
Microsoft® DEBUG 
Utility 

for 8086 and 8088 Microprocessors 

Microsoft Corporation 



System Requirements 

The Microsoft DEBUG Utility requires: 

A memory minimum that is program-dependent: 
13K bytes for code 
Run space is program-dependent 

Disk drive(s): 
1 disk drive if and only if output is sent to the 
same physical disk from which the input was taken. 
Microsoft DEBUG does not allow time to swap disks 
during operation on a one-drive configuration. 
Therefore, two disk drives is a more practical 
configuration. 



Contents 

Chapter 1 

1.1 
1.2 
1. 2 .1 
1.2. 2 

Chapter 2 
2.1 
2.2 
2.3 

Index 

INTRODUCTION 

Overview of DEBUG 1-1 
How to Start DEBUG 1-1 

Method 1: DEBUG 1-2 
Method 2: Command Line 1-2 

COMMANDS 
Command Information 2-1 
Parameters 2-3 
Error Messages 2-36 



CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW OF DEBUG 

The Microsoft DEBUG Utility (DEBUG) is a debugging program 
that provides a controlled testing environment for binary 
and executable object files. Note that EDLIN is used to 
alter source files; DEBUG is EDLIN's counterpart for binary 
files. DEBUG eliminates the need to reassemble a program to 
see if a problem has been fixed by a minor change. It 
allows you to alter the contents of a file or the contents 
of a CPU register, and then to immediately reexecute a 
program to check on the validity of the changes. 

All DEBUG commands may be aborted at any time by pr~ssing 

<CONTROL-C>. <CONTROL-S> suspends the display, so that you 
can read it before the output sctolls away. Entering any 
key other than <CONTROL-C> or <CONTROL-S> restarts the 
display. All of these commands are consistent with the 
control character functions available at the MS-DOS command 
level. 

1.2 HOW TO START DEBUG 

DEBUG may 
type all 
hyphen) . 
line used 

be started two ways. By the first method, you 
commands in response to the DEBUG prompt (a 

By the second method, you type all commands on the 
to start DEBUG. 

Summary of Methods to Start DEBUG 

Method 1 DEBUG 

Method 2 DEBUG [<filespec> [<arglist~]] 



INTRODUCTION Page l-2 

1.2.1 Method 1: DEBUG 

To start DEBUG using method 1, type: 

DEBUG 

DEBUG responds with the hyphen (-) prompt, signaling that it 
is ready to accept your commands. Since no filename has 
been specified, current memory, disk sectors, or disk files 
can be worked on by using other commands. 

Warnings 

1. When DEBUG (Version 2.0) is started, it sets up a 
program header at offset 0 in the program work 
area. On previous versions of DEBUG, you could 
overwrite this header. You can still overwrite the 
default header if no <filespec> is given to DEBUG. 
If you are debugging a .COM or .EXE file, however, 
do not tamper with the program header below address 
SCH, or DEBUG will terminate. 

2. Do not restart a program after the "Program 
terminated normally" message is displayed. You 
must reload the" program with the N and L commands 
for it to run properly. 

1.2.2 Method 2: Command Line 

To start DEBUG using a command line, type: 

DEBUG [<filespec> [<arglist>J 

For example, if a <fil~spec> is specified, then the 
following is a typical command to start DEBUG: 

DEBUG FILE.EXE 

DEBUG then loads FILE.EXE into memory starting at 100 
hexadecimal in the lowest available segment. The BX:CX 
registers are loaded with the number of bytes placed into 
memory. 

An <arglist> may be specified if <filespec> is present. The 
<arglist> is a list of filename parameters and switches that 
are to be passed to the program" <filespec>. Thus, when 
<filespec> is loaded into memory, it is loaded as if it had 
been started with the command: 



INTRODUCTION Page 1-3 

<filespec> <ar9list> 

Here, <filespec> is the file to be debugged, and the 
<arglist> is the rest of the command line that is used when 
<filespec> is invoked and loaded into memory. 





CHAPTER 2 

COMMANDS 

2.1 COMMAND INFORMATION 

Each DEBUG 
one or 
characters 
the MS-DOS 

command consists of a single letter 
more parameters. Additionally, 
and the special editing functions 
User's Guide, apply inside DEBUG. 

followed by 
the control 

described in 

If a syntax error occurs in a DEBUG command, DEBUG reprints 
the command line and indicates the error with an up-arrow 
(A) and the word "error." 

For examole: 

dcs:lOO cs:llO 
error 

Any combination of uppercase and lowercase letters may be 
used in commands and parameters. 

The DEBUG commands are summarized in Table 
described in detail, with examples, 
description of command parameters. 

