
312489

jl
I

Paragon
TM

User's Guide

InteP Corporation

June 1994

Order Number: 312489-003

I

!'

- ----------~-- -- ----------~-- - --- ---"- --~ ----"--"--~----'-------~-~-~

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in­
stalled, and the front of the diagnostic station. There are no user service­
able areas inside the system. Refer any need for such access only to tech­
nical personnel that have been qualified by Intel Corporation.

CAUTION
This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer­
ence when the equipment is operated in a commercial environment This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re­
main the property of Intel Corporation. Use, duplication or disclosure by the
U.S. Government is subject to Limited Rights as set forth in subparagraphs
(a)(15) of the Rights in Technical Data and Computer Software clause at
252.227-7013. Intel Corporation, 2200 MiSSion College Boulevard, Santa
Clara, CA 95052. For all Feeleral use or contracts other than 000 Limited
Rights under FAR 52.2272-14, ALT. III shall apply. Unpublished-rights
reserved under the copyright laws of the United States.

Hi

Paragon 1M User's Guide Using Paragon- OSF/1 Message-Passing System Calls

The handler function you define must be written in C and must have four arguments of type long.
These argumentS are passed the following values when the function is called:

1. Type of the message (as returned by infotype().

2. Length of the message in bytes (as returned by iDfocountO).

3. Node number of the process that sent the message (as returned by infonode(».

4. Process type of the process that sent the message (as returned by infoptype().

For example, here's a C code fragment that attaches the functions jimctO(). funetl (), and funct2() to
message types 0,1, and 2, respectively. The message types that have handlers are referred to as
handled types.

#include <nx.h>

char bufO[lOO], bufl[lOO], buf2[lOO];
void functO(), functl(), funct2();

hrecv(O, bufO, sizeof(bufO), functO);
hrecv(l, bufl, sizeof(bufl), functl);
hrecv(2, buf2, sizeof(buf2), funct2);

•
• /* Now perform other work. No blocking happens. */
•

The declaration of functlO looks like this (the other functions are similar):

void functl(long type, long count, long node, long ptype)
{

•
•
•

}

When a message of type 1 arrives, the message is stored in the buffer specified in the hrecvO call
(in this case, bujl), then functlO is called with the type and length of the message and the node
number and process type of the sender as arguments. functlO and the main program then run
concurrently until fonetlO returns. (In previous releases of Paragon OSP/l, the main program was
interrupted and did not run at all until functlO returned.)

CAUTION

The handler runs in the same memory space as the main program
(but they have separate stacks).

3-19

Preface

This manual tells how to use the Paragon TN OSP/l operating system on an Intel supercomputer.

This manual assumes that you are an application programmer proficient in the C or Portran language
and the UNIX operating system. The manual provides you with enough detail to begin using your
system.

NOTE

Programming examples in this manual are intended to
demonstrate the use of Paragon OSFI1 system calls, not as
examples of good programming practice.

For example, in some cases, the return values of functions are not checked for error conditions. This
is not recommended, but the error checks have been omitted in older to make the example shorter
and easier to read.

Organization
Chapter 1

Chapter 2

Chapter 3

Chapter 4

Provides an overview of the Paragon OSP/l software and Intel
supercomputer haniware.

Describes the Paragon OSP/l commands that you can enter at the shell
prompt and the Paragon OSPIl cross-development commands that run on
supponed workstations.

Describes the message-passing system calls available to programs in Paragon
OSP/I.

Describes the other general-purpose system calls available in Paragon OSP/l.

v

Preface

ChapterS

Chapter 6

Chapter 7

Chapter 8

Appendix A

AppendixB

Paragon no User's Guide

Describes the parallel I/O calls you can use for parallel access to the Intel
supercomputer's file systems.

Describes the pthreads package, which you can use to create and control
multiple threads (also called "lightweight processes") within your programs.

Tells how to prepare an application for the Paragon OSF/! operating system.
The steps described are applicable to applications that are written for a
parallel computer and applications that are ported from a sequential
computer. This chapter discusses three examples: an integration, a
matrix*vector multiplication, and the N-Queens problem.

Presents some teclmiques you can use to improve the performance of your
parallel applications.

Summarizes the commands and system calls of Paragon OSF/I. The
complete syntax of each command and call is provided, along with a brief
description of each.

Describes the level of support offered by Paragon OSFIl for the commands
and system calls of the iPSCe system.

Notational Conventions

vi

This manual uses the following notational conventions:

Bold Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Italic Identifies variables, ftlenames, directories, partitions, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables.

Bold-Italic-Mb~ospace

Identifies user input (what you enter in response to some prompt).

Bold-Monospace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <ctrl-Alt-Del>

Paragon 1M User's Guide Preface

(Brackets) Surround optional items.

(Ellipsis dots) Indicate that the preceding item may be repeated.

(Bar) Separates two or more items of which you may select only one.

{. } (Braces) Surround two or more items of which you must select one.

Applicable Documents
For more infonnation. refer to the following manuals. See the ParagonTII. System Technical
Documentation Guide for information on the complete Paragon document set and ordering
information.

1M
Paragon Manuals

• ParagonTII. Commands Reference Manual

• ParagonTII. Network Queueing System Manual

• ParagonTII. C Compiler User's Guide

• ParagonTII. Fortran Compiler User's Guide

• Paragon TIl. C System Calls Reference Manual

ParagonTII. Fortran System Calls Reference Manual

• ParagonTII. Application Tools User's Guide

• ParagonTII. Interactive Parallel Debugger Reference Manual

• Paragon TIl. System Administrator's Guide

For information about limitations and workarounds, see the ParagonTII. System Software Release
Notesjor the ParagonTII. XP/S System. Release notes are also located in the directory
lvol/share/release _notes on your Paragon system.

vii

Preface Paragon TM User's Guide

Other Manuals

• OSF/J User's Guide

• OSF/J Programmer's Reference

• OSF/ J Command Reference

• Effective Fortran 77 - Michael Metcalf

• C: A Reference Manual- Harbison and Steele

• The C Programming Language - Kernighan and Ritchie

• CLASSP ACK Basic Math Library User's Guide - Kuck & Associates

• CLASSP ACK Basic Math Library/C User's Guide - Kuck & Associates

viii

Paragon .. User's Guide Preface

Comments and Assistance
Intel Supercomputer Systems Division is eager to hear of your experiences with our products. Please
call us if you need assistance. have questions. or otherwise want to commem on your Paragon
system.

U.S.AJCanada Intel Corporation
phone: 800-4Z1·1823

Internet: support@ssdJntel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

United Kingdom Intel Corporation (UK) Ltd.
Supercomputer System Division

20090 Assago
Milano
Italy
167877203 (toll free)

France Intel Corporation
1 Rue Edison-BP303

Pipers Way
Swindon SN3 IRJ
England
0800 212665 (toll free)

78054 St. Quentin-en-Yvelines Cedex
France

(44) 793491056 (answered in French)
(44) 793 431062 (answered in Italian)
(44) 793 480874 (answered in German)
(44) 793495108 (answered in English)

0590 8602 (toll free)

Intel Japan K.K.
Supercomputer Systems Division
5-6 Tokodai. Tsukuba City
Ibaraki-Ken 300-26

Germany Intel Semiconductor GmbH
Domacher Strasse 1
8016 Feldkirchen bel Muenchen
Germany

Japan 0130813741 (toll free)
0298-47-8904

World Headquarters
Intel Corporation

Supercomputer Systems Division
15201 N.W. Greentrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 629-7600 (Monday through Friday. 8 AM to 5 PM Pacific Time)
Fax: (503) 629-9147

If you have commems about our manuals. please fill out and mail the enclosed Comment Card. You
can also send your comments electronically to the following address:

tec:hpubs@ssdJntel.com

Ix

Preface Paragon no User's Guide

x

Chapter 1
Introduction

Table of Contents

Introduction .. 1-1

System Hardware ... 1-2

Nodes ... 1-2

Node Interconnect Network .. 1-2

I/O Interfaces ••.•...••.•••..•.•.....•..•.•.•.••..••.•..••.•.••..•...•...•••••.•...•..•......•........•..•..•......•....•....•.•.••...•..•..•••••.•. 1-2

Front Panel LEOs (Paragon 1M XP/S Only)•........•..••..•...•.....•............•...........•....••......•.••... 1-3

System Software ... 1-4

paragontM OSF/1 Operating System ... 1-4

User Model .. 1-5

Programming Model .. 1-6

Cross-Development Facility ... 1-6

xi

TableofConten1s Paragon TIl. User's Guide

Chapter 2
Using Paragon TM OSF/1Commands

, Introduction .. 2-1

Terminology ... : .. 2-1

Using Paragon™ OSF/1 Commands on the Intel Supercomputer ... 2-2

USing Paragon™ OSF/1 Commands on Workstations ... 2-2

A Quick Example .. 2-3

Information You Need .. 2-3

Compiling, Unking, and Executing an Application ... ; uo 2-3

Compiling and linking Applications .. 2-5

Configuring Your Environment for Cross-Development ... 2-6

Tips for·Compiling and Unking , .. 2-8

Using Other Switches , .. 2-8

Including nx.h or fnx.h ... 2-8

Specifying Include File and Library Pathnames .. 2-8

Preprocessing a Fortran Program ... 2-9

Order of Switches .. 2-10

Running Applications .. 2-11

1/0 Redirection ... 2-12

Controlling the Application'S Execution Characteristics ... 2-13

Using the Default Partition ... , 2-14

Setting Your Default Partition· .. 2-14

Determining the Current Default Partition ... 2-15

Specifying Application Size ... 2-15

Specifying a Rectangle of Nodes .. 2-16

Specifying a Particular Rectangle of Nodes ... ; 2-16

Using the Default Size ... 2-17

Specifying Application Priority ... , 2-17

Specifying Process Type ::~'~ ... 2-18

Running a Program on a Subset of the Nodes .. 2-18

xii

Paragon" Uaer's Guide Table of Contents

Running Applications Consisting of Multiple Programs ... 2-21

Running an Application in a Particular Partition .. 2-22

Managing Running Applications ... 2-23

Managing Partitions .. 2-25

Special Partitions ... 2-26

The Root Partition .. 2-26

The Service Partition ... 2-27

The Compute Partition ... 2-27

Partition Pathnames ... 2-28

Partition Characteristics ... 2-29

Parent Partition .. 2-29

Partition NSIT19 .••..•••••••.••••••••.•••••••••••••••••••••••••••••••••••••••.•••••..••••••.•.••••.•••••••••.•••••.••••••.•••••.••••••••••• 2-30 '\,~

Nodes Allocated to the Partition .. 2-30

Node Numbers Within a Partition .. 2-30

Unusable Nodes .. 2-31

Owner, Group, and Protection Modes ... 2-32

Scheduling Characteristics .. 2-33

Standard Scheduling ... 2-34

Gang Scheduling ... 2-35

Space Sharing ... 2-37

Summary of Scheduling Types ... 2-38

A Scheduling Example .. 2-39

Making Partitions .. 2-39

Specifying the Nodes Allocated to the Partition ... 2-40

Specifying Protection Modes ... 2-42

Specifying Scheduling Characteristics .. 2-43

Removing Partitions ... 2-45

Removing Partitions Containing Running Applications ... 2-45

Removing Partitions Containing Subpartitions .. 2-45

xiii

Table of Conten1s Paragon "'User's Guide

Showing Partition Characteristics ••••....••••...•.•....•.....•.••...•..••..••.• ~ .. ~ •... 2-46

Showing Free Nodes ... 2-48

Usting Subpartitions ... 2-49

Recursively Usting Subpartitions ... 2-50

Usting the Applications in a Partition ... 2-51

Applications in Subpartitions ... 2-52

Recursively Usting Applications in Subpartitions .. 2-54

Changing Partition Characteristics ... 2-54

Chapter 3
Using Paragon TM OSF/1 Message-Passing System Calls
Introduction .. 3-1

Process Characteristics .. 3-3

Node Numbers ... 3-3

Process Types ... 3-4

Message Characteristics ... 3-5

Message Length ... 3-5

Message Type .. 3-6

Message I 0 .. 3-6

Message Order .. 3-7

Names of Send and Receive Calls .. 3-7

Synchronous Send and Receive .. 3-8

Synchronous Send to Multiple Nodes .. 3-9

Asynchronous Send and Receive ... 3-1 0

Releasing Message IDs ... ~ 3-12

Merging Message IDs .. 3-13

Probing for Pending Messages .. 3-14

xiv

Paragon'" User's Guide Table of Contents

Getting Information About Pending or Received Messages .. 3-15

Message Passing with Fortran Commons ... 3-17

Treating a Message as an Interrupt .. 3-18

Passing Information to the Handler .. 3-20

Preventing Interrupts .. 3-22

Extended Receive and Probe .. 3-24

Global Operations .. 3-27

Chapter 4
Using Other Paragon TM OSF/1
System Calls

Introduction .. 4-1,.

Managing Applications .. 4-2

Controlling Application Execution with System Calls .•..................•......•..•........•..•..•.••.....•..........•.••.••• 4-3

Creating an Application with nx_initve() .. 4-4

Creating a Rectangular Application with nx_initve_rect() .. 4-7

Setting an Application's Priority with nx,Jlri()•.....•...........•......•.....••.•..•..••.••.•••.•.••..•.••.•••••••••. 4-9

Copying a Process onto the Nodes with nx_nfork() .. 4-10

Loading a Program onto the Nodes with nx_load() •..•..••.......•.•..•...••...•.....•......•••..• ; .•••..•••..••.••.• 4-11

Loading a Program onto the Nodes with nx_loadve() ••..•....•.••.•.••.•••.•••••••••...•.••.•••.•••••••.•••.••..•• .4-13

Waiting for Application Processes with nx_waitaliO .. 4-14

Using PIDs ... 4-14

Getting Information "About Applications .. 4-16

Finding an Application'S Shape with nx_app_rect() ... 4-16

Usting an Application'S Nodes with nx_app_nodes() .. 4-17

Listing the Applications in a Partition with nX.JlSpart() .. 4-19

xv

Table of Contents Paragon'" User's Guide

The Controlling Process ... 4-21

Process Groups ... 4-22

Process Groups in Paragon'ITIII OSF/1 .. 4-23

Killing Application Processes .. 4-23

An Example Controlling Process ... 4-23

Message Passing Between ControIling.Process and Application Processes ... 4-25

Managing Partitions .. 4-27

Making Partitions .. 4-28

Removing Partitions ... , ... 4-30

Getting Information About Partitions .. 4-31

Determining a Partition's Attributes with nx~art_attrO ... 4-32

Determining a Partition's Nodes with nX-P8rLnodesO .. .4-35

Changing Partition Characteristics ... 4-36

Listing Unusable Nodes .. 4-40

Handling Errors ... 4-42

Underscore Calls .. 4-42

Core Dumps ... 4-44

Controlling Floating-Point Behavior .. 4-46

Detecting Not-a-Number .. 4-47

Controlling Floating-Point Behavior .. 4-47

Rounding Mode ... 4-47

Exception Mask and Sticky Flags .. 4-48

Fortran Exception Mask Values ... 4-49

Miscellaneous calls .. 4-50

Temporarily Releasing Control of the Processor ... 4-50

Timing Execution .. 4-50

IPSc® and Touchstone DELTA Compatibility calls4-52

xvi

Paragon" User's Guide Table of Conten1s

Chapter 5
Using Parallel File 1/0
Introduction .. 5-1

Disks and File Systems .. 5-2

PFS File Systems and PFS Files ... 5-3

PFS Filenames and Path names .. 5-3

PFS Limitations .. 5-4

Using PFS Commands ... 5-5

Displaying File System Attributes ... 5-5

Increasing the Size of a File ... 5-7"',

Using Parallel 1/0 Calls .. 5-Ef

Opening Files in Parallel ... 5-9

Using gopen() in C ... 5-10

Using gopenO in Fortran .. 5-10

Opening Files with Standard Operations ... 5-11

Special Considerations for Fortran .. 5-11

Formatted Versus Unformatted 1/0 ... 5-11

New Files .. 5-12

Unnamed Files .. 5-13

Using 1/0 Modes .. 5-13

M_UNIX (Mode 0) .. 5-14

M_LOG (Mode 1) ... 5-15

M_SYNC (Mode 2) ... 5-15

M_RECORD (Mode 3) ... 5-16

M_GLOBAL (Mode 4) .. 5-17

An 1/0 Mode Example .. 5-17

Fortran Example .. 5-18

C Example ... 5-19

Compiling and Running the Example .. 5-20

xvii

Table of Conten1B Paragon"" User's Guide

M_UNIX Output ... 5-21

M_LOG Output .. 5-22

M_SYNC Output .. 5-22

M_RECORD Output .. 5-23

M_GLOBAL Output ... 5-23

Reading and Writing Flies In Parallel ... 5-24

Synchronous File I/O .. 5-25

Asynchronous File I/O .. 5-27

Closing Files in Parallel ... 5-28

Detecting End-of-Flle and Moving the File Pointer .. 5-29

Flushing Fortran Buffered 1/0 ... 5-30

Using ""#" Filenames .. 5-31

Increasing the Size of a File ... 5-32

Using Extended Files .. 5-33

OSFI1 Calls that Do Not Support Extended Files .. 5-34

OSF/1 Commands that Do Not Support Extended Files .. 5-35

Manipulating Extended Files .. 5-36

Performing Extended Arithmetic ... ~ .. 5-37

Getting Information About PFS File Systems .. 5-39

Getting Information About All Mounted PFS File Systems ... 5-39

Getting PFS Information About a Single File System .. 5-41

Controlling Tape Devices .. 5-44

Naming Tape Devices .. 5-44

Performing Operations on Tape Devices ... 5-45

Getting Status of Tape Devices ... 5-46

Synchronization Summary ... 5-48

xviii

Paragon 1M User's Guide

Chapter 6
Using Pthreads

Table of Contents

Introduction .. 6-1

The Pthreads Package ... 6-1

What's In This Chapter ... 6-2

Limitations of Pthreads ... 6-3

Recommended Safe Operating Environment ... 6-4

Compiling and Linking a Pthread Application ... 6-5

Using Reentrant C Library Calls .. 6-6

Using Pthreads Library Calls .. 6-11

Pthreads Ubrary Data Types and Symbols .. 6-11

The Main Thread .. 6-12

Managing Pthread Execution ... 6-13

Managing Pthread Attributes .. 6-15

Managing Mutexes ... 6-16

Managing Mutex Attributes .. 6-17

An Example Pthreads Program .. 6-18

Using Condition Variables to Synchronize Pthreads .. 6-21

Managing Condition Attributes ... 6-23

Examples of Cond'ltion Variables ... 6-24

Canceling Pthreads .. 6-28

Cancelability States ... 6-28

Cancellation Examples .. 6-30

Pthreads Cleanup Routines ... 6-32

Managing Pthread Keys ... 6-33

Executing a Routine Once ... 6-34

Managing Signals ... 6-34

Interfacing with Non-Thread-Safe Code .. 6-37

Message Passing and Pthreads Library calls .. 6-37

xix

Table of Contents Paragon'" User's Guic.le

File 1/0 and Pthreads Library Calls ... 6-38

nx_nforkO and nx_lnitveO and Pthreads Library Calls ... 6-39

Signals and Pthreads Library Calls .. 6-39

Signal Types .. 6-39

Signals are a Per-Process Resource ... 6-40

Dealing with Signals .. 6-41

Handling Errors ... 6-41

errno Confusion .. 6-41

perrorO and nX,J>errorO .. :: ... 6-42

Calling exit() ... 6-42

Use of Underscore Versions of Paragon System calls .. 6-43

Catch Signals Causing Core Dump by Default .. 6-43

When One Pthread Hangs ... 6-43

Chapter 7
Designing a Parallel Application
Introduction ... 7-1

The Paragon 1M OSF/1 Programming Model ... 7-2

Parallel Programming Techniques .. 7-2

Separating the User Interface from the Computation ... 7-3

Balancing the Load .. 7-3

Domain Decomposition ... 7-3

Control Decomposition .. 7-5

Making the Program Independent of the Number of Nodes ... 7-5

Designing Your Communication Strategy .. 7-6

Using Global Operations ... 7-6

Using Alternate Node T apologies .. 7-6

xx

Paragon no User's Guide Table of Contents

Example Application: Calculating pi .. 7-7

Example Application: MatriX*Vector Multiplication ... 7-11

Example Application: The N-Queens Problem ... 7-13

ChapterS
Improving Performance
Introduction .. 8-1

Single Node Performance ... 8-2

Use Profiling Tools ... 8-2

Avoid Repeated Use of System Calls .. 8-2

Avoid Virtual Memory Paging ... 8-3

Use Compiler Optimizations ... 8-3

Increase Problem Size ... 8-5

Access Contiguous Memory Locations .. 8-5

Use Caching Wisely•.•••..••••..••......•••.••••......•.••..•...•••.•.••...••.......•••...•..••••.•••.•...•••••••..•..•...•....•.••.•••.•• 8-5

Use Optimized Libraries ... 8-6

Use Assembly Language Subroutines ... 8-7

Avoid Error Checking (C Language Only) .. 8-7

Multi-Node Performance .. 8-7

Use Dynamic Memory Allocation for Large Arrays .. 8-8

Avoid Serializing Calls .. 8-9

Use ParaGraph .. 8-10

Maintain Data Locality•...•••..••...•.••..••.•..•...•.......•..•...•.•....•.....••..•••..•••••••••••••.•••••••••••••••• 8-10

Overlap Computation and Communication .. 8-10

Avoid Message Buffering ... 8-11

Align Application Buffers .. 8-12

xxi

Table of Contents Paragon'" User's Guide

Understand Message-Passing Flow Control ... 8-13

Overview of Message-Passing Flow Control ... 8-14

Process Locking .. 8-15

Packetization ... 8-16

System Message Buffers ... 8-16

Message-Passing Configuration Switches .. 8-18

Summary of the Message-Passing Configuration Switches ... 8-19

Default, Maximum, and Minimum Values .. 8-20

Dependencies and Rounding .. 8-21

Recommendations ... 8-21

1/0 Performance .. 8-23.

Use PFS File Systems ... 8-23

Use gopen() Instead of openO ... 8-23

Use Parallel I/O Calls ... 8-24

Use Asynchronous Calls .. 8-24

Use the Appropriate I/O Mode ... 8-24

Align I/O Buffers with Virtual Memory Pages ... 8-25

Read or Write Whole File System Blocks .. 8-25

Make Good Use of File Striping ... 8-25

Appendix A
Summary of Commands
and System Calls
Command Summary .. A-1

Compiling and Linking Applications .. A-1

Running Applications .. A-2

Managing Partitions ... A-2

Parallel File System Commands ... A-3

Miscellaneous Commands .. A-3

xxii

Paragon'" User's Guide Table of Contents

C System Call Sumntary ... A-4

Process Characteristics .. A-4

Synchronous Send and Receive ... A-5

Asynchronous Send and Receive ••..•.•.....•..•..•....•.•...•.•..•••....•..•.............•..••...••..•••.••.•••••.•.••..••..••...••. A-6

Probing for Pending Messages ... A-7

Getting Information About Pending or Received Messages ... A-7

Treating a Message as an Interrupt••..•••....•..•••..•••....•..•••..•••...••.•..•..••.•..•..•.•.•••.•••..•.•..••••.•••..••...•.. A-8

Extended Receive and Probe •••..•••..••.......•...•.............•••...•..•...••... A-9

Global Operations ... A-1 0

Controlling Application Execution ...•....••..•••..•••....... :.-... A-12

Getting Information About Applications ... A-13

Partition Management ... A-14

Finding Unusable Nodes ... A-15

Handling Errors ... A-15

Floating-Point Control •.•.•....••.•••....••••••••••••.••••..••..•••..•.••...•••..•••....••..•••..•••••...•..••••.•••..•....•.....•........• A-16

Miscellaneous Calls •.....•...••.•...•..•••.•••.....•..••...••.•..•....•••••••..•.•.•••••.••••••.•.••••.••...•••...•.....••..•....•.•.•...•• A-16

iPS~ and Touchstone DELTA Compatibility ... A-17

1/0 Modes .. A-18

Reading and Writing Files in Parallel .. A-19

Detecting End-of-File and Moving the File Pointer .••...•.•..•......•........•.•...............•.•..•••...••...•.•.....••••• A-20

Increasing the Size of a File .. A-20

Extended File Manipulation ... A-21

Performing Extended Arithmetic ... A-22

Getting Information About PFS File Systems .. A-23

Managing Pthread Execution .. A-24

Managing Pthread Attributes ... A-24

Managing Mutexes .. A-25

Using Condition Variables to Synchronize Pthreads ••.•••.••••.••.•...•.••••••••..••••.•...••.•.••••••.•••..••••.•••.•.••. A-26

Canceling Pthreacls ...•..•......................•....•...................•....••.... A-26

Pthreads Cleanup Routines .. A-27

Managing Pthread Keys .. A-27

Miscellaneous Pthread Calls ... A-27

xxiii

Table of Contents Paragon '1M User's Guide

Fortran System Call Summary ... A-28

Process Characteristics .. A-28

Synchronous Send and Receive ... A-29

Asynchronous Send and Receive .. A-30

Probing for Pending Messages ... A-31

Getting Information About Pending or Received Messages ... A-31

Treating a Message as an Interrupt .. A-32

Extended Receive and Probe ... A-33

Global Operations ... A-35

Controlling Application Execution .. A-38

Getting Information About Applications .. A-39

Partition Manage~nt ... A-40

Finding Unusable Nodes ..•...•••••.•••••••.•...•.. ; ... A-42

Handling Errors ... A-42

Floating-Point Control ... A-42

Miscellaneous Calls .. A-43

iPSc® and Touchstone DELTA Compatibility ••..•.•••..•..•.••••••...................•........•••.•...•.••••.••.....•....••.. A-43

110 Modes .. A-45

Reading and Writing Files in Parallel .. A-45

Detecting End-of.:File and Moving the File Pointer .. A-47

Flushing Fortran Buffered 110 .. A-47

Increasing the Size of a File .. A-47

Extended File Manipulation ... ~ •.•...••.•.••.. A-48

Performing Extended Arithmetic ... A-49

xxiv

Paragon" User's Guide Table of Contents

Appendix B
iPSC@ System Compatibility
Introduction ... 8-1

General Compatibility Issues ... 8-1

New Features .. 8-2

Compilers ... B-4

Commands ... 8-5

Cube Control Commands .. 8-5

CFS Commands .. 8-7

System Administration Commands ... 8-7

Remote Host Commands .. 8-8

Miscellaneous Commands .. 8-8

System Calls .. 8-9

Include Files .. 8-9

Host Calls .. 8-9

8yte-Swapping Calls ... 8-14

Floating-Point Control Calls .. 8-15

CFS Calls .. 8-15

Miscellaneous Calls .. 8-16

Summary ... 8-17

xxv

Table of Contents

Figure 1-1.

Figure 1-2.

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 4-1.

Figure 7-1.

Figure 7-2.

Figure 7-3.

Figure 8-1.

xxvi

Paragon no User's Guide

List of Illustrations

Front Panel LEOs (Paragon 'III XP/S Only) .. 1-3

Node Activity LEOs ... 1-4

The Root Partition of a 32-Node System•..•..•.. 2-27

Node Numbers in Contiguous and Noncontiguous Partitions •............•.. ~•...... 2-31

Node Numbers in Overlapping Partitions•••.•.................•........................•.•.•......... 2-32

Sample Partition for nx-part_attrO and nx-psrLnodesO ..•..•.....................•..............•.. 4-34

Using Domain Decomposition to Achieve Load Balancing ... 7-4

The Decomposition Used for the pi Example ... 7-9

The N-Queens Solution Tree for a 4 x 4 Board ... 7-15

Two Methods of Improving 1/0 Performance with M_RECORD •.•.••.••..........•.•••........... 8-27

Paragon'" User's Guide Table of Contents

Table 2-1.

Table 5-1.

Table 5-2.

Table 5-3.

Table 5-4.

Table 5-5.

Table 6-1.

Table 8-1.

Table A-1.

TableA-2.

TableA-3.

TableA-4.

TableA-5.

TableA-6.

TableA-7.

TabIeA-B.

TableA-9.

TableA-10.

TableA-11.

TableA-12.

TableA-13.

TableA-14.

TableA-15.

TableA-16.

TabIeA-17.

Table A-18.

List of Tables

Summary of Scheduling Types ... 2-38

File Operations that Accept "##If' Filenames ... 5-31

OSFI1 Calls Not Supporting Extended Files ... 5-34

OSF/l Commands Not Supporting Extended Files .. 5-35

Synchronization in Each I/O Mode ... 5-48

File I/O Calls that Synchronize ... 5-48

Calls in Reentrant C Library (Jibe_r.a) ... 6-7

Message-Passing Configuration Switches ... 8-20

Commands for Compiling and Linking AppJications .. A-1

Commands for Running Applications .. A-2

Commands for Managing Partitions .. A-2

Parallel File System Commands .. A-3

Miscellaneous Commands •••..•.••..••.••......••.••.•........•......•....••..•..........•••............•...•.•...•.. A-3

C calls for Process Characteristics ... A-4

C Calls for Synchronous Send and Receive .. A-5

C calls for Asynchronous Send and Receive .. A-6

C calls for Probing for Pending Messages .. ~ A-7

C calls for Getting Information About Pending or Received Messages A-7

C Calls for Treating a Message as an Interrupt ... A-8

C Calls for Extended Receive and Probe .. A-9

C Calls for Global Operations .. A-1 0

C calls for Controlling Application Execution .. A-12

C calls for Getting Information About Applications .. A-13

C calls for Partition Management .. A-14

C calls for Finding Unusable Nodes .. A-15

C calls for Handling Errors .. A-15

xxvii

Table of Contents

TableA-19.

TableA-20.

TableA-21.

TableA-22.

TableA-:23.

TableA-24.

TableA-25.

TableA-26.

TableA-27.

TableA-28.

TableA-29.

TableA-30.

TableA-31.

TableA-32.

TableA-33.

TableA-34.

TableA-35.

TableA-36.

TableA-37.

TableA-38.

TableA-39.

TableA-40.

TableA-41.

TableA-42.

TableA-43.

TableA-44.

TableA-45.

TableA-46.

TableA-47.

TableA-48.

xxviii

Paragon"'·Uaer'a Guide·

List of Tables

C Calls for Floating-Point Control .. A-16

Miscellaneous C Calls ••••••.•••••....••..........................••.................•..••.•.....•.........•.•......... A-16

C calls for iPSC® and Touchstone DELTA Compatibility .. A-17

C Calls for I/O Modes .. A-18

C Calls for Reading and Writing Files in Parallel ... A-19

C Calls for Detecting Encl-of-File and Moving the File Pointer A-20

C Calls for Increasing the Size of a File•.....................•.....••.....•.....•........... A-20

C Calls for Extended File Manipulation .. A-21

C Calls for Performing Extended Arithmetic ..• : .. A-22

C Calls for Getting Information About PFSTM File Systems ... A-23

C Calls for Managing Pthread Execution ... A-24

C Calls for Managing Pthread Attributes ... A-24

C Calls for Managing. Mutexes .. A-25

C Calls for Using Condition Variables to Synchronize Pthreads A-26

C calls for Canceling Pthreads ... A-26

C Calls for Pthreads Cleanup Routines ... A-27

C Calls for Managing Pthread Keys .. A-27

Miscellaneous Pthread Calls ... A-27

Fortran Calls for Process CharacteristiCS .. A-28

Fortran Calls for Synchronous Send and Receive ... A-29

Fortran Calls for Asynchronous Send and Receive ... A-30

Fortran Calls for Probing for Pending Messages ... A-31

Fortran Calls for Getting Information About Pending or Received Messages A-31

Fortran Calls for Treating a Message as an Interrupt .. A-32

Fortran Calls for Extended Receive and Probe ... A-33

Fortran Calls for Global Operations ... A-35

Fortran Calls for Controlling Application Execution ... A-38

Fortran Calls for Getting Information About Applications ... A-39

Fortran Calls for Partition Management ... A-40

Fortran Calls for Finding Unusable Nodes ... A-42

Paragon'" User's Guide Table of Contents

TableA-49.

Table A-50.

Table A-51.

Table A-52.

TableA-53.

Table A-54.

Table A-55.

Table A-56.

Table A-57.

Table A-58.

Table A-59.

Table B-1.

Table B-2.

Table B-3.

List of Tables

Fortran Calls for Handling Errors •••••.••••••..••••••.•••••.....•..••.•••••....•.................................. A-42

Fortran Calls for Floating-Point Control •••.•••.••..••...•.•.•..•.•..•••..•...................•........•...•... A-42

Miscellaneous Fortran Calls •••.•.••••••.•••.•••••••.••..••.•.•.•....•...•••••.•..••••......•...............•....... A-43

Fortran Calls for iPS~ and Touchstone DELTA Compatibility A-43

Fortran Calls for 1/0 Modes ... A-45

Fortran Calls for Reading and Writing Files in Parallel .. A-45

Fortran Calls for Detecting End-of-File and Moving the File Pointer A-47

Fortran Calls for Flushing Buffered 1/0 .. A-47

Fortran Calls for Increasing the Size of a File .. A-47

Fortran Calls for Extended File Manipulation ... A-48,

Fortran Calls for Performing Extended Arithmetic ... A-49 .

Unsupported iPSC® System Byte-Swapping Calls ... B-14

Summary of Unsupported iPS~ System Commands ... B-17

Summary of Unsupported iPSC® System Calls .. B-19

xxix

Table of Contents Paragon"" User's Guide

xxx

Introduction

Introduction
This chapter introduces the Paragon'IM aSP/1 operating system and the hardware it runs on.

In an Intel supercomputer, a large number of processors called nodes work concurrently on the parts
of a problem. Each node can run multiple processes, and each process can have multiple threads.
The processes and threads on each node time-share the node's processor, using the standard aSPIl
scheduling mechanisms. Each process can be a stand-alone program (such as a shell, compiler, or
editor), or can be part of a parallel application.

A parallel application consists of a group of closely related processes that work together on a single
problem. They synchronize their actions and share information by passing messages, which are
created and controlled by special Paragon OSPIl system calls.

The processes in an application can also share disk files: Paragon OSP/1 parallel//O calls insure
that access to these files is efficient and properly synchronized.

1-1

Introduction Paragon'" User's Guide

System Hardware

Nodes

The Paragon OSFIl operating system runs on several models of Intel supercomputers. These
systems all have a large number of nodes connected by a high-speed node interconnect network, and
a number of 110 interfaces to communicate with the outside world.

Each node is essentially a separate computer, with one or more i8~ processors and 16M bytes or
more of memory. Nodes can run distinct programs and have distinct memory spaces. They can team
up to work on the same problem and exchange data by passing messages. An Intel supercomputer
can have up to 2000 nodes. Each node can nut more than one process at the same time; these
processes can belong to the same or different applications.

The system administrator can choose to dedicate some nodes to interactive processes, such as shells
and editors, and other nodes to compute-intensive applications. The nodes used for interactive
processes are called service nodes, and the nodes used for compute-intensive applications are called
compute nodes. However, there are no physical differences betweentl1ese two types of nodes.

Node Interconnect Network

The nodes are connected by a high-speed node interconnect network. Each node interfaces to this
network through special hardware that monitors the network and extracts only those messages
addressed to its attached node. Messages addressed to other nodes are passed on without interrupting
the node processor. For most applications, you can think of each node as being fully connected to all
the other nodes.

1/0 Interfaces

1-2

Some nodes are equipped with a SCSI interface, Ethernet interface, or other 110 connection. These
nodes manage the system's disk and tape drives, network connections, and other 110 facilities.
Nodes with 110 interfaces communicate with the other nodes over the node interconnect network.
However, this access is transparent: processes on nodes without 110 hardware access the 110
facilities using standard OSFIl system calls, just as though they were directly connected. Nodes with
110 interfaces are otherwise identical to nodes without 110 interfaces, and can run user processes.

Paragon 1M User's Guide InIroduotion

TM
Front Panel LEOs (Paragon XP/S Only)

On the Paragon XP/S system, each cabinet has a number of Light-Emitting Diodes (LEOs) on its
front panel that inform you of the status of the system, the nodes, and messages between nodes. The
front panel LEOs are shown in Figure 1-1.

Message going left (yellow)

Power (green) .. ~ ~ 0 ~ ~ 0 Power fault (red) ,
= §§;~ =

> §§; >§§;= = =
Message going up - L ~t==M_~down (yellow) (green)

o ... Node fault (reel)
= =
>~T§~

~ ~ ~~

Message going right (green) Node activity (green)

Figure 1·1. Front Panel LEDs (Paragon™ XPIS Only)

Each cabinet has four LED panels, each of which shows the status of 16 nodes in a 4 by 4 grid. Figure
1-1 shows the upper left comer of one LED panel. The meanings of the LEOs are as follows:

• The round green LED in the upper left comer of the top LED panel in each cabinet indicates
that power has been supplied to the cabinet. (The corresponding LEOs in the other three panels
never illuminate.)

• The round red LED just below the green power LED indicates a fault in the cabinet's power
subsystem. If a fault is detected by the cabinet's self-tests, this LED illuminates. (The
corresponding LEOs in the other three panels never illuminate.)

• The square groups of horizontal green LED bars show the amount of computational activity on
the nodes. Each group represents one node. The more active a node is, the more green LEOs are
illuminated, in a bar graph moving out from the center. Figure 1-2 shows the six possible ways
these LEOs can be illuminated, showing activity levels from 0% to 100%.

1-3

Introduction

0%

Paragon no User's Guide

20% 40% 60% 80% 100%

Figure 1-2. Node Activity LEDs

• The arrow-shaped yellow and green LED bars indicate messages. When a message is passed
from one node to another, all the arrow LEOs along its path illuminate. (Messages always travel
first in the X direction (horizontally), then in the Y direction (vertically). Messages never
change direction more than once.) Yellow arrows show messages going up or to the left; green
arrows show messages going down or to the right. When the arrows are illuminated, a light
pattern moves along the arrow to show the direction of motion.

• The round red LED associated with each node indicates a hardware fault on the node. If a fault
is detected by the node's self-tests,. the red LED illuminates.

System Software
The nodes run the Paragon OSFll operating system, based on the OSF/l operating system from the
Open Software Foundation. The same operating system runs on every node. OSF/l is a version of
the UNIX operating system that supports most industry standards; Paragon OSF/l is an extended
version of OSFIl with enhancements to support parallel processing.

The Intel supercomputer also comes with a cross-development/acUity, which you can use to compile
and link Paragon OSF/l programs on supported workstations.

Paragon TM OSF/1 Operating System

1-4

Paragon OSF/l provides all the standard features of OSFI I, with extensions to provide a single
system image across multiple nodes. This single system image makes all the nodes appear to be one
large system. For example, all the nodes share a single file system, all the nodes have equal access
to the system's I/O devices, and process identifiers (PIDs) are unique throughout the system. A
process on one node can pipe its output to a process on another node, and the command kill pid on
any node kills the specified process, no matter which node the process is running on.

,

i

Paragon'" User's Guide In1rodIcIion

The single system image does not combine all the nodes' memory into a single address space.
Rather, each process has its own address space. The physical memory available to each process is
limited to the memory of the node on which it is running. However, because OSF/l provides virtual
memory, a process's address space can be up to 2G bytes in size; memory pages that do not fit in
physical memory are paged to disk. As in most multi-user systems, the address spaces of the
different processes on the system are completely independent, unless two or more processes make
special shared virtual memory calls to explicitly share part of their memory.

In addition to the standard facilities of OSFIl, the Paragon OSF/l operating system provides
message passing capability, Parallel File System access, and various other utilities to programs
running on the Intel supercomputer. With Paragon OSF/l calls, your programs can perform the
following functions:

• Exchange messages with processes running on other nodes (or the same node).

• Read and write files on the Intel supercomputer's Parallel File System.

• Perform 64-bit integer arithmetic.

• FInd out information about the computing environment.

• Perform global operations.

• Create and control parallel applications and partitions.

User Model

The Paragon OSF/I operating system is a complete implementation of OSF/I, and provides a full
range of services, commands, and system calls. It has its own file system, shells, compilers, editors,
network connections. and all the other features needed in a stand-alone computer system. It also
supports NFS, the Network File System, so it can share data with other systems on your network.
You can edit and compile programs, send and receive mail, read online manual pages, and do all
your other daily work on the Intel supercomputer.

You access the Intel supercomputer by logging into a separate computer (typically your UNIX
workstation) and then connecting to the Intel supercomputer over a local-area network, using a
command such as rJogin or telnet The Intel supercomputer does not have any dedicated hardware
terminals.

You compile and link your application with the self-hosted Paragon OSFIl compilers and linker.
You then execute your application on the nodes of the Intel supercomputer simply by typing the
application's name on the shell command line. Command-line switches, or arguments to system
calls in the program, determine the number of nodes on which the application executes.

1-5

Introduction Paragon'" User's Guide

When you run an application, it runs in apartition. A partition is a group of nodes with an associated
set of parameters that controls some of the run-time ch8racteristics of the applications within it You
can use coinmands or system calls to create, modify. and remove partitions. However, the operations
you are allowed to perfonn on your system's partitions may be restricted by the policies of your site.

The Paragon OSFIl operating system also provides a suite of program development tools, such as a
debugger,;,FOfiler, and parallel perfonnance analysis tools. These tools are described in the
Paragon Application Tools User's Guide.

Programming Model

The most common programming model used with Paragon OSF/l is the "single program, multiple
data" (SPMD) model. In this model, the same program runs on each node in the application, but each
node woIks on only part of the data.

• For some problems, called ''perfectly parallel" problems, each node can do its work without
access to data held by other nodes. In this case, each node operates completely independently.

• For other types of problems, each node needs data from other nodes to do its work. In this case,
the nodes can share data by passing messages. Messages can also be used to synchronize node
operations.

Because each node is an independent computer, you can also use other programming models. One
example is the ''manager-worker" model, in which one ''manager'' program starts up several
''worker'' programs on other nodes, then gathers and interprets their results.

Cross-Development Facility

1-6

Paragon OSF!l comes with a complete program development environment, including compilers,
linker, libraries, and related tools. You can perfonn all phases of program development on the Intel
supercomputer. In addition, the compilers, linker, and libraries for Paragon OSF!l are also available
on selected UNIX workstations. This cross-development facility lets you edit, compile, and link
Paragon OSF!l programs on your own woIkstation.

Note, though. that the cross-development facility does not include a way to run a Paragon OSF!l
executable that resides on your workstation's disk. You must transfer your executable files to the
Intel supercomputer for execution and debugging. You can do this by mounting your workstation's
file system onto the Intel supercomputer, or the Intel supercomputer's file system onto your
woIkstation, using the Network File System (NFS). You can also use commands such as rep or ftp
to copy the executable files to the Intel supercomputer. To execute files on the Intel supercomputer
once they are transferred, you can use the standard rsh or rcmd command.

Using Paragon ™ OSF/1 Commands

Introduction
This chapter tells you how to use Paragon OSP!l commands to perform the following tasks:

• Compiling and linking applications.

• Running applications.

• Managing running applications.

• Managing partitions.

The commands discussed in this chapter are available to all users. See the Paragon TM System
Administrator's Guide for infonnation on commands that require root privilege.

This chapter does not discuss NQS, the Network Queueing System, which is used at some sites to
schedule application execution. See the Paragon™ Network Queueing System Manual for
infonnation on NQS.

Terminology

This chapter uses the following terms:

• A parallel application, usually just called an application in this manual, is a group of
cooperating processes that runs on the nodes of the Intel supercomputer.

• A program is a file (source or executable). An application consists of one or more programs
running on one or more nodes. The term program is also used to refer to a non-parallel program
(an ordinary program that runs on one node).

2-1

Using Paragon™ OSFI1 Commands . Paragon 1M User's Guide

A partition is a named group of nodes. When you run a parallel application, you must select a
partition to run it in (if you don't, it runs in your default partition). The partition places limits
on some of the execution characteristics of the application, such as how many nodes it can use
and how long it can use them before it is ''rolled out" and another application is "rolled in. " You
can allocate all of the nodes of the partition to the application, or just some of them. This
allocation mayor may not be exclusive, depending on the characteristics of the partition.

All Intel supercomputers have two special partitions called the service partition and the compute
partition. The service partition is used to run non-parallel programs such as shells and editors,
and the compute partition is used to run parallel applications. The other partitions on your
system, and what you can do with them, are determined by your system administrator.

Using Paragon 1M OSF/1 Commands on the Intel Supercomputer

The Paragon OSPII operating system provides all of the standard commands of OSPIl, such as cat
andis, which work as specified by the Open Software Poundation. These commands are not
described in this chapter; see the OSFll Command Reference for information on these commands. .

Paragon OSP/I also provides several commands that are not specified by the Open Software
Foundation, such as ..mpart and rmpart. These commands are described in this chapter, and
manual pages for these commands are provided in the Paragon TM Comnumds Reference Manual.

To use any of these commands, you must flrst log into an Intel supercomputer. Intel supercomputers
have no directly-attached terminals; you must flrst log into another system (typically a workstation
running some variant of the UNIX operating system) and then log into the Intel supercomputer over
the network, using a command such as rlogin or telnet. Once you have logged in, you use these
commands in the same way as commands on any other computer running OSP/I.

Using Paragon 1M OSF/1 Commands on Workstations

2-2

The Paragon OSP/I operating system also comes with several commands that run on workstations
(for example, the icc and if77 cross-compilers). These commands are described briefly in this
chapter; complete descriptions and manual pages for these commands are provided in the Paragon TM

C Compiler User's GuiJJe and Paragon™ Fortran Compiler User's Guide.

To use these commands, you must first log into a workstation on which these commands are
supported, then configure your account as described under "Configuring Your Environment for
Cross-Development" on page 2-6. Once you have done this, you can use the Paragon OSP/I
cross-development commands in the same way as other commands on the workstation. However, if
you compile an application on a workstation you must transfer the executable flle to an Intel
supercomputer to execute it. Depending on your local configuration, you may be able to use the
Network File System (NFS), the rep command, the ftp command, or some other technique to do this.
Ask your system administrator about how flIes are shared between the Intel supercomputer and other
systems on your network.

Paragon" User's Guide Using Paragon" OSFI1 Commands

A Quick Example

Here is a quick example that shows you how to compile, link, and execute a simple application on
an Intel supercomputer.

Information You Need

Before you begin. you will need the following information:

• The network name of your Intel supercomputer.

• The command to use to log into the Intel supercomputer, such as rlogin or telnet.

• Your user name and password on the Intel supercomputer (if necessary).

• The name of the default partition you should use to run parallel applications.

This information should be available from your system administrator.

Compiling, Linking, and Executing an Application

Once you have the necessary information. the procedure to compile,link. and execute an application
is as follows:

1. Log into the Intel supercomputer, as instructed by your system administrator.

2. Set the environment variable NX _DFLT _PART to the name of your default partition:

• If you use the C shell, use the following command:

• If you use the Bourne or Korn shell, use the following commands:

$ NX_DFL~_PAR~-partition_name
$ ezport: NX_DFL~_PA1lT

2-3

Using Paragon'" OSF/1 ComInands . Paragon no User's Guide

2-4

3. Type in a short program:

• If you are a Fortran programmer, type the following program into the file myapp.j.

program hello
include 'fnx.h'

write(*,100) mynode()
100 format('Hello from node', i4, 'I')

end

• If you are a C programmer, type the following program into the file myapp.c:

#include <nx.h>

maine)
{

printf("Hello from node %dl\n", mynode(»;
}

4. Compile the program into an executable file:

• If you are a Fortran programmer, use the following command:

% E77 -nor -0 lIIyapp lIIyapp.E

• If you are a C programmer, use the following command:

% cc -nor -0 myapp lIIyapp. c

5. Execute the resulting file, myapp, on four nodes with the following command:

% lIIyapp -sz 4
Hello from node O!
Hello from node 3!
Hello from node 1!
Hello from node 2!

The order in which the output lines appear may vary.

That's all there is to it! Of course, Paragon aSF/l provides many additional commands and switches
you can use to control the behavior of the compiler and the resulting application. These commands
and switches are described in the rest of this chapter.

Paragon" User's Guide Using Paragon'" OSFI1 Commands

Compiling and Linking Applications

Command Synopsis

cc -ox [switches] source file ••.

rT7 -ox [switches] source file ••.

icc -ox [switches] source file ••.

irT7 -ox [switches] source file •.•

Description

Compile a Paragon aSF/1 application written
in C on an Intel supercomputer.

Compile a Paragon aSF/1 application written
in Fortran on an Intel supercomputer.

Compile a Paragon aSF/1 application written
in C on an Intel supercomputer or
cross-development workstation.

Compile a Paragon aSFIl application written
in Fortran on an Intel supercomputer or
cross-development workstation.

You can compile and link applications on the Intel supercomputer itself. or on a workstation that
supports the Paragon aSF/1 cross-development environment. On the Intel supercomputer. you can
use the "native" commands cc and rT7 or the "cross-development" commands icc and irT7. On a
workstation. you must use the cross-development commands icc and irT7. The native and
cross-development versions of each command take the same switches and work identically.

When compiling and linking an application. you should generally use the switch -ox on the
command line. The -ox switch has three effects:

• If used while linking a C or Fortran program. it links in libnx.a. the library that contains all the
system calls described in this manual.

• If used while linking a C or Fortran program. it links in a special start-up routine that starts up
the program on multiple nodes. as specified by standard command line switches and
environment variables.

• If used while compiling a C program. it defines the preprocessor symbol_NODE. The
program being compiled can use preprocessor statements such as #ifdefto control compilation
based on whether or not this symbol is defined. (This preprocessor symbol is not defined if -ox
is used while compiling a Fortran program.)

For example. the following command line compiles and links the fIle myapp.c to create an
executable fIle called myapp (on the Intel supercomputer):

, CC -AX -0 l8yapp l8yapp. C

2-5

Using Paragon- OSF/1 Commands Paragon"" User's Guide

The following command line has the same effect (on the Intel supercomputer or a cross-development
workstation):

, icc -11% -0 lIIyapp lIIyapp. C

NOTE

Do not use -nx if your application calls nx_initveO.

The Paragon aSF!1 operating system provides ox _ initve() and related functions to give your
application more control over the way it starts up. They let the application perform actions for itself
that are normally performed for it by -ox. If you link your application with -ox and it also calls
ox_initve() itself, the application's call to ox_initve() will fail and return -1. See "Managing
Applications" on page 4-2 for more information on ox _ initve() and related functions.

To link an application that calls ox _ initve(), use the switch -lox instead of -ox. The -lox switch links
in libnx.a, but without the special start-up routine supplied by -ox. A program linked with -lox can
use all the calls described in this manual, but does not automatically start itself on multiple nodes.
(Note that the -lox switch must appear on the compiler command line after the filenames of any
source or object files that use these calls.) Note that the preprocessor symbol_NODE is not defined
by-lox.

A program that is not linked with -ox and does not call ox _ initve() is not a parallel application. It
does not recognize the command-line switches described under "Running Applications" on page
2-11, and it always runs on one node in the service partition. (If it creates additional processes by
calling forkO, they may run on the same node or a different node, but they will always run in the
service partition.)

Configuring Your Environment for Cross-Development

2-6

Before you can use the icc and if77 commands on your workstation, you must configure your
environment as follows:

• The environment variable PARAGON jIDEV must be set to the pathname of the directory that
contains the Paragon aSFIl cross-development facility. If you don't know this pathname, ask
your system administrator.

• Your execution search path (PATH or path variable) must include the directory
$P ARAGON XDEV!paragon/hin.mb., where llCd! identifies the architecture of your
workstation (such as sun4 for a Sun-4 workstation).

• If you want to read Paragon aSF!1 online manual pages on your workstation, your online·
manual page search path (MANPA11l variable or equivalent facility) must include the directory
$PARAGON _XDEV!paragon/man.

Paragon- User's Guide Using Paragon" OSF/1 Commands

You should put the defInitions of these variables into your .cshrc or .login fIle (or the equivalent
start-up fIle for your shell). For example. suppose the Paragon OSF/ I cross-development facility is
installed in the directory lusrllocallXDEV. If you use the e shell. you would add these lines to your
.cshrc file:

setenv PARAGON_XDEV /usr/local/XDEV
set path=($path $PARAGON_XDEV/paragon/bin.'arch'
setenv MANPATH "${MANPATH}:${PARAGON_XDEV}/paragon/man"

(The curly braces in "$ {MANPATH) : $ {PARAGON_XDEV} /paragon/man II are necessary
because a colon after a variable name is special to the e shell.)

Once your environment is properly confIgured. you can use the icc or ifn command to compile and
link applications on your workstation. For example. the following command line compiles and links
the fIle myappJto create an executable file called myapp:

, i:l77 -.ax -0 lIIyapp lIIyapp.:l

The executable file. myapp. can only be executed on the Intel supercomputer. You can do this by
putting it in a directory that is shared between your workstation and the Intel supercomputer with the
Network File System (NFS). or by copying it to the Intel supercomputer with the ftp or rep
command. If you use the ftp command. the resulting fIle may not have execute permission; if this
happens. use the chmod command on the Intel supercomputer to give myapp execute permission.

NOTE

The Paragon OSF/1 versions of the compilers are not the same as
their iPS(5® system equivalents.

If you develop programs for the iPSe series of supercomputers from Intel Corporation as well as for
Paragon OSF/I. you must be sure that your execution search path (PATH or path variable) is set
appropriately for your current target system. To compile a program for Paragon OSF/I. the variable
PARAGON jIDEV must be set appropriately and your execution search path must include
$PARAGON _ XDEVlparagon/bin.m:dJ.: to compile a program for the iPSe system. the variable
IPse _ XDEV must be set appropriately and your execution search path must include
$IPSC _ XDEVli860lbin.m instead. Be sure that your execution search path does not include both
these directories at the same time.

2-7

Using Paragon1M OSF/1 Commands Paragon 1M User's Guide

Tips for Compiling and Linking

2-8

The following sections give you some tips for compiling and linking Paragon OSF/1 applications
(on either the Intel supercomputer or a cross-development workstation).

Using Other Switches

The ce, m, ice, and IfT7 commands have a variety of switches to control their operation. For a
description of these switches and other information on these commands, see the online manual pages
for the commands or the following printed manuals:

ce,icc

fT7,tm

Paragon™ C Compiler User's Guide.

Paragon™ Fortran Compiler User's Guide.

Including nx.h or fnx.h

As a general rule, always include the file nx.h in all Paragon OSF/1 C programs. This file contains
definitions and declarations needed by the Paragon OSF/l C system calls. Although a specifIc
application may not need the definitions and declarations contained in nx.h, the overhead involved
in including it in all programs is minor. Include it in your C programs as follows:

#include <nx.h>

For Fortran programs, the corresponding fIle is fnx.h. Include it in your Fortran programs as follows:

include 'fnx.h'

Specifying Include File and Library Pathnames

The standard include and library directories depend on whether you are using the native
development commands or the cross-development commands:

• The native development commands search for include fIles in the directory lusrlinclude, and
they search for libraries in the directories lusrlccsllib (searched first) and lusr/lib (searched
second).

• . The cross-development commands search for include files in the directory
$P ARAGON _ XDEVlparagonlinclude, and they search for all libraries in the directory
$PARAGON _ XDEVlparagonllib-coff.

Paragon- User's Guide Using ParagonN OSFI1 Commands

Note, though, that on the Intel supercomputer the directories /usr/paragon/XDEV/paragonllib-coJ!
and /usr/ccs/lib are identical, the directories /usrlparagonlXDEVlparagon/include and lusr/include
are identical, and the default for $PARAGON _ XDEV is /usrlparagonlXDEV, so this difference may
not be significant.

If you need to include a flIe that is not in the standard include directory or in the same directory as
the source file, you must use the·1 switch on the compiler command line to identify the nonstandard
directory. For example, the following command line compiles and links an application that uses
include flies in the directory /usrllocal/include:

, icc -DZ myapp.c -I/usr/local/1aclude

If you need to link to a library that is not in one of the standard library directories, then you must
modify the command line in one of the following ways:

• Use the ·L switch to provide the pathname of the directory in which the library is located. For
example, the following command line compiles and links an application that depends on the
library libfft.a located in the directory /usr/localllib:

, icc -az -L/usr/local/l1b .yapp.c -lff~

• Specify the complete pathname of the appropriate library or libraries on the command line. For
example, the following command line also compiles and links an application that depends on
the library libfft.a located in the directory lusrllocal/lib:

, 1f77 -az myapp. c /usr/local/lib/l1bff~. a

Preprocessing a Fortran Program

If your Fortran program is in a file whose filename ends with an uppercase".F' (rather than the
standard lowercase ".f'), the i07 command runs a preprocessor (like the standard C preprocessor)
on the file. This enables you to use lines like the following in a Fortran program:

#include <file.h>

#define MAX 87

2-9

Using Paragon™ OSF/1 Commands Paragon 1M User's Guide

2-10

Order of Switches

Most ce, m, ice, and 1rT7 switches are not order-sensitive. However, order is important for the -I,
-L, and -I switches and for listing libraries when linking. When constructing command lines, keep
the following guidelines in mind:

• list include directories (-I switch) in the order in which they should be searched. The list of
include directories you specify with -I switches is collected together and used for all source files
you specify. For example, the following command looks for include files in the directory
myincludes, then the directory • .!includes, and finally the standard include directory when
compiling a.c, b.c, and c.c:

% icc a.c -Imyinc~udes b.c -I •• /inc~udes c.c

• list libraries in the order in which they should be searched. The Paragon OSF/llinkers are
single-pass linkers; they cannot resolve a backward library reference (i.e., a reference to a
library object that was defined in a library that has already been searched). Note that this means
that if you use the -Inx switch, you should place it after any source files that need it, as follows:

% if77 -0 myapp myapp. f -~n%

Backward references between objects (.0 files), however, are not a problem, as all listed objects
are linked unconditionally.

• The -L switch affects only the search path of libraries that are listed after the -L switch. For
example, the following command searches only the standard library directories for the library
libnews.a, but searches the directory . .Imylibs (as well as the standard library directories) for the
library libgx.a:

% icc -n% myprog.c -~news -L .• /my~ibs -~g%

Paragon" User's Guide Using Paragon- OSF/1 Commands

• If you specify more than one·L switch. the named directories are searched in reverse order (the
directory specified by the first ·L switch on the command line is searched after the directory
specified by the second ·L switch on the command line). For example:

, icc -DZ myprog.c -lDews -L •• /mylibs -lgz -Llocallibs -llocal

This command searches for libraries as follows:

It searches only the standard library directories for the library libnews.a.

It searches the directory .. Imylibs and then the standard library directories for the library
libgx.a. .

It searches the directory locallibs,Jhen . .Imylibs, and then the standard library directories
for the library lib1ocal.a.

Note that the ·L switch also affects system libraries; in fact, directories specified by ·L are
searched for system libraries before the standard library directories.

Running Applications
Once you have compiled your application into a Paragon OSF!! executable file (and, if necessary,
copied the executable to an Intel supercomputer), you run it by typing its name at your Paragon
OSF!! shell command prompt, as you would for any other compiled program.

For example, if myapp is a compiled application, you can execute it with the following command:

, myapp

The way the application runs depends on how you linked it and on what system calls it makes:

• If myapp was linked with the ·ox switch, this command runs myapp on your default number of
nodes in your default partition. The section "Controlling the Application's Execution
Characteristics" on page 2-13 tells you more about the default partition, and about the
environment variables and command-line switches you can use to control the execution
characteristics of applications linked with the -ox switch.

• If myapp was linked with the -lox switch, this command runs myapp on the nodes and partition
specified by system calls within the application. The section "Managing Applications" on page
4-2 tells you how to use these system calls. If myapp does not specify the nodes and partition in
these calls, it defaults to running on your default number of nodes in your default partition. If
myapp does not make any of these calls, it runs on one node in the service partition.

• If myapp was linked without the -ox or ·Iox switch, it is an ordinary non-parallel program. and
it runs on one node in the service partition.

2-11

Using Paragon™ OSFI1 Commands Paragon 1M User's Guide

If you see the e1TOr message ''request overlaps with nodes in use," it means that your default partition
does not allow overlapping applications and someone else is already running an application in that
partition. Try again later, or use a different partition (as described under "Running an Application in
a Particular Partition" on page 2-22). You can use the pspart command to determine which
partitions have applications running in them, as described under "Listing the Applications in a
Partition" on page 2-51.

If you see the error message "partition permission denied" or "exceeds partition resources," check
to be sure the environment variables NX _ DFLT_P ART and NX _ DFLT _SIZE are properly defined.
See "Using the Default Partition" on page 2-14 and "Specifying Application Size" on page 2-15 for
more information on these variables; see your system administrator for·information on the proper
settings for these variables at your site.

If you see the error message "error 216 occurred, unknown, " it means that the application was
compiled on a previous release of the Paragon OSFIl operating system and uses an out-of-date
version of the libraries. (Error 216 is "parallel application incompatible with OS release", but the
"unknown" message may appear if the application is so out-of-date that it doesn't know about the
existence of this error.) If this occurs, recompile the application and try again.

1/0 Redirection

2-12

You can redirect the standard input, standard output, and standard error of an application with the
usual OSP/I techniques. For example, the following command redirects the input and output of the
application myapp:

, lIIyapp < lIIyfile.in > lIIyfile.out

This command runs the application myapp with its standard input redirected from the file myfile.in
and its standard output redirected to the file myfile.out.

Note that, by default, all the nodes read and write their standard input, standard output, and standard
error using PFS I/O mode O. In mode 0, all file access requests are honored on a first-come,
flISt-served basis. You can change this behavior by selecting a different I/O mode;· see "Using I/O
Modes" on page 5-13 for more information. The standard input, standard output, and standard error
are line-buffered by default. This means that if all the nodes write to standard output or standard
error, the output from all the nodes is intermixed in the output,line by line; if all the nodes read from
standard input, each line of the input goes to an arbitrary node.

Paragon'" Ueer's Guide Using Paragon'" OSF/1 Commands

Controlling the Application's Execution Characteristics

Command Synopsis Description

application [-sz size I -sz hXw I -net hXw:n] Execute a Paragon OSP/1 application.
[-pri priority] [-pt ptype]
[-on nodespec] [-pn partition]
[mp _switches]
[\; app2 [-pt ptype] [-on nodespec]] ...

When you run an application, you can use command-line switches and environment variables to
control the way the application executes. This section discusses all the switches and environment
variables except for the mp _switches, which are used for message-passing performance tuning; for
information on the mp _switches, see "Message-Passing Configuration Switches" on page 8-18.

Command-line switches can appear in any order on the command line, and may be intennixed with
application-specific switches and arguments. If you specify the same command-line switch more
than once in a single command. the last occurrence overrides the earlier ones. Por example, the
following two commands are equivalent:

, myapp -sz 4 -sz 50 -pri 8 file_dat
, myapp -pri B -sz 4 file_dat -sz 50

Each of these commands runs the application myapp, with the argumentftle.dat, at priority 8 on 50
nodes of your default partition.

If the application was linked with the -ox switch, the command-line switches discussed in this
section are interpreted and removed from the command line before the application starts up. In the
previous examples, the arguments -pri8, -sz 4, and -sz 50 are interpreted and removed by the -ox
code; myapp sees only the argumentflle.4at (if myapp is a C program argc is 2, argv[O] is "myapp",
and argv[l] is "file.dat'').

NOTE

All the examples in this section assume that myapp was linked
with the -nx switch.

An application that is not linked with -ox controls its own execution with system calls, as discussed
under "Managing Applications" on page 4-2. Such an application mayor may not obey the
command-line switches discussed in this section, depending on how it was programmed.

2-13

Using Paragon'" OSFI1 Commands Paragon no User's Guide

2-14

Using the Default Partition

When you run a parallel application on the Intel supercomputer, it runs in a partition. The partition
determines the maximum number of nodes used by the application and how the application is
scheduled, as described later in this chapter. An application stays in the same partition for its entire
run.

If you do not specify otherwise, the application runs in the partition specified by the environment
variable NX yFLT _PART. If the environment variable NX _DFLT _PART is not set. the application
runs in the compute partition, a special partition that is present on all Intel supercomputers. The
partition specified by NX _ DFLT _P ART (or, if this variable is not set. the compute partition) is called
your defaUlt partition.

For example, to run the application myapp in your default partition, use the following command:

" lIIyapp

This command runs the application myapp in the partition specified by the environment variable
NX _ DFLT _PART, or in the compute partition if NX _DFLT _PART is not set.

