
Microsoft®
Macro Assembler
for the MS-DOS@ Operating System

Reference Manual

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de­
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser's personal use.

©Copyright Microsoft Corporation, 1984, 1985

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen­
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, MS-DOS, MS, and XENIX are registered trademarks of Microsoft
Corporation. The High Performance Software is a trademark of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Document Number 410610002-400-R00-1285

Contents

1 Introduction 1

1.1 Overview 3
1.2 About This Manual 3
1.3 Notational Conventions 4

2 Elements of the Assembler g

2.1 Introduction 11
2.2 Character Set 11
2.3 Integers 11
2.4 Real Numbers 13
2.5 Encoded Real Numbers 13
2.6 Packed Decimal Numbers 14
2.7 Character and String Constants 15
2.8 Names 15
2.9 Reserved Nam es 16
2.10 Statements 17
2.11 Comments 18
2.12 CO:MJ\1ENT Directive 19

3 Program Structure 21

3.1 Introduction 23
3.2 Source Files 23
3.3 Instruction-Set Directives 25
3.4 SEGMENT and ENDS Directives 27
3.5 END Directive 35
3.6 GROUP Directive 36
3.7 ASSUME Directive 39
3.8 ORG Directive 40
3.9 EVEN Directive 41
3.10 PROO and ENDP Directives 41

iii

Contents

4 Types and Declarations 45

4.1 Introduction 47
4.2 Label Declarations 47
4.3 Data Declarations 48
4.4 Symbol Declarations 54
4.5 Type Declarations 56
4.6 Structure and Record Declarations 60

5 Operands and Expressions 65

5.1 Introduction 67
5.2 Operands 67
5.3 Operators and Expressions 78
5.4 Expression Evaluation and Precedence 92
5.5 Forward References 93
5.6 Strong Typing for Memory Operands 95

6 Global Declarations 97

6.1 Introduction 99
6.2 PUBLIC Directive 99
6.3 EXTRN Directive 100
6.4 Program Example 101

7 Conditional Directives 103

7.1 Introduction 105
7 .2 Conditional-Assembly Directives 105
7 .3 Conditional Error Directives 110

8 Macro Directives 115

8.1
8.2
8.3

Introduction 117
Macro Directives 117
Macro Operators 128

9 File Control Directives 133

9.1 Introduction 135
9.2 INCLUDE Directive 136

iv

Contents

9.3 .RADIX Directive 137
9.4 %OUT Directive 138
9.5 NAME Directive 138
9.6 TITLE Directive 139
9.7 SUBTTL Directive 140
9.8 PAGE Directive 140
9.9 .LIST and .XLIST Directives 142
9.10 .SFCOND, .LFCOND,

and .TFCOND Directives 142
9.11 .LALL, .XALL, and .SALL Directives 144
9.12 .CREF and .XCREF Directives 145

Appendixes 147

A Instruction Summary 149

A.1 Introduction 151
A.2 8086 Instructions 152
A.3 8087 Instructions 159
A.4 80186 Instruction Mnemonics 163
A.5 80286 Nonprotected Instructions 164
A.6 80286 Protected Instruction Mnemonics 165
A. 7 80287 Instruction Mnemonics 166

B Directive Summary 167

B.l Introduction 169
B.2 MASM Directives 169
B.3 MASM Operators 177

C Segment Names
for High-Level Languages 183

C.1 Introduction 185
C.2 Text Segments 186
C.3 Data Segments - Near 188
C.4 Data Segments - Far 189
C.5 BSS Segments 190
C.6 Constant Segments 191

Index 193

v

Contents

Figures

Figure 3.1

Figure 3.2

vi

LINK Program Loading Order

LINK Segment Loading Order

34

38

Tables

Table 2.1

Table 2.2

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 7.1

Table A.1

Table B.1

Table B.2

Digits Used with Each Radix 12

Reserved Nam es 17

Register Operands 70

Flag Positions 71

Arithmetic Operators 79

Relational Operators 81

Logical Operators 82

. TYPE Operator and Variable Attributes

Operator Precedence 93

Conditional Error Directives 110

Syntax Abbreviations 151

Directives 169

Operator Precedence 177

89

vii

Chapter 1
Introduction

1.1 Overview 3
1.2 About This Manual 3
1.3 Notational Conventions 4

1

Introduction

1.1 Overview

This reference manual describes the syntax and structure of assembly
language for MASM, the Microsoft® Macro Assembler. MASM is an
assembler for the Intel® 8086/80186/80286 family of microprocessors. It
can assemble the instructions of the 8086, 8088, 80186, and 80286
microprocessors, and the 8087 and 80287 floating-point coprocessors. It
has a powerful set of assembly-language directives that gives you complete
control of the segmented architecture of the 8086, 80186, and 80286
microprocessors. MASM instruction syntax allows a wide variety of
operand data types, including integers, strings, packed decimals, floating­
point numbers, structures, and records.

The assembler produces 8086, 8088, 80186, or 80286 relocatable object
modules from assembly-language source files. The relocatable object
modules can be linked, using LINK, the Microsoft 8086 Object Linker, to
create executable programs for the MS-DOS® operating system.

MASM is a macro assembler. It has a full set of macro directives that let
you create and use macros in a source file. The directives instruct MASM
to repeat common blocks of statements, or replace macro names with the
blocks of statements they represent. MASM also has conditional directives
that provide for selective exclusion of portions of a source file from assem­
bly, or inclusion of additional program statements by simply defining a
symbol.

MASM carries out strict syntax checking of all instruction statements,
including strong typing for memory operands, and detects questionable
operand usage that could lead to errors or unwanted results.

MASM produces object modules compatible with object modules created
by many high-level-language compilers. Thus, programs can be constructed
by combining MASM object modules with object modules created by C,
Pascal, FORTRAN, or other language compilers.

1.2 About This Manual

This reference manual supplements the Microsoft Macro Assembler User's
Guide, which explains program operation and the steps required to create
executable programs from source files.

3

Microsoft Macro Assembler Reference Manual

This reference manual does not teach assembly-language programming, nor
does it give detailed descriptions of the 8086, 80186, and 80286 instruction
sets. For further information on these topics, other references are avail­
able. Some of these are listed in the introduction to the Microsoft Macro
Assembler User's Guide.

Chapter 1 concludes with an explanation of notational conventions used
throughout the Microsoft Macro Assembler Reference Manual. Chapter 2
discusses the elements of the assembler, reserved words, characters that can
be used in a program, and how to form numbers, names, statements and
comments compatible with the assembler. Chapter 3 details the program­
structure directives, which allow definition of code and data organization,
and the instruction-set directives used for specifying which instruction set
or sets will be used during assembly. Chapter 4 explains generating data
for programs, declaration of labels, variables and other symbols, and type
definition for data blocks. Chapter 5 deals with combining operators and
operands into expressions for assembly-language statements and directives.
Chapter 6 covers the global-declaration directives that allow transforma­
tion of local symbols into global symbols available to all program modules.
Chapters 7 and 8 discuss the uses of, and relationship between, conditional­
assembly directives and macro directives. Chapter 9 explains the file­
control directives and how to use them to control source files and the files
read and created by MASM during assembly.

Appendix A P-rovides a list of the instruction names and syntax for the
8086/80186/80286 family of processors. For quick reference, the Microsoft
Macro Assembler package also includes a copy of Intel Corporation's
8086/8088/8087/80186/80188 Programmer's Pocket Reference Guide.
Appendix B lists the directives you can use in MASM source files, while
Appendix C gives some guidance on linking MASM object files to object
files from high-level-language compilers.

1.3 Notational Conventions

This manual uses the following notational conventions in defining
assembly-language syntax, and in presenting examples:

Convention

Bold type

4

Meaning

Bold type indicates commands, parameter names,
or symbols that must be typed as shown. In most
cases, upper- and lowercase letters can be freely
intermixed. One exception is text within double

Italics

[]

Introduction

quotation marks (11 text"). Text in quotation
marks is usually case-sensitive.

Examples

[displacement] [DI]
[DI+displacement]
[DI]. displacement
[DI]+ displacement

Note that in the examples above, the brackets must
be typed as shown. The register name DI must
also be typed as shown, though you could use
lowercase letters. The plus sign (+) in the second
and fourth examples, and the period (.) in the third
example must be typed as shown.

Italics indicate a placeholder: a name that you
must replace with the value or file name required
by the program.

Example

/Ipath

In the example above, the slash (/) and the letter I
must be entered as shown (except that the I could
be lowercase). However, path is a placeholder
representing a path name supplied by the user.
You could enter any path name such as B : \ or
\MASM\PROJECTl. When a placeholder is used in
a syntax example at the start of a section, the text
below usually describes the types of values that can
replace the placeholder.

Double brackets indicate that the enclosed item is
optional. Don't confuse double brackets with single
brackets ([]), which must be typed as shown.

Example

BP [number] address [pass count] [11 commands 11
]

In the example, above, you must enter BP as
shown. You must also enter a value for the address
placeholder. Values for the placeholders number,
passcount, and commands can be entered if you
wish, or they can be left blank. If you enter a value
for commands, it must be enclosed in quotation
marks (1111

).

6

Microsoft Macro Assembler Reference Manual

6

"'

Special
typeface for
examples

A series of commas indicates that you can repeat
the preceding item type if you separate each of the
items with commas.

Example

[name] recordname < [initialvalue,,,] >
In the example above, you may provide a name and
you must provide a record name. You may provide
more than one initialvalue as long as you separate
the values with commas. Note that you must type
the angle brackets even if you do not provide any
initial value.

A vertical bar between items indicates that only
one of the separated items can be used. You must
make a choice between the items.

Example

D [address l range]

In the example above, you must enter the letter D.
You may enter either an address or a range (but not
both).

Example text in this manual is shown in a special
typeface so that it will look more like listings on
the screen or listings produced with a printer.

Examples that represent source code follow these
conventions:

• Lowercase for symbols, labels, instructions, and
registers

• Uppercase for reserved words

• Uppercase for hexadecimal digits

• Lowercase for radix indicators

• Upper- and lowercase for comments

These are conventions, not requirements. Your
source code can use any combination of upper- and
lowercase letters, though your code will be clearer
if you choose a convention and use it consistently.

Examples

count

print

DB
mov
PROC

0
ax,bx
near

Introduction

7

Chapter 2

Elements of the Assembler

2.1 Introduction 11
2.2 Character Set 11
2.3 Integers 11
2.4 Real Numbers 13
2.5 Encoded Real Numbers 13
2.6 Packed Decimal Numbers 14
2.7 Character and String Constants 15
2.8 Names 15
2.9 Reserved Names 16
2.10 Statements 17
2.11 Comments 18
2.12 COMMENT Directive 19

9

Elements of the Assembler

2.1 Introduction

All assembly-language programs consist of one or more statements and
comments. A statement or comment is a combination of characters,
numbers, and names. Names and numbers are used to identify values in
instruction statements. Characters are used to form the names or numbers,
or to form character constants.

Section 2.2 lists the characters that can be used in a program and Sections
2.3-2.12 describe how to form numbers, names, statements, and comments.

2.2 Character Set

MA.SM recognizes the following character set:

ABC DEF G HI J KL MNO P QR ST UVWXY Z

abcdefghijklmnopqrstuvwxyz

0123456789

? @ - $:.[]()<>:)

+-/*&%!'-:\=# ",,'"

2.3 Integers

Syntax

digits
digitsB
digitsQ
digitsO
digitsD
digitsH
digitsR

An integer is an integer number: a combination of binary, octal, decimal, or
hexadecimal digits plus an optional radix. The digits are combinations of

11

Microsoft Macro Assembler Reference Manual

one or more digits of the specified radix: B, Q, O, D, or H. The real
number designator R can also be used. If no radix is given, the assembler
uses the current default radix (decimal, unless you have changed it with the
.RADIX directive). The radix specifier can be either upper- or lowercase;
sample code in this manual uses lowercase. Table 2.1 lists the digits that
can be used with each radix.

Table 2.1

Digits Used with Each Radix

Radix Type Digits

B Binary 0 1

Qor 0 Octal 01234567

D Decimal 0123456789

H Hexadecimal 0123456789ABCDEF

R Real Number 0123456789ABCDEF

Hexadecimal numbers must always start with a decimal digit (0 to 9). If
necessary, put a leading 0 at the left of the number to distinguish between
hexadecimal numbers that start with a letter, and symbols. For example,
OABCh is interpreted as a hexadecimal number, but ABCh is interpreted as
a symbol. The hexadecimal digits A through F can be either upper- or
lowercase. Sample code in this manual uses uppercase.

The real number designator (R) can only be used with hexadecimal
numbers consisting of 8, 16, or 20 significant digits (a leading 0 can be
added).

The maximum number of digits in an integer depends on the instruction or
directive in which the integer is used. The default radix can be specified by
using the .RADIX directive (see Section 9.3).

Examples

01011010b
Ollllb

12

132q
170

SAh
OFh

90d
15d

Elements of the Assembler

2.4 Real Numbers

Syntax

[+H digits.digits[E[+:-]digits]

A real number is a number consisting of an integer, a fraction, and an
exponent. The digits can be any combination of decimal digits. Digits
before the decimal point (.) represent the integer. Those following the point
represent the fraction. The digits after the exponent mark (E) represent
the exponent, which is optional. If an exponent is given, a plus (+)or
minus (-) sign may be used to indicate its sign.

Real numbers can be used only with the DD, DQ, and DT directives. The
maximum number of digits in the number and the maximum range of
exponent values depend on the directive. See Sections 4.3.3, 4.3.4, and
4.3.5 in this reference manual.

Examples

25.23
2.523El
2523.0E-2

2.5 Encoded Real Numbers

Syntax

digitsR

An encoded real number is an 8-, 16-, or 20-digit hexadecimal number that
represents a real number in encoded format. An encoded real number has a
sign, a biased exponent, and a mantissa. These values are encoded as bit
fields within the number. The exact size and meaning of each bit field de­
pends on the number of bits in the number. The digits must be hexadeci­
mal digits. The number must begin with a decimal digit (0-9) and must be
followed by the real number designator (R).

13

Microsoft Macro Assembler Reference Manual

Encoded real numbers can be used only with the DD, DQ, and DT direc­
tives. The number of digits for the encoded numbers used with DD, DQ,
and DT must be 8, 16, and 20 digits, respectively. (If a leading 0 is sup­
plied, the number must be 9, 17, or 21 digits.) See Sections 4.3.3, 4.3.4,
and 4.3.5.

Examples

DD
DQ

3F800000r
3FFOOOOOOOOOOOOOr

1.0 for DD
1.0 for DQ

2.6 Packed Decimal Numbers

Syntax

[+l-]digits

A packed decimal number represents a decimal integer to be stored in
packed decimal format. Packed decimal storage has a leading-sign byte
and 9 value bytes. Each value byte contains two decimal digits. The high­
order bit of the sign byte is 0 for positive values, and 1 for negative values.

Packed decimals have the same format as other decimal integers, except
that they can take an optional plus (+)or minus(-) sign and can be
defined only with the DT directive. A packed decimal must not have more
than 18 digits.

Examples

DT
DT

14

1234567890
-1234567890

Encoded as 00000000001234567890h
Encoded as 80000000001234567890h

Elements of the Assembler

2. 7 Character and String Constants

Syntax

'characters'
11 characters 11

A character constant consists of a single ASCII (American Standard Code
for Information Interchange) character. A string constant consists of two
or more ASCII characters. Constants must be enclosed in right single quo­
tation marks or double quotation marks. String constants are case­
sensitive.

Single quotation marks must be encoded twice when used literally within
constants that are also enclosed by single quotation marks. Similarly,
double quotation marks must be encoded twice when used in constants that
are also enclosed within double quotation marks.

Examples

I a I

'ab'
"a"
"This is a message."
'Can' 't find file. '
"Can't find file."
"This ""value"" not found."
'This "value" not found.'

2.8 Names

Syntax

characters

Can't find file.
Can't find file.
This "value" not found.
This "value" not found.

A name is a combination of letters, digits, and special characters used as a
label, variable, or symbol in an assembly-language statement. Names have
the following formatting rules:

16

Microsoft Macro Assembler Reference Manual

• A name must begin with a letter, an underscore(-), a question
mark(?), a dollar sign($), or an at sign(@).

• A name can have any combination of upper- and lowercase letters.
All lowercase letters are converted to uppercase by the assembler,
unless the /ML option is used during assembly, or unless the name
is declared with a PUBLIC or EXTRN directive and the /M:X:
option is used during assembly.

• A name can have any number of characters, but only the first 31
characters are used. All other characters are ignored.

Examples

subrout3
Array
_main

2.9 Reserved Names

A reserved name is any name with a special, predefined meaning to the
assembler. Reserved names include instruction and directive mnemonics,
register names, and operator names. These names can be used only as
defined and must not be redefined.

All upper- and lowercase combinations of these names are treated as the
same name. For example, the names Length and LENGTH are the same
name for the LENGTH operator.

Table 2.2 lists all reserved names except instruction mnemonics. For a
complete list of instruction mnemonics, see Appendix A.

16

Elements of the Assembler

Table 2.2

Reserved N arnes

.186 DI .ERRNZ LENGTH .SALL

.286c DL ES .LFCOND SEG

.286p DQ EVEN .LIST SEGMENT

.287 DS EXITM LOCAL .SF CO ND

.8086 DT EXT RN LOW SHL

.8087 DW FAR LT SHORT
- DWORD GE MACRO SHR
AH DX GROUP MASK SI
AL ELSE GT MOD SIZE
AND END HIGH NAME SP
ASSUME END IF IF NE SS
AX ENDM IFl NEAR STRUC
BH ENDP IF2 NOT SUBTTL
BL ENDS IFB OFFSET TBYTE
BP EQ IFDEF OR .TFCOND
BX EQU IFDIF ORG THIS
BYTE .ERR IFE %OUT TITLE
CH .ERRl IFIDN PAGE TYPE
CL .ERR2 IFNB PROO .TYPE
COMMENT .ERRB IFNDEF PTR WIDTH
.CREF .ERRDEF INCLUDE PUBLIC WORD
cs .ERRDIF IRP PURGE .XALL
ex .ERRE IRPC QWORD .XCREF
DB .ERRIDN LABEL .RADIX .XLIST
DD .ERR NB .LALL RECORD XOR
DH .ERRNDEF LE REPT

2.10 Statements

Syntax

[name] mnemonic [operands] [;comment]

A statement is a combination of an optional name, a mandatory instruction
or directive mnemonic, one or more optional operands, and an optional
comment. A statement represents an action to be taken by the assembler,
such as generating a machine instruction or generating 1 or more bytes of
data.

17

Microsoft Macro Assembler Reference Manual

Statements are formed according to the following rules:

• A statement can begin in any column.

• A statement must not have more than 128 characters and must not
contain an embedded carriage-return/line-feed combination. In
other words, continuing a statement on multiple lines is not
allowed.

• All statements except the last one in the file must be terminated by
a carriage-return/line-feed combination.

Examples

count DB 0
mov ax,bx
ASSUME cs:_text,ds:DGROUP

print PROC near

2.11 Comments

Syntax

; text

A comment is any combination of characters preceded by a semicolon (;)
and terminated by an embedded carriage-return/line-feed combination.
Comments describe the action of a program at the given point, but are
otherwise ignored by the assembler and have no effect on assembly.

Comments can be placed anywhere in a program, even on the same line as a
statement. However, if the comment shares the line with a statement, it
must be to the right of all names, mnemonics and operands. A comment
following a semicolon must not continue past the end of the line on which it
begins; that is, it must not contain any embedded carriage-return/line-feed
combination characters. For very long comments, the COMMENT direc­
tive can be used.

18

Elements of the Assembler

Examples

This comment is alone on a line.
mov ax, bx ; This comment follows a statement.

Comments can contain reserved words like PUBLIC.

2.12 COMMENT Directive

Syntax

COMMENT delimiter
text
delimiter [text]

The COMMENT directive causes the assembler to treat all text between
delimiter and delimiter as a comment. The delimiter character must be the
first nonblank character after the COMMENT keyword. The text is all
remaining characters up to the next occurrence of the delimiter. The text
must not contain the delimiter character.

The COMMENT directive is typically used for multiple-line comments.
Although text can appear anywhere on the same line as the last delimiter,
all text on the same line as the last delimiter is ignored by the assembler.

Examples

comment *
This comment continues until the
next asterisk.

*

The preceding and following examples illustrate how blocks of text can be
designated as comments.

comment +
The assembler ignores the statement
following the last delimiter
+ mov ax, 1

19

Chapter 3
Program Structure

3.1 Introduction 23
3.2 Source Files 23
3.3 Instruction-Set Directives 25
3.4 SEGMENT and ENDS Directives
3.4.1 Align Type 28
3.4.2 Combine Type 28
3.4.3 Class Type 30
3.4.4 Program Example 32
3.4.5 Segment Nesting 35
3.5 END Directive 35
3.6 GROUP Directive 36
3.7 ASSUME Directive 39
3.8 ORG Directive 40
3.9 EVEN Directive 41
3.10 PROC and ENDP Directives 41

27

21

Program Structure

3.1 Introduction

The program-structure directives let you define the organization that a
program's code and data will have when loaded into memory. The
program-structure directives include the following:

Directive Meaning

SEGMENT Segment definition

ENDS Segment end

END Source-file end

GROUP Segment groups

ASSUME Segment registers

ORG Segment origin

EVEN Segment alignment

PROO Procedure definition

ENDP Procedure end

Section 3.2 and Sections 3.4-3.10 describe these directives in detail. Sec­
tion 3.3 describes the instruction-set directives, which let you specify the
instruction set or sets to be used during assembly.

3.2 Source Files

Every assembly-language program is created from one or more "source"
files: text files that contain statements defining the program's data and
instructions. MASM reads source files and assembles the statements to
create object modules. LINK, the Microsoft 8086 Object Linker, can then
be used to prepare these object modules for execution.

Source files must be in standard ASCII format: they must not contain con­
trol codes, and each line must be separated by a carriage-return/line-feed
combination. Statements can be entered in upper- or lowercase. Sample
code in this manual uses uppercase letters for MASM reserved words and
for class types, but this is a convention, not a requirement.

23

Microsoft Macro Assembler Reference Manual

All source files have the same form: zero or more program segments fol­
lowed by an END directive (a source file containing only macros, struc­
tures, or records might have zero segments). The END directive, required
in every source file, signals the end of the source file. The END directive
also provides a way to define the program entry point or starting address
(if any).

The following example illustrates the source-file format. It is a complete
assembly-language program that uses MS-DOS functions (or system calls)
to print the message He 11 o wor 1 d on the screen.

Example

data
string
data

code

start:

code

stack

stack

SEGMENT
DB

; Program Data Segment
"Hello world",13,10,"$"

ENDS

SEGMENT
ASSUME cs:code,ds:data

mov
mov
mov
mov
int
mov
int
ENDS

ax,data
ds,ax
dx,OFFSET string
ah,09h
21h
ah,4Ch
21h

SEGMENT stack
DW 64 DUP (?)
ENDS

END start

Program Code Segment

Program Entry Point
Load data segment location

into DS register
Load string location
Call string display

Call terminate function

Program Stack Segment
Define stack space

; Mark end and define start

The following main features of this source file should be noted:

24

1. The SEGMENT and ENDS statements, which define segments
named data, code, and stack.

2. The variable string in the data segment, which defines the string
to be displayed. The variable data are defined in the data seg­
ment. They include the quoted dollar sign (" $ ") required by the
MS-DOS display-string function, as well as the ASCII codes for a
carriage-return/line-feed combination.

Program Structure

3. The instruction label start in the code segment, which marks the
start of the program instructions.

4. The DW statement in the stack segment, which defines the unini­
tialized data space to be used for the program stack.

5. The ASSUME statement for the data and code segments, which
specifies which segment registers will be associated with the labels,
variables, and symbols defined within the segments. An assume
statement is not needed for the stack segment since the combine
type stack tells MASM that the segment is associated with the
SS register. See Section 3.4.2 for more information on combine
types.

6. The first two code instructions, which load the address of the data
segment into the DS register. These instructions are not necessary
for the code and stack segments because the code-segment address
is always loaded into the CS register and the stack-segment address
is automatically loaded into the SS register when you use the stack
combine type.

7. The last two instructions in the code segment, which use MS-DOS
function 4Ch to return to DOS. While there are other techniques
for returning to DOS, this is the one recommended for most
assembly-language programs.

8. The END directive, which indicates the end of the source file, and
specifies start as the program entry point.

3.3 Instruction-Set Directives

Syntax

.8086

.8087

.186

.286c

.286p

.287

The instruction-set directives enable the instruction sets for the given
microprocessors. When a directive is given, MASM will recognize and
assemble any subsequent instructions belonging to that microprocessor.

26

Microsoft Macro Assembler Reference Manual

The instruction-set directives, if used, must be placed at the beginning of
the program source file to ensure all instructions in the file are assembled
using the same instruction set.

