and the .COM program begins running.

Some .COM programs have trouble operating with the minimum stack
provided by MS-DOS. If a program runs with a stack that’s too small, it can re-
sult in the stack growing downwards into the code or data sections of the pro-
gram; this is almost surely fatal. If you have a .COM program that requires more
than the minimum stack of 256 bytes, you can build your own minimum stack
into the program’s file image by reserving large amounts of space at the end of
your program. (Remember that MS-DOS will automatically add at least 256
bytes to your stack when it loads the .COM program.) That way, if there isn’t
enough memory available for the stack needed, MS-DOS won’t be able to load
the program.

The .EXE Program File Format

Unlike the .COM type program file, which contains only a program image, the
.EXE type program file must contain all the information necessary to relocate
the embedded segment references. Also, because an .EXE type program is not
constrained to have a particular stack or particular starting point, the .EXE
program file must contain the information for the loader to properly initialize
the program. .

An .EXE program file is made up of three sections: the . EXE file header,
the relocation map, and the program image. The .EXE file header is shown in
Table 3-4. Some entries in the header provide the initial state of the program
image. These are MinAlloc, MaxAlloc, and the initial SS:SP and CS:IP values.
Other entries, relocation entries and relocation table offset, allow the loader ac-
cess to the process’s relocation map.

Each entry in the relocation map allows the loader to resolve one segment
reference within the program image. Each entry consists of a long pointer (seg-
ment and offset) to a segment reference within the load image. The pointer itself
is relative to the start of the program’s load image. During relocation, the initial
segment references contained in the load image are updated to contain the ac-
tual segment values. We will see this process in more detail as soon as we cover
one more aspect of the .EXE program file: the initial allocation values.

Table 3-4. .EXE Type Program File Header

Offset
(hex) Contents

00 Signature. .EXE program file type marker: 4D5H (hex).

02 ?féf;bainde% Number of bytes in last page of file (the load image size modulus

04 Pages. Number of 512-byte pages in the file, including the header.

06 Relocation entries. Number of entries in the relocation table.

08 Header size. Size of the header in 16-byte paragraphs.

0A MinAlloc. Minimum number of memory paragraphs required beyond the end
of the program.

3 — Program and Memory Management

0C MinAlloc. Maximum number of memory paragraphs required beyond the end
of the program.

0E Stack segment. Initial value for the stack segment (relative to the start of the
program load image). :

10 Stack pointer. Initial value for the stack pointer.

12 Checksum. Two’s complement checksum of the program file.

14 Instruction pointer. Initial value for the instruction pointer.

16 Code segment. Initial value for the code segment (relative to the start of the
program load image).

18 Relocation table offset. Relative byte offset from beginning of the program file

to the relocation table.
1A Overlay number. Number of the overlay generated by LINK.

The .EXE Initial Memory Allocation Block

The examples presented so far have taken for granted that when MS-DOS loads
a program into memory, all of remaining memory is allocated to that program.
This is what was shown by SHOWMEM in Figure 3-4: the last, and largest,
memory block was assigned to SHOWMEM. It was to overcome this phe-
nomenon in Chapter 2 that the Modify Allocated Memory Block function (func-
tion 4Ah) was used in the programs shown in Listings 2-12 and 2-13. But, we
have been hinting at other methods of obtaining free memory for .EXE type
programs. Figure 3-6 shows an .EXE program that has a large block of free
memory available, and the last entry of Table 3-3 says that an .EXE program’s
initial allocation block can be sized. How is this accomplished?

The .EXE type file header contains two entries that control exactly how
much memory a program is given when it is loaded. These two entries are
MinAlloc, the minimum memory allocation (at offset 0A hex), and MaxAlloc,
the maximum memory allocation size (at offset 0C hex). MinAlloc tells the
loader how much memory (in 16-byte paragraphs) the program must have to be
run, i.e., how much memory the program actually uses. MaxAlloc, on the other
hand, tells the loader the number of memory paragraphs the program desires to
be allocated to it.

The DOS linker normally sets the MaxAlloc value to OFFFF hex, which
indicates that the program wants almost 1 megabyte of memory. Since DOS
doesn’t have a megabyte, it does the next best thing: it gives the program all of
memory. However, if we were to set the value of MaxAlloc to MinAlloc, then
the program would get the memory it required, and the rest would be available.
There are two very simple ways to accomplish this.

Microsoft’s languages, including MASM, come with a utility called
EXEMOD. This utility can be used both to display and to modify an .EXE pro-
gram’s header. Figure 3-9 shows how we would go about using EXEMOD to first
dump and then modify the MaxAlloc parameters.

You may be surprised to see that the example changes MaxAlloctoal, but
from looking at Figure 3-10 you can see that the modified SHOWMEM does in-
deed run, and that the goal of freeing up memory has been accomplished. The
modified SHOWMEM’s program image looks in memory just like the .EXE

143

Coding and Programming

144

C> exemod c:\guide\examples\showmem.exe

Microsoft ® EXE File Header Utility Version 4.02
Copyright © Microsoft Corp 1985-1987. ALl rights reserved.

c:\guide\examples\showmem.exe Chex) (dec)

EXE size (bytes) cc5 3269
Minimum load size (bytes) AC5 2757
Overlay number 0 0
Initial CS:IP 0093:0000

Initial SS:SP 0013:0800 2048
Minimum allocation (para) 0 0
Maximum allocation (para) FFFF 65535
Header size (para) 20 32
Relocation table offset 1E 30
Relocation entries 1 1

C> exemod c:\guide\examples\showmem.exe /max 1
Maximum allocation (para) FFFF 65535
Figure 3-9. Using EXEMOD with .EXE program files.

program image in Figure 3-6, including the free block. You may also be sur-
prised to see that the MinAlloc values are zero. If this is the case, then the
actual minimum allocation for the program will be the size of the program itself.
No additional space is allocated.

You could resize all of your . EXE programs this way, even to the extent of
adding EXEMOD to your build batch files. However, when building .EXE files
there is another way to control the MaxAlloc parameter—by using the LINK
switech “/CPARMAXALLOC:nnn” (which can be abbreviated as “/CP:nnn”),
where nnn is the Max Alloc value in paragraphs. For example, SHOWMEM can
be built with a maximum allocation value of 1 by using the command:

C> link /cp:1 showmem,,,stdlib.lib;

The MS-DOS .EXE Process Loader

Knowing all of the pieces that go into the .EXE type program file, let us now
look at how the .EXE program is loaded and executed. As with the .COM type
program, the first step is to set up the process’s context, beginning with the en-
vironment block.

After the environment is established, from either the system or the parent
tables, the .EXE program file header is read into a work area. Using the
MinAlloc, MaxAlloc, and program image size (from pages and header size)
values, MS-DOS determines the size of the required memory block and allo-

3 — Program and Memory Management

SM-ShowMem, Version 1.00, © Copyright 1988

MCB Size Owner Command Line

0A01 08p7 0008 DOS

1209 00D3 12DA [SHELL 1]

13AD 0003 0000 [available 1]

1381 0032 12DA [SHELL 1

13E4 0004 13EA c:\bin\RETRIEVE.COM

13E9 00A9 13EA c:\bin\RETRIEVE.COM

1493 000F 14A4 S:\MODE.COM

14A3 0017 14A4 S:\MODE.COM

14BB 0010 14CD c:\ws2000\SWITCH.COM

14CC 0018 14CD c:\ws2000\SWITCH.COM

14E5 0011 14F8 C:\GUIDE\EXAMPLES\SHOWMEM.EXE
14F7 00Dp1 14F8 C:\GUIDE\EXAMPLES\SHOWMEM.EXE

15€9 8A36 0000 [available 1]

<KL mmmmmmmmmees End Of Memory Block List =-----—=====- >>>
Figure 3-10. Sample display from SHOWMEM, with MaxAlloc
set to MinAlloc.

cates it. If the MaxAlloc value is OFFFF hex, then all of memory will be
allocated.

Once the block has been allocated, the program segment prefix is created
at the start of the process block. The PSP for an .EXE type program is no dif-
ferent than that of a .COM type program. MS-DOS then reads the program im-
age into memory directly above the PSP, reads the relocation table into a work
space, and proceeds to relocate the program image. Figure 3-11 shows how the
entries in the relocation map relate to the program image. All numbers and
arithmetic in the figure are in hex.

The first step in relocation is to calculate the starting segment address.
This is the address in real memory that corresponds to the starting address of
the program image in the file. In Figure 3-11 the process memory block was allo-
cated at segment address 1000. The PSP occupies 100 bytes, or 10 segments.
The program’s starting segment address in memory is then segment 1010:0000,
and this is where the loader will place the program’s image.

Once the program image has been loaded, the loader must update, or relo-
cate, every segment reference. When LINK first builds the program image, it
uses an assumed base segment of 0000. In actual fact, the program was loaded at
segment 1010, so every segment reference must have 1010 added to it. The
loader finds all these references by using the relocation map, which contains a
pointer to every segment reference in the program.

Figure 3-11 contains two references to segment values. Let us trace the
relocation process for the far call located at 0003:1234. The actual segment refer-
ence is in the fourth and fifth bytes of this instruction, at address 0003:1237.

145

Coding and Programming

.EXE TYPE
PROGRAM FILE

Initial CS:IP = 0000:0010
: Starting Segment = +1010
Program File -
Header Actual Values = 1010:0010
Add Relocation Map
Starting PROGRAM IMAGE
Segment 0003:1237 IN MEMORY
Address ABCE
0005:
of 1010 000:0000
Program Segment
Prefix
0000:0000 010:0000
Program Image Program Image
0000:0010 START START 010:0010
0003:1234 CALL 0005:ABCD CALL 1015:ABCD 013:1234
0005:ABCD MOV AX,0007 MOV AX,1017 015:ABCD
0007:0000 Data Segment Data Segment 017:0000

Figure 3-11. The relocation process for loading .EXE
type programs.

However, this address is relative to an imaginary base segment of zero, and not
to the actual program image in memory. To find the actual segment reference in
memory, the relocation map pointer itself must be updated by the starting seg-
ment address. The actual segment reference is at address 1013:1237.

The words pointed to in memory are then incremented by the starting seg-
ment address. The far call to segment 0005 now becomes a far call to segment
1015—the actual location of the routine.

After relocation has been completed, the process’s ES and DS registers are
set to the segment address of the PSP, and the CS:IP and SS:SP registers are
initialized from the values given in the .EXE program file header. Both the CS
and the SS registers are incremented by the program image starting segment
address. For example, in Figure 3-11 the address of START, 0000:0010, is offset
by the actual starting segment address, 1010, to form the actual CS:IP values,
1010:0010, used in starting the program.

Overlays

Sooner or later you will write a program that is too large to fit into whatever
space you have for it. When this happens, one of the possibilities is to create

3 — Program and Memory Management

overlays. An overlay is a section of a program that does not need to be in mem-
ory all the time. It is loaded into memory when it is needed; but, when it is not
needed, its memory space can be used by some other overlay. The remainder of
the program that cannot be placed in an overlay is called the root. All data must
go into the root, since data in an overlay is lost when the overlay is overlaid.
Overlays are, after all, read only.

Overlays are useful entities, and MS-DOS fully supports them. One of the
uses for the EXEC funection is to load overlays. But before looking into that op-
tion, you should note that the MS-DOS linker has the ability to create overlays
and an overlay manager automatically!

The rules for using MS-DOS’s overlay manager are simple. The overlay
modules may not contain any global or static data, although constant data is al-
lowed. The other rule is that the overlay can be called only by far calls, by either
the root or another overlay. The overlay can call the root via near calls.

The method for creating an overlay is very simple: when invoking the
LINK command, the object files that make up an overlay are enclosed in paren-
theses. That’s all there is to it. The following command line creates a program
file that uses three overlays.

C> link root + (init + read) + (work) + (save + exit) , myprog ;

This example uses one set of routines to read in some data and initialize the
program, another set to process the data, and yet another to save the processed
data and exit. Since none of these operations occurs simultaneously, each was
made into an overlay, and thus the hypothetical memory problem was avoided.

Memory Resident Programs

Intypical use, MS-DOS is a single-task operating system. Only one program ex-
ecutes in memory at one time. In fact, MS-DOS is capable of supporting multiple
programs in memory at any given time. Only one program is actually executing
at a time because the processor can execute instructions only one at a time, but
programs may be configured so as to give the appearance of executing simul-
taneously. These multiple programs are created by having MS-DOS load a pro-
gram into memory and then return control to MS-DOS without removing the
program from memory. Because the program doesn’t leave memory when con-
trol is returned to the operating system, the program is called memory resi-
dent. The first step in the implementation of a memory resident program is the
installation of the program in memory. One of the simplest types of memory resi-
dent programs is the run-time library, and we use that as our first example.

Defining a Run-Time Library

What is a run-time library? You know that libraries are collections of useful rou-
tines that may be called from a program. Most libraries are link libraries in
which the desired routines are included in the program file (EXE or .COM) at

147

Coding and Programming

148

link time. Because they are part of the program file, the linked library routines
are loaded with the program when the program file is loaded. An RTL (run-time
library) is not linked with a program but is included at execution time, also
called run-time. The RTL must already be in memory or it must be brought into
memory when needed, but an RTL is not part of the program file itself.

An RTL is not directly connected to a program, so how does the program
call it? The program must somehow signal either the operating system or an
RTL support process that the program has a request for the library. This signal-
ing can take place via calls, traps, exceptions, or interrupts, depending on the
complexity of the hardware and operating system. In the MS-DOS/8086 en-
vironment, the most convenient way is through interrupts.

Why use RTLs if they require the additional effort of loading, calling, ete.?
First, RTLs are often used to develop applications that have a large number of
programs sharing common routines or to provide a common resource to all users
of a particular language. By using RTLs, the developers need store a copy of the
library only once instead of making sure that each program contains a copy. As
long as the interface between the programs and the RTL remains the same, the
routines in the RTL may be updated without modifying or relinking the pro-
grams that call them. Thus, an RTL may be viewed as an extension of the oper-
ating system because an RTL provides those facilities that the developers deem
necessary but that the system does not support. Second, RTLs have additional
benefits of reduced disk storage and faster program load time because the RTL
doesn’t have to be loaded with each program.

Loading Memory Resident Routines from the Command Line

There are a variety of methods that may be used to load a program image in MS-
DOS. The methods range from using MS-DOS to load a program from the com-
mand line to the lower-level boot routines that transfer program code from abso-
lute disk locations to fixed locations in memory. The easiest method to use is the
MS-DOS command line loader, which is simply a request to run a program.
Memory resident programs, such as RTLs, are loaded like any other program.
However, once a memory resident program has been loaded and after it runs
through its initialization sequence, the program terminates by using a special
exit: MS-DOS function code 31h (Keep Process) or interrupt vector 27h (Termi-
nate But Stay Resident). The recommended procedure is to use function code
31h of int 21h, which is demonstrated in Listing 3-4.

Function code 31h has two parameters: an optional return code used to sig-
nal the exit status and a required value indicating the size of the memory block,
in paragraphs, that remains allocated to the process. When the function is
called, MS-DOS reserves the requested amount of space, starting at the address
of the PSP (program segment prefix). This is almost exactly what happens when
the Modify Allocated Memory Block function is called with the PSP address and
desired size. In the case of the Keep Process function, MS-DOS knows that the
block to be resized has to start at the PSP address, so that parameter is not
needed.

3 — Program and Memory Management

Listing 3-4. Keep Process—Function Code 31h

; -COM Type Use

program segment
ORG 0
seg_org equ $
ORG 0100h
start:
mov dx,(offset last_byte - seg_org + 15) shr 4
mov ah,31h ; keep process
int 21h ; call MS-DOS

last_byte:

program ends
end start
; -EXE Type Use
mov ax,es ; get PSP address
mov dx,seg end_addr ; get last segment address
sub dx,ax ; difference is program size
mov ah,31h ; keep process
int 21h ; call MS-DOS
program ends
end_addr segment
end_addr ends
end start

In Chapter 2 we presented a set of formulas for calculating the size of a pro-
gram in paragraphs. Those formulas can be used with the Keep Process function
as well as with the Modify Allocated Memory Block function. When we use them
in memory resident programs, the proper equations appear as shown in Listing
3-4. Note that even though the Keep Process function doesn’t require the PSP
address, .EXE type programs need to save the PSP address until the exit call.
These programs need to save the PSP address for the purpose of calculating the
size of the program.

Because space is reserved from the start of the PSP, memory resident rou-
tines must not be loaded into the upper part of a memory block (by using MS-

149

Coding and Programming

150

LINK switch /high, for example). If the routine is loaded into high memory, that
routine is left unprotected when the memory resident routine terminates be-
cause the block of memory saved is located at the start of the memory block. The
routine itself would be located above the reserved memory space. When rou-
tines are thus unprotected, MS-DOS could load another program or the tran-
sient part of COMMAND.COM in the same space, overwriting the memory
resident routine. ‘

In any case, the MS-LINK switch /high affects only .EXE programs.
When converting a program to a .COM file, EXE2BIN removes the “load high”
marker. MS-DOS then loads the program at the beginning of the PSP,

The other method for installing memory resident programs, the Terminate
and Stay Resident interrupt, int 27h, is a holdover from earlier versions of MS-
DOS. Int 27h has a number of disadvantages that make it a poor choice. Unlike
Keep Process, int 27h does require the memory block address (given by the PSP
address), and int 27h requires this address in the CS register. Only .COM type files
have the PSP address in the code segment register, making this function difficult to
use in .EXE type programs. (How do you change the CS and still execute code?) In
addition, the size parameter is specified in bytes rather than paragraphs, which
limits the size of program that can be saved to 64 Kbytes (the maximum size of a
.COM program). The only advantage to this function is that the offset of the last
address can be used as a parameter with no conversion as shown here:

mov dx,offset last_byte 5 get number of bytes
int 27h ; terminate & stay resident

Llast_byte:
program ends
end start

Microsoft recommends that this interrupt be converted to function code
31h for all new programs written and for all existing program upgrades. When
performing the conversion, remember to modify the size parameter from bytes
to paragraphs.

Accessing Memory Resident Routines via Int

If you were to run the program shown in Listing 3-4, you would install a memory
resident program on your system. Unfortunately, as this program now stands,
all it would do is take up space in memory. To turn this program into an RTL, we
need to give it a purpose, and we must make it available to other programs.

An RTL may contain any function and make any call to MS-DOS (for exam-
ple, int 21h) as long as the library is called only by the currently executing pro-
gram. This restriction is intended to prevent inadvertent reentering of
MS-DOS, which causes system failure. The next program, shown in Listing 3-5,

3 — Program and Memory Management

contains an example interface to an RTL that could support many separate fune-
tions, much like the MS-DOS int 21h handler.

As shown in Listing 3-5, this sample framework can be extended to sup-
port math routines, table lookups, I/0 conversions, or even a common area for
multiple programs, all by adding the necessary “personality” code. We have at-
tempted to include some examples of the techniques outlined in Chapter 2, such
as stack parameters, error reporting, etc. If this routine is used to support a
large number of functions, you may wish to replace the case macro with a jump
table as demonstrated in the RDISK ram disk driver in Chapter 6.

The MACRO library referenced in the EXRTL program contains the case
macro introduced in Chapter 1 and the dis_chr (display character) and the
dis_str (display string) macros as presented in the MS-DOS Technical Refer-
ence Manual. @DosCall is, of course, a macro for interrupt 21h.

Listing 3-5. Example Run-Time Library Installation

;====== RTL.ASM - This file produces a .COM file

V_NUM EQU 40h ; this RTL uses vector 40 hex
’

INCLUDE STDMAC.INC ; include macro Llibrary file
;====== PROGRAM CODE SECTION

frame STRUC ; layout caller's stack structure
old_bp dw ? ; pushed base pointer

ret_IP dw ? ; return address (IP)

ret_CS dw ? ; return address (CS)

flags dw ? ; caller's flags

funct dw ? ; function number to perform
frame ENDS

code_seg SEGMENT
ASSUME cs:code_seg
ASSUME ds:code_seg
main PROC FAR

ORG 0
seg_org EQU $
ORG 2Ch
env_adr LABEL WORD ; offset of environment in PSP
ORG 0100h
start: jmp install
entry: push bp ; save base pointer
mov bp,sp ; get stack address
push ds ; save data segment
push ax ; save register

continued

151

Coding and Programming

push
mov
mov
mov
sahf
cle
pushf
mov
@Case
popf
stc
pushf
jmp
f1: @DisStr
jmp
f2: @DisStr
exit: pop
mov
pop
pop
pop
pop
iret
main ENDP

r

fimsg db
f2msg db
Lst_byt:

Listing 3-5. continued

bx

ax,cs

ds,ax
ax,[bpl.flags

bx,Cbpl.funct
bt,<1,2>,<f1,f2>

short exit
fimsg

short exit
f2msg

ax
[bpl.flags,ax
bx

ax

ds

bp

N

Ns Ns N

Ns N8 N

Ns Ns N

set up data segment

transfer caller's flags to AX
.-- and to my flags

clear carry (no error)

and save copy of flags

get function code

get copy of flags
set carry - illegal function
save copy of flags

put flags back in stack
... through AX
restore registers

restore data segment
restore base pointer
return from interrupt

'"Function # 1 performed',CR,LF,'$’
'Function # 2 performed',CR,LF,'$’

I 4

Last‘byte to save

This is the installation code. ALl code following this point
is thrown away after installation is complete.