If you see an error message such as ''partition not found" or ''partition permission denied," ask your
system administrator what your default partition should be, then use the commands described in the
next section to set the variable NX _DFLT_P ART to that value. You can also use the -pn switch
(described under "Running an Application in a Particular Partition" on page 2-22) to run an
application in a different partition.

For more information about partitions, see "Managing Partitions" on page 2-25.

Setting Your Default Partition

The command you use to set or change your default partition depends on which shell you use.

• If you use the C shell, use the setenv command. For example, if you are a C shell user, the
following command sets your default partition to mypart:

setenv is a built-in command of the shell; see tsh in the OSFIl Co1l1J'l'UJ1ld Reference for more
information.

You can put this command in your .login or .cshrc file on the Intel supercomputer to have your
default partition set to mypart each time you log in.

Paragon" User's Guide Using Paragon- OSFI1 Commands

• If you use the Bourne or Kom shell. set the variable and use the export command to make its
value available to commands other than the shell. For example. if you are a Bourne or Kom shell
user. the following commands set your default partition to mypart:

$ NlLDFL'J!_p~-lIIypart
$ ez.port NlLDFL'J!_PAIlT

You do not have to use the export command each time you set the variable. You only have to
export a variable once in each login session. export is a built-in command of the shell; see sh
or ksh in the OSF/l Command Reference for more information.

You can put these commands in your .profile file on the Intel supercomputer to have your
default partition set to mypart each time you log in.

You can use an absolute or relative partition pathname as the value of NX _DFLT J' ART. For
example. the following C shell commands are equivalent:

, setenv NX_DFL'J!_P~ .yorg.mypart
, setenv NX_DFL'J!_PAR'J! • compute .lIIyorg •• ypart

See "Partition Pathnames" on page 2-28 for more information on partition patlmames.

If you use the C or Kom shell. you can create an alias to change your default partition. For example.
the following C shell command creates a "setpart" alias that sets your default partition to its
argument:

, alias setpart 'setenv ~DFL'J!_PAR'J! \1*'

Detennining the Current Default Partition

To find out your default partition once you have set it. use the echo command. For example:

, ecbo $NlLDFL'J!_PAR'J!
mypart

This command works the same in any shell.

Specifying Application Size

An application's size is the number of nodes allocated to the application from the partition. The
processes of the application run only on this set of nodes. and do not exchange messages with
processes on nodes outside this set. Depending on the characteristics of the partition. this allocation
may or may not be exclusive: some or all of these nodes may also be allocated to other applications
and/or other partitions. An application keeps the same size for its entire run.

2-15

Using Paragon- OSF/1 Commands Paragon no User's Guide

2-16

To set an application's size, use the switch -sz size, where size is any positive integer less than or
equal to the number of nodes in the partition. For example, to run the application myapp on 64 nodes
of your default partition, use the following command:

, myapp -sz 64

The -sz size switch attempts to allocate a square group of nodes if it can. If this is not possible, it
attempts to allocate a rectangular group of nodes that is either twice as wide as it is high or twice as
high as it is wide. If this is not possible, it allocates any available nodes; in this case, nodes allocated
to the application may not be contiguous (that is, they may not all be physically next to each other).
If the requested number of nodes is not available, the command fails and the application does not
run; an error message is printed to explain why the specified number of nodes is not available.

No matter what the shape of the application, node numbers within the application (as returned by
mynode(» will always be sequential from o.

Specifying a Rectangle of Nodes

To force allocation of a contiguous rectangle of a particular size and shape, use the switch -sz hXw,
where h and w are positive integers that specify the height and width of the desired rectangle. (You
can use an uppercase or lowercase letter X between the integers h and w.) For example, to run myapp
on an 8 by 8 node rectangle of your default partition, use the following command:

, myapp -sz 8%8

If successful, this command runs myapp on an 8 by 8 node rectangle of nodes, which could be
located anywhere within the partition that it fits. If no 8 by 8 node rectangle is available in the default
partition, the command fails immediately and the application does not run, even if there are 64 nodes
free in the partition. If this occurs, the command fails with the error message "exceeds partition
resources" if no such rectangle can be found that fits within the partition, or ''request overlaps with
nodes in use" if the rectangle fits within the partition but some of its nodes are busy).

Specifying a Particular Rectangle of Nodes

To force allocation of a contiguous rectangle of a particular size and shape at a particular location
within the partition, use the switch -od hXw:n. (This switch is called -Dd, rather than -sz, because it
specifies a particular set of nodes rather than just a size or shape.)

In the -od hXw:n switch, h and w are positive integers that specify the height and width of the
desired rectangle, and n is a positive integer that specifies the node number within the partition for
the upper left comer of that rectangle. You can use an uppercase or lowercase letter X between the
~gers hand w. When choosing the value of n, remember that in an m-node partition the nodes are
numbered left to right and top to bottom from 0 to m-l.

Paragon'" User's Guide Using Paragon" OSF/1 Commands

For example. to run myapp on an 8 by 8 node rectangle in the upper left comer of your default
partition. use the following command:

, myapp -nd 8%8:0

In this case. if the specified nodes are not available in the default partition. the application fails
immediately (even if there is a different 8 by 8 node rectangle available).

Using the Default Size

If you don't use the -51 or -nd switch. the application's size is specified by the environment variable
NX _DFLT _SIZE. whose value must be a single positive integer. You can use the techniques
discussed for the NX JJFLT _PART variable in the previous section to get and set the value of the
NX _DFLT _SIZE variable. If NX _ DFLT _SIZE is not set, the application runs on all nodes of the
partition. and its size is set to the size of the partition. The size specified by NX_DFLT_SIZE (or. if
this variable is not set. the size of the partition) is called your default number of nodes.

An application can determine its size by calling oUDDlodesO. and each process in the application can
determine its node number within the application by calling mynode(). mynode() returns a node
number from 0 to one less than the application's size. (See "Process Characteristics" on page 3-3 for
more information on these calls.) For example. with -sz; 64 •• sz; 8x8. or ·ntl8x8:O. oumnodes()
returns 64 and mynode() returns a number from 0 to 63 inclusive. There is no way for an application
to change its size.

An application can determine its shape by calling ox _ app]ectO. which returns the height and width
of the rectangle of nodes allocated to the application. If the nodes allocated to the application do not
form a rectangle. ox _app]ectO returns a height of 1 and a width equal to oumnodesO.
(ox _ app]ectO can also be called by the name myparlO for compatibility with the Touchstone
DELTA System.)

Specifying Application Priority

An application' s priority is an integer associated with the application that is used in determining how
much of a node's processor time the application gets when the node is allocated to more than one
application at once. 0 is the lowest priority. and lOis the highest.

The application's priority is only one of several factors that determine how much processor time it
gets. For example. the application's processor time can be affected by the priorities of other
applications in the system and by the effective priority limit of the partition in which the application
runs. See "Scheduling Characteristics" on page 2-33 for more information.

To set the priority of the application, use the switch -pri priority. where priority is an integer from
o to 10 inclusive. If you don't use the -pri switch, the application's priority is set to S.

2-17

Using Paragon"" OSFI1 Commands Paragon no User's Guide

2-18

For example, to run the application myapp with a priority of 6, use the following command:

% myapp -prJ. 6

An application can change its priority by calling DXyriO (see "Setting an Application's Priority
with nx-priO" on page 4-9 for more information).

Specifying Process Type

A process's process type, or ptype, is an integer associated with the process that differentiates it from
any other process in the application that is on the same node. The process's node number and process
type together form the process's "address" for messages within the application.

To set the process type of each process in the application, use the switch -pt ptype, where ptype is
.aninteger from 0 to 2,147,483,647 (~1_1) inclusive. If you don't use the -pt switch, the process
type of each process is o.

For example, to run the application myapp with a process type of 1 for each process, use the
following command:

% myapp -pt 1

A process can find out its current process type by calling myptype(). For example, with -pt 1,
myptype() returns 1 on all nodes. Once a process's process type has been set to a valid value, it
cannot change its process type and no other process in the same application on the same node can
use that process type for the run of the application. See "Process Characteristics" on page 3-3 for
information on process types and the myptypeO and setptype() system calls.

The -pt switch is most commonly used when rumring multiple programs in one application, as
discussed under ''Running Applications Consisting of Multiple Programs" on page 2-21. In most
other circumstances, you can use the default process type of O.

Running a Program on a Subset of the Nodes

Usually you run the same program file on all the nodes allocated to the application from the partition.
However, you can also run a program on just some of the nodes, leaving the other nodes vacant for
other programs. When you do this, the other nodes are allocated to the application, but no processes
are started on them.

Paragon'" User's Guide Using Paragon- OSF/1 Commands

To run a program on a subset of the nodes of an application, use the switch -00 nodes pee, where
nodespee is one of the following:

x The node whose node number is x.

x..y The range of nodes from numbers x to y.

o The last node of the partition.

nspee[,nspee] ••• The specified list of nodes, where each nspee is a node specifier of the form
x, x..y, or 0 (no node may appear more than once in this list). Do not put any
spaces in this list.

If you don't use the -00 switch. the program is run on all nodes allocated to the application.

NOTE

The numbers you use with -on are node numbers within the
application (which always range from 0 to one less than the size
of the application), not node numbers within the partition.

For example, to run the program myapp on the first three nodes of a 2O-node application, use the
following command:

, myapp -BZ 20 -OD 0,1,2

This command creates an application of size 20 in your default partition and runs myapp on nodes
0, I, and 2 of the application. Within this application, the function oumnodesO returns 20, and the
function mynode() returns a number from 0 to 19 inclusive. However, no processes are started on
nodes 3 through 19.

You can use the letter 0 to represent ''the last node in the application." For example, the following
command creates an application of your default size in your default partition and runs myapp on the
first and last nodes of the application:

, myapp -OD O,D

For example, if your NX _ DFLT_ SIZE variable is set to 64 (and there are at least 64 nodes in your
default partition), this would run myapp on nodes 0 and 63 of the application.

2-19

Using Paragon'IM OSFI1 Commands Paragon™ User's Guide

2-20

You can also use a pair of numbers separated by two periods (x..y) to specify ''nodes x through y
inclusive." For example, the following command creates an application of size 1 00 in your default
partition and runs the program myapp on nodes 10 through 90:

, lIIyapp -sz 100 -Oll 10 •• 90

It doesn't matter whether y is greater than x or vice versa. For example, the following command also
creates an application of size 100 in your default partition and runs the program myapp on nodes 10
through 90:

, lIIyapp -sz 100 -Oll 90 •• 10

These notations can be combined. For example, the following command creates an application of
your default size in your default partition and runs myapp on all nodes but node 0 of the application:

, lIIyapp -Oll l •• ll

Another example: the following command creates an application of your default size in your default
partition and runs myapp on node 1, node 3, nodes 5 through 10 inclusive, and the last node of the
application:

, lIIyapp -Oll 1,3,5 •• 10,ll

NOTE

Do not use -on if you just want to run a single program on a
specific number of nodes.

The -on switch is designed to be used when running multiple programs as a single application, as
discussed in the next section. You can also use the -on switch to run a "manager" program on one
or a few nodes of an application; the "manager" program can then run "worker" programs on other
nodes by calling ox _ nforkO, ox JoadO, or ox _loadveO (see "Managing Applications" on page 4-2
for information on these functions).

The -on switch is not designed to run an application on a particular number of nodes or a particular
set of nodes. If you want to run an application on a particular number of nodes, use the -sz switch.
If you want to run an application on a particular set of nodes, allocate a partition containing those
nodes and run the application on all nodes of that partition (see "Managing Partitions" on page 2-25
for information on partitions).

If you use -on when you should be using -sz, the application will be allocated more nodes than it
needs. Also, if you use -on and do not run a program on every node of the application, global
operations will hang. (The global operations described under "Global Operations" on page 3-27,
such as gdsum(), block: until they are called by every node in the application. If you run a program
on only a subset of the nodes, these operations will block forever.) .

Paragon'" Uaer's Guide Using Paragon™ OSFI1 Commands

Running Applications Consisting of Multiple Programs

You can run multiple program files as a single application. For example, you could run two or more
separate programs on every node (the resulting processes must have different process types, and the
processes time-share the processor while the application is active). You might also run a manager
program on one node and worker programs on the other nodes. The programs should be written to
work together; you would not usually run two arbitrary programs together in one application.

To run multiple program files as a single application, use the following syntax:

, file [swi tahes] [\; file [-pt ptype] [-OD Dodespec]] ...

That is, you use two or more complete commands on one line, separated by an escaped semicolon
(backslash followed by semicolon).

NOTE

The escaped semicolon (\;) must be preceded and followed by a
space or tab. Otherwise, it will be considered part of the preceding
or following argument.

The first file must either have been linked with -ox or must call ox Jnitve() without overriding the
command line; the second and subsequentfiles may have been linked with or without -ox, but must
not call ox Jnitve().

The command-line switches you can use with the files are different:

• You can use any application switches (-sz, -pri, -pt, -on, -pn, and mp _switches) with the first
file. The effect of these switches varies according to the switch:

The -sz, -pri, -pn, and mp _switches switches you use with the first file affect the entire
application.

• You can use only the -pt and -on switches with the second and subsequent files. These switches
affect the associated file only.

If you run multiple processes on a single node, you must use the -pt switch to specify a unique
process type for each process. When two or more processes in an application run on the same node,
each must have a different process type. If you don't use the -pt switch, each process will have
process type 0, and you will receive an error message.

2-21

Using Paragon- OSF/1 Commands Paragon"'.User's Guide

2-22

For example, to run the programs myapp and myapp2 as a single application, use the following
command:

% myapp \; myapp2 -pt ~

This command runs the program myapp with process type 0 and the program myapp2 with process
type 1 on your default number of nodes in your default partition.

To run the program manager on node 0 of a 2O-node application and the program worker on the
remaining nodes, use the following command:

% manager -sz 20 -on 0 \; worker -on ~ •• n

This command creates an application of size 20 in your default partition. It then runs the program
manager on node 0 of the application and the program worker on nodes 1 through 19 of the
application. All the resulting processes have process type 0, but this does not create a conflict
because manager and worker run on different nodes.

NOTE

If you forget the backslash before the semicolon, the first program
is run as an application by itself and the second program runs after
the first program finishes. This usually results in unexpected
behavior from the programs.

Running an Application in a Particular Partition

To run an application in a partition other than your default partition, use the switch -pn partition .
. You must have execute permission for the specified partition. The partition specified by -pn
overrides the value of NX _DFLT _PART, if any. If you don't use the -pn switch, the application runs
in your default partition, as described under "Using the Default Partition" on page 2-14.

NOTE

If your defauH number of nodes, as specified by the environment
variable NX_DFL CSIZE, is greater than the number of nodes
available in the specified partition, you may get a -partition
resources exceeded" or -request overlaps with nodes in use"
error.

If you see this error. use the -sz switch or change the value of NX DFLT SIZE to specify an
application size less than or equal to the size of the specifiedpartitlon. - .

Paragon'" User's Guide Using Paragon- OSF/1 Commands

For example. to run the application myapp on your default number of nodes in the partition mypart.
use the following command:

, myapp -pn m'ypart

You can use an absolute or relative partition pathname with -pn (see "Partition Pathnames" on page
2-28 for information on partition patlmames). For example. the following commands are equivalent:

, myapp -pn myorg.~art
, myapp -pn .compu'te.myorg.m.ypart

For more information about partitions. see "Managing Partitions" on page 2-25.

Managing Running Applications
You use the standard aSF/l techniques to manage nmning applications. For example. you use your
interrupt key (usually (Del> or (ctrl-c » to interrupt a running application. If you use the C
shell or Kom shell. you can use your suspend key (usually (ctrl-z» to suspend an application.
and the fg or bg command to resume it. See csh. sb. or ksb in the OSFll Command Reference for
more information on these techniques.

NOTE

Interrupting or suspending an application that is "rolled out" will not
take effect until the application is "rolled in" again.

Parallel applications can be gang-scheduled to make more efficient use of system resources. In gang
scheduling. an application is allowed to run for a time period. called the rollin quantum. and then is
''rolled out" and another application is ''rolled in" in its place. If the rollin quantum is long. you may
not see any response to a (ctrl-c > or (ctrl-z > for a long time. See "Scheduling
Characteristics" on page 2-33 for more information on gang scheduling.

2-23

Using Paragon1M OSF/1 Commands Paragon'" User's Guide .

2-24

You can also use the ps command to determine the· StatuS of an application, and the kill command
to terminate it. For example:

% myapp &

[1] 7045
% ps

PID TT STAT
5841 p3 S +
7045 p3 R

% kill 7045
% ps

PID TT STAT
5841 p3 S +

[1] + Terminated
%

TIME COMMAND
0:02.50 -esh (esh)
0:00.30 myapp

TIME COMMAND
0:02.55 -esh (esh)

myapp

The ps command shows only processes running in the service partition. See ps and kiD in the OSFll
Command Reference for more information on these commands. To show processes running in
partitions other than the service partition, use the pspart command.

The myapp process that you see in the output of ps is a special process called the controlling process
that runs in the service partition; you do not see the other application processes in the output of ps.
However, sending a signal to the controlling process with , < Ctr1-e >, < Ctr1-Z >, or kill
signals all the processes in the application. See "Managing Applications" on page 4-2 for more
information on the controlling process.

If the application was started from the Bourne shell (sh) or from a shell script, you will see two
processes with the name of the application in the output of ps. One of these two processes is the
controlling process; the other is another special process, called the shepherd process. The shepherd
process is necessary for the application; do not kill it. When the application terminates, this process
will terminate as well.

To determine which process is which, use the command ps ·f and examine the ppm (parent PID)
fields of the two processes. The shepherd process is the parent of the controlling process. For
example:

$ ps -;E
USER PID PPID 'CPU STARTED TT TIME COMMAND
ehris 131125 131124 0.0 13:55:51 p2 0:00.28 -sh (sh)
ehris 131129 131125 0.0 13:56:36 p2 0:00.05 myapp
ehris 131130 131129 0.0 13:56:36 p2 0:00.03 myapp

In this case the second myapp process (pID 131130) is the controlling process. The first myapp
process, PID 131129, is the parent of the controlling process and is therefore the shepherd process.

You can use the pspart command to determine the status of all the applications in a particular
partition. See "listing the Applications in a Partition" on page 2-51 for information on this
command.

Paragon- User's Guide Using Pa~gonnl OSF/1 Commands

You can also use the Interactive Parallel Debugger (ipd) to control the execution of an application,
down to the machine instruction. See the Paragon TM Interactive Parallel Debugger Reference
Manual for information on ipd.

Managing Partitions
The nodes of the Intel supercomputer are divided into overlapping groups called partitions. When
you run a parallel application, you must select a partition to run it in. The partition places limits on
the execution characteristics of the application, such as which nodes it can use, whether or not it can
use nodes that are already in use, and how long it can use them before it is "rolled out" and another
application is ''rolled in."

Depending on the policies of your site, you mayor may not have to know any more about partitions
than what has been discussed in this chapter so far.

• At some sites, the system administrator configures all the partitions; ordinary users can simply
set theNX_DFLT_PARTvariableto an appropriate value (or leave it unset and use the compute
partition) and then forget all about partitions. If your site is like this, you do not have to read this
section. However, you may wish to read it to help you understand how the system works.

• At other sites, users create and configure their own partitions. If your site is like this. you should
read this section.

This section includes the following information about partitions:

• Some special partitions that every Intel supercomputer has.

Specifying partitions with partition pathnames.

• The characteristics of a partition.

• Making partitions with the mkpart command.

• Removing partitions with the rmpart command.

• Showing the characteristics of a partition with the sbowpart command.

• Listing the subpartitions of a partition with the Ispart command.

• Listing the applications in a partition with the pspart command.

• Changing the characteristics of a partition with the cbpart command.

2-25

Using Paragon- OSFI1 Commands Paragon 1M User's Guide

Special Partitions

2-26

Every Intel supercomputer has three special partitions:

• The root partition directly or indirectly contains all the other partitions in the system. It is the
only partition that does not have a parent partition.

• The service partition is the partition in which the users' shells and other commands run. Its
parent is the root partition.

• The compute partition is the partition in which parallel applications run. Its parent is also the
root partition.

The characteristics of these partitions are detennined by the system administrator. In particular, the
system administrator sets the ownership and permissions of these partitions according to local
policies. These ownerships and permissions determine whether or not ordinary users can create
partitions for their own use, or whether they must run applications in partitions provided for them by
the system administrator. If ordinary users are allowed to create partitions, the system administrator
can also place restrictions on the characteristics of partitions they create and the use of certain
application switches within partitions.

Typically, the service partition and compute partition are the only two children of the root partition
and do not overlap. However, the system administrator can choose to configure these partitions
differently, and may also create additional child partitions of the root partition.

For example, some systems have an 110 partition: a third child of the root partition, which does not
overlap with either the service or compute partitions, and which contains the nodes that control disks
and other 110 devices. In other systems, the 110 "partition" is not a true partition, but a set of nodes
in the root partition that are not part of either the service or the compute partition.

The Root Partition

The root partition is the basis for all other partitions. The name of the root partition is . (dot).

The root partition contains every usable node in the system. Depending on the underlying hardware,
there may be unusable nodes within the root partition as well. The root partition organizes all the
nodes in the system into a two-dimensional grid, or mesh. For example, Figure 2-1 shows the root
partition of a 32-node system that is configured as a 4 by 8 node mesh. The nodes are numbered from
o to 31.

NOTE

The root partition is always rectangular. (This is not true of
partitions other than the root partition.)

Paragon 111 User's Guide Using Paragon- OSFI1 Commands

®CD®00®®0
®®@@@@@@
@@@@@)@@@

@@@)@@@@)@

Figure 2·1. The Root Partition of a 32-Node System

For example, a system with 31 nodes would also be a 4-by-8-node rectangle, numbered as shown in
Figure 2-1, but one of the nodes would be an unusable node, as described under "Unusable Nodes"
on page 2-31. You would not be able to start any processes or allocate any subpartitions using this
node.

The Service Partition

The service partition is the partition in which the users' shells, OSP!1 commands, and other
non-parallel programs run. The name of the service partition is service. The service partition may
not contain any subpartitions.

When you log into the Intel supercomputer, a shell is started for you on a node in the service
partition; when you execute a command in this shell. the command runs on a node in the service
partition. Note that the node the command runs on is not necessarily the same node that the shell runs
on; the system starts each new process on the node that is currently the least busy.

The Compute Partition

'The compute partition is the partition in which parallel applications run. The name of the compute
partition is compute.

2-27

Using Paragon'fM OSFI1 Commands Paragon'" User's Guide

When you execute a parallel application. one process (called the controlling process) runs in the
service partition; the other processes of the application run in the compute partition. or in a
subpartition of the compute partition. You can specify which partition an application runs in when
you execute it.

Your system administrator determines whether or not you can create subpartitions in the compute
partition and whether or not you can execute applications in the compute partition itself. There may
also be other local policies that affect how you use the compute partition; for example, you may be
required to run your applications in certain subpartitions during the day and others at night.

Partition Pathnames

2-28

Since partitions have a hierarchical structure like directories, they also have pathnames like
directories. Like a file or directory pathname, a partition pathname identifies a partition within the
hierarchical partition structure by describing the path from a known location to the specified
partition.

Unlike file and directory pathnames, however, partition pathnames use a dot (.) instead of a slash
(j) to separate the elements of the pathname. This is why the name of the root partition is . (dot).
There is also no special partition pathname for "current partition" or "parent of the current partition."
Also, you cannot use wildcards (* and ?) in partition pathnames.

There are two types of partition pathnames:

• An absolute partition pathname specifies the path from the root partition to the specified
partition. An absolute partition pathname begins with a dot (.)

• A relative partition pathname specifies the path from the compute partition to the specified
partition. A relative partition pathname does not begin with a dot.

NOTE

Relative partition pathnames are always relative to the compute
partition (there is no "current partitionj.

The absolute partition pathnames of the root partition, service partition. and compute partition are
. (dot), .service, and .compute respectively. Because these partitions are not subpartitions of the
compute partition, they do not have relative partition pathnames.

If the partition mypart is a subpartition of the compute partition. its absolute partition pathname is
.compute.mypart and its relative partition pathname is just mypart.

If subpart is a subpartition of mypart, its absolute partition pathname is .compute.mypart.subpart
and its relative partition pathname is mypart.subpart.

Paragon" User's Guide Using ParagonlM OSFI1 Commands

Partition Characteristics

Each partition has the following characteristics:

• A parent partition that contains it.

• A name that identifies it.

• A set of nodes that is allocated to it.

• An owner and group and a set of protection modes, like those of a file or directory, that
determine what actions a given user is allowed to perform on it.

• A set of scheduling characteristics that determine how applications are scheduled in it.

A partition's characteristics are set when the partition is created. The mkpart command. described
under "Making Partitions" on page 2-39. lets you specify most of these characteristics on the
command line; if you don't specify otherwise, the characteristics of a new partition are set to the
same values as those of its parent partition

You can use the showpart command, described under "Showing Partition Characteristics" on page
2-46, to determine a partition's current characteristics.

A partition's parent partition and nodes cannot be changed. You can change the other characteristics
with the chpart command. described under "Changing Partition Characteristics" on page 2-54.

Parent Partition

Each partition is contained within another partition The containing partition is called the parent
partition, and the contained partition is called a child partition or sub partition of the parent partition
(There is one exception to this rule: the root partition has no parent.)

You specify a partition's parent when you create it with mkpart The parent partition determines the
set of nodes that are available to be allocated to the new partition (a partition cannot include any
nodes other than the nodes of its parent). The parent partition also determines the default
characteristics of the new partition, as mentioned earlier. A partition's parent does not change for the
life of the partition

2-29

Using Paragon'" OSF/1 Commands Paragon no User's Guide

2-30

Partition Name

Each partition is identified by a name. A partition's name must be unique among all the partitions
with the same parent. Partition names can be any length, but must consist of only uppercase letters
(A-Z), lowercase letters (a-z), digits (0-9), and underscores U.

You specify a partition's name when you create it with mkpart, and you can use dlpart to change
an existing partition's name (you must have write permission on the partition's parent partition).

Nodes Allocated to the Partition

Each partition has a set of nodes allocated to it from its parent partition. Depending on the
characteristics of the parent partition, this allocation mayor may not be exclusive: some or all of
these nodes may also be allocated to other partitions and/or applications. The number of nodes in
this set is called the partition's size.

You can specify the set of nodes allocated to the partition when you create it with mkpart. You can
specify the partition's size and let the operating system select the nodes, oryou can specify certain
node numbers from the parent partition. If you don't specify either, the new partition consists of all
the nodes of the parent partition.

The set of nodes allocated to a partition does not change for the life of the partition (that is, partitions
never move or change their size or shape). Depending on how you allocate the nodes, they mayor
may not be contiguous (alI adjacent to each other). Figure 2-2 shows examples of contiguous and
noncontiguous partitions.

Node Numbers Within a Partition

Each node in a partition has a node number within the partition: an integer from 0 to one less than
the partition's size. The nodes in a partition are typically numbered from left to right and then from
top to bottom, as shown in Figure 2-2.

NOTE

Because partitions can overlap, a Single physical node can have
many logical node numbers.

For example, Figure 2-3 shows two partitions, called Partition A and Partition B, that have the same
parent partition. Partition A consists of nodes 1 through 4 of the parent partition, and Partition B
consists of nodes 4 through 8 of the parent partition. In this case, node 4 of the parent partition is also
known as node 3 of Partition A and node 0 of Partition B.

Paragon 1M User'. Guide Using Paragon- OSF/1 Commands

00000 00000
o o®imtD
o urn> 0 0 0
00000

O ••. , ..•.•. ' •.••..•. , •.••. ,t;;\ ~ , ·).,r.:"\ ... · ... 1.'.·.' ... \~ 0
~ . '" .V" ::<:}~::>

o oif(9!;rnJ, 0

00000

0
0
0

0 0 0 0 0 0 00
0 0 0 0 00

0 0 0
0 0 0

Contiguous Partitions Noncontiguous Partitions

F1gw'e 2·2. Node Numbers in Contiguous and Noncontiguous Partitions

Unusable Nodes

0
0

Occasionally a node may become unusable because of a hardware or software failure. If this occurs,
the node is still allocated to any partitions to which it was allocated before it became unusable, but
no applications can be run on that node and no new partitions can include that node until the node
becomes usable again. The showpart and Ispan commands indicate if there are any unusable nodes
in a partition.

For example, suppose you make a partition containing 20 nodes and later one of those nodes
becomes unusable. If you attempt to run an application or make a subpartition with all20 nodes of
this partition while the node is unusable, the attempt will fail.

2-31

Using Paragon'" OSFI1 Commands Paragon TN User's Guide

2-32

Parent Partition

Partition A Partition B

1,
Ir

0 0 0 0 0 0 0 0 0

Partition Node Numbers

Parent 0 1 2 3 4 5 6 7 8

A - 0 1 2 3 - - - -
B - - - - 0 1 2 3 4

Figure 2-3. Node Numbers in Overlapping Partitions

Owner, Group, and Protection Modes

Each partition has an owner, a group, and a set of protection modes, like those of a file or directory,
that determine who can perform what operations on the partition.

When you create a partition with mkpart, you become the new partition's owner, the new partition's
group is set to your current group (see newgrp in the OSFll Command Reference for more
information on groups). If you are the owner of a partition, you can use chpart to change an existing
partition's group; only the system administrator can change an existing partition's ownership.

Paragon'" User's Guide Using Paragonlll OSFI1 Commands

A partition's protection modes consist of three groups of three permission bits (read, write, and
execute for owner; read, write, and execute for group; and read, write, and execute for "other"), as
described for the chmod command in the OSFll Command Reference. The read, write. and execute
permission bits have the following meanings for a partition:

r (read)

w (write)

x (execute)

Allows listing the subpartitions and characteristics of the partition.

Allows creating and removing subpartitions in the partition and changing the
partition's characteristics.

Allows executing applications in the partition.

The system administrator (root) is not affected by these permission bits. root can do anything to any
partition at any time.

The permission bits can be expressed as a three-digit octal number (as for the chmod command) or
as a string of the form rwxrwxrwx (as used by the Is ·1 command, where a letter represents a bit
that is "on" and a dash (-) represents a bit that is "off"). For example, the octal number 754 is
equivalent to the string rwxr -xr - -; both grant all permissions to the owner, read and execute
pennissions to the group, and read permission only to all other users.

When you create a partition with mkpart. you can specify its protection modes. If you don't specify
a partition's protection modes when you create it, they are set to the same values as those of the
parent partition. If you are the owner of a partition or the system administrator, you can use chpart
to change an existing partition's protection modes.

Scheduling Characteristics

Each partition has a set of scheduling characteristics that detennine how the applications running in
the partition are scheduled (that is, how the system arbitrates between processes when there are
several processes running on a single node).

You can specify a partition's scheduling characteristics when you create it with mkpart and change
them with cbpart. If you don't specify a partition's scheduling characteristics when you create it,
they are set to the same values as those of the parent partition.

Using Paragon™ OSFI1Commands Paragon 'III User's Guide

2-34

A partition uses one of three different forms of scheduling: standard scheduling, gang scheduling,
or space shoring.

• Partitions that use standard scheduling use the standard OSP/l scheduling mechanisms. This
gives good response to user input, but may result in poor performance for parallel applications
(when one process in the application becomes inactive, other processes that depend on that
process for information have to wait until it becomes active again).

• Partitions that use gang scheduling use a modified scheduling mechanism that makes all the
processes in a parallel application active at the same time. Also, where standard scheduling
swaps processes in and out frequently (typically every 100 milliseconds), gang scheduling
swaps applications in and out on the basis of the partition's rollin quantum: a time period that
can be up to 24 hours long. A long rollin quantum gives good performance for parallel
applications, because the application can run for a long time without being interrupted, but may
result in poor response to user input (when you give input to an application that is rolled out, the
application does not respond until it is rolled in again).

• Partitions that use space sharing allow only one application per node. When you run an
application in a space-shared partition, the partition checks to see if another application or
partition is already using the requested nodes. If any of the nodes are in use, your application
fails immediately with the error message "request overlaps with nodes in use." However, if all
the specified nodes are available, your application begins running immediately and continues
running, without interruption, until it completes.

Standard-scheduled partitions should be used to run interactive applications and applications that are
being debugged; gang-scheduled and space-shared partitions should be used to run non-interactive
(typically either computationally-intensive or I/O-intensive) applications.

The following sections give you more information about these three forms of scheduling.

Standard Scheduling

Standard scheduling is the same as the scheduling technique used on single-processor OSPIl
systems. Standard scheduling is always used in the service partition.

In a partition that uses standard scheduling, each node is scheduled like a separate computer; there
is no attempt to coordinate related processes running on separate processors.

NOTE

A partition that uses standard scheduling may not contain
subpartitions, and may not overlap any other partitions that use
standard scheduling.

Paragon'" User's Guide Using Paragon™ OSFI1 Commands

In a partition that uses standard scheduling, each process has a priority, a number from -20 (high
priority) to 20 Oow priority), that is used in determining how much processor time the process gets.

Partitions that use standard scheduling give good interactive perfonnance for each individual
process in the partition. However, there is no guarantee that related processes are active at the same
time. This means that a process in a parallel application running in such a partition may fmd itself
waiting for a message from a process that is not active, which reduces the perfonnance of the
application. To avoid this problem, you can use gang scheduling.

Gang SCheduling

Gang scheduling is a special scheduling technique that coordinates the scheduling of related
processes running on separate processors. Gang scheduling is typically used only in the compute
partition, or is not used at all (this is determined by your system administrator).

In a partition that uses gang scheduling, the nodes are scheduled so that all the processes in an
application are active at the same time. If there are multiple processes per node in the active
application, standard scheduling is used to schedule these processes against each other while the
application is active.

Partitions that use gang scheduling may contain subpartitions, and may overlap other partitions of
any type.

In a partition that uses gang scheduling, not only does each process have apriority, but there is a
separate priority for the application as a whole. An application's priority is a number from 0 Oow
priority) to 10 (high priority). A gang-scheduled partition also has a priority of its own, as well as
two other quantities called the effective priority limit and the rollin quantum:

A partition's priority is the lower of the following:

The priority of the highest-priority application or subpartition in the partition.

The partition's effective priority limit.

• A partition's effective priority limit is a number from 0 to 10 that places an upper limit on the
partition's priority. It does not affect the priorities of applications or partitions within the
partition.

• A partition's rollin quantum is the amount of time each application in the partition is allowed to
be active before the system considers running another application instead. The tenn ''rollin
quantum" comes from the application being ''rolled in" when it is made active, and ''rolled out"
when it is made inactive.

A gang-scheduled partition's effective priority limit and rollin quantum are set when the partition is
created, and do not vary unless you change them with the dlpart command. A gang-scheduled
partition's priority may vary over time, depending on the priorities of the applications and
subpartitions in the partition.

2-35

Using Paragon'l1lll OSF/1 Commands . Paragon 1M User's Guide

2-36

A partition that uses standard scheduling does not have an effective priority limit or rollin quantum.
It also does not have a numeric priority; instead, its priority is "infinite" (that is, higher than the
priority of any gang-scheduled partition or application).

Gang scheduling is performed recursively, partition by partition. For each gang-scheduled partition
in the system, starting with the root partition, the operating system examines all the entities
(applications and partitions)within the partition:

1. Entities that do not overlap other entities (that is, they have no nodes in common with any other
entity in the partition) are simply scheduled to run for the partition's rollin quantum.

2. Where two or more entities overlap, the priorities of the overlapping entities are compared, and
the highest-priority entity is scheduled to run for the partition's rollin quantum.

3. If two or more entities overlap and are tied for highest priority, they are scheduled in a
round-robin fashion (each takes turns running for one full rollin quantum).

4. If an entity that is scheduled to run is a partition, the operating system examines and schedules
the entities in the partition as described above. This process continues recursively as necessary.

At the end of each partition's rollin quantum,the operating system examines and schedules the
entities in the partition again.

Note that rules 2 and 3 mean that, when applications or partitions overlap, the one with the highest
priority gets one rollin quantum after another until it completes. Entities with lower priorities get no
processor time at all until the higher-priority entity has completed. If there is a tie for highest priority,
the tied high-priority entities take turns running, but entities with lower priority get no processor time
until all the high-priority entities complete. Partitions that use standard scheduling always have the
highest priority, so if a standard-scheduled partition overlaps a gang-scheduled partition or an
application, the standard-scheduled partition always wins.

NOTE

Use of gang scheduling may be limited by the policies of your site.

Your system administrator can require all compute partitions to use space sharing. If gang
scheduling is allowed. the administrator can restrict the number of gang-scheduled partitions in the
system~ can set a minimum rollin quantum, and can restrict the number of applications that can
overlap in each gang-scheduled partition. If you tty to create a partition that would exceed these
restrictions, you see an error message such as "exceeded allocator configuration parameters" or
"scheduling parameters conflict with allocator configuration. " See your system administrator for
information on the policies in force at your site.

Paragon- User's Guide Using Paragon'" OSFI1 Commands

Space Sharing

Space sharing, also referred to as tiUng, is a scheduling technique that prevents partitions and
applications from overlapping. (Overlapping means having any physical nodes in common.) Space
sharing is typically used in all partitions other than the service and compute partitions. If your system
administrator has disallowed gang scheduling, space sharing is used in all partitions other than the
service partition. Within a space-shared partition:

• Subpartitions may not overlap other subpartitions.

• Applications may not overlap other applications.

Active subpartitions may not overlap applications.

An active subpartition is a subpartition in which one or more applications is running.

NOTE

If an application is running anywhere in a subpartition or any of its
sub-subpartitlon&-even on a single node-the entiresubpartitlon
is considered active, ancl is not allowed to overlap with a running
application.

If a subpartition is not active (contains no running applications), it can overlap a running application,
but it cannot overlap another partition.

In a space-shared partition, any attempt to create a partition or run an application that would cause
an overlap fails immediately. However, once an application is successfully started, it continues
running without interruption until it completes. (Exception: if a space-shared partition overlaps with
another partition, the entire partition can be interrupted by applications running in that other
partition. This can only occur if the space-shared partition's parent is a gang-scheduled partition.

Space sharing is the opposite of the ''time sharing" used in standard scheduling and gang scheduling.
In time sharing, multiple applications can use the same nodes at the same time, but each application
gets only a fraction of its nodes' processor time. In space sharing, no two applications can use a node
at the same time, but each application gets 100% of its nodes' processor time.

Although space sharing allows only one application per node, you can have more than one process
per node within a single application. If there are multiple processes per node within an application,
standard scheduling is used to schedule these processes against each other on each node.

Partitions that use space sharing may contain subpartitions, which cannot overlap. The space-shared
partition itself can overlap another partition of any type, but the advantages of space sharing may be
lost if space-shared partitions overlap with other partitions.

2-37

Using ParagontM OSFI1 Commands Paragon'" User's Guide

Like gang-scheduled partitions. space-shared partitions have a priority and an effective priority
limit. Each application within a space-shared partition has a priority from 0 to 1 O. and the partition's
priority is the lesser of the effective priority limit and the highest application priority in the partition.
Since applications in space-scheduled partitions never overlap, their priorities are never compared
with each other. However. the priorities of applications in a space-scheduled partition are important
because they determine the partition's priority when compared with other partitions at its own
hierarchical level.

Unlike gang-scheduled partitions. space-shared partitions do not have a rollin quantum (since
applications never overlap. they never have to be rolled in or out). In effect, the rollin quantum of a
space-shared partition is "infinite."

Summary of Scheduling Types

Table 2-1 summarizes the differences between the three scheduling types.

Table 2·1. Summary of Scbeduling Types

Characteristic Standard Scheduling Gang Scheduling Space Sharing

Scheduling method used Each process is scheduled All processes in an All processes in an
within partition by itself using standard application run at the application run at the

UNIX techniques same time; applications same time; each
may be rolled in and out application runs lDltil it

completes

Partitions that typically Service partition Compute partition. or All other partitions
use this scheduling type none at all

Restrictions on partition Partition may not overlap Partition may overlap Partition may overlap
overlap other standard-scheduled other partitions other partitions (but

partitions overlap can lose benefits
of space sharing)

Restrictioos on Subpartitions are not Subpartitions may Subpartitions may not
subpartition overlap allowed overlap; maximum depth overlap other

of overlap can be subpartitions;active
restricted by system subpartitions may not
administrator overlap applications

Restrictions on Applications may overlap Applications may overlap; Applications may not
application overlap to any depth maximum depth of overlap other applications

overlap can be restricted oractivesubpartitions
by system administrator

Special partition Partition priority Partition priority. Partition priority,
characteristics (always "infinite") effective priority limit, effective priority limit

rollin quantum

2-38

Paragon 1M U.l's Guide Using Paragon'IM OSFI1 Commands

A SCheduling Example

Suppose that a partition has 10 nodes. and an application is currently running on 5 of those nodes. If
you attempt to run a new application on 6 nodes of that partition, the results depend on the partition's
scheduling type:

• If the partition uses standard scheduling. both applications run at once. Where the applications
overlap. the two applications' processes time-share the node. No attempt is made to coordinate
when the processes are active with the rest of the application.

If the partition uses gang scheduling. the two applications' priorities are compared:

If the new application's priority is greater than the old application's, the entire old
application is immediately rolled out and the new application starts rurming. The new
application runs until it finishes. then the old application is rolled back in.

If the new application's priority is less than the old application's. the entire new application
waits until the old application finishes. (During this time it may appear to be "hung.") When
the old application finishes, the new application is rolled in and runs until it finishes.

If the two applications' priorities are equal, the applications alternate running on each rollin
quantum. If one application finishes fll'St, the other runs in every rollin quantum until it
finishes.

• If the partition uses space sharing, the new application fails with the error message ''request
overlaps with nodes in use" and does not run.

You can use the pspart command to determine which applications are currently running in a
partition and what their priorities are, and you can use the command showpart ·fto determine which
nodes in a partition have applications running on them.

Making Partitions

Command Synopsis Description

mkpart [-sz size I ·sz hXw I ·00 nodespec] Create a partition.
[-ss I [[-sps I .rq time] [-epl priority]]]
[·mod mode] name

To create a partition, use the mkpart command. You can specify either a relative or an absolute
partition pathname for the new partition. The specified new partition must not exist; the parent
partition of the new partition must exist and must grant you write permission.

2-39

Using Paragon'l1l OSF/1 Commands Paragon'" User's Guide

2-40

For example, to create a partition called mypart whose parent partition is the compute partition, you
can use the following command:

% IIIkpar~ JII'ypar~

The following command bas the same effect, but uses an absolute partition pathname:

%lIIkpar~ .coJIIPu~e.Jlly'par~

Specifying the Nodes Allocated to the Partition

The mkpart command gives you three ways to specify which nodes are allocated to the new
partition:

·sz size Creates a partition whose size (number of nodes) is size. The ·sz size switch
attempts to create a square partition if it can. If this is not possible, it attempts
to create a rectangular partition that is either twice as.wide as it is high or
twice as high as it is wide. If this is not possible, it uses any available nodes.
In this case, the nodes allocated to the partition may not be contiguous .

.sz hXw Creates a contiguous rectangular partition that is h nodes high and w nodes
wide. (You can use an uppercase or lowercase letter X between the integers h
and w.)

·00 nodes pee Creates a partition that consists of exactly the specified nodes, where
nodespee is one of the following: .

x The node whose node number is x.

x..y The range of nodes from numbers x to y.

hXw:n The rectangular group of nodes that is h nodes high
and w nodes wide and whose upper left comer is node
number n. (You can use an uppercase or lowercase
letter X between the integers h and w.)

nspee[,nspee]... The specified list of nodes, where each nspee is a node
specifier of the form x, x..y, or hXw:n (no node may
appear more than once in this list). Do not put any
spaces in this list

The numbers you use with ·00 are node numbers within the parent partition,
which always range from 0 to one less than the size of the partition.

If you don't use the ·sz or ·nd switch, all the nodes of the parent partition are allocated to the new
partition. You can use at most one ·sz or ·nd switch in a single mkpart command.

Paragon'" User's Guide Using Paragon- OSF/1 Commands

The following examples all create a SO-node partition called mypart whose parent partition is the
compute partition (that is. the new partition's absolute partition pathname is .compute.mypart):

• This command creates a 50-node partition with no specified shape or location:

, mkpart -BZ 50 mypart

The nodes of the new partition are selected from the parent partition by the system, and they
may not be contiguous.

• This command creates a partition 10 nodes high and 5 nodes wide:

, mkpart -sz 10%5 mypart

The position of the new partition within the parent partition is selected by the system, but the
new partition is a contiguous rectangle.

• This command creates a partition 10 nodes high and 5 nodes wide located in the upper left
comer of the parent partition:

% mkpart -ad 10X5:0 mypart

The shape and position of the new partition are specified by the user, and the new partition is a
contiguous rectangle.

• This command creates a partition that consists of nodes 30 through 79 of the parent partition:

, mkpart -ad 30 •• 79 mypart

The specific nodes of the partition are specified by the user, and the new partition mayor may
not be contiguous (its shape depends on the size and shape of the compute partition).

• This command creates a partition that consists of node 0, nodes 3 through 16, and a 5 by 7 node
rectangle located at node 21 of the parent partition:

, mkpart -ad 0,3 •• 16,5X7:21 mypart

The specific nodes of the partition are specified by the user, and the new partition is not
contiguous (its shape depends on the size and shape of the compute partition).

2-41

Using Paragon™ OSFI1 Commands Paragon no User's Guide

2042

No matter how you specify the partition's size, nodes are always numbered from 0 to one less than
the partition's size. In most cases, they are numbered from left to right and then top to bottom, as
discussed under "Nodes Allocated to the Partition" on page 2-30. However, if you use the -nd
switch, the nodes in the new partition are numbered in the order you specified them in the -nd switch.
For example, the following command creates a partition that consists of nodes 30 through 79 of the
compute partition:

, mkpart -Dd 79 •• 30 mypart

In this case, node 79 of the parent partition is node 0 of the new partition; node 78 of the parent
partition is node 1 of the new partition; and so on to node 30 of the parent partition, which is node
49 of the new partition

Specifying Protection Modes

The mkpart command gives you two ways to specify the protection modes of the new partition:··

';modnnn

-mod string

Creates a partition whose protection modes are specified by the three-digit
octal number nnn, as used by the chmod command (see chmod in the OSFll
Command Reference for more information).

Creates a partition whose protection modes are specified by the
nine-character string string. The string must have the form rwxrwxrwx,
where a letter (r, w, or x) represents a permission granted and a dash (-)
represents a permission denied, as displayed by the command Is -I (see Is in
the OSFll CommmuJ Reference for more information).

You can use at most one -mod switch in a single mkpart command. If you don't use the -mod
switch, the new partition is given the same protection modes as its parent partition

For example, the following command creates a partition that is readable, writable, and executable by
you; readable and executable by your group, and only readable by others:

, mkpart -mod rwzr-zr-- mypart

The following command has the same effect, but uses an octal number:

, mkpart -mod 754 mypart

Paragon" User's Guide Using Paragon"' OSFI1 Commands

Specifying Scheduling Characteristics

The mkpart command gives you three switches to specify the scheduling characteristics of the new
partition:

-ss

-rq time

-sps

Creates a partition that uses standanl scheduling.

-ss cannot be used with -sps. -rq or -epl.

Creates a partition that uses gang scheduling with a rollin quantum of time,
where time is one of the following:

n

118

nm

nh

o

n milliseconds (if n is not a multiple of 100, it is
silently rounded up to the next multiple of 100).

n seconds.

nminutes.

n hours.

"Inftnite" time: once rolled in, an application runs until
it exits.

The maximum rollin quantum is 24 hours; the minimum rollin quantum for
your system is determined by your system administrator.

-rq cannot be used with -ss or -sps. -rq can be used with or without -epl; if
you use -rq without -epl, the new partition is a gang-scheduled partition with
the same effective priority limit as its parent partition.

If gang-scheduled partitions are not allowed at your site, or creating a
gang-scheduled partition would exceed the maximum number of
gang-scheduled partitions, any attempt to create a partition with -rq fails.

Creates a partition that uses space sharing.

-sps cannot be used with -ss or -rq. -sps can be used with or without -epl; if
you use -sps without -epl, the new partition is a space-shared partition with
the same effective priority limit as its parent partition.

2-43

Using Paragon"" OSF/1 Commands Paragon 1M User's Guide

2-44

-epl priority Creates a partition with an effective priority limit of priority. where priority
is an integer from 0 to 10 inclusive (0 is low priority. 10 is high priority).

-epl cannot be used together with -ss. If you use -epl without either -sps or
-rq. the results depend on the scheduling type of the parent partition:

If the parent partition is a space-shared partition. the new partition is a
space-shared partition with the specified effective priority limit.

• If the parent partition is a gang-scheduled partition. the new partition is
a gang-scheduled partition with the specified effective priority limit and
the same rollin quantum as its parent. If this would exceed the maximum
number of gang-scheduled partitions. the new partition is a space-shared
partition instead __

If you don't use the -ss. -rq. or -sps switch, the new partition uses the same scheduling technique,
rollin quantum. and effective priority limit as its.parent partition.

For example. the following command creates a partition that uses standard scheduling:

, mkpsrt -55 _ypart

The following command creates a partition that uses gang scheduling with a rollin quantum of 10
seconds and the same effective priority limit as its parent partition:

, mkpsrt-rq lOs _ypsrt

The following command creates a partition that uses space sharing with the same effective priority
limit as its parent partition:

, mkpsrt -sps _ypsrt

The following command creates a partition that uses gang scheduling with a rollin quantum of 5
minutes and an effective priority limit of 6:

, mkpsrt -rq S_ -epl 6 ID.YPsrt

Paragon 1M Ueer'a Guide Using Paragon" OSF/1 Commands

Removing Partitions

Command Synopsis

rmpart [.f] [·r] partition

Description

Remove a partition.

To remove an existing partition. use the rmpart command. You must have write permission on the
parent partition of the partition to be removed. You can specify the partition to be removed with
either a relative or an absolute partition patlmame.

For example, to remove the partition called mypart, whose parent partition is the compute partition.
you can use the following command:

, rmpart _ypart

The following command has the same effect, but uses an absolute partition pathname:

Removing Partitions Containing Running Applications

If you specify a partition that contains any running applications, you see an error message and the
partition is not removed. You can force rmpart to remove a partition that contains running
applications with the ·f switch. When you use the ·f switch, rmpart terminates all the applications
running in the specified partition and then removes it.

For example, if there are applications running in mypart, use the following command to terminate
the applications and remove the partition:

Removing Partitions Containing Subpartitions

If you specify a partition that contains any subpartitions, you see an error message and the partition
is rot removed. You can force rrnpart to remove a partition that contains subpartitions with the ·r
switch. When you use the ·r switch, rmpart recursively removes all the subpartitions in the
specified partition (and their sub-subpartitions, and so on) and then removes the specified partition.

2-45

-

Using Paragon'llll OSF/1 Commands Paragon no User's Guide

For example, if there are subpartitions in mypart, use the following command to remove mypart and
all its subpartitions:

, rmpart -r mypart

nnpart -r is an "all or nothing" operation. If any subpartitions cannot be removed, the command
fails and no subpartitions are removed.

The -r switch does not imply -r. If mypart or any of its subpartitions contains any running
applications. you see an error message and none of the partitions are removed. You can force rmpart
to remove a partition that contains subpartitions and running applications by using the -r and -r
switches together. When you use both these switches, nnpart tenninates all the applications running
in the specified partition and its subpartitions, removes all the subpartitions in the specified partition,
and then removes the specified partition.

Showing Partition Characteristics

2-46

Command Synopsis

showpart [-r] [partition]

Description

Show the characteristics of a partition.

To show the characteristics of a partition, use the showpart command. You can specify the partition
with either a relative or an absolute partition pathname. If you don't specify a partition. showpart
shows the characteristics of your default partition (see "Using the Default Partition" on page 2-14).
In either case, you must have read permission on the specified partition.

For example, to show the characteristics of the partition called mypart, whose parent partition is the
compute partition, you can use the following command:

, showpart mypart
USER GROUP
smith eng

+---,.-----+
01
41 * * *
81 * * *

121 * * *
+---------+

ACCESS
777

SIZE
9

FREE
5

RQ EPL
15m 5

The following command has the same effect, but uses an absolute partition pathname:

, showpart .compute.mypart

Paragon no User's Guide Using Paragon'" OSF/1 Commands

The columns at the top of the sbowpart output have the following meanings:

USER

GROUP

ACCESS

SIZE

FREE

RQ

EPL

The owner of the partition, in this case smith.

The group of the partition, in this case eng.

The access permissions, expressed as an octal number, in this case 777 (which
represents the permissions rwxrwxrwx).

The number of nodes in the partition, in this case 9.

The number of free nodes in the partition, in this case 5 (see "Showing Free
Nodes" on page 2-48 for more information on free nodes).

The rollin quantum or scheduling type of the partition, as follows:

SPS

time

The partition uses standard scheduling.

The partition uses space sharing.

The partition uses gang scheduling with a rollin
quantum of time. The time is expressed as a number
followed by an optional letter: no letter for
milliseconds, s for seconds, m for minutes, or h for
hours.

In this case, the partition is a gang-scheduled partition with a rollin quantum
of 15 minutes.

The effective priority limit of the partition, in this case 5, or a dash (-) for a
standard-scheduled partition.

See "Partition Characteristics" on page 2-29 for information on these partition characteristics.

The rectangular picture at the bottom of the showpart output shows the size, shape, and position of
the specified partition within the system:

• The large rectangle represents the root partition. In this case, the root partition is 4 nodes high
and 4 nodes wide.

• The numbers to the left of the rectangle show the node numbers of the nodes in the first column
of each row. In this case, the first node in the top row is node 0, the first node in the second row
is node 4, the first node in the third row is node 8, and the fIrst node in the bottom row is node 12.

2-47

Using ParagonlM OSFI1 Commands Paragon 1M User's Guide

2-48

• Asterisks (*) within the rectangle represent nodes that are allocated to the specified partition;
periods (.) represent other nodes. In this case, mypart consists of nodes 5-7, 9-11, and 13-15
of the root partition. .

• If you see a dash (-) or an x within the rectangle, it represents an unusable node that is allocated
to the specified partition. You camot run any applications or allocate any partitions using this
node. See "Unusable Nodes" on page 2-31 for more information.

Showing Free Nodes

The output of Ispart or sbowpart includes the number of free nodes in the FREE column. A node
is free if no application is running on that node and no subpartition in which any applications are
running includes that node. (Note that all the nodes of a subpartition are considered busy if an
application is running anywhere in the subpartition, or in any of its sub-subpartitions. This occurs
because partitions are scheduled recursively.)

You can use the -f switch of sbowpart to see which nodes are free. The output of sbowpart -fis the
same as the regular sbowpart output, except that free nodes are shown as an F instead of an asterisk.

For e~ple, to show the free nodes in the partition called mypart, whose parent partition is the
compute partition, you can use the following command:

% sbowpart - f .ypart
USER GROUP ACCESS SIZE
smith eng 777 9

+---------+
01
41 * * *
81 * F F

121 F F F
+---------+

FREE RQ EPL
5 15m 5

In this case, mypart has five free nodes: nodes 4, 5, 6, 7, and 8 of the partition.

Paragon" User's Guide

Listing Subpartitions

COmmand Synopsis

Ispart [-r] [partition]

Using ParagontM OSF/1 Commands

Description

List the subpartitions of a partition.

To list the subpartitions of a partition with their characteristics, use the Ispart command. You can
specify the partition with either a relative or an absolute partition pathname. If you don't specify a
partition, Ispart lists the subpartitions of your default partition (see "Using the Default Partition" on
page 2-14). In either case, you must have read pennission on the specified partition.

For example, to list the subpartitions of the partition called mypart, whose parent partition is the
compute partition, you can use the following command:

, lspart JDypart
USER GROUP ACCESS SIZE FREE RQ EPL PARTITION
chris eng 777 16 4 15m 3 mandelbrot ..
chris eng 777 16 16 debug
pat mrkt 755 4 0 SPS 10 slalom

* * * * * * * private

The following command has the same effect, but uses an absolute partition pathname:

, lspart .coJDpute.JDypart

The columns in the output of lspart are the same as the top part of the output of sbowpart (see
"Showing Partition Characteristics" on page 2-46), with the addition of the partition name. In this
case, mypart has four subpartitions: mandelbrot, debug, slalom, and private.

• mantlelbrot is owned by user chris in group eng; it has permissions rwxrwxrwx and a size of
16 nodes, of which 4 are free (see "Showing Free Nodes" on page 2-48 for more information on
free nodes). It is a gang-scheduled partition with a rollin quantum of 15 minutes and an effective
priority limit of 3.

• debug is also owned by user chris in group eng; it has permissions rwxrwxrwx and a size of
16 nodes, of which all 16 are free. Itis a standard-scheduled partition, so it has no rollin quantum
or effective priority limit.

• slalom is owned by user pat in group mrkt; it has permissions rwxr-xr-x and a size of 4
nodes, of which none are free. It is a space-shared partition with an effective priority limit of 10.

• private's access permissions do not grant you read pennission, so all its characteristics are
shown as asterisks (*).

2~9

Using Paragon1M OSF/1 Commands Paragon no User's Guide

2-50

If you see two numbers separated by a slash in the SIZE colWllll. it indicates that one or more of the
nodes allocated to the indicated partition is unusable. For example:

% ~sparf; myparf;
USER GROUP ACCESS SIZE FREE RQ EPL PARTITION
chris eng 777 14 / 16 10 15m 3 mandelbrot

This indicates that there are 16 nodes allocated to mandelbrot, but 2 of them are currently unusable.
You carmot run any applications or allocate any partitions using unusable nodes. See "Unusable
Nodes" on page 2-31 for more information.

Recursively Listing Subpartitions

To recursively list all of a partition's subpartitions, sub-subpartitions, and so on, use the -r switch.
For example:

% ~sparf; -r myparf;
USER GROUP ACCESS SIZE FREE RQ EPL PARTITION

.compute.mypart:
chris eng 777 16 4 15m 3 mandelbrot
chris eng 777 16 16 debug
pat mrkt 755 4 0 SPS 10 slalom

* * * * * * * private
.compute.mypart.mandelbrot:

chris eng 777 16 16 15m 10 hi-pri
chris eng 777 16 16 15m 1 lo_pri

The Ispart -r output reveals that mypart.mandelbrot has two subpartitions, hi "pri and 10 "pri, neither
of which has any sub-subpartitions, and that slalom and debug have no subpartitions. No information
is available on the subpartitions of private (if any), because private does not grant you read
permission.

NOTE

If you specify a partition that has no subpartitions, Ispart produces
no output

For example, since mypart.slalom has no subpartitions, an Ispart command on this partition gives
no output

% ~sparf; myparf;.s~a~om
%

To get information about mypart.sialom itself, use the showpart command.

Paragon'" User's Guide Using Paragon- OSFI1 Commands

Listing the Applications in a Partition

Command Synopsis

pspart [-r] [partition]

Description

Ust the applications in a partition.

To list the applications in a partition, with information about the rollin/rollout status of each, use the
pspart command. You can specify the partition with either a relative or an absolute partition
pathname. If you don't specify a partition. pspart lists the applications in your default partition (see
"Using the Default Partition" on page 2-14). In either case, you must have read pennission on the
specified partition.

For example, to list the applications in the partition mypart, whose parent partition is the compute
partition, you can use the following command:

% pspart mypart
PGID

12345
23456
34567

USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
chris 67 4 Jan 21 0:12.30 boggle
smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft

The following command has the same effect, but uses an absolute partition pathname:

% pspart .compute.mypart

The columns in the output of pspart have the following meanings:

PGID The process group ID of the application (see "Process Groups" on page 4-22
for more information).

USER

SIZE

PRI

START

The process group ID of an application is always the same as the process ID
of the application's controlling process. This means that you can use this
number with the kiD command to kill the application; for example, given the
pspart output above, the command kiD 34567 would kill the application
myfft.

The login name of the user who invoked the application.

The number of nodes allocated to the application from the partition (see
"Specifying Application Size" on page 2-15 for more information).

The application's priority (see "Specifying Application Priority" on page
2-17 for more information).

The time the application was started. If the application was started more than
24 hours ago, the date it was started is shown instead.

2-51

Using Paragon1N OSFI1 Commands Paragon no User's Guide

TIME ACTIVE The amount of time the application has been active (rolled in) in the curtent
rollin quantum (see "Gang Scheduling" on page 2-35 for more information).
The time active is shown both as an absolute time (in the format
minutes: seconds. milliseconds for times less than one minute or
hours: minutes: seconds for times of one minute or more) and as apercentage
of the partition's rollin quantum. If the application is not active in the current
rollin quantum, a dash (-) is shown for both quantities. If the partition uses
space sharing, the time shown is the total amount of time the application has
been running and the percentage is always 100%.

In the example above, the partition mypart is a gang-scheduled partition with
a rollin quantum of one minute. The application mag has been active for 45
seconds, or 75% of the rollin quantum: the application boggle is not currently
active; and the application myJJt has been active for one minute, or 100% of
the rollin quantum.

TOTAL TIME The total amount of time the application has been rolled in since it was
started, in the format minutes: seconds. milliseconds OL ..

COMMAND

hours: minutes: seconds. If the partition uses space sharing, the TOTAL
TIME is always the same as the TIME ACTIVE.

In the example above, the application mag has been active for a total of 4
minutes and 41 seconds; the application boggle has been active for a total of
12.30 seconds; and the application myfft has been active for a total of 2 hours,
12 minutes, and 3 seconds.

The command line by which the application was invoked.

Applications in Subpartitions

If there are any applications running in subpartitions of the specified partition, the subpartitions
appear in the output of pspart as follows:

% pspar't mypar't
PGID USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND

12345 pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
23456 chris 67 4 Jan 21 0:12.30 boggle
34567 smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft

Active Partitions
OWNER GROUP SIZE PRI START TIME ACTIVE TOTAL TIME NAME

smith eng 64 6 09:16:30 1:18.10 subpart

2-52

Paragon'" User's Guide Using Paragon™ OSFI1 Commands

The columns for the list of active partitions have the following meanings:

OWNER

GROUP

SIZE

PRI

START

The owner of the subpartition.

The group of the subpartition.

The size of the subpartition (note that all nodes of a subpartition containing
an active application are considered active, even if not all the nodes in the
subpartition are actually in use by applications).

The current priority of the subpartition (this is the highest priority of all the
applications in the subpartition or the subpartition's effective priority limit,
whichever is lower).

The time or date when the oldest application in the subpartition was started.

TIME ACTIVE The amount of time the subpartition has been active (rolled in) in the current
rollin quantum.

TOTAL TIME The total amount of time the subpartition has been rolled in since it was
started.

NAME The name of the subpartition.

See "Scheduling Characteristics" on page 2-33 for more infonnation on how subpartitions are
scheduled.

2-63

Using Paragon1M OSFI1 Commands Paragon 1M User's Guide

% pspar't
mypart:

PGID
12345
23456
34567

Recursively Listing Applications in Subpartitions

H there are applications running in a subpartition, the output of pspart normally shows only that the
subpartition is active. To list the applications in sub partitions (and, recursively, in sub-subpartitions
and so on), use the -r switch. For example:

-r JIIypar't

USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
chris 67 4 Jan 21 0:12.30 boggle
smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft

Active Partitions
OWNER GROUP SIZE PRI START TIME ACTIVE TOTAL TIME NAME

smith eng 64 6 09:16:30 1:18.10 subpart
mypart . subpart :

PGID
45678

USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
smith 56 7 09:16:30 1:18.10 span

In this case, the -r switch shows that the subpartition subpart has one application, span, which is
running on 56 nodes of the subpartition. (Note that even though the application is not running on
every node of the subpartition, whenever the application is rolled in the entire subpartition is rolled
in. This occurs because subpartitions are scheduled recursively, as discussed under ''Gang
Scheduling" on page 2-35.)

Changing Partition Characteristics

2-54

Command Synopsis

chpart [-rq time I -sps] [-epl priority]
[-om name] [-mod mode]
[-g group] [-0 owner[• group]]
partition

Description

Change certain partition characteristics.

To change the characteristics of a partition, use the cbpart command. The permissions required
depend on the switches you use. You can specify the partition with either a relative or an absolute
partition pathname.

