
Microsoft® Link 
Linker Utility 

for 8086 and 8088 Microprocessors 

Microsoft Corporation 



~ystem Requirements 

The Microsoft Linker Utility requires: 

SOK bytes of memory minimum: 
40K bytes for code and data 
lOK bytes for run space 

Disk drive(s): 
1 disk drive if and only if output is sent to the 
Same physical disk from which the input was taken. 
MS-LINK does not allow time to swap disks during 
operation on a one-drive configuration. Therefore, 
two disk drives is a more practical configuration. 



Contents 

Chapter 1 

1.2 
1.3 

Chapter 2 

2.1 

2.2 
2.3 
2.4 
2.4.l 
2.4.2 
2.4.3 
2.4.4 
2.5 
2.6 

Index 

INTRODUCTION 

Overview of MS-LINK Operation 1-2 
Definitions 1-4 

MS-LINK TECHNICAL INPORMATION 

How MS-LINK Combines and Arranges 
Segments 2-1 

Segment Addresses 2-4 
How MS-LINK Assigns Addresses 2-4 
Relocation Fixups 2-5 

Short References 2-5 
Near Self-Relative References 2~5 
Near Segment-Relative References 2-6 
Long References 2-6 

Sample MS-LINK Session 2-7 
Error Messages 2-9 



CHAPTER 1 

INTRODUCTION 

The Microsoft Linker Utility (MS-LINK) is a relocatable 
linker designed to link separately produced modules of 8086 
object code. The input to MS-LINK is a subset of the Intel 
object module format standard. 

MS-LINK prompts you for all MS-LINK commands. Your answers 
to these prompts are the commands for MS-LINK. 

The output file from MS-LINK (a Run file) is not bound to 
specific memory addresses and, therefore, can be loaded and 
executed at any convenient address by the operating system. 

MS-LINK uses a dictionary-indexed library search· method, 
which substantially reduces link time for sessions involving 
library searches. 

MS-LINK is able to link files totaling 1 megabyte. 

NOTE 

This manual describes some of 
the technical information 
about MS-LINK. It is 
recommended that this manual 
be read in conjunction with 
Chapter 9, "The Linker Program 
(MS-LINK) , " in the MS-DOS 
User's Guide. 



INTRODUCTION Page 1-2 

1.1 OVERVIEW OF MS-LINK OPERATION 

MS-LINK performs the following steps to combine object 
modules and produce a Run file: 

1. Reads segments in object modules 

2. Assigns addresses to segments 

3. Assigns public symbol addresses 

4. Reads data in segments 

5. Reads all relocation references in object modules 

6. Resolves references and 
information 

7. Outputs a Run file 
relocation information 

determines 

(executable 

relocation 

image) and 

As it combines modules, MS-LINK can search multiple library 
files for definitions of any external references left 
unresolved. 

MS-LINK also produces a List file that shows external 
references resolved and any error messages. 

MS-LINK uses available memory as much as possible. When 
available memory is exhausted, MS-LINK then creates a disk 
file (VM.TMP) to use as temporary memory. 



INTRODUCTION Page 1-3 

The following figure illustrates the MS-LINK operation. 

object object object 
module module module 

I I 1 
Microsoft 

Linker Utility 

I 
Executable Image 

Relocation Information 

Figure 1. MS-LINK Operation 

The executable image contains the concatenated object 
modules that make the Run file. The relocation information 
is a list of long addresses that must change when the 
executable image is relocated in memory. Refer to Section 
1.7.4, "Long References," for an explanation of long 
addresses. 



INTRODUCTION Page 1-4 

1.2 DEFINITIONS 

The following terms describe the functioning of MS-LINK. An 
understanding of the concepts that define the.se terms will 
provide a basic understanding of the way MS-LINK works. 
Refer to the MS-DOS user's Guide for more information on 
these definitions. ~~-

1. Segment 
A segment is a contlguous area of memory up to 
64K bytes in length. A segment may be located 
anywhere in 8086 memory. The contents of a 
segment are addressed by a canonical frame 
address and offset within that frame. Refer to 
Section 1.5, "Segment Addresses," for further 
discussion of canonical frames. 

2. Group 
A group is a collection of segments that fit 
within 64K bytes of memory. The segments are 
named to the group by the assembler, by the 
compiler, or by you. You give the group name 
in the assembly language program. For the 
high-level languages (BASIC, FORTRAN, COBOL, 
Pascal), the naming is carr.ied out by the 
compiler. 

The group is used for addressing segments in 
memory. Each group is addres~ed by a common 
canonical frame. This frame is the lowest 
canonical frame of the segments that belong to 
the group. It is a usual practice in assembler 
and higher languages for the canonical frame 
address to be contained in a segment register. 
MS-LINK checks to see that the object modules 
of a group meet the 64K-byte constraint. 