See the section on "MEMORY MANAGEMENT TIDBITS" for an

Remove Environment Block - DS points to current segment
Set ES to point to Environment Block

nstall:
mov
mov

152

es, env_adr
ah,4%h

Ne N

;
;
7
’
H
; explanation of why the Environment Block is being removed.
’
’
H
H
.i

get address of environment
free allocated memory

38 — Program and Memory Management

@bosCall ; call MS-DOS

jnc setvect ; branch if no error
@DisStr fail49 ; inform if was error
mov ah,4Ch ; terminate process
@DosCall ; abort on error

’

; Set Vector - DS points to current segment

setvect:
mov dx,offset entry ; get RTL entry point
mov al,V_NUM ; set vector number
mov ah,25h ; set vector
@DosCall ; call MS-DOS

14

; Terminate & Stay Resident

mov dx,(offset Llst_byt - seg_org + 15) shr 4
mov ah,31h ; keep process
@bosCall ; call MS-DOS
fail49 db 'Failed to Free Environment Block',CR,LF,'$’
code_seg ENDS
END start

A peculiarity of the EXRTL routine is that no memory for a local stack is
provided when the Keep Process executes. This would be a fatal mistake were
EXRTL a program because the program stack would then be totally un-
protected and subject to destruction. EXRTL, however, is not a stand-alone
program but is called by other programs, which do have local stacks. The
EXRTL routine performs all of its operations using the calling routine’s
stack.

Once we have written the RTL, we must provide some means of accessing
it. Because it is impossible to determine in advance where MS-DOS will load the
procedure in memory, we cannot CALL the library directly from a program that
wishes to access it. The 8086 family provides one solution in the form of interrupt
vectors. By setting an interrupt vector to point to the address of the library, any
program that wishes may access the library by the use of the INT instruction.

The 8086 family supports 256 interrupt vectors, of which at least 64 (00h
through 39h) are reserved for the use of the system hardware or MS-DOS. Table
3-5 contains a partial listing of interrupt vector use for Intel, IBM standard,
IBM BIOS, and MS-DOS. A variety of vendors have used other interrupts
throughout the remaining range. Usually, higher-numbered vectors are safe to
use, although only a test can tell. We have chosen to use vector 40h for our RTL
because the test system didn’t erash when we tried it.

153

Coding and Programming

154

CAUTION

Some systems may use interrupt vectors other than those defined for MS-DOS.
Check your system’s manual before using any of the vectors. Complete system
failure may result from altering a vector that is already in use.

Table 3-5. IBM Standard Interrupt Vectors, Processor,
Hardware, BIOS, and MS-DOS Interrupts

Interrupt
(hex) Defined by Used for
Int 0 Intel Divide-by-zero-error interrupt
Int1 Intel Single step “trace” interrupt
Int 2 Intel Nonmaskable hardware interrupt
Int 3 Intel Breakpoint interrupt
Int 4 Intel Multiply overflow interrupt
Intbs Intel 80x86 BOUND exception
BIOS Print screen function
Int 6 Intel Undefined op-code exception
Int 7 Intel ESC op-code exception
Int 8/IRQ 0 IBM System timer hardware
Int9/IRQ1 IBM Keyboard hardware
Int A/IRQ2 IBM—XT Spare hardware request
Int A/IRQ2 IBM—AT IRQ8—IRQF
Int B/IRQ 3 IBM Serial port 2 hardware
Int C/IRQ4 IBM Serial port 1 hardware
Int D/IRQ5 IBM—XT Fixed disk hardware
Int D/IRQ 5 IBM—AT Parallel port 2
Int E /IRQ 6 IBM Disk controller hardware
Int F/IRQT7 IBM Parallel port 1 hardware
Int 10 BIOS Video and screen services
Int 11 BIOS Read equipment list
Int 12 BIOS Report memory size
Int 13 BIOS Disk I/0 service
Int 14 BIOS Serial I/0 services
Int 15 BIOS Cassette and extended services
Int 16 BIOS Keyboard 1/0 services
Int 17 BIOS Printer I/0 services
Int 18 BIOS BASIC loader
Int 19 BIOS Bootstrap loader
Int 1A BIOS System timer and clock services
Int 1B BIOS Keyboard Control-Break (from int 9)
Int 1C BIOS User timer tick (from int 08)
Int 1D-1F Intel Reserved
Int 20 MS-DOS OLD program terminate function
Int 21 MS-DOS MS-DOS function call
Int 22 MS-DOS Program terminate address
Int 23 MS-DOS Control-C exit address
Int 24 MS-DOS Fatal error abort address
Int 25 MS-DOS Absolute disk read function

3 — Program and Memory Management

Int 26 MS-DOS Absolute disk write function
Int 27 MS-DOS Terminate & stay resident function
Int 28 MS-DOS Keyboard busy/DOS idle (reserved)
Int 29 MS-DOS Fast console output (reserved)
Int 2A MS-DOS MS-NET interface (reserved)
Int 2B-2D MS-DOS Reserved for MS-DOS (IRET)
Int 2E MS-DOS Execute command (reserved)
Int 2F MS-DOS Printer control MS-DOS version 3
Int 30-3E MS-DOS Reserved for MS-DOS
Int 3F MS-DOS LINK overlay manager (reserved)
Int 4A BIOS Real time clock (from int 70)
Int 67 EMS 4.0 Expanded Memory Specification
*Int 70 /IRQ 8 IBM Real time clock hardware
*Int 71 /IRQ 9 IBM IRQ 2 hardware interrupt
*Int 72 /IRQ A IBM Reserved hardware
*Int 73 /IRQ B IBM Reserved hardware
*Int 74 /IRQ C IBM Reserved hardware
*Int 75 /IRQ D IBM Coprocessor hardware
*Int 76 /IRQ E IBM Fixed disk hardware
*Int 77 /IRQF IBM Reserved hardware
*AT-type bus only

Under MS-DOS, interrupt vectors may be set through the use of MS-DOS
function code 25h, Set Interrupt Vector. The installation operation is very sim-
ple: the vector number is provided in the AL register, and the address to be
loaded into the vector is provided in the DS:DX register pair (segment:offset).
Because the DS register is set to the same value as the CS register in . COM pro-
grams, the DS register’s contents are already correct for the call. The remaining
registers are loaded, and the call is made with the following code:

mov dx,offset entry get RTL entry point

’
mov al,v_num ; set vector number
mov ah,25h ; set interrupt vector
doscall ; call MS-DOS

Once the EXRTL routine has been installed in memory and its access in-
terrupt vector installed in the interrupt vector table, the RTL is ready for use.
To call it, a routine uses the int 40k instruction, and control is transferred to the
EXRTL routine. The program RTL_TEST, shown in Listing 3-6, is one example
of a routine that accesses this particular RTL.

The interface between EXRTL and RTL_TEST is all through the stack.
RTL_TEST pushes a function code on the stack and executes the int 40h in-
struction. Note that the stack layout in RTL differs from that of a CALL inter-
face in that the interrupt pushes the flags on the stack as well as the return
segment and offset.

The flow of control between the two sections is illustrated in Figure 3-12.
The int 40h instruction transfers control through the interrupt vector table to
the EXRTL routine. The EXRTL routine then extracts the function code from
the stack, assisted by the stack structure definition frame. EXRTL

155

Coding and Programming

156

Listing 3-6. Exercise Program for RTL

;====== RTL_TEST.ASM - This file produces a .COM file ==========

V_NUM EQU 40h

INCLUDE STDMAC.INC
,====== PROGRAM CODE SECTION

code_seg SEGMENT
ASSUME cs:code_seg
ASSUME ds:code_seg
main PROC FAR

; this RTL uses vector 40 hex

; include macro Llibrary file

ORG 0100h
start: mov cx,3 ; start at illegal value
Loop: push cX ; function code
int V_NUM ; call RTL
pop cX ; clear return param
jnc nxt ; branch no error
@DisStr caserr ; show error
nxt: dec cX
jge Loop Loop through O
mov ah,4Ch ; terminate process
@DosCall
;
caserr db 'Case Error - Illegal Function Code',CR,LF,'$'

main ENDP
code_seg ENDS
END start

analyzes the function code to check whether it is legal and, if it is, branches to
the proper function handler through use of the case macro. Once the function
has been performed, EXRTL returns control to RTL_TEST with an IRET (Re-
turn from Interrupt) instruction.

The stack structure frame also provides EXRTL access to the caller’s
flags, which are stored on the stack by an int. By copying the flags from the
stack into its own flags register, EXRTL can change the value of the carry bit;
then, before exiting, it can copy the flags back into the stack (including the new
value of the carry flag). This operation allows EXRTL to use the carry flag to
signal error conditions to the calling routine, using the IRET instruction to re-
store the flags from the stack.

The last point is that EXRTL may make full use of MS-DOS as control is
passed directly to it by a program. This isn’t the case in some of the other mem-
ory resident programs presented in following sections of this book. Those pro-
grams receive control via hardware or MS-DOS interrupts.

3 — Program and Memory Management

Address m
8086 Family

) Vector Table

0000:0100 RTLIP&CS

A

RTL Entry Installed

Run-Time Library
/\/\l‘.

IRET

B

User
Program

N

Int 40h

Figure 3-12. Run-time library access.

Determining Whether a Memory Resident Program Is Installed

So far we have assumed that the RTL would be loaded into memory and then the
programs that use it would be started. In some circumstances, the RTL may al-
ready be present in memory. Rather than loading two copies of the RTL, the
loader should first determine whether the RTL is loaded and then load it only
when it is not present. There are two ways to determine whether an RTL is
present, both of which depend on using a preassigned int vector to access the
RTL.

The first method involves reading the interrupt vector contents via func-
tion code 35h, Get Interrupt Vector, to determine the starting address of the in-
terrupt service routine. The next step is to place into the DS and SI registers
the starting address of the existing routine to be installed. A CMPS instruction
is executed for some number of bytes (in CX) to compare the two sections of
code. If a match results, the routine is already present. If the compare fails, the
routine hasn’t been installed. The effectiveness of this method is greatly de-
creased if all of your RTLs (or memory resident routines) begin with the same

157

Coding and Programming

158

sequence of instructions. Conversely, the effectiveness can be greatly increased
if all memory resident routines contain the header block shown in Listing 3-7,
which uniquely identifies each memory resident routine.

The second method for checking to see whether an RTL or memory resi-
dent routine is present requires that all unused vectors (vectors 40h through
0FFh on most systems) be set to a known state. This known state can be either
high or low memory (0000:0000 or FFFF:FFFF) or the address of an IRET
instruction. In MS-DOS version 2.0 and higher, vector 28h seems to always
point to the location of the IRET instruction, although this is not guaranteed! A
more elegant solution is to install a pseudo-device driver to handle unsolicited
interrupts and to initialize all unused interrupt vectors to point to this routine.
(See Chapter 6 on installable device drivers.) This driver can then contain an
IRET instruction, report an error to the console, or do whatever else is desired.
By permanently allocating one vector to always point to the unsolicited inter-
rupt handler (for example, vector 40h), an installation program can read and
compare that vector and the vector of the memory resident routine to see
whether the memory resident routine has yet been installed in memory.

Listing 3-7. In-Line Routine Identification

enter: jmp start ; bypass the data area
db '< routine name >' ; your routine's name goes here
: : ; data area ...

start: < beginning of the code >

Removing Memory Resident Routines

When a program is through using an RTL or when a memory resident routine is
no longer needed, you want to be able to recover the memory that was allocated
to that routine. The simplest way to remove a memory resident routine is to re-
boot your system. This restores all the vectors that the system requires and re-
turns all allocated memory to the system. However, this is a rather drastic step
and is best reserved for desperate situations.

Without rebooting, removal of the routine should take place in two steps:
(1) disable the routine and (2) recover the memory.

The first step is to reset to a null state the vector that points to the routine.
The null state indicates to any potential users that the routine is no longer avail-
able. If you have patched the memory resident routine to a preexisting vector,
the vector must be restored so that it points to the original location. You can
write a program to restore the vector if the value of the old vector is stored
somewhere in the memory resident routine where the restore program can find
it. Programs INIT28 (Listing 3-12) and REMOVE (Listing 3-13) demonstrate
this process of saving the vector for later restoration.

If the memory resident routine is driven by its own hardware interrupt
(not patched), you must be sure to disable interrupts from that device before you

3 — Program and Memory Management

remove the memory resident routine. You can change the value of the vector in
the table or leave the vector as it is.

Once the memory resident or RTL routine has been disabled, step two is to
recover the memory. Memory is recovered from MS-DOS through the Free Allo-
cated Memory function, function 49h. MS-DOS doesn’t seem to care whether
you deallocate memory that doesn’t really belong to the program, so if the start-
ing address of the block of memory occupied by the memory resident routine can
be determined, the memory can be freed and recovered. The installed routine
can usually determine this address, so one option is to provide a function code to
call the routine and tell it to disable and remove itself. For routines that have
been installed through the use of the interrupt vectors, a second interrupt vec-
tor may be allocated for the purpose of instructing the routine to remove itself.

If you know that the routine’s interrupt vector segment address and the
routine’s memory block segment address are the same, another method is to
write a program to read the vector, determine the memory block segment ad-
dress from it, and instruct MS-DOS to free the memory.

For some reason, neither of these methods always works because MS-DOS
may not recover all of the memory. The problem seems to be internal to MS-
DOS, so we can give you no advice at present for doing something about the
inconsistency.

REGISTERS EXTRA SEGMENT

AX: 4B00 (hex) «naes EXECUTE PROGRAM Function .

BX: pointer to ASCIIZ file name file/path name
zero byte

DX: pointer to parameter block

Address ENVIRONMENT M/\
xxxx:0000

ASCIIZ string 1
ASCIIZ string 2

DATA SEGMENT

ASCIIZ string N .
zero byte %
envir.seg. OR zero
Command Line Text Buffer & e n— DWORD: points text
File Control Block 1: load @ 5Ch <& — DWORD: points FCB 1
File Control Block 2: load @ 6Ch & DWORD: points FCB 2
Note: All DWORD pointers are stored as OFFSET followed by SEGMENT. P W g N

Figure 3-13. Parameter block for function 4Bh
(AL = 0)—EXECUTE.

159

Coding and Programming

Function 4Bh—Load and Execute Program

160

Memory resident routines and RTLs often are initiated by a user entry or batch
file, but on occasion a program may need to load another program into memory,
either for use as a program overlay or as part of a memory resident routine in-
stallation process. In either case, the original program is called the parent and
the other program is called the child.

MS-DOS provides for these oceasions through the Load Program and Ex-
ecute function, function code 4Bh. This function can operate in either of two
modes. The first mode, Execute Program, is designed to load a program file into
memory and execute that program. The child program runs without control
from the parent program. This mode is chosen by setting register AL equal to
zero and setting the appropriate parameters in the parameter block. The pa-
rameters required for this operation are shown in Figure 3-13, and an example
of loading and executing a program is contained in the LOAD program, shown in
Listing 3-8. The macro library referenced in LOAD is the same one that was
used for the EXRTL program (Listing 3-5).

Listing 3-8. Loading Programs with MS-DOS Function 4Bh
(AL =0)

; LOAD has the ability to lLoad and execute another program.

; LOAD is invoked by typing:

; "LOAD <file name> <program arguments>

; There must be only one space between the LOAD and file name,
; and between the file name and arguments. The file name must
; include the extension.

’

NEWPROG EQU 82h ; addr of load command Lline in PSP
NEWSTR EQU 81h ; addr of string in PSP (blank 20h)
NEWLEN EQU 80h ; addr of command line Llength
INCLUDE STDMAC.INC ; include macro definitions

;====== PROGRAM SECTION ===

code_seg SEGMENT
ASSUME cs:code_seg
ASSUME ds:code_seg

ORG 0
SEG_ORG EQU $
ORG 0100h
main PROC FAR
start:
mov sp,offset TOP_STK ; set the top_of_stack

3 — Program and Memory Management

; Parse the command line looking for the end or a space.
an ASCIIZ string.

; Convert the program name into

mov
mov
or

jnz

@DisStr

imp
cmd_ok:

dec

mov

mov

mov

repne
pushf

sub

popf

jz
inc

set_zb:
mov
mov
cmp
jle

bx,0

bl,NEWLENLbx]

blL,bl
cmd_ok
bad_cmd
exit

bx

cx,bx

di , NEWPROG
aL,' v
scasb

bx,cx

set_zb

bx

-
4
r

-
’

Ne Nr Ne Ns Ne N N

Ne Ne N

Ne N N

clear upper BX
get length of command string
check length of string

command line error

subtract 1 for leading space
copy length into count

search address (1st nonblank)
search value (blank)

search for file extension
save results of search

get remaining count

... and get search results
zero flag => params.

... (found space)

not zero flag implies end of
... string

convert command line to ASCIIZ

byte ptr NEWSTRLbx1,0

cmd_buf ,cl
cl,0
free_mem

r
4

-
4

set length of parameter string
check if end of string reached
no command parameters

; Take the remainder of the Lline and transfer it into the
; command line text buffer for the called program.

inc
mov
mov
rep
add

cl
si,di

’

-
’

di,offset cmd_txt

movsb
cmd_buf ,1

r

’

transfer the CR also
transfer source index
; & set destination index

; transfer remainder of Lline

inc. length for leading space

;

; Free system memory for the Loader and the invoked program.
; Cut down allocation block to minimum necessary
f

ree_mem:
mov
mov

@DosCall

jnc

push

bx,(offset LST_BYT - SEG_ORG + 15) shr 4

ah,04Ah

modify_ok
ax

@DisStr fail4A

jmp

error

r

; ES contains address of PSP

modify allocated memory
(push expected by error)
error message & terminate
... 1f fail

continued

161

Coding and Programming

Listing 3-8. continued

’
; Set up the parameter block and register parameters for the
; Load & Execute Program Function call.

modify_ok:
mov ax,cs ; set all parameter segments to
mov p1,ax ; this segment.
mov p2,ax
mov p3,ax
mov dx,offset NEWPROG
mov bx,offset param_block
mov spoint,sp ; save stack pointer
mov ax,4B00h ; load & execute program func.
@DosCall

r

; Restore the Segment Registers and Stack Pointer after call

mov cX,CS ; duplicate CS into all segs.
mov ss,CX ; stack restored first

mov sp,cs:spoint ; restore stack pointer

mov ds,cx

mov es,CcX

jnc exit exit program if all okay
push ax save error code

Ne Nz N

@DisStr fail4B display error if failed

’
; Parse the error code returned from the system and
; display the corresponding text message

error:
pop ax ; get back error code
@Case ax,+,2,7,8,9,10h,11h> ,<em1,em2 ,em7 ,em8 ,em9 ,em10,em11>
mov dx,offset err0 ; bad error code - no match
jmp merge
em1: mov dx,offset err1 ; dinvalid function
jmp merge
em2: mov dx,offset err2 ; file not found
jmp merge
em7: mov dx,offset err7 ; memory arena trashed
jmp merge
em8: mov dx,offset err8 ; not enough memory
jmp merge
em9: mov dx,offset err9 ; invalid memory block
jmp merge
em10: mov dx,offset err10 ; bad environment
jmp merge
em11: mov dx,offset err11 ; bad .EXE file format
jmp merge

162

3 — Program and Memory Management

merge: mov ah,0%h ; display string
@DosCall
exit: mov ax ,04C00h ; terminate when finished
@DosCall
main ENDP
bad_cmd db 'Error in Command Line',CR,LF,'$'
fail4A db 'Failed to Modify Allocated Memory Blocks'
db CR,LF,'$’
fail4B db 'Failed to Load Program Overlay',CR,LF,'$"
err0 db '>>> UNKNOWN ERROR CODE <<<',CR,LF,'$'
erri db '>>> invalid function <<<',CR,LF,'$’
err2 db '>>> file not found <<<',CR,LF,'$’'
err? db '>>> memory arena trashed <<<',CR,LF,'$’'
err8 db '>>> not enough memory <<<',CR,LF,'$’'
err9 db '>>> invalid memory block <<<',CR,LF,'S$"'
err10 db '>>> bad environment <<<',CR,LF,'$'
err11 db '>>> bad .EXE file format <<<',CR,LF,'$'
spoint dw ? ; space for stack pointer
param_block Label word
dw 0 ; use parent environment
dw offset cmd_buf
p1 dw ? ; cmd. line segment
dw 5Ch ; FCB #1 segment & offset
p2 dw ?
dw 6Ch ; FCB #2 segment & offset
p3 dw
cmd_buf db ; length of command string
db v ; space always expected
cmd_txt db 80 dup (?) ; 80 characters
; Local Stack Definition
EVEN ; word align the stack
stack db 32 dup ('stack " ; local stack
TOP_STK EQU $-2 ; set top stack address
EQU $; last byte in program

LST_BYT

r

code_seg ENDS

END start

The second mode is called Load Overlay. Although it loads a program file,
Load Overlay does not invoke the program. Instead, control is immediately re-
turned to the calling program. This mode is selected by setting register AL
equal to three, and its parameter block is shown in Figure 3-14.