Paragon" User's Guide Using Paragon" OSF/1 Commands

chpart can change the following partition characteristics:

• Rollin quantum.

• Effective priority limit.

• Partition name.

Protection modes.

• Owner and group.

• Scheduling type (space-shared to gang-scheduled, or gang-scheduled to space-shared with
cenain limitations; a partition cannot be changed to or from standard scheduling).

A partition's size and parent partition are determined when the partition is created and cannot be
changed.

The switches of chpart, which can be used together or separately and in any order (except as noted
below), are similar to the corresponding switches ofmkpart:

-rq time Changes the partition to a gang-scheduled partition with a rollin quantum of
time, where time is one of the following:

n

ns

nm

nh

o

n milliseconds (if n is not a multiple of 100, it is
rounded up to the next multiple of 100).

nseconds.

nminutes.

nhours.

"Infinite" time: once rolled in, an application runs until
it exits.

The maximum rollin quantum is 24 hours; the minimum rollin quantum for
your system is determined by your system administrator.

-rq can be used only on a gang-SCheduled or space-shared partition, and
cannot be used together with -sps. To use -rq, you must have write
permission on the specified partition.

Using Paragon1M OSF/1 Commands

-sps

-epl priority

-om nome

-modnnn

-mod string

-ggroup

Paragon TIl User's Guide

Changes the partition to a space-shared partition.

-sps can be used only on a space-shared or gang-scheduled partition, and
cannot be used together with -rq. If the partition is currently gang-scheduled,
it must not contain any overlapping subpanitions or any applications. To use
-sps. you must have write permission on the specified partition.

Changes the partition's effective priority limit to priority, where priority is an
integer from 0 to 10 inclusive.

-epl can be used only on a gang-scheduled or space-shared panition. To use
-epl, you must have write permission on the specified partition.

Changes the partition's name to name, where name is a valid partition name
(a string of any length containing only uppercase letters, lowercase letters,
digits, and underscores). To use -om, you must have write permission on the
parent partition of the specified partition.

Note that -om can only change the partition's name "in place;" there is no
way to move a partition to a different parent partition.

Changes the partition's protection modes to the value specified by the
three-digit octal number nnn. To use -mod, you must be the owner of the
specified partition or the system administrator.

Changes the partition's protection modes to the value specified by the
nine-character string string. The string must have the fonn rwxrwxrwx,
where a letter (r, w, or x) represents a pennission granted and a dash (-)
represents a pennission denied. To use -mod, you must be the owner of the
specified partition or the system administrator.

Changes the partition's group to group. The group can be either a group name
or a numeric group ID. To use -g, you must be the owner of the specified
partition and a member of the specified new group, or you must be the system
administrator.

-0 owner[.group] Changes the partition's owner to owner. If . group is specified, also changes
the partition's group to group. The owner and group can be either user/group
names or numeric user/group IDs. To use -0, you must be the system
administrator.

Paragon 1M User's Guide Using ParagonTM OSF/1 Commands

For example, the following command changes the rollin quantum of mypart to 20 minutes:

, cbpart -rq 20m m'ypart

The following command changes mypart to a space-shared partition:

, cbpart -sps mJ'Part

The following command changes the effective priority of mypart to 2:

, cbpart -epl 2 m'ypart

The following command changes the protection modes of mypart so that it is readable, writable, and
executable by the owner but not by anyone else:

, cbpart -mod rW%------ aypart

The following command has the same effect as the previous three commands combined. but uses an
absolute partition pathname and an octal protection mode specifier:

, cbpart -epl 2 -rq 20m -mod 700 .compute.m'ypart

The following command changes the owner of mypart to smith, but does not affect its group:

, cbpart -0 sm! th m'ypart

The following command changes the group of mypart to support, but does not affect its ownership:

, cbpart -g support m'ypart

The following command changes the owner of mypart to smith and the group to support:

% cbpart -0 sm! t:b • support mJ'Part

The following command changes the name of mypart to newpart:

% cbpart -nm new.part m'ypart

The following command also changes the name of mypart to newport, but uses an absolute partition
pathname:

% cbpart -nm new.part .compute.mJ'Part

Note that the new name is specified as a name only, not a patlmame.

2-57

Using Paragon™ OSFI1 Commands Paragon 1M User's Guide

2-58

Using Paragon TM OSF/1
Message-Passing System Calls

Introduction
Message passing is the standard means of communication among processes in Paragon OSF/I. As
independent processor/memory pairs, the nodes do not share physical memory. If the node processes
need to share information, they can do so by passing messages. The calls described in this chapter
let your programs send and receive messages.

This chapter introduces the Paragon OSFIl message-passing system calls. It includes the following
sections:

• Process characteristics.

• Message characteristics.

• Names of send and receive calls.

• Synchronous send and receive.

• Asynchronous send and receive.

• Probing for pending messages.

• Getting information about pending or received messages.

• Message passing with Fortran commons.

Treating a message as an interrupt.

• Extended receive and probe.

• Global operations.

3-1

Using Paragon™ OSFI1 Meaaage-Pasaing System Calla Paragon™ User's Guide

3-2

Within each section, the calls are discussed in order of increasing complexity. That is, the "base"
calls are discussed first, and the "extended" calls are discussed later.

Each section includes numerous examples in both C and Fortran. A call description at the beginning
of each section or subsection gives a language-independent synopsis (call name, parameter names,
and trief description) of each call discussed in that section. Differences between C and Fortran are
noted where applicable. See Appendix A for information on call and parameter types; see the
Paragon™ C System Calls Reference Manual or the Paragon™ Fortran System Calls Reference
Manual for complete information on each call.

This chapter does not describe all the Paragon OSF/l system calls. For infonnation about system
calls that provide general services other than message passing, see Chapter 4. For information about
the calls used with the Parallel File System, see Chapter 5. For information about the calls used with
graphical interfaces, such as DGL and the X Window System, see the Paragon TM Graphics Libraries
User's Guide. For infonnation about the system calls that require root privileges, see the Paragon TM

System Administrator's Guide.

Paragon OSF/l programs written in C can also issue OSF/l system calls. The Paragon OSF/l
operating system is a complete OSF/l system and fully supports all the standard OSFIl system calls.
See the OSFll Programmer's Reference for information on these calls.

Paragon OSF/l programs written in Fortran cannot make OSF/l system calls directly, but the
Fortran runtime library includes a number of system interface routines. These routines make a
number of OSFIl system calls available to Fortran programs. See the Paragon TM Fortran Compiler
User's Guide for infonnation on these routines.

Paragon" User's Guide Using Paragon" OSFI1 Mesaage-Passing System calls

Process Characteristics
Each process within an application is identified by its node number and process type. A process must
have a valid node number and process type to send and receive messages.

Node Numbers

Synopsis

mynode()

numnodesO

Description

Obtain the calling process's node number.

Obtain the number of nodes allocated to the
current application.

A process's node number is an integer that identifies the node on which it is running. Node numbers .
are assigned by the system, and range from zero to one less than the number of nodes in the
application. A process can find out its node number by calling mynode(); the node number does not
change for the life of the process. A process can also find out the number of nodes in the application
by calling numnodesO; the maximum node number in the application is numnodesO - 1.

When you run an application that was linked with the ·ox switch, the system creates one process on
each node of the default partition (unless you specify otherwise on the application's command line).
Each process is the same as the others except for its node number, which is different in each process.

All message-sending system calls have a node parameter that specifies the node to which the
message is sent. You can use any valid node number, or the special value -1 to send the message to
all nodes in the application except the sending node itself.

Some message-receiving system calls have a nodesel parameter that specifies the node from which
the message was sent. A nodesel parameter can be a valid node number (to receive only messages
from that node), or the special value -1 (to receive messages from any node). Message-receiving
system calls that do not have a nodesel parameter always receive messages from any node.

The node numbers used in message-passing calls are always node numbers within the application,
not physical slot numbers or node numbers within the partition in which the application is running.
For example, if you run an application on 30 nodes of a 64-node partition by using the switch·sz 30,
the node numbers within the application will always be 0 through 29. However, those nodes might
not be nodes 0 through 29 of the partition. They might be nodes 0 through 29, or 10 through 39, or
a completely arbitrary set of nodes.

Using Paragon" OSFI1 Message-Passing System Calls

Process Types

Synopsis

myptype()

setptype(ptype)

Paragon 1M User's Guide

Description

Obtain the calling process's process type.

Set the calling process's process type (only
permitted if the process type is currently
INVALID _PI'YPE).

A process's process type, or ptype, is an integer that distinguishes the process from other processes
in the same application running on the same node. Process types are assigned by the user, and can
be any integer from 0 to 2,147,483,647 (231 - 1) inclusive. A process can fInd out its process type
by calling myptype(}. A process cannot change its process type once it has been set to a valid value.

When you run an application that was linked with -DX, the system sets the process type of all
processes in the application to the value you specify with the -pt switch on the application's
command line (default 0).

All message-sending system calls have a ptype parameter that specifIes the process type to which the
message is sent. You must specify the process type; you cannot use -1.

Some message-receiving system calls have a ptypesel parameter that specifIes the process type from
which the message was sent. A ptypesel parameter can be a valid process type (to receive only
messages from that process type), or the special value -1 (to receive messages from any process
type). Message-receiving system calls that do not have a ptypesel parameter always receive
messages from any process type.

Certain system calls that involve all the nodes in the application, called global operations, require
that every node in the application has one process with the same process type. All these processes
must call the global operation before the application can proceed.

Within a single application, multiple processes running on the same node must have different
process types. However, processes on different nodes may (and usually do) have the same process
type. Two processes running on a single node may have the same process type only if they belong
to different applications.

NOTE

The -pt switch (or, if not specified, the default process type of 0)
applies only to the process type of the initial processes created by
running the application.

Paragon 1M UII8r's Guide Using Paragon™ OSF/1 Message-Passing System Calls

If an application creates additional processes after it starts up, and no process type is specified for
the new process, the new process's process type is set to the special value INVALID _ Pl'YPE (a
negative constant defined in the header file nx.h). A process whose process type is
INVALID _PTYPE cannot send or receive messages. It must use the system call setptype() to set
its process type to a valid value before it can send or receive any messages. (This is the only valid
use ofsetptype().)

The Paragon OSF/1 system calls that create node processes (ox_nforkO, oxJoadO, and
ox Joadve(» have a ptype parameter that specifies the process type of the newly-created processes.
However, the standard OSP/1 system call forkO, which creates a new process on the same node as
the process that calls it, does not provide any way to specify the new process's process type. This
means that the process type of a process created by forkO is set to INV AUD _ PTYPE. The new
process must call setptype() before it can send or receive messages. The specified process type must
be different from the parent's, and different from the process type of any other process in the same
application on the same node.

A process's process type is inherited across an execO. This means that if you do a forkO followed
by an execO, you can call setptype() either before or after the execO. However, the setptypeO must.
follow the forkO.

Once a process has used a process type, that process type is associated with the process for the life
of the application. No other process on the same node in the same application can ever use that
process type, even if the original process terminates.

If a process has multiple pthreads, all the pthreads in the process have the same process type. See
Chapter 6 for information on pthreads.

Message Characteristics
Messages are characterized by a length, a type, and sometimes anID. These characteristics are set
when the message is sent, and do not change for the life of the message.

Message Length

The length of a message is the number of bytes of information contained in the message. Messages
in Paragon OSFIl can be of any length.

All message-passing system calls have a count parameter that specifies the length of the message to
be sent or received. The length you specify must be less than or equal to the size in bytes of the buffer
used in the call. Message-sending calls read exactly that number of bytes from the buffer and send
them as a message; message-receiving calls generate an error if a message is received that is larger
than the specified length.

Using Paragon'l1lll OSFJ1 Message-Passing System Calls Paragon 1M User's Guide

If you program in C, when you send a message you can use the sizeof operator to determine the size
of your message in bytes. If you program in Fortran, you will need to add up the sizes of all the data
elements within the message; see the Paragon TIl Fortran Compiler User's Guide for infonnation on
the default size of each data type. If you pass named common blocks as messages, you may also have
to include the space taken up by padding within the common block, as discussed under "Message
Passing with Fortran Commons" on page 3-17.

You can also send and receive zero-length messages. This is useful if the message type is sufficient,
and there is no need to supply any message content. For example, one process could tell another
process to start or stop doing something by sending a zero-Iength message of type 1 to start, or a
zero-length message of type 2 to stop.

Message Type

The type of a message is an integer whose meaning is determined by the programmer.

All message-sending system calls have a type parameter that specifies the type of the message sent.
You can use any integer from 0 to 999,999,999 (inclusive) as a message type.

All message-receiving system calls have a typesel parameter that specifies the type (or types) of
messages the call will receive. A typesel parameter can be an integer from 0 to 999,999,999 (to
receive only messages of the specified type) or the special value -1 (to receive messages of any type).

There are also special message types outside the range 0 to 999,999,999, calledforce types and
typesel masks, that you can use. Sending with a force type sends a message that uses a limited flow
control technique; receiving with a typesel mask receives messages of a selected set of types. See
the ParagonTll Fortran System Calls Reference Manual or ParagonTll C System Calls Reference
Manual for information on these special message types. Note, though. that in Paragon OSF/l regular
messages are just as fast as force type messages, so force types are not needed for performance.

Message 10

The ID of a message is an identifier used to check for the completion of asynchronous messages.
Synchronous messages do not have IDs.

When you send or receive a message with an asynchronous message-passing call (one that returns
before the message is completely sent or received), the call returns an ID that you can use to check
whether or not the send or receive is complete. See "Asynchronous Send and Receive" on page 3-10
for more information on message IDs.

Paragon" User's Guide Using Paragon- OSFJ1 Message-Passing System Calls

Message Order
Paragon OSP/I guarantees that all messages will arrive in the same order they are sent That is, if
one message is sent from node A to node B, then a second message is sent from node A to node B,
the second message will never arrive before the first.

Although the first message always arrives at the node first, you can elect to receive the second
message-that is, to copy its contents into a buffer in user memory-before the first You do this by
specifying different message types in the send calls on node A, and specifying the second message's
type in the first receive calion node B.

Names of Send and Receive Calls
You can tell what each message-passing call does by examining its name.

The first character of the name indicates whether the call is synchronous, asynchronous, or handled:

c

i

h

Synchronous (&omplete) call. These calls do not return until the message is
complete. They are discussed under "Synchronous Send and Receive" on
page 3-8.

Asynchronous (incomplete) call. These calls return immediately, so your
program can do other work while the message is processed. They are
discussed under "Asynchronous Send and Receive" on page 3-10.

Asynchronous with interrupt handler (handled) call. Uke the i_.O calls, the
h. •• 0 calls return immediately. Unlike the L-O calls, h-.O calls indicate that
the message is complete by calling a user-supplied interrupt handler. They are
discussed under "Treating a Message as an Interrupt" on page 3-18.

The initial c, i, or h is followed by a verb that indicates what the call does:

send Send a message.

Receive a message.

Send a message and receive the reply.

probe Probe for a pending (not yet received) message.

Fmally, the verb may be followed by an x to indicate that it is an "extended" version of the call (see
''Treating a Message as an Interrupt" on page 3-18 and "Extended Receive and Probe" on page
3-24).

3-7

Using Paragon'" OSF/1 Messag&-Passing System Calls Paragon 111 User's Guide

The synchronous calls with no additional functionality. such as csendO. are the easiest to understand
and use. However, the asynchronous calls (such as isendO) and the calls with additional
functionality (such as erecvxO) can offer dramatic improvements in perfonnance when properly
used.

Synchronous Send and Receive

Synopsis

c:send(type, buf, count, node, ptype)

crecv(typesel, buf, count)

c:sendrecv(type, sbu/. scount, node. ptype,
typesel, rbuf, rcount)

Description

Send a message, waiting for completion.

Receive a message, waiting for completion.

Send a message and post a receive for the reply.
Wait for completion.

The (. •• 0 message-passing calls perfonn synchronous sends and receives.

• A synchronous send means that the program executing the send waits until the send is complete.
This waiting is referred to as blocking. Completing the send, however, does not guarantee that
the message has been received. It only means that the message has left the sending process and
that the buffer can be reused. You use c:send0 to perfonn a synchronous send.

• A synchronous receive means that the program executing the receive waits until the message
arrives in the specified buffer. You use crecvO to perfonn a synchronous receive.

• A csendrecvO is like a csendO followed by a crecvO. It returns the length of the received
message.

Here are two code fragments in C that perfonn a synchronous send and a synchronous receive.

• Node 1 sends a message of type 0 to the process with the same process type on node 0:

#include <nx.h>
#define MSG_TYPE 0
#define DEST_NODE 0
char send_buf[lOO];

•
•
•

csend(MSG_TYPE, send_buf,
sizeof(send_buf), DEST_NODE, myptype(»;

Paragon" User's Guide Using Paragon'rM OSFIt Measage-Passing System Calls

• Node 0 receives the message:

#include <nx.h>
#define MSG_TYPE 0
char recv_huf[100);

•
•
•

See "Extended Receive and Probe" on page 3-24 for information on a version of the crecvO call with
additional functionality.

Synchronous Send to Multiple Nodes

Synopsis

gsendx(type, buf, count, nodes, nodecount)

Description

Send a message to a list of nodes, waiting for
completion.

The gsendxO call sends a message to multiple nodes. Specifically, it performs a synchronous send
of the message specified by the type, buf, and count arguments to the process with the same process
type as the caller on the nodes specified by the nodes argument. The nodes argument is an array of
integers; the nodecount argument specifies the number of nodes in nodes.

For example, the following code fragment in Fortran sends the data in the array x to nodes 1 and 3:

integer*4 nodenums(2), x(10)
•
•
•

nodenums(1) = 1
nodenums(2) ... 3
call gsendx(100, x, 10*4, nodenums, 2)

Using Paragon™ OSFI1 Messag~Passing System Calls Paragon no User's Guide

Asynchronous Send and Receive

3-10

Synopsis

isend(type, buf, count, node,ptype)

irecv(typesel, buf, cormt)

isendrecv(type, sbuf, scount, node,ptype,
typesel, rbuf, rcount)

msgdone(mid)

msgwait(mid)

Imgignore(mid)

Description

Send a message without waiting for completion.

Receive a message without waiting for
completion.

Send a message and post a receive for the reply
without waiting for completion.

Detennine whether a send or receive operation
has completed.

Wait for completion of a send or receive
operation.

Release a message ID as soon as a send or receive
operation completes.

The i. •• 0 message-passing calls perform asynchronous sends and receives. The msgdoneO and
msgwaitO calls are used with the i_.O calls to determine when the message has completed; the
msgignore() call is used to discard a message ID as soon as the message has completed.

Unlike a synchronous send or receive, an asynchronous send or receive does not block. It returns a
unique message ID, which is not reused until released. You can use this ID to check for completion
at a later time.

NOTE

_ The number of message IDs is limited, so you must release each
10 after you use it See "Releasing Message IDs" on page 3-12 for
information on releasing message IDs.

You use isendO to perform an asynchronous send. and irecvO to perfonn an asynchronous receive.
An isendrecvO is like an isendO followed by an ireevO. except that it returns only one message ID
(for the receive). Asynchronous sends can be used together with synchronous receives. and vice
versa. For example, a message sent by isendO could be received by crecvO.

-------- ~-~-------- --~--- ------------

Paragon 1M Ueer's Guide Using ParagonTli OSF/1 Message-Passing System Calls

You must make sure that an asynchronous operation has completed before you change the contents
of the send buffer or use the contents of the receive buffer. To check if an asynchronous operation
has completed, use the msgdoneO call. It returns 1 if an asynchronous call has completed and 0
otherwise. To block until an asynchronous operation has completed, use the msgwalt() call. Both
msgdoneO and msgwaitO take the message ID as an input parameter.

The message ID belonging to an asynchronous receive is distinct from the message ID belonging to
any companion asynchronous send. For example, if node 0 sends a message with isendO and node
1 receives the message with irecvO, the iseDdO has a different message ID from the irecvO. When
the iseDdO completes, this does not indicate that the corresponding irecvO has completed.

For example, assume that your application knows that it's going to need a message up ahead. So it
posts an asynchronous receive with irecvO. It then does worlc that does not require the message,
believing that by the time it needs the message, it will have arrived. When the program comes to
where it needs the message, it issues a msgwaitO. If the message has in fact arrived, the msgwait()
returns immediately. Otherwise, it blocks until the message arrives. Here is a Fortran code fragment
that implements this technique.

Node 1 does an asynchronous send:

include 'fnx.h'

integer result, msg_sid
integer MSG_TYPE, DEST_NODE
double precision send_buf(lOO)
parameter (MSG_TYPE = 1)
parameter (DEST_NODE = 0)

•
•
•

msg_sid isend(MSG_TYPE, send_buf,
100*8, DEST_NODE, myptype(»
•
•
•

c Free the asynchronous send ID
call msgwait(msg_sid)

3-11

Using Paragon- OSF/1 Message-Passing System Calls Paragon'" User's Guide

Node 0 does the asynchronous receive:

include 'fnx.h'

integer result, msg_rid
integer MSG_TYPE
double precision rec_buffer(100)
parameter (MSG_TYPE = 1)

•
•
•

c Post the receive
msg_rid = irecv(MSG_TYPE, rec_buffer, 100*8)

•
•
•

c Now you need the message.
c
c Free the asynchronous receive ID

call msgwait(msg_rid)·

When the msgwaitO returns, the message has been received. You may have blocked on the
rmgwaitO if the message had not yet arrived. You may now assign another value to msgJid.

. See "Extended Receive and Probe" on page 3-24 for information on a version of the irecvO call with
additional functionality.

Releasing Message IDs

3-12

Because Paragon OSP/I has a limited number of message IDs, you must release IDs that are no
longer needed. There are four ways to release a message ID:

• You can call msgwaitO.

• You can keep calling msgdone() until it returns I.

• You can call msgignoreO.

If you use msgignore(), it tells the system to release the message ID as soon as the corresponding
send or receive has completed. Note, though, that this leaves you with no way.to determine whether
or not the message has completed. In this case, your application must have some other means of
synchronization to prevent the send or receive buffer from being used before the message is
complete.

Paragon 1M Uaer's Guide Using Paragon'" OSFI1 Message-P88Sing System Calls

NOTE

Re-using a send or receive buffer before the message is complete
can result in unexpected behavior. Do not use msglgnoreO
unless you are certain this will not occur.

Merging Message IDs

Description Synopsis

msgmerge(midl, mid2) Merge two message IDs into a single ID that can
be used to wait for completion of both operations.

The msgmerge() call gives you a way to merge two or inore message IDs together. It takes two
message IDs as parameters, and returns a message ID that does not complete until both the messages
identified by the input message IDs have completed.

Once you have merged a message ID with msgmerge(), you should not use the input message IDs
as arguments to msgwaitO, msgdoneO, msgcancelO, or msgignoreO. The input message IDs are
automatically released when the merged message IDs are waited for.

For example, the following C code fragment posts two irecvOs, one for a message of type 1 and the
other for a message of type 2, and then waits until both have completed:

#include <nx.h>

int midI, mid2, midg;
char bufl[10) , buf2[10);

•
•
•

midI = irecv(l, bufl, 10);
mid2 irecv(2, buf2, 10);

midg = msgmerge(midl, mid2);

msgwait(midg) ;

Note that midI and mid2 are released by the msgwaitO calIon midg.

You can use a series of msgmerge() calls to merge multiple message IDs together. To help you do
this, you can use the value -1 as one of the message IDs; msgmerge() returns the other message ID
unchanged.

3-13

Using Paragon'" OSFI1 Message-Passing System calls Paragon 1M User's Guide

For example, the following Fortran code fragment uses a series of isendO calls to send the buffer buf
as a message of type 1 to the process with the same process type on nodes 1 through 10, then waits
for all of the isendOs to complete:

include 'fnx.h'

integer i, mid
integer buf(100)

mid -1
i = 1

do while (i .le. 10)
mid = msgmerge(mid, isend(l, buf, 400, i, myptype(»)
i = i + 1

end do

call msgwait(mid)

The message ID returned by each isendO call is merged together with the message IDs of the
previous isendO calls into the merged message ID mid (the fIrst message ID is merged with -1,
yielding itself). Once all the isendOs have been posted, the program uses msgwaitO on the merged
message ID to wait for all of the isendOs to complete.

Probing for Pending Messages

3-14

Synopsis

cprobe(t)pesel)

iprobe(typesel)

Description

Wait for a message of a selected type to arrive.

Determine whether a message of a selected type is
pending.

When a message arrives for which no receive has been issued, it goes into a system buffer. It is
referred to as a pending message: a message that is available for receipt, but not yet received. When
you issue a receive for that message, the message is moved into the application's buffer (the buffer
you specify in the crecvO or irecvO call). If a receive has already been issued when the message
arrives. it goes directly into the application's buffer and bypasses the system buffer.

The cprobeO and iprobeO calls determine whether there is a message of a given type pending in the
system buffer. You can use a message type from 0 to 999,999,999 to probe for a message of a
specifIc type; the special value -1 to probe for a message of any type; or a typesel mask to probe for
messages of a selected set of types (see the Paragon™ Fortran System Calls Reference Manual or
Paragon™ C System Calls Reference Manual for information on typesel masks).

Paragon'" User's Guide Using Paragon'" OSF/1 Meaaage-Pasaing System Calls

The cprobe() call is a blocking call. It takes a type selection parameter as input and returns when a
message of the given type has arrived. The iprobe() call is similar to cprobeO. except that it is
nonblocking. lprobe() returns 1 if the message is pending and 0 if it is not.

cprobe() and iprobe() are not the only calls that probe for messages. See "Extended Receive and
Probe" on page 3-24 for information on message-probing calls with additional functionality.

Getting Information About Pending or Received
Messages

Synopsis

infocountO

infonode()

infoptype()

Description

Return size in bytes of a pending or received
message.

Return node number of the node that sent a
pending or received message.

Return process type of the process that sent a
pending or received message.

infotypeO Return message type of a pending or received
message.

The info._O calls return information about received or pending messages. You can obtain the size
of the message. its type. and the node number and process type of the sending process.

The return value of the info._O calls is defined only in the following cases:

• After a crecvO, cprobe(). or msgwaitO.

• After an iprobeO or msgdone() returns 1.

Note that you must issue the info_.O call before you perform any other message-passing operation.
Otherwise. you will get information about the most recently received or pending message instead.

3-15

Using Paragon- OSFJ1 Message-Passing System Calls Paragon 1M User's Guide

3-16

For example, the following C code receives a message of any type, then usesinfotypeO to detennine
what type of message was actually received:

#include <nx.h>
#define BIGNUM 262144
long buf[BIGNUM1, msg_type;

•
•

crecv(-1, buf, sizeof(buf»;
msg_type = infotype();

Another example: the following C code blocks until any message anives, then allocates a buffer just
large enough to hold the message and receives it

#include <nx.h>
char *buf;
long msg_type, msg_len;

•
•
•

cprobe (-1) ;
msg_type = infotype();
msg_len = infocount();
buf = (char *) calloc(msg_len, 1);
crecv(msg_type, buf, msg_len);

•
•
•

Between the cprobe() and the Cl'eCvO, the message is pending; it has arrived, but has not yet been
received. Until the message is received, the contents of the message are not accessible to the
program.

The info ••• O calls are subject to the following special conditions:

• The return value of the info ••• O calls is undefined after a msgwaitO or msgdoneO if the message
ID in the msgwBitO or msgdoneO call is a ''merged'' message ID representing more than one
message. See "Merging Message IDs" on page 3-13 for more infonnation.

• The return value of the info. .. O calls is undefined after a crecvxO, cprobexO, or iprobexO.
except if the last parameter is the special array msg;nfo. See "Extended Receive and Probe" on
page 3-24 for more infonnation.

• If you issue an info_O call before doing any message passing, the call returns -1.

Paragon 1M Uaer's Guide Using Paragon1M OSFI1 Measage-Passlng System Cells

The iofo._O calls are not the only way to get infonnation about a received or pending message. See
"Extended Receive and Probe" on page 3-24 for infonnation on message-receiving and
message-probing calls that also return information about the received or pending message.

Message Passing with Fortran Commons
Fortran users often use common blocks to send messages that contain data elements of different
types. For example, consider the named common containing a double precision number and an
integer. It is good Fortran practice to put the largest data element first in the common list, as follows:

integer i
double precision d
common/msg/ d, i

To send this common block, specify the name of the first common element as the buffer and the
length of the entire common as the length. For example, to send the common block named msg, send
the variable d with a length of 12 bytes (8 for the double precision variable plus 4 for the integer
variable). The following csendO call sends msg to process ptype on node node.

call csend(MSGTYPE, d, 12, node, ptype)

If you put smaller data elements before larger data elements in common blocks, the compiler may
have to insert padding, or "holes," between the elements of the common block to preserve data
alignmenL For example, if you define the common block named pmsg as follows, the compiler will
place an invisible 4-byte pad between the end of i and the beginning of d to properly align d on an
8-byte boundary:

integer i
double precision d
common/pmsg/ i, d

This padding has two effects:

• If you send this common block as a message, you must include the padding in the length of the
message. For example, even though pmsg contains the same two variables as msg, pmsg is 4
bytes longer than msg because of the padding between i and d. To send pmsg to process ptype
on node node, you would use the following call:

call csend(MSGTYPE, i, 16, node, ptype)

3-17

Using Paragon- OSF/1 Message-Passing System Calls Paragon User's Guide

• If another routine uses a different view of the same common block, you may have to add
additional variables to the other routine's declaration of the common block to take this padding
into account. For example, if another routine wants to view d inpmsg as an array of two integers,
it must declare pmsg as follows:

integer i, ipad, id(2)
common/pmsg/ i, ipad, id(2)

The variable ipad corresponds to the 4-byte pad in the original routine's declaration of pmsg.
Without this variable, the position of id would not correspond to the position of d in the original
common block. This variable is necessary if pmsg is shared between these two routines, whether
or not the two routines run on different nodes.

When possible, you should define common blocks with the largest data element first, to avoid
padding completely. You should also use the %LOC function to determine the size of a common
block and avoid specifying its size with a hard-coded constant.

Treating a Message as an Interrupt

3-18

Synopsis

hsend(type, buj. count, node, ptype, handler)

brecv(typesel, buf, count, handler)

hsendrecv(type, sbuf, scount, node,ptype,
typesel, rbuf, rcount, handler)

DescripUon

Send a message and set up a handler procedure to
be called when the send completes.

Receive a message and set up a handler procedure
to be called when the receive completes.

Send a message and post a receive for the reply.
Set up a handler procedure to be called when the
reply arrives.

The h...O message-passing calls perfonn asynchronous sends and receives. However. unlike the i. •. O
calls, the h...O calls let you establish a user-provided interrupt handler. which is called when the send
or receive is complete.

The h...O receive calls let you treat incoming messages as interrupts. For example, consider a
program that perfonns some action based on the type of a received message. One way to implement
this program is to block the program at a crecvO for messages of all types and then take appropriate
action based on the value returned by infotype().

Another way is to issue a number of brecvO calls. Each call attaches a function to a particular
message type or set of types. Your program does not block. You can continue with other work; but
when the appropriate message comes, the attached function is called to take care of the message.
(The message is stored in the receive buffer before the function is called.)

Paragon 1M User's Guide Using Paragon- OSF/1 Message-Passing System Calls

The handler function you define must be written in C and must have four arguments of type long.
These arguments are passed the following values when the ftmction is called:

1. Type of the message (as returned by infotypeO).

2. Length of the message in bytes (as returned by infocountO).

3. Node number of the process that sent the message (as returned by infonode(».

4. Process type of the process that sent the message (as returned by infoptype().

Par example, here's a C code fragment that attaches the functionsjunctOO,functlO, andfunct20 to
message types 0,1, and 2, respectively. The message types that have handlers are referred to as
handled types.

#include <nx.h>

char bufO[lOO], bufl[lOOl, buf2[lOO];
void functO(), functl(), funct2();

hrecv(O, bufO, sizeof(bufO) , functO);
hrecv(l, bufl, sizeof(bufl), functl);
hrecv(2, buf2, sizeof(buf2), funct2);

•
• /* Now perform other work. No blocking happens. */
•

The declaration of functlO looks like this (the other functions are similar):

void functl(long type, long count, long node, long ptype)
{

•
•
•

}

When a message of type 1 arrives, the message is stored in the buffer specified in the hrecvO call
(in this case, bu/l), then fullCtlO is called with the type and length of the message and the node
number and process type of the sender as arguments. functlO and the main program then run
concurrently until fuIlCtlO returns. (In previous releases of Paragon OSP!I, the main program was
interrupted and did not run at all until functlO returned.)

CAUTION

The handler runs in the same memory space as the main program
(but they have separate stacks).

3-19

Using ParagontM OSFI1 Message-Passing System Calla Paragon 1M User's Guide

Because of this, parts of the main program may have to be protected from being executed at the same
time as the handler; see "Preventing Interrupts" on page 3-22 for information on using masktrapO
to do this.

NOTE

Once you have established a handler for a message type, do not
attempt to receive a message of that type with a crecv ••• O or
irecv ... O call.

bsendO operates the same as hrecvO, except that the handler is invoked when the send completes.
(Note that completion of the send does not mean that the message has been received, only that the
message has been sent and the send buffer can be reused.) bsendrecvO is like an isendO followed
by an brecvO, with the message ID of the isendO automatically released by msgignoreO.

See "Extended Receive and Probe" on page 3-24 for information on a version of the brecvO call
with additional functionality.

Passing Information to the Handler

3-20

Synopsis Description

bsendx(type, buf, count, node,ptype,xluzndler, Send a message and set up an extended handler
hparam) procedure to be called with the value hparam

when the send completes. Allows handler sharing.

bsendxO is identical to hsendO except that it has an additional parameter, hparam, which is passed
to the handler when it is called. The declaration of a handler for bsendxO looks like this:

void xhandler(long type, long count, long node, long ptype,
long hparam)

{

•
•
•

}

Paragon- User's Guide Using Paragon OSF/1 Message-Passing System Calls

You can use the hparam parameter to write handlers that are shared among several bsendxO calls.
each of which uses a different value of hparam to identify itself. For example. here is a C program
fragment that sends two messages of type 0 to the process with process type 2 on node 1. then uses
an hsendxO handler to free each message buffer as soon as the message send completes:

#include <nx.h>
#include <malloc.h>

#define NBUFS 2
#define BUFFER_SIZE 10000

char *buf[NBUFS); /* array of pointers to char */

void freemem(long type, long count, long node, long ptype,
long hparam)

{

}

if((hparam >= 0) && (hparam < NBUFS)) (
free(buf[hparam);

} else (
printf("freemem(): invalid value: 'd\n" , hparam);

}

main(int argc, char **argv)
(

/* allocate two buffers with malloc() */
buf[O) = malloc(BUFFER_SIZE);
buf[l) = malloc(BUFFER_SIZE);

•
• /* put data into the buffers */
•

/* send them */
hsendx(O, buf[O), BUFFER_SIZE, I, myptype(), freemem, 0);
hsendx(O, buf[ll, BUFFER_SIZE, I, myptype(), freemem, 1);

•
• /* Now perform other work */
•

}

Note that you must take care that this handler is not called while the program is in the middle of a
call to maUoc() or freeO. If the handler attempts to free memory while another part of the program
is allocating or freeing memory. mallocO's internal memory structures could become corrupted.
You can prevent this by using the masktrap() call. described in the following section. to protect each
mallocO and free() call elsewhere in the program that could be interrupted by this handler.

3-21

Using Paragon1M OSF/1 Message-Passing System Calls Paragon no User's Guide

Preventing Interrupts

3-22

Synopsis

masktrap(state)

Description

Enable or disable interrupts for message handlers.
Required to prevent corruption of global
variables.

If you have one or more handlers set up and you have some critical code that you do not want
interrupted, use the masktrapQ call. A masktrap(l) prevents any handler from running; a
masktrap(O) re-enables handlers. Any pending interrupts are honored when the mask is removed.
masktrapQ returns the previous masking state (1 or 0). For example:

hrecv (6 ,buf , s izeof (buf) ,myhandler) ;
•
• /* this code can be interrupted */
• /* by a message of type 6 */
•

oldmask = masktrap(l);
•
• /* critical code that must not be interrupted */
•

masktrap(oldmask);
•
• /* this code can be interrupted again */
•

Note the use of the variable oldmask to save the value of the previous masking state before the call
to masktrap(l). This means that if the mask were already set before this call (for example, if this
code is in a subroutine that could be called when the mask is already set), the following
masktrap(oldmask) would not unset it.

CAUTION

You must use masktrapO around any code in the main program
that could interfere with calls in the handler.

For example, if the handler performs any 110, you must put masktrap() calls around any I/O calls
(such as printf() in the main program that could be called while the handler is active. If you don't
do this, you could find characters from the handler's output interleaved with characters from the
main program's output.

Paragon"·User's Guide Using Paragon11ll OSF/1 Message-Passing System calls

Sometimes. though. it's not as obvious which calls could interfere with each other. For example. any
two library calls that could allocate or free memory could cause the memory subsystem to become
confused if they were called at the same time. To be on the safe side. keep the handler as simple as
possible and use masktrap() to protect all library calls in the rest of the program that could call the
same subsystems as the calls in the handler while the handler is active.

These calls to masktrapO are necessary because. when the handler is active. the handler and the
main program share the same memory space and can change each other's global variables. This
could cause any non-reentrant function to fail if it is called by both at the same time.

If the handler performs any message passing. any info_.O call in the main program must be within
the same set of masktrap() calls as the message-receiving call to which it applies. Otherwise, the
info._O call could reflect the value of a message received within the handler.

3-23

Using Paragon™ OSFI1 Message-Passing System Calls Paragon 1M User's Guide

Extended Receive and Probe

3-24

Synopsis

creevx(typesel, buf, count, nodesel, ptypesel,
info)

il'ecvx(typesel, buf, count, nodesel. ptypesel,
info)

hrecvx(typesel, buf, count, nodesel, ptypesel,
xhandler, hparam)

cprobex(typesel. nodesel.ptypesel. info)

iprobex(typesel, nodesel.ptypesel, info)

Description

Receive a message of a specified type from a
specified sending node and process type, together
with information about the message. Wait for
completion

Receive a message of a specified type from a
specified sending node and process type, together
with information about the message. Do not wait
for completion

Receive a message of a specified type from a
specified sending node and process type. Set up an
extended handler procedure to be called with
information about the message and the value
hparam when the receive completes.

Wait for a message of a specified type from a
specified sending node and process type. Return
information about the message.

Determine whether a message of a specified type
from a specified sending node and process type is
pending. If it is, return informatiOn about the
message.

The extended receive and probe calls. crecvx(), irecvxO, brecvxO, cprobexO. and iprobexO, can
be used to receive or probe for a message from a particular node or a particular process type. and
return information about the message along with the message (instead of using the info._O calls).

creevxO. irec:vxO. cprobexO. and iprobexO are like crecvO. irecvO, cprobe(), and iprobeO,
except that they have the following additioilal parameters: .

nodesel Specifies the node that sent the message, or -1 for any node.

ptypesel Specifies the process type that sent the message. or -1 for any process type.

Paragon" User's Guide

info

Using Paragon" OSF/1 Message-Passing System Calls

An array of eight long integers that receives information about the specified
message. The following information is stored into the first four elements of
this array:

• Type of the message (as returned by infotypeO).

Length of the message in bytes (as returned by infocount().

• Node number of the process that sent the message (as returned by
infonode()).

• Process type of the process that sent the message (as returned by
infoptypeO).

The remaining four elements of the array are reserved.

hrecvxO is like hrecvO. except that it has the same nodesel and ptypesel parameters as the other
-.x0 calls and the same hparam parameter as the bsendxO call. hrecvxO does not have an info
parameter. because the corresponding information is passed to the handler when it is called.

The info parameter of erecvx(). ireevxO. cprobex(). and iprobexO must be specified and must not
be zero or null. If you do not want this information, or you want it to be available to the info. .. O calls.
specify the special array msginfo. defined in nx.h or fnx.h. The array msginjo is used by the non-3
versions of these calls. and the info. •• O calls get their information from msginfo. This is why you
cannot use the info ... O calls after crecvxO. cprobexO. or iprobexO unless you specify msginfo as
the last parameter of the extended receive or probe call.

The info parameter of irecvx() does not contain valid data until the message is received (as
determined by msgdone() or msgwait(». The info parameter of iprobex() does not contain valid
data unless the iprobexO returns 1.

3-25

Paragon" User's Guide

Global Operations

SynopsiS
gcol(x. xlen. y. ylen. ncnt)
gcolx(x. xlens. y)
gdhigb(x. n. work)
gdlow(x. n. work)
gdprod(x. n. work)
gdsum(x. n. work)
gland(x. n. work)
gihigh(x. n. work)
gilow(x. n. work)
gior(x. n. work)
giprod(x. n. work)
gisum(x. n. work)
gland(x. n. work)
g1or(x. n. work)
gopf(x. xlen. work.junction)
gsblgb(x. n. work)
gslow(x. n. work)
gsprod(x. n. work)
gssum(x. n. work)
gsyncO

Using Paragon- OSF/1 Message-Passing System calls

Description
Concatenation.
Concatenation for contributions of known length.
Vector double precision MAX.
Vector double precision MIN.
Vector double precision MULTIPLY.
Vector double precision SUM.
Vector integer bitwise AND.
Vector integer MAX.
Vector integer MIN.
Vector integer bitwise OR.
Vector integer MULTIPLY.
Vector integer SUM.
Vector logical AND.
Vector logical inclusive OR.
Arbitrary commutative function
Vector real MAX.
Vector real MIN.
Vector real MULTIPLY.
Vector real SUM.
Global synchronization

The g ••• O calls perform operations that use data from every node in the application In general. when
you make one of these calls. each node contributes a piece of data to the operation, the operation is
performed on the whole collection of data. and then the result of the operation is returned to each
node.

These operations are synchronizing calls: if any node in an application makes one of these calls. it
blocks until every node in the application has made the same call. (In the simplest case. gsyncO. this
synchronization is the only operation performed by the call.) One process on each node in the
application must make the call. and all the processes that make the call must have the same process
type.

The global operations are implemented using dynamic algorithm selection for maximum
performance. The system considers several ways of exchanging the needed information between the
nodes. and selects the one that minimizes the time required to perform the global operation given the
size and shape of the application.

3-27

Paragon" User's Guide Using Parallel File I/O

ioctiO fills in the elements of this structure with information about the device. The value of the
muype field is always 0x0C (indicating a generic SCSI device). The values of the mt _ dsreg and
mt _ erreg fields are device-dependent.

r For example, the following C program prints the status of the device connected to ItievlioOlrmt6:

#include <fcntl.h>
#include <errno.h>
#include <sys/mtio.h>

main () {
int fd;

}

struct mtget s;

fd = open("/dev/ioO/rmt6", O_RDONLY, 0666);
if(fd == -1) {

perror("opening /dev/ioO/rmt6");
exit(l) ;

}

if (ioctl(fd, MTIOCGET, &s) == -1) {
perror ("getting status of tape");
exit(2) ;

}

printf ("mt_type
printf ("mt_dsreg
printf ("mt_erreg ==
printf(nmt_resid

Ox%x\n" ,
Ox%x\n" ,
Ox%x\n" ,
Ox%x\n" ,

s . mt_type) ;
s . mt_dsreg) ;
s . mt_erreg) ;
s . mt_resid) ;

5-47

Using Other Paragon ™ OSF/1
System Calls

Introduction
Paragon aSF/! system calls are available to all programs running on the Intel supercomputer. These
system calls provide a variety of specialized functions that let processes running on different nodes
share data and coordinate their activities.

This chapter introduces the Paragon aSF/! system calls that perform general services other than
message passing. It includes the following sections, each of which describes a group of related calls:

• Managing applications.

• Managing partitions.

• Listing unusable nodes.

• Handling errors.

• Controlling floating-point behavior.

• Miscellaneous calls.

• iPSCGD system and Touchstone DELTA system compatibility calls.

Within each section, the calls are discussed in order of increasing complexity. That is, the "base"
calls are discussed first, and the "extended" calls are discussed later.

Each section includes numerous examples in both C and Fortran. A call description at the beginning
of each section or subsection gives a language-independent synopsis (call name, parameter names,
and trief description) of each call discussed in that section. Differences between C and Fortran are
noted where applicable. See Appendix A for information on call and parameter types; see the
ParagonTN C System Calls Reference Manutll or the ParagonTN Fortran System Calls Reference
Manutll for complete information on each call.

4-1

Using Other Paragon- OSFI1 System Calls Paragon'" User's Guide

This chapter does not describe all the Paragon OSP!! system calls. Por information about system
calls that perform message passing. see Chapter 3. Por information about the calls used with the
Parallel Pile System. see Chapter 5. Por information about the calls used with graphical interfaces.
such as DGL and the X Window System. see theParagonTJI. Graphics Libraries User's Guide. Por
information about the system calls that require root privileges. see the Paragon TJI. System
Administrator's Guide.

Paragon OSPIl programs written in C can also issue OSP/! system calls. The Paragon OSP!!
operating system is a complete OSP!! system and fully supports all the standard OSPIl system calls.
See the OSF!l Programmer's Reference for information on these calls.

Paragon OSP!! programs written in Ponran cannot make aSPIl system calls directly. but the
Fortran runtime library includes a number of system interface routines. These routines make a
number of aSP!! system calls available to Portran programs. See the ParagonTJI. Fortran Compiler
User's Guide for information on these routines.

Managing Applications

4-2

Paragon OSPIl provides system calls that let you create parallel applications. control their
execution. and get information about them. See "Running Applications" on page 2-11 and
"Managing Running Applications" on page 2-23 for introductory information on applications.

Paragon" Uaer's Guide Using Other Paragon'" OSF/1 System Calls

Controlling Application Execution with System Calls

Synopsis Description

DX Jnltve(partition, size, account, argc, argv) Create a new application.

DX Jnltve _ rect(partition, anchor, rows, cors, Create a new application with a rectangular shape.
accormt, argc, argv)

nx J)ri(pgroup, priority) Set the priority of an application.

nx _nfork(node _list, numnodes, ptype, pid _list) Copy the current process onto some or all nodes of
an application.

ox Joad(node _list, numnodes, ptype, pill_list,
pathname)

nx Joadve(node Jist, numnodes, ptype,
pill_list,pathname, argv, envp)

Execute a stored program on some or all nodes of
an application.

Execute a stored program on some or all nodes of
an application, with specified argument list and
environment.

Wait for all application processes.

The simplest way to control the wayan application executes is to use the command-line switch-ox
when you link the application. (See "Compiling and Unking Applications" on page 2-5 for more
information on the -ox switch.) When you execute a program that was linked with -ox, the program
is automatically copied onto the specified number of nodes in the specified partition, runs, and then
when all the nodes have finished you get your prompt back.

The code linked in by -ox reads the command line and environment variables, then performs the
following actions for you (see "Controlling the Application's Execution Characteristics" on page
2-13 for more information):

• Creates a new, empty application in the partition specified by the -po switch and on the nodes
of that partition specified by the -sz or -od switch. If -po is not used, the partition is specified
by $NX _DFLT _PART, or .compute if $NX. _DFLT _P ARTis not set. If neither -sz nor -nd is used,
the number of nodes is specified by $NX. DFLT SIZE, or all nodes of the partition if
$NX _DFLT _SIZE is not seL --

• Sets the application's priority to the value specified by -pri (default 5).

• Loads and starts your program(s) on the nodes specified by -DO (default all nodes of the
application) with the process type specified by -pt (default 0).

The 0_ ... 0 system calls perform the same actions as those of the code linked in by -0, but under
program control instead of command-line control. Using these calls is more complicated than using
-ox, but gives your program more flexibility and control.

Using Other Paragon™ OSF/1 System Calls Paragon TIl User's Guide

NOTE

If you use nx_initve() or nx_initveJectO. do not link the program
with the -nx switch. Use the switch -Inx instead.

The switch -lox links in the library libnx.a. which contains all the calls discussed in this manual. but
does not link in the automatic start-up code linked in by -ox.

Creating an Application with nx_initveO

oxJnitve() creates a new. empty application. The process that calls oxJnitve() becomes the new
application's controlling process; see "The Controlling Process" on page 4-21 for information on
what this means.

The partition and size of the new application can be specified by parameters or by the command line;
the priority and mp _switches are specified by the command line. If command-line switches are not
used or the command line is ignored by specifying zero for argc. the application's execution
characteristics default as discussed under "Controlling the Application's Execution Characteristics"
on page 2-13 and the mp _switches default as discussed under "Message-Passing Configuration
Switches" on page 8-18.

ox Jnitve() just allocates the specified number of nodes from the partition; it does not start any
processes. (This allocation mayor may not be exclusive. depending on the characteristics of the
partition.) You must call ox _ nforkO. ox JoadO, or ox _loadve() to start processes in the new
application. The nodes allocated to the application are automatically deallocated when all the
processes in the application have tenninated.

Another effect of ox Jnitve() is to make sure that the calling process is a process group leader. If
the calling process is not already a process group leader, ox _ initveO creates a new process group,
removes the calling process from its current process group, and makes the calling process the new
process group's leader. If you're not familiar with these tenos, see "Process Groups" on page 4-22.

Fmally, ox _ initveO also initializes the data structures required by all the other calls described in this
manual. In an application linked with -ox, the code linked in by -ox performs this initialization
before the application starts up, so you can use these other calls anywhere in the application. In an
application linked with -lox, however, you must call ox _ initveO before you can use any of the other
calls described in this manual. If called before ox JDitveO, these other calls will fail; the way they
fail depends on the call (as described under "Handling Errors" on page 4-42). For example. if you
call csendO before callingox_initve(), the csendO prints an error message and tenninates the
calling process.

Paragon" User's Guide Using Other Paragon- OSFJ1 System Calls

The parameters of ox _ initveQ have the following meanings:

partition

size

account

argc

The relative or absolute partition padmame of the partition to run the
application in. or a null string (n n or NULL in C, n n in Fortran) to use the
default partition (the partition specified by $NX _ DFLT J' ART, or .compute if
$NX _ DFLT _PART is not set). The specified partition must exist and must
give execute permission to the calling process.

If the user specifies a partition with the -pn switch on the command line, it
overrides the value of the partition parameter (unless you set the argc
parameter to 0, as described later in this section).

See "Partition Patlmames" on page 2-28 for more infonnation on partition
padmames; see "Owner, Group, and Protection Modes" on page 2-32 for
more infonnation on partition permissions.

The size of the application (number of nodes to run the application on), or 0
to use the default size (the size specified by $NX DFLT SIZE, or all nodes of
the partition if $NX _ DFLT _SIZE is not set). - -

ox _ initve() attempts to allocate a square group of nodes if it can. If this is not
possible, it attempts to allocate a rectangular group of nodes that is either
twice as wide as it is high or twice as high as it is wide. If this is not possible,
it allocates any available nodes. In this case, nodes allocated to the application
may not be contiguous.

If the user specifies the -sz or -nd switch on the command line, it overrides
the value of the size parameter (unless you set the argc parameter to 0, as
described later in this section).

In the future, this parameter will be used for accounting information. For now,
it must be a null string (n" or NULL in C, n n in Fortran).

In C. a pointer to an integer whose value is the number of arguments on the
command line (counting the application name). If the value of this integer is
0, the command line is ignored. You can use a pointer to the argc parameter
of mainO, or you can construct the command line yourself.

In Fortran, this parameter is any nonzero value to search the command line,
or 0 to ignore the command line.

Using Other ParagonlM OSFI1 System calls Paragon"; User's Guide

argv In C, a pointer to the command-line arguments, which may include arguments
that specify application characteristics. You can use the argv parameter of
mainO, or you can construct the command line yourself.

In Fortran, ox JDitveO gets the command line directly from the system.
because Fortran programs don't have an argv parameter. This parameter is
ignored; it should always be O.

In either language, if any of the command-line arguments -sz size, -sz hXw,
-nd hXw:n, -pIi priority, -po partition, -pkt packet_size,
-mbf memory_buffer, -mex memory_export, -mea memory_each,
-sth send threshold, -set send count, -gth give threshold, or -plk is found in - - -
the command line:

• The appropriate application characteristic is set as specified by the
argument.

• The argument is removed from argv.

• The variable pointed to byargc is decremented appropriately.

Any remaining arguments are moved to the beginning of argv for your
program's use.

Note that the arguments -pt type, -on nodelist, and \; application are not
recognized by ox _ initveO. If you want your application to have the same user
interface as an application linked with -ox, you must examine the argument
list for these arguments and pass the appropriate values to ox JoadO or
ox JoadveO yourself.

ox _ initveO returns the number of nodes in the application, or -1 if any error occurs.

For example, the following C call creates an application whose characteristics (partition, number of
nodes, and so on) are detennined by the user through command-line switches. If the user runs this
program with no command-line switches, it runs on the user's default number of nodes in the user's
default partition.

'include <nx.h>

main(int argc, char *argv[]) {
int n;

n = DX_initve(ft", 0, "fI, &argc,argv);

After this call, the variable n contains the number of nodes in the new application, or -1 if any error
occurred. The variable argc contains the count of arguments that were not recognized and removed
by ox JDitveO, and the array argv contains pointers to those arguments.

Paragon no User's Guide Using Other Paragon 1M OSFI1 System Calla

The following Fortran call creates an application on 50 nodes of the partition myptlT't, ignoring any
command-line switches provided by the user:

include 'fnx.h'
integer n

n = nx_initve("mypart", 50, "", 0, 0)

After this call, the variable n contains the mnnber of nodes in the new application, or -1 if any error
occurred.

The following restrictions apply to ox JDitve():

• A single process cannot call ox JDitv~Q more than once.

• An application that calls ox _ iDitveO cannot be linked with -ox. You must use -Inx instead.

• If your application uses any signal handlers, you must set them up after the call to ox _ initve().
See signalO in the OSFll Programmer's Reference for more information on signal handlers.

The reason you cannot use -ox when you link an application that calls ox _ iDitve() is that the code
linked in by -ox calls ox _ iDitveO itself, and ox _ initve() can only be called once in an application.
If you do use -ox when you link, your application's call to ox_iDitve() (actually the second call to
ox _ iDitve(» fails and returns -1.

Creating a Rectangular Application with nX_initve_rectO

ox _ initve _rectO works exactly like ox _ initve() except that it requires that the nodes allocated to the
application form a rectangle with a particular height and width. Optionally, it can also specify the
rectangle's location within the partition. The parameters of ox _ initve _ rectO are the same as. those
of ox Jnitve(), except that instead of the size parameter it has the following three parameters:

anchor

rows

cols

The node number within the partition for the upper left comer of the
rectangle, or -1 to allow the rectangle to be placed anywhere in the partition
it will fit.

The height of the rectangle.

The width of the rectangle.

If the specified rectangle of nodes is not available, the nx Jnitve _rectO call fails and returns -1 (even
if the equivalent number of nodes is available with a non-rectangular shape).

4-7

Using Other Paragon1lll OSF/1 System Calls Paragon TM User's Guide

4:8 ..

NOTE

All the restrictions and cautions in this manual that refer to
nx_initveO also apply to nx_lnitv8_l'9ctO.

If the user specifies a size or shape with the -sz or -nd switch on the command line. it overrides the
values of these three parameters (unless you set the argc parameter to 0). ox _initve]tUO never
uses the environment variable $NX _DFLT _SIZE.

For example, the following Fortran call creates an application 8 nodes high and 8 nodes wide (unless
otherwise specified by command-line switches) anywhere it will fit in the user's default partition:

include 'fnx.h'
integer n

n = nx_initve_rect("", -1, 8, 8, "", 0, 0)

The following C call creates an application 10 nodes high and 20 nodes wide whose upper left comer
is node 0 (the upper left comer of the partition) in the partition mypart. ignoring any command-line
switches provided by the user:

'include <nx.h>
int n, i;

i 0;
n = nx_initve_rect("mypart", 0, 10, 20, "", &i, NULL);

After either of these calls, the variable n contains the number of nodes in the new application, or -1
if any error occurred.

Note that ox _ initve _ rettO will fail if the exact specified rectangle is not available. If you just want
to find out the application's size and shape. rather than mandating a particular size and shape, you
can use an ordinary ox JnitveO. followed by a call to ox _ app]ectO (discussed under "Finding an
Application's Shape with nx_app_rectO" on page 4-16) to determine the height and width assigned
byox_initve().

Paragon 1M User's Guide Using Other ParagonTM OSF/1 System caJls

Setting an Application's Priority with nXJ)riO

ox..,PliO sets the specified application's priority to the specified value. If you don't call ox -,riO and
the user doesn't use the -pri switch. the default priority is 5. The parameters ofox-,riO have the
following meanings:

pgroup

priority

The process group ID of the application (see "Process Groups" on page 4-22
for more information), or 0 to specify the application of the calling process.
If the specified process group ID is not the process group ID of the calling
process, the calling process's user ID must either be root or the same user 10
as the specified application.

The new priority, an integer from 0 to 10 inclusive. 0 is the lowest priority,
10 is the highest.

ox -,riO returns 0, or -1 if any error occurs.

For example, the following Fortran call sets the priority of the calling application to 7:

include 'fnx.h'
integer n

n = nx-pri(O, 7)

The following C call sets the priority of the application with process group 10 738423 to 0:

#include <nx.h>
int n;

n = nx-pri(738423, 0);

In each of these examples, the variable n is assigned 0, or -1 if any error occurred.

Using Other Paragon™ OSF/1 System Calls Paragon"" User's Guide

4-10

Copying a Process onto the Nodes with nx_nforkO

ox _ nforkO copies the process that calls it onto the specified set of nodes with the specified process
type. It creates one child process on each specified node. ox _ nforkO is similar to the standard OSP/l
call forkO except that it can fork processes onto multiple nodes and specifies the process type for
the child processes. The parameters of ox _ nforkO have the following meanings:

node list An array of integers. each of which specifies a node number within the
application (no node number may appear more than once in this array). The
calling process is copied onto each of the specified nodes.

numnodes The number of node numbers in node _list. or -1 to use all the nodes in the
application (in which case node _list is ignored).

ptype The process type for each child process.

An array of integers. into which are stored the OSP/l process identifiers
(PIDs) of the child processes. See "Using PIDs" on page 4-14 for more
information.

ox _ nforkO returns the number of child processes created to the parent process and 0 to each child
process. or -1 if any error occurs.

For example. the following C calls create an application whose characteristics are specified by the
user. then copy the calling process onto all nodes of the application. The process type of each child
process is set to o.

#include <nx.h>
#include <sys/types.h>

main(int argc, char *argv[]) {
int n;
pid_t pids[2000];

n = nx_initve("", 0, "", &argc, argv);
n = nx_nfork(NULL, -1, 0, pids);

Note that the node _list argument is ignored when the numnodes argument is -1. so you can specify
a NULL pointer in this case (in Fortran, you can use the value 0). After the call to ox _ nforkO. the
variable n contains the number of child processes created, or -1 if any error occurred; the first n
elements of the array pids contains the PIDs of the child processes. If more than 2000 child processes
are created. unexpected results will occur.

Paragon 111 User's Guide Using Other ParagonTlil OSF/1 System Calls

The following Fortran calls create an application with 100 nodes and copy the calling process onto
the first 50 nodes of the application (nodes 0 through 49). The process type of each child process is
settoO.

include 'fnx.h'
integer n
integer nodes(50), pids(50)

n = nx_initve("mypart", 100, 1111 0, 0)

do 2, i = 1, 50
nodes (i) = i-I

2 continue

n = nx_nfork(nodes, 50, 0, pids)

After the call to ox _ nforkO, the variable n contains 50, or -1 if any error occurred; the array pids
contains the PIDs of the child processes.

Loading a Program onto the Nodes with nx_loadO

ox JoadO executes the specified file on the specified set of nodes with the specified process type.
Like ox _ nforkO, ox _loadO creates one child process on each specified node. The parameters of
ox JoadO have the following meanings:

node list

numnodes

ptype

pathname

An array of integers, each of which specifies a node number within the
application (no node number may appear more than once in this array). The
specified me is loaded onto each of the specified nodes.

The number of node numbers in node _ Ust, or -1 to use all the nodes in the
application (in which case node _list is ignored).

The process type for each child process.

An array of integers. into which are stored the aSF/l process identifiers
(PIDs) of the child processes. See "Using PIDs" on page 4-14 for more
information.

The relative or absolute pathname of the file to load.

ox JoadO returns the number of child processes created, or -1 if any error occurs.

4-11

Using O1her Paragon1M OSF/1 System Calls Paragon TIl User's Guide

4-12

For example, the following Fortran calls create an application whose characteristics are specified by
the user, then load and start the program myprog on all nodes of the application. The process type of
each child process is set to O.

include 'fnx.h'
integer n
integer pids(2000)

n = nx_initve("", 0, "" 1, 0)
n = nx_load(O, -1, 0, pids, "myprog")

After the call to ox _loadO, the variable n contains the number of child processes created, or -1 if any
error occurred; the first n elements of the array pids contains the PIDs of the child processes. If more
than 2000 child processes are created, unexpected results will occur.

The following C calls create an application with 10 nodes in the partition mypart, then load and start
the program • .Ibinlmyprog on nodes I, 5, and 7 of the application. The process type of each child
process is set to 1.

#include <nx.h>
#include <sys/types.h>
int n, i;
int nodes [3] ;
pid_t pids[3];

i 0;
n = nx_initve ("mypart", 10, "" &i, NULL);

nodes[O] 1;
nodes [1] 5;
nodes [2] 7;

n = nx_load (nodes, 3, 1, pids, " .. /bin/myprog II) ;

After the call to oxJoadO, the variable n contains 3, or -1 if any error occurred; the array pids
contains the PIDs of the child processes.

Paragon- User's Guide Using Other Paragon- OSFI1 System Calls

Loading a Program onto the Nodes with nx_loadveO

ox Joadye() is just like ox JoadO except that it also lets you specify the argument list and
environment variables for the new processes (in C). ox _Ioadye() has the following additional
parameters:

argv In C, this parameter contains the command line for the child process (you can
use the argv parameter of mainO or construct the command line yourself).

envp In C, this parameter contains the environment variables for the child process
(you can use the erwp parameter of mainO or construct the environment
yourself).

In Fortran, you must specify the value 0 for the argv and envp parameters (or use ox JoadO instead).
This is necessary because these parameters are pointers to arrays of strings, which have no
equivalent in Fortran.

ox Joadye() returns the number of child processes created, or -1 if any error occurs. If an error
occurs, the value 0 is also stored into the pid _list for each process that was not successfully started.

For example, the following C calls create an application as specified by the user (if not specified, the
default number of nodes in the default partition), then set the value of the environment variable
HOME to Itmp, then load and start the program myprog on all nodes of the application with process
type 0:

#include <nx.h>
#include <stdlih.h>
#include <sys/types.h>
extern char **environ;

main(int argc, char *argv[]) {
int n;
pid_t pids[2000];

n = nx_initve(NULL, 0, NULL, &argc, argv);
putenV("HOME=/tmp");
n = nx_loadve(NULL, -1, 0, pids, "myprog" , argv, environ);

The argument list of myprog consists of any command-line arguments to the calling program that
were not recognized and removed by ox _ initveO, and the environment of myprog is the same as the
user's environment except for the value of HOME.

4-13

Using other Paragon1M OSFI1 System Calls Paragon 1M User's Guide

4-14

Waiting for Application Processes with nx_waitaliO

ox _ nforkO, ox _loadO, and ox _Ioadve() return immediately to the calling process. To wait for the
processes created by ox _ nforkO. ox JoadO. or ox JoadveO to complete, call ox _ waitallo.
ox _ waitaUO simply blocks until all the child processes of the calling process have terminated. It
returns 0, or -1 if any error occurs.

For example. the following Fortran calls create a new application as specified by the user. run the
program myprog on all nodes of the application, and wait until all the node processes have
completed:

include 'fnx.h'
integer n
integer pids(2000)

n = nx_ini tve (" ", 0, "" I, 0)
n = nx_load(O, -1, 0, pids, "myprog")
n = nx_wai tall ()

Using PIDs

The pill_list argument ofox_nforkO. ox_loadO, and ox_loadveO receives the aSF/1 process
identifiers (PIDs) of the child processes created by the call. The specified array must be large enough
to hold all the PIDs-that is, it must have at least as many elements as the maximum number of
processes that could be created by the call. If more child processes are created than the number of
elements in the pid _list, unexpected results will occur (the program will probably crash).