The .8086 directive enables assembly of instructions for the 8086 and 8088
microprocessors. It also disables assembly of the instructions unique to the
80186 and 80286 processors. Similarly, the .8087 directive enables assem­
bly of instructions for the 8087 floating-point coprocessor and disables
assembly of instructions unique to the 80287 coprocessor.

Since MASM assembles 8086 and 8087 instructions by default, the .8086
and .8087 directives are not required if the source files contain 8086 and
8087 instructions only. Using the default instruction sets ensures that your
programs will be usable on all processors in the 8086/80186(80286 family.
However, they will not take advantage of the more powerfu instructions
available on the 80186, 80286, and 80287 processors.

The .186 directive enables assembly of the 8086 instructions plus the addi­
tional instructions for the 80186 microprocessor. This directive should be
used for programs that will be executed only by an 80186 microprocessor.

The .286c directive enables assembly of 8086 instructions and nonpro­
tected 80286 instructions (identical to the 80186 instructions). The .286p
directive enables assembly of the protected instructions of the 80286 in
addition to the 8086 and nonprotected 80286 instructions. The .286c
directive should be used with programs that will be executed only by an
80286 microprocessor, but do not use the protected instructions of the
80286. The .286p directive can be used with programs that will be exe­
cuted only by an 80286 processor using both protected and nonprotected
instructions.

The .287 directive enables assembly of instructions for the 80287 floating­
point coprocessor. This directive should be used with programs that have
fl~ating-point instructions and are intended for execution only by an 80286
microprocessor.

Even though a source file may contain the .8087 or .287 directive, MASM
also requires the /R or /E option in the MASM command line to define
how to assemble floating-point instructions. The /R option directs the
assembler to generate the actual instruction code for the floating-point
instruction. The /E option enables the assembler to generate code that
can be used by a floating-point-emulator routine. See Sections 2.3.12 and
2.3.13 of the Microsoft Macro Assembler User's Guide.

26

Program Structure

3.4 SEG1\1ENT and ENDS Directives

Syntax

name SEGMENT [align] [combine] ['class']
name ENDS

The SEGMENT and ENDS directives mark the beginning and end of a
program segment. A program segment is a collection of instructions and/ or
data whose addresses are all relative to the same segment register.

The name defines the name of the segment. This name can be unique or be
the same name given to other segments in the program. Segments with
identical names are treated as the same segment.

The optional align, combine, and class types give the linker instructions on
how to set up segments. They should be specified in order, but it is not
necessary to enter all types, or any type, for a given segment.

Note

Don't confuse the byte and word align types with the BYTE and
WORD reserved words used to specify data type with operators such
as THIS and PTR. Also, the page align type and the public combine
type should not be confused with the PAGE and PUBLIC directives.
The distinction should be clear from context since the align and com­
bine types are only used on the same line as the SEGMENT directive.
To make the difference even clearer, align and combine types are shown
with lowercase letters in this manual, although you can actually enter
them in either case.

Sections 3.4.1-3.4.4 describe the three program-loading options and give an
example program. Segment nesting is also explained in Section 3.4.5.
Some of the information in this section is also discussed in Section 3.4 of
the Microsoft Macro Assembler User's Guide.

27

Microsoft Macro Assembler Reference Manual

3.4.1 Align Type

The optional align type defines the alignment of the given segment. The
alignment defines the range of memory addresses from which a starting
address for the segment can be selected. The align type can be any one of
the following:

Align Type

byte

word

para

page

Meaning

Use any byte address

Use any word address (2 bytes/word)

Use paragraph addresses (16 bytes/paragraph)

Use page addresses (256 bytes/page)

If no align type is given, para is used by default. The actual start address
is not computed until the program is loaded. The linker ensures that the
address will be on the given boundary.

3.4.2 Combine Type

The optional combine type defines how to combine segments having the
same name. The combine type can be any one of the following:

28

Combine Type

public

stack

Meaning

Concatenates all segments having the same name
to form a single, contiguous segment. All instruc­
tion and data addresses in the new segment are
relative to a single segment register, and all offsets
are adjusted to represent the distance from the
beginning of the new segment.

Concatenates all segments having the same name
to form a single, contiguous segment. This com­
bine type is the same as the public combine type,
except that all addresses in the new segment are
relative to the SS segment register. The stack
pointer (SP) register is initialized to the ending
address of the segment. Stack segments should
normally use the stack type, since this automati­
cally initializes the SS register. If you create a
stack segment and do not use the stack type, you
must give instructions to load the segment address
into the SS register.

common

memory

at address

Program Structure

Creates overlapping segments by placing the start
of all segments having the same name at the same
address. The length of the resulting area is the
length of the longest segment. All addresses in the
segments are relative to the same base address. If
data are declared in more than one segment having
the same name and common type, the most
recently declared data replace any previously
declared data.

Is treated by the Microsoft 8086 Object Linker
(LINK) exactly like a public segment. MASM
allows you to define segments with memory type
even though LINK does not support a separate
memory type. This feature is provided for com­
patibility with other linkers that may support a
combine type conforming to the Intel definition of
memory type.

Causes all label and variable addresses defined in
the segment to be relative to the given address.
The address can be any valid expression, but must
not contain a forward reference, that is, a reference
to a symbol defined later in the source file. An at
segment typically contains no code or initialized
data. Instead, it represents an address template
that can be placed over code or data already in
memory, such as the screen buffer. The labels and
variables in the at segments can then be used to
access the fixed instructions and data.

If no combine type is given, the segment is not combined. Instead, it
receives its own physical segment when loaded into memory.

Note

Normally you should provide at least one stack segment in a program.
If no stack segment is declared, LINK will display a warning message.
You can ignore this message if you have a specific reason for not declar­
ing a stack segment.

29

Microsoft Macro Assembler Reference Manual

3.4.3 Class Type

The optional class type defines which segments are to be loaded in contigu­
ous memory. Segments having the same class name are loaded into
memory one after another. All segments of a given class are loaded before
segments of any other class. The class name must be enclosed in single quo­
tation marks ('). Class names are not case-sensitive unless the /:ML or
/"'MX option is used during assembly, or the /NOIGNORECASE option
is used when linking.

Note

The names assigned for class types of segments should not be used for
other symbol definitions in the source file. For example, if you give a
segment the class name 'CONSTANT', you should not give the name
constant to any variable or labels in the source file. If you do, the
error Symbo 1 a 1 ready different kind will be generated.

If class types are not specified, LINK copies segments to the executable file
in the same order they are encountered in the object files. This order is
maintained throughout the program unless LINK encounters two or more
segments having the same class name. Segments having identical class
names belong to the same class, and are copied as contiguous blocks to the
executable file.

Example

DATAX segment 'DATA'
DATAX ends

TEXT segment 'CODE'
TEXT ends

DATAZ segment 'DATA'
DATAZ ends

In the preceeding example-program fragment, the segments DATAX and
DATAZ both have class type 'DATA'. As a result, both segments are copied
to the executable file before the TEXT segment.

30

Program Structure

All segments belong to a class. Segments for which no class name is expli­
citly stated have the null-class name, and will be loaded as contiguous
blocks with other segments having the null-class name. LINK imposes no
restriction on the number or size of segments in a class. The total size of
all segments in a class can exceed 64K.

Since LINK processes modules in the order in which it receives them on the
command line, you may not always be able to easily specify the order in
which you want segments to be loaded. For example, assume your program
has four segments that you want loaded in the following order: CODE,
DATA, CONST, STACK. The CODE, CONST, and STACK segments are
defined in the first module of your program, but the DATA segment is
defined in the second module. LINK will not put the segments in the
proper order because it will first load the segments encountered in the first
module.

You can avoid this problem by creating and assembling a dummy program
file containing empty segment definitions in the order in which you wish to
load your real segments. Once this file is assembled, you can give it as the
first object file in any invocation of LINK. The linker will automatically
load the segments in the order given.

For example, the following dummy program file defines the loading order of
segments in a program having segments named CODE, DATA, CONST, and
STACK.

CODE segment para public 'CODE'
CODE ends
DATA segment para public 'DATA'
DATA ends
CONST segment para public 'CONST'
CONST ends
STACK segment para stack 'STACK'
STACK ends

The dummy program file must contain definitions for all classes to be used
in your program. If it does not, LINK will choose a default loading order
which may or may not correspond to the order you desire. When linking
your program, the dummy program must be the first object file specified in
the LINK command line.

Do not use a dummy program file with Microsoft C, Pascal, FORTRAN, or
compiled BASIC. These languages follow the MS-DOS segment-ordering
convention described in Section 3.3.15 of the Microsoft Macro Assembler
User's Guide. This loading order must not be modified.

31

Microsoft Macro Assembler Reference Manual

Another way to control segment order is with the MASM /A option. This
option directs MASM to write segments to the object file in alphabetical
order. You can give segments names with alphabetical order that matches
the order in which you want them loaded and then use the /A option. To
make this strategy work with multiple-module programs, you should define
all segments in the first module specified in the LINK command line. Some
of the definitions may be dummy segments. See Section 2.3.1 of the Micro­
soft Macro Assembler User's Guide for more information on the /A option.

Note

Some previous versions of the assembler ordered segments alphabeti­
cally by default. If you have trouble assembling and linking source­
code listings from books or magazines, try using the /A option. List­
ings written for the old version assemblers may not work without this
option.

3.4.4 Program Example

The following source code illustrates one way in which the align and com­
bine types can be used. Figure 3.1 (following the example below) shows the
way LINK would load the given program into memory. The memory
combine type is not shown since it is the same as public. The class types
are not used in the sample program, but they are illustrated in Section
3.4.3 and in the example in Section 3.6.

Note

32

Although a given segment name can be used more than once in a source
file, each segment definition using that name must have either exactly
the same attributes, or attributes that do not conflict.

Example

seg_a
start:

seg_a

seg_b

seg_b

seg_c

seg_c

seg_d

seg_d

seg_a

seg_a

seg_b

seg_b

seg_c

seg_c

NAME module_l

SEGMENT word public

ENDS

SEGMENT page stack

ENDS

SEGMENT para common

ENDS

SEGMENT at OB800h

ENDS
END start

NAME module 2

SEGMENT word public

ENDS

SEGMENT page stack

ENDS

SEGMENT para common

ENDS
END

Program Structure

33

Microsoft Macro Assembler Reference Manual

OB800h

ble First availa
para addres s

ble First availa
page addres s

ble First availa
word addre SS

34

High

I-

f--

f-

f-

f--
1-1-

I--

I-'-

I-

1--

I-

I-

1--

I-

I-

1---

I-

I-

1--

I-

Low

seg_d SEGMENT at OB800h

seg_c SEGMENT para common
in module_ 2

seg_c SEGMENT para common
in module_ I

seg_b SEGMENT page stack
in module_ 2

seg_b SEGMENT page stack
in module_ I

ss register initialized to this address

seg_a SEGMENT word public
in module_ 2

seg_a SEGMENT word~public
in module_ I

Figure 3.1 LINK Program Loading Order

Program Structure

3.4.5 Segment Nesting

Segments can be nested. When MASM encounters a nested segment, it
temporarily suspends assembly of the enclosing segment and begins assem­
bly of the nested segment. When the nested segment has been assembled,
MASM continues assembly of the enclosing segment. Overlapping seg­
ments are not permitted.

Example

sample
main

const
array
const

main
sample

SEGMENT word public 'CODE'
PROC far

SEGMENT word public 'CONST'
DW array_data
ENDS

RET
ENDP
ENDS

outside segment

nested segment

end nesting

This example-code fragment contains two segments: a code segment called
sample and a data segment called const. The const segment is nested
within the sample segment.

3.5 END Directive

Syntax

END [expression]

The END directive marks the end of a module. The assembler ignores any
statements following this directive.

The optional expression defines the program entry point, the address at
which program execution is to start. If the program has more than one
module, only one of these modules can define an entry point. The module
with the entry point is called the "main module". If no entry point is
given, none is assumed.

35

Microsoft Macro Assembler Reference Manual

Note

If you fail to define an entry point for the main module, your program
may not be able to initialize correctly. The program will assemble and
link without error messages, but it may crash when you attempt to run
it. Remember, one (and only one) module must define an entry point.

Examples

end
end start

3.6 GROUP Directive

Syntax

name GROUP segmentname,,,

The GROUP directive associates a group name with one or more seg­
ments, and causes all labels and variables defined in the given segments to
have addresses relative to the beginning of the group rather than to the
beginning of the segments in which they are defined. The segmentname
must be the name of a segment defined using the SEGMENT directive, or
a SEG expression (see Sections 3.4 and 5.3.12). The name must be unique.

The GROUP directive does not affect the order in which segments of a
group are loaded. Loading order depends on each segment's class, or on the
order in which object modules are given to the linker. Section 3.4.5 of the
Microsoft Macro Assembler User's Guide also discusses groups and how they
are handled by the linker.

Segments in a group need not be contiguous. Segments that do not belong
to the group can be loaded between segments that do. The only restriction
is that the distance (in bytes) between the first byte in the first segment of
the group and the last byte in the last segment must not exceed 65535.
Therefore, if the segments of a group are contiguous, the group can occupy
up to 64K of memory.

36

Program Structure

Group names can be used with the ASSUME directive (Section 3. 7) and as
an operand prefix with the segment override operator (:) (Section 5.3. 7).

Note

A group name must not be used in more than one GROUP directive in
any source file. If several segments within the source file belong to the
same group, all segment names must be given in the same GROUP
directive.

Example

dgroup GROUP aseg,bseg
ASSUME ds:dgroup

aseg SEGMENT byte public 'DATAl'

sym_a:

aseg ENDS

bseg SEGMENT byte public 'DATA2 I

sym_b:

bseg ENDS

cseg SEGMENT byte public 'DATAl'

sym_c:

cseg ENDS
END

The order in which LINK will load these segments is shown in Figure 3.2.
LINK loads aseg first because it occurs first in the source file. Next,
LINK loads cseg because it has the same class type as aseg. LINK
loads bseg last. However, aseg and bseg are declared part of the same
group, despite their separation in memory. This means that the symbols
sym_a and sym_b have offsets from the beginning of the group, which is
also the beginning of aseg. The offset of sym_c is from the beginning of
cseg. This sample is intended to illustrate the way LINK organizes seg­
ments in a group, rather than to show a typical use of a group.

37

Microsoft Macro Assembler Reference Manual

/~

t
offset
sy:m_ c

1
offset
SYJIL- b

t
offset

'11 sy:m_ a

1

38

high

sy:m_ b

sy:m_ c

sy:m_ a

low

I-

~

-

I--,

1--

-
I-

~

I-

bseg SEGMENT byte public 'DATA2'
(part of dgroup)

cseg SEGMENT byte public 'DATAl'
(not part of dgroup)

aseg SEGMENT byte public 'DATAl'
(part of dgroup)

Figure 3 .2 LINK Segment Loading Order

Program Structure

3. 7 ASSU.1\1E Directive

Syntax

ASSUME segmentregister:segmentname,,,
ASSUME NOTHING

The ASSUME directive specifies segmentregister as the default segment
register for all labels and variables defined in the segment or group given by
segmentname. Subsequent references to the label or variable will automati­
cally assume the selected register when the effective address is computed.

The ASSUME directive can define up to four selections: one for each of the
four segment registers. The segmentregister can be any one of the segment
register names: CS, DS, ES, or SS. The segmentname must be one of the
following:

• The name of a segment that was previously defined with the SEG­
MENT directive

• The name of a group that was previously defined with the GROUP
directive

• The keyword NOTHING

The keyword NOTHING cancels the current segment selection. The
statement ASSUME NOTHING cancels all register selections made by a pre­
vious ASSUME statement.

Note

The segment-override operator (:) can be used to override the current
segment register selected by the ASSUME directive.

39

Microsoft Macro Assembler Reference Manual

Examples

ASSUME cs:CODE
ASSUME cs:cgroup,ds:dgroup,ss:nothing,es:nothing
ASSUME NOTHING

3.8 ORG Directive

Syntax

ORG expression

The ORG directive sets the location counter to expression. Subsequent
instruction and data addresses begin at the new value.

The expression must resolve to an absolute number. In other words, all
symbols used in the expression must be known on the first pass of the
assembler. The location-counter symbol($) can also be used.

Examples

ORG 120h
mov ax,dx

In the first example, the statement mov ax, dx begins at byte 120h in the
current segment.

array
ORG
DW

$+2
100 dup (0)

In the second example, the variable array is declared to start at the
address 2 bytes beyond the current address. See Section 5.2.4 for more
information on the location-counter symbol ($).

40

Program Structure

3.9 EVEN Directive

Syntax

EVEN

The EVEN directive aligns the next data or instruction byte on a word
boundary. If the current value of the location counter is odd, the directive
increments the location counter to an even value and generates one NOP
(no operation) instruction. If the location counter is already even, the
directive does nothing.

Note

The EVEN directive must not be used in byte-aligned segments.

Example

testl

test2

ORG
DB
EVEN
DW

0
1

513

In this example, the EVEN directive tells MASM to increment the loca­
tion counter, and generates a single NOP instruction (90h). This means
the offset of test2 is 2, not 1, as it would be without the EVEN directive.

3.10 PROC and ENDP Directives

Syntax

name PROC [distance]
statements

name ENDP

The PROO and ENDP directives mark the beginning and end of a pro­
cedure. A procedure is a block of instructions that forms a program sub­
routine. Every procedure has a name with which it can be called.

41

Microsoft Macro Assembler Reference Manual

The name must be a unique name, not previously defined in the program.
The optional distance can be either NEAR or FAR. NEAR is assumed if
no distance is given. The name has the same attributes as a label, and can
be used as an operand in a jump, call, or loop instruction.

Any number of statements can appear between the PROO and ENDP
statements. The procedure should contain at least one RET directive to
return control to the point of call. Nested procedures are allowed.

Example

add up

add up

push
push
push
call
add

PROC

push

mov
mov

add

add

pop
RET
ENDP

ax
bx
ex
add up
sp, 6

near

bp

bp,sp
ax, [bp+4]

ax, [bp+6]

ax, [bp+8]

bp

Push third parameter
Push second parameter
Push first parameter
Call the procedure
Destroy the pushed parameters

Return address for near call
takes two bytes

Save base pointer - takes two more
so parameters start at 4th byte

Load stack into base pointer
Get first parameter

4th byte above pointer
Get second parameter

6th byte above pointer
Get third paramter

8th byte above pointer
Restore base
Return

In this example, three numbers are passed as parameters for the procedure
addup. Parameters are often passed to procedures by pushing them before
the call so that the procedure can read them off the stack.

42

Program Structure

Note

The parameter-passing method in this example conforms to the stan­
dard used in Microsoft high-level languages. As a result, this procedure
could be traced using the Stack Trace command (K) of the Microsoft
Symbolic Debug Utility (SYMDEB), described in Section 4.6.28 of the
Microsoft Macro Assembler User's Guide.

43

Chapter 4
Types and Declarations

4.1 Introduction 47
4.2 Label Declarations 47
4.2.1
4.2.2
4.3
4.3.1
4.3.2

Near-Label Declarations
Procedure Labels 48

Data Declarations 48
DB Directive 49
DW Directive 50

4.3.3 DD Directive 50
4.3.4 DQ Directive 51
4.3.5 DT Directive 52
4.3.6 DUP Operator 53
4.4 Symbol Declarations 54

47

4.4.1 Equal-Sign (==)Directive 54
4.4.2 EQU Directive 55
4.4.3 LABEL Directive 56
4.5 Type Declarations 56
4.5.1 STRUC and ENDS Directives 57
4.5.2 RECORD Directive 58
4. 6 Structure and Record Declarations 60
4.6.1 Structure Declarations 60
4. 6. 2 Record Declarations 62

46

Types and Declarations

4.1 Introduction

This chapter explains how to generate data for a program; how to declare
labels, variables, and other symbols that ref er to instruction and data loca­
tions; and how to define types that can be used to generate data blocks con­
taining multiple fields, such as structures and records.

4.2 Label Declarations

Label declarations create "labels." A label is a name that represents the
address of an instruction. Labels can be used in jump, call, and loop
instructions to direct program execution to the instruction at the address of
the label.

4.2.1 Near-Label Declarations

Syntax

name:

A near-label declaration creates an instruction label that has NEAR type.
The label can be used in subsequent instructions in the same segment to
pass execution control to the corresponding instruction.

The name must be unique, not previously defined, and it must be followed
by a colon (:). Furthermore, the segment containing the declaration must
be associated with the CS segment register (see Section 3.7 for information
on the ASSUME directive). The assembler sets the name to the lCurrent
value of the location counter.

A near-label declaration can appear on a line by itself or on a line with an
instruction. Labels must be declared with the PUBLIC or EXTRN direc­
tive if they are located in one module but called from another module (see
Chapter 6).

Examples

start:
cycle: inc si

47

Mie:rosoft M.o.e:ro Assembler Reference Manual

4.2.2 Procedure Labels

Syntax

name PROC [distance]

The PROO directive creates a label name and optionally assigns it a dis­
tance. The distance can be NEAR or FAR. The label then represents the
address of the first instruction of a procedure. The label can be used in a
CALL instruction (or in a jump or loop instruction) to direct execution
control to the first instruction of the procedure. If you do not specify the
type for a procedure, the assembler assumes NEAR as the default.

When the PROO label definition is encountered, the assembler sets the
label's value to the current value of the location counter and sets its type to
NEAR or FAR. If the label has FAR type, the assembler also sets its seg­
ment value to that of the enclosing segment.

NEAR labels can be used with jump, call, or loop instructions to transfer
program control to any address in the current segment. FAR labels can be
used to transfer program control to an address in any segment outside the
current segment.

Labels must be declared with the PUBLIC and EXTRN directive if they
are located in one module but called from another module (see Chapter 6).

4.3 Data Declarations

The data-declaration directives let you generate data for a program. The
directives translate numbers, strings, and expressions into individual bytes,
words, or other units of data. The encoded data are copied to the object
file.

48

Types and Declarations

The data-declaration directives are listed below:

Directive Meaning

DB Define byte

DW Define word

DD Define doubleword

DQ Define quadword

DT Define ten bytes

Sections 4.3.1-4.3.5 describe these directives in detail.

4.3.1 DB Directive

Syntax

[name] DB initial value,,,

The DB directive allocates and initializes a byte (8 bits) of storage for each
initialvalue. The initialvalue can be an integer, a character string constant,
a DUP operator, a constant expression, or a question mark(?). The ques­
tion mark represents an undefined initial value. If two or more initial
values are given, they must be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type BYTE whose offset value is the current location-counter value.

A string constant can have any number of characters, as long as it fits on a
single line. When the string is encoded, the characters are stored in the
order given, with the first character in the constant at the lowest address
and the last at the highest.

Examples

integer
string
message
constantexp
empty
multiple
duplicate
high_byte

DB
DB
DB
DB
DB
DB
DB
DB

16
'ab'
"Enter your name: "
4*3
?
L 2, 3, '$'
10 dup (?)
255

49

Microsoft Macro Assembler Reference Manual

4.3.2 DW Directive

Syntax

[name] DW initial value,,,

The DW directive allocates and initializes a word (2 bytes) of storage for
each initialvalue. The initial value can be an integer, a one- or two-character
string constant, a DUP operator, a constant expression, an address expres­
sion, or a question mark (?). The question mark represents an undefined
initial value. If two or more expressions are given, they must be separated
by commas(,).

The name is optional. If name is given, the directive creates a variable of
type WORD whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
(or only) character in the string is placed in the low-order byte. Either 0 or
the first character is placed in the high-order byte.

Examples

integer
character
string
constantexp
addressexp
empty
multiple
duplicate
high_ word
arrayptr
arrayptr2

DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW

4.3.3 DD Directive

Syntax

[name] DD initial value,,,

16728
'a I
'be'
4*3
string
?
1, 2, 3, I$ I
10 dup (?)
65535
array
offset DGROUP:array

The DD directive allocates and initializes a doubleword (4 bytes) of storage
for each initialvalue. The initialvalue can be an integer, a real number, a
one- or two-character string constant, an encoded real number, a DUP
operator, a constant expression, an address expression, or a question mark

60

Types and Declarations

(?). The question mark represents an undefined initial value. If two or
more initial values are given, they must be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type DWORD whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
(or only) character in the string is placed in the low-order byte, and the
first character (if there are two in the string) is placed in the next byte.
Zeroes are placed in all remaining bytes.