3. Class 
~~A- class is a collection of segments. The 

naming of segments to a class controls the 
order and relative placement of segments in 
memory. You give the class name in the 
assembly language program. For the high-level 
languages (BASIC, FORTRAN, COBOL, Pascal), the 
naming is carried out by the compiler. The 
segments are named .to a class at compile time 
or assembly time. 

The segments of a class are loaded into memory 
contiguously. The segments are ordered w~~hin 
a class in the order the Linker encounters the 
segments in the object files. One class 
precedes another in memory only if a segment 



INTRODUCTION Page 1-5 

for the first class precedes all segments for 
the second class in the input to MS-LINK. 
Classes may be loaded across 64K-byte 
boundaries. Groups may span classes. 

4. Alignment 
Alignment refers 
These can be 
boundaries. 

to certain segment boundaries. 
byte, word, or paragraph 

Byte Alignment: A segment can begin on any 
byte boundary. 

Word Alignment: The beginning address of a 
segment must occur on an even address. · 

Paragraph Alignment: 
of a segment must 
(16-byte) boundary. 

5. Combine ~ 

The beginning address 
occur on a segment 

A combine type is an attribute of a segment; 
it tells.the Linker how to combine segments of 
a like name or it relays other information 
about the properties of a segment. Combine 
types are: stack, public, private, and common. 
The way MS-LINK arranges these combine types is 
discuss~d in the next section. 



CBAPrER 2 

MS-LINK TECHNICAL INFORMATION 

2.1 HOW MS-LINK COMBINES AND ARRANGES SEGMENTS 

MS-LINK works with four combine types, which are declared in 
the source module for the assembler or compiler: private, 
public, stack, and common. The memory combine type 
available in Microsoft's Macro Assembler is processed the 
same as public combine type. MS-LINK does not automatically 
place memory combine type as the highest segments (as 
defined in the Intel standard). 

MS-LINK arranges these combine types as follows: 

Private 

ra: 
Public and Stack 

EI 

Private segments are loaded separately 
and remain separate. They may be 
physically (but not logically) con­
tiguous even if the segments have the 
same name. Each private segment has 
its own canonical frame. 

Public and stack segments of the 
same name and class name are loaded 
contiguously. Offset is from the 
beginning of the first segment loaded 
through the last segment loaded. 
There is only one canonical frame for 
all public segments of the same name 
and class name. Stack and memory com­
bine types are treated the same as 
public. However, the Stack Pointer 
is set to the last address of the 
first stack segment. 



MS-LINK TECHNICAL INFORMATION Page 2-2 

Common 

0 El G 
Common segments of the same name and 
class name are loaded overlapping one 
another. There is only one canonical 
frame for all common segments of the 
same name. The length of the common 
area is the length of the longest 
segment. 

Placing segments in a group in the assembler provides offset 
addressing of items from a single canonical frame for all 
segmen'ts in that group. 

DS:DGROUP--->XXXXOH •••••••••• O 

Any number of ·=§ 
other segments 8 
may intervene ------- FOO 
between segments c 
of a group. Thus, 
the offset of FOO 
may be greater than 
the size of segments 
in the group combined, 
but no larger than 64K. 

-- relative offset 

An operand of 
DGROUP:FOO in assembly 
language returns the 
off set of FOO from the 
beginning of the first 
segment (segment A 
here). 

Segments are partitioned by declared class names. The 
Linker · loads all the segments belonging to the first class 
name encountered, then loads all the segments of the next 
class name encountered, and so on until all classes have 
been loaded. · 

If your program contains: 

A SEGMENT 'FOO' 
B SEGMENT 'BAZ' 
c SEGMENT I BAZ I 

D SEGMENT I zoo I 
E SEGMENT 'FOO' 

They will be loaded as: 

'FOO' 
A 
E 

'BAZ' 
B 
c 

'ZOO' 
D 



MS-LINK TECHNICAL INFORMATION Page 2-3 

If you are writing 
control the order 
module and listing 
Modules: prompt. 
classes in the order 

assembly language programs, you can 
of classes in memory by writing a dummy 
it first after the MS-LINK Object 

The dummy module declares segments into 
you want the classes loaded. 

Example: 

A 
A 
B 
B 
c 
c 
D 
D 
E 
E 

WARNING 

Do not use this method with 
BASIC, COBOL, FORTRAN, or 
Pascal programs. Allow the 
compiler and the Linker to 
perform their tasks in the 
normal way. 

SEGMENT 'CODE' 
ENDS 
SEGMENT 'CONST' 
ENDS 
SEGMENT 'DATA' 
ENDS 
SEGMENT STACK 'STACK' 
ENDS 
SEGMENT 'MEMORY' 
ENDS 

Make sure you declare all classes to be used in your program 
in this module. If you do not, you lose absolute control 
over the ordering of classes. 