2.1 and 
foll.owing 

are 
the 



COMMANDS Page 2-2 

Table 2.1 DEBUG Commands 

DEBUG Command 

A[<address>] 

C<range> <address> 

D [<range>] 

E<address> [<list>] 

F<range> <list> 

G[=<address> [<address> ••• ]] 

H<value> <value> 

!<value> 

L[<address> [<drive><record><record>JJ 

M<range> <address> 

N<filename>[<filename>J 

O<value> <byte> 

Q 

R[<register-name>J 

S<range> <list> 

T [=<address> J [ <value> J 

U [<range>] 

W[<address> [<drive><record><record>]] 

I Function 

Assemble 

Compare 

Dump 

Enter 

Fill 

Go 

Hex 

Input 

Load 

Move 

Name 

Output 

Quit 

Register 

Search 

Trace 

Unasse111ble 

Write 



COMMANDS Page 2-3 

2.2 PARAMETERS 

All DEBUG commands accept parameters, except the Quit 
command. Parameters may be separated by delimiters (spaces 
or commas), but a delimiter is required only between two 
consecutive hexadecimal values. Thus, the following 
commands are equivalent: 

des: 100 110 
d cs: 100 110 

.d,cs:l00,110 

PARAMETER 

<drive> 

<byte> 

<record> 

<value> 

<address> 

DEFINITION 

A one-digit hexadecimal value to indicate which 
drive a file will be loaded from or written to. 
The valid values are 0-3. These ~alues 
designate the drives as follows: O=A:, l=B:, 
2=C:, 3=D:. 

A two-digit hexadecimal value to be placed in or 
read from an address or register. 

A 1- to 3-digit hexadecimal value used to 
indicate the logical record number on the disk 
and the number of disk sectors to be written or 
loaded. Logical records correspond ~o sectors. 
However, their numbering differs since they 
represent the entire disk space. 

A hexadecimal value up to four digits used to 
specify a port number or the number of times a 
command should repeat its functions. 

A two-part designation consisting of either an 
alphabetic segment register designation or a 
four-digit segment address plus an offset value. 
The segment designation or segment address may 
be omitted, in which case the default segment is 
used. DS is the default segment for all 
commands except G, L, T, U, and W, for which the 
default segment is CS. All numeric values are 
hexadecimal. 

For example: 

CS:OlOO 
04BA:0100 

The colon 
designation 
an offset. 

is required between a segment 
(whether numeric or alphabetic) and 



COMMANDS 

<range> 

<list> 

<string> 

Page 2-4 

Two <address>es: e.g., <address> <address>; or 
one <address>, an L, and a <value>: e.g., 
<address> L <value> where <value> is the number 
of lines the command should operate on, and L80 
is assumed. The last form cannot be used if 
another hex value follows the <range>, since the 
hex value would be interpreted as the second 
<address> of the <range>. 

Examples: 

CS: 100 llO 
CS:lOO L 10 
CS:lOO 

The following is illegal: 

CS: 100 CS: llO 
A error 

The limit for <range> is 10000 hex. To specify 
a <value> of 10000 hex within four digits, type 
0000 (or 0). 

A series of <byte> values or of <string>s. 
<list> must be the last parameter on the command 
line. 

Example: 

fcs:lOO 42 45 52 54 41 

Any number of characters enclosed in quote 
matks. Quote marks may be either single (') or 
double("). If the delimiter quote marks must 
appear within a <string>, the quote marks must 
be doubled. For example, the following strings 
are legal: 

'This is a "string" .is okay.' 
'This is a ''string'' is okay.' 

However, this string is illegal: 

'This is a 'string' is not.' 

Similarly, these strings are legal: 

"This is a 'string' is. okay." 
"This is a ""string"" is okay." 



COMMANDS Page 2-5 

Howev~r, this string is illegal: 

"This is a "string• is not." 

Note that the double quote marks are not 
necessary in the following strings: 

"This is a ''string'' is not necessary." 
'This is a ••string•• is not necessary.' 

The ASCII values of the characters in the string 
are used as a <list> of byte values. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

(A) ssemble 

Assemble 

Assembles 8086/8087/8088 mnemonics 
into memory. 

A[<address>J 

Page 2-6 

directly 

COMMENTS 
If a syntax error is found, DEBUG responds with 

and redisplays the current assembly address. 

All numeric values are hexadecimal and must be 
entered as 1-4 characters. Prefix mnemonics 
must be specified in front of the opcode to 
which they re~er. They may also be entered on 
a separate line. 

The segment override mnemonics are CS:, DS:, 
ES:, and SS:. The mnemonic for the far return 
is RETF. String manipulation mnemonics must 
explicitly state the string size. For example, 
use MOVSW to move word strings and MOVSB to 
move byte strings. 