Examples

integer
character
string
real
encodedreal
constantexp
aDDsegexp
empty
multiple
duplicate
high_double

DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD

4.3.4 DQ Directive

Syntax

[name] DQ initial value,,,

16728
I a I

'be'
1.5
3FOOOOOOr
4*3
real
?
L 2, 3, '$'
10 dup (?)
4294967295

The DQ directive allocates and initializes a quadword (8 bytes) of storage
for each initialvalue. The initialvalue can be an integer, a real number, a
one- or two-character string const:--nt, an encoded real number, a DUP
operator, a constant expression, or a question mark(?). The question mark
represents an undefined initial value. If two or more initial values are
given, they must be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type QWORD whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
(or only) character in the string is placed in the low-order byte, and the
first character (if there are two in the string) is placed in the next byte.
Zeroes are placed in all remaining bytes.

61

Microsoft Macro Assembler Reference Manual

Examples

integer
character
string
real
encodedreal
constantexp
empty
multiple
duplicate
high_ quad

DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ

4.3.5 DT Directive

Syntax

[name] DT initial value,,,

16728
I a I

'be'
1.5
3F00000000000000r
4*3
?
1, 2, 3, I$ I
10 dup (?)
18446744073709551615

The DT directive allocates and initializes 10 bytes of storage for each ini­
tialvalue. The initialvalue can be an integer expression, a packed decimal, a
one- or two-character string constant, an encoded real number, a DUP
operator, or a question mark (?). The question mark represents an
undefined initial value. If two or more initial values are given, they must
be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type TBYTE whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
(or only) character in the string is placed in the low-order byte, and the
first character (if there are two in the string) is placed in the next byte.
Zeroes are placed in all remaining bytes.

Note

52

The DT directive assumes that constants with decimal digits are
packed decimals, not integers. If you want to specify a 10-byte integer,
you must follow the number with the letter that specifies the number
system you are using (for example, "D" or "d" for decimal or "H" or
"h" for hexadecimal).

Types and Declarations

Examples

packeddecimal
integer
character
string
real
encoded real
empty
multiple
duplicate
high_tbyte

DT
DT
DT
DT
DT
DT
DT
DT
DT
DT

4.3.6 DUP Operator

Syntax

count DUP(initial value,,,)

1234567890
16728d
'a I
'be'
1.5
3f 000000000000000000r
?
1,2,3, '$'
10 dup (?)
1208925819614629174706175d

The DUP operator is a special operator that can be used with the data­
declaration directives and other directives to specify multiple occurrences
of one or more initial values. The count sets the number of times to define
initialvalue. The initial value can be any expression that evaluates to an
integer value, a character constant, or another DUP operator. If more
than one initial value is given, the values must be separated by commas (,).
DUP operators can be nested up to 17 levels. The initial value (or values)
must always be placed within parentheses.

Examples

DB 100 DUP (1)

The first example generates 100 bytes with initial value 1.

DW 20 DUP (l , 2 I 3 I 4)

The second example generates 80 words of data. The first four words have
the initial values 1, 2, 3, and 4, respectively. This pattern is duplicated for
the remaining words.

DB 5 DUP(5 DUP(5 DUP (1)))

The third example generates 125 bytes of data, each byte having the initial
value 1.

63

Microsoft Macro Assembler Reference Manual

DD 14 DUP (?)

The final example generates 14 doublewords of uninitialized data.

4.4 Symbol Declarations

The symbol-declaration directives let you create and use symbols. A sym­
bol is a descriptive name representing a number, text, an instruction, or an
address. Symbols make programs easier to read and maintain by using
descriptive names to represent values. A symbol can be used anywhere its
corresponding value is allowed.

The symbol declaration directives are listed below:

Directive

EQU
LABEL

Meaning

Assign absolutes

Equate absolutes, aliases, or text symbols

Create instruction or data labels

Sections 4.4.1-4.4.3 describe the directives in detail.

4.4.1 Equal-Sign {) Directive

Syntax

name=expression

The equal-sign (=) directive creates an absolute symbol by assigning the
numeric value of expression to name. An absolute symbol is simply a name
that represents a 16-bit value. No storage is allocated for the number.
Instead, the assembler replaces each subsequent occurrence of name with
the value of expression. The value is variable during assembly, but is a con­
stant at run time.

The expression can be an integer, a one- or two-character string constant, a
constant expression, or an address expression. Its value must not exceed
65535. The name must be either a unique name, or a name previously
defined using the equal-sign (=) directive.

Absolute symbols can be redefined at any time.

54

Examples

integer
string
constantexp
address exp

4.4.2 EQU Directive

Syntax

name EQU expression

16728
'ab'
3 * 4
string

Types and Declarations

The EQU directive creates absolute symbols, aliases, or text symbols by
assigning expression to name. An absolute symbol is a name that
represents a 16-bit value; an alias is a name that represents another sym­
bol; and a text symbol is a name that represents a character string or other
combination of characters. The assembler replaces each subsequent
occurrence of the name with either the text or the value of the expression,
depending on the type of expression given.

The name must be a unique name, one which has not been previously
defined. The expression can be an integer, a string constant, a real number,
an encoded real number, an instruction mnemonic, a constant expression,
or an address expression. Expressions that evaluate to values in the range
0 to 65535 create absolute symbols and cause MASM to replace the name
with a value. All other expressions cause the assembler to replace the name
with text.

The EQU directive is sometimes used to create simple macros. Note that
the assembler replaces a name with text or a value before attempting to
assemble the statement containing the name.

Symbols defined using the EQU directive cannot be redefined.

Examples

k EQU 1024 Replaced with value
pi EQU 3.14159 Replaced with text
matrix EQU 20 * 30 Replaced with value
staptr EQU [bp] Replaced with text
clearax EQU xor ax,ax Replaced with text
prompt EQU 'Type Enter' Replaced with text
bpt EQU BYTE PTR Replaced with text

56

Microsoft Macro Assembler Reference Manual

4.4.3 LABEL Directive

Syntax

name LABEL type

The LABEL directive creates a new variable or label by assigning the
current location-counter value and the given type to name.

The name must he unique and not previously defined. The type can be any
one of the following:

BYTE
WORD

DWORD

QWORD

TBYTE
NEAR
FAR

The type can also be the name of a valid structure type.

Examples

barray
warray

LABEL
DW

BYTE
100 DUP (?)

In this example, barray and warray refer to the same data. The data
can be accessed by byte with barray or by word with warray.

4.5 Type Declarations

The type-declaration directives let you define data types that can be used
to create program variables consisting of multiple elements or fields. The
directives associate one or more named fields with a given type name. The
type name can then be used in a data declaration to create a variable of the
given type.

66

Types and Declarations

The type-declaration directives are listed below:

Directive

STRUC and ENDS

RECORD

Declaration

Structure types

Record types

Sections 4.5.1 and 4.5.2 describe these directives in detail.

4.5.1 STRUC and ENDS Directives

Syntax

name STRUC
fielddefinitions
name ENDS

The STRUC and ENDS directives mark the beginning and end of a type
definition for a structure. A type definition for a structure defines the name
of a structure type and the number, type, and default values of the fields
contained in the structure.

A structure definition creates a template for data. Though this template is
used by MASM during assembly, it does not in itself create any data.
Data can only be created when you declare a structure, as described in Sec­
tion 4.6.1.

The name defines the new name of the structure type. It must be unique.
The fielddefinitions define the structure's fields. Any number of field
definitions can be given. The definitions must have one of the following
forms:

[name] DB defaultvalue,,,
[name] DW defaultvalue,,,
[name] DD defaultvalue,,,
[name] DQ defaultvalue,,,
[name] DT defaultvalue,,,

The optional name specifies the field name; the DB, DW, DD, DQ, and
DT directives define the size of each field; and defaultvalue defines the value
to be given to the field if no initial value is given when the structure vari­
able is declared. The name must be unique, and, once defined, represents
the offset from the beginning of the structure to the corresponding field.

67

Microsoft Macro Assembler Reference Manual

The default value can define a number, character or string constant, or
symbol. It may also contain the DUP operator to define multiple values
for the field. If the default value is a string constant, the field has the same
number of bytes as characters in the string. If multiple default values are
given, they must be separated by commas(,).

A definition of a structure type can contain field definitions and comments
only. It must not contain any other statements. Therefore, structures
cannot be nested.

Example

table

table

STRUC
count
value
tname
ENDS

DB
ow
DB

10
10 DUP (?)
'font3'

In this example, the fields are count, value, and tname. The count field
is a single-byte value initialized to 10; value is an array of 10 uninitialized
word values; and tname is a character array of 5 bytes initialized to
'font3' . The field names count, value, and tname have the offset
values 0, 1, and 21, respectively.

4.5.2 RECORD Directive

Syntax

recordname RECORD fieldname:width[=expression],,,

The RECORD directive defines a record type for an 8- or 16-bit record
that contains one or more fields. The recordname is the name of the record
type to be used when creating the record; fieldname is the name of a field in
the record, width is the number of bits in the field; and expression is the ini­
tial (or default) value for the field.

Any number of fieldname:width=expression combinations can be given for a
record, as long as each is separated from its predecessor by a comma (,).
The sum of the widths for all fields must not exceed 16 bits.

The width must be a constant in the range 1 to 16. If the total width of all
declared fields is larger than 8 bits, then the assembler uses 2 bytes. Other­
wise, only 1 byte is used.

68

Types and Declarations

If =expression is given, it defines the initial value for the field. If the field
is at least 7 bits wide, you can use an ASCII character for expression. The
expression must not contain a forward reference to any symbol.

In all cases, the first field you declare goes into the most significant bits of
the record. Successively declared fields are placed in the succeeding bits to
the right. If the fields you declare do not total exactly 8 bits or exactly 16
bits, the entire record is shifted right so that the last bit of the last field is
the lowest bit of the record. Unused bits will be initialized to 0 in the high
end of the record.

The RECORD directive creates a template for data. This template is
used by the assembler during assembly, but it does not in itself create any
data. Data can only be created when you declare a record, as described in
Section 4.6.2.

Examples

encode RECORD hi:4, mid:3, lo:3

The example above creates a record type encode having three fields: hi,
mid, and 1 o. Each record declared using this type will occupy 16 bits of
memory. The hi field will be in bits 6 to 9 (bit 9 is bit 1 in the high byte);
the mid field will be in bits 3 to 5; and the 1 o field will be in bits 0 to 2.
The remaining high-order bits will be unused. The bit diagram below
shows what the record type will look like:

hi mid lo
I I

,~____.__~, I I

I ol ol ol ol ol ol ol olol ol ol ol ol ol ol ol
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Since no initial values are given, the record type has all bits set to 0. Note
that this is only a template maintained by the assembler. No data are
created.

item RECORD char:7='Q', weight:4=2

The example above creates a record type i tern having two fields: char and
weight. These values are initialized to the letter Q and the number 2,
respectively. Unused bits are set to O, as shown in the bit diagram below.

59

Microsoft Macro Assembler Reference Manual

char weight
I

I I
I ol ol ol ol ol 11ol1lol ol ol 1 I ol ol 1 I ol

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

4.6 Structure and Record Declarations

Structure and record declarations allow you to generate blocks of data
bytes with many elements or fields. A structure or record declaration con­
sists of the name of a previously defined structure or record, and a set of
initial values.

Sections 4.6.1-4.6.2 describe these declarations in detail.

4.6.1 Structure Declarations

Syntax

[name] structure name < [initialvalue,,,] >

A structure variable is a variable with one or more fields of different sizes.
The name is the name of the variable; structurename is the name of a struc­
ture type created using the STRUC directive; and initialvalue is one or
more values defining the initial value of the structure. One initial value can
be given for each field in the structure.

The name is optional. If not given, the assembler allocates space for the
structure, but does not create a name you can use to access the structure.

The initialvalue can be an integer, string constant, or expression that evalu­
ates to a value having the same type as the corresponding field. The angle
brackets (< >) are required even if no initial value is given. If more than
one initial value is given, the values must be separated by commas (,). If
the DUP operator (see Section 4.3.6) is used, only the values within the
parentheses need to be enclosed in angle brackets.

You need not initialize all fields in a structure. If an initial value is left
blank, the assembler automatically uses the default initial value of the
field, which was originally determined by the structure type. If there is no
default value, the field is uninitialized. Section 5.2.9 illustrates several ways
to use structure data after they have been declared.

60

Types and Declarations

Note

You cannot initialize any structure field that has multiple values if this
field was given a default initial value when the structure was defined.
For example, assume the following structure definition:

strings

strings

STRUC
buffer DB 100 DUP (?)
crlf DB 13,10
query DB 'Filename: '
endmark DB 36
ENDS

Can't override
Can't override
String <= can override

The buff er and er 1 f variables cannot be overridden because they
have multiple values. The query variable can be overridden as long as
the overriding data are no longer than query (10 bytes). Similarly, the
endmark field can be overridden by any byte value.

Examples

structl table <>

The preceding example creates a structure variable named structl whose
type is given by the structure type table. The initial values of the fields
in the structure are set to the default values for the structure type, if any.
For example, if tab 1 e were defined with the structure definition in the
example in Section 4.5.1, the first byte of structl would be 10; 10 unini­
tialized words would follow; and finally would come the byte string font3.

struct2 table <O, I>

The second example creates a structure variable named struct2. Its type
is also tab 1 e. The initial value for the first field is set to 0. The default
values defined by the structure type are used for the remaining two fields.
If table were defined with the structure definition in the example in Sec­
tion 4.5.1, the initial value of o, set with the structure declaration above,
would override the initial value of 10, set with the original structure
definition.

struct3 table 10 DUP (<O, I>)

61

Microsoft Macro Assembler Reference Manual

This final example creates a variable, struct3, containing 10 structures of
the type table. The first field in each structure is set to the initial value
of 0. All remaining fields receive the default values.

4.6.2 Record Declarations

Syntax

[name] recordname < [initialvalue,,,] >

A record variable is an 8- or 16-bit value whose bits are divided into one or
more fields. The name is the name of the variable; recordname is the name
of a record type that has been created using the RECORD directive; and
initialvalue is one or more values defining the initial value of the record.
One initialvalue can be given for each field in the record.

The name is optional. If no name is given, MASM allocates space for the
record, but does not create a variable that you can use to access the record.

The optional initialvalue can be an integer, string constant, or any expres­
sion that resolves to a value no larger than can be represented in the field
width specified when the record was defined. Angle brackets (< >) are
required even if no initial value is given. If more than one initial value is
~iven, the values must be separated by commas (,). If the DUP operator
tsee Section 4.3.6) is used, only the values within the parentheses need to be
enclosed in angle brackets. You do not have to initialize all fields in a
record. If an initial value is left blank, the assembler automatically uses
the default initial value of the field. This is defined by the record type. If
there is no default value, the field is uninitialized.

Sections 5.2.10 and 5.2.11 illustrate ways to use record data after it has
been defined.

Examples

reel encode <>

The first example creates a variable named reel whose type is given by the
record type encode. The initial values of the fields in the record are set to
the default values for the record type, if any. For example, if encode were
defined with the definition in the example in Section 4.5.2, reel would be
O, since the fields were not initialized in the definition.

table item 10 DUP(<'A' ,2>)

62

Types and Declarations

This second example creates a variable named table containing 10
records of the record type i tern. The fields in these records are all set to
the initial values A and 2. If the i tern definition from the example in Sec­
tion 4.5.2 were used, the A would override the initial value of Q in the
record definition.

char weight

I
I

I
I ol ol ol ol ol i I ol o I o I ol ol 1 I ol ol 1 I ol

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

The bit diagram above shows the value of the 10 bytes created by the
record declaration.

passkey encode <, ,7>

The final example creates a record variable named passkey. Its type is
encode. The initial values for the first two fields are the default values
defined by the record type. The initial value for the third field is 7. If the
record definition from Section 4.5.2 were used, the first two fields would
remain O, since they were not initialized. The bit diagram below shows
what the record looks like.

hi mid lo
I I I

I I I I I I
ol oj ol ol ol ol ol o I o I ol ol ol ol 1 1 i I
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

63

Chapter 5
Operands and Expressions

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.3
5.3.1
5.3.2
5.3.3

Introduction 67
Operands 67

Constant Operands 68
Direct-Memory Operands 68
Relocatable Operands 69
Location-Counter Operand 69
Register Operands 70
Based Operands 72
Indexed Operands 72
Based-Indexed Operands 73
Structure Operands 7 4
Record Operands 76
Record-Field Operands 77

Operators and Expressions 78
Arithmetic Operators 78
SHR and SHL Operators 80
Relational Operators 80

5.3.4 Bitwise Operators 82
5.3.5 Index Operator 83
5.3.6 PTR Operator 83
5.3. 7 Segment-Override Operator 85
5.3.8 Structure Field-Name Operator 85
5.3.9 SHORT Operator 86

66

5.3.10 THIS Operator 86
5.3.11 HIGH and LOW Operators 87
5.3.12 SEG Operator 87
5.3.13 OFFSET Operator 88
5.3.14 TYPE Operator 88
5.3.15 . TYPE Operator 89
5.3.16 LENGTH Operator 90
5.3.17 SIZE Operator 90
5.3.18 WIDTH Operator 91
5.3.19 MASK Operator 92
5.4 Expression Evaluation and Precedence 92
5.5 Forward References 93
5.6 Strong Typing for Memory Operands 95

66

Operands and Expressions

5.1 Introduction

This chapter describes the syntax and meaning of operands and expressions
used in assembly-language statements and directives. Operands represent
values, registers, or memory locations to be acted on by instructions or
directives. Expressions combine operands with arithmetic, logical, bitwise,
and attribute operators to calculate a value or memory location that can be
acted on by an instruction or directive. Operators indicate what operations
will be performed on one or more values in an expression to calculate the
value of the expression.

5.2 Operands

An operand is a constant, label, variable, or other symbol that is used in an
instruction or directive to represent a value, register, or memory location to
be acted on.

The operand types are listed below:

Constant

Direct-memory

Relocatable

Location-counter

Register

Based

Indexed

Based-indexed

Structure

Record

Record-field

67

Mic.:rosoft. Mac:ro .A....ssemble:r Refe:rence Manual

5.2.1 Constant Operands

Syntax

numberl stringl expression

A constant operand is a number, string constant, symbol, or expression
that evaluates to a fixed value. Constant operands, unlike other operands,
represent values to be acted on, rather than memory addresses.

Examples

mov ax,9
mov al, 'c'
mov bx,65535/3
mov ex, count

Note that count in the last example is a constant only if it was defined
with the EQU or equal-sign (=)operator. If count is a symbol represent­
ing a relocatable value or address, it is not a constant.

5.2.2 Direct-Memory Operands

Syntax

segment: offset

A direct-memory operand is a pair of segment and offset values that
represents the absolute memory address of 1 or more bytes of memory. The
segment can be a segment register (CS, DS, SS, or ES), a segment name, or
a group name. The offset must be an integer, absolute symbol, or expres­
sion that resolves to a value within the range 0 to 65535.

Examples

mov dx,ss:0031h
mov bx,data:O
mov ax,DGROUP:block

68

Operands and Expressions

5.2.3 Relocatable Operands

Syntax

symbol

A relocatable operand is any symbol that represents the memory address
(segment and offset) of an instruction or of data to be acted upon. Relocat­
able operands, unlike direct-memory operands, are relative to the start of
the segment or group in which the symbol is defined, and have no explicit
value until the program has been linked.

Examples

call main
mov bx, value
mov bx,OFFSET dgroup:table
mov ex, count

Note that count in the last example is a relocatable operand if it was
defined with the DW directive. If count was defined with the EQU or
equal-sign (=) operator, it is a constant.

5.2.4 Location-Counter Operand

Syntax

$

The location counter is a special operand that, during assembly, represents
the current location within the current segment. The location counter has
the same attributes as a near label. It represents an instruction address
that is relative to the current segment. Its offset is equal to the number of
bytes generated for that segment to that point. After each statement in the
segment has been assembled, the assembler increments the location counter
by the number of bytes generated.

69

Microsoft Macro Assembler Reference Manual

Example

'Program options: ',13,10 help
Fl
F2

DB
DB
DB

' Fl This help screen',13,10
F2 Save file',13,10

FlO DB
DISTANCE =

f 10
$-help

Exit program',13,10, '$'

In this example, the location counter forces the assembler to count the total
length of a group of declared strings, saving the programmer the trouble of
counting each byte.

5.2.5 Register Operands

Syntax

registername

A register operand is the name of a CPU register. Register operands direct
instructions to carry out actions on the contents of the given registers. The
registername can be any of the register names in Table 5.1.

Table 5.1

Register Operands

Register Operand Type Register Name

16-bit general purpose AX BX ex DX
8-bit high registers AH BH CH DH
8-bit low registers AL BL CL DL

16-bit segment cs DS SS ES
16-bit pointer and index SP BP SI DI

Any combination of upper- and lowercase letters is allowed.

The AX, BX, CX, and DX registers are 16-bit, general-purpose registers.
They can be used for any data or numeric manipulation. The AH, BH,

70

Operands and Expressions

CH, DH registers represent the high-order 8 bits of the corresponding
general-purpose registers. Similarly, AL, BL, CL, and DL represent the
low-order 8 bits of the general-purpose registers.

The CS, DS, SS, and ES registers are the segment registers. They contain
the current segment addresses of the code, data, stack, and extra segments,
respectively. All instruction and data addresses are relative to the segment
address in one of these registers.

The SP register is the 16-bit stack-pointer register. The stack pointer con­
tains the current top-of-stack address. This address is relative to the seg­
ment address in the SS register and is automatically modified by instruc­
tions that access the stack.

The BX, BP, DI, and SI registers are 16-bit, base and index registers.
These are general-purpose registers typically used for pointers to program
data. Address expressions using the BP register have offsets in the SS seg­
ment by default. Expressions using BX, SI, or DI have offsets in the DS
segment by default. The DI register always has an offset in the ES seg­
ment when used with string instructions.

The unnamed, 16-bit flag register contains nine 1-bit flags whose positions
and meanings are defined in Table 5.2.

Table 5.2

Flag Positions

Flag Bit

0
2
4
6
7
8
9
10
11

Meaning

Carry flag
Parity Hag
Auxiliary Hag
Zero flag
Sign flag
Trap flag
Interrupt-enable flag
Direction flag
Overflow flag

Although the 16-bit flag register has no name, the contents of the register
can be accessed using the LAHF, SAHF, PUSHF, and POPF instruc­
tions. See Appendix A.2, 8086 Instructions.

71

Microsoft Macro AssembleI- Reference Manual

5.2.6 Based Operands

Syntax

displacement[BP]
displacement[BX]

A based operand represents a memory address relative to one of the base
registers: BP or BX. The displacement can be any immediate or direct­
memory operand. It must evaluate to an absolute number or memory
address. If no displacement is given, zero is assumed.

The effective address of a based operand is the sum of the displacement
value and the contents of the given register. If BP is used, the operand's
address is relative to the segment pointed to by the SS register. If BX is
used, the address is relative to the segment pointed to by the DS register.

Based operands have a variety of alternate forms. Equivalent forms include
the following:

[displacement] [BP]
[BP+displacement]
[BP].displacement
[BP] +displacement

In each case, the effective address is the sum of the displacement and the
contents of the given register.

Examples

mov ax, [bp]
mov ax, [bx]
mov ax,12[bx]
mov ax,fred[bp]

5.2.7 Indexed Operands

Syntax

displacement[SI]
displacement[DI]

An indexed operand represents a memory address relative to one of the
index registers: SI or DI. The displacement can be any immediz.te or

72

Operands and Expressions

direct-memory operand. It must evaluate to an absolute number or
memory address. If no displacement is given, zero is assumed.

The effective address of an indexed operand is the sum of the displacement
value and the contents of the given register. The address is relative to the
segment pointed to by the DS register.

Indexed operands have a variety of alternate forms. Equivalent forms
include the following:

[displacement} (DIJ
[DI+ displacement]
[DI].displacement
[DI]+displacement

In each case, the effective address is the sum of the displacement and the
contents of the given register.

Examples

mov ax, [si]
mov ax, [di]
mov ax,12[di]
mov ax,fred[si]

5.2.8 Based-Indexed Operands

Syntax

displacement[BP] [SI]
displacement[BP] [DI)
displacement[BX] [SI]
displacement[BX] [DI]

A based-indexed operand represents a memory address relative to a combi­
nation of base and index registers. The displacement can be any immediate
or direct-memory operand. It must evaluate to an absolute number or
memory address. If no displacement is given, zero is assumed.

The effective address of a based-indexed operand is the sum of the displace­
ment value and the contents of the given registers. If the BD register is
used, the address is relative to the segment pointed to by the SS register.
Otherwise, the address is relative to the segment pointed to by the DS
register.

73

Microsoft Macro Assembler Reference Manual

Based-indexed operands have a variety of alternate forms. Equivalent
forms include the following:

[displacement] [BP] [DI]
[BP+ DI+ displacement]
[BP+ DI]. displacement
[DI]+ displacement+ [BP]

In each case, the effective address is the sum of the displacement and the
contents of the given registers. Either base register can be combined with
either index register, but combining two base or two index registers is not
allowed.