In the typical case where you create one process per node of the application, you can use the value
returned by ox _ initve() to detennine the number of nodes in the application, then use mallocO or an
equivalent call to dynamically allocate a pid _list with the same number of elements. For example.
the following example allocates the appropriate number of elements to the array pills based on the
application size specified by the user in argv:

include <nx.h>
include <stdio.h>
include <malloc.h>

main(int argc, char **argv) {

int nnodes;
long *pids;

nnodes = nx_initve(NULL, 0, NULL, &argc, argv);
pids = (long *)calloc(nnodes, sizeof(long»;
nx_nfork(NULL, -1, 0, pids);

-- ----------- ------------------------------- ---------- ----- ----------~----------------- -------

Paragon" User's Guide Using Other Paragon'" OSF/1 System Calls

If you don't use dynamic allocation. you should give the pill _'ist as many elements as the number of
nodes on the largest system on which the application will be run. Por portability to very large Intel
supercomputers, this array should have at least 1000 elements (and possibly more in the future).

Each element in the pid _'ist receives the PID of the process on the node specified by the
corresponding element of the node _'ist. If numnodes is -I, the PID of the process on node 0 is stored
into the first element of pid _list, the PID of the process on node 1 is stored into the second element
of pid _list, and so on. If one or more processes were not successfully started, the value 0 is stored
into the corresponding element of the pid _list.

NOTE

The PIOs stored into the pid_list are OSF/1 PIDs, not Paragon
OSF/1 process types.

OSP!l PIDs are unique throughout the system; they are used with standard OSP!I system calls such
as kiIlO. (Note that kiIIO and other system interface routines are supported by the Fortran runtime
lilrary; see theParagon™ Fortran Compiler User's Guide for information on these routines.)
Paragon OSF!! process types are unique only within a single application and a single node; they are
used with Paragon OSF!! message-passing calls such as csendO.

For example, the following C calls create an application as specified by the user, run the program
myprog on all nodes of the application with process type 0, and then send the signal SIGKILL to
all the node processes:

#include <nx.h>
#include <signal.h>
#include <sys/types.h>

main(int argc, char *argv[]) {
int n, i;
pid_t pids[2000];

n = nx_initve(NULL, 0, NULL, &argc, argv);
n = nx_load(NULL, -I, 0, pids, "myprog");

for(i-O; i<n; i++) {
kill(pids[i], SIGKILL);

}

4-15

Using Other ParagonTM OSFI1 System Calls Paragon User's Guide

Getting Information About Applications

4-16

Synopsis

ox_app_nodes(pgroup, nodeJist, list_size)

ox .,pspart(partition, pspartJist, list_size)

Description

Obtain the height and width of the rectangle of
nodes allocated to the current application.

Ust the nodes allocated to an application.

Obtain information about all applications and
active subpartitions in a partition (C only).

To get information about applications once they are running, use ox _app JectO, ox _app _ nodesO,
and ox "pspartO. ox _ app Ject() returns the application's shape (height and width of the rectangle
of nodes allocated to the application); ox _ app _ nodesO returns a list of the nodes that are allocated
to the application; and ox .,PSpartO returns information about all the active applications and
subpartitions in a partition (like the pspart command).

NOTE

Do not call nx_app_noc:JesO or nx-PSP8rtO on more than a few
nodes at once.

If many nodes use the application information calls at the same time, the allocator daemon can
become overwhelmed with requests, which could slow down your application or reduce system
stability. If all the nodes in your application need this information, you should have one node make
the call and then distribute the information to the other nodes. Note, though, that ox _ app _rectO is
not subject to this restriction.

Finding an Application'S Shape with nx_app_rectO

Sometimes, in addition to its node number and the number of nodes in the application, a process
needs to know the shape of the application. For example, an application might use a different
message-passing algorithm depending on whether the nodes allocated to the application form a
square, a tall skinny rectangle, a short wide rectangle, or something else (such as a group of
noncontiguous nodes).

To find out the rectangular dimensions of the nodes allocated to the application, call ox _ app JectO.
ox _ app _ rectO stores the height of the application into rows and the width of the application into
cols. If the nodes allocated to the application do not form a rectangle, ox _ app JectO stores 1 into
rows and numnodesO into cols. DX_app _rectO returns 0 if it is successful, or -1 if any error occurs.

Paragon- User's Guide Using Other Paragon OSFI1 System caJls

For example. the following code fragment in Fortran stores the height of the application into y and
the width of the application into x:

integer*4 x, y, result
•
•
•

result = nx_app_rect(y, x)

The following code fragment in C does the same:

long x, y, result;
•
•
•

result = nx_app_rect(&y, &x);

See "Specifying a Rectangle of Nodes" on page 2-16 for information on how to run your application
on a rectangular group of nodes with a specific shape.

NOTE

nX_8pp_rectO can also be called by the name mypartO for
compatibility with the Touchstone DELTA System.

Listing an Application's Nodes with nx_app_nodesO

Occasionally you want to know an application's physical location within the system. You can use
this information to help track down possible hardware problems or make use of nodes with special
hardware features (such as extra memory or special I/O interfaces).

4-17

Using Other Paragon1M OSFI1 System calls Paragon 1M User's Guide

4-18

To list the nodes allocated to an application, call ox _app _ nodesO. ox _ app _ nodesO has the
following parameters:

pgroup The process group ID of the application (see "Process Groups" on page 4-22
for more information), or 0 to specify the application of the calling process.
If the specified process group ID is not the process group ID of the calling
process, the calling process's user ID must either be root or the same user ID
as the specified application.

node list Pointer variable into which ox _ app _ nodesO stores the address of the list of
nodes. The call allocates the memory for this list; when you are finished using
the information, you should release this memory by calling free().

Variable into which ox _ app _ nodesO stores the number of entries in
node list.

The node numbers returned by ox _ app _ nodesO are node numbers from the root partition, which tell
you where in the machine the application is located; ox _app _ nodesO returns 0 for success, or -1 if
any error occurs.

For example, the following Fortran program fragment prints the root node numbers of the nodes on
which the current application is running:

include 'fnx.h'

integer*4
pointer
integer
integer

mynodes(l)
(ptr, mynodes)
nnodes
i, status

status = nx_app_nodes(O, ptr, nnodes)

if(status .ne. 0) then
call nx-perror("nx_app_nodes()")
stop

end if

do 2, i = 1, nnodes
print *, mynodes(i)

2 continue

call free (ptr)

~---~~----~~--~- --~---~----------~-

Paragon" User's Guide Using Other Paragon1M OSF/1 System Calls

The equivalent C code is as follows:

#include <nx.h>

nx_nodes_t
unsigned long
int

mynodes;
nnodes;
i, status;

status nx_app_nodes(O, &mynodes, &nnodes);

if(status != 0) {
nx-perror("nx_app_nodes()");
exit(l) ;

}

for(i = 0; i < nnodes; i++) {
printf (n %d\n", mynodes [i]) ;

}

free (mynodes) ;

Note the use of the & operator on the variables mynodes and nnodes in the call to I1X _ app _ nodesO.

Listing the Applications in a Partition with nx-pspartO

I1X J)Spart() returns information about each of the applications and subpartitions in a partition, like
the pspart command. It is callable only from C, not Fortran. It has the following parameters:

partition

psparUist

The relative or absolute pathname of the partition. The specified partition
must exist and must give read permission to the calling process.

Pointer variable into which I1X J)SpartO stores the address of an array of
nx YspaTt_t structures. Each structure in the array describes one object
(application or subpartition). The nx YspaTU structure is defIned in
aUocsys.h, which is automatically included by nx.h and fnx.h. It includes the
following fIelds:

uid

The type of the object described by this structure:
NX_APPUCATION or NX_PARTITION. (These
are constants defIned in nx.h or fnx.h).

If the object is an application, this is its process group
10. If the object is a partition, this is an arbitrary value
and should be ignored.

The muneric user 10 of the object's owner.

4-19

Using Other Paragon'rM OSF/1 System Calls

gill

size

priority

elapsed

active

time started

Paragon'" User's Guide

The mnneric group ID of the object's group.

The number of nodes allocated to the object

The current priority of the object.

The amount of time the object has been rolled in
during the current rollin quantum, expressed as an
integer number of milliseconds.

The rollin quantum for the object's parent partition
(that is, the partition specified in the ox JJspartO call),
expressed as an integer number of milliseconds.

The total amount of time the object has been rolled in
since it was started, expressed as an integer number of
milliseconds.

Whether or not the object is currently rolled in: 1 if it
is, 0 if it is not.

The time the Object was started, as returned by timeO.
(If the object is a subpartition, the time the oldest
application in the subpartition was started.)

ox JJSpart{) allocates the memory for the pspart _list array; when you are
finished using the information, you should release this memory by calling
freeO.

Variable into which ox yspartO stores the number of nx ysparu structures
in psparUist.

ox.JJSP8l1O returns 0 for success, or -1 if any error occurs.

4-20

Paragon" User's Guide Using Other Paragon'lll OSF/1 System Calls

For example. the following program fragment prints the numeric user ID and size for every
application and subpartition in the panition mypart:

#include <nx.h>

nx-pspart_t
unsigned long
int

*info;
nobjs;
status, i;

status nx-pspart(ftmypart", &info, &nobjs);

if(status != 0) {
nx_perror(ftnx-pspart()ft);
exit(l) ;

}

for(i = 0; i < nobjs; i++) {
printf("uid = %d, size = %d\n" , info->uid, info->size);

}

free(info) ;

Note the use of the & operator on the structure info and the variable nobjs in the call to nx J)SPartO.

The Controlling Process

By calling nx JDitve(). a process creates a new application. The process that called mUDitveO
becomes the new application's controlling process. Each application has exactly one controlling
process, and each process controls at most one application.

The controlling process is a special process that creates and controls the application:

• The controlling process can create new processes in the application, using the Paragon OSF!!
function nx _ nforkO. nx _loadO. or nx Joadve().

• The controlling process can wait for an application process to complete, using nx _ waitaDO or
the standard aSF!! function wait() or waitpidO.

• The controlling process can send a signal to an application process, or terminate it, using the
standard OSF!! function kDlO. In particular, the controlling process can send a signal to all the
processes in the application (including itself) by using IdD(O, signal).

You can tenninate the entire application by terminating the controlling process, using the IdD
command or your interrupt key (normally (ctrl-c> or (Del». The controlling process always
runs in the service partition; the application processes run in the partition specified by nx _ iDitve().
If the application processes are running in a gang-scheduled partition, the controlling process is

4-21

Using Other Paragon'" OSFI1 System Calls Paragon'" User's Guide

4-22

rolled in and out along with its application (that is, when the application is rolled out, the controlling
process gets no processor time; when the application is rolled in, the controlling process gets its
nonnal share of the service partition's processor time).

In OSFIl terms, the controlling process is a parent process and the processes created by ox _ nforkO,
ox _loadO, or ox _Ioadve() are its child processes. (In this respect, ox _ nforkO is similar to forkO,
ox _loadO is similar to a forkO followed by an execvO with a null argument list, and ox Joadve()
is similar to a forkO followed by an execve(». The controlling process and the application processes
all belong to the same process group, and the controlling process is the process group leader of the
group. No process outside the application belongs to this process group.

The controlling process does not usually do heavy computational work, because it runs in the service
partition along with users' shells and other interactive processes. Since it is scheduled interactively,
the controlling process will not give as much throughput as application processes running in
gang-scheduled compute partitions.

See the OSFll Programmer's Reference for information on waitO, waitpidO, kino, forkO, and
execveO.

Process Groups

Process groups are a standard OSF/1 concept, not unique to Paragon OSF/I. A process group is a
set of related processes. You can send a signal to all the processes in a group at once with kiUO, and
you can wait for any process in a group with waitpidO. The processes in a process group also share
access to a tenninal, called the controlling terminal of the group. Each process belongs to exactly
one process group.

The processes in a process group are all children (or grandchildren. and so on) of the oldest process
in the group, called the process group leader. The process group leader's process ID (PID) is used
to identify the group, and is also called the process group ID of the whole group. (Note that this is
the process group leader's OSF/1 PID, not its process type.) A process can determine its process
group ID by calling getpgrpO.

Nonnally, a process belongs to the same process group as its parent process. However, a process can
leave its parent's process group and start a new process group of its own by making such calls as
setpgidO, setpgrp(), or setsidO. These calls create a new process group, then remove the calling
process from its current group and place it in the new group. The calling process becomes the new
group's process group leader, and the caller's PID becomes the new group's process group ID. After
that, any processes created by the process group leader belong to the new process group. See the
OSF/l Programmer's Reference for infonnation on setpgidO and getpgrp().

Paragon" User's Guide Using Other Paragon'" OSF/1 System Calls

Process Groups in Paragon 1M OSF/1

In Paragon OSF/I. process groups work the same as they do in standard OSF/I. In addition.
ox -,nitve() makes sure that the calling process is a process group leader. If the calling process is not
already a process group leader, ox _ initve() has the same effect as setpgidO: it creates a new process
group and makes the calling process the new group's process group leader. Because all the processes
in the application are created by the controlling process, all the processes in an application are
members of the same process group, and no other process in the system is a member of that process
group. This means that the application's process group ID uniquely identifies the application. which
is why you use a process group ID to identify the application in ox -,riO.

This also means that if a process in an application leaves the application's process group by calling
ox -'nitve() (or setpgidO. setpgrpO. or setsidO), it leaves the application. If a process leaves its
application's process grouP. it is no longer considered part of the application and can no longer
exchange messages with the other processes in the application. You shouldn't do this unless you
know exactly what you are doing.

Killing Application Processes

You can take advantage of the fact that all the processes in the application are members of the same
process group by using OSFIl system calls that affect process groups. For example, specifying a
process ID of 0 (zero) to kiUO sends the specified signal to all the members of the calling process's
process group. so the following call kills the entire application (including the calling process):

kill(O, SIGKILL);

This call differs from the example discussed under "Using PIDs" on page 4-14 in that it also kills
the calling process.

An Example Controlling Process

The following C program (which must be linked with -lox. not -ox) copies itself onto eight nodes of
the partition mypart with a process type of 0 and a priority of 7. The eight application processes print
"Hello from node n" and then exit. The controlling process waits for the application processes to
fmish, then prints "Hello from controlling process" before exiting itself. Note that this program is
executed by both the controlling process and the application processes.

4-23

Using Other Paragon™ OSF/1 System Calls Paragon no User's Guide

4-24

#include <nx.h>
#include <sys/types.h>
#include <stdio.h>
#define NUMNODES 8

main(int argc, char **argv) {
int n, i;

}

pid_t pids[NUMNODES];

/* create application */
n = nx_initve("mypart", NUMNODES, NULL, &argc, argv);
H(n == -1) {

}

/* nx_initve() failed */
perror ("nx_ini tve ") ;
exit(l) ;

/* set application priority to 7 */
n = nx-pri(O, 7); /* 0 specifies calling application */
if(n == -1) {

}

/* nx-pri() failed */
perror(nnx-prin);
exit(1) ;

/* fork child processes onto all nodes of application */
n = nx_nfork(NULL, -1, 0, pids);
if (n == -1) {

/* nx_nfork() failed */
perror("nx_nforkn);
exit(l) ;

} else if(n == 0) {
/* child process: print "Hello" and exit */
printf ("Hello from node %d! \n", mynode ()) ;
exit(O) ;

} else {

}

/* parent (controlling process) : wait for all children * /
nx_waitall();
/* now print "Hello" and exit */
printf(nHello from controlling process!\n");
exit(O) ;

Paragon 1M User's Guide Using Other Paragon'l1ll OSFI1 System Calls

Message Passing Between Controlling Process and Application Processes

Description Synopsis

myhostO Obtain the controlling process's node number.

A controlling process can exchange messages with its child processes using the Paragon OSFIl
message-passing calls described in Chapter 3.

• The controlling process's node number is equal to numnodesO. (The maximum node number
within the application is numnodesO - 1.) The controlling process's node number is also
returned by myhostO in any process in the application. In the controlling process, myhost(),
mynode(), and numnodesO all return the same number.

The controlling process's process type is initially INVALID _ PI'YPE, but you can change it to
a valid value by calling setptype(). For best perfonnance, you should not call setptype() until
after you have created all application processes with ox _ nforkO, oxJoadO, or ox _loadveO,
and you should not call setptype() at all unless you need to exchange messages with application
processes.

Although the controlling process can exchange messages with the application processes, it does not
participate in global operations:

• The controlling process may not make any of the calls described under "Global Operations" on
page 3-27.

• The controlling process does not participate when the application processes make any of the
calls described under "Global Operations" on page 3-27.

• The controlling process does not get messages sent to node number -1 (all nodes).

A send to node -1 (all nodes) sends the message to all the nodes in the application (except the calling
process's node), but not the controlling process. This applies whether the message is sent by a node
process or by the controlling process itself. On the other hand, an extended receive that specifies
node -1 (any node) as the sending node will match a message from the controlling process.

Here is an application, written in Fortran, that demonstrates message-passing between the
controlling process and the application processes. This application multiplies two numbers (in a very
inefficient way). It consists of two programs, controlJ and app.f. You must link: controlJ with -inx,
not -ox; appJ can be linked with either -lox or -ox.

4-25

Using Other Paragon™ OSF/1 System calls . Paragon User's Guide

The controlling process (control./) requests a number of nodes and an integer value from the user. It
creates an application of the specified number of nodes on the partition mypart and loads the
program app onto each node. It then sends the user's integer value to each node as a message (note
that the node number -1 sends to all nodes, not including the controlling process) and waits for a
return message with the result. When the result is received, the controlling process prints its value
and then exits.

include 'fnx.h'

integer
integer
integer
parameter
integer
integer
parameter
parameter

nUDLnodes , n, i
nodes(128), pids(128)
app-ptype
(app-ptype = 0)
data, result
result_type, data_type
(result_type = 1)
(data_type = 2)

c get number of nodes (limited to size of "nodes" and "pids" arrays)
1 print *, "Enter number of nodes (must not be greater than 128)"

read(*,*) num_nodes
if(num_nodes .gt. 128) goto 1

c create application of specified size
n = nX_ini tve ("mypart", num_nodes, " " 0, 0)
if(n .eq. -1) then

call nx-perror ("nx_ini tve ")
stop

end if

c fill in node array for nx_Ioad()
do 2, i = 1, num_nodes

nodes (i) = i - 1
2 continue

c load program "app" onto the nodes of the application
n = ~load(nodes, n~nodes, app-ptype, pids, "app")
if(n .eq. -1) then

call nx-perror("nx_load")
stop

end if

c get an integer from the user
print *, "Enter value to be summed"
read(*,*) data

c set my process type
call setptype(app_ptype)

4-26

Paragon'" User's Guide Using Other Paragon"" OSFI1 System calls

c send integer to all the nodes
call csend(data_type, data, 4, -I, app-ptype)

c receive the result
call crecv(result_type, result, 4)

c print the result
print *, "The sum of ", data," over ", nWlLnodes," nodes is ", result

end

The application process (app./) waits for a message and perfonns a pUDlO on the value received.
(Note that the controlling process does not participate in the pUDlO.) The process on node 0 sends
the result to the controlling process, then all the application processes exit.

include I fnx.h I

integer
integer
parameter
parameter

val, work
result_type, data_type
(result_type = 1)
(data_type = 2)

c get an integer from the controlling process
call crecv(data_type, val, 4)

c sum it over all nodes
call gisum(val, 1, work)

c if I'm node 0, send the result back to the controlling process
if(mynode() .eq. 0) call csend(result_type, val, 4, myhost(), 0)

end

Managing Partitions
Paragon OSP/I provides system calls that let you create and remove partitions, get infonnation about
partitions, and change their characteristics, like the mkpart, rmpart, sbowpart, and chpart
commands described in Chapter 2. See "Managing Partitions" on page 2-25 for introductory
information on partitions.

4-27

Using Other Paragon'" OSF/1 System Calls Paragon TIl User's Guide

Making Partitions

4-28

Synopsis Description

ox_mkpart(partition, size, type) Create a partition with a particular number of
nodes.

ox_mkpart]ect(partition, rows, cois, type) Create a partition with a particular height and
width.

ox _ mkpart_ map (partition. numnodes,
node _list, type)

Create a partition with a specific set of nodes.

To create a partition. use ox_mkpartO. ox_mkpart_rec:tO. orox_mkpart_mapO. These calls all
create a partition, but they use different methods to specify the nodes allocated to the new partition:

• ox _ mkpartO works like the mkpart command's -sz size switch.

• ox_mkpart_rec:tO works like the mkpart command's -sz hXw switch.

• ox_mkpart_mapO works like the mkpart command's -nd nodespec switch (except that only
node numbers can be specified).

See "Specifying the Nodes Allocated to the Partition" on page 2-40 for more information on these
switches.

These calls have the following parameters:

partition

size

The new partition's relative or absolute pathname. The specified new
partition must not exist; the parent partition of the specified new partition
must exist and must give write permission to the calling process. See
"Partition Pathnames" on page 2-28 for more information on partition
pathnames; see "Owner. GrouP. and Protection Modes" on page 2-32 for
more information on partition permissions.

The number of nodes of the new partition. or -1 to specify "all the nodes of
the parent partition. " If you specify a size smaller than that of the parent
partition. the nodes are selected by the system (and are not necessarily
contiguous).

ox _ mkpartO attempts to allocate a square group of nodes if it can. If this is
not possible. it attempts to allocate a rectangular group of nodes that is either
twice as wide as it is high or twice as high as it is wide. If this is not possible,
it allocates any available nodes. In this case, nodes allocated to the partition
may not be contiguous.

Paragon- User's Guide Using Other Paragon- OSF/1 System Calls

rows and cols The height and width of the new partition. The new partition is a rectangle
with the specified number of rows and columns, but its location within the
parent partition is selected by the system.

numnodes and node list

type

The exact node numbers within the parent partition for the new partition. The
node _'ist parameter is an array of node numbers; the numnodes parameter
specifies the number of elements in node Jist.

The new partition's scheduling type: NX _ STD to specify standard
scheduling, NX _GANG to specify gang scheduling, or NX _ SPS to specify
space sharing. The names NX_STD, NX_GANG, and NX_SPS are defined
in nx.h andfnx.h. See "Scheduling Characteristics" on page 2-33 for more
information on the different scheduling types.

ox _ mkpartO, ox _mkpart _rectO, and ox _ mkpart_ map() return the number of nodes in the new
partition, or -1 if any error occurs.

The new partition's owner and group are set to the owner and group of the calling process. All other
partition characteristics not specified in the call (such as protection modes and rollin quantum) are
set to the same values as the parent partition. Once the partition is created, you can use the
ox _ chpart...O calls to set these characteristics to different values, as discussed under "Changing
Partition Characteristics" on page 4-36.

For example, the following Fortran call creates a new gang-scheduled partition called newpart
whose parent partition is the compute partition (using a relative partition pathname) and which
consists of all the nodes in the compute partition:

include 'fnx.h'
integer n

n = nx_mkpart ("newpart ", -1, NX_GANG)

The following C call creates a new space-shared partition called mypart whose parent partition is the
compute partition (using an absolute partition pathname) and which has S4 nodes:

#include <nx.h>
int n;

n = n~art(".compute.mypart", 54, NX_SPS);

The following C call creates a new gang-scheduled partition called reel whose parent partition is
mypart and which is 3 nodes high and 4 nodes wide:

#include <nx.h>
int D;

n == nx_mkpart_rect(".compute.mypart.rect", 3, 4, NX_GANG);

4-29

Using Other Paragon1M OSFI1 System calls Paragon'" User's Guide

The following C call creates a new space-shared partition called corners whose parent partition is
rect and which consists of the four nodes at the comers of reel:

#include <nx.h>
long nodes [4] ;
int n;

nodes [0] 0;
nodes [1] 3;
nodes [2] 8;
nodes [3] 11;
n = nx_mkpart_map(".compute.mypart.rect.comers", 4,

nodes, mcSPS);

In each of these examples, the variable n is assigned the number of nodes in the new partition, or -1
if any error occurred.

Removing Partitions

4-30

Synopsis Description

ox_ rmpart(partition,jorce, recursive) Remove a partition.

To remove a partition, use ox _ rmpartO. The parameters of ox _ rmpartO have the following
meanings:

partition

force

recursive

The relative or absolute patlmame of the partition to be removed. The parent
partition of the specified partition must give write permission to the calling
process. See "Partition Patlmames" on page 2-28 for more information on
partition pathnames; see ''Owner, Group, and Protection Modes" on page
2-32 for more information on partition permissions.

Specifies whether to remove the partition if it contains running applications:
if force is 0, the partition will not be removed if it contains any applications;
if force is any value other than 0, the partition will be removed even if it
contains applications.

Specifies whether to remove the partition if it contains subpartitions: if
recursive is 0, the partition will not be removed if it contains any
subpartitions; if recursive is any value other than 0, the partition will be
removed along with all its subpartitions, su~subpartitions, and so on. This is
an "all or nothing" operation: if any subpartitions cannot be removed, the call
fails and no subpartitions are removed.

Paragon- Uaer's Guide Using Other Paragon- OSF/1 System Calla

If the partition contains both subpartitions and applications, or contains subpartitions that contain
applications, you must set both force and recursive to a nonzero value to remove it.

ox _ rmpartO returns 0 for success, or -1 if any error occurs.

For example, the following Fortran call removes the partition called newpart whose parent partition
is the compute partition (using a relative partition pathname), but only if it does not contain any
running applications or subpartitions:

include 'fnx.h'
integer n

n = nx_rmpart("newpart", 0, 0)

After this call, the variable n contains 0 if the partition was removed, or -1 if it was not removed for
any reason (for example, if the partition contained applications or subpartitions).

The following C call removes the partition called mypart whose parent partition is the compute
partition (using an absolute partition pathname), even if it contains running applications; however,
it does not remove mypart if the partition contains subpartitions:

#include <nx.h>
int nj

n = nx_rmpart(".compute.mypart", 1, O)j

After this call, the variable n contains 0 if the partition was removed, or -1 if it was not removed for
any reason (for example, if the partition contained subpartitions, or if the partition does not exist).

Getting Information About Panitions

Synopsis Description

oxJHIr,-attr(partition, attributes) Get a partition's attributes.

ox JJ8rt_ nodes(partition, node Jist. list_size) List the root node numbers for the nodes of a
partition.

To get information about a partition, use ox yart _ atlrO or ox JJ8rt_ nodesO. ox JJ8rt_ attr()
returns the attributes of a partition, and ox JJarl_ nodesO returns a list of the nodes in the specified
partition.

4-31

Using O1her Paragon1M OSF/1 System Calls Paragon no User's Guide

4-32

NOTE

Do not call nX-P8rt_attrO or nX-P8rt_nodesO on more than a few
nodes at once.

If many nodes use the partition information calls at the same time, the allocator daemon can become
overwhelmed with requests, which could slow down your application or reduce system stability. If
all the nodes in your application need this information, you should have one node make the call and
then distribute the information to the other nodes.

Determining a Partition's Attributes with nX.J)art_attrO

ox Jl8rl _ attrO returns the attributes of a partition. It has the following parameters:

partition

attributes

The relative or absolute pathname of the partition. The specified partition
must exist and must give read permission to the calling process.

A structure of type nx yarUnfo _1 (you must allocate the space for this
structure). The nx ...JKJ1'Unfo _t structure is defined in allocsys.h, which is
automatically included by nx.h andfnx.h.1t includes the following elements:

uid

gid

access

sched

rq

epl

nodes

mesh x

The numeric user ID of the partition's owner.

The numeric group ID of the partition's group.

The access permissions of the partition, expressed as a
three-digit octal number.

The scheduling type of the partition: NX_STD,
NX_GANG, or NX_SPS. (These are constants
defined in nx.h or fnx,h).

The rollin quantum of the partition, expressed as an
integer number of milliseconds (0 for a
standanl-scheduled or space-shared partition).

The effective priority limit of the partition (20 for a
standanl-scheduled partition).

The number of nodes in the partition.

The width of the partition (columns), or -1 if the
partition is not rectangular.

Paragon" User's Guide

meshy

------_._----.----_._-.

Using Other Paragon- OSF/1 Sys1em Calls

The height of the partition (rows), or -1 if the partition
is not rectangular.

enclose _ mesh_x The width of the smallest rectangle that completely
encloses the partition.

enclose _ meshy The height of the smallest rectangle that completely
encloses the partition.

ox JNlrl _ attr() returns 0 for success, or -1 if any error occurs.

For example, the following C program fragment prints the rollin quantum and effective priority limit
for the partition mypart:

#include <nx.h>

nx-part_info_t info;
int status;

status = nx-part_attr ("mypart", &info);

if(status != 0) (

}

nx-perror(" nx-part_attr ()");
exit(l) ;

printf("rq = 'd, epl = 'd\n" , info.rq, info.epl);

Note the use of the & operator on the structure info in the call to ox JIart _ attr(). The equivalent
Fortran code is as follows:

include 'fnx.h'

record /nx-part_info_t/ info
integer status

status = nx-part_attr("mypart", info)

if(status .ne. 0) then
call nx-perror("nx-part_attr()")
stop

end if

print *, "rq =",info.rq,", epl =",info.epl

4-33

Using Other Paragon™ OSF/1 System CaUs Paragon"" User's Guide

4-34

If the partition is not a contiguous rectangle, the values of mesh _x and meshyare -1 and the
rectangle described by enclose _ mesh_x and enclose_mesh y includes nodes that are not part of the
partition. For example, Figure 4-1 shows a non-rectangular partition called mypart. For this
partition:

• nodes is 4.

• mesh-.x and mesh y are both -1.

• enclose mesh x is 3.

• enclose _ meshy is 2.

Root partition ® CD ® 8)

Partition mypart
®

@ @
Smallest enclosing rectangle for mypart

® @ @ @ @

Paragon 1M User's Guide Using Other Paragon" OSFJ1 System Calls

Determining a Partition's Nodes with nx....part_nodesO

ox JNlrt _ nodesO returns a list of the nodes in the specified partition. You might want to do this to
detennine whether or not the partition includes a certain node which has special hardware
characteristics such as extra memory or an I/O interface. OX..Jlarl _ nodesO has the following
parameters:

partition The relative or absolute pathname of the partition. The specified partition
must exist and must give read permission to the calling process.

node list Pointer variable into which oxJ)arl _ nodesO stores the address of the list of
nodes. ox Jl8rl_ nodesO allocates the memory for this list; when you are
finished using the information. you should release this memory by calling
free().

Variable into which DX ...lW'UHMlesO stores the number of entries in
nodeJist.

ox JNlrt_ nodesO returns 0 for success, or -1 if any error occurs.

The node numbers returned by ox..Jlarl_nodesO are node numbers from the root partition. For
example, ox..Jlarl_ nodesO for the partition mypart shown in Figure 4-1 would return node numbers
6, 7,12, and 13. This is true even if the root partition is not the direct parent partition ofmypart.

For example, the following Fortran program fragment prints the root node numbers for the partition
mypart:

include 'fnx.h'

integer*4
pointer
integer
integer

mynodes(l)
(ptr, mynodes)
nnodes
i, status

status = nx-part_nodes ("mypart", ptr, nnodes)

if(status .ne. 0) then
call nx~rror("nx-part_nodes()")
stop

end if

do 2, i = I, nnodes
print *, mynodes(i)

2 continue

call free(ptr)

Using Other Paragon- OSFI1 System calls Paragon'"' User's Guide

The equivalent C code is as follows:

#include <nx.h>

nx_nodes_t
unsigned long
int

mynodes;
nnodes;
i, status;

status nx-part_nodes("mypart", &mynodes, &nnodes);

if(status != 0) {
nx-perror("nx-part_nodes()");
exit(l) ;

}

for(i = 0; i < nnodes; i++) {
printf ("%d\n ", mynodes [i)) ;

}

free (mynodes) ;

Note the use of the & operator on the variables mynodes and nnodes in the call to ox Jl8l1_ nodesO.

Changing Partition Characteristics

4-36

Synopsis

ox _ chpart _ mod(partition, mode)

ox _ chpart _ epl(partition, priority)

ox _ chpart _ rq(partition, rollin_quantum)

ox _ chpart _ owner(partition, owner, group)

Description

Change a partition's name.

Change a partition's protection modes.

Change a partition's effective priority limit

Change a partition's rollin quantum.

Change a partition's owner and group.

Change a partition's scheduling type.

To change a partition's characteristics, use ox _ chpart _ name(),ox_ chpart _modO,
ox _ chpart _ eplO, ox _ chpart _ rqO, ox _ chpart _owner(), or ox _ chpart _ schedO. Each of these calls
changes one characteristic, and leaves the other characteristics unchanged. These calls have the
following parameters:

partition The relative or absolute pathname of the partition to change. The specified
partition must exist; the permissions required depend on the operation.

Paragon- Ueer's Guide Using Other Paragon"" OSF/1 System Calls

name (ox _ cbpart _ name() only)
The new name for the panition, expressed as a string of any length containing
only uppercase letters. lowercase letters. digits. and underscores. Note that
ox_chpart_name() can only change the partition's name "in place;" there is
no way to move a panition to a different parent panition

The calling process must have write pennission on the parent panition of the
specified panition to use DX_chpart_nameO.

mode (ox_cbpart_modO only)
The new protection modes of the panition, expressed as an octal number. See
cIunodO in the OSFI] Programmer's Reference for more infonnation on
specifying protection modes; see "Owner. Group, and Protection Modes" on
page 2-32 for more information on protection modes for panitions.

The calling process must be the owner of the partition or the system
administrator to use ox _ chpart _modO.

priority (ox_chpart_epIO only)
The new effective priority limit for the partition, expressed as an integer from
o to 10 inclusive. See "Scheduling Characteristics" on page 2-33 for more
information on effective priority limits.

The calling process must have write permission for the panition to use
ox_chpart_epIO.

rollin_quantum (ox_cbpart_rqO only)
The new rollin quantum for the panition, expressed as an integer number of
milliseconds, or 0 to specify an ''infmite'' rollin quantum. The specified value
must not be greater than 86,400,000 milliseconds (24 hours) and must not be
less than the minimum rollin quantum for your system (determined by your
system administrator). If it is not a multiple of 100. it is silently rounded up
to the next multiple of 1 00. See "Scheduling Characteristics" on page 2-33 for
more information on rollin quanta.

The calling process must have write pennission for the panition to use
ox _ chpart_ rqO.

owner and group (ox_cbpart_ownerO only)
The new user and group for the panition, expressed as a numeric user ID
(UID) and group ID (GID). You can also specify -1. meaning "leave
owner/group unchanged," for either or both. See "Owner, Group. and
Protection Modes" on page 2-32 for more information on partition
ownership.

4-37

Using O1her Paragon- OSFJ1 System Calls Paragon no User's Guide

4-38

The permissions required for ox_cbpart_owner() depend on the operation.
To change the partition's ownership. the calling process must be the system
administrator. To change the partition's group, the calling process must either
be the system administrator or must be the partition's owner and changing the
group to a group that the calling process belongs to.

sched_type (ox_cbpart_schedO only)
The new scheduling type for the partition, which must be NX _GANG or
NX SPS (constants defined in nx.h or Jnx.h). See "Scheduling
Characteristics" on page 2-33 for more infonnation on gang-scheduling and
space sharing.

The specified partition must not be standard-scheduled. A space-shared
partition can be changed to gang-scheduled at any time; a gang-scheduled
partition can only be changed to space-shared if it contains no applications
and no overlapping subpartitions.

The calling process must have write permission for the partition to use
ox _ chpart_ schedO.

ox _ chpart _ nameO, ox _ chpart_ modO, ox _ chpart_epIO, ox _ cbpart _ rqO, ox _ cbpart _ ownerO,
and ox _ cbpart _ scbedO return 0 for success, or -1 if any error occurs.

For example, the following Fortran call changes the name of mypart to newpart:

include 'fnx.h'
integer n

n = nx_chpart_name ("mypart", "newpart")

The following C call has the same effect, but uses an absolute partition pathname:

#include <nx.h>
int n;

n = nx_chpart_name(".compute.mypart", "newpart");

Note that the second parameter of ox _ chpart _ nameO is always a partition name, never a partition
pathname. 'There is no way to move a partition from one parent partition to another.

The following C call sets the pennissions ofmypart to rwxr-x- - - (750 octal):

#include <nx.h>
int n;

n= nx_chpart_mod("mypart" , 0750);

- --- ~----- ------

Paragon'" Use". Guide Using Other Paragon'" OSFI1 System Calla

The following Fortran call has the same effect. but uses an absolute partition pathname:

include 'fnx.h'
integer n

n = DX_chpart_mod(".compute.mypart", '750'0)

The following C call sets mypart's effective priority limit to 7:

#include <nx.h>
int n;

n = nx_chpart_epl("mypart", 7);

The following Fortran call sets mypart's rollin quantum to 10 minutes (600,000 microseconds):

include 'fnx.h'
integer n

n = nx_chpart_rq("mypart", 600000)

The followingC calls setmypart's owner to fred and its group to devel (see the OSFll
Programmer's Reference for infonnation on getpwnamO and ge1grnamQ, which get the numeric
user and group IDs based on their names):

#include <stdio.h>
#include <pwd.h>
#include <grp.h>
#include <nx.h>

struct passwd *user;
struct group *group;
int n;

user = getpwnam(" fred") ;
group = getgrnam("devel");
n = nx_chpart_owner("mypart", user->pw_uid, group->gr_gid);

The following Fortran call changes mypart to a gang-scheduled partition (it must currently be either
gang-scheduled or space-shared):

include 'fnx.h'
integer n

In each of these examples, the variable n is assigned 0 if the call succeeded, or -1 if any error
occurred.

4-39

Using Other Paragon'l1ll OSF/1 System Calls Paragon no User's Guide

Listing Unusable Nodes

4-40

Synopsis Description

ox_empty _ nodes(node _list, list_size)

ox_failed _ nodes(node _list, list_size)

List the nodes that are empty slots.

List the nodes that failed to boot.

To find out which nodes in the system are unusable, use ox_empty _ nodesO and ox JailecUlO(lesO.
(See "Unusable Nodes" on page 2-31 for more information on unusable nodes.)

• ox_empty _ nodesO returns a list of the nodes that are part of the root partition but do not have
a node board installed in the corresponding slot (these are shown as "-" in the output of
showpart).

• ox_failed _ nodesO returns a list of the nodes that are part of the root partition but failed to boot
for some reason (these are shown as "X" in the output of showpart).

NOTE

Do not call nx_ernpty_nodesO or nx_failecCnodesO on more
than a few nodes at once.

If many nodes use these calls at the same time, the allocator daemon can become overwhelmed with
requests, which could slow down your application or reduce system stability. If all the nodes in your
application need this infonnation, you should have one node make the call and then distribute the
information to the other nodes.

Both these calls have the following parameters:

node list Pointer variable into which the call stores the address of the list of nodes. The
call allocates the memory for this list; when you are fInished using the
information, you should release this memory by calling freeO.

Variable into which the call stores the number of entries in node list.

The node numbers returned by these calls are node numbers from the root partition Both calls return
o for success, or -1 if any error occurs.

Paragon" User's Guide Using Other Paragon- OSF/1 System Calls

For example, the following Fortran program fragment prints the node rwmbers of all empty slots in
the root partition:

include 'fnx.h'

integer*4
pointer
integer
integer

empty (I)
(ptr, empty)
nempty
i, status

status = nx_empty_nodes(ptr, nempty)

if(status .ne. 0) then
call nx-perror("nx_empty_nodes()")
stop

end if

do 2, i = 1, nempty
print *, empty(i)

2 continue

call free(ptr)

The following C program fragment prints the node numbers of all nodes in the root partition that
failed to boot:

#include <nx.h>

nx_nodes_t
unsigned long
int

failed;
nfailed;
i, status;

status nx_failed_nodes(&failed, &nfailed);

if(status != 0) {
nx-perror("nx_failed_nodes()");
exit(l) ;

}

for(i = 0; i < nfailed; i++) {
printf("'d\n", failed[i]);

}

free(failed) ;

Note the use of the & operator on the variables failed and njailed in the call to ox failed nodesO. - -

4 1

Using Other Paragon™ OSFI1 System Calls Peragon til User's Guide

Handling Errors

Synopsis

_callO

ox .JMft'Or(string)

Description

Special version of call that returns error value to
caller (C only).

Print an error message corresponding to the
current value of errno.

When an error occurs in a standard aSF/1 system call, the call indicates the error in one of two ways,
depending on the error. For most errors, the call returns -1 and sets the variable e"no to a value that
describes the error. For certain severe errors (such as a segmentation violation caused by an invalid
pointer parameter), the call sends a signal to the calling process; this signal may result in a core
dump, as discussed under "Core Dumps" on page 4-44.

When an error occurs in a Paragon aSF/1 system call whose name begins with ox _, it uses the same
two techniques as a standard aSF/1 system call. However, when an error occurs in a Paragon aSF/1
system call that is not a standard aSF/1 system call and whose name does not begin with ox _, the
error is handled differently: the system prints a message on the terminal and terminates the calling
process. (There are exceptions; see the manual page for each call in the Paragon™ C System Calls
Reference Manual or Paragon™ Fortran System Calls Reference Manual for details.) !fyou
program in C, you can get the same behavior as the ox_calls by calling the underscore version of
the call. (Fortran does not have underscore versions.)

Underscore Calls

4-42

The underscore version of a Paragon aSF/1 system call is the same as the standard version except
that it has an underscore added to the beginning of its name. For example, _ crecvO is the underscore
version of creevO. The underscore version returns -1 if the call encounters an error and 0 or a
positive value if the call is successful.

If an error occurs, the underscore version also sets the system variable errno to indicate the cause of
the error. The include file errno.h declares errno for you and defines constants for the possible errno
values. For example, if crecvO receives a message that is larger than the size specified by its len
parameter, an error message appears and the application terminates. If you use _ crecvO instead, this
does not occur; instead, the call to creevO returns -1 and the variable errno is set to the value
EQMSGLONG. -

Paragon- Use"s Guide Using Other Paragon- OSFI1 System Calls

There is a standard error message for each value of errno, which you can print out by calling
DX..JN!I'lVrO. DXJJeITOI'O prints its argument (any string), the current node number and process
type, and the error message associated with the current value of errno to the standard error output in
the following format

(node n, ptype p) string: error_message

Suppose you have a program where the user can specify the size of a certain buffer with a
command-line argument. If a message is received that is too long for this buffer, you would like to
be able to tell the user what happened and suggest that they increase the buffer size. The following
example uses the underscore version of crecvO to do this:

#include <nx.h>
#include <errno.h>

char *transbufi
int transbuf_sizei

•
•
•

if(_crecv(1, transbuf, transbuf_size) == -1) {
if(errno == EQMSGLONG) {

/* received message too long for buffer */
printf("Message exceeded transit buffer size!\n")i
printf("Use -t to specify a larger transit buffer.\n")i
exit(l) i

}

} else {

}

/* some other error, print a standard error
message and exit*/

nx-perror("crecv")i
exit(l) i

4-43

Using Other Paragon™ OSFI1 System Calls Paragon 1M User's Guide

Core Dumps

4-44

When certain severe errors occur in a standard OSP!! system call or a Paragon OSP!! system call
whose name begins with ox • the operating system sends a signal to the calling process. The default
action for the following signals is to cause a core dump:

SIGABRT (also called SIGIOT and SIGLOST)

SIGBUS

SIGEMT

SIGFPE

SIGILL

SIGQUIT

SIGSEGV

SIGSYS

SIGTRAP

Abort process (can be generated by the abort() system call).

Bus error (specification exception).

EMT instruction.

Floating point exception.

Illegal instruction.

Quit (can be generated by the user typing < ctrl-\ > on the tenninal).

Segmentation violation.

Bad argument to system call.

Trace trap.

A core dump means that the process terminates immediately and writes a copy of its current memory
contents to a file called core in the current working directory. You can prevent this default action by
establishing a signal handler for the desired signal; see signalO in the OSFll Programmer's
Reference for information on signal handlers.

NOTE

No tools are currently provided for analyzing core files or
debugging with core files.

- - -------~-~-------- ---------- -- -------~---~-- --------~----~ ---~

Paragon- User's Guide Using Other Paragon™ OSF/1 System Calls

If one process in an application dumps core, it mayor may not terminate the rest of the application,
as follows:

• If the application was linked with the -ox switch, when one process of the application is
terminated by the signal SIGBUS, SIGFPE. SIGaL, SIGSEGV, or SIGSYS the whole
application is terminated.

• If the application was not linked with -nx but does call ox _ waitallO, if nx _ waitaDO detects that
one of the processes being waited for has been terminated by the signal SIGBUS, SIGFPE.
SIGaL, SIGSEGV, or SIGSYS, then ox _ waitallO terminates the whole application by
sending a SIGKILL to the process group.

• In any other case (that is, if a process dumps core because of SIGABRT, SIGEMT, SIGQUIT,
or SIGTRAP. the application was not linked with -ox, or the process that dumped core is not
being waited for by DX _ waitaIlo), the other processes in the application are not directly affected
by one process dumping core. However, if all the processes in the application are running the
same code, all processes may dump core independently. If several processes in an application
dump core, they will all write their core dumps to the same core file unless the processes have
changed to different working directories.

Using Other P8/llgon1M OSFI1 System Calls Paragon 1M User's Guide

Controlling Floating-Point Behavior

4-46

SynopsiS

isnan(drrc)

isnand(drrc)

isnanf(fSrc)

fpgetroundO

fpgetmaskO

fpsetmask(mask)

fpgetstickyO

fpsetsticky(sticky)

Description

Detennine if a double value is Not-a-Number
(C only).

Detennine if a double value is Not-a-Number
(C only).

Determine if a float value is Not-a-Number
(C only).

Get the floating-point rounding mode for the
calling process (C only).

Set the floating-point rounding mode for the
calling process (C only).

Get the floating-point exception mask for the
calling process (C only).

Set the floating-point exception mask for the
calling process.

Get the floating-point exception sticky flags for
the calling process (C only).

Set the floating-point exception sticky flags for
the calling process (C only).

Paragon aSF/! supports a series of floating-point control calls compatible with those of UNIX
System V.

NOTE

Only fpsetmaskO is available to Fortran programs. The other
floating-point control calls are available only to C programs.

Paragon" Ueer's Guide Using Other Paragon- OSFI1 System Calls

Detecting Not-a-Number

The calls isnanO, isnandO, and isnanf() are used to determine whether a floating-point value is an
IEEE NaN, or "Not-a-Number." This value can be generated as a result of certain floating-point
mathematical operations and system calls, when the operands are invalid or out of range. isnanO and
isnandO take an argument of type double. and isnanf() takes an argument of type float. (isnanO
and isnandO are identical except for the name.) All three calls return 1 if the argument is a NaN, and
o otherwise.

NOTE

These calls never generate an exception, even if the argument is
a NaN.

Controlling Floating-Point Behavior

The calls fpgetroundO, fpsetruundO, fpgetmaskO, fpsetmaskO, fpgetstickyO, and fpsetstickyO
get and set the i860 microprocessor's floating-point control registers. The values of these registers
are part of the process, and are saved and restored when the process is swapped in and out.

The get calls simply return the current value of the specified register for the calling process; the set
calls set the register to the specified value for the calling process and return its previous value.

Rounding Mode

fpgetroundO and fpsetroundO get and set the i860 microprocessor'sjloating-point rounding mode,
which determines what happens when a floating-point value generated in a calculation cannot be
represented exactly.

The i860 microprocessor has four rounding modes:

FP RN Round to nearest representable number (if two representable numbers are
equidistant, round to the even one).

Round toward minus infinity.

Round toward plus infinity.

Round toward zero (truncate).

These symbolic names are the values of the enum type fp Jnd, which is declared in <ieeefp.h>.
The argument of fpsetroundO and the return values of fpsetroundO and fpgetroundO are of this
type.

4-47

Using Other Paragon1lll OSFJ1 System Calls Paragon 1M User's Guide

4-48

NOTE

When you convert a floating-point value to an integer type in C, it
always truncates. The processor's rounding mode is ignored.

Exception Mask and Sticky Flags

fpgetstickyO and fpsetstickyO get and set the i860 microprocessor's floating-point exception sticky
flags, and fpgetmaskO and fpsetmaskO get and set thejloating-point exception 1IUlSk.

The i860 microprocessor defines five floating-point exceptions:

Invalid operation exaption.

Divide-by-zero exception.

Overflow exception.

Underflow exception.

Imprecise (loss of precision) exception.

These symbolic names are the values of the enum type fp _except, which is declared in <ieeefp.h>.
The arguments of fpsetstickyO and fpsetmaskO and the return values of fpgetstickyO,
fpsetstickyO, fpgetmaskO, and fpsetmaskO are of this type.

The i860 microprocessor has five exception sticky flags and five exception 1IUlSk bits corresponding
to the five exception types. When a floating-point exception occurs, the corresponding exception
sticky flag is set to 1. The corresponding exception mask bit is then examined; if it is set to 1, the
exception is trapped and the appropriate trap handler is called.

NOTE

After an exception, you must clear the corresponding sticky flag to
recover from the trap and proceed.

If the sticky flag is not cleared before the next floating-point exception occurs, an incorrect exception
type may be signaled. For the same reason, when you call fpsetmaskO, you must be sure that the
sticky flag corresponding to each exception being enabled is cleared.

Paragon" Uaer's Guide Using Other Paragon" OSF/1 System Calls

NOTE

fpsetstickyO and fpsetmaskO set the sticky flags and exception
mask to the specified values. Any bits not set in the call's
argument are cleared.

To set or clear a particular mask or sticky flag, get the current mask or sticky flags, modify it, and
then call fpsetstickyO or fpsetmaskO with the modified mask or sticky flags.

Fonran Exception Mask Values

Only the fpsetmaskO call is supported in Fortran. You use the following numeric values with
fpsetmaskO:

o No exceptions.

1 Invalid operation exception.

2 Divide-by-zero exception.

4 Overflow exception.

8 Underflow exception.

16 Imprecise Ooss of precision) exception.

The argument and return value of fpsetmaskO are integers whose values are the sum of some, none,
of all of these values.

4-49

Using Other Paragon'lll OSF/1 System calls Paragon'" User's Guide

Miscellaneous Calls

Description Synopsis

DitkO Temporarily relinquish the CPU to another
process.

ddockO Return time in seconds since booting the system.

Temporarily Releasing Control of the Processor

The DitkO call temporarily releases control of the node processor to another process in the same
application. If there are no other processes in the same application when a process calls DickO.
control returns to the Paragon OSFIl operating system. For example, if your node program has set
up a number of hreevO's and has nothing else to do. it should issue f1itkO. The operating system
can then more efficiently respond to an incoming message and wake up your process.

DitkO does not have any effect on rollin and rollout of the application (see ''Gang Scheduling" on
page 2-35 for infonnation on rollin and rollout).

Timing Execution

ddockO returns the time in seconds since the system was last booted, as a double precision number.
This time is obtained from the RPM global clock and is the same on every node.

Use dclockO to return a relative value that you can use to measure execution time. To time an
interval in your program, first obtain an initial value. Then obtain a final value and take the
difference. The actual values returned by the two ddockO calls are not important.

Here is an example that shows how to use dclockO to time the execution of an iteration loop:

/* eversion */
double start_time, end_time, diff_time;
start_time = dclock();
for(i=O;i<imax;i++) {

•
•

}

end_time = dclock();
diff_time = end_time - start_time;
printf("Timing = %e\n", diff_time);

Paragon" User's Guide Using other Paragon- OSF/1 System Calls

c Fortran version
double precision start_time, end_time, diff_time
start_time = dclock()
do 100 i=l, imax

•
•
•

100 continue
end_time = dclock()
diff_time = end_time - start_time
write(*, 10) diff_time

10 format('diff_time = " 015.9)

4-61

Using Other Paragon- OSFI1 System Calls Paragon no User's Guide

iPSC@ and Touchstone DELTA Compatibility Calls

4-52

Synopsis

Dushmsg(typesel, nodesel, ptypesel)

ginvv)

gray(J)

bwdock(hwtime)

infopidO

Idllcube(node, ptype)

IdIlproc(node, ptype)

led(state)

load(filename, node, ptype)

mdockO

msgcancel(mid)

mypart(rows, cols)

mypidO

nodedimO

restrictvol(fileID, nvol, vollist)

Description

Rush specified messages from the system.

Return the position of an element in the
binary-reflected gray code sequence. Inverse of
grayO.

Return the binary-reflected gray code for an
integer.

Place the current value of the hardware counter
into a 64-bit unsigned integer variable.

Return the process type of the process that sent a
pending or received message.

Terminate and clear node process(es).

Tenninate a node process.

Does nothing; provided for compatibility only.

Load a node process.

Return the time in milliseconds.

Cancel an asynchronous send or receive
operation.

Obtain the height and width of the rectangle of
nodes allocated to the current application.

Return the process type of the calling process.

Return the dimension of the current application
(the number of nodes allocated to the application
is 2di1nensio1l).

Does nothing; provided for compatibility only.

The calls DusbmsgO. ginvO. grayO. bwclockO. InfopidO. kD)cube(), kiDprocQ. ledO. loadO.
mclockO. msgcanceIO. mypartO, mypidO, nodedimQ, and restrictvoiO are provided for
compatibility with the iPSC series of supercomputers and Touchstone DELTA system from Intel
Corporation. .

Paragon" User's Guide Using Other Paragon'lll OSF/1 System Calls

These calls should not be used in new Paragon aSF!l programs. They either provide the same
functionality as Paragon aSF!l calls (for example, mypidO is identical to myptype() but uses the
iPSC system terminology), or provide functionality that is not needed in Paragon OSF!l (for
example, grayO is not useful in a machine without a hypercube architecture).

These calls work the same as the corresponding calls on the iPSC or Touchstone DELTA system,
with the following exceptions:

• DushmsgO does nothing.

• The only valid use ofkiDcube() is kiDcube(-I,-I).

• The only valid use of kiDprocO is kiDproc(-1,-1).

• ledO does nothing.

• loadO must be preceded by ox _ iDitveQ (it is equivalent to ox _loadO but does not let you
specify a list of nodes or find out the PIDs of the loaded processes).

• msgcanceIO does nothing.

• If numnodesO is not a power of 2, nodedimO rounds it up to the next power of 2 and returns
the dimension of a cube of that size. For example, if numnodesO is 7, nodedim() returns 3; if
numnodesQ is 9, nodedimO returns 4.

restrictvolO does nothing. It always returns 0 (indicating success).

See your iPSe or Touchstone DELTA system documentation for more information on these calls.

4-63

Using Other Paragon'" OSFI1 System Calls Paragon 1M User's Guide

Using Parallel File 1/0

Introduction
The Paragon TN OSF/l operating system provides two fonns of parallel I/O to files:

• A special file system type called PFS. for Parallel File System. gives applications high-speed
access to a large amount of disk storage. PFS me systems are optimized for simultaneous access
by multiple nodes. rues in PFS file systems can be very large (up to several terabytes); the exact
maximum depends on your system configuration. Access to PFS file systems also uses an I/O
technique called/ast path 110. which gives superior performance for large I/O operations (64K
bytes or more per read or write).

• Special I/O system calls, called parallel 110 calls, facilitate I/O from multiple nodes and pennit
I/O to very large mes in PFS me systems. These calls can give applications better performance
and more control over parallel me I/O than is offered by the standard C and Fortran me I/O
features. These calls are compatible with the Concurrent rue System TN (CPS TN) calls provided
by the iPSce system.

A system running Paragon OSF/l can have both PFS and non-PFS file systems. You can access mes
in PFS me systems with both parallel I/O calls and non-parallel I/O calls; you can use parallel I/O
calls to access files in both PFS fue systems and non-PFS file systems. However, in most cases you
get the best performance when you use parallel I/O calls to access files in PFS file systems.

This chapter discusses both PFS file systems and parallel I/O calls. It also gives information on
performing operations on tape devices in Paragon OSF/l. For information on getting the best
performance from PFS file systems and parallel I/O calls, see "I/O Performance" on page 8-23.

5-1

Using Parallel File I/O Paragon TM User's Guide

Disks and File Systems

5-2

Every Intel supercomputer has one or more disk devices attached to it. Each disk device is either a
single hard disk or a RAID subsystem. RAID stands for Redundant Array of Inexpensive Disks; in a
RAID subsystem, several hard disks are connected together into a unit that appears to the system as
a single large disk drive. Files stored to a RAID subsystem are distributed. or striped. among the
disks within it by the RAID controller hardware.

Each disk device is controlled by an 110 node: a compute node with an I/O connection I/O nodes
communicate with the other nodes in the system using the node-ta-node message-passing network
and with the disk drives using a SCSI interface (or other interface). The I/O nodes mayor may not
also run application processes; this is determined by your system administrator. Each I/O node can
control up to seven disk devices, and the number of I/O nodes is limited only by the number of slots
in the system. so the total amount of disk space that could be installed in an Intel supercomputer is
a terabyte or more.

The set of disk devices connected to the Intel supercomputer's I/O nodes is divided into file systems.
A file system can encompass anything from a portion of the space on one disk device to all of the
space on several disk devices. A file system is made accessible by mounting it to a directory (this
requires system administrator privileges). This directory is called the file system's mount point. For
example, if the file system IdevlioOlrzOJis mounted on the directory Ilwme (the directory lhome is
the file system's mount point), whenever you write a file inlhome it is stored in the file system
IdevlioOlrzOj.

Each file system has a type that describes its internal structure and determines some of the operations
that can be performed on it. The supported file system types are:

UPS

NFS

PFS

UNIX File System, the standard file system type for OSF/l.

Network File System, a file system type that represents a file system on
another computer on the netwoIK.

Parallel File System, a file system type that is optimized for access by parallel
processes. This file system type is unique to Paragon OSF/l.

This chapter discusses how PFS file systems work and how you can use the parallel I/O system calls
provided by Paragon OSF/l to access files in file systems of all types.

Paragon'" User's Guide Using Parallel File I/O

PFS File Systems and PFS Files

Intemally, a file system of type PFS consists of one or more stripe directories. The stripe directories
that make up a PFS file system are determined by the system administrator when the PFS file system
is mounted.

Each stripe directory is usually the mount point of a separate UPS file system. Just as a RAID
subsystem collects together several hard disks into a unit that behaves like a single large disk, a PFS
file system collects together several file systems into a unit that behaves like a single large file
system. A system running Paragon OSFll can have any number of PFS file systems.

The maximum storage capacity of a PFS file system is the sum of the capacities of the different file
systems containing its stripe directories. For example, if a PFS file system consists of four stripe
directories, each of which is the mount point of a UFS file system with a capacity of 100M bytes,
the capacity of the PFS file system is 400M bytes. However, if another PFS file system also consists
of four stripe directories, but two of them are directories in one UFS file system with a capacity of
100M bytes and the other two are directories in another UFS file system with a capacity of 100M
bytes, the capacity of the PFS rlle system is only 200M bytes.

A PFS file is any ordinary file that is stored in a file system of type PFS. PFS files are distributed,
or striped, across the stripe directories that make up the PFS file system. The amount of data from a
PFS file that is stored in each stripe directory is determined by the PFS file system's stripe unit, a
quantity that is set by the system administrator when the PFS file system is mounted. The maximum
size of a file in a PFS file system is roughly 20 bytes times the number of file systems in the PFS
file system. l

For example, suppose a PFS file system consists of four stripe directories and has a stripe unit of 4K
bytes. When you write a 20K-byte rlle to this PFS file system, the first 4K bytes of the me are stored
in the first stripe directory, the second 4K bytes in the second stripe directory, the third 4K bytes in
the third stripe directory, the fourth 4K bytes in the fourth stripe directory, and the last 4K bytes back
in the first stripe directory.

Objects in PFS file systems that are not ordinary files (objects such as directories, symbolic links,
and device special flles) are not striped; each such object exists on just one disk.

PFS Filenames and Pathnames

Filenames and pathnames in PFS file systems work the same as padmames in UPS file systems. The
maximum length of a pathname is 1024 characters; the maximum length of a single filename is 255
characters.

1. The exact maximum size is given by the formula ««2G - 1) - r) x n) + r), where r is
(20 - 1) mod stripe _unit (that is, the remainder when the largest integer multiple of the stripe unit that is less
than 2G - 1 is subtracted from 2G - 1) and n is the number of different file systems containing the PFS file
system's stripe directories.

Using Parallel File 1/0 Paragon TM User's Guide

PFS Limitations

In the current release, PFS file systems and parallel I/O calls have the following limitations:

• PFS fIles cannot be accessed from a remote system via NFS.

• PFS does not support executable files. If you copy a binary file to a PFS fIle system and try to
execute it, an "Operation not supported by this fIle system" error occurs.

• PFS does not support core fIles. If a core dump occurs while your current directory is in a PFS
fIle system, a core file of length 0 is created.

• PFS does not support the quotaon or sysacct commands or the mmap() system call.

• PFS file regions cannot be locked by the fentlO system call. However, you can use the ftockO
system call to lock the entire file.

• The maximum number of open fIles per process at any given time is 64. This includes the
standard input, standard output, and standard error. This means that there is a practical
maximum of 61 open fIles per process.

Paragon 1M Ueer'8 Guide Using Parallel File I/O

Using PFS Commands
In general, you use standard OSF/I commands such as Is, cat, cp, and DlV to manipulate files in PFS
me systems. See the OSF/l Command Reference for information on these commands. (Many
commands do not work with mes larger than 2G - I bytes, as described under "Using Extended
Files" on page 5-33.) This section describes the additional file and file system commands provided
by Paragon OSF/I.

Displaying File System Attributes

Command Synopsis Description

shod [·k] [-t type] [jilesystem I directory] Display file system attributes.

The command shod with no arguments lists the file systems on your system, together with
information on each. For example:

% sbowfs
Mounted on 512-b1ks avail capacity sunit sfactor
/ 1458308 719276 45%
/home 4060838 3373782 8%
/usr 2379194 1948124 9%
/home/.sdirs/vo10 598622 574464 4%

/home/.sdirs/vo11 598622 574464 4%

/home/.sdirs/vo12 598622 574464 4%

/home/.sdirs/vo13 598622 574464 4%
/pfs 2394488 2297856 4% 8192 4

sdirectories: /home/.sdirs/vo10
/home/.sdirs/vo11
/home/.sdirs/vo12
/home/.sdirs/vo13

In this case, the system has eight file systems. The seven file systems mounted on the directories
/ (root),/home, lusr, /homel.sdirs/volO, lhome/.sdirslvoll, /home/.sdirs/voI2, and /home/.sdirs/vo13
are non-parallel file systems (type UPS or NFS); the me system mounted on the directory /pfs is a
PFS me system.

NOTE

There's nothing special about the name /pfs, your PFS file
systems can have any name. However, the rest of this chapter
uses the convention that pathnames beginning with /pfs are in a
PFS file system.

Using Parallel File I/O Paragon no User's Guide

The shod command shows the following information for every file system:

Mounted on The directory where the file system is mounted (its mount point). If you need
to know the file system's device name, use the standard OSP/l command
mount or df.

512 -blks The total capacity of the file system in 512-byte disk blocks.

avail The number of disk blocks currently available.

capaci t Y The approximate percentage of the file system's capacity currently in use.

In this example, the file system mounted onlusr has a size of 2,379,194 512-byte disk blocks, of
which 1,948,124 blocks are currently unus~, so that the file system is approximately 9% full.

The shod command shows the following additional information for each PFS file system:

sunit The file system's stripe unit, in bytes.

sfactor The number of stripe directories within the PFS file system.

sdirectories The stripe directories (usually mount points of UPS file systems) within the
PFS file system.

In this example, the PFS file system mounted on/pjs has a stripe unit of8K bytes and consists of the
four UPS file systems mounted on Ihomel.sdirslvolO, /homel.sdirslvoll,lhome/.sdirslvoI2, and
I homel.sdirslvo13.

The shod command accepts the following optional arguments:

-k

-t type

filesystem

directory

Display capacity and available capacity in l024-byte disk blocks instead of
512-byte disk blocks. The header "512-blks" changes to "kbytes".

Display information about all file systems of type type, where type is any
recognized file system type in lowercase (pfs, ufs, or nfs).

Display information about the file system whose device name is filesystem.

Display information about the file system mounted on directory.

The jilesystem or directory argument overrides -t type if used together.

