Complete and
Unabridged

The ®
S-DOS
Encyclope

= D

Foreword, Bill Gates
General Editor, Ray Duncan

MS-DOS

Encyclopedia

The

MS-DOS

Encyclopedia

Microsoft Press

! 7 X707 M Redmond, Washington

P R E S s BB

Ray Duncan, General Editor
Foreword by Bill Gates

Published by

Microsoft Press

A Division of Microsoft Corporation

16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717
Copyright © 1988 by Microsoft Press

All rights reserved. No part of the contents of this book

may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Cataloging in Publication Data
The MS-DOS encyclopedia : versions 1.0 through 3.2 /
editor, Ray Duncan.
p- cm.
Includes indexes.
1. MS-DOS (Computer operating system) 1. Duncan, Ray, 1952-
II. Microsoft Press.
QA76.76.063M74 1988 87-21452
005.4'46--dc19 CIp
ISBN 1-55615-174-8

Printed and bound in the United States of America.
23456789RMRM 32109

Distributed to the book trade in the
United States by Harper & Row.

Distributed to the book trade in
Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the
United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England
Penguin Books Australia Ltd., Ringwood, Victoria, Australia
Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBM®, IBM AT®, PS/2®, and TopView® are registered trademarks of International Business Machines Corporation.
GW-BASIC®, Microsoft®, MS®, MS-DOS®, SOFTCARD®, and XENIX® are registered trademarks of
Microsoft Corporation.

Microsoft Press gratefully acknowledges permission to reproduce material listed below.

Page 4: Courtesy The Computer Museum.

Pages 5, 11, 42: Intel 4004, 8008, 8080, 8086, and 80286 microprocessor photographs. Courtesy Intel Corporation.
Page 6: Reprinted from Popular Electronics, January 1975 Copyright © 1975 Ziff Communications Company.
Page 13: Reprinted with permission of Rod Brock.

Page 16: Reprinted with permission of The Seattle Times Copyright © 1983.

Pages 19, 34, 42: IBM PC advertisements and photographs of the PC, PC/XT, and PC/AT reproduced with
permission of International Business Machines Corporation Copyright © 1981, 1982, 1984. All rights reserved.
Page 21: “Big IBM’s Little Computer” Copyright © 1981 by The New York Times Company. Reprinted by
permission.

“IBM Announces New Microcomputer System” Reprinted with permission of InfoWorld Copyright © 1981.

“IBM really gets personal” Reprinted with permission of Personal Computing Copyright © 1981

“Personal Computer from IBM” Reprinted from DATAMATION Magazine, October 1981 Copyright © by Cahners
Publishing Company.

“IBM’s New Line Likely to Shake up the Market for Personal Computers” Reprinted by permission of The Wall
Street Journal Copyright © Dow Jones & Company, Inc. 1981. All Rights Reserved.

Page 36: “Irresistible DOS 3.0” and “The Ascent of DOS” Reprinted from PC Tech Journal,

December 1984 and October 1986. Copyright © 1984, 1986 Ziff Communications Company.

“MS-DOS 2.00: A Hands-On Tutorial” Reprinted by permission of PC World from Volume 1, Issue 3, March 1983,
published at 501 Second Street, Suite 600, San Francisco, CA 94107.

Special thanks to Bob O’Rear, Aaron Reynolds, and Kenichi Ikeda.

Encyclopedia Staff

Editor-in-Chief: Susan Lammers

Editorial Director: Patricia Pratt

Senior Editor: Dorothy L. Shattuck

Senior Technical Editor: David L. Rygmyr
Special Projects Editor: Sally A. Brunsman
Editorial Coordinator: Sarah Hersack

Associate Editors and Technical Editors:
Pamela Beason, Ann Becherer, Bob Combs,
Michael Halvorson, Jeff Hinsch, Dean Holmes,
Chris Kinata, Gary Masters, Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,

Lee Thomas, JoAnne Woodcock

Copy Chief: Brianna Morgan. Proofreaders:
Kathleen Atkins, Julie Carter, Elizabeth
Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock, Richard Isomaki, Shawn Peck,
Alice Copp Smith

Editorial Assistants: Wallis Bolz, Charles Brod,
Stephen Brown, Pat Erickson, Debbie Kem, Susanne
McRhoton, Vihn Nguyen, Cheryl VanGeystel

Index: Shane-Armstrong Information Services

Production: Larry Anderson, Jane Bennett, Rick
Bourgoin, Darcie S. Furlan, Nick Gregoric, Peggy
Herman, Lisa Iversen, Rebecca Johnson, Ruth Pettis,
Russell Steele, Jean Trenary, Joy Ulskey

Marketing and Sales Director: James Brown
Director of Production: Christopher D. Banks
Publisher: MinS. Yee

Contributors

Ray Duncan, General Editor Duncan received a B.A. in Chemistry from the University of Califor-
nia, Riverside, and an M.D. from the University of California, Los Angeles, and subsequently received
specialized training in Pediatrics and Neonatology at the Cedars-Sinai Medical Center in Los Angeles. He
has written many articles for personal computing magazines, including BYTE, PC Magazine, Dr. Dobb’s
Journal, and Softalk/PC, and is the author of the Microsoft Press book Advanced MS-DOS. He is the
founder of Laboratory Microsystems Incorporated, a software house specializing in FORTH interpreters
and compilers.

Steve Bostwick Bostwick holds a B.S. in Physics from the University of California, Los Angeles, and
has over 20 years’ experience in scientific and commercial data processing. He is president of Query
Computing Systems, Inc., a software firm specializing in the creation of systems for applications that
interface microcomputers with specialized hardware. He is also an instructor for the UCLA Extension
Department of Engineering and Science and helped design their popular Microprocessor Hardware and
Software Engineering Certificate Program.

Keith Burgoyne Born and raised in Orange County, California, Burgoyne began programming in
1974 on IBM 370 mainframes. In 1979, he began developing microcomputer products for Apples,
TRS-80s, Ataris, Commodores, and IBM PCs. He is presently Senior Systems Engineer at Local Data of
Torrance, California, which is a major producer of IBM 3174/3274 and System 3X protocol conversion
products. His previous writing credits include numerous user manuals and tutorials.

Robert A. Byers Byers is the author of the bestselling Everyman’s Database Primer. He is presently
involved with the Emerald Bay database project with RSPI and Migent, Inc.

Thom Hogan During 11 years working with personal computers, Hogan has been a software devel-
oper, a programmer, a technical writer, a marketing manager, and a lecturer. He has written six books,
numerous magazine articles, and four manuals. Hogan is the author of the forthcoming Microsoft Press
book PC Programmer’s Sourcebook.

JimKyle Kyle has 23 years’ experience in computing. Since 1967, he has been a systems program-
mer with strong telecommunications orientation. His interest in microcomputers dates from 1975. He is
currently MIS Administrator for BTI Systems, Inc., the OEM Division of BancTec Inc., manufacturers of
MICR equipment for the banking industry. He has written 14 books and numerous magazine articles
(mostly on ham radio and hobby electronics) and has been primary Forum Administrator for Computer
Language Magazine’s CLMFORUM on CompuServe since early 1985.

Gordon Letwin Letwin is Chief Architect, Systems Software, Microsoft Corporation. He is the author
of Inside OS/2, published by Microsoft Press.

Charles Petzold Petzold holds an M.S. in Mathematics from Stevens Institute of Technology. Before
launching his writing career, he worked 10 years in the insurance industry, programming and teaching
programming on IBM mainframes and PCs. He is the author of the Microsoft Press book Programming
Windows 2.0, a contributing editor to PC Magazine, and a frequent contributor to the Microsoft Systems
Journal.

Chip Rabinowitz Rabinowitz has been a programmer for 11 years. He is presently chief program-

mer for Productivity Solutions, a microcomputer consulting firm based in Pennsylvania, and has been
Forum Administrator for the CompuServe MICROSOFT SIG since 1986.

Contributors

vii

Jim Tomlin Tomlin holds a B.S. and an M.S. in Mathematics. He has programmed at Boeing,
Microsoft, and Opcon and has taught at Seattle Pacific University. He now heads his own company in
Seattle, which specializes in PC systems programming and industrial machine vision applications.

Richard Wilton Wilton has programmed extensively in PL/1, FORTRAN, FORTH, C, and several
assembly languages. He is the author of Programmer’s Guide to PC & PS/2 Video Systems, published
by Microsoft Press.

Van Wolverton A professional writer since 1963, Wolverton has had bylines as a newspaper reporter,
editorial writer, political columnist, and technical writer. He is the author of Running MS-DOS and
Supercharging MS-DOS, both published by Microsoft Press.

William Wong Wong holds engineering and computer science degrees from Georgia Tech and
Rutgers University. He is director of PC Labs and president of Logic Fusion, Inc. His interests include
operating systems, computer languages, and artificial intelligence. He has written numerous magazine
articles and a book on MS-DOS.

JoAnne Woodcock Woodcock, a former senior editor at Microsoft Press, has been a writer for
Encyclopaedia Britannica and a freelance and project editor on marine biological studies at the
University of Southern California. She is co-editor (with Michael Halvorson) of XENIX at Work and
co-author (with Peter Rinearson) of Microsoft Word Style Sheets, both published by Microsoft Press.

Special Technical Advisor

Mark Zbikowski

Technical Advisors

Paul Allen Michael Geary David Melin John Pollock
Steve Ballmer Bob Griffin Charles Mergentime Aaron Reynolds
Reuben Borman Doug Hogarth Randy Nevin Darryl Rubin
Rob Bowman James W. Johnson Dan Newell Ralph Ryan
John Butler Kaamel Kermaani Tani Newell Karl Schulmeisters
Chuck Carroll Adrian King David Norris Rajen Shah
Mark Chamberlain Reed Koch Mike O’Leary Barry Shaw
David Chell James Landowski Bob O’Rear Anthony Short
Mike Colee Chris Larson Mike Olsson Ben Slivka
Mike Courtney Thomas Lennon Larry Osterman Jon Smirl

Mike Dryfoos Dan Lipkie Ridge Ostling Betty Stillmaker
Rachel Duncan Marc McDonald Sunil Pai John Stoddard
Kurt Eckhardt Bruce McKinney Tim Paterson Dennis Tillman
Eric Evans Pascal Martin Gary Perez Greg Whitten
Rick Farmer Estelle Mathers Chris Peters Natalie Yount
Bill Gates Bob Matthews Charles Petzold Steve Zeck

The MS-DOS Encyclopedia

Contents

Foreword by Bill Gates

Preface by Ray Duncan

Introduction

Section I: The Development of MS-DOS

Section II: Programming in the MS-DOS Environment
PartA: Structure of MS-DOS

Articlel: AnIntroduction to MS-DOS 51
Article 2: The Components of MS-DOS 61
Article 3: MS-DOS Storage Devices 85

PartB: Programming for MS-DOS

Article 4: Structure of an Application Program 107
Article 5: Character Device Input and Output 149
Article 6: Interrupt-Driven Communications 167
Article 7: File and Record Management 247
Article 8: Disk Directories and Volume Labels 279
Article9: Memory Management 297

Article 10: The MS-DOS EXEC Function 321

PartC: Customizing MS-DOS

Article 11: Terminate-and-Stay-Resident Utilities 347
Article 12: Exception Handlers 385

Article 13: Hardware Interrupt Handlers 409

Article 14: Writing MS-DOS Filters 429

Article 15: Installable Device Drivers 447

PartD: Directions of MS-DOS

Article 16: Writing Applications for Upward Compatibility 489
Article 17: Windows 499

PartE: Programming Tools

Article 18: Debugging in the MS-DOS Environment 541
Article 19: Object Modules 643
Article 20: The Microsoft Object Linker 701

Contents

xiii

Xv

[y

47

ix

Section III: User Commands 723
Introduction 725
User commands are listed in alphabetic order. This section includes ANSLSYS,
BATCH, CONFIG.SYS, DRIVER.SYS, EDLIN, RAMDRIVE.SYS, and VDISK.SYS.
Section IV: Programming Utilities 961
Introduction 963
CREF 967
EXE2BIN 971
EXEMOD 974
EXEPACK 977
LIB 980
LINK 987
MAKE 999
MAPSYM 1004
MASM 1007
Microsoft Debuggers:
DEBUG 1020
SYMDEB 1054
CodeView 1157
Section V: System Calls 1175
Introduction 1177
System calls are listed in numeric order.
Appendixes 1431
Appendix A: MS-DOS Version 3.3 1433
Appendix B: Critical Error Codes 1459
Appendix C: Extended Error Codes 1461
AppendixD: ASCII and IBM Extended ASCII Character Sets 1465
AppendixE: EBCDIC Character Set 1469
AppendixF: ANSLSYS Key and Extended Key Codes 1471
Appendix G: File Control Block (FCB) Structure 1473
AppendixH: Program Segment Prefix (PSP) Structure 1477
AppendixI: 8086/8088/80286/80386 Instruction Sets 1479
Appendix]: Common MS-DOS Filename Extensions 1485
AppendixK: Segmented (New) .EXE File Header Format 1487
AppendixL: Intel Hexadecimal Object File Format 1499
Appendix M: 8086/8088 Software Compatibility Issues 1507
Appendix N: An Object Module Dump Utility 1509
AppendixO: IBM PC BIOS Calls 1513

The MS-DOS Encyclopedia

Indexes 1531

Subject 1533
Commands and System Calls 1565

Contents xi

Foreword

Microsoft’s MS-DOS is the most popular piece of software in the world. It runs on more
than 10 million personal computers worldwide and is the foundation for at least 20,000
applications —the largest set of applications in any computer environment. As an industry
standard for the family of 8086-based microcomputers, MS-DOS has had a central role in
the personal computer revolution and is the most significant and enduring factor in fur-
thering Microsoft’s original vision—a computer for every desktop and in every home. The
challenge of maintaining a single operating system over the entire range of 8086-based
microcomputers and applications is incredible, but Microsoft has been committed to meet-
ing this challenge since the release of MS-DOS in 1981. The true measure of our success

in this effort is MS-DOS’s continued prominence in the microcomputer industry.

Since MS-DOS’s creation, more powerful and much-improved computers have entered the
marketplace, yet each new version of MS-DOS reestablishes its position as the foundation
for new applications as well as for old. To explain this extraordinary prominence, we must
look to the origins of the personal computer industry. The three most significant factors in
the creation of MS-DOS were the compatibility revolution, the development of Microsoft
BASIC and its widespread acceptance by the personal computer industry, and IBM’s deci-
sion to build a computer that incorporated 16-bit technology.

The compatibility revolution began with the Intel 8080 microprocessor. This technolog-
ical breakthrough brought unprecedented opportunities in the emerging microcomputer
industry, promising continued improvements in power, speed, and cost of desktop com-
puting. In the minicomputer market, every hardware manufacturer had its own special
instruction set and operating system, so software developed for a specific machine was in-
compatible with the machines of other hardware vendors. This specialization also meant
tremendous duplication of effort — each hardware vendor had to write language compilers,
databases, and other development tools to fit its particular machine. Microcomputers
based on the 8080 microprocessor promised to change all this because different manu-
facturers would buy the same chip with the same instruction set.

From 1975 to 1981 (the 8-bit era of microcomputing), Microsoft convinced virtually

every personal computer manufacturer — Radio Shack, Commodore, Apple, and dozens
of others —to build Microsoft BASIC into its machines. For the first time, one common lan-
guage cut across all hardware vendor lines. The success of our BASIC demonstrated the
advantages of compatibility: To their great benefit, users were finally able to move appli-
cations from one vendor’s machine to another.

Most machines produced during this early period did not have a built-in disk drive.
Gradually, however, floppy disks, and later fixed disks, became less expensive and more
common, and a number of disk-based programs, including WordStar and dBASE, entered
the market. A standard disk operating system that could accommodate these develop-
ments became extremely important, leading Lifeboat, Microsoft, and Digital Research all to
support CP/M-80, Digital Research’s 8080 DOS.

Foreword — Xiii

xiv

The 8-bit era proved the importance of having a multiple-manufacturer standard that
permitted the free interchange of programs. It was important that software designed for
the new 16-bit machines have this same advantage. No personal computer manufacturer in
1980 could have predicted with any accuracy how quickly a third-party software industry
would grow and get behind a strong standard — a standard that would be the software
industry’s lifeblood. The intricacies of how MS-DOS became the most common 16-bit
operating system, in part through the work we did for IBM, is not the key point here. The
key point is that it was inevitable for a popular operating system to emerge for the 16-bit
machine, just as Microsoft’s BASIC had prevailed on the 8-bit systems.

It was overwhelmingly evident that the personal computer had reached broad acceptance
in the market when Time in 1982 named the personal computer “Man of the Year.” MS-
DOS was integral to this acceptance and popularity, and we have continued to adapt
MS-DOS to support more powerful computers without sacrificing the compatibility that is
essential to keeping it an industry standard. The presence of the 80386 microprocessor
guarantees that continued investments in Intel-architecture software will be worthwhile.

Our goal with The MS-DOS Encyclopedia is to provide the most thorough and accessible
resource available anywhere for MS-DOS programmers. The length of this book is many
times greater than the source listing of the first version of MS-DOS — evidence of the
growing complexity and sophistication of the operating system. The encyclopedia will be
especially useful to software developers faced with preserving continuity yet enhancing
the portability of their applications.

Our thriving industry is committed to exploiting the advantages offered by the protected
mode introduced with the 80286 microprocessor and the virtual mode introduced with the
80386 microprocessor. MS-DOS will continue to play an integral part in this effort. Faster
and more powerful machines running Microsoft OS/2 mean an exciting future of multi-
tasking systems, networking, improved levels of data protection, better hardware memory
management for multiple applications, stunning graphics systems that can display an inno-
vative graphical user interface, and communication subsystems. MS-DOS version 3, which
runs in real mode on 80286-based and 80386-based machines, is a vital link in the Family
API of OS/2. Users will continue to benefit from our commitment to improved operating-
system performance and usability as the future unfolds.

Bill Gates

The MS-DOS Encyclopedia

Preface

In the space of six years, MS-DOS has become the most widely used computer operating
system in the world, running on more than 10 million machines. It has grown, matured,
and stabilized into a flexible, easily extendable system that can support networking,
graphical user interfaces, nearly any peripheral device, and even CD ROMs containing
massive amounts of on-line information. MS-DOS will be with us for many years to come
as the platform for applications that run on low-cost, 8086/8088-based machines.

Not surprisingly, the success of MS-DOS has drawn many writers and publishers into its
orbit. The number of books on MS-DOS and its commands, languages, and applications
dwarfs the list of titles for any other operating system. Why, then, yet another book on
MS-DOS? And what can we say about the operating system that has not been said already?

First, we have written and edited The MS-DOS Encyclopedia with one audience in mind:
the community of working programmers. We have therefore been free to bypass elemen-
tary subjects such as the number of bits in a byte and the interpretation of hexadecimal
numbers. Instead, we have emphasized detailed technical explanations, working code ex-
amples that can be adapted and incorporated into new applications, and a systems view of
even the most common MS-DOS commands and utilities.

Second, because we were not subject to size restrictions, we have explored topics in depth
that other MS-DOS books mention only briefly, such as exception and error handling,
interrupt-driven communications, debugging strategies, memory management, and install-
able device drivers. We have commissioned definitive articles on the relocatable object
modules generated by Microsoft language translators, the operation of the Microsoft Ob-
ject Linker, and terminate-and-stay-resident utilities. We have even interviewed the key
developers of MS-DOS and drawn on their files and bulletin boards to offer an entertain-
ing, illustrated account of the origins of Microsoft’s standard-setting operating system.

Finally, by combining the viewpoints and experience of non-Microsoft programmers and
writers, the expertise and resources of Microsoft software developers, and the publishing
know-how of Microsoft Press, we have assembled a unique and comprehensive reference
to MS-DOS services, commands, directives, and utilities. In many instances, the manu-
scripts have been reviewed by the authors of the Microsoft tools described.

We have made every effort during the creation of this book to ensure that its contents are
timely and trustworthy. In a work of this size, however, it is inevitable that errors and omis-
sions will occur. If you discover any such errors, please bring them to our attention so that
they can be repaired in future printings and thus aid your fellow programmers. To this
end, Microsoft Press has established a bulletin board on MCI Mail for posting corrections
and comments. Please refer to page xvi for more information.

Ray Duncan

Preface L XU

XU1 The MS-DOS Encyclopedia

Introduction

The MS-DOS Encyclopedia is the most comprehensive reference work available on
Microsoft’s industry-standard operating system. Written for experienced microcomputer
users and programmers, it contains detailed, version-specific information on all the
MS-DOS commands, utilities, and system calls, plus articles by recognized experts in
specialized areas of MS-DOS programming. This wealth of material is organized into
major topic areas, each with a format suited to its content. Special typographic conven-
tions are also used to clarify the material.

Organization of the Book

The MS-DOS Encyclopedia is organized into five major sections, plus appendixes. Each
section has a unique internal organization; explanatory introductions are included where
appropriate.

Section I, The Development of MS-DOS, presents the history of Microsoft’s standard-
setting operating system from its immediate predecessors through version 3.2. Numerous
photographs, anecdotes, and quotations are included.

Section II, Programming in the MS-DOS Environment, is divided into five parts: Structure
of MS-DOS, Programming for MS-DOS, Customizing MS-DOS, Directions of MS-DOS, and
Programming Tools. Each part contains several articles by acknowledged experts on these
topics. The articles include numerous figures, tables, and programming examples that pro-
vide detail about the subject.

Section I1I, User Commands, presents all the MS-DOS internal and external commands in
alphabetic order, including ANSI.SYS, BATCH, CONFIG.SYS, DRIVER.SYS, EDLIN,
RAMDRIVE.SYS, and VDISK.SYS. Each command is presented in a structure that allows
the experienced user to quickly review syntax and restrictions on variables; the less-
experienced user can refer to the detailed discussion of the command and its uses.

Section IV, Programming Utilities, uses the same format as the User Commands section to
present the Microsoft programming aids, including the DEBUG, SYMDEB, and CodeView
debuggers. Although some of these utilities are supplied only with Microsoft language
products and are not included on the MS-DOS system or supplemental disks, their use is
intrinsic to programming for MS-DOS, and they are therefore included to create a com-
prehensive reference.

Introduction XUii

Section V, System Calls, documents Interrupts 20H through 27H and Interrupt 2FH. The
Interrupt 21H functions are listed in individual entries. This section, like the User Com-

mands and Programming Utilities sections, presents a quick review of usage for the ex-
perienced user and also provides extensive notes for the less-experienced programmer.

The 15 appendixes provide quick-reference materials, including a summary of MS-DOS
version 3.3, the segmented (new) .EXE file header format, an object file dump utility, and
the Intel hexadecimal object file format. Much of this material is organized into tables or
bulleted lists for ease of use.

The book includes two indexes—one organized by subject and one organized by com-
mand name or system-call number. The subject index provides comprehensive references
to the indexed topic; the command index references only the major entry for the com-
mand or system call.

Program Listings

The MS-DOS Encyclopedia contains numerous program listings in assembly language, C,
and QuickBASIC, all designed to run on the IBM PC family and compatibles. Most of these
programs are complete utilities; some are routines that can be incorporated into function-
ing programs. Vertical ellipses are often used to indicate where additional code would be
supplied by the user to create a more functional program. All program listings are heavily
commented and are essentially self-documenting.

The programs were tested using the Microsoft Macro Assembler (MASM) version 4.0, the
Microsoft C Compiler version 4.0, or the Microsoft QuickBASIC Compiler version 2.0.

The functional programs and larger routines are also available on disk. Instructions for
ordering are on the page preceding this introduction and on the mail-in card bound into
this volume.

Typography and Terminology

Because The MS-DOS Encyclopedia was designed for an advanced audience, the reader
generally will be familiar with the notation and typographic conventions used in this
volume. However, for ease of use, a few special conventions should be noted.

Typographic conventions

Capital letters are used for MS-DOS internal and external commands in text and syntax
lines. Capital letters are also used for filenames in text.

XVl The MS-DOS Encyclopedia

Ttalic font indicates user-supplied variable names, procedure names in text, parameters
whose values are to be supplied by the user, reserved words in the C programming lan-
guage, messages and return values in text, and, occasionally, emphasis.

A typographic distinction is made between lowercase | and the numeral 1 in both text and
program listings.

Cross-references appear in the form SECTION NAME: PartT NAME, COMMAND NAME, OR IN-
TERRUPT NUMBER: Article Name or Function Number.

Color indicates user input and program examples.

Terminology

Although not an official IBM name, the term PC-DOS in this book means the IBM imple-
mentation of MS-DOS. If PC-DOS is referenced and the information differs from that for
the related MS-DOS version, the PC-DOS version number is included. To avoid confusion,
the term DOS is never used without a modifier.

The names of special function keys are spelled as they are shown on the IBM PC keyboard.
In particular, the execute key is called Enter, not Return. When <Enter>is included in a
user-entry line, the user is to press the Enter key at the end of the line.

The common key combinations, such as Ctrl-C and Ctrl-Z, appear in this form when the
actual key to be pressed is being discussed but are written as Control-C, Control-Z, and so
forth when the resulting code is the true reference. Thus, an article might reference the
Control-C handler but state that it is activated when the user presses Ctrl-C.

Unless specifically indicated, hexadecimal numbers are used throughout. These numbers
are always followed by the designation H (% in the code portions of program listings).
Ranges of hexadecimal values are indicated with a dash— for example, 07—0AH.

The notation (more) appears in italic at the bottom of program listings and tables that are
continued on the next page. The complete caption or table title appears on the first page
of a continued element and is designated Continued on subsequent pages.

Introduction Xix

1975

The Development of MS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine. It is their most visible connection to the hardware hidden inside the
cabinet, and it is through MS-DOS that they can run applications and manage disks and
disk files.

In the sense that it opens the door to doing work with a personal computer, MS-DOS is
indeed a key, and the lock it fits is the Intel 8086 family of microprocessors. MS-DOS and
the chips it works with are, in fact, closely connected — so closely that the story of
MS-DOS is really part of a larger history that encompasses not only an operating system
but also a microprocessor and, in retrospect, part of the explosive growth of personal
computing itself.

Chronologically, the history of MS-DOS can be divided into three parts. First came the
formation of Microsoft and the events preceding Microsoft’s decision to develop an
operating system. Then came the creation of the first version of MS-DOS. Finally, there is
the continuing evolution of MS-DOS since its release in 1981.

Much of the story is based on technical developments, but dates and facts alone do not
provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along which it continues to grow. To the extent that personal opin-
ions and memories are appropriate, they are included here to provide a fuller picture of
the origin and development of MS-DOS.

Before MS-DOS

The role of International Business Machines Corporation in Microsoft’s decision to create
MS-DOS has been well publicized. But events, like inventions, always build on prior ac-

_ complishments, and in this respect the roots of MS-DOS reach farther back, to four hard-
ware and software developments of the 1970s: Microsoft’s disk-based and stand-alone
versions of BASIC, Digital Research’s CP/M-80 operating system, the emergence of the
8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard-
ware company called Seattle Computer Products.

Microsoft and BASIC

On the surface, BASIC and MS-DOS might seem to have little in common, but in terms of
file management, MS-DOS is a direct descendant of a Microsoft version of BASIC called
Stand-alone Disk BASIC.

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de-
veloped a version of BASIC for a revolutionary small computer named the Altair, which
was introduced in January 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section I: The Development of MS-DOS 3

1975

The Altair. Christened one evening shortly before its appearance on the cover of Popular Electronics
magazine, the computer was named for the night’s destination of the starship Enterprise. The photograph
clearly shows the input switches on the front panel of the cabinet.

Albuquerque, New Mexico. Though it has long been eclipsed by other, more powerful
makes and models, the Altair was the first “personal” computer to appear in an environ-
ment dominated by minicomputers and mainframes. It was, simply, a metal box with a
panel of switches and lights for input and output, a power supply, a motherboard with 18
slots, and two boards. One board was the central processing unit, with the 8-bit Intel 8080
microprocessor at its heart; the other board provided 256 bytes of random-access memory.
This miniature computer had no keyboard, no monitor, and no device for permanent
storage, but it did possess one great advantage: a price tag of $397.

Now, given the hindsight of a little more than a decade of microcomputing history, it is
easy to see that the Altair’s combination of small size and affordability was the thin edge
of a wedge that, in just a few years, would move everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of
people. In 1975, however, the computing environment was still primarily a matter of data
processing for specialists rather than personal computing for everyone. Thus when 4 KB

The MS-DOS Encyclopedia

1975

Intel’s 4004, 8008, and 8080 chips. At the top left is the 4-bit 4004, which was named for the approximate
number of old-fashioned transistors it replaced. At the bottom left is the 8-bit 8008, which addressed 16 KB of
memory; this was the chip used in the Traf-O-Data tape-reader built by Paul Gilbert. At the right is the 8080,
a faster 8-bit chip that could address 64 KB of memory. The brain of the MITS Altair, the 8080 was, in many
respects, the chip on which the personal computing industry was built. The 4004 and 8008 chips were
developed early in the 1970s; the 8080 appeared in 1974.

memory expansion boards became available for the Altair, the software needed most by its
users was not a word processor or a spreadsheet, but a programming language —and the
language first developed for it was a version of BASIC written by Bill Gates and Paul Allen.

Gates and Allen had become friends in their teens, while attending Lakeside School in
Seattle. They shared an intense interest in computers, and by the time Gates was in the
tenth grade, they and another friend named Paul Gilbert had formed a company called
Traf-O-Data to produce a machine that automated the reading of 16-channel, 4-digit,
binary-coded decimal (BCD) tapes generated by traffic-monitoring recorders. This ma-
chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor
of the 8080 in the Altair.

Section I: The Development of MS-DOS 5

1975

The January 1975 cover of Popular
HOW TO “READ” FM TUNER SPECIFICATIONS Electronics magazine, featuring the

machine that caught the imaginations

Popular Electronics | o

WORLD'S LARGEST-SELLING ELECTRONICS MAGAZINE JANUARY 1975/ 75¢ Allen and Bill Gates.

PROJECT BREAKTHROUGH!!

World's First Minicomputer Kit

to Rival Commercial Models...
“ALTAIR 8800 SAVE OVER $1000

ALSO IN THIS ISSUE:

° An Undcr-$90 Sclentific Calculator Project
p© © CCD’s—TV Camera Tube Successor?
| ® Thyristor-Controlled Photoflashers

TEST REPORTS!

Technics 200 Speaker System
o E3 = Pioneer RT-1011 Open-Reel Recorder
. e Tram Diamond-40 CB AM Transceiver
—_— Edmund Scientific "Kirlian” Photo Kit
Hewlett-Packard 5381 Frequency Counter

Although it was too limited to serve as the central processor for a general-purpose compu-
ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc-
tion set were concerned. Thus Traf-O-Data’s work with the 8008 gave Gates and Allen a
head start when they later developed their version of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular
Electronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon-
strate the language for MITS. The developers gave themselves the company name of
Microsoft and licensed their BASIC to MITS as Microsoft’s first product.

Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was
developed, was a landmark product in the history of personal computing. On another
level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim
Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.

6 The MS-DOS Encyclopedia

1976

5+orqg; (aﬁw% for = IR

@ zeco (L 6qte)

c—'ruf’lAEj pointer 4o mext Ly Cz_],%'ks)

binavy . B (2 by tes)
chiacactoe o hing (see note M
Zer (1 byte)

<Repea) absie A eady 1>

Ze€co Ty ges
S,MTQ varables A 547{9 I va'l‘w“(
2 51+€$ Flve o name

“ bqks qwe +1«l- VD/V-&\

<Repect for €ach variadle >

(:v RICTAS |

[AﬂLf‘M’B] AW\ ‘/a}ta/(iLz}
2 bytc hame -
2Zboyte leugin.

values —

Qe,(:eaa{s Cor 2ok aer
lowest lreat pn Ao 5‘{:%

Fee sSpace (57 cam be 1= lere)

EST)Q BNV 0’}

CsTK‘rDP] Most ~eent stk e»ﬁn)/
SYec)— A
[rreTHP) bottom of stack / fopact locstio for shemds
€v€z S5 pc 2
vﬂcwﬂ r

Curpendt s‘\'m'»\j usage
sTRING S

CMEM?W:) haqlest taclys [bcation.
s SAunz allows for Sm\r&A

+oble Masa <t ol collectsr
s €or gaff?l;‘b;:w LU'/\IM/\ ?@—,-eb\\-l' Q) LIK gﬁjl(*

COMPUTER NOTES/JULY, 1975

Loading Software

Software from MITS will be pro-
vided in a checksummed format.
There will be a bootstrap loader
that you key in manually (less than
25 bytes). This will read a check-
sun loader (the 'bin' loader) which
will be about 120 bytes.

For audio cassette loading the
bootstrap and checksum loaders will
be longer. All of this will be ex-
plained in detail in a cover package
that will go out with all software.

For loading non-checksummed
paper tapes here is a short program:

STKLOC: DW GETNEW
(2 bytes-#1 low byte of
GETNEW address
#2 high byte of
GETNEW address)

START: LXI 4,0
GETNEW: LXI SP, STKLOC
IN <flag-input channel>
RAL ;get input ready bit
RNZ ;ready?
IN <data-input channel>
CHGLOC: CPI <043 = [NX B>
RNZ
INR A
STA CHGLOC
RET
(22 bytes)

Punch a paper tape with leader,

a 043 start byte, the byte to be
stored at loc 0, the byte to be
stored at 1, - - -~ etc. Start at
START, making sure the memory the
loader is in is unprotected. M4ake
sure you don't wipe out the loader
by loading on top of it.

To run this again change CHGLOC

back to CPI - 376.

On the left, Bill Gates’s original handwritten notes describing memory configuration for Altair BASIC. On
the right, a short bootstrap program written by Gates for Altair users; published in the July 1975 edition of the
MITS user newsletter, Computer Notes.

From paper tape to disk

Gates and Allen’s early BASIC for the Altair was loaded from paper tape after the bootstrap
to load the tape was entered into memory by flipping switches on the front panel of the
computer. In late 1975, however, MITS decided to release a floppy-disk system for the
Altair —the first retail floppy-disk system on the market. As a result, in February 1976
Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of
Altair BASIC. The Altair had no operating system and hence no method of managing files,
so the disk BASIC would have to include some file-management routines. It would, in
effect, have to function as a rudimentary operating system.

Section I: The Development of MS-DOS 7

1977-1978

Microsoft, 1978, Albuquerque,

New Mexico. Top row, left to right:
Steve Wood, Bob Wallace, Jim Lane.
Middle row, left to right: Bob O'Rear,
Bob Greenberg, Marc McDonald,
Gordon Letwin. Bottom row, left to
right: Bill Gates, Andrea Lewis,
Marla Wood, Paul Allen.

Gates, still at Harvard University, agreed to write this version of BASIC for MITS. He went
to Albuquerque and, as has often been recounted, checked into the Hilton Hotel with a
stack of yellow legal pads. Five days later he emerged, yellow pads filled with the code for
the new version of BASIC. Arriving at MITS with the code and a request to be left alone,
Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair.

This disk-based BASIC marked Microsoft’s entry into the business of languages for per-
sonal computers — not only for the MITS Altair, but also for such companies as Data
Terminals Corporation and General Electric. Along the way, Microsoft BASIC took on
added features, such as enhanced mathematics capabilities, and, more to the point in
terms of MS-DOS, evolved into Stand-alone Disk BASIC, produced for NCR in 1977.

Designed and coded by Marc McDonald, Stand-alone Disk BASIC included a file-
management scheme called the FAT, or file allocation table that used a linked list for man-
aging disk files. The FAT, born during one of a series of discussions between McDonald
and Bill Gates, enabled disk-allocation information to be kept in one location, with
“chained” references pointing to the actual storage locations on disk. Fast and flexible,
this file-management strategy was later used in a stand-alone version of BASIC for the 8086
chip and eventually, through an operating system named M-DOS, became the basis for the
file-handling routines in MS-DOS.

M-DOS

During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRAN for an
increasingly popular 8-bit operating system called CP/M. At the end of 1978, Gates and
Allen moved Microsoft from Albuquerque to Bellevue, Washington. The company con-

tinued to concentrate on programming languages, producing versions of BASIC for the
6502 and the T19900.

8 The MS-DOS Encyclopedia

1978

A Microsoft advertisement from the
January 1979 issue of Byte magazine
mentioning some products and the
machines they ran on. In the lower

s . W right corner is an announcement of

i J the company’s move to Bellevue,
SEERICICHCY | e comban
nicoconouUter
soffvore

Only one company sets the pace with
software for microprocessors.

MACRO-80 PACKAGE ourrelocotavie ossem-
bler now has ¢ complete MACRC faciity including 9P,

IRPC, REPEAT, local variaties and EXITM. Listing conroi and
condifionai assembly have been greatly enhanced Anofher
Plus ~ the assembier s now twice os fost as wevms Versions.

e
80 is included in FORTRAN-8C, Version 31)

MBASIC — NEW RELEASE me rew version 50 MBASIC inv
cludes long vorabie names, vanabie innmh o MK
space allocation. WHILE/ ted

MON Version 5.0 i fully ANS
been completely rewntten
Manuai 520

EDIT-80 PACKAGE (CP/M version only) 1
on he market No more searching hrough tiles o crv
oceess, line-orented edifor
40 Also includes FLCOM, fhe fi
ond binary fles Single copy %120 Nomol e

ANS! ‘74 COBCL-80 srowove e winfy Me,lod ISAM.improved inferacive
ACCEPT/DISPLAY, COPY and EXTEND Single copy 5750 Manue

PREVIEW OF UPCOMING PQODUCTS an &
porting the same feature: .
fer. and o compigte set of

During this same period, Marc McDonald also worked on developing an 8-bit operating
system called M-DOS (usually pronounced “Midas” or “My DOS”). Although it never
became a real part of the Microsoft product line, M-DOS was a true multitasking operating
system modeled after the DEC TOPS-10 operating system. M-DOS provided good perfor-
mance and, with a more flexible FAT than that built into BASIC, had a better file-handling
structure than the up-and-coming CP/M operating system. At about 30 KB, however,
M-DOS was unfortunately too big for an 8-bit environment and so ended up being rele-
gated to the back room. As Allen describes it, “Trying to do a large, full-blown operating
system on the 8080 was a lot of work, and it took a lot of memory. The 8080 addresses only
64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that.”

CP/M

In the volatile microcomputer era of 1976 through 1978, both users and developers of per-
sonal computers quickly came to recognize the limitations of running applications on top
of Microsoft’s Stand-alone Disk BASIC or any other language. MITS, for example, scheduled

Section I: The Development of MS-DOS 9

1978

10

a July 1976 release date for an independent operating system for its machine that used the
code from the Altair’s Disk BASIC. In the same year, Digital Research, headed by Gary
Kildall, released its Control Program/Monitor, or CE/M.

CP/M was a typical microcomputer software product of the 1970s in that it was written by
one person, not a group, in response to a specific need that had not yet been filled. One of
the most interesting aspects of CP/M’s history is that the software was developed several
years before its release date —actually, several years before the hardware on which it
would be a standard became commercially available.

In 1973, Kildall, a professor of computer science at the Naval Postgraduate School in
Monterey, California, was working with an 8080-based small computer given him by Intel
Corporation in return for some programming he had done for the company. Kildall’s
machine, equipped with a monitor and paper-tape reader, was certainly advanced for the
time, but Kildall became convinced that magnetic-disk storage would make the machine
even more efficient than it was.

Trading some programming for a disk drive from Shugart, Kildall first attempted to build

a drive controller on his own. Lacking the necessary engineering ability, he contacted a
friend, John Torode, who agreed to handle the hardware aspects of interfacing the compu-
ter and the disk drive while Kildall worked on the software portion —the refinement of an
operating system he had written earlier that year. The result was CP/M.