In either mode of operation, before the Load and Execute Program func-
tion may be executed, the initial allocation block of the calling program must be

163

Coding and Programming

164

REGISTERS EXTRA SEGMENT
AX: 4B03 (hex) < sssmsesesses. LOAD OVERLAY Function
. . . file/path name
BX: pointer to ASCIIZ file name zero byte
DX: pointer to parameter block sssmmssmmmmm—m—"m .
w
Address SYSTEM MEMORY DATA SEGMENT
0000:0000
System & Parent e
L] . L]
xxxx:0000 & V LOAD Segment Address
Program Code
RELOCATION Factor
NN i
Figure 3-14. Parameter block for function 4Bh (AL = 3)—

LOAD OVERLAY.

reset to free up memory space. The reason is that MS-DOS loads programs by
using the COMMAND.COM program loader, which is not in the memory resi-
dent part of COMMAND.COM. Instead, the program loader must itself be read
into memory from the disk before it can load a user’s program or program over-
lay. (This also implies that a disk containing the file COMMAND.COM must be
in the system for this function to work.)

There is an important difference between loading program overlays and
loading and executing programs. Program overlays are loaded under control of
the parent program, at an address determined by the parent program, and are
considered part of the parent program. Program files that are to be executed
(function 4Bh with register AL equal to 0) are loaded at an address of the sys-
tem’s choosing and are considered a separate program.

Loading and Executing Programs via MS-DOS (Code 4Bh
with AL = 0)

When using the Load and Execute function, MS-DOS requires not only enough
free memory toload the COMMAND. COM program loader but also enough free
memory to contain the new program. This memory is used to create an initial
allocation block for the new program also.

Remember that the initial allocation block of the parent program must be
set large enough to preserve the current program, or MS-DOS overwrites the
block when the new program is loaded. In addition, most of the memory resident

3 — Program and Memory Management

routines or RTLs are written in .COM format. For .COM programs, MS-DOS
sets the stack to start at the highest available memory address in the common
segment that is used for code, data, and the stack. Unless the top of the stack is
relocated downward in the segment, up to 64K of the parent program must be
preserved. If the stack is relocated downward, whatever was on the stack (such
as the return to MS-DOS) is lost. Of course, the return to MS-DOS on the stack
is not needed if you exit from your programs by using function code 4Ch.

Inheritance and Control of the Child Program

Even though the child program is autonomous, the parent program still has a
measure of control over the child’s behavior. This control is accomplished
through inheritance, the ability of the parent process to affect how the child pro-
cess interacts with the rest of the system.

From Figure 3-13 we can see that the parent process supplies the child
with a command line, an environment block (or the parent’s block if a block is not
specified in the EXEC call), and file control blocks. In addition, when a process
is loaded, it automatically inherits the majority of its parent’s program segment
prefix, including the parent’s file handle table. By controlling these items, the
parent controls the three primary items that control a program: its command
line, its file handles, and its environment block.

There are some differences between the command line as it is passed to a
child process and as it is used at the system prompt. For one thing, it becomes
the responsibility of the parent process to set up any redirection, a task nor-
mally handled by COMMAND.COM. Because a child process inherits the file
handles of its parent, a parent can easily redirect the I/0 of its child. By chang-
ing the values of handles stored in the parent’s stdin or stdout devices, the par-
ent will change what the child perceives as stdin, stdout, or any other valid
device. The parent can change these by using the techniques shown earlier in
Listing 3-3 (in the section on the PSP’s file handle table) or by using the MS-
DOS functions for manipulating files and devices. (MS-DOS function 46h, int
21h, Force a Duplicate of a Handle, is one method that may be used to override a
handle.)

Note that certain handles can be excluded from being inherited. When a
file or device is opened, an Open Mode must be specified (see MS-DOS function
3Dh, int 21h, Open File or Device). Bit 7 of the Open Mode is the inheritance bit.
When this bit is 0 (the default), the handle will be inherited by any child process.
If this bit is set to 1 during the open call, then the returned handle will be ex-
empt from inheritance.

One other way exists in which the parent process can control the child’s
view of the system. The first entry in the Load and Execute parameter blockis a
pointer to the child’s environment block. If the pointer in the Load and Execute
parameter block is a zero, the parent’s environment is duplicated for the child. If
it is nonzero, the block that it points to is loaded as the child’s environment.

What does this mean for you? You can write a program to search the en-
vironment block for particular entries amd then use those values to establish

165

Coding and Programming

166

the program’s run-time parameters. Entries may be inserted in the system en-
vironment block with the SET command to control the actions of programs that
read and act on their environment block. Because the parent process can change
the block, the parent process can change the behavior of a child process that
reads the block.

An executing process can access its environment block through a pointer
stored at offset 2Ch in the PSP. The pointer is used as a segment address with an
offset of zero pointing to the start of the block. If this address is transferred to
the extra or data segment register, the program can do a string search to find
those parameters that the program requires. Be careful when you do this so that
you don’t lose the PSP address.

The information contained in the PSP is equally valid for the .COM and
.EXE format files, and either type may be used with the Load and Execute Pro-
gram function.

Executing MS-DOS Commands with Function 4Bh

One of the Load and Execute function applications is loading COM-
MAND.COM. If you consider that COMMAND.COM may be given commands
through the command line text buffer, you can see that you can invoke built-in
MS-DOS commands from within a user’s program. In addition, the command
line passed to COMMAND.COM may contain redirection, pipes, and filters.
The format of the command text used with this method is nearly the same as that
used on the initial command line, except that when invoking COMMAND.COM
from a program, the text must begin with /c.

Loading two files (COMMAND.COM and the application program) to ex-
ecute just one is not a terribly efficient way of running programs. However, the
flexibility and power gained by using this method are worth considering.

An Important Warning

The implementation of the Load and Execute Program function in version 2.0 of
MS-DOS has a serious bug. It causes the function to “trash” all the segment reg-
isters (with the exception of the Code Segment), to destroy the stack pointer,
and to destroy the majority of the general registers. If this function is used with
any of the subversions of MS-DOS version 2.0 (that is, 2.00 or 2.10), you must
save the stack pointer and any needed general registers in memory before the
call; and you need to restore the segment registers, stack pointer, and needed
general registers after the call. The code sequence appearing in Listing 3-9
seems to do the job for .COM programs.

For .EXE files, you can recover the proper segment values from the values
established by LINK (for example, mov ss,stack) or from memory located
within the Code Segment. To protect the stack, remember to restore the stack
segment and stack pointer in that sequence, one right after the other.

Beginning with version 3.0 of MS-DOS, this problem appears to have been
corrected. The Load and Execute function returns with all registers intact.

3 — Program and Memory Management

Listing 3-9. Recovering from the Load and Execute Program
Function in MS-DOS Versions 2.XX

.
.

< set up calling parameters >

mov spoint,sp ; save stack pointer in memory
mov ax,4B00h ; load & execute program function
int 21h ; call MS-DOS
; Registers are unchanged if the load fails--don't recover
jc error ; jump if error
mov ax,cs , get common segment ...
mov ds,cx ; ... for data segment ...
mov es,cx ; ... for extra segment ...
mov ss,ax ; «.. and for stack segment
mov sp,spoint ; stack is now realigned

.

< recover general registers >

Loading Program Overlays via MS-DOS (Code 4Bh with AL = 3)

The ability to execute one program from within another is indeed powerful but
has the disadvantage of having the invoked program run once and then termi-
nate. On many occasions, the developer wants to invoke another program to per-
form some sort of function but in addition wants greater control of the child
program or a higher degree of communication with the child, or the developer
just wants to be able to call the child program repeatedly without having it re-
loaded each time. For these circumstances, MS-DOS provides the Load Overlay
option for function 4Bh.

One difference between the Load and Execute function and the Load Over-
lay function is that when loading overlays, the parent program has no means to
modify the parameters of the child program. This is because the parent and child
are really part of the same program. All that the Load Overlay function accom-
plishes is to load additional program code (and/or program data) into memory.

Another way in which Load Overlay differs from Load and Execute is that
Load Overlay does not require a memory block of its own. It is not given an en-
vironment or initial allocation block, as with the Load and Execute Program
function. Load Overlay simply loads the requested file in memory, relocating
the program’s segment values based on the parameters that are provided in the
Load Overlay function call (as shown in Figure 3-14). The resulting code may be
run as a subroutine but should not be executed as a separate program.

167

Coding and Programming

168

If the overlay terminates through one of the MS-DOS Terminate Program
functions, both the overlay and the parent program are terminated. If either
function 31h or interrupt 27h (Terminate and Stay Resident) are used to exit,
the initial allocation block of the parent routine is modified and the parent pro-
gram stays in memory. The child stays resident only if the requested memory
block is large enough to cover both parent and child. If one of the other Termi-
nate Program functions is executed, both programs are removed from memory.

Figure 3-14 shows that the relocation factor specified as part of the Load
Overlay function does nothing to affect the load address of the overlay. Instead,
the relocation factor is used to modify offset references within the code being
loaded. If the overlay to be loaded is in .COM format, the relocation factor has no
effect on the loaded overlay and should be set to 0.

For .EXE files, the relocation factor is added to the values of the segment
references that appear in the load file. When loading most .EXE format over-
lays (which usually default to origin 0000:0000), the relocation factor should be
set to the same value as the load address.

Accessing Program QOuverlays from the Parent Program

Once the program overlay has been loaded, the parent program must access it.
Because the parent knows the address at which the overlay was loaded, it can
either CALL the overlay or JMP to it. Calling is recommended for the reason
that the overlay may then return to the parent by using the RET instruction
rather than having to know the return address to JMP to in the parent. If control
doesn’t need to be returned to the parent program, a JMP is recommended. The
overlay then contains the Terminate Program function call.

All accesses, by either CALL or JMP, to the overlay must be far refer-
ences. The code that has been loaded in the overlay is relative to its own segment
address and may not be run in the same segment as the parent routine (although
it can be loaded into the same memory space). In addition, no PSP is built by the
Load Overlay function. Because there is no additional information placed in
memory by the loader, the code and data are loaded from the overlay file begin-
ning at the exact load address specified.

Let’s consider the simplest case: overlays that are loaded from .COM for-
mat files. All .COM files have origins of 100 hex. That is, their code starts at
address 100 hex relative to their segment. All references contained in the pro-
gram are relative to that address. Because the .COM file is loaded right on the
load address, you would be incorrect to use the load address as the segment
value for the overlay. Figure 3-15 shows that if the load address is used as the
segment, the offset values in the code are misplaced by 100 hex. The correct pro-
gram segment address to use is the load address minus 10 (hex), which trans-
lates the code offsets by 100 hex.

A different problem exists for .EXE format programs. When an .EXE file
is loaded for execution, MS-DOS initializes the Code Segment and Stack Seg-
ment to point to the proper segments and the Instruction Pointer to point to the
first instruction of the program. When an .EXE file is loaded as an overlay, MS-
DOS doesn’t provide these values. How then does the parent program know
where to enter the program?

3 — Program and Memory Management

Low Memory SEGMENT ADDRESS
OF OVERLAY

Segment: CS_RUN

CS_LOAD: 10 (hex)

100 hex

LOAD ADDRESS SRR Ao MEMORY ADDRESSES

Segment: CS_LOAD Overlay Code o \ gg_;%ﬁD 8?885::3

Overlay Data

High Memory

T

Figure 3-15. Relationship of segment and load addresses for
.COM format overlays.

Because .EXE files usually have an origin of zero, couldn’t we just call or
jump to the load address? That would depend on how the program was written.
For .EXE files created from a single source file, LINK and MS-DOS load the
segments in memory in the same order in which they appear in the source pro-
gram! A common order for defining segments is stack segment, then data seg-
ment, then code segment. (The reason is to minimize forward references in the
code segment.) For an . EXE program to be callable at its load address, the code
segment must be the first segment in the . ASM file, and the entry point must be
the first instruction in the code segment. MASM and LINK have no problems
handling this, although in some cases you may need to use override directives to
resolve forward references for MASM.

Listing 3-10 shows how the load and call sequence could appear when using
the Load Overlay function for a .COM file. The sequence for an .EXE type pro-
gram is simpler. No translation from load address to run address is needed. We
have assumed that all segment registers in the parent program are already ini-
tialized and that Modify Allocated Memory has already been called to free
enough memory for the COMMAND.COM loader. The sample program allo-
cates the memory that is to contain the overlay code. This reserves that area of
memory so that if the overlay also allocates memory, a virgin area is provided.
Otherwise, the overlay could allocate the memory that it already occupies and
overwrite itself. The actual space reserved can be adjusted for the true size of
the overlay.

The overlay may be changed as often as necessary for the execution of the
program. The only warning that applies to all uses of the Load Overlay function

169

Coding and Programming

Listing 3-10. Loading and Accessing a .COM Program with
MS-DOS Function 4Bh (AL = 3)

; Allocate memory for Overlay

mov ah,48h ; allocate memory function
mov bx,1000h ; assume 64K segment for now
int 21h ; call MS-DOS
jc error ; branch if error occurred
mov params,ax ; save memory address
; Load overlay
mov dx,offset params ; access parameter block
mov bx,offset filename ; access ASCIIZ file name
mov ax,4B03h ; load overlay function
int 21h ; call MS-DOS
jc error ; branch if error occurred
; Call overlay
mov ax,params ; get load address
sub ax,10h ; translate to run address
mov run_seg,ax ; and save it
push ds ; save data segment
call dword ptr run_adr ; call overlay
; Free memory that was used for overlay
pop ds ; restore data segment
mov ah,4%9h ; free memory function
mov es , params ; get memory block address
int 21h 5 call MS-DOS
jc error ; branch if error occurred
params dw ? ; load address
dw 0 ; relocation value
run_adr dw 0100h ; new instruction pointer
run_seg dw ? ; new code segment value

is that MS-DOS does nothing to prevent you from loading the overlay on top of
the currently executing program or anywhere else in memory, including the
system itself! Although someone might find such a trick useful, it is definitely
not recommended procedure, and care should be taken to prevent its inadver-
tent occurrence.

Loading Memory Resident Programs

Memory resident routines and RTLs to be installed from another program are
best loaded through the Load and Execute Program function so that the new

170

3 — Program and Memory Management

routine has its own memory block. In these cases, the calling program (the par-
ent) receives control after the memory resident program’s initialization section
executes its Terminate and Stay Resident request.

If a stand-alone memory resident routine was loaded, the parent program
terminates, leaving the memory resident program in place. This breaks up
memory free space, but there is no risk of MS-DOS loading a subsequent pro-
gram over the memory resident routine. If an RTL were loaded, the parent pro-
gram would be ready to call the RTL as needed. When the parent routine
terminates, it has the option of leaving the RTL in memory for subsequent use
or of removing it by resetting its interrupt vector and freeing its memory block.

Because the Load and Execute Program function does not inform the call-
ing routine of the load address of the memory resident routine and because that
address cannot be passed back to the parent in the single byte reserved for the
program’ exit code (see Terminate and Stay Resident, function 31h), the parent
routine must resort to the tactics discussed in preceding text to determine the
location of the memory block to be removed.

A Special Case: Part-Time Run-Time Libraries

One of the many features that can be implemented with the functions presented
is a part-time run-time library. Part-time RTLs are resident only when required
and the rest of the time reside on disk. A part-time RTL is implemented by in-
stalling the header part of an RTL exactly as described in this chapter. However,
this header contains none of the code for executing the library functions; that is, it
doesn’t contain the library routines themselves, which are left on disk in another
file. Flowchart 3-1 shows the sequence of events in the life of a part-time RTL.

When one of the routines in the library is accessed (via an int), the header
portion of the routine loads the library file into memory using function code 4Bh
with AL = 3 (Load Overlay) and locks it into its own memory. The desired li-
brary routine is then called to execute the requested function. Either the
header or the individual library routines can contain the IRET to return to the
caller. From this point on, all subsequent calls access the library without having
to wait for the load because the RTL stays resident in memory.

When the main program terminates or requires the RTL’s space, it signals
the RTL entry point with a code to release the memory allocated to the RTL.
Because the header portion specified the load address of the library routines
when it loaded them and because the memory block they occupy is “owned” by
the header, freeing the memory is no problem. After this is accomplished, the
header goes back into hibernation and waits for the next call.

Context Switching and Switching Stacks

Because so many of the topics that have been discussed in this chapter relate to
operations between separate programs with separate stacks, the process of
switching deserves some attention. Stack switching, or changing from one stack
to another, is part of a broader topic called context switching.

171

Coding and Programming

172

Flowchart 3-1. Part-time RTL load sequence.

Load
Header

Receive
Request

Release
RTL Memory
Command

Free
LU | Allocated

Memory

Is
RTL

Installed
?

Allocate
Memory
Load RTL

YES

Execute
Function

If you view the segments in which a program executes as its context, you
can see that in many instances you need to change the entire context of a pro-
gram. Examples of such instances are when invoking memory resident routines,
calling RTLs, and using some types of overlays or co-routines. (A co-routine is a
sort of special overlay where there is no parent-child relationship.) In these
cases, when one routine receives control, it wishes to set up its own data, extra,
and stack segments for execution. At the time that it receives control from the
other program, the only thing that is known for sure is that its code segment and
instruction pointer are set to the proper values. Refer to Listing 3-9. We had to
reset the program context after calling the Load and Execute Program func-
tion, and this listing shows one way to establish a context for a program. The
example in Listing 3-9 unfortunately does not preserve the context of the pre-
vious program but simply overwrites it.

When you need to save the entire register set on receipt of control, the
easiest way is to set up the new program’s stack first and then proceed to stack

3 — Program and Memory Management

the other registers. Because the values of the stack segment and stack pointer
cannot be saved on the caller’s stack (there would be no way to retrieve them)
and because they cannot be saved on the new stack (which hasn’t been set up
yet), the stack’s parameters must be saved in memory. If you can stand mixing
code and data in the same segment just this once, the sequence shown in Listing
3-11 can be used to store the old stack segment and pointer and set up the new
stack segment and pointer.

Listing 3-11. Stack Switching for an .EXE Program

enter: mov cs:old_stk_seg,ss ; save old stack values
mov cs:old_stk_ptr,sp
mov ss,cs:new_stk_seg ; load new stack values
mov sp,cs:new_stk_ptr
push ds ; stack segment registers
push es
push ax ; start stacking general regs.
push bp
push si
push di

body: < body of the program > your code goes here

N

pop di ; start recovering general

pop si

pop bp

pop ax

pop es ; recover segment registers

mov ss,cs:old_stk_seg ; restore old stack values

mov sp,cs:old_stk_ptr

jmp exit ; bypass data storage
;
old_stk_seg dw ? ; caller's stack segment
old_stk_ptr dw ? ; caller's stack pointer
new_stk _seg dw segment stack ; this routine's stack segment
new_stk_ptr dw top_of_stack ; this routine's stack pointer
exit: ; exit position

ret ; return to calling program

The code in Listing 3-11 depends on having the values for the stack seg-
ment and stack pointer already located in memory. This could be accomplished
for a memory resident or run-time routine by the initialization process. For an

173

Coding and Programming

174

.EXE program, MS-DOS places the proper values in memory during the reloca-
tion process.

Because .COM routines cannot contain segment values, these routines re-
quire another method for switching stacks. Embedding the value for the top of
stacks in memory causes no problem, except with determining the starting seg-
ment address. Because .COM routines share the same segment for all purposes,
the stack segment value may be obtained from the code segment register. Un-
fortunately, the 8086 family does not support moves from segment register to
segment register, so the value must be passed indirectly. Because none of the
registers have been saved as yet, the value is passed through memory using the code
segment. To implement this modification, start the routine with the instruction:

mov cs:new_stk_seg,cs ; get new stack segment

If you intend doing a fair amount of stack switching in your programs, you
can set up two macros to include the necessary code. The first macro includes
the code from enter to body, and the second macro contains the code from body
to exit. Both macros must agree on the names of the stack variables in the data
area, and the second macro must accept the label top_of_stack as a parameter to
include in the dw statement for new_stk_ptr. The RET instruction should not be
part of the macros. This allows them to be used with JMP and IRET exits as well
as RET exits.

For .EXE files, the second macro must also accept the name of the stack
segment as a parameter. Listing 3-12 (INIT28), found later in this chapter, con-
tains an example in a .COM format of the two macros just described.