Paragon 1M User's Guide Using Parallel File I/O

NOTE

You should use showfs, not df, to get information about the
cumulative amount of free space in a PFS file system. Using the
standard df command on a PFS file system only gives information
about the single disk partition on which the PFS file system is
mounted, so does not indicate how much space is actually
available for file striping.

Increasing the Size of a File

Command Synopsis

Isize [-8] size file [file .•.]

Description

Change the size of a file or files.

The Isize command changes the amount of disk space allocated to each specified file. You can use
this command to allocate all the space you will need for a large file before you run the application
that writes to the file. This makes sure that there is enough room in the file system for the file, and
can also increase file I/O performance.

The Isize command has two forms:

Islze size file [file •.•] Sets the size of the file(s) to size bytes.

Isize -8 size file [file •.•] Increases the size ofthefile(s) by size bytes.

If the specified file does not exist, it is created with the specified size. The size can be a simple integer
to represent a number of bytes, or an integer followed by the letter k, m, or g to represent a number
of kilobytes (1024 bytes), megabytes (l024K bytes), or gigabytes (1024M bytes).

For example, the following command sets the size of the file mydat to 5M bytes:

'6 ~size Sill lIIydat

The following command increases the size of the file mydat by 200K bytes:

'6 ~size -a 200k lIIydat

The additional space is allocated to the fJ.1e from the file system, but it is not initialized (its contents
are undefined).

Isize will not decrease the size of a fJ.1e. If the specified size is smaller than the file's current size, the
command has no effect.

5--7

Using Parallel File I/O Paragon'" User's Guide

Using Parallel 1/0 Calls
The rest of this chapter discusses the parallel 110 calls you can use in parallel applications to access
both PPS and non-PFS files.

The term parallel 110 calls refers to all 110 calls that are provided by Paragon OSP/l but not by
standard OSP/I. These calls facilitate 110 on multiple nodes and pennit 110 to very large files in PFS
file systems. They are part of the library libnx.a, which is automatically searched when you link an
application with the -ox switch. You can also use the switch -lox to search libnx.a without using -ox.
See "Compiling and Linking Applications" on page 2-5 for more information on these switches.

Most of the parallel 110 calls can only be used in programs running in the compute partition. They
will not work, or will give unexpected results, if used in a program running in the service partition.
(See "Managing Partitions" on page 2-25 for more information on the service and compute
partitions.)

NOTE

The parameter filelD in the system call synopses in this chapter is
an integer that represents an open file: a unit in Fortran, or a file
desCriptor in C.

A call description at the begirming of each section or subsection gives a language-independent
synopsis (call name, parameter names, and brief description) of each call discussed in that section.
Differences between C and Fortran are noted where applicable. See Appendix A for information on
call and parameter types; see the Paragon TM C System Calls Reference ManUIJI or the Paragon TM

Fortran System Calls Reference ManUIJI for complete information on each call.

Paragon'" Ueer's Guide

Opening Files in Parallel

Synopsis

lopen(path, ojlag, iomode [• perms])
gopen(unit, path. iomode)

Using Parallel File 110

Description

(C) Open a file on all nodes and set its I/O
(Fortran) mode.

To open a file for use by all the nodes in your application, call gopenO. You can use lopenO to open
files in both PFS and non-PFS file systems. lopenO works like the standard openO operation, with
the following exceptions:

• It is a global call. All the nodes in the application must call lOpenO. and all must call it with the
same arguments.

• It is a synchronizing call. Each node blocks at the lOpenO until all the nodes have called it.

• It sets thi!IIO mode of the file. as described under "Using I/O Modes" on page 5-13.

When called on a large number of nodes, it offers better performance and causes less system
overhead.

Note that lopenO must be called by all the nodes in the application, even those that do not actually
perfonn any I/O. For example. suppose that your application has a "manager" node that assigns I/O
work to the "worker" nodes, but does no I/O itself. If you want to use lopenO. all the nodes, even
the manager, must open the file.

Using Parallel File VO Paragon User's Guide

Using gopenO in C

The C version of gopenO opens the specified file and returns a file descriptor, like the standard
OSF/l system call openO. In addition to being a global synchronizing call and setting the 110 mode
of the file, as discussed earlier, the C version of gopenO has the following differences from the
standard openO:

• It can only be used to open an ordinary file (not a directory or a device special file).

• If an error occurs, it prints an error message and terminates the calling process.

gopenO is otherwise equivalent to openO. For example, the following C call opens the file
Ipfslmydat for reading and writing, creating it if it does not exist, and returns a file descriptor that
you can use to access it. The file's 110 mode is set to M _ GWBAL, and if the file is created it is
given permissions 644 octal (rw-r- -r- -).

#include <fcntl.h>
#include <nx.h>
int fd;
fd = gopen("/pfs/mydat", O_RDWR I O_CREAT, M_GLOBAL, 0644);

The symbolic names for oflag (such as 0_ CREAT) are defined in the header file Jentl.h, and the
symbolic names for iomode (such as M _GLOBAL) are defined in the header file nx.h.

See openO in the OSFll Programmer's Reference for information on the ojlag parameter, see
"Using 110 Modes" on page 5-13 for information on the iomode parameter; see chmodO in the
OSFll Programmer's Reference for information on the perms parameter.

Using gopenO in Fortran

5-10

The Fortran version of gopenO opens the specified file for unformatted 110 on a specified unit It is
equivalent to the following Fortran openO statement:

OPEN(unit, path, status='unknown', form='unformatted',
x access='sequential')

However, it differs from the standard Fortran openO in that it is a subroutine. Also, as discussed
earlier, it is a global synchronizing call and sets the 110 mode of the file.

For example, the following Fortran call opens the file Ipfslmydat on unit lOin 110 mode
M_GLOBAL:

include 'fox.h'
call gopen(lO, "/pfs/mydat", M_GLOBAL)

The symbolic names for iomode (such as M _GLOBAL) are defined in the header file Jnx.h.

Paragon TIl User's Guide Using Parallel File I/O

Opening Files with Standard Operations

PFS and non-PFS files can also be opened and closed with the standard OSF/l system calls and
Fortran routines. For example, to open the file Ipfslmydat for read and write access:

/* C version */
fd = open("/pfs/mydat", O_CREAT I O_RDWR, 0644);

c Fortran version
open (unit=10, file = '/pfs/mydat',

x status = 'new', form='unformatted')

Use this method when not all nodes open the same file at the same time, or when source
compatibility with other systems is necessary. (Note that, if you want to use any synchronizing calls,
all nodes must open the file.)

NOTE

In Fortran, you must open the file with fonn='unfonnatted' in
order to use any parallel 110 calls on the file.

The following section discusses additional special considerations for Fortran.

Special Considerations for Fortran

This section describes the special considerations that apply when you open files with the standard
Fortran openO instead of lOpenO.

Fonnatted Versus Unfonnattec:lIlO

IT you call openO with form-'formatted' (the default):

• You must use only Fortran 110 statements to access the file. You cannot use any of the parallel
110 calls described in this chapter on the file.

• Only one node may perfonn 110 to the file. If you perform fonnatted 110 to the same file from
multiple nodes, the results are undefined.

IT you open a file with form='unformatted', you can use either Fortran 110 statements or parallel
110 calls to access the file. However, you must pick either one or the other: mixing Fortran 110 and
parallel 110 to the same file can give unexpected results.

5-11

Using Parallel FHe I/O Paragon TIl User's Guide

5-12

For the best I/O peifonnance, you should use lOpenO, or openO with rorm='unfonnatted I, and use
parallel I/O calls for all file I/O.

If compatibility with other programs that use fonnatted I/O is required, you can perfonn fonnatted
I/O to an internal file or a string and then use c:write() to write the data to a file. However, if you use
a string you must add a newline (ASCn character 10) to the end of the string using the function
cbarO, since neither fonnatted I/O to a string nor c:write() will add these for you. For example:

include 'fnx.h'
character*20 msgbuffer

write (msgbuffer, 26) answer, char(lO)
26 format('The answer is: " i4, al)

call cwrite(lO, msgbuffer, 20)

Alternatively, you can write a small program that translates your data files from unfonnatted to
fonnatted and vice versa. and run it only when you need to share data with other programs.

New Flies

If you call openO with status-'new', the result depends on whether or not the program is running
on multiple nodes:

• If the program is running on one node (numnodesQ is 1 or undefined), the openO fails if the
file exists, as specified by the ANSI standard.

• If the program is running on multiple nodes (numnodes() is greater than 1), the file is truncated
if it exists, as though you had specified status='unknown'.

This change makes it possible to specify status='new' when multiple nodes are opening a file that
does not yet exist; with the standard Fortran semantics for status-'new', the first node to execute
the openO statement would create the file, and the other nodes would fail because the file already
exists. You can use the system call statO to detennine if a file exists before you open it.

Paragon" User's GuicJe Using Parallel File I/O

Unnamed Files

If you call openO with no filename, the result depends on whether or not you specified
status-'scratcb':

• If you did not specify status-'scratch', the file is created in the current working directory with
the filename jort.lJlJll, where lIllll is the unit number. The file remains after the program
terminates.

• If you specified status-'scratcb', the file is created in the directory lusrltmp with the filename
F7Nxrrm u . .lJll, where mp]y is the OSPIl process ID of the creating process and llll is the
unit number. The file does not remain after the program terminates. whether it terminated
nonnally or abnormally.

For compatibility with the iPSe system. if you specified status-'scratcb' and the directory specified
by the variable CFS MOUNI' exists (or, if CFS MOUNI'is not defined, if the directory Icft exists).
the file F7N.n:nmi . .lJll is created in $CFS _MOUNI' (or Icft> instead of lusrltmp.

Using 1/0 Modes

Synopsis Description

setiomode(fileID. iomode) Set the 110 mode for a file.

iomode(fi1eID) Return the current 110 mode for a file.

A parallel application can access a file in one of five 110 modes. You can specify a file's 110 mode
when you open it with gopenO, and you can use setiomodeO to change the 110 mode of a file that
is already open. You can use iomode() to determine an open file's current mode.

Like gopenO, setiomode() is a global synchronizing call. When a node calls setiomode(). it blocks
until all the other nodes in the application call setiomode() with the same arguments. setiomode()
must be called by all the nodes in the application, even those that do not actually perform any 110
(this means that all nodes must open the file). Also. setiomode() can only be used on an ordinary
file. not a directory or a device special file.

A file's 110 mode actually belongs to the file descriptor or unit through which the rue is accessed,
not to the file itself. The 110 mode is not stored with the file. and different programs can access the
same file with different 110 modes (even at the same time).

A file's 110 mode is not inherited across a forkO (after a forkO all files in the child process have 110
mode M_UNIX).

5-13

Using Para/lei FHe 110 Paragon 1M User's Guide

5-14

1bere are five 110 modes, each of which has a name and a number:

M _ UNIX (0) In this mode, each node has its own file pointer and file operations are
perfonned on a first-come, first-served basis. If you open a file with the C
openO call or Fortran open statement, it is opened with this mode (but you
can change it with setiomodeO).

M _LOG (1) In this mode, all nodes share the same file pointer and file operations are
perfonned on a first-come, first-served basis.

M _SYNC (2) In this mode, all nodes share the same file pointer and file operations are
perfonned in order by node number. Records may be of variable length.

M_RECORD(3)

M_GLOBAL(4)

In this mode, each node has its own file pointer and file operations are
perfonned on a first -come, first-served basis. However, records are stored in
the file in order by node number. Records must be of a fixed length.

In this mode, all nodes share the same file pointer and must perfonn the same
file operations at the same time. All file operations are perfonned by a single
node, which then distributes the results to the other nodes over the internode
network.

The names M_UNIX, M_LOG, M_SYNC, M_RECORD, and M_GWBAL are constants
defmed in the header files nx.h (for C) andjnx.h (for Fortran). You can use either these names or the
corresponding numbers in your programs (using the names is recommended).

The 110 mode you choose for a file determines which, if any, parallel 110 calls become synchronizing
operations (that is, each node blocks until all nodes have made the call). The synchronizing
operations for each mode are described in the following sections and are summarized under
"Synchronization Summary" on page 5-48.

In mode M _ UNIX (number 0), each node maintains its own file pointer. File access requests are
honored on a f1l'St-come, first-served basis. If two nodes write to the same place in the file, the second
node overwrites the data written by the f1l'St node. This mode is the default for files opened with the
standard open call or statement.

Use this mode in applications where each node perfonns 110 on disjoint segments of the file, or
where 110 accesses are synchronized by other means (such as message-passing inherent to the
application).

-.----~------~--------.----------- ---~- ~~--.-- ----

Paragon" Ueer's Guide Using Parallel File I/O

In mode M LOG (number 1), all nodes share a single file pointer. File accesses are perfonned on a
first-come, first-served basis. Whenever any node reads, writes, or moves the pointer, it affects the
pointer position for all nodes. This may change the results of subsequent reads, writes, or moves by
other nodes. This mode is useful for parallel log fIles.

Closing a file in this mode is a synchronizing operation. When a node closes a file, the operation
blocks until all the other nodes also close the file.

In mode M _SYNC (number 2), all nodes share a single file pointer and the nodes access the file in
a synchronized round-robin fashion.

• All nodes share a single file pointer, as for M_LOG.

All the nodes in the application must open the file, and all must perform the same operations on
the file in the same order. Reads and writes can be of variable sizes.

All file operations are synchronizing.

Closing a file is a synchronizing operation, as for M _LOG. In addition, reading, writing,
seeking (using 1seek0) and detecting end-of-file (using iseofO) become synchronizing
operations-they block until all nodes have called them. For example, when a node reads from
a file with the parallel 110 call creadO, the node blocks and the read request is not honored until
all other nodes have called creadO.

• All reads and writes to the file are performed in order by node number.

For example, suppose node 3 in an application running on four nodes writes to a file with the
parallel 110 call cwriteO before any of the other nodes. The node blocks until all the other nodes
have called cwriteO. When all nodes have called cwriteQ, the data from node 0 is written to the
file first, followed by the data from node I, then the data from node 2, and finally the data from
node 3.

• The only valid use for IseekO is for all nodes to seek to the same position in the file. If nodes
attempt to seek to different positions, an error occurs.

5-15

Using Parallel File I/O Paragon'" User's Guide

M_RECORD (Mode 3)

5-16

Mode M _RECORD (number 3) gives results that are similar to M _SYNC, but it operates more
efficiently. However, M _RECORD requires a fIxed record size.

• Each node has its own file pointer, as for M _UNIX.

• All the nodes in the application must open the file, and all must perform the same operations on
the file in the same order, as for M_SYNC.

• Corresponding reads and writes must be of the same size on all nodes.

When a node reads or writes to the file for the nth time, it must read or write the same number
of bytes as the nth read or write by every other node. For example, if node 0 writes 100 bytes to
the file with its fIrst call to cwrite() and 50 bytes with its second call to cwrite(), then all nodes
must write 100 bytes with their fIrst call to cwriteO and 50 bytes with their second call to
cwriteO.

NOTE

No verification is performed. You must make sure that all the
nodes in the application make the same calls and read and write
the same number of bytes.

If different nodes read different amounts of data, incorrect data will be read. If different nodes
write different amounts of data, the output of different nodes will overwrite each other and/or
leave areas of the fIle with uninitialized data.

• All reads and writes appear to be performed in order by node number.

Because reads and writes are of a known length, the operating system on each node can
determine where in the file it should be reading from or writing to independently of the other
nodes. The results of reading or writing a file with M _RECORD are the same as M _SYNC,
but M _RECORD is more efficient because no synchronization is required. No seeking is
required by the application; the fIle system automatically reads or writes file data to or from the
proper offset in the fIle.

For example, suppose node 2 in an application running on four nodes writes a 10-byte record.
Node 2's file pointer is fIrst moved forward by 20 bytes to leave room for the records from nodes
o and 1. Next, node2's record is written to theflle (which advances the file pointer by 10 bytes).
Fmally, node 2's file pointer is moved forward by 10 bytes to leave room for node 3's record.
The other nodes can fIll in their "slots" at any time (earlier or later); no synchronization or
communication between nodes is required.

Paragon- Uaer's Guide Using ParaDel File 110

• Closing a file is a synchronizing operation, as for M _LOG and M _SYNC.

• As for M SYNC,IseekO becomes a synchronizing call, and the only valid use for IseekO is for
all nodes to seek to the same position in the file. If nodes attempt to seek to different positions,
an error occurs.

M_GLOBAL (Mode 4)

In mode M GWBAL (number 4), all nodes must read and write the same data to the same parts of
the file at the same time. This mode gives excellent performance for programs that work this way,
such as a program where every node reads in the entire contents of a large input file.

• All nodes share a single file pointer.

• All the nodes in the application must open the file, and all must perform the same operations on
the file at the same time.

• All file operations are synchronizing.

Corresponding reads and writes must be of the same size on all nodes.

• The only valid use for IseekO is for all nodes to seek to the same position in the file.

• When the nodes write to a file, only the data written by a single node is actually written. Data
written by other nodes is ignored.

The way that this mode is implemented is that only a single node actually reads from and writes to
the disk. After a read, that node distributes the data to the other nodes over the internode network.
This eliminates the contention for the disk device that would otherwise occur when many nodes
attempt to read from the same place in a file at the same time.

An 1/0 Mode Example

This section provides a small example program (in Fortran and C) that you can compile and execute
to illustrate the differences between the various 110 modes. The source for this program can be found
on the Intel supercomputer in /usr/share/examples/fortran/iomodes/iomodes.j(fortran version) or
/usr/share/examples/c/iomodes/iomodes.c (C version).

The example program works as follows: node 0 gets an 110 mode from the user (specified as a
number), and sends it to the other nodes. Then all nodes call lOpenO to open the file mydat in the
current directory (which could be in either a PFS file system or a non-PFS file system) with the
specified 110 mode.

5-11

Using Parallel File I/O Paragon'" User's Guide

5-18

Each node then writes 1 0 records to the file. Each record contains the time in seconds since the file
was opened, to four decimal places, and the message "Hello from node x." Node 0 waits one second
before each write to the file; the other nodes write as fast as they can (this demonstrates how writes
to the file are differently synchronized in the different modes). When each node finishes writing, it
writes a "done writing" message to the screen. Then it closes the file and writes a ''finished'' message
to the screen (the two messages show that, in some modes, close() is a synchronizing operation).

Fortran Example

program iomodes

include 'fnx.h'

integer nunit, mode, iam
double precision start, now, loop_time, loop_start
character*16 msg
character*29 msgbuffer

msg = 'Hello from node '
nunit = 12
iam = my node ()

if(iam .eq. 0) then
print *, 'Enter I/O mode (0, I, 2, 3, or 4):'
read(*, 11) mode

11 format(i1)
call csend(l, ~ode, 4, -1, myptype(»

else
call crecv(l, mode, 4)

endif

call gopen(nunit, "mydat" , mode)
print 13, iam, iomode(nunit)

13 format('Node " i4, , using mode' i1)

start = dclock()
do 100 i = I, 10

c *** if node 0, do nothing for 1.0 seconds ***
if(iam .eq. 0) then

loop_start = dclock()
101 loop_time = dclock() - loop_start

if (loop_time .It. 1.0) goto 101
endif

Paragon'" User's Guide Using Parallel File I/O

c *** all nodes now write a record to the file ***
102 now = dclock() - start

write (msgbuffer, 14) now, msg, iam, char(10)
14 format(f7.4, a17, i4, a1)

call cwrite(nunit, msgbuffer, 29)
100 continue

print 15, iam
15 format('Node', i3, ' done writing')

close (nunit)
print 16, iam

16 format('Node' i3, ' finished')
end

C Example

#include <fcntl.h>
#include <stdio.h>
#include <nx.h>

maine)
{

int i, fd;
double start, now;
double loop_start, loop_cur;
long
char

mode, iam;
instring[40), msg[40);

iam = mynode () ;

if(iam == 0) (
printf ("Enter I/O mode (0, I, 2 , 3 , or 4): \n") ;
gets (instring) ;
sscanf(instring, "tId", &mode);
csend(l, &mode, sizeof(mode) , -I, myptype(»;

} else {
crecv(l, &mode, sizeof(mode»;

}

fd = gopen("mydat", O_WRONLY I O_CREAT I O_TRUNC, mode, 0666);
printf("Node td using mode td\n", iam, iomode(fd»;

S.19

Using Parallel File 1/0 Paragon 1M User's Guide

5-20

}

start = dclock();
for(i=O;i<10;i++) (

}

if(iam==O) (

}

loop_start = dclock();
loop_cur = loop_start;
while(loop_cur - loop_start < 1.0) {

loop_cur = dclock();
}

now dclock() - start;
sprintf(msg, "%7.4f Hello from node %4ld\n", now, iam);
cwrite(fd, msg,strlen(msg»;

printf ("Node %d done writing\n", iam);
close(fd) ;
printf ("Node %d f inished\n" , iam);

Compiling and Running the Example

To compile this program to a parallel application, use the following if77 or icc command:

% if77 -DZ iomodes.f -0 iomodes

or

% icc -DZ iomodes.c -0 iomodes

When you run the resulting application. you may ftnd the output easier to understand if you run the
example on four or fewer nodes. Use the ·sz switch to detennine the number of nodes on which the
application runs (see "Controlling the Application's Execution Characteristics" on page 2-13 for
information on·sz and other application switches).

Paragon'" User's Guide Using ParaHei File IJO

For example, to run the application on two nodes of your default partition with 110 mode 1
(M_LOG):

, fo.odes -ss 2
Enter I/O mode (0, 1., 2, 3, or 4):
1
Node 0 using mode 1.
Node 1. using mode 1.
Node 1. done writing
Node 0 done writing
Node 1. finished
Node 0 finished ,

The following example outputs came from the C version of the example, run on two nodes.

In mode M _ UNIX (0), each node has its own file pointer. Node 1 finishes right away. Node 0 waits
before each write and overwrites the message from node 1. As a result. the file contains only the
writes from node O.

1.0000 Hello from node 0
2.0087 Hello from node 0

•
•
•

9.071.1 He1.lo from node 0
1.0.0797 Hello from node 0

5-21

Using Parallel FOe I/O Paragon TIl User's Guide

5-22

In mode M LOG (1), the nodes shaie a common file pointer, but there is no synchronization. As in
mode M _UNIx, node 1 finishes right away; but this time, node 0 appends its data to the file rather
than overwriting the data from node 1.

0.0000 Hello from node 1
0.0382 Hello from node 1

•

0.0990 Hello from node 1
0.1076 Hello from node 1
1.0000 Hello from node 0
2.0086 Hello from node 0

•
•
•

9.0712 Hello from node 0
10.0804 Hello from node 0

If the output file were large enough so that node 0 started before node 1 finished, the output of the
two nodes would be interleaved in the middle of the file.

In mode M _SYNC (2), the nodes share a common file pointer, and there is synchronization. Nodes
1 and 0 finish at around the same time. Because node 1 waits for node 0 on each write, the writes are
interleaved within the file.

1. 0000 Hello
0.0000 Hello
2.0278 Hello
1.1105 Hello

•
•
•

9.2262 Hello
8.-1641 Hello

10.2535 Hello
9.1914 Hello

from node
from node
from node
from node

from node
from node
from node
from node

o
1
o
1

o
1
o
1

Note that node O's records appear earlier in the file than node 1 's~ but the time value shown for each
record from node 0 is later than for the corresponding record from node 1. This is because the value
shown is the time at which cwriteO was called, but node 1 's record was not actually written to the
file until node 0 had written its record.

Paragon 1M User's Guide Using Parallel File I/O

In this case, node 1 called cwriteO for the first time immediately after opening the file, at time 0, but
the cwriteO blocked and the record was not written to the file until after node 0 called cwriteO for
the first time, at time 1.0000 (1.0000 seconds after the file was opened). Node 1 then called cwriteO
for the second time, at time 1.1105, but that cwriteO again blocked until after node 0 called cwriteO
again at time 2.0278, and so on.

M_RECORD Output

InmodeM_RECORD (3), the nodes access the file in round-robin fashion, but there is no lock-step
synchronization. Node 1 finishes first. Then, node 0 goes into the file and fills in its data in the
correct places. Because the records are of a fixed length, node 0 has no trouble doing this. The result
is that the records are in the same order as in mode M _SYNC, but node 1 did not spend any time
waiting for node o.

1. 0000 Hello
0.0000 Hello
2.0208 Hello
0.0505 Hello

•
•
•

9.1637 Hello
0.1955 Hello

10.1841 Hello
0.2158 Hello

from node
from node
from node
from node

from node
from node
from node
from node

o
1
o
1

o
1
o
1

Note that node 1 finished in only 0.2158 seconds, without having to wait for node o.

M_GLOBAL Output

In mode M _GLOBAL (4), writes by all nodes but one (node 0 in this case) are ignored. As a result,
the file contains only the writes from that node.

1.0000 Hello from node 0
2.0087 Hello from node 0

•
•
•

9.0711 Hello from node 0
10.0797 Hello from node 0

This OUtpUt is the same as the output of M _UNIX, but the other nodes do not compete with node 0
for access to the disk, so this mode is more efficient. However, because this program uses such a
small data file, the difference in execution time is probably not noticeable.

Note that M _GLOBAL is usually used for reading. not writing.

5-23

Using Parallel File 110 Paragon TN User's Guide

Reading and Writing Files in Parallel

5-24

You can read and write files with the familiar OSFIl system calls and Fortran routines. For example,
here is a Fortran code fragment that opens a file whose pathname is Ipfslmytklt and reads some data
into an array called array using the Fortran read statement:

open (unit=10, file='/pfs/mydat' , form='unformatted')
read 10, (array(j), j=l, n)

In addition to the usual I/O facilities, the Paragon OSF/l operating system offers a series of parallel
I/O calls, which are discussed in the following pages. These calls can be used on files in both PFS
and non-PFS file systems.

Like the message-passing calls, the parallel I/O calls offer you the choice of synchronous or
asynchronous I/O. The synchronous calls begin with c (for "complete") and do not return until the
operation is complete. The asynchronous calls begin with i (for ''incomplete") and return
immediately; you use the call iocioneO or iowaitO to determine when the operation is complete.

If you program in Fortran, you should use the parallel I/O calls rather than Fortran I/O whenever you
can. These calls offer better performance than the Fortran I/O routines, and you can test for the end
of a file with iseofO. (This does not apply to C programmers; the usual C I/O calls are as efficient as
their parallel I/O counterparts.) However, if you use parallel I/O calls on a file, you must not use
Fortran file I/O statements on the same file (for example, you must not mix write and cwrlteO on
the same file).

NOTE

Parallel 110 to NFS files may give poor performance or unexpected
results.

The Intel supeIComputer's disk I/O hardware and software are designed to support simultaneous
access by large numbers of nodes. However, a remote NFS server may not be configured to support
this level of access. If you perform large parallel I/O operations from large numbers of nodes to a
file that is NFS-mounted from another computer, you may overload the network or the NFS server,
resulting in poor performance or unexpected results.

Paragon'" Ueel's Guide Using Parallel File I/O

Synchronous File 1/0

Synopsis

cread(filelD, buffer, nbytes)

cwrite(jilelD, buffer, nbytes)

Description

Read from a file, waiting for completion.

Write to a file, waiting for completion.

creadv(fileID, iov, iovent) Read from a file to irregularly-scattered buffers,
waiting for completion.

cwritev(filelD, iov, iovent) Write to a file from irregularly-scattered buffers,
waiting for completion.

The calls creadO, cwrlteQ, creadvQ, and cwritevO perform synchronous file I/O. They are
equivalent to the standard OSF/! calls readO, write(), readvO, and wrltevO, except that they follow
the same naming and error-handling conventions as the Paragon OSFIl message-passing calls (see
"Names of Send and Receive Calls" on page 3-7 for information on the Paragon OSF/! system call
naming conventions; see "Handling Errors" on page 4-42 for information on the Paragon OSF/!
error-handling conventions). Unlike their standard OSFIl equivalents, these calls are available to
Fortran programs (as well as C).

For example, here is a C code fragment that writes the message "Hello from node x" to the file
Ipfslhello:

fd = open("/pfs/hello", O_RDWR, 0644);
•
•
•

sprintf(buffer, "Hello from node %d\n", iam);
cwrite(fd, buffer, strlen(buffer»;

Here is a slightly more complicated example: a Fortran code fragment that opens a file whose
pathname is Ipfslmydat, seeks to a location, and reads some data using the synchronous call creadO.
The data represents a matrix stored in rows of n four-byte elements. Each node reads m rows and
performs a calculation with each row (calling the Basic Linear Algebra Subroutines routine sciotO
to get the dot product of two vectors). Because each node seeks to a different place in the file, you
must use I/O mode M_UNIX (the default).

open(unit=10, file='/pfs/mydat', form='unformatted')
Iseek(10, 4*mynode()*n*m, 0)

do 10 i - 1, m
call cread(10, arow, n*4)
y(i) sdot(n, arow, 1, xtotal, 1)

10 continue

5-25

Using Parallel File 110 Paragon'" User's Guide

5-26

Note that when you open a file in Fortran, you must open it as sequential and unformatted to be able
to use creadO and cwriteO. (Sequential is the default access, but you must specify
form-'unformatted' .)

NOTE

Unlike their OSF/1 equivalents, these calls do not return the
number of bytes read or written. If any error occurs, these calls
print an error message and terminate the calling process.

Reading past the end of a file is considered an error, so you must be certain you know how many
bytes remain in the file before you read from it. You can use iseof(), to detect end-of-file, after each
creadO or creadvO. You can also use the following call to determine the length of a file:

length = lseek(unit, 0, SEEK_END)

This call sets the file pointer to the end of the file and returns the current position of the file pointer
(that is, the file's length). You can then use Iseek(unit, 0, SEEK-.sET) to return the file pointer to
the beginning of the file. (If the file might be larger than 2G - 1 bytes, use eseekO instead of IseekO;
see "Manipulating Extended Flies" on page 5-36 for more information.)

If you need to detect errors in reading and writing, you must program in C and use either the standard
OSF!l calls (readO, writeO, readvO, and writevO, described in the OSFll Programmer's
Reference) or the underscore versions of the parallel 110 calls L creadO, _ cwriteO, _ creadvO, and
_ cwritevO, described under "Handling Errors" on page 4-42). The underscore versions do return the
number of bytes read or written.

Paragon 1M User's Guide

Asynchronous File 1/0

Synopsis

iread(filelD, buffer, nbytes)

iwrifA!(filelD, buffer, nbyres)

treadv(fileID, iov, iovcnt)

Iwritev(fileID, iov, iovcnt)

iodone(id)

iowait(id)

Using Parallel File IK)

Description

Read from a file without waiting for completion.

Write to a file without waiting for completion.

Read from a file to irregularly-scattered buffers,
without waiting for completion.

Write to a file from irregularly-scattered buffers,
Without waiting for completion.

Determine whether an asynchronous I/O
operation is complete. If complete, release the
1/010.

Wait for completion of an asynchronous I/O
operation and release the I/O 10.

The calls lreadO, iwrite(), ireadvO, and iwritevO perfonn asynchronous file I/O. They work like
creadO, cwrlte(), creadvO, and cwritevO, but they return immediately, without waiting for the read
or write to complete. The asynchronous I/O calls return an I/O 10 much like the message 10 returned
by the asynchronous message passing calls. You can pass this I/O 10 to iodoneO or lowaitO to
detennine when the asynchronous file I/O operation has completed.

NOTE

The number of I/O IDs is limited, so you must use ioc:loneO or
10waitO to release each 10 after you use it.

5-27

Using Parallel File 1/0 Paragon 1M User's Guide

To check if an asynchronous 110 operation has completed, use the iodone() call. It returns 1 if the
asynchronous operation has completed and 0 otherwise. You can also decide to block on the
completion of an asynchronous call. Use the iowait() call for this. Both iodone() and iowaitO take
the 110 ID as an input parameter. For example (in Fortran):

c write to a file
ioid iwrite(12, sbuf, size)
•
•
•

c Do some calculation ...
•
•
•

c wait until the write completes
call iowait(ioid)

The number of available 110 IDs is limited; be sure to release IDs that are no longer needed. There
are two ways to release an 110 ID: you can issue an iowaitO, as shown in the previous example, or
you can keep issuing iodoneOs until an iodone() returns 1.

NOTE

To preserve data integrity, 811110 requests that use or affect the file
pointer are processed on a "first-in, first-out" basis.

This means that if an asynchronous 110 call is followed by a synchronous read, write, or seek on the
same fIle, the synchronous call will block until the asynchronous operation has completed .

. Closing Files in Parallel

5-28

. It's always a good idea to close a file when you are finished using it. Whether you used openO or
gopenO to open a fIle, and whether the file is a PFS file or a non-PFS fIle, you use the standard
OSF!l system calls or Fortran routines to close it.

For example, to .close the file open on fIle descriptor fd (C) or unit 10 (Fortran):

/* eversion */
close(fd) ;

c Fortran version
close(unit=10)

Paragon" User's Guide Using Parallel File 110

NOTE

If the VO mode of the file being closed is anything other than
M_UNIX. closing the file is a synchronizing operation.

See "Using I/O Modes" on page 5-13 for more information.

Detecting End-of-File and Moving the File Pointer

SynopSis

isrof(fileID)

lseek(fileID. offset. whence)

Description

Test for end-of-file.

Move the readlwrite file pointer.

The calls Iseof() and IseekO are provided for both C and Fortran programmers. If you use parallel
I/O calls to perform file I/O in a Fortran program. you must use iseof() and IseekO instead of the
equivalent Fortran features.

The iseofO call returns 1 if the given file is at the end of the file and 0 otherwise. For example. the
following Fortran code reads characters from the file open on unit 12. writing each one to the screen.
until it reaches the end of the file:

do while(iseof(12) .eq. 0)
call cread(12, char, 1)
print 300, iam, char

300 format('Node " i3,' read: a1)
end do

The IseekO call moves the file pointer to offset bytes from the point specified by whence. which can
be either a name or a number:

• If whence is SEEK _SET.lseekO moves the pointer to offset bytes from the beginning of the
file.

• If whence is SEEK _ CUR.IseekO moves the pointer forward offset bytes from its current
position.

• If whence is SEEK_END. IseekO moves the pointer to offset bytes after the end of the file.

The names SEEK_SET. SEEK_CUR. and SEEK_END are constants defIDed in the header files
unisttLh (for C) and /nX.h (for Fortran). For compatibility with the iPSC system. the numeric values
O. 1. and 2 are also accepted (but using the symbolic names is recommended).

5-29

Using Parallel File 110 Paragon 1M User's Guide

IseekO returns the new position of the file pointer (measured in bytes from the beginning of the file).

For example, the following C call moves the file pointer of the file open on file descriptor fd to the
beginning of the file:

#include <unistd.h>

newpos = lseek(fd, 0, SEEK_SET);

The following Fortran call moves the file pointer of the file open on unit 12 forward 500 bytes:

include 'fnx.h'

newpos = lseek(12, 500, SEEK_CUR)

NOTE

If the I/O mode of the file is M_SYNC. M_RECORD. or
M_GLOBAL. seeking is a synchronizing operation.

See "Using I/O Modes" on page 5-13 for more information.

Flushing Fortran Buffered 1/0

Synopsis

forceflusbO

forflusb(unit)

Description

Cause all buffered I/O to be flushed if an
exception occurs.

Flush all buffered I/O on a particular unit

. The subroutines forceflusbO and forflusbO let Fortran programmers make sure that buffered I/O
actually goes to the associated file or device. These subroutines are not available to C programs.

Fortran 110 to files and devices other than the user's terminal is buffered-that is, when you write to
a file. the data is stored in a memory buffer, and only written to the corresponding file or device when
the buffer is full. However, if another node is waiting for some data to appear in a file. you might

Paragon- User's Guide Using Parallel File I/O

want to force the contents of a unit's buffer to be written immediately. You can do this by calling
forflushO on the unit. For example, to flush all buffered 110 on unit 9 to the corresponding file or
device:

call forflush(9)

Another possible problem with buffered 110 is that if the program is interrupted by an exception,
buffered data that has not yet been written to the file is lost. The subroutine forceliusbO establishes
a signal handler that flushes all buffered 110 in case of an exception You call it as follows:

call force flush

Note that you must call forceflusbO before the exception occurs. You can use fpsetmaskO
(described under "Controlling Floating-Point Behavior" on page 4-46) to control whether or not an
exception occurs in case of certain floating-point errors.

Fortran 110 to the user's terminal is not buffered. You can avoid buffering to files and devices by
using parallel file 110 calls such as cwrite() and iwrite() instead of Fortran 110. These calls do not
buffer 110 into the Fortran 110 memory buffer; when the call returns, you can be sure the data has
been sent to the specified file or device. (However, there may be some buffering within the operating
system, which cannot be avoided.)

Using "###" Filenames
If you perform certain standard file operations (shown in Table 5-1) on a file that contains three or
more # symbols in its filename, the series of # symbols is automatically replaced by the node number
(within the application) of the node that opens the file.

Table 5-1. We Operadons that Accept "##II" FUenames

accessO mknodO tnmcate()
cbdirO openO UDIinkO
dunodO readUnkO utimesO
cbownO rmdirO UnkO
creat() statO rename()
mkdirO statfs() symiinkO

The Fortran equivalents of these operations also support ''###" filenames. Note, though, that
gopenO does not appear in this list.

For example, assume that you have the same program rurming on all the nodes of your application,
and each node calls openO to open a file called jile###. The result is that each node opens a separate
file. Node 0 opensjileOOO, node 1 opensjileOOl, node 2 opensjileOO2, and so on If an application
opens jile### for reading, the specified files (file(}()() ,jileOOl ,fileOO2, and so on) must exist.

5-31

Using Parallel File UO Paragon no User's Guide

If you use a "###" filename in a non-parallel program running in the service partition, it uses node
number O. For example,· opening a file called file### from a service node opens fileOOO. Note that
this also affects standard commands that make these calls; for example, since the rm command calls
unlinkO, the command rm Dle### will attempt to remove the file fileOOO.

Filenames containing a sequence of one or two # symbols are not affected. For example, the file
file## is a single file that is accessible by each node.

If the number of digits in a node number is less than the number of # symbols in the filename, the
node number is padded with zeros to the length of the sequence of # symbols. If the number of digits
in a node number exceeds the number of # symbols in the filename, the filename is extended, but
only when necessary. For example, calling unlinkO on the file data.### in every node of an
application running on 2000 nodes unlinks files data.OOO, data.OO1, data.OO2 •.• data.998, data.999,
data.1000, data.1001 ••• data.1998, and data.l999.

There is nothing special about files created in this way; each file created is a single ordinary file. For
example, suppose an application uses openO or creatO to create ###myfile, writes into it, and then
closes the file. This creates a series of files called OOOmYfile,OOlmyfile, 002myfile, and so on. Each
of these files is an ordinary file; for example, you can delete one without affecting the others, and
there's nothing to prevent node 1 from opening 005myfile.

Increasing the Size of a File

Synopsis Description

lsize(fileID, offtet, whence) Increase size of a file.

You can allocate more space to a file with Isize(). The Isize() call sets the file's size as specified by
offtet and whence:

• If whence is SIZE_SET, Isize() sets the file's size to offset bytes.

• If whence is SIZE _ CUR,Isize() sets the file's size to the current file pointer position plus offtet
bytes.

• If whence is SIZE_END, Is~ increases the file's size by offtet bytes.

The names SIZE_SET • SIZE_CUR. and SIZE_END are constants defined in the header files nx.h
(for C) and fnx.h (for Fortran). For compatibility with the iPSC system, the numeric values 0, I, and
2 are also accepted (but using the symbolic names is recommended).

Paragon" User's Guide Using Parallel File 110

For example, the following Fortran call increases the size of the file open on unitl to one million
bytes:

include 'fnx.h'

size = lsize(unit1, 1000000, SIZE_SET)

The following C call increases the size of the file open on file descriptor fd by 500,000 bytes:

#include <unistd.h>
#include <nx.h>
int size, fd;

size = Isize(fd, 500000, SIZE_CUR)

The additional space is allocated to the file from the file system, but it is not initialized (its contents
are undefined).

Isize() will not decrease the size of a file. If the size specified by offset and whence is smaller than
the file's current size, the call has no effect.

The major use of this call is to ensure that enough disk space is available before you begin a lengthy
calculation. Pre-allocating disk space can also improve disk perfonnance.

Using Extended Files
A PFS file greater than or equal to 2G bytes in size is called an extended file. These files are stored
in the same way as non-ext.ended PFS files. However, some of the file parameters (like the file
pointer and file size) do not fit into a 32-bit integer. This means that standard aSF!l calls and
commands that use these parameters cannot be used on extended files. The following two sections
list the calls and commands that do not support extended files.

Using Parallel File 1/0 Paragon no User's Guide

OSF/1 Calls that Do Not Support Extended Files

Most OSF/l calls, such as readO and write(), don't care how big the file is and work perfectly well
on extended files. The OSF/l calls that have problems with extended files are shown in Table 5-2.

Table 5-2. OSFn CaDs Not Supporting Extended Files

can Problem

fentlO Can't lock a file region larger than 2G - 1 bytes.

fgetposO Can't retmn an offset greater than 2G - 1 bytes.

fseekO Can't specify an offset greater than 2G - 1 bytes.

unlocked _ fseekO Can't specify an offset greater than 2G -I bytes.

fsetposO Can't retmn an offset greater than 2G -I bytes.

fstatO Can't be used on a file larger than 2G - 1 bytes.1

fteIlO Can't retmn an offset greater than 2G - 1 bytes.

ftruncate() Can't specify a file size greater than 2G - 1 bytes.

IseekO Can't specify an offset greater than 2G - 1 bytes.

IstatO Can't be used on a file larger than 2G - 1 bytes.l

madvise() Can't map a file larger than 2G - 1 bytes.

mmapO Can't map a file larger than 2G - 1 bytes.

mprotectO Can't map a file larger than 2G - 1 bytes.

msync() Can't map a file larger than 2G - 1 bytes.

munmapO Can't map a file larger than 2G - 1 bytes.

statO Can't be used on a file larger than 2G - 1 bytes.1

truncate() Can't specify a file size greater than 2G -I bytes.

1. If you call fstatO. IstatO. or stat() on a file larger than 2G - 1 bytes. the call fails with
the error EFBIG.

To manipulate extended files, Paragon OSF/I provides special calls that perform the equivalent of
IseekO. statO. fstatO. and lsizeO for extended files. These are discussed under "Manipulating
Extended Files" on page 5-36.

Paragon" Uaer's Guide Using Parallel File 110

OSF/1 Commands that Do Not Support Extended Files

Many aSP/1 commands make one or more of the system calls in Table 5-2, so do not work on
extended files. The commands cbgrp, dunod, chown, c:p, Is, mv, tar, and nn have been specially
modified to support extended files; most other commands will fail if used on extended files. (Note
that you must use the -E switch to archive an extended file with tar; see tar in the Paragon TM

Commonds Reference Manual for more information.)

Table 5-3 shows the OSPIl commands that are known to have problems with extended files. (This
list is not guaranteed to be complete; other commands, not listed here, may also have problems.)

Table 5-3. OSFn Commands Not Supporting Extended Files

Command Problem

cat Can't read a file larger than 2G - 1 bytes.

compress Can't compress a file larger than 2G - 1 bytes.

c:pio Can't handle rues or archives larger than 2G - 1 bytes.

dHf Can't compare a file larger than 2G - 1 bytes.

du Can't show the size of a directory containing files larger than 2G - 1 bytes.

ed Can't edit a file larger than 2G - 1 bytes.

ex Can't edit a file larger than 2G - 1 bytes.

find Can't find a file larger than 2G - 1 bytes with -size;
can't show the size of a file larger than 2G - 1 bytes with -Is.

ftp Can't copy a file larger than 2G - 1 bytes.

more Can't display a file larger than 2G - 1 bytes.

newts Can't create a UPS file system larger than 2G - 1 bytes.

repl Can't copy a file larger than 2G - 1 bytes.

tail Can't display a file larger than 2G - 1 bytes.

vi Can't edit a file larger than 2G - 1 bytes.

1. Note that although rep cannot copy an extended file, c:p can.

5-35

Using Parallel File I/O Paragon no User's Guide

Manipulating Extended Files

5-36

Synopsis

etBk(fildes. offset. whence)
etBk(unit. offset. whence. newpos)

esize(fildes. offset. whence)
esize(unit. offset. whence. newsize)

estat(path. buffer)

lestat(path. buffer)

festat(jildes. buffer)

Description

(C) Move file pointer in extended file.
(Fortran)

(C) Increase size of extended file.
(Fortran)

(C only) Get status of extended file from pathname.

(C only) Get status of extended file or symbolic link
from pathname.

(C only) Get status of open extended file from file
descriptor.

The e.-O calls perform file operations on extended files. They do this by having parameters that are
extended integers (a data type capable of representing integers greater than 2G - 1). You must use
the calls described under ''Performing Extended Arithmetic" on page 5-37 to operate on extended
integers.

• The call eseekO is like lseekO (discussed under "Detecting End-of-File and Moving the File
Pointer" on page 5-29). except that the offset parameter is an extended integer. The eversion
of this call is a function that returns the new position as an extended integer; the Fortran version
is a subroutine that stores the new position in its fourth parameter.

• The call esizeO is like lsize() (discussed under "Increasing the Size of a File" on page 5-32).
except that the offset parameter is an extended integer. The C version of this call is a function
that returns the new size as an extended integer; the Fortran version is a subroutine that stores
the new size in its fourth parameter.

• The calls estatO.lestatO. and festatO are like the standard OSF!1 calls statO.istatO. and rstatO
(described in the OSF!l Programmer's Reference). except that they use a structure called estat.
defined in <syslestat.h>. which is the same as the OSF!1 stat structure except that the file size
is an extended integer. These calls are available only in C. not in Fortran.

You must use these calls to manipulate extended files (pFS files greater than or equal to 2G bytes in
size). However. you can also use these calls on non-PFS files and on PFS files less than 2G bytes in
size. You can use these calls or the standard OSF!! calls on PFS files less than 2G bytes in size.

Paragon 1M User's Guide Using Parallel File I/O

Performing Extended Arithmetic

SynopsiS

eadd(el, e2) (C)
eadd(el, e2, eresult) (Fortran)

ecmp(el, e2)

ediv(e, n) (C)
ediv(e. n. result) (Fortran)

emod(e,n) (C)
emod(e, n, result) (Fortran)

emul(e,n) (C)
emul(e,n,eresuh) (Fortran)

esub(el,e2) (C)
esub(el,e2,eresul~ (Fortran)

etos(e, s)

stoe(s) (C)
stoe(s, e) (Fortran)

Description

Add two extended integers.

Compare two extended integers.

Divide extended integer by integer.

Give extended integer modulo an integer
(remainder when e is divided by n).

Multiply extended integer by integer.

Subtract two extended integers.

Convert extended integer to string.

Convert string to extended integer.

The extended arithmetic calls manipulate 64-bit integers, also called extended integers. You use
these calls to manipulate the parameters used by the parallel 110 calls described in the previous
section.

Extended integers are signed 64-bit integers with values from (263 - 1) to _'2'3 ('2'3 is approximately
9.2 x 1018).

• In Fortran, extended integers are stored in a two-element array of type integer·4.

• In C, extended integers are stored in a variable of type esize _t, a structure type defined in the
header file <syslestat.h>. (For compatibility with the iPSC system, there is also a header file
<estat.h> that simply includes <syslestat.h>.

You should always use extended arithmetic calls to operate on an extended integer, rather than
access its internal structure.

5-37

Using Parallel File I/O Paragon"" User's Guide

5-38

Some of these calls return extended integers. The C versions of these calls return a value of type
esize _to However, Fortran does not allow functions to return arrays, so the Fortran versions of these
calls are subroutines with an additional parameter: the result of the operation on the first two
parameters is stored into the third parameter. For example, the following call adds the extended
integers el and e2 and stores the result in e _swn:

/* eversion */
#include <sys/estat.h>
esize_t e1, e2, e_sum;
e_sum = eadd(e1, e2);

c Fortran version
integer e1(2), e2(2), e_sum(2)
call eadd(e1, e2, e_sum);

If you want to add an ordinary integer to an extended integer, you must create your own extended
integer from the desired integer value. To create an extended integer, use stoe(). This call takes a
string whose value is a number, and returns the corresponding numeric value as an extended integer.
For example, the following code fragment adds 1 to the value of the extended integer el. It does this
by converting the string "1" to an extended integer with stoeO, storing the resulting extended integer
in e2, and then adding e2 to el (note that in Fortran the string must be declared to be one character
larger than the actual string being converted):

/* eversion */
#include <sys/estat.h>
esize_t e1, e2, e_sum;
char *one = "1";

e2 = stoe(one);
e_sum = eadd(e1, e2);

c Fortran version
character*2 one
parameter (one ='1')
integer e1(2), e2(2), e_sum(2)

call stoe(one, e2)
call eadd(e1, e2, e_sum)

The other extended arithmetic calls allow you to subtract, multiply, divide, and frod the remainder
after division of extended integers. When you use edivO or emodO, the divisor and answer must be
4-byte integers, not extended integers. Similarly, when you use emulO, the second argument must
be a 4-byte integer, not an extended integer.

You can also compare two extended integers; ecmp() returns -1. O. or 1. depending on whether the
first extended integer is less than. equal to, or greater than the second.

Paragon- Uaer's Guide Using Parallel File I/O

Getting Information About PFS File Systems

Description Synopsis

getpfsinfo(buj) Get PFS-specific information about all mounted
PFS file systems.

statpfs(path,fs _buffer, pfs _buffer, pfs _bujsize) Get PFS-specific and non-PFS-specific
information for the file system containing path.

fstatpfs(fildes, fs _buffer, pfs _buffer,
pfs _bufsize)

Get PFS-specific and non-PFS-specific
information for the file system containing the file
open onfildes.

The functions getpfsinfoO, statpfsO, and fstatpfsQ let C programmers get information about PFS
file systems. These functions are not available to Fortran programs. See "PFS Ftle Systems and PFS
Files" on page 5-3 for more information on the concepts discussed in this section.

Getting Information About All Mounted PFS File Systems

getpfsinfo() gets information about all mounted PFS file systems. It is similar to the standard OSF/!
callgetmntinfoO, except that instead of returning information in an array of statfs structures, it
returns information in an array of pfsmntinfo structures. It allocates the memory for this array of
structures, each of which describes one PFS file system, and stores a pointer to this array into its
argument.getpfsinfoO returns the number of elements in this array. The pfsmntinfo structure,
defined in the header file <pfslpfs.h>, contains the following fields:

m mntonname Directory on which the PFS file system is mounted.

m _ statpfs statpfs structure that describes the PFS file system.

The statpfs structure, also defined in the header file <pfslpfs.h>, describes the PFS-specific
attributes of a file system. This is a variable-size structure. It contains the following fields:

p reclen

P sunitsize

p sfactor

P sdirs

Total size of this statpfs structure, in bytes.

Stripe unit size for this PFS file system, in bytes.

Number of stripe directories within this PFS file system.

List of stripe directories within this PFS file system. The number of
pathnames in the list is specified by p Jfactor.

5-39

Using Parallel File I/O Paragon 1M User's Guide

5-40

Each patImame in p _sdirs is a structure of type pathname _I (defined in <pfslpfs.h»; you can use
the NEXTPA THO macro defined in <pfslpfs.h> to examine each pathname in tum.

Here's an example of getpfsinfoO:

#include <sys/types.h>
#include <nx.h>
#include <pfs/pfs.h>

main() {

}

struct pfsmntinfo *pfsinfo;
struct statpfs *sattr;
pathname_t *sdir;
int cnt, i, incr;

cnt getpfsinfo(&pfsinfo);

if(cnt == 0) {
printf("No PFS file systems mounted\n");

} else {

}

for(i = OJ i < cnt; i++) {

}

printf("Mount point: %s\n", pfsinfo->JlLmntonname);

sattr = &(pfsinfo->m_statpfs);
printf (" stripe unit size: %d\n",

sattr->p_sunitsize);
printf(" Stripe factor: %d\n" , sattr->p_sfactor);

sdir = &(sattr->p_sdirs);
printf (II Stripe directories: \n") ;
for(i = 0; i < sattr->p_sfactor; i++) {

printf(" %s\n", sdir->name);
sdir = NEXTPATH(sdir);

}

incr = sizeof(pfsinfo->m_mntonname)
+ sattr->p_reclen;

pfsinfo = (struct pfsmntinfo *)«char *)pfsinfo
+ incr);

This program prints out the attributes of all mounted PFS file systems, something like the command
shod -t pfs. Note that you must use the NEXTPATHO macro to step through the p _sdirs field of
the statpfs structure, and you must increment the pointer into the array of pfsmntinfo structures by
the size of the current pj'smntinfo structure (using the value of its p Jeclen field).

Paragon'" User's Guide Using Parallel File I/O

Getting PFS Information About a Single File System

statpfsO gets infonnation about a file system given the pathname of a file or directory in that file
system; fstatpfsO gets infonnation about a file system given the file descriptor of an open file in that
file system.

These functions get both general and PFS-specific infonnation about the specified file system. They
can be used on both PFS and non-PFS file systems. but they return PFS-specific infonnation only
for PFS file systems. They are similar to the standard OSF/1 calls statfsO and fstatfsO. except that
instead of returning infonnation in a stat/s structure. they return infonnation in an estat/s structure
and a statpfs structure.

The estat/s structure. defined in the header file <pftlpfs.h>. describes the basic attributes of the
file system. It is just like the stat/s structure defined in <sys/mount.h>. except that some of its
fields are of type esize _t (see "Performing Extended Arithmetic" on page 5-37 for information
on this type). This is necessary because some of the values returned for PFS file systems are too
large to be stored into an oIdinary integer.

Some of the more generally useful fields of the estat/s structure are:

L type The type of the file system. expressed as a constant such as
MOUNT _ UFS. MOUNT _NFS. or MOUNT _ PFS (these constants are
defined in <syslmount.h».

L bavail Number of free 1024-byte disk blocks in the fue system available to
oIdinary users. expressed as a value of type esize _to

L mntonname Directory on which the file system is mounted. expressed as a string.

L mntfromname Device name of the file system. expressed as a string.

See statpfs() in the Paragon™ C System Calls Reference Manual for a complete description of
all fields in the estat/s structure.

• The statpft structure is the same statpfs structure described for getpfsinfo() in the previous
section. However. the way it is returned is different: getpfsinfoO allocates space for several
statpft structures and returns you a pointer to this space. but statpfsO and fstatpfsO store
infonnation in a statpfs structure that you provide.

Because the statpft structure is variable-size. you must tell statpfsO and fstatpfsO how big your
statpfs structure is; you do this with the third parameter of statpfs() and fstatpfsO (called
pfs _bufsize). Then you must check the p ..!eclen field in the returned statpfs structure to be sure
the returned infonnation fit in your provided structure; if it didn't. try again with a larger
structure.

Using Parallel File I/O Paragon TIl User's Guide

Here's an example of statpfsO:

#include <sys/types.h>
#include <sys/mount.h>
#include <malloc.h>
#include <nx.h>
#include <pfs/pfs.h>

main(int argc, char **argv) {
struct statpfs *statpfsbuf;
int bufsize;
struct estatfs estatbuf;
pathname_t *sdir;
char blocks(80);
int i;

if(argc 1= 2)
{

}

printf ("Usage: \s <mountpoint>\n", argv (0)) ;
exit(l) ;

bufsize=sizeof(struct statpfs) + SDIRS_INIT_SIZE;

statpfsbuf=(struct statpfs *)malloc(bufsize);

if(statpfs(argv[l), &estatbuf, statpfsbuf, bufsize) < 0)
(

}

nx-perror("statpfs");
exit(l) ;

if(statpfsbuf->p_reclen > bufsize)
(

}

bufsize=statpfsbuf->p_reclen;
statpfsbuf=(struct statpfs *)realloc(statpfsbuf,

bufsize) ;

if (statpfs(argv[l), &estatbuf, statpfsbuf, bufsize)
< 0)

(

}

nx-perror("statpfs") ;
exit(l) ;

Paragon" User's Guide

}

Using Parallel File I/O

printf("Selected PFS statistics for %s:\n", argv[l]);

/* From estatfs structure */

printf(" File system type: %d\n" , estatbuf.f_type);
etos(estatbuf.f_bavail, blocks);
printf(" # of lK blocks available: \s\n" , blocks);
printf(" Mount point: %s\n" , estatbuf.f_mntonname);
printf (" Device name: %s\n" , estatbuf. f_mntfromname) ;

/* From statpfs structure */

printf(" stripe unit size: %d\n" ,
statpfsbuf->p_sunitsize);

printf(" stripe factor: %d\n" , statpfsbuf->p_sfactor);

printf(" stripe directories:\n");
sdir = &(statpfsbuf->p_sdirs);
for (i = 0; i < statpfsbuf->p_sfactor; i++) {

printf (" %s\n", sdir->name) ;
sdir = NEXTPATH(sdir);

}

This program prints out the attributes of the file system containing the file specified by its first
argument. Note that you must allocate enough space for the statpjs structure plus the stripe directory
pathnames and check the returned p]eclen against the currently-allocated size of the structure
(bujsize).

This example starts off by allocating an extra SDIRS _INIT _SIZE bytes (an arbitrary value) for the
stripe directory pathnames. If p]eclen is larger than the size of the structure, this example uses
reallocO to enlarge the structure and calls statpfsO again. It then uses the NEXTPATHO macro to
step through the p _sdirs field of the statpjs structure, as discussed earlier for getpfslnfo().

Using Parallel File I/O Paragon no User's Guide

Controlling Tape Devices

Synopsis

ioctl(fd, request, argp)

Description

Petform. an operation on an open tape or other
device.

You can use standard OSF!! I/O calls or parallel I/O calls to open, read, and write tape devices. To
control tape devices, use the standard OSF!! system call ioctlO. The header file <sys/mtio.h>
defines the tape-specific structures and constants you need.

NOTE

Only one node at a time can open a tape device, and it must use
1/0 mode M_UNIX (0).

<syslmtio.h> defines two constants you can use as the second argument of ioctlO:

MTIOCTOP Petform operation on tape.

MTIOCGET Get status of tape.

The rest of this section explains the details of using these constants.

Naming Tape Devices

5-44

The Paragon OSF!! operating system uses the following conventions for naming tape devices:

!devliol!Jjrmt]f.

Idevliol!Jjnrmt]f.

Idevliol:fjrmtc}J.

Idevliol!Jjnrmtc}J.

Raw cartridge tape, rewinds automatically when closed.

Raw cartridge tape, does not rewind automatically when
closed.

Raw cartridge tape with compression, rewinds
automatically when closed.

Raw cartridge tape with compression, does not rewind
automatically when closed.

Paragon- User's Guide Using Parallel File 110

NOTE

The nnle devices can only be used with tape drives that support
data compression.

In each case.li. is the node number of the I/O node to which the tape device is connected. and X is
the SCSI ID of the tape device (typically 6). So. for example. to use the cartridge tape device with
SCSI ID 6 on the boot node (node 0) and have it rewind automatically when closed. use the pathname
IdevlimJlrmt6. To use the same device but have it not rewind automatically when closed. use the
patlmame IdevlioOlnrmt6.

Performing Operations on Tape Devices

When you call iodlO with MTI0CTOP as its second argument. you must use a structure of type
mtop as the third argument. The mtop structure is defined as follows:

struct mtop {
short mt_op; /* operation to perform */
short fill; /* ignored */
long mt_count; /* how many operations to perform */

} ;

This structure tells iodlO what operation to perform. The valid values of the mt _ op field include the
following constants:

MTWEOF

MTFSF

MTBSF

MTFSR

MTBSR

MTREW

mOFFL

MTNOP

MTRETEN

Write mt count end-of-file marks.

Space the tape forward by mt _count files.

Space the tape backward by mt _count files.

Space the tape forward by mt _count records.

Space the tape backward by mt _count records.

Rewind the tape. If the tape has been written to. writes two end-of-file marks
before rewinding. (Two end-of-file marks indicate the end of data.)

Rewind the tape and put the drive omine. If the tape has been written to.
writes two end-of-file maries before rewinding.

No operation. sets status only.

Retension the tape.

5-45

Using Parallel File 110 Paragon'" User's Guide

MTERASE Erase the entire tape.

MTEOM Position the tape at end of media (SCSI only).

Closing the tape device after writing to it also writes an end-of-file mark (or two end-of-file marks
if the tape was opened in variable-block mode or the tape mode ''rewind'' is set). If the tape was
opened in variable-block mode, the tape head is then positioned between the twoend-of-flle marks,
so that any subsequent write will overwrite the second one.

For example, the following C program rewinds the tape on the device connected to IdevlioOlrmt6:

#include <fcntl.h>
#include <errno.h>
#include <sys/mtio.h>

main() (
int fd;

}

struct mtop s;

fd = open("/dev/ioO/rmt6", O_RDONLY, 0666);
if(fd == -1) {

}

perror ("opening /dev /ioO /rmt6 ") ;
exit(l) ;

s.mt_op = MTREW;
s.mt_count = 1;
if (ioctl(fd, MTIOCTOP, &s) == -1) {

perror ("rewinding tape");
exit(2) ;

}

Getting Status of Tape Devices

5-46

When you call iodlO with MTIOCGET as its second argument, you must provide a structure of
type mtget as the third argument. The mtget structure is defined as follows:

struct mtget {

I;

short mt_type; /* type of magtape device */
short mt_dsreg; /* "drive status" register */
short mt_erreg; /* "error" register */
short mt_resid; /* residual count */

Paragon" Uaer's Guide Using ParaDe! File I/O

ioctlO fills in the elements of this structure with information about the device. The value of the
muype field is always 0x0C (indicating a generic SCSI device). The values of the mt _ dsreg and
mt_erreg fields are device-dependent.

For example. the following C program prints the status of the device connected to IdevlidJlrmt6:

#include <fcntl.h>
#include <errno.h>
#include <sys/mtio.h>

main() (
int fd;

}

struct mtget s;

fd = open("/dev/ioO/rmt6", O_RDONLY, 0666);
if (fd == -1) (

perror("opening /dev/ioO/rmt6");
exit(1) ;

}

if (ioctl(fd, MTIOCGET, &s) == -1) (
perror("getting status of tape");
exit(2) ;

}

printf("mt_type
printf("mt_dsreg
printf("mt_erreg
printf("mt_resid

= Ox%x\n",
Ox%x\n" ,
Ox%x\n" ,
Ox%x\n" ,

s.mt_type) ;
s . mt_dsreg) ;
s.mt_erreg);
s .mt_resid) ;

5-47

Using Parallel File I/O Paragon 1M User's Guide

Synchronization Summary

5-48

Table 5-4 lists the 110 modes and summarizes the 110 calls that are synchronizing calls in each one.
Table 5-5 lists the most commonly-used 110 calls and summarizes the 110 modes that cause them to
become synchronizing calls.

Table 54. Synchronization in Each I/O Mode

110 Mode 110 calls that Synchronize

M_UNIX gopenO and setiomodeO

M_LOG gopenO, setiomodeO and closeO

M_SYNC All

M_RECORD gopenO, setiomodeO, lseekO, eseekO. and closeO

M_GLOBAL All

Table 5-5. F1le 110 Calls that Synchronize

call 110 Modes causing the call to Synchronize

closeO M_LOG, M_SYNC, M_RECORD, and M_GLOBAL

creadO and creadvO M_SYNC and M_GLOBAL

cwrite() and cwritevO M_SYNC and M_GLOBAL

eseekO M_SYNC. M_RECORD. and M_ GLOBAL

gopenO All

ireadO and ireadvO M_SYNC and M_GLOBAL

iseofO M_SYNC and M_GLOBAL

iwriteO and iwritevO M_SYNC and M_GLOBAL

lseekO M_SYNC, M_RECORD. and M_GLOBAL

setiomode() All

Using Pthreads

Introduction
In Paragon OSF/I. each process consists of a set of resources. such as memory objects and open
files. and one or more threOlls (short for thrl!Dlls of control). Each thread consists of an instruction
pointer and a stack.

By default. each process has only one thread. When there is more than one thread in a single process.
each thread executes independently. but they share resources. For example. all the threads in a single
process share memory; when one thread writes to a variable in memory. it modifies the value of that
variable for all threads.

Because threads share memory. you must carefully COOIdinate access to shared areas of memory. For
example. if two threads write to the same area of memory at the same time. the results may be
indeterminate. You can use arbitration mechanisms such as mutexes (short for ''mutual exclusion")
to protect areas of memory from being accessed at the same time. Software that uses these
techniques and can be safely executed by two or more threads at the same time is referred to as
thread-safe or reentrant.