Examples

mov
mov
mov
mov
mov
mov

ax, [bp] [si]
ax, [bx+di]
ax,12[bp+di]
ax, fred[bx] [si]
ax, fred [bx] [bp]
ax, fred [di] [si]

5.2.9 Structure Operands

Syntax

variable.field

Error - base registers combined
Error - index registers combined

A structure operand represents the memory address of one member of a
structure. The variable must either be the name of a structure or it must be
a memory operand that resolves to the address of a structure. The field
must be the name of a field within that structure. The variable is separated
from field by the structure field-name operator (.), which is described in
Section 5.3.8.

The effective address of a structure operand is the sum of the offsets of vari­
able and field. The address is relative to the segment or group in which the
variable is defined.

74

Operands and Expressions

Examples

date STRUC
month DW ?
day DW ?
year DW ?

date ENDS

current date date <'ja', '01', '84'>

mov ax,current_date.day
mov current_date.year, '85'

In the example above, the structure is first defined and declared. The first
MOY instruction puts '01' (the value of current_date. day) in the
AX register. The next instruction puts the value '85' in the variable
current_date.year.

st frame STRUC stack frame
retadr DW ? from lowest ...
de st DW ?
source DW ?
nbytes DW ? ... to highest address

st frame ENDS

copy PROC NEAR Push nbytes, source, dest before calling
mov bx,sp Load stack into base register
mov ax,ds
mov es, ax (es) = data segment
mov di, ss: [bx] . dest (di) = destination
mov si,ss: [bx] .source (si) = source
mov cx,ss: [bx] .nbytes (ex) = nbytes
rep movsb move bytes from ds:si to es:di
ret

copy ENDP

In this example, structure operands are used to access values on the stack.

Note

The procedure in the example above does not conform to the method of
passing parameters used in Microsoft higi1-level languages. As a result,
you could not use the SYMDEB Stack Trace command (K) in this case
procedure. See Section 4.6.27 in the Microsoft Macro Assembler User's
Guide.

76

Microsoft Macro Assembler Reference Manual

5.2.10 Record Operands

Syntax

recordname <[value],,,>

A record operand refers to the value of a record type. The operands can be
in expressions. The recordname must be the name of a record type defined
in the source file. The optional value is the value of a field in the record. If
more than one value is given, the values must be separated by commas (,).
Values include expressions or symbols that evaluate to constants. The
enclosing angle brackets (< >) are required, even if no value is given. If
no value for a field is given, the default value for that field is used. In the
next example, assume the following record definition:

encode RECORD hi:4, mid:3, lo:3

Example

reel encode <3,2,1>
mov ax, reel

In this example, a constant with the value 209 (ODlh) is moved into the AX
register. The following bit diagram illustrates how the value is obtained:

hi mid lo

I
I

I I
I

I
I ol ol ol ol ol ol oj o I 1 1 I ol 1 0 I ol ol i I

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Using record operands is similar to declaring a record and then using the
declared data except that, in using record operands, you are using constant
data. See Section 4.6.2 for information on declaring record data.

76

Operands and Expressions

5.2.11 Record-Field Operands

Syntax

record-fieldname

The record-field operand represents the location of a field in its correspond­
ing record. The operand evaluates to the bit position of the low-order bit
in the field and can be used as a constant operand.

The record-fieldname must be the name of a previously defined record field.
In the next example, assume the following record definition and declaration:

encode RECORD hi:4, mid:3, lo:3
reel encode <9,7,4>

At this point reel has a value of 636 (27Ch), shown in this bit diagram:

hi mid lo
I I

I I I I
ol ol ol ol ol ol 11 o I o I 11 11 11 11 11 ol ol
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Example

mov cl,hi
mov dx,recl
ror dx,cl
mov recl,dx

This example copies 6, the shift count for hi, to register CL. The contents
of reel are copied to DX. The shift count of field three (hi) is then used
to rotate the value of reel so that the value of hi is now at the lowest bit.
The new value is then put back into reel. At this point reel has a value
of 61449 (OF009h), as shown in the bit diagram below.

hi mid lo
I I I

I II I I I
I I I I I ol ol ol o I o I ol ol ol I I ol ol I I
7 6 5 4 3 2 I 0 7 6 5 4 3 2 I 0

77

Microsoft Macro Assembler Reference Manual

5.3 Operators and Expressions

An expression is a combination of operands and operators that evaluates to
a single value. Operands in expressions can include any of the operands
described in this chapter. The result of an expression can be a value or a
memory location, depending on the types of operands and operators used.

The assembler provides a variety of operators. Arithmetic, shift, relational,
and bitwise operators manipulate and compare the values of operands.
Attribute operators manipulate the attributes of operands, such as their
type, address, and size.

Sections 5.3.1-5.3.4 describe the arithmetic, relational, and logical opera­
tors in detail. Attribute operators are described in Sections 5.3.5-5.3.19.
In addition to the operators described here, you can use the DUP operator
(Section 4.3.6) and the special macro operators (Section 8.3).

5.3.1 Arithmetic Operators

Syntax

expression1* expression2
expression1/ expression2
expres sion1M 0 D expres sion2
expression1 + expression2
expression1-expression2
+expression
-expression

Arithmetic operators provide the common mathematical operations. Table
5.3 lists the operators and their meanings.

78

Operands and Expressions

Table 5.3

Arithmetic Operators

Operator

+

*
I
MOD

+

Meaning

Positive (unary)

Negative (unary)

Multiplication

Integer division

Remainder after division (modulus)

Addition

Subtraction

For all arithmetic operators except + and -, expression1 and expression!!
must be integer numbers. The + operator can be used to add an integer
number to a relocatable memory operand. The - operator can be used to
subtract an integer number from a relocatable memory operand. The -
operator can also be used to subtract one relocatable operand from
another, but only if the operands refer to locations within the same seg­
ment. The result is an absolute value.

Note

The unary plus and minus (used to designate positive or negative
numbers) are not the same as the binary plus and minus (used to desig­
nate addition or subtraction). The unary plus and minus have a higher
level of precedence, as shown in Table 5. 7 in Section 5.4.

Examples

14 * 4 Equals 56
14 I 4 Equals 3
14 MOD 4 Equals 2
14 + 4 Equals 18
14 4 Equals 10
14 +4 Equals 10
14 -4 Equals 18
alpha + 5 Add 5 to alpha's off set

79

Microsoft Macro Assembler Reference Manual

alpha - 5
alpha - beta

Subtract 5 from alpha's offset
Subtract beta's offset from alpha's

5.3.2 Slffi and SHL Operators

Syntax

expression SHR count
expression SHL count

The SHR and SHL operators shift expression right or left by count number
of bits. Bits shifted off the end of the expression are lost. If the count is
greater than or equal to 16, the result is 0. The bits will be shifted by 8 or
16 bits, depending on whether the value being shifted is a word or a byte.

Note

Do not confuse the assembler's SHR and SHL operators with the pro­
cessor instructions having the same names.

Examples

mov ax,OlllOlllb SHL 3
mov ah,OlllOlllb SHR 3

Move 00000001110111000b
Move OOOOlllOb

Notice that 16 bits are shifted into a word register (ax) in the first example.
In the second example, only 8 bits are shifted because the register (ah)
holds only 1 byte.

5.3.3 Relational Operators

Syntax

expression1 EQ expression2
expression1 NE expression2
expression1 LT expression2
expression1 LE expression2
expression1 GT expression2
expression1 GE expression2

80

Operands and Expressions

The relational operators compare expression1 and expression2 and return
true (OFFFFh) if the condition specified by the operator is satisfied, or false
(OOOOh) if it is not. The expressions must resolve to absolute values. Table
5.4 lists the operators and the values they return if the specified condition
is satisfied.

Table 5.4

Relational Operators

Operator Returned Value

EQ
NE
LT
LE
GT
GE

True OFFFh if expressions are equal.
True OFFFh if expressions are not equal.
True OFFFh if left expression is less than right.
True OFFFh if left expression is less than or equal to right.
True OFFFh if left expression is greater than right.
True OFFFh if left expression is greater than or equal to right.

Relational operators are typically used with conditional directives and con­
ditional instructions to direct program control.

Note

The EQ and NE operators treat their arguments as 16-bit numbers.
Numbers specified with the 16th bit on are considered negative
(OFFFFh is -1). Therefore, the expression -1 EQ OFFFFh is true,
while the expression -1 NE OFFFFh is false.

The LT, LE, GT, and GE operators treat their arguments as 17-bit
numbers, where the 17th bit specifies the sign. Therefore, OFFFFh is
the largest positive unsigned number (65535); it is not -1. The expres­
sion 1 GT -1 is true (OFFFFh), while the expression 1 GT OFFFFh is
false (0).

81

Microsoft Macro Assembler Reference Manual

Examples

1 EQ 0 False
1 NE 0 True
1 LT 0 False
1 LE 0 False
1 GT 0 True
1 GE 0 True

5.3.4 Bitwise Operators

Syntax

NOT expression
expression1 AND expression2
expression1 OR expression2
expression1 XOR expression2

The logical operators perform bitwise operations on expressions. In a bit­
wise operation, the operation is performed on each bit in an expression
rather than on the expression as a whole. The expressions must resolve to
absolute values.

Table 5.5 lists the logical operators and their meanings:

Table 5.5

Logical Operators

Operator

NOT
AND
OR
XOR

Examples

NOT llllOOOOb
0101010lb AND
0101010lb OR
0101010lb XOR

82

Meaning

Inverse
Boolean AND
Boolean OR
Boolean exclusive OR

; Equals llllllllOOOOllllb or OOOOllllb
llllOOOOb Equals 01010000b
llllOOOOb Equals 1111010lb
llllOOOOb Equals 10100101b

Operands and Expressions

5.3.5 Index Operator

Syntax

[expression1] [expression2]

The index operator, [], adds the value of expression1 to expression2. This
operator is identical to the + operator, except that expression1 is optional.

If expression1 is given, the expression must appear to the left of the opera­
tor. It can be any integer value, absolute symbol, or relocatable operand.
If no expression1 is given, the integer value 0 is assumed. If expression1 is a
relocatable operand, expression2 must be an integer value or absolute sym­
bol. Otherwise, expression2 can be any integer value, absolute symbol, or
relocatable operand.

The index operator is typically used to index elements of an array, such as
individual characters in a character string.

Examples

mov
mov
mov
mov

al, string[3]
ax,array[4]
string[last],al
cx,DGROUP: [1]

Move 4th element of string
Move 5th element of array
Move into LAST element of string
Move 2nd byte of DGROUP

Note that the last example is identical to the following statement:

mov ex, dgroup:l.

5.3.6 PTR Operator

Syntax

type PTR expression

The PTR operator forces the variable or label given by expression to be
treated as a variable or label having the type given by type. The type must
be one of the following names or values:

83

Microsoft Macro Assembler Reference Manual

Type Value

BYTE 1

WORD 2

DWORD 4

QWORD 8

TBYTE 10

NEAR OFFFFh

FAR OFFFEh

The expression can be any operand. The BYTE, WORD, and DWORD
types can be used with memory operands only. The NEAR and FAR
types can be used with labels only.

The PTR operator is typically used with forward references to explicitly
define what size or distance a reference has. If it is not used, the assembler
assumes a default size or distance for the reference. The PTR operator is
also used to enable instructions to access variables in ways that would oth­
erwise generate errors. For example, you could use the PTR operator to
access the high-order byte of a WORD size variable.

Section 5.6 discusses how the PTR operator can be used to avoid errors
associated with strong type checking. These errors include Illegal
size for i tern and Operand types must match.

Examples

call FAR PTR subrout3
mov BYTE PTR [array] ,1
add al,BYTE PTR [full_word]

In these examples the PTR operator overrides a previous data declaration.
The procedure subrout3 might have been declared NEAR, while array
and ful 1 word could have been declared with the DW directive.

84

5.3. 7 Segment-Override Operator

Syntax

segmentregister:expression
segmentname: expression
groupname: expression

Operands and Expressions

The segment-override operator (:) forces the address of a given variable or
label to be computed using the beginning of the given segmentregister, seg­
mentname, or groupname. If either segmentname or groupname is given, the
name must have been assigned to a segment register with a previous
ASSUME directive and defined using a SEGMENT or GROUP direc­
tive. The expression can be an absolute symbol or relocatable operand. The
segmentregister must be CS, DS, SS, or ES.

By default, the effective address of a memory operand is computed relative
to the DS, SS, or ES register, depending on the instruction and operand
type. Similarly, all labels are assumed to be NEAR. These default types
can be overridden using the segment-override operator.

Examples

mov ax, es: [bx] [si]
mov _TEXT:far_label,ax
mov ax,DGROUP:variable
mov al,cs:OOOlH

5.3.8 Structure Field-Name Operator

Syntax

variable.field

The structure field-name operator (.) is used to designate a field within a
structure. The variable is an operand (often a previously declared structure
variable) and field is the name of a field within a structure. This operator
is equivalent to the addition operator (+) in based or indexed operands.

85

Microsoft Macro Assembler Reference Manual

Example

inc month.day
mov time.min,O
mov [bx] .dest

5.3.9 SHORT Operator

Syntax

SHORT label

The SHORT operator sets the type of the given label to SHORT. Short
labels can be used in JMP instructions whenever the distance from the
label to the instruction is not more than 127 bytes. Instructions using
short labels are 1 byte smaller than identical instructions using near labels.

Example

jmp SHORT do_again Jump less than 128 bytes

5.3.10 TIDS Operator

Syntax

THIS type

The THIS operator creates an operand whose offset and segment values are
equal to the current location-counter value and whose type is given by type.
The type can be any one of the following:

86

BYTE
WORD

DWORD

QWORD

TBYTE
NEAR
FAR

Operands and Expressions

The THIS operator is typically used with the EQU or equal-sign (=)
directive to create labels and variables. This is similar to using the
LABEL directive to create labels and variables.

Examples

tag EQU THIS BYTE

The preceding example is equivalent to the statement tag LABEL BYTE.

check = THIS NEAR

The final example is equivalent to the statement check LABEL NEAR.

5.3.11 IIlGH and LOW Operators

Syntax

HIGH expression
LOW expression

The HIGH and LOW operators return the high and low 8 bits, respec­
tively, of expression. The HIGH operator returns the high-order 8 bits of
expression; the LOW operator returns the low-order 8 bits. The expression
can be any value.

Examples

mov
mov

ah,HIGH word_value
al,LOW OABCDh

5.3.12 SEG Operator

Syntax

SEG expression

Move high byte of word_value
Move OCDh

The SEG operator returns the segment value of expression. The expression
can be any label, variable, segment name, group name, or other symbol.

87

Microsoft Macro Assembler Reference Manual

Examples

mov ax,SEG variable_name
mov ax,SEG label_name

5.3.13 OFFSET Operator

Syntax

OFFSET expression

The OFFSET operator returns the offset of expression. The expression
can be any label, variable, segment name, or other symbol. The returned
value is the number of bytes between the item and the beginning of the seg­
ment in which it is defined. For a segment name, the returned value is the
offset from the start of the segment to the most recent byte generated for
that segment.

The segment-override operator (:) can be used to force OFFSET to return
the number of bytes between the item in expression and the beginning of a
named segment or group. This is the method used to generate valid offsets
for items in a group. See the second example below.

Examples

mov bx,OFFSET subrout3
mov bx,OFFSET dgroup:array

The returned value is always a relative value that is subject to change by
the linker when the program is actually linked.

5.3.14 TYPE Operator

Syntax

TYPE expression

The TYPE operator returns a number representing the type of expression.
If expression is a variable, the operator returns the size of the operand in
bytes. If expression is a label, the operator returns OFFFFh if the label is
NEAR, and OFFFEh if the label is FAR. Note that the returned value
can be used to specify the type for a PTR operator, as in the second of the
following two examples.

88

Operands and Expressions

Examples

mov ax,TYPE array
jmp (TYPE get_loc) PTR destiny

5.3.15 . TYPE Operator

Syntax

• TYPE expression

The • TYPE operator returns a byte that defines the mode and scope of
expression. If expression is not valid, . TYPE returns a 0.

Table 5.6 lists the variable's attributes as returned in bits O, 1, 5, and 7.

Table 5.6

. TYPE Operator and Variable Attributes

Bit Position

0
1
5
7

If Bit =0

Not program-related
Not data-related
Not defined
Local or public scope

If Bit =1

Program-related
Data-related
Defined
External scope

If both the scope bit and defined bit are zero, expression is not valid.

The • TYPE operator is typically used with conditional directives, where an
argument may need to be tested in order to make a decision regarding pro­
gram flow.

Example

x
z

DB
EQU

12
.TYPE x

This example sets z to 22h (00100010b). Bit 0 is not set in z because x is
not program-related. Bit 1 is set because x is data-related. Bit 5 is set

89

Microsoft Macro Assembler Reference Manual

because x is defined. Bit 7 is not set because x is local. The remaining bits
are never set.

5.3.16 LENGTH Operator

Syntax

LENGTH variable

The LENGTH operator returns the number of BYTE, WORD,
DWORD, QWORD, or TBYTE elements in variable. The size of each
element depends on the variable's defined type.

Only variables defined using the DUP operator return values that are
greater than 1. The returned value is always the number preceding the first
DUP operator.

In the next two examples, assume the following definitions:

array DW
table DW

Examples

100
100

DUP (1)
DUP(l,10 DUP(?))

mov cx,LENGTH array

In the preceding example, LENGTH returns 100.

mov cx,LENGTH table

In the final example, LENGTH returns 100. The returned value does not
depend on any nested DUP operators.

5.3.17 SIZE Operator

Syntax

SIZE variable

The SIZE operator returns the total number of bytes allocated for variable.
The returned value is equal to the value of LENGTH times the value of
TYPE.

90

Operands and Expressions

In the next example, assume the following definition:

array DW 100 DUP (1)

Example

mov bx,SIZE array

In this example, SIZE returns 200.

5.3.18 "WIDTH Operator

Syntax

WIDTH recordfieldnamel record

The WIDTH operator returns the width {in bits) of the given record field
or record. The recordfieldname must be the name of a field defined in a
record. The record must be the name of a record.

In the next examples, assume the following record definition and record
declaration:

rtype RECORD fieldl:3,field2:6,field3:7
reel rtype <>

Examples

widl WIDTH fieldl Equals 3
wid2 WIDTH field2 Equals 6
wid3 WIDTH f ield3 Equals 7
widrec WIDTH rtype Equals 16

Remember, the field name represents the bit count. For example, fieldl
equals 13 (the width of field2 plus the width of field3) while WIDTH
f ieldl equals 3.

91

Microsoft Macro Assembler Reference Manual

5.3.19 MASK Operator

Syntax

MASK recordfieldname: record

The MASK operator returns a bit mask for the bit positions in a record
occupied by the given record field. A bit in the mask contains a 1 if that
bit corresponds to a field bit. All other bits contain 0.

The recordfieldname must be the name of a field defined in a record.

In the next example, assume the following record definition and record
declaration:

rtype RECORD fieldl:3,field2:6,field3:7
reel rtype <>

Example

ml
m2
m3
mrec

MASK fieldl
MASK f ield2
MASK f ield3
MASK rtype

Equals EOOOh (lllOOOOOOOOOOOOOb)
Equals 1F80h (1111110000000b)
Equals 007Fh (lllllllb)
Equals OFFFFh (llllllllllllllllb)

5.4 Expression Evaluation and Precedence

Expressions are evaluated according to the rules of operator precedence and
order. Operations of highest precedence are performed first. Operations of
equal precedence are performed from left to right. This default order of
evaluation can be overridden by using enclosing parentheses. Operations in
parentheses are always performed before any adjacent operations. Table
5. 7 lists the precedence of all operators. Operators on the same line have
equal precedence.

92

Operands and Expressions

Table 5.7

Operator Precedence

Precedence

(Highest)
1
2
3
4
5
6
7
8
9
10
11
12
13
(Lowest)

Examples

s I 4 * 2
s I (4 * 2)
8 + 4 * 2
(8 + 4) * 2
8 EQ 4 AND 2 LT 3
8 EQ 4 OR 2 LT 3

Operators

LENGTH, SIZE, WIDTH, MASK,{),[],<>
• (structure field-name operator)

PTR, OFFSET, SEG, TYPE, THIS
HIGH, LOW
+,-(unary)
*,/,MOD, SHL, SHR
+, - (binary)
EQ, NE, LT, LE, GT, GE
NOT
AND
OR, XOR
SHORT, .TYPE

Equals 4
Equals 1
Equals 16
Equals 24
Equals OOOOh (false)
Equals OFFFFh (true)

5.5 Forward References

Although the assembler permits forward references to labels, variable
names, segment names, and other symbols, such references can lead to
assembly errors if not used properly. A forward reference is any use of a
name before it has been declared. For example, in the JMP instruction
below, the label target is a forward reference.

jmp target
mov ax, 0

target:

93

"Mlcrosoft Macro A.ssemb!er Reference Manual

Whenever the assembler encounters an undefined name in Pass 1, it
assumes that the name is a forward reference. If only a name is given, the
assembler makes assumptions about that name's type and segment register,
and uses these assumptions to generate code or data for the statement. For
example, in the JMP instruction above, MASM assumes that target is
an instruction label having NEAR type. It generates 3 bytes of instruction
code for the instruction.

The assembler bases its assumptions on the statement containing the for­
ward reference. Errors can occur when these assumptions are incorrect.
For example, if target were really a FAR label and not a NEAR label,
the assumption made by the assembler in Pass 1 would cause a phase error.
In other words, the assembler would generate 5 bytes of instruction code for
the JMP instruction in Pass 2 but only 3 in Pass 1.

To avoid errors with forward references, the segment override (:), PTR,
and SHORT operators should be used whenever necessary to override the
assumptions made by the assembler. The following guidelines list situa­
tions in which these operators should be used:

94

• If a forward reference is a variable that is relative to the ES, SS, or
CS register, then use the segment-override operator (:) to specify
the variable's segment register, segment, or group.

Examples

mov ax,ss:stacktop
inc data:time[l]
add ax,dgroup:_I

If the segment-override operator is not used, the assembler assumes
that the variable is relative to the DS register.

• If a forward reference is an instruction label in a JMP instruction,
then use the SHORT operator if the instruction is less than 128
bytes from the point of reference.

Example

jmp SHORT target

If SHORT is not used, the assembler assumes that the instruction
is greater than 128 bytes away. This does not cause an error, but it
does cause the assembler to generate an extra, and unnecessary,
NOP instruction.

• If a forward reference is an instruction label in a CALL or JMP
instruction, then use the PTR operator to specify the label's type.

Operands and Expressions

Examples

call FAR PTR print
jmp FAR PTR exit

The assembler assumes that the label has NEAR type, so PTR
need not be used for NEAR labels. If the label has FAR type,
however, and FAR PTR is not used, a phase error will result.

• If the forward reference is a segment name with a segment-override
operator(:), use the GROUP statement to associate the segment
name with a group name, then use the ASSUME statement to
associate the group name with a segment register.

Example

dgroup GROUP stack
ASSUME ss:dgroup

code SEGMENT

mov ax,stack:stacktop

If you do not associate a group with the segment name, the assem­
bler may ignore the segment override and use the default segment
register for the variable. This usually results in a phase error in
Pass 2.

5.6 Strong Typing for Memory Operands

The assembler carries out strict syntax checks for all instruction state­
ments, including strong typing for operands that refer to memory locations.
This means that any relocatable operand used in an instruction that
operates on an implied data type must either have that type, or have an
explicit type override {PTR operator).

For example, in the following program segment, the variable string is
incorrectly used in a move instruction.

string DB "A message."

mov ax,string[l]

96

Microsoft Macro Assembler Reference Manual

This statement will result in an Operand types must match error mes­
sage since string has BYTE type and the instruction expects a variable
having WORD type.

To avoid this error, the PTR operator must be used to override the
variable's type. The following statement will assemble correctly and exe­
cute as expected:

mov ax, WORD PTR string[l]

Note

96

Many assembly-language program listings in books and magazines are
written for assemblers with weak typing for operands. These programs
may produce error messages such as Illegal size for i tern or
Operand types must match when assembled as listed using the
Microsoft Macro Assembler. You can correct lines that produce errors
by using the PTR operator to assign the correct size to variables.

Chapter 6

Global Declarations

6.1 Introduction 99
6.2 PUBLIC Directive 99
6.3 EXTRN Directive 100
6.4 Program Example 101

97

Global Declarations

6.1 Introduction

The global-declaration directives allow you to define labels, variables, and
absolute symbols that can be accessed globally, that is, from all modules in
a program. Global declarations transform "local" symbols (labels, vari­
ables, and other symbols that are specific to the source files in which they
are defined) into "global" symbols that are available to all other modules of
the program.