Additional Considerations for Stack Switching

When swapping stacks or otherwise manipulating the stack segment, the pro-
gram is vulnerable to interrupts. Should an interrupt occur when the stack seg-
ment but not the stack pointer has been changed, the system could very well
crash. In the 8086 family, this is prevented by changing the stack pointer imme-
diately following the instruction that loaded the stack segment. When an 8086
family processor loads a segment register (through either a MOV or POP in-
struction), interrupts are prevented from occurring until after the next instrue-
tion executes. This feature allows both the stack segment and the stack pointer
registers to be safely updated. This also explains why DEBUG appears to skip
one instruction when tracing a MOV to a segment register. DEBUG single-
steps the program by setting the trap flag, which generates a type #1 interrupt
following most instructions. Because interrupts are disabled following a MOV to
a segment register, DEBUG does not regain control until two instructions fol-
lowing the MOV.

In any case, you don’t always have to go to the lengths demonstrated in
Listing 3-11. Many times some registers may be pushed onto the caller’s stack,
allowing the registers to be used in the program or at least to transfer new

3 — Program and Memory Management

values into the stack register. The individual programmer must decide how
much of the current context should be saved in a particular program.

If context switching is used with co-routines, each routine ends up saving
the other routine’s context. Although this is redundant, because only one rou-
tine needs to save the other’s context, it is not really harmful. Co-routines that
use this structure should exit only via function code 4Ch, Terminate Program,
so that MS-DOS correctly terminates the program regardless of the state of the
stack.

If parameters are to be passed from one program to another and each pro-
gram maintains its own stack, the BP register cannot be used to access param-
eters on the stack. Instead the programmer needs to extract the caller’s stack
segment value and move it into either the DS or ES segment registers and per-
form the memory access relative to that register. The parameters may then be
read from the caller’s stack even though the called routine is using its own stack.

Underpinnings for Memory Residency

In some ways, MS-DOS itself is implemented as a memory resident program.
Look back at Figure 3-15 to see the memory layout for a typical MS-DOS system
that is running version 2.0 or higher. (Note that this does not necessarily apply
to versions higher than 3.1.) All of these parts, with the exception of a transient
piece of COMMAND.COM, are resident in memory at all times. User programs
access MS-DOS through interrupts or jumps to interrupts, just as we did for our
memory resident routines.

Certain parts of this system are common to all MS-DOS systems and are
compatible even among systems of different version numbers. Other parts of the
system are unique to the particular version number or particular hardware that
is running MS-DOS. Table 3-6 lists the different sections that make up the MS-
DOS system and the attributes that are associated with each part. The names
may change from system to system, but the functions are equivalent. Your
user’s manual tells you what files are for what part of the system. Note that
some of the files may be hidden files that do not appear in a directory listing.
These files are still on disk.

Table 3-6. Components of the MS-DOS System

Name Attributes Function

COMMAND.COM Compatible Command processor

IBMDOS.COM or other Compatible System services

IBMBIO.COM or other System-dependent ROM-BIOS interface or
BIOS

ROM-BIOS System-dependent ROM-based BIOS (some)

175

Coding and Programming

176

ROM-BIOS versus a Loadable BIOS

There are two main areas of difference that may occur within the realm of MS-
DOS systems. These differences drastically affect what can be done and what
cannot be done in the way of memory resident systems. One of these differences
is whether your particular hardware has its BIOS (basic input/output system) in
ROM (read-only memory) or in a file that must be loaded from the disk. The
effect of these alternatives is that a ROM-based BIOS (often called a
ROM-BIOS) provides a set environment for that particular machine, whereas
a loaded BIOS is often inaccessible to the programmer. (Unlike CP/M systems,
MS-DOS suppliers don’t seem to be as willing to provide source listings for a
loadable BIOS.)

The importance of this option lies in the fact that MS-DOS is not reentrant!
That is, if you have written a memory resident routine that either is interrupt
driven or patches into the MS-DOS interrupt vectors, that routine may not call
MS-DOS! MS-DOS apparently maintains only one set of internal data buffers,
and any attempt at reentering that set results in a total failure of the system.
Because MS-DOS isn’t reentrant, it cannot be used to perform I/0 or support
functions for interrupt-driven memory resident programs. This restriction may
be lifted whenever Microsoft releases a concurrent version of MS-DOS, which
we hope will provide some method for handling such events. Until then, pro-
grammers who wish to write memory resident routines most likely will have to
rely on a ROM-BIOS or will have to write their own driver routines. All of these
options result in nonportable code, but sometimes that is the price one pays for
desired features.

If the BIOS is actually loaded from the disk during boot, you almost cer-
tainly will have to write your own routines to interface with the hardware. Un-
like communications between normal programs and MS-DOS, which use the
interrupt vectors, MS-DOS communicates with the BIOS through CALLs and
JMPs. There is no MS-DOS standard jump table for the BIOS (4 1a CP/M) that
can be used by the application programmer, so you can see that having a ROM-
based BIOS can be a great asset in writing memory resident routines that need
to access the hardware.

Interrupt versus Polled Systems

The second area of difference is whether the hardware is interrupt driven or
polled. By interrupt driven, we mean a system that uses hardware interrupts to
notify the BIOS of events that have occurred. By polled, we mean a system that
must repeatedly ask, or poll, the hardware to check for the occurrence of events.
Interrupt-driven systems provide more flexibility and greater opportunity for
installing some types of memory resident programs.

One of the temptations of interrupt-driven systems is to use one of the
hardware interrupts to drive a memory resident routine. This sometimes can be
an easy way out and sometimes can be a nightmare. As long as you use a local
stack and don’t trash the system’s stack, MS-DOS itself is usually insensitive to
the presence of interrupts. However, your BIOS may not be so forgiving. Often

3 — Program and Memory Management

the BIOS is not written with interrupts in mind, or at least not ones that the
authors of the BIOS were expecting. Should an interrupt occur in a time-sensi-
tive portion of the BIOS, as in reading or writing to a disk drive, the interrupt
service routine could disrupt the operation of the BIOS, with the result that the
entire system may fail and hang.

Patching into the Interrupt Vectors

Memory resident routines are activated in one of two ways: they are initiated by
hardware interrupts (event-driven), or they must patch into the existing system
(trap-driven). A combination of these methods is also possible, where the patch
point is one of the hardware interrupts. If the system that you are using does not
support hardware interrupts, you must use the patch method.

Hardware interrupts that are unused by MS-DOS can be used to access
with few complications a memory resident routine. As long as the program
doesn’t call MS-DOS, no system conflicts should occur. If the hardware of the
system is accessed by the memory resident routine, it should check to make sure
that no one else is accessing the hardware at that time and be careful to restore
the hardware to its original state. An example of a minimal impact interrupt-
driven routine is a program to save all the registers of a currently running pro-
gram in a reserved section of memory when an outside interrupt occurs. Such a
routine is useful when debugging a program in real time. However, if the inter-
rupt that is to be used is also used by the system, the routine should be consid-
ered trap driven because the memory resident routine is installed with a patch.

The patch method is a way of inserting a memory resident routine into the
normal system flow at a given point so that all accesses to that point of the sys-
tem pass through the memory resident routine. An example of patching that
also involves a hardware interrupt is found when a keyboard-driven memory
resident routine is installed. To accomplish this, the keyboard interrupt vector
is changed to point to the memory resident routine. The value of the previous
keyboard vector is stored in the destination address of a far jump instruction
that is used to exit the memory resident routine. When a keyboard interrupt oc-
curs, the memory resident routine is entered. When the interrupt completes,
the memory resident routine jumps to the keyboard handler. If the memory res-
ident routine actually uses the keyboard input in some way that does not con-
tinue to the keyboard handler, the memory resident routine must service and
clear the interrupt itself and then return to the calling program with an IRET
instruction. In all cases, the memory resident routine must preserve the context
of the interrupted program.

Other possible patch points that do not use hardware interrupts are
patches into one of the software interrupt vectors or into a jump address. Patch-
ing into MS-DOS is usually done via the software interrupt vectors because
there is no recognizable jump table in the MS-DOS system. In addition, because
no standard interface exists between MS-DOS and its BIOS interface, patching
between MS-DOS and the BIOS is extremely difficult. Using software inter-
rupts remains the solution.

177

Coding and Programming

178

One of the common places to patch into the MS-DOS interrupt vectors is at
int 28h. This is apparently an auxiliary interrupt used internally by MS-DOS.
This also seems to be one patch point where frequent access is assured. A mem-
ory resident routine patched at this point must not call the MS-DOS function
handlers, or a system failure results. The memory resident routine should also
use its own context to prevent altering the existing stack and registers. Listing
3-12 shows the code necessary to install a memory resident routine at interrupt
28h and the accompanying memory resident routine.

Listing 3-12. Program INIT28 —Patching into System
Interrupt Vectors

; ==== INIT28 - This file produces a .COM program

; ==== Install Memory Resident Routine by patching into int 28 ==
PAGE 60,132

; ==== EQUATES FOR INSTALL INTERRUPT

VECT_NUM EQU 28h ; vector number to install

OFF EQU Oh ; routine inactive

ON EQU OFFFFh ; routine active

INCLUDE STDMAC.INC ; include macro definitions

; ==== BEGIN PROGRAM SECTION

init28 SEGMENT
ASSUME cs:init28
ASSUME ds:init28

ORG 0
SEG_ORG EQU $
ORG 0100h
main PROC FAR
start: jmp init ; skip "old vector" storage
old_v dd ? ; space to store old vector
entry: jmp first ; skip "identification"
db 'TEST ROUTINE'
first: @SwapNewStack ; MACRO to swap to new stack
cmp go_switch,ON ; test if I am active
jne bypas ; yes - continue to exit
mov go_switch,OFF ; no - set active switch
; < YOUR MEMORY RESIDENT ROUTINE GOES HERE >
I 4
mov go_switch,ON 5 set inactive
bypas: @SwapOldStack TOS ; restore stack (& include data)
jmp cs:exit ; goto interrupt service Routine
exit dd ?
go_switch dw ?
db 32 dup ('stack ")

3 — Program and Memory Management

TOS EQU $
LAST_BYTE EQU $
; ===== INITIALIZATION SECTION - THROWN AWAY AFTER LOAD =========
init: mov go_switch,OFF ; prevent activation
mov ah,35h ; get vector address
mov al,VECT_NUM
@DosCall
mov word ptr exit,bx ; save pointer IP for exit
mov word ptr exit+2,es ; save pointer CS for exit
mov word ptr old_v,bx ; save pointer IP for remove
mov word ptr old_v+2,es ; save pointer CS for remove
mov ah,25h ; set new pointer
mov al ,VECT_NUM
mov dx,offset entry ; set pointer IP
; === (CS & DS same)
@DosCall
mov go_switch,ON
mov dx,(offset LAST_BYTE - SEG_ORG + 15) shr &4
mov ah,31h ; terminate & stay resident
@DosCall
main ENDP
init28 ENDS
END start

Other possible patch points depend on the type of memory resident routine
and the frequency with which it must be called. For example, a print spooler
routine (which prints files while allowing other programs to be run at the same
time) not only must trap an interrupt to activate it to send characters to the
printer, but must also trap any accesses to MS-DOS that use the printer so that
conflicts do not occur. Figure 3-16 shows a print spooler trapping int 28h to acti-
vate itself and trapping int 21h to guard itself against printer access conflicts.
Your particular system may require additional traps if it provides other means
of accessing the printer.

In any use of trap vectors to implement some semblance of concurrency,
there is a risk of running afoul of programs that access the hardware directly.
For example, if a keyboard trap vector is installed to provide some feature and if
another program bypasses the keyboard vector and instead reads the hardware
directly, the memory resident routine is bypassed. These effects can occur quite
easily if multiple memory resident programs are installed because each pro-
gram must bypass MS-DOS to perform I/0. For example, if both a print spooler
and a memory resident routine to print the contents of the video display are
installed and both are activated at the same time, a conflict occurs. These

179

Coding and Programming

.
.
.

trap
Int 21 IP/CS ﬁé
8086 Family Vector Table
.
L]
trap
Int 28 IP/CS
. Internal
. MS-DOS
Int 28h Call
MS-DOS
L
L]
Int 21 Code
.
L]
L]
Int 28 Code
Return to
MS-DOS
from
SPOOLER Int 21h Trap
L]
.
Print Code
L]
Pass Int 21h
Int 21 Check

Int 21 Return
to User Program |

User Program

Int

eee) oee
=
=

call

Figure 3-16. Print spooler using trap vectors.

problems can occur with commercially available memory resident routines also.
The only way for users to protect themselves is to install one routine at a time,

checking for conflicts.

REMOVE —An Integrated Program Example

The REMOVE program (see Listing 3-13) is intended to “uninstall” a memory
resident program, based on the example given in INIT28 (Listing 3-12).
REMOVE attempts to identify the memory resident program by dumping

180

3 — Program and Memory Management

the bytes following the entry point, and it displays the 4 bytes preceding the en-
try point as a previous vector address. In addition, REMOVE assumes that the
program is in a .COM format and attempts to locate the addresses of the PSP
and environment block. REMOVE presents all this information to the user and
prompts the user to decide to attempt removal or not.

Listing 3-13. REMOVE —Remove Memory Resident Routines
Patched into Interrupt Vectors

PAGE 60,132

REMOVE - This file generates a .COM program ===========z====
Removes a memory resident program that has been patched ==
into an interrupt vector.
refers to Interrupt Service Routine)

EQU -4 ; possible IP location in ISR
EQU -2 ; possible CS location in ISR
EQU 0 ; location of 1st byte in ISR
EQU OCFh ; IRET op-code

’

;====== MACRO DEFINITIONS FOR UTILITIES

INCLUDE STDMAC.INC ; include macro definitions

remove SEGMENT
ASSUME cs:remove
ASSUME ds:remove
; Define needed addresses within the Program Segment Prefix

ORG 2Ch
env_adr LABEL WORD ; address of environment pointer
ORG 80h
cmd_Llen db ? ; command line string length
new_Llen db ? ; buffered read string length
cmd_buf db ? ; command line string
;====== BEGIN PROGRAM CODE
ORG 0100h
main PROC FAR
start:
mov ch,byte ptr [cmd_Llenl]
cmp ch,0 ; was argument provided ?
jnz have_cmd
; Argument not provided - prompt user to supply one
get_cmd:
@DisStr request ; ask for vector number
mov byte ptr L[cmd_lenl,80

continued

181

Coding and Programming

182

Listing 3-13. continued

mov dx,offset cmd_Llen
mov ah,0Ah ;
@DosCall ;
@DisChr LF ;
mov ch,new_Len ;
cmp ch,0 ;
jz abort ;
inc ch ;
have_cmd:
cmp ch,3 ;
je ok_cmd
@DisStr bad_cmd ;
abort: jmp finis
ok_cmd: mov bx,offset cmd_buf
mov ch,2 ;
call get_hex H
jc © abort ;
mov vec_num,al ;
mov ah,35h ;
@DosCall
mov vec_ip,bx ;
‘mov al,vec_num ;
call show_vector H
@DisStr askresv
call yesno
jc no_restore ;

-
4
-
14
.
r

RESTORE THE VECTOR FROM ADDRESS

mov bx,vec_ip H
mov dx,es:0LD_IPLbx];
mov cx,es:0LD_CSCbx1;
mov al,vec_num ;
push ds ;
mov ds,cx ;
mov ah,25h ;
@DosCall

pop ds ;

Display environment address and
The environment address will be

no_restore:

@DisStr askremb
mov ax,es:env_adr
mov ch,4

perform buffered read into
the command line buffer
new line

get size of text entered
see if user responded

if not then assume exit
adjust response to conform

check for proper # characters

if incorrect flag error

parse 2 characters

convert # in buffer to binary
exit if error in parse

save vector address

get vector pointer from MS-DOS

store the vector IP
restore vector number
display contents of vector

don't wish vector restored

IN ROUTINE

get address of routine
get old vector IP

get old vector CS

get the vector number
save current DS

set vector destination
set vector address

restore data segment

ask if wish removed.
valid only if this is a .COM

display environment address
get address of environment

8 — Program and Memory Management

call bin2hex ; display possible envir. seg.
@DisStr ip0

call yesno

jc no_env ; bypass removing the environment

; REMOVE ENVIRONMENT BLOCK
push es ; save main routine segment

mov cx,es:env_adr ; get address of environment

mov es,Ccx ; and prepare to remove

call rem_mem ; attempt to remove block

pop es ; restore address of main routine

’
; Display Main Routine Segment Address and ask if want removed
no_env:

@DisStr askremm ; display main block address
mov ax,es ; address of main block
mov ch,4

call bin2hex
@DisStr ip0
call yesno

jc finis don't want to remove main block

N

’

; REMOVE MAIN MEMORY RESIDENT ROUTINE MEMORY BLOCK

call rem_mem ; attempt to remove block
;
finis: mov ax,4C00h ; terminate program
@DosCall
;
vec_num db ? ; space to store vector number
vec_ip dw ; space to store vector IP
;
request db 'Vector number to remove: $'
bad_cmd db 'Command line format error - aborting',CR,LF,'S$'
askresv db 'Restore Vector from OLd? $'
askremb db 'Remove Environment Block: $'
askremm db 'Remove Main Program Block: $'

ip0 db ':0000 $°'

main ENDP

; ===== REM_MEM uses MS-D0S Function 49 (hex) to attempt to =
; ===== deallocate the memory block addressed by ES.

rem_mem PROC NEAR
push ax ; save registers

continued

183

Coding and Programming

184

Listing 3-13. continued

push cXx

push dx ; used by @eDisStr & @DisChr
mov ah,4%9h ; free allocated memory
@DosCall

jnc free_ok ; no errors - give success msg
push ax ; save error code

@DisStr fail

inform that it failed

’

pop ax ; and give the error code

mov ch,4 ; (all 4 digits)

call bin2hex

@DisChr CR

@DisChr LF

jmp rem_exit
free_ok:

@DisStr pass
rem_exit:

pop dx ; restore registers

pop cX

pop ax

ret
pass db 'Successful Free Allocated Memory',CR,LF,'$’'
fail db 'Failed to Free Allocated Memory - Error Code: $'
rem_mem ENDP

retry:

no:

yes:

yn_exit:

YESNO prompts the user for a Y or N. If Y is entered ==
YESNO returns w/o carry (NC). If N or <RET> is entered =
then YESNO returns w/ carry (CY). ==

PROC NEAR

push ax

push dx

@DisStr prompt ; prompt user for input
mov ah,08h ; get response (no echo)
@DosCall

@Case al,<'y','yY','n','N',CR>,<yes,yes,no,no,no>
@DisChr 0O7h ; illegal response - beep
jmp retry ; and wait some more
@DisChr 'N’

stc

jmp yn_exit

@DisChr "Y'

clc ; clear carry

@DisChr CR

@DisChr LF

3 — Program and Memory Management

pop dx
pop ax
ret
prompt db ' (Y/N): $',

yesno ENDP

SHOW_VECTOR displays the contents of location pointed =
to by ES:BX in both HEX and ASCII format. Since it is
; ===== intended for use in displaying vectors, it also shows
; ===== AL in hex as a vector number, and informs the user if =
the first byte pointed to is an IRET instruction.
SHOW_VECTOR also displays the two words located before =
the vector address as CS:IP in case the user has ==
stored the old vector address there on installation. ==

show_vector PROC NEAR
push cX ; save registers
push dx
push ax ; used by @DisChr & @DisStr
@DisStr vmsg1 ; start displaying messages
pop ax ; restore value of AL
push ax
mov ah,al
mov ch,2 ; display 2 digits of hex
call bin2hex
@DisStr vmsg2 ; show potential restore address
mov ax,es:0LD_CS[Cbx]; get possible CS value
mov ch,4
call bin2hex ; display possible old CS
@DisChr ':'
mov ax,es:0LD_IPLbx]; get possible CS value
call bin2hex ; display possible old CS
cmp byte ptr es:IDLbx],IRETOP
jne noiret ; is this an IRET instruction?