The assembler will automatically assemble 
short, near or far jumps and calls, depending 
on byte displacement to the destination 
address. These may be overridden with the NEAR 
or FAR prefix. For example: 

0100:0500 JMP 
0100:0502 JMP 
0 1 O"O : 5 0 5 JMP 

502 
NEAR 505 
FAR 50A 

a 2-byt~ short jump 
a 3-byte near jump 
a 5-byte far jump 

The NEAR prefix may be abbreviated to NE, but 
the FAR prefix cannot be abbreviated. 

DEBUG cannot tell whether some operands refer 
to a word memory location or to a byte memory 
location. In this case, the data type must be 
explicitly stated with the prefix "WORD PTR" or 
"BYTE PTR". Acceptable abbreviations are "WO" 
and "BY". For example: 

NEG BYTE PTR [128] 
DEC WO [SI] 



DEBUG (A) ssemble Page 2-7 

DEBUG also cannot tell whether an operand 
refers to a memory location or to an immediate 
operand. DEBUG uses the common convention that 
o~erands enclosed in square brackets refer to 
memory. 

MOV 
MOV 

For exampl,e: 

AX,21 
AX, [21] 

Load AX with 21H 
Load AX with the 
contents 
of memory location 21H 

Two popular pseudo-instructions are available 
with Assemble. The DB opcode will assemble 
byte values directly into memory. The ow 
opcode will assemble word values directly into 
memory. For example: 

DB 1, 2, 3, 4, "THIS IS AN EXAMPLE" 
DB 'THIS IS A QUOTE: "' 
DB "THIS IS A QUOTE: '" 

OW 1000,2000,3000,"BACH" 

Assemble supports 
indirect commands. 

all forms 
For example: 

ADD 
POP 
PUSH 

BX, 34 [BP+2]. [SI-1] 
[BP+DI] 
[SI] 

of register 

All opcode synonyms are also supported. For 
example: 

LOOPZ 100 
LOO PE 100 

JA 200 
JNBE 200 

For 8087 opcodes, the WAIT or FWAIT must be 
explicitly specified. For example: 

!'WAIT FADD ST,ST(3) 

LO 'l'BYTE PTR [BX] 

This line will assemble 
an FWAIT prefix 
This line will not 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(C)ompare Page 2-8 

Compare 

Compares the portion of memory specified by 
<range> to a portion of the same size beginning 
at <address>. 

C<range> <address> 

If the two areas of memory are identical, there 
is no display and DEBUG returns with the MS-DOS 
prompt. If there ·are differences, they are 
displayed in this format; 

<addressl> <bytel> <byte2> <address2> 

The following commands have the same effect: 

ClOO,lFF 300 

or 

ClOOLlOO 300 

Each command compares the block of memory from 
100 to lFFH .with .the block of memory from 300 
to 3FFH. 



DEBUG 

. NAME 

PURPOSE 

SYNTAX 

(D) 1...:.1p Page 2-9 

Dump 

Displays the contents of the specified region 
of memory. 

D'(<range>] 

COMMENTS 

If a range of addresses is specified, the 
contents of the range are displayed. If the D 
command is typed without parameters, 128 bytes 
are displayed at the first address (DS:lOO) 
after the address displayed by the previous 
Dump command. 

The dump is displayed in two portions: a 
hexadecimal dump (each byte is shown in 
hexadecimal value) and an ASCII dump (the bytes 
are shown in ASCII characters). Nonprinting 
characters are denoted by a period (.) in the 
ASCII portion of the display. Each display 
line shows 16 bytes with a hyphen between the 
eighth and ninth bytes. At times, displays are 
split in this manual to fit them on the page. 
Each displayed line begins on a 16-byte 
boundary. 

If you type the command: 

des: 100 llO 

DEBUG displays the dump in the 
format: 

following 

04BA:0100 42 45 52 54 41 ••• 4E 44 TOM SAWYER 

If you type the following command: 

D 

the display is formatted as described above. 
Each line of the display begins with an 
address, incremented by 16 from the address on 
the previous line. Each subsequent D (typed 
without parameters) displays the. bytes 
immediately following those last displayed. 



DEBUG (D)ump Page 2-10 

If you type the command: 

DCS:lOO L 20 

the display is formatted as described above, 
but 20H bytes are displayed. 

If then you type the command: 

DCS: 100 115 

the display is formatted as described above, 
but all the bytes in the range of lines from 
lOOH to 115H in the CS segment are displayed. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

(E) nter Page 2-11 

Enter 

Enters byte values into memory at the specified 
<address>. 