The Pthreads Package

To create and manage threads. you should use the pthreads package. Pthrl!Dlls is short for POSIX
threOlls; the threads created and managed by this package are also referred to as pthreads.

The current Paragon OSF/! implementation of pthreads is based on the POSIX ThrI!Dlls Extension
[C language] P 1003.4alD4 (Draft 4), August 1990; however. it is not strictly conformant to this
draft. Also. note that this is not the most recent draft of this extension. so Paragon OSF/! pthreads
programs may not be portable to or from other systems. Future versions of the Paragon OSF/!
pthreads package may be based on later drafts oflhis extension. and may not be compatible with the
current version. In particular. the treatment of thread cancellation and signals may be different in the
future.

6-1

Using Pthraad8 Paragon 1M User's Guide

The pthreads package consists of the following libraries:

libpthreads.a Contains thread management calls. such as pthread_create(). The calls in
this library are discussed in "Using Pthreads Library Calls" on page 6-11.

libe T.a Contains reentrant versions of standard C library (Iibc.a) calls, such as
printf(). The calls in this library are discussed in "Using Reentrant C Library
Calls" on page 6-6.

The only programming interface to the pthreads package provided in the current release is for the C
programming language. No Fortran interface is provided.

NOTE

Pthreads are not the same as, and are not compatible with,
-cthreads" or -Mach threads."

These other types of thread are not supported for use in user programs. These types of thread are not
compatible with libe T.a and camwt be recognized or managed by the calls in libpthreads.a.

What's In This Chapter

6-2

This chapter introduces the Paragon OSF/l pthread package and its usage in parallel applications. It
includes the following sections:

• limitations of pthreads.

• Recommended safe operating environment.

• Compiling and linking a pthread application.

• Using reentrant C library calls.

• Using pthreads library calls.

• Interfacing with non-thread-safe code.

• Message passing and pthreads library calls.

• File I/O and pthreads library calls.

• ox _ nforkO and DX JDitveO and pthreads library calls.

- - --------- .. ---- - ------_~_" ______________________ 0 ______ ---- _________________ ~_

Paragon" Uee .. a Guide Using Pttvaads

• Signals and pthreads lilrary calls.

• Handling errors.

Limitations of Pthreads
The pthreads package has the following limitations in the current release:

• Currently. none of the libraries supplied with Paragon OSFIl (except for libpthrtads.a and
libe r.a) are thread-safe. In particular. the library libnx.a. which contains all the calls discussed
in tli other chapters of this manual. is not thread-safe. In a process containing multiple pthreads.
any calls to non-thread-safe libraries must be protected so that no two pthreads can call the same
lilxary at the same time. See "Interfacing with Non-Thread-Safe Code" on page 6-37 for
information on how to do this.

• Any global variables used or set by a non-thread-safe library may also have to be protected. For
example. if a non-t:hread-safe function sets the global variable errno. you must be sure to read
the value of errntJ before allowing any other pthread to make any call that could change the
value of trrnD. See "eIIIlO Confusion" on page 6-41 for more information on errntJ.

• In the current implementation, all the pthreads in a process always run on the same processor.
Scheduling of pthreads is handled by the kernel. which uses a policy of time sharing with aging.
You cannot CODttOI. or get information about. pthread scheduling by using pthread library calls.

• Pthreads use kernel resources as well as user-level resources (to be specific. each pthread uses
one urnel threatl). This means that using very large numbers of pthreads can exhaust certain
resources within the kernel.

• The POSIX Threads Extension Ie lImguage] P1003.4a1D4 (Draft 4), August 1990 includes an
optional feature called "thread priority scheduling. " This feature is not available in the current
release. If you attempt to make use of this feature. you will get compilation errors (for use of an
unsupported data type). link. errors (for use of an unsupponed library call). or·run-time errors
(for use of an unsupponed system call). If a run-time error occurs. the call fails with the errno
value ENOSYS.

• The Paragon application development tools currently are not thread-aware and do not have any
features to support pthreads.

• There is no Fortran interface to the pthreads package. If you must use pthreads in a Fortran
program. you could make the calls to the pthreads lilrary from a C function. which can then be
compiled to a .0 file and linked into the Forttan program. However. this programming model
has not been tested.

Using Pthreads Paragon 1M User's Guide

Recommended Safe Operating Environment
The previous section described the limitations which cannot be exceeded. This section recommends
limitations which you should not exceed in the cwrent release. Exceeding these limitations may
result in unexpected behavior, up to and including system crashes and data loss.

• No process should have more than 6 pthreads at once.

Any pthread can create or terminate another pthread at any time. The system does not impose a
limit on the number of active pthreads in a process, on a node, or in the whole system. However,
the total active pthreads per process (including the main thread) should be kept at or below 6.
Exceeding this limit may result in an emulator exception.

• Only one pthread in a process should use the message-passing calls described in Chapter 3. The
message-passing pthread can be the main thread or another pthread, but a pthread other than the
main thread will experience higher message latency than the main thread.

This limitation is due to the fact that the message-passing library (/ibnx.a) is not thread-safe.
Also, there is no mechanism in cwrent message passing calls to send or receive messages to or
from a specific pthread within a process. See "Message Passing and Pthreads Ubrary Calls" on
page 6-37 for more information.

If more than one pthread in a process attempts to perform message passing, message-passing
performance may degrade, incorrect information may be returned from an iDfo._O call, and
global operations such as gsyncO may give unexpected results.

• All global operations (such as pyneO) must be perfonned by the message-passing pthread. This
is necessary because all global operations use message-passing to synchronize the nodes. You
can synchronize pthreads within a process by using a global variable counter as a barrier.

• Only one pthread in a process should use the parallel file 110 calls described in Chapter 5. The
I/O pthread can be the main thread or anotherpthread. See "File I/O and Pthreads Ubrary Calls"
on page 6-38 for more information.

• The calls lOpenO and setiomodeO use message-passing internally. If the 110 pthread is not also
the message-passing pthread, you must make sure that these calls are not used at the same time
as any message-passing calls in the message-passing pthread.

• The standard OSF/l file I/O system calls, such as readO and wrl1e(). can be called from
multiple pthreads at the same time if they are called from a controlling process and they are only
used with files that reside in UPS file systems. Otherwise. only one pthread in a process can use
them.

• Applications with multiple pthreads should not be run in gang-scheduled partitions. Gang
scheduling of threaded applications has not been thoroughly tested. 00t has been known to cause
server exceptions •.

Paragon- U88r'8 Guide Using Pthreads

• Do not call sigwait() to wait on synchronous signals (those that are generated synchronously as
the results of a pthread's faults. such as SIGBUS and SIGSEGV). Doing this may cause the
application or the system to crash. See "Managing Signals" on page 6-34 for more information
on sigwaitO.

• Do not use calls from libpthreads.a or libc J.a within a signal handler. Some of these calls use
mutexes internally. which may result in deadlock (the handler can find itself waiting on an
unavailable mutex lock. while the mutex lock cannot be released until the signal handler has
returned).

• Asynchronous cancellation is very destructive and should be avoided. In particular. attempting
to cancel a pthread doing file 110 on a PFS or UPS file system can cause the entire application
to hang. See "Canceling Pthreads" on page 6-28 for more information on asynchronous
cancellation

• Do not attempt to use the Paragon application development tools on applications with multiple
pthreads. In particular. IPD currently is not thread-aware and should not be used to debug or
profile an application that uses pthreads.

• Do not terminate a process when other pthreads are progressing. For example. calling exltO or
returning from mainO kills all threads and terminates the entire process. If there are any other
pthreads in the process. including pthreads generated transparendy by library calls. null
processes may result. Be sure to terminate all pthreads gracefully before terminating the
program. In particular. be sure that all asynchronous and interrupt-driven message and 110
operations (such as brecvO or ireadO) are complete before the program terminates. It is also a
good idea to ensure that mainO always exits by calling ptbread _ exltO. never by calling exit()
or by reaching the closing brace of mainO.

• No Mach calls can be used in a pthreads program. The Mach kernel interface (libmach.a) is not
supported in the current release; use of Mach features in pthreads programs can cause pthreads
internal errors or system crashes.

Compiling and Linking a Pthread Application
When compiling a program that uses the pthreads package. you should define the symbol
_REENTRANT; this symbol ensures that thread-safe definitions are used in all included header
files. (The compiler switch -M[no]reentrant does not have any effect on whether or not the
resulting code is thread-safe. It only determines whether or not the code can be called recursively.)

When linking a program that uses the pthreads package. you must link in the library libpthreads.a.
followed by the library libe J.a. The standard C library is also linked by default. but only after
searching all libraries specified on the command line. If you use the -nx switch, it can appear on the
command line either before these two libraries or after them; if you use the -Inx switch. it should
appear after both these libraries.

Using Plhreada Paragon no User's Guide

For example:

• To compile and link a non-parallel program:

• To compile and link a controlling process:

• To compile and link a parallel application:

Using Reentrant C Library Calls
Only the calls in the reenttant C li1rary (libe J.a) and the calls in the pthreads li1rary (libpthreails.a)
are guaranteed to be thread-safe in the current release. Any calls to other libraries must be protected
so that no two pthreads can call them at the same time. Table 6-1 lists the calls in libc J.a.

Paragon 1M Ueer's Guide Using Pthreads

Table 6-1. Calls in Reentrant C Ubrary (IibcJJI) (1 of 2)

abortO endgrentO fstatI's() getsockDame() memcpyO

absO eudpwentO fsyne() getsockopt() mellMl!()veQ

acceptO eudttyentO fteUO gettimeofdayO 1llelmlet0
aceess() eudusersbeUO ftruncate() gettimer() mkdir()

acctO eudutent() I'tw() geutyent_ r()* odO
adjtime() exec_with _loader() fuDloeIdIleQ* getttynam _ r()* mkstempO

advanceQ exedpO fwrIte() getuldO mktempO
alann() exeevpO gcvt() getusersbeU_r()* mktime()

allocaO e:xItO getaddressconf(getutent_ r()* JDktimerO
asctime_r()* filbsO getc() getutid]O* DDDapO

async_daemonO fchdir() getcbar() getutlintL r()* modfO
atexit() fchmodO getdockO -- getw() mountO
atof() fchownO getewdO getwc() mprotect()

atoiO fdoseO getdirentries() getwdO msemJnitO
atoiO fcntlO getdtablesize() gmtime() msemJockO
bcmp() fcvt_r()* getegidO gmtime _ r()* msem]emoveQ

bcopyO fdopenO geteDvO btoolO msem_UDlockO
bindO feofO geteuidO btons() msgetlO
brkO ferror() gedbO inltstate() lDSIIetO
bzero() musbO get.fsent_ rO* inltstate _ r()* msgrevO
calloeO II's() getfsIUe _rO* insqueQ mspnclO
catdose() 1gete0 getfsspec _ r()* iocdO msyncO
catgetsQ Igets() getfsstatO lsalnumO munmapO
catopenO fIleno() getgidO 1satty0 mvalidO
cbdir() ftockO getgrent_rO* isdigitO nfssvc()

cbmodO ftockftleQ* getgrpd _ r()* isnanO niceO
cbownO fopenO getgmam_r()* isnandO nt laDginfoO
cbroot() fpatbeonf() getgroupsO isnanfO ntoblO
dearerr() fpgetmaskO getbostidO isspace() ntobs()

dockO fpgetroundO getbostname() isupperO openO
doseO fpgetstickyO getitimerO isxdigitO opendir()
dosedirO fprintfO getlogin _ r()* killO pathconfO
conneet() fpsetmaskO getpagesize() Idexp() perror()
creatO fpsetroundO getpeenuune() linkO pipeO
ctennidO fpse1stickyO getpgrp() UstenO plockO
dime_rO* fputcO getpidO localtime _ rO* poliO
cuseridO fputs() getppidO longjmpO printf()
dbm_dose() freadO getpriorityO lseekO promo
dbm_retcbO free() getpwent_ rQ* lstat() ptrace()
dbm_openO freopenO getpwnam]O* madvise() putcO
dupO ftup() getpwuid _ rQ* mallocO putcbar()
duplO rscanro getrlimitO memccpyO putsO
een_r()* fseekO getrusage() memcbrO pututline_rO*
endf'sentO rstatO gets() memanp() putwO

* Does not exist in the standard C litnry (libc.a).

6-7

UsIng Pthreads Paragon 1M User'S Guide

Table 6-1. CaDs in Reentrant C Library (Ubc].a) (2 of 2)

putwcO semctlO setttyentQ strchr() uJimitO
quotadiO semget() setuidO strtmpO umaskO
raiseO semopO setusershellO strtpyO umount()
randO sendO setutent() strcspnO unameO
rand_rO* senclJmgO setvbufO strdupO ungetcO
randomO sendto() sbmat() strerror_rO* unlinkO
random_rO* setbufO shmdIO strftime() unlocked _ felose()*
re_COIDp_rO*· setbulferO shmdtO stringO unlocked _ mushO*
re _ exec _ rO* setclockO shmgetO strJenO unlocked _ freadO*
readO setfsentO shutdownO strncatO unlocked -,seekO*
readdirO setgidO sigactionO strncmp() unlocked _ fwriteO*
readdir _ rO* setgrentO sigaddsetO strncpyO unlocked .JetcQ*
readUnkO setgroupsO sigdelsetO strpbrkO unlocked -IetcharO*
readvO sethostidO sigemptyset() stn'dIr() unlocked .JetwcQ*
reaIIocO sethostname() siafillsetO strspnO unlocked "putc()*
rebootO setitimer() si&ismemberO strtok_r()* unlocked "putchar()*
recvO setJmp() signalO strtolO unlocked _setvbul()*
recvfromO setJinebuf() sigprocmaskO strtouiO utimesO
recvmsgO setJocaIeO sigreturnO swaponO utmpname()
reItimer() setloginO sigstackO symlinkO vforkO
remqueO setpgidO sigsuspendO syncO vtprintfO
rename() setpgrp() sleepO syseonfO vprintfO
revokeO setpriorityO socket() tableO vsprintfO
rewindO setpwentO socketpair() tempnamO wait4()
rewinddirO setregidO sprintfO time() waitpidO
rindexO setreuidO srandO times() writeO
rmdIr() setrlimit() srandom() tmpfile() writevO
nnknodO setsidO srandom_rO* tmpnamO
rmtimerO setsockoptO sscanf() toIowerO
sbrkO setstateO stat() truncateO
scanf() setstate _ r()* statfs() ttyname]O*
selectO settimeofdayO strcat() Izset()

* Does not exist in the standard C library (libe.a).

- _.- ---------- --._----------------------- ------- - -----

Paragon'" Ueer'8 Guide Using Pthreads

The calls in Iibc J.a can be divided into three groups, according to tbeir names:

• Most of the calls in libe r.a have the same names as calls in the standard C library (libe.a).
These calls generally wOrk the same as tbe equivalent calls in libc.a. However, tbey perform
special checks and locks internally to be sure tbey will work if called by multiple pthreads at the
same time. Also, many blocking system calls only block the calling pthread instead of every
pthread of the process. The following commonly-used calls have the following effects in
programs with multiple pthreads:

exitO Kills all pthreads of the process and closes all opened files. See ''Calling
exitO" on page 6-42 for more information on using exitO in programs
with multiple threads.

forkO Copies only tbe calling pthread to tbe new process's address space. If a
mutex lock is held by another pthread, then the calling pthread in tbe new
process may deadlock. For example, if a process has 2 pthreads am
pthread 0 calls forkO when pthread 1 is holding a mutex lock inside a call.
to printfO, the only pthread in the new process will hang when it calls
prindO.

cbdlrO

sleep()

wait()

perror()

Kills all pthreads other than the calling pthread. then loads a new
program into tbe process's address space. The result is a new program
with one pthread. The calling pthread can create additional pthreads if it
wants.

Changes the current worlcing directory for all pthreads in the calling
process.

Puts only tbe calling pthread to sleep.

Blocks only the calling pthread; does not return until every pthread of tbe
process being waited for exits. Note that a pthread can \VaitO for a
process created by a different pthread.

Uses the per-pthread errno (see "erma Confusion" on page 6-41).

Note that these calls may have different semantics on different platforms:

Using Plhreads Paragon no User's Guide

6-10

• libc J.a also includes some calls whose names end in _r. These calls do the same thing as the
similarly-named calls in the standard C library. but have different parameters.

If the] call is the only version of the call in libc J.a. you must use the] call to be sure
your code is thread-safe. This is the case for most of the] calls.

Ifboth an _r and a non-_ r version of the call exist in libc J.a, both versions are thread-safe.
but the _r version offers better performance. This is the case for gmtime(), initStateO.
randO. randomO. readdirO. setstateO. and srandomO. .

The _ r calls are noted with an asterisk in Table 6-1.

Fmally. the calls floddUeO. funloddUeO. and UDlocked_ ... O exist only in libcJ.a:

fIoddUeO Locks the specified standard I/O stream for exclusive use by the calling
pthread.

funloddUeO Unlocks the specified stream.

UDlocked __ O. Perl'orm operations on a stream while it is locked (these are called
"unlocked" calls because they do not perform any locking or unlocking
of their own).

The UDlocked _ ... 0 calls are not thread-safe by themselves; they must be used together with
fIockfileO/funloddiIeO.

These calls offer better I/O performance and more control over I/O from pthreads than the
standard thread-safe 110 calls. For example. the thread-safe version of putcO locks out all other
110 calls, writes the specified character. then unlocks. If you write a series of characters to a file
with putcO. this locking and unlocking results in considerable overhead; also. there is nothing
to prevent characters written by two different pthreads from becoming intermingled.

You can instead use floddUeO to lock out all other operations on the file. a series of
UDIocked JRdCO calls to write characters without locking and unlocking. and fmally a
funlockmeO to release the lock. In this case only one pair of lock/unlock operations is
performed; your I/O performance will be better. and no other pthread's output can interfere. See
the OSFll Programmer's Reference for more information on these calls.

~---... -.-.-•.. -• -_ ... _ ... -

-------- -----

Paragon'" Ueer's Guide Using Pthraads

Using Pthreads Library Calls
This section tells you how to use the calls in libpthreads.a to create and conttol pthreads in your
programs. See the OSFll Programmer's Reference for more detailed information on each call.

Pthreads Library Data Types and Symbols

In order to use any calls from the pthreads library. your program must include the file <pthread.h>.
which defines several types and symbols used by this litrary. The most imponant of these are:

Within each process. each active pthread is identified by a unique pthread lD,
which is a value of type pthread_t. You use a pthread's ID to identify the
pthread in all calls that conttol pthIeads.

pthread _mUla _t and pthread _ cOM_t
Each active mutex is identified by a value of type pthread _1IUltex _t. and each
active condition variable is identified by a value of type pthread _ COM_to

pthread attr t. pthreadmutexattr t. and pthread corukJItr t - - - - --
Objects of these types. called attributes objects. are used to specify the
attributes (characteristics) ofpthreads. mutexes. and condition variables.
These types are extensible. and can support new features added by later
revisions of the pthreads standard while maintaining compatibility with
existing programs. Objects of these types are created with default values and
can be changed by pthreads library calls.

pthread _ attr _default. pthread _ mutexQltr JJejault. and pthread _ condattr _default
These are external symbols whose values are the default attributes for an
object of the appropriate type. If you want to create an object with the default
attributes. you can use one of these symbols instead of creating a new
attributes object with the default attributes.

pthread _ key _t This data type supports the per-pthread global data strucwre in the pthreads
lilxary. This enables different functions to access global data that only
belongs to a single pthread.

8-11

Using Plhreada.

The Main Thread

6-12

Each program initially has a single thread-the flow of control that starts at the beginning of the
function mainO. This thread is referred to as the main thread.

Any other pthreads in the program are created by the main thread. either directly or indirectly. But
threads do not have a parent-child relationship. as processes do, so the main thread does not have
any special relationship with or control over other pthreads in the process.

However. the C library treats the function mainO specially. in a way that can affect other threads in
the process:

NOTE

If the function rnalnO returns (either by executing a return
statement or by reaching the closing brace of the function). the C
library generates an irnpHcit call to _8xitO. which kills all pthreads
in the process and terminates the process.

This means that you must either have main() wait for all other pthreads before returning, or make
sure that mainO always terminates itself by calling ptbread _ exit() rather than calling exit() or
returning.

---" ---"~ .. -

--------- ------------

Paragon" U •• Guide Ue/ng Pttveads

Managing Pthread Execution

SynopsiS

int ptbread_ create(
pthreacU *Ihreod.
pthreacCattct attr.
void *(*routine)(void *arg).
void *arg);

pthread_t pthI'ead_seIf(void);

int ptbread _ equal(
pthreacCt threodl.
pthre81Ct threl1ll2);

void pthread JIeId(void);

void pthread _ exit(
void * status);

int ptbreadJoin(
pthread_t threod.
void ** StiJtus);

int ptbread _ detach(
pthread_t *Ihreod);

DescrIption

Creates a pthread.

Returns the ID of the calling pthread.

Compares two pthread identifiers.

Allows the scheduler to run another pthread
instead of the current ODe.

Terminates the calling pthread.

Waits for a pthread to terminate.

Detaches a pthread.

To create a pthread. call ptbread _ createO. This call has the following parameters:

thread Pointer to a variable of type plhread _, that receives the pthread ID of the
newly-created pthread.

attr

routine

arg

An object of type pthreod attr 1 that desaibes the desired attributes of the
new pthread. This can be the default pt.hread attribute object
pthread _ attr _default. or a user-created pthread attribute object (see
"Managing Pthread Attributes" on page 6-15).

Pointer to the initial ftmction to be executed by the new pthread. This function
is assumed to return void • and to have one argument of type void *.

Value of type void· to be passed to the initial function as its argument.

A pthread can detennine its own pthread ID by calling ptbreacUIeJIO, and a pthread ID can be
compared against another pthread ID by calling ptbread _ equalO. Note that plhreod _, is an
"opaque" type, and you should not use standanl C operators on it

6-13

Using Plhreads

6-14

Paragon User's Guide

The ptbread JieldO call will decrease the priority of the calling pthread and give up the node's
processor to other pthreads that have higher priorities than the calling pthread. The kernel decides
which thread to run next. based on its time sharing and aging policies. Eventually. the calling pthread
will be scheduled to nmagain when otherpthreads become lower priority pthreads. A pthread should
call pthread JieldO to give up the processor when it is making no progress or has no work to do.

A pthread terminates when it calls pthread _exit() or returns from its initial function. However. the
termination of a pthread does not release all the resources associated with the pthread. To release a
terminated pthread's resources. a different pthread must call pthread JoinO or ptbread _ detachO:

• pthread JoinO blocks until the specified pthread terminates. then releases the specified
pthread's resources and returns the exit status of the specified pthread to its caller. The exit
status is the value specified in the ptl1read' s pthread _ exitO call. or the return value of its initial
function if it did not call pthread _ exitO.

• ptbread_detachO tells the pthreads library to release the specified pthread's resources, then
returns immediately to its caller. Later, when the specified pthread terminates. the library
releases the pthread's resoUICeS and discards the pthread's exit status.

Any pthread that creates other pthreads should call pthread JoinO or pthread _ detadlO for each
pthread it created before it terminates itself.

Using Pthreads

Managing Pthread Attributes

Synopsis

int ptbread _aUr _ create(
p~_8Ur_t*anr);

int ptbread _ aUr _ setstacksize(
pthread_8Ur_t *anr,
long stIlCksize);

int ptbread _ aUr _ delete(
pthread_8Ur_t*anr);

DescrIption

Creates a pthread attributes object.

Sets the value of the stack size attribute ora
pthread attributes object.

Deletes a pthread attributes object.

int ptbread _ aUr..,getstacksize
pthread_8Ur_t anr);

Returns the value of the stack size attribute of a
pthread attributes object.

The only ptbread attriblte that is currently modifiable is stack size. (A pthread1s priority and
scheduling policy are managed by the kernel and cannot be inspected or changed.) To set a pthread's
stack size, use the following procedure:

1. Call ptbread _ aUr _ create() to create a pthread attributes object (an object of type
pthread anr t).

2. Call ptbread _ aUr _ setstacksize() to set the stack. size in that object.

3. Use the modified pthread attributes object in the call to pthread_create() that creates the
pthread.

4. Call pthread _ aUr _delete() to remove the pthread attributes object.

Once a pthread has been created, the size of its stack. is fixed and can't be changed.

To use the default stack size, you can simply use the default pthread attribute object
ptbread _ anr _default instead of creating your own pthread attributes object.

You can use ptbread _BUr ..,Jetstacksi-<) to find out the current stack size in a pthread attributes
object. .

6-15

Using Plhreads Paragon no User's Guide

NOTE

Whenever possible, use the same stack size for all pthreads.

Each pthread is built on a lower-level construct called a kernel thread. When you create a pthread.
the pthread library lries to re-use a kernel thread from a pool of existing kernel threads. This means
that creating a new pthread is more expensive if there are no existing kernel threads inside the
pthreads library that can be reused. A major cause for the kernel being unable to recycle kernel
threads is using a different stack size for new pthreads; this should be avoided.

Managing Mutexes

6-16

Synopsis

int pthread _ mutex JDit(
pthread_mutex_t *mutex,
pthre.Cmutex8ttr_t attr);

int pthread _ mutex Jock(
pthread_mutex_t *mutex);

int ptbread_ mutex _trylock(
pthread_mutex_t *mutex);

int ptbread _ mutex _ unlock(
pthread_mutex_t *mutex);

int pthread _mutex _destroy(
pthread_mutex_t *mutex);

Description

Creates a mutex.

Locks a mutex.

Tries once to lock a mutex.

Unlocks a mutex.

Deletes a mutex.

A pthread mllteX is a binary semaphore with two states: locked and unlocked. When a mutex is
created, its initial state is unlocked. Only one pthread at a time can lock a mutex. When a pthread
successfully locks a mutex, it becomes the mutex's owner. Any other pthread that attempts to lock
the mutex will block until the owner unlocks the mutex. Mutexes cannot be used recursively: if the
owner attempts to lock the mutex again, the attempt fails.

You should use mutex locks to serialize pthread access to a block of code that accesses a
nonshareable resoUIte, such as a file or a non-thread-safe library. A pthread that is waiting on a
mutex lock will not use any of the node's processor time.

To aeate and initialize a mutex, call pthread _ mutex_ initO. This call creates a new mutex with the
atlributes specified by ant' (typically the default mutex atlributes object pthread _ mutexant' _default)
and stores the new mutex's IDinto the variable pointed to by murex. A newly-created mutex is
.unlocked.

, .
I • • . _

-_._-_. ------~----.--~~ .. "~---~ .. -----~ ... --.~-- .. - - -..::..~-.:--~- -~---------- -+-----.--.--~----.- -"-

Paragon 1M Ueer's Guide Using Plhr8ads

To lock a mutex. call pthread _ mutex _IockO. The call to ptbread _ mutex _IockO will block the
calling pthread lBltil the mutex lock is available. A ptbread waiting on a mutex lock will be scheduled
out and another pthread will be scheduled to run. When the calling pthread is again scheduled to nm
because no higher-priority pthread can run. it checks the availability of the mutex lock again and is
scheduled out again if the mutex lock is still unavailable.

Note that there is no guarantee that a pthread waiting on a ptbread _ nutex _lackO will eventually
get the lock. If you do not want to block until the lock is available. call ptbread _ tex _ trylackO.
This call tries once to lock the specified mutex. If the attempt succeeds. the call returns 1
immediately; but if the mutex is already locked. the call returns 0 immediately.

When a pthread is finished using the resource controlled by the mutex. it should release the lock by
calling pthread _ mutex _ UDlockO. This allows any other pthread that has been waiting to lock the
mutex to proceed.

When all pthreads have finished using the mutex. you should remove it and release all resources
associated with it by calling pthread_ mutex _destroyO. You cannot destroy a mutex that is
cmrently locked. Attempting to lock or wock a mutex that has been successfully destroyed will
result in undefined behavior.

Managing Mutex Attributes

Synopsis

int pthread _mutexattr _create(
pthread_mutexattr_t *attr);

int ptbread _mutexattr _delete(
pthread_mutexattr_t *attr);

Description

Creates a mutex attributes object

Deletes a mutex attributes object

No mutex attributes are currently defined. You can either use the default mutex attributes object.
pthreod _ mutexattr _default, or create a mutex attribute object for use in pthread ~ mutex _ inltO by
calling pthread _mutexattr _create(). A user-created mutex attributes object should be released by
calling pthread mutexattr delete(). - -

6-17

Using Plhreads 'Paragon'" User's Guide

An Example Pthreads Program

The following program demonstrates some principles of using pthreads and mutexes. It creates a·
user-specified number of pthreads, each of which prints its node number. ptype. and pthread ID and
the message "Done."

#include <pthread.h>
#include <stdlib.h>
include <nx. h>

#define MAXTHREAO 6

/* pthread resources */

/* thread maximum limit */

pthread_t thread[MAXTHREAO); /* per-thread pthread IO */
/* mutex to protect global

variable "thread_alive" */
pthread_mutex_t mutex;

/* global variables that only the
int max_thread = MAXTHREAD;
int my_node;
int my-ptype;

main thread writes to */
/* maximum thread number */
/* my node number */
/* my ptype * /

/* shared global variable that is modified by all threads */
int thread_alive; /* count of living threads */

/* forward declarations */
void thread_fun(int threa~id);

main(int argc, char *argv[)
(

int
int

index;
my_thread = 0;

my_node = mynode();
my-ptype = myptype();

if(argc 1= 2) (
if(my_node =- 0) (

/* initial function for
new threads */

/* loop index */
/* main thread is indexed 0 */

printf("Osage: %s <nthreads>\n", argv[O]);
}

exit(l);
}

~18

Paragon" U .. ,.. Guide Using Pthreads

}

max_thread = atoi(argv[l);

if (max_thread > MAXTHREAD) (
if(my_node == 0) {

}

}

printf("Error: 'd threads requested, must be 'd or less\n",
ma~thread, MAXTHREAD);

exit (1) ;

/* The main thread is the last thread alive, so don't count itself. */
thread_alive = max_thread - 1;

/* create and initialize a mutex to control access to "thread_alive" */
if(pthread~utex_init(&mutex, pthread __ utexattr_default) -= -1) {

perror("pthread_mutex_init Error");
}

/*
* Spawn threads and remember each thread's pthread ID.
* The main thread is indexed as thread o.
*/
thread [my_thread] = pthread_self();
for(index = 1; index < max_thread; index++) {

if(pthread_create(&thread[index), pthread_attr_default,

}

}

(void *)thread_fun, (void *)index) -= -1) {
perror("pthread_create Error");
exit(2) ;

/* loop until all other threads are finished. */
while(thread_alive 1= 0) {

pthread-yield();
}

/*
* Ignore other threads' exit status (can also be done right after
* pthread_create(».
*/
for(index = 1; index < max_thread; index++) {

pthread_detach(&thread[index);
}

printf("('3d, '3d, '3d) Done\n", my_node, my-ptype, my_thread);

8-19

Using Pthreads Paragon'" User's Guide

/***
* thread_fun() -- This is the initial function for new threads
**/
void thread_fun(int my_thread)
{

}

6-20

printf("('3d, '3d, '3d) Oone\n" , my_node, my-ptype, my_thread);

/*
* use mutex to protect global variable "thread_alive"
*/
if(pthread_mutex_lock(&mutex) DC -1) {

perror("pthread_mutex_lock Error");
}

thread_alive- - ;
if (pthread_mutex_unlock(&mutex) == -1) {

perror("pthread_mutex_unlock Error");
}

/* terminate (status is ignored) */
pthread_exit(NULL);

Assuming this program is called pthreods.c, use the following command to compile it:

To run this program with three pthreads per process on two nodes of your default partition, use the
following command:

, ptlu:eads 3 -S8 2

The results of this application run:

0, 0, 2) Done
1, 0, 1) Done
0, 0, 1) Done
0, 0, 0) Done
1, 0, 2) Done
1, 0, 0) Done

Note that the results may appear in a different order on each nm.

Paragon" Uee"a Guide Using Pthreada

Using Condition Variables to Synchronize Pthreads

Synopsis

int ptbread _ mild _lnit(
pthreacCconcU ·cond.
pthread_condattr_t attr);

int pthread _ mild_walt(
pthread_COll(U ·cond.
pthread_mutex_t ·mutex);

int ptbread _ cond _ timedwalt(
pthread_COIKCt ·cond.
pthread_mutex_t ·muta.
struct timespec ·obstime);

int ptbread_ moo _signal(
pthread_concCt ·cond);

int ptbread_ mild _ broadcast(
pthread_COIKCt ·cond);

int ptbread _mild _ destroy(
pthread_concCt ·cond);

Description

Creates a condition variable.

Waits on a condition variable.

Waits on a condition variable for a specified
period of time.

Wakes up a ptbread that is waiting on a condition
variable.

Wakes up all pthreads that are waiting on a
condition variable.

Destroys a condition variable.

The pthreads package provides condition variables to help you synchronize the execution of
pthreads. You can also synchronize pthreads by looping on the value of a variable. as shown in the
previous example. but using condition variables is more efficient. Condition variables use the
following objects:

• A muta (an object of type pthreod _ mutex _to as discussed under "Managing Mutexes" on page
6-16) that is used to protect the pthread condition variable and the global predicate variable.

• A condition variable (an object of type pthreDd _ cond _t) that links all pthreads waiting on a
panicular condition.

• A global predicate variable that indicates the current state of the condition. It could be a global
integer variable.

To create and initialize a condition variable. call pthread_mndJnlt(). This call creates a new
condition variable with the attributes specified by attr (typically the default condition attributes
object pthreod condJJttr default) and stores the new condition variable's ID into the variable - -
pointed to by condo The list of pthreads that are waiting on the new condition variable is initially
empty.

6-21

Using P1hreads

6-22

Paragon'" User's Guide

To wait for a condition. call ptbread _ coDd _ waitO. This call unlocks the specified mutex and blocks
until the specified condition is signaled by another pthread. When the condition is signaled, the call
re-Iocks the mutex and returns to the caller. ptbread_coDd_timedwaltO is similar, but if the
specified amount of time passes before the condition is signaled, the call re-Iocks the mutex and
returns an error condition. You must successfully lock the specified mutex before calling
pthread_ cood _wallO or pthread _ coDd _dmedwaitO, and you should unlock the mutex after the
call to pthread _ cood _ wallO or pthread _ cood _timedwallO returns.

To signal a condition. call pthread _ cond _sipalO or pthread _ cood _ broadc:astO.
ptbread_cood_signalO signals the specified condition to one of the pthreads that is waiting for it
(if more than one pthread is waiting for the condition to be signaled, the kernel selects one of them
arbittarily). pthread_coDd_broadcastO signals the specified condition to all of the pthreads that are
waiting for it. If no other pthread is waiting on the condition. these calls have no effect. No mutex
lock is required for these calls (but a mutex can be used to prevent certain race conditions; see the
example on page 6-25).

If a pthread calls pthread _ cond _ waltO after the specified condition has been signaled, that pthread
could wait forever. To prevent this problem, use a global predicate variable. This can be any
. variable that is visible to all pthreads. You use it as follows:

• Before calling pthread _ coDd _sigDalO or ptbread _ cood _ broadcastO, a pthread should set the
value of the condition's global predicate value to indicate that the condition has occurred. The
global predicate value should be protected by a mutex if there is any possibility that more than
one pthread could tty to set it at once.

• Before calling pthread_ coDd _ wait() or pthread _ cond _timedwallO. a pthread should check
the current value of the condition's global predicate variable. If the condition has already
occurred. the pthread should proceed without calling pthread _CORd _ waltO or
pthread _cood _timedwailO.

• After a successful call to pthread _cood _ waltO or pthread _ cond _ t1medwaltO, a pthread
should check the global predicate value to be sure it has the expected value. If the global
predicate variable does not indicate that the condition has occurred, the pthread should call
ptbread _ cood _ waltO or pthread_ cood _ timedwailO again.

The first example shown under "Examples of Condition Variables" on page 6-24 gives an example
of this technique.

When all pthreads have finished using a condition variable, you should remove it and release all
resources associated with it by calling pthread _ cond _ destroyO. You cannot destroy a condition
variable that is currently being waited on.

Paragon" Ueer'e Guide

Managing Condition Attributes

Synopsis

int ptbread _coDdattr_create(
pthread_condattct *anr);