@DisStr vmsg3
noiret: @DisChr CR

@DisChr LF
mov cl,16 ; dump 16 bytes
call dump ; show HEX and ASCII values
pop ax i
pop dx
pop cX
ret
vmsg1 db 'Vector # $'
vmsg2 db ' Old Vector: $'

continued

185

Coding and Programming

Listing 3-13. continued

vmsg3 db ' IRETS$'
shouw_vector ENDP
; ===== DUMP displays the contents of location pointed to by
; ===== ES:BX in both HEX and ASCII format. CL contains the #
; ===== of bytes to display.
dump PROC NEAR
push ax ; save registers
push dx ; used by @DisChr & @DisStr
push bx
push cX
@DisStr dmsg1 ; start displaying messages
mov ch,2 ; 2 hex digits per byte
h_dump: mov ah,es:[bx] ; get byte
inc bx ; next byte
call bin2hex
@DisChr ' '
dec cl ; loop count - 1
jnz h_dump ; repeat until count O
@DisStr dmsg?2 ; next section
pop cX ; restore values of
pop bx ; == BX (index) ...
push bx ; -=s and ...
push cX ;3 «=« CX (count)
t_dump: mov al,es:[bx] ; get byte
inc bx ; next byte
cmp al,' ' ; check for printable range
jb no_prnt ; ? < space
cmp al,7Eh ; DEL is not printable either
ja no_prnt
@DisChr al ; is printable - do so ...
jmp nxt_txt
no_prnt:
@DisChr '.' ; use "." for nonprintable
nxt_txt:
dec cl ; loop count - 1
jnz t_dump ; repeat until count 0
; ALL done - clean up & exit
@DisChr CR
@DisChr LF
pop cX 5 restore registers
pop bx
pop dx
pop ax

186

3 — Program and Memory Management

ret
dmsg1 db '"HEX: $'
dmsg2 db ' ASCII: $'
dump ENDP
; ===== GET_HEX parses the buffer pointed to by BX for a hex ==
; ===== number, returning the number in AX. The # of digits ==
; ===== to parse is contained in CH, and BX is incremented by ==
; ===== the # of digits processed. ==
get_hex PROC NEAR

push dx ; save DX register

push cX ; save CX register

mov ax,0 ; clear accumulated #

mov dh,0 ; clear upper workspace

mov cl,é4 ; set shift count for Later
nxt_digit:

mov dL,Cbx] ; get character

sub dL,'0’

jb bad_digit 5 2 <'0" - illegal

cmp dL,0Ah

jb ok _digit ; '0" through '9' - ok

sub dL,'A'-'0"

ijb bad_digit ; '9' <72 < 'A'" - illegal

add dL,0Ah

cmp dL,10h

jb ok _digit ; "A' through 'F' - ok

sub dL,'a'-"A'-0Ah

ijb bad_digit ; '"F' < ?2 < 'a' - jllegal

add dl,0Ah

cmp al,10h

jae bad_digit ; 'f' < ? - illegal
ok_digit:

add ax ,dx ; accumulate digits in AX

inc bx ; next digit

dec ch

jnz more_digit ; more digits to accumulate

clc ; no error - clear CY

pop cX

pop dx

ret
more_digit:

shl ax,cl ; open room for next digit

jmp nxt_digit ; loop for next digit

bad_digit:

continued

187

Coding and Programming

@DisStr digit_error

Listing 3-13. continued

; inform of entry error

stc
pop cX
pop dx
ret

; error - set carry

digit_error db 'A two-digit hex number was expected',CR,LF,'S$’

get_hex ENDP

; ===== BIN2HEX displays the value contained in AX as a hex #.==

No registers are destroyed. CH contains the # of
digits to display, taken left to right in AX. (AH is

; ===== displayed if CH equal 2.)
bin2hex PROC NEAR
push ax ; save all registers
push bx
push cXx
push dx
mov cl, 4 ; set rotate count
mov bx ,ax ; copy AX for work
; Begin DIGIT loop to process digits
moredig:
rol bx,cl ; convert binary to hex
mov al, bl
and al,OFh
add al,90h
daa
adc al,40h
daa
; Display the digit & check for more - restore if done.
@DisChr al
dec ch
jnz moredig
pop dx
pop cX
pop bx
pop ax
ret

bin2hex ENDP

remove ENDS
END

start

188

8 — Program and Memory Management

The section that displays the contents of the location addressed by the vec-
tor may be extracted and made into a program. This program can be used to dis-
play the contents of any of the interrupt vectors and their possible service
routines. :

REMOVE serves as an example of many of the topics discussed in this
chapter and helps to demonstrate recommended installation and removal
techniques.

Summary

In this chapter we have presented material about many separate topics. In addi-
tion to the promised material on program and memory management, we have
also included material on organizing programs and on the structure and con-
tents of MS-DOS programs. More examples of the way MASM operates have
been given.

Although some of the material covered may seem only occasionally useful,
we think that you will find applications for most of it. Especially important to
the systems and applications programmers are the PSP and the organization of
programs in memory.

189

o
s

.
-
L

.

L
.

-

.
L

4 — TSR Programming

ERMINATE and stay resident (TSR) programs are useful tools, but their
operation remains a mystery to most users. The MS-DOS architecture and
the PC hardware impose constraints on the things a TSR may do and when it
may do them. Some of these limitations manifest themselves only when a TSR
writes to the screen or makes a BIOS request from an interrupt service routine;
others demand our attention when the TSR installs itself.

This chapter will explain how to write a TSR. You will learn about the ser-
vices (documented and otherwise) that DOS provides and how TSRs interact
with DOS. You will also learn about several of the technical issues that confront
a TSR author. But first a few words of caution.

Much of the material covered in this essay is undocumented, obtained by
disassembling PC-DOS version 3.10. Many services discussed here are not
available in versions of PC-DOS below 3.00, and there is no guarantee that they
will be present in future versions of DOS. Some features may be specific to PC-
DOS 3.10. Software that uses these features may not be portable to different
DOS environments and may break in the future.

It is possible for conflicts to exist among various TSRs (including the ex-
amples presented here). The severity of these conflicts can range from annoying
to catastrophic. More serious conflicts can cause data loss or can corrupt disks.

Additionally, this chapter describes the programming of the 6845 CRT con-
troller, which drives both the MDA and the CGA. Errors in programming this
device can result in severe damage to your system.

Overview

TSRs have become common. They are available as commercial programs, share-
ware, and even as part of MS-DOS. Borland’s Sidekick is probably the best-
known commercial offering. The commands PRINT and ASSIGN and several
other DOS utilities are TSRs.

All TSRs begin life as ordinary programs. After a while the program exits,
leaving part of its code behind. The code that runs first is called the initializa-
tion code, and that which remains behind is known as the resident code. The
main task of the initialization code is to prepare the resident code for later use.

193

Coding and Programming

There are no restrictions on what the initialization code may do, but program-
ming the resident code can be tricky.

TSRs may be grouped into three categories based on what the resident
code does. Members of the first group have no user interface to their resident
portion. Once loaded, these TSRs sit quietly in the background, performing
their tasks without making any BIOS requests. The DOS ASSIGN command is
one such TSR; its resident portion monitors and redirects disk requests from
one drive to another. Adequate documentation and numerous examples make
writing this type of TSR an easy task.

The members of the second group of TSRs remain dormant until specifi-
cally activated by a user request. Normally, this request comes as a specific key
or key combination (e.g., Alt-Shift) called a kot key. Again, their resident code
makes no BIOS requests; they must obtain any DOS services, such as reading a
file, only during initialization.

A small telephone-database TSR might fall into this second group. Initial-
ization code would read the entire phone directory into memory. In response to a
hot key, the resident code must save the current display, get one or more names,
look up the associated phone numbers, and display the search results. When
there are no more names to look up, the TSR must restore the original screen
and deactivate itself.

The services needed by these TSRs are reasonably well documented, but
there are a number of technical issues in dealing with hot key activation and in
interacting with the display hardware.

The final group of TSRs makes asynchronous BIOS requests. These re-
quests may be triggered by a hot key or some other hardware interrupt (e.g., a
timer). The resident code does not necessarily have a user interface. The DOS
PRINT utility falls into this category. These TSRs are difficult to write because
DOS is basically a single-user/single-program operating system. Microsoft has
retrofitted support for programs such as PRINT, but these services are un-
documented and require an in-depth understanding of DOS for proper use.

Before you can write a TSR, you will need some background information.
For instance, you must know how the keyboard and display work in order to
understand the issues involved in supporting hot keys. As another example, the
DOS software architecture imposes some very real constraints on what a TSR
may do; you must know about the workings of the various DOS modules that af-
fect a TSR. Once you understand the hardware and operating system mecha-
nisms, you will be ready to learn what a TSR needs to do when it initializes and
reactivates. Finally, you will learn how to write a TSR that runs in the
background.

Dealing with PC Hardware

The keyboard, timer, and several other devices generate interrupts to get the
processor’s attention. PC/XT systems provide eight distinet hardware inter-
rupts, and AT systems support more. Many of these interrupts belong to the

194

4 — TSR Programming

realm of device drivers, and a TSR must be careful not to interfere with them. Of
all the hardware interrupts, it is the clock and keyboard interrupts with which
most TSRs interact.

Part of the appeal of TSRs is the hot-key user interface. With a single key-
stroke, you can wake up a TSR and ask it to do something. If a TSR is well writ-
ten, it springs to life quickly, does its job, and slips into the background without
missing a beat or disrupting any other programs. But implementing a hot key
requires quite a bit of work and a good understanding of how the display and
keyboard hardware work.

Some TSRs must perform their tasks periodically. Every PC has a timer
that generates an interrupt 18.2 times per second and provides a mechanism for
scheduling periodic events. The DOS PRINT utility uses the timer to keep the
printer busy regardless of what else is happening on the system.

Hot keys and timers interrupt the CPU when they need its attention. The
CPU deals with this interrupt and then returns to its original task. The PC has
special hardware to deal with interrupts. Both the keyboard and the timer inter-
act with this hardware; you’ll need to understand how both the hardware and
the software interrupt system work if you want to support a hot key or make use
of the timer.

Hardware Interrupts

At the hardware level supporting MS-DOS is a scheme of hardware interrupts,
each of which is associated with a particular device. Each device wanting the
processor’s attention sends an interrupt request, or IRQ, to the 8259A interrupt
controller, which schedules the interrupt for service. Each device has a priority.
Higher-priority devices get first crack at the processor and can preempt less im-
portant devices. (The 8259A interrupt controller can be programmed dif-
ferently, but these other operating modes are not of interest to us.) When the
interrupt controller decides that an interrupt can be serviced, it sends an “inter-
rupt acknowledged” message to the device, disables all interrupts, and gener-
ates an interrupt.

In response to a particular hardware interrupt, the processor looks up the
address of an interrupt service routine in the interrupt vector table (IVT). This
table occupies the first 256 double words (1024 bytes) of memory. Each entry
contains the address of an interrupt service routine (ISR). The processor pushes
the current flags and program counter (CS:IP) onto the stack and begins ex-
ecuting this ISR.

The ISR does whatever is required to service the interrupt. At some point,
the ISR sends an end of interrupt (EOI) message to the 8259 controller, indicat-
ing that it is ready to accept another interrupt service request. The interrupt
controller will not recognize interrupts from this or any lower-priority devices
until it receives this EOIL. After the ISR does its job, it executes an IRET in-
struction that restores the flags and the original CS:IP.

195

Coding and Programming

196

Software Interrupts

The INT instruction of the 80x8x processors provides a software interrupt
mechanism. The processor treats software- and hardware-generated interrupts
in the same way. Execution of an INT instruction transfers control to the ISR
specified by the instruction operand. For example, the instruction int 60h in-
vokes the ISR whose address is recorded at offset 180h (4%60h) of the IVT. The
interrupt controller is not involved, and the software ISRs should not send an
EOI to the interrupt controller. DOS uses software interrupts extensively.
Since all access to an ISR occurs through its IVT entry, it is a simple matter to
replace an interrupt service routine. You will often have occasion to modify the
IVT when you write TSRs.

The Timer Interrupt

The PC uses one channel of an 8253 counter/timer chip to request an interrupt
18.2 times per second. The 8259A controller generates an int 8h in response to
this request. This clock interrupt has the highest priority and will preempt any
other interrupt as long as the processor has not disabled all interrupts with a
CLI (CLear Interrupts) instruction.

Code within ROM-BIOS normally responds to this interrupt. After updat-
ing the time of day and performing some other housekeeping tasks, the ROM-
BIOS code executes an int 1ch instruction. Programs that run periodically can
set up their own int 1ch ISR (we’ll explain this shortly). The default ROM-BIOS
int 1ch service routine consists of an IRET instruection.

The Keyboard

The standard PC keyboard contains its own microprocessor (an Intel 8048 or
equivalent). Pressing or releasing a key sends an IRQ1 signal to the interrupt
controller, which invokes the int 9 interrupt service routine to process this re-
quest. The priority of the keyboard interrupt is second only to that of the clock.

ROM on the system board contains the default int 9 ISR. This code is quite
complicated. It reads and decodes the scan code, tracks the state of special keys
(Control, Shift, Alt, etc.), and maps scan codes into key codes. Each keystroke
produces two scan codes, one for key press-down and one for key release-up.
Keyboard state information affects these mappings. For instance, pressing the
A key produces a scan code of 1eh. The keyboard ISR normally translates this
scan code to a key code of 61h (the ASCII code for lowercase a). If the control
key is down at the key-press, the scan code translates to a 01h (ASCII for Con-
trol-A). If the shift key is down, the same scan code becomes a 41h (ASCII for
uppercase A).

Inresponse to keys such as Shift and Alt, the int 9 ISR updates a keyboard
status byte within the BIOS data segment and then exits with an IRET. The
BIOS data segment begins at paragraph 40h and contains many dynamic vari-
ables manipulated by various ROM-BIOS routines. Listing 4-1 describes part of
this data area.

4 — TSR Programming

Listing 4-1. The BIOS Data Segment

KB_M_RShift EQU 01h ; right shift being held down
KB_M_LShift EQU 02h ; left shift being held down
KB_M_Control EQU 04h ; control key being held down
KB_M_Alt EQU 08h ; alt key being held down
KB_M_Scroll EQU 10h ; scroll lock key down
KB_M_Num EQU 20h ; num Llock key down
KB_M_Caps EQU 40h ; caps lock key down
KB_M_InsState EQU 80h ; insert state is active
KB_C_BufSize EQU 10h ; size of keyboard buffer
BIOS SEGMENT at 40h

ORG 17h ; not interested in other BIOS data
KB_B_Flag DB 0 ; keyboard status flag

ORG 1ah ;> not interested in 18h and 1%h
KB_W_BufHead DW 0 ; head of keyboard buffer
KB_W_BufTail DW 0 ; tail of keyboard buffer
KB_T_Buffer DW KB_C_BufSize DUP(0)
BIOS ENDS

Certain key combinations have special meaning. The keyboard ISR ex-
ecutes an int 1bh instruction when it sees the scan code corresponding to the
break key. The default int 1bh ISR consists of an IRET, but the console driver
normally sets up its own int 1bh ISR. This ability to process breaks makes the
console driver special. (This discussion is extended in the section on break
handling.)

The dreaded Control-Alt-Delete eventually produces an int 194. Further
discussion of the int 19h and the Control-Alt-Delete key combination is
unnecessary.

If the key code does not have any special meaning, the int 9 ISR saves it in
a type-ahead buffer. This buffer begins at offset 1leh within the BIOS data seg-
ment and is arranged as a 16-word circular buffer. Offsets 1ah and 1ch in this
segment point, respectively, to the buffer head and tail. If the buffer is full, the
int 9 ISR beeps and discards the character; otherwise, it inserts the character at
the tail of the buffer.

Each buffer entry is 2 bytes long; its format depends on how the int 9 ISR
interprets the keystroke. Certain key combinations (e.g., Alt plus a letter or
number) and special keys (e.g., function keys) produce an “extended ASCII”
character; other keys produce “normal ASCII.” The int 9 ISR records a zero
byte followed by a numeric identifier for extended ASCII characters, and re-
cords the ASCII character code and scan code for all others.

Software accesses the keyboard hardware through ROM-BIOS. Int 16h
lets you remove characters from the keyboard buffer, peek at the first character

197

Coding and Programming

198

in the buffer, and check keyboard status. Virtually all access to the keyboard
occurs through int 16h. Even the console driver uses int 16h to retrieve input
characters and check keyboard status.

The Display Hardware

There are a number of different displays available for computers in the PC fam-
ily. The Monochrome Display Adapter (MDA) and the Color Graphics Adapter
(CGA) are the most common. Some of the other hardware emulates one or both
of these adapters, as well as providing added capability (more colors, better res-
olution, ete.). This discussion is limited to the MDA and CGA hardware.

The PC display hardware has analog and digital components. The screen
and its associated control logic make up the analog part. The surface of the
screen is coated with a phosphor that glows when struck by an electron beam.
The analog control circuits sweep a beam of electrons across and down the
screen; each sweep is known as a scan line. Other parts of this circuit turn the
beam on and off.

The process begins at the upper left corner of the screen. The beam moves
horizontally across the screen from left to right. When it reaches the right side
of the screen, the control electronics turn it off and move it back to the left edge
and down one position. The time that the beam is off is known as the horizontal
blanking interval. This process continues until the beam sweeps the lowest line
of the screen. When the electron beam reaches the bottom of the sereen, the con-
trol circuit turns it off and returns it to the top left corner of the screen to repeat
the entire process. The time required for this motion is called the vertical re-
trace interval. The horizontal and vertical retrace periods are important to man-
aging a CGA display.

As the beam sweeps horizontally to the right, a representation of the dis-
play saved in display memory causes the necessary signals to turn the beam on
and off and control its position. The base address of this memory varies with the
adapter type. MDA screen memory begins at b000:0000h, and CGA memory at
b800:000h. Both the CPU and the CRT controller can access this memory.

Some fancy electronics make this arrangement work, but, as far as you are
concerned, you can read and write to screen memory without worrying too
much about what the 6845 CRT controller is doing. The 6845 CRT controller is a
general-purpose chip that can support many different monitors. It has a status
register that contains information about retrace cycles; several other registers
control scan rates, cursor position, cursor mode, and display page.

CAUTION

You should be very careful when programming the 6845. Certain registers
contain critical values that, if not properly set, will destroy your monitor. Con-
sult the IBM Hardware Technical Reference Manual for a more complete

* description.

4 — TSR Programming

The MDA and the CGA

There are some electronic differences between the MDA and the CGA. The
MDA operates fast enough that the CPU can access display memory whenever
it wants, even as the scan line is active. Attempts to access CGA graphics mem-
ory produce snow unless they occur during retrace intervals. The slowest IBM
processor (8088 CPU at 4.77 MHz) can move only 1 byte in the horizontal retrace
period, and it can move approximately 100 bytes during vertical retrace. Both
the CGA and the MDA provide vertical retrace status, but only the CGA indi-
cates horizontal retrace.

There are some functional differences between the MDA and the CGA as
well. The MDA can display only text; the CGA can display both text and
graphics. In text mode, both adapters use 2 bytes of screen memory to display
one character. The lower byte contains the character to be displayed, and the
higher byte describes the character attributes (bold, blink, color, underline,
etc.). Location of graphics data is slightly more complex. Refer to the IBM
Hardware Technical Reference Manual for details.

Writing to Display Memory
Display memory is mapped into the PC address space. Listing 4-2 shows how
eagy it is to write to MDA display memory.

Listing 4-2. Writing Directly to MDA Display Memory

; Write Hello on MDA screen in normal video starting at (0,0).

; The 7 following each letter in Hello is the video attribute. A

; value of 7 describes normal mode (white letter on dark background,
; normal intensity)

Hello DB 'H',7,'e',7,'L',7,'L',7,'0",7
HelloLength EQU $-Hello

mov ax,0b000h

mov es , ax ; es <== MDA base

xor di, di ; di <== offset into screen memory
mov si,0FFSET Hello ; si <== string to write

mov cx,HelloLength/2 ; CX <== words to write

rep movsw ; do the write

Writing to the CGA is a little tricky. The previous program will run on a
CGA (provided the screen base address is changed to 0b800h), but it will cause
snow on the screen. Because adapter memory is dual-ported, it can be accessed
by both the CPU and the display processor (the Motorola 6845 CRT controller).
The snow is due to memory contention—both the processor and the controller
trying to access memory at the same time. Accessing display memory only dur-
ing retrace cycles eliminates this unsightly effect.

199

Coding and Programming

200

The MDA and many CGA clones are fast enough to obviate the restriction
of using only retrace intervals. With the IBM CGA, you can either ignore the
snow, turn the display off during screen updates (more ugly than the snow), or
syne with the retrace signals. Listing 4-3 illustrates how to avoid snow by using
the least-significant bit of the 6845 status register at address 03dah to coordi-
nate with the horizontal retrace signal.

Listing 4-3. Writing to CGA Screen Memory

; Write Hello on CGA screen in normal video starting at (0,0).

; The 7 following each letter in Hello is the video attribute. A
; value of 7 describes normal mode (white letter on dark

; background, normal intensity). The CGA is assumed to be in

; text mode.

Hello DB 'H',7,'e',7,'L',7,'L',7,'0',7
HelloLength EQU $-Hello

HRetrace EQU 1

mov dx,3dah ; dx <== CGA status register
mov ax,0b800h
mov es , ax ; es <== (CGA adapter memory
xor di,di ; di <== offset into screen memory
mov si1,0FFSET Hello ; si <== string to write
mov cx,HelloLength/2 ; cx <== words to write
_nextbyte:
—sync: in al,dx ; al <== 6845 status
test al ,HRetrace ; horizontal retrace?
jz _sync ; if z =- not yet
stosb ; write 1 byte in retrace
loop _nextbyte ; wait for next retrace

Although it is not obvious with a short string, this program is not terribly
efficient. To move big blocks of text, you must take advantage of the much longer
vertical retrace interval as well.