Also, if you want memory combine type to be loaded as the 
last segments of your program, you can use this method. 
Simply add MEMORY between SEGMENT and 'MEMORY' in the E 
segment line above. Note, however, that these segments are 
loaded last only because you imposed this control on them, 
not because of any inherent capability in the Linker or 
assembler operations. 



MS-LINK TECHNICAL INFORMATION Page 2-4 

2. 2 SEGMENT ADDRESSES 

The 808~ must be able to address all segments in memory. 
Any 20-bi t number can be addressed. The 8086 repr.esents 
these numbers as two 16-bit numbersi for example, HEX F:l2. 
The F represents a canonical frame address and the 12 is the 
offset. The canonical frame address is the largest frame 
address or segment address that can contain the segment. An· 
offset is the segment's location, offset from the beginning 
of the canonical frame. 

The Linker recognizes a segment by its canonical frame 
address and its offset within the frame. 

To convert the segmented address F:l2 to a 20-bit number, 
shift the frame address left 4 bits, and add the offset. 
Using the above example: 

F:l2 

FO 
+ 12 

102 (20-bit address) 

2. 3 ' HOW MS-LINK ASSIGNS ADDRESSES. 

To assign addresses to segments, MS-LINK: 

1. Orders each segment by segment and class name. 

2. On the basis of the alignment and size of each 
segment .(assuming they are contiguous), the Linker 
assigns a frame address and an offset to each 
segment. This information is used for resolving 
relocatable references. The addresses start at 
0:0. 



MS-LINK TECHNICAL INFORMATION Page 2-5 

2.4 RELOCATION FIXUPS 

MS-LINK performs relocation fixups (i.e., resolves) on four 
types of references in object modules: 

Short 

Near Self-Relative 

Near Segment-Relative 

Long 

These references and the Linker's fixups are described in 
the next sections. 

2.4.1 Short References 

Short references are all self-relative. The implication is 
that the frame address of the target and source frames are 
the same. MS-LINK will generate the fixup error message 

Fixup offset exceeds field width 

under the following conditions: 

1. The target and 
different. 

source frame addresses are 

2. The target is more than 128 bytes before or after 
the source frame address. 

The resulting value of the short reference must fit into one 
signed byte. 

2.4.2 Near Self-Relative References 

When near self-relative 
address of the target 
MS-LINK will generate the 
following conditions: 

1. The target and 
different. 

are used, the frame 
frames are the same. 

message under the 

references 
and source 

fixup error 

source frame addresses are 



MS-LINK TECHNICAL INFORMATION Page 2-6 

2. The target is more than 32K before or after the 
source frame address. 

The resulting value of the near self-relative reference must 
fit into one signed word (16 bits). 

2.4.3 Near Segment-Relative References 

Given the target's canonical frame, another frame is 
specified (via an ASSUME directive or the : operator in 
assembly language; or via a high-level language 
convention). The target must be addressable through the 
canonical frame specified. MS-LINK will generate the fixup 
error message under the following conditions: 

1. The offset of the target within the specified frame 
is greater than 64K or less than zero. 

2. The beginning of the canonical frame of the target 
is not addressable by the specified frame. 

The resulting value of a near segment-relative reference 
must be an unsigned 16-bit quantity. 

2.4.4 Long References 

Long references have a target and another frame (specified 
by an ASSUME or by a high-level language). The target must 
be addressable through the canonical frame specified. 
MS-LINK will generate the fixup error message under the 
following conditions: 

1. The offset of the target within the specified frame 
is greater than 64K or less than zero. 

2. The beginning of the canonical frame of the target 
is not addressable by the specified frame. 

The resulting value of a long reference must be a frame 
address and an offset. 



MS-LINK TECHNICAL INFORMATION Page 2~7 

2.5 SAMPLE MS-LINK SESSION 

The following example illustrates the type of information 
that is displayed during an MS-LINK session. 

In response to the MS-DOS prompt (>), the system responds 
with the following messages and prompts. Answers to the 
prompts are underlined. Note that pathnames are supported 
under MS-DOS 2.0. Therefore, your answers to MS-LINK 
prompts can be full pathnames instead of filenames. 

Notes: 

Microsoft Object Linker V.2.00 
(C) Copyright 1982 by Microsoft Inc. 

Object Modules [.OBJ]: IO SYSINIT 
Run File [IO.EXE]: ~ 
List File [NUL.MAP]: IO /MAP 
Libraries [.LIB]: L 

1. By specifying /MAP, you can get both a sorted 
alphabetic listing and a sorted address listing of 
public symbols. 

2. By responding PRN to the List File: prompt, you 
can redirect your output to the printer. 

3. By specifying the /LINE switch, MS-LINK gives you a 
listing of all line numbers for all modules. (Note 
that the /LINE switch can generate a large volume 
of output.) 