E<address>[ <list>] 

If the optional <list> 
replacement of 
automatically. (If an 
values are changed.) 

of values is typed, the 
byte values occurs 
error occurs, no byte 

If the <address> is typed without the optional 
<list>, DEBUG displays the address and its 
contents, then repeats the address on the next 
line and waits for your input. At this point, 
the Enter command waits for you to perform one 
of the following actions·: 

1. Replace a byte value with a value you type. 
Simply type the value after the current 
value. If the value typed in is not a 
legal hexadecimal value or if more than two 
digits are typed, the illegal or extra 
character is not echoed. 

2. Press the <SPACE> bar to advance to the 
next byte. To change the value, simply 
type the new value as described in (1.) 
above. If you space beyond an 8-byte 
boundary, DEBUG starts a new display line 
with the address displayed at the 
beginning. 

3. Type a hyphen (-) to return to the 
preceding byte. If you decide to change a 
byte behind the current position, typing 
the hyphen returns the current position to 
the previous byte. When the hyphen is 
typed, a new line is started with the 
address and its byte value displayed. 

4. Press the <RETURN> key to terminate the 
Enter command. The <RETURN> key may be 
pressed at any byte position. 



DEBUG 

EXAMPLE 

(E) nter Page 2-12 

Assume that the following command is typed: 

ECS:lOO 

DEBUG displays: 

04BA:0100 EB. 

To change this value to 41, type 41 as shown: 

04BA:0100 EB.41 

To step thiough the subsequent b~tes, press the 
<SPACE> bar to see: 

04BA:0100 EB.41 10. 00. BC. 

To change BC to 42: 

04BA:0100 EB.41 10. 00. BC.42 

Now, realizing that 10 should be 6F, type the 
hyphen as many times as needed to return to 
byte 0101 (value 10) , then replace 10 with 6F: 

04BA:0100 
04BA:0102 
04BA:0101 

EB.41 
00.-
10.GF 

10. 00. BC. 42-

Pressing the <RETURN> key ends the Enter 
command and returns to the DEBUG command level. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(F) ill Page 

Fill 

Fills the addresses in the <range> with the 
values in the <list>. 

F<range> <llSt> 

If the <range> contains more bytes than the 
number of values in the <list>, the <list> will 
be used repeatedly until all bytes in the 
<range> are filled. If the <list> contains 
more values than the number of bytes in the 
<range>, the extra values in the <list> will be 
ignored. If any of the memory in the <range> 
is not valid (bad or nonexistent), the error 
will occur in all succeeding locations. 

Assume that the following command is typed: 

F04BA:l00 L 100 42 45 52 54 41 

DEBUG fills memory locations 04BA:l00 through 
04BA:lFF with the bytes specified. The five 
values are repeated until all lOOH bytes are 
filled. 

2-13 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

(G)o Page 2-14 

Go 

Executes the program currently in memory. 

G[=<address>[ <address> ... ]] 

If only the Go command 
executes as if the 

is typed, the program 
program had run outside 

DEBUG. 4 

If =<address> is set, execution begins at the 
address specified. The equal sign (=) is 
required, so that DEBUG can distinguish the 
start =<address> from the breakp6int 
<address>es. 

With the other optional addresses set, 
execution stops at the first <address> 
encountered, regardless of that address' 
position in the list of addresses to halt 
execution or program branching. When program 
execution reaches a breakpoint, the registers, 
flags, and decoded instruction are displayed 
for the last instruction executed. (The result 
is the same as if you had typed the Register 
command for the breakpoint address.) 

Up to ten breakpoints may be set. Breakpoints 
may be set only at addresses conta~ning the 
first byte of an 8086 opcode. If more than ten 
breakpoints are set, DEBUG retu.~s the BP Error 
message. 

The user stack pointer must ,be valid and have 6 
bytes available for this command. The G 
command uses an IRET instruction to cause a 
jump to the program under test. The user stack 
pointer is set, and the user flags, Code 
Segment register, and Instruction Pointer are 
pushed on the user stack. (Thus, if the user 
stack is not valid or is too small, the 
operating system may crash.) An interrupt code 
(OCCH) is placed at the specified breakpoint 
address(es). 

When an instruction with the bre.akpoint code is 
encountered, all breakpoint addresses are 
restored to their original instructions. If 



DEBUG 

EXAMPLE 

(G)o Page 2-15 

execution is not halted at one of the 
breakpoints, the interrupt codes are not 
replaced with the original instructions. 

Assume that the following command is typed: 

GCS:7550 

The program currently in memory executes up to 
the address 7550 in the CS segment. DEBUG then 
displays registers and flags, after which the 
Go command is terminated. 