ROM-BIOS Video Support

ROM-BIOS provides fairly complete video support through int 10h. For many
applications, these services provide adequate performance. The screen switch-
ing needed to support a hot key severely taxes the capabilities of the ROM code,
especially on the slower 8088 machines. The extra memory and dual modes of
the CGA compound this problem. ROM-BIOS supports CGA access in both text
and graphics modes and provides services for switching modes. You should note
that a side effect of mode change is the erasure of display memory.

4 — TSR Programming

Capturing an Interrupt

The process of changing an IVT entry is known as capturing an interrupt. TSRs
rely on interrupts for hot-key activation. Those that run periodically also de-
pend on the timer interrupt. TSRs frequently alter the IVT to monitor DOS ac-
tivity and hardware status and to locate previously loaded copies of themselves.
The timing of these interrupts is unpredictable in that certain DOS operations
(int 21h functions) cannot be interrupted.

To capture an interrupt, the initialization code of the TSR reads the IVT
entry, stores its contents safely away in a data area, and inserts a new address in
the IVT table. Control will pass to this new ISR the next time the interrupt oc-
curs. Your new ISR code should usually call the original ISR first. When the old
ISR has completed, its IRET instruction will return control to your code, which
then issues its own IRET to return control to the program that originally called
the interrupt.

DOS provides two functions to help us capture an interrupt vector. To find
the contents of a specific IVT entry, place its interrupt number in the AL regis-
ter, place the value of 35h in the AH register, and execute an int 21h instruction.
This BIOS service returns the contents of the IVT entry in the ES:BX register
pair.

After you record this value, you can modify the IVT entry. Load the
DS:DX with the location of the new ISR, specify an interrupt vector number in
the AL register, place 25h in the AH register, and execute an int 21h instruc-
tion. Listing 4-4 illustrates the use of these services to capture the timer (1ch)
interrupt.

The specific actions taken in the new ISR depend on which IVT entry you
are replacing and what you are trying to accomplish by replacing it. Notice that
our new ISR “chains” to the old ISR. This technique is quite common. The
pushficall sequence simulates an INT instruction. Note that the call must be an
intersegment (far) call because OldIntIc is a double word (DD pseudo op).

Setting up a Hot Key

Implementing a hot-key feature in a TSR imposes some unique demands on pro-
gram design. The hot key should wake up the TSR without sending the key-
press to the foreground program. The basic approach is to examine each key-
stroke before the foreground program reads it. You can capture interrupt 16h to
inspect input to the keyboard buffer, or you can poll the keyboard buffer by
using the timer tick (int 1ch), or you can monitor the contents of the type-ahead
buffer by trapping interrupt 9. Quite often you will find it useful to choose a hot
key that affects keyboard status but does not result in an addition to the type-
ahead buffer. Each of these approaches has certain advantages and a number of
problems. You will have to decide which technique is best for your application.

Capturing Int 16h
The simplest way to look for a hot key is to capture int 16h. Most well-behaved
applications use this interrupt for keyboard input. Installing your own int 16h

201

Coding and Programming

202

Listing 4-4. Capturing the Timer Interrupt Int 1ch

oldIntic DD 0
mov ax,351ch ; get int 1c
int 21h
mov WORD PTR 0ldInt1c,bx ; save it
mov WORD PTR OldInt1c+2,es
push ds ; save ds
mov ax,cs
mov ds,ax
mov dx,OFFSET NewIntic ; ds:dx <== new isr
mov ax,251ch ; set new isr
int 21h
pop ds ; recover ds
H - ; whatever
NewIntic PROC FAR
pushf ; push flags to simulate
call cs:0ldInt1c ; an interrupt
; - ; whatever
iret

NewIntic ENDP

ISR gives you a chance to examine each character and divert any hot keys. List-
ing 4-5 shows a typical replacement for the int 16h ISR.

The new int 16h ISR looks at the results of every read (AH = 0) and buffer
status (AH = 1) request but does not intervene in shift status requests (AH = 2).
If the ROM-BIOS code returns a hot key, the new ISR removes the key code
from the type-ahead buffer, wakes up the TSR, and then repeats the request. As
long as the first character in the type-ahead buffer is a hot key, the replacement
ISR does not return to its caller. This example makes the simplifying assump-
tion that reactivation will be safe. (See the section titled “Reactivation and DOS
Architecture and Services” for a complete discussion of this topic. The code in
Listing 4-5 is therefore only a general model and is not strictly correct.)

The limitation to this technique is that the only time you get to look for hot
keys is when the foreground program issues a read. If this program is compute-
intensive, there may be lengthy delays between the time a hot key is entered
and your TSR responds.

Polling the Keyboard Buffer with Timer Interrupt Int 1ch

You can ensure frequent keyboard checks by capturing the timer interrupt and
checking the keyboard buffer from within your timer ISR. Listing 4-6 checks for
a hot key on every timer tick. If the first key code in the type-ahead buffer corre-
sponds to a hot key, the new ISR removes the key code and activates the TSR. In
either case, the new ISR chains to the previous timer ISR code.

4 — TSR Programming

Listing 4-5. Replacing Int 16h to Look for a Hot Key

oLdInt16

HotKey

NewInt16

DoStatus:

DoRead:

DoShift:

DoneO0:

Done1:

NewInt16é

DD

DW

PROC
cmp
ig
jL

pushf
call
pushf
cmp
jnz
xor
call
call
mov
jmp

pushf
call
cmp
jnz
call
xor
jmp

jmp

iret

popf
ret

ENDP

0

&)

FAR
ah,1
DoShift
DoRead

cs:0ldInt16

ax, HotKey
Done1

ax,ax
cs:0ldInt16
ActivateTSR
ah,1

SHORT DoStatus

cs:0ldInt16
ax , HotKey
Done0
ActivateTSR
ah,ah

SHORT DoRead

cs:0ldInt16

2

N Na

Ns Ns Ns N

Ns N N

I 4

initialization code saves
original isr address here
define hot key here

look at function
if g -—— shift status
ah=0 ==> read

ah=1 ==> check for status
simulate an int 16

pass request to BIOS

save flags

did we find a hot key?
not the hot key

ah <== 0 (read request)
remove the hot key

hot key activates TSR

ah <== 1 (status request)
repeat request

simulate an int 16h

did we find a hot key?
if nz -- no hot key
hot key activates TSR
ah <== 0 (read request)
repeat request

pass this request along to
old ISR. Ignore results

ax has character
flags are not used
return to caller

ax has character

recover flags from int 16h
discard flags pushed by
int instruction and return

203

Coding and Programming

204

Listing 4-6. Using Int 1ch to Poll the Keyboard

HotKey DW (? ; define hot key here
; NB cannot be extended ascii

oldIntilc DD 0 ; old timer ISR stored here
NewIntic PROC FAR ; new timer isr

push ax ; needed for int 16h

xor al,al ; xor,inc combo faster than

inc al ; mov al,1

int 16h ; check type-ahead buffer

jz NoHotKey ; if z--buffer empty

cmp ax ,HotKey ; not empty--1st char hot key?

jnz NoHotKey ; if nz--not hot key

xor al,al ; al <== read request

int 16h ; remove hot key

call ActivateTSR ; wake up the TSR
NoHotKey: pop ax ; restore ax

jmp cs:0ldInt1ch ; pass timer tick

NewlIntic ENDP

If you use this technique, you can access only the first character in the
type-ahead buffer. The presence of an ordinary character will hide subsequent
hot keys from this poll routine. Assuming that a user never anticipates program
input requests, frequent polling would provide adequate response to a hot key.
But because user actions are unpredictable, this technique is not a reliable way
to detect a hot key. Again, please note that the example does not check to deter-
mine if it is safe to reactivate the TSR.

Trapping Int 9

Another approach to monitoring the keyboard is to trap int 9h. When a key is
pressed or released, the keyboard hardware generates an int 9. The new int 9
ISR calls the ROM keyboard ISR and then uses int 16h to peek at the first
character in the type-ahead buffer. The disadvantage of this approach is that a
nonempty type-ahead buffer hides hot keys. If you can guarantee that no TSR
loaded afterward will move the buffer, you can use this technique to scan the en-
tire buffer on every key-press.

TSRs that extend the type-ahead buffer are quite common. They work by
replacing both the int 9 and the int 16h ISRs. Their int 9 code calls the old int 9
ISR to service the keyboard interrupt and then invokes the old int 16h ISR to
drain the type-ahead buffer. The new int 9 ISR saves these characters in its own
buffer. The replacement int 16h ISR removes characters from this new buffer.

TSRs that redefine or bind macro definitions to keys also use this tech-
nique. If your TSR loads before any TSR that moves the type-ahead buffer, your

4 — TSR Programming

TSR will always find the buffer empty. It is not a good idea to write a TSR that
depends on load order to work correctly.

Monitoring Keyboard Status

An alternative to checking the type-ahead buffer is to monitor the keyboard
status byte. This technique eliminates the need to know the location of the
ROM-BIOS type-ahead buffer but requires that the user select character com-
binations that alter keyboard status (e.g., Alt-Shift, etc.) as a hot key. This
technique will work as long as any TSRs loaded afterward do not alter the key-
board status bytes. Because the keyboard status affects scan code processing,
TSRs should not fool around with this variable, so this technique is very
reliable.

Listing 4-7 shows a replacement for the ROM-BIOS keyboard ISR. Some
of the things that this code does may seem a little confusing right now because
the process involves looking for hot keys in an interrupt service routine. As you
will see later, you cannot safely interrupt some DOS operations. Part of the chal-
lenge of writing a TSR is coding around this limitation.

In this example, the new ISR runs whenever a key is pressed or released.
Its first action is to call the old keyboard ISR to read and process the keyboard
scan code. The new ISR examines the PgmState variable maintained by the
TSR to determine if the TSR is a foreground application. If the TSR is not run-
ning in the foreground and the ISR detects a hot key, it attempts to bring the
TSR to the foreground. If the TSR is currently in the foreground, the interrupt
requires no further processing.

If the keyboard status bits corresponding to the hot key are set, the ISR
increments the PopupPending flag and checks to see if it is safe to bring the TSR
to the foreground. The section entitled “Reactivation and DOS Architecture and
Services” describes the mechanics of this process. If it is safe, the ISR calls
BKGResume to reactivate the TSR. DOSSafe increments the BusyFlag to pre-
vent the TSR from being reentered; the ISR must decrement this variable be-
fore returning to the interrupted program.

Listing 4-7. Sample Replacement Keyboard ISR

FGCombo EQU KB_M_Alt OR KB_M_LShift
BKG_C_FG EQU 1
BKG_C_BG EQU
BIOS SEGMENT at 40h
ORG 17h
KB_B_F lag DB 0
BIOS ENDS
_text SEGMENT BYTE PUBLIC 'code'-

continued

205

Coding and Programming

PgmState
BusyFlag

0ldInt9

PopupPending

Int9ISR
NewInt9:

i9_0:

Int9Exit0:
Int9Exit1:

Int9ISR
—text

ASSUME
PROC

pushf
call
cmp
jz
iret

Listing 4-7. continued

DB 0

DB -1
DD 0

DB 0
ds:NOTHING
FAR
cs:0ldInt9

protects against interrupting
non-reentrant code section
initialization saves original
int 9 ISR here

incremented if popup requested
but couldn't be honored

Nz Ns Ns N N

LX)

;;; simulate an interrupt
;; dispatch to original ISR

.
r

cs:PgmState,BKG_C_BG ;;; are we in background now?

i9_0

pushr <ax,ds>

mov
mov
ASSUME
mov
and
cmp
popr
ASSUME
jnz

inc
call
jc
call

dec
iret

ENDP
ENDS

ax,SEG BIOS
ds,ax
ds:BIOS

al ,KB_B_Flag
al FGCombo
al,FGCombo
<ds ,ax>
ds:NOTHING
Int9Exit1

cs:PopupPending
DOSSafeCheck
Int9Exit0
BKGResume

cs:BusyFlag

; if z —— yes

;2 ignore popup if not

; currently in background
; SO we can access B _FLAG

;;; al <== current KB flags
;;; mask all unneeded bits
s popup being requested?

; if NZ -- not a popup

; request

; say a popup was requested
; can we do it now?

; if ¢ == no

bring to foreground

; release our lock

; and dismiss interrupt

An Alternative to Capturing Int 1ch

Itisimportant to note that the int 1ch ISR is nested within the int 8 ISR because
the clock interrupt has the highest priority—no other interrupts will be ser-
viced until the interrupt controller receives an EOI. Any operations that

206

4 — TSR Programming

depend on interrupts will not work. Another potential problem is that DOS will
lose clock ticks if it takes too long to traverse the int 1ch chain. PRINT.COM
solves this problem by sending an EOI in its int 1ch ISR.

An alternate strategy is to capture int 8. The new int 8 ISR immediately
calls the old ISR, which sends an EOI to the interrupt controller before return-
ing. No interrupts are blocked when the old ISR returns. The ISR shown in
Listing 4-8 works together with the one in Listing 4-7. If a hot key is pending or
if 1 second has elapsed since the last activation, the int 8 ISR calls BKGResume
to reactivate the TSR.

Listing 4-8. Sample Replacement of the Clock Interrupt Int 8 ISR

oldInt8
BusyF lLag
PopupPending
Ticks
Int8ISR PROC
NewInt8:
pushf
call
cli
cmp
jnz
cmp
jz
dec
jnz
8_0: call
jc
call
mov
Int8Exit0:
dec
Int8Exit1:
iret
Int8ISR ENDP

DD 0
DB -1

DB
DB 18

FAR

cs:0ldInt8

c¢s:PopupPending,0
i8.0

cs:Ticks,0

i8_0

cs:Ticks
Int8Exit1
DOSSafeCheck
Int8Exit0

BKGResume
cs:Ticks,18

cs:BusyFlag

; initialization code saves

; original int 8 isr address here
; protects against interrupting

; non-reentrant code sections

; nonzero if hot key encountered
; runs once a second

;;; simulate an int

;;; dispatch to ROM code
;;; not really needed
;;; Pbop request pending?

;25 if nz -- yes
;;; tick counter reached 0?
;;; if z -- yes

;;; otherwise decrement it

;35 if not at 0 yet, continue
;;; safe to (re)enter 0S?

55, if ¢ —— no

;:; NB that ticks remains at O
;55 we'll keep trying to

;;; dispatch on every tick

; dispatch to background code
; reset timer

; release our lock

; and return

207

Coding and Programming

208

Managing the Display

Because of the previously discussed limitations in the ROM-BIOS video sup-
port, a TSR frequently needs to manipulate the display hardware directly.
Direct screen reads and writes speed up the process of switching displays when
a hot key activates a TSR. Direct access to the 6845 CRT controller can elimi-
nate the problems associated with changes between text and graphies modes.

CAUTION

Direct access to the display hardware can be dangerous. Mistakes in this
process can destroy your monitor.

Before you attempt to program the display, you should understand how it
works. The following discussion is an overview; consult the Hardware Technical
Reference Manual for further details.

There are two techniques for changing the screen contents. One technique
is to maintain two buffers: one buffer contains an image of the TSR screen, and
the other contains the image of the DOS/application screen. The second tech-
nique is to substitute video memory for one of these buffers; this saves some
memory at the expense of slightly slower response.

Listing 4-9 shows the dual buffer technique. When the hot key is invoked,
the current screen is copied to a DOS/application buffer and then the contents of
the TSR buffer are moved to display memory. You can move a large block of data
at this time, so use the string MOVE instruction. Counting clock cycles sug-
gests that this routine should take about 21 ms to execute on a 4.77-MHz 8088.
Actual measurements reveal an execution time of about 29 ms. Part of the dif-
ference is due to the crude method of counting clock eycles; memory contention
accounts for the rest. The timing was done with the display turned on—a worst
case.

Listing 4-9. Screen Switching Using Two Buffers

_text SEGMENT WORD PUBLIC 'CODE’
ASSUME cs:_text, ds:_text, es:_text
VideoSEG DW 0b000h

DOSBuffer DW 25%80 DUP (€0))

TSRBuffer DW 25%80 DUP (720h)

Switch PROC NEAR
cld ; direction flag <== UP
lea di,DOSBuffer ; di <== buffer offset
mov ax,cs
mov es, ax ; es:di <== DOSBuffer
xor si,si ; s1 <== video offset
mov ds,VideoSEG ; ds:si <== video memory

4 — TSR Programming

mov cx,25%80 ; ¢x <== words 1in display
rep movsw ; DOSBuffer <== video memory
mov ds,ax
lea si,TSRBuffer ; ds:sj <== TSRBuffer
mov es,VideoSEG
xor di,di ; es:di <== video memory
mov cx,25%80 ; ¢cx <== words in display
rep movsw ; video memory <== TSRBuffer
ret

Switch ENDP

The next listing uses only one buffer. Using a single buffer requires the
slower mov/xchg sequence and takes approximately 45 ms to change screens
with the display turned on. This performance is still acceptable. Note that forc-
ing the buffer to be paragraph aligned will eliminate one add instruction, but
this change has no significant effect on performance.

Listing 4-10. Screen Switching Using a Single Buffer

_text SEGMENT WORD PUBLIC 'CODE’
ASSUME cs:_text, ds:_text, es:_text
VideoSEG DW 0b000h

TSRBuffer DW 25*80 DUP (720h)
Switch PROC NEAR
cld ; make sure we move up
Lea si,TSRBuffer ; si <== TSR buffer offset
xor di,di ; di <== video memory offset
mov bx,2 ;3 bx <== size of move
mov es,VideoSEG ; ds:si <== video memory
mov cx,25%80 ; ¢x <== words in display
_nb: mov ax,[si] ; ax <== word from TSRBuffer
xchg ax,es:[dil] ; video memory <== TSRBuffer
; ax <== word from video memory
mov [sil,ax ; TSRBuffer <== video memory
add si ,bx
add di,bx
loop _nb
ret
Switch ENDP

Working with and around DOS

Many of the operations you will want your TSR to perform involve some interac-
tion with DOS. DOS is basically a single-user/single-program operating system.

209

Coding and Programming

210

Although Microsoft has added some hooks to support TSRs, many of these
hooks are undocumented and difficult to use. You often have to “stand on your
head” to do things in a TSR that would be trivial in an ordinary foreground pro-
gram. This section discusses several key features of DOS that are important to
writing a TSR. You should be aware that most of this material is not formally
documented and consequently may be changed.

The DOS 1/0 Data Structures

DOS maintains a number of data structures that are important to a TSR. Some
of these are common to all resident programs. For instance, DOS maintains two
system file tables, one for handle access and the other for file control block
(FCB) operations; all programs access the same two system file tables. Other
data structures are unique to each program. For instance, each program has its
own program segment prefix (PSP).

When DOS loads a program, it records that program’s PSP in a global vari-
able. (In DOS 3.10 this variable is located at offset 02deh in the DOS segment.)
A program whose PSP is recorded here becomes the current program. Once
IBMBIO loads the shell, there is always one and only one current program.

When a program makes an 1/0 request, it gives DOS either a handle or a
file control block. To process a handle request, DOS must locate a data structure
known as the job file table (JFT). Each PSP contains a JF'T address at offset 34h
(Listing 4-15 “Structure of the PSP”). DOS looks in the PSP of the current pro-
gram to find the current JF'T. The JFT normally begins at offset 18h of the PSP
(i.e., the JFT address points to another location within the PSP). DOS uses the
handle as an index into the JF'T to get a system file number (SFN) which, in
turn, is an index into the system file table. One of the undocumented fields
within an FCB contains a system file number; this SFN is an index into the FCB
system file table. This SFT tells DOS how to find a device.

The “List of Lists”

DOS records the address of both the handle and the FCB system file table in a
data structure known as the “list of lists.” This data structure contains many
other important pieces of information. Your TSR may need to look at the con-
tents of this list or be aware of some of the data structures that it points to. Un-
documented int 21h function AH = 52h returns the address of the list of lists in
the ES:BX register pair. The code fragment in Listing 4-11 shows how to locate
this list.

Briefly, here are the functions for the various entries in the list of lists.
Block devices (usually disks) record information on file system structure in de-
vice control blocks (DCBs). DCB data includes disk size, number of entries in
the root directory, number of FATS, etc. DOS records the address of the clock
device as a performance optimization. In addition to processing time and date
requests, DOS time-stamps every FCB write and then records the last access
time for handle writes. DOS uses the saved address of the console device to
check for break and to report divide-by-zero errors. DOS expects the console

4 — TSR Programming

Listing 4-11. Finding the List of Lists

ListAddr DW 0,0
mov ah,52h ; ask DOS where it's located
int 21h ; (undocumented function)
mov ListAddr,bx ; address returned in es:bx
mov ListAddr+2,es

device to have an int 1Bh ISR so that the keyboard ISR can report breaks imme-
diately. DOS uses the current directory for block device operations. DOS main-
tains a list of cache blocks used to process partial block read/write requests and
to access directory and FAT blocks. Each cache block is DOS_W_MaxSector
bytes long. DOS_D_HDLSFT and DOS_D_FCBSFT are the listheads for the
handle and FCB system file tables, respectively. Listing 4-12 summarizes the
contents of this list.