The two global-declaration directives are PUBLIC and EXTRN. The
PUBLIC directive is used in public declarations, which transform locally
defined symbols into global symbols, making them available to other
modules. The EXTRN directive is used in external declarations, making a
global symbol's name and type known in a source file so that the global
symbol may be used in that file. Every global symbol must have a public
declaration in exactly one source file of the program. A global symbol can
have external declarations in any number of other source files. Sections
6.2-6.4 describe and demonstrate the global-declaration directives in detail.

6.2 PUBLIC Directive

Syntax

PUBLIC name,,,

The PUBLIC directive makes the variable, label, or absolute symbol
specified by name available to all other modules in the program. The name
must be the name of a variable, label, or absolute symbol defined within the
current source file. Absolute symbols, if given, can only represent 1- or 2-
byte integer or string values.

The assembler converts all lowercase letters in name to uppercase before
copying the name to the object file. The /ML and /MX options can be
used in the MASM command line to direct the assembler to preserve lower­
case letters when copying public and external symbols to the object file.
Sections 2.3.7 and 2.3.8 of the Microsoft Macro Assembler User's Guide
describe the /ML and /MX options.

Symbols must be declared public before they can be used for symbolic
debugging. See Section 4.2 of the Microsoft Macro Assembler User's Guide
for details on how to prepare and use symbol files with SYMDEB.

99

Microsoft Mac.ro Assembler Reference Manual

Example

PUBLIC
true
status DB
start LABEL
clear PROC

true, status, start, clear
OFFFFH
1
FAR
NEAR

The values declared public in this example include an absolute symbol, a
variable, a label, and a procedure.

6.3 EXTRN Directive

Syntax

EXTRN name: type,,,

The EXTRN directive defines an external variable, label, or symbol of the
specified name and type. An external item is any variable, label, or symbol
that has been declared with a PUBLIC directive in another module of the
program. The type must match the type given to the item in its actual
definition. It can be any one of the following:

BYTE
WORD

DWORD

QWORD

TBYTE
NEAR
FAR
ABS

The ABS type is for symbols that represent absolute numbers.

Although the actual address is not determined until the object files are
linked, the assembler may assume a default segment for the external item,
based on where the EXTRN directive is placed in the module. If the direc~
tive is placed inside a segment, the external item is assumed to be relative
to that segment, and the item's public declaration {in some other module)

100

Global Declarations

must be in a segment having the same name and attributes. If the directive
is outside all segments, no assumption is made about what segment the
item is relative to, and the item's public declaration can be in any segment
in any module. In either case, the segment-override operator (:) can be
used to override the default segment of an external variable or label.

Example

EXTRN tagn:near
EXTRN varl:word,var2:dword

6.4 Program Example

The following source files illustrate a program that uses public and external
declarations to access instruction labels. The program consists of two
modules, named main and task. The main module is the program's ini­
tializing module. Execution starts at the instruction labeled start in
main, and passes to the instruction labeled pr int in task. An MS-DOS
system call in the task module is used to print Hello on the screen. Exe­
cution then returns to the instruction labeled exit in the main module.

Main Module

NAME
PUBLIC
EXTRN

stack SEGMENT
DW

stack ENDS

data SEGMENT
data ENDS

code SEGMENT
ASSUME

start:
mov
mov
jmp

main
exit
print:near

word stack 'STACK'
64 DUP (?)

word public 'DATA'

byte public 'CODE'
cs:code,ds:data

ax, data
ds,ax
print

Load segment location
into DS register

Go to PRINT in other module

101

Microsoft Macro Assembler Reference Manual

exit:

code

mov
int
ENDS
END

Task Module

data
string
data

code

print:

code

NAME
PUBLIC
EXTRN

SEGMENT
DB
ENDS

SEGMENT
ASSUME

mov
mov
int
jmp
ENDS
END

ah, 4Ch
21h

start

task
print
exit:near

word public 'DATA'
"Hello", 13, 10, "$"

byte public 'CODE'
cs:code, ds:data

dx,OFFSET string
ah,09h
21h
exit

Call terminate function

Load string location
Call string display function

Go back to other module

In this example, the symbol exit is declared public in the main module so
that it can be accessed from another source module (task in the example).
The main module also contains an external declarat10n of the symbol
pr int. This declaration defines pr int to be a near label so that it can be
accessed from the main module, even though it is assumed to be located
and declared public in another source module. A JMP instruction later in
the module has this label as its destination.

The symbol pr int is declared public in the task module so that it can be
accessed from another module tmain in the example). The symbol exit is
defined as a near label so that it can be accessed from this module, even
though it is assumed to be located and declared public in the other module.

Before this program can be executed, these source files must be assembled
individually, then linked together using LINK.

102

Chapter 7

Conditional Directives

7.1 Introduction 105
7.2 Conditional-Assembly Directives 105
7.2.1 IF and JFE Directives 106
7.2.2 IFl and JF2 Directives 107
7.2.3 IFDEF and JFNDEF Directives 107
7.2.4 IFB and JFNB Directives 108
7.2.5 IFIDN and IFDIF Directives 109
7.3 Conditional Error Directives 110
7.3.1 .ERR, .ERRl, and .ERR2 Directives 111
7.3.2 .ERRE and .ERRNZ Directives 112
7.3.3 .ERRDEF and .ERRNDEF Directives 112
7.3.4 .ERRB and .ERRNB Directives 113
7.3.5 .ERRIDN and .ERRDIF Directives 114

103

Conditional Directives

7.1 Introduction

The Microsoft Macro Assembler provides two types of conditional direc­
tives. Conditional-assembly directives test for a specified condition and
assemble a block of statements if the condition is true. Conditional error
directives test for a specified condition and generate an error if the condi­
tion is true.

Both kinds of conditional directives only test assembly-time conditions.
They cannot test run-time conditions since these are not known until an
executable program is run. Only expressions that evaluate to constants
during assembly can be compared or tested.

Since macros and conditional-assembly directives are often used together,
you may need to refer to Chapter 8 to understand some of the examples in
this chapter. In particular, conditional directives are frequently used with
the special macro operators described in Section 8.3.

7.2 Conditional-Assembly Directives

The conditional.,.assembly directives include the following:

IF

IFE

IFl

IF2

IF DEF

IFNDEF

IFB

IFNB

IFIDN

IFDIF

ELSE

END IF

The IF directives and the ENDIF and ELSE directives can be used to

106

Microsoft Macro Assembler Reference Manual

enclose the statements to be considered for conditional assembly. The con­
ditional block takes the following form:

IF
statements
[ELSE
statements]
END IF

The statements following IF can be any valid statements, including other
conditional blocks. The ELSE directive and its statements are optional.
ENDIF ends the block.

The statements in the conditional block are assembled only if the condition
specified by the corresponding IF directive is satisfied. If the conditional
block contains an ELSE directive, only the statements up to the ELSE
directive will be assembled. The statements following the ELSE directive
are assembled only if the IF condition is not met. An ENDIF directive
must mark the end of any conditional-assembly block. No more than one
ELSE directive is allowed for each IF directive.

IF directives can be nested up to 255 levels. To avoid ambiguity, a nested
ELSE directive always belongs to the nearest preceding IF directive that
does not have its own ELSE.

7 .2.1 IF and IFE Directives

Syntax

IF expression
IFE expression

The IF and IFE directives test the value of an expression. The IF directive
grants assembly if the value of expression is true (nonzero). The IFE direc­
tive grants assembly if the value of expression is false (0). The expression
must resolve to an absolute value and must not contain forward references.

Example

IF debug

END IF

106

EXTRN dump:FAR
EXTRN trace:FAR
EXTRN breakpoint:FAR

Conditional Directives

In this example, the variables within the block will only be declared exter­
nal if the symbol debug evaluates to true (nonzero).

7.2.2 IF'l and IF2 Directives

Syntax

IFl
IF2

The IFl and IF2 directives test the current assembly pass. The IFl direc­
tive grants assembly only on Pass 1. IF2 grants assembly only on Pass 2.
The directives take no arguments.

Example

IFl
%OUT Beginning Pass 1

ELSE
%OUT Beginning Pass 2

END IF

7 .2.3 IFDEF and IFNDEF Directives

Syntax

IFDEF name
IFNDEF name

The IFDEF and IFNDEF directives test whether or not the given name
has been defined. The IFDEF directive grants assembly only if name is a
label, variable, or symbol. The IFNDEF directive grants assembly if name
has not yet been defined.

The name can be any valid name. Note that if name is a forward reference,
it is considered undefined on Pass 1, but defined on Pass 2.

Example

IFDEF buffer
bufl DB 10 DUP(?)

END IF

107

Microsoft Macro Assembler Reference Manual

In this example, bu f 1 is allocated only if buff er has been previously
defined. One way to use this conditional block would be to leave buffer
undefined in the source file and define it if you needed it by using the
/Dsymbol option when you start MA.SM. For example, if the conditional
block is in test. asm, you could start the assembler with the command
line:

MASM test /Dbuffer;

The symbol buffer would be defined, and as a result the conditional­
assembly block would allocate bu fl. However, if you didn't need bu fl,
you could use the command line:

MASM test;

7 .2.4 IFB and IFNB Directives

Syntax

IFB <argument>
IFNB <argument>

The IFB and IFNB directives test argument. The IFB directive grants
assembly if argument is blank. The IFNB directive grants assembly if
argument is not blank. The arguments can be any name, number, or
expression. The angle brackets (< >) are required.

The IFB and IFNB directives are intended for use in macro definitions.
They can control conditional-assembly of statements in the macro, based
on the parameters passed in the macro call. In such cases, argument should
be one of the dummy parameters listed by the MACRO directive.

Example

pushall

pushall
pushall

108

MACRO regl,reg2,reg3,reg4,reg5,reg6
IFNB <regl> ;; If parameter not blank

END IF
ENDM

push regl push one register and repeat
pushall reg2,reg3,reg4,reg5,reg6

ax,bx,si,ds
cs,es

Conditional Directives

In this example, pusha 11 is a recursive macro that continues to call itself
until it encounters a blank argument. Any register or list of registers (con­
sisting of up to six registers) can be passed to the macro for pushing.

7 .2.5 1FIDN and 1FD1F Directives

Syntax

IFIDN <argument1>,<argument2>
IFDIF < argument1 >, < argument2>

The IFIDN and IFDIF directives compare argument1 and argument2. The
IFIDN directive grants assembly if the arguments are identical. The
IFDIF directive grants assembly if the arguments are different. The argu­
ments can be any names, numbers, or expressions. To be identical, each
character in argument1 must match the corresponding character in argu­
ment2. Case is significant. The angle brackets (< >) are required. The
arguments must be separated by a comma(,).

The IFIDN and IFDIF directives are intended for use in macro definitions.
They can control conditional assembly of macro statements, based on the
parameters passed in the macro call. In such cases, the arguments should
be dummy parameters listed by the MACRO directive.

Example

divide

divide

MACRO
IFDIF
mov
mov
div
END IF
ENDM

6,%test

numerator, denominator
<denominator>,<O> If not dividing by zero
ax, numerator ,, divide AX by BX
bx, denominator
bx Result in accumulator

In this example, a macro uses the IFDIF directive to check against dividing
by a constant that evaluates to 0. The macro is then called, using a per­
cent sign (%) on the second parameter so that the value of the parameter,
rather than its name{ will be evaluated. See Section 8.3.4 for a discussion
of the expression (%) operator.

109

Microsoft Macro Assembler Reference Manual

If the parameter test was previously defined with the statement

test EQU 0

then the condition fails and the code in the block will not be assembled.
However, if the parameter test was defined with the statement

test DW 0

error 42, Constant was expected, will be generated. This is because
the assembler has no way of knowing the run-time value of test.
Remember, conditional directives can only evaluate constants that are
known at assembly time.

7.3 Conditional Error Directives

Conditional error directives can be used to debug programs and check for
assembly-time errors. By inserting a conditional error directive at a key
point in your code, you can test assembly-time conditions at that point.
You can also use conditional error directives to test for boundary condi­
tions in macros.

The conditional error directives, and the errors they produce, are listed in
Table 7.1.

Table 7.1

Conditional Error Directives

Directive Number Message

.ERRl 87 Forced error - passl

.ERR2 88 Forced error - pass2

.ERR 89 Forced error

.ERRE 90 Forced error - expression equals 0

.ERRNZ 91 Forced error - expression not equal 0

.ERRNDEF 92 Forced error - symbol not defined

.ERRDEF 93 Forced error - symbol defined

.ERRB 94 Forced error - string blank

.ERRNB 95 Forced error - string not blank

.ERRIDN 96 Forced error - strings identical

.ERRDIF 97 Forced error - strings different

110

Conditional Directives

Like other fatal assembler errors, those generated by conditional error
directives cause the assembler to return exit code 7. If a fatal error is
encountered during assembly, MA.SM will delete the object module. All
conditional error directives exc?.pt ERRl generate fatal errors.

7.3.1 .ERR, .ERRl, and .ERR2 Directives

Syntax

.ERR

.ERRl

.ERR2

The .ERR, .ERRl, and .ERR2 directives force an error at the points at
which they occur in the source file. The .ERR directive forces an error
regardless of the pass, while the .ERRl and .ERR2 directives force the
error only on their respective passes. The .ERRl directive only appears on
the screen or in the listing file if you use the /D option to request a Pass 1
listing. Unlike other conditional error directives, it is not a fatal error.

You can place these directives within conditional-assembly blocks or mac­
ros to see which blocks are being expanded.

Example

IfDEF dos

ELSE

END IF

IFDEF xenix

ELSE
.ERR
END IF

This example makes sure that either the symbol dos or the symbol xenix
is defined. If neither is defined, the nested ELSE condition is assembled
and an error message is generated. Since the .ERR directive is used, an
error would be generated on each pass. You could use the .ERR2 directive
if you wanted only a fatal error, or you could use the .ERRl directive if
you wanted only a warning error.

111

Microsoft Macro Assembler Reference Manual

7 .3.2 .ERRE and .ERRNZ Directives

Syntax

.ERRE expression

.ERRNZ expression

The .ERRE and .ERRNZ directives test the value of an expression. The
.ERRE directive generates an error if the expression is false (0). The
.ERRNZ directive generates an error if the expression is true (nonzero).
The expression must resolve to an absolute value and must not contain for­
ward references.

Example

buffer MACRO
.ERRE
bname
ENDM

count,bname
count LE 128 ,,
DB count DUP(O);;

Allocate memory, but
no more than 128 bytes

buffer 128, bufl
buffer 129,buf2

Data allocated - no error
Error generated

In this example, the .ERRE directive is used to check the boundaries of a
parameter passed to the macro buffer. If count is less than or equal to
128, the expression being tested by the error directive will be true (nonzero)
and no error will be generated. If count is greater than 128, the expres­
sion will be false (0) and the error will be generated.

7 .3.3 .ERRDEF and .ERRNDEF Directives

Syntax

.ERRDEF name

.ERRNDEF name

The .ERRDEF and .ERRNDEF directives test whether or not name has
been defined. The .ERRDEF directive produces an error if name is defined
as a label, variable, or symbol. The .ERRNDEF directive produces an
error if name has not yet been defined. If name is a forward reference, it is
considered undefined on Pass 1, but defined on Pass 2.

112

Conditional Directives

Example

.ERRDEF symbol
IF DEF configl

.symbol EQU 0

END IF
IF DEF config2

.symbol EQU 1

ENDIF
.ERRNDEF symbol

In this example, the .ERRDEF directive at the beginning of the condi­
tional blocks makes sure that symbo 1 has not been defined before entering
the blocks. The .ERRNDEF directive at the end ensures that symbo 1
was defined somewhere within the blocks.

7 .3.4 .ERRB and .ERRNB Directives

Syntax

.ERRB <string>

.ERRNB <string>

The .ERRB and .ERRNB directives test the given string. The .ERRB
directive generates an error if string is blank. The .ERRNB directive gen­
erates an error if string is not blank. The string can be any name, number,
or expression. The angle brackets (< >) are required.

These conditional error directives can be used within macros to test for the
existence of parameters.

Example

work MACRO realargltestarg
.ERRB <realarg> 1 , Error if no parameters
.ERRNB <testarg> 11 Error if more than one parameter

ENDM

113

Microsoft Macro Assembler Reference Manual

In this example, error directives are used to make sure that one, and only
one, argument is passed to the macro. The .ERRB directive generates an
error if no argument is passed to the macro. The .ERRNB directive gen­
erates an error if more than one argument is passed to the macro.

7 .3.5 .ERRIDN and .ERRDIF Directives

Syntax

.ERRIDN <string1>,<string2>

.ERRDIF <string1>,<string2>

The .ERRID N and .ERRDIF directives test whether two strings are
identical. The .ERRIDN directive generates an error if the strings are
identical. The .ERRDIF generates an error if the strings are different.
The strings can be names, numbers, or expressions. To be identical, each
character in string1 must match the corresponding character in string2.
String checks are case-sensitive. The angle brackets (< >) are required.

Example

add em
Error if ad2 is 'ax'
Error if ad2 is 'AX'

MACRO adl,ad2,sum
.ERRIDN <ax>,<ad2> ,,
.ERRIDN <AX>,<ad2>
mov ax,adl ,, Would overwrite if ad2 were AX
add ax,ad2
mov sum, ax ,, Sum must be register or memory
ENDM

In this example, the .ERRIDN directive is used to protect against passing
the AX register as the second parameter, because the macro won't work if
the AX register is passed as the second parameter. Note that the directive
is used twice to protect against the two most likely spellings.

114

Chapter 8

Macro Directives

8.1 Introduction 117
8.2 Macro Directives 117
8.2.1 MACRO and ENDM Directives 118
8.2.2 Macro Calls 121
8.2.3 LOCAL Directive 122
8.2.4 PURGE Directive 123
8.2.5 REPT and ENDM Directives 124
8.2.6 IBP and ENDM Directives 125
8.2.7 IBPC and ENDM Directives 126
8.2.8 EXITM Directive 127
8.3 Macro Operators 128
8.3.1 Substitute Operator 129
8.3.2 Literal-Text Operator 130
8.3.3 Literal-Character Operator 131
8.3.4 Expression Operator 131
8.3.5 Macro Comment 132

116

Macro Directives

8.1 Introduction

This chapter explains how to create and use macros in your source files. It
discusses the macro directives and the special macro operators. Since mac­
ros are closely related to conditional directives, you may need to review
Chapter 7 to follow some of the examples in this chapter.

Macro directives enable you to write a named block of source statements,
then use that name in your source file to represent the statements. During
assembly, MA.SM automatically replaces each occurrence of the macro
name with the statements in the macro definition. You can place a block of
statements anywhere in your source file any number of times by simply
defining a macro block once, then inserting the macro name at each loca­
tion where you want the macro block to be assembled. You can also pass
parameters to macros.

A macro can be defined any place in the source file as long as the definition
precedes the first source line that calls that macro. Macros can be kept in a
separate file and made available to the program through an INCL UDE
directive (see Section 9.2).

Often a task can be done by either a macro or procedure. For example, the
Addup procedure shown in Section 3.10 does the same thing as the Addup
macro in Section 8.2.l. Macros are expanded on every occurrence of the
macro name, so they can increase the length of the executable file if called
repeatedly. Procedures take up less space, but the increased overhead of
saving and restoring addresses and parameters can make them slower.

8.2 Macro Directives

The macro directives are listed below:

MACRO
ENDM
LOCAL
PURGE
REPT

117

~fierosoft ~faero Assemble~ Reference ~1a.nual

IRP

IRPC

EXITM

The MACRO and ENDM directives designate the beginning and end of a
macro block. The LOCAL directive lets you define labels used only within
a macro, and the PURGE directive lets you delete previously defined mac­
ros. The EXITM directive allows you to exit from a macro before all the
statements in the block are expanded.

The REPT, IRP, and IRPC directives let you create contiguous blocks of
repeated statements. These repeat blocks are frequently placed within
macros, but they can also be used independently. You can control the
number of repetitions by specifying a number; or by allowing the block to
be repeated once for each parameter in a list; or by having the block
repeated once for each character in a string.

8.2.1 MACRO and ENDM Directives

Syntax

name MACRO [dummyparameter,,,]
statements
ENDM

The MACRO and ENDM directives create a macro having name and con­
taining the given statements.

The name must be a valid name and must be unique. It is used in the
source file to invoke the macro. The dummyparameter is a name that acts
as a placeholder for values to be passed to the macro when it is called. Any
number of dummyparameters can be specified, but they must all fit on one
line. If you give more than one, you must separate them with commas (,).
The statements are any valid MASM statements, including other macro
directives. Any number of statements can be used. The dummy parame­
ters can be used any number of times in these statements.

A macro is "called" any time its name appears in a source file (macro names
in comments are ignored). MASM copies the statements in the macro
definition to the point of the call, replacing any dummy parameters in these
statements with actual parameters passed in the call.

118

Macro Directives

Macro definitions can be nested. This means a macro can be defined within
another macro. MASM does not process nested definitions until the outer
macro has been called. Therefore, nested macros cannot be called until the
outer macro has been called at least once. Macro definitions can be nested
to any depth. Nesting is limited only by the amount of memory available
when the source file is assembled.

Macro definitions can contain calls to other macros. These nested macro
calls are expanded like any other macro call, but only when the outer macro
is called. Macro definitions can also be recursive: they can call themselves,
as illustrated in the example in Section 7 .2.4.

Example

addup MACRO
mov
add
add
ENDM

adl,ad2,ad3
ax, adl
ax, ad2
ax, ad3

,, First parameter in AX
Add next two parameters

and leave sum in AX

The preceding example defines a macro named addup, which uses three
dummy parameters to add three values and leave their sum in the AX
register. The three dummy parameters will be replaced with actual values
when the macro is called.

MASM assembles the statements in the macro only if the macro is called,
and only at the point in the source file from which it is called. Thus, all
addresses in the assembled code will be relative to the macro call, not the
macro definition. The macro definition itself is never assembled.

You must be careful when using the word MACRO after the TITLE,
SUBTTL, and NAME directives. Since the MACRO directive overrides
these directives, placing the word macro immediately after these directives
would cause the assembler to begin to create macros named TITLE,
SUBTTL, and NAME. For example, the line:

TITLE Macro File

may be intended to give an include file the title "Macro File", but its effect
will be to create a macro called TITLE that accepts the dummy parameter
Fi 1 e. Since there will be no corresponding ENDM directive, an error will
usually result.

To avoid this problem, you should alter the word macro in some way when
using it in a title or name. For example, change the spelling or add an
underline character (MAKRO or _MACRO).

119

Microsoft Macro Assembler Reference Manual

Note

MASM replaces all occurrences of a dummy parameter's name, even if
you do not intend it to. For example, if you use a register name such as
AX or BH for a dummy parameter, MASM replaces all occurrences of
that register name when it expands the macro. If the macro definition
contains statements that use the register, not the dummy, the macro
will be incorrectly expanded.

Note

120

Macros can be redefined. You need not purge the first macro before
redefining it. The new definition automatically replaces the old
definition. If you redefine a macro from within the macro itself, make
sure there are no lines between the ENDM directive of the nested
redefinition and the ENDM directive of the original macro. The fol­
lowing example may produce incorrect code:

dos tu ff MACRO

dostuff MACRO

ENDM
;; Comments or statements not allowed
ENDM

To correct the error, remove the line between the ENDM directives.

Macro Directives

8.2.2 Macro Calls

Syntax

name [actualparameter,,,]

A macro call directs MASM to copy the statements of the macro name to
the point of call and to replace any dummy parameters in these statements
with the corresponding actual parameters. The name must be the name of
a macro defined earlier in the source file. The actualparameter can be any
name, number, or other value. Any number of actual parameters can be
given, but they must all fit on one line. Multiple parameters must be
separated by commas, spaces, or tabs.

MASM replaces the first dummy parameter with the first actual parame­
ter, the second with the second, and so on. If a macro call has more actual
parameters than <lummy parameters, the extra actual parameters are
ignored. If a call has fewer actual parameters than dummy parameters, any
remaining dummy parameters are replaced with a null (blank) string. You
can use the IFB, IFNB, .ERRB, and .ERRNB directives to have your
macros check for null strings and take appropriate action. See Sections
7.2.4 and 7.3.4.

If you wish to pass a list of values as a single actual parameter, you must
place angle brackets (< >) around the list. The items in the list must be
separated by commas (,).

Examples

allocblock 1,2,3,4,5

The first example passes five numeric parameters to the macro called
al locblock.

allocblock <l,2,3,4,5>

The second example passes one parameter to a 11ocb1 ock. The parameter
is a list of five numbers.

add up bx, 2, count

121

Microsoft Macro Assembler Reference Manual

The final example passes three parameters to the macro addup. MASM
replaces the corresponding dummy parameters with exactly what is typed
in the macro call parameters. Assuming that addup is the same macro
defined at the end of Section 8.2.1, the assembler would expand the macro
to the following code:

mov ax, bx
add ax, 2
add ax, count

See Section 2.4 of the Microsoft Macro Assembler User's Guide for an ex­
ample of how macros are shown in listing files.