After a breakpoint has been ·encountered, if you 
type the Go command again, then the program 
executes just as if you had typed the filename 
at the MS-DOS command level. The only 
difference is that program execution begins at 
the instruction after the breakpoint rather 
than at the usual start address. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(H)ex Page 2-16 

Hex 

Performs hexadecimal arithmetic on the two 
parameters specified. 

H<value> <value> 

Fi~st, DEBUG adds the two parameters, then 
subtracts the second parameter from the first. 
The results of the arithmetic are displayed on 
one line; first the sum, then the difference. 

Assume that the following command is typed: 

Hl9F lOA 

DEBUG performs the calculations 
displays the result: 

02A9 0095 

and then 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

(I) nput Page 2-17 

Input 

Inputs and displays one byte from the port 
specified by <value>. 

.!<value> 

COMMENTS 

EXAMPLE 

A 16-bit port address is allowed. 

Assume that you type the following command: 

I2F8 

Assume also that the byte at the port is 42H. 
DEBUG inputs the byte and displays the value: 

42 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(L)oad Page 2-18 

Load 

Lpads a file into memory. 

L[<address> [<drive> <record> <record>]] 

Set BX:CX to the number of bytes read. The 
file must have been named either when DEBUG was 
started or with the N command. Both the DEBUG 
invocation and the N command format a filename 
properly in the normal format of a file control 
block at CS:SC. 

If the L command is typed without any 
parameters, DEBUG loads the file into memory 
beginning at address CS:lOO and sets BX:CX to 
the number of bytes loaded. If the L command 
is typed with an address parameter, loading 
begins at the memory <address> specified. If L 
is typed with all parameters, absolute disk 
sectors are.loaded, not a file. The <record>s 
are taken from the <drive> specified (the drive 
designation is numeric here--O=A:, l=B:, 2=C:, 
etc.)1 DEBUG begins loading with the first 
<record> specified, and continues until the 
number . of sectors specified in the second 
<record> have been loaded. 

Assume that the following commands are typed: 

A> DEBUG 
-NFILE.COM 

Now, to load FILE.COM, type: 

L 

DEBUG loads the file and then displays the 
DEBUG prompt. Assume that you want to load 
only portions of a file or certain records from 
a disk. To do this, type: 

L04BA:l00 2 OF 6D 

DEBUG then loads 109 (6D hex) records beginning 
with logical record number 15 into memory 



DEBUG (L)oad Page 2-19 

beginning at address 04BA:0100. When the 
records have been loaded, DEBUG simply returns 
the - prompt .. 

If the file has a .EXE extension, it is 
relocated to the load address specified in the 
header of the .EXE file: the <address> 
parameter is always igflored for .EXE files. 
The header itself is stripped off the .EXE file 
before it is loaded into memory. Thus the size 
of an .EXE file on disk will differ from its 
size in memory. 

If the file named by the Name command or 
spe~ified when DEBUG is started is a .HEX file, 
then typing the L command with no parameters 
causes DEBUG to load the file beginning at the 
address specified in the .HEX file. If the L 
command includes the option <address>, DEBUG 
adds the <address> specified in the L command 
to the address found in the .HEX file to 
determine the start address for loading the 
file. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

(M)ove Page 2-20 

Move 

Moves the block of memory specified by <range> 
to the location beginning at the <address> 
specified. 

M<range> <address> 

COMMENTS 

EXAMPLE 

Overlapping moves (i.e., moves where part of 
the block overlaps some of the current 
addresses) are always performed without loss of 
data. Addresses that could be overwritten are 
moved first. The sequence for moves from 
higher addresses to lower addresses is to move 
the data beginning at the block's lowest 
address and then to work towards the highest. 
The sequence for moves from lower addresses to 
higher addresses is to move the data beginning 
at the block's highest address and to work 
towards the lowest. 

Note that if the addresses in the block being 
moved will not have new data written to them, 
the data there before the move will remain. 
The M command copies the data from one area 
into another, in the sequence described, and 
writes over the new addresses. This is why the 
sequence of the move is important. 

Assume that you type: 

MCS:lOO 110 CS:500 

DEBUG first moves address CS:llO to address 
CS:510, then CS:lOF to CS:50F, and so on until 
CS:lOO is moved to CS:500. You should type the 
D command, using the <address> typed for the M 
command, to review the results of the move. 



DEBUG (N) ame Page 2-21 

NAME 
Name 

PURPOSE 
Sets filenames. 

SYNTAX 
N<filename>[<filename> ... ] 

COMMENTS 
The Name command performs two functions. 
First, Name is used to assign a filename for a 
later Load or Write command. Thus, if you 
start DEBUG without naming any file to be 
debugged, then the N<filename> command must be 
typed before a file can be loaded. Second, 
Name is used to assign filename parameters to 
the file being debugged. In this case, Name 
accepts a list of parameters that are used by 
the file .being debugged. 