Listing 4-12. The Layout of the List of Lists

DOS STRUC
DOS_D_DCB DD 0 ; Llist head for device control

; block (DCB) chain
DOS_D_HDLSFT DD 0 ; Llist head for handle SFT
DOS_D_Clock DD 0 ; device header for CurClk device
DOS_D_Console DD 0 ; device header for console device
DOS_W_MaxSector DW 0 ; size of largest sector
DOS_D_Cache DD 0 ; list head for cache control

; blocks (CCB)
DOS_D_CDS DD 0 ; address of current directory
; structure

DOS_D_FCBSFT DD 0 ; Llist head for FCB SFT
DOS_W_Unknown DW 0 ; unknown
DOS_B_DriveCount DB 0 ; max number of drives

; (value set by lastdrive=)
DOS_B_LastDrive DB 0 ; current number of drives
DOS ENDS
The System File Table

Of all the data structures referenced in the list of lists, the system file table en-
tries are the most important to a TSR. Information contained in these table en-
tries affects the way a TSR must handle I/0 requests. This data structure,
which is located in DOS global data area, is made up of one or more blocks. Each

211

Coding and Programming

212

block contains a header that points to a following block and several system file
table entries. Each SFT entry is a data structure in its own right.

The header is 6 bytes long. The first field is a double word that contains the
address of the next block in the system file table chain or a -1 to indicate the end
of the list. The second field is a word that tells the number of system file table
entries in this block. Listing 4-13 illustrates the structure of the SFT.

Listing 4-13. Header for a System File Table Block

SFTTBL STRUC

SFTTBL_D_Next DD 0

SFTTBL_W_Count DW 0

SFTTBL ENDS

SFTTBL_K_Size EQU SIZE SFTTBL ; defined here for later use

Many fields in each SFT entry are important only for block devices, but
values in the reference count and ownerPSP fields directly impact a TSR. When
DOS opens a file, it allocates an SFT entry in the system file table and records
the current PSP in the OwnerPSP field, which is the eighteenth field in the en-
try (offset 22h). Because only the owner of a file may actually close it, be sure
that you have set up your PSP as the current program before asking DOS to
close the file. Similarly, be sure to restore the PSP of the original foreground
application as you terminate.

The reference count is the first field in the entry and contains a word that
records the number of times a file or device has been opened. Before allocating a
new entry, DOS checks all existing entries to see if the file or device making the
request is already open. If an SFT entry already exists, DOS increments the
reference count rather than allocating a new entry. DOS decrements the refer-
ence count when the file/device is closed but will not deallocate the entry until
the reference count goes to zero.

When DOS processes an open or create request (either FCB or handle), it
records the current PSP in the SFT owner field and records the mode bits (argu-
ments to the open request such as exclusive access and read access) in the SFT
mode field if the file was not opened previously. The mode bits determine what
type of future access DOS will permit.

Listing 4-14. Structure of an SFT Entry

SFT STRUC

SFT_W_Ref(Cnt DW 0 ; [00] reference count
SFT_W_Mode DW 0 ; [02] open mode
SFT_B_DirAttrib DB 0 ; [04]

SFT_W_Flags DW 0 ; L[O05]

SFT_D_DCB
SFT_W_Cluster1
SFT_W_HHMMS
SFT_W_YYMMDD
SFT_D_FilSiz
SFT_D_FilPos
SFT_W_RelClstr
SFT_W_CurClstr
SFT_W_LBN
SFT_W_DirIndex
SFT_T_FileName
SFT_T_Unknown
SFT_W_OwnerMach
SFT_W_OwnerPSP
SFT_W_Status
SFT ENDS

SFT_K_Size

r

;M0de field

SFT_M_FCB
SFT_M_DenyNone
SFT_M_DenyRead
SFT_M_DenyWrite
SFT_M_Exclusive
SFT_M_NetFCB
SFT_M_Write
SFT_M_Read

’

;FLags Field

’

SFT_M_Shared
SFT_M_DateSet
SFT_M_IOCTL
SFT_M_IsDevice
SFT_M_EOF
SFT_M_Binary
SFT_M_Special
SFT_M_IsClock

SFT_M_IsNul
SFT_M_IsStdOut
SFT_M_IsStdIn
SFT_M_Written
SFT_M_DriveMask

DD
DW
DW
DW
DD
DD
DW
DW
DW
DB
DB
DB
DW
DW
DW

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU

EQU .

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU

OO0 o0oOo0oo0oo0oo0ooo

o o
»H O
> >

0
0
0

; L[O7]
; [Ob]
; [0d]
; L[Of1]
; 0111
; [15]
; [19]
; [1b]
; [1d]
; [1f]
DUP
DUP

; [2f1]
; [311
; [331

SIZE SFT

8000h
0040h
0030h
0020h
0010h
0070h
0001h
0000h

8000h
4000h
4000h
0080h
0040h
0020h
0010h
0008h

4 — TSR Programming

(FILE) device control block
(FILE) initial cluster

(FILE) Hour, Min, Sec/2
(FILE) Year, Month, Day

file size/EOF location
Current file position

(FILE) clusters from beginning
(FILE) current cluster

(FILE) block number

(FILE) directory index

0 ; [20] (FILE) file name
(0D ; [2bl unknown

machine number of file owner
psp of task that initially

; entry is for FCB
; sharing bits (4-6)

; this is a network FCB
; file access bits (0-2)

; network access

; date set (FILE only)

; IOCTL support (DEVICE only)

; entry is for a device

; (DEVICE) end of file on input

; (DEVICE) transparent mode

; (DEVICE) supports int 29H output
; (DEVICE) current

; clock device

0004h
0002h
0001h
0040h
003fh

; (DEVICE) current nul device
; (DEVICE) current stdout device
; (DEVICE) current stdin device

(FILE) file written
(FILE) mask for drive bits (0-5)

213

Coding and Programming

214

The Program Segment Prefix (PSP)

When DOS loads a program, it creates a program segment prefix (PSP). The
previous chapter discussed many of the fields in the PSP. DOS always locates
the PSP on a 16-byte paragraph boundary, so that it can be described as a word-
length value (a segment with an offset of zero). DOS function 62h returns
the address of the current PSP in the BX register (undocumented function
AH = 51h also returns the PSP in BX).

Listing 4-15 shows the PSP as a structure. In it, the PSP_D_JFTAddr
and PSP_W_JFTSize fields contain the address and size of the job file table
(JFT). The PSP also contains a copy of the default JFT beginning at location
JFT_T_JFT. DOS uses some of the other PSP fields to process critical errors
and termination requests; more about these fields later.

Listing 4-15. Structure of the PSP

STRUC

PSP_W_int20 DW 0cd20h ; [00] int 20 instruction
PSP_W_MemSiz DW 0 ; [02] top of memory (para)
PSP_B_Unused0 DB 0 ; [04] unknown
PSP_T_Call DB 09aH,0f0h ; L[05]1 far call to DOS

DB 0feH,01dh,0f0Oh ;dispatcher (CPM relic)
PSP_D_Term DD 0 ; [0al terminate address
PSP_D_Break DD 0 ; [Oel break address
PSP_D_CritErr DD 0 ; [12] critical error
PSP_W_Parent DW 0 ; [16] parent PSP
PSP_T_JFT DB 14h DUP (0ffh) ; [18] JFT table
PSP_W_Envron DW 0 ; [2c] environment
PSP_D_SSSP DD 0 ; [2e] User SS:SP at time of

; int 21
PSP_W_JFTSize DW 14h ; E32] size of JFT
PSP_D_JFTAddr DD 0 ; E§$] address of JFT
PSP_D_NextPSP DW OffffH,0ffffh ; [38] unused
PSP_T_Unused?2 DB 14h DUP 0) ; [3c] unused
PSP_W_Int21 DW Ocd21h ; [501
PSP_B_Retf DB 0 ; [52]
PSP_T_Unused3 DB 9 DUP 0 ; [53]
PSP_T_Parm1 DB 10h DUP 0) ;5 [5c] formatted param 1
PSP_T_Parm2 DB 14h DUP 0) ; [6c] formatted param 2
PSP_T_DTA DB 80h DUP (1)) ; [80] default DTA
PSP ENDS
The Job File Table (JFT)

In most cases the PSP will contain the job file table itself. The default JE'T limits
you to 20 simultaneously open files, but you can provide an alternate JFT to in-
crease the maximum number of open files. DOS 3.3 provides a function for this

4 — TSR Programming

purpose (int 21h AH = 67h). Prior to DOS 3.3 you could manually change the
JFT address in the PSP. DOS would use the newly defined JFT for I/0 but had
problems cloning this JF'T when processing a load (int 21h AH = 4bh) request.

The job file table (JFT) links handles to system file table entries. Each en-
try in the JFT is 1 byte. If an entry is not used, it will contain a 0fth; otherwise,
it contains a system file number (SFN), which is an index into the system file
table. DOS uses the file handle as an index into the JFT.

Listings 4-16 and 4-17 illustrate the relationship among the PSP, JFT,
SEN, and SFT. The first routine accepts a handle in BX and returns the corre-
sponding system file number in AX. The routine uses a BIOS service AH = 62h
to locate the current PSP, then gets the address of the JFT from the PSP, and
finally uses the handle as an index into the JF'T. The macros pushr and popr save
and restore the registers listed as arguments. This routine returns with the
carry flag set (CY = 1) if it encounters an error.

The second routine accepts an SFN in AX and returns the address of its
corresponding SFT entry in ES:DI. It gets the “list of lists” address with func-
tion AH = 52h and then gets the handle SFT list head in ES:DI. Each block has a
“next” field and part of a header that tells how many entries are in that particu-
lar block. This routine walks the chain of SF'T blocks until it finds the block con-
taining the SFT entry. If the handle is invalid or if the SFT is corrupt, these
routines return with the carry set.

Listing 4-16. Using a Handle to Get a System File Number

GetSFN PROC NEAR
pushr <ds,es,di, bx> ; macro to save some
; registers
mov ah,62h... ; get current PSP
int 21h
mov ds,bx ; ds <== current psp
pop bx ; handle
cmp bx,0ffh ; check =the handle
jz BadHandle ; negative handle is not valid
cmp bx,ds:PSP_W_JFTSize
; handle too big?
jge BadHandle ; if ge -- yes
les di ,ds:PSP_D_JFTAddr
; es:di <== JFT
mov al,es:[dillbx] ; al <== SFN(Handle)
cbw ; ax <== SFN(Handle)
clc ; indicate success
Done: popr <di,es,ds> ; macro to restore
; registers
ret ; and return

continued

215

Coding and Programming

Figure 4-16. continued

BadHandle: stc ’ ; indicate error
jmp SHORT Done ; take common exit
GetSFN ENDP
Listing 4-17. Finding the System File Table
LocateSFT PROC NEAR
push ax ; save SFN
mov ah,52h ; request list of
int 21h ; Llists address
; es:di <==1st block handle SFT Llist head
’
les di,es:[bx].DOS_D_HDLSFT
pop ax ; recover SFN
xor bx ,bx ; bx <== 0
_L0: cmp di ,0ffffh ; at end of chain
jz _L2 ; if z -- yes
;
; bx <== first SFN in next block
H
add bx,es:[di].SFTBLK_W_Count
cmp ax,bx ; SFN in this block?
jl . ; if L -—— vyes
; es:di <== next SFT block
;
les di,es:[di].SFTBLK_D_Next
jmp SHORT _LO ; continue searching
’
H bx <== first SFN this block
’
_L1: sub bx,es:[di].SFTBLK_W_Count
sub ax ,bx ; ax <== offset into block
mov bl,SFT_K_SIZE - ; bl <== entry size
mul bl ; convert offset to bytes
add di,ax ; di <== offset into block
; (almost)
add di,SFTBLK_K_Size ; add overhead
cle ; indicate success
ret ; and return
_L2: stc ; indicate error

216

4 — TSR Programming

ret ; and return
LocateSFT ENDP

The BIOS Dispatcher, Int 21h

When DOS boots, IBMDOS initializes the IVT entry for int 21h to point to code
within the IBMDOS image. This ISR processes all int 21h requests. Because of
the way this code switches stacks and uses static variables, it is not reentrant. If
a TSR makes a BIOS request at the wrong time, it will corrupt information that
DOS has saved about the foreground program. The effects of this corruption are
normally disastrous. If you are lucky, your system will crash without corrupting
your disk.

Int 21h processing begins with interrupts disabled as a result of the INT
instruction. The dispatcher contains a table of action routines that complete
processing of various BIOS requests. There is an entry in this table for each
valid int 21h function. Immediately preceding this table is a byte containing the
number of table entries. DOS ultimately uses the function code in AH as an in-
dex into this table and first checks the value passed in AH. The dispatcher re-
turns an error if the request is not valid.

The int 21h dispatcher services requests for AH = 51h (undocumented Get
Current PSP), AH = 62h (documented Get Current PSP), AH = 50h (undocu-
mented Get Current PSP), and AH = 33h (Get/Set Break) immediately. Since
the dispatcher doesn’t switch stacks or save context information in static vari-
ables, these requests are always safe.

Here is what happens when the request is not for one of the four that can be
immediately serviced (nearly all other int 21h functions). DOS saves all regis-
ters on the current stack, saves the current contents of DS:BX in a static vari-
able, and increments the critical section (also known as InDOS) flag. The
dispatcher needs the DS and BX registers to continue processing the BIOS re-
quest; DOS will reload these registers before it dispatches to the action routine,
which will complete the request.

At this time the SS:SP registers still contain the address of the foreground
program stack. DOS records in static variables the values of SS:SP for the cur-
rent and previous entrance (i.e., the corresponding SS:SP value the last time
through the dispatcher). The dispatcher also saves the current SS:SP values in
the current PSP at offset 16h. DOS uses the stack values in the PSP to process
critical errors; it uses the stack values in the global variables when it returns
control and has to restore the original stack.

The dispatch routine uses three private stacks: the auxiliary stack, the
user stack, and the disk I/0 stack. Having saved the program stack, the dis-
patcher makes an unconditional switch to the auxiliary stack and enables the in-
terrupts. If the request is in the range 01h to Och, and if the dispatcher is not
processing a critical error, it switches to the user I/0 stack. The dispatcher ser-
vices all other requests except Get Extended Error (AH = 59h) on the disk 1/0
stack.

217

Coding and Programming

218

If the request is to be serviced on the disk I/0 stack, and if breaks are en-
abled, the dispatcher checks for a break before completing the request. Func-
tions 01h to Och make explicit break checks as appropriate. (Some of these
functions explicitly ignore breaks; all others check for breaks. Refer to the IBM
Technical Reference Manual for a complete description of these requests.)

The int 21h dispatcher uses the function code in AH as an index into the
action routine table, restores DS:BX, and dispatches to the action routine.
After the action routine completes, the dispatcher disables interrupts, decre-
ments the critical section flag, restores the SS:SP registers, restores the pre-int
21 register values, and exits with an IRET. Action routines that need to return
values in index registers modify the register values saved on the program stack.

Character I/0 Routines

BIOS functions in the range 01 to Och are collectively known as character 1/0
functions because of the way they are used. Character I/0 operations take a rel-
atively long time to complete. BIOS may have to wait for input in order to satisfy
aread request. Character output also takes a relatively long time. Most charac-
ter input functions call a keyboard poll routine. The keyboard poll routine re-
peatedly checks both the console and the standard input for a break and then
checks the input device for an available character. If no character is available,
the keyboard poll routine always calls the background dispatcher. The display
output function (AH = 2) calls the background dispatcher each time it writes
four characters. The background dispatcher executes an int 28h.

Int 28h ISRs play an important role in background processing. It is safe for
an int 28h ISR to make BIOS requests that will be serviced on the disk 1/0
stack. With the exceptions of the functions that are processed without any stack
switch, DOS services all int 21h functions above Och on the disk I/0 stack.

DOS Global Variables

DOS relies on many global variables to keep operating state information and to
maintain the context of BIOS requests. DOS provides a work area for buffered
input and keeps track of the current column to support buffered input line edit-
ing. Other variables control screen logging, the memory allocation algorithm,
and current switch character. Global variables include the critical error and crit-
ical section flags, the current PSP, and the current disk transfer area (DTA).
Many other global variables describe handle I/O operations; they record the
SFN, JFT entry address, and many other important pieces of information about
the request.

The disk transfer area (DTA) is an insidious data structure because DOS
uses it in unexpected ways. DOS maintains its own internal DTA for parsing file
names and directory searches; it copies the results of these operations to the
user DTA. DOS replaces the DTA address with a buffer address for handle file
reads and writes. Operations such as find first/find next write directly into the
current DTA.

4 — TSR Programming

Requests made by the TSR may alter DOS global variables as a side effect.
DOS is not expecting another program to walk all over its global variables and
will probably get very confused if you allow these variables to change.

Break Processing

DOS checks for the presence of a break in two places. The int 21h dispatcher
calls a break check routine if a request is to be processed on the disk stack and if
break checks are enabled. The keyboard poll routine (called by the character 1/0
functions) checks for break while waiting for input and while writing to stdout.

The break check routine checks the current console device. DOS identifies
the console device by examining the device attributes of drivers as it loads them
(see Chapter 6). The current console device will have the IsStdIn and IsStdOut
bits set in the device header. DOS records the address of the current console de-
vice in the list of lists. DOS will check the console device for breaks even if some
program redirects stdin. There is an implicit assumption that the console device
has declared an int 1bh service routine and can receive break notification
asynchronously. A side effect of this design is that if stdin is redirected to a file
and a program does its reads with int 21h functions greater than Och, then a
Control-C has no special meaning.

The keyboard poll routine first calls the break check routine and then
checks standard input. When character I/0 operations are in progress, DOS
will detect a break either from the console device or from standard input; but
when DOS is operating on the disk I/0 stack, it checks only the console device.

The DOS routine that processes breaks sets SS:SP to the value recorded
by the int 21h dispatcher, restores all registers to their pre-int 21h values, re-
sets the critical section and critical error flags, and executes an int 23h instruc-
tion. The int 23h ISR can return to the DOS break routine with either an IRET
or a RET instruction. Executing an IRET instruction removes 6 bytes from the
stack, but executing a far return removes only 4 bytes. By comparing the value
in the SP before and after executing an int 23h instruction, the break routine can
tell which instruction (i.e., RET or IRET) returned control.

Ifthe int 23h ISR preserves any registers it uses, it can continue execution
by executing an IRET instruction. If the ISR returns with a far return instead,
the state of the carry flag determines whether or not execution will continue. If
the carry flag is clear, execution will continue; otherwise, the program will be
aborted. The DOS break routine forces an abort by loading 4¢00h into the AX
register. In all cases, control returns to the start of the int 21h dispatcher. The
dispatcher then re-executes the int 21h request or executes the terminate re-
quest in the case of an abort.

The default int 23h ISR consists of an IRET instruction. COM-
MAND.COM sets up its own int 23h ISR, which aborts the current program.
Other programs may set up their own int 23h service routines.

219

Coding and Programming

220

Critical Error Processing

Many int 21h requests cause an I/0 operation. BIOS passes most I/0 requests to
a device driver. If the device driver has a problem completing the request, it re-
ports the problem to BIOS. BIOS responds to device errors by declaring a crit-
ical error. Logic within DOS decrements the critical section flag and increments
the critical error flag in response to a device error. Corrupt FAT blocks also
cause critical errors.

DOS takes one of four different actions when it detects a critical error: ig-
nore the error, retry the operation that caused the error, terminate the current
program, or fail the current call. All four options are not always available. DOS
contains a flag that defines acceptable actions.

If DOS is already processing a critical error, the critical error routine fails
the call that caused the second error. The critical error routine checks a DOS
global variable to see if a handle I/0 request is in progress If it is, DOS re-
trieves the JFT entry address of this handle from another global variable and
marks the handle invalid; this action prevents another critical error on the same
handle.

With interrupts disabled, the DOS critical error routine increments the
critical error flag, decrements the critical section flag, restores the SS:SP
values saved by the int 21h dispatcher and executes an int 24h instruction. When
the int 24h ISR returns, the critical error routine resaves the SS:SP pair (the int
24h ISR may change it), increments the critical section flag, and resets the crit-
ical error flag. '

The critical error routine expects the int 24 ISR to return a processing ac-
tion. If the ISR requests an acceptable action, the critical error routine honors
it. If the critical error routine has marked a handle invalid, it restores the SFN
from a DOS global variable before exiting. Termination requests pass through
the break handler, which forces the int 21h dispatcher to execute a terminate
request.