int pthread _coDdattr _delete(
pthread_condattr_t ·anr);

~~~----~--

Using Pthreads 

DescrIption 

Creates a condition variable attributes object. 

Deletes a condition variable attributes ObjecL 

No condition attributes are currently defined. You can either use the default condition atttibutes 
object. pthread condattr iUfault. or create a condition attribute object for use in - -
ptbread _cood JDitO by calling pthread _coDdaUr _ c:reate(). A user-created condition attributes 
object should be released by calling ptbread _ condattr _ deIeteO. 



USing Plhreads Paragon"" User's Guide 

Examples of Condition Variables 

6-24 

The following example uses a mutex to protect the global predicate variable contI _true, which is 
used to prevent the signaling pthread from calling ptbread _ cond _slgnalO until the waiting pthread 
has called pthread _ cond _ waltO. Note that the call to pthread _ cond _sigDalO is within the mutex 
lock; this is not necessary, but can prevent certain race conditions. 

The pthread waiting for the condition executes the following code: 

if (pthread_mutex_lock(&mutex) == -1) { 
perror("pthread~utex_lock Error"); 

} 

/* 
* If the expected condition already exists, don't call 
* pthread_cond_wait(), since the condition signal will not be 
* sent if no threads are waiting for this condition. 

* 
* Recheck the state of cond_true after calling 
* pthread_cond_wait() to ensure that the received condition 
* signal is for this expected state change. 
*/ 
while(lcond_true) { 

} 

/* 
* mutex will be unlocked in pthread_cond_wait() when 
* calling thread is ready to wait. 
*/ 
if (pthread_cond_wait(&cond, &mutex) -1) { 

} 

/* 

perror("pthre~d_cond_wait Error"); 
break; 

* mutex will be locked again when the calling thread 
* is awakened. 
*/ 

if (pthread_mutex_unlock(&mutex) == -1) { 
perror("pthread~utex_unlock Error"); 

} 



The pthread signaling the condition executes the following code: 

if(pthread_mutex_lock(&mutex) -- -1) ( 
perror("pthread __ utex_lock Error"); 

} 

/* This global variable needs a mutex's protection. */ 
++cond_true; 

/* 

Using Pthreads 

* The pthrea~cond_signal() call does not use a mutex internally. 
* The mutex protection will guarantee that every thread can 
* catch the expected condition signal once it calls 
* pthrea~cond_wait(). This will prevent the endless block of 
* the calling thread. 
*/ 
if (pthread_cond_signal(&cond) -- -1) ( 

perror("pthread_con~signal Error"); 
} 

if(pthread __ utex_unlock(&mutex) -= -1) { 
perror ("pthread_mutex_unlock Error"); 

} 

Here's another example, which uses ptbread_ cunei _ broadcastO to wake up all waiting pthreads. 

/* 
* Simulate a thread-level gsync() to synchronize all active 
* threads at a barrier. A counter in this example can only be 
* used once. 
*/ 

long 
long 
pthread_mutex_t 
pthread_cond_t 

cond_gsync; 
max_thread; 
mutex; 
cond; 

/* counter of threads arrived */ 
/* number of active threads */ 

void thread_gsync(long *cond_gsync) 
( 

if(pthread_mutex_lock(&mutex) -- -1) ( 
perror(npthread_mute~lock Error"); 

} 

/* Increase the count of threads that have called 
thread_gsync() */ 

*con~gsync++; 

6-25 



Using Plhraads 

~26 

} 

Paragon 111 User'S Guide 

if(*cond_9sync == max_thread) { 
/* 
* If I'm the last thread to call thread_9s ynC(), 
* wake up all threads waitin9 on this condition. 
*/ 
if(pthread_cond_broadcast(&cond) == -1) { 

perror("pthread_cond_broadcast Error"); 
} 

} else { 

} 

while(*cond_9sync != max_thread) { 
/* 

} 

* Other threads haven't called thread_9sync() yet, 
* so wait for them in pthread_cond_wait(). 
*/ 
if(pthread_cond_wait(&cond, &mutex) == -1) { 

perror("pthread_cond_wait Error"); 
break; 

} 

if(pthrea~utex_unlock(&mutex) a= -1) { 
perror("pthread~utex_unlock Error"); 

} 

main ( ) 
{ 

/* 
* Initialize counter and the condition that counter 
* will meet. 
*/ 
max_thread = atoi(argv[l]); /* threads to create */ 
cond_9sync = 0; /* init counter */ 

if(pthread_cond_init(&cond, 

} 

pthread_condattr_default) == -1) { 
perror("pthrea~cond_init Error"); 

if(pthread_mute~init(&mutex, 

} 

pthread_mutexattr_default) == -1) { 
perror("pthread_mutex_init Error"); 

• 
• 
• 



Paragon" U.r'a Guide 

} 

/* Create more pthreads */ 
• 
• 
• 

/* Every thread calls thread_gsync() once */ 
thread_gsync(&cond_gsync); 

Using Pthreads 

/* Every thread passes this barrier at the same time */ 

Here's an example using ptbread _ cond _ tlmedwaltO: 

#include <sys/timers.h> 

long interval = 10; 

struct timespec abs_time; 

/* Get the current time */ 
getclock(TlMEOFDAY, &abs_time); 

/* 

/* 10 seconds interval */ 

* Can use another member of structure time spec to specify the 
* waiting interval in nanoseconds. But the resolution cannot be 
* smaller than the interval between updates of the system clock. 

* 
* The wait time should not be so small that the 
* absolute time specified is smaller than the 
* time spent inside the pthread_cond_timedwait() call. 
*/ 
abs_time.tv_sec K abs_time.tv_sec + interval; 

if(pthread __ utex_lock(&mutex) -= -1) ( 
perror("pthread_mutex_lock Error"); 

} 

while(lcondition) ( 
if(pthrea~con~timedwait(&cond, &mutex, &abs_time) -= -1) ( 

/* EAGAIN is the timeout error code. */ 

} 

} 

if(errno 1= EAGAIN) ( 
perror("pthread_cond_timedwait Error"); 

} 

break; 

if (pthread __ utex_unlock(&mutex) -- -1) { 
perror("pthread __ ute~unlock Error"); 

} 

6-27 



Using PIhr8ads Paragon'" User's Guide 

Canceling Pthreads 

6-28 

Synopsis 

int pthread _cancel( 
pthrea,U thread ); 

int pthread _ setcanceI( 
int state); 

int pthread _ setasynccancel( 
int state); 

Description 

Requests cancellation of a pthread. 

Enables or disables the general cancelability of 
the calling pthread. 

Enables or disables the asynchronous 
cancelability of the calling pthread. 

Creates a cancellation point in the calling pthread. 

The pthreads package includes a pthread cancellation mechanism that allows a pthread to terminate 
the execution of other pthreads. The call pthread _ cancelO requests cancellation of the specified 
pthread; however. the specified pthread may terminate later or not at all. depending on its 
cancelability states. 

Cancelability States 

Each pthread has two cancelability states that determine how it reacts to cancellation requests. Each 
of the two states can be set to the value CANCEL_ON (enabled) or CANCEL_OFF (disabled). 

• If general cancelability detennines whether or not the pthread can be canceled: 

If general cancelability is enabled, cancellation requests are accepted. Cancellation may or 
may not occur immediately. depending on the asynchr01lOUS cancelability state. 

If general cancelability is disabled, cancellation requests are queued until general 
cancelability is enabled again. 

, General cancelability is enabled by default; a pthread can change its general cancelability state 
by calling pthread _setcancelO. 



Paragon" U .... Guide Using Pthreads 

• When general cancelability is enabled. a second cancelability state called asynchronous 
concelobility determines how quickly the cancellation occurs: 

If asynchronous cancelability is enabled. when a cancellation request is received the 
pthread begins termination immediately. 

If asynchronous cancelability is disabled. when a cancellation request is received the 
pthread does not begin termination until it reaches a cancellation point. The default 
cancellation points are calls to ptbread _ cond _walt(). ptbread _ cond _ timedwaitO. 
ptbread JoinO. and ptbread _seteancel(CANCEL _ON). A pthread can also create an 
explicit cancellation point by calling ptbread _ testamceiO. which otherwise does nothing. 

Asynchronous cancelability is disabled by default; a pthread can change its asynchronous 
cancelability state by calling ptbread _ setasynccanceiO. 

NOTE 

Asynchronous cancelability should not be enabled in the current 
release. 

Asynchronous cancellation of cenain ptbreads. particularly pthreads performing file 110. can cause 
the entire application to hang. 

NOTE 

You must be careful not to cancel a pthread that is holding a mutex 
lock. 

Canceling a pthread that is holding a mutex lock leaves the mutex locked with no way to unlock it. 
possibly resulting in deadlock. For example. a pthread calling prlntf() will get a mutex lock inside 
the reentrant C library. A cancellation of this pthread during the call to PrintlO will cause all other 
pthreads calling printfO to deadlock. 

6-29 



Using Plhreada 

6-30 

. Paragon" User's Guide 

Functions such as printf(), which can cause deadlock if they are canceled, are called not safe to 
cancel. 

NOTE 

Most library functions are not safe to cancel. 

In particular, all of the calls inlibnx.a are not safe to cancel. The list of functions that is safe to cancel 
can be found in the pthread _ setasynccanceiO manpage in the OSFll Programmer's Reference. 

Cancellation Examples 

Here's an example of changing a pthread's cancelability states: 

/* flip the general cancelability of the calling thread */ 
if (pthread_setcancel(CANCEL_ON) == -1) { 

perror(ftpthread_setcancel Errorft); 
} 

if (pthread_setcancel (CANCEL_OFF) == -1) { 
perror(ftpthread_setcancel Error"); 

} 

/* flip the asynchronous cancelability of the calling thread */ 
if (pthread_setasynccancel(CANCEL_ON) == -1) { 

perror(ftpthread_setasynccancel Errorft); 
} 

if (pthread_setasynccancel(CANCEL_OFF) == -1) { 
perror("pthread_setasynccancel Errorft); 

} 



Using Pthraads 

Here's an example of delivering and accepting cancellations: 

threa~id; /* value from pthread_create() call */ 
• 
• 
• 

/* 
* Cancel another thread whose pthread ID is "thread_id". 
*/ 
if (pthread_cancel(thread_id) -- -1) ( 

perror("pthread_cancel Error\n"); 
} 

• 
• 
• 

/* 
* If a cancellation request is already posted, this call will 
* not return. 
*/ 
pthrea~testcancel(); 

/* Execution continues if no posted cancellation request */ 

&31 



Using Pthreads Paragon no User's Guide 

Pthreads Cleanup Routines 

SynopsiS 

void pthread _cleanup..POP( 
int execute ); 

. void pthread _cleanup JHISb( 
void (*routineXvoid *arg), 
void *arg); 

Description 

Removes a routine from the top of the cleanup 
stack of the calling ptbread and optionally 
executes it. 

Pushes a routine onto the cleanup stack: of the 
calling pthread. 

Pthreads may have resources that must be released before the pthread terminates. Each pthread can 
create a list of cleanup routines, called the cleanup stack, to release those resources. The routines on 
the cleanup stack are called, in order from top to bottom, when the pthread terminates for any of the 
following reasons: 

• Returning from its initial function. 

• Being cancelled by another pthread. 

To place a function on the cleanup stack, call pthread _cleanup JJushO; to remove the top function 
from the cleanup stack. call pthread _cleanup JlOPO. You can optionally execute the function as it 
is popped. Every call to pthread _cleanup JJusbO must be matched with a ptbread _cleanup"popO 
call in the same lexical scope (that is, within the same set of" { .•. }" braces). 

If general cancelability is enabled. whenever a pthread allocates a resource it should push a function 
that deallocates that resource onto the cleanup stack; when the pthread is finished with the resource 
it should deallocate it by popping the function off the cleanup stack and executing it. This ensures 
that all resources are accounted for if the pthread is cancelled. 



Paragon" U.,.. Guide 

Managing Pthread Keys 

Synopsis 

int ptbread _ keyc:reate( 
pthre~"Ucey_t *kLy, 
void (*destructorXvoid *value»; 

int pthread _ setspedfic( 
pthrea(Ucey_t key, 
void *value ); 

int ptbread .-Ietspedfle( 
pthread_key_t key, 
void **value); 

Using Pthreads 

Description 

Creates a key to be used with pthread-specific 
data. 

Binds a pthread-specific value to a key. 

Returns the value bound to a key. 

The pthreads package provides pthreod-specijic data objects to associate infonnation with 
individual pthreads. Each pthread-specific data object is comrolled by a key (an object of type 
pthread jrey _t). A pthread creates a new key by calling ptbread _keyereate(), associates the key 
with a pthread-specific data object by calling ptbread _ setspedllc(), and then retrieves the data 
associated with the key by calling ptbreadJtSPedllc(). See the OSFll Programmer's Reference 
for more infonnation on these calls. 



Using Plhreads Paragon" User's Guide 

Executing a Routine Once 

Synopsis 

int ptbread _once( 
pthread_once_t *once _block, 
void(*routine)O ); 

Description 

Calls an initialization routine. 

The ptbread _ once() call executes the specified routine the first time it is called (from any pthread), 
and does nothing every subsequent time. The parameter once _block must be declared as static. For 
example: 

void lib_util_init() { 
/* perform some initialization that can only be done once */ 

} 

• 
• 
• 

/* 
* Every pthread calls pthread_once(), but only the first one 
* executes lib_util_init(). 
*/ 
if (pthread_once(&init_once, lib_util_init) -1) { 

perror("pthread_once Error"); 
} 

Managing Signals 

Synopsis 

int sigwait( 
sigseu * set ); 

Description 

Suspends the calling pthread until one of a 
specified set of signals is received. 

The sigwaitO call is used to tum asynchronous signals into synchronous notifications. Before calling 
sigwaitO. you must create a signal set, using the standard signal calls sigemptysetO, sigfIIlset(), 
sigaddsetO. and sigdelsetO. and then block the signals in that set from being delivered. When you 
call slgwaitO with that signal set. the calling pthread is suspended until one or more of the signals 
in the set is received by the process containing the pthread. If one of the specified signals was 
received (and blocked) before the call to sipaitO. the call returns immediately. sigwaitO returns 
the signal number of the signal that was received. 



Paragon" U.r'. Guide Using Pthreada 

The sigwaitO call only works for asynchronous signals (those that are generated externally from the 
pthread, such as those generated by IdUO in other processes or by the user pressing < cul. - \ > ). 
Contrast this with slpctionO, which only works for synchrtRlOUS signals (those that are generated 
as the result of the pthread's faults, such as SIGBUS). If both sigadionO and sigwaitO are used on 
the same signal, the results are unspecified. 

NOTE 

In a parallel application, sending an asynchronous signal to an 
application's controlling process affects the controlling process (as 
specified by the controlling process's signal mask), and also 
causes the Signal to be broadcast to the compute processes. In an 
application linked with -nx, the controlling process's signal mask 
is always the default. 

See "Signals and Pthreads Ubrary Calls" on page 6-39 for more information on signals in 
applications with multiple pthreads. 

Here's an example that uses sigwaitO to deal with the asynclmnous signal SIGQUIT. This example 
uses a parent process to generate the asynchronous signal by calling klDO. 

long sig; 
long ret; 

sig = SIGQUIT; 

pid - fork(); 

if (pid == -1) { 
perror("fork()"); 
exit(1) ; 

} else if(pid !- 0) { 

} 

/* parent process */ 
sleep(2) ; 
/* 
* Deliver the signal SIGQUIT to child process. 
*/ 
if(kill(pid, sig) -- -1) { 

perror( "kill "); 
exit(1) ; 

} 

exit(O) ; 



Using PIhreads 

. /* child process * / 
if(sigemptyset(&set) !- 0) { 

perror("sigemptyset"); 
} 

/* Add the signal SIGQUIT to the signal mask */ 
if (sigaddset(&set, sig) != 0) { 

perror("sigaddset"); 
} 

/* Block the signal SIGQUIT from delivery */ 
if (sigprocmask(SIG_BLOCK, &set, NULL) 1- 0) { 

perror("sigprocmask()"); 
} 

/* 

. Paragon 1M User's Guide 

* During the next 10 seconds, the posted signal from the 
* parent process becomes a pending signal. 
*/ 
sleep(10); 

/* 
* sigwait() blocks the calling thread until the specified signal 
* arrives, then unblocks and returns the value SIGQUIT. 
*/ 
if«ret = sigwait(&set» == -1) { 

perror("sigwait()"); 
} else { 

printf("Received signal 'd, expected 'd\n", ret, sig); 
} 

/* 
* The thread can decide what to do with this signal. 
*/ 

/* 
* There is no destructive default action of core dump on the 
* posted signal SIGQUIT. 
*/ 



Using Pthreads 

Interfacing with Non-Thread-Safe Code 
Whenever you call a non-tbread-safe library from a process with multiple pthreads. you must make 
sure that no two pthreads call the same lilrary at the same time. There are two ways do this: 

• Make sure that only one ptluead ever calls the library. 

Use mutexes to protect all calls to the library. 

Here's an example of the second teclmique: 

pthread __ utex_lock(&mutex); 
non_thread_safe_call ( ) ; __ 
pthread_mutex_unlock(&mute~); 

Note that the same mutex must be used by all pthreads for any calls from the same lilrary.1f all calls 
to the non-tluead-safe litnry are surrounded by a lock and unlock of the same mutex. as shown here. 
any pthread that calls the library while another ptbread is currendy calling it will block until the other 
ptbread returns and unlocks the mutex. See "Managing Mutexes" on page 6-16 for more information 
onmutexes. 

Message Passing and Pthreads Library Calls 
Paragon OSF/l message-passing is done on a process-by-process basis. All message-sending calls 
specify the recipient by node and process type; there is no way to specify a particular pthread within 
that process (all the threads in a process have the same process type). Similarly. when a message 
mives at a process. there is nothing to prevent confusion among pthreads; for example. a pthread 
could probe for a message. find a pending message of the specified type. and then attempt to receive 
it-only to find that another pthread has already received it. For this reason. you should make sure 
that only one pthread in each process uses message-passing calls. 

You should also keep the following special considerations in mind when using message-passing and 
pthreads in the same application: 

• Blocking calls. such as cseadO. only block the calling pthread. not the entire process. While the 
calling pthread is blocked. other ptlueads can continue to run. The pthread that is blocked 
releases processor resources until the cseadO returns. 

• When the message-passing pthread uses one of the global calls (those described under ''Global 
Operations" on page 3-27). the call blocks until the message-passing pthread on every other 
node makes the same call. If one of those message-passing pthreads is blocked (for example, by 
a mutex lock). the operation will hang all the message-passing ptbreads in the application. 

6-37 



Using Plhreada Paragon 111 User's Guide 

• An bsendOIhrecvO handler cannot use calls from libpthreads.a or Ubc J.a (note that libc J.a 
includes almost the entire C library). Using these calls within a handler can give unexpected 
results or cause the handler to hang. If you need to use any of these calls. you can have the 
handler use csendO to send a message to the main message-passing pthread to carry out the 
desired operation. 

• Because an hsendOIhrecv() handler cannot use calls from Ubc J.a. if a call to libnx.a within a 
handler fails. it could also hang the handler. This occurs because the failed library call will call 
printfO to print out the error message. To avoid this problem. use only underscore calls within 
bsend()lhrecvO handlers. 

• An bsendO/brecvO handler also should not use the info_O calls. Because the handler executes 
concurrently with the main message-passing pthread. the info ... O calls may return values 
representing messages received by the main message-passing pthread. The main 
message-passing pthread can use masktrap() to protect critical regions from the handler. 

• If an bsend()lbreevO handler peIforms any message passing. you must put masktrapO calls 
around any message-passing calls in the main message-passing pthread that could be called 
while the handler is active. Otherwise. any info_O calls in the handler could reflect the value 
of a message received by the main message-passing pthread. 

In addition. any info. .. O call in the main program must be within the same set of masktrap() 
calls as the message-receiving call to which it applies. Otherwise. the info ... O call in the main 
message-passing pthread could reflect the value of a message received by the handler. 

File 1/0 and Pthreads Library Calls 
In general. opened files are per-process resoUItes. A pthread can open a file. a second pthread can 
use the open file descriptor to write or read. and a third pthread can use the same file descriptor in 
an IseekO call. The movement of file pointers is visible to all pthreads. so if multiple pthreads are 
accessing the same file they must coordinate their actions with mutexes or condition variables. 
However. blocking calls such as readO and cwrlte() only block the calling pthread. not the entire 
process. 

If two pthreads doing file I/O read and write concmtent1y. they can each read and write their own 
data independently. If you are perfonning I/O to a file in a synchronized PFS I/O mode (see "Using 
I/O Modes" on page 5-13). the synchronization information is stored with the file descriptor, each 
file is synchronized independently. 

See "Recommended Safe Operating Environment" on page 6-4 for limitations on using I/O calls 
from multiple pthreads. 



Paragon- Ueer'8 Guide Using Pthreads 

nx_nforkO and nx_initveO and Pthreads Library Calls 
In a conttolling process with multiple pthreads: 

oJnltveO 

Copies only the calling ptbread to the new process on each node. Can only be 
called from one pthread. 

If the user's shell is the Bourne shell (sh), axJnltveO performs a forkO 
inremally. As described under "Using Reentrant C Ubrary Calls" on page 
6-6, forkO copies only the calling pthread to the new process. This means that 
if there are multiple pthreads in the calling process before the call to 
0_ inltveO, after the 0 _lnltveO all pt:hreads except the calling pthread will 
appear to cease to exist (If the user's shell is ksh or csb, this problem does 
not exist) 

0_ inltveO can be called at most once in a process. This means that at most 
one pthread in a process can call it 

Signals and Pthreads Library Calls 
The following special considerations apply to signals in programs with multiple pthreads. 

Signal Types 

There are two types of signals: synchronous and asynchronous: 

• Synchronous signals are caused by a pthread's own actions, such as when a pthread divides by 
zero (causing a SIGFPE signal) or attempts to access memory outside its address space 
(causing a SIGSEGV signal). 

• Asynchronous signals are caused by something external to the pthread, such as another process 
callingkOlO or the user pressing (ctrl-\> on the keyboard (causmga SIGQUIT signal). 

If a pthread causes a synchronous signal, the handler routine executes in the context of that ptluead 
only. If an asynchronous signal is delivered to a process, the handler routine executes in the context 
of the main thread. 

6-39 



Using PIhreada paragon'" User's Guide 

Signals are a Per-Process Resource 

6-40 

Signals are generally managed as per-process objects in pthreads programs. Signal masks. signal 
handlers. and signal sending and receiving are all oriented toward the process. not toward a 
particular pthread. This means that signals affect the entire process. Of particular interest: 

• A SIGSTOP signal stops all pthreads of the receiving process. 

• A SIGCONT signal continues all pthreads of the receiving process. 

• If one pthread of a program with multiple pthreads causes a SIGSEGV or SIGBUS. the entire 
process (not just the faulting pthread) receives the signal. If this signal has not been handled. all 
pthreads are killed and the program core dumps. 

Which pthread is interrupted to execute a registered handler for a signal may be specific to the type 
of signal. but in general the entire process receives the signal. 

It is important to be aware that a pthread program's signal mask has a per-process visibility. In other 
words. all pthreads share the same mask. If one pthread changes its mask (for example. by calling 
slgpl"OClDaSkO> the change affects all pthreads. The thread-safe sigwaitO requires manipulation of 
the signal mask. as does sigactionO and other common signal-management routines. 

Along with the signal mask. signal handlers are also process-wide objects. A signal handler can be 
registered for the process (for example. by calling sigactionO orsigwaitO) by any pthread. Because 
the handlers are process-wide objects. a second pthread registering a handler for a given signal will 
override the handler registered by the first pthread. 

In general. blocking calls only block the calling pthread. This is the case with sigsuspendO as it is 
with waitO. sleep() etc. Note also. that if multiple pthreads are blocking on sigsuspendO for a given 
signal. all pthreads will continue when that signal arrives. This differs from sigwait() which 
unblocks only one of the pthreads. 

sigwaitO creates a hidden pthread which manipulates the process's signal mask and registers a signal 
handler for each signal sigwaitO has been asked to wait for. Because of this. use of other signal 
management calls (especially sigactionO> on the signals being waited for. would be hazardous. Care 
must be taken when changing a signal mask so the state of a sigwaitOed signal's bit is not changed. 



Paragon 1M Uaer's Guide Using Pthraads 

Dealing with Signals 

A way to deal with signals in a pthread application is the following: 

• Use sIpctionO to catch the synchronous signals. sigaction() only works with synchronous 
signals. 

• Use sigprocmaskO to block the asynchronous signals, then sigwaitO to receive the signal as a 
notification. sigwaitO only works with asynchronous signals. 

Do DOt use sigwaltO and sigaction() on the same signal. 

Handling Errors 
The handling of error situations in a program with multiple pthreads should be robust and graceful. 
It should proteCt the pthreads that did not cause the error from being interrupted or tennina1ed. It also 
should give information on which pthread caused the error and coordinate a proper shutdown of all 
pthreads if the error is fatal. If the error cannot be recovered from by the pthread causing the error, 
and other pthreads are depending on this pthIead to progress, it might be best to terminate those 
pthreads right away and shut down the rest of the pthreads later. 

errno Confusion 

In a single-threaded program. the global variable ermo is set to an error value when a system or 
lilnry call fails. An immediate call to perror() or ox JKft'Or() will read the value of errno and print 
out the error message corresponding to its cmrent value. User-written code may also set errno to take 
advantage of this standard error-handling mechanism. 

In a program wit h multiple pthreads, the global ermo variable is replaced by a per-pthread errno. 
When a failing system or library call sets the per-pthread errno, the other pthreads' errnos are not 
affected. The selection of per-pthread or per-process errno is determined at compile time by the 
preprocessor symbol_REENTRANT: 

• If _REENTRANT is defined at the point the file <ermo.h> is included, the symbol ermo 
refers to the per-pthread errno. 

• ~se, the symbol errno refers to the global (per-process) ermo. 

The symbol_REENTRANT is defined in <pthread.h>. However, because some programs include 
other header files before <pthread.h>, you should always use the switch·D _ REENTRANT on the 
command line when compiling a program that uses multiple pthreads. This symbol ensures that the 
correct versions of call prototypes and preprocessor symbols are pulled in from header files. 

6-41 



Using Plhreads ·paragon 1M USer'S Guide 

In the current release. the libraries provided with Paragon aSF/! are not consistent in their use of 
the two different errnos: 

• libpthreads.a sets and references only the per-pthread errntJ. 

• libe J.a sets both the global and the per-pthread errntJ. but only references the per-pthread 
errno. 

• All other libraries set and reference only the global emw. 

This creates an inconSistency of different errnos between pthreads programs and most libraries. For 
example.libnx.a uses the global emw. This means that if a call to libnx.a fails in a program compiled 
with _REENTRANT. the errno value it returns is not usable by the calling pthread. The library call 
sets the global variable emw. but the calling pthread can see only its own pthread-specific errno 
(whose value does not reflect the error in the libnx.a call that just failed). 

In general. this means that code compiled with _REENTRANT cannot use errno values returned 
by non-thread-safe libraries. However. because some non-thread-safe libraries make calls to the 
standard C library. some errno values are usable. For example. creadO (in the non-thread-safe 
lilrary libnx.a) calls readO. If you link with libe J.a. any error that occurs in readO will be reflected 
in the per-pthread errno and will be visible to the calling pthread. But any error that occurs in the 
creadO call itself (before or after the call to readO) will not be visible to the calling pthread. 

perrorO and nX.J)errorO 
The perror() and nx JK!ITOr() calls print an error message based on the following versions of erma: 

• The penoor() call in libe.a uses the global errntJ. 

• The penoor() call in libe J.a uses the per-pthread emw. 

• The ox.JMftOl'O call in libnx.a uses the global emID. 

Because nx .JMftOI'O is not a thread-safe call. you should be sure to protect it with a mutex so that 
no two pthreads can call it at once. 

Calling exitO 

6-42 

Calling aitO when an error occurs terminates the entire process and closes any opened files. For 
this reaso~ it's a bad idea to call aitO on an error returned from a system call inside a pthread. 
Instead. you should call pthread _ aitO to terminate the failing pthread and return a value indicating 
failure to the pthread that calls pthread JoinO. The pthread that calls pthread Join() should use this 
information to shut down all other pthreads properly. 



Paragon" Ueer'a Guide Using Pthraada 

Use of Underscore Versions of Paragon System Calls 

The standard versions of most Paragon system calls in libnx.a terminate the calling process when an 
error occurs and send a message to standard error describing the error. For example, isendO will call 
ax....IJem)r() to print out the error message, then call exit() to terminate the process. This implies that 
if a pthread causes an error in an isendO call, this error will kill the rest of the pthreads in the process. 
If this error occurs inside a hseDdO and breevO handler routine, it will bang the handler routine. 

For this reason, in programs with multiple pthreads you should always use the underscore versions 
of these calls instead. For example, calling _ iseDdO will return -1 and set the global errno in case of 
error, instead of terminating the process. The calling pthread can then use this infonnation to shut 
down the rest of the pthreads cleanly. See "Handling Errors" on page 4-42 for more information on 
underscore calls. 

Catch Signals Causing Core Dump by Default 

The default action for the signals SIGFPE (floating point exception) and SIGSEGV (segmentation 
violation) is to core dump, terminate the process, and terminate the application. This will also kill 
all pthreads in the application. 

When this occurs, you want to be able to figure out which pthread was responsible for this problem. 
For synchronous signals, the best way to do this is to install a signal handler to catch them and print 
out the pthread ID when the signal is received. For asynchronous signals, use sigwait() to catch them 
and then terminate all pthreads gracefully. 

When One Pthread Hangs 

When debugging a program with multiple pthreads, always keep track of every active pthread, as 
much as possible, to detect the hang of a single pthread. Knowing which pthread has hung will help 
you determine the cause of a program hang. 

;,;, 



Using Pthraada Paragon'" User's Guide 



Designing a Parallel Application 

Introduction 
This chapter describes some general design guidelines to follow when writing parallel applications. 
However, the best way to become skilled in parallel programming is to do it With that in mind, this 
chapter presents three examples of parallel applications. Each example is intended to illustrate a 
different aspect of parallel design technique. 

• The first example is a nearly-perfectly-parallel application that evaluates a definite integral to 
calculate 2t. This example illustrates how a sequential application can be potted to a parallel 
system with minimal effort. Much of the sequential algorithm can be maintained. The parallel 
design consists of separating the user interface from the core computation and then distributing 
that core computation onto the nodes. 

• The next example is the multiplication of a matrix by a vector. In addition to the lDlDleriCal 
technique, this example illustrates the use of parallel file 110 by assuming a matrix that is too 
large to reside entirely in memory. 

• The third example solves a classic computer science problem called the N-Queens problem. 
Given a chess board with N x N grid locations, where can you place N queens so that no queen 
is under attack? This example illustrates a technique called control decomposition. This 
technique also appears in more complicated real-world applications such as electronic design 
rule checking. 

7-1 



Designing a ParaDe! Application Paragon 1M User's Guide 

The Paragon TM OSF/1 Programming Model 
As described in Chapter I, the Intel supercomputer is a distributed-memory parallel computer with 
a high-speed interconnect networlc. The following characteristics of the system should be kept in 
mind when designing or porting applications: 

• The system is made up of an ensemble of processor/memory pairs called notUs. The nodes do 
not share memory. They present a single system image (for example, a process running on one 
node can send a signal to a process numing on another node), but the nodes operate 
independently of each other. 

• All the nodes are fully connected. They communicate with each other and the host by passing 
messages. 

• Each node executes its own program. In many applications, it turns out that each node executes 
the same program on a different set of input data. There may be some conditional code that 
identifies one or more nodes that perform special actions. 

These characteristics influence the design of parallel applications, as described in the remainder of 
this chapter. 

Parallel Programming Techniques 

7-2 

Parallel applications have varying degrees of parallelism. A perfectly-parallel application is one that 
requires no internode communication. In a perfectly-parallel application, if you double the number 
of nodes, you halve the computation time. 

Most applications involve a mix of computation and internode communication; in these applications, 
increasing the number of nodes reduces the computation time, but can never yield a "penect" 
speedup. The more time a program spends communicating instead of computing, the less speedup 
you get by adding nodes. 

In order to get the best possible speed from a parallel program, you must design it so that each node 
spends as much time as possible computing, and as little time as possible communicating (or waiting 
for communication). Here are some techniques that can help you to do this: 

• Separate the user interface from the computational parts of the code. 

• Distribute the computation among the nodes so that their computational load is evenly balanced. 

• Write your application so that you can run it on more nodes, thus improving perfonnance. 
without having to recode. 

• Design yourintemode communication such that the nodes spend as little time in communication 
(or waiting for communication) as possible. 

The following sections tell you more about these techniques. 



Paragon- U.I'. Guide Designing a ParaHei Application 

Separating the User Interface from the Computation 

To have each node do as much computation. and as little non-computational work. as possible, you 
should analyze the algorithm and separate the user interface from the computational kernel. You can 
designate one of the nodes to handle the user inteIface, or put the user inteIface in the application's 
controUing process (see "The Controlling Process" on page 4-21 for information on this process). 
In either case, the part of the program that handles the user inteIface and the pan of the program that 
does the computation communicate by passing messages. 

In the 1t example, node 0 requests the number of integration intervals from the user. It then sends that 
number to the other nodes, and all the nodes do the calculation. 

Balancing the Load 

You should keep all the nodes busy and have them finish at the same time, because if some nodes 
have to wait for others to finish, they're wasting cycles doing nothing. Analyze your application and 
distribute the computation among the nodes so that their computational load is evenly balanced. 

The process of distributing a problem among the nodes is referred to as problem decomposition, or 
just decomposition. There are two kinds of decomposition: domtJin decompoSition and control 
decomposition. 

Domain Decomposition 

In domain decomposition, the input data (the domain) is partitioned and assigned to different 
processors. How you divide and distribute the data among the nodes can have a significant effect on 
the efficiency of your application. 

For example. consider an application that performs image enhancement (see Figure 7-1). Because 
some pans of the image may be more detailed than others. they will require more processing. The 
shaded portion of Figure 7-1 shows the work done by node O. If you divide the image sequentially 
among the nodes. as shown in the top half of Figure 7-1, some nodes may get a partition that requires 
a lot of wolk and other nodes may get a partition that requires little or no work. In the top half of 
Figure 7-1. node 0 gets a lot of work and node 7 gets no work at all. This is inefficient. 

You can often achieve better load balancing by dividing the image into smaller partitions and then 
distributing the partitions sequentially among the nodes. as shown in the bottom half of Figure 7-1. 
This is analogous to dealing out the partitions like cards in a deck; it spreads out the work more 
evenly among the nodes. As the bottom half of Figure 7-1 shows. each node gets some slices that 
require a lot of wolk, some slices that require a moderate amount of work. and some slices that 
require no work. This is more balanced and efficient for this type of problem, and may be appropriate 
for your problem as well. 

7-3 



, Designing a ParaUeI Application 

Poor load balancing: Nodes 0 through 3 get most of the work. 
Nodes 4 through 7 have little or nothing to do. 

o 1 2 3 4 5 6 7 

Good load balancing: The partitions in the domain are dealt out to 
the nodes like cards from a deck. Now, each node has 
approximately the same amount of work. 

1 
2 

3 
4 

5 
6 

7 

1 
2 

3 
4 

5 
6 

7 

1 
2 

3 
4 

5 
6 

7 

1 
2 

3 
4 

5 
6 

7 

1 
2 

3 
4 

5 
6 

7 

1 
2 

3 
4 

5 
6 

7 

1 
2 

3 
4 

5 
6 

7 

1 
2 

3 
4 

5 
6 

7 

Figure '·1. Using Domain Decomposition to Aehieve Load Balancing 

Paragon'" User's Guide 



Paragon" Ueer'. Guide Designing a Parallel Application 

Control Decomposition 

Control decomposition. on the other hand, divides the tasks to be performed rather than the data. For 
many problems, this is a more natural decomposition. 

For example, consider a tree-search used in a game-playing algorithm. Assume that you're at some 
mid-level of the tree. You could approach the problem as a domain decomposition and divide the 
Cwrent branches among the nodes. Each node would then follow its branch down to the leaves and 
then return the leaves as an answer. TIle leaves in this case are the possible moves. Depending on 
the Cwrent state of the game, some of the branches may be quite involved and require a great deal 
of processing. Other tnnches may be simple. The result is that some nodes finish before others. This 
is a poor problem decomposition. 

Approaching this problem as a control decOmposition achieves better load balancing. In a control 
decomposition. you think of the branches not as data partitions but rather as tasks that need to be 
performed. 

To manage these tasks, you have to introduce a little bureaucracy. Assign one node as a manager 
node. This manager node then gives tasks to idle nodes. When the node finishes a task, it reports its 
answer and requests another task. It's this ''reporting for duty" that characterizes a control 
decomposition. 

The manager node must, of course, do some initial setup. For example, it may follow the tree down 
until the number of branches exceeds the number of available nodes by some predetermined factor. 

This method produces the best results when the tasks assigned near the end of the problem are about 
the same size. For example, if one of the last tasks assigned was a very long task, the other nodes 
may be idle while that last node finishes. 

The N-Queens example (presented later in this chapter) shows control decomposition. 

Making the Program Independent of the Number of Nodes 

You should write your application so that you can run it on more nodes, thus improving 
performance, without having to recode. 

This method also turns out to be the most natural one to use when porting an existing sequential 
application. After you've separated the user interface from the core computation. you still have a 
sequential algorithm, but you can think of it as the special case of an application that runs on one 
node. Once you have done this. you can parallelize the computation part for an arbitrary number of 
nodes. 

The 1t example illustrates this technique. The rmmber of nodes appears only as the variable nodes. 

7-5 



Designing a Parallel Application . Paragon'" User's Guide 

Designing Your Communication Strategy 

7~ 

Your should design your internode communication such that the nodes spend as little time in 
communication as possible. 1bis may involve running some tests to determine an optimal message 
length. Often, you can decrease the number of messages by increasing the size of each message. You 
may also be able to improve communication performance by using asynchronous message-passing· 
calls, as described under "Asynchronous Send and Receive" on page 3-10. 

Using Global Operations 

You should use the global operations, described under ''Global Operations" on page 3-27, when 
possible. That section described a simple example of a global sum. Using gdsumO results in a 
significant improvement over having one node perform the global sum by explicitly collecting all 
the panial sums. Also, after the execution of the gdsum(), the global sum is available on each node. 

The matrix*vector example in this chapter uses another global operation called gcolx(). In that 
example, a large vector is distributed over the nodes. gcolxO collects the components from each 
node and constructs the complete vector on each node. As with gdsumO, the answer is available on 
each node. . 

Using Alternate Node Topologies 

The nodes in the Intel supercomputer are connected in either a hypercube or a mesh network. 
However. because of the specialized message-passing hardware in both architectures, 
communication with distant nodes is nearly as fast as communication with neighboring nodes. This 
means that you do not have to structure your application's communications as a hypercube or mesh; 
you can choose an alternate topology-that makes more sense for your program. 1bis can make your 
program easier to write and understand, at a tiny cost in performance. 

When you use an alternate node topology, you embed your node topology (a virtual topology) into 
the nodes' actual network topology (the physical topology). One example of a virtual topology is the 
ring. 1bis topology is useful in certain types of many-body calculations. The technique consists of 
panitioning the particles into groups and assigning each group to a different node. A node then 
calculates the state of its group. 1bis state information is then passed to another node which 



Paragon" Ueer'a Guide Designing a Parallel Application 

calculates the Stale of its own particles and takes into account the stare received from the previous 
node. The state information moves from node to node around a ring. You can implement a ring 
topology by writing a function like this one: 

succ(int n) 
{ 

} 

int maxnode; 
maxnode c numnodes() - 1; 

if ( (n >= 0) && (n < maxnode» 
return(n+1); 

else if (n -- maxnode) 
return(O); 

else 
return(-l); 

Given a valid node 10 (n), this function returns the node ID of the successor of node n in a ring 
embedded in a partition with numnodes() nodes. Else it returns -1. (Ibe predecessor function is 
similar.) A node can send a message to process type 0 on its successor node with the following 
csendO call: 

csend(MSGTYPE, buf, sizeof(buf), succ(mynode(», 0); 

Example Application: Calculating pi 
This application uses an n-point quadrature rule to. evaluate the following definite integral: 

1 4 
7t=J dx 

0(1 +i) 

Admittedly, using the power of an Intel supeICOIDputer for such a simple application is overkill, but 
the application demonstrates concepts that are just as valid for more challenging problems. 

7-7 



Designing a Parallel Application . Paragon til User's Guide 

7-8 

Here is a sequential program (written in Fortran) that evaluates the above integral. The source for 
this program is available on the Intel supercomputer in lusrlsharelexomplesl!ortranipUpiserialJ. 
Note that the user interface consists only of a read statement that solicits the number of intervals. 

program piserial 
double precision h,sum,x,pi,f,a 
integer n 

c Define the function 
f(a) = 4.0dO/(1.dO + a*a) 

c Input the number of intervals. 
1 print *,' Enter number of intervals:' 

read(S,*,end=100) n 

c Calculate the scaling factor 
h = l.dO/n 

c Integrate. The value of x used to calculate the slice is 
c the value at the midpoint of the integration slice. 

sum ... O.dO 
do 10 i ... 1,n 

x = h * (dble(i) - O.SdO) 
sum = sum + f(x) 

10 continue 
pi = h * sum 

c Output the answer 

c 

print *,' The value of pi for' ,n,' intervals iS',pi 
goto 1 

c Terminate 
100 stop 

end 

In the parallel version of this program. each node performs a portion of the integration. The 
decomposition is a domain decomposition that "deals out" the wolk. as illustrated in Figure 7-2. For 
example. if you choose 16 nodes and 512 points. each node gets 32 points. The first poim goes to 
node O. the second point goes to node 1. and so on through the 16th poim. which goes to node 15. 
The 17th point goes to node O. the 18th point goes to node 1. and so on until all the points have been 
dealt out. (It is not strictly necessary to deal out the work in this way, because the integration work 
is evenly balanced. However. since the data is calculated by each node. it is just as easy to deal out 
as not, and this example deals out the data to give you an example of this technique.) 



Paragon" UlI8I"a Guide Designing a ParaUel Application 

o 1 

Node Numbers o 1 2 3 4 5 6 1 8 9 10 1112 13 1415 0 1 2 3 4 5 •.. . .• 1415 

X Values o 0.03125 ... 1 
~, ______________________ ~J 

Y 
For 512 points you have 32 

groups of 16. 

FIgure 7·2. The Decomposition Used for the pi Example 

7-9 



Designing a Parallel Application Paragon" User's Guide 

7-10 

Here is the parallel version of the program. The source for this program is available on the Intel 
supereomputer in lusrlshol"elexmnplesljortranlpilpinode.j. differences from the serial version are 
shown here in boldface. 

program. pinode 
incl.ude 'fnx.h' 
double precision h,sum,x,pi,f,a,tmp 
integer n 
integer nodes, iam, intsiz 

data intsiz / 4 / 

c Define the function 
f(a) = 4.0dO/(l..dO + a*a) 

c Do some bookkeeping 
iam - ml'node ( ) 
nodes - numnodes() 

1 if(iam.eq. 0) then 
c Input the number of intervals. 

print *,' Enter number of intervals:' 
read(S,*,end=l.OO) n 
cal.l. csend(300,n,intsiz,-l,0) 

el.se 
call crecv(300,n,intsiz) 

endif 

c Calculate the scaling factor 
h = l..dO/n 

c Integrate. The value of x used to calculate the slice is 
c the value at the midpoint of the integration slice. 

sum = O.dO 
do 10 i = iam+l,n,nodes 

x = h * (dble(i) - O.SdO) 
sum = sum + f(x) 

10 continue 
pi = h * sum 
call gdsum(pi,l,tmp) 

if(iam .eq. 0 )then 
c Output the answer 

c 

print *,' The value of pi for',n,' intervals is',pi 
endif 

goto 1 



Paragon 1M UII8r's Guide Designing a ParaUel Application 

c Terminate all nodes 
100 ~ - kill(O, 9) 

end 

Note that the parallel version is not much longer than the sequential version. Note also that the 
decomposition takes place entirely in the do statement. The sequential version is: 

do 10 i ... l,n 

while the parallel version is: 

do 10 i = iam+l,n,nodes 

If you run the application on more nodes. ~ don't have to change one line of the node program! 

In the parallel version, only node 0 interacts with the user. The other nodes do only calculation. If 
the print and read statements were not surrounded with ll(lam .eq. O)tben .•• endlf statements. then 
when you ran the program on 100 nodes you would have to input the number of intervals 100 times 
and see the answer 100 times! 

Example Application: Matrix*Vector Multiplication 
The following example computes the mattix-vector product y = Ax. where A is an n x n mattix and 
x and y are vectors with n components. In addition to the numerical teclmique. this example 
illustrates the use of the parallel file YO calls. 

The mattix A is assumed to be too large to fit in the node's memory. requiring an "out-of-core" 
multiplication. For simplicity. n. the number of rows in the mattix. is assumed to be divisible by P. 
the number of nodes in the application. The munber of rows per node. nip. is referred to as m. 

The problem decomposition is again a domain decomposition. Each node collects all of x. but then 
takes only a portion of A (specifically m rows) to form its portion of the product vector. There is no 
attempt to "deal out" the rows of A. 

The vector x is initially divided among the nodes. (Ibis example assumes that each node has 
obtained its portion of x before this routine is called.) Each node cmuains m components of x. Node 
o has components 1 through m; node 1 has components m + 1 through 2·m. etc. (In general. node Z 
has components (Z.l)·m throughZ*m.) The answer. the vector y. will be stored in the same way. 

The mattix A. which is too large to fit in a single node's memory. is also divided among the nodes. 
It is initially stored in a file called matrix. The elements of the matrix are stored in the file by rows. 
as follows: 

A(1.I). A(I,2) •••• A(1,n). A(2.1). A(2,2) ••.• A(2.n) •••• A(n.l). A(n.2) ••.. A(n,n) 

7-11 



Designing a Parallel Application , Paragon'" User's Guide 

7-12 

Each row of the matrix A has n elements of length REALS1'ZE bytes. and so each row takes up 
n·REALS/ZE bytes in the file. Each node is responsible for m rows in the matrix; it reads its portion 
of the matrix from the file by first moving the file pointer to mynodeQ·m·n·REALSIZE byteS from 
the beginning of the file. then reading m rows of n·REALSIZE bytes each beginning at that point 

Here is the code that collects x. reads the node's portion of A. and petforms the multiplication: 

c 

subroutine matvmul(m, n, x, y, xtotal, arow) 
integer REALSIZE 
parameter(REALSIZE = 4) 
integer ncnt, fileptr, xlens(128) 
integer m, n 
real x(m), y(m), xtotal(n), arow(n) 

c m is nip where n is the dimension of A 
c and p is numnodes() 
c 
c Collect all of x on each node. 

do 3 i = 1, numnodes() 
xlens(i) = m*REALSIZE 

3 continue 
call gcolx(x, xlens, xtotal) 

c 
c Open the file and seek to the appropriate location 

open(unit=lO, file = 'matrix', 
+ form = 'unformatted') 
fileptr = lseek(lO, mynode()*m*n*REALSIZE, 0) 

c 
c Read the rows and use the BLAS call sdot() to do 
c the multiplication. 

do 10 i == 1, m 
call cread(lO, arow, n*REALSIZE) 
y(i)== sdot(n, arow, 1, xtotal, 1) 

10 continue 

.' 
• 
• 

This subroutine takes the following parameters: 

m 

n 

x 

The size of each node's portion of the matrix A and the vector x (nip). 

The number of rows and columns in the entire matrix A and the number of 
elements in the entire vector x. 

This node's portion of the vector x (m elements). 



Paragon" U .. r'8 Guide Designing a Parallel Application 

y This node's portion of the result vector y (m elements). 

xtotal A r.em.porary array used to hold the entire vector x (n elements). 

arow A temporary array used to bold one row of the matrix A (n elements). 

The subroutine first calls gc:oIx() to collect the nodes' portions of x together into the array xtotIJl. It 
then opens the file containing A, moves the file pointer to the begiming of the section of the file that 
belongs to this node, and then reads m rows from the file. After reading each row, it uses the BLAS 
(Basic Linear Algebra Subroutines) routine sdotO to perfonn the dot product between the current 
row and the vector x, storing the result (a scalar) into the appropriate element of the vector y. 

NOTE 

You must use the -Ikmath switch on the 1m command line to link 
in the library that contains SCIotO. 

See the Paragon™ Fortran System Calls Reference MDTIUIll for more information on gcob:O; see 
Chapter 5 for infonnation about parallel file 110; see the CLASSP ACK Basic Math Library User's 
Guide or CLASSPACK Basic Math LibrarylC User's Guide for more information on sdotO. 

Example Application: The N-Queens Problem 
This application collects all the board configurations that solve the N-Queens problem. This problem 
is: ''Given an N x N chess board, where can you place N queens so that no queen can capture any 
other?" In chess, queens attack in straight lines along the X. Y, and diagonal directions. 

The N-Queens problem is typical of problems for which there is no analytical solution. Instead, there 
exists a large set of candidate solutions. You test each solution and accept those that pass. 

The difficulty lies in the enormous size of the candidate set. For example. an 8 x 8 chess board has 
64 squares. The total number of possible positions for 8 queens can be represented as the 
combination of n-64 things taken m-8 at a time. The fonnula for the number of combinations is: 

nl / ( m! * (n-m)! ) 

which evaluates to t2 possibilities. Even on a state-of-the-art sequential computer. it would take 
several hours to check every one of those combinations. 

Even before you begin thinking about an algorithm. however. you can eliminate a large number of 
possibilities. For example. any solution that has more than one queen in the same column is invalid. 
This reduces the number of possibilities to 88 or 224. 

7-13 



Designing a ParaDe! Application Paragon'" User's Guide 

7-14 

This section shows how to use an Intel supercomputer to evaluate those 224 possibilities. You can 
arrange the possibilities into a tree. The technique involves following a tree down until it either 
reaches a dead end (an invalid state) or until it reaches a leaf (a valid solution). Figure 7-3 illustrates 
such a tree. To make the figure simpler. the chess board is shown as 4 x 4: Instead of 224 possibilities, 
you have 28. 

The root of the tree (the zero level) is the null board - no queens present. The next level (the first 
level) consists of states where a queen is in each of the positions that make up the first column. In 
Figure 7-3, there are four of those. In an 8 x 8 board, there would be eight. 

The next level (the second level) consists of states with two queens on the board, one in the first 
column and one in the second. In Figure 7-3, there are four of those under each second level state. 
Notice, however, that some states are already invalid. There is no need to follow the tree any funher 
down this branch. In Figure 7-3, the two leftmost states in the second level are invalid. The second 
state in the first level has three dead ends in its second level. 

You can see how the algorithm is going. Some paths are going to finish early because they reach 
dead ends. Others are going to take longer and reach the solutions at the leaves; This is a problem 
for control decomposition. 

Manager/worker decomposition (a type of control decomposition) is a useful way of achieving 
balanced computational loads when the application consists of a large number of tasks that are of 
varying length. Because there is no way of determining up front what the length of the task is, the 
method consists of dividing the application into a large number of tasks (more than the number of 
nodes) and then assigning tasks to individual nodes as the node becomes available. 

One way of generating the task is for the manager node to follow the tree down until the number of 
states is larger than the number of available nodes. As afunher enhancement, the manager node may 
even enlist the aid of the other nodes when doing this initial processing. 

Then, the manager node assigns a state to a node. The node follows that state down the tree and 
collects all the possible solutions. When the node finishes. it reports its solutions, if any, and requests 
more work. In the case of a 4 x 4 board, the tree is shallow and there are only two solutions. An 
8 x 8 board results in 92 solutions. 

The directory /usr/share/examples/c/nqueens contains a eversion of the 8 x 8 8-Queens problem. 
The example is written in C because the N-Queens algorithm makes use of recursion. 

In this example, a task is represented as a partially-filled board (only the first few columns contain 
queens) given to one of the nodes. The example as described here runs on four nodes. Node 0 is the 
manager, and nodes 1 through 3 are the workers. The manager is assigned a certain number of 
columns (in this example. two) and creates partial boards by placing queens on the board, one for 
each column it is assigned. When the manager controls two columns of an 8 x 8 board, it creates 64 
partial boards. 



Paragon" Ueer'e Guide Designing a ParaHel Application 

~ 
IW 

ir::! in-::l in~ 

IQ 

IW 

invalid invalid 
.....:1, in-::rt ir::! in~ i~ .4, 

invalid invalid 

IQ 

IW ...4, 
in-;::! in~ ~v8~ invalid 

The only invalid states shown as 
leaves are those for the leftmost 
state of the second level. 

a .. Queen position 
IQ 

IQ 

Figure 7·3. The N·Queens Solution Tree for a 4 x 4 Board 

7-15 



Designing a Parallel Application Paragon 1M User's Guide 

7-16 

Also, in this example, the manager does not create the boards intelligently. For example, the 
manager will create a board with two queens in the same row. If a worker gets a partial board that 
contains invalid queens (such as two queens in the same row), the worker immediately throws the 
board away and requests another. 

The manager creates boards by counting in a radix equal to the number of rows in the board. Each 
digit in the resulting number represents a column with the least significant digit being column O. The 
value of the digit is the row position of the queen. Hence, 00 represents two queens in row 0, and 01 
represents one queen in row 0 of column 0 and another queen in row 1 of column 1. 

The workers signal their availability by sending a ''ready'' message to the manager. This is a zero 
length message of type READY. When the manager receives a READY message, it determines who 
sent it, then sends a partial boaId to that node as a message of type TASK. The manager keeps doing 
this until it has no more paroal tasks to assign. Fmally, the manager waits until all workers are idle 
(that is, it receives a READY message from every worker) and then sends a final message with the 
special value FINISHED to all workers. 

Here are the key lines that implement the manager control. 

/* This is the manager part */ 
if (Iiam) { /* If I am node ° */ 

printf("\n\n\n"); 
printf("\nSTARTING \n"); 

/* Manager keeps a count of how many workers are available 
and sends out boards to a worker when the worker identifies 
itself as READY. The manager uses the routine get_board() to get 
a new board. There are no more new boards when this routine 
returns DONE. * / 

while ( get~board(board) != DONE ) { 
crecv(READY,NULL,O); 

} 

nodenbr = infonode(); 
msgcount++; /* Count how many nodes are ready */ 
csend(TASK,board,sizeof(twoD),nodenbr,O); 
msgcount--; /* When a node gets a task, it is no longer 

ready for another. Hence, decrease 
msgcount */ 

/* wait for all workers to be free (the msgcount must be equal 
to the number of worker nodes) */ 

while(msgcount 1= nodes-I) { 
crecv(READY,NULL,O); 
msgcount++; 

} 

--- -~ ~~-~-- --~-----



Paragon 1M Ueer's Guide Designing a ParaUei Application 

/* Send the FINISHED message to all nodes and then say goodbye */ 

} 

board[O][O] s FINISHED~ 

csend(TASK,board,sizeof(twoD),-l,O); 
goodbye ( ) ~ 

The manager does not know if a worker has found a solution or not. and the workers do not know 
how many initial boards there are. When a worker receives a partial board. it first checks for the 
special value FINISHED. and calls goodbye() if it finds this value. (The goodbye() routine prints 
a summary message in the output file. closes the file, and exits.) Next. the worker checks that the 
queens already on the board are valid. If they are. the worker finds all the solutions that exist with 
that partial board by recursively calling move_to ]Ight(). When the worker fmels a solution. it writes 
the solution to a file called queens.out. This-rue was opened by all nodes in mode M _ LOG (1). 
which is the mode in which all nodes have a common file pointer and access the file on a first-come 
first-served basis. 

Here are the key lines that implement the worker conttol. 

else { 
/* This is the worker part. */ 

/* Each node enters an infinite loop where it receives a partial 
board and checks whether that partial board contains valid 
queens. If the board contains a FINISHED message, the node 
cleans up and exits by calling goodbye ( ). If the board contains 
invalid queens, the node considers itself done with the task . 
.otherwise, it tries to place a queen in the next column by calling 
move_to_right(). This routine will find all possible solutions 
given the initial board. */ 

fore ; ~) { 

} 

csend(READY,O,O,O,O)~ 

crecv(TASK,board,sizeof(board»~ 

if(board[O][O] -- FINISHED) { 
goodbye ( ); 

} 

if ( chk_board(board) ) { 
move_to_right(board,O, MC.oLS)~ 

} 

} /* end of else */ 

There are many opportunities for optimizing this algorithm. For example. you could write the 
manager in such a way that it only gave workers boards that had the potential of containing one or 
more solutions. In addition, the manager could mark positions on the board that are invalid due to 
the presence of the initial queens. and the worker would not have to check those. 

7-17 



Designing a Parallel Application 'Paragon'" Users Guide 

7-18 

The file queens.out contains copies of all the 92 solutions for the 8-Queens problem. Each board is 
preceded by a header that identifies the node that found the solution and the number of solutions 
found so far by the node. Fmally. the total number of solutions is printed. The tail of the file looks 
as follows: 

• 
• 
• 

Node 1 found solution 30 

012 3 4 5 6 7 
o - - - Q 
1 - - - Q 
2 - - Q 

3 - - Q -
4 Q 
5 - - - Q -

6 - - Q -
7 - Q 

Node 2 found solution 31 

0 1 2 3 4 5 6 7 
0 - - Q -
1 - - - - Q -
2 - - - Q 

3 Q 

4 - - Q - - - - -
5 - - Q 

6 - - - Q - -
7 - Q 

Node 3 found solution 31 

0 1 2 3 4 5 6 7 
0 - - Q -
1 - - Q - - - - -
2 - - - - Q 

3 - Q -
4 - - - - Q -
5 Q 

6 - Q 

7 - Q 

Total solutions = 92 

If you want to investigate another manager/worker application. look at the triangle program in 
/usr/share/extJfnples/c/triangle. Its operation is described in a README file. 



Improving Performance 

Introduction 
This chapter presents some teclmiques you can use to improve the performance of your parallel 
applications. It includes the following sections: 

• Single Node Performance. 

• Multi-Node Performance. 

• 110 Pelformance. 

In general. however. the best thing you can do to improve performance is to choose an efficient 
numerical method and algorithm for solving your problem. A good numerical method and an 
efficient algorithm will always give better performance than a poor method and algorithm. This is 
true even if the good method is implemented in a bigb-levellanguage and the poor method is 
implemented in band-coded assembly language. 

Another general performance teclmique is to use the Paragon system's profiling and performance 
analysis tools to help pinpoint the pans of your application that could benefit the most from 
optimization. See the Paragon TIl. Application Tools User's Guide for information on the available 
tools. 

8-1 



Improving Perfonnance Paragon 1M User's Guide 

Single Node Performance 
This section discusses things you can do to increase the speed of calculation (MFLOPS or GFLOPS) 
on each node. Many of these are general performance-improvement techniques that you can use on 
any computer; some of them are specific to the i860e microprocessor. Techniques discussed in this 
section include: 

• Use profiling tools. 

• Avoid repeated use of system calls. 

• Avoid virtual memory paging. 

• Use compiler optimizations. 

• Increase problem size. 

• Access contiguous memory locations. 

• Use caching wisely. 

• Use optimized libraries. 

• Use assembly language subroutines. 

• Avoid error checking (C language only). 

Use Profiling Tools 

The Paragon system comes with the profand gprofprofIlers. and their graphical versions xprof and 
xgpror. You can use these tools to help track down the parts of your application that are consuming 
the most time and concentrate your optimization efforts there. See the Paragon TIl. Application Tools 
User's Guide for more information on these tools. 

Avoid Repeated Use of System Calls 

8-2 

Don't make a system call twice if once will do. This is an obvious performance improvement 
technique, but unfortunately it is missing from many applications. For example, a process may need 
its node number and process type to do message passing. Avoid using mynode() and myptypeO 
each time you need those numbers. Instead, invoke each once and store their values in variables. 



Paragon- Ueer's Guide Improving Performance 

Avoid Virtual Memory Paging 

The Paragon OSPIl operating system provides virtual memory, which lets you use more memory 
than is physically available on the node. When a program tries to allocate a memory space that is 
larger than the node's available free memory, one or more 8K-byte virtual memory pages that 
haven't been referenced recently are paged out. This means that their contents are written to disk and 
replaced with the new data. Later, when the program references data in the paged-out memory 
section, a different section is paged out and the old data is paged in (read back from disk) in its place. 

Although virtual memory makes it possible for the system to support multiple users and very large 
programs, you should try to avoid it when you can. Accessing pages of virtual memory that are not 
currently paged in is much slower than physical memory and generates a lot of disk activity. Try to 
reduce the memory used by your application until it fits in physical memory, including 
dynamically-allocated buffers and system message buffers (see "Understand Message-Passing Flow 
Control" on page 8-13 for information on the sizes of system message buffers). 

You can use the vm_stat command to get information about your application's memory usage. See 
the Paragon™ Commands Reference Manual for information on this command. 

Once you have reduced your application so that it fits in physical memory, you may be able to use 
the .plk switch to lock parts of your application into physical memory. This reduces paging and 
improves message-passing latency, but has certain consequences; see "Process Locking" on page 
8-15 for more information. 

Use Compiler Optimizations 

When you compile a program, you can use compiler optimization switches to tell the compiler what 
techniques to use to optimize your code. Optimization can produce a compiled program that does 
the same work in less time by making better use of the processor's special features. However, 
optimization can sometimes produce a program that runs more slowly or produces wrong answers, 
so it must be used carefully. . 



Improving Performance Paragon TM User's Guide 

The compiler optimization switches you can use and compiler-specific code changes you can make 
depend on which language you program in and the revision level of the compiler. See the Paragon TIl. 

Fortran Compiler User's Guide or Paragon TIl. C Compiler User's Guide for complete information 
on compiler optimizations for your specific compiler. However, here are a few general hints: 

• Experiment with the -0 switch, which controls the level of compiler optimization: 

Level 0 performs no optimization. 

Levels 1 and 2 perform straightforward optimizations that should always result in 
improvement. 

Levels 3 and 4 attempt to make use of the i860~ microprocessor's pipelining and 
dual-instruction modes to improve performance; whether or not they improve your 
program's performance, and by how much, depends on the characteristics of your program. 

In some cases, different parts of the program should be compiled with different optimization 
levels. 

• Try the -Mvect switch to invoke the vectorizer. The vectorizer attempts to rearrange your code 
to allow more efficient use of pipelining. You can get better results out of the vectorizer if your 
innermost loops have the following characteristics: 

The loop index increments the fIrst dimension in Fortran, or the last dimension in C. 

Arrays are accessed with unit stride. 

The number of iterations within the loop is not too small. 

Also, if tests and subroutine calls should be avoided within the loop. See the Paragon TIl. Fortran 
Compiler User's Guide« Paragon TIl. C Compiler User's Guide for specific examples of code 
changes you can make. 

• If your application does not depend on strict IEEE semantics for mathematical operations, try 
the -Knoieee switch. This switch provides much faster mathematical operations than those 
provided by the default IEEE math library. but may result in slightly decreased accuracy and 
different behavior in exceptional circumstances (operations on 0 or infInity and NaNs). 

• Use the ·MnostrideO switch, unless your program accesses arrays with zero stride (that is, 
incrementing the array pointer by 0 in each loop iteration). There are some important compiler 
optimizations that are only possible if the compiler knows the code does not do this. 

-----.~~-~----- ---~----~ 



Paragon- User's Guide Improving Perfonnanoe 

Increase Problem Size 
Once you have optimized a program's single-node performance, you may find that running the 
program on a larger number of nodes with the same data set gives a lower per-node performance. 
This can occur because the per-node vector size has gone down, reducing the efficiency of the i860 
microprocessor's pipelines. To avoid this problem, you can increase the problem size as you increase 
the number of nodes, or you could even write two different inner loops-one optimized for short 
vectors, the other optimized for longer vectors. 

Access Contiguous Memory Locations 

Whenever you access memory, try to access contiguous memory locations. In particular. whenever 
your program reads or changes the value of an array element in memory. try to be sure that the next 
array element it reads or changes is adjacent to the previous one in memory. This is important 
because the i860 microprocessor accesses memory in 4K-byte physical memory pages. Once you 
have read from a physical page. another read from the same page takes only one more cycle. but a 
read from a different page takes 10 to 14 more cycles. Every cycle spent switching from one page to 
another is a cycle that can't be used for calculation. 

To keep your memory accesses within a physical page. you can use some of the following 
techniques: 

• Group a series of memory reads out of the same array. 

• Do consecutive references across the rows (e) or down the columns (Fortran) of matrices. (In 
e the rightmost index of an array varies the fastest. while in Fortran the leftmost index varies 
fastest This means that, for example. if you distribute the elements of a two-dimensional array 
among the nodes. you should give out rows in e and columns in Fortran.) 

• "Strip-mine" loops, so that you do several accesses to the same array at a time. For example. 
you should read several elements from vector A. then several from B, instead ofreadingA[lJ. 
B[lJ.A[2J.B[2J. and so on. 

You should also try to group reads and writes. Once you have read from a page. a following write 
takes about 6 more cycles than a following read. Switching from write to read also takes about 6 
cycles. 

Use Caching Wisely 

The i860 microprocessor has a 16K-byte data cache for recently-accessed memory locations. 
Whenever you read or change a bit in memory. a 32-byte area of memory containing that bit is 
copied into the cache. (This 32-byte area is called a ClJche line and always begins on a 32-byte 
boundary.) When you access memory that is already in the cache. the access is very fast. However. 



Improving Perfonnance Paragon no User's Guide 

whenever a new cache line is copied into the cache, cache lines that have not been accessed recently 
are written back to memory (if necessary) and removed from the cache to make room. Try to arrange 
your code so that all operands for a loop can be accommodated in the cache at the same time. 

The i860 microprocessor also has an instruction cache (4K bytes on the i860 XR, 16K bytes on the 
i860 XP) which is used to hold program instructions once they have been fetched and decoded from 
memory. You can use this cache in two ways: 

• Try to keep your loops small. If the code for an entire loop fits in the instruction cache, the loop 
can execute very quickly. 

• In an if/else block, try to put the code that is used more often in the if part and the code that is 
used less often in the else part. The instruction cache works in a "lookahead mode," and when 
pre-fetching instructions will fetch the code immediately following the if. If the else branch is 
executed instead, the if branch code must be discarded from the cache. 

Both these techniques can be used in high.-Ievellanguages as well as assembly code. 

Note that the data cache, the instruction cache, the physical memory page, and the virtual memory 
page are separate functions that have different sizes and different effects. In general, cache 
management is handled by the compiler, but you should try to arrange your code to make the 
compiler's job easier. 

Use Optimized Libraries 

Several optimized libraries of math and utility functions are available with Paragon OSF/ I. These 
libraries have been carefully hand-tuned to give the best possible performance; you can save time 
and increase efficiency by using routines from these libraries rather than writing the equivalent code 
yourself. The available libraries include: 

• The Basic Math Ubrary (libkmath.a). This library is a standard part of Paragon OSF/I; it 
includes optimized BLAS (Basic Unear Algebra Subroutines) and FFr (Fast Fourier 
Transform) routines. See the CLASS PACK Basic Math Library User's Guide or CLASSPACK 
Basic Math LibrarylC User's Guide for more information. 

• The Signal Processing Library (libsignal.a). This library is an optional product; it includes 
optimized vector and signal-processing routines. See the CLASSPACK Signal Processing 
Library User's Guide or CLASSPACK Signal Processing Library/C User's Guide for more 
information. 

Note that these are single-node libraries; they improve the numeric performance of each node of 
your program, but do not affect its multi-node performance. 



Paragon 1M User's Guide Improving Performance 

Use Assembly Language Subroutines 

Re-writing key routines in the i860 microprocessor's assembly language can sometimes bring 
significant performance benefits. See the Paragon™ i~ 64-Bit Microprocessor Assembler 
Reference Manual for information on the assembler. 

Avoid Error Checking (C Language Only) 

In C, there are two versions of most calls in libnx.a: the standard version and the underscore version 
(for example, the underscore version of c:recvO is _ c:rec:v0). When you call the standard version, the 
call checks for certain error conditions before it returns; if an error is detected, the call terminates 
your program with an error message. TIle underscore version works the same as the non-underscore 
version, but if an error occurs, the call simply returns the value -1 and sets the external variable errno 
to a value that describes the error. This is useful if you want to handle an error yourself and not let 
the system do it. But if you are confident that your program is worlcing, you may choose to use the 
underscore version and not check the return value, thereby improving performance. (If an error does 
occur, unexpected and difficult-to-debug behavior will result, so use this technique with caution.) 

Multi-Node Performance 
This section discusses things you can do to increase the efficiency of applications running on 
multiple nodes, including: 

• Use dynamic memory allocation for large arrays. 

• Avoid serializing calls. 

• Use ParaGraph. 

• Maintain data locality. 

• Overlap computation and communication. 

• Avoid message buffering. 

• Align application buffers. 

• Understand message-passing flow control. 

8-7 



Improving Performance Paragon'" User's Guide 

Use Dynamic Memory Allocation for Large Arrays 

You should always use dynamic memory allocation for large arrays. Dynamic memory allocation 
means allocating the memory for the array at run time, using the ALLOCATE statement in Fortran 
or the maUocO call in C. The alternative, static memory allocation, means declaring the array in the 
program source. 

Dynamic allocation is important even on one node, but becomes more and more important as the 
number of nodes increases. The larger the array and the more nodes, the more perfonnance can be 
improved by using dynamic memory allocation. If the array or number of nodes is large enough, the 
application may not run at all unless you use dynamic memory allocation. 

For example, the following program fragment uses static memory allocation. It simply creates two 
4M-byte arrays of real*4 (one in a common block, the other not) and initializes each element of each 
array to the element number. 

parameter huge_size = 1024*1024 
real*4 huge(huge_size), huge_common (huge_size) 
common /giant/ huge_common 
integer i 

do 10 i=l,huge_size 
huge(i) = i 
huge_common(i) i 

10 continue 

The equivalent code with dynamic memory allocation is as follows (changes are shown in boldface). 
With 16M bytes of memory on each node, this version runs as much as ten times as fast as the 
previous version on one node; it runs as much asfifteen times as fast on eight nodes. The more nodes, 
the greater the speedup. 

parameter huge_size = 1024*1024 
real*4 huge(huge_size), huge_common (huge_size) 
pointer(p, huge) 
common, allocatable /giant/ huge_common 
integer i 

allocate(huge, /giant/) 

do 10 i=l,huge_size 
huge(i) = i 
huge_common(i) i 

10 continue 

deallocate(huge, /giant/) 



Paragon 1M User's Guide Improving Performance 

Note that a common block must be declared ALLOCATABLE before it is allocated with an 
ALWCATE statement. A variable or may that is not part of a common block must be declared as 
a pointer-based variable with a POINTER statement before it is allocated with ALWCATE; the 
corresponding pointer variable, in this case p, does not have to be used. See the Paragon TIl. Fortran 
Language Reference ManuoJ for more information on these statements. 

The reason statically allocated mays cause your program to run slowly is that, since they are 
compiled into the program, the initial contents of the array must be obtained from the executable 
program on disk. Whenever a process on a compute node reads or changes a byte in a memory page 
of statically allocated data that it hasn't touched before, the data for that page may have to be paged 
in. (See "Avoid Vinual Memory Paging" on page 8-3 for an introduction to virtual memory paging.) 
A message requesting the initial contents of that page is sent to the node in the service partition 
where the compute process's parent process is running. The entire page-8K bytes-is then sent 
back to the compute process. This occurs even if the statically allocated data is uninitialized (all 
zeroes). 

Sending these pages across the mesh takes time. Even worse, if many compute processes all want 
pages at the same time. the parent process's node can become overwhelmed. slowing the application 
drastically. The effect is magnified if the statically-allocated array is so large that parts of the 
operating system have to be paged out to make room for it; in this case. pages of the operating system 
have to go out at the same time pages of static data are coming in. 

When you use ALLOCATE or malloeO to dynamically allocate an may. the memory is not 
associated with the program on disk. Instead, each node has its own copy of the array, and it doem't 
have to be paged in. When a compute process touches a page of dynamically-allocated data it hasn't 
touched before, the page is simply allocated from the available node memory-no messages are sent. 
This greatly reduces traffic on the mesh and increases the performance of your application. 

A void Serializing Calls 

Avoid using serializing calls repeatedly or on many nodes. A serializing call is one that relies on a 
single resource which can only service one request at a time (typically a daemon or server on the 
boot node). Using a serializing call once takes little time. but if many nodes in a large application 
call it at the same time the boot node can only service these requests one at a time. Each node must 
wait until the boot node services its request. which can cause the entire application to nul slowly. 

Many calls that perfonn 110 or make use of the tile system, such as statO, chdirO. and chmodO, are 
serializing calls. because they must communicate with the root tile system server on the boot node. 
getnJsage() is also a serializing call. because it sends a message to all the 110 nodes to get 
infonnation on the caller's 110 activity. You can detect the presence of serializing calls in your 
program by profIling it. Ifcommon operations. especially 110 operations, are taking much more time 
than expected. they may be serializing calls. 

Whenever possible. avoid overuse of serializing calls by having only one node make the call. For 
example. instead of having every node process call statO. have one node call statO and then use 
gisom() to distribute the information to the other nodes. Also, instead of having every node process 



Improving Perfonnance Paragon 1M User's Guide 

call chdir() when it starts up, have the controlling process call chdirO before creating the node 
processes. You can avoid serialization in I/O by using the 110 mode M _RECORD or M _GLOBAL, 
as described under "Use the Appropriate 110 Mode" on page 8-24. 

Use ParaGraph 

The Paragon system comes with the ParaGraph performance visualization tool. You can use this 
graphical tool to help analyze your application's messa~e passing behavior and determine where to 
concentrate your optimization efforts. See the Paragon I( Application Tools User's Guide for more 
information on ParaGraph. 

Maintain Data Locality 

Wherever possible, try to distribute the data to the nodes so that each node has all the data it needs, 
and does not have to get any data from other nodes. Where it is not possible to keep all related data 
on one node, try to keep the data as close as possible to the nodes that need it. 

For example, suppose you are writing a simulation where the value of each data point in a plane is 
computed from the values of nearby data points. To parallelize this simulation, you would divide up 
the plane into segments and assign each segment to a node. However, each node must communicate 
with other nodes to get data for points that are just past the edge of its data segment. Since the 
Paragon system has a mesh architecture, you would typically divide up the plane in a 
two-dimensional decomposition (rectangles). You would then assign the rectangles to nodes in such 
a way that neighboring segments are the responsibility of neighboring nodes. (Use the 
DX_app_rectO call to detennine the "shape" of your application.) This will reduce message traffic 
and ensure that each message reaches its destination as quickly as possible. 

Overlap Computation and Communication 

8-10 

The Paragon OSP/1 message-passing calls are available in both synchronous versions (call names 