These two functions overlap. Consider the 
following set of DEBUG commands: 

-NFILEl.EXE 
-L 
-G 

Because of the effects of the Name command, 
Name will perform the following steps: 

1. (N)ame assigns the filename FILEl.EXE to 
the filename to be used in any later Load 
or Write commands. 

2. (N)ame also assigns the filename FILEl.EXE 
to the first filename parameter used by any 
program that is later debugged. 

3. (L)oad loads FILEl.EXE into memory. 

4. (G) o causes FILEl .EXE to be executed with 
FILEl.EXE as the single filename parameter 
(that is, FILEl.EXE is executed as if 
FILEl.EXE had been typed at the command 
level) . 



DEBUG 

EXAMPLE 

(N)ame Page 2-22 

A more useful chain of commands might look like 
this: 

-NFILEl.EXE 
-L 
-NFILE2.DAT FILE3.DAT 
-G 

Here, Name sets FILEl.EXE as the filename for 
the subsequent Load command. The Load command 
loads FILEl.EXE into memory, and then the Name 
command is used again, this time to specify the 
parameters to be used by FILEl.EXE. Finally, 
when the Go command is executed, FILEl.EXE is 
executed as if FILEl FILE2.DAT FILE3.DAT had 
been typed at the MS-DOS command level. Note 
that if a Write command were executed at this 
point, then FILEl.EXE--the file being 
debugged--would be saved with the name 
FILE2.DAT! To avoid such undesired results, 
you should always execute a Name command before 
either a Load or a Write. 

There are four regions of memory that can be 
affected by the Name command: 

CS:SC 
CS:6C 
CS:80 
CS:81 

FCB for file 1 
FCB for file 2 
Count of characters 
All characters typed 

A File Control Block (FCB) for the first 
filename parameter given to the Name comma'.1d is 
set up at CS:SC. If a second fil~name 
parameter is typed, then an FCB is set up for 
it beginning at CS:6C. The number of 
characters typed in the Name command (exclusive 
of the first character, "N") is given at 
location CS:80. The actual stream of 
characters given by the Name command (again, 
excl0usive of the letter "N") begins at CS:81. 
Note that this stream of characters may contain 
switches and delimiters that would be legal in 
any command typed at the MS-DOS command level. 

A typical use of the Name command is: 

DEBUG FROG.COM 
-NPARAMl PARAM2/C 
-G 



DEBUG (N)ame Page 2-23 

In this case, the Go command executes the file 
in memory as if the following command line had 
been typed: 

PROG PARAMl PARAM2/C 

Testing and debugging therefore reflect a 
normal runtime environment for PROG.COM. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(0) utput Page 2-24 

Output 

Sends the <byte> specified to the output port 
specified by <value>. 

O<value> <byte> 

A 16-bit port address is allowed. 

Type: 

02F8 4F 

DEBUG outputs the byte value 4F to output port 
2F8. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(Q) uit Page 2-25 

Quit 

Terminates the DEBUG utility. 

Q 

The Q command takes no parameters and exits 
DEBUG without saving the file currently being 
operated on. You are returned to the MS-DOS 
command level. 

To end the debugging session, type: 

Q<RETURN> 

DEBUG has been terminated, and control returns 
to the MS-DOS command level. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

(R)egister rage 2-26 

Register 

Displays the contents of one or more CPU 
registers. 

R[<register-name>) 

If no <register-name> is typed, the R command 
dumps the register save area and displays the 
contents of all registers and flags. 

If a register name'is typed, the 16-bit value 
of that register is displayed in hexadecimal, 
and then a colon appears as a prompt. You then 
either type a <value> to change the register, 
or simply press the <RETURN> key if no change 
is wanted. 

The only valid <register-name>s are: 

AX 
BX 
ex 
DX 
SP 

BP 
SI 
DI 
DS 
ES 

SS 
cs 
IP 
PC 
F 

(IP and PC both refer 
to the Instruction 
Pointer.) 

Any other entry for <register-name> results in 
a BR Error message. 

If F is entered as the <register-name>, DEBUG 
displays each flag w·ith a two-character 
alphabetic code. To alter any flag, type the 
opposite two-letter code. The flags are either 
set or cleared. 