4. By pressing <RETURN> in response to the Libraries: 
prompt, an automatic library search is performed. 

Once MS-LINK locates all libraries, the linker map displays 
a lis.t of segments in the order of their appearance within 
the load module. The list might look like this: 

Start 
OOOOOH 
009FOH 

Stop 
009ECH 
Oll66H 

Length 
09EDH 
0777H 

Name 
CODE 
SYSINITSEG 

The information in the Start and Stop columns shows the 
20-bit hex address o~ch segment relative to location 
zero. Location zero is the beginning of the load module. 



MS-LINK TECHNICAL INFORMATION Page 2-8 

Because the /MAP switch was used, MS-LINK displays the 
public symbols by name and value. For example: 

ADDRESS 
009F:0012 
009F:0005 
009F: 0011 
009F:OOOB 
009F: 0013 
009F:0009 
009F:OOOF 
009F:OOOO 

ADDRESS 
009F:OOOO 
009F:0005 
009F:0009 
009F:000B 
009F:OOOF 
009F: OOll 
009F:0012 
009F: 0013 

PUBLICS BY NAME 
BUFFERS 
CURRENT DOS LOCATION 
DEFAULT-DRIVE 
DEVICE LIST 
FILES 
FINAL DOS LOCATION 
MEMORY SIZE 
SYS IN IT 

PUBLICS BY VALUE 
SYS IN IT 
CURRENT DOS LOCATION 
FINAL DOS LOCATION 
DEVICE LIST 
MEMORY-SIZE 
DEFAULT DRIVE 
BUFFERS 
FILES 

The addresses of the public symbols are in the frame:offset 
format, showing the location relative to zero as the 
beginning of the load module. In some cases, an entry may 
look like this: 

780:A2 

This entry appears to be the address of a load module that 
is almost one megabyte in size. Actually, the area being 
referenced is relative to a segment base :that is pointing to 
a segment below the relative zero beginning of the load 
module. This condition ~reduces a pointer that has 
effectively gone negative. 

When MS-LINK has completed processing, the following message 
is displayed: 

Program entry point at 0009F:OOOO 



MS-LINK TECHNICAL INFORMATION Page 2-9 

2.6 ERROR MESSAGES 

All messages, except for the warning messages, cause the 
MS-LINK session to end. After you locate and correct a 
problem, you must rerun MS-LINK. 

Messages appear in the List file and are displayed on the 
screen. If you direct the List file to CON, the error 
messages will not be displayed on the screen. 

MS-LINK error messages are described in Chapter 9 of the 
MS-DOS User's Guide. 



Alignment 

Canonical frame address 
Class 
Class names • 
Combine type • 

Error messages • 
Executable image 

Fixup error 

Group 

INDEX 

1-5 

2-4 
1-4 
2-2 

• • 1-5 

2-9 
1-2 to 1-3 

2-5 

1-4 

How MS-LINK combines and arranges segments 2-1 

Library files 
List file 
Long addresses • 
Long references 

1-2 
1-2 
1-3 
2-6 

Near segment-relative references 2-6 
Near self-relative references 2-5 

Offset • • • • • • 
Offset addressing 
Overviews 

MS-LINK operation 

Pathnames 
Public symbols 

Relocation fixups 
long •••••••• 
near segment-relative 
near self-relative 
short 

Run file • • • 

Sample MS-LINK session 
Segment 
Segment addresses 
Short references 

VM.TMP ••••• 

2-4 
2-2 

• • • 1-2 

2-7 
2-8 

2-5 
2-5 

• 2- 5 
2-5 
2-5 
1-1 to 1-3 

2-7 
1-4 
2-4 
2-5 

1-2 

Page Ind!x-1 



ADDENDUM to the Microsoft MS-DOS 
Macro Assembler Manual 

MS-LINK 

NOTE 

References in the Macro 
Assembler Manual to the Ms=DOS 
User's Gu~efer to this 
addendum-.~~You may want to 
place this addendum before the 
MS-LINK section in this 
manual. 



Page 2 

1.0 DEFINITIONS 

Some of the terms used in the MS-LINK section of this manual 
are explained below to help you understand how MS-LINK 
works. Generally, if you are linking object modules 
compiled from BASIC, Pascal, or a high-level language, you 
will not need to know these terms. If you are writing and 
compiling programs in assembly language, however, you will 
need tro understand MS-LINK and the definitions described 
below. 

In MS-DOS, memory can be divided into segments, classes, and 
groups. Figure 1 illustrates these concepts. 

Memory 

Segment Segment 
4 5 

Segment 6 Segment 7 Segment 8 Segment 9 Segment 10 

Segment 
11 

Segment 17 Segment 18 

Segment Segment Segment 
13 Segment 14 15 16 

Segment 19 
Segment 

20 
Segment 

21 
Segment 

22 

shaded area a group (64K bytes addressable) 

Figure 1. How Memory Is Divided 



Example: 

Segment 1 
Segment 2 
Segment 12 

Note that segments 
but may or may 
Segments 1, 2, and 
the lowest address 
memory). 