The version of CP/M developed by Kildall in 1973 underwent several refinements. Kildall
enhanced the CP/M debugger and assembler, added a BASIC interpreter, and did some
work on an editor, eventually developing the product that, from about 1977 until the ap-
pearance of the IBM Personal Computer, set the standard for 8-bit microcomputer operat-
ing systems.

Digital Research’s CP/M included a command interpreter called CCP (Console Command
Processor), which acted as the interface between the user and the operating system itself,
and an operations handler called BDOS (Basic Disk Operating System), which was
responsible for file storage, directory maintenance, and other such housekeeping chores.
For actual input and output—disk 1/O, screen display, print requests, and so on— CP/M
included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware
on which the operating system ran.

For file storage, CP/M used a system of eight-sector allocation units. For any given file, the
allocation units were listed in a directory entry that included the filename and a table giv-
ing the disk locations of 16 allocation units. If a long file required more than 16 allocation
units, CP/M created additional directory entries as required. Small files could be accessed
rapidly under this system, but large files with more than a single directory entry could re-
quire numerous relatively time-consuming disk reads to find needed information.

At the time, however, CP/M was highly regarded and gained the support of a broad base of
hardware and software developers alike. Quite powerful for its size (about 4KB), it was, in
all respects, the undisputed standard in the 8-bit world, and remained so until, and even
after, the appearance of the 8086.

The MS-DOS Encyclopedia

1978

The 16-bit Intel 8086 chip, introduced in 1978.
Much faster and far more powerful than its 8-bit
predecessor the 8080, the 8086 had the ability to
addpress one megabyte of memory.

The 8086

When Intel released the 8-bit 8080 chip in 1974, the Altair was still a year in the future.
The 8080 was designed not to make computing a part of everyday life but to make house-
hold appliances and industrial machines more intelligent. By 1978, when Intel introduced
the 16-bit 8086, the microcomputer was a reality and the new chip represented a major
step ahead in performance and memory capacity. The 8086’s full 16-bit buses made it fast-
er than the 8080, and its ability to address one megabyte of random-access memory was a
giant step beyond the 8080’s 64 KB limit. Although the 8086 was not compatible with the
8080, it was architecturally similar to its predecessor and 8080 source code could be me-
chanically translated to run on it. This translation capability, in fact, was a major influence
on the design of Tim Paterson’s operating system for the 8086 and, through Paterson’s
work, on the first released version of MS-DOS.

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with
two choices: continue working in the familiar 8-bit world or turn to the broader horizons
offered by the new 16-bit technology. For a time, Microsoft did both. Acting on Paul Allen’s
suggestion, the company developed the SoftCard for the popular Apple 11, which was
based on the 8-bit 6502 microprocessor. The SoftCard included a Z80 microprocessor and
a copy of CP/M-80 licensed from Digital Research. With the SoftCard, Apple II users could
run any program or language designed to run on a CP/M machine.

It was 16-bit technology, however, that held the most interest for Gates and Allen, who
believed that this would soon become the standard for microcomputers. Their optimism
was not universal — more than one voice in the trade press warned that industry invest-
ment in 8-bit equipment and software was too great to successfully introduce a new stan-
dard. Microsoft, however, disregarded these forecasts and entered the 16-bit arena as it
had with the Altair: by developing a stand-alone version of BASIC for the 8086.

Section I The Development of MS-DOS 11

1979-1980

At the same time and, coincidentally, a few miles south in Tukwila, Washington, a major
contribution to MS-DOS was taking place. Tim Paterson, working at Seattle Computer
Products, a company that built memory boards, was developing an 8086 CPU card for use
in an $-100 bus machine.

86-DOS

12

Paterson was introduced to the 8086 chip at a seminar held by Intel in June 1978. He had
attended the seminar at the suggestion of his employer, Rod Brock of Seattle Computer
Products. The new chip sparked his interest because, as he recalls, “all its instructions
worked on both 8 and 16 bits, and you didn’t have to do everything through the accumu-
lator. It was also real fast— it could do a 16-bit ADD in three clocks.”

After the seminar, Paterson — again with Brock’s support—began work with the 8086.
He finished the design of his first 8086 CPU board in January 1979 and by late spring had
developed a working CPU, as well as an assembler and an 8086 monitor. In June, Paterson
took his system to Microsoft to try it with Stand-alone BASIC, and soon after, Microsoft
BASIC was running on Seattle Computer’s new board.

During this period, Paterson also received a call from Digital Research asking whether
they could borrow the new board for developing CP/M-86. Though Seattle Computer did
not have a board to loan, Paterson asked when CP/M-86 would be ready. Digital’s represen-
tative said December 1979, which meant, according to Paterson’s diary, “we’ll have to live
with Stand-alone BASIC for a few months after we start shipping the CPU, but then we’ll be
able to switch to a real operating system.”

Early in June, Microsoft and Tim Paterson attended the National Computer Conference

in New York. Microsoft had been invited to share Lifeboat Associates’ ten-by-ten foot
booth, and Paterson had been invited by Paul Allen to show BASIC running on an S-100
8086 system. At that meeting, Paterson was introduced to Microsoft's M-DOS, which he
found interesting because it used a system for keeping track of disk files—the FAT devel-
oped for Stand-alone BASIC — that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end of the
year, Seattle Computer Products began shipping the CPU with a BASIC option.

When CP/M-86 had still not become available by April 1980, Seattle Computer Products
decided to develop a 16-bit operating system of its own. Originally, three operating sys-
tems were planned: a single-user system, a multiuser version, and a small interim product
soon informally christened QDOS (for Quick and Dirty Operating System) by Paterson.

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system
for the 8086 was mandatory if users were to be assured of a wide range of application soft-
ware and languages. CP/M had become the standard for 8-bit machines, so the ability to
mechanically translate existing CP/M applications to run on a 16-bit system became one of
Paterson’s major goals for the new operating system. To achieve this compatibility, the sys-

“tem he developed mimicked CP/M-80’s functions and command structure, including its

use of file control blocks (FCBs) and its approach to executable files.

The MS-DOS Encyclopedia

1980

An advertisement for

GO 16-BIT NOW — WE HAVE MADE IT EASY the Seattle Computer
Products 8086 CPU,
with 86-DOS; published
in the December 1980
issue of Byte.

8Mhz. 2-card CPU Set

WITH 86-DOS™ $5g5

ASSEMBLED, TESTED, GUARANTEED

With our 2-card 8086 CPU set you can upgrade your Z80 8-
bit S-100 system to run three times as fast by swapping the
CPUs. If you use our 16-bit memory, it will run five times as
fast. Up to 64K of your static 8-bit memory may be used in the
8086's 1-megabyte addressing range. A switch allows either 4
or 8 Mhz. operation. Memory access requirements at 4 Mhz
exceed 500 nsec.

The EPROM monitor allows you to display, alter, and
search memory, do inputs and outputs, and boot your disk
Debugging aids include register display and change, single
stepping, and execute with breakpoints

The set includes a serial port with programmable baud rate,
four independent programmable 16-bit timers (two may be
combined for a time-of-day clock), a parallel in and parallel out
port, and an interrupt controller with 15 inputs. External power
may be applied to the timers to maintain the clock during
system power-off time. Total power: 2amps at + 8V, less than
100 ma. at + 16V and at -16V.

86-DOS™, our $195 8086 single user disk operating
system, is provided without additional charge. It allows
functions such as console | O of characters and strings, and
random or sequencial reading and writing to named disk files.
While it has a different format from CP M, it performs similar
calls plus some (CPMisa of
Digital Research Corporation). Its construction allows relative-
ly easy configuration of | O to different hardware Directly

code written for CP M, translate this to 8086 source code.
assemble the source code, and then run the program on the
8086 processor under 86-DOS. This allows the conversion of
any Z80 program., for which source code is available. to run on
the much higher performance 8086

BASIC-86 by Microsoft is available for the 8086 at $350
Several firms are working on application programs Call for
current software status

All software licensed for use on a single computer only
N

supported are the Tarbell and C disk cont

The 86-DOS™ package includes an 8086 resident as-
sembler, a Z80 to 8086 source code translator. a utility to read
files written in CP M and convert them to the 86-DOS format, a
line editor, and disk ce utilities. Of significance to
Z80 users Is the ability of the translator to accept Z80 source

discle required. Shipping from stock to
one week Bank cards, personal checks, CODs okay There is
a 10-day return privilege All boards are guaranteed one year
— both parts and labor Shipped prepaid by arr in US and
Canada. Foreign purchases must be prepaid in US funds
Also add $10 per board for overseas air shipment

8/16 16-BIT MEMORY

This board was designed for the 1980s It is configured as
16K by 8 bits when accessed by an 8-bit processor and
configured 8K by 16 bits when used with a 16-bit processor
The configura g IS and 1s done by the
card sampling the “sixteen request” signal sent out by all S-
100 IEEE 16-bit CPU boards. The card has all the high noise
immunity features of our well known PLUS RAM cards as well
as g ads g 1s a replace-
ment for bank select. It makes use of a total of 24 address lines
to give a directly addressable range of over 16 megabytes
(For older systems, a switch will cause the card to ignore the
top 8 address lines) This card ensures that your memory
board purchase will not soon be obsolete It is guaranteed to
run without wait states with our 8086 CPU set using an 8 Mhz

clock Shipped from stock. Prices. 1-4. 5280, 5-9. $260. 10-up A b d
$240 Seattle Comp Pr ts, Inc.
1114 Industry Drive Seattle WA 98188
(206) 575-1830

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one
of them being its file-allocation system, which he considered inefficient in the use of disk
space and too slow in operation. So for fast, efficient file handling, he used a file allocation
table, as Microsoft had done with Stand-alone Disk BASIC and M-DOS. He also wrote a
translator to translate 8080 code to 8086 code, and he then wrote an assembler in Z80
assembly language and used the translator to translate it.

Four months after beginning work, Paterson had a functioning 6 KB operating system,
officially renamed 86-DOS, and in September 1980 he contacted Microsoft again, this time
to ask the company to write a version of BASIC to run on his system.

Section I: The Development of MS-DOS 13

1980

IBM

While Paterson was developing 86-DOS, the third major element leading to the creation of
MS-DOS was gaining force at the opposite end of the country. IBM, until then seemingly
oblivious to most of the developments in the microcomputer world, had turned its atten-
tion to the possibility of developing a low-end workstation for a market it knew well: busi-
ness and business people.

On August 21, 1980, a study group of IBM representatives from Boca Raton, Florida, visited
Microsoft. This group, headed by a man named Jack Sams, told Microsoft of IBM’s interest
in developing a computer based on a microprocessor. IBM was, however, unsure of micro-
computing technology and the microcomputing market. Traditionally, IBM relied on long
development cycles —typically four or five years—and was aware that such lengthy
design periods did not fit the rapidly evolving microcomputer environment.

One of IBM’s solutions —the one outlined by Sams’s group — was to base the new
machine on products from other manufacturers. All the necessary hardware was available,
but the same could not be said of the software. Hence the visit to Microsoft with the ques-
tion: Given the specifications for an 8-bit computer, could Microsoft write a ROM BASIC for
it by the following April?

Microsoft responded positively, but added questions of its own: Why introduce an 8-bit
computer? Why not release a 16-bit machine based on Intel’s 8086 chip instead? At the end
of this meeting — the first of many — Sams and his group returned to Boca Raton with a
proposal for the development of a low-end, 16-bit business workstation. The venture was
named Project Chess.

One month later, Sams returned to Microsoft asking whether Gates and Allen could, still
by April 1981, provide not only BASIC but also FORTRAN, Pascal, and COBOL for the new
computer. This time the answer was no because, though Microsoft’s BASIC had been
designed to run as a stand-alone product, it was unique in that respect—the other lan-
guages would need an operating system. Gates suggested CP/M-86, which was then still
under development at Digital Research, and in fact made the initial contact for IBM. Digital
Research and IBM did not come to any agreement, however.

Microsoft, meanwhile, still wanted to write all thre languages for IBM — approximately 400
KB of code. But to do this within the allotted six-month schedule, the company needed
some assurances about the operating system IBM was going to use. Further, it needed
specific information on the internals of the operating system, because the ROM BASIC
would interact intimately with the BIOS.

The turning point

14

That state of indecision, then, was Microsoft’s situation on Sunday, September 28, 1980,
when Bill Gates, Paul Allen, and Kay Nishi, a Microsoft vice president and president of
ASCII Corporation in Japan, sat in Gates’s eighth-floor corner office in the Old National
Bank Building in Bellevue, Washington. Gates recalls, “Kay and I were just sitting there at
night and Paul was on the couch. Kay said, ‘Got to do it, got to do it.” It was only 20 more K

The MS-DOS Encyclopedia

1980

of code at most—actually, it turned out to be 12 more K on top of the 400. It wasn’t that big
a deal, and once Kay said it, it was obvious. We’d always wanted to do a low-end operating
system, we had specs for low-end operating systems, and we knew we were going to do
one up on 16-bit.”

At that point, Gates and Allen began looking again at Microsoft’s proposal to IBM. Their
estimated 400 KB of code included four languages, an assembler, and a linker. To add an
operating system would require only another 20 KB or so, and they already knew of a
working model for the 8086: Tim Paterson’s 86-DOS. The more Gates, Allen, and Nishi
talked that night about developing an operating system for IBM’s new computer, the more
possible — even preferable — the idea became.

Allen’s first step was to contact Rod Brock at Seattle Computer Products to tell him that
Microsoft wanted to develop and market SCP’s operating system and that the company had
an OEM customer for it. Seattle Computer Products, which was not in the business of
marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the
operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86-DOS on its own machines.

In October 1980, with 86-DOS in hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languages for the new computer.
Time was short and the boundaries between the languages and the operating system were
unclear, so Microsoft explained that it needed to control the development of the operating
system in order to guarantee delivery by spring of 1981. In November, IBM signed the
contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul
Allen, and, primarily, Bob O'Rear began a schedule of long, sometimes hectic days and
total immersion in the project. As O'Rear recalls, “If I was awake, I was thinking about
the project.”

The first task handled by the team was bringing up 86-DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ-
ment while changes were also being made to the specifications of the budding operating
system itself.

As part of the process, 86-DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson’s
86-DOS — not counting utilities such as EDLIN, CHKDSK, and INIT (later named
FORMAT) — arrived at Microsoft as one large assembly-language program on an 8-inch
floppy disk. The IBM machine, however, used 5%-inch disks, so Microsoft needed to de-
termine the format of the new disk and then find a way to get the operating system from
the old format to the new.

Section I: The Development of MS-DOS 15

1980-1981

16

Paul Allen and
Bill Gates (1982).

This work, handled by O'Rear, fell into a series of steps. First, he moved a section of code
from the 8-inch disk and compiled it. Then, he converted the code to Intel hexadecimal
format. Next, he uploaded it to a DEC-2020 and from there downloaded it to a large Intel
fixed-disk development system with an In-Circuit Emulator. The DEC-2020 used for this
task was also used in developing the BIOS, so there was additional work in downloading
the BIOS to the Intel machine, converting it to hexadecimal format, moving it to an IBM
development system, and then crossloading it to the IBM prototype.

Defining and implementing the MS-DOS disk format — different from Paterson’s 8-inch
format— was an added challenge. Paterson’s ultimate goal for 86-DOS was logical device
independence, but during this first stage of development, the operating system simply had
to be converted to handle logical records that were independent of the physical record size.

Paterson, still with Seattle Computer Products, continued to work on 86-DOS and by the
end of 1980 had improved its logical device independence by adding functions that
streamlined reading and writing multiple sectors and records, as well as records of variable
size. In addition to making such refinements of his own, Paterson also worked on dozens
of changes requested by Microsoft, from modifications to the operating system’s startup
messages to changes in EDLIN, the line editor he had written for his own use. Throughout
this process, IBM’s security restrictions meant that Paterson was never told the name of the
OEM and never shown the prototype machines until he left Seattle Computer Products and
joined Microsoft in May 1981.

And of course, throughout the process the developers encountered the myriad loose ends,
momentary puzzles, bugs, and unforeseen details without which no project is complete.
There were, for example, the serial card interrupts that occurred when they should not
and, frustratingly, a hardware constraint that the BIOS could not accommodate at first and
that resulted in sporadic crashes during early MS-DOS operations.

The MS-DOS Encyclopedia

1980-1981

Bob O’Rear’s sketch of
the steps involved in
moving 86-DOS to the
IBM prototype.

hecrz HER ‘“"“"‘&'

2bDoS v ke3> ie

Section I: The Development of MS-DOS 17

1980-1981

18

s%ers
O)/uﬁ(p%ﬁpu@u £~xup%4ﬂww?7\4(s%&mhﬂe
tyzo IB\JMS Ermwf 'bg &na “+o aﬂm«ru‘wt()

bl sty o

J‘&%‘?

@ﬁ‘(‘/k’% BIS to bo:d e Ny
{9 0%0 . 86 D0S wrud $o 1001 0 Lewfol 2N |
U\-«rﬁ*%&o*r

Proge— o mth%wwms

Sa«Q{nﬂw Lecafo
;“ Mw»ﬂ\:#:iéc
Q> TM“;G%%W

Ldo

dats &Axke
Sranathy

‘*(
oo At M"C_‘Sh

%/Viv%&

O

- & Fox Debos mm-«h&é Staage
Q* T wwls mcﬁc_ pmachine
’1’:- %UG“M&W US b eadable

r o~ l:.de\ €oxas g0 Xas sm.wips
é)j}/ ‘{,lFoam&r To alleccle defocfed bad Luncke
1o & BADTAK .
v e putlen vtk 2280 @UN sPAce whew 4 haden

O~ @*ﬁ%

Dos Msggﬁms
< [. Mare ‘dotd to MW’OS‘DZZ
o3
M

so:a
So0:3

ot |
[lf "Hi13n uloq[i'ltl\‘!l'o

e "1 w,u,azs{ov
Y9 Y yymmeddddd

Regeiusy ebs 1o gobOS 'bs-"—‘*dll&se&-“teuﬂ‘cﬂ%,
witl take ot 8bDos A*dﬁd-k?mbtmmhn;
Aveidh

i~ 2. vl Comman® To v Autoexec, PAT w &
Qo o anbmif on this Gle, T4 AwwerEc A

L
r2ed W (Cudon39) bombs,
7 Cht ot RS-322 gupect i He BTOS
WCM ot Supb T wWya—«‘Q

clu ot EDIN it) fihe fangen He arelbable

dogudo on # 2\

FI Gocliom cZJ dotds it ivnl
PoS

U Tdicaliin f\»—« CHE DS f)}a,mid‘& Jmulqyﬂ«.ﬁms

y/y

Part of Bob O'Rear’s “laundry” list of operating-system changes and corrections for early April 1981. Around
this time, interim beta copies were shipped to IBM for testing.

The MS-DOS Encyclopedia

1981

The 1981 debut of the
IBM Personal
Computer.

‘My own IBM computer.
Imagine that”

Presenting the IBM of
Personal Computers.

‘Dad, can I use
the IBM computer

;F‘”‘W

_J

f,-o

1t not an unusual
phenomenon. It

4K
starts when your

') sonasksto

) borrow

atie. Or

when your

, daughter

wum to
to use your metal racquet. Sometimes you let them. Often
you don't. But when they start asking to use your IBM
Personal Computer, its better 0 say yes

Because learning about computers is a subject your
kids can study and enjoy at home

1t also a fact that the IBM Personal Computer can
be as useful in your home as it is in your office. To help
plan the family budget, for instance. Or to compute
anything from interest paid to calories consumed. You
can even tap directly into the Dow Jones data bank with
your telephone and an inexpensive adapter.

But as surely as an IBM Personal Computer
can help you, it can also help your children.
Because just by playing games or drawing

The IBM Personal Computer

tonight?’

colorful graphics, your son or daughter will discover
what makes a computer tick—and what it can do. They
can take the same word processing program you use

10 create business reports to write and edit book reports

(and learn how to type in the process). Your kids might
even get 50 “computer smart,” they'll start writing
their own programs in BASIC or Pascal

Ultimately, an IBM Personal Computer can be one
of the best investments you make in your family’s future.
And one of the least expensive. Starting at less than
$1600' there's a system that, with the addition of one
simple device, hooks up to your home TV and uses your
audio cassette recorder.

“To introduce your family to the [BM Personal
Computer, visit any Computerland® store or Sears
Business Systems Center. Or see it all at one of our IBM
Product Centers. (The IBM National Accounts Division
will serve business customers who want to purchase in
quantity)

And remember. When your kids ask to use your
1BM Personal Computer, let them. But just make
sure you can get it back. After all your son's
still wearing that tie.

In spite of such difficulties, however, the new operating system ran on the prototype for
the first time in February 1981. In the six months that followed, the system was continually
refined and expanded, and by the time of its debut in August 1981, MS-DOS, like the IBM
Personal Computer on which it appeared, had become a functional product for home

and office use.

Section I: The Development of MS-DOS 19

1981

Version 1

The first release of MS-DOS, version 1.0, was not the operating system Microsoft envi-
sioned as a final model for 16-bit computer systems. According to Bill Gates, “Basically,
what we wanted to do was one that was more like MS-DOS 2, with the hierarchical file
system and everything...the key thing [in developing version 1.0] was my saying, ‘Look,
we can come out with a subset first and just go upward from that.””

This first version — Gates’s subset of MS-DOS — was actually a good compromise be-
tween the present and the future in two important respects: It enabled Microsoft to meet
the development schedule for IBM and it maintained program-translation compatibility
with CP/M.

Available only for the IBM Personal Computer, MS-DOS 1.0 consisted of 4000 lines of
assembly-language source code and ran in 8 KB of memory. In addition to utilities such

as DEBUG, EDLIN, and FORMAT, it was organized into three major files. One file,
IBMBIO.COM, interfaced with the ROM BIOS for the IBM PC and contained the disk and
character input/output system. A second file, IBMDOS.COM, contained the DOS kernel, in-
cluding the application-program interface and the disk-file and memory managers. The
third file, COMMAND.COM, was the external command processor — the part of MS-DOS
most visible to the user.

To take advantage of the existing base of languages and such popular applications as
WordStar and dBASE I1, MS-DOS was designed to allow software developers to mechan-
ically translate source code for the 8080 to run on the 8086. And because of this link,
MS-DOS looked and acted like CP/M-80, at that time still the standard among operating
systems for microcomputers. Like its 8-bit relative, MS-DOS used eight-character filenames
and three-character extensions, and it had the same conventions for identifying disk drives
in command prompts. For the most part, MS-DOS also used the same command language,
offered the same file services, and had the same general structure as CP/M. The resem-
blance was even more striking at the programming level, with an almost one-to-one cor-
respondence between CP/M and MS-DOS in the system calls available to application
programs.

New Features

20

MS-DOS was not, however, a CP/M twin, nor had Microsoft designed it to be inextricably
bonded to the IBM PC. Hoping to create a product that would be successful over the long
term, Microsoft had taken steps to make MS-DOS flexible enough to accommodate
changes and new directions in the hardware technology — disks, memory boards, even
microprocessors —on which it depended. The first steps toward this independence from

The MS-DOS Encyclopedia

1981

Di

BUSINESS

gest

soas & e 1 o

Its Desk-Top
Model Brings
A New Image

Big I.B.M.’s Little Computer

T Iy
“we Lca-uooo-r .

vt

for use in

“or
the personal-computer market, and experts
believe the computer giant could capture the
lead In the youthul industry within two

esterday the company Introduced sev
eral vergioms ol 3 smail computer designed
homes, scl

catch-up. The IBM mumnes operate on an
Intel Corp’ 8088 microprocessor, a faster typewritten
mors pomertn e e T At ke ll ANk CAPRCIRy, U What (Y G | rmmcememy e e

for distribution such popular programs a
VisiCale. a financtal forecasting model mar
by

mu lqlnpmenl tncls
processing_system,
ucn.n from Peachtree Software Inc. and

IBM’s New Line Likely to Shake Up fim ..
The Market for Personal Computers =

By GBoRGE ANDERS
Staff Reporter of Tom Wats STaxeT Joumnar
Intarnational Rusiness Ma- ard mors
ade its bold entry (nto in rivals’ machines. [BM aiso has obtained use will enable them to work with longer | w'ciel of Byie. & personal comput
programs and more data than competing | mageane
machines and to display images on their
video screens in greater detail -
Bul the added memiory comes at a Price. | iund. s chain of retas sores that wall

knowledges that a fully stocked com e

three accounting puter will cost $6,000 or more

$1,565 machine comes with 16.000 characters il require users o provide thevr

r-mjsm- Inc.
ams, o software for the
lude the EasyWriter [BM ac

far greater, cquivalent to more than 1000
The new IBM computers

fuerreackano ey

renTec oaTa

Retail Sales
InUS. Up
1.3% in July
But Analysts

Are Dubious of
General Upturn

s Chnogher Mor

(wnilllln ‘are non & ad or o' s in 5
) Mo e ima, o

market ihenew | B M procs

Its DASIC | rom 4135, for » smpie system that

Ceievaion ke Gisplay screens. and

another

anotber $540.

[ble extras runs
fanalyst al bor-

refcWorld e
=E==F I "1s% nice

;ys!hmomrumm

Ikage. " he says.
tUe that you

By Thom Hogan. I Staf]

b able w order an (KM Personal Computer

1It’s Official; One surprise

NEW YORK. NY—Within a month youshoukd —thon o

InfoWortd, Computertand. the newl created

IBM Announces New Microcomputer System o’

Apple 111, the

it g plac: a the 1B faciliy
Florida. 2 reported ear

remain o b seen

cipated. the features of the mac

alrcady published

For those of you who have been reading —ters wil be selling the Personal Computer

InfoWorid. there were few surprises in the B is sho stting up a special divisaon of the

1BM announcement. Although the sctual in Data Procesing Group 10 market the

troduction ok place s mondh later than anti. — machine

arc The price b at $1565. sighily higher

wirtually wentical 10 the information we'e than we reported earier 1t includes the key
haoard unit. an enhanced Microsolt BASIC in

PERSONAL COMPUTERS

PERSONAL
COMPUTER
FROM IBM

The mainframer’s long-
awaited entry into the personal
computing market aims for
corporate as well as home
users.
With uncharacteristic but resounding fan-
fare, 1BM ended the summer’s most popular
guessing game for the industry by introduc-
ing its Personal Computer. Highly compa-
rable to offerings from arch-contenders Ap-
ple and Radio Shack, the machine repre-
sents several new tacks for the leading com-
puter manufacturer as it attempts to hitch its
wagon to one of the fastest growing seg.
ments of the industry

The computer, which is designed to
appeal to home users as well as corporate
professionals, ranges in price from $1,565
for a bare-bones configuration to $6.300 for
the full-blown model. It will be sold through

Sears and Computerland computer retail
stores as well as directly to large corporate
and educational users, IBM says, pointing
out that it has set up a special national mar-
keting team to handle such volume orders

Donald Estridge, the articulate di-
rector of IBM's entry systems business who
braved strobes and movie lights at the ma-
chine's Waldorf-Astoria introduction, de-
clines to say how many personnel have been
dedicated to the national marketing effort,
but says it will be selling in volumes of 20
machines or more. Several weeks after the
unveiling, he said response so far had been
**very, very good,"* with orders being taken
but no deliveries to be made before this
month.

In addition to the game of Adven
ture, which Estridge said has been thor-
oughly exercised by his Boca Raton, Fla.,
staff, 1BM has decked out the machine with
an array of packaged applications programs
that are expected to make it attractive to the
corporate user.

Among these are the popular Visi-
Calc spreadsheet package from Personal
Software, accounting packages from Man-
agement Science America’s Peachtree Soft-
ware operation, and Information Unlimit-
ed's EasyWriter word processing system.
Although 1BM wouldn't say, more indepen-

BM really gets personal.

dently developed packages are certain to be
offered for the computer as well as packages

ently unveiled its first offering in the

A sampling of the headlines and newspaper articles that abounded when IBM announced its Personal

Computer.

personal computer market—the 1BM Personal
Computer. The unit, perhaps surprisingly, plays
music and includes game software to say nothing
of the standard features available

The machine is impressive. It starting price is
mere $1565. For that price the buyer gets the 83
key keyboard, the computer itself, based on an
8088 microprocessor, and 16k of main memory
This minimal configuration can use a tape cassette
for mass storage and a television set (with an rf

modulator) for a display. (The machine is fully FCC
certified for home operation as a class B
computing device.)

IBM is cognizant of the fact that this minimally
configured machine probably won't last a serious
computerist long before he wants to expand. The
company offers upgraded versions of the machine,
and will sell them in different configurations. For
example, the firm lists a more typical configuration
for home or school as G4k of main memory, one disk

continued on page 17

12

Personal Computing/ October 1981

Section I: The Development of MS-DOS

21

1981

22

MICROSOFT
QUARTERLY

This policy is especially advan-

runtime system used with pre-
vious versions. If application

Paul Allen

plex operations, such as floating

language
Withthe

of

totheir applications, there is

of the Personal Computer. it

the ne: Compu-
terisits 8088 CPU. IBM's choice | 100ks as though the industry is

Microsofts wish (o increase the
number of application packages
onthe market. This policy

with COMMON, and the im-

for the application programmer.
BASCOMS 3is available
now for CP/Msystems.
including the Apple llwith the
Microsoft Softcard. Microsoft

tageous when a large number of point and graphics routines. Microsoft

programs is distribuled using a execule much faster. The COBOL

e cieriner |IBM Breaks the | %oz oo

paymentis paid. 16-Bit Barrier easy to construct a graphics Passes GSA
(Microsoft stil supports the applcatonwihout machine | \falidation

Microsoft s always con-
cerned about standards for all

change. the addition of CHAIN

y pr
Personal Computer, we're
planning afull ine of 16-bitlan-

noroyalty fee finally gearing up for serious

versions 5 100) % 16-bit software support.In add- | 1SProducts The United States
This change inthe t tware gestuse

BASCOM royatty policy reflects the IBM

software inthe worid, has de-
veloped tests for compliance
th

andend- twar
tools. Application packages are
rapidly being adapted!othe

standards for compilers Testing
of compilers. called validation.

The “linch pin” of Microsoft's
new 16-bit productine for the
8086/8088 is our compact,

plementation of the runtime especially
module make BASCOM a muc rams. tion | Spectors b
more flexible and powertul tool in Microsoft BASIC. of software developers

Microsoft submitted ts
COBOL compiler (under the
CP/Moperating system) for
validation. The General

s

flexible operating system, MS-
)S. MS-DO!

primary

A page from Microsoft’s third-quarter

report for 1981.

0BOL
as alow-intermediate implemen-
tation of the 1974 ANS| standard

BASCOM andthe BASIC the past 10 months: first, the
Interpreter on many processors | industry's y

I
Personal Computer We've
andoperating systems, thus | senous 16-bit software

existing CP/M 2.x operating

) oee Sonssaragh. | 1COBOL
grams created with BASCOM | broken: and second, the 4
have, il continue to h. capabilties of the 16-bit and 3 Y
ave. and will continue to have. | capabilt 6-bi ana Z0pragramsiorununder | & OB
put i 3 for validation? Mike Orr. COBOL.
A 16-bit processor gives tothe XENIX multi-user, multi- | Product manager. offeredthe
inan yportant DOS
For recovery, device
example, we vetakenadvan- | independent /0. and built-n
tageof reads and
inginour MS-LINK. alinkerfor | wntes Whatis now the stan-
Pascalor FORT} the
In 96K of memory, the Microsoft | no doubt become an industry
8086 BASIC interpreter can standard
execulea64K program, aimost | Now that the 16-bit software
barrier h
b fh

features, human

andin
solving problems thatinvolve | computers. It's an industry move
larger we've quite some
The larger number of reg- time and, given the momentum

8 o- | ofIBM i

pro-
cessors alsomeans thatcom- | swing.

specific hardware configurations appeared in MS-DOS version 1.0 in the form of device-
independent input and output, variable record lengths, relocatable program files, and a
replaceable command processor.

MS-DOS made input and output device-independent by treating peripheral devices as if
they were files. To do this, it assigned a reserved filename to each of the three devices it
recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for
the auxiliary serial ports. Whenever one of these reserved names appeared in the file con-
trol block of a file named in a command, all operations were directed to the device, rather
than to a disk file. (A file control block, or FCB, is a 37-byte housekeeping record located
in an application’s portion of the memory space. It includes, among other things, the file-
name, the extension, and information about the size and starting location of the file

on disk.)

Such device independence benefited both application developers and computer users.
On the development side, it meant that applications could use one set of read and write
calls, rather than a number of different calls for different devices, and it meant that an ap-
plication did not have to be modified if new devices were added to the system. From the

The MS-DOS Encyclopedia

1981

user’s point of view, device independence meant greater flexibility. For example, even if a
program had been designed for disk I/O only, the user could still use a file for input or
direct output to the printer.

Variable record lengths provided another step toward logical independence. In CP/M, logi-
cal and physical record lengths were identical: 128 bytes. Files could be accessed only in
units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With
MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys-
tem maintained file lengths to the exact size in bytes and could be relied on to support logi-
cal records of any size desired.

Another new feature in MS-DOS was the relocatable program file. Unlike CP/M, MS-DOS
had the ability to load two different types of program files, identified by the extensions
.COM and .EXE. Program files ending with .COM mimicked the binary files in CF/M. They
were more compact than .EXE files and loaded somewhat faster, but the combined pro-
gram code, stack, and data could be no larger than 64 KB. A .EXE program, on the other
hand, could be much larger because the file could contain multiple segments, each of
which could be up to 64KB. Once the segments were in memory, MS-DOS then used part
of the file header, the relocation table, to automatically set the correct addresses for each
segment reference.

In addition to supporting .EXE files, MS-DOS made the external command processor,
COMMAND.COM, more adaptable by making it a separate relocatable file just like any
other program. It could therefore be replaced by a custom command processor, as long
as the new file was also named COMMAND.COM.

Performance

Everyone familiar with the IBM PC knows that MS-DOS eventually became the dominant
operating system on 8086-based microcomputers. There were several reasons for this, not
least of which was acceptance of MS-DOS as the operating system for IBM’s phenomenally
successful line of personal computers. But even though MS-DOS was the only operating
system available when the first IBM PCs were shipped, positioning alone would not neces-
sarily have guaranteed its ability to outstrip CP/M-86, which appeared six months later.
MS-DOS also offered significant advantages to the user in a number of areas, including the
allocation and management of storage space on disk.

Like CP/M, MS-DOS shared out disk space in allocation units. Unlike CP/M, however,
MS-DOS mapped the use of these allocation units in a central file allocation table —the
FAT — that was always in memory. Both operating systems used a directory entry for
recording information about each file, but whereas a CP/M directory entry included an al-
location map —a list of sixteen 1 KB allocation units where successive parts of the file
were stored —an MS-DOS directory entry pointed only to the first allocation unit in the
FAT and each entry in the table then pointed to the next unit associated with the file. Thus,
CP/M might require several directory entries (and more than one disk access) to load a file

Section I: The Development of MS-DOS 23

1981

larger than 16 KB, but MS-DOS retained a complete in-memory list of all file components
and all available disk space without having to access the disk at all. As a result, MS-DOS’s
ability to find and load even very long files was extremely rapid compared with CP/M’s.

‘Two other important features — the ability to read and write multiple records with one
operating-system call and the transient use of memory by the MS-DOS command
processor— provided further efficiency for both users and developers.

The independence of the logical record from the physical sector laid the foundation for the
ability to read and write multiple sectors. When reading multiple records in CP/M, an appli-
cation had to issue a read function call for each sector, one at a time. With MS-DOS, the ap-
plication could issue one read function call, giving the operating system the beginning
record and the number of records to read, and MS-DOS would then load all of the corre-
sponding sectors automatically.

Another innovative feature of MS-DOS version 1.0 was the division of the command pro-
cessor, COMMAND.COM, into a resident portion and a transient portion. (There is also a
third part, an initialization portion, which carries out the commands in an AUTOEXEC
batch file at startup. This part of COMMAND.COM is discarded from memory when its

work is finished.) The reason for creating resident and transient portions of the command

processor had to do with maximizing the efficiency of MS-DOS for the user: On the one
hand, the programmers wanted COMMAND.COM to include commonly requested func-
tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these
commands meant increasing the size of the command processor, with a resulting decrease
in the memory available to application programs. The solution to this trade-off of speed
versus utility was to include the extra functions in a transient portion of COMMAND.COM
that could be overwritten by any application requiring more memory. To maintain the in-
tegrity of the functions for the user, the resident part of COMMAND.COM was given the
job of checking the transient portion for damage when an application terminated. If neces-
sary, this resident portion would then load a new copy of its transient partner into memory.

Ease of Use

24

In addition to its moves toward hardware independence and efficiency, MS-DOS included
several services and utilities designed to make life easier for users and application devel-
opers. Among these services were improved error handling, automatic logging of disks,
date and time stamping of files, and batch processing.

MS-DOS and the IBM PC were targeted at a nontechnical group of users, and from the
beginning IBM had stressed the importance of data integrity. Because data is most likely
to be lost when a user responds incorrectly to an error message, an effort was made to in-
clude concise yet unambiguous messages in MS-DOS. To further reduce the risks of misin-
terpretation, Microsoft used these messages consistently across all MS-DOS functions and
utilities and encouraged developers to use the same messages, where appropriate, in their
applications.

The MS-DOS Encyclopedia

1981

O Package Contents

1 diskette, with the following files:

COMMAND. COM
MSDOS .COM
EDLIN.COM
DEBUG.COM
FILCOM.COM
Contents
1 MS-DOS Disk Operating System Manual O
Introduction
Features and Benefits of MS-DOS
Using This Manual
Syntax Notation
MS-DOS Structure and Characteristics
System Requirements Chapter 1 General MS-DOS Commands
1.1 Control Function Characters
1.2 special Editing Commands
The MS-DOS Operating System requires 8K bytes of memory. 1.3 Disk Errors
O Chapter 2 COMMAND .COM
2.1 Prompt.
2.2 Filenames
2.3 commands
2.3.1 Internal Commands
2.3.2 External Commands
O Chapter 3 EDLIN
3.1 Invoking EDLIN
3.2 Commands
3.2.1 Command Parameters
3.2.2 Interline Commands
3.3 Exror Messages
Chapter 4 DEBUG
4.1 Invoking DEBUG
4.2 Commands
4.2.1 Command Parameters
4.2.2 Command Descriptions
4.3 Error Messages
@) Chapter 5 FILCOM
5.1 Invoking FILCOM
5.2 Commands
5.2.1 Filenames
5.2.2 Switches
5.3 Examples
@) Chapter 6 Instructions for Single Disk Drive Users

Two pages from Microsoft’'s MS-DOS version 1.0 manual. On the left, the system’s requirements — 8 KB of
memory; on the right, the 118-page manual’s complete table of contents.

In a further attempt to safeguard data, MS-DOS also trapped hard errors — such as critical
hardware errors — that had previously been left to the hardware-dependent logic. Now
the hardware logic could simply report the nature of the error and the operating system
would handle the problem in a consistent and systematic way. MS-DOS could also trap the
Control-C break sequence so that an application could either protect against accidental
termination by the user or provide a graceful exit when appropriate.

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem-
ory information about the disk when it was changed. In CP/M, users had to log new disks
as they changed them — a cumbersome procedure on single-disk systems or when data
was stored on multiple disks. In MS-DOS, new disks were automatically logged as long as
no file was currently open.

Another new feature — one visible with the DIR command — was date and time stamping
of disk files. Even in its earliest forms, MS-DOS tracked the system date and displayed it at
every startup, and now, when it turned out that only the first 16 bytes of a directory entry

Section I: The Development of MS-DOS 25

1981-1982

were needed for file-header information, the MS-DOS programmers decided to use some
of the remaining 16 bytes to record the date and time of creation or update (and the size of
the file) as well.