8.2.3 LOCAL Directive

Syntax

LOCAL dummyname,,,

The LOCAL directive creates unique symbol names for use in macros. The
dummyname is a name for a placeholder that is to be replaced by a unique
name when the macro is expanded. At least one dummyname is required. If
you give more than one, you must separate the names with commas (,). A
dummyname can be used in any statement within the macro.

MASM creates a new actual name for the dummy name each time the
macro is expanded. The actual name has the following form:

??number

The number is a hexadecimal number in the range 0000 to FFFF. Do not
give other symbols names in this format, since doing so will produce a label
or symbol with multiple definitions. In listings, the dummy name is shown
in the macro definition, but the actual names are shown for each expansion
of the macro.

The LOCAL directive is typically used to create a unique label that will
only be used in a macro. Normally, if a macro containing a label is used
more than once, MASM will display an error message indicating the file
contains a label or symbol with multiple definitions, since the same label
will appear in both expansions. To avoid this problem, all labels in macros
should be dummy names declared with the LOCAL directive.

122

Macro Directives

Note

The LOCAL directive can be used only in a macro definition, and it
must precede all other statements in the definition. If you try to put a
comment line or an instruction before the LOCAL directive, a warning
error will result.

Example

power

again:

gotzero:

MACRO
LOCAL
mov
mov
jcxz
mov
mul
loop

ENDM

factor,exponent
again,gotzero
ex, exponent
ax,l
gotzero
bx, factor
bx
again

Declare symbols for macro
Exponent is count for loop

, , Multiply by 1 first time
Get out if exponent is zero

Multiply until done

In this example, the LOCAL directive defines the dummy names again
and gotzero. These names will be replaced with unique names each time
the macro is expanded. For example, the first time the macro is called,
again will be assigned the name ? 70000 and gotzero will be assigned
??0001. The second time through again will be assigned ??0002 and
gotzero will be assigned ??0003, and so on.

8.2.4 PURGE Directive

Syntax

PURGE macroname,,,

The PURGE directive deletes the current definition of the macro called
macroname. Any subsequent call to that macro causes the assembler to
generate an error.

The PURGE directive is intended to clear memory space no longer needed
by a macro. If macroname is an instruction or directive mnemonic, the
directive name is restored to its previous meaning.

123

Microsoft Macro Assembler Reference Manual

The PURGE directive is often used with a "macro library" to let you
choose those macros from the library that you really need in your source
file. A macro library is simply a file containing macro definitions. You add
this library to your source file using the INCLUDE directive, then remove
unwanted definitions using the PURGE directive.

It is not necessary to PURGE a macro before redefining it. Any
redefinition of a macro automatically purges the previous definition. Also,
any macro can purge itself as long as the PURGE directive is on the last
line of the macro.

Examples

PURGE add up

The first example deletes the macro named addup.

PURGE rnacl, rnac2, rnac9

The second example deletes the macros named macl , mac2 , and mac9.

8.2.5 REPT and ENDM Directives

Syntax

REPT expression
statements
ENDM

The REPT and ENDM directives enclose a block of statements to be
repeated expression number of times. The expression must evaluate to a
16-bit unsigned number. It must not contain external or undefined sym­
bols. The statements can be any valid statements.

Example

x

x

124

REPT

DB
ENDM

0
10
x + 1
x

Macro Directives

This example repeats the equal-sign () and DB directives 10 times. The
resulting statements create 10 bytes of data whose values range from 1 to
10.

8.2.6 IRP and ENDM Directives

Syntax

IRP dummyname, <parameter,,,>
statements
ENDM

The IRP and ENDM directives designate a block of statements to be
repeated once for each parameter in the list enclosed by angle brackets
{ < >). The dummyname is a name for a placeholder to be replaced by the
current parameter. The parameter can be any legal symbol, string,
numeric, or character constant. Any number of parameters can be given.
If you give more than one parameter, you must separate them with commas
{,). The angle brackets (< >) around the parameter list are required. The
statements can be any valid assembler statements. The dummyname can be
used any number of times in these statements.

When MASM encounters an IRP directive, it makes one copy of the state­
ments for each parameter in the enclosed list. While copying the state­
ments, it substitutes the current parameter for all occurrences of dum­
myname in these statements. If a null parameter (< >) is found in the list,
the dummy name is replaced with a null value. If the parameter list is
empty, the IRP directive is ignored and no statements are copied.

Example

IRP x,<0,1,2,3,4,5,6,7,8,9>
DB 10 DUP (x)

ENDM

This example repeats the DB directive 10 times, duplicating the numbers in
the list once for each repetition. The resulting statements create 100 bytes
of data with the values 0 through 9 duplicated 10 times.

125

Microsoft Macro Assembler Reference Manual

Notes

Assume an IRP directive is used inside a macro definition and the
parameter list of the IRP directive is also a dummy parameter of the
macro. In this case, you must enclose that dummy parameter within
angle brackets. For example, in the following macro definition, the
dummy parameter x is used as the parameter list for the IRP directive:

alloc MACRO
IRP
DB
ENDM
ENDM

x
y,<x>
y

If this macro is called with

alloc <0,1,2,3,4,5,6,7,8,9>

the macro expansion becomes

IRP
DB
ENDM

y,<0,1,2,3,4,5,6,7,8,9>
y

The macro removes the brackets from the actual parameter before
replacing the dummy parameter. You must provide the angle brackets
for the parameter list yourself.

8.2.7 IRPC and ENDM Directives

Syntax

IRPC dummyname,string
statements
ENDM

The IRPC and ENDM directives enclose a block of statements that is
repeated once for each character in string. The dummyname is a name for a
placeholder to be replaced by the current character in the string. The
string can be any combination of letters, digits, and other characters. The
string should be enclosed with angle brackets (< >) if it contains spaces,

126

Macro Directives

commas, or other separating characters. The statements can be any valid
assembler statements. The dummyname can be used any number of times
in these statements.

When MASM encounters an IRPC directive, it makes one copy of the
statements for each character in the string. While copying the statements,
it substitutes the current character for all occurrences of dummyname in
these statements.

Example

IRPC x,0123456789
DB x + 1

ENDM

This example repeats the DB directive 10 times, once for each character in
the string 0123456789. The resulting statements create 10 bytes of data
having the values 1 through 10.

8.2.8 EXITM Directive

Syntax

EXITM

The EXITM directive tells the assembler to terminate macro or repeat­
block expansion and continue assembly with the next statement after the
macro call or repeat block. The EXITM directive is typically used with
IF directives to allow conditional expansion of the last statements in a
macro or repeat block.

When EXITM is encountered, the assembler exits the macro or repeat
block immediately. Any remaining statements in the macro or repeat block
are not processed. If EXITM is encountered in a macro or repeat block
nested in another macro or repeat block, MASM returns to expanding the
outer level block.

127

Microsoft Macro Assembler Reference Manual

Example

alloc MACRO times
x 0
REPT times I I Repeat up to 256 times

IFE x - OFFh I' Does x = 255 yet?
EXITM If so, quit
ELSE
DB x ''

Else allocate x
END IF

x x + 1 '' Increment x
ENDM
ENDM

This example defines a macro that creates no more than 255 bytes of data.
The macro contains an IFE directive that checks the expression x-OFFh.
When this expression is 0 (x equal to 255), the EXITM directive is pro­
cessed and expansion of the macro stops.

8.3 Macro Operators

The macro and conditional directives use the following special set of macro
operators:

Operator

&

<>

%
; ;

Definition

Substitute operator

Literal-text operator

Literal-character operator

Expression operator

Macro comment

When used in a macro definition or a conditional-assembly directive, these
operators carry out special control operations, such as text substitution.
They are described in Sections 8.3.1-8.3.5.

128

Macro Directives

8.3.1 Substitute Operator

Syntax

&dummyparameter

or

dummyparameter&

The substitute operator(&) forces MASM to replace dummyparameter
with its corresponding actual parameter value. The operator is used any­
where a dummy parameter immediately precedes or follows other charac­
ters, or whenever the parameter appears in a quoted string.

Example

err gen
error&x

MACRO
DB
ENDM

y,x
'Error &y - &x'

In the example above, MASM replaces &x with the value of the actual
parameter passed to the macro errgen. If the macro is called with the
statement

errgen l,wait

the macro is expanded to

errorwait DB 'Error 1 - wait'

129

Microsoft Macro Assembler Reference Manual

Note

For complex, nested macros, you can use extra ampersands(&) to delay
the actual replacement of a dummy parameter. In general, you need to
supply as many ampersands as there are levels of nesting.

For example, in the following macro definition, the substitute operator
is used twice with z to make sure its replacement occurs while the IRP
directive is being processed:

alloc MACRO
IRP
x&&z
ENDM
ENDM

x
Z, <1, 2, 3>
DB z

In this example, the dummy parameter x is replaced immediately when
the macro is called. The dummy parameter z, however, is not replaced
until the IRP directive is processed. This means the parameter is
replaced once for each number in the IRP parameter list. If the macro
is called with

alloc var

the expanded macro will be

varl
var2
var3

DB
DB
DB

1
2
3

8.3.2 Literal-Text Operator

Syntax

<text>

The literal-text operator directs MASM to treat text as a single literal ele­
ment regardless of whether it contains commas, spaces, or other separators.
The operator is most often used with macro calls and the IRP directive to
ensure that values in a parameter list are treated as a single parameter.

130

Macro Directives

The literal text operator can also be used to force MASM to treat special
characters such as the semicolon(;) or the ampersand(&) literally. For
example, the semicolon inside angle brackets <; > becomes a semicolon,
not a comment indicator.

MASM removes one set of angle brackets each time the parameter is used
in a macro. When using nested macros, you will need to supply as many
sets of angle brackets as there are levels of nesting.

8.3.3 Literal-Character Operator

Syntax

!character

The literal-character operator forces the assembler to treat character as a
literal character. For example, you can use it to force MASM to treat spe­
cial characters such as the semicolon (;)or the ampersand(&) literally.
Therefore, !; is equivalent to <; >.

8.3.4 Expression Operator

Syntax

%text

The expression operator (%) causes the assembler to treat text as an
expression. MASM computes the expression's value, using numbers of the
current radix, and replaces text with this new value. The text must
represent a valid expression.

The expression operator is typically used in macro calls where the program­
mer needs to pass the result of an expression to the macro instead of to the
actual expression.

131

Microsoft Macro Assembler Reference Manual

Example

printe

syml
sym2

MACRO
IF2
%OUT
END IF
ENDM

EQU
EQU

msg,num

* &msg&num *

100
200

printe <syml + sym2

In this example, the macro call

On pass 2 only
Display message and number

to screen

>, % (syml + sym2) Macro call

printe <syml + sym2 = >,%(syml + sym2)

passes the text literal syml + sym2 = to the dummy parameter msg. It
passes the value 300 (the result of the expression syml + sym2) to the
dummy parameter num. The result is that MASM displays the message
syml +sym2=300 when it reaches the macro call during the assembly.
The %OUT directive, which sends a message to the screen, is described in
Section 9.4 and the IF2 directive is described in Section 7.2.2.

8.3.5 Macro Comment

Syntax

;; text

A macro comment is any text in a macro definition that does not need to be
copied in the macro expansion. All text following the double semicolon (;;)
is ignored by the assembler and will appear only in the macro definition
when the source listing is created.

The regular comment operator (;) can also be used in macros. However,
regular comments may appear in listings when the macro is expanded.
Macro comments will appear in the macro definition, but not in macro
expansions. Whether or not regular comments are listed in macro expan­
sions depends on the use of the .LALL, .XALL, and .SALL directives
described in Section 9.11.

132

Chapter 9

File Control Directives

9.1 Introduction 135
9.2 INCLUDE Directive 136
9.3 .RADIX Directive 137
9.4 %OUT Directive 138
9.5 NAN.IE Directive 138
9.6 TITLE Directive 139
9.7 SUBTTL Directive 140
9.8 PAGE Directive 140
9.9 .LIST and .:XI.1ST Directives 142
9.10 .SFCOND, .LFCOND,

and . TFCOND Directives 142
9.11 .LALL, .XALL, and .SALL Directives 144
9.12 .CREF and .XCREF Directives 145

133

File Control Directives

9.1 Introduction

This chapter describes the MASM file-control directives, which provide
control of the source, object, and listing files read and created by the
assembler.

The file-control directives include the following:

Directive

INCLUDE

.RADIX

%OUT

NAME

TITLE

SUB TTL

PAGE
.LIST

.XLIST

.LFCOND

.SFCOND

.TFCOND

.LALL

.SALL

.XALL

.CREF

.XCREF

Meaning

Include a source file

Change default input radix

Display message on console

Copy name to object file

Set program-listing title

Set program-listing subtitle

Set program-listing page size and line width

List statements in program listing

Suppress listing of statements

List false conditional in program listing

Suppress false-conditional listing

Toggle false-conditional listing

Include macro expansions in program listing

Suppress listing of macro expansions

Exclude comments from macro listing

List symbols in cross-reference file

Suppress symbol listing

Sections 9. 2-9 .12 describe these directives in detail.

136

Microsoft Macro Assembler Reference Manual

9.2 INCLUDE Directive

Syntax

INCL UDE filename

The INCLUDE directive inserts source code from the source file given by
filename into the current source file during assembly. The filename must
name an existing file. A full or partial path name may be given if the file is
not in the current working directory. MASM first looks for the "include"
file (the source file specified by filename) in any paths specified with the
MASM /I option, then it checks the current directory. If the named file is
not found, the assembler displays an error message and stops.

When the assembler encounters an INCLUDE directive, it opens the
specified source file and immediately begins assembling its statements.
When all statements have been read, MASM continues assembly with the
statement immediately following the directive.

Nested INCLUDE directives are allowed. A file named by an INCLUDE
directive can contain INCL UDE directives. MASM marks included state­
ments with the letter C in listings.

Directories can be specified in INCLUDE path names with either the
backslash (\) or the forward slash (/). This is for XENIX® compatibility.

You should specify a file name, but no path name with the INCLUDE
directive if you plan to set a search path with the MASM /I option. The
/I option is discussed in Section 2.3.6 of the Microsoft Macro Assembler
User's Guide.

Examples

INCLUDE entry
INCLUDE b:\include\record
INCLUDE /include/as/stdio
INCLUDE localinc\define.inc

136

File name
Path name
Path name
Partial path name

File Control Directives

9.3 .RADIX Directive

Syntax

.RADIX expression

The .RADIX directive sets the input radix for numbers in the source file.
The expression is a number in the range 2 to 16. It defines whether the
numbers are binary, octal, decimal, hexadecimal, or numbers of some other
base. The most common bases are listed below:

Base Number type

2 binary

8 octal

10 decimal

16 hexadecimal

The expression is always considered a decimal number, regardless of the
current input radix. The default input radix is decimal.

Notes

The .RADIX directive does not affect the DD, DQ, or DT directives.
Numbers entered in the expression of these directives are always
evaluated as decimal unless a radix specifier is appended to the value.

The .RADIX directive does not affect the optional radix specifiers, B
and D, used with integer numbers. When B or D appears at the end of
any integer, it is always considered to be a radix specifier even if the
current input radix is 16.

For example, if the input radix is 16, the number OABCD will be inter­
preted as OABC decimal, an illegal number, instead of as OABCD hexa­
decimal, as intended. Type OABCDh to specify OABCD in hexadecimal.
Similarly, the number 118 will be treated as 11 binary, a legal number,
but not llB hexadecimal, as intended. Type 11 Bh to specify llB in
hexadecimal.

137

?'vfic.r-osoft ~1acro Assemble:r Rf;ferenc.e ~ .. 1anual

Examples

.RADIX 16

.RADIX 2

The first example sets the input radix to hexadecimal, while the second sets
the input radix to binary.

9.4 %OUT Directive

Syntax

%OUT text

The %OUT directive instructs the assembler to display the text on the
screen when it reaches the line containing the specified text during assem­
bly. The directive is useful for displaying messages at specific points of a
long assembly.

The %OUT directive generates output for both assembly passes. The IFl
and IF2 directives can be used to control when the directive is processed.

Example

Ifl
%OUT First Pass - OK

END IF

This sample block could be placed at the end of a source file so that the
message First Pass - OK would be displayed at the end of the first
pass, but ignored on the second pass.

9.5 NA1\1E Directive

Syntax

NAME modulename

The NAME directive sets the name of the current module to modulename.
A module name is used by the linker when displaying error messages.

138

File Control Directives

The modulename can be any combination of letters and digits. Although
the module name can be any length, only the first six characters are used.
The name must be unique and not a reserved word.

If the NAME directive is not used, the assembler creates a default module
name using the first six characters of the text specified in the TITLE direc­
tive. If no TITLE directive is found, the default name A is used.

Example

NAME Grafix

This example sets the module name to Gra fix.

9.6 TITLE Directive

Syntax

TITLE text

The TITLE directive specifies the program-listing title. It directs MASM
to copy text to the first line of each new page in the program listing. The
text can be any combination of characters up to 60 characters in length.

No more than one TITLE directive per module is allowed. The first 6 non­
blank characters of the title are used as the module name if the module
does not contain a NAME directive.

Example

TITLE Graphics - First program

This example sets the title to Graphics - First program. If the
module does not contain a NAME directive, the module name will be set
to Graphi (the first six characters of Graphics.)

139

:Microsoft ~yfacro Assembler Reference M:anual

9.7 SUBTTL Directive

Syntax

SUBTTL text

The SUBTTL directive specifies the listing subtitle. It directs the assem­
bler to copy text to the line immediately following the title on each new
page in the program listing. The text can be any combination of characters.
Only the first 60 characters are used. If no text is given, the subtitle line is
left blank.

Any number of SUBTTL directives can be given in a program. Each new
directive replaces the current subtitle with the new text.

Examples

SUBTTL Point Plotting Routines

The example above creates the subtitle Point Plotting Routines.

SUBTTL

The example above creates a blank subtitle.

9.8 PAGE Directive

Syntax

PAGE length,width
PAGE+
PAGE

The PAGE directive can be used to designate the line length and width for
the program listing, to increment the section and adjust the section number
accordingly, or to generate a page break in the listing.

140

File Control Directives

If length and width are specified, the PAGE directive sets the maximum
number of lines per page to length, and the maximum number of characters
per line to width. The length must be in the range 10 to 255. The default
page length is 50. The width must be in the range 60 to 132. The default
page width is 80. If width is specified, but length is not, a comma (,) must
precede width.

If a plus sign (+) follows PAGE, the section number is incremented and
the page number is reset to 1. Program listing page numbers have the form

section-page

where section is the section number within the module, and page is the page
number within the section. By default, section and page numbers begin
with 1-1.

If no argument is given, PAGE starts a new output page in the program
listing. It copies a form-feed character to the file and generates a title and
subtitle line.

Examples

PAGE

The first example creates a page break.

PAGE 58,60

The second example sets the maximum page length to 58 lines, and the
maximum width to 60 characters.

PAGE ,132

The third example sets the maximum width to 132 characters. The current
page length (either the default of 50 or a previously set value) remains
unchanged.

PAGE +

The final example increments the current section number and sets the page
number to 1. For example, if the preceding page was 3-6, the new page
would be 4-1.

141

Microsoft Macro Assembler Reference Manual

9.9 .LIST and .XLIST Directives

Syntax

.LIST

.XLIST

The .LIST and .XLIST directives control which source-program lines are
copied to the program listing. The .XLIST directive suppresses copying of
subsequent source lines to the program listing. The .LIST directive
restores copying. The directives are typically used in pairs, to prevent a
particular section of a source file from being copied to the program listing.

The .XLIST directive overrides all other listing directives.

Example

.XLIST Listing suspended here

.LIST Listing resumes here

9.10 .SFCOND, .LFCOND,
and . TFCOND Directives

Syntax

.SF CO ND

.LFCOND

.TFCOND

The .SFCOND and .LFCOND directives determine whether false­
conditional blocks should be listed.

142

File Control Directives

The .SFCOND directive suppresses the listing of any subsequent condi­
tional blocks whose IF condition is false. The .LFCOND directive
restores the listing of these blocks. Like .LIST and .XLIST, false­
conditional listing directives can be used to suppress listing of conditional
blocks in sections of a program.

The • TFCOND directive sets the default mode for listing of conditional
blocks. This directive works in conjunction with the /X option of the
assembler. If/Xis not given in the MASM command line, .TFCOND
causes false-conditional blocks to be listed by default. If /Xis given,
. TFCOND causes false-conditional blocks to be suppressed. Every time a
new • TFCOND is inserted in the source code, listing of false-conditionals
is turned off if it was on, or on if it was off.

The /X option is discussed in Section 2.3.15 of the Microsoft Macro Assem­
bler User's Guide.

Example

testl DB 0 Symbol defined so all conditionals false

/X not used /X used
.SFCOND
IFNDEF testl Not listing Not listed
test2 DB 128
END IF
.LFCOND
IFNDEF testl Listed Listed
test2 DB 128
END IF
.TFCOND
IFNDEF testl Listed Not listed
test2 DB 128
END IF
.TFCOND
IFNDEF testl Not listed Listed
test2 DB 128
END IF

In the example above, the listing for the last two conditionals would be
reversed if the /X option were used. The first block with .TFCOND
would not be listed and the second block would be listed.

143

Microsoft Macro Assembler Reference Manual

9.11 .LALL, .XALL, and .SALL Directives

Syntax

.LALL

.XALL

.SALL

The .LALL, .XALL, and .SALL directives control the listing of the state­
ments in macros that have been expanded in the source file. The assembler
lists the full macro definition, but lists macro expansions only if the appro­
priate directive is set.

The .LALL directive causes MASM to list all the source statements in a
macro, including comments preceded by a single semicolon(;), but not
those preceded by a double semicolon(;;). The .XALL directive lists only
those source statements that generate code or data. Comments are ignored.

The .SALL directive suppresses listing of all macro expansions. That is,
the assembler copies the macro call to the source listing, but does not copy
the source lines generated by the call.

The .XALL directive is in effect when MASM first begins execution.

For the sample listing below, assume that the following macro has been
defined at the beginning of the source file:

tryout MACRO
;;Macro comment line

Normal comment line
IF2
ASSUME cs:code
DW 20 DUP (?)
mov ax,bx
END IF
ENDM

No code or data
No code or data
Generates data
Generates code
No code or data

Assume also that the macro has been called once in the source file with each
of the following macro listing directives:

.LALL
tryout Call with .LALL

.XALL
tryout Call with .X.ALL

.SALL
tryout Call with .SALL

144

File Control Directives

Example

.LALL
tryout

1 Normal comment line
1 IF2 No code or data
1 ASSUME cs:code No code or data

0005 0014[1 DW 20 DUP (?) Generates data
???? 1

1
002D SB C3 1 mov ax,bx Generates code

1 END IF No code or data

.XALL
tryout

OOZF 0014[1 DW 20 DUP (?) Generates data
0057 SB C3 1 mov ax,bx Generates code

.SALL
tryout

Notice that the macro comment line is never listed in macro expansions.
The normal comment line is listed only with the .LALL directive.

9.12 .CREF and .XCREF Directives

Syntax

.CREF

.XCREF [name,,,]

The .CREF and .XCREF directives control the generation of cross­
references for the macro assembler's cross-reference file. The .XCREF
directive suppresses the generation of label, variable, and symbol cross­
references. The .CREF directive restores this generation.

If name is specified with .XCREF, only that label, variable, or symbol will
be suppressed. All other names will be cross-referenced. The named label,
variable, or symbol will also be omitted from the symbol table of the pro­
gram listing. If two or more names are to be given, they must be separated
by commas (,).

145

Microsoft Macro Assembler Reference Manual

Example

.XCREF

.CREF

.XCREF testl,test2

146

Suppress cross-referencing
of symbols in this block

Restore cross-referencing
of symbols in this block

Don't cross-reference testl or test2
in this block

Appendixes

A Instruction Summary 149
B Directive Summary 167
C Segment Names

for High-Level Languages 183

147

Appendix A
Instruction Summary

A.1 Introduction 151
A.2 8086 Instructions 152
A.3 8087 Instructions 159
A.4 80186 Instruction Mnemonics 163
A5 80286 Nonprotected Instructions 164
A.6 80286 Protected Instruction Mnemonics
A.7 80287 Instruction Mnemonics 166

165

149

Instruction Summary

A.1 Introduction

The Microsoft Macro Assembler (MASM) is an assembler for the Intel
8086 /80186 /80286 family of microprocessors. It is capable of assembling
instructions for the 8086, 8088, 80186, and 80286 microprocessors and the
8087 and 80287 floating-point coprocessors. Programs must use the
instruction syntax described in this chapter.