Segment Name 

PROG.l 
PROG.2 
PROG.3 

Segment Class 
Name 

CODE 
CODE 
DATA 

Page 3 

1, 2, and 12 have different segment names 
not have the same segment class name. 
12 form a group, with a group address of 
of segment 1 (i.e., the lowest address in 

Each segment has a segment name and a class name. MS-LINK 
loads all segments into memory by class name, from the first 
segment encountered to the last. All segments assigned to 
the same class are loaded into memory contiguously. 

During processing, MS-LINK references segments by their 
addresses in memory (where they are located). MS-LINK does 
this by finding groups of segments. 

A group is a collection of segments that fit within a 64K 
byte area of memory. The segments do not need to be 
contiguous to form a group (see Figure 1). The address of 
any group is the lowest address of the segments in that 
group. At link time, MS-LINK analyzes the groups, then 
references the segments by the address in memory of that 
group. A program m~y consist of one or more groups. 

If you are writing in assembly language, you may assign the 
group and class names in your program. In high-level 
languages {BASIC, COBOL, FORTRAN, Pascal)' the naming is 
done automatically by the compiler. 



Page 4 

2.0 FILES THAT MS-LINK USES 

MS-LINK performs the following functions: 

Works with one or more input files 

Produces two output files 

May create a temporary disk file 

May be directed to search up to eight library files 

For each type of file, you can give a three-part file 
specification. The format of MS-LINK file specifications is 
the same as that of a disk file: 

[d:J<filename>[<.ext>] 

where: d: is the drive designation. Permissible drive 
designations for MS-LINK are A: through O: . The 
colon is always required as part of the drive 
designation. 

filename is any legal filename of one to eight 
characters . 

. ext is a one- to three-character extension to the 
filename. The period is always required as part of 
the extension. 

2.1 Input File Extensions 

If no filename extensions are given in the input (object) 
file specifications, MS-LINK will recognize the following 
extensions by default: 

.OBJ Object 

.LIB Library 

2.2 Output File Extensions 

MS-LINK appends the following default extensions to the 
output (run and list) files: 

.EXE Run (may not be overridden) 

.MAP List (may be overridden) 



Page 5 

2.3 VM.TMP (Temporary) File 

MS-LINK uses available memory for the link session. If the 
files to be linked create an output file that exceeds 
available memory, MS-LINK will create a temporary file, name 
it VM.TMP, and put it on the disk in the default drive. If 
MS-LINK creates VM.TMP, it will display the message: 

VM.TMP has been created. 
Do not change diskette in drive, <d:> 

Once this message has been displayed, you must not remove 
the disk from the default drive until the link session ends. 
If the disk is removed, the operation of MS-LINK will be 
unpredictable, and MS-LINK might display the error message: 

Unexpected end of file on VM.TMP 

The contents of VM.TMP are written to the file named 
following the Run File: prompt. VM.TMP is a working file 
only and is deleted at the end of the linking session. 

WARNING 

Do not use VM.TMP as a 
filename for any file. If you 
have a file named VM.Ti'·\P on 
the default drive and MS-LINK 
needs to create a VM.TMP file, 
MS-LINK will delete the VM.TMP 
already on disk and create a 
new VM.TMP. Thus, the 
contents of the previous 
VM.TMP file will be lost. 



3.0 HOW TO START MS-LINK 

MS-LINK requires two types of input: a command 
MS-LINK and responses to command prompts. In 
seven switches control MS-LINK features. Usually, 
type all the commands to MS-LINK on the terminal 
As an option, answers to the command prompts 
switches may be contained in a response file. 
characters can be used to assist you while giving 
to MS-LINK. 

Page 6 

to start 
addition, 
you will 
keyboard. 

and any 
Command 

commands 

MS-LINK can be started in any of three ways. The first 
method is to type the commands in response to individual 
prompts. In the second method, you type all commands and 
switches on the line used to start MS-LINK. To start 
MS-LINK by the third method, you must create a response file 
that contains all the necessary commands, and then tell 
MS-LINK where that file is when you start MS-LINK. 

Summary of Methods to Start MS-LINK 

=================================================== 
Method 1 LINK 

Method 2 LINK <filenames>[/switches) 

Method 3 LINK @<filespec> 

==================================================== 



Page 7 

3.1 Method 1: Prompts 

To start MS-LINK with Method 1, type: 

LINK 

MS-LINK will be loaded into memory. MS-LINK will then 
display four text prompts that appear one at a time. You 
answer the prompts to command MS-LINK to perform specific 
tasks. 

At the end of each line, you may type one or more 
preceded by the switch character, a forward slash 

switches, 
(/). 

The command prompts are summarized below. 