Batch processing was originally added to MS-DOS to help IBM. IBM wanted to run

scripts — sequences of commands or other operations — one after the other to test various
functions of the system. To do this, the testers needed an automated method of calling
routines sequentially. The result was the batch processor, which later also provided users
with the convenience of saving and running MS-DOS commands as batch files.

Finally, MS-DOS increased the options available to a program when it terminated. For ex-
ample, in less sophisticated operating systems, applications and other programs remained
in memory only as long as they were active; when terminated, they were removed from
memory. MS-DOS, however, added a terminate-and-stay-resident function that enabled a
program to be locked into memory and, in effect, become part of the operating-system
environment until the computer system itself was shut down or restarted.

The Marketplace

26

When IBM announced the Personal Computer, it said that the new machine would run
three operating systems: MS-DOS, CP/M-86, and Sof Tech Microsystem’s p-System. Of the
three, only MS-DOS was available when the IBM PC shipped. Nevertheless, when MS-DOS
was released, nine out of ten programs on the InfoWorld bestseller list for 1981 ran under
CP/M-80, and CP/M-86, which became available about six months later, was the operating
system of choice to most writers and reviewers in the trade press.

Understandably, MS-DOS was compared with CP/M-80 and, later, CP/M-86. The main con-
cern was compatibility: To what extent was Microsoft’s new operating system compatible
with the existing standard? No one could have foreseen that MS-DOS would not only catch
up with but supersede CP/M. Even Bill Gates now recalls that “our most optimistic view of
the number of machines using MS-DOS wouldn’t have matched what really ended up
happening.”

To begin with, the success of the IBM PC itself surprised many industry watchers. Within a
year, IBM was selling 30,000 PCs per month, thanks in large part to a business community
that was already comfortable with IBM’s name and reputation and, at least in retrospect,
was ready for the leap to personal computing. MS-DOS, of course, benefited enormously
from the success of the IBM PC— in large part because IBM supplied all its languages and
applications in MS-DOS format.

But, at first, writers in the trade press still believed in CP/M and questioned the viability of
a new operating system in a world dominated by CP/M-80. Many assumed, incorrectly, that
a CP/M-86 machine could run CP/M-80 applications. Even before CP/M-86 was available,
Future Computing referred to the IBM PC as the “CP/M Record Player” — presumably in
anticipation of a vast inventory of CP/M applications for the new computer—and led its
readers to assume that the PC was actually a CP/M machine.

The MS-DOS Encyclopedia

1981-1982

Microsoft, meanwhile, held to the belief that the success of IBM's machine or any other
16-bit microcomputer depended ultimately on the emergence of an industry standard for a
16-bit operating system. Software developers could not afford to develop software for even
two or three different operating systems, and users could (or would) not pay the prices the
developers would have to charge if they did. Furthermore, users would almost certainly
rebel against the inconvenience of sharing data stored under different operating-system
formats. There had to be one operating system, and Microsoft wanted MS-DOS to be

the one.

The company had already taken the first step toward a standard by choosing hardware
independent designs wherever possible. Machine independence meant portability, and
portability meant that Microsoft could sell one version of MS-DOS to different hardware
manufacturers who, in turn, could adapt it to their own equipment. Portability alone,
however, was no guarantee of industry-wide acceptance. To make MS-DOS the standard,
Microsoft needed to convince software developers to write programs for MS-DOS. And in
1981, these developers were a little confused about IBM’s new operating system.

An operating system by any other name...

A tangle of names gave rise to one point of confusion about MS-DOS. Tim Paterson’s
“Quick and Dirty Operating System” for the 8086 was originally shipped by Seattle
Computer Products as 86-DOS. After Microsoft purchased 86-DOS, the name remained
for a while, but by the time the PC was ready for release, the new system was known as
MS-DOS. Then, after the IBM PC reached the market, IBM began to refer to the operating
system as the IBM Personal Computer DOS, which the trade press soon shortened to
PC-DOS. IBM’s version contained some utilities, such as DISKCOPY and DISKCOMP, that
were not included in MS-DOS, the generic version available for license by other manufac-
turers. By calling attention to these differences, publications added to the confusion about
the distinction between the Microsoft and IBM releases of MS-DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS-DOS but
decided to call the operating system Software Bus 86. MS-DOS thus became one of a line
of trademarked Software Bus products, another of which was a product called SB-80,
Lifeboat’s version of CP/M-80.

Finally, some of the first hardware companies to license MS-DOS also wanted to use their
own names for the operating system. Out of this situation came such additional names as
COMPAQ-DOS and Zenith’s Z-DOS.

Given this confusing host of names for a product it believed could become the industry
standard, Microsoft finally took the lead and, as developer, insisted that the operating sys-
tem was to be called MS-DOS. Eventually, everyone but IBM complied.

Developers and MS-DOS

Early in its career, MS-DOS represented just a small fraction of Microsoft’s business —
much larger revenues were generated by BASIC and other languages. In addition, in the
first two years after the introduction of the IBM PC, the growth of CP/M-86 and other

Section I The Development of MS-DOS 27

1981-1982

28

environments nearly paralleled that of MS-DOS. So Microsoft found itself in the unenviable
position of giving its support to MS-DOS while also selling languages to run on CP/M-86,
thereby contributing to the growth of software for MS-DOS’s biggest competitor.

Given the uncertain outcome of this two-horse race, some other software developers
chose to wait and see which way the hardware manufacturers would jump. For their part,
the hardware manufacturers were confronting the issue of compatibility between operat-
ing systems. Specifically, they needed to be convinced that MS-DOS was not a maverick —
that it could perform as well as CP/M-86 as a base for applications that had been ported
from the CP/M-80 environment for use on 16-bit computers.

Microsoft approached the problem by emphasizing four related points in its discussions
with hardware manufacturers:

® First, one of Microsoft’s goals in developing the first version of MS-DOS had always
been translation compatibility from CP/M-80 to MS-DOS software.

® Second, translation was possible only for software written in 8080 or Z80 assembly
language; thus, neither MS-DOS nor CP/M-86 could run programs written for other
8-bit processors, such as the 6800 or the 6502.

® Third, many applications were written in a high-level language, rather than in assem-
bly language.

® Fourth, most of those high-level languages were Microsoft products and ran on
MS-DOS.

Thus, even though some people had originally believed that only CP/M-86 would auto-
matically make the installed base of CP/M-80 software available to the IBM PC and other
16-bit computers, Microsoft convinced the hardware manufacturers that MS-DOS was, in
actuality, as flexible as CP/M-86 in its compatibility with existing— and appropriate —
CP/M-80 software.

MS-DOS was put at a disadvantage in one area, however, when Digital Research convinced
several manufacturers to include both 8080 and 8086 chips in their machines. With 8-bit
and 16-bit software used on the same machine, the user could rely on the same disk format
for both types of software. Because MS-DOS used a different disk format, CB/M had the
edge in these dual-processor machines —although, in fact, it did not seem to have much
effect on the survival of CP/M-86 after the first year or so.

Although making MS-DOS the operating system of obvious preference was not as easy as
simply convincing hardware manufacturers to offer it, Microsoft’s list of MS-DOS custom-
ers grew steadily from the time the operating system was introduced. Many manufacturers
continued to offer CP/M-86 along with MS-DOS, but by the end of 1983 the technical supe-
riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried
the market. For example, when DEC, a longtime holdout, decided to make MS-DOS the pri-
mary operating system for its Rainbow computer, the company mentioned the richer set of
commands and “dramatically” better disk performance of MS-DOS as reasons for its
choice over CP/M-86.

The MS-DOS Encyclopedia

1981-1982

Additional MS-DOS Features and Benefits

© Writien Entirely In 8086 Assembly Language
‘This provides signiticant speed improvements over
operating systems tha!
bit counterparts.

© Fast Efficient Flle Structure
The format eliminates the need for

diractory information and verify after write.

« NoNeed to Log in DI

log in a new disk by typing Control-C. This greatly
improves usability for single disk system users and for

© No Physical File/Disk Size Limitation
Unlike users of operating systems that are limited to 8
megabytes,
megabyte hard disk into three separate drives.

rgely transiated from their 8-

tents,” minimizes
access 1o the directory track, and provides for duplicate

As long as no file is currently open, there is no need to

people who like to store their data on separate diskettes.

MS-DOS users would not have to break a 24

MsS-DOS
Standard Operating System for 8086 Micros

MS-DOS is a disk operating system from Microsoft for
8086/8088 microprocessors. International Business Machines
Corp. chose MS-DOS (called IBM Personal Computer DOS) to
be its operating system of choice for its Personal Computer.
Microsoft's agreements with IBM and several other major
computer manufacturers indicate that end-user systems

What Makes MS-DOS Important?

running MS-DOS wilt be widely avarlable in the near future.
‘making MS-DOS the standard low-end operating system for
8086 micros. Why 1s MS-DOS becoming popular? MS-DOS 1s
an important advance In microcomputer operating systems.

All of Microsoft's languages (BASIC Interpreter. BASIC
Compiler, FORTRAN, COBOL. Pascal) are available
immediately under MS-DOS. Users of MS-DOS are assured
that their operating system will be the first that Microsoft will
‘support when any new products or major releases are
announced. In addition. the 8-bit versions of Microsoft's
langua, upward compatible with the 16-bit versions.
Thus, application programs written in 8-bit Microsoft
languages can be run under MS-DOS with littie or no
modification. Microsoft wants to encourage both the
transporting of 8-bit to 16-bit software, and the development of
new 16-bit software.

Here are the major features that make MS-DOS the operating
system people want to use on 8086 machines:

 Easy Conversion from 8080 10 8086
MS-DOS allows as much transportability of 8-bit machine
language software as is possible. MS-DOS emulates
system calls to CP/M-80. By simply running assembly
language source code through the Intel conversion
program, almost all 8080 programs will work without
modification. in most cases, a conversion to MS-DOS is
easier the sion 1o other

 Device Independent VO
MS-DOS simplifies I/0 to different devices on the UNIX.
concept. A single set of /O calls treats all devices ali
from the user's perspective. Thiere is no need to rewrite
programs when a new device is added 10 the system.
Simpty OPEN the device and READ or WRITE. Also,
device independent I/O assures that different control
charactars (specifically TAB) are handied the same by
the different devices.

The Future of MS-DOS

* Advanced Error Recovery Procedures
MS-DOS doesn't simply fade away when errors occur. If
a disk error occurs at any time during any program, MS-
DOS will retry the operation three times. If the opgmmn
cannot be completed successtully, MS-DOS wi
an error message. then wait for the user 10 enter a
response. The user can attempt recovery rather than
reboot the operating system.

« Complete Program Relocatabliity
MS-DOS is a truly relocatable operating system. Not only
‘can the Microsoft relocatable linking loader provide for
separate segments, but also the COMMAND program in
MS-DOS relocates the modules during loading rather
than loading them 10 preset addresses. Thus, MS-DOS
does not have the 64K program space limitation of other
operating systems.

« Powertul, Flexible File Characteristics
MS-DOS has no practical limit on file or disk size. MS-
DOS uses 4-byte XENIX OS compatible logical pointers.
for file and disk capacity up to 4 gigabytes.
Within a single diskette, the user of MS-DOS can have
files of different logical record lengths. MS-DOS is
designed to block and deblock its own physical sectors:
128 is not a sacred number in MS-DOS.
MS-DOS remembers the exact end of file marker. Thus.
should ane open a file with a logical record length other
than the physical record length, MS-DOS remembers
exactly where the file ends to the byte, rather than
rounded 10 128 bytes. This alleviates the need for forcing
Controi-Z’s or the like at the end of a file.

Microsoft plans to enhance MS-DOS. The additionat
‘addressing space of the 8086 processor makes Multi-tasking a
particularly attractive enhancement. An upward migration path
10 the XENIX operating system through XENIX compatible
system calls, “pipes.” and “forking"” is another planned
enhancement.

Plans for MS-DOS also include disk buffering. graphics and
cursor positioning, kanji support, multi-user and hard disk
support, and networking.

= No Overhead for Non-128-Byte Physicat Sectors
e doas not have toworry atout different physical
sector sizes when writing a Bl

© Time/Date Stamps

This alleviates, for instance,
the time on the relocatable fil
source file.

e need 10 recompile a file i
is more recent than on the

« Liteboat Associates
The world's largest independent distributor of
microcomputer Softuare his Ghosen o support MS-DO5
as its low-end 16-bit operating system. Recognizi
important migration path from the 8- Bitlevel to it
O, Lifeboat will be offering a wide range of software for
the MS-DOS environment.

« 100% 18M Compatible
1BM s offering software running under MS-DOS. IBM has
announced Microsoft BASIC and Microsoft Pascal, along
with accounting, financial planning, and word processing
software running under MS-DOS.

MICROSOFT

Microsoft, Inc.

10800 NE Eighth, Suite 819
Bellevue, WA 98004
206-455-8080 Telex 328945

Section I: The Development of MS-DOS

A Microsoft original equipment manufacturer (OEM) marketing brochure describing the strengths of MS-DOS.

29

1982-1983

Version 2

After the release of PC-specific version 1.0 of MS-DOS, Microsoft worked on an update
that contained some bug fixes. Version 1.1 was provided to IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 320 KB floppy disks.
This version, referred to as 1.25 by all but IBM, was the first version of MS-DOS shipped by
other OEMs, including COMPAQ and Zenith.

Even before these intermediate releases were available, however, Microsoft began plan-
ning for future versions of MS-DOS. In developing the first version, the programmers had
had two primary goals: running translated CP/M-80 software and keeping MS-DOS small.
They had neither the time nor the room to include more sophisticated features, such as
those typical of Microsoft’s UNIX-based multiuser, multitasking operating system, XENIX.
But when IBM informed Microsoft that the next major edition of the PC would be the
Personal Computer XT with a 10-megabyte fixed disk, a larger, more powerful version of
MS-DOS — one closer to the operating system Microsoft had envisioned from the start—
became feasible.

There were three particular areas that interested Microsoft: a new, hierarchical file system,
installable device drivers, and some type of multitasking. Each of these features contrib-
uted to version 2.0, and together they represented a major change in MS-DOS while still
maintaining compatibility with version 1.0.

The File System

30

Primary responsibility for version 2.0 fell to Paul Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2.0 code. The major design issue
confronting the developers, as well as the most visible example of its difference from ver-
sions 1.0, 1.1, and 1.25, was the introduction of a hierarchical file system to handle the file-
management needs of the XT’s fixed disk.

Version 1.0 had a single directory for all the files on a floppy disk. That system worked well
enough on a disk of limited capacity, but on a 10-megabyte fixed disk a single directory
could easily become unmanageably large and cumbersome.

CP/M had approached the problem of high-capacity storage media by using a partitioning
scheme that divided the fixed disk into 10 user areas equivalent to 10 separate floppy-disk
drives. On the other hand, UNIX, which had traditionally dealt with larger systems, used
a branching, hierarchical file structure in which the user could create directories and
subdirectories to organize files and make them readily accessible. This was the file-
management system implemented in XENIX, and it was the MS-DOS team’s choice for
handling files on the XT’s fixed disk.

The MS-DOS Encyclopedia

1982-1983

The MS-DOS version 1.0 manual next to the version 2.0 manual.

Partitioning, IBM’s initial choice, had the advantages of familiarity, size, and ease of imple-
mentation. Many small-system users — particularly software developers — were already
familiar with partitioning, if not overly fond of it, from their experience with CP/M. Devel-
opment time was also a major concern, and the code needed to develop a partitioning
scheme would be minimal compared with the code required to manage a hierarchical file
system. Such a scheme would also take less time to implement.

However, partitioning had two inherent disadvantages. First, its functionality would
decrease as storage capacity increased, and even in 1982, Microsoft was anticipating sub-
stantial growth in the storage capacity of disk-based media. Second, partitioning de-
pended on the physical device. If the size of the disk changed, either the number or the
size of the partitions must also be changed in the code for both the operating system and
the application programs. For Microsoft, with its commitment to hardware independence,
partitioning would have represented a step in the wrong direction.

A hierarchical file structure, on the other hand, could be independent of the physical
device. A disk could be partitioned logically, rather than physically. And because these
partitions (directories) were controlled by the user, they were open-ended and enabled
the individual to determine the best way of organizing a disk.

Ultimately, it was a hierarchical file system that found its way into MS-DOS 2.0 and even-
tually convinced everyone that it was, indeed, the better and more flexible solution to the
problem of supporting a fixed disk. The file system was logically consistent with the
XENIX file structure, yet physically consistent with the file access incorporated in versions
1.x, and was based on a root, or main, directory under which the user could create a sys-
tem of subdirectories and sub-subdirectories to hold files. Each file in the system was iden-
tified by the directory path leading to it, and the number of subdirectories was limited only
by the length of the pathname, which could not exceed 64 characters.

In this file structure, all the subdirectories and the filename in a path were separated
from one another by backslash characters, which represented the only anomaly in the
XENIX/MS-DOS system of hierarchical files. XENIX used a forward slash as a separator,
but versions 1.x of MS-DOS, borrowing from the tradition of DEC operating systems,
already used the forward slash for switches in the command line, so Microsoft, at IBM’s
request, decided to use the backslash as the separator instead. Although the backslash

Section I: The Development of MS-DOS 31

1982-1983

character created no practical problems, except on keyboards that lacked a backslash, this
decision did introduce inconsistency between MS-DOS and existing UNIX-like operating
systems. And although Microsoft solved the keyboard problem by enabling the user to
change the switch character from a slash to a hyphen, the solution itself created compati-
bility problems for people who wished to exchange batch files.

Another major change in the file-management system was related to the new directory
structure: In order to fully exploit a hierarchical file system, Microsoft had to add a new
way of calling file services.

Versions 1.x of MS-DOS used CP/M-like structures called file control blocks, or FCBs, to
maintain compatibility with older CB/M-80 programs. The FCBs contained all pertinent
information about the size and location of a file but did not allow the user to specify a file
in a different directory. Therefore, version 2.0 of MS-DOS needed the added ability to ac-
cess files by means of handles, or descriptors, that could operate across directory lines.

In this added step toward logical device independence, MS-DOS returned a handle when-
ever an MS-DOS program opened a file. All further interaction with the file involved only
this handle. MS-DOS made all necessary adjustments to an internal structure — different
from an FCB— so that the program never had to deal directly with information about the
file’s location in memory. Furthermore, even if future versions of MS-DOS were to change
the structure of the internal control units, program code would not need to be rewritten—
the file handle would be the only referent needed, and this would not change.

Putting the internal control units under the supervision of MS-DOS and substituting
handles for FCBs also made it possible for MS-DOS to redirect a program’s input and out-
put. A system function was provided that enabled MS-DOS to divert the reads or writes
directed to one handle to the file or device assigned to another handle. This capability was
used by COMMAND.COM to allow output from a file to be redirected to a device, such as a
printer, or to be piped to another program. It also allowed system cleanup on program
terminations.

Installable Device Drivers

32

At the time Microsoft began developing version 2.0 of MS-DOS, the company also realized
that many third-party peripheral devices were not working well with one another. Each
manufacturer had its own way of hooking its hardware into MS-DOS and if two third-party
devices were plugged into a computer at the same time, they would often conflict or fail.

One of the hallmarks of IBM’s approach to the PC was open architecture, meaning that
users could simply slide new cards into the computer whenever new input/output de-
vices, such as fixed disks or printers, were added to the system. Unfortunately, version
1.0 of MS-DOS did not have a corresponding open architecture built into it— the BIOS

The MS-DOS Encyclopedia

1982-1983

contained all the code that permitted the operating system to run the hardware. If inde-
pendent hardware manufacturers wanted to develop equipment for use with a computer
manufacturer’s operating system, they would have to either completely rewrite the device
drivers or write a complicated utility to read the existing drivers, alter them, add the code
to support the new device, and produce a working set of drivers. If the user installed more
than one device, these patches would often conflict with one another. Furthermore, they
would have to be revised each time the computer manufacturer updated its version

of MS-DOS.

By the time work began on version 2.0, the MS-DOS team knew that the ability to install
any device driver at run time was vital. They implemented installable device drivers by
making the drivers more modular. Like the FAT, I0.SYS (JBMBIO.COM in PC-DOS)
became, in effect, a linked list—this time, of device drivers —that could be expanded
through commands in the CONFIG.SYS file on the system boot disk. Manufacturers could
now write a device driver that the user could install at run time by including it in the
CONFIG.SYS file. MS-DOS could then add the device driver to the linked list.

By extension, this ability to install device drivers also added the ability to supersede a pre-
viously installed driver — for example, the ANSI.SYS console driver that supports the ANSI
standard escape codes for cursor positioning and screen control.

Print Spooling

At IBM’s request, version 2.0 of MS-DOS also possessed the undocumented ability to per-
form rudimentary background processing— an interim solution to a growing awareness of
the potentials of multitasking.

Background print spooling was sufficient to meet the needs of most people in most situa-
tions, so the print spooler, PRINT.COM, was designed to run whenever MS-DOS had
nothing else to do. When the parent application became active, PRINT.COM would be in-
terrupted until the next lull. This type of background processing, though both limited and
extremely complex, was exploited by a number of applications, such as SideKick.

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, and print spooling were the major design
decisions in version 2.0. But there were dozens of smaller changes, too.

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS-DOS had to access the disk more often, and file
access became much slower as a result. In trying to find a solution to this problem, Chris
Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section I: The Development of MS-DOS 33

1982-1983

Two members of the
IBM line of personal
computers for which
versions 1 and 2 of
MS-DOS were devel-
oped. On the left, the
original IBM PC (ver-
sion 1.0 of MS-DOS);
on the right, the IBM
PC/XT (version 2.0).

: -]
W

AR

il

a user would need to physically change disks. If that minimum time had not elapsed, the
current disk information in RAM — whether for a fixed disk or a floppy — was probably
still good.

Peters found that the fastest anyone could physically change disks, even if the disks were
damaged in the process, was about two seconds. Reasoning from this observation, he had
MS-DOS check to see how much time had gone by since the last disk access. If less than
two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted
and that the disk information in RAM was still valid. With this little trick, the speed of file
handling in MS-DOS version 2.0 increased considerably.

Version 2.0 was released in March 1983, the product of a surprisingly small team of six de-
velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,
and Reynolds. Despite its complex new features, version 2.0 was only 24 KB of code.
Though it maintained its compatibility with versions 1.x, it was in reality a vastly different
operating system. Within six months of its release, version 2.0 gained widespread public
acceptance. In addition, popular application programs such as Lotus 1-2-3 took advantage
of the features of this new version of MS-DOS and thus helped secure its future as the
industry standard for 8086 processors.

Versions 2.1 and 2.25

34

The world into which version 2.0 of MS-DOS emerged was considerably different from the
one in which version 1.0 made its debut. When IBM released its original PC, the business
market for microcomputers was as yet undefined — if not in scope, at least in terms of who
and what would dominate the field. A year and a half later, when the PC/XT came on the
scene, the market was much better known. It had, in fact, been heavily influenced by IBM
itself. There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett
Packard HP150, that were hardware incompatible with the IBM, but manufacturers of new
computers knew that IBM was a force to consider and many chose to compete with the
IBM PC by emulating it. Software developers, too, had gained an understanding of busi-
ness computing and were confident they could position their software accurately in the
enormous MS-DOS market.

The MS-DOS Encyclopedia

1983

In such an environment, concerns about the existing base of CP/M software faded as
developers focused their attention on the fast-growing business market and MS-DOS
quickly secured its position as an industry standard. Now, with the obstacles to MS-DOS
diminished, Microsoft found itself with a new concern: maintaining the standard it had
created. Henceforth, MS-DOS had to be many things to many people. IBM had require-
ments; other OEMs had requirements. And sometimes these requirements conflicted.

Hardware Developers

When version 2.0 was released, IBM was already planning to introduce its PCjr. The PCjr
would have the ability to run programs from ROM cartridges and, in addition to using half-
height 5%s-inch drives, would employ a slightly different disk-controller architecture. Be-
cause of these differences from the standard PC line, IBM’s immediate concern was for a
version 2.1 of MS-DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte
fixed disk. This prospect meant Microsoft needed to look again at its file-management sys-
tem, because the larger storage capacity of the 20-megabyte disk stretched the size limita-
tions for the file allocation table as it worked in version 2.0.

However, IBM’s primary interest for the next major release of MS-DOS was networking.
Microsoft would have preferred to pursue multitasking as the next stage in the develop-
ment of MS-DOS, but IBM was already developing its IBM PC Network Adapter, a plug-in
card with an 80188 chip to handle communications. So as soon as version 2.0 was released,
the MS-DOS team, again headed by Zbikowski and Reynolds, began work on a networking
version (3.0) of the operating system.

Meanwhile...

The international market for MS-DOS was not significant in the first few years after the
release of the IBM PC and version 1.0 of MS-DOS. IBM did not, at first, ship its Personal
Computer to Europe, so Microsoft was on its own there in promoting MS-DOS. In 1982, the
company gained a significant advantage over CP/M-86 in Europe by concluding an agree-
ment with Victor, a software company that was very successful in Europe and had already
licensed CP/M-86. Working closely with Victor, Microsoft provided special development
support for its graphics adaptors and eventually convinced the company to offer its pro-
ducts only on MS-DOS. In Japan, the most popular computers were Z80 machines, and
given the country’s huge installed base of 8-bit machines, 16-bit computers were not taking
hold. Mitsubishi, however, offered a 16-bit computer. Although CP/M-86 was Mitsubishi’s
original choice for an operating system, Microsoft helped get Multiplan and FORTRAN
running on the CP/M-86 system, and eventually won the manufacturer’s support for
MS-DOS.

Section I: The Development of MS-DOS 35

1983

36

D05 30 A sample of the reviews that appeared
with each new version of MS-DOS.

Irresistible
DOS 3.0

International support, file-sharing capa-
bilities, and many other features in DOS
3.0 result in a significantly enhanced
operating system.

The Ascent

@ Hands On: Operating Systems

MS-DOS 2.00: A
Hands-On Tutorial

TECH JouRAL

In the software arena, by the time development was underway on the 2.x releases of
MS-DOS, Microsoft’s other customers were becoming more vocal about their own needs.
Several wanted a networking capability, adding weight to IBM’s request, but a more urgent
need for many —a need not shared by IBM at the time — was support for international
products. Specifically, these manufacturers needed a version of MS-DOS that could be sold
in other countries —a version of MS-DOS that could display messages in other languages
and adapt to country-specific conventions, such as date and time formats.

Microsoft, too, wanted to internationalize MS-DOS, so the MS-DOS team, while modifying
the operating system to support the PCjr, also added functions and a COUNTRY command
that allowed users to set the date and time formats and other country-dependent variables
in the CONFIG.SYS file.

The MS-DOS Encyclopedia

1983

A Kanyji screen with

NEC PC-9800 Series Personal Computer the MS-DOS copyright
message.

347097+ MS-DOS N -¥"3v 3. 10

Copyright 1981, 1985 Microsoft Corp. / NEC Corporation

EXEZR D RE TS
HEZ. ALY FSATOD NecDIC .SYS TE

COMMAND /" —¥" 37 3. 10

A>DIR /W

K547 A: ODF 4 R7DFEY 2—4AF~biE KAVAI _RYU
F4 V7 b YL A:¥BIN

R . ASSIGN COM ATTRIB EXE BACKUP EXE

CHKDSK EXE COPY2 COM COPYA_ COM DISKCOPY COM MOUSE SYS

FC FIND EXE FORMAT EXE KEY COM LABEL EXE

MORE COM SPEED ~ COM_ SWITCH COM SYS EXE SORT CoM

20 D7 7 A VBHY S,
3604480 /54 HSERIAIEE TS .
747 a7 MEEaR
R [»71] EFMS-DOS <

At about the same time, another international requirement appeared. The Japanese market
for MS-DOS was growing, and the question of supporting 7000 Kanji characters (ideo-
grams) arose. The difficulty with Kanji is that it requires dual-byte characters. For English
and most European character sets, one byte corresponds to one character. Japanese char-
acters, however, sometimes use one byte, sometimes two. This variability creates prob-
lems in parsing, and as a result MS-DOS had to be modified to parse a string from the
beginning, rather than back up one character at a time.

This support for individual country formats and Kanji appeared in version 2.01 of MS-DOS.
IBM did not want this version, so support for the PCjr, developed by Zbikowski, Reynolds,
Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to IBM and did
not include the modifications for international MS-DOS.

Different customers, different versions

As early as version 1.25, Microsoft faced the problem of trying to satisfy those OEM cus-
tomers that wanted to have the same version of MS-DOS as IBM. Some, such as COMPAQ,
were in the business of selling 100-percent compatibility with IBM. For them, any differ-
ence between their version of the operating system and IBM’s introduced the possibility of
incompatibility. Satisfying these requests was difficult, however, and it was not until ver-
sion 3.1 that Microsoft was able to supply a system that other OEMs agreed was identical
with IBM’s.

Before then, to satisfy the OEM customers, Microsoft combined versions 2.1 and 2.01 to
create version 2.11. Although IBM did not accept this because of the internationalization
code, version 2.11 became the standard version for all non-IBM customers running any
form of MS-DOS in the 2.x series. Version 2.11 was sold worldwide and translated into
about 10 different languages. Two other intermediate versions provided support for
Hangeul (the Korean character set) and Chinese Kanji.

Section I The Development of MS-DOS 37

1983

Software Concerns

38

After the release of version 2.0, Microsoft also gained an appreciation of the importance —
and difficulty — of supporting the people who were developing software for MS-DOS.

Software developers worried about downward compatibility. They also worried about
upward compatibility. But despite these concerns, they sometimes used programming
practices that could guarantee neither. When this happened and the resulting programs
were successful, it was up to Microsoft to ensure compatibility.

For example, because the information about the internals of the BIOS and the ROM inter-
face had been published, software developers could, and often did, work directly with the
hardware in order to get more speed. This meant sidestepping the operating system for
some operations. However, by choosing to work at the lower levels, these developers lost
the protection provided by the operating system against hardware changes. Thus, when
low-level changes were made in the hardware, their programs either did not work or did
not run cooperatively with other applications.

Another software problem was the continuing need for compatibility with CP/M. For
example, in CP/M, programmers would call a fixed address in low memory in order to re-
quest a function; in MS-DOS, they would request operating-system services by executing a
software interrupt. To support older software, the first version of MS-DOS allowed a pro-
gram to request functions by either method. One of the CP/M-based programs supported
in this fashion was the very popular WordStar. Since Microsoft could not make changes in
MS-DOS that would make it impossible to run such a widely used program, each new ver-
sion of MS-DOS had to continue supporting CP/M-style calls.

A more pervasive CP/M-related issue was the use of FCB-style calls for file and record
management. The version 1.x releases of MS-DOS had used FCB-style calls exclusively, as
had CP/M. Version 2.0 introduced the more efficient and flexible handle calls, but Microsoft
could not simply abolish the old FCB-style calls, because so many popular programs used
them. In fact, some of Microsoft’s own languages used them. So, MS-DOS had to support
both types of calls in the version 2.x series. To encourage the use of the new handle calls,
however, Microsoft made it easy for MS-DOS users to upgrade to version 2.0. In addition,
the company convinced IBM to require version 2.0 for the PC/XT and also encouraged
software developers to require 2.0 for their applications.

At first, both software developers and OEM customers were reluctant to require 2.0
because they were concerned about problems with the installed user base of 1.0
systems — requiring version 2.0 meant supporting both sets of calls. Applications also
needed to be able to detect which version of the operating system the user was running.
For versions 1.x, the programs would have to use FCB calls; for versions 2.x, they would
use the file handles to exploit the flexibility of MS-DOS more fully.

All told, it was an awkward period of transition, but by the time Microsoft began work on
version 3.0 and the support for IBM’s upcoming 20-megabyte fixed disk, it had become
apparent that the change had been in everyone’s best interest.

The MS-DOS Encyclopedia

1983-1984

Version 3

The types of issues that began to emerge as Microsoft worked toward version 3.0, MS-DOS
for networks, exaggerated the problems of compatibility that had been encountered
before.

First, networking, with or without a multitasking capability, requires a level of cooperation
and compatibility among programs that had never been an issue in earlier versions of
MS-DOS. As described by Mark Zbikowski, one of the principals involved in the project,
“there was a very long period of time between 2.1 and 3.0 —almost a year and a half. Dur-
ing that time, we believed we understood all the problems involved in making DOS a net-
working product. [But] as time progressed, we realized that we didn’t fully understand it,
either from a compatibility standpoint or from an operating-system standpoint. We knew
very well how it [DOS] ran in a single-tasking environment, but we started going to this
new environment and found places where it came up short.”

In fact, the great variability in programs and programming approaches that MS-DOS
supported eventually proved to be one of the biggest obstacles to the development of a
sophisticated networking system and; in the longer term, to the addition of true
multitasking.

Further, by the time Microsoft began work on version 3.0, the programming style of the
MS-DOS team had changed considerably. The team was still small, with a core group of
just five people: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic. But the concerns for
maintainability that had dominated programming in larger systems had percolated down
to the MS-DOS environment. Now, the desire to use tricks to optimize for speed had to be
tempered by the need for clarity and maintainability, and the small package of tightly
written code that was the early MS-DOS had to be sacrificed for the same reasons.

Version 3.0

All told, the work on version 3.0 of MS-DOS proved to be long and difficult. For a year and
a half, Microsoft grappled with problems of software incompatibility, remote file manage-
ment, and logical device independence at the network level. Even so, when IBM was ready
to announce its new Personal Computer AT, the network software for MS-DOS was not
quite ready, so in August 1984, Microsoft released version 3.0 to IBM without network
software.

Version 3.0 supported the AT’s larger fixed disk, its new CMOS clock, and its high-capacity
1.2-megabyte floppy disks. It also provided the same international support included earlier
in versions 2.01 and 2.11. These features were made available to Microsoft’s other OEM
customers as version 3.05.

Section I The Development of MS-DOS 39

1983-1984

mise DISK-RESET <«—"lcMRE" FAIL

<
@ Revamep RENAM 5
finfo | Set Gl ATTRE “ "
craLl | Reset Euvir [<—IGMORE FAIL ISEARGH [DoS-S¢
cose [closE © Rerbe
Rom Delete [[PELETE ®
ct2
FINDEwtr
- FOISERseeA] [NEXT EnTRY }<
<
ALLOCATE >
Rom <4
RELBLKS ’
Rowa
Row EE
OPTIMIZE

Aaron Reynolds’s diagram of version 3.0’s network support, sketched out to enable him to add the fail option
to Interrupt 24 and find all places where existing parts of MS-DOS were affected. Even after networking had
become a reality, Reynolds kept this diagram pinned to his office wall simply because “it was so much work
to put together.”

40 The MS-DOS Encyclopedia

1983-1984

Row

”
14
. UILDDIR Renaem e~ Make *
<
—=< (e Ly PgooE
<
W< 'l" WMKDR e JB(RCBLL
. Dos _CLosE)< CLOSE
Y\ P FINDPATH | ** DIR

FATREAD-C DS
TREAD-SF
BuF
Disi
il instend Lock
oy 3?":':'5;:;5 SHARE
:ﬁl/‘.LS au)
THAR X /o
CtRLc
wml sek ok AH

PATH
<
VALIDATE MAME. waero
VALIDATECDS DIR

=1 Ret

-1 Ret
GET.0PB mise

DiSk - ivFo | pwFo

MeTFILE

SGET.DRIVE .FREESPACE Getser

Section I: The Development of MS-DOS 41

1983-1984

42

The Intel 80286 micro-
processor, the chip at
the heart of the IBM
PC/AT, which is shown
beside it. Version 3.0 of
MS-DOS, developed for
this machine, offered
support for networks
and the PC/AT’s 1.2-
megabyte floppy disk
drive and built-in
CMOS clock.

e g ARSI WIS, |

But version 3.0 was not a simple extension of version 2.0. In laying the foundation for net-
working, the MS-DOS team had completely redesigned and rewritten the DOS kernel.

Different as it was from version 1.0, version 2.0 had been built on top of the same structure.
For example, whereas file requests in MS-DOS 1.0 used FCBs, requests in version 2.0 used
file handles. However, the version 2.0 handle calls would simply parse the pathname and
then use the underlying FCB calls in the same way as version 1.0. The redirected input and
output in version 2.0 further complicated the file-system requests. When a program used
one of the CP/M-compatible calls for character input or output, MS-DOS 2.0 first opened a
handle and then turned it back into an FCB call at a lower level. Version 3.0 eliminated this
redundancy by eliminating the old FCB input/output code of versions 1 and 2, replacing it
with a standard set of I/O calls that could be called directly by both FCB calls and handle
calls. The look-alike calls for CB/M-compatible character I/O were included as part of the
set of handle calls. As a result of this restructuring, these calls were distinctly faster in
version 3.0 than in version 2.0.

More important than the elimination of inefficiencies, however, was the fact that this new
structure made it easier to handle network requests under the ISO Open System Intercon-
nect model Microsoft was using for networking. The ISO model describes a number of
protocol layers, ranging from the application-to-application interface at the top level down
to the physical link — plugging into the network — at the lowest level. In the middle is the
transport layer, which manages the actual transfer of data. The layers above the transport
layer belong to the realm of the operating system; the layers below the transport layer are
traditionally the domain of the network software or hardware.

On the IBM PC network, the transport layer and the server functions were handled by
IBM’s Network Adapter card and the task of MS-DOS was to support this hardware. For its
other OEM customers, however, Microsoft needed to supply both the transport and the
server functions as software. Although version 3.0 did not provide this general-purpose
networking software, it did provide the basic support for IBM’s networking hardware.

The support for IBM consisted of redirector and sharer software. MS-DOS used an ap-
proach to networking in which remote requests were routed by a redirector that was able

The MS-DOS Encyclopedia

1984

to interact with the transport layer of the network. The transport layer was composed of
the device drivers that could reliably transfer data from one part of the network to another.
Just before a call was sent to the newly designed low-level file I/O code, the operating sys-
tem determined whether the call was local or remote. A local call would be allowed to fall
through to the local file I/O code; a remote call would be passed to the redirector which,
working with the operating system, would make the resources on a remote machine
appear as if they were local. ’

Version 3.1

Both the redirector and the sharer interfaces for IBM’s Network Adapter card were in place
in version 3.0 when it was delivered to IBM, but the redirector itself wasn’t ready. Version
3.1, completed by Zbikowski and Reynolds and released three months later, completed this
network support and made it available in the form of Microsoft Networks for use on non-
IBM network cards.

Microsoft Networks was built on the concept of “services” and “consumers.” Services
were provided by a file server, which was part of the Networks application and ran on a
computer dedicated to the task. Consumers were programs on various network machines.
Requests for information were passed at a high level to the file server; it was then the
responsibility of the file server to determine where to find the information on the disk.
The requesting programs —the consumers — did not need any knowledge of the remote
machine, not even what type of file system it had.

This ability to pass a high-level request to a remote server without having to know the
details of the server’s file structure allowed another level of generalization of the system.
In MS-DOS 3.1, different types of file systems could be accessed on the same network. It
was possible, for example, to access a XENIX machine across the network from an
MS-DOS machine and to read data from XENIX files.

Microsoft Networks was designed to be hardware independent. Yet the variability of the
classes of programs that would be using its structures was a major problem in developing
a networking system that would be transparent to the user. In evaluating this variability,
Microsoft identified three types of programs:

® First were the MS-DOS-compatible programs. These used only the documented
software-interrupt method of requesting services from the operating system and
would run on any MS-DOS machine without problems.

® Second were the MS-DOS-based programs. These would run on IBM-compatible
computers but not necessarily on all MS-DOS machines.

® Third were the programs that used undocumented features of MS-DOS or that
addressed the hardware directly. These programs tended to have the best perfor-
mance but were also the most difficult to support.

Of these, Microsoft officially encouraged the writing of MS-DOS-compatible programs for
use on the network.