By default, MASM recognizes the 8086 and 8087 instruction sets only (the
8088 set is identical to the 8086 set). If a source program contains 80186,
80286, or 80287 instructions, one or more instruction-set directives must be
used in the source file to enable assembly of the additional instructions
available in those instruction sets. Sections A.2-A.7 provide lists of the
syntax of all instructions recognized by MASM with the various
instruction-set directives.

Table A.1 explains the abbreviations used in the syntax descriptions.

Table A.1

Syntax Abbreviations

Abbreviation

accum

reg

segreg

r/m

immed

mem

label

src

dest

Meaning

One of the accumulators: AX or AL
One of the byte or word registers
Byte: AL, AH, BL, BH, CL, CH, DL, DH
Word: AX, BX, CX, DX, SI, DI, BP, SP
One of the segment registers: CS, DS, SS, ES
One of the general operands: register, memory address,
indexed operand, based operand, based-indexed operand

8- or 16-bit immediate value: constant or symbol

One of the memory operands: label, variable, symbol

Instruction label

Source in string operations

Destination in string operations

161

Microsoft Macro Assembler Reference Manual

A. 2 8086 Instructions

The 8086 instructions are listed below. (The 8088 instructions are identical
to 8086 instructions.) MASM assembles 8086 instructions by default.

162

Syntax

AAA

AAD

AAM

AAS

ADC accum,immed

ADC r/m,immed

ADC r/m,reg

ADC reg,r/m

ADD accum,immed

ADD r/m,immed

ADD r/m,reg

ADD reg,r/m

AND accum, immed

AND r/m,immed

AND r/m,reg

AND reg,r/m

CALL label

CALL r/m

CBW

CLC

CLD

CLI

Action

ASCII adjust for addition

ASCII adjust for division

ASCII adjust for multiplication

ASCII adjust for subtraction

Add immediate with carry to
accumulator

Add immediate with carry to operand

Add register with carry to operand

Add operand with carry to register

Add immediate to accumulator

Add immediate to operand

Add register to operand

Add operand to register

Bitwise AND immediate with
accumulator

Bitwise AND immediate with operand

Bitwise AND register with operand

Bitwise AND operand with register

Call instruction at label

Call instruction indirect

Convert byte to word

Clear carry flag

Clear direction flag

Clear interrupt flag

CMC

CMP accum, immed

CMP r/m,immed

CMP r/m,reg

CMP reg,r/m

CMPS src,dest

CMPSB

CMPSW

CWD

DAA

DAS

DEC r/m

DEC reg

DIV r/m

ESC immed,r/m

HLT

IDIV r/m

IMUL r/m

IN accum, immed

IN accum,DX

INC r/m

INC reg

INT3

INT immed

INTO

IRET

JA label

JAE label

Instruction Summary

Complement carry flag

Compare immediate with accumulator

Compare immediate with operand

Compare register with operand

Compare operand with register

Compare strings

Compare strings byte for byte

Compare strings word for word

Convert word to doubleword

Decimal adjust for addition

Decimal adjust for subtraction

Decrement operand

Decrement 16-bit register

Divide accumulator by operand

Escape with 6-bit immediate and operand

Halt

Integer divide accumulator by operand

Integer multiply accumulator by operand

Input from port (8-bit immediate)

Input from port given by DX

Increment operand

Increment 16-bit register

Software interrupt 3 (encoded as one
byte)

Software interrupts 0-255

Interrupt on overflow

Return from interrupt

Jump on above

Jump on above or equal

153

Microsoft Macro Assembler Reference Manual

JB label Jump on below

JBE label Jump on below or equal

JC label Jump on carry

JCXZ label Jump on ex zero

JE label Jump on equal

JG label Jump on greater

JGE label Jump on greater or equal

JL label Jump on less than

JLE label Jump on less than or equal

JMP label Jump to instruction at label

JMP r/m Jump to instruction indirect

JNA label Jump on not above

JNAE label Jump on not above or equal

JNB label Jump on not below

JNBE label Jump on not below or equal

JNC label Jump on no carry

JNE label Jump on not equal

JNG label Jump on not greater

JNGE label Jump on not greater or equal

JNL label Jump on not less than

JNLE label Jump on not less than or equal

JNO label Jump on not overflow

JNP label Jump on not parity

JNS label Jump on not sign

JNZ label Jump on not zero

JO label Jump on overflow

JP label Jump on parity

JPE label Jump on parity even

JPO label Jump on parity odd

164

JS label

JZ label

LAHF
LDS r/m
LEA r/m
LES r/m
LOCK

LODS src

LODSB

LODSW

LOOP label

LOOPE label

LOOPNE label

LOOPNZ label

LOOPZ label

MOV accum,mem

MOV mem,accum

MOV r/m,immed

MOV r/m,reg

MOV r /m,segreg

MOV reg, immed

MOV reg,r/m

MOV segreg,r/m

MOVS dest,src

MOVSB

MOVSW

MUL r/m
NEG r/m

NOP

Instruction Summary

Jump on sign

Jump on zero

Load AH with flags

Load operand into DS

Load effective address of operand

Load operand into ES

Lock bus

Load string

Load byte from string into AL

Load word from string into AX

Loop

Loop while equal

Loop while not equal

Loop while not zero

Loop while zero

Move memory to accumulator

Move accumulator to memory

Move immediate to operand

Move register to operand

Move segment register to operand

Move immediate to register

Move operand to register

Move operand to segment register

Move string

Move string byte by byte

Move string word by word

Multiply accumulator by operand

Negate operand (2's complement)

No operation

166

Microsoft Macro Assembler Reference Manual

156

NOT r/m

OR accum,immed

OR r/m,immed

OR r/m,reg

OR reg,r/m

OUT DX,accum

OUT immed,accum

POP r/m

POP reg

POP segreg

POPF

PUSH r/m

PUSH reg

PUSH segreg

PUS HF

RCL r/m,l

RCL r/m,CL

RCR r/m,l

RCR r/m,CL

REP

REPE

REP NE

REP NZ
REPZ

RET [immed]

ROL r/m,l

ROL r/m,CL

ROR r/m,1

ROR r/m,CL

Invert operand bits (1 's complement)

Bitwise OR immediate with accumulator

Bitwise OR immediate with operand

Bitwise OR register with operand

Bitwise OR operand with register

Output to port given by DX

Output to port (8-bit immediate)

Pop 16-bit operand

Pop 16-bit register from stack

Pop segment register

Pop flags

Push 16-bit operand

Push 16-bit register onto stack

Push segment register

Push flags

Rotate left through carry by 1 bit

Rotate left through carry by CL

Rotate right through carry by 1 bit

Rotate right through carry by CL

Repeat

Repeat if equal

Repeat if not equal

Repeat if not zero

Repeat if zero

Return after popping bytes from stack

Rotate left by 1 bit

Rotate left by CL

Rotate right by 1 bit

Rotate right by CL

SAHF

SAL r/m,1

SAL r/m,CL

SAR r/m,1

SAR r/m,CL

SBB accum, immed

SBB r/m,immed

SBB r/m,reg

SBB reg,r/m

SCAS dest

SCASB

SCASW

SHL r/m,1

SHL r/m,CL

SHR r/m,1

SHR r/m,CL

STC

STD

STI

STOS dest

STOSB

STOSW

SUB accum,immed

SUB r/m,immed

SUB r/m,reg

SUB reg,r/m

TEST accum,immed

TEST r/m,immed

Instruction Summary

Store AH into flags

Shift arithmetic left by 1 bit

Shift arithmetic left by CL

Shift arithmetic right by 1 bit

Shift arithmetic right by CL

Subtract immediate and carry flag

Subtract immediate and carry flag

Subtract register and carry flag

Subtract operand and carry flag

Scan string

Scan string for byte in AL

Scan string for word in AX

Shift left by 1 bit

Shift left by CL

Shift right by 1 bit

Shift right by CL

Set carry flag

Set direction flag

Set interrupt flag

Store string

Store byte in AL at string

Store word in AX at string

Subtract immediate from accumulator

Subtract immediate from operand

Subtract register from operand

Subtract operand from register

Compare immediate bits with
accumulator

Compare immediate bits with operand

167

Microsoft Macro Assembler Reference Manual

TEST r/m,reg

TEST reg,r/m

WAIT

XCHG accum,reg

XCHG r/m,reg

XCHG reg, accum

XCHG reg,r/m

XLAT mem

XOR accum,immed

XOR r/m,immed

XOR r/m,reg

XOR reg,r/m

Compare register bits with operand

Compare operand bits with register

Wait

Exchange accumulator with register

Exchange operand with register

Exchange register with accumulator

Exchange register with operand

Translate

Bitwise XOR immediate with
accumulator

Bitwise XOR immediate with operand

Bitwise XOR register with operand

Bitwise XOR operand with register

The string instructions (CMPS, LODS, MOVS, SCAS, and STOS) use
the DS, SI, ES, and DI registers to compute operand locations. Source
operands are assumed to be at DS: [SI]; destination operands at ES: [DI].
The operand type (BYTE or WORD) may be defined by the instruction
mnemonic. For example, CMPSB specifies BYTE operands and
CMPSW specifies WORD operands. For the CMPS, LODS, MOVS,
SCAS, and STOS instructions, the src and dest operands are dummy
operands that define the operand type only. The offsets associated with
these operands are not used. The src operand can also be used to specify a
segment override. The ES register for the destination operand cannot be
overridden.

Examples

cmps WORD PTR string, WORD PTR es:O
lods BYTE PTR string
mov BYTE PTR es:O,BYTE PTR string

The REP, REPE, REP NE, REP NZ, and REPZ instructions provide
ways to repeatedly execute a string instruction for a given count or while a
given condition is true. If a repeat instruction immediately precedes a
string instruction (both instructions must be on the same line), the instruc­
tions are repeated until the specified repeat condition is false, or the ex
register is equal to zero. The repeat instruction decrements ex by one for
each execution.

168

Instruction Summary

Example

mov cx,10
rep scasb

In this example, SCASB is repeated 10 times.

A.3 8087 Instructions

The 8087 instructions are listed below. MASM assembles 8087 instruc­
tions by default.

Syntax

F2XM1

FABS

FADD

FADD mem

FADD ST, ST(i)

FADD ST(z),ST

F ADDP ST(i),ST

FBLD mem

FBSTP mem

FCHS

FCLEX

FCOM

FCOMST

FCOM ST(i)

FCOMP

FCOMPST

FCOMP ST(z)

FCOMPP

Action

Calculate 2x-

Take absolute value of top of stack

Add real

Add real from memory

Add real from stack

Add real to stack

Add real and pop stack

Load 10-byte packed decimal on stack

Store 10-byte packed decimal and pop

Change sign on the top stack element

Clear exceptions after WAIT

Compare real

Compare real with top of stack

Compare real with stack

Compare real and pop stack

Compare real with top of stack and pop

Compare real with stack and pop stack

Compare real and pop stack twice

169

Microsoft Macro Assembler Reference Manual

160

FDECSTP

FDISI

FDIV

FDIVmem

FDIV ST ,ST(i)

FDIV ST(i),ST

FDIVP ST(i),ST

FDIVR

FDIVR mem

FDIVR ST,ST(i)

FDIVR ST(i),ST

FDIVRP ST(i),ST

FENI

FFREE

FFREE ST

FFREE ST(i)

FIADD mem

FICOM mem

FICOMP mem

FIDIV mem

FIDIVR mem

FILD mem

FIMUL mem

FINCSTP

FINIT

FIST mem

FISTP mem

Decrement stack pointer

Disable interrupts after WAIT

Divide real

Divide real from memory

Divide real from stack

Divide real in stack

Divide real and pop stack

Reversed real divide

Reversed real divide from memory

Reversed real divide from stack

Reversed real divide in stack

Reversed real divide and pop stack twice

Enable interrupts after WAIT

Free stack element

Free top-of-stack element

Free ith stack element

Add 2- or 4-byte integer

2- or 4-byte integer compare

2- or 4-byte integer compare and pop
stack

2- or 4-byte integer divide

Reversed 2- or 4-byte integer divide

Load 2-, 4-, or 8-byte integer on stack

2- or 4-byte integer multiply

Increment stack pointer

Initialize processor after WAIT

Store 2- or 4-byte integer

Store 2-, 4-, or 8-byte integer and pop
stack

FISUB mem

FISUBR mem

FLD mem

FLDl

FLDCWmem

FLDENVmem

FLDL2E

FLDL2T

FLDLG2

FLDLN2

FLDPI

FLDZ

FMUL

MUL mem

FMUL ST,ST(i)

FMUL ST(i),ST

FMULP ST(i),ST

FNCLEX

FNDISI

FNENI

FNINIT

FNOP

FNSAVE mem

FNSTCWmem

FNSTENVmem

FNSTSWmem

FPATAN

FPREM

Instruction Summary

2- or 4-byte integer subtract

Reversed 2- or 4-byte integer subtract

Load 4-, 8-, or 10-byte real on stack

Load + 1.0 onto top of stack

Load control word

Load 8087 environment (14 bytes)

Load log2e onto top of stack

Load log210 onto top of stack

Load log102 onto top of stack

Load loge2 onto top of stack

Load pi onto top of stack

Load +0.0 onto top of stack

Multiply real

Multiply real from memory

Multiply real from stack

Multiply real to stack

Multiply real and pop stack

Clear exceptions with no WAIT

Disable interrupts with no WAIT

Enable interrupts with no WAIT

Initialize processor, with no WAIT

No operation

Save 8087 state (94 bytes) with no
WAIT

Store control word with no WAIT

Store 8087 environment with no WAIT

Store 8087 status word with no WAIT

Partial arctangent function

Partial remainder

161

Microsoft Macro Assembler Reference Manual

162

FPTAN

FRNDINT

FRSTOR mem

FSAVE mem

FSCALE

FSQRT

FST

FSTST

FST ST(i)

FSTCW mem

FSTENVmem

FSTP mem

FSTSW mem

FSUB

FSUB mem

FSUB ST,ST(z)

FSUB ST(i),ST

FSUBP ST(z),ST

FSUBR

FSUBR mem

FSUBR ST ,ST(i)
FSUBR ST(i),ST

FSUBRP ST(i),ST

FTST

FWAIT

FXAM

FXCH

FFREE ST

Partial tangent function

Round to integer

Restore 8087 state (94 bytes)

Save 8087 state (94 bytes) after WAIT

Scale

Square root

Store real

Store real from top of stack

Store real from stack

Store control word with WAIT

Store 8087 environment after WAIT

Store 4-, 8-, or 10-byte real and pop
stack

Store 8087 status word after WAIT

Subtract real

Subtract real from memory

Subtract real from stack

Subtract real to stack

Subtract real and pop stack

Reversed real subtract

Reversed real subtract from memory

Reversed real subtract from stack

Reversed real subtract in stack

Reversed real subtract and pop stack

Test top of stack

Wait for last 8087 operation to complete

Examine top-of-stack element

Exchange contents of stack element

Exchange top-of-stack element

FFREE ST(i)

FXTRACT

FYL2X

FYL2PI

Instruction Summary

Exchange top-of-stack and ith element

Extract exponent and significand

Calculate Y log2x

Calculate Y log2(x+l)

A.4 80186 Instruction Mnemonics

The 80186 instruction set consists of all 8086 instructions plus the follow­
ing instructions. The .186 directive must be used to enable these instruc­
tions.

Syntax

BOUND reg, mem

ENTER immed16, immed8

IMUL reg, immed

IMUL reg,r/m,immed

INS mem,DX

INSB mem,DX

INSW mem,DX

LEAVE

OUTSDX,mem

OUTSB DX,mem

OUTSW DX,mem

POPA

PUSH immed

PU SHA

RCL r/m,immed

RCR r/m,immed

ROL r/m,immed

Action

Detect value out of range

Enter procedure

Integer multiply register by immediate

Integer multiply general operand by
immediate and store result in register

Input string from port DX

Input byte string from port DX

Input word string from port DX

Leave procedure

Output byte/word string to port DX

Output byte string to port DX

Output word string to port DX

Pop all registers

Push immediate data onto stack

Push all registers

Rotate left through carry by immediate

Rotate right through carry by immediate

Rotate left by immediate

163

Microsoft Macro Assembler Reference Manual

ROR r/m,immed

SAL r/m,immed

SAR r /m,immed

SHL r/m,immed

SHR r/m,immed

Rotate right by immediate

Shift arithmetic left by immediate

Shift arithmetic right by immediate

Shift left by immediate

Shift right by immediate

A.5 80286 Nonprotected Instructions

The 80286 nonprotected instruction set consists of all 8086 instructions
plus the following instructions. The .286c directive must be used to enable
these instructions.

164

Syntax

BOUND reg,mem

ENTER immed16,immed8

IMUL reg, immed

IMUL reg,r /m,immed

INS mem,DX

INSB mem,DX

INSW mem,DX

LEAVE

OUTS DX,mem

OUTSB DX, mem

OUTSW DX, mem

POPA

PUSH immed

PU SHA

RCL r/m,immed

RCR r/m,immed

Action

Detect value out of range

Enter procedure

Integer multiply register by immediate

Integer multiply general operand by
immediate and store result in register

Input string from port DX

Input byte string from port DX

Input word string from port DX

Leave procedure

Output byte/word string to port DX

Output byte string to port DX

Output word string to port DX

Pop all registers

Push immediate data onto stack

Push all registers

Rotate left through carry by immediate

Rotate right through carry by immediate

ROL r/m,immed

ROR r/m,immed

SAL r/m,immed

SAR r/m,immed

SHL r/m,immed

SHR r/m,immed

Instruction Summary

Rotate left by immediate

Rotate right by immediate

Shift arithmetic left by immediate

Shift arithmetic right by immediate

Shift left by immediate

Shift right by immediate

A.6 80286 Protected Instruction Mnemonics

The 80286 protected instruction set consists of all 8086 and 80286 non­
protected instructions plus the following instructions. The .286p directive
must be used to enable these instructions.

Syntax

ARPL mem,reg

CLTS

LAR reg,mem

LGDT mem

LIDT mem

LLDT mem

LMSWmem

LSL reg, mem

LTR mem

SGDT mem

SIDT mem

SLDT mem

SMSWmem

STR mem

VERRmem

Action

Adjust requested privilege level

Clear task-switched flag

Load access rights

Load global-descriptor table (8 bytes)

Load interrupt-descriptor table (8 bytes)

Load local-descriptor table

Load machine-status word

Load segment limit

Load task register

Store global-descriptor table (8 bytes)

Store interrupt-descriptor table (8 bytes)

Store local-descriptor table

Store machine-status word

Store task register

Verify read access

165

Microsoft Macro Assembler Reference Manual

VERWmem Verify write access

A. 7 80287 Instruction Mnemonics

The 80287 instruction set consists of all 8087 instructions plus the follow­
ing additional instructions. The .287 directive must be used to enable
these instructions.

166

FSETPM

FSTSW AX

FNSTSW AX

Set protected mode

Store status word in AX (wait)

Store status word in AX (no-wait)

Appendix B

Directive Suillillary

B. l Introduction 169
B.2 MASM Directives 169
B.3 MASM Operators 177

167

Directive Summary

B.1 Introduction

Directives give the assembler directions and information about input and
output, memory organization, conditional assembly, listing and cross­
reference control, and definitions. Table B.1 lists all directives.

Table B.1

Directives

.186 ENDP IFl ORG

.286c ENDS IF2 %OUT

.286p EQU IFB PAGE

.287 .ERR IFDEF PROC

.8086 .ERRl IFDIF PUBLIC

.8087 .ERR2 IFE PURGE
- .ERRB IFIDN .RADIX
ASSUME .ERRDEF IFNB RECORD
COMMENT .ERRDIF IFNDEF REPT
.CREF .ERRE INCLUDE .SALL
DB .ERRIDN IRP SEGMENT
DD .ERR NB IRPC .SF CO ND
DQ .ERRNDEF LABEL STRUC
DT .ERRNZ .LALL SUBTTL
DW EVEN .LFCOND .TFCOND
ELSE EXJTM .LIST TITLE
END EXT RN LOCAL .XALL
ENDIF GROUP MACRO .XCREF
ENDM IF NAME .XLIST

Any combination of upper- and lowercase letters can be used when giving
directive names in a source file.

B.2 MASM Directives

The directives you can use in MASM source code are listed below with the
syntax and function of each. This list is for reference only. See the
appropriate chapters in this manual for details.

169

Microsoft Macro Assembler Reference Manual

.186

Enables assembly of 80186 and 8086 instructions .

• 286c

Enables assembly of 80286 nonprotected instructions and 8086 instruc­
tions .

. 286p

Enables assembly of 80286 protected instructions and 8086 instructions .

• 287

Enables assembly of 80287 and 8087 instructions .

. 8086

Enables assembly of 8086 instructions (and the identical 8088 instruc­
tions) while disabling assembly of instructions available only with
80186 and 80286. This is the default mode .

. 8087

Enables assembly of 8087 instructions while disabling assembly of
instructions available only with 80287. This is the default mode.

name = expression

Assigns the numeric value of expression to name.

ASSUME segmentregister:segmentname,,,

Selects segmentregister to be the default segment register for all symbols
in the named segment or group. If segmentname is NOTHING, no
register is selected.

COMMENT delimiter text delimiter

Treats as a comment all text between the given pair of delimiters
delimiter .

. CREF

Restores listing of symbols in the cross-reference listing file.

170

Directive Summary

[name] DB initialvalue,,,

Allocates and initializes a byte (8 bits) of storage for each initialvalue.

[name] DW initialvalue,,,

Allocates and initializes a word (2 bytes) of storage for each
initialvalue.

[name] DD initialvalue,,,

Allocates and initializes a doubleword (4 bytes) of storage for each
initialvalue.

[name] DQ initialvalue,,,

Allocates and initializes a quadword (8 bytes) of storage for each
initialvalue.

[name] DT initialvalue,,,

Allocates and initializes 10 bytes of storage for each given inz"tialvalue.

ELSE

Marks the beginning of an alternate block within a conditional block.

END [expression]

Marks the end of the module and, optionally, sets the program entry
point to expression.

END IF

Terminates a conditional block.

ENDM

Terminates a macro or repeat block.

nameENDP

Marks the end of a procedure definition.

name ENDS

Marks the end of a segment or of a structure-type definition.

171

Microsoft Macro Assembler Reference Manual

name EQU expression

Assigns expression to name .

. ERR

Generates error .

. ERRl

Generates error on Pass 1 only .

. ERR2

Generates error on Pass 2 only .

. ERRB <argument>

Generates error if the argument is blank .

. ERRDEF name

Generates error if name is a previously defined label, variable,
or symbol.

.ERRDIF < string1 >, < string2>

Generates error if the strings are different .

. ERRE expression

Generates error if the expression is false (0) .

. ERRIDN < string1 >, < string2>

Generates error if the strings are identical.

.ERRNB <argument>

Generates error if the argument is not blank .

. ERRNDEF name

Generates error if name has not yet been defined .

. ERRNZ expression

Generates error if expression is true (nonzero).

172

Directive Summary

EVEN

If necessary, increments the location counter to an even value and gen­
erates one NOP instruction (90h).

EXITM

Terminates expansion of the current repeat or macro block and begins
assembly of next statement outside the block.

EXTRN name: type,,,

Defines an external variable, label, or symbol called name whose type
is type.

name GROUP segmentname,,,

Associates a group name name with one or more segments.

IF expression

Grants assembly if expression is true (nonzero).

IFl

Grants assembly on Pass 1 only.

IF2

Grants assembly on Pass 2 only.

IFB <argument>

Grants assembly if argument is blank.

IFDEF name

Grants assembly if name is a previously defined label, variable,
or symbol.

IFDIF < argument1 >, < argument2>

Grants assembly if the arguments are different.

IFE expression

Grants assembly if expression is false (0).

173

Microsoft Macro Assembler Reference Manual

IFIDN < argument1 >, < argument2>

Grants assembly if the arguments are identical.

IFNB <argument>

Grants assembly if argument is not blank.

IFNDEF name

Grants assembly if name has not yet been defined.

INCL UDE filename

Inserts source code from the source file given by filename into the
current source file during assembly.

IRP dummyname, <parameter,,,>

Marks start of a block that will be repeated for as many parameters as
are given, with the current parameter replacing the placeholder dum­
myname on each repetition.

IRPC dummyname, <string>

Marks start of a block that will be repeated for as many characters as
there are in string, with the current character replacing the placeholder
dummyname on each repetition.

name LABEL type

Creates a new variable or label by assigning the current location­
counter value and the given type to name .

. LALL

Lists all statements in a macro .

. LFCOND

Restores the listing of conditional blocks .

. LIST

Restores listing of statements in the program listing.

LOCAL dummyname,,,

174

Declares dummyname within a macro as a placeholder for an actual
name to be created when the macro is expanded.

Directive Summary

name MACRO dummyparameter,,,

Marks the beginning of macro name and establishes each item called
dummyparameter as a placeholder for the expressions passed when the
macro is called.

NAME modulename

Sets the name of the current module to modulename.