PROMPT 

Object Modules [.OBJ]: 

Run File [.EXE]: 

List File [NUL.MAPl: 

Libraries [.LIB]: 

RESPONSES 

List .OBJ files to be 
linked. They must be 
separated by blank spaces 
or plus signs (+). If a 
plus sign is the last 
character typed, the 
prompt will reappear. 
There is no default; a 
response is required. 

Give filename for 
executable object code. 
The default is 
first-object-filename.EXE. 
(You cannot change the 
output extension.) 

Give filename for listing. 
The default is NUL.MAP. 

List filenames to be 
searched, separated by 
blank spaces or plus signs 
(+). If a plus sign is 
the last character typed, 
the prompt will reappear. 
The default is to search 
for default iibraries in 
the object modules. 
(Extensions will be 
changed to .LIB.) 



Page 8 

3.2 Method 2: Command Line 

To start MS-LINK using Method 2, type all commands on one 
line. The entries following LINK are responses to the 
command prompts. The entry fields for the different prompts 
must be separated by commas. Use the following syntax: 

LINK <object-list>,<runfile>,<listfile>,<lib-list>[/switch] 

where: object-list is a list of object 
separated by plus signs. 

modules, 

runfile is the name of the file that receives 
the executable output. 

listfile is the name of the file that receives 
the listing. 

lib-list is a list of library modules to be 
searched. 

/switch refers to optional switches, which may 
be placed following any of the response entries 
(just before any of the commas or after the 
<lib-list>, as shown). 

To select the default for a field, simply type a second 
comma with no spaces between the two commas. 

Example: 

LINK 
FUN+TEXT+TABLE+CARE/P/M,,FUNLIST,COBLIB.LIB 

This command causes MS-LINK to be loaded; then the. object 
modules FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and CARE.OBJ are 
loaded. MS-LINK then pauses (as a result of using the /P 
switch). MS-LINK links the object modules when you press 
any key, and produces a global symbol map (the /M switch). 
MS-LINK then defaults to the FUN.EXE run file; creates a 
list file named FUNLIST.MAP; and searches the library file 
COBLIB.LIB. 



Page 9 

3.3 Method 3: Response File 

To start MS-LINK with Method 3, type: 

LINK @<f ilespec> 

where: filespec is the name of a response file. A response 
file contains answers to the MS-LINK prompts {shown 
in Method 1) and may also contain any of the 
switches. When naming a response file, use of the 
filename extension is optional. Method 3 permits 
the command that starts MS-LINK to be entered from 
the keyboard or within a batch file, without 
requiring you to make any further responses. 

To use this option, you must create a response file 
containing several lines of text, each of which is the 
response to an MS-LINK prompt. The responses must be in the 
same order as the MS-LINK prompts discussed in Method 1. If 
desired, a long response to the Object Modules: or 
Libraries: prompt may be typed on several lines by using a 
plus sign {+) to continue the same response onto the next 
line. 

Switches and command characters can be used in the response 
file the same way as they are used for responses typed on 
the terminal keyboard. 

When the MS-LINK session begins, each prompt will be 
displayed in order with the responses from the response 
file. If the response file does not contain answers for all 
the prompts {in the form of filenames, the semicolon command 
character, or carriage returns), MS-LINK will display the 
prompt which does not have a response, then wait for you to 
type a legal response. When a legal response has been 
typed, MS-LINK continues the link session. 



Example: 

FUN TEXT TABLE CARE 
/PAUSE/MAP 
FUNLIST 
COBLIB.LIB 

Page 10 

This response file tells MS-LINK to load the four object 
modules named FUN, TEXT, TABLE, and CARE. MS-LINK pauses to 
permit you to swap disks before producing a public symbol 
map (see discussion under /PAUSE in the "Switches" section 
before using this feature). When you press any key, the 
output files will be named FUN.EXE and FUNLIST.MAP. MS-LINK 
will then search the library file COBLIB.LIB, and will use 
default settings for the switches. 



Page 11 

4.0 COMMAND CHARACTERS 

• MS-LINK recognizes three command characters. 

Plus sign Use the plus sign (+) to separate 
entries and to extend the current line 
in response to the Object Modules: and 
Libraries: prompts. (A blank space 
may be used to separate object 
modules.) To type a large number of 
responses (each may be very long), type 
a plus sign/<RETURN> at the end of the 
line to extend it. If the plus 
sign/<RETURN> is the last entry 
following these two prompts, MS-LINK 
will prompt you for more module names. 
When the Object Modules: or Libraries: 
prompt appears again, continue to type 
responses. When all the modules to be 
linked and libraries to be searched 
have been listed, be sure the response 
line ends with a module name and a 
<RETURN> and not a plus sign/<RETURN>. 