Section I: The Development of MS-DOS 43

1986

Network concerns

The file-access module was changed in version 3.0 to simplify file management on the
network, but this did not solve all the problems. For instance, MS-DOS still needed to han-
dle FCB requests from programs that used them, but many programs would open an FCB
and never close it. One of the functions of the server was to keep track of all open files

on the network, and it ran into difficulties when an FCB was opened 50 or 100 times and
never closed. To solve this problem, Microsoft introduced an FCB cache in version 3.1 that
allowed only four FCBs to be open at any one time. If a fifth FCB was opened, the least re-
cently used one was closed automatically and released. In addition, an FCBS command
was added in the CONFIG.SYS file to allow the user or network manager to change the
maximum number of FCBs that could be open at any one time and to protect some of the
FCBs from automatic closure.

In general, the logical device independence that had been a goal of MS-DOS acquired new
meaning—and generated new problems—with networking. One problem concerned
printers on the network. Commonly, networks are used to allow several people to share a
printer. The network could easily accommodate a program that would open the printer,
write to it, and close it again. Some programs, however, would try to use the direct IBM
BIOS interface to access the printer. To handle this situation, Microsoft’s designers had to
develop a way for MS-DOS to intercept these BIOS requests and filter out the ones the
server could not handle. Once this was accomplished, version 3.1 was able to handle most
types of printer output on the network in a transparent manner.

Version 3.2

44

In January 1986, Microsoft released another revision of MS-DOS, version 3.2, which
supported 3Y2-inch floppy disks. Version 3.2 also moved the formatting function for a
device out of the FORMAT utility routine and into the device driver, eliminating the need
for a special hardware-dependent program in addition to the device driver. It included a
sample installable-block-device driver and, finally, benefited the users and manufacturers
of IBM-compatible computers by including major rewrites of the MS-DOS utilities to
increase compatibility with those of IBM.

The MS-DOS Encyclopedia

1987

The Future

Since its appearance in 1981, MS-DOS has taken and held an enviable position in the
microcomputer environment. Not only has it “taught” millions of personal computers
“how to think,” it has taught equal millions of people how to use computers. Many highly
sophisticated computer users can trace their first encounter with these machines to the
original IBM PC and version 1.0 of MS-DOS. The MS-DOS command interface is the one
with which they are comfortable and it is the MS-DOS file structure that, in one way or
another, they wander through with familiarity.

Microsoft has stated its commitment to ensuring that, for the foreseeable future, MS-DOS
will continue to evolve and grow, changing as it has done in the past to satisfy the needs of
its millions of users. In the long term, MS-DOS, the product of a surprisingly small group of
gifted people, will undoubtedly remain the industry standard for as long as 8086-based
(and to some extent, 80286-based) microcomputers exist in the business world. The story
of MS-DOS will, of course, remain even longer. For this operating system has earned its
place in microcomputing history.

JoAnne Woodcock

Section I: The Development of MS-DOS 45

o

Part A
Structure of MS-DOS

Article 1: An Introduction to MS-DOS

Article 1
An Introduction to MS-DOS

An operating system is a set of interrelated supervisory programs that manage and control
computer processing. In general, an operating system provides

® Storage management

® Processing management
® Security

® Human interface

Existing operating systems for microcomputers fall into three major categories: ROM
monitors, traditional operating systems, and operating environments. The general charac-
teristics of the three categories are listed in Table 1-1.

Table 1-1. Characteristics of the Three Major Types of Operating Systems.

Traditional

ROM Operating Operating

Monitor System Environment
Complexity Low Medium High
Built on Hardware BIOS Operating system
Delivered on ROM Disk Disk
Programs on ROM v Disk Disk
Peripheral support Physical Logical Logical
Disk access Sector File system File system
Example PC ROM BIOS MS-DOS Microsoft Windows

A ROM monitor is the simplest type of operating system. It is designed for a particular
hardware configuration and provides a program with basic— and often direct—access to
peripherals attached to the computer. Programs coupled with a ROM monitor are often
used for dedicated applications such as controlling a microwave oven or controlling the
engine of a car.

A traditional microcomputer operating system is built on top of a ROM monitor, or BIOS
(basic input/output system), and provides additional features such as a file system and log-
ical access to peripherals. (Logical access to peripherals allows applications to run ina
hardware-independent manner.) A traditional operating system also stores programs in
files on peripheral storage devices and, on request, loads them into memory for execution.
MS-DOS is a traditional operating system.

An operating environment is built on top of a traditional operating system. The operating
environment provides additional services, such as common menu and forms support, that

Section II: Programming in the MS-DOS Environment 51

Part A: Structure of MS-DOS

simplify program operation and make the user interface more consistent. Microsoft
Windows is an operating environment.

MS-DOS System Components

The Microsoft Disk Operating System, MS-DOS, is a traditional microcomputer operating
system that consists of five major components:

® The operating-system loader

® The MS-DOS BIOS

® The MS-DOS kernel

® The user interface (shell)
® Support programs

Each of these is introduced briefly in the following pages. Se¢e PROGRAMMING IN THE
MS-DOS ENVIRONMENT: StrucTURE OF Ms-Dos: The Components of MS-DOS.

The operating-system loader

The operating-system loader brings the operating system from the startup disk into RAM.

The complete loading process, called bootstrapping, is often complex, and multiple
loaders may be involved. (The term bootstrapping came about because each level pulls up
the next part of the system, like pulling up on a pair of bootstraps.) For example, in most
standard MS-DOS-based microcomputer implementations, the ROM loader, which is the
first program the microcomputer executes when it is turned on or restarted, reads the disk
bootstrap loader from the first (boot) sector of the startup disk and executes it. The disk
bootstrap loader, in turn, reads the main portions of MS-DOS —MSDOS.SYS and I0.SYS
(IBMDOS.COM and IBMBIO.COM with PC-DOS) — from conventional disk files into mem-
ory. The special module SYSINIT within MSDOS.SYS then initializes MS-DOS'’s tables and
buffers and discards itself. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUC-
TURE OF Ms-Dos: MS-DOS Storage Devices.

(The term loader is also used to refer to the portion of the operating system that brings
application programs into memory for execution. This loader is different from the ROM
loader and the operating-system loader.)

The MS-DOS BIOS

52

The MS-DOS BIOS, loaded from the file IO.SYS during system initialization, is the layer of
the operating system that sits between the operating-system kernel and the hardware. An
application performs input and output by making requests to the operating-system kernel,
which, in turn, calls the MS-DOS BIOS routines that access the hardware directly. See
SYSTEM CALLS. This division of function allows application programs to be written in a
hardware-independent manner.

The MS-DOS BIOS consists of some initialization code and a collection of device drivers.
(A device driver is a specialized program that provides support for a specific device such as

The MS-DOS Encyclopedia

Article 1: An Introduction to MS-DOS

a display or serial port.) The device drivers are responsible for hardware access and for the
interrupt support that allows the associated devices to signal the microprocessor that they
need service.

The device drivers contained in the file IO.SYS, which are always loaded during system
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0
and later, additional device drivers, called installable drivers, can optionally be loaded dur-
ing system initialization as a result of DEVICE directives in the system’s configuration file.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusTOMIZING Ms-DOs: Installable
Device Drivers; USER COMMANDS: CONFIG.SYS:DEVICE.

The MS-DOS kernel

The services provided to application programs by the MS-DOS kernel include

® Process control

® Memory management
® Peripheral support

® A file system

The MS-DOS kernel is loaded from the file MSDOS.SYS during system initialization.

Process control

Process, or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication.

Although MS-DOS is not a multitasking operating system, it can have multiple programs
residing in memory at the same time. One program can invoke another, which then
becomes the active (foreground) task. When the invoked task terminates, the invoking
program again becomes the foreground task. Because these tasks never execute simulta-
neously, this stack-like operation is still considered to be a single-tasking operating
system.

MS-DOS does have a few “hooks” that allow certain programs to do some multitasking
on their own. For example, terminate-and-stay-resident (TSR) programs such as PRINT
use these hooks to perform limited concurrent processing by taking control of system
resources while MS-DOS is “idle,” and the Microsoft Windows operating environment
adds support for nonpreemptive task switching.

The traditional intertask communication methods include semaphores, queues.
memory, and pipes. Of these, MS-DOS formally supports only pipes. (A pipe '
unidirectional, sequential stream of data that is written by one program a-
another.) The data in a pipe resides in memory or in a disk file, depepr’
mentation; MS-DOS uses disk files for intermediate storage of datg “e

is a single-tasking operating system. Ibory

Memory management

Because the amount of memory a program needs var’ Py
traditional operating system ordinarily provides o

Section II: Prog

Part A: Structure of MS-DOS

requirements can also vary during program execution, and memory management is
especially necessary when two or more programs are present in memory at the same time.

MS-DOS memory management is based on a pool of variable-size memory blocks. The
two basic memory-management actions are to allocate a block from the pool and to return
an allocated block to the pool. MS-DOS allocates program space from the pool when the
program is loaded; programs themselves can allocate additional memory from the pool.
Many programs perform their own memory management by using a local memory pool, or
heap —an additional memory block allocated from the operating system that the applica-
tion program itself divides into blocks for use by its various routines. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-DOSs: Memory Management.

Peripheral support

The operating system provides peripheral support to programs through a set of operating-
system calls that are translated by the operating system into calls to the appropriate device
driver.

Peripheral support can be a direct logical-to-physical-device translation or the operating
system can interject additional features or translations. Keyboards, displays, and printers
usually require only logical-to-physical-device translations; that is, the data is transferred
between the application program and the physical device with minimal alterations, if any,
by the operating system. The data provided by clock devices, on the other hand, must be
transformed to operating-system-dependent time and date formats. Disk devices—and
block devices in general — have the greatest number of features added by the operating
system. See The File System below.

As stated earlier, an application need not be concerned with the details of peripheral
devices or with any special features the devices might have. Because the operating system
takes care of all the logical-to-physical-device translations, the application program need
only make requests of the operating system.

The file system

The file system is one of the largest portions of an operating system. A file system is built
on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping
a directory structure and files onto the physical unit of storage. A file system on a disk
contains, at a minimum, allocation information, a directory, and space for files. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF Ms-DOs: MS-DOS
Storage Devices.

The file allocation information can take various forms, depending on the operating sys-
tem, but all forms basically track the space used by files and the space available for new
‘ata. The directory contains a list of the files stored on the device, their sizes, and informa-
» about where the data for each file is located.

! different approaches to file allocation and directory entries exist. MS-DOS uses a
t allocation method called a file allocation table (FAT) and a hierarchical directory

Article 1: An Introduction to MS-DOS

structure. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DOS Storage Devices; PROGRAMMING FOR Ms-DOs: Disk Directories and Volume Labels.

The file granularity available through the operating system also varies depending on the

implementation. Some systems, such as MS-DOS, have files that are accessible to the byte
level; others are restricted to a fixed record size.

File systems are sometimes extended to map character devices as if they were files. These
device “files” can be opened, closed, read from, and written to like normal disk files, but
all transactions occur directly with the specified character device. Device files provide a
useful consistency to the environment for application programs; MS-DOS supports such

files by assigning a reserved logical name (such as CON or PRN) to each character device
The user interface

The user interface for an operating system, also called a shell or command processor, is
generally a conventional program that allows the user to interact with the operating sys-

tem itself. The default MS-DOS user interface is a replaceable shell program called
COMMAND.COM.

One of the fundamental tasks of a shell is to load a program into memory on request and
pass control of the system to the program so that the program can execute. When the pro-
gram terminates, control returns to the shell, which prompts the user for another com-
mand. In addition, the shell usually includes functions for file and directory maintenance
and display. In theory, most of these functions could be provided as programs, but making
them resident in the shell allows them to be accessed more quickly. The tradeoff is mem-
ory space versus speed and flexibility. Early microcomputer-based operating systems pro-
vided a minimal number of resident shell commands because of limited memory space;

~aasderpoperating systems such as MS-DOS include a wide variety of these functions as
internal commands.

Support programs

The MS-DOS software includes support programs that provide access to operating-system
facilities not supplied as resident shell commands built into COMMAND.COM. Because
these programs are stored as executable files on disk, they are essentially the same as ap-
plication programs and MS-DOS loads and executes them as it would any other program

The support programs provided with MS-DOS, often referred to as external commands,
include disk utilities such as FORMAT and CHKDSK and more general support programs

such as EDLIN (a line-oriented text editor) and PRINT (a TSR utility that allows files tc

printed while another program is running). See USER COMMANDS.
MS-DOS releases

.. 4
MS-DOS and PC-DOS have been released in a number of forms, starting ir € sum.

DEVELOPMENT OF MS-DOS. The major MS-DOS and PC-DOS implemr
marized in the following table.

/*DOS Enyjro”

55
Section II: Pr

Part A: Structure of MS-DOS

Version Date Special Characteristics
PC-DOS 1.0 1981 First operating system for the IBM PC
- Record-oriented files
PC-DOS 1.1 1982 Double-sided-disk support
MS-DOS 1.25 1982 First OEM release of MS-DOS
MS-DOS/PC-DOS 2.0 1983 Operating system for the IBM PC/XT
UNIX/XENIX-like file system
Installable device drivers
Byte-oriented files
Support for fixed disks
PC-DOS 2.1 Operating system for the IBM PCjr
MS-DOS 2.11 Internationalization support
2.0x bug fixes
MS-DOS/PC-DOS 3.0 1984 Operating system for the IBM PC/AT
Support for 1.2 MB floppy disks

Support for large\(fixed disks
~\ Support for file and record locking
+ " Application control of print spooler

1984 . Support for MS Networks

MS-DOS/PC-DOS 3.1
MS-DOS/PC-DOS 3.2 1986 3.5-inch floppy-disk support
Disk track formatting support added to
' device drivers
MS-DOS/PC-DOS 3.3 1987 Support for the IBM PS/2
Enhanced internationalization support

Improved file-system performance
Partitioning support for disks with capacity

above 32 MB

PC-DOS version 1.0 was the first commercial version of MS-DOS. It was developed for the
original IBM PC, which was typically shipped with 64 KB of memory or less. MS-DOS and
PC-DOS versions 1.x were similar in many ways to CP/M, the popular operating system for
8-bit microcomputers based on the Intel 8080 (the predecessor of the 8086). These ver-
sions of MS-DOS used a single-level file system with no subdirectory support and did not
support installable device drivers or networks. Programs accessed files using file control
blocks (FCBs) similar to those found in CP/M programs. File operations were record
oriented, again like CP/M, although record sizes could be varied in MS-DOS.
Although they retained compatibility with versions 1.x, MS-DOS and PC-DOS versions 2.x
"epresented a major change. In addition to providing support for fixed disks, the new ver-
ns switched to a hierarchical file system like that found in UNIX/XENIX and to file-
‘le access instead of FCBs. (A file handle is a 16-bit number used to reference an inter-
‘? that MS-DOS uses to keep track of currently open files; an application program

w&ss to this internal table.) The UNIX/XENIX-style file functions allow files to be
byte stream instead of as a collection of records. Applications can read or write

=s in a single operation, starting at any byte offset within the file. Filenames

Ms-D+

The

56

Article 1: An Introduction to MS-DOS

structure. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DOS Storage Devices; PROGRAMMING FOR Ms-DoOs: Disk Directories and Volume Labels.

The file granularity available through the operating system also varies depending on the
implementation. Some systems, such as MS-DOS, have files that are accessible to the byte
level; others are restricted to a fixed record size.

File systems are sometimes extended to map character devices as if they were files. These
device “files” can be opened, closed, read from, and written to like normal disk files, but
all transactions occur directly with the specified character device. Device files provide a
useful consistency to the environment for application programs; MS-DOS supports such
files by assigning a reserved logical name (such as CON or PRN) to each character device.

The user interface

The user interface for an operating system, also called a shell or command processor, is
generally a conventional program that allows the user to interact with the operating sys-
tem itself. The default MS-DOS user interface is a replaceable shell program called
COMMAND.COM.

One of the fundamental tasks of a shell is to load a program into memory on request and
pass control of the system to the program so that the program can execute. When the pro-
gram terminates, control returns to the shell, which prompts the user for another com-
mand. In addition, the shell usually includes functions for file and directory maintenance
and display. In theory, most of these functions could be provided as programs, but making
them resident in the shell allows them to be accessed more quickly. The tradeoff is mem-
ory space versus speed and flexibility. Early microcomputer-based operating systems pro-
vided a minimal number of resident shell commands because of limited memory space;

~asderrroperating systems such as MS-DOS include a wide variety of these functions as
internal commands.

Support programs

The MS-DOS software includes support programs that provide access to operating-system
facilities not supplied as resident shell commands built into COMMAND.COM. Because
these programs are stored as executable files on disk, they are essentially the same as ap-
plication programs and MS-DOS loads and executes them as it would any other program.

The support programs provided with MS-DOS, often referred to as external commands,
include disk utilities such as FORMAT and CHKDSK and more general support programs
such as EDLIN (a line-oriented text editor) and PRINT (a TSR utility that allows files to be
printed while another program is running). See USER COMMANDS.

MS-DOS releases

MS-DOS and PC-DOS have been released in a number of forms, starting in 1981. See THE
DEVELOPMENT OF MS-DOS. The major MS-DOS and PC-DOS implementations are sum-
marized in the following table.

Section II: Programming in the MS-DOS Environment 55

Part A: Structure of MS-DOS

56

Version Date Special Characteristics

PC-DOS 1.0 1981 First operating system for the IBM PC
Record-oriented files

PC-DOS 1.1 1982 Double-sided-disk support

MS-DOS 1.25 1982 First OEM release of MS-DOS

MS-DOS/PC-DOS 2.0 1983 Operating system for the IBM PC/XT
UNIX/XENTIX-like file system

Installable device drivers
Byte-oriented files

Support for fixed disks
PC-DOS 2.1 Operating system for the IBM PCjr
MS-DOS 2.11 Internationalization support

2.0x bug fixes
MS-DOS/PC-DOS 3.0 1984 Operating system for the IBM PC/AT

Support for 1.2 MB floppy disks
Support for large?qixed disks
\, Support for file and record locking

-~ +"Application control of print spooler
MS-DOS/PC-DOS 3.1 1984 .+ Support for MS Networks
MS-DOS/PC-DOS 3.2 1986 3.5-inch floppy-disk support

Disk track formatting support added to
’ device drivers
MS-DOS/PC-DOS 3.3 1987 Support for the IBM PS/2
Enhanced internationalization support
Improved file-system performance
Partitioning support for disks with capacity
above 32 MB

PC-DOS version 1.0 was the first commercial version of MS-DOS. It was developed for the
original IBM PC, which was typically shipped with 64 KB of memory or less. MS-DOS and
PC-DOS versions 1.x were similar in many ways to CP/M, the popular operating system for
8-bit microcomputers based on the Intel 8080 (the predecessor of the 8086). These ver-
sions of MS-DOS used a single-level file system with no subdirectory support and did not
support installable device drivers or networks. Programs accessed files using file control
blocks (FCBs) similar to those found in CP/M programs. File operations were record
oriented, again like CP/M, although record sizes could be varied in MS-DOS.

Although they retained compatibility with versions 1.x, MS-DOS and PC-DOS versions 2.x
represented a major change. In addition to providing support for fixed disks, the new ver-
sions switched to a hierarchical file system like that found in UNIX/XENIX and to file-
handle access instead of FCBs. (A file handle is a 16-bit number used to reference an inter-
nal table that MS-DOS uses to keep track of currently open files; an application program
has no access to this internal table.) The UNIX/XENIX-style file functions allow files to be
treated as a byte stream instead of as a collection of records. Applications can read or write
1to 65535 bytes in a single operation, starting at any byte offset within the file. Filenames

The MS-DOS Encyclopedia

Article 1: An Introduction to MS-DOS

a display or serial port.) The device drivers are responsible for hardware access and for the
interrupt support that allows the associated devices to signal the microprocessor that they
need service.

The device drivers contained in the file IO.SYS, which are always loaded during system
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0
and later, additional device drivers, called installable drivers, can optionally be loaded dur-
ing system initialization as a result of DEVICE directives in the system’s configuration file.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CustoMizING ms-DOSs: Installable
Device Drivers; USER COMMANDS: CONFIG.SYS:DEVICE.

The MS-DOS kernel

The services provided to application programs by the MS-DOS kernel include

® Process control

® Memory management
® Peripheral support

® A file system

The MS-DOS kernel is loaded from the file MSDOS.SYS during system initialization.
Process control

Process, or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication.

Although MS-DOS is not a multitasking operating system, it can have multiple programs
residing in memory at the same time. One program can invoke another, which then
becomes the active (foreground) task. When the invoked task terminates, the invoking
program again becomes the foreground task. Because these tasks never execute simulta-
neously, this stack-like operation is still considered to be a single-tasking operating
system.

MS-DOS does have a few “hooks” that allow certain programs to do some multitasking
on their own. For example, terminate-and-stay-resident (TSR) programs such as PRINT
use these hooks to perform limited concurrent processing by taking control of system
resources while MS-DOS is “idle,” and the Microsoft Windows operating environment
adds support for nonpreemptive task switching.

The traditional intertask communication methods include semaphores, queues, shared
memory, and pipes. Of these, MS-DOS formally supports only pipes. (A pipe is a logical,
unidirectional, sequential stream of data that is written by one program and read by
another.) The data in a pipe resides in memory or in a disk file, depending on the imple-
mentation; MS-DOS uses disk files for intermediate storage of data in pipes because it

is a single-tasking operating system.

Memory management

Because the amount of memory a program needs varies from program to program, the
traditional operating system ordinarily provides memory-management functions. Memory

Section II: Programming in the MS-DOS Environment 53

Part A: Structure of MS-DOS

requirements can also vary during program execution, and memory management is
especially necessary when two or more programs are present in memory at the same time.

MS-DOS memory management is based on a pool of variable-size memory blocks. The
two basic memory-management actions are to allocate a block from the pool and to return
an allocated block to the pool. MS-DOS allocates program space from the pool when the
program is loaded; programs themselves can allocate additional memory from the pool.
Many programs perform their own memory management by using a local memory pool, or
heap — an additional memory block allocated from the operating system that the applica-
tion program itself divides into blocks for use by its various routines. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-DOs: Memory Management.

Peripheral support

The operating system provides peripheral support to programs through a set of operating-
system calls that are translated by the operating system into calls to the appropriate device
driver.

Peripheral support can be a direct logical-to-physical-device translation or the operating
system can interject additional features or translations. Keyboards, displays, and printers
usually require only logical-to-physical-device translations; that is, the data is transferred
between the application program and the physical device with minimal alterations, if any,
by the operating system. The data provided by clock devices, on the other hand, must be
transformed to operating-system-dependent time and date formats. Disk devices—and
block devices in general — have the greatest number of features added by the operating
system. See The File System below.

As stated earlier, an application need not be concerned with the details of peripheral
devices or with any special features the devices might have. Because the operating system
takes care of all the logical-to-physical-device translations, the application program need
only make requests of the operating system.

The file system

54

The file system is one of the largest portions of an operating system. A file system is built
on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping
a directory structure and files onto the physical unit of storage. A file system on a disk
contains, at a minimum, allocation information, a directory, and space for files. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT" STRUCTURE OF Ms-DOs: MS-DOS
Storage Devices.

The file allocation information can take various forms, depending on the operating sys-
tem, but all forms basically track the space used by files and the space available for new
data. The directory contains a list of the files stored on the device, their sizes, and informa-
tion about where the data for each file is located.

Several different approaches to file allocation and directory entries exist. MS-DOS uses a
particular allocation method called a file allocation table (FAT) and a hierarchical directory

The MS-DOS Encyclopedia

Article 1: An Introduction to MS-DOS

used for opening a file are passed as text strings instead of being parsed into an FCB.
Installable device drivers were another major enhancement.

MS-DOS and PC-DOS versions 3.x added a number of valuable features, including support
for the added capabilities of the IBM PC/AT, for larger-capacity disks, and for file-locking
and record-locking functions. Network support was added by providing hooks for a redi-
rector (an additional operating-system module that has the ability to redirect local system
service requests to a remote system by means of a local area network).

With all these changes, MS-DOS remains a traditional single-tasking operating system. It
provides a large number of system services in a transparent fashion so that, as long as they
use only the MS-DOS-supplied services and refrain from using hardware-specific opera-
tions, applications developed for one MS-DOS machine can usually run on another.

Basic MS-DOS Requirements

Foremost among the requirements for MS-DOS is an Intel 8086-compatible microproces-
sor. See Specific Hardware Requirements below.

The next requirement is the ROM bootstrap loader and enough RAM to contain the
MS-DOS BIOS, kernel, and shell and an application program. The RAM must start at ad-
dress 0000:0000H and, to be managed by MS-DOS, must be contiguous. The upper limit
for RAM is the limit placed upon the system by the 8086 family — 1 MB.

The final requirement for MS-DOS is a set of devices supported by device drivers, includ-
ing at least one block device, one character device, and a clock device. The block device is
usually the boot disk device (the disk device from which MS-DOS is loaded); the character
device is usually a keyboard/display combination for interaction with the user; the clock
device, required for time-of-day and date support, is a hardware counter driven in a sub-
multiple of one second.

Specific hardware requirements

MS-DOS uses several hardware components and has specific requirements for each. These

components include

® An 8086-family microprocessor

® Memory

® Peripheral devices

® A ROM BIOS (PC-DOS only)
The microprocessor

MS-DOS runs on any machine that uses a microprocessor that executes the 8086/8088
instruction set, including the Intel 8086, 80C86, 8088, 80186, 80188, 80286, and 80386 and
the NEC V20, V30, and V40.

Section II: Programming in the MS-DOS Environment 57

Part A: Structure of MS-DOS

The 80186 and 80188 are versions of the 8086 and 8088, integrated in a single chip with
direct memory access, timer, and interrupt support functions. PC-DOS cannot usually run
on the 80186 or 80188 because these chips have internal interrupt and interface register
addresses that conflict with addresses used by the PC ROM BIOS. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CustoMIzING Ms-DOs: Hardware Interrupt Handlers.
MS-DOS, however, does not have address requirements that conflict with those interrupt
and interface areas.

The 80286 has an extended instruction set and two operating modes: real and protected.
Real mode is compatible with the 8086/8088 and runs MS-DOS. Protected mode, used by
operating systems like UNIX/XENIX and MS OS/2, is partially compatible with real mode
in terms of instructions but provides access to 16 MB of memory versus only 1 MB in real
mode (the limit of the 8086/8088).

The 80386 adds further instructions and a third mode called virtual 86 mode. The 80386
instructions operate in either a 16-bit or a 32-bit environment. MS-DOS can run on the
80386 in real or virtual 86 mode, although the latter requires additional support in the form
of a virtual machine monitor such as Windows /386.

Memory requirements

58

Ata minimum, MS-DOS versions 1.x require 64 KB of contiguous RAM from the base of
memory to do useful work; versions 2.x and 3.x need at least 128 KB. The maximum is

1 MB, although most MS-DOS machines have a 640 KB limit for IBM PC compatibility.
MS-DOS can use additional noncontiguous RAM for a RAMdisk if the proper device driver
is included. (Other uses for noncontiguous RAM include buffers for video displays, fixed
disks, and network adapters.)

PC-DOS has the same minimum memory requirements but has an upper limit of 640 KB
on the initial contiguous RAM, which is generally referred to as conventional memory.
This limit was imposed by the architecture of the original IBM PC, with the remaining
area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM
BIOS. Some of the reserved areas include

Base Address Size (bytes) Description

A000:0000H 10000H (64 KB) . EGA video buffer

B000:0000H 1000H (4 KB) Monochrome video buffer
B800:0000H 4000H (16 KB) Color/graphics video buffer
C800:0000H 4000H (16 KB) Fixed-disk ROM

F000:0000H 10000H (64 KB) PC ROM BIOS and ROM BASIC

The bottom 1024 bytes of system RAM (locations 00000-003FFH) are used by the micro-
processor for an interrupt vector table — that is, a list of addresses for interrupt handler
routines. MS-DOS uses some of the entries in this table, such as the vectors for interrupts
20H through 2FH, to store addresses of its own tables and routines and to provide linkage
to its services for application programs. The IBM PC ROM BIOS and IBM PC BASIC use
many additional vectors for the same purposes.

The MS-DOS Encyclopedia

Article 1: An Introduction to MS-DOS

Peripheral devices

MS-DOS can support a wide variety of devices, including floppy disks, fixed disks, CD
ROMs, RAMdisks, and digital tape drives. The required peripheral support for MS-DOS is
provided by the MS-DOS BIOS or by installable device drivers.

Five logical devices are provided in a basic MS-DOS system:

Device Name Description

CON Console input and output
PRN : Printer output

AUX Augxiliary input and output
CLOCK$ Date and time support
Varies (A-E) One block device

These five logical devices can be implemented with a BIOS supporting a minimum of
three physical devices: a keyboard and display, a timer or clock/calendar chip that can
provide a hardware interrupt at regular intervals, and a block storage device. In such a
minimum case, the printer and auxiliary device are simply aliases for the console device.
However, most MS-DOS systems support several additional logical and physical devices.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS:
Character Device Input and Output.

The MS-DOS kernel provides one additional device: the NUL device. NUL is a “bit

bucket” — that is, anything written to NUL is simply discarded. Reading from NUL always
returns an end-of-file marker. One common use for the NUL device is as the redirected
output device of a command or application that is being run in a batch file; this redirection
prevents screen clutter and disruption of the batch file’s menus and displays.

The ROM BIOS

MS-DOS requires no ROM support (except that most bootstrap loaders reside in ROM)
and does not care whether device-driver support resides in ROM or is part of the MS-DOS
I0.SYS file loaded at initialization. PC-DOS, on the other hand, uses a very specific ROM
BIOS. The PC ROM BIOS does not provide device drivers; rather, it provides support rou-
tines used by the device drivers found in IBMBIO.COM (the PC-DOS version of IO.SYS).
The support provided by a PC ROM BIOS includes

Power-on self test (POST)

Bootstrap loader

Keyboard

Displays (monochrome and color/graphics adapters)
Serial ports 1 and 2

Parallel printer ports 1, 2, and 3

Clock

Print screen

Section II: Programming in the MS-DOS Environment 59

Part A: Structure of MS-DOS

The PC ROM BIOS loader routine searches the ROM space above the PC-DOS 640 KB limit
for additional ROMs. The IBM fixed-disk adapter and enhanced graphics adapter (EGA)
contain such ROMs. (The fixed-disk ROM also includes an additional loader routine that
allows the system to start from the fixed disk.)

Summary

60

MS-DOS is a widely accepted traditional operating system. Its consistent and well-defined
interface makes it one of the easier operating systems to adapt and program.

MS-DOS is also a growing operating system — each version has added more features yet
made the system easier to use for both end-users and programmers. In addition, each ver-
sion has included more support for different devices, from 5.25-inch floppy disks to high-
density 3.5-inch floppy disks. As the hardware continues to evolve and user needs become
more sophisticated, MS-DOS too will continue to evolve.

William Wong

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

Article 2
The Components of MS-DOS

MS-DOS is a modular operating system consisting of multiple components with special-
ized functions. When MS-DOS is copied into memory during the loading process, many of
its components are moved, adjusted, or discarded. However, when it is running, MS-DOS
is a relatively static entity and its components are predictable and easy to study. Therefore,
this article deals first with MS-DOS in its running state and later with its loading behavior.

The Major Elements

MS-DOS consists of three major modules:

Module MS-DOS Filename PC-DOS Filename
MS-DOS BIOS 10.8YS IBMBIO.COM
MS-DOS kernel MSDOS.SYS IBMDOS.COM
MS-DOS shell COMMAND.COM COMMAND.COM

During system initialization, these modules are loaded into memory, in the order given,
just above the interrupt vector table located at the beginning of memory. All three modules
remain in memory until the computer is reset or turned off. (The loader and system initial-
ization modules are omitted from this list because they are discarded as soon as MS-DOS

is running. See Loading MS-DOS below.)

The MS-DOS BIOS is supplied by the original equipment manufacturer (OEM) that
distributes MS-DOS, usually for a particular computer. See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE OF Ms-DOs: An Introduction to MS-DOS. The kernel
is supplied by Microsoft and is the same across all OEMs for a particular version of
MS-DOS —that is, no modifications are made by the OEM. The shell is a replaceable
module that can be supplied by the OEM or replaced by the user; the default shell,
COMMAND.COM, is supplied by Microsoft.

The MS-DOS BIOS

The file I0.SYS contains the MS-DOS BIOS and the MS-DOS initialization module,
SYSINIT. The MS-DOS BIOS is customized for a particular machine by an OEM. SYSINIT
is supplied by Microsoft and is put into I0.SYS by the OEM when the file is created. See
Loading MS-DOS below.

Section II: Programming in the MS-DOS Environment 61

Part A: Structure of MS-DOS

The MS-DOS BIOS consists of a list of resident device drivers and an additional initializa-
tion module created by the OEM. The device drivers appear first in I0.SYS because they
remain resident after IO.SYS is initialized; the MS-DOS BIOS initialization routine and
SYSINIT are usually discarded after initialization.

The minimum set of resident device drivers is CON, PRN, AUX, CLOCKS$, and the driver
for one block device. The resident character-device drivers appear in the driver list before
the resident block-device drivers; installable character-device drivers are placed ahead of
the resident device drivers in the list; installable block-device drivers are placed after the
resident device drivers in the list. This sequence allows installable character-device drivers
to supersede resident drivers. The NUL device driver, which must be the first driver in the
chain, is contained in the MS-DOS kernel.

Device driver code can be split between I0.SYS and ROM. For example, most MS-DOS sys-
tems and all PC-DOS-compatible systems have a ROM BIOS that contains primitive device
support routines. These routines are generally used by resident and installable device
drivers to augment routines contained in RAM. (Placing the entire driver in RAM makes
the driver dependent on a particular hardware configuration; placing part of the driver in
ROM allows the MS-DOS BIOS to be paired with a particular ROM interface that remains
constant for many different hardware configurations.)

The I0.SYS file is an absolute program image and does not contain relocation information.
The routines in I0.SYS assume that the CS register contains the segment at which the file is
loaded. Thus, I0.SYS has the same 64 KB restriction as a .COM file. See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-DOs: Structure of an Application
Program. Larger 10.SYS files are possible, but all device driver headers must lie in the first
64 KB and the code must rely on its own segment arithmetic to access routines outside

the first 64 KB.

The MS-DOS kernel

62

The MS-DOS kernel is the heart of MS-DOS and provides the functions found in a tradi-
tional operating system. It is contained in a single proprietary file, MSDOS.SYS, supplied
by Microsoft Corporation. The kernel provides its support functions (referred to as system
functions) to application programs in a hardware-independent manner and, in turn, is iso-
lated from hardware characteristics by relying on the driver routines in the MS-DOS BIOS
to perform physical input and output operations.

The MS-DOS kernel provides the following services through the use of device drivers:

® File and directory management
® Character device input and output
® Time and date support

It also provides the following non-device-related functions:

® Memory management
® Task and environment management
® Country-specific configuration

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

Programs access system functions using software interrupt (INT) instructions. MS-DOS
reserves Interrupts 20H through 3FH for this purpose. The MS-DOS interrupts are

Interrupt Name

20H Terminate Program

21H MS-DOS Function Calls

22H Terminate Routine Address
23H Control-C Handler Address
24H Critical Error Handler Address
25H Absolute Disk Read

26H Absolute Disk Write

27H Terminate and Stay Resident
28H-2EH Reserved

2FH Multiplex

30H-3FH Reserved

Interrupt 21H is the main source of MS-DOS services. The Interrupt 21H functions are
implemented by placing a function number in the AH register, placing any necessary
parameters in other registers, and issuing an INT 21H instruction. (MS-DOS also supports
a call instruction interface for CP/M compatibility. The function and parameter registers
differ from the interrupt interface. The CP/M interface was provided in MS-DOS version 1.0
solely to assist in movement of CP/M-based applications to MS-DOS. New applications
should use Interrupt 21H functions exclusively.)

MS-DOS version 2.0 introduced a mechanism to modify the operation of the MS-DOS BIOS
and kernel: the CONFIG.SYS file. CONFIG.SYS is a text file containing command options
that modify the size or configuration of internal MS-DOS tables and cause additional de-
vice drivers to be loaded. The file is read when MS-DOS is first loaded into memory. See
USER COMMANDS: CONFIG.SYS.

The MS-DOS shell

The shell, or command interpreter, is the first program started by MS-DOS after the
MS-DOS BIOS and kernel have been loaded and initialized. It provides the interface
between the kernel and the user. The default MS-DOS shell, COMMAND.COM, is a
command-oriented interface; other shells may be menu-driven or screen-oriented.

COMMAND.COM is a replaceable shell. A number of commercial products can be used
as COMMAND.COM replacements, or a programmer can develop a customized shell. The
new shell program is installed by renaming the program to COMMAND.COM or by using
the SHELL command in CONFIG.SYS. The latter method is preferred because it allows
initialization parameters to be passed to the shell program.

Section II: Programming in the MS-DOS Environment 63

Part A: Structure of MS-DOS

COMMAND.COM can execute a set of internal (built-in) commands, load and execute
programs, or interpret batch files. Most of the internal commands support file and direc-
tory operations and manipulate the program environment segment maintained by
COMMAND.COM. The programs executed by COMMAND.COM are .COM or .EXE files
loaded from a block device. The batch (.BAT) files supported by COMMAND.COM pro-
vide a limited programming language and are therefore useful for performing small,
frequently used series of MS-DOS commands. In particular, when it is first loaded by
MS-DOS, COMMAND.COM searches for the batch file AUTOEXEC.BAT and interprets it, if
found, before taking any other action. COMMAND.COM also provides default terminate,
Control-C and critical error handlers whose addresses are stored in the vectors for Inter-
rupts 22H, 23H, and 24H. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CustomiziNG Ms-Dos: Exception Handlers.

COMMAND.COM’s split personality

COMMAND.COM is a conventional .COM application with a slight twist. Ordinarily, a
.COM program is loaded into a single memory segment. COMMAND.COM starts this way
but then copies the nonresident portion of itself into high memory and keeps the resident
portion in low memory. The memory above the resident portion is released to MS-DOS.

The effect of this split is not apparent until after an executed program has terminated

and the resident portion of COMMAND.COM regains control of the system. The resident
portion then computes a checksum on the area in high memory where the nonresident
portion should be, to determine whether it has been overwritten. If the checksum matches
a stored value, the nonresident portion is assumed to be intact; otherwise, a copy of the
nonresident portion is reloaded from disk and COMMAND.COM continues its normal
operation.

This “split personality” exists because MS-DOS was originally designed for systems with a
limited amount of RAM. The nonresident portion of COMMAND.COM, which contains the
built-in commands and batch-file-processing routines that are not essential to regaining
control and reloading itself, is much larger than the resident portion, which is responsible
for these tasks. Thus, permitting the nonresident portion to be overwritten frees additional
RAM and allows larger application programs to be run.

Command execution

64

COMMAND.COM interprets commands by first checking to see if the specified command
matches the name of an internal command. If so, it executes the command; otherwise, it
searches for a .COM, .EXE, or .BAT file (in that order) with the specified name. If a .COM
or .EXE program is found, COMMAND.COM uses the MS-DOS EXEC function (Interrupt
21H Function 4BH) to load and execute it; COMMAND.COM itself interprets .BAT files.

If no file is found, the message Bad command or file name is displayed.

Although a command is usually simply a filename without the extension, MS-DOS versions
3.0 and later allow a command name to be preceded by a full pathname. If a path is not
explicitly specified, the COMMAND.COM search mechanism uses the contents of the

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

PATH environment variable, which can contain a list of paths to be searched for com-
mands. The search starts with the current directory and proceeds through the directories
specified by PATH until a file is found or the list is exhausted. For example, the PATH
specification

PATH C:\BIN;D:\BIN;E:\

causes COMMAND.COM to search the current directory, then C:\BIN, then D:\BIN, and
finally the root directory of drive E. COMMAND.COM searches each directory for a match-
ing .COM, .EXE, or .BAT file, in that order, before moving to the next directory.