DEBUG (R)egister Page 2-27 

The flags are listed below with their codes for 
SET and CLEAR: 

FLAG NAME 

Overflow 

Direction 

Interrupt 

Sign 

Zero 

Auxiliary 
Carry 

Parity 

Carry 

SET 

ov 

DN Decrement 

EI Enabled 

NG Negative 

ZR 

AC 

PE Even 

CY 

CLEAR 

NV 

UP Increment 

DI Disabled 

PL Plus 

NZ 

NA 

PO Odd 

NC 

Whenever you type the command RF, the flags are 
displayed in the order shown above in a row at 
the beginning of a line. At the end of the 
list of flags; DEBUG displays a hyphen (-). 
You may enter new flag values as alphabetic 
pairs. The new flag values can be entered in 
any order. You do not have to leave spaces 
between the flag entries. To exit the R 
command, press the <RETURN> key. Flags for 
which new values were not entered remain 
unchanged. 

If more than one value is entered for a flag, 
DEBUG returns a DF Error message. If you enter 
a flag code other than those shown above, DEBUG 
returns a BF Error message. In both cases, the 
flags up to the error in the list are changed; 
flags at and after the error are not. 

At startup, the segment registers are set to 
the bottom of free memory, the Instruction 
Pointer is set to OlOOH, all flags are cleared, 
and the remaining registers are set to zero. 



DEBUG 

EXAMPLE 

(R) egister 

Type: 

R 

DEBUG displays all registers, 
decoded instruction for the 
If the location is CS:llA, 
will look similar to this: 

Page 2-28 

flags, and the 
current location. 

then the display 

AX=OEOO BX=OOFF CX=0007 DX=OlFF SP=039D BP=OOOO 
SI=005C DI=OOOO DS=04BA ES=04BA SS=04BA CS=04BA 
IP=OllA NV UP DI NG NZ AC PE NC 
04BA:011A CD21 INT 21 

If you type: 

RF 

DEBUG will display the flags: 

NV UP DI NG NZ AC PE NC -

Now, type any valid flag designation, in any 
order, with or without spaces. 

For example: 

NV UP DI NG NZ AC PE NC - PLEICY<RETURN> 

DEBUG responds only with the DEBUG prompt. To 
see the changes, type either the R or RF 
command: 

RF 
NV UP EI PL NZ AC PE CY -

Press <RETURN> to leave the flags .this way, or 
to specify different flag values. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(S)earch Page 2-29 

Search 

Searches the <range> specified for the <list> 
of bytes specified. 

S<range> <list> 

The <list> may contain one or more bytes, each 
separated by a space or comma. If the <list> 
contains more than one byte, only the first 
address of the byte string is returned. If the 
<list> contains only one byte, all addresses of 
the byte in the <range> are displayed. 

If you type: 

SCS: 100 110 41 

DEBUG will display a response similar to this: 

04BA:0104 
04BA:010D 
-type: 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(T) race Page 2-30 

Trace 

Executes one instruction and displays the 
contents of all registers and flags, and the 
decoded instruction. 

T [=<address>) [ <value>) 

If the optional =<address> is typed, tracing 
occurs at the =<address> specified. The 
optional <value> causes DEBUG to execute and 
trace the number of steps specified by <value>. 

The T command uses the hardware trace mode of 
the 8086 or 8088 microprocessor. Consequently, 
you may also trace instructions stored in ROM 
(Read Only Memory). 

Type: 

T 

DEBUG returns a display of the registers, 
flags, and decoded instruction for that one 
instruction. Assume that the current position 
is 04BA:OllA; DEBUG might return the display: 

AX=OEOO BX=OOFF CX=0007 
SI=OOSC DI=OOOO DS=04BA 
IP=OllA NV UP DI NG NZ 
04BA:011A CD21 

If you type 

T=OllA 10 

f'X=OlFF SP=039D 
ES=04BA SS=04BA 
P.,.C PE NC 

INT 21 

BP=OOOO 
CS=04BA 



DEBUG (T) race Page 2-31 

DEBUG executes sixteen (10 hex) instructions 
beginning at OllA in the current segment, and 
then displays all registers and flags for each 
instruction as · it is executed. The display 
scrolls away until the last instruction is 
executed. Then the display stops, and you can 
see the register and flag values for the last 
few instructions performed. Remember that 
<CONTROL-S> suspends the display at any point, 
so that you can study the registers and flags 
for any instruction. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

EXAMPLE 

(U) nassemble Page 2-32 

Unassemble 

Disassembles bytes and displays 
statements that correspond to 
addresses and byte values. 

the source 
them, with 

U[<range>] 

The display of disassembled code looks like a 
listing for an assembled file. If you type the 
U command without parameters, 20 hexadecimal 
bytes are disassembled at the first address 
after that displayed by the previous Unassemble 
command. If you type the U command with the 
<range> parameter, then DEBUG disassembles all 
bytes in the range. If the <range> is given as 
an <address> only, then 20H bytes are 
disassembled instead of 80H. 