Example: 

Object Modules [.OBJ]: FUN TEXT TABLE 
CARE+< RETURN> 
Object Modules [.OBJ]: 
FOO+FLIPFLOP+JUNQUE+<RETURN> 
Object Modules [.OBJ]: CORSAIR<RETURN> 



Semicolon 

Page 12 

To select default responses to the 
remaining prompts, use a single semicolon 
(;) followed immediately by a carriage 
return at any time after the first prompt 
(Run File:). This feature saves time and 
overrides the need to press a series of 
<RETURN> keys. 

NOTE 

Once the semicolon has been entered 
(by pressing the <RETURN> key) , you 
can no longer respond to any of the 
prompts for that link session. 
Therefore, do not use the semicolon 
to skip some prompts. To skip 
prompts, use the <RETURN> key. 

Example: 

Object Modules [.OBJ]: FUN TEXT TABLE 
CARE<RETURN> 
Run Module [FUN.EXE]: ;<RETURN> 

No other prompts will appear, 
will use the default values 
FUN.MAP for the list file). 

and MS-LINK 
(in9luding 

<CONTROL-C> Use the <CONTROL-C> key to abort the link 
session at any time. If you type an 
erroneous response, such as the wrong 
filename or an incorrectly spelled 
filename, you must press <CONTROL-C> to 
exit MS-LINK, then you must restart 
MS-LINK. If the error has been typed but 
you have not pressed the <RETURN> key, you 
may delete the erroneous characters with 
the backspace key, but for that line only. 



Page 13 

5.0 MS-LINK SWITCHES 

The seven MS-LINK switches control various MS-LINK 
functions. Switches must be typed at the end of a prompt 
response, regardless of which method is used to start 
MS-LINK. Switches may be grouped at the end of any 
response, or may be scattered at the end of several. If 
more than one switch is typed at the end of a responsea each 
swit~h must be preceded by a forward slash (/). 

All switches may be abbreviated. 
that an abbreviation must be 
letter through the last typed; 
are allowed. For example: 

The· only 
sequential 

no gaps or 

Illegal 

/D 
/DS 
/DSA 
/DSALLOCA 

/DSALLOCATE 

/DSL 
/DAL 
/DLC 
/DSALLOCT 

restriction is 
from the first 
transpositions 

Using the /DSALLOCATE switch tells MS-LINK to 
load all data at the high end of the Data 
Segment. Otherwise, MS-LINK loads all data at 
the low end of the Data Segment. At runtime, 
the DS pointer is set to the lowest possible 
address to allow the entire DS segment to be 
used. Use of the /DSALLOCATE switch in 
combination with the default load low (that 
is, the /HIGH switch is not used) permits the 
user application to dynamically allocate any 
available memory below the area specifically 
allocated within DGroup, yet to remain 
addressable by the same DS pointer. This 
dynamic allocation is needed for Pascal and 
FORTRAN programs. 

NOTE 

Your application program may 
dynamically allocate up to 64K bytes 
(or the actual amount of memory 
available) less the amount allocated 
within DGroup. 



/HIGH 

Page 14 

Use of t 11e /HIGH switch causes MS-LINK to 
place the run file as high as possible in 
memory. Otherwise, MS-LINK places the run 
file as low as possible. 

IMPORTANT 

Do not use the /HIGH switch with 
Pascal or FORTRAN programs. 

/LINENUMBERS 

/MAP 

The /LINENUMBERS switch tells MS-LINK to 
include in the list file the line numbers and 
addresses of the source statements in the 
input modules. Otherwise, line numbers are 
not included in the list file. 

NOTE 

Some compilers produce object modules 
that do not contain line number 
information. In these cases, of 
course, MS-LINK cannot include line 
numbers. 

/MAP directs MS-LINK to list all public 
(global) symbols defined in the input modules. 
If /MAP is not given, MS-LINK will list only 
errors (including undefined globalg"). 

The symbols are listed alphabetically at the 
end of the list file. For each symbol, 
MS-LINK lists its value and its segment:offset 
location in the run file. 



/PAUSE 

Page 15 

The /PAUSE switch causes MS-LINK to pause in .the 
link session when the switch is encountered. 
Normally, MS-LINK performs the linking session from 
beginning to end without stopping. This switch 
allows the user to swap disks before MS-LINK 
outputs the run (.EXE) file. 

When MS-LINK encounters the /PAUSE switch, it 
displays the message: 

About to generate .EXE file 
Change disks <hit any key> 

MS-LINK resumes processing when you press any key. 

CAUTION 

Do not remove the disk which 
will receive the list file, or 
the disk used for the VM.TMP 
file, if one has been created. 

/STACK:<number> 
number represents any positive numeric value (in 
hexadecimal radix) up to 65536 bytes. If a value 
from 1 to 511 is typed, MS-LINK will use 512. If 
the /STACK switch is not used for a link session, 
MS-LINK will calculate the necessary stack size 
automatically. 

All compilers and assemblers should provide 
information in the object modules that allow the 
linker to compute the required stack size. 