MS-DOS environments

Version 2.0 introduced the concept of environments to MS-DOS. An environment is a
paragraph-aligned memory segment containing a concatenated set of zero-terminated
(ASCIIZ) variable-length strings of the form

variable=value

that provide such information as the current search path used by COMMAND.COM to find
executable files, the location of COMMAND.COM itself, and the format of the user prompt.
The end of the set of strings is marked by a null string — that is, a single zero byte. A
specific environment is associated with each program in memory through a pointer con-
tained at offset 2CH in the 256-byte program segment prefix (PSP). The maximum size of
an environment is 32 KB; the default size is 160 bytes.

If a program uses the EXEC function to load and execute another program, the contents of
the new program’s environment are provided to MS-DOS by the initiating program — one
of the parameters passed to the MS-DOS EXEC function is a pointer to the new program’s
environment. The default environment provided to the new program is a copy of the
initiating program’s environment.

A program that uses the EXEC function to load and execute another program will not
itself have access to the new program’s environment, because MS-DOS provides a pointer
to this environment only to the new program. Any changes made to the new program’s en-
vironment during program execution are invisible to the initiating program because a
child program’s environment is always discarded when the child program terminates.

The system’s master environment is normally associated with the shell COMMAND.COM.
COMMAND.COM creates this set of environment strings within itself from the contents
of the CONFIG.SYS and AUTOEXEC.BAT files, using the SET, PATH, and PROMPT com-
mands. See USER COMMANDS: AUTOEXEC.BAT; CONFIG.SYS. In MS-DOS version 3.2, the
initial size of COMMAND.COM'’s environment can be controlled by loading
COMMAND.COM with the /E parameter, using the SHELL directive in CONFIG.SYS.

For example, placing the line

SHELL=COMMAND.COM /E:2048 /P

Section II: Programming in the MS-DOS Environment 65

Part A: Structure of MS-DOS

in CONFIG.SYS sets the initial size of COMMAND.COM’s environment to 2 KB. (The /P
option prevents COMMAND.COM from terminating, thus causing it to remain in memory
until the system is turned off or restarted.)

The SET command is used to display or change the COMMAND.COM environment con-
tents. SET with no parameters displays the list of all the environment strings in the envi-
ronment. A typical listing might show the following settings:

COMSPEC=A: \COMMAND . COM
PATH=C:\;A:\;B:\
PROMPT=$p $d t_sng
TMP=C: \ TEMP

The following is a dump of the environment segment containing the previous environment
example:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 43 4F 4D 53 50 45 43 3D-41 3A 5C 43 4F 4D 4D 41 COMSPEC=A: \COMMA
0010 4E 44 2E 43 4F 4D 00 50-41 54 48 3D 43 3A 5C 3B ND.COM.PATH=C:\;
0020 41 3A 5C 3B 42 3A 5C 00-50 52 4F 4D 50 54 3D 24 A:\;B:\.PROMPT=$
0030 70 20 20 24 64 20 20 24-74 24 5F 24 6E 24 67 00 p $d t_ng.
0040 54 4D 50 3D 43 3A 5C 54-45 4D 50 00 00 00 00 00 TMP=C:\TEMP.....

A SET command that specifies a variable but does not specify a value for it deletes the vari-
able from the environment.

A program can ignore the contents of its environment; however, use of the environment
can add a great deal to the flexibility and configurability of batch files and application
programs.

Batch files

66

Batch files are text files with a .BAT extension that contain MS-DOS user and batch com-
mands. Each line in the file is limited to 128 bytes. See USER COMMANDS: BATCH. Batch
files can be created using most text editors, including EDLIN, and short batch files can
even be created using the COPY command:

C>COPY CON SAMPLE.BAT <Enter>

The CON device is the system console; text entered from the keyboard is echoed on the
screen as it is typed. The copy operation is terminated by pressing Ctrl-Z (or the F6 key on
IBM-compatible machines), followed by the Enter key.

Batch files are interpreted by COMMAND.COM one line at a time. In addition to the stan-
dard MS-DOS commands, COMMAND.COM'’s batch-file interpreter supports a number of
special batch commands:

Command Meaning

ECHO* Display a message.
FOR* Execute 2 command for a list of files.

(more)

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

Command Meaning

GOTO* Transfer control to another point.
IF* Conditionally execute a command.
PAUSE Wait for any key to be pressed.
REM Insert comment line.

SHIFT* Access more than 10 parameters.

* MS-DOS versions 2.0 and later

Execution of a batch file can be terminated before completion by pressing Ctrl-C or
Ctrl-Break, causing COMMAND.COM to display the prompt

Terminate batch job? (Y/N)
I/0 redirection

I/O redirection was introduced with MS-DOS version 2.0. The redirection facility is imple-
mented within COMMAND.COM using the Interrupt 21H system functions Duplicate File
Handle (45H) and Force Duplicate File Handle (46H). COMMAND.COM uses these func-

- tions to provide both redirection at the command level and a UNIX/XENIX-like pipe
facility.

Redirection is transparent to application programs, but to take advantage of redirection, an
application program must make use of the standard input and output file handles. The in-
put and output of application programs that directly access the screen or keyboard or use
ROM BIOS functions cannot be redirected.

Redirection is specified in the command line by prefixing file or device names with the
special characters >, >>, and <. Standard output (default = CON) is redirected using > and
>> followed by the name of a file or character device. The former character creates a new
file (or overwrites an existing file with the same name); the latter appends text to an exist-
ing file (or creates the file if it does not exist). Standard input (default = CON) is redirected
with the < character followed by the name of a file or character device. See also PRO-
GRAMMING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING Ms-DOs: Writing MS-DOS
Filters.

The redirection facility can also be used to pass information from one program to an-
other through a “pipe.” A pipe in MS-DOS is a special file created by COMMAND.COM.
COMMAND.COM redirects the output of one program into this file and then redirects this
file as the input to the next program. The pipe symbol, a vertical bar (}), separates the pro-
gram names. Multiple program names can be piped together in the same command line:

C>DIR #.* | SORT | MORE <Enter>
This command is equivalent to

C>DIR *.* > PIPEQ0 <Enter>
C>SORT < PIPEO > PIPE1 <Enter>
C>MORE < PIPE1 <Enter>

Section II: Programming in the MS-DOS Environment 67

Part A: Structure of MS-DOS

The concept of pipes came from UNIX/XENIX, but UNIX/XENIX is a multitasking oper-
ating system that actually runs the programs simultaneously. UNIX/XENIX uses memory
buffers to connect the programs, whereas MS-DOS loads one program at a time and passes
information through a disk file.

Loading MS-DOS

Getting MS-DOS up to the standard A> prompt is a complex process with a number of
variations. This section discusses the complete process normally associated with MS-DOS
versions 2.0 and later. (MS-DOS versions 1.x use the same general steps but lack support for
various system tables and installable device drivers.)

MS-DOS is loaded as a result of either a “cold boot” or a “warm boot.” On IBM-compatible
machines, a cold boot is performed when the computer is first turned on or when a hard-
ware reset occurs. A cold boot usually performs a power-on self test (POST) and deter-
mines the amount of memory available, as well as which peripheral adapters are installed.
The POST is ordinarily reserved for a cold boot because it takes a noticeable amount of
time. For example, an IBM-compatible ROM BIOS tests all conventional and extended
RAM (RAM above 1 MB on an 80286-based or 80386-based machine), a procedure that
can take tens of seconds. A warm boot, initiated by simultaneously pressing the Ctrl, Alt,
and Del keys, bypasses these hardware checks and begins by checking for a bootable disk.

A bootable disk normally contains a small loader program that loads MS-DOS from the
same disk. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DOS Storage Devices. The body of MS-DOS is contained in two files: 10.SYS and
MSDQOS.SYS (IBMBIO.COM and IBMDOS.COM with PC-DOS). IO.SYS contains the
Microsoft system initialization module, SYSINIT, which configures MS-DOS using either
default values or the specifications in the CONFIG.SYS file, if one exists, and then starts up
the shell program (usually COMMAND.COM, the default). COMMAND.COM checks for an
AUTOEXEC.BAT file and interprets the file if found. (Other shells might not support such
batch files.) Finally, COMMAND.COM prompts the user for a command. (The standard
MS-DOS prompt is A> if the system was booted from a floppy disk and C> if the system
was booted from a fixed disk.) Each of these steps is discussed in detail below.

The ROM BIOS, POST, and bootstrapping

All 8086/8088-compatible microprocessors begin execution with the CS:IP set to
FFFF:0000H, which typically contains a jump instruction to a destination in the ROM BIOS
that contains the initialization code for the machine. (This has nothing to do with MS-DOS;
it is a feature of the Intel microprocessors.) On IBM-compatible machines, the ROM BIOS
occupies the address space from F000:0000H to this jump instruction. Figure 2-1 shows the
location of the ROM BIOS within the 1 MB address space. Supplementary ROM support
can be placed before (at lower addresses than) the ROM BIOS.

All interrupts are disabled when the microprocessor starts execution and it is up to the
initialization routine to set up the interrupt vectors at the base of memory.

68 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

<«— FFFF:000FH(1 MB)

ROM BIOS <— FFFF:0000H
<€— F000:0000H
Other ROM and RAM
<«— Top of RAM
(A000:0000H for IBM PC)
Free RAM
<— 0000:0000H

Figure 2-1. Memory layout at startup.

The initialization routine in the ROM BIOS —the POST procedure —typically deter-
mines what devices are installed and operational and checks conventional memory (the
first 1 MB) and, for 80286-based or 80386-based machines, extended memory (above 1
MB). The devices are tested, where possible, and any problems are reported using a series
of beeps and display messages on the screen.

When the machine is found to be operational, the ROM BIOS sets it up for normal opera-
tion. First, it initializes the interrupt vector table at the beginning of memory and any inter-
rupt controllers that reference the table. The interrupt vector table area is located from
0000:0000H to 0000:03FFH. On IBM-compatible machines, some of the subsequent mem-
ory (starting at address 0000:0400H) is used for table storage by various ROM BIOS rou-
tines (Figure 2-2). The beginning load address for the MS-DOS system files is usually in
the range 0000:0600H to 0000:0800H.

Next, the ROM BIOS sets up any necessary hardware interfaces, such as direct memory
access (DMA) controllers, serial ports, and the like. Some hardware setup may be done
before the interrupt vector table area is set up. For example, the IBM PC DMA controller
also provides refresh for the dynamic RAM chips and RAM cannot be used until the
refresh DMA is running; therefore, the DMA must be set up first.

Some ROM BIOS implementations also check to see if additional ROM BIOSs are installed
by scanning the memory from A000:0000H to FO00:0000H for a particular sequence of sig-
nature bytes. If additional ROM BIOSs are found, their initialization routines are called to
initialize the associated devices. Examples of additional ROMs for the IBM PC family are
the PC/XT’s fixed-disk ROM BIOS and the EGA ROM BIOS.

The ROM BIOS now starts the bootstrap procedure by executing the ROM loader routine.
On the IBM PC, this routine checks the first floppy-disk drive to see if there is a bootable

Section II: Programming in the MS-DOS Environment 69

Part A: Structure of MS-DOS

70

<«— FFFF:000FH(1 MB)

ROM BIOS <«— FFFF:0000H
<€— F000:0000H
Other ROM and RAM
<«— Top of RAM
(A000:0000H for IBM PC)

Free RAM

<€— (0000:0600H
R BIOS tabl
oM ® | <« 0000:0400H
Interrupt vectors

<€— (000:0000H

Figure 2-2. The interrupt vector table and the ROM BIOS table.

disk in it. If there is not, the routine then invokes the ROM associated with another boot-
able device to see if that device contains a bootable disk. This procedure is repeated until
a bootable disk is found or until all bootable devices have been checked without success,
in which case ROM BASIC is enabled.

Bootable devices can be detected by a number of proprietary means. The IBM PC ROM
BIOS reads the first sector on the disk into RAM (Figure 2-3) and checks for an 8086-family
short or long jump at the beginning of the sector and for AA55H in the last word of the sec-
tor. This signature indicates that the sector contains the operating-system loader. Data
disks — those disks not set up with the MS-DOS system files — usually cause the ROM
loader routine to display a message indicating that the disk is not a bootable system disk.
The customary recovery procedure is to display a message asking the user to insert
another disk (with the operating system files on it) and press a key to try the load opera-
tion again. The ROM loader routine is then typically reexecuted from the beginning so
that it can repeat its normal search procedure.

When it finds a bootable device, the ROM loader routine loads the operating-system loader
and transfers control to it. The operating-system loader then uses the ROM BIOS services
through the interrupt table to load the next part of the operating system into low memory.

Before it can proceed, the operating-system loader must know something about the con-
figuration of the system boot disk (Figure 2-4). MS-DOS-compatible disks contain a data
structure that contains this information. This structure, known as the BIOS parameter
block (BPB), is located in the same sector as the operating-system loader. From the con-
tents of the BPB, the operating-system loader calculates the location of the root directory

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

<«— FFFF:000FH(1 MB)
ROM BIOS <— FFFF:0000H
<— F(000:0000H
Other ROM and RAM
<«— Top of RAM
(A000:0000H for IBM PC)
Possible free RAM
Boot sector <€— Arbitrary location
Free RAM
ROM BIOS tabl <= 0000:0600H
es
2 <— (000:0400H
Interrupt vectors

<— (0000:0000H

Figure 2-3. A loaded boot sector.

Boot sector <€— First sector on the disk

Reserved
(optional)

FAT#1

FAT#2

Root directory

10.SYS

MSDOS.SYS

File data area

%

Figure 2-4. Boot-disk configuration.

Section II: Programming in the MS-DOS Environment 71

Part A: Structure of MS-DOS

72

for the boot disk so that it can verify that the first two entries in the root directory are
I0.SYS and MSDOS.SYS. For versions of MS-DOS through 3.2, these files must also be the
first two files in the file data area, and they must be contiguous. (The operating-system
loader usually does not check the file allocation table [FAT] to see if IO.SYS and
MSDOS.SYS are actually stored in contiguous sectors.) See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE OF Ms-DOs: MS-DOS Storage Devices.

Next, the operating-system loader reads the sectors containing I0.SYS and MSDOS.SYS
into contiguous areas of memory just above the ROM BIOS tables (Figure 2-5). (An alterna-
tive method is to take advantage of the operating-system loader’s final jump to the entry
point in IO.SYS and include routines in I0.SYS that allow it to load MSDOS.SYS.)

Finally, assuming the file was loaded without any errors, the operating-system loader
transfers control to I0.SYS, passing the identity of the boot device. The operating-system
loader is no longer needed and its RAM is made available for other purposes.

<«— FFFF:000FH(1 MB)

ROM BIOS
<— F(000:0000H
Other ROM and RAM
<«— Top of RAM
(A000:0000H for IBM PC)
Possible free RAM
Boot sector <€— Arbitrary location
Free RAM
MSDOS.SYS
<— SYSINIT
105YS <«— MS-DOS BIOS (resident device drivers)
ROMBIOS tables | ¢ 0000:0600H
<— 0000:0400H
Interrupt vectors

<— (0000:0000H

Figure 2-5. 10.5YS and MSDOS.SYS loaded.

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

MS-DOS system initialization (SYSINIT)

MS-DOS system initialization begins after the operating-system loader has loaded I0.SYS
and MSDOS.SYS and transferred control to the beginning of I0.SYS. To this point, there
has been no standard loading procedure imposed by MS-DOS, although the IBM PC load-
ing procedure outlined here has become the de facto standard for most MS-DOS machines.
When control is transferred to 10.SYS, however, MS-DOS imposes its standards.

The 10.SYS file is divided into three modules:

® The resident device drivers
® The basic MS-DOS BIOS initialization module
® The MS-DOS system initialization module, SYSINIT

The two initialization modules are usually discarded as soon as MS-DOS is completely
initialized and the shell program is running; the resident device drivers remain in memory
while MS-DOS is running and are therefore placed in the first part of the I0.SYS file,
before the initialization modules.

The MS-DOS BIOS initialization module ordinarily displays a sign-on message and the
copyright notice for the OEM that created 10.SYS. On IBM-compatible machines, it then
examines entries in the interrupt table to determine what devices were found by the ROM
BIOS at POST time and adjusts the list of resident device drivers accordingly. This adjust-
ment usually entails removing those drivers that have no corresponding installed hard-
ware. The initialization routine may also modify internal tables within the device drivers.
The device driver initialization routines will be called later by SYSINIT, so the MS-DOS
BIOS initialization routine is now essentially finished and control is transferred to the
SYSINIT module.

SYSINIT locates the top of RAM and copies itself there. It then transfers control to the copy
and the copy proceeds with system initialization. The first step is to move MSDOS.SYS,
which contains the MS-DOS kernel, to a position immediately following the end of the
resident portion of 10.SYS, which contains the resident device drivers. This move over-
writes the original copy of SYSINIT and usually all of the MS-DOS BIOS initialization rou-
tine, which are no longer needed. The resulting memory layout is shown in Figure 2-6.

SYSINIT then calls the initialization routine in the newly relocated MS-DOS kernel. This
routine performs the internal setup for the kernel, including putting the appropriate values
into the vectors for Interrupts 20H through 3FH.

The MS-DOS kernel initialization routine then calls the initialization function of each
resident device driver to set up vectors for any external hardware interrupts used by the
device. Each block-device driver returns a pointer to a BPB for each drive that it supports;
these BPBs are inspected by SYSINIT to find the largest sector size used by any of the
drivers. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DOS Storage Devices. The kernel initialization routine then allocates a sector buffer the
size of the largest sector found and places the NUL device driver at the head of the device
driver list.

Section II: Programming in the MS-DOS Environment 73

Part A: Structure of MS-DOS

74

<«— FFFF:000FH(1 MB)

ROM BIOS
< F000:0000H
Other ROM and RAM
<«— Top of RAM
(A000:0000H for IBM PC)
SYSINIT
Free RAM
MS-DOS kernel
(MSDOS.SYS)
MS-DOS BIOS .
< i i
10.5YS) Resident device drivers
ROMBIOS tbles | ¢ CC00:0600H
<— 0000:0400H
Interrupt vectors

< 0000:0000H

Figure 2-6. SYSINIT and MSDOS.SYS relocated.

The kernel initialization routine’s final operation before returning to SYSINIT is to display
the MS-DOS copyright message. The loading of the system portion of MS-DOS is now com-
plete and SYSINIT can use any MS-DOS function in conjunction with the resident set of
device drivers.

SYSINIT next attempts to open the CONFIG.SYS file in the root directory of the boot
drive. If the file does not exist, SYSINIT uses the default system parameters; if the file is
opened, SYSINIT reads the entire file into high memory and converts all characters to
uppercase. The file contents are then processed to determine such settings as the number
of disk buffers, the number of entries in the file tables, and the number of entries in the
drive translation table (depending on the specific commands in the file), and these struc-
tures are allocated following the MS-DOS kernel (Figure 2-7).

Then SYSINIT processes the CONFIG.SYS text sequentially to determine what installable
device drivers are to be implemented and loads the installable device driver files into
memory after the system disk buffers and the file and drive tables. Installable device driver
files can be located in any directory on any drive whose driver has already been loaded.
Each installable device driver initialization function is called after the device driver file is
loaded into memory. The initialization procedure is the same as for resident device drivers,
except that SYSINIT uses an address returned by the device driver itself to determine
where the next device driver is to be placed. See PROGRAMMING IN THE MS-DOS ENVI-
RONMENT: CustomizING Ms-Dos: Installable Device Drivers.

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

<«— FFFF:000FH(1 MB)

ROM BIOS
<€— F000:0000H
Other ROM and RAM
<«— Top of RAM
(A000:0000H for IBM PC)
SYSINIT
Free RAM
Installable

device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel

(MSDOS.SYS)
MS-DOS BIOS . . .
I0.SYS) «€— Resident device drivers
ROM BIOS wbles | ¢ D000:0600H
- <€— 0000:0400H
Interrupt vectors
<— (0000:0000H

Figure 2-7. Tables allocated and installable device drivers loaded.

Like resident device drivers, installable device drivers can be discarded by SYSINIT if the
device driver initialization routine determines that a device is inoperative or nonexistent.
A discarded device driver is not included in the list of device drivers. Installable character-
device drivers supersede resident character-device drivers with the same name; installable
block-device drivers cannot supersede resident block-drivers and are assigned drive letters
JSollowing those of the resident block-device drivers.

Section IT: Programming in the MS-DOS Environment 75

Part A: Structure of MS-DOS

SYSINIT now closes all open files and then opens the three character devices CON, PRN,
and AUX. The console (CON) is used as standard input, standard output, and standard
error; the standard printer port is PRN (which defaults to LPT1); the standard auxiliary port
is AUX (which defaults to COMD). Installable device drivers with these names will replace
any resident versions.

Starting the shell

SYSINIT’s last function is to load and execute the shell program by using the MS-DOS
EXEC function. Se¢e PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING
FOR Ms-DoOs: The MS-DOS EXEC Function. The SHELL statement in CONFIG.SYS specifies
both the name of the shell program and its initial parameters; the default MS-DOS shell is
COMMAND.COM. The shell program is loaded at the start of free memory after the
installable device drivers or after the last internal MS-DOS file control block if there are
no installable device drivers (Figure 2-8).

COMMAND.COM

76

COMMAND.COM consists of three parts:

® A resident portion
® Aninitialization module
® A transient portion

The resident portion contains support for termination of programs started by
COMMAND.COM and presents critical-error messages. It is also responsible for re-
loading the transient portion when necessary.

The initialization module is called once by the resident portion. First, it moves the tran-
sient portion to high memory. (Compare Figures 2-8 and 2-9.) Then it processes the
parameters specified in the SHELL command in the CONFIG.SYS file, if any. See USER
COMMANDS: comMAND. Next, it processes the AUTOEXEC.BAT file, if one exists, and
finally, it transfers control back to the resident portion, which frees the space used by the
initialization module and transient portion. The relocated transient portion then displays
the MS-DOS user prompt and is ready to accept commands.

The transient portion gets a command from either the console or a batch file and executes
it. Commands are divided into three categories:

® Internal commands
® Batchfiles
® External commands

Internal commands are routines contained within COMMAND.COM and include opera-
tions like COPY or ERASE. Execution of an internal command does not overwrite the tran-
sient portion. Internal commands consist of a keyword, sometimes followed by a list of
command-specific parameters.

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

<«— FFFF:000FH(1 MB)
ROM BIOS
<€— F000:0000H

Other ROM and RAM

<«— Top of RAM
(A000:0000H for IBM PC)
SYSINIT

Free RAM

COMMAND.COM
(transient)

COMMAND.COM
(initialization)

COMMAND.COM
(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS.SYS)

MS-DOS BIOS
(I0.SYS)

ROM BIOS tables

<“— Resident device drivers
<— (000:0600H
<€— (0000:0400H

Interrupt vectors

<— (0000:0000H

Figure 2-8. COMMAND.COM loaded.

Section II: Programming in the MS-DOS Environment 77

Part A: Structure of MS-DOS

78

<— FFFF:000FH(1 MB)

ROM BIOS

Other ROM and RAM

COMMAND.COM
(transient)

Free RAM

COMMAND.COM
(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS.SYS)

MS-DOS BIOS
(I0.5YS)

<€— F000:0000H

<«— Top of RAM
(A000:0000H for IBM PC)

<€ Resident device drivers

ROM BIOS tables

<— (0000:0600H

Interrupt vectors

<€— (000:0400H

<€— 0000:0000H

Figure 2-9. COMMAND.COM after relocation.

Batch files are text files that contain internal commands, external commands, batch-file
directives, and nonexecutable comments. See USER COMMANDS: BATCH.

External commands, which are actually executable programs, are stored in separate

files with .COM and .EXE extensions and are included on the MS-DOS distribution disks.
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Struc-
ture of an Application Program. These programs are invoked with the name of the file
without the extension. (MS-DOS versions 3.x allow the complete pathname of the external

command to be specified.)

The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

External commands are loaded by COMMAND.COM by means of the MS-DOS EXEC func-
tion. The EXEC function loads a program into the free memory area, also called the tran-
sient program area (TPA), and then passes it control. Control returns to COMMAND.COM
when the new program terminates. Memory used by the program is released unless it is a
terminate-and-stay-resident (TSR) program, in which case some of the memory is retained
for the resident portion of the program. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT: CusToMIZING Ms-DOs: Terminate-and-Stay-Resident Utilities.

After a program terminates, the resident portion of COMMAND.COM checks to see if the
transient portion is still valid, because if the program was large, it may have overwritten
the transient portion’s memory space. The validity check is done by computing a check-
sum on the transient portion and comparing it with a stored value. If the checksums do
not match, the resident portion loads a new copy of the transient portion from the
COMMAND.COM file.

Just as COMMAND.COM uses the EXEC function to load and execute a program, pro-
grams can load and execute other programs until the system runs out of memory. Figure
2-10 shows a typical memory configuration for multiple applications loaded at the same
time. The active task —the last one executed — ordinarily has complete control over the
system, with the exception of the hardware interrupt handlers, which gain control
whenever a hardware interrupt needs to be serviced.

MS-DOS is not a multitasking operating system, so although several programs can be resi-
dent in memory, only one program can be active at a time. The stack-like nature of the
system is apparent in Figure 2-10. The top program is the active one; the next program
down will continue to run when the top program exits, and so on until control returns to
COMMAND.COM. RAM-resident programs that remain in memory after they have termi-
nated are the exception. In this case, a program lower in memory than another program
can become the active program, although the one-active-process limit is still in effect.

A custom shell program

The SHELL directive in the CONFIG.SYS file can be used to replace the system’s default
shell, COMMAND.COM, with a custom shell. Nearly any program can be used as a system
shell as long as it supplies default handlers for the Control-C and critical error exceptions.
For example, the program in Figure 2-11 can be used to make any application program
appear to be a shell program — if the application program terminates, SHELL.COM
restarts it, giving the appearance that the application program is the shell program.

SHELL.COM sets up the segment registers for operation as a .COM file and reduces the
program segment size to less than 1 KB. It then initializes the segment values in the param-
eter table for the EXEC function, because .COM files cannot set up segment values within a
program. The Control-C and critical error interrupt handler vectors are set to the address of
the main program loop, which tries to load the new shell program. SHELL.COM prints a
message if the EXEC operation fails. The loop continues forever and SHELL.COM will
never return to the now-discarded SYSINIT that started it.

Section II: Programming in the MS-DOS Environment 79

Part A: Structure of MS-DOS

<«— FFFF:000FH(1 MB)
ROM BIOS

<— F000:0000H

Other ROM and RAM

<«— Top of RAM

COMMAND.COM (A000:0000H for IBM PC)
(transient)

Free RAM

Program #3
(active)

Program #2

Program #1

COMMAND.COM
(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS-DOS kernel

(MSDOS.SYS)
MS-DOS BIOS .])
(—
(I0.SYS) Resident device drivers
ROMBIOS wbles | ¢ U000:0600H
<— (000:0400H
Interrupt vectors

<— (0000:0000H

Figure 2-10. Multiple programs loaded.

80 The MS-DOS Encyclopedia

Article 2: The Components of MS-DOS

; SHELL.ASM A simple program to run an application as an

; MS-DOS shell program. The program name and
; startup parameters must be adjusted before
H SHELL is assembled.

Written by William Wong

SN N

; To create SHELL.COM:

~

C>MASM SHELL;
C>LINK SHELL;

SeoNe N

C>EXE2BIN SHELL.EXE SHELL.COM

stderr equ 2 ; standard error

cr equ 0dh ; ASCII carriage return
1f equ Oah ; ASCII linefeed

cseg segment para public 'CODE'

; -- Set up DS, ES, and SS:SP to run as .COM --

assume cs:Ccseg

start proc far
mov ax,cs ; set up segment registers
add ax,10h ; AX = segment after PSP
mov ds, ax
mov ss,ax ; set up stack pointer
mov sp,offset stk
mov ax,offset shell
push cs ; push original CS
push ds ; push segment of shell
push ax ; push offset of shell
ret ; jump to shell

start endp

-- Main program running as .COM --

CS, DS, SS = cseg
Original CS value on top of stack

SeoNe e N N N

assume cs:cseqg, ds:cseg, sSs:icseg

seg_size equ (((offset last) - (offset start)) + 10fh)/16
shell proc near

pop es ; ES = segment to shrink

mov bx,seg_size ; BX = new segment size

mov ah, 4ah ; AH = modify memory block

int 21h ; free excess memory

mov cmd_seqg,ds ; setup segments in

mov fcb1_seqg,ds ; parameter block for EXEC

mov fcb2_segqg,ds

mov dx,offset main_loop

mov ax,2523h ; AX = set Control-C handler
Figure 2-11. A simple program to run an application as an MS-DOS shell. (more)

Section 1I: Programming in the MS-DOS Environment 81

Part A: Structure of MS-DOS

82

int 21h ;
mov dx,offset main_loo
mov ax,2524h

int 21h ;

main_loop:

set handler to DS:DX

P

AX = set critical error handler
set handler to DS:DX

Note: DS is equal to CS

push ds ; save segment registers
push es

mov cs:stk_seg,ss ; save stack pointer

mov cs:stk_off, sp

mov dx,offset pgm _name

mov bx,offset par_blk

mov ax, 4b00h ; AX = EXEC/run program
int 21h ; carry = EXEC failed
mov ss,cs:stk_seg ; restore stack pointer
mov sp,cs:stk_off

pop es ; restore segment registers
pop ds

jnc main_loop ; loop if program run
mov dx,offset load msg

mov cx,load msg_length

call print ; display error message
mov ah, 08h ; AH = read without echo
int 21h ; wait for any character
Jjmp main_loop ; execute forever

shell endp

-- Print string --

SN N

; DS:DX = address of string

; CX = size

;

print proc near
mov ah, 40h ;
mov bx, stderr ;
int 21h ;
ret

print endp

; -— Message strings --

;

load_msg db cr,1f
db 'Cannot load program.'
db 'Press any key to try
load_msg_length equ $-load msg

-- Program data area --

NN s

stk_seg dw 0
stk_off dw 0
pgm_name db '\NEWSHELL.COM', 0

’
’

Figure 2-11. Continued.

The MS-DOS Encyclopedia

AH write to file
BX = file handle
print string

,cr,1f
again.',cr,1f

stack segment pointer
save area during EXEC
; any program will do

(more)

Article 2: The Components of MS-DOS

par_blk dw 0

dw offset
cmd_seg dw 0

dw offset
fcbl1_seg dw 0

dw offset
fcb2_seg dw 0
cmd_line db 0,cr
fcb1 db 0

db 11 dup

db 25 dup
fcb2 db 0

db 11 dup

db 25 dup

dw 200 dup
stk dw 0
last equ S
cseg ends

end start

Figure 2-11. Continued.

cmd_line

fcbi

fcb2

(A
(0)
(0)

’

v

’

use current environment
command-line address

£ill in at initialization
default FCB #1

fill in at initialization
default FCB #2

fill in at initialization
actual command line

program stack area

last address used

SHELL.COM is very short and not too smart. It needs to be changed and rebuilt if the name
of the application program changes. A simple extensijon to SHELL — call it XSHELL—
would be to place the name of the application program and any parameters in the com-
mand line. XSHELL would then have to parse the program name and the contents of the
two FCBs needed for the EXEC function. The CONFIG.SYS line for starting this shell

would be

SHELL=XSHELL \SHELL\DEMO.EXE PARAM1 PARAM2 PARAM3

SHELL.COM does not set up a new environment but simply uses the one passed to it.

William Wong

Section II: Programming in the MS-DOS Environment 83

Article 3: MS-DOS Storage Devices

Article 3
MS-DOS Storage Devices

Application programs access data on MS-DOS storage devices through the MS-DOS file-
system support that is part of the MS-DOS kernel. The MS-DOS kernel accesses these
storage devices, also called block devices, through two types of device drivers: resident
block-device drivers contained in IO.SYS and installable block-device drivers loaded
from individual files when MS-DOS is loaded. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: STRUCTURE OF Ms-DOs: The Components of MS-DOS; CUSTOMIZING
Mms-pDos: Installable Device Drivers.

MS-DOS can handle almost any medium, recording method, or other variation for a storage
device as long as there is a device driver for it. MS-DOS needs to know only the sector size
and the maximum number of sectors for the device; the appropriate translation between
logical sector number and physical location is made by the device driver. Information
about the number of heads, tracks, and so on is required only for those partitioning pro-
grams that allocate logical devices along these boundaries. See Layout of a Partition below.

The floppy-disk drive is perhaps the best-known block device, followed by its faster
cousin, the fixed-disk drive. Other MS-DOS media include RAMdisks, nonvolatile
RAMdisks, removable hard disks, tape drives, and CD ROM drives. With the proper device
driver, MS-DOS can place a file system on any of these devices (except read-only media
such as CD ROM).

This article discusses the structure of the file system on floppy and fixed disks, starting
with the physical layout of a disk and then moving on to the logical layout of the file sys-
tem. The scheme examined is for the IBM PC fixed disk.

Structure of an MS-DOS Disk

The structure of an MS-DOS disk can be viewed in a number of ways:

® Physical device layout
® Logical device layout
® Logical block layout

® MS-DOS file system

The physical layout of a disk is expressed in terms of sectors, tracks, and heads. The logical
device layout, also expressed in terms of sectors, tracks, and heads, indicates how a logical
device maps onto a physical device. A partitioned physical device contains multiple logical
devices; a physical device that cannot be partitioned contains only one. Each logical device

Section II: Programming in the MS-DOS Environment 85

Part A: Structure of MS-DOS

has a logical block layout used by MS-DOS to implement a file system. These various
views of an MS-DOS disk are discussed below. See also PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PROGRAMMING FOR Ms-DOs: File and Record Management; Disk Directo-
ries and Volume Labels.

Layout of a physical block device

The two major block-device implementations are solid-state RAMdisks and rotating mag-
netic media such as floppy or fixed disks. Both implementations provide a fixed amount of
storage in a fixed number of randomly accessible same-size sectors.

RAMdisks

A RAMdisk is a block device that has sectors mapped sequentially into RAM. Thus, the
RAMdisk is viewed as a large set of sequentially numbered sectors whose addresses are
computed by simply multiplying the sector number by the sector size and adding the base
address of the RAMdisk sector buffer. Access is fast and efficient and the access time to any
sector is fixed, making the RAMdisk the fastest block device available. However, there are
significant drawbacks to RAMdisks. First, they are volatile; their contents are irretrievably
lost when the computer’s power is turned off (although a special implementation of the
RAMdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures
that its contents are not lost when the computer’s power is turned off). Second, they are
usually not portable.

Physical disks

86

Floppy-disk and fixed-disk systems, on the other hand, store information on revolving
platters coated with a special magnetic material. The disk is rotated in the drive at high
speeds —approximately 300 revolutions per minute (rpm) for floppy disks and 3600 rpm
for fixed disks. (The term “fixed” refers to the fact that the medium is built permanently
into the drive, not to the motion of the medium.) Fixed disks are also referred to as “hard”
disks, because the disk itself is usually made from a rigid material such as metal or glass;
floppy disks are usually made from a flexible material such as plastic.

A transducer element called the read/write head is used to read and write tiny magnetic
regions on the rotating magnetic medium. The regions act like small bar magnets with
north and south poles. The magnetic regions of the medium can be logically oriented
toward one or the other of these poles — orientation toward one pole is interpreted as a
specific binary state (1 or 0) and orientation toward the other pole is interpreted as the
opposite binary state. A change in the direction of orientation (and hence a change in the
binary value) between two adjacent regions is called a flux reversal, and the density of a
particular disk implementation can be measured by the number of regions per inch reli-
ably capable of flux reversal. Higher densities of these regions yield higher-capacity disks.
The flux density of a particular system depends on the drive mechanics, the characteris-
tics of the read/write head, and the magnetic properties of the medium.

The read/write head can encode digital information on a disk using a number of recording
techniques, including frequency modulation (FM), modified frequency modulation (MFM),

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

run length limited (RLL) encoding, and advanced run length limited (ARLL) encoding.
Each technique offers double the data encoding density of the previous one. The associ-
ated control logic is more complex for the denser techniques.

Tracks

A read/write head reads data from or writes data to a thin section of the disk called a
track, which is laid out in a circular fashion around the disk (Figure 3-1). Standard 5.25-
inch floppy disks contain either 40 (0—39) or 80 (0—79) tracks per side. Like-numbered
tracks on either side of a double-sided disk are distinguished by the number of the read/
write head used to access the track. For example, track 1 on the top of the disk is identified
as head 0, track 1; track 1 on the bottom of the disk is identified as head 1, track 1.

Tracks can be either spirals, as on a phonograph record, or concentric rings. Computer
media usually use one of two types of concentric rings. The first type keeps the same num-
ber of sectors on each track (see Sectors below) and is rotated at a constant angular veloc-
ity (CAV). The second type maintains the same recording density across the entire surface
of the disk, so a track near the center of a disk contains fewer sectors than a track near the
perimeter. This latter type of disk is rotated at different speeds to keep the medium under
the magnetic head moving at a constant linear velocity (CLV).

Sector

= ‘ Sides
.- .'), ,'-’” ,,""
\\§Q// //”///,'.

Tracks

Figure 3-1. The physical layout of a CAV 9-sector, 5.25-inch floppy disk.

Most MS-DOS computers use CAV disks, although a CLV disk can store more sectors using
the same type of medium. This difference in storage capacity occurs because the limiting
factor is the flux density of the medium and a CAV disk must maintain the same number

of magnetic flux regions per sector on the interior of the disk as at the perimeter. Thus,

the sectors on or near the perimeter do not use the full capability of the medium and the
heads, because the space reserved for each magnetic flux region on the perimeter is larger
than that available near the center of the disk. In spite of their greater storage capacity,
however, CLV disks (such as CD ROMs) usually have slower access times than CAV disks
because of the constant need to fine-tune the motor speed as the head moves from track to
track. Thus, CAV disks are preferred for MS-DOS systems.

Section II: Programming in the MS-DOS Environment 87

Part A: Structure of MS-DOS

Heads

Simple disk systems use a single disk, or platter, and use one or two sides of the platter;
more complex systems, such as fixed disks, use multiple platters. Disk systems that use
both sides of a disk have one read/write head per side; the heads are positioned over the
track to be read from or written to by means of a positioning mechanism such as a solenoid
or servomotor. The heads are ordinarily moved in unison, using a single head-movement
mechanism; thus, heads on opposite sides of a platter in a double-sided disk system
typically access the same logical track on their associated sides of the platter. (Performance
can be increased by increasing the number of heads to as many as one head per track,
eliminating the positioning mechanism. However, because they are quite expensive, such
multiple-head systems are generally found only on high-performance minicomputers and
mainframes.)

The set of like-numbered tracks on the two sides of a platter (or on all sides of all platters
in a multiplatter system) is called a cylinder. Disks are usually partitioned along cylinders.
Tracks and cylinders may appear to have the same meaning; however, the term track is
used to define a concentric ring containing a specific number of sectors on a single side of
a single platter, whereas the term cylinder refers to the number of like-numbered tracks on
a device (Figure 3-2).

Side 0, track 7

Side 1,
track 7

N1

cylinder

Side 2, track 7

—/

“—— Side 3, track 7

Figure 3-2. Tracks and cylinders on a fixed-disk system.

Sectors
Each track is divided into equal-size portions called sectors. The size of a sector is a power
of 2 and is usually greater than 128 bytes — typically, 512 bytes.