Type: 

U04BA:l00 LlO 

DEBUG disassembles 16 bytes 
address 04BA:0100: 

beginning 

04BA:0100 206472 
04BA:0103 69 
04BA:0104 7665 
04BA:0106 207370 
04BA:0109 65 
04BA:010A 63 
04BA:010B 69 
04BA:010C 66 
04BA:010D 69 
04BA:010E 63 
04BA:010F 61 

If you type 

U04ba:Ol00 0108 

AND [SI+72] ,AH 
DB 69 
JBE 016B 
AND [BP+DI+70] ,DH 
DB 65 
DB 63 
DB 69 
DB 66 
DB 69 
DB 63 
DB 61 

at 



DEBUG (U) nassemble Page_2-33 

The display will show: 

04BA:0100 
04BA:0103 
04BA:0104 
04BA:0106 

206472 
69 
7665 
207370 

AND [SI+72] ,AH 
DB 69 
JBE 016B 
AND [BP+DI+70] ,DH 

If the bytes in some addresses are altered, the 
disassembler alters the instruction statements. 
The U command can be typed for the changed 
locations, the new instructions viewed, and the 
disassembled code used to edit the source file. 



DEBUG 

NAME 

PURPOSE 

SYNTAX 

COMMENTS 

(W)rite Page 2-34 

Write 

Writes the file being debugged to a disk file. 

W[<address>[ <drive> <record> <record>]] 

If you type W with no parameters, BX:CX must 
already be set to the number of bytes to be 
written; the file is written beginning from 
CS:lOO. If the W command is typed with just an 
address, then the file is written beginning at 
that address. If a G or T command has been 
used, BX:CX must be reset before using the 
Write command without parameters. Note that if 
a file is loaded and modified, the name, 
length, and starting address are all set 
correctly to save the modified file (as long as 
the length has not changed). 

The file must have been named either with the 
DEBUG invocation command or with the N command 
(refer to the Name command earlier in this 
manual). Both the DEBUG invocation and the N 
command format a filename properly in the 
normal format of a file control block at CS:SC. 

If the W command is typed with parameters, the 
write begins from the memory address specified; 
the file is written to the <drive> specified 
(the drive designation is numeric here--O=A:, 
l=B:, 2=C:, etc.); DEBUG writes the file 
beginning at the logical record number 
specified by the first <record>; DEBUG 
continues to write the file until the number of 
sectors specified in the second <record> have 
been written. 

WARNING 

Writing to absolute sectors is 
EXTREMELY dangerous because the process 
bypasses the file handler. 



DEBUG 

EXAMPLE 

(W)rite Page 2-35 

Type: 

w 

DEBUG will write the 
display the DEBUG 
shown below. 

w 

WCS:lOO 1 37 2B 

file to disk and then 
prompt. Two examples are 

DEBUG writes out the contents of memory, 
beginning with the address CS:lOO to the disk 
in drive B:. The data written out starts in 
disk logical record number 37H and consists of 
2BH records. When the write is complete, DEBUG 
displays the prompt: 

WCS: 100 1 37 2B 



DEBUG Error Messages Page 2-36 

2.3 ERROR MESSAGES 

During the DEBUG session, you may receive any of the 
following error messages. Each error terminates the DEBUG 
command under which it occurred, but does not terminate 
DEBUG itself. 

ERROR CODE 

BF 

BP 

BR 

DF 

DEFINITION 

Bad flag 
You attempted to alter 
characters typed were 
acceptable pairs of flag 
Register command for 
acceptable flag entries. 

a flag, 
not one 
values. 

the 

but 
of 

See 
list 

the 
the 
the 
of 

Too many breakpoints 
You specified more than ten breakpoints as 
parameters to the G command. Retype the 
Go command with ten or fewer breakpoints. 

Bad register 
You typed the R command with an invalid 
register name. See the Register command 
for the list of valid register names. 

Double flag 
You typed two values for one flag. You 
may specify a flag value only once per RF 
command. 



Page Index-1 

INDEX 

DEBUG Commands 
(A) ssemble 2-6 
(C)ompare 2-8 
(D)ump • 2-9 
(E)nter 2-11 
(Fill) • 2-13 
(G)o • • 2-14 
(H) ex 2-16 
(I)nput 2-17 
(L) oad • 2-18 
(M)ove • 2-19 
(N) ame • 2-21 
(O)utput 2-24 
(Q)uit • 2-25 
(R) egister 2-26 
(S) earch • 2-29 
(T) race 2-30 
(U) nassemble 2-32 
(W)rite 2-34 

DEBUG Errors 
BF - Bad flag 2-36 
BP - Too many breakpoints 2-36 
BR - Bad register 2-36 
DF - Double flag 2-36 

EXE files 2-19 

Flags 2-27 