At least one object (input) module must contain a 
stack allocation statement. If not, MS-LINK will 
display the following error message: 

WARNING: NO STACK STATEMENT 



/NO 

Page 16 

/NO is short for NODEFAULTLIBRARYSEARCH. This 
switch tells MS-LINK to not search the default 
(product) libraries in the object modules. For 
example, if you are linking object modules in 
Pascal, specifying the /NO switch tells MS-LINK to 
not automatically search the library named 
PASCAL.LIB to resolve external references. 



Page 17 

6.0 ERROR MESSAGES 

All errors cause the link session to abort. After the cause 
has been found and corrected, MS-LINK must be rerun. The 
following error messages are displayed by MS-LINK: 

ATTEMPT TO ACCESS DATA OUTSIDE OF SEGMENT BOUNDS, POSSIBLY 
BAD OBJECT MODULE 

There is probably a bad object file. 

BAD NUMERIC PARAMETER 
Numeric value is not in digits. 

CANNOT OPEN TEMPORARY FILE 
MS-LINK is unable to create the file VM.TMP because 
the disk directory is full. Insert a new disk. Do 
not remove the disk that will receive the List.MAP 
file. 

ERROR: DUP RECORD TOO COMPLEX 
The DUP record in the assembly language module is 
too complex. Simplify the DUP record in your 
assembly language program. 

ERROR: FIXUP OFFSET EXCEEDS FIELD WIDTH 
An assembly language instruction refers to an 
address with a short instruction instead of a long 
instruction. Edit your assembly language source 
and reassemble. 

INPUT FILE READ ERROR 
There is probably a bad object file. 

INVALID OBJECT MODULE 
An object module(s) 
incomplete (as when 
middle). 

SYMBOL DEFINED MORE THAN ONCE 

is incorrectly formed or 
assembly is stopped in the 

MS-LINK found two or more modules that define a 
single symbol name. 

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS CAPACITY OF 
LINKER 

The total size may not exceed 384K bytes, and the 
number of segments may not exceed 255. 



Page 18 

REQUESTED STACK SIZE EXCEEDS 64K 
Specify a size greater than or equal to 64K bytes 
with the /STACK switch. 

SEGMENT SIZE EXCEEDS 64K 
64K bytes is the addressing system limit. 

SYMBOL TABLE CAPACITY EXCEEDED 
Very many and/or very long names were typed, 
exceeding the limit of approximately 25K bytes. 

TOO MANY EXTERNAL SYMBOLS IN ONE MODULE 
The limit is 256 external symbols per module. 

TOO MANY GROUPS 
The limit is 10 groups. 

TOO MANY LIBRARIES SPECIFIED 
The limit is 8 libraries. 

TOO MANY PUBLIC SYMBOLS 
The limit is 1024 public symbols. 

TOO MANY SEGMENTS OR CLASSES 
The limit is 256 (segments and classes taken 
together). 

UNRESOLVED EXTERNALS: <list> 
The external symbols listed have no defining module 
among the modules or library files specified. 

VM READ ERROR 
This is a disk error; it is not caused by MS-LINK. 

WARNING: NO STACK SEGMENT 
None of the object modules 
statement allocating stack 
/STACK switch was specified. 

specified contains a 
space, although the 

WARNING: SEGMENT OF ABSOLUTE OR UNKNOWN TYPE 
There is a bad object module, or an attempt has 
been made to link modules that MS-LINK cannot 
handle (e.g., an absolute object module). 



Page 19 

WRITE ERROR IN TMP FILE 
No more disk space remains to expand the VM.TMP 
file. 

WRITE ERROR ON RUN FILE 
Usually, there is not enough disk space for the run 
file. 



MICRE 3 50FTM 
10700 Northup Way, Bellevue, WA 98004 

Software 
Problem Report 

Name ________________________ _ 

Street ________________________ ~ 

City ___________ State ______ Zip ____ _ 

Phone _______________ Date _______ _ 

Instructions 

Use this form to report software bugs, documentation errors, or suggested 
enhancements. Mail the form to Microsoft. 

Category 

__ Software Problem __ Documentation Problem , 

__ Software Enhancement 
(Document # ) 

__ Other 

Software Description 

Microsoft Product ___________________ _ 

Rev. ____ Registration#_. ____________ _ 

Operating System ___________________ _ 

Rev. _____ Supplier ______________ _ 

Other Software Used __________________ _ 

Rev. _____ Supplier _______________ _ 

Hardware Description 

Manufacturer _______ CPU _____ Memory ___ KB 

Disk Size ___ " Density: Sides: 

Single__ Single __ 

Double__ Double 

Perioherals ______________________ _ 



Problem Description 

Describe the problem. (Also describe h·'JW to reproduce it, and your · 
diagnosis and suggested correction.) Attach a listing if available. 