Floppy disks are either hard-sectored or soft-sectored, depending on the disk drive and
the medium. Hard-sectored disks are implemented using a series of small holes near the

88 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

center of the disk that indicate the beginning of each sector; these holes are read by a
photosensor/LED pair built into the disk drive. Soft-sectored disks are implemented by
magnetically marking the beginning of each sector when the disk is formatted. A soft-
sectored disk has a single hole near the center of the disk (see Figure 3-1) that marks the
location of sector 0 for reference when the disk is formatted or when error detection is per-
formed; this hole is also read by a photosensor/LED pair. Fixed disks use a special imple-
mentation of soft sectors (see below). A hard-sectored floppy disk cannot be used in a
disk drive built for use with soft-sectored floppy disks (and vice versa).

In addition to a fixed number of data bytes, both sector types include a certain amount of
overhead information, such as error correction and sector identification, in each sector.
The structure of each sector is implemented during the formatting process.

Standard fixed disks and 5.25-inch floppy disks generally have from 8 to 17 physical sec-
tors per track. Sectors are numbered beginning at 1. Each sector is uniquely identified by a
complete specification of the read/write head, cylinder number, and sector number. To
access a particular sector, the disk drive controller hardware moves all heads to the speci-
fied cylinder and then activates the appropriate head for the read or write operation.

The read/write heads are mechanically positioned using one of two hardware implemen-
tations. The first method, used with floppy disks, employs an “open-loop” servomecha-
nism in which the software computes where the heads should be and the hardware moves
them there. (A servomechanism is a device that can move a solenoid or hold it in a fixed
position.) An open-loop system employs no feedback mechanism to determine whether
the heads were positioned correctly — the hardware simply moves the heads to the
requested position and returns an error if the information read there is not what was
expected. The positioning mechanism in floppy-disk drives is made with close tolerances
because if the positioning of the heads on two drives differs, disks written on one might
not be usable on the other.

Most fixed disk systems use the second method —a “closed-loop” servomechanism that
reserves one side of one platter for positioning information. This information, which indi-
cates where the tracks and sectors are located, is written on the disk at the factory when
the drive is assembled. Positioning the read/write heads in a closed-loop system is actually
a two-step process: First, the head assembly is moved to the approximate location of the
read or write operation; then the disk controller reads the closed-loop servo information,
compares it to the desired location, and fine-tunes the head position accordingly. This
fine-tuning approach yields faster access times and also allows for higher-capacity disks
because the positioning can be more accurate and the distances between tracks can
therefore be smaller. Because the “servo platter” usually has positioning information on
one side and data on the other, many systems have an odd number of read/write heads
for data.

Interleaving

CAV MS-DOS disks are described in terms of bytes per sector, sectors per track, number of
cylinders, and number of read/write heads. Overall access time is based on how fast the
disk rotates (rotational latency) and how fast the heads can move from track to track
(track-to-track latency).

Section II: Programming in the MS-DOS Environment 89

Part A: Structure of MS-DOS

On most fixed disks, the sectors on the disk are logically or physically numbered so that
logically sequential sectors are not physically adjacent (Figure 3-3). The underlying princi-
ple is that, because the controller cannot finish processing one sector before the next
sequential sector arrives under the read/write head, the logically numbered sectors must
be staggered around the track. This staggering of sectors is called skewing or, more com-
monly, interleaving. A 2-to-1 (2:1) interleave places sequentially accessed sectors so that
there is one additional sector between them; a 3:1 interleave places two additional sectors
between them. A slower disk controller needs a larger interleave factor. A 3:1 interleave
means that three revolutions are required to read all sectors on a track in numeric order.

Rotation direction
—_—

Figure 3-3. A 3:1interleave.

One approach to improving fixed-disk performance is to decrease the interleave ratio.
This generally requires a specialized utility program and also requires that the disk be
reformatted to adjust to the new layout. Obviously, a 1:1 interleave is the most efficient,
provided the disk controller can process at that speed. The normal interleave for an IBM
PC/AT and its standard fixed disk and disk controller is 3:1, but disk controllers are avail-
able for the PC/AT that are capable of handling a 1:1 interleave. Floppy disks on MS-DOS-
based computers all have a 1:1 interleave ratio.

Layout of a partition

90

For several reasons, large physical block devices such as fixed disks are often logically par-
titioned into smaller logical block devices (Figure 3-4). For instance, such partitions allow
a device to be shared among different operating systems. Partitions can also be used to
keep the size of each logical device within the PC-DOS 32 MB restriction (important for
large fixed disks). MS-DOS permits a maximum of four partitions.

A partitioned block device has a partition table located in one sector at the beginning of
the disk. This table indicates where the logical block devices are physically located. (Even
a partitioned device with only one partition usually has such a table.)

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

—— Partition 1
—— Partition 2
— Partition 3

|—— Partition 4

-«

A
\ 4
A
Y
A
\4

f

N =

Figure 3-4. Apartitioned disk.

Under the MS-DOS partitioning standard, the first physical sector on the fixed disk con-
tains the partition table and a bootstrap program capable of checking the partition table
for a bootable partition, loading the bootable partition’s boot sector, and transferring con-
trol to it. The partition table, located at the end of the first physical sector of the disk, can
contain a maximum of four entries:

Offset From

Start of Sector Size (bytes) Description
01BEH 16 Partition #4
01CEH 16 Partition #3
01DEH 16 Partition #2
01EEH 16 Partition #1
01FEH 2 Signature: AA55H

The partitions are allocated in reverse order. Each 16-byte entry contains the following
information:

Offset From

Start of Entry Size (bytes) Description
00H 1 Boot indicator
01H 1 Beginning head

(more)

Section II: Programming in the MS-DOS Environment o1

Part A: Structure of MS-DOS

92

Offset From

Start of Entry Size (bytes) Description

02H 1 ’ Beginning sector

03H 1 Beginning cylinder

04H 1 System indicator

05H 1 Ending head

06H 1 Ending sector

07H 1 Ending cylinder

08H 4 Starting sector (relative to beginning
of disk)

0CH 4 Number of sectors in partition

The boot indicator is zero for a nonbootable partition and 80H for a bootable (active) parti-
tion. A fixed disk can have only one bootable partition. (When setting a bootable partition,
partition programs such as FDISK reset the boot indicators for all other partitions to zero.)
See USER COMMANDS: FDISK.

The system indicators are

Code Meaning

00H Unknown
01H MS-DOS, 12-bit FAT
04H MS-DOS, 16-bit FAT

Each partition’s boot sector is located at the start of the partition, which is specified in
terms of beginning head, beginning sector, and beginning cylinder numbers. This infor-
mation, stored in the partition table in this order, is loaded into the DX and CX registers by
the PC ROM BIOS loader routine when the machine is turned on or restarted. The starting
sector of the partition relative to the beginning of the disk is also indicated. The ending
head, sector, and cylinder numbers, also included in the partition table, specify the last ac-
cessible sector for the partition. The total number of sectors in a partition is the difference
between the starting and ending head and cylinder numbers times the number of sectors
per cylinder.

MS-DOS versions 2.0 through 3.2 allow only one MS-DOS partition per partitioned device.
Various device drivers have been implemented that use a different partition table that
allows more than one MS-DOS partition to be installed, but the secondary MS-DOS parti-
tions are usually accessible only by means of an installable device driver that knows about
this change. (Even with additional MS-DOS partitions, a fixed disk can have only one boot-
able partition.)

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

Layout of a file system

Block devices are accessed on a sector basis. The MS-DOS kernel, through the device
driver, sees a block device as a logical fixed-size array of sectors and assumes that the array
contains a valid MS-DOS file system. The device driver, in turn, translates the logical sector
requests from MS-DOS into physical locations on the block device.

The initial MS-DOS file system is written to the storage medium by the MS-DOS FORMAT
program. See USER COMMANDS: rorMAT. The general layout for the file system is shown
in Figure 3-5.

OEM identification, BIOS parameter block, Loader routine
Reserved area

File allocation table (FAT) #1

Possible additional copies of FAT

Root disk directory

V’_\/
— T~

Files area

Figure 3-5. The MS-DOS file system.

The boot sector is always at the beginning of a partition. It contains the OEM identifica-
tion, a loader routine, and a BIOS parameter block (BPB) with information about the
device, and it is followed by an optional area of reserved sectors. See The Boot Sector
below. The reserved area has no specific use, but an OEM might require a more complex
loader routine and place it in this area. The file allocation tables (FATs) indicate how the
file data area is allocated; the root directory contains a fixed number of directory entries;
and the file data area contains data files, subdirectory files, and free data sectors.

Section II: Programming in the MS-DOS Environment 93

Part A: Structure of MS-DOS

All the areas just described — the boot sector, the FAT, the root directory, and the file data
area—are of fixed size; that is, they do not change after FORMAT sets up the medium.
The size of each of these areas depends on various factors. For instance, the size of the FAT
is proportional to the file data area. The root directory size ordinarily depends on the type
of device; a single-sided floppy disk can hold 64 entries, a double-sided floppy disk can
hold 112, and a fixed disk can hold 256. (RAMdisk drivers such as RAMDRIVE.SYS and
some implementations of FORMAT allow the number of directory entries to be specified.)

The file data area is allocated in terms of clusters. A cluster is a fixed number of con-
tiguous sectors. Sector size and cluster size must be a power of 2. The sector size is usually
512 bytes and the cluster size is usually 1, 2, or 4 KB, but larger sector and cluster sizes are
possible. Commonly used MS-DOS cluster sizes are

Disk Type Sectors/Cluster Bytes/Cluster*
Single-sided floppy disk 1 512
Double-sided floppy disk 2 1024
PC/AT fixed disk 4 - 2048
PC/XT fixed disk 8 4096
Other fixed disks 16 8192
Other fixed disks 32 16384

* Assumes 512 bytes per sector.

In general, larger cluster sizes are used to support larger fixed disks. Although smaller clus-
ter sizes make allocation more space-efficient, larger clusters are usually more efficient for
random and sequential access, especially if the clusters for a single file are not sequentially
allocated.

The file allocation table contains one entry per cluster in the file data area. Doubling the
sectors per cluster will also halve the number of FAT entries for a given partition. See The
File Allocation Table below.

The boot sector

94

The boot sector (Figure 3-6) contains a BIOS parameter block, a loader routine, and some
other fields useful to device drivers. The BPB describes a number of physical parameters
of the device, as well as the location and size of the other areas on the device. The device
driver returns the BPB information to MS-DOS when requested, so that MS-DOS can deter-
mine how the disk is configured.

Figure 3-7 is a hexadecimal dump of an actual boot sector. The first 3 bytes of the boot sec-
tor shown in Figure 3-7 would be E9H 2CH 00H if a long jump were used instead of a short
one (as in early versions of MS-DOS). The last 2 bytes in the sector, 55H and AAH, are a
fixed signature used by the loader routine to verify that the sector is a valid boot sector.

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

00H
03H

0BH
ODH
OEH
10H
11H
13H
15H
16H
18H
1AH
1CH
1EH

E9 XX XX or EB XX 90

OEM name and version (8 bytes)

A

Bytes per sector (2 bytes)

Sectors per allocation unit (1 byte)

Reserved sectors, starting at 0 (2 bytes)

Number of FATs (1 byte)

) A BPB
Number of root-directory entries (2 bytes)

Total sectors in logical volume (2 bytes)

Media descriptor byte

Number of sectors per FAT (2 bytes)

A

Sectors per track (2 bytes)

Number of heads (2 bytes)

Number of hidden sectors (2 bytes)

Loader routine

Figure 3-6. Map of the boot sector of an MS-DOS disk. Bytes OBH through 17H are the BIOS parameter block

(BPB).

The BPB information contained in bytes OBH through 17H indicates that there are

512
2

1

2
112
1440
FOH
3

bytes per sector

sectors per cluster

reserved sector (for the boot sector)
FATs

root directory entries

sectors on the disk

media descriptor

sectors per FAT

Section IT: Programming in the MS-DOS Environment 95

Part A: Structure of MS-DOS

0000
0010
0020
0030

e.%..*.Pv..z

8@..X<.,3Q@.P.Q{:

0180 OA 44 69 73 6B 20 42 6F-6F 74 20 46 61 69 6C 75 .Disk Boot Failu
0190 72 65 OD OA OD OA 4E 6F-6E 2D 53 79 73 74 65 6D re....Non-System
01A0 20 64 69 73 6B 20 6F 72-20 64 69 73 6B 20 65 72 disk or disk er
01BO0 72 6F 72 0D OA 52 65 70-6C 61 63 65 20 61 6E 64 ror..Replace and
01C0 20 70 72 65 73 73 20 61-6E 79 20 6B 65 79 20 77 press any key w
01D0 68 65 6E 20 72 65 61 64-79 0D OA 00 00 00 00 00 hen ready.......
01E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 veveeennnnnn
01F0 00 00 00 00 00 00 00 00-00 00 0O 00 00 00 55 AA onnn. *

Figure 3-7. Hexadecimal dump of an MS-DOS boot sector. The BPB is highlighted.
Additional information immediately after the BPB indicates that there are 9 sectors per
track, 2 read/write heads, and 0 hidden sectors.

The media descriptor, which appears in the BPB and in the first byte of each FAT, is used to
indicate the type of medium currently in a drive. IBM-compatible media have the follow-

ing descriptors:

Descriptor Media Type MS-DOS Versions
OF8H Fixed disk 2,3

OFOH 3.5-inch, 2-sided, 18 sector 3.2

OF9H 3.5-inch, 2-sided, 9 sector 3.2

OF9H 5.25-inch, 2-sided, 15 sector 3x

OFCH 5.25-inch, 1-sided, 9 sector 2X,3x

OFDH 5.25-inch, 2-sided, 9 sector 2Xx,3x

OFEH 5.25-inch, 1-sided, 8 sector 1x,2x,3x

OFFH 5.25-inch, 2-sided, 8 sector 1.x(except 1.0), 2,3
OFEH 8-inch, 1-sided, single-density

OFDH 8-inch, 2-sided, single-density

OFEH 8-inch, 1-sided, double-density

OFDH 8-inch, 2-sided, double-density

96 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

The file allocation table

The file allocation table provides a map to the storage locations of files on a disk by indi-
cating which clusters are allocated to each file and in what order. To enable MS-DOS to
locate a file, the file’s directory entry contains its beginning FAT entry number. This FAT
entry, in turn, contains the entry number of the next cluster if the file is larger than one
cluster or a last-cluster number if there is only one cluster associated with the file. A file
whose size implies that it occupies 10 clusters will have 10 FAT entries and 9 FAT links.
(The set of links for a particular file is called a chain.)

Additional copies of the FAT are used to provide backup in case of damage to the first,

or primary, FAT; the typical floppy disk or fixed disk contains two FATs. The FATs are
arranged sequentially after the boot sector, with some possible intervening reserved area.
MS-DOS ordinarily uses the primary FAT but updates all FATs when a change occurs.

It also compares all FATs when a disk is first accessed, to make sure they match.

MS-DOS supports two types of FAT: One uses 12-bit links; the other, introduced with
version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses 16-bit
links.

The first two entries of a FAT are always reserved and are filled with a copy of the media
descriptor byte and two (for a 12-bit FAT) or three (for a 16-bit FAT) OFFH bytes, as shown
in the following dumps of the first 16 bytes of the FAT:

12-bit FAT:
F9 FF FF 03 40 00 FF 6F-00 07 FO FF 00 00 00 0O
16-bit FAT:
F8 FF FF FF 03 00 04 00-FF FF 06 00 07 00 FF FF

The remaining FAT entries have a one-to-one relationship with the clusters in the file data
area. Each cluster’s use status is indicated by its corresponding FAT value. (FORMAT in-
itially marks the FAT entry for each cluster as free.) The use status is one of the following:

12-bit 16-bit Meaning

000H 0000H Free cluster

001H 0001H Unused code

FFO-FF6H FFFO-FFF6H Reserved

FF7H FFF7H Bad cluster; cannot be used
FF8—FFFH FFF8—-FFFFH Last cluster of file

All other values All other values Link to next cluster in file

Section II: Programming in the MS-DOS Environment 97

Part A: Structure of MS-DOS

98

If a FAT entry is nonzero, the corresponding cluster has been allocated. A free cluster is
found by scanning the FAT from the beginning to find the first zero value. Bad clusters are
ordinarily identified during formatting. Figure 3-8 shows a typical FAT chain.

FATentry: 0 1 2 4 5 6 7 8 9

3 [

FFDH | FFFH | 003H | 005H | FFTH | 006H | FFFH | 000H | 000H | 000H .
@093)| 4095) | 3) | & |wosn| © |@09s)| © | @ | (o | Ccominues.

Unused; available cluster

Unusable

—— Unused; not available

— Disk is double-sided, double-density

Figure 3-8. Space allocation in the FAT for a typical MS-DOS disk.

Free FAT entries contain a link value of zero; a link value of 1is never used. Thus, the first
allocatable link number, associated with the first available cluster in the file data area, is 2,
which is the number assigned to the first physical cluster in the file data area. Figure 3-9
shows the relationship of files, FAT entries, and clusters in the file data area.

There is no logical difference between the operation of the 12-bit and 16-bit FAT entries;
the difference is simply in the storage and access methods. Because the 8086 is specifically
designed to manipulate 8- or 16-bit values efficiently, the access procedure for the 12-bit
FAT is more complex than that for the 16-bit FAT (see Figures 3-10 and 3-11.

Special considerations

The FAT is a highly efficient bookkeeping system, but various tradeoffs and problems can
occur. One tradeoff is having a partially filled cluster at the end of a file. This situation
leads to an efficiency problem when a large cluster size is used, because an entire cluster is
allocated, regardless of the number of bytes it contains. For example, ten 100-byte files on a
disk with 16 KB clusters use 160 KB of disk space; the same files on a disk with 1 KB clus-
ters use only 10 KB — a difference of 150 KB, or 15 times less storage used by the smaller
cluster size. On the other hand, the 12-bit FAT routine in Figure 3-10 shows the difficulty
(and therefore slowness) of moving through a large file that has a long linked list of many
small clusters. Therefore, the nature of the data must be considered: Large database appli-
cations work best with a larger cluster size; a smaller cluster size allows many small text
files to fit on a disk. (The programmer writing the device driver for a disk device ordinarily
sets the cluster size.)

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

12-bit FAT:

Reserved 003H FFFH 007H 000H

— =]

F9 FF FF 03 40 00, FF 6F 00, 07 FO FF 00 00

[T T

004H 006H FFFH

16 bit FAT:

Reserved

l 0003H 0004H FFFFH 0006H 0007H FFFFH 0000H

! I I I I [| P |

F8 FF FF FF 03 00 04 00 FF FF 06 00 07 00 FF FF 00 0O

FAT entry: 0 1 2 3 4 5 6 7 8
12-bit FAT: I 003H |.004H | FFFH | 006H | O07H | FFFH | 000H
Reserved continues...
16-bit FAT: | 0003H |0004H |[FFFFH|0006H|0007H |[FFFFH |[0000H
A A A A I T A
Directory entry
FILE1l. TXT
(points to FAT entry 2)
FILE2. TXT
(points to FAT entry 5)
File data area Corresponding FAT entry
FILELl. TXT 2
FILE1l. TXT 3
FILEl. TXT 4
FILE2. TXT 5
FILE2. TXT 6
FILE2. TXT 7
Unused (available) 8

Figure 3-9. Correspondence between the FAT and the file data area.

Section II: Programming in the MS-DOS Environment 99

Part A: Structure of MS-DOS

100

Parameters:

ax
ds:bx

; Returns:

~

; Uses:
next12

shift:

next12

ax

ax, bx,
proc
add
shr

pushf
add
mov
popf
jc
and
ret
mov
shr
ret
endp

-——- Obtain the next link number from a 12-bit FAT -----

= current entry number
(must be contiguous)

= address of FAT

cx
near
bx,ax
ax,1

bx,ax

ax, [bx]

shift
ax,0fffh

cx,4
ax,cl

next link number

Se o Ne N Ne e N N Se s

N~

ds:bx = partial index

ax = offset/2

carry = no shift needed

save carry

ds:bx = next cluster number index
ax = next cluster number

carry = no shift needed

skip if using top 12 bits

ax = lower 12 bits

shift count
top 12 bits in lower 12 bits

CX

ax

Figure 3-10. Assembly-language routine to access a 12-bit FAT.

; —-—-—-- Obtain

foNe Ne N

;

Parameters:

ax
ds:bx

; Returns:

7
i
; Uses:
next16

next16

ax =

ax, bx,
proc
add
add
mov
ret
endp

cx
near
ax,ax
bx,ax
ax, [bx]

next link number

;
;
;

the next link number from a 16-bit FAT -----

current entry number
address of FAT (must be contiguous)

ax = word offset
ds:bx = next link number index
ax = next link number

Figure 3-11. Assembly-language routine to access a 16-bit FAT.

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

Problems with corrupted directories or FATs, induced by such events as power failures
and programs running wild, can lead to greater problems if not corrected. The MS-DOS
CHKDSK program can detect and fix some of these problems. See USER COMMANDS:
cHKDsK. For example, one common problem is dangling allocation lists caused by the
absence of a directory entry pointing to the start of the list. This situation often results
when the directory entry was not updated because a file was not closed before the com-
puter was turned off or restarted. The effect is relatively benign: The data is inaccessible,
but this limitation does not affect other file allocation operations. CHKDSK can fix this
problem by making a new directory entry and linking it to the list.

Another difficulty occurs when the file size in a directory entry does not match the file
length as computed by traversing the linked list in the FAT. This problem can result in
improper operation of a program and in error responses from MS-DOS.

A more complex (and rarer) problem occurs when the directory entry is properly set up
but all or some portion of the linked list is also referenced by another directory entry. The
problem is grave, because writing or appending to one file changes the contents of the
other file. This error usually causes severe data and/or directory corruption or causes the
system to crash.

A similar difficulty occurs when a linked list terminates with a free cluster instead of a
last-cluster number. If the free cluster is allocated before the error is corrected, the
problem eventually reverts to the preceding problem. An associated difficulty occurs if a
link value of 1 or a link value that exceeds the size of the FAT is encountered.

In addition to CHKDSK, a number of commercially available utility programs can be used
to assist in FAT maintenance. For instance, disk reorganizers can be used to essentially
rearrange the FAT and adjust the directory so that all files on a disk are laid out sequentially
in the file data area and, of course, in the FAT.

The root directory

Directory entries, which are 32 bytes long, are found in both the root directory and the
subdirectories. Each entry includes a filename and extension, the file’s size, the starting
FAT entry, the time and date the file was created or last revised, and the file’s attributes.
This structure resembles the format of the CP/M-style file control blocks (FCBs) used by
the MS-DOS version 1.x file functions. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PROGRAMMING FOR Ms-DOs: Disk Directories and Volume Labels.

The MS-DOS file-naming convention is also derived from CP/M: an eight-character file-
name followed by a three-character file type, each left aligned and padded with spaces if
necessary. Within the limitations of the character set, the name and type are completely
arbitrary. The time and date stamps are in the same format used by other MS-DOS func-
tions and reflect the time the file was last written to.

Figure 3-12 shows a dump of a 512-byte directory sector containing 16 directory entries.
(Each entry occupies two lines in this example.) The byte at offset 0ABH, containing a
10H, signifies that the entry starting at 0AOH is for a subdirectory. The byte at offset 160H,
containing OE5H, means that the file has been deleted. The byte at offset 8BH, containing

Section II: Programming in the MS-DOS Environment 101

Part A: Structure of MS-DOS

102

the value O8H, indicates that the directory entry beginning at offset 80H is a volume label.
Finally the zero byte at offset 1IEOH marks the end of the directory, indicating that the sub-
sequent entries in the directory have never been used and therefore need not be searched
(versions 2.0 and later).

0O 1 2 3 4 5 6 7 8 9 A B C D E F

0000 49 4F 20 20 20 20 20 20-53 59 53 27 00 00 00 0O I0 sys'....
0010 00 00 00 00 00 00 59 53-89 0B 02 00 D1 12 00 00 Ys....0...
0020 4F 53 44 4F 53 20 20 20-53 59 53 27 00 00 00 00 MSDOS SYS'....
0030 00 00 00 00 .00 00 41 49-52 0A 07 00 C9 43 00 00 AIR...IC..
0040 41 4E 53 49 20 20 20 20-53 59 53 20 00 00 00 00 ANSI SYS
0050 00 00 00 00 00 00 41 49-52 OA 18 00 76 07 00 00 AIR...v...
0060 58 54 41 4C 4B 20 20 20-45 58 45 20 00 00 00 0O XTALK EXE
0070 00 00 00 00 00 00 F7 7D-38 09 23 02 84 OB 01 00 wi8.#.....
0080 4C 41 42 45 4C 20 20 20-20 20 20 08 00 00 00 00 LABEL P
0090 00 00 00 00 00 00 8C 20-2A 09 00 00 00 00 00 00 *.D..R..
00AO0 4C 4F 54 55 53 20 20 20-20 20 20 10 00 00 00 0O LOTUS PN
00BO 00 00 00 00 00 00 EO OA-E1 06 A6 01 00 00 00 00 '.a.&.a...
00CO 4C 54 53 4C 4F 41 44 20-43 4F 4D 20 00 00 00 00 LTSLOAD COM
00DO 00 00 00 00 00 00 EO OA-E1 06 A7 01 A0 27 00 00 L
O0EO 4D 43 49 2D 53 46 20 20-58 54 4B 20 00 00 00 00 MCI-SF XTK
00FO 00 00 00 00 00 00 46 19-32 OD B1 01 79 04 00 00 F.2.1.y...
0100 58 54 41 4C 4B 20 20 20-48 4C 50 20 00 00 00 0O XTALK HLP
0110 00 00 00 00 00 00 C5 6D-73 07 A3 02 AF 88 00 00 Ems.#./...
0120 54 58 20 20 20 20 20 20-43 4F 4D 20 00 00 00 00 TX COM
0130 00 00 00 00 00 00 05 61-65 0C 39 01 E8 20 00 00 ae.9%9.h ..
0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 0O COMMAND COM
0150 00 00 00 00 00 00 41 49-52 0A 27 00 55 3F 00 00 AIR.'.U?2..
0160 ES 32 33 20 20 20 20 20-45 58 45 20 00 00 00 00 e23 EXE
0170 00 00 00 00 00 00 9C B2-85 OB 42 01 80 S5F 01 00 2..B.._..
0180 47 44 20 20 20 20 20 20-44 52 56 20 00 00 00 00 GD DRV
0190 00 00 00 00 00 00 EO OA-E1 06 9A 01 5B 08 00 00 -
01AQ0 4B 42 20 20 20 20 20 20-44 52 56 20 00 00 00 00 KB DRV
01BO 00 00 00 00 00 00 EO OA-E1 06 9D 01 60 01 00 00 a..u '
01CO0 50 52 20 20 20 20 20 20-44 52 56 20 00 00 00 00 PR DRV
01D0 00 00 00 00 00 00 EO OA-E1 06 9E 01 49 01 00 00 - D

01E0 00 F6 F6 F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6 c.ovuiun.nn
01F0 F6 F6 F6 F6 F6 F6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6

Figure 3-12. Hexadecimal dump of a 512-byte directory sector.

The sector shown in Figure 3-12 is actually an example of the first directory sector in the
root directory of a bootable disk. Notice that IO.SYS and MSDOS.SYS are the first two files
in the directory and that the file attribute byte (offset 0BH in a directory entry) has a
binary value of 00100111, indicating that both files have hidden (bit1 = 1), system (bit 0 = 1),
and read-only (bit 2 = 1) attributes. The archive bit (bit 5) is also set, marking the files for
possible backup.

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

The root directory can optionally have a special type of entry called a volume label, iden-
tified by an attribute type of 08H, that is used to identify disks by name. A root directory
can contain only one volume label. The root directory can also contain entries that point to
subdirectories; such entries are identified by an attribute type of 10H and a file size of zero.
Programs that manipulate subdirectories must do so by tracing through their chains of
clusters in the FAT.

Two other special types of directory entries are found only within subdirectories. These
entries have the filenames . and .. and correspond to the current directory and the parent
directory of the current directory. These special entries, sometimes called directory
aliases, can be used to move quickly through the directory structure.

The maximum pathname length supported by MS-DOS, excluding a drive specifier but
including any filename and extension and subdirectory name separators, is 64 characters.
The size of the directory structure itself is limited only by the number of root directory
entries and the available disk space.

The file area

The file area contains subdirectories, file data, and unallocated clusters. The area is
divided into fixed-size clusters and the use for a particular cluster is specified by the corre-
sponding FAT entry.

Other MS-DOS Storage Devices

As mentioned earlier, MS-DOS supports other types of storage devices, such as magnetic-
tape drives and CD ROM drives. Tape drives are most often used for archiving and for
sequential transaction processing and therefore are not discussed here.

CD ROMs are compact laser discs that hold a massive amount of information — a single
side of a CD ROM can hold almost 500 MB of data. However, there are some drawbacks to
current CD ROM technology. For instance, data cannot be written to them —the informa-
tion is placed on the compact disk at the factory when the disk is made and is available on
a read-only basis. In addition, the access time for a CD ROM is much slower than for most
magnetic-disk systems. Even with these limitations, however, the ability to hold so much
information makes CD ROM a good method for storing large amounts of static information.

William Wong

Section II: Programming in the MS-DOS Environment 103

Part B
Programming for MS-DOS

Article 4: Structure of an Application Program

Article 4
Structure of an Application Program

Planning an MS-DOS application program requires serious analysis of the program’s size.
This analysis can help the programmer determine which of the two program styles sup-
ported by MS-DOS best suits the application. The .EXE program structure provides a large
program with benefits resulting from the extra 512 bytes (or more) of header that preface
all .EXE files. On the other hand, at the cost of losing the extra benefits, the .COM program
structure does not burden a small program with the overhead of these extra header bytes.

Because .COM programs start their lives as .EXE programs (before being converted by
EXE2BIN) and because several aspects of application programming under MS-DOS
remain similar regardless of the program structure used, a solid understanding of .EXE
structures is beneficial even to the programmer who plans on writing only .COM pro-
grams. Therefore, we’ll begin our discussion with the structure and behavior of .EXE
programs and then look at differences between .COM programs and .EXE programs,
including restrictions on the structure and content of .COM programs.

The .EXE Program

The .EXE program has several advantages over the .COM program for application design.
Considerations that could lead to the choice of the .EXE format include

Extremely large programs

Multiple segments

Overlays

Segment and far address constants

Long calls

Possibility of upgrading programs to MS OS/2 protected mode

The principal advantages of the .EXE format are provided by the file header. Most
important, the header contains information that permits a program to make direct seg-
ment address references —a requirement if the program is to grow beyond 64 KB.

The file header also tells MS-DOS how much memory the program requires. This informa-
tion keeps memory not required by the program from being allocated to the program —
an important consideration if the program is to be upgraded in the future to run efficiently
under MS OS/2 protected mode.

Before discussing the .EXE program structure in detail, we’ll look at how .EXE programs
behave.

Section II: Programming in the MS-DOS Environment 107

Part B: Programming for MS-DOS

Giving control to the .EXE program

Figure 4-1 gives an example of how a .EXE program might appear in memory when
MS-DOS first gives the program control. The diagram shows Microsoft’s preferred pro-
gram segment arrangement.

P
4 Any segments with class <s
STACK
- 4SS
All segments Any segments with class
declared BSS
as part of group Any DGROUP segments
DGROUP not shown elsewhere
Any segments with class
_ BEGDATA
Start segment Any segm'ents “./ith class names 4 1P
and start of > ending with CODE < s
; 1
program image
(load module) ! Program segment prefix (PSP) 1

—————————————————— | 4 DS,ES
Figure 4-1. The .EXE program: memory map diagram with register pointers.
Before transferring control to the .EXE program, MS-DOS initializes various areas of

memory and several of the microprocessor’s registers. The following discussion explains
what to expect from MS-DOS before it gives the .EXE program control.

The program segment prefix

o

108

The program segment prefix (PSP) is not a direct result of any program code. Rather, this
special 256-byte (16-paragraph) page of memory is built by MS-DOS in front of all .EXE
and .COM programs when they are loaded into memory. Although the PSP does contain
several fields of use to newer programs, it exists primarily as a remnant of C/M—
Microsoft adopted the PSP for ease in porting the vast number of programs available under
CP/M to the MS-DOS environment. Figure 4-2 shows the fields that make up the PSP.

PSP:0000H ('Terminate [old Warm Boot] Vector) The PSP begins with an 8086-family
INT 20H instruction, which the program can use to transfer control back to MS-DOS. The
PSP includes this instruction at offset 00H because this address was the WBOOT (Warm
Boot/Terminate) vector under CP/M and CP/M programs usually terminated by jumping
to this vector. This method of termination should not be used in newer programs. See
Terminating the .EXE Program below.

PSP:0002H (Addbress of Last Segment Allocated to Program) MS-DOS introduced the word
at offset 02H into the PSP. It contains the segment address of the paragraph following the
block of memory allocated to the program. This address should be used only to determine
the size or the end of the memory block allocated to the program,; it must not be con-
sidered a pointer to free memory that the program can appropriate. In most cases this ad-
dress will zzot point to free memory, because any free memory will already have been

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

xOH x1H x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH

oxH INT 20H | End alloc |Resv.| Far call to MS-DOS fn handler Prev terminate address | Prev Ctrl C...
0CDH| 20H |seg lcﬂieghi 9AH | ofs lolofs hiIseg lolseghi ofs lo|ofs hilseg lolseghi ofs o] ofs i |
1xH ...address Prev critical error address Reserved...
Iieglolseghi ofs lo ofshilseglo |seghi | l I | I | J |
...Reserved Environ seg [Reserved...
2xH
N T N T O 1
3xH ...Reserved... _ T Mi-:)OS 2[]'10
and later o1
N I T T) A I g
4xH ...Reserved
| | N I S I I L1
5xH |INT 21H and RETF Reserved Primary FCB...
ocoujomfpesn| | | | [| | | | Ja]F]i]n]
6xH ...Primary file control block (FCB) Secondary FCB...
Ie,nlalmlelE‘xIthOHlOOHlOOHlOOHleIill
7xH ...Secondary file control block (FCB) Reserved
el nlalm|e|®|x]|t foonfoonfoonfoon| | | |
8xH Command tail and default disk transfer area (DTA) (continues through OFFH)...
Ln|] | | | [L L L 11]

Figure 4-2. The program segment prefix (PSP).

allocated to the program unless the program was linked using the /CPARMAXALLOC
switch. Even when /CPARMAXALLOC is used, MS-DOS may fit the program into a block
of memory only as big as the program requires. Well-behaved programs shouid acquire
additional memory only through the MS-DOS function calls provided for that purpose.

PSP:0005H (MS-DOS Function Call [old BDOS] Vector) Offset O5H is also a hand-me-
down from CP/M. This location contains an 8086-family far (intersegment) call instruction
to MS-DOS’s function request handler. (Under CP/M, this address was the Basic Disk Oper-
ating System [BDOS] vector, which served a similar purpose.) This vector should not be
used to call MS-DOS in newer programs. The System Calls section of this book explains
the newer, approved method for calling MS-DOS. MS-DOS provides this vector only to sup-
port CP/M-style programs and therefore honors only the CP/M-style functions (00-24H)
through it.

PSP:000AH-0015H (Parent’s 22H, 23H, and 24H Interrupt Vector Save) MS-DOS uses
offsets 0AH through 15H to save the contents of three program-specific interrupt vectors.
MS-DOS must save these vectors because it permits any program to execute another pro-
gram (called a child process) through an MS-DOS function call that returns control to the
original program when the called program terminates. Because the original program
resumes executing when the child program terminates, MS-DOS must restore these three

Section II: Programming in the MS-DOS Environment 109

Part B: Programming for MS-DOS

110

interrupt vectors for the original program in case the called program changed them. The
three vectors involved include the program termination handler vector (Interrupt 22H),
the Control-C/Control-Break handler vector (Interrupt 23H), and the critical error handler
vector (Interrupt 24H). MS-DOS saves the original preexecution contents of these vectors
in the child program’s PSP as doubleword fields beginning at offsets 0AH for the program
termination handler vector, OEH for the Control-C/Control-Break handler vector, and 12H
for the critical error handler vector.

PSP:002CH (Segment Address of Environment) Under MS-DOS versions 2.0 and later, the
word at offset 2CH contains one of the most useful pieces of information a program can
find in the PSP —the segment address of the first paragraph of the MS-DOS environment.
This pointer enables the program to search through the environment for any configuration
or directory search path strings placed there by users with the SET command.

PSP:0050H (New MS-DOS Call Vector) Many programmers disregard the contents of offset
50H. The location consists simply of an INT 21H instruction followed by a RETF. A .EXE
program can call this location using a far call as a means of accessing the MS-DOS function
handler. Of course, the program can also simply do an INT 21H directly, which is smaller
and faster than calling 50H. Unlike calls to offset 05H, calls to offset S0H can request the
full range of MS-DOS functions.

PSP:005CH (Default File Control Block 1) and PSP-006CH (Default File Control Block 2)
MS-DOS parses the first two parameters the user enters in the command line following the
program’s name. If the first parameter qualifies as a valid (limited) MS-DOS filename

(the name can be preceded by a drive letter but not a directory path), MS-DOS initializes
offsets 5CH through 6BH with the first 16 bytes of an unopened file control block (FCB) for
the specified file. If the second parameter also qualifies as a valid MS-DOS filename,
MS-DOS initializes offsets 6CH through 7BH with the first 16 bytes of an unopened FCB for
the second specified file. If the user specifies a directory path as part of either filename,
MS-DOS initializes only the drive code in the associated FCB. Many programmers no
longer use this feature, because file access using FCBs does not support directory paths
and other newer MS-DOS features.

Because FCBs expand to 37 bytes when the file is opened, opening the first FCB at offset
5CH causes it to grow from 16 bytes to 37 bytes and to overwrite the second FCB. Similarly,
opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of
the command tail and default disk transfer area (DTA). (The command tail and default
DTA are described below.) To use the contents of both default FCBs, the program should
copy the FCBs to a pair of 37-byte fields located in the program’s data area. The program
can use the first FCB without moving it only after relocating the second FCB (if necessary)
and only by performing sequential reads or writes when using the first FCB. To perform
random reads and writes using the first FCB, the programmer must either move the first
FCB or change the default DTA address. Otherwise, the first FCB’s random record field will
overlap the start of the default DTA. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT: PROGRAMMING FOR Ms-Dos: File and Record Management.

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

PSP:0080H (Command Tail and Default DTA) The default DTA resides in the entire sec-
ond half (128 bytes) of the PSP. MS-DOS uses this area of memory as the default record
buffer if the program uses the FCB-style file access functions. Again, MS-DOS inherited
this location from CP/M. (MS-DOS provides a function the program can call to change the
address MS-DOS will use as the current DTA. See SYSTEM CALLS: INTERRUPT 21H: Func-
tion 1AH.) Because the default DTA serves no purpose until the program performs some
file activity that requires it, MS-DOS places the command tail in this area for the program
to examine. The command tail consists of any text the user types following the program
name when executing the program. Normally, an ASCII space (20H) is the first character
in the command tail, but any character MS-DOS recognizes as a separator can occupy this
position. MS-DOS stores the command-tail text starting at offset 81H and always places an
ASCII carriage return (ODH) at the end of the text. As an additional aid, it places the length
of the command tail at offset 80H. This length includes all characters except the final ODH.
For example, the command line

C>DOIT WITH CLASS <Enter>
will result in the program DOIT being executed with PSP:0080H containing

0B 20 57 49 54 48 20 43 4C 41 53 53 0D
lenspW I T H spC L A S S cr

The stack

Because .EXE-style programs did not exist under CP/M, MS-DOS expects .EXE programs
to operate in strictly MS-DOS fashion. For example, MS-DOS expects the .EXE program to
supply its own stack. (Figure 4-1 shows the program’s stack as the top box in the diagram.)