PURGE macro name,,,

Deletes the named macros.

ORG expression

Sets the location counter to expression.

%OUT text

Displays text at the user's terminal.

name PROC type

Marks the beginning of procedure name, of specified type.

PAGE length,width

Sets line length and character width of the program listing.

PAGE+

Increments section-page 'numbering.

PAGE

Generates a page break in the listing.

PUBLIC name,,,

Makes each variable, label, or absolute symbol specified as name avail­
able to all other modules in the program .

. RADIX expression

Sets the input radix for numbers in the source file to expression.

recordname RECORD fieldname:width[=expression],,,

Defines a record type for an 8- or 16-bit record that contains one or
more fields.

176

Microsoft Macro Assembler Reference Manual

REPT expression

Marks the start of a block that is to be repeated expression number of
times .

. SALL

Suppresses listing of all macro expansions.

name SEGMENT [align] [combine] ['class']

Marks the beginning of a program segment called name and having seg­
ment attributes align, combine, and class .

. SFCOND

Suppresses listing of any subsequent conditional blocks whose IF condi­
tion evaluates to false (0).

name STRUC

Marks the beginning of a type definition for a structure.

SUBTTL [text]

Defines the listing subtitle .

. TFCOND

Sets the default mode for listing of conditional blocks.

TITLE text

Defines the program listing title .

. XALL

Lists only those macro statements that generate code or data .

. XCREF [name,,,]

Suppresses the listing of symbols in the cross-reference listing file .

. XLIST

Suppresses listing of subsequent source lines to the program listing.

176

Directive Summary

B.3 MASM Operators

The operators recognized by MASM are listed by precedence in Table B.2.
Operations of highest precedence are performed first. Operations of equal
precedence are performed from left to right. This default order can be
overridden using enclosing parentheses.

Table B.2

Operator Precedence

Precedence

(Highest)
1
2
3
4
5
6
7
8
9
10
11
12
13
(Lowest)

Operators

LENGTH, SIZE, WIDTH, MASK, (), [), < >
. (structure field name operator)

PTR, OFFSET, SEG, TYPE, THIS
HIGH, LOW
+,-(unary)
*,/,MOD, SHL, SHR
+, - (binary)
EQ, NE, LT, LE, GT, GE
NOT
AND
OR, XOR
SHORT, .TYPE

The syntax of each operator is shown in the following list:

expression1 * expression2

Multiply expression1 by expression2.

expression1 / expression2

Divide expression1 by expression2.

expression1 + expression2

Add expression1 to expression2.

177

Microsoft Macro Assembler Reference Manual

expression1 - expression2

Subtract expression2 from expression1.

+expression

Retain the current sign of expression.

-expression

Reverse the sign of expression.

segmentregister: expression

Override the default segment of expression with segmentregister.

segmentname: expression

Override the default segment of expression with segmentname.

groupname: expression

Override the default segment of expression with groupname.

variable.field

Add the offset of field to the offset of variable.

expression1 [expression2]

Add the value of expression1 to the value of expression2.

&dummyparameter

Replace dummyparameter with its actual parameter value.

dummyparameter&

Replace dummyparameter with its actual parameter value.

<text>

Treat text as a single literal element.

!character

178

Treat character as a literal character rather than as an operator
or symbol.

Directive Summary

%text

Treat text as an expression and compute its value rather than treating
it as a string.

;; text

Make text into a comment that will not be listed in expanded macros.

expression1 AND expression2

Do a bitwise Boolean AND on expression1 and expression2.

count DUP (initialvalue)

Specify count number of declarations of initialvalue.

expression1 EQ expression2

Return true (OFFFFh) if expression1 equals expression2, or return false
(0) if it does not.

expression1 GE expression2

Return true (OFFFFh) if expression1 is greater than or equal to
expression2, or return false (0) if it is not.

expression1 GT expression2

Return true (OFFFFh) if expression1 is greater than expression2, or
return false (0) if it is not.

HIGH expression

Return the high byte of expression.

expression1 LE expression2

Return true (OFFFFh) if expression1 is less than or equal to expression2,
or return false (0) if it is not.

LENGTH variable

Return the length of variable in the size in which the variable was
declared.

LOW expression

Return the low byte of expression.

179

Microsoft Macro Assembler Reference Manual

expressionl LT expression2

Return true (OFFFFh) if expressionl is less than expression2, or return
false (0) if it is not.

MASK recordfieldname

Return a bit mask in which the bits for recordfieldname are set and all
other bits are not set.

MASK record

Return a bit mask in which the bits used in record are set and all other
bits are not set.

expressionl MOD expression2

Return the remainder of dividing expressionl by expression2.

expressionl NE expression2

Return true (OFFFFh) if expressionl does not equal expression2, or
return false (0) if it does.

NOT expression

Reverse all bits of expression.

OFFSET expression

Return the offset of expression.

expressionl OR expression2

Do a bitwise Boolean OR on expressionl and expression2.

type PTR expression

Force the expression to be treated as having the specified type.

SEG expression

Return the segment of expression.

expression SHL count

Shift the bits of expression left count number of bits.

180

Directive Summary

SHORT label

Set type of label to short (having a distance less than 128 bytes from
the current location-counter value).

expression SHR count

Shift the bits of expression right count number of bits.

SIZE variable

Return the total number of bytes allocated for variable.

THIS type

Create an operand of specified type whose offset and segment values are
equal to the current location-counter value.

TYPE expression

Return the type of expression .

. TYPE expression

Return a byte defining the mode and scope of expression.

"WIDTH recordfieldname

Return the width in bits of the current recordfieldname.

"WIDTH record

Return the width in bits of the current record.

expression1 XOR expression2

Do a bitwise Boolean XOR on expression1 and expression2.

181

Appendix C
Segment Names
for High-Level Languages

C.l Introduction 185
C.2 Text Segments 186
C.3 Data Segments - Near 188
C.4 Data Segments - Far 189
C.5 BSS Segments 190
C.6 Constant Segments 191

183

Segment Names for High-Level Languages

C.1 Introduction

This appendix describes the naming conventions used to form assembly­
language source files compatible with object modules produced by recent
Microsoft language compilers. Compilers that use these conventions
include the following:

Microsoft C Version 3.0 or later

Microsoft Pascal Version 3.3 or later

Microsoft FORTRAN Version 3.3 or later

High-level-language modules have the following four predefined segment
types:

Type

TEXT

DATA

BSS

CONST

Use

For program code

For program data

For uninitialized space

For constant data

Any assembly-language source file to be assembled and linked to a high­
level-language module must use these segments, as described in Sections
C.2-C.6.

High-level-language modules also have three different memory models:

Model Use

For single code and data segments Small

Middle

Large

For multiple code segments, but a single data segment

For multiple code and multiple data segments

Assembly-language source files to be assembled for a given memory model
must use the naming conventions detailed in Sections C.2-C.6.

186

Microsoft Macro Assembler Reference Manual

C.2 Text Segments

Syntax

[prefix]- TEXT SEGMENT byte public 'CODE'
ASSUME cs: [prefix]- TEXT

statements
[prefix]_ TEXT ENDS

A text segment defines a module's program code. It contains statements
that define instructions and data within the segment. A text segment must
have the name prefix_ TEXT, where prefix can be any valid string. For
middle- and large-model programs, the module's own name is recom­
mended. For small-model programs, prefix is omitted; the segment must be
called _TEXT.

A segment can contain any combination of instructions and data state­
ments. These statements must appear in an order that creates a valid pro­
gram. All instructions and data addresses in a text segment are relative to
the CS segment register. Therefore, the ASSUME statement must appear
at the beginning of the segment. This statement ensures that each label
and variable declared in the segment will be associated with the CS seg­
ment register (see Section 3. 7).

Text segments should have byte align type and public combine type, and
must have the class name 'CODE'. These define loading instructions to be
passed to the linker. Although other segment attributes are available, they
should not be used. For a complete description of the attributes, see Sec­
tions 3.4.1, 3.4.2, and 3.4.3.

The following formats are used for each of the different memory models:

Model

Small model

186

Requirements

Only one text segment is allowed. The seg­
ment must not exceed 64K. All procedure and
statement labels should have the NE.AR type.

Middle or large model

Segment Names for High-Level Languages

Example

TEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT

_main

_main
_TEXT

PROC near

ENDP
ENDS

Multiple text segments are allowed. However,
no segment can exceed 64K. To distinguish
one segment from another, each should have
its own name. Since most modules contain
only one text segment, the module's name is
often used as part of the text segment's name.
All procedure and statement labels should
have the FAR type, unless they will only be
accessed from within the same segment.

Example

SAMPLE_TEXT SEGMENT byte public 'CODE'
ASSUME cs:SAMPLE_TEXT

_main PROC far

_main ENDP
SAMPLE TEXT ENDS

187

Microsoft Macro Assembler Reference Manual

C.3 Data Segments - Near

Syntax

DGROUP GROUP_DATA
ASSUME ds:DGROUP

_DATA SEGMENT word public 'DATA'
statements
_DATA ENDS

A near data segment defines initialized data in the segment pointed to by
the DS segment register when the program starts execution. The segment
is NEAR because all data in the segment are accessible without giving an
explicit segment value. All programs have exactly one near data segment.
Only large-model programs can have additional data segments.

A near data segment's name must be_ DATA. The segment can contain
any combination of data statements defining variables to be used by the
program. The segment must not exceed 64K of data. All data addresses in
the segment are relative to the predefined group DGROUP. Therefore,
the GROUP and ASSUME statements must appear at the beginning of
the segment. These statements ensure that each variable declared in the
data segment will be associated with the DS segment register and
DGROUP (see Sections 3.6 and 3. 7).

Near data segments must have word align type, public combine type, and
must have the class name 'DATA'. These define loading instructions that
are passed to the linker. Although other segment attributes are available,
they must not be used. For a complete description of the attributes, see
Sections 3.4.1-3.4.3.

Example

DGROUP GROUP _DATA
ASSUME ds:DGROUP

_DATA
count
array
string

DATA

188

SEGMENT word public 'DATA'
DW 0
DW 10 dup(l)
DB "Type CANCEL then press RETURN", OAh, 0
ENDS

Segment Names for High-Level Languages

C.4 Data Segments - Far

Syntax

prefix_ DATA SEGMENT word public 'FAR_ DATA'
statements
prefix_ DATA ENDS

A far data segment defines data or data space that can be accessed only by
specifying an explicit segment value. Only large-model programs can have
far data segments.

A far data segment's name must be prefix_ DATA, where prefix can be any
valid string. The name of the first variable declared in the segment is
recommended. The segment can contain any combination of data state­
ments defining variables to be used by the program. The segment must not
exceed 64K of data. All data addresses in the segment are relative to the
ES segment register. When accessing a variable in a far data segment, the
ES register must be set to the appropriate segment value. Also, the seg­
ment override operator(:) must be used with the variable's name (see Sec­
tion 5.3. 7).

Far data segments must have word align type, public combine type, and
should have the class name 'FAR_ DATA'. These define loading instruc­
tions that are passed to the linker. Although other segment attributes are
available, they must not be used. For a complete description of the attri­
butes, see Sections 3.4.1-3.4.3.

Example

ARRAY_DATA
array DW

DW
DW
DW

table DW
ARRAY_DATA

SEGMENT word public 'FAR_DATA'
0
1
2
4
1600 DUP (?)
ENDS

189

Microsoft Macro Assembler Reference Manual

C.5 BSS Segments

Syntax

DGROUP GROUP_BSS
ASSUME ds:DGROUP

_ BSS SEGMENT word public 'BSS'
statements
_BSS ENDS

A BSS segment defines uninitialized data space. A BSS segment's name
must be _ BSS. The segment can contain any combination of data state­
ments defining variables to be used by the program. The segment must not
exceed 64K. All data addresses in the segment are relative to the pre­
defined group DGROUP. Therefore, the GROUP and ASSUME state­
ments must appear at the beginning of the segment. These statements
ensure that each variable declared in the BSS segment will be associated
with the DS segment register and DGROUP (see Sections 3.6 and 3. 7).

Note

The group name DGROUP must not be defined in more than one
GROUP directive in a source file. If a source file contains both a DATA
and a BSS segment, the directive

DGROUP GROUP _DATA,_BSS

should be used.

A BSS segment must have word align type, public combine type, and
must have the class name 'BSS '. These define loading instructions that are
passed to the linker. Although other segment attributes are available, they
must not be used. For a complete description of the attributes, see Sections
3.4.1-3.4.3.

Example

DGROUP GROUP BSS
ASSUME ds:DGROUP

BSS SEGMENT word public 'BSS'

190

Segment Names for High-Level Languages

count
array
string

BSS

ow
ow
DB
ENDS

?
10 DUP (?)
30 DUP (?)

C.6 Constant Segments

Syntax

DGROUP GROUPCONST
ASSUME ds:DGROUP

CONST SEGMENT word public 'CONST'
statements
CONST ENDS

A constant segment defines constant data that will not change during pro­
gram execution. Constant segments are typically used in large-model pro­
grams to hold the segment values of far data segments.

The constant segment's name must be CONST. The segment can contain
any combination of data statements defining constants to be used by the
program. The segment must not exceed 64K. All data addresses in the seg­
ment are relative to the predefined group DGROUP. Therefore, the
GROUP and ASSUME statements must appear at the beginning of the
segment. These statements ensure that each variable declared in the con­
stant segment will be associated with the DS segment register and
DGROUP (see Sections 3.6 and 3.7).

Note

The group name DGROUP must not be defined in more than one
GROUP directive in a source file. If a source file contains a DATA,
BSS, and CONST segment, the directive

DGROUP GROUP _DATA,_BSS,CONST

should be used.

191

Microsoft Macro Assembler Reference Manual

A constant segment must have word align type, public combine type, and
must have the class name 'CONST'. These define loading instructions
that are passed to the linker. Although other segment attributes are avail­
able, they must not be used. For a complete description of the attributes,
see Sections 3.4.1-3.4.3.

Example

DGROUP

CONST
segl
seg2
CONST

GROUP CONST
ASSUME ds:DGROUP

SEGMENT word public 'CONST'
OW ARRAY_DATA
OW MESSAGE_DATA
ENDS

In this example, the constant segment receives the segment values of two
far data segments: ARRAY_DATA and MESSAGE_DATA. These data seg­
ments must be defined elsewhere in the module.

192

Index (Reference Manual)

=Equal-sign directive, 54
% Expression operator, 131
! Literal-character operator, 131
< > Literal-text operator, 130
;; Macro comment operator, 132
: segment-override operator, 85
& Substitute operator, 129
? Undefined operand, 49
.186 directive, 26, 163
.286c directive, 26, 164
.286p directive, 26, 165
.287 directive, 26, 166
80186 instructions, 163
80286 nonprotected instructions, 164
80286 protected instructions, 165
80287 instructions, 166
.8086 directive, 26
8086 instructions, 152
.8087 directive, 26
8087 instructions, 159
8088 instructions, 152

ABS type, 100
Absolute segments, 29
Absolute symbols, defined, 54
Actual parameters, macros, 118, 121
Align type, illustrated, 32
Alignment of segments, 28, 40, 41
AND operator, 82
Angle brackets (< >), 108
Arithmetic operators, 78
ASCII format, 23
Assembly listing

false conditionals, 142
macros, 144
page breaks, 140
page dimensions, 140
subtitle, 140
suppressing, 142
symbols, 145
title, 139

ASSUT\1E directive, 39, 85
at segments, 29

Based operands, 72
Based-indexed operands, 73
Bitwise operators, 82
BSS segments, 190

Character constant, 15
Character set, 11
Class type, defined,30
Combine type

defined,28
illustrated, 32

COMMENT directive, 19
Comments, 18, 19
common segments, 29
Compilers, 3, 4
Compilers

linking with assembly modules, 185
using with MASM, 3, 4

Conditional-assembly
directives, 105
nesting, 106

Conditional directives, 105
assembly passes, 107, 111, 112
macro arguments, 108, 109, 113, 114
operators, 128
symbols, 107, 112
values of true and false, 106, 112

Conditional error directives, 110
Constant operands, 68
Constant segments, 191
Constants

default radix, 137
with conditional directives, 105, 110

Conventions, notational, 4
.CREF directive, 145
Cross-reference listing

symbols, 145

Data segments, with high-level
languages, 188

Data-declaration directives, 48
Data

193

Index {Reference Manual)

Data (continued)
10-byte words, 52
bytes, 49
doublewords, 50
quadwords, 51
words, 50

DB directive, 49
DD directive, 50
Declarations

10-byte words, 52
byte data, 49
doubleword data, 50
quadword data, 51
word data, 50

Default segment registers, 39
Directive summary, 169
Direct-memory operands, 68
Displacement, 72
DQ directive, 51
DT directive, 52
Dummy parameters, macros, 118, 121
Dummy-program file, 31
DUP operator, 53
DW directive, 50
/E option, MA.SM, 26

Effective address, 85
ELSE directive, 106
Encoded real number, 13
END directive, 24, 35
ENDIF directive, 106
ENDM directive, 118, 124, 125, 126
ENDP directive, 41
ENDS directive, 27
Entry point, 35
EQ operator, 80
EQU directive, 55
Equal-sign (=) directive, 54
.ERR directive, 111
.ERRl directive, 111
.ERR2 directive, 111
.ERRB directive, 113
.ERRDEF directive, 112
.ERRDIF directive, 114
.ERRE, 112
.ERRIDN directive, 114
.ERRNB directive, 113
.ERRNDEF directive, 112
.ERRNZ, 112

194

EVEN directive, 41
Exit code, 111
EXITM directive, 127
Exponent, 13
Expression operator (%), 131
Expressions, defined, 78
External symbols, 100
EXTRN directive, 47, 48, 100

FAR data segments
with high-level languages, 189

FAR, procedure, 42
Fatal errors, 111
Fields

records, 58
structures, 57, 61

File-control directives, 135
Forward references

defined,93
relative to segment, 94
use of SHORT directive, 94
with instruction labels, 94
with segment override, 95

GE operator, 80
Global directives

defined,99
illustrated, 101

Global symbols, 99, 100
GROUP directive, 36, 85
Groups

defined,36
illustrated, 37
size restriction, 36

GT operator, 80

Hexadecimal numbers, 12
HIGH operator, 87
High-level languages

linking with assembly modules, 185
procedure conventions, 43, 75
with dummy files, 31

High-level-language compilers, 3, 4

/I option, with INCLUDE directive,
136

IF directive, 106
IFl directive, 107
IF2 directive, 107
IFB directive, 108
IFDEF directive, 107
IFDIF directive, 109
IFE directive, 106
IFIDN directive, 109
IFNB directive, 108
IFNDEF directive, 107
INCLUDE directive

defined, 136
with macros, 117, 124

Index operator, 83
Indexed operands, 72
Instruction sets, 4
Instruction summary, 4, 151
Instruction-set directives, 25
Integer, 11
IRP directive, 125
IRPC directive, 126

LABEL directive, 56
Labels

default segments, 39
defined,47
in macros, 122
near, 47
procedures,41, 48

.LALL directive, 144
Large model, 187
LE operator, 80
LENGTH operator, 90
.LFCOND directive, 142
.LIST directive, 142
Listing

false conditionals, 142
macros, 144
suppressing, 142
symbols, 145

Literal-character operator (!), 131
Literal-text operator (< >), 130
Loading options for segments, 28
LOCAL directive, 122
Location counter, 41, 47, 69
LOW operator, 87
LT operator, 80

Index (Reference Manual)

Macro comment (;;), 132
MACRO directive, 118
Macro directives, 117
Macros

actual parameters, 118, 121
argument testing, 109, 114
calling, 121
compared to procedures, 117
defined, 117
deleting, 123
dummy parameters, 118, 120, 121
exiting early, 127
nested, 119, 130
operators, 128
placeholders, 122
recursive, 119
redefining, 120, 124

MASK operator, 92
Memory models, 185
memory segments, 29
Messages to screen, 138
Middle model, 187
/ML option, MASM, 30
Modular programming, 99
Module

end, 35
main, 35

Modules
names, 138
subtitles, 140
titles, 139

/MX option, MASM, 30

NAME directive, 138
Names

defined, 15
groups, 36
module, 138
segment class types, 30
segments, 27

NE operator, 80
NEAR data segments, 188
NEAR, procedure, 42
Nesting

conditionals, 106
include files, 136
macros, 119, 1:-lO
segments

35

195

Index (Reference Manual)

/NOIGNORECASE option, LINK, 30
NOT operator, 82
NOTHING, ASSUiv1E, 39
Null class type, 31

OFFSET operator, 88
Operands

based, 72
based indexed, 73
constant, 68
defined,67
direct memory, 68
indexed, 72
location counter, 69
record field, 77
records, 76
register, 70
relocatable, 69
strong typing, 95
structures, 7 4

Operators
arithmetic, 78
bitwise, 82
defined, 78
expression (%), 131
HIGH, 87
index, 83
LENGTH, 90
literal character (!), 131
literal text (< > J, 130
LOW, 87
macro comment (;;), 132
MASK, 92
OFFSET, 88
precedence, 92, 177
PTR, 83
relational, 80
SEG, 87
segment override (:), 85, 88
shift, 80
SHORT, 86
SIZE, 90
structure field name, 85
substitute (&), 129
THIS, 86
TYPE, 88
.TYPE, 89
WIDTH, 91

OR operator, 82

196

ORG directive, 40
%OUT directive, 138
Output messages to screen, 138

Packed decimal numbers, 14
PAGE directive, 140
Parameter passing conventions, 43, 75
Placeholder, 122
Precedence of operators, 92, 177
Private (type unspecified) segments, 29
PROC directive, 41
Procedures

compared to macros, 117
conventions, 43, 75
defined,41
labels, 48

Program
entry point, 35
loading options, 28
segments, 27

PTR operator, 83
PUBLIC directive, 47, 48, 99
Public segments, 28
Public symbols, 99
PURGE directive, 123
/R option, MASM, 26

Radix, 11
.RADIX directive

defined, 137
limitations, 137

Real number, 13
Real number, encoded, 13
RECORD directive, 58
Records

declarations, 62
field operands, 77
MASK operator, 92
operands, 76
variables, 62
WIDTH operator, 91

Recursive macros, 109, 119
Register operands, 70
Relational operators, 80
Relocatable operands, 69
Repeat blocks, 124, 125, 126
REPT directive, 124
Reserved names, 16

RET instruction, 42
.SALL directive, 144

Search paths for include files, 136
SEG operator, 87
SEGMENT directive, 27, 85
Segment-override (:)operator, 85, 88
Segment

order, 30
Segments

alignment, 28, 40, 41
at, 29
class types, 30
combine types, 28
common, 29
definition, 27
groups, 36
loading options, 28
memory, 29
nesting, 35
origin, 40
public, 28
stack, 28
unspecified (private) type, 29

.SFCOND directive, 142
Shift count, records, 77
Shift operators, 80
SHL operator, 80
SHORT operator, 86
SHR operator, 80
SIZE operator, 90
Small model, 186
Source files

defined, 23
end,35
illustrated, 24
including, 136

STACK segments, 28
Stack Trace command, SYMDEB, 43,

75
Statements, defined, 17
String constant, 15
String instructions, 158
Strong typing, 3, 95
STRUC directives, 57
Structure field-name operator, 85
Structures

declaration, 60
initializiation limits 61

Index (Reference Manual)

Structures {continued)
operands, 7 4
variables, 60

Substitute operator(&), 129
Subtitles, 140
SUBTTL Directive, 140
Symbols

absolute, 54, 55
aliases, 55
default segments, 39
defined,54
external, 100
global, 99, 100
labels, 56
public, 99
relocatable operands, 69
variables, 56

Template for records, 59
Text segment, 186
.TFCOND directive, 142
THIS operator, 86
TITLE directive, 139
TYPE operator, 88
. TYPE operator, 89
Types

operand matching, 95
record, 58
structure, 57

Undefined operand (?), 49, 50, 51, 52
Uninitialized data space, 190

Variables, default segments, 39

Weak typing in other assemblers, 96
WIDTH operator, 91
Width, structures, 58
/X option, MASM, 143
.XALL directive, 144
.XCREF directive, 145
.XLIST directive, 142

XOR operator, 82

197

MICR=== :::SOFT®
16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717

Software
Problem Report

Street ________________________ _

City ___________ State ______ Zip ____ _

Phone _______________ _ Date _______ _

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category

___ Software Problem

__ Software Enhancement

Software Description

Microsoft Product

__ Documentation Problem
(Document # ____ _

__ Other

Rev.---·--- Registration# ____________ _

Operating System

Rev. ____ . Supplier ______________ _

Other Software Used __________________ _

Rev. _____ Supplier ______________ _

Hardware Description

Manufacturer _______ CPU _____ Memory ___ KB

Disk Size ___ " Density: Sides:

Single__ Single __

Double __ Double __

Peripherals ________________________ _

Probiem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