When COMMAND.COM initializes, it sets up its own int 24 ISR; it is this
routine that prints the abort, retry, or ignore message. Other programs may de-
clare their own int 24h ISRs.

Loading a Program

A common BIOS service loads all programs. The int 21H AH = 4bh action rou-
tine sets up an environment, allocates memory for the program image, loads the
program from disk, and creates a PSP. It uses the largest available memory
block to load the program. The .EXE files specify their memory requirements
in the program header, and the load routine adjusts the memory block size ac-
cordingly. A .COM file’s size determines its minimum memory requirements,
but the load action routine does not adjust block size for .COM files. A .COM file
will begin executing with the entire memory block allocated to it.

Normally, DOS loads a program because a user has invoked it from the
shell prompt. The program being loaded is known as the child and the one re-
questing the load is known as the parent. The parent creates a parameter block

4 — TSR Programming

containing the address of an environment table, the address of a command line,
and the addresses of two file control blocks (FCBs). The parent passes the ad-
dress of this parameter block and the address of an ASCIIZ file specification to
the load action routine using an int 21h AX = 4b00h request. The parent may
explicitly specify the location of the environment or may request that its en-
vironment be copied by specifying zero as the starting segment of the environ-
ment. If the parent does not have an environment and requests that its
environment be copied, the child will have no environment.

The previous section discussed the details of loading a program. This pro-
cess is important, but not terribly interesting as far as implementing a TSR is
concerned. After loading the program image from disk, DOS builds a program
segment prefix. The contents of this PSP are important to a TSR. The same
code that services the Build PSP request (int 21h AH = 26h) completes the PSP
for the load routine.

Prior to calling the Build PSP routine, the load routine sets a flag that
forces the Build PSP routine to initialize the child’s JF'T. The Build PSP routine
examines each entry in the parent’s JF'T, locates its corresponding SFT entry,
and clones a reference unless the “NoInherit” bit is set in the SF'T or unless the
SFT entry corresponds to a network FCB. Cloning increments the SF'T refer-
ence count and copies the SFN into the child’s JF'T. The child is said to “inherit”
these files. COMMAND.COM uses inheritance to provide redirection of stdin
and stdout. Because an application inherits these files, it does not have to open
them explicitly. The JFT entries for these handles already contain valid system
file numbers copied from the parent process. A second side effect of the flag
being set is that the child PSP becomes the current PSP. The Build PSP routine
fills in several other fields in the PSP; copies the contents of the current IVT
entries for terminate (int 22h), break (int 23h), and critical error (int 24h) into
the child’s PSP; and then returns to the load routine.

The load routine fills in the address of the environment; initializes the two
PSP FCB entries; copies the parent’s return address to the termination vector
(int 22h); sets the disk transfer address to child PSP:80h; initializes the ES, DS,
SS, and SP registers; and passes control to the child process.

Program Termination

There are a number of different ways for a normal program to terminate. The
two most common are int 21h AH = 4ch and int 21h AH = 00h. A common DOS
routine processes all termination requests. When a program terminates, this
routine copies the critical error (int 24) and break ISR (int 23) addresses saved
in the PSP to the IVT, closes all files, and deallocates all memory belonging to
the current process. Control returns to the terminate address (int 22h). Unless
the terminating process modified the IVT entry for the termination address,
the program that loaded the terminating program regains control at the instruc-
tion immediately following the load request. Normally, control then returns to
COMMAND.COM. Critical errors cause aborts. The same code processes
aborts and termination requests; the only difference between the two casesis a
completion code saved in an internal DOS variable.

221

Coding and Programming

Memory deallocation is a simple process. DOS allocates memory in blocks.
Immediately preceding each block is a 16-byte memory control block (MCB).
This area contains the size of the following block and records the owning PSP.
The word immediately before the list of lists contains the segment of the first
memory control block. The DOS termination routine scans the MCB list looking
for blocks owned by the current process. Whenever it finds one, the termination
routine sets the owner field of the MCB to zero, indicating that the block is free.
This MCB scan frees all blocks owned by the terminating process, including the
environment. A program need take no special action to deallocate its
environment.

The DOS termination routine gets the JFT address from the PSP of the
current (terminating) process and scans the JFT, looking for open files. The ter-
mination routine closes every open file. The close routine decrements the SF'T
reference count for every open file. If the reference count goes to zero and the
current program owns the file, the close routine deallocates the SFT entry. The
entries corresponding to the inherited files will have reference counts greater
than one; the SFT entries for these files remain. (Since the terminating program
is still the current PSP, any attempt to close these entries would fail; the
OwnerPSP field of these SF'T entries lists COMMAND.COM as their owner.)

There are two terminate-and-stay-resident functions, int 27h and int 21h
AH = 31h. The int 27h function is obsolete, and DOS internally maps it to an
int 31h request. The same termination routine handles terminate-and-stay-
resident requests. When a program makes a terminate-and-stay-resident re-
quest, the termination routine does not close any files or deallocate any memory
blocks, but it does modify the size of the memory block containing the PSP. The
terminating program specifies the new block size as an argument to the termi-
nate-and-stay-resident request. Any handles that were valid before the termi-
nate-and-stay resident request will be valid when the TSR reactivates.

Loading and Initializing a TSR

222

A TSR may be either a .COM or an .EXE file. DOS loads all programs the same
way. Each program has a program segment prefix (PSP), code, and data. The
difference between a TSR and standard applications is that the TSR has to per-
form a few basic tasks to prepare itself for reactivation at a later time.

At initialization, the TSR is the foreground program and the entire DOS
system is fully available. Certain information is valid only while the TSR runs in
the foreground. A TSR must record any of this information as part of its initial-
ization. During initialization, a typical TSR

® Checks to see which DOS version is running

® Checks to see if another copy of itself is already loaded

® Locates important DOS data structures

e Captures one or more interrupt vectors

® Checks to see which display adapters and peripherals are present

4 — TSR Programming

¢ Performs some additional application-specific processing
e Calculates the memory needed by the resident code

Initialization completes when the program invokes the terminate-and-
stay-resident function (int 21h, AH = 31h). It is important to stress that once the
TSR terminates, it is no longer the foreground program. Background programs
are unexpected guests; consequently, they must be very careful about the
things that they do. The primary job of the initialization code is to record the
state of the system so that the TSR can reactivate without corruption of
the system.

In short, the initialization routine gets the program started, ensures that
the TSR can run when it is called later, calculates memory requirements for the
resident code, and finally issues a terminate-and-stay-resident request (int 21h,
AH = 31h) to return control to DOS.

Checking for DOS Version

Many TSRs rely on version-specific, undocumented features of DOS and rou-
tinely check the current system version before doing anything else. If the ver-
sion is not correct, the TSR should exit with an appropriate error message.

DOS records its version in a global variable and makes this value available
through a BIOS request, function 30h. The int 21h dispatcher does not switch
stacks or alter any global variables to satisfy this request. Although this re-
quest is always safe, good programming practice dictates that you make this re-
quest in your initialization code. Listing 4-18 shows how to determine the
operating system version.

Listing 4-18. Checking the DOS Version

VersionID EQU 0a03h ; DOS 3.10 (note that minor
; version is in msb)

mov ah,30h ; ah <== function to check
; DOS version

int 21h ; make the request

cmp ax,VersionID ; version is returned in ax

jnz WrongVersion ; version is wrong

Locating Resident Copies of a TSR

Monitoring some DOS action or hardware activity dictates which IVT entry to
use. TSRs also use interrupts and IVT entries to locate resident copies of their
code. You may not want multiple copies of your TSR in memory, or you may need
to locate data recorded by the resident code. If a TSR takes over some IVT

223

Coding and Programming

224

entry when it first runs, subsequent activations locate the resident code by ex-
ecuting an INT instruction or inspecting the code pointed to by the IVT entry.

Which IVT entry should you choose? It turns out that choosing an inter-
rupt to locate resident code is one of the tricky problems confronting a TSR au-
thor. There are no absolutely foolproof techniques.

DOS and the PC hardware use only a few of the available IVT entries. The-
oretically, any unused entry is a good candidate. If your TSR actually executes
an INT instruction, the IVT entry must point to a valid ISR. There is no guaran-
tee what an IVT entry contains if a TSR has not initialized it. One way out of this
“Catch 22” dilemma is to inspect the IVT entry.

DOS loads all programs on a segment boundary. If a previous copy of your
code has captured an interrupt vector, the offset value (lowest word) in the IVT
entry must mateh the offset of the ISR in the current code. Since there is a slight
possibility that ISRs for two different TSRs will use the same IVT entry and
have the same offset, you should do some additional checking. Listing 4-19 illus-
trates this technique.

The previous example looked for an ASCII string (UniquelD); we could
have also done a string comparison on the ISR code. One shortcoming of this
technique is that it does not solve the problem of conflicting interrupts. If two
TSRs decide to use the same IVT entry, there is no way to locate which TSR
loaded first.

Beginning with DOS version 3.0, Microsoft documented the multiplexed
interrupt, which is their first attempt at solving the problem of conflicting inter-
rupts. The multiplexed interrupt provides a guaranteed valid IVT entry for int
2fh and a protocol for locating TSRs. The initial int 2fh IVT entry points to an
IRET instruction. Each TSR that wants to use the multiplexed interrupt first
looks for previously loaded copies of its code and then installs its own int 2fh
ISR.

Listing 4-19. Locating a TSR by Using an Arbitrary

Interrupt Vector
NewISRVector EQU ?7? ; fill in the vector number
OLdISRxx DD 0 ; init code saves old vector here

UniquelD DB
IDLength EQU

NewISRxx PROC
’
’

iret
NewISRxx ENDP

'a unique string’'
$-UniquelD

FAR

; to help identify ISR
; Length of string

; installed by init code

; whatever the ISR does

4 — TSR Programming

LocateISR PROC NEAR
mov al, NewISRVector ; al <== vector number
mov ah,35h ; ah <== get int vector function
int 21h ; ask DOS for int vector
ret ; es:bx has ISR address
LocateISR ENDP
CheckISR PROC NEAR
cmp bx ,OFFSET NewISRxx ; existing offset OK
jnz done ; if nz -—— no
mov si,0FFSET UniquelD ; si <== offset UniquelD
mov di,si ; di <== offset UniquelD
mov cx,IDLength ; cx <== length of ID
cld
repnz cmpsb ; compare IDs
done: ret ; return with results
; zr=1 ==> installed
CheckISR ENDP ; zr=0 ==> not installed
TSRResdnt PROC NEAR ; determines if TSR resident
call LocateISR ; gets ISR address
call CheckISR ; validates ID
ret ; and returns with results
; zr=1 ==> installed
; zr=0 ==> not installed
TSRResdnt ENDP

A TSR looks for resident copies of itself by loading a unique identifier in
AH and a zero in AL and by executing an int 2fh instruction. The int 2fh ISR
examines the value in AH. If the ISR recognizes the ID, it sets AL = 0ffh and
returns with an IRET; otherwise, it jumps to the previously saved int 2fh ISR.
Eventually, either the end of this chain will be reached or some ISR will recog-
nize the AH value.

Again, conflicts are possible. The TSR should make some additional
checks to detect this possibility. You may extend the int 2th protocol to help with
these checks, but you should be aware that there are no standards for additional
checks. You must program defensively. Listing 4-20 illustrates one approach.

The fact that you get a positive response to your AL = 0 int 2fh request
means that some TSR has responded. The int 2fh ISR shown in the listing re-
sponds to an AL = 1 function by returning its code segment in ES. The TSR that
made the initial request can use this value to locate a unique string. If the
strings match, you can be sure that you have found the correct ISR.

This extension to the multiplexed interrupt protocol is not standard. You
have no guarantee what some other TSR will do in response to anint 2fth AL =1
request. By zeroing the ES register before making this second request, you can
at least tell if the responding TSR is returning anything meaningful in ES. (You
know that your TSR would not be loaded in segment 0.)

225

Coding and Programming

226

Listing 4-20. Locating a TSR by Using the Multiplexed Interrupt

OurlD EQU 81h

OldISR2f LABEL
UniquelD DB
IDLength EQU
oldInt2f DD
NewISR2f PROC
cmp
jz
jmp
ItsMe: or
jnz
mov
iret
GetAddress:
cmp
jnz
push
pop
iret
BadFunction:
stc
iret
ENDP
PROC
mov
int
cmp
jnz
xor
mov
mov

NewISR2f
LocatelISR

int
jc

xor
mov
cmp
jz

lea

ah value selects TSR

FAR ; init code saves old int 2f vector here
'a unique string' ; to help identify ISR
$-UniquelD ; length of string
0 ; initialization code records original

; ISR address here

FAR ; new int 2f ISR

ah,0urlD ; request for us?

ItsMe ; if z == for us

cs:0ldInt2f ; pass request along

al,al ; loaded check?

GetAddress ; if nz == no

al,0ffh ; say we're loaded

; and return

al 1 ; address check?

BadFunction ; if nz -- no

cs ; return segment in es

es

; indicate error

NEAR

ax,0urID SHL
2fh

al,0ffh
NotFound
ax,ax

es, ax

Ns Ns N

; anyone listening?

check out reply

nz ==> no response
zap segment so we can
check out reply

ax,(ourID SHL 8) OR 1

2fh
NotFound
ax,ax

bx ,es

bx ,ax
NotFound

bx ,NewISR2f

-
’

NNs Ne

A X}

ask for segment
if cy=1, it's not us
did es change?

if es didn't change

es didn't change

clc

ret
NotFound: stc

ret
LocateISR ENDP

TSRResdnt PROC NEAR
call LocateISR

jc NotLoaded
call CheckISR
ret

NotLoaded: or al,1
ret

TSRResdnt ENDP

4 — TSR Programming

; es:bx has ISR address
; indicate success

; and return

; say we failed

; and return

; determines if TSR resident
; gets ISR address

; validates ID

; and returns

; zr=1 ==> installed

; zr=0 ==> not installed
; force zr=0

; and return

Note that the TSR cannot just grab the int 2fh. If some other TSR loads
afterward and captures this vector, the IVT table entry will not point to your
code but to the most recently loaded TSR.

Recording the PSP Address

The program segment prefix (PSP) is an important data structure. DOS uses
the PSP address to manage programs and support many I/0 services. DOS does
not know how to manage multiple PSPs; it only knows about the current PSP. If
your TSR is going to do anything that requires a PSP, you are responsible for
managing the current PSP. Later you will see how to tell DOS which PSP to use.
If your TSR will need the address of its PSP after initialization, it must record it
now. Initialization is the only time you can be sure that the current PSP belongs
to you. The following code illustrates how to determine the address of your PSP.

Listing 4-21. Getting the Address of Your PSP

MyPSP DW 0

mov ah,62h
int 21h
mov MyPSP,bx

; PSP address recorded here

; ask DOS to get the current PSP
; it belongs to us now
; save the PSP

227

Coding and Programming

228

Recording the Critical Section (INDOS) and
Critical Error Addresses

After a TSR terminates with a stay resident request (function 31h), it waits for a
captured interrupt to reactivate its code. When the TSR wakes up, you must
have a way to test what the foreground program is doing or to see if any DOS or
BIOS activity is in process. Since it is non-reentrant, DOS maintains critical
error and critical section flags to help the resident code decide whether it is safe
to make BIOS requests.

When the TSR reactivates, it must check both the critical error and the
critical section flags to be sure that it is safe to continue. DOS makes the address
of the critical section flag available through the undocumented int 21h AH = 34h
request. In version 3.10 of DOS, there is no BIOS function to return the address
of the critical error flag; this flag is located immediately before the critical sec-
tion flag. DOS 3.3 int 21h, AX = 5d06h returns the critical error flag address in
ES:BX.

Because of the way DOS processes int 21h requests, you may not safely ask
DOS for these addresses within an ISR. The only reliable way to access these
flags is to record their address during initialization. The following code frag-
ment illustrates capturing the addresses of the critical section and critical error
flags.

Listing 4-22. Locating the Critical Section and

Critical Error Flags

CSectFlg DW 0,0 ; address of DOS critical section
CErrflg DW 0,0 ; and critical error flags
GetCritFlags PROC NEAR

mov ah,30h ; ah <== check DOS version

int 21h

cmp al,03h ; at least version 3.007?

jnz WrongVersion ; if nz == no

push ax ; save version

mov ah,34h ; to get address of critical

int 21h ; section flag

mov CSectFlg,bx ; es:bx has address

mov CSectFlg+2,es ; remember address

dec bx ; assume critical error flag

; precedes critical section flag

pop ax ; recover version

cmp ah,1eh ; version 3.307?

jnz v3xx ; if nz == no

mov ax,5d06h ; get critical error address

int 21h ; (DOS 3.3 only)

4 — TSR Programming

V3Xx: mov CErrflg,bx ; store critical error address
mov CErrflg + 2,es ; es:bx has address
clc ; indicate success
ret ; and return
WrongVersion: ; bad version
stc ; indicate failure
ret ; and return
GetCritFlags ENDP

Capturing Interrupt Vectors

At some point in its initialization sequence, the TSR may want to declare its own
int 2fh ISR so that future program activations can locate its resident code. The
TSR may need to modify other IVT entries as well. Int 25h (absolute disk read)
and int 26h (absolute disk write) make blind stack changes. By its very nature,
int 13h (low-level disk 1/0) cannot be interrupted. Imagine what would happen if
the int 13h code were interrupted between a seek and a transfer. If another disk
I/0 operation occurred as a result of this interrupt, the first transfer would
probably do serious harm to the disk structure.

DOS does not expect any interruptions while it is servicing one of these
requests. It is the TSR’s responsibility to protect DOS at these times. Captur-
ing these interrupts lets a TSR manage disk activity. These ISRs are tricky to
write because of the way they use the processor flags. The original int 13h ISR
returns the results in the flags register; the new ISR must return these results
rather than the flags pushed by the int 13h instruction. The original int 25h and
int 26h ISRs add yet another twist by leaving the flags pushed by the INT
instruction on the stack. Note that the NewInt25 and NewInt26 ISRs do not
execute a pushf before calling the original routine and that all these ISRs use
a far return. Listing 4-23 shows what you might want to do when you capture
these interrupts.

Be very careful when you capture an interrupt. Once you modify an IVT
entry, the processor will dispatech to the new ISR even if the ISR address no
longer points to valid code. You have to watch out for breaks and critical errors.
If either of these conditions occurs after you have captured an interrupt, they
can force your program to terminate. DOS will reuse the memory occupied by
your program and its ISRs. Once this happens, the IVT entries no longer point
to valid ISRs.

229

Coding and Programming

230

CAUTION

Before you modify any interrupt vectors, you must set up your own break
and critical error ISRs. Do not attempt to restore either of these vectors. DOS
will fix the IVT entries for these functions when your program terminates. If
you try to restore either the critical error or the break address and have other
vectors captured, your code will become vulnerable to premature termination.

Listing 4-23. Typical Replacement Disk I/O ISRs

DiskIO PROC

oldInt13 DD
oldInt25 DD
0ldInt26 DD

BusyFlag DB

DiskIOExitO:
pushf
dec
popf
ret

DiskIOExit1:
pushf
dec
popf
ret

NewInt13:
inc
pushf
call

jmp

NewInt25: inc
call

jmp

FAR

cs:BusyFlag

2

cs:BusyFlag

cs:BusyFlag

cs:0ldInt13
SHORT DiskIOExitO

cs:BusyFlag
cs:0ldInt25
SHORT DiskIOExit1

; initialization code records
; addresses of original int 13h,
; 25h, and 26h here

; protects against interrupting
; non-reentrant code

; save disk I/0 flags

; release lock

; restore disk I/0 flags
; return, removing flags
; pushed by int

; save disk I/0 flags

; release lock
; restore disk I/0 flags

; take out lock
; simulate an int
; dispatch to real code

; take common exit

; take out lock
; dispatch to real code

; take common exit

4 — TSR Programming

NewInt26: inc cs:BusyFlag ; take out lock
call cs:0ldInt26 ; dispatch to real code
jmp SHORT DiskIOExit1
; take common exit

DiskIO ENDP

Checking the Display Type

Initialization code should test for the display type and other peripherals as nec-
essary. A TSR needs to know quite a bit about the display if it is going to support
hot keys. It is relatively easy to determine whether the display is an MDA or a
CGA. Other display types are possible. Many of these other types emulate ei-
ther an MDA or a CGA. Because the MDA and CGA are by far the most com-
mon, this discussion is limited to these two types. The following listing shows
how to tell the difference between an MDA and a CGA.

Listing 4-24. Determining the Display Type

Cc40 EQU 1 ; CGA 40 x 25 display
c80 EQU 2 ; CGA 80 x 25 display
M80 EQU 3 ; MDA 80 x 25 display
DisplayType DB 0
int 11h ; equipment check interrupt
and al,30h ; isolate video bits
mov cl,4 ; shift video mode bits to bits
asr al,cl ; 0and 1
mov DisplayType,al ; remember video mode

Freeing the Environment

The env<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>