Microsoft’s high-level-language compilers create a stack themselves, but when writing in
assembly language the programmer must specifically declare one or more segments with
the STACK combine type. If the programmer declares multiple stack segments, possibly in
different source modules, the linker combines them into one large segment. See Control-
ling the .EXE Program’s Structure below.

Many programmers declare their stack segments as preinitialized with some recognizable
repeating string such as *STACK. This makes it possible to examine the program’s stack in
memory (using a debugger such as DEBUG) to determine how much stack space the pro-
gram actually used. On the other hand, if the stack is left as uninitialized memory and
linked at the end of the .EXE program, it will not require space within the .EXE file. (The
reason for this will become more apparent when we examine the structure of a .EXE file.)

Note: When multiple stack segments have been declared in different .ASM files, the
Microsoft Object Linker (LINK) correctly allocates the total amount of stack space speci-
fied in all the source modules, but the initialization data from all modules is overlapped
module by module at the high end of the combined segment.

An important difference between .COM and .EXE programs is that MS-DOS preinitializes
a .COM program’s stack with a termination address before transferring control to the pro-
gram. MS-DOS does not do this for .EXE programs, so a .EXE program cannot simply
execute an 8086-family RET instruction as a means of terminating.

Section II: Programming in the MS-DOS Environment 111

Part B: Programming for MS-DOS

Note: In the assembly-language files generated for a Microsoft C program or for programs
in most other high-level-languages, the compiler’s placement of a RET instruction at the
end of the main function/subroutine/procedure might seem confusing. After all, MS-DOS
does not place any return address on the stack. The compiler places the RET at the end of
main because main does not receive control directly from MS-DOS. A library initializa-
tion routine receives control from MS-DOS; this routine then calls main. When main per-
forms the RET, it returns control to a library termination routine, which then terminates
back to MS-DOS in an approved manner. ’

Preallocated memory

112

While loading a .EXE program, MS-DOS performs several steps to determine the initial
amount of memory to be allocated to the program. First, MS-DOS reads the two values the
linker places near the start of the .EXE header: The first value, MINALLOC, indicates the
minimum amount of extra memory the program requires to start executing; the second
value, MAXALLOC, indicates the maximum amount of extra memory the program would
like allocated before it starts executing. Next, MS-DOS locates the largest free block of
memory available. If the size of the program’s image within the .EXE file combined with
the value specified for MINALLOC exceeds the memory block it found, MS-DOS returns
an error to the process trying to load the program. If that process is COMMAND.COM,
COMMAND.COM then displays a Program too big to fit in memory error message and
terminates the user’s execution request. If the block exceeds the program’s MINALLOC
requirement, MS-DOS then compares the memory block against the program’s image
combined with the MAXALLOC request. If the free block exceeds the maximum memory
requested by the program, MS-DOS allocates only the maximum request; otherwise, it
allocates the entire block. MS-DOS then builds a PSP at the start of this block and loads
the program’s image from the .EXE file into memory following the PSP.

This process ensures that the extra memory allocated to the program will immediately
follow the program’s image. The same will not necessarily be true for any memory
MS-DOS allocates to the program as a result of MS-DOS function calls the program per-
forms during its execution. Only function calls requesting MS-DOS to increase the initial
allocation can guarantee additional contiguous memory. (Of course, the granting of such
increase requests depends on the availability of free memory following the initial
allocation.)

Programmers writing .EXE programs sometimes find the lack of keywords or compiler/
assembler switches that deal with MINALLOC (and possibly MAXALLOC) confusing. The
programmer never explicitly specifies a MINALLOC value because LINK sets MINALLOC
to the total size of all uninitialized data and/or stack segments linked at the very end of the
program. The MINALLOC field allows the compiler to indicate the size of the initialized
data fields in the load module without actually including the fields themselves, resulting in
a smaller .EXE program file. For LINK to minimize the size of the .EXE file, the program
must be coded and linked in such a way as to place all uninitialized data fields at the end
of the program. Microsoft high-level-language compilers handle this automatically;
assembly-language programmers must give LINK a little help.

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Note: Beginning and even advanced assembly-language programmers can easily fall into
an argument with the assembler over field addressing when attempting to place data fields
after the code in the source file. This argument can be avoided if programmers use the
SEGMENT and GROUP assembler directives. See Controlling the .EXE Program’s Struc-
ture below.

No reliable method exists for the linker to determine the correct MAXALLOC value
required by the .EXE program. Therefore, LINK uses a “safe” value of FFFFH, which
causes MS-DOS to allocate all of the largest block of free memory— which is usually a//
free memory — to the program. Unless a program specifically releases the memory for
which it has no use, it denies multitasking supervisor programs, such as IBM’s TopView,
any memory in which to execute additional programs— hence the rule that a well-
behaved program releases unneeded memory during its initialization. Unfortunately, this
memory conservation approach provides no help if a multitasking supervisor supports the
ability to load several programs into memory without executing them. Therefore, pro-
grams that have correctly established MAXALLOC values actually are well-behaved
programs.

To this end, newer versions of Microsoft LINK include the /CPARMAXALLOC switch

to permit specification of the maximum amount of memory required by the program. The
/CPARMAXALLOC switch can also be used to set MAXALLOC to a value that is known to
be less than MINALLOC. For example, specifying a MAXALLOC value of 1 (/CP:1) forces
MS-DOS to allocate only MINALLOC extra paragraphs to the program. In addition,
Microsoft supplies a program called EXEMOD with most of its languages. This program
permits modification of the MAXALLOC field in the headers of existing .EXE programs.
See Modifying the .EXE File Header below.

The registers

Figure 4-1 gives a general indication of how MS-DOS sets the 8086-family registers

before transferring control to a .EXE program. MS-DOS determines most of the original
register values from information the linker places in the .EXE file header at the start of the
.EXE file.

MS-DOS sets the SS register to the segment (paragraph) address of the start of any seg-
ments declared with the STACK combine type and sets the SP register to the offset from SS
of the byte immediately after the combined stack segments. (If no stack segment is
declared, MS-DOS sets SS:SP to CS:0000.) Because in the 8086-family architecture a stack
grows from high to low memory addresses, this effectively sets SS:SP to point to the base of
the stack. Therefore, if the programmer declares stack segments when writing an assem-
bly-language program, the program will not need to initialize the SS and SP registers.
Microsoft’s high-level-language compilers handle the creation of stack segments automati-
cally. In both cases, the linker determines the initial SS and SP values and places them in
the header at the start of the .EXE programi file. '

Unlike its handling of the SS and SP registers, MS-DOS does not initialize the DS and ES
registers to any data areas of the .EXE program. Instead, it points DS and ES to the start of

Section II: Programming in the MS-DOS Environment 113

Part B: Programming for MS-DOS

114

the PSP. It does this for two primary reasons: First, MS-DOS uses the DS and ES registers to
tell the program the address of the PSP; second, most programs start by examining the
command tail within the PSP. Because the program starts without DS pointing to the data
segments, the program must initialize DS and (optionally) ES to point to the data segments
before it starts trying to access any fields in those segments. Unlike .COM programs, .EXE
programs can do this easily because they can make direct references to segments, as
follows:

MOV AX,SEG DATA_SEGMENT_OR_GROUP_NAME
MOV DS, AX
MOV ES,AX

High-level-language programs need not initialize and maintain DS and ES; the compiler
and library support routines do this.

In addition to pointing DS and ES to the PSP, MS-DOS also sets AH and AL to reflect the
validity of the drive identifiers it placed in the two FCBs contained in the PSP. MS-DOS sets
AL to OFFH if the first FCB at PSP:005CH was initialized with a nonexistent drive identifier;
otherwise, it sets AL to zero. Similarly, MS-DOS sets AH to reflect the drive identifier
placed in the second FCB at PSP:006CH.

When MS-DOS analyzes the first two command-line parameters following the program
name in order to build the first and second FCBs, it treats any character followed by a
colon as a drive prefix. If the drive prefix consists of a lowercase letter (ASCII @ through
2), MS-DOS starts by converting the character to uppercase (ASCII A through Z). Then it
subtracts 40H from the character, regardless of its original value. This converts the drive
prefix letters A through Z to the drive codes 01H through 1AH, as required by the two
FCBs. Finally, MS-DOS places the drive code in the appropriate FCB.

This process does not actually preclude invalid drive specifications from being placed in
the FCBs. For instance, MS-DOS will accept the drive prefix !: and place a drive code of
OE1H in the FCB (! = 21H; 21H-40H = OE1H). However, MS-DOS will then check the drive
code to see if it represents an existing drive attached to the computer and will pass a value
of OFFH to the program in the appropriate register (AL or AH) if it does not.

As a side effect of this process, MS-DOS accepts @: as a valid drive prefix because the
subtraction of 40H converts the @ character (40H) to 00H. MS-DOS accepts the 00H value
as valid because a 00H drive code represents the current default drive. MS-DOS will leave
the FCB’s drive code set to 00H rather than translating it to the code for the default drive
because the MS-DOS function calls that use FCBs accept the 00H code.

Finally, MS-DOS initializes the CS and IP registers, transferring control to the program’s
entry point. Programs developed using high-level-language compilers usually receive con-
trol at a library initialization routine. A programmer writing an assembly-language pro-
gram using the Microsoft Macro Assembler (MASM) can declare any label within the

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

program as the entry point by placing the label after the END statement as the last line of the
program:

END ENTRY_POINT_LABEL

With multiple source files, only one of the files should have a label following the END
statement. If more than one source file has such a label, LINK uses the first one it encoun-
ters as the entry point.

The other processor registers (BX, CX, DX, BP, SI, and DI) contain unknown values when
the program receives control from MS-DOS. Once again, high-level-language program-
mers can ignore this fact—the compiler and library support routines deal with the situa-
tion. However, assembly-language programmers should keep this fact in mind. It may give
needed insight sometime in the future when a program functions at certain times and

not at others.

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to
some predictable but undocumented state. For instance, some debuggers may predictably
set BP to zero before starting program execution. However, a program must not rely on
such debugger actions, because MS-DOS makes no such promises. Situations like this
could account for a program that fails when executed directly under MS-DOS but works
fine when executed using a debugger.

Terminating the .EXE program

After MS-DOS has given the .EXE program control and it has completed whatever task
it set out to perform, the program needs to give control back to MS-DOS. Because of
MS-DOS’s evolution, five methods of program termination have accumulated — not
including the several ways MS-DOS allows programs to terminate but remain resident
in memory.

Before using any of the termination methods supported by MS-DOS, the program should
always close any files it had open, especially those to which data has been written or
whose lengths were changed. Under versions 2.0 and later, MS-DOS closes any files
opened using handles. However, good programming practice dictates that the program
not rely on the operating system to close the program’s files. In addition, programs written
to use shared files under MS-DOS versions 3.0 and later should release any file locks before
closing the files and terminating.

The Terminate Process with Return Code function

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with
Return Code function (4CH) is recommended for programs running under MS-DOS ver-
sion 2.0 or later. This method is one of the easiest approaches to terminating any pro-
gram, regardless of its structure or segment register settings. The Terminate Process with
Return Code function call simply consists of the following:

MOV AH, 4CH ;load the MS-DOS function code
MOV AL, RETURN_CODE ;load the termination code
INT 21H ;call MS-DOS to terminate program

Section II: Programming in the MS-DOS Environment 115

Part B: Programming for MS-DOS

116

The example loads the AH register with the Terminate Process with Return Code function
code. Then it loads the AL register with a return code. Normally, the return code repre-
sents the reason the program terminated or the result of any operation the program
performed.

A program that executes another program as a child process can recover and analyze the
child program’s return code if the child process used this termination method. Likewise,
the child process can recover the RETURN_CODE returned by any program it executes as
a child process. When a program is terminated using this method and control returns to
MS-DOS, a batch (.BAT) file can be used to test the terminated program’s return code
using the IF ERRORLEVEL statement.

Only two general conventions have been adopted for the value of RETURN_CODE:
First, a RETURN_CODE value of 00H indicates a normal no-error termination of the
program; second, increasing RETURN_CODE values indicate increasing severity of con-
ditions under which the program terminated. For instance, a compiler could use the
RETURN_CODE 00H if it found no errors in the source file, 01H if it found only warning
errors, or 02H if it found severe errors.

If a program has no need to return any special RETURN_CODE values, then the following
instructions will suffice to terminate the program with a RETURN_CODE of 00H:

MOV AX, 4COOH
INT 21H

Apart from being the approved termination method, Terminate Process with Return Code
is easier to use with .EXE programs than any other termination method because all other
methods require that the CS register point to the start of the PSP when the program termi-
nates. This restriction causes problems for .EXE programs because they have code seg-
ments with segment addresses different from that of the PSP.

The only problem with Terminate Process with Return Code is that it is not available under
MS-DOS versions earlier than 2.0, so it cannot be used if a program must be compatible
with early MS-DOS versions. However, Figure 4-3 shows how a program can use the
approved termination method when available but still remain pre-2.0 compatible. See The
‘Warm Boot/Terminate Vector below.

TEXT SEGMENT PARA PUBLIC 'CODE'

ASSUME CS:TEXT,DS:NOTHING, ES:NOTHING, SS:NOTHING
TERM_VECTOR DD ?
ENTRY_PROC PROC FAR

;save pointer to termination vector in PSP

MOV WORD PTR CS:TERM_VECTOR+0,0000h ;save offset of Warm Boot vector
MOV WORD PTR CS:TERM_VECTOR+2,DS ;save segment address of PSP
Figure 4-3. Terminating properly under any MS-DOS version. (more)

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

;*¥*%x* Place main task here #**x**

;determine which MS-DOS version is active, take jump if 2.0 or later

MOV AH, 30h ;load Get MS-DOS Version Number function code
INT 21h ;call MS-DOS to get version number

OR AL,AL ;see if pre-2.0 MS-DOS

JINZ TERM_0200 ;Jump if 2.0 or later

;terminate under pre-2.0 MS-DOS

JMP CS:TERM_VECTOR ;jump to Warm Boot vector in PSP

;terminate under MS-DOS 2.0 or later

TERM_0200:
MOV AX,4C00h ;load MS-DOS termination function code
;and return code
INT 21h ;call MS-DOS to terminate
ENTRY_PROC ENDP
TEXT ENDS
END ENTRY_PROC ;define entry point

Figure 4-3. Continued.

The Terminate Program interrupt

Before MS-DOS version 2.0, terminating with an approved method meant executing

an INT 20H instruction, the Terminate Program interrupt. The INT 20H instruction was
replaced as the approved termination method for two primary reasons: First, it did not
provide a means whereby programs could return a termination code; second, CS had
to point to the PSP before the INT 20H instruction was executed.

The restriction placed on the value of CS at termination did not pose a problem for .COM
programs because they execute with CS pointing to the beginning of the PSP. A .EXE pro-
gram, on the other hand, executes with CS pointing to various code segments of the pro-
gram, and the value of CS cannot be changed arbitrarily when the program is ready to
terminate. Because of this, few .EXE programs attempt simply to execute a Terminate Pro-
gram interrupt from directly within their own code segments. Instead, they usually use
the termination method discussed next.

The Warm Boot/Terminate vector

The earlier discussion of the structure of the PSP briefly covered one older method a .EXE
program can use to terminate: Offset 00H within the PSP contains an INT 20H instruction
to which the program can jump in order to terminate. MS-DOS adopted this technique to
support the many CP/M programs ported to MS-DOS. Under CP/M, this PSP location was
referred to as the Warm Boot vector because the CP/M operating system was always
reloaded from disk (rebooted) whenever a program terminated.

Section II: Programming in the MS-DOS Environment 117

Part B: Programming for MS-DOS

Because offset 00H in the PSP contains an INT 20H instruction, jumping to that location
terminates a program in the same manner as an INT 20H included directly within the pro-
gram, but with one important difference: By jumping to PSP:0000H, the program sets the
CS register to point to the beginning of the PSP, thereby satisfying the only restriction
imposed on executing the Terminate Program interrupt. The discussion of MS-DOS Func-
tion 4CH gave an example of how a .EXE program can terminate via PSP:0000H. The ex-
ample first asks MS-DOS for its version number and then terminates via PSP:0000H only
under versions of MS-DOS earlier than 2.0. Programs can also use PSP:0000H under
MS-DOS versions 2.0 and later; the example uses Function 4CH simply because it is
preferred under the later MS-DOS versions.

The RET instruction

118

The other popular method used by CP/M programs to terminate involved simply execut-
ing a RET instruction. This worked because CP/M pushed the address of the Warm Boot
vector onto the stack before giving the program control. MS-DOS provides this support
only for .COM-style programs; it does not push a termination address onto the stack
before giving .EXE programs control.

The programmer who wants to use the RET instruction to return to MS-DOS can use the
variation of the Figure 4-3 listing shown in Figure 4-4.

TEXT SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:TEXT,DS:NOTHING, ES:NOTHING, SS:NOTHING
ENTRY_PROC PROC FAR ;make proc FAR so RET will be FAR

;Push pointer to termination vector in PSP

PUSH DS ;push PSP’s segment address
XOR AX,AX ;ax = 0 = offset of Warm Boot vector in PSP
PUSH AX ;push Warm Boot vector offset

;*¥*xx% Place main task here ****x

;Determine which MS-DOS version is active, take jump if 2.0 or later

MOV AH, 30h ;load Get MS-DOS Version Number function code
INT 21h ;call MS-DOS to get version number

OR AL,AL ;see if pre-2.0 MS-DOS

JNZ TERM_0200 ;jump if 2.0 or later

;Terminate under pre-2.0 MS-DOS (this is a FAR proc, so RET will be FAR)
RET ;pop PSP:00H into CS:IP to terminate

Figure 4-4. Using RET to return control to MS-DOS. (more)

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

;Terminate under MS-DOS 2.0 or later

TERM_0200:
MOV AX,4C00h ;AH = MS-DOS Terminate Process with Return Code
;function code, AL = return code of 00H
INT 21h ;call MS-DOS to terminate
ENTRY_PROC ENDP
TEXT ENDS
END ENTRY_PROC ;declare the program’s entry point

Figure 4-4. Continued.

The Terminate Process function

The final method for terminating a .EXE program is Interrupt 21H Function 00H (Termi-
nate Process). This method maintains the same restriction as all other older termination
methods: CS must point to the PSP. Because of this restriction, .EXE programs typically
avoid this method in favor of terminating via PSP:0000H, as discussed above for programs
executing under versions of MS-DOS earlier than 2.0.

Terminating and staying resident

A .EXE program can use any of several additional termination methods to return con-

trol to MS-DOS but still remain resident within memory to service a special event. See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusToMiZING Ms-DOs: Terminate-and-
Stay-Resident Utilities.

Structure of the .EXE files

So far we’ve examined how the .EXE program looks in memory, how MS-DOS gives the
program control of the computer, and how the program should return control to MS-DOS.
Next we’ll investigate what the program looks like as a disk file, before MS-DOS loads it
into memory. Figure 4-5 shows the general structure of a .EXE file.

The file header

Unlike .COM program files, .EXE program files contain information that permits the

.EXE program and MS-DOS to use the full capabilities of the 8086 family of microproces-
sors. The linker places all this extra information in a header at the start of the .EXE file.
Although the .EXE file structure could easily accommodate a header as small as 32 bytes,
the linker never creates a header smaller than 512 bytes. (This minimum header size corre-
sponds to the standard record size preferred by MS-DOS.) The .EXE file header contains
the following information, which MS-DOS reads into a temporary work area in memory
for use while loading the .EXE program:

00—-01H (.EXE Signature) MS-DOS does not rely on the extension (.EXE or .COM) to
determine whether a file contains a .COM or a .EXE program. Instead, MS-DOS recognizes
the file as a .EXE program if the first 2 bytes in the header contain the signature 4DH 5AH

Section II: Programming in the MS-DOS Environment 119

Part B: Programming for MS-DOS

120

xOH x1H x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH

Signature [Last Page Size File Pages |Reloc Items| Header Paras | MINALLOC [MAXALLOC | PreReloc SS
4DH |5AH [lo bytjhi byt]lo byt|hi byt|lo byt|hi byt[lo byt|hi byt]lo byt]hi bytflo byt|hi byt}o byt hi byt
Initial SP | Neg Chksum| Initial IP |Pre Reloc CS [Reloc Tbl Ofs{ Overlay Num Reserved
ofs lo|ofs hillo byt]hi byt ofs loofs hi [seg lo|seg hillo bytfhi byt|lo bythi byt

//__—/

OxH p

1xH p

Use Reloc
Tbl Ofs at 18H Seg Relocation Pir#1 | Seg Relocation Ptr #2 | Seg Relocation Ptr #3 | Seg Relocation Ptr #4
(offset is from of s lojofs hijseg lojseg hilofs lojofs hi|seg lojseg hilofs lojofs hijseg lojseg hijof's lojofs hi|seg lojseg hi]

start of ﬁle) //_—__’/

i Use Rel
Seg Relocation Ptr #n-3 | Seg Relocation Ptr #n-2 |Seg Relocation Ptr #n-1 | Seg Relocation Pir #n < hse eloe
of s 1o jofs hi[seg lojseg hilofs lojofs hi|seg lojseg hilofs lojofs hi|seg lojseg hifof' lojofs hi|seg lojseg hi| te(l)'ﬂ;H

af

Use Header //—_\—_—/
Paras at 08H /—_—-—/

(load module »

always starts on A.
Program image
paragraph boundary) [— - —-— - ~ 7 - — — — = A~~~ ~—~-—--- A~ T
(load module) Use Last Page Size at 02H Final 512-byte page as
End of file p v

indicated by F%a Pages at 04H |

Figure 4-5. Structure of a .EXEfile.

(ASCII characters M and Z). If either or both of the signature bytes contain other values,
MS-DOS assumes the file contains a .COM program, regardless of the extension. The
reverse is not necessarily true — that is, MS-DOS does not accept the file as a .EXE pro-
gram simply because the file begins with a .EXE signature. The file must also pass several
other tests.

02—-03H (Last Page Size) The word at this location indicates the actual number of bytes
in the final 512-byte page of the file. This word combines with the following word to deter-
mine the actual size of the file. \

04—05H (File Pages) This word contains a count of the total number of 512-byte pages
required to hold the file. If the file contains 1024 bytes, this word contains the value 0002H;
if the file contains 1025 bytes, this word contains the value 0003H. The previous word (Last
Page Size, 02—03H) is used to determine the number of valid bytes in the final 512-byte
page. Thus, if the file contains 1024 bytes, the Last Page Size word contains 0000H because
no bytes overflow into a final partly used page; if the file contains 1025 bytes, the Last Page
Size word contains 0001H because the final page contains only a single valid byte (the
1025th byte).

06—07H (Relocation Items) This word gives the number of entries that exist in the reloca-
tion pointer table. See Relocation Pointer Table below.

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

08—09H (Header Paragraphs) This word gives the size of the .EXE file header in 16-byte
paragraphs. It indicates the offset of the program’s compiled/assembled and linked image
(the load module) within the .EXE file. Subtracting this word from the two file-size words
starting at 02H and 04H reveals the size of the program’s image. The header always spans
an even multiple of 16-byte paragraphs. For example, if the file consists of a 512-byte
header and a 513-byte program image, then the file’s total size is 1025 bytes. As discussed
before, the Last Page Size word (02—03H) will contain 0001H and the File Pages word
(04-05H) will contain 0003H. Because the header is 512 bytes, the Header Paragraphs
word (08—09H) will contain 32 (0020H). (That is, 32 paragraphs times 16 bytes per para-
graph totals 512 bytes.) By subtracting the 512 bytes of the header from the 1025-byte total
file size, the size of the program’s image can be determined — in this case, 513 bytes.

OA—OBH (MINALLOC) This word indicates the minimum number of 16-byte paragraphs
the program requires to begin execution in addition to the memory required to hold

the program’s image. MINALLOC normally represents the total size of any uninitialized
data and/or stack segments linked at the end of the program. LINK excludes the

space reserved by these fields from the end of the .EXE file to avoid wasting disk space.
If not enough memory remains to satisfy MINALLOC when loading the program, MS-
DOS returns an error to the process trying to load the program. If the process is
COMMAND.COM, COMMAND.COM then displays a Program too big to fit in memory
error message. The EXEMOD utility can alter this field if desired. See Modifying the .EXE
File Header below. ’

0C—ODH (MAXALLOC) This word indicates the maximum number of 16-byte paragraphs
the program would like allocated to it before it begins execution. MAXALLOC indicates
additional memory desired beyond that required to hold the program’s image. MS-DOS
uses this value to allocate MAXALLOC extra paragraphs, if available. If MAXALLOC para-
graphs are not available, the program receives the largest memory block available — at
least MINALLOC additional paragraphs. The programmer could use the MAXALLOC field
to request that MS-DOS allocate space for use as a print buffer or as a program-maintained
heap, for example.

Unless otherwise specified with the /CPARMAXALLOC switch at link time, the linker sets
MAXALLOC to FFFFH. This causes MS-DOS to allocate all of the largest block of memory
it has available to the program. To make the program compatible with multitasking super-
visor programs, the programmer should use /CPARMAXALLOC to set the true maximum
number of extra paragraphs the program desires. The EXEMOD utility can also be used
to alter this field.

Note: 1f both MINALLOC and MAXALLOC have been set to 0000H, MS-DOS loads the
program as high in memory as possible. LINK sets these fields to 0000H if the /HIGH
switch was used; the EXEMOD utility can also be used to modify these fields.

OE—OFH (Initial SS Value) This word contains the paragraph address of the stack segment
relative to the start of the load module. At load time, MS-DOS relocates this value by adding
the program’s start segment address to it, and the resulting value is placed in the SS regis-
ter before giving the program control. (The start segment corresponds to the first segment
boundary in memory following the PSP.)

Section II: Programming in the MS-DOS Environment 121

Part B: Programming for MS-DOS

122

10—11H (Initial SP Value) This word contains the absolute value that MS-DOS loads

into the SP register before giving the program control. Because MS-DOS always loads pro-
grams starting on a segment address boundary, and because the linker knows the size of
the stack segment, the linker is able to determine the correct SP offset at link time; there-
fore, MS-DOS does not need to adjust this value at load time. The EXEMOD utility can be
used to alter this field.

12—13H (Complemented Checksum) This word contains the one’s complement of the
summation of all words in the .EXE file. Current versions of MS-DOS basically ignore this
word when they load a .EXE program; however, future versions might not. When LINK
generates a .EXE file, it adds together all the contents of the .EXE file (including the .EXE
header) by treating the entire file as a long sequence of 16-bit words. During this addition,
LINK gives the Complemented Checksum word (12—13H) a temporary value of 0000H. If
the file consists of an odd number of bytes, then the final byte is treated as a word with a
high byte of 00H. Once LINK has totaled all words in the .EXE file, it performs a one’s
complement operation on the total and records the answer in the .EXE file header at
offsets 12—13H. The validity of a .EXE file can then be checked by performing the same
word-totaling process as LINK performed. The total should be FFFFH, because the total
will include LINK’s calculated complemented checksum, which is designed to give the file
the FFFFH total.

An example 7-byte .EXE file illustrates how .EXE file checksums are calculated. (This

is a totally fictitious file, because .EXE headers are never smaller than 512 bytes.) If this fic-
titious file contained the bytes 8CH C8H 8EH D8H BAH 10H B4H, then the file’s total
would be calculated using C88CH + DSSEH +10BAH +00B4H=1B288H. (Overflow past 16
bits is ignored, so the value is interpreted as B288H.) If this were a valid .EXE file, then

the B288H total would have been FFFFH instead.

14-15H (Initial IP Value) This word contains the absolute value that MS-DOS loads into
the IP register in order to transfer control to the program. Because MS-DOS always loads
programs starting on a segment address boundary, the linker can calculate the correct IP
offset from the initial CS register value at link time; therefore, MS-DOS does not need

to adjust this value at load time.

16—17H (Pre-Relocated Initial CS Value) This word contains the initial value, relative to
the start of the load module, that MS-DOS places in the CS register to give the .EXE pro-
gram control. MS-DOS adjusts this value in the same manner as the initial SS value before
loading it into the CS register.

18—19H (Relocation Table Offset) This word gives the offset from the start of the file to
the relocation pointer table. This word must be used to locate the relocation pointer table,
because variable-length information pertaining to program overlays can occur before the
table, thus causing the position of the table to vary.

1A—1BH (Overlay Number) This word is normally set to 0000H, indicating that the .EXE
file consists of the resident, or primary, part of the program. This number changes only in
files containing programs that use overlays, which are sections of a program that remain

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

on disk until the program actually requires them. These program sections are loaded into
memory by special overlay managing routines included in the run-time libraries supplied
with some Microsoft high-level-language compilers.

The preceding section of the header (00—1BH) is known as the formatted area. Optional
information used by high-level-language overlay managers can follow this formatted area.
Unless the program in the .EXE file incorporates such information, the relocation pointer
table immediately follows the formatted header area.

Relocation Pointer Table The relocation pointer table consists of a list of pointers to words
within the .EXE program image that MS-DOS must adjust before giving the program con-
trol. These words consist of references made by the program to the segments that make up
the program. MS-DOS must adjust these segment address references when it loads the pro-
gram, because it can load the program into memory starting at any segment address
boundary.

Each pointer in the table consists of a doubleword. The first word contains an offset from
the segment address given in the second word, which in turn indicates a segment address
relative to the start of the load module. Together, these two words point to a third word
within the load module that must have the start segment address added to it. (The start seg-
ment corresponds to the segment address at which MS-DOS started loading the program’s

.EXE File

End of file

Rel Seg Ref=003CH
Abs Seg Ref=25D1H

Load module

Memory

%

Relocation pointer 003CH

+ 2595H Rel Seg Ref=003CH
0002H: H _—
H:0005 L 25D1H-——-TAbs Seg Ref=25D1H
Relocation pointer table 0002H:0005H Load module

+2595H "Start Seg"
2597H:0005H —— 2595 H 7
Formatted header area Program segment prefix
Start of file

Figure 4-6. The .EXE file relocation procedure.

Section II: Programming in the MS-DOS Environment 123

Part B: Programming for MS-DOS

image, immediately following the PSP.) Figure 4-6 shows the entire procedure MS-DOS
performs for each relocation table entry.

The load module

The load module starts where the .EXE header ends and consists of the fully linked image
of the program. The load module appears within the .EXE file exactly as it would appear in
memory if MS-DOS were to load it at segment address 0000H. The only changes MS-DOS
makes to the load module involve relocating any direct segment references.

Although the .EXE file contains distinct segment images within the load module, it pro-
vides no information for separating those individual segments from one another. Existing
versions of MS-DOS ignore how the program is segmented; they simply copy the load
module into memory, relocate any direct segment references, and give the program
control.

Loading the .EXE program

So far we've covered all the characteristics of the .EXE program as it resides in memory
and on disk. We’ve also touched on all the steps MS-DOS performs while loading the .EXE
program from disk and executing it. The following list recaps the .EXE program loading
process in the order in which MS-DOS performs it:

1. MS-DOS reads the formatted area of the header (the first 1BH bytes) from the .EXE
file into a work area.

2. MS-DOS determines the size of the largest available block of memory.

3. MS-DOS determines the size of the load module using the Last Page Size (offset
02H), File Pages (offset 04H), and Header Paragraphs (offset 08H) fields from the
header. An example of this process is in the discussion of the Header Paragraphs
field.

4. MS-DOS adds the MINALLOC field (offset 0AH) in the header to the calculated load-
module size and the size of the PSP (100H bytes). If this total exceeds the size of the
largest available block, MS-DOS terminates the load process and returns an error to
the calling process. If the calling process was COMMAND.COM, COMMAND.COM
then displays a Program too big to fit in memory error message.

5. MS-DOS adds the MAXALLOC field (offset 0CH) in the header to the calculated
load-module size and the size of the PSP. If the memory block found earlier exceeds
this calculated total, MS-DOS allocates the calculated memory size to the program
from the memory block; if the calculated total exceeds the block’s size, MS-DOS
allocates the entire block.

6. If the MINALLOC and MAXALLOC fields both contain 0000H, MS-DOS uses the
calculated load-module size to determine a start segment. MS-DOS calculates the
start segment so that the load module will load into the high end of the allocated
block. If either MINALLOC or MAXALLOC contains nonzero values (the normal
case), MS-DOS establishes the start segment as the segment following the PSP.

7. MS-DOS loads the load module into memory starting at the start segment.

124 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

8. MS-DOS reads the relocation pointers into a work area and relocates the load mod-
ule’s direct segment references, as shown in Figure 4-6.
9. MS-DOS builds a PSP in the first 100H bytes of the allocated memory block. While
building the two FCBs within the PSP, MS-DOS determines the initial values for the
AL and AH registers.
10. MS-DOS sets the SS and SP registers to the values in the header after the start seg-
ment is added to the SS value.
11. MS-DOS sets the DS and ES registers to point to the beginning of the PSP.
12. MS-DOS transfers control to the .EXE program by setting CS and IP to the values in
the header after adding the start segment to the CS value.

Controlling the .EXE program’s structure

We’ve now covered almost every aspect of a completed .EXE program. Next, we’ll discuss
how to control the structure of the final .EXE program from the source level. We'll start by
covering the statements provided by MASM that permit the programmer to define the
structure of the program when programming in assembly language. Then we’ll cover the
five standard memory models provided by Microsoft’s C and FORTRAN compilers (both
version 4.0), which provide predefined structuring over which the programmer has
limited control.

The MASM SEGMENT directive

MASM’s SEGMENT directive and its associated ENDS directive mark the beginning and
end of a program segment. Program segments contain collections of code or data that have
offset addresses relative to the same common segment address.

In addition to the required segment name, the SEGMENT directive has three optional
parameters:

segname SEGMENT lalign] [combinel ['class']

With MASM, the contents of a segment can be defined at one point in the source file and
the definition can be resumed as many times as necessary throughout the remainder of
the file. When MASM encounters a SEGMENT directive with a segname it has previously
encountered, it simply resumes the segment definition where it left off. This occurs regard-
less of the combine type specified in the SEGMENT directive — the combine type influ-
ences only the actions of the linker. See The combine Type Parameter below.

The align type parameter

The optional align parameter lets the programmer send the linker an instruction on how
to align a segment within memory. In reality, the linker can align the segment only in rela-
tion to the start of the program’s load module, but the result remains the same because
MS-DOS always loads the module aligned on a paragraph (16-byte) boundary. (The PAGE
align type creates a special exception, as discussed below.)

The following alignment types are permitted:

BYTE This align type instructs the linker to start the segment on the byte immediately
following the previous segment. BY TE alignment prevents any wasted memory between
the previous segment and the BY TE-aligned segment.

Section II: Programming in the MS-DOS Environment 125

Part B: Programming for MS-DOS

126

A minor disadvantage to BYTE alignment is that the 8086-family segment registers might
not be able to directly address the start of the segment in all cases. Because they can
address only on paragraph boundaries, the segment registers may have to point as many
as 15 bytes behind the start of the segment. This means that the segment size should not
be more than 15 bytes short of 64 KB. The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segment start and the paragraph
addressing boundary.

Another possible concern is execution speed on true 16-bit 8086-family microprocessors.
When using non-8088 microprocessors, a program can actually run faster if the instruc-
tions and word data fields within segments are aligned on word boundaries. This permits
the 16-bit processors to fetch full words in a single memory read, rather than having to per-
form two single-byte reads. The EVEN directive tells MASM to align instructions and data
fields on word boundaries; however, MASM can establish this alignment only in relation to
the start of the segment, so the entire segment must start aligned on a word or larger
boundary to guarantee alignment of the items within the segment.

WORD This align type instructs the linker to start the segment on the next word bound-
ary. Word boundaries occur every 2 bytes and consist of all even addresses (addresses in
which the least significant bit contains a zero). WORD alignment permits alignment of data
fields and instructions within the segment on word boundaries, as discussed for the BYTE
alignment type. However, the linker may have to waste 1 byte of memory between the pre-
vious segment and the word-aligned segment in order to position the new segment on a
word boundary.

Another minor disadvantage to WORD alignment is that the 8086-family segment registers
might not be able to directly address the start of the segment in all cases. Because they can
address only on paragraph boundaries, the segment registers may have to point as many as
14 bytes behind the start of the segment. This means that the segment size should not be
more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segment start and the paragraph
addressing boundary.

PARA This align type instructs the linker to start the segment on the next paragraph
boundary. The segments default to PARA if no alignment type is specified. Paragraph
boundaries occur every 16 bytes and consist of all addresses with hexadecimal values end-
ing in zero (0000H, 0010H, 0020H, and so forth). Paragraph alignment ensures that the
segment begins on a segment register addressing boundary, thus making it possible to ad-
dress a full 64 KB segment. Also, because paragraph addresses are even addresses, PARA
alignment has the same advantages as WORD alignment. The only real disadvantage to
PARA alignment is that the linker may have to waste as many as 15 bytes of memory
between the previous segment and the paragraph-aligned segment.

PAGE This align type instructs the linker to start the segment on the next page boundary.
Page boundaries occur every 256 bytes and consist of all addresses in which the low
address byte equals zero (0000H, 0100H, 0200H, and so forth). PAGE alignment ensures

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

only that the linker positions the segment on a page boundary relative to the start of the
load module. Unfortunately, this does not also ensure alignment of the segment on an
absolute page within memory, because MS-DOS only guarantees alignment of the entire
load module on a paragraph boundary.

When a programmer declares pieces of a segment with the same name in different source
modules, the align type specified for each segment piece influences the alignment of that
specific piece of the segment. For example, assume the following two segment declara-
tions appear in different source modules:

—DATA SEGMENT PARA PUBLIC 'DATA'
DB '123"
_DATA ENDS

_DATA SEGMENT PARA PUBLIC 'DATA'
DB '456"
_DATA ENDS

The linker starts by aligning the first segment piece located in the first object module on a
paragraph boundary, as requested. When the linker encounters the second segment piece
in the second object module, it aligns that piece on the first paragraph boundary following
the first segment piece. This results in a 13-byte gap between the first segment piece and
the second. The segment pieces must exist in separate source modules for this to occur. If
the segment pieces exist in the same source module, MASM assumes that the second seg-
ment declaration is simply a resumption of the first and creates an object module with
segment declarations equivalent to the following:

_DATA SEGMENT PARA PUBLIC 'DATA'
DB '123"
DB '456"

_DATA ENDS

The combine type parameter

The optional combine parameter allows the programmer to send directions to the linker
on how to combine segments with the same segname occurring in different object mod-
ules. If no combine type is specified, the linker treats such segments as if each had a dif-
ferent segname. The combine type has no effect on the relationship of segments with
different segnames. MASM and LINK both support the following combine types:

PUBLIC This combine type instructs the linker to concatenate multiple segments having
the same segname into a single contiguous segment. The linker adjusts any address refer-
ences to labels within the concatenated segments to reflect the new position of those
labels relative to the start of the combined segment. This combine type is useful for ac-
cessing code or data in different source modules using a common segment register value.

STACK This combine type operates similarly to the PUBLIC combine type, except for
two additional effects: The STACK type tells the linker that this segment comprises part of
the program’s stack and initialization data contained within STACK segments is handled
differently than in PUBLIC segments. Declaring segments with the STACK combine type
permits the linker to determine the initial SS and SP register values it places in the .EXE

Section II: Programming in the MS-DOS Environment 127

Part B: Programming for MS-DOS

128

file header. Normally, a programmer would declare only one STACK segment in one of the
source modules. If pieces of the stack are declared in different source modules, the linker
will concatenate them in the same fashion as PUBLIC segments. However, initialization
data declared within any STACK segment is placed at the high end of the combined STACK
segments on a module-by-module basis. Thus, each successive module’s initialization data
overlays the previous module’s data. At least one segment must be declared with the
STACK combine type; otherwise, the linker will issue a warning message because it can-
not determine the program’s initial SS and SP values. (The warning can be ignored if the
program itself initializes SS and SP.)