beginning with c) and asynchronous versions (call names beginning with i). Synchronous calls do 
not return until the message-passing operation is complete; asynchronous calls return immediately, 
giving you a message ID that you can use to check when the operation is complete. 

Although the synchronous calls are easier to use and have slightly lower overhead, you should use 
the asynchronous calls whenever the results of the call are not needed immediately. Using 
asynchronous calls can let your application do useful computation in the time when it would 
otherwise just be waiting for a message to arrive. During this time, the node's message coprocessor 
can process the communication without interrupting the main processor. 



Paragon" Ueer's Guide Improving Performance 

Avoid Message Buffering 

Try to avoid message buffering whenever possible. For example, assume that you have the same 
process running on two nodes and that these processes must exchange infonnation. Each process 
must issue a receive and a send. If a csendO call is executed before its corresponding crecvO, the 
message is sent and buffered in a system buffer (If there is not enough space in system buffers, the 
sender blocks). When the crecvO is executed, the message is copied from the system buffer into the 
application buffer. (For detailed infonnation on message buffering, see "Understand 
Message-Passing Flow Control" on page 8-13.) 

Your code runs more efficiently if you can avoid the system buffer and copy the message directly 
into the application buffer. You can do this by using an irecvO (the asynchronous receive) and 
posting the receive before the corresponding csendO. Remember, however, that because the nodes 
do not run in lock step, coding the irecvO before its corresponding csendO does not guarantee that 
the irecvO is executed before its csendO (even if the same program runs on every node). You can 
make sure that the irecvO is executed before the csendO by using zero-length messages to 
synchronize the nodes, as shown in the following example. 

For example, consider the following C routine, shadow. This routine might appear in an application 
that needs to have the nodes exchange the rows of a matrix (a Fortran version would probably 
exchange columns instead). 

A typical application for shadow might be a Gauss-Seidel iteration or any technique based on nearest 
neighbor interactions. The application processes a two dimensional array called s[ ] [ ] and exchanges 
rows between nodes. The first index in the array represents a row, and it is passed as a pointer. Each 
node contains a horizontal partition of the array with range rows. It has a top buffer (s[O]) and a 
bottom buffer (s[range+ 1]) containing the boundary rows from other nodes. 

void shadow ( 
long topnode; 
long botnode; 

( 

int (*s) [MAX_LATTICE] 
int range) 

long topid, botid, syncbotid, synctopid; 

/* Node sends upper boundary row s[1] to the bottom buffer 
s[range+1] of the node controlling the upper partition, 
(topnode) . 

Node sends lower boundary row s[range] to the top buffer s[O] 
of the node controlling the lower partition, bot node */ 

topid 
botid 

irecv(TOP, 
irecv(BOT, 

s[O], sizeof(s[O]»; 
s[range+l], sizeof(s[range+l]»; 

8-11 



Improving Perfonnance Paragon no User's Guide 

} 

/* The following code ensures that the csend()s corresponding 
to the above irecv()s are not executed until all the irecv()s 
have been posted. */ 

syncidtop = ireCV(SYNCTOP, 0, 0); 
syncidbot = irecv(SYNCBOT, 0, 0); 
csend(SYNCTOP,O,O,topnode,O); 
csend(SYNCBOT,O,O,botnode,O); 
msgwait(syncidtop); 
msgwait(syncidbot); 

/* End of synchronization code. */ 

csend(BOT, s[l], sizeof(s[l]), topnode, 0); 
csend(TOP, s[range] , sfzeof(s[range]), botnode, 0); 

msgwai t (topid) ; 
msgwait(botid) ; 

Note that when the data sends are performed the asynchronous receives have already been executed. 
This is ensured by the zero-length synchronization messages. The data then goes directly into the 
application buffer (unless it is paged out, as discussed later in this section). 

Another way of achieving synchronization is to issue a gsyncO after the irecvO's. However, gsyncO 
can be expensive-it synchronizes all the nodes, when all that's really necessary is to synchronize 
senders and receivers. A good rule of thumb is to synchronize only what is really necessary. 

Align Application Buffers 

8-12 

Try to ensure that send and receive buffers are properly aligned and sized whenever possible. 
Although the message-passing system calls will work with any size or alignment of buffers, the 
hardware works best with well-aligned buffers. The software may have to copy messages that are in 
misaligned buffers to new, aligned buffers, which decreases performance. There are several degrees 
of alignment. All other things being equal: 

1. The best performance can be achieved by aligning the send or receive buffer on a 4K-byte 
boundary (this means that the buffer's address is an even multiple of 4K). This corresponds with 
the i860 microprocessor's 4K-byte physical memory page. 

2. Good performance (only slightly worse) occurs if the buffer is aligned on a 32-byte boundary, 
which corresponds with the microprocessor's cache line, but crosses a 4K-byte memory page 
boundary. 

3. The next-best performance (not nearly as good) occurs if the buffer is aligned on an 8-byte 
boundary, which corresponds with the microprocessor's FIFO size. 



Paragon 1M User'S Guide Improving Performance 

4. Some performance improvement can be seen if the buffer is aligned on a 4-byte boundary. 

5. The worst performance comes when the buffer is not even aligned on a 4-byte boundary (that 
is, its address is not a multiple of 4). 

To be sure the buffer is well-aligned, you should use maUocO to allocate it rather than allocating it 
statically. (This call is available in both Fortran and C.) Buffers allocated with the standard maIlocO 
or its derivatives will always be aligned on a 32-byte boundary. 

You can arrange for the pointer to a message buffer to be on a 4K-byte boundary by using pointer 
arithmetic. This technique can be used even if the buffer is statically allocated. You do this by 
declaring your buffer to be 4095 (4K-l) bytes longer than needed, adding 4095 to the buffer pointer, 
and then ANDing the pointer with the NOT of 4095. For example, assume that you need a 50K-byte 
buffer called buj. You can cause the buffer pointer bufp to be on a 4K-byte boundary by declaring 
bufto be 54K-l bytes and doing the folloWing pointer arithmetic: 

char *bufp, buf[55295]; 
• 
• 
• 

/* bufp points to the nearest 4K-byte boundary in the buffer */ 
bufp = Cchar *) cccint)buf + 4095) & -4095); 

Fmally, when you set up C structures that you intend to use as messages, try to minimize padding 
(open areas within the structure inserted by the compiler to make the following structure element 
properly aligned). To do this, you should be aware of the sizes and alignments of the different data 
types; in general, you can minimize padding by placing the larger data types fIrst. Reducing padding 
reduces the number of empty bytes sent with the message. 

Understand Message-Passing Flow Control 

Whenever you send a message, the sending process and the receiving process use message-passing 
flow control to make sure that the message is safely stored in memory when it arrives at the 
destination node. This flow control guarantees that messages flow from their source to destination 
without blocking on the mesh. If you understand flow control, you can select the message sizes, 
message-passing confIguration parameters, and message synchronization techniques that give the 
best possible message-passing performance for your application. 

Note, though, that the most important thing you can do to improve message-passing flow control is 
to avoid message buffering (as discussed under "Avoid Message Buffering" on page 8-11). You 
should only read this section if you cannot avoid message buffering and need to improve its 
efficiency, or if you really want to understand all the nitty-gritty details of message-passing flow 
control. If neither of these applies to you, skip to "Recommendations" on page 8-21. 

8-13 



Improving Perfonnanoe Paragon no User's Guide 

8-14 

Overview of Message-Passing Flow Control 

Here's an overview of what happens when you send a message. (This is a simplified view; the 
low-level details of message-passing flow control are proprietary and subject to change.) 

1. The sending process checks to see if the memory page containing the message to be sent is 
currently in physical memory. If not. it is paged in. (See "Avoid Virtual Memory Paging" on 
page 8-3 for information on paging.) 

2. The sender checks to see how much memory it thinks is available in system message buffers on 
the receiver and sends the appropriate number of bytes (see "System Message Buffers" on page 
8-16 for details). If the whole message has been sent at this point, the send is complete; 
otherwise, it waits for a request from the receiver for the next part of the message. This waiting 
mayor may not block the sending process, depending on whether the sending call was 
synchronous or asynchronous. 

3. When the message (or the fIrSt part of the message) arrives at the receiving node, the node's 
operating system checks to see if there is a receive posted for a message of that type by the 
specified receiving process. ("Posted" means that the process has an outstanding 
message-receiving call that has not yet been fulfilled.) 

A. If there is a receive posted and the application buffer (the buffer specified in the receive 
call) is currently paged in, the message is stored directly into the application buffer. 

B. If there is a receive posted and the specified application bufferis not paged in, the message 
is stored in a system buffer. 'Then the application buffer is paged in and the message is 
copied into it. 

c. If there is no receive posted, the message is stored in a system buffer and the receiver waits 
until a receive is posted. When the receive is posted, the specified application buffer is 
paged in (if necessary) and the message is copied into it. 

4. If the whole message has been received at this point. the receive is complete; otherwise, it sends 
a request to the sender for the next part of the message and waits. (This waiting mayor may not 
block the receiving process, depending on whether the receiving call was synchronous or 
asynchronous.) 'The request also includes the current free space in system message buffers on 
the receiver, which is used to calculate how big the next part should be. Go back to step 1 and 
continue until the message has been completely sent and completely receiVed. 

Special case: if the sender thinks the message is too large to send all at once, and there is no receive 
posted, but there is actually enough space in system buffers on the receiver to accommodate the 
entire message, the receiver stores the first part of the message in a system buffer and immediately 
sends a special request to the sender saying "send the whole rest of the message." In this case, the 
entire message can be sent before the receive is posted. Otherwise, only the first part of the message 
is sent and the rest of the message waits on the sender until the receive is posted. 



Paragon 1M User's Guide Improving Performance 

Process Locking 

The message-passing flow control procedures check to make sure that application buffers are paged 
into physical memory, and copy information from one buffer to another if they are not. You can 
avoid these steps by using the -plk switch on the application command line. This switch locks parts 
of each process into physical memory,like the OSP/l system call plockO (see the OSF/J 
Programmer's Reference for information on plockO). This locking is also referred to as wiring. 

The -plk switch locks the following pans of your application into physical memory: 

• The entire data segment (the part of memory that contains global variables) is locked. This 
occurs when the program is loaded. 

If you use an application buffer that is located on the stack (the part of memory that contains 
local variables) or on the heap (the part of memory that is allocated by maIloc() or 
ALLOCATE), the area from the beginning of the stacklheap to the end of the buffer is locked. 
This occurs the first time you use the buffer in a message-sending or -receiving call. 

All areas of memory not mentioned in this list, including the code segment (the part of memory that 
contains executable instructions), are not locked and are still subject to paging. Note that locking is 
done a page at a time: to lock a single byte, the system must lock the entire 8K-byte virtual memory 
page containing that byte. 

The -plk switch greatly reduces the effect of virtual memory on your application and improves 
message-passing latency. However, it has the following consequences: 

• Your application must fit in physical memory. If it does not, any operation that results in the 
allocation or locking of more memory may fail unexpectedly, possibly terminating the 
application. 

Ideally, the operating system and the application's code and data should all fit into the node's 
physical memory at once. However, the code segment is subject to paging even when -plk is in 
effect, so the application may still work if there is enough physical memory left over after 
subtracting the size of the operating system and the total amount of locked data. The definition 
of "enough" depends on the application's pattern of access to its code in memory and how much 
of the code needs to be ~sent in memory at once. (See the Paragon™ System Software Release 
Notes for the Paragon XP/S System for information on how much memory is needed by the 
operating system.) 

• The physical memory available for other processes is reduced by the size of your application's 
locked data for the life of your application. 

When -pik is in effect, none of the locked data will be removed from physical memory until the 
application terminates. Even if your application is not actually executing (for example, because 
it is "rolled out" by gang scheduling), it still retains control of this memory, and the application 
that is currently executing carmot use the memory that is locked by your application. This can 
cause the other application to run very slowly or ''thrash. .. 

8-15 



Improving Perfonnance Paragon 1M User's Guide 

8-16 

To prevent this ''thrashing,'' your system administrator can configure the system so that -plk cannot 
be used in gang-scheduled or standard-scheduled partitions. If -plk is allowed at your site, it should 
be used with extreme care because of its impact on other users. 

-plk also conditions message-passing flow control to run more efficiently by assuming that all 
message buffers are locked into memory. For example, suppose a message is too large to send all at 
once. With -plk, after the first part of the message arrives, the receiver can request the entire rest of 
the message-no matter how big it is-as soon as the receive is posted. Since the application buffer 
cannot be paged out, the receiver can be sure it will be there to receive the rest of the message when 
it arrives. Without -plk, the application buffer could be paged out while the second part is on its way, 
so the second and subsequent parts of the message must be smaller than the available system 
message buffer space. This means that many more exchanges might be required before the message 
is completely received. 

Packetization 

Messages from one node to another may be broken into smaller messages, called packets, before 
they are placed on the mesh. Using packets results in a slight additional overhead on large messages, 
but it gives much better overall message bandwidth because it allows several large messages to be 
interleaved on the same wire at the same time. 

The maximum size of each packet is referred to as packet _size, and is 1792 bytes by default (this 
size does not include the header appended to each packet). If a message is larger than packet_size, it 
is sent in several pieces, each at most packet _size bytes long. You can change the packet size with 
the -pkt switch on the application command line. 

System Message Buffers 

In each node process, an area of memory is set aside for system message buffers. These buffers are 
used to store messages that arrive at the node before the receiving process is ready to receive them. 
For example, if a sending process calls csendO before the receiving process has called the 
corresponding crecvO, the message goes into a system buffer in the receiving proCess. Then, when 
the receiving process does call crecvO, the message is copied from the system buffer to the buffer 
specified in the crecvO call, which is referred to as the application message buffer. 

The size and behavior of the system message buffers are controlled by several parameters that you 
can set on the application command line. The following list describes these parameters and their 
effects .. 

• The total amount of memory allocated to system message buffers in each process is referred to 
as message_buffer. The message_buffer is always wired into physical memory, which means 
that it can never be paged out (see "Avoid Virtual Memory Paging" on page 8-3 for information 
on paging). This is necessary to ensure that all messages that arrive at the node can be stored 
somewhere, even if the rest of the application is paged out. The default value of message buffer 
is 1152K bytes. You can change this size with the -mbf switch on the application command line 



Paragon- Ueer's Guide Improving Performance 

• The message _buffer is divided into an area for messages from any process, and a series of areas 
dedicated to messages from particular processes. The number of dedicated areas is refened to 
as correspondents, and the size of each dedicated area is referred to as memory _each. When a 
message is received, it is stored in the open area if there is room; the memory_each areas are 
used only when the open area is full. The default value for correspondents is numnodesO; you 
can change it with the -DOC switch. The default value of memory_each is detennined by the 
current values of correspondents, message _buffer, and packet _size; you can change it with the 
-mea switch. 

• Each node process maintains a value called the send _avail for each other process in the . 
application. The send_avail is the maximum amount of memory that the process can depend on 
to be available in its memory _each segment in that other process. (The send_avail may be 
smaller than the actual amount of memory available, but is never larger.) When a process sends 
a message to another process, it decreases the send_avail for that process by the message size; 
when the message has been "consumed" (completely placed in the application buffer on the 
receiving process), the receiver tells the sender and the sender increases its send_avail for the 
receiving process accordingly. The initial value of send_avail is memory_each; the send_avail 
value is maintained dynamically by each process and cannot be set on the command line. 

• When a process has a large message to send, it uses its send_avail value for the receiving 
process to detennine how much of the message to send at ftrst. Two parameters called 
send threshold and send count control this behavior: - -

1. If the send _avail value is equal to or greater than the size of the message, the sender sends 
the whole message at once. 

2. Otherwise, if the send _avail value is equal to or greater than the send _threshold, the sender 
sends the ftrst send_count bytes of the message and waits for an acknowledgment from the 
receiver that they have been consumed before proceeding. 

3. Otherwise, if the send_avail value is equal to or greater than the packet_Size, the sender 
sends the ftrst packet of the message and waits for an acknowledgment from the receiver 
that it has been consumed before proceeding. 

4. If the send_avail value is less than packet _Size, the send blocks until the receiver tells it that 
some messages have been consumed and send_avail can be increased. (See the discussion 
of give _threshold later in this section for more information on how this occurs.) This 
blocking may or may not block the sending process, depending on whether it used a 
synchronous send (such as csendQ) or an asynchronous send (such as isendO>. 

Note that deadlock can occur when send_avail is less than packet _Size. For example, 
suppose that node A and node B's system message buffers are both full. Under normal 
circumstances. eventually a receive would be posted and the buffered messages would be 

8-17 



Improving Perfonnance Paragon'" User's Guide 

8-18 

consumed. But if the two nodes try to exchange messages with synchronous calls, they 
deadlock: A blocks waiting for more space to become available on B, and B blocks waiting 
for more space to become available on A. 

The default value for send _threshold and send_count is half of memory_each; you can change 
these two parameters with the -sth and -set switches respectively. 

• When a message is consumed, the receiver normally informs the sender that the space occupied 
by the message is available for new messages by ''piggy-backing'' information on other 
messages going to the sender. However, if there are no such messages, the sender can get out of 
date and stop sending messages because it thinks there is no free memory left for it on the 
receiver. In this case, a parameter called the give _threshold comes into play. If a receiver knows 
that a sender thinks it has less than give -.Jhreshold bytes of memory free, but there is really more 
memory available, it sends a special message to the sender telling it how much memory is really 
available. The default value for give _threshold is paclret _size; you can change it with the -gth 
switch. 

Message-Passing Configuration Switches 

The switches that control the message-passing configuration parameters discussed earlier in this 
section are referred to as the mp _switches. Although the default values of these parameters have been 
chosen to give good results for ''typical'' applications, you may be able to improve your application's 
message-passing performance by using different values. 

You use the mp _switches on the command line of a parallel application. These switches override the 
default values of the specified parameters for that run of the application; they do not have any effect 
on other runs or other applications. 

If the application was linked with the -ox switch, the mp _switches are automatically interpreted and 
removed from the cOmmand line before the application starts up. An application linked with ·Iox 
controls its own execution with system calls, as discussed under "Managing Applications" on page 
4-2. Such an application mayor may not obey the mp _switches, depending on how it was 
programmed. 

The values used with the mp _switches (except -plk and -DOC) are integer numbers of bytes. The 
default, maximum, and minimum values for these switches are described under "Default, Maximum, 
and Minimum Values" on page 8-20. The value you specify may be rounded up or down to ensure 
correct operation, as described under "Dependencies and Rounding" on page 8-21. 



Paragon" Uaer's Guide Improving Performance 

Summary of the Message-Passing Configuration Switches 

The list of available mp _switches is as follows: 

-plk 

-mbf message_buffer 

-DOC correspondents 

-sth send threshold 

-set send count 

-gth give_threshold 

Locks parts of the application into memory (see "Process 
Locking" on page 8-15 for more information). 

Sets the size of each packet. 

Sets the total amount of memory allocated to message 
buffers in each process. 

Sets the total number of other processes from which each 
process expects to receive messages. 

Used in setting the maximum value for menwry _each; 
otherwise ignored. 

Sets the amount of memory allocated to buffering 
messages from each correspondent. 

Sets the threshold for sending multiple packets. 

Sets the number of bytes to send right away when the 
available memory is above send_threshold. 

Sets the threshold for "give me more messages" message. 

See "Process Locking" on page 8-15, "Packetization" on page 8-16, and "System Message Buffers" 
on page 8-16 for more detailed information. 

8-19 



Improving Performance Paragon 1M User'~ Guide 

Default, Maximum, and Minimum Values 

The default, maximum, and minimum values for the mp _switches are shown in Table 8-1. 

Table 8-1. Message-Passing Configuration Switches 

Switch Parameter Default Maximum Minimum 

.plk none unlocked nla nla 

-pkt packet_size 1792 or 1792 sizeof(xDlSLt) 
«memory_each I 2) -
sizeof(XDJSL.t)l ), 
whichever is less 

-mbf message_buffer 1MB + 128KB 32MB + (8 * sizeof(xmsg_t» * 
(10 * fullJXlCket_s;ze2) (correspondents + 2) + 

(20 * sizeof(XJDSLt» 

-mex memory_export message_buffer - 128KB message_buffer - 128KB 2 * (correspondents + 2) * 
(2 * fullyacket_size) 

-DOC correspondents numnodesO none none 

-JDe8 memory_each (10 * fullyacket_size) or IMB-31or 2 * fullYDcket _size 
maximum memory_each, (memory_export I 2) I 
whichever is less (correspondents + 2), 

whichever is less 

-sth send_threshold memory_each I 2 memory_each - 1 none 

-set send count memory_each I 2 memory_each packet_size 

-gth give_threshold packet_size memory_each I 2 packet_size 

1. XJDSLt is a type defined in <mcmsglmcmsLxmsg.h> that defines the message header sent along with 
each packet. The size of this type is currently 64 bytes. 
2. fullyacket_size - packet_size + sizeof(xmsg_t). 

8-20 



Paragon- User's Guide Improving Performance 

Dependencies and Rounding 

As you can see from Table 8-1, the values for some of the mp _switches depend on the current values 
of other switches in a circular manner (for example, the default for pacut _size depends on the value 
of memory_each, while the default for memory _each depends on the value of pacut _size). These 
dependencies are resolved using the following procedure: 

1. Set pacut _size: If -pkt is specified, round the specified value up to a multiple of 
slzeof(XJDSLt). Otherwise, use the default value. 

2. Set message_buffer. If -mbf is specified, round the specified value up to a multiple of 
Jull..JKlCut_size. Otherwise, use the default value. 

3. Set memory_export: If -mex is specified, use the specified value. Otherwise, use the default 
value. 

4. Set memory_each: If -mea is specified, round the specified value down to a multiple of 
slzeof(xIDSI.J). Otherwise, round the default value down to a multiple of slzeof(XJDSL.t). 

5. Check that memory_each will hold at least two packets: If (memory _ eachl2) - slzeof(XJDSLt)·· 
is less thanpacut_size, resetpacut_size to the value «memory_eachl2) - slzeof(XlllSlLt», 
round the resulting value down to a multiple of sizeof(xmsg.J), thenretum to step 2. Otherwise, 
continue to step 6. 

6. Set send_threshold: If -sth is specified, round the specified value down to a multiple of 
pacut _size. Otherwise, round the default value down to a multiple of pacut _Size. 

7. Set send _counr. If -set is specified, round the specified value down to a multiple of pacut _size. 
Otherwise, round the default value down to a multiple of pacut _size. 

8. Set give_threshold: If -gth is specified, round the specified value down to a multiple of 
pacut _Size. Otherwise, round the default value down to a multiple of packet_size. 

Recommendations 

Because of the way message-passing flow control works, you should try to do all the following to 
achieve the best possible message-passing performance: 

• Avoid paging, by keeping the application's memory requirements within available physical 
memory. Once you have done this, use the -plk switch if this is allowed at your site. 

• Avoid blocking, by using asynchronous calls. 

• Avoid system message buffering, by posting receives before the message is sent. (See "Avoid 
Message Buffering" on page 8-11 for tips on how to do this.) 

8-21 



Improving Performance Paragon no User's Guide 

8-22 

It is important to make all three of these changes if possible. For example, even if you always post 
receives before the corresponding send occurs, system message buffering will still be necessary if 
the application buffer is paged out (or has never been paged in) when the message arrives. 

If you cannot avoid system message buffering, you may be able to improve message-passing 
performance by increasing the message _buffer parameter (-mbf). This parameter determines the 
total amount of memory allocated to message buffers in each process; the other parameters 
determine how this memory is divided up. When you change the value of message _buffer, the 
defaults for the other parameters are automatically scaled to match the current message _bUffer size. 
Increasing the message buffer can increase the efficiency of message passing, but it also increases 
the memory usage of your application, which may cause paging and slow the application down. 
Once you have determined the optimal message _bUffer size for your application, you can change the 
other parameters to fine-tune the usage of memory within the message _buffer and optimize 
message-passing performance. 

The performance of some applications that use system message buffering can also be improved by 
reducing the correspondents parameter (-noc). This is particularly likely to help if your application 
slows down or hangs when you run it on more nodes. The -DOC switch sets the ''number of 
correspondents" for each process, which is the number of other processes from which the process 
receives messages. This number is used to determine how the memory allocated to buffering 
messages is divided up; more correspondents means that less memory is available for buffering 
messages from each correspondent. If you don't use -DOC, the default for correspondents is 
numnodesO; that is, it is assumed that each process may receive messages from one process on each 
node. If you know that each process does not receive messages from every other node, using -DOC to 
decrease the value of correspondents increases the memory_each buffer size, which can result in 
more efficient message passing (especially if the number of nodes is large). However, if the total 
number of other processes from which any process receives messages during the life of the 
application exceeds the value of correspondents, the application may run more slowly. 

Note that certain global operations, such as sending to node -1 (which broadcasts a message to all 
nodes in the application) or calling gdsumO, can send messages to intermediate nodes. For example, 
sending to node -1 does not simply send one message to every other node; instead, it sends a message 
to several other nodes, which each send messages to several other nodes, and so on in a "message 
tree." This method is more efficient, but it means that if you use any global operations, the actual 
number of correspondents will be greater than the number of nodes from which each node receives 
explicit messages (by approximately the log of the number of nodes in the application). 



Paragon 1M Ueer'a Guide Improving Performance 

1/0 Performance 
If your application performs 110 to files, you can use the following teclmiques to improve its 110 
perfonnance. Note: the tenn request size refers to the number of bytes specified in a single read or 
write operation. Techniques discussed in this section include: 

• Use PFS file systems. 

• Use lOpenO instead of openO. 

• Use parallel 110 calls. 

Use asynchronous calls. 

• Use the appropriate 110 mode. 

• Align 110 buffers with virtual memory pages. 

• Read or write whole file system blocks. 

• Make good use of file striping. 

See Chapter 5 for more infonnation on these techniques. 

Use PFS File Systems 

Always store large data files in file systems of type PFS (Parallel File System). These file systems 
are optimized for large 110 requests (request sizes of 64K bytes or more) and simultaneous access 
by multiple nodes, and files in them can be larger than 2G bytes in size. 

Use gopenO Instead of openO 

If all nodes in an application open the same file, you should always use lOpenO rather than openO. 
If all nodes call openO, each node sends an "open file" message to the same 110 node at the same 
time, which can swamp the 110 node with messages. But when all nodes call lopenO, only one node 
communicates with the 110 node; the open file descriptor is then broadcast to the other nodes in the 
application through efficient global communication techniques. If you must use openO, try to keep 
all the nodes from calling it at the same time (do not precede the openO with a gsyncO). 

8--23 



Improving Pertonnance Paragon 1M User's Guide 

Use Parallel 1/0 Calls 

If you program in Fortran, you should always use Paragon OSF/! parallel 110 calls, such as creadO, 
to access your files. These calls give much better performance than the standard Fortran file I/O 
statements, such as READ. 

If you program in C, you will not see any I/O performance increase from using parallel I/O calls, 
such as creadO, rather than standard UNIX I/O calls, such as readO (although creadO gives better 
performance than freadO, which is the C equivalent of Farttan' s READ). However, you may be able 
to improve computational performance by using asynchronous I/O calls. 

Use Asynchronous Calls 

The parallel I/O calls are available in both synchronous versions (call names beginning with c) and 
asynchronous versions (call names beginning with i). Synchronous calls do not return until the I/O 
operation is complete; asynchronous calls return immediately, giving you an I/O ID that you can use ... 
to check when the operation is complete. 

Although the synchronous calls are easier to use and have slightly lower overhead, you should use 
the asynchronous calls whenever the results of the call are not needed immediately. Using 
asynchronous calls can let your application do useful computation in the time when it would 
otherwise just be waiting for a large I/O operation to complete. 

Use the Appropriate 1/0 Mode 

8-24 

When you use Paragon OSF!! parallel I/O calls, you can choose from five I/O modes (M _ UNIX, 
M_LOG,M_SYNC,M_RECORD,andM_GLOBAL),eachofwhichisoptimizedforaparticular 
pattern of file I/O. Be sure to use the correct I/O mode for your application's usage. In particular: 

• Don't use M _UNIX, the default I/O mode, unless your application depends on its semantics. 

• If all nodes read the same data from the same file at the same time, use M _GLOBAL. 

• If all nodes read or write the same file, but each node is accessing a different part of the file, use 
M _RECORD if at all possible. This mode provides much higher multi-node performance than 
the other modes, all of which force reads and writes from different nodes to the same file to be 
performed in strict sequential order (this is required to preserve standard UNIX I/O semantics, 
but slows the application down). 

• If M _RECORD cannot be used because the I/O request size is not constant across all compute 
nodes, use M _SYNC instead. 



Paragon 1M User's Guide Improving Performance 

Align 1/0 Buffers with Virtual Memory Pages 

Try to ensure that memory buffers used in 110 calls are aligned on an 8K-byte boundary whenever 
possible, to align with the operating system's virtual memory page size. This alignment is 
particularly important in scatter/gather operations with large request sizes to multiple 110 nodes. If 
you do not specify properly-aligned buffers, the software must copy the data to new, aligned buffers, 
which decreases performance. 

To be sure the buffer is well-aligned, you should use mallocO to allocate it rather than allocating it 
statically. (This call is available in both Fortran and C.) Buffers allocated with the standard mallocO 
or its derivatives will always be aligned on a 32-byte boundary. See "Align Application Buffers" on 
page 8-12 for more information on aligning buffers. 

Read or Write Whole File System Blocks 

Disk space is allocated and managed in units called file system blocks. The size of each block in a _ 
file system is determined when the file system is created. For best performance, PFS file systems 
should have a file system block size of 64Kbytes. 

The file system block size is important because files always begin at a block boundary and data is 
most efficiently transferred to and from the physical disk in integer numbers of blocks. Furthermore, 
if a block is modified (but not entirely overwritten) by a write operation, the block may have to be 
read, modified in memory, and then written back. 

Because of this, you will get the best 110 performance if each read or write request begins on a block 
boundary (a multiple of the block size from the beginning of the file) and the request size is a 
multiple of the file system block size. 

To determine the block size of a file system, you can use the statfsO or fstatfsO call (see the OSFll 
Programmer's Reference for information on these calls), or ask your system administrator. 

Make Good Use of File Striping 

Files in PFS file systems are distributed, or striped, across several directories called stripe 
directories. The number of stripe directories in a PFS file system is called the stripe factor, and the 
amount of data from each file that is stored in each directory is called the stripe unit. The product of 
the stripe factor and the stripe unit is called the full stripe size. A PFS file system's stripe factor and 
stripe unit are set by the system administrator when the PFS file system is mounted. 

&.25 



Improving Perfonnance Paragon™ User's Guide 

8-26 

Each stripe directory is typically on a separate disk, and each disk is typically controlled by a 
separate 110 node; you get the best 110 performance when you keep all the 110 nodes busy at once. 
You can use file striping to help you do this, with two different methods: 

1. Use a request size equal to an integer multiple of the full stripe size, and make the starting 
address of each request the beginning of a full stripe. With this method, each 110 request goes 
to all the 110 nodes at once. This method can be used on any number of nodes. 

2. Use a request size equal to the stripe unit size, make the starting address of each request the 
beginning of a stripe unit, and choose the starting address of each node's requests so that the 
nodes' requests are evenly distributed among the 110 nodes. With this method, each 110 request 
goes to just one 110 node, but the application's 110 requests are distributed among the 110 nodes. 
This method should be used only if the number of compute nodes is greater than or equal to the 
nwnber of 110 nodes, preferably an integer multiple of the number of 110 nodes. 

These two methods are illustrated in Figure 8-1. Note that method 1 uses fewer, larger requests and 
method 2 uses more, smaller requests. Method 1 is generally more efficient, but method 2 may give 
better perfonnance for some situations (depending on the number of compute nodes, the number of 
110 nodes, the amount of memory on each 110 node, and the size and frequency of requests). If 
possible, you should try both methods and use whichever is more efficient. The example program in 
lusrlsharelexampleslclstripe demonstrates the two methods, and you can use it to help you 
determine which method is best for your application. (Note that you will see more consistent results 
from one run to the next if the data size is large-8M bytes per node or more.) 

You should always use the 110 mode M _RECORD when using these methods. M _RECORD is the 
most efficient 110 mode for this type of 110, and automatically enforces the distribution of data 
among the 110 nodes. If you use M _RECORD, no file pointer calculation or seeking is required. 
For example: 

while(data < end) { 

J 

cwrite(fd, data, request_size); 
data += request_size; 

Using this code, if request_size is equal to the full stripe size, each compute node automatically 
accesses all I/O nodes on each write (method 1). Alternatively, if request _size is equal to the stripe 
unit, each compute node automatically accesses exactly one I/O node on each write (method 2). 

To detennine the stripe factor and stripe unit of a PFS file system, you can use the showfs command 
(described under "Displaying File System Attributes" on page 5-5) or the statpfs() or fstatpfs() call 
(available only in C; described under "Getting Infonnation About PFS File Systems" on page 5-39). 
The example program in lusrls#wrelexampleslclstripe shows you how you can do this with 
fstatpfsO. 



Paragon'" User's Guide Improving Performance 

Compute Nodes 

1/0 Nodes 

Disks 

1. Request size = full stripe size 
(Fewer, larger requests; each request goes to all 1/0 nodes) 

Compute Nodes () 0 

1/0 Nodes 

Disks 

2. Request size = stripe unit size 
(More, smaller requests; each request goes to one 110 node) 

Figure 8·1. Two Methods of Improving 110 Performance with M_ RECORD 

8-27 



Improving Perfonnance Paragon'" User's Guide 

8-28 



Summary of Commands 
and System Calls 

This appendix summarizes the commands and system calls of Paragon '1M OSF!I. The complete 
syntax of each command and call is provided, along with a brief description of each. The C and 
Fortran versions of the calls are discussed in separate sections. 

This appendix discusses only the commands and calls that are specific to Paragon OSF!I. For 
information on the standard commands and calls of OSF!I, see the OSF!l Command Reference and 
OSF!l Programmer's Reference. 

Command Summary 
This section summarizes the commands discussed in Chapter 2 and Chapter 5. See the Paragon™ 
Commands Reference Manual for more information on these commands. 

Compiling and Linking Applications 

Table A-t. Commands for Compiling and Linking Applications 

Command Synopsis Description 

cc -nx [ switches] sourceftle ... Compile a Paragon OSF!I application written 
in C on an Intel supercomputer. 

m -nx [ switches] sourceftle •.. Compile a Paragon OSF!I application written 
in Fortran on an Intel supercomputer. 

icc -nx [ switches] sourceftle •.. Compile a Paragon OSF/I application written 
in C on an Intel supercomputer or 
cross-development workstation. 

lf17 -nx [ switches] sourceftle ... Compile a Paragon OSF!I application written 
in Fortran on an Intel supercomputer or 
cross-development workstation. 

A-1 



Summary of Commands and System Calls Paragon no User's Guide 

Running Applications 
Table A-2. Commands for Running Applications 

COmmand Synopsis Description 

application [ -sz size 1 -sz hXw 1 -00 hXw:n ] Execute a Paragon OSP/1 application. 
[ -pri priority] [ -pt ptype ] 
[ -on nodespec] [ -pn partition] 
[ -pkt packet_size] 
[ -noc correspondents ] 
[ -mbf memory_buffer] 
[ -mex memory_export] 
[ -mea memory_each] 
[ -sth send_threshold] [ -set send_count] 
[ -gth give_threshold] [ -plk ] 
[application_args] [\;file [ -ptptype] 
[ -on nodespec] [application _ arg s ] ] ... 

Managing Partitions 
Table A-3. Commands for Managing Partitions 

COmmand Synopsis Description 

mkpart [ .sz size 1 -sz hXw 1 -nd nodespec ] Create a partition. 
[ -ss 1 [ [ -sps 1 -rq time ] 
[ -ep1 priority] ] ] [ -mod mode ] 
partition 

nnpart [ -f] [ -r] partition Remove a partition. 

showpart [ -f] [partition] Show the characteristics of a partition. 

Ispart [ -r] [partition] List the subpartitions of a partition. 

pspart [ -r ] [partition] List the applications in a partition. 

chpart [ -epl priority] [ -g group] Change certain partition characteristics. 
[ -mod mode ] [ -om name ] 
[ -0 owner[ • group] ] [ -rq time· 1 -sps ] 
partition 

A-2 



Paragon" User's Guide Summary of Commands and System Calls 

Parallel File System Commands 

Table A-4. Parallel me System Commands 

Command Synopsis Description 

shod [ -k ][ -t type ] Display fIle system attributes. 
[filesystem I directory ] 

Isize [ -a ] size file ... Change the size of a me or meso 

Miscellaneous Commands 

Note: the commands shown in Table A-5 are not documented in this manual. 

Table A-S. Miscellaneous Commands 

Command Synopsis Description 

fspUt [filename] Split one me containing several Fortran 
program units into several rues containing one 
program unit each. (See the Paragon™ 
Commands Reference Manual for more 
information.) 

pmake [ -bcdeFikmnNpqrsStuUvw ] Parallel make utility that maintains up-to-date 
[-C dir] [ .ffile] [ -I dir] [ -J[jobs]] versions of target rues and performs shell 
[ -I [load] ] [ -ofile] [ -P partition] programs in parallel. (See the Paragon™ 
[ -W file] [macro definition ... ] Application Tools User's Guide for more 
[target ... ] information.) 

sat [ -bcbxV] [ -d dir ] [ -I log ] [ -m mins ] Run the Para~on system acceptance test. (See 
[ -0 output] [ -p partition] [ -r reps] the Paragon System Acceptance Test User's 
[test ... ] Guide for more information.) 

A-3 



Summary of· Commands and System CaHs Paragon no User's Guide 

C System Call Summary 
This section summarizes the C versions of the system calls discussed in Chapter 3, Chapter 4, 
Chapter 5, and Chapter 6. See the Paragon TIl. C System Calls Reference Manual for more 
information on these calls. 

Process Characteristics 
Table A-6. C Calls for Process Characteristics 

Synopsis Description 

long mynode(void); Obtain the calling process's node number. 

long numnodes(void); Obtain the number of nodes allocated to the 
current application. 

long myptype(void); Obtain the calling process's process type. 

void setptype( Set the calling process's process type (only 
long ptype ); permitted if the process type is currently 

INVALID _PI'YPE). 

long myhost(void); Obtain the controlling process's node number. 

A-4 



Paragon 111 Uaer's Guide Summary of Commands and System caJls 

Synchronous Send and Receive 
Table A·7. C Calls for Synchronous Send and Receive 

Synopsis Description 

voidcsend( Send a message, waiting for completion. 
long type, 
char *buf, 
long count, 
long node, 
long ptype ); 

voidcrecv( Receive a message, waiting for completion. 
long typesel, 
char *buf, 
long count ); 

long csendrecv( Send a message and post a receive for the 
long type, reply. Wait for completion. 
char*sbuf, 
long scount, 
long node, 
longptype, 
long typesel, 
char *rbuf, 
long rcount ); 

void gsendx( Send a message to a list of nodes, waiting for 
long type, completion. 
char *buf, 
long count, 
long nodes[), 
long nodecount ); 

A-5 



Summary of Commands and System Calls Paragon no User's Guide 

Asynchronous Send and Receive 
Table A-8. C Calls for Asynchronou Send and Receive 

Synopsis Description 

longisend( Send a message without waiting for 
long type, completion. 
char *buf, 
long count, 
long node, 
long ptype ); 

long irecv( Receive a message without waiting for 
long typesel, completion. 
char *buf, 
long count ); 

long isendrecv( Send a message and post a receive for the reply 
long type, without waiting for completion. 
char *sbuf, 
long scount, 
long node, 
longptype, 
long typesel, 
char *rbuf, 
long rcount ); 

long msgdone( Determine whether a send or receive operation 
long mid); has completed. 

void msgwait( Wait for completion of a send or receive 
long mid); operation. 

void msgignore( Release a message ID as soon as a send or 
long mid); receive operation completes. 

long msgmerge( Merge two message IDs into a single ID that 
longmidl, can be used to wait for completion of both 
longmid2 ); operations. 

A-6 



Paragon- User's Guide Summary of Commands and System Calls 

Probing for Pending Messages 
Table A·9. C Calls for Probing for Pending Messages 

Synopsis Description 

void eprobe( Wait for a message of a selected type to arrive. 
long typesel ); 

long iprobe( Determine whether a message of a selected 
long typesel ); type is pending. 

Getting Information About Pending or Received Messages 
Table A·IO. C Calls for Getting Information About Pending or Received Messages 

Synopsis Description 
, 

long lnfocount(void); Return size in bytes of a pending or received 
, 

message. 

long infonode(void); Return node number of the node that sent a 
pending or received message. 

long infoptype(void); Return process type of the process that sent a 
pending or received message. 

long infotype(void); Return message type of a pending or received 
message. 

A-7 



Summary of Commands and System Calls Paragon no User's Guide 

Treating a Message as an Interrupt 
Table A·ll. C CaDs for TreatiDg a Message as an Interrupt 

A-8 

voidbsend( 
long type, 
char *buf, 
long count, 
long node, 
longptype, 

Synopsis 

void (*handler) 0); 

void hrecv( 
long typesel, 
char *buf, 
long count, 
void (*handler) 0 ); 

void bsendrecv( 
long type, 
char *sbuf, 
long scount, 
long node, 
longptype, 
long typeset, 
char *rbuf, 
long rcount, 
void (*handler) 0 ); 

long masktrap( 
long state ); 

void bsencb( 
long type, 
char *buf, 
long count, 
longnotk, 
longptype, 
void (*xhandler) 0, 
long hparam ); 

Description 

Send a message and set up a handler procedure 
to be called when the send completes. 

Receive a message and set up a handler 
procedure to be called when the receive 
completes. 

Send a message and post a receive for the 
reply. Set up a handler procedure to be called 
when the reply arrives. 

Enable or disable interrupts for message 
handlers. Required to prevent corruption of 
global variables. 

Send a message and set up an extended handler 
procedure to be called with the value hparam 
when the send completes. Allows handler 
sharing. 



Paragon 111 User's Guide Summary of Commands and System Calls 

Extended Receive and Probe 
Table A·12. C CaDs for Extended Receive and Probe 

SynopsiS Description 

void creevx( Receive a message of a specified type from a 
long typesel, specified sending node and process type. 
char *buJ, together with information about the message. 
long count, Wait for completion. 
long nodesel, 
long ptypesel. 
long info[] ); 

long irecvx( Receive a message of a specified type from a --
long typesel. specified sending node and process type, 
char *buf, together with infonnation about the message. 
long count. Do not wait for completion. 
long nodesel. 
long ptypesel, l~' 
long info[] ); 

void brecvx( Receive a message of a specified type from a 
long typesel. specified sending node and process type. Set 
char*buf, up an extended handler procedure to be called 
long count. with information about the message and the 
long nodesel. value hparam when the receive completes. 
long ptypesel. 
void (*xhandler) O. 
long hparam ); 

void cprobex( Wait for a message of a specified type from a 
long typesel. specified sending node and process type. 
long nodesel, Return information about the message. 
longptypesel, 
long info[] ); 

long iprobex( Determine whether a message of a specified 
long typesel. type from a specified sending node and process 
long nodesel. type is pending. If it is, return information 
longptypesel, about the message. 
long info[] ); 

A-9 



Summary of Commands and System.Calls Paragon TIl User's Guide 

Global Operations 
Table A·13. C Calls for Global Operations (1 of 3) 

Synopsis Description 

void gcol( Concatenation. 
charx[], 
longxlen, 
chary[], 
longylen, 
long *ncnt ); 

voidgcolx( Concatenation for contributions of known 
char XC], length. 
long xlens[] , 
chary[] ); 

void gdhigb( Vector double precision MAX. 
doublex[], 
longn, 
double work[] ); 

voidgdlow( Vector double precision MIN. 
double XC], 
longn, 
double work[] ); 

void gdprod( Vector double precision MULTIPLY. 
doublex[], 
longn, 
double work[] ); 

voidgdsum( Vector double precision SUM. 
doublex[], 
longn, 
double work[] ); 

voidgiand( Vector integer bitwise AND. 
longx[]. 
longn. 
long work[] ); 

void gihigh( Vector integer MAX. 
longx[], 
longn, 
long work[] ); 

A-10 



Paragon" User's Guide Summary of Commands and System Calls 

Table A·13. C CaDs for Global Operations (2 of3) 

Synopsis Description 

voidgilow( Vector integer MIN. 
longx[]. 
longn. 
long work[] ); 

void gior( Vector integer bitwise OR. 
longx[]. 
longn. 
long work[] ); 

void giprocl( Vector integer MULTIPLY. 
longx[]. 
longn. 
long work[] ); 

voidgisum( Vector integer SUM. 
longx[]. 
long n. 
long work[] ); 

voidgland( Vector logical AND. 
longx[], 
longn, 
long work[] ); 

voidglor( Vector logical inclusive OR. 
longx[], 
longn. 
long work[] ); 

voidgopf( Arbitrary commutative function. 
char x[], 
longxlen, 
char, work[). 
long ("'jimction)O ); 

void gshigb( Vector real MAX. 
floatx[], 
longn, 
float work[) ); 

voidgslow( Vector real MIN. 
floatx[], 
longn, 
float worl[] ); 

A-11 



Summary of Commands and System Calls Paragon 111 Users Guide 

Table A·13. C CaDs for Global Operations (3 of 3) 

Synopsis Description 

void gsprod( Vector real MULTIPLY. 
floatx(], 
longn, 
float work[] ); 

voidgssum( Vector real SUM. 
floatx[], 
longn, 
float work[] ); 

void gsync(void); Global synchronization. 

Controlling Application Execution 
Table A·14. C Calls for Controlling Application Execution (I of2) 

SynopSiS Description 

long ox_initve( Create a new application. 
char *partition, 
long size, 
char *account, 
long *argc, 
char *argv[]); 

long ox_initve]ect( Create a new application with a rectangular 
char *partition, shape. 
long anchor, 
long rows, 
long cols, 
char *account, 
long *argc, 
char *argv[]); 

long ox "pri( Set the priority ofan application. 
long pgroup, 
long priority ); 

long ox _ nfork( Copy the current process onto some or all 
long node _'ist[], nodes of an application. 
long numnodes, 
longptype, 
longpid_list[] ); 

A-12 



Paragon'" User's Guide Summary of Commands and System Calls 

Table A·I4. C Calls for CootroUing Application Execution (2 of 2) 

SynopsiS Description 

long ox_load( Execute a stored program on some or all nodes 
long node_list[], of an application. 
long numnodes. 
longptype. 
longpid_list[]. 
char *pathname ); 

long ox Joadve( Execute a stored program on some or all nodes 
long node _list[]. of an application, with specified argument list 
long numnodes. and environment. 
longptype. 
long pid _'ist[]. 
char *pathname. 
char *argv[]. 
char *envp[] ); 

long ox _ waltall(void); Wait for all application processes. 

Getting Information About Applications 
Table A·IS. C CaDs for Getting Information About Applications 

Synopsis DeSCription 

long ox _app ]ect( Obtain the height and width of the rectangle of 
long*rows. nodes allocated to the current application. 
long * cols ); 

int ox _app _ nodes( List the nodes allocated to an application. 
pid_t pgroup. 
nx_nodes_t *node _'ist. 
unsigned long *list_size); 

int ox J)SP8I1( Obtain information about all applications and 
char *partition. active subpartitions in a partition. 
nx....,PSpatt_t **psparUist. 
unsigned long *list_size); 

A-13 



Summary of Commands and System Calls Paragon no User's Guide 

Partition Management 
Table A·I6. C CaDs for Partition Management (I of2) 

Synopsis Description 

long nx _ mkpart( Create a partition with a particular number of 
char *partition, nodes. 
long size, 
long type); 

long nx _ mkpart_ rect( Create a partition with a particular height and 
char *partition, width. 
long rows, 
long cols, 
long type); 

long nx_mkpart_IDBP( Create a partition with a specific set of nodes. 
char *partition, 
long numnoties, 
long node _list[], 
long type); 

long nx ]mpart( Remove a partition. 
char *partition, 
long force, 
long recursive ); 

int nx..JNlrt_attr( Get a partition's attributes. 
char *partition, 
nx.J)arUnfo_t *attributes ); 

int nx ..JNlrt_ nodes( List the root node numbers for the nodes of a 
char *partition, partition. 
nx_nodes_t *node _list, 
unsigned long *list_size); 

long nx _ cbpart_ name( Change a partition's name. 
char *partition, 
char *name ); 

long nx _ cbpart_ mode Change a partition's protection modes. 
char *partition, 
long mode); 

long nx _ cbpart_epl( Change a partition's effective priority limit. 
char *partition, 
long priority ); 

long nx _ cbpart_ rq( Change a partition's rollin quantum. 
char *partition, 
long rollin_quantum ); 

A-14 



Paragon 111 User's Guide Summary of Commands and System caJls 

Table A·l6. C CaDs for Partition Management (2 of 2) 

Synopsis Description 

long ox _ cbpart _owner( Change a partition's owner and group. 
char *partition, 
long owner, 
long group ); 

long ox_chpart_sched{ Change a partition's scheduling type. 
char *partition. 
int sched _type ); 

Finding Unusable Nodes 
Table A·17. C Calls for Finding Unusable Nodes 

Synopsis Description 

int ox _empty-nodes( List the nodes that are empty slots. 
DX_nodes_t *node _list. 
unsigned long *list_size); 

int ox_failed _nodes( List the nodes that failed to boot. 
DX_nodes_t *node _'ist. 
unsigned long * list_size ); 

Handling Errors 
Table A·lS. C Calls for Handling Errors 

SynopsiS Description 

_call( ••• ); Special version of call that returns error value 
to caller. 

void ox.JJerrOr{ Print an error message corresponding to the 
char * string ); current value of errno. 

A-15 



Summary of Commands and System Calls Paragon TIl User's Guide 

Floating-Point Control 
Table A·19. C Calls for F1oating.Point Control 

SynopsiS Description 

intisnan( Determine if a dooble value is Not-a-Number. 
double dsrc ); 

intisnand( Determine if a dooble value is Not-a-Number. 
double dsrc ); 

intisnaof( Detennine if a Boat value is Not-a-Number. 
float fore ); 

fp_rnd fpgetround(void); Get the floating-point rounding mode for the 
calling process. 

fp_rnd fpsetround( Set the floating-point rounding mode for the 
fp_md rrld_dir); calling process. 

fp_except fpgetmask(void); Get the floating-point exception mask for the 
calling process. 

fp_exceptfpsebDask( Set the floating-point exception mask for the 
fp_except mask ); calling process. 

fp_except fpgetsticky(void); Get the floating-point exception sticky flags 
for the calling process. 

fp_except fpsetsticky( Set the floating-point exception sticky flags for 
fp_except sticky ); the calling process. 

Miscellaneous Calls 
Table A·20. Miscellaneous C Calls 

Synopsis Description 

void Oick(void); Temporarily relinquish the CPU to another 
process. 

void led( Turn the node's green LED on or off. 
long state ); 

double dclock(void); Return time in seconds since booting the 
system. 

A-16 

---------- --- -----



Paragon'" User's Guide Summary of Commands and System Calls 

iPSc® and Touchstone DEL T A Compatibility 

Table A·21. C Calls for iPSC~ and Touchstone DELTA Compadbllity (I o(2) 

Synopsis Description 

void 8usbmsg( Flush specified messages from the system. 
long typesel, 
long nodesel, 
long ptypesel ); 

longginv( Return the position of an element in the 
longj); binary-reflected gray code sequence. Inverse 

ofgrayO. 

longgray( Return the binary-reflected gray code for an 
longj); integer. 

void hwdoek( Place the current value of the hardware counter 
esize_t *hwtime ); into a 64-bit unsigned integer variable. 

long infopid(void); Return the process type of the process that sent 
a pending or received message. 

void kiUcube( Terminate and clear node process(es). 
long node, 
longptype ); 

void kiUproc( Terminate a node process. 
long node, 
long ptype ); 

voidload( Load a node process. 
char *filenome, 
long node, 
long ptype ); 

unsigned long mdoek(void); Return the time in milliseconds. 

void msgcancel( Cancel an asynchronous send or receive 
long mid); operation 

long mypart( Obtain the height and width of the rectangle of 
long *,.ows, nodes allocated to the current application 
long *cols); 

long mypid(void); Return the process type of the calling process. 

A-17 



Summary of Commands and System calls Paragon TIl User's Guide 

Table A·21. C Calls for iPSC· and Touchstone DELTA Compatibility (2ofl) 

Synopsis Description 

long nodedim(void); Return the dimension of the current application 
(the number of nodes allocated to the 
application is t ime1lSion). 

long restrictvol( Return 0 (does nothing; provided for 
long fildes, compatibility only). 
long nvol, 
long vollist[] ); 

1/0 Modes 
Table A·22. C Calls for I/O Modes 

SynOpsiS Description 

intgopen( Open a file on all nodes and set its 110 mode. 
const char *path, 
intojlag, 
int iomode [ , 
mode_t mode ] ); 

void setiomode( Set the 110 mode for a file. 
intfildes, 
int iomode ); 

long iomode( Return the current 110 mode for a file. 
intfildes ); 

A-18 



Paragon" User's Guide Summary of Commands and System Calls 

Reading and Writing Files in Parallel 
Table A·l3. C Calls for Reading and Writing FlIes in Parallel 

Synopsis Description 

voidcread( Read from a file, waiting for completion. 
intjildes, 
char *buffer, 
unsigned int nbyles ); 

void cwrite( Write to a file, waiting for completion. 
intjildes, 
char *buffer, 
unsigned int nbytes ); 

void creadv( Read from a file to irregularly-scattered 
int jildes, buffers, waiting for completion. 
struct iovec *iov, ~i 

int iovcount ); 
" 

void cwritev( Write to a file from irregularly-scattered 
intfildes, buffers, waiting for completion. 
struct iovec *iov, 
int iovcount ); 

longiread( Read from a file without waiting for 
intjildes, completion. 
char *buffer, 
unsigned int nbyles ); 

long iwrite( Write to a file without waiting for completion. 
intfildes, 
char *buffer, 
unsigned int nbytes ); 

long ireadv( Read from a file to irregularly-scattered 
intfildes, buffers, without waiting for completion. 
struct iovec *iov, 
int iovcount ); 

long iwritev( Write to a file from irregularly-scattered 
intfildes, buffers, without waiting for completion. 
struct iovec * iov, 
int iovcount ); 

long iodone( Determine whether an asynchronous 110 
long itt); operation is complete. If complete, release the 

IIOID. 

void iowait( Wait for completion of an asynchronous 110 
longid); operation and release the 110 10. 

A-19 



Summary of Commands and System CaDs Paragon no User's Guide 

Detecting End-of-File and Moving the File POinter 
Table A-24. C Calls for DetectiDg End-of-me and Moving the me Pointer 

Synopsis Description 

long iseof( Test for end-of-file. 
intfildes ); 

ofCtlseek( Move the read/write file pointer. 
intfildes, 
ofCt offset, 
int whence ); 

Increasing the Size of a File 
Table A-25. C Calls for Increasing the Size ofa FUe 

Synopsis Description 

long Isize( Increase size of a file. 
intfildes, 
ofCt offset, 
int whence ); 

A-20 



Paragon OM User's Guide Summary of Commands and System Calla 

Extended File Manipulation 
Table A·16. C Calls for Extended File Manipulation 

Synopsis Description 

esize_t eseek( Move file pointer in extended file. 
intfildes, 
esize_t offset, 
int whence ); 

esize_t esize( Increase size of extended file. 
intfildes, 
esize_t offset, 
int whence ); -. -

longestat( Get status of extended file from patlmame. 
char ·path, 
sttuct estat ·buffer ); 

long lestat( Get status of extended file or symbolic link 
char*path, from pathname. 
sttuct estat *buffer ); 

long festat( Get status of open extended file from file 
intfildes, descriptor or unit. 
sttuct estat *buffer ); 

A·21 



Summary of Commands and System Calls Paragon 1M User's Guide 

Performing Extended Arithmetic 
TableA-Z7.C Calls for Perfonning Extended Arithmetic 

Synopsis Description 

esize_t eadd( Add two extended integers. 
esize_teJ, 
esize_t e2 ); 

longecmp( Compare two extended integers. 
esize_teJ, 
esize_t e2 ); 

longediv( Divide extended integer by integer. 
esize_t e, 
long n); 

longemod( Give extended integer modulo an integer 
esize_te, (remainder when e is divided by n). 
long n); 

esize_t emul( Multiply extended integer by integer. 
esize_te, 
longn ); 

esize_t esub( Subtract two extended integers. 
esize_teJ, 
esize_t e2 ); 

voidetos( Convert extended integer to string. 
esize_t e, 
char *s); 

esize_t stoe( Convert string to extended integer. 
char*s ); 

A-22 



Paragon- User's Guide Summary of Commands and System Calla 

Getting Information About PFS File Systems 
Table A·28. C Calls for Getting Information About PFSTM FUe Systems 

Synopsis Description 

long getpfsinfo( Get PFS-specific information about all 
struct pfsmntinfo **attrbufp ); mounted PFS file systems. 

int statpfs( Get PFS-specific and non-PFS-specific 
char*path, information for the file system contaioingpath. 
struct estatfs *fs_buffer, 
struct statpfs *pfs_buffer, 
unsigned int pfs _bufsize ); 

long fstatpfs( Get PFS-specific and non-PFS-specific 
intfildes, information for the file system containing the 
struct estatfs *fs _buffer, file open onfildes. 
struct statpfs *pfs _buffer, 
unsigned int PIs _bufsize ); 

A-23 



Summary Of Commands and System CaDs Paragon no User's Guide 

Managing Pthread Execution 
Table A·29. C Calls for Managing Pthread Execution 

Synopsis Description 

int pthread _create( Creates a pthread. 
pthrea<U *thread. 
pthread_attr_t attr, 
void *(*routine)(void *arg). 
void *arg); 

pthrea<U pthread_self(void); Returns the ID of the calling pthread. 

int pthread_equal( Compares two pthread identifiers. 
pthread_t threadl. 
pthread_t thre0d2 ); 

void ptbreadJield(void); Allows the scheduler to run another pthread 
instead of the current one. 

void ptbread _ exit( Terminates the calling pthread. 
void *status); 

int pthread Join( Waits for a pthread to terminate. 
pthread_t thread, 
void **status); 

int pthread _detach( Detaches a pthread. 
pthread_t *thread ); 

Managing Pthread Attributes 
Table A·30. C Calls for Managing Pthread Attributes 

Synopsis Description· 

int pthread _ attr _ create( Creates a pthread attributes object. 
pthread_attr_t*attr); 

int pthread _attr _ setstacksize( Sets the value of the stack size attribute of a 
pthread_attr_t *attr. pthread attributes object. 
long stacksize ); 

int ptbread _ attr_ delete( Deletes a pthread attributes object. 
pthread_attr_t*attr); 

int pthread _ attr .Jetstacksize( Returns the value of the stack size attribute of 
pthread_attr_t attr ); a pthread attributes object. 

A-24 



Paragon" U.r'8 Guide Summary of Commands and System Calls 

Managing Mutexes 
Table A-31. C Calls for Managing Mutexes 

Synopsis Description 

int ptbread _ mutex Jait( Creates a mutex. 
pthre&Cmutex_t *mutex, 
pthre&Cmutexattct attr ); 

int ptbread _ mutex Jock( Locks a mutex. 
pthre&Cmutex_t *mutex ); 

int ptbread _ mutex _ tryloc:k( Tries once to lock a mutex. 
pthread_mutex_t *"""ex ); 

int ptbread _ mutex _ unIock( Unlocks a mutex. 
pthread_mutex_t *mutex ); 

int ptbread _ mutex_destroy( Deletes a mutex. 
pthread_mutex_t *mutex ); 

int ptbread_ mutexattr _create( Creates a mutex attributes object. 
pthread_mutexattr_t *attr ); 

int ptbread _ mutexattr _ delete( Deletes a mutex attributes object. 
pthread_mutexattr_t *attr); 

A-25 



Summary of Commands and System cab Paragon'" User's Guide 

Using Condition Variables to Synchronize Pthreads 
Table A·32. C Calls for UsIng Condition Variables to Synchronize Ptbreads 

Synopsis Description 

int pthread _ wild JDit( Creates a condition variable. 
pthread_cornU *cond. 
pthread_condattr_t attr ); 

int pthread _ woo_walt( Waits on a condition variable. 
pthread_coruU *cond. 
pthread_mutex_t *mutex ); 

im ptbread_ woo _1imedwait( Waits on a condition variable for a specified 
pthread_coruU *cond. -- period of time. 
pthread_mutex_t *mutex. 
struct timespec *abstime); 

int pthread _ tODd _signal( Wakes up a pthread that is waiting on a 
pthread_coruU *cond ); condition variable. 

int pthread _wild_broadcast( Wakes up all pthreads that are waiting on a 
pthread_coruU *cond ); condition variable. 

int pthread _ wild _ destroy( Destroys a condition variable. 
pthread_cond_t *cond ); 

im pthread _condattr _ create( Creates a condition variable attributes object. 
pthread_condattr_t*attr); 

int pthread _ wndattr _delete( Deletes a condition variable attributes object. 
pthread_condattct *attr ); 

Canceling Pthreads 
Table A·33. C CaUs for Canceling Pthreads 

Synopsis Description 

int pthread _cancel( Requests cancellation of a pthread. 
pthread_t thread ); 

int pthread _setcancel( Enables or disables the general cancelability of 
intstate ); the calling pthread. 

int pthread _ setasynceancel( Enables or disables the asynchronous 
int state); cancelability of the calling pthread. 

void pthread _ testcaneel(void); Creates a cancellation point in the calling 
pthread. 

A-26 



Paragon" User's Guide Summary of Commands and System Calls 

Pthreads Cleanup Routines 

Table A·34. C CaDs for Ptbreads Cleanup Routines 

Synopsis Description 

void pthread _cleanup"'pop( Removes a routine from the top of the cleanup 
int execute ); stack of the calling pthread and optionally 

executes it. 

void p1bread _cleanup JJush( Pushes a routine onto the cleanup stack of the 
void (*routineXvoid *arg), calling pthread. 
void *arg); 

Managing Pthread Keys 

Table A·35. C CaDs for Managing Pthread Keys 

Synopsis Description 

int ptbread _ keycreate( Creates a key to be used with pthread-specific 
pthread_key_t *key, data. 
void (*destructorXvoid *value»; 

int ptbread _ selspedftc( Binds a pthread-specific value to a key. 
pthread_key_t key, 
void *value ); 

int pthread ..Ietspeciflc( Returns the value bound to a key. 
pthread_key_t key, 
void **value ); 

Miscellaneous Pthread Calls 

Table A.36. MisceJlaneous Pthread Calls 

Synopsis Description 

int pthread _once( Calls an initialization routine. 
pthread_once_t *once _block. 
void(*routine)() ); 

int sigwait( Suspends the calling pthread until one of a 
sigseU *set); specified set of signals is received. 

A-27 



Swnmary of Commands and System Calls Paragon" User's Guide 

Fortran System Call Summary 
This section summarizes the Fortran versions of the system calls discussed in Chapter 3. Chapter 4. 
and Chapter 5. See the Paragon TM Fortran System Calls Reference Manual for more information on 
these calls. 

Process Characteristics 

Table A·37. Fortran Calls for Process Charac:teristlcs 

Synopsis Description 

INTEGER FUNCTION MYNOD£() Obtain the calling process's node number. 

INTEGER FUNCTION NUMNODES() Obtain the number of nodes allocated to the 
CUITeIlt application. 

SUBROUTINE SETPl'YPE(ptype) Set the calling process's process type (only 
permitted if the process type is cUITeIltly 

INTEGER ptype INVALID _Pl'YPE). 

INTEGER FUNCTION MYPl'YPE() Obtain the calling process's process type. 

INTEGER FUNCTION MYHOSTO Obtain the controlling process's node number. 

A-28 



Paragon" u ..... Guide Summary of Commands and System Calls 

Synchronous Send and Receive 
Table A·lB. Fortran Calls for Syncbronous Send and Receive 

SynopsiS Description 

SUBROUTINE CSEND(type. bu/. count. Send a message. waiting for completion. 
node. ptype) 

INTEGER type 
INTEGER buj(*) 
INTEGER count 
INTEGER node 
INTEGER ptype 

SUBROUTINE CRECV(typesel. bu/. count) Receive a message. waiting for completion. 

INTEGER typesel 
INTEGER buJ(·) 
INTEGER count 

INTEGER FUNCTION CSENDRECV(type. Send a message and post a receive for the 
sbu/. scount. node. ptype. typesel. rbu/. reply. Wait for completion. 
rcount) 

: 

INTEGER type 
INTEGER sbut(·) 
INTEGER scount 
INTEGER node 
INTEGER ptype 
INTEGER typesel 
INTEGER rbuJ(·) 
INTEGER rcount 

SUBROUTINE GSENDX(type. buf, count. Send a message to a list of nodes. waiting for 
nodes. nodecount) completion. 

INTEGER type 
INTEGER buJ(·) 
INTEGER count 
INTEGER nodes(.) 
INTEGER nodecount 

A-29 



Summary of Commands and System Calls Paragon 111 User's Guide 

Asynchronous Send and Receive 
Table A·39. Fortran Calls for Asynehronous Send and Receive (1 oU) 

Synopsis Description 

INTEGER FUNCTION ISEND(type. bu/, Send a message without waiting for 
count, node,ptype) completion. 

INTEGER type 
INTEGER buj(*) 
INTEGER count 
INTEGER node 
INTEGER ptype 

INTEGER FUNCTION IRECV(typesel. bu/, Receive a message without waiting for 
count) completion. 

INTEGER typesel 
INTEGER buj(*) 
INTEGER count 

INTEGER FUNCTION ISENDRECV(type, Send a message and post a receive for the reply 
sbu/, scount. node, ptype, typesel, rbu/, without waiting for completion. 
rcount) 

INTEGER type 
INTEGER sbuj(*) 
INTEGER scount 
INTEGER node 
INTEGER ptype 
INTEGER typesel 
INTEGER rbuj(*) 
INTEGER rcount 

INTEGER FUNCTION MSGDONE(mid) Determine whether a send or receive operation 
has completed. 

INTEGER mid 

SUBROUTINE MSGW AJT(mid) Wait for completion of a send or receive 
operation. 

INTEGER mid 

A-30 



Paragon 1M User'S Guide Summary of Commands and System Calls 

Table A·39. Fortran Calls for AsyncbroDous SeDd and Receive (2 of 2) 

Synopsis Description 

SUBROUTINE MSGIGNORE(mid) Release a message ID as soon as a send or 
receive operation completes. 

INTEGER mid 

INTEGER FUNCTION MSGMERGE(mUlI. Merge two message IDs into a single ID that 
mid2) can be used to wait for completion of both 

operations. 
INTEGER midI 
INTEGER mid2 

Probing for Pending Messages 

Table A-40. Fortran Calls for ProbiDg for PeDdiDg Messages 

Synopsis Description 

SUBROUTINE CPROBE(typesel) Wait for a message of a selected type to arrive. 

INTEGER typesel 

INTEGER FUNCTION IPROBE(typesel) Determine whether a message of a selected 
type is pending. 

INTEGER typesel 

Getting Information About Pending or Received Messages 

Table A-41. Fortran Calls for Getting Information About PeodiDg or Received Messages 

Synopsis Description 

INTEGER FUNCTION INFOCOUNT() Return size in bytes of a pending or received 
message. 

INTEGER FUNCTION INFONODE() Return node number of the node that sent a 
pending or received message. 

INTEGER FUNCTION INFOPl'YPE() Return process type of the process that sent a 
pending or received message. 

INTEGER FUNCTION INFOTYPE() Return message type of a pending or received 
message. 

A~1 



Summary of Commands and System caKs Para.gon 111 User's Guide 

Treating a Message as an Interrupt 
Table A-4Z. FOI1r8D Calls for TreatiDg a Message as an Interrupt (1 of Z) 

Synopsis Description 

SUBROUTINE HSEND(type, buj, count, Send a message and set up a handler procedure 
node, ptype, handler) to be called when the send completes. 

INTEGER type 
INTEGER buft.*) 
INTEGER count 
INTEGER node 
INTEGER ptype 
EXTERNAL handler 

SUBROUTINE HRECV (typesel, buf, cormt, Receive a message and set up a handler 
handler) procedure to be called when the receive 

completes. 
INTEGER typesel 
INTEGER buft.*) 
INTEGER count 
EXTERNAL handler 

SUBROUTINE HSENDRECV(type, sbuf, Send a message and post a receive for the 
scount, node, ptype, typesel, rbuf, rcount, reply. Set up a handler procedure to be called 
handler) when the reply arrives. 

INTEGER type 
INTEGER sbuft.*) 
INTEGER scount 
INTEGER node 
INTEGER ptype 
INTEGER typesel 
INTEGER rbuft.*) 
INTEGER rcount 
EXTERNAL handler 

A-32 



Paragon- Ueer's Guide Summary of ComIll8f1CB and System Calls 

Table A-42. Fortran Calls for Treating a Message as an Interrupt (2 of 2) 

SynopsiS Description 

INTEGER FUNCTION MASKTRAP(state) Enable or disable interrupts for message 
handlers. Required to prevent corruption of 

INTEGER state global variables. 

SUBROtmNE HSENDX(type. bllf, count, Send a message and set up an extended handler 
node, ptype, xhandler, hparam) procedure to be called with the value hparam 

when the send completes. Allows handler 
INTEGER type sharing. 
INTEGER bllj(*) 
INTEGER count 
INTEGER node 
INTEGERptype 
EXTERNAL xhondler 
INTEGER hparam 

Extended Receive and Probe 
Table A-43. Fortran Calls for Extended Receive and Probe (1 of 2) 

Synopsis Description 

SUBROtmNE CRECVX(typesel, bllf, count. Receive a message of a specified type from a 
nodesel, ptypesel. info) specified sending node and process type, 

together with information about the message. 
INTEGER typesel Wait for completion. 
INTEGER bllj(*) 
INTEGER count 
INTEGER nodesel 
INTEGER ptypesel 
INTEGER info(8) 

INTEGER FUNCTION IRECVX(typesel, Receive a message of a specified type from a 
bllf, count, nodesel,ptypesel, info) specified sending node and process type. 

together with infonnation about the message. 
INTEGER typesel Do not wait for completion. 
INTEGER bllj(*) 
INTEGER count 
INTEGER nodesel 
INTEGER ptypesel 
INTEGER info(8) 

A-33 



Summary of Commanda and System cans Paragon no User's Guide 

TableA-43. Fortran Calls for Extended Receive and Probe (2 of 2) 

SynopsiS Description 

SUBROUTINE HRECVX(typesel, buf, count, Receive a message of a specified type from a 
nodesel, ptypesel, xhandler, hparam) specified sending node and process type. Set 

up an extended handler procedure to be called 
INTEGER typesel with information about the message and the 
INTEGER buj(*) value hparam when the receive completes. 
INTEGER count 
INTEGER nodesel 
INTEGER ptypesel 
EXTERNAL xhandler 
INTEGER hparam 

SUBROUTINE CPROBEX(typesel, nodesel, .Wait for a message of a specified type from a 
ptypesel, info) specified sending node and process type. 

Return information about the message. 
INTEGER typesel 
INTEGER nodesel 
INTEGER ptypesel 
INTEGER info(8) 

INTEGER FUNCTION IPROBEX(typesel, Determine whether a message of a specified 
~esel,ptypese~tnJfo) type from a specified sending node and process 

type is pending. If it is, return information 
INTEGER typesel about the message. 
INTEGER nodesel 
INTEGER ptypesel 
INTEGER info(8) 

--

A-34 



Paragon- Ueer'e Guide SummalY of Commands and System C&IIs 

Global Operations 
Table A-44. Fortran Calls for Global OperaUODS (1 of 3) 

Synopsis Description 

SUBROUTINE GCOL(x, xlen. y, ylen, ncnt) Concatenation. 

INTEGER xC*) 
INTEGER xlen 
INTEGER y(*) 
INTEGER ylen 
INTEGER ncnt 

SUBROUTINE GCOLX(x, xlens, y) Concatenation for conaibutions of known 
length. 

INTEGER xC*) 
INTEGER xlens(*) 
INTEGER y(*) 

SUBROUTINE GDBIGH(x, n, work) Vector double precision MAX. 

DOUBLE PRECISION xC*) 
INTEGERn 
DOUBLE PRECISION work(*) 

SUBROUTINE GDLOW(x, n. work) Vector double precision MIN. 

DOUBLE PRECISION xC*) 
INTEGERn 
DOUBLE PRECISION work(*) 

SUBROUTINE GDPROD(x, n, work) Vector double precision MULTIPLY. 

DOUBLE PRECISION xC*) 
INTEGERn 
DOUBLE PRECISION work(*) 

SUBROUTINE GDSUM(x, n, work) Vector double precision SUM. 

DOUBLE PRECISION xC*) 
INTEGERn 
DOUBLE PRECISION work(*) 

SUBROUTINE GlAND(x, n, work) Vector integer bitwise AND. 

INTEGER xC*) 
INTEGERn 
INTEGER work(*) 

A-35 



Summary of Commands and System CaIl8 Paragon 1M User's Guide 

Table A-44. Fortran Calls for Global Operations (2 of 3) 

Synopsis Description 

SUBROUTINE GIBIGH(x. n. work) Vector integer MAX. 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GILOW(x. n. work) Vector integer MIN. 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GIOR(x. n. work) Vector integer bitwise OR. 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GIPROD(x. n. work) Vector integer MULTIPLY. 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GISUM(x. n. work) Vector integer SUM. 

INTEGER x(*) 
INTEGERn 
INTEGER work(*) 

SUBROUTINE GLAND(x. n. work) Vector logical AND. 

LOGICAL x(*) 
INTEGERn 
LOGICAL work(*) 

SUBROUTINE GLOR(x. n, work) Vector logical inclusive OR. 

LOGICALx(*) 
INTEGERn 
LOGICAL work(*) 

A-36 



Paragon 1M Ueer'a Guide Summary of Commands and System Calls 

Table A-44. Fortran Calls for Global OperadOllS (3 of 3) 

Synopsis Description 

SUBROUTINE GOPF(x. xlen. work. Arbitrary commutative function. 
frmction) 

INTEGER x(*) 
INTEGER xlen 
INTEGER work(*) 
EXTERNALfimction 

SUBROUTINE GSmGH(x, n, work) Vector real MAX. 

REALx(*) 
INTEGERn 
REAL work(*) 

SUBROUTINE GSLOW(x. 11. work) Vector real MIN. 

REALx(*) 
INTEGERn 
REAL work(*) 

SUBROUTINE GSPROD(x, n, work) Vector real MULTIPLY. 

REALx(*) 
INTEGERn 
REAL work(*) 

SUBROUTINE GSSUM(x, n, work) Vector real SUM. 

REALx(*) 
INTEGERn 
REAL work(*) 

SUBROUTINE GSYNCO Global synchronization. 

A./d7 



Summary of Commands and System Calls Paragon no User's Guide 

Controlling Application Execution 
Table A-4S. Fortran Calls for Controlling App6cadon Execudoo (1 of 2) 

Synopsis Description 

INTEGER FUNCTION Create a new application. 
NX _ INITVE(partition. size, account, 
argc, argv) 

CHARACTER partition*(*) 
INTEGER size 
CHARACTER account*(*) 
INTEGER argc 
INTEGER argv 

.-

INTEGER FUNCTION Create a new application with a rectangular 
NX_INITVE_RECT(partition, anchor, shape. 
rows, cols, account, argc, argv) 

CHARACTER partition*(*) 
INTEGER anchor 
INTEGER rows 
INTEGER cols 
CHARACTER account*(*) 
INTEGER argc 
INTEGER argv 

INTEGER FUNCTION NX_PRI(pgroup, Set the priority of an application. 
priority) 

INTEGER pgroup 
INTEGER priority 

INTEGER FUNCTION Copy the current process onto some or all 
NX _ NFORK(node _list, numnodes, nodes of an application. 
ptype, pid _list) 

INTEGER node _list(*) 
INTEGER numnodes 
INTEGER ptype 
INTEGER pid _list(*) 

A-38 



Paragon" Ueer'a Guide SUmmary of Commands and System calls 

Table A-45. Fortran Calls for ControlliDg App6cation Executim (2 on) 

Synopsis Description 

INTEGER FUNCTION Execute a stored program on some or all nodes 
NX _ LOAD(node _list, numnodes, ptype, of an application. 
pill_'ist, pathname) 

INTEGER node _'ist(*) 
INTEGER numnodes 
INTEGERptype 
INTEGER pit! _'ist(*) 
CHARACTERpathname*(*) 

INTEGER FUNCTION Execute a stored program on some or all nodes 
NX _ LOADVE(node _list, numnodes:- of an application, with specified argument list 
ptype, pill_'ist, pathnome, argv, envp) and environment. 

INTEGER node _'ist(*) 
INTEGER numnodes 
INTEGER ptype 
INTEGER pit! _'ist(*) 
CHARACTER pathname*(*) 
INTEGER argv 
INTEGER envp 

SUBROUTINE NX_ WAn' ALL() YJait for all application processes. 

Getting Information About Applications 

Table A-46. Fortran Calls for Getdng Information About Applications 

Synopsis Description 

INTEGER FUNCTION Obtain the height and width of the rectangle of 
NX_APP _RECT(rows, cob) nodes allocated to the current application. 

INTEGER rows 
INTEGER cob 

INTEGER FUNCTION List the nodes allocated to an application. 
NX_APP _NODES(pgroup,ptr, list_size) 

INTEGER pgroup 
POINTER (ptr, node_'istC.l» 
INTEGER list_size 



Summary of Commands and System Calls Paragon'" User's Guide 

Partition Management 
Table A-47. Fortran Calls for Partition Management (Ion) 

Synopsis Description 

INTEGER FUNCTION Create a partition with a particular IWJDber of 
NX_MKPART(partition. size, type) nodes. 

CHARACTER partition*(*) 
INTEGER size 
INTEGER type 

INTEGER FUNCTION Create a partition with a particular height and 
NX J\tKP ART _ RECTCpartition, rows, width. 
cols, type) 

CHARACTER partition*(*) 
INTEGER rows 
INTEGER cols 
INTEGER type 

INTEGER FUNCTION Create a partition with a specific set of nodes. 
NX_MKPART _MAP(partition, 
numnodes, node Jist, type) 

CHARACTER partition*(·) 
INTEGER numnodes 
INTEGER node _iist(*) 
INTEGER type 

INTEGER FUNCTION Remove a partition. 
NX_RMPART(pathname,jorce. 
recursive) 

CHARACTER partition*(*) 
INTEGERjorce 
INTEGER recursive 

INTEGER FUNCTION Get a partition's attributes. 
NX _PART _A1TR(partition, attributes) 

CHARACTER partition*(·) 
RECORD Inx .... parUnfo .... tI attributes 

A-40 



Paragon 1M Ueer's Guide Summary of Commands and System calls 

Table A-47. Fortran Calls for Parddon Management (lofl) 

SynopsIS Description 

INTEGER FUNCTION Ust the root node numbers for the nodes of a 
NX _PART _ NODES (partition. ptr. panition. 
list_size) 

CHARACTER partition·(·) 
POINTER (ptr. node _list(l» 
INTEGER list_size 

INTEGER FUNCTION Change a partition's name. 
NX_ CHPART _NA.ME(partition. name) 

CHARACTER partition·(·) 
CHARACTER name·(·) 

INTEGER FUNCTION Change a panition's protection modes. 
NX CHPART MOD(partition.mode) - -

CHARACTER partition.(.) 
INTEGER mode 

INTEGER FUNCTION Change a partition's effective priority limit 
NX _ CHPART _ EPL(partition, priority) 

CHARACTER partition·(·) 
INTEGER priority 

INTEGER FUNCTION Change a partition's rollin quantum. 
NX CHPART RQ(partition, - -rollin_quantum) 

CHARACTER partition·(·) 
INTEGER rollin _qUQ1Jtum 

INTEGER FUNCTION Change a partition's owner and group. 
NX_ CHPART _ OWNER(partition. 
owner, group) 

CHARACTER partition·(·) 
INTEGER owner 
INTEGER group 

INTEGER FUNCTION Change a pattition's rollin quantum. 
NX_ CHPART _SCHED(partition, 
Ielled_type) 

CHARACTER partition·(·) 
INTEGER sched _type 

A-41 



Summary of Commands and System CaDs Paragon no User's Guide 

Finding Unusable Nodes 
Table A-48. Fortran Calls for Finding Unusable Nodes 

Synopsis Description 

INTEGER FUNCTION List the nodes that are empty slots. 
NX _ EMPl'Y _ NODES(ptr, Ust _size) 

. POINTER (ptr, node_list(l» 
INTEGER list_size 

INTEGER FUNCTION List the nodes that failed to boot. 
NX_FAILED _NODES(ptr, list_size) 

POINTER (ptr, node_list(l» 
INTEGER list_size 

Handling Errors 
Table A-49. Fortran CaDs for Handling Errors 

Synopsis Description 

SUBROUTINE NX_PERROR(string) Print an error message corresponding to the 
current value of errno. 

CHARACI'ER string*(*) 

Floating-Point Control 
Table A·50. Fortran Calls for Floating·Point Control 

Synopsis Description 

INTEGER FUNCTION FPSETMASK(mask) Set the floating-point exception mask for the 
calling process. 

INTEGER mask 

A-42 



Paragon- Ueer's Guide Summary of Commands and System CsJI8 

Miscellaneous Calls 
Table A·51. MisceJlaneom Fortran CaDs 

Synopsis Description 

SUBROUTINE FLICKO Temporarily relinquish the CPU to