COMMON This combine type instructs the linker to overlap multiple segments having
the same segname. The length of the resulting segment reflects the length of the longest
segment declared. If any code or data is declared in the overlapping segments, the data
contained in the final segments linked replaces any data in previously loaded segments.
This combine type is useful when a data area is to be shared by code in different source
modules.

MEMORY Microsoft’s LINK treats this combine type the same as it treats the PUBLIC
type. MASM, however, supports the MEMORY type for compatibility with other linkers
that use Intel’s definition of a MEMORY combine type.

AT address This combine type instructs LINK to pretend that the segment will reside at
the absolute segment address. LINK then adjusts all address references to the segment in
accordance with the masquerade. LINK will zot create an image of the segment in the
load module, and it will ignore any data defined within the segment. This behavior is con-
sistent with the fact that MS-DOS does not support the loading of program segments into
absolute memory segments. All programs must be able to execute from any segment ad-
dress at which MS-DOS can find available memory. The SEGMENT AT address combine
type is useful for creating templates of various areas in memory outside the program. For
instance, SEGMENT AT O0O00H could be used to create a template of the 8086-family inter-
rupt vectors. Because data contained within SEGMENT AT address segments is suppressed
by LINK and not by MASM (which places the data in the object module), it is possible to
use .OBJ files generated by MASM with another linker that supports ROM or other absolute
code generation should the programmer require this specialized capability.

Theclass type parameter

The class parameter provides the means to organize different segments into classifications.
For instance, here are three source modules, each with its own separate code and data
segments:

;Module "A"
A _DATA SEGMENT PARA PUBLIC 'DATA'
;Module "A" data fields
A_DATA ENDS
A _CODE SEGMENT PARA PUBLIC 'CODE'
;Module "A" code
A_CODE ENDS
END

(more)

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

;Module "B"
B_DATA SEGMENT PARA PUBLIC 'DATA'
;Module "B" data fields
B_DATA ENDS
B_CODE SEGMENT PARA PUBLIC 'CODE'
;Module "B" code
B_CODE ENDS
END

;Module "C"

C_DATA SEGMENT PARA PUBLIC 'DATA'

;Module "C" data fields

C_DATA ENDS

C_CODE SEGMENT PARA PUBLIC 'CODE'

;Module "C" code

C_CODE ' ENDS '
END

If the 'CODE' and 'DATA' class types are removed from the SEGMENT directives shown
above, the linker organizes the segments as it encounters them. If the programmer speci-
fies the modules to the linker in alphabetic order, the linker produces the following
segment ordering:

A_DATA
A_CODE
B_DATA
B_CODE
C_DATA
C_CODE

However, if the programmer specifies the class types shown in the sample source mod-
ules, the linker organizes the segments by classification as follows:

'DATA' class: A_DATA
B_DATA
C_DATA

'CODE' class: A_CODE
B_CODE
C_CODE

Notice that the linker still organizes the classifications in the order in which it encounters
the segments belonging to the various classifications. To completely control the order in
which the linker organizes the segments, the programmer must use one of three basic
approaches. The preferred method involves using the /DOSSEG switch with the linker.
This produces the segment ordering shown in Figure 4-1. The second method involves
creating a special source module that contains empty SEGMENT-ENDS blocks for all the
segments declared in the various other source modules. The programmer creates the list
in the order the segments are to be arranged in memory and then specifies the .OB]J file for
this module as the first file for the linker to process. This procedure establishes the order
of all the segments before LINK begins processing the other program modules, so the

Section II: Programming in the MS-DOS Environment 129

Part B: Programming for MS-DOS

130

programmer can declare segments in these other modules in any convenient order. For
instance, the following source module rearranges the result of the previous example so
that the linker places the 'CODE! class before the 'DATA' class:

A_CODE SEGMENT PARA PUBLIC 'CODE'
A _CODE ENDS
B_CODE SEGMENT PARA PUBLIC 'CODE'
B_CODE ENDS
C_CODE SEGMENT PARA PUBLIC 'CODE'
C_CODE ENDS

A DATA SEGMENT PARA PUBLIC 'DATA'
A _DATA ENDS

B_DATA SEGMENT PARA PUBLIC 'DATA'
B_DATA ENDS i
C_DATA SEGMENT PARA PUBLIC 'DATA'
C_DATA ENDS

END

Rather than creating a new module, the third method places the same segment ordering
list shown above at the start of the first module containing actual code or data that the
programmer will be specifying for the linker. This duplicates the approach used by
Microsoft’'s newer compilers, such as C version 4.0.

The ordering of segments within the load module has no direct effect on the linker’s
adjustment of address references to locations within the various segments. Only the
GROUP directive and the SEGMENT directive’s combine parameter affect address
adjustments performed by the linker. See The MASM GROUP Directive below.

Note: Certain older versions of the IBM Macro Assembler wrote segments to the object
file in alphabetic order regardless of their order in the source file. These older versions can
limit efforts to control segment ordering. Upgrading to a new version of the assembler is

‘the best solution to this problem.

Ordering segments to shrink the .EXE file

Correct segment ordering can significantly decrease the size of a .EXE program as it
resides on disk. This size-reduction ordering is achieved by placing all uninitialized data
fields in their own segments and then controlling the linker’s ordering of the program’s
segments so that the uninitialized data field segments all reside at the end of the program.
When the program modules are assembled, MASM places information in the object mod-
ules to tell the linker about initialized and uninitialized areas of all segments. The linker
then uses this information to prevent the writing of uninitialized data areas that occur at
the end of the program image as part of the resulting .EXE file. To account for the memory
space required by these fields, the linker also sets the MINALLOC field in the .EXE file
header to represent the data area not written to the file. MS-DOS then uses the MINALLOC
field to reallocate this missing space when loading the program.

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

The MASM GROUP directive

The MASM GROUP directive can also have a strong impact on a .EXE program. However,
the GROUP directive has no effect on the arrangement of program segments within mem-
ory. Rather, GROUP associates program segments for addressing purposes.

The GROUP directive has the following syntax:
grpname GROUP segname,segname,segname, ...

This directive causes the linker to adjust all address references to labels within any speci-
fied segname to be relative to the start of the declared group. The start of the group is de-
termined at link time. The group starts with whichever of the segments in the GROUP list
the linker places lowest in memory.

That the GROUP directive neither causes nor requires contiguous arrangement of the
grouped segments creates some interesting, although not necessarily desirable, possi-
bilities. For instance, it permits the programmer to locate segments not belonging to the
declared group between segments that do belong to the group. The only restriction im-
posed on the declared group is that the last byte of the last segment in the group must
occur within 64 KB of the start of the group. Figure 4-7 illustrates this type of segment

arrangement:
A
SEGMENT_C
(listed with GROUP directive)
LABEL_C »
—— LABEL_B P
64 KB SEGMENT_B
maximum Lqu]gsl;;_.t_oB (not listed with GROUP directive)
Offsetto ¢
LABEL.C __ | \BEL A B
SEGMENT_A
Offset to (listed with GROUP directive)
LABEL_A
v

Figure 4-7. Noncontiguous segments in the same GROUP.

Warning: One of the most confusing aspects of the GROUP directive relates to MASM’s
OFFSET operator. The GROUP directive affects only the offset addresses generated by
such direct addressing instructions as

MOV AX, FIELD_LABEL
but it has no effect on immediate address values generated by such instructions as

MOV AX,OFFSET FIELD_LABEL

Section II: Programming in the MS-DOS Environment 131

Part B: Programming for MS-DOS

Using the OFFSET operator on labels contained within grouped segments requires the
following approach:

MOV AX,OFFSET GROUP_NAME:FIELD_LABEL

The programmer must explicitly request the offset from the group base, because MASM
defines the result of the OFFSET operator to be the offset of the label from the start of its
segment, not its group.

Structuring a small program with SEGMENT and GROUP

132

Now that we have analyzed the functions performed by the SEGMENT and GROUP direc-
tives, we'll put both directives to work structuring a skeleton program. The program,
shown in Figures 4-8, 4-9, and 4-10, consists of three source modules (MODULE_A,
MODULE_B, and MODULE_C), each using the following four program segments:

Segment Definition

_TEXT The code or program text segment

_DATA The standard data segment containing preinitialized data fields the pro-
gram might change

CONST The constant data segment containing constant data fields the program
will not change

_BSS The “block storage segment/space” segment containing uninitialized data
fields*

* Programmers familiar with the IBM 1620/1630 or CDC 6000 and Cyber assemblers may recognize BSS as
“block started at symbol,” which reflects an equally appropriate, although somewhat more elaborate, defini-
tion of the abbreviation. Other common translations of BSS, such as “blank static storage,” misrepresent the
segment name, because blanking of BSS segments does not occur — the memory contains undetermined
values when the program begins execution.

;Source Module MODULE_A
;iPredeclare all segments to force the linker's segment ordering **kkkkxkkkkxxx

_TEXT SEGMENT BYTE PUBLIC 'CODE'
_TEXT ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS

Figure 4-8. Structuring a .EXE program: MODULE__A. (more)

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

DGROUP GROUP _DATA, CONST, _BSS, STACK

;Constant declarations % %k ks % sk %k % 3k ok okokok ok ok %ok ok ok okok ok ook ok ok ok ok ok ok kok ko ok kol R kb Rk ok Rk ok

CONST SEGMENT WORD PUBLIC 'CONST'

CONST_FIELD_A DB 'Constant A' ;declare a MODULE_A constant

CONST ENDS

;Preinitialized data fields *#kkdkksdkkkdkahkhhmkrhhhbrhhhkrhranhhhrkbohhrhhrkrs

_DATA SEGMENT WORD PUBLIC 'DATA'

DATA _FIELD_A DB 'Data A’ ;declare a MODULE_A preinitialized field

_DATA ENDS

sUninitialized data Fields sk koo ok sk ok ook ook ok skok ok o ok okok o o ok ok o o ok ok ok o ok ook ok ok ok R kb ok
_BSS SEGMENT WORD PUBLIC 'BSS'
BSS_FIELD_A DB 5 DUP (?) ;declare a MODULE_A uninitialized field

_BSS ENDS

FProgram text sk hsk sk skksohokkok ook ok ok okodok s okokokok ook sk ok kot Rokok ok sk ok ok ook sk ok o ok kR ek o ok ok ke
_TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT,DS:DGROUP, ES:NOTHING, SS:NOTHING
£y

EXTRN PROC_B:NEAR ;label is in _TEXT segment (NEAR)

EXTRN PROC_C:NEAR ;label is in _TEXT segment (NEAR)
PROC_A PROC NEAR

CALL PROC_B ;call into MODULE_B

CALL PROC_C ;call into MODULE_C

MOV AX,4C00H ;terminate (MS-DOS 2.0 or later only)

INT 21H

PROC_A ENDP
_TEXT ENDS

Figure 4-8. Continued. (more)

Section II: Programming in the MS-DOS Environment 133

Part B: Programming for MS-DOS

;Stack Fkkkkckkkkkkkkkkkokkkokkkokkkokkokkokokkokkkokkkkokkkokokokokokkokkdkokkkkokokdkokkkokkkkkkk k¥ ¥

STACK SEGMENT PARA STACK 'STACK'

DW 128 DUP(?) ;declare some space to use as stack
STACK_BASE LABEL WORD

STACK ENDS

END PROC_A ' ;declare PROC_A as entry point

Figure 4-8. Continued.

;Source Module MODULE_B

;Constant declarations % %k %k & sk ks sk %k % sk ok % ok o ok sk ok ok sk ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk k ok ok ok ok ok
CONST SEGMENT WORD PUBLIC 'CONST'

CONST_FIELD_B DB 'Constant B' ;declare a MODULE_B constant

CONST ENDS

;Preinitialized data fields ***Fkkkkkkskkkkskdkkkkskkkkkkkokkkkkkkkkkkkkkkkkkokfkkokk
_DATA SEGMENT WORD PUBLIC 'DATA'
DATA FIELD_B DB 'Data B' ;declare a MODULE_B preinitialized field

_DATA ENDS

;Uninitialized data fields sk stk ok ko sk ook ok o sk ok ok ok sk skl ok ok ook ook ok ok ok ook ok kol ook ook ok ok ok ok okok o
v

_BSS SEGMENT WORD PUBLIC 'BSS'

BSS_FIELD_B DB 5 DUP (?) ;jdeclare a MODULE_B uninitialized field

—BSS ENDS

;Program text K %k ok sk s sk %k sk ok ok sk K 3k ok ok ok oK ok ok ok ok ok sk ok ok sk o ok ok sk ok ok ok sk ok ok sk o ok ok ok sk ok ok sk ok sk sk ok sk ok ok ok ok ok sk ok ok ok sk ok sk ok

DGROUP GROUP —DATA, CONST, _BSS
_TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT,DS:DGROUP, ES:NOTHING, SS:NOTHING

Figure 4-9. Structuring a .EXE program: MODULE__B. (more)

134 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

PUBLIC PROC_B ;reference in MODULE_A
PROC_B PROC NEAR

RET
PROC_B ENDP
—TEXT ENDS

END

Figure 4-9. Continued.

; Source Module MODULE_C

;Constant declarations %k sk %k sk ko %k sk o ok koo okosk sk kodkokok sk ok dkok sk ok kokok ook ok kok sk sk kb kb ok ok ok ok k%
CONST SEGMENT WORD PUBLIC 'CONST'
CONST_FIELD_C DB 'Constant C' ;declare a MODULE_C constant

CONST ENDS

;Preinitialized data fields *kkkkkskkkkskkkksokkkkokkkkokkkrsokdokkkrkkkkkrokkrrkkkrkk
_DATA SEGMENT WORD PUBLIC 'DATA'
DATA_FIELD_C DB 'Data C' ;declare a MODULE_C preinitialized field

—DATA ENDS

;Uninitialized data fields #*¥kxkkkkkkkkkkkkkkkkkkbhkkkkkkhkkhrhhkhhkkkhkkkkk*
—BSS SEGMENT WORD PUBLIC 'BSS'
BSS_FIELD_C DB 5 DUP (?) ;declare a MODULE_C uninitialized field

_BSS ENDS

Program text ko sk ok ook ook ok ok ok skokkok kokok ok ook R R o kok sk sk kok ok ok ok ok kR oR R R R kR skok
DGROUP GROUP —DATA, CONST, _BSS
_TEXT SEGMENT BYTE PUBLIC 'CODE’'

ASSUME CS:_TEXT,DS:DGROUP,ES:NOTHING, SS:NOTHING

Figure 4-10. Structuring a .EXE program: MODULE__C. (more)

Section II: Programming in the MS-DOS Environment 135

Part B: Programming for MS-DOS

PUBLIC PROC_C ;referenced in MODULE_A
PROC_C PROC NEAR

RET
PROC_C ENDP
_TEXT ENDS

END

Figure 4-10. Continued.

This example creates a small memory model program image, so the linked program can
have only a single code segment and a single data segment— the simplest standard form
of a .EXE program. See Using Microsoft’s Contemporary Memory Models below.

In addition to declaring the four segments already discussed, MODULE__ A declares a
STACK segment in which to define a block of memory for use as the program’s stack and
also defines the linking order of the five segments. Defining the linking order leaves the
programmer free to declare the segments in any order when defining the segment con-
tents —a necessity because the assembler has difficulty assembling programs that use
forward references.

With Microsoft’s MASM and LINK on the same disk with the .ASM files, the following com-
mands can be made into a batch file:

MASM STRUCA;
MASM STRUCB;
MASM STRUCC;
LINK STRUCA+STRUCB+STRUCC/M;

These commands will assemble and link all the .ASM files listed, producing the memory
map report file STRUCA.MAP shown in Figure 4-11.

Start Stop Length Name Class
00000H 0000CH O000ODH _TEXT CODE
0000EH 0001FH 00012H _DATA DATA
00020H 0003DH O001EH CONST CONST
0003EH 0004EH 00011H _BSS BSS
00050H 0014FH 00100H STACK STACK

Origin Group
0000:0 DGROUP

Address Publics by Name
0000:000B PROC_B
0000:000C PROC_C
Figure 4-11. Structuring a .EXE program: memory map report. (more)

136 The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Address Publics by Value
0000:000B PROC_B
0000:000C PROC_C

Program entry point at 0000:0000

Figure 4-11. Continued.

The above memory map report represents the memory diagram shown in Figure 4-12.

Absolute
address Size in bytes
00150H p -
STACK | grACK () | 2%
Class
00050H p| — - - — - . -
bl I T es@ | 3
O004AHL Bf = = = = =)= = = = - [WORD al(i . aj T
00049H p| - - - - - - BSS - o~ (i‘;g P S s
00044H p| — - - - - — Class -
[WORD align gap 1
00043H P | -DGROUP —{— — — - — SS A s
g crow - CONS'(I‘)C 10
00034H p| - - - - - — CONST - © = 3%
0002AH p| - - - — - _ Class _ | _CONST (B) ¢
10
el D o | T8
0001AH p| - - - - - - DATA - —— (B) - 1+8
00014H p| - = - = - _ Class — A (A) . i
0000EH p| - - - - - T (A) 1
0000DH p alg;ésgr = 1 5 v
prosceg IR TEXTB) 1 13
DGROUP O0000BH p |- — - — Class - — — (B)
i TEXT (A) 11
addressing p» 00000H p

base

Figure 4-12. Structure of the sample .EXE program.

Using Microsoft’s contemporary memory models

Now that we’ve analyzed the various aspects of designing assembly-language .EXE pro-
grams, we can look at how Microsoft’s high-level-language compilers create .EXE pro-
grams from high-level-language source files. Even assembly-language programmers will
find this discussion of interest and should seriously consider using the five standard
memory models outlined here.

This discussion is based on the Microsoft C Compiler version 4.0, which, along with the
Microsoft FORTRAN Compiler version 4.0, incorporates the most contemporary code
generator currently available. These newer compilers generate code based on three to five

Section II: Programming in the MS-DOS Environment 137

Part B: Programming for MS-DOS

138

of the following standard programmer-selectable program structures, referred to as mem-
ory models. The discussion of each of these memory models will center on the model’s
use with the Microsoft C Compiler and will close with comments regarding any differences
for the Microsoft FORTRAN Compiler.

Small (C compiler switch /AS) This model, the default, includes only a single code seg-
ment and a single data segment. All code must fit within 64 KB, and all data must fit within
an additional 64 KB. Most C program designs fall into this category. Data can exceed the
64 KB limit only if the far and huge attributes are used, forcing the compiler to use far
addressing, and the linker to place far and huge data items into separate segments. The
data-size-threshold switch described for the compact model is ignored by the Microsoft C
Compiler when used with a small model. The C compiler uses the default segment name
_TEXT for all code and the default segment name _ DATA for all non-far/huge data.
Microsoft FORTRAN programs can generate a semblance of this model only by using the
/NM (name module) and /AM (medium model) compiler switches in combination with the
near attribute on all subprogram declarations.

Medium (C and FORTRAN compiler switch /AM) This model includes only a single data
segment but breaks the code into multiple code segments. All data must fit within 64 KB,
but the 64 KB restriction on code size applies only on a2 module-by-module basis. Data can
exceed the 64 KB limit only if the far and huge attributes are used, forcing the compiler to
use far addressing, and the linker to place far and huge data items into separate segments.
The data-size-threshold switch described for the compact model is ignored by the
Microsoft C Compiler when used with a medium model. The compiler uses the default seg-
ment name __DATA for all non-far/huge data and the template module _TEXT to create
names for all code segments. The module element of module_TEXT indicates where the
compiler is to substitute the name of the source module. For example, if the source module
HELPFUNC.C is compiled using the medium model, the compiler creates the code seg-
ment HELPFUNC_TEXT. The Microsoft FORTRAN Compiler version 4.0 directly supports
the medium model.

Compact (C compiler switch /AC) This model includes only a single code segment but
breaks the data into multiple data segments. All code must fit within 64 KB, but the data is
allowed to consume all the remaining available memory. The Microsoft C Compiler’s op-
tional data-size-threshold switch (/Gt) controls the placement of the larger data items into
additional data segments, leaving the smaller items in the default segment for faster access.
Individual data items within the program cannot exceed 64 KB under the compact model
without being explicitly declared huge. The compiler uses the default segment name
_TEXT for all code segments and the template module#_DATA to create names for all data
segments. The module element indicates where the compiler is to substitute the source
module’s name; the # element represents a digit that the compiler changes for each addi-
tional data segment required to hold the module’s data. The compiler starts with the digit 5
and counts up. For example, if the name of the source module is HELPFUNC.C, the com-
piler names the first data segment HELPFUNC5_DATA. FORTRAN programs can generate
a semblance of this model only by using the /NM (name module) and /AL (large model)
compiler switches in combination with the near attribute on all subprogram declarations.

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Large (C and FORTRAN compiler switch /AL) This model creates multiple code and data
segments. The compiler treats data in the same manner as it does for the compact model
and treats code in the same manner as it does for the medium model. The Microsoft
FORTRAN Compiler version 4.0 directly supports the large model.

Huge (C and FORTRAN compiler switch /AH) Allocation of segments under the huge
model follows the same rules as for the large model. The difference is that individual data
items can exceed 64 KB. Under the huge model, the compiler generates the necessary
code to index arrays or adjust pointers across segment boundaries, effectively transforming
the microprocessor’s segment-addressed memory into linear-addressed memory. This
makes the huge model especially useful for porting a program originally written for a pro-
cessor that used linear addressing. The speed penalties the program pays in exchange for
this addressing freedom require serious consideration. If the program actually contains
any data structures exceeding 64 KB, it probably contains only a few. In that case, it is best
to avoid using the huge model by explicitly declaring those few data items as huge using
the huge keyword within the source module. This prevents penalizing all the non-huge
items with extra addressing math. The Microsoft FORTRAN Compiler version 4.0 directly
supports the huge model.

Figure 4-13 shows an example of the segment arrangement created by a large/huge model
program. The example assumes two source modules: MSCA.C and MSCB.C. Each source
module specifies enough data to cause the compiler to create two extra data segments for
that module. The diagram does not show all the various segments that occur as a result of
linking with the run-time library or as a result of compiling with the intention of using the
CodeView debugger.

Groups Classes Segments
STACK STACK <« SMCLH: Program stack
BSS c_common | SM: All uninitialized global items, CLH: Empty
DGROUP _BSS <« SMCLH: All uninitialized non-far/huge items
CONST CONST <« SMCLH: Constants (floating point constraints, segment addresses, etc.)
DATA _DATA <4 SMCLH: All items-that don't end up anywhere else
FAR_BSS FAR_BSS | SM: Nonexistent, CLH: All uninitialized global items

MSCB6_DATA 4 From MSCB only: SM: Far/huge items, CLH: Items larger than threshold

FAR DATA MSCB5_DATA <« From MSCB only: SM: Far/huge items, CLH: Items larger than threshold

- MSCA6_DATA| € From MSCA only: SM: Far/huge items, CLH: Items larger than threshold

MSCAS5_DATA| € From MSCA only: SM: Far/huge items, CLH: Items larger than threshold
TEXT < SC: All code, MLH: Run-time library code only

CODE | MSCB_TEXT |4« SC: Nonexistent, MLH: MSCB.C Code

MSCA_TEXT |« SC: Nonexistent, MLH: MSCA.C Code

S = Small model L = Large model
M = Medium model H=Huge model
C = Compact model

Figure 4-13. General structure of a Microsoft C program.

Section 1I: Programming in the MS-DOS Environment 139

Part B: Programming for MS-DOS

Note that if the program declares an extremely large number of small data items, it can
exceed the 64 KB size limit on the default data segment (_DATA) regardless of the memory
model specified. This occurs because the data items all fall below the data-size-threshold
limit (compiler /Gt switch), causing the compiler to place them in the _DATA segment.
Lowering the data size threshold or explicitly using the far attribute within the source
modules eliminates this problem.

Modifying the .EXE file header

140

With most of its language compilers, Microsoft supplies a utility program called EXEMOD.
See PROGRAMMING UTILITIES: exemop. This utility allows the programmer to display
and modify certain fields contained within the .EXE file header. Following are the header
fields EXEMOD can modify (based on EXEMOD version 4.0):

MAXALLOC This field can be modified by using EXEMOD’s /MAX switch. Because
EXEMOD operates on .EXE files that have already been linked, the /MAX switch can be
used to modify the MAXALLOC field in existing .EXE programs that contain the default
MAXALLOC value of FFFFH, provided the programs do not rely on MS-DOS'’s allocating
all free memory to them. EXEMOD’s /MAX switch functions in an identical manner to
LINK’s /CPARMAXALLOC switch.

MINALLOC This field can be modified by using EXEMOD’s /MIN switch. Unlike the case
with the MAXALLOC field, most programs do not have an arbitrary value for MINALLOC.
MINALLOC normally represents uninitialized memory and stack space the linker has com-
pressed out of the .EXE file, so a programmer should never reduce the MINALLOC value
within a .EXE program written by someone else. If a program requires some minimum
amount of extra dynamic memory in addition to any static fields, MINALLOC can be in-
creased to ensure that the program will have this extra memory before receiving control. If
this is done, the program will not have to verify that MS-DOS allocated enough memory to
meet program needs. Of course, the same result can be achieved without EXEMOD by
declaring this minimum extra memory as an uninitialized field at the end of the program.

Initial SP Value 'This field can be modified by using the /STACK switch to increase or
decrease the size of a program’s stack. However, modifying the initial SP value for pro-
grams developed using Microsoft language compiler versions earlier than the following
may cause the programs to fail: C version 3.0, Pascal version 3.3, and FORTRAN version
3.3. Other language compilers may have the same restriction. The /STACK switch can also
be used with programs developed using MASM, provided the stack space is linked at the
end of the program, but it would probably be wise to change the size of the STACK seg-
‘ment declaration within the program instead. The linker also provides a /STACK switch
that performs the same purpose.

Note: With the /H switch set, EXEMOD displays the current values of the fields within
the .EXE header. This switch should not be used with the other switches. EXEMOD also
displays field values if no switches are used.

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Warning: EXEMOD also functions correctly when used with packed .EXE files created
using EXEPACK or the /EXEPACK linker switch. However, it is important to use the
EXEMOD version shipped with the linker or EXEPACK utility. Possible future changes in
the packing method may result in incompatibilities between EXEMOD and nonassociated
linker/EXEPACK versions.

Patching the .EXE program using DEBUG

Every experienced programmer knows that programs always seem to have at least one
unspotted error. If a program has been distributed to other users, the programmer will
probably need to provide those users with corrections when such bugs come to light. One
inexpensive updating approach used by many large companies consists of mailing out
single-page instructions explaining how the user can patch the program to correct the
problem.

Program patching usually involves loading the program file into the DEBUG utility sup-
plied with MS-DOS, storing new bytes into the program image, and then saving the pro-
gram file back to disk. Unfortunately, DEBUG cannot load a .EXE program into memory
and then save it back to disk in .EXE format. The programmer must trick DEBUG into
patching .EXE program files, using the procedure outlined below. See PROGRAMMING
UTILITIES: DEBUG.

Note: Users should be reminded to make backup copies of their program before attempt-
ing the patching procedure.

1. Rename the .EXE file using a filename extension that does not have special meaning
for DEBUG. (Avoid .EXE, .COM, and .HEX.) For instance, MYPROG.BIN serves well as
a temporary new name for MYPROG.EXE because DEBUG does not recognize a file
with a .BIN extension as anything special. DEBUG will load the entire image of
MYPROG.BIN, including the .EXE header and relocation table, into memory starting
at offset 100H within a .COM-style program segment (as discussed previously).

2. Locate the area within the load module section of the .EXE file image that requires
patching. The previous discussion of the .EXE file image, together with compiler/
assembler listings and linker memory map reports, provides the information neces-
sary to locate the error within the .EXE file image. DEBUG loads the file image start-
ing at offset 100H within a .COM-style program segment, so the programmer must
compensate for this offset when calculating addresses within the file image. Also, the
compiler listings and linker memory map reports provide addresses relative to the
start of the program image within the .EXE file, not relative to the start of the file
itself. Therefore, the programmer must first check the information contained in the
.EXE file header to determine where the load module (the program’s image) starts
within the file.

3. Use DEBUG’s E (Enter Data) or A (Assemble Machine Instructions) command to
insert the corrections. (Normally, patch instructions to users would simply give an
address at which the user should apply the patch. The user need not know how to
determine the address.)

4. After the patch has been applied, simply issue the DEBUG W (Write File or Sectors)
command to write the corrected image back to disk under the same filename, pro-
vided the patch has not increased the size of the program. If program size has

Section II: Programming in the MS-DOS Environment 141

Part B: Programming for MS-DOS

increased, first change the appropriate size fields in the .EXE header at the start of the
file and use the DEBUG R (Display or Modify Registers) command to modify the BX
and CX registers so that they contain the file image’s new size. Then use the W com-
mand to write the image back to disk under the same name.

5. Use the DEBUG Q (Quit) command to return to MS-DOS command level, and then
rename the file to the original .EXE filename extension.

EXE summary

The

142

To summarize, the .EXE program and file structures provide considerable flexibility in the
design of programs, providing the programmer with the necessary freedom to produce
large-scale applications. Programs written using Microsoft’s high-level-language compilers
have access to five standardized program structure models (small, medium, compact,
large, and huge). These standardized models are excellent examples of ways to structure
assembly-language programs.

.COM Program

The majority of differences between .COM and .EXE programs exist because .COM
program files are not prefaced by header information. Therefore, .COM programs do not
benefit from the features the .EXE header provides.

The absence of a header leaves MS-DOS with no way of knowing how much memory the
.COM program requires in addition to the size of the program’s image. Therefore, MS-DOS
must always allocate the largest free block of memory to the .COM program, regardless of
the program’s true memory requirements. As was discussed for .EXE programs, this allo-
cation of the largest block of free memory usually results in MS-DOS’s allocating all
remaining free memory —an action that can cause problems for multitasking supervisor
programs.

The .EXE program header also includes the direct segment address relocation pointer
table. Because they lack this table, .COM programs cannot make address references to the
labels specified in SEGMENT directives, with the exception of SEGMENT AT address
directives. If a .COM program did make these references, MS-DOS would have no way of
adjusting the addresses to correspond to the actual segment address into which MS-DOS
loaded the program. See Creating the .COM Program below.

The .COM program structure exists primarily to support the vast number of CP/M pro-
grams ported to MS-DOS. Currently, .COM programs are most often used to avoid adding
the 512 bytes or more of .EXE header information onto small, simple programs that often
do not exceed 512 bytes by themselves.

The .COM program structure has another advantage: Its memory organization places the
PSP within the same address segment as the rest of the program. Thus, it is easier to access
fields within the PSP in .COM programs.

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Giving control to the .COM program

After allocating the largest block of free memory to the .COM program, MS-DOS builds

a PSP in the lowest 100H bytes of the block. No difference exists between the PSP MS-DOS
builds for .COM programs and the PSP it builds for .EXE programs. Also with .EXE pro-
grams, MS-DOS determines the initial values for the AL and AH registers at this time and
then loads the entire .COM-file image into memory immediately following the PSP.
Because .COM files have no file-size header fields, MS-DOS relies on the size recorded in
the disk directory to determine the size of the program image. It loads the program exactly
as it appears in the file, without checking the file’s contents.

MS-DOS then sets the DS, ES, and SS segment registers to point to the start of the PSP. If
able to allocate at least 64 KB to the program, MS-DOS sets the SP register to offset FFFFH
+1(0000H) to establish an initial stack; if less than 64 KB are available for allocation to the
program, MS-DOS sets the SP to 1 byte past the highest offset owned by the program. In
either case, MS-DOS then pushes a single word of 0000H onto the program’s stack for

use in terminating the program.

Finally, MS-DOS transfers control to the program by setting the CS register to the PSP’s
segment address and the IP register to 0100H. This means that the program’s entry point
must exist at the very start of the program’s image, as shown in later examples.

Figure 4-14 shows the overall structure of a .COM program as it receives control from
MS-DOS.

.COM program memory image
seoprrse ——| [T F

Remaining free memory
within first 64 KB allocated
“to .COM program
(provided a full 64 KB was available)

.COM program image from file
.COM program image f < IP=0100H

Program segment prefix

<« CS,DS.ES,SS A
*The SP and 64 KB values are dependent upon

MS-DOS having 64 KB or more of memory

available to allocate to the .COM program

at load time.

<

Figure 4-14. The .COM program: memory map diagram with register pointers.

Section II: Programming in the MS-DOS Environment 143

Part B: Programming for MS-DOS

Terminating the .COM program

A .COM program can use all the termination methods described for .EXE programs but
should still use the MS-DOS Interrupt 21H Terminate Process with Return Code function
(4CH) as the preferred method. If the .COM program must remain compatible with ver-
sions of MS-DOS earlier than 2.0, it can easily use any of the older termination methods,
including those described as difficult to use from .EXE programs, because .COM programs
execute with the CS register pointing to the PSP as required by these methods.

Creating the .COM program

144

A .COM program is created in the same manner as a .EXE program and then converted
using the MS-DOS EXE2BIN utility. See PROGRAMMING UTILITIES: EXE2BIN.

Certain restrictions do apply to .COM programs, however. First, COM programs cannot
exceed 64 KB minus 100H bytes for the PSP minus 2 bytes for the zero word initially
pushed on the stack.

Next, only a single segment — or at least a single addressing group — should exist within
the program. The following two examples show ways to structure a .COM program to sat-
isfy both this restriction and MASM’s need to have data fields precede program code in the
source file.

COMPROG1.ASM (Figure 4-15) declares only a single segment (COMSEG), so no special
considerations apply when using the MASM OFFSET operator. See The MASM GROUP
Directive above. COMPROG2.ASM (Figure 4-16) declares separate code (CSEG) and data
(DSEG) segments, which the GROUP directive ties into a common addressing block.
Thus, the programmer can declare data fields at the start of the source file and have the
linker place the data fields segment (DSEG) after the code segment (CSEG) when it links
the program, as discussed for the .EXE program structure. This second example simulates
the program structuring provided under CP/M by Microsoft’s old Macro-80 (M80) macro
assembler and Link-80 (L80) linker. The design also expands easily to accommodate
COMMON or other additional segments.

COMSEG SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:COMSEG, DS:COMSEG,ES:COMSEG, SS:COMSEG
ORG 0100H

BEGIN:
JMP START ;skip over data fields
;Place your data fields here.

START:

;Place your program text here.
MOV AX,4CO0H ;terminate (MS-DOS 2.0 or later only)
INT 21H

COMSEG ENDS
END BEGIN

Figure 4-15. .COM program with data at start.

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

CSEG SEGMENT BYTE PUBLIC 'CODE' ;establish segment order
CSEG ENDS

DSEG SEGMENT BYTE PUBLIC 'DATA'

DSEG ENDS

COMGRP GROUP CSEG, DSEG ;establish joint address base
DSEG SEGMENT

;Place your data fields here.

DSEG ENDS

CSEG SEGMENT

ASSUME CS:COMGRP, DS :COMGRP, ES:COMGRP, SS: COMGRP
ORG 0100H

BEGIN:
;Place your program text here. Remember to use
;OFFSET COMGRP:LABEL whenever you use OFFSET.

MOV AX, 4CO0H ;terminate (MS-DOS 2.0 or later only)
INT 21H

CSEG ENDS
END BEGIN

Figure 4-16. .COM program with data at end.

These examples demonstrate other significant requirements for producing a functioning
.COM program. For instance, the ORG 0I00H statement in both examples tells MASM to
start assembling the code at offset 100H within the encompassing segment. This corre-
sponds to MS-DOS’s transferring control to the program at IP = 0100H. In addition, the
entry-point label (BEGIN) immediately follows the ORG statement and appears again as a
parameter to the END statement. Together, these factors satisfy the requirement that .COM
programs declare their entry point at offset 100H. If any factor is missing, the MS-DOS
EXE2BIN utility will not properly convert the .EXE file produced by the linker into a .COM
file. Specifically, if a .COM program declares an entry point (as a parameter to the END
statement) that is at neither offset 0100H nor offset 0000H, EXE2BIN rejects the .EXE file
when the programmer attempts to convert it. If the program fails to declare an entry point
or declares an entry point at offset 0000H, EXE2BIN assumes that the .EXE file is to be
converted to a binary image rather than to a .COM image. When EXE2BIN converts a .EXE
file to a non-.COM binary file, it does not strip the extra 100H bytes the linker places in
front of the code as a result of the ORG 0100H instruction. Thus, the program actually
begins at offset 200H when MS-DOS loads it into memory, but all the program’s address
references will have been assembled and linked based on the 100H offset. As a result, the
program — and probably the rest of the system as well —is likely to crash.

A .COM program also must not contain direct segment address references to any segments
that make up the program. Thus, the .COM program cannot reference any segment labels
or reference any labels as long (FAR) pointers. (This rule does not prevent the program
from referencing segment labels declared using the SEGMENT AT address directive.)
Following are various examples of direct segment address references that are not per-
mitted as part of .COM programs: :

Section II: Programming in the MS-DOS Environment 145

Part B: Programming for MS-DOS

PROC_A PROC FAR
PROC_A ENDP

CALL PROC_A ;intersegment call
JMP PROC_A ;intersegment Jjump
or
EXTRN PROC_A:FAR
CALL PROC_A ;intersegment call
JMP PROC_A ;intersegment jump
or
MOV AX,SEG SEG_A ; segment address
DD LABEL_A ;segment :offset pointer

Finally, .COM programs must not declare any segments with the STACK combine type. If
a program declares a segment with the STACK combine type, the linker will insert initial
SS and SP values into the .EXE file header, causing EXE2BIN to reject the .EXE file. A .COM
program does not have explicitly declared stacks, although it can reserve space in a non-
STACK combine type segment to which it can initialize the SP register after it receives
control. The absence of a stack segment will cause the linker to issue a harmless warning
message.

When the program is assembled and linked into a .EXE file, it must be converted into a
binary file with a .COM extension by using the EXE2BIN utility as shown in the following
example for the file YOURPROG.EXE:

c>EXE2BIN YOURPROG YOURPROG.COM <Enter>

It is not necessary to delete or rename a .EXE file with the same filename as the .COM

file before trying to execute the .COM file as long as both remain in the same directory,
because MS-DOS’s order of execution is .COM files first, then .EXE files, and finally .BAT
files. However, the safest practice is to delete a .EXE file immediately after converting it to
a .COM file in case the .COM file is later renamed or moved to a different directory. If a
.EXE file designed for conversion to a .COM file is executed by accident, it is likely to crash
the system.

Patching the .COM program using DEBUG

146

As discussed for .EXE files, a programmer who distributes software to users will probably
want to send instructions on how to patch in error corrections. This approach to software
updates lends itself even better to .COM files than it does to .EXE files.

For example, because .COM files contain only the code image, they need not be renamed
in order to read and write them using DEBUG. The user need only be instructed on how to
load the .COM file into DEBUG, how to patch the program, and how to write the patched
image back to disk. Calculating the addresses and patch values is even easier, because no
header exists in the .COM file image to cause complications. With the preceding excep-
tions, the details for patching .COM programs remain the same as previously outlined for
.EXE programs.

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

.COM summary

To summarize, the .COM program and file structures are a simpler but more restricted
approach to writing programs than the .EXE structure because the programmer has only a
single memory model from which to choose (the .COM program segment model). Also,
.COM program files do not contain the 512-byte (or more) header inherent to .EXE files, so
the .COM program structure is well suited to small programs for which adding 512 bytes
of header would probably at least double the file’s size.

Summary of Differences

The following table summarizes the differences between .COM and .EXE programs.

.COM program .EXE program
Maximum size 65536 bytes minus 256 bytes No limit
for PSP and 2 bytes for stack
Entry point PSP:0100H Defined by END statement
CS atentry PSP Segment containing program’s
entry point
IP atentry 0100H Offset of entry point within its
segmen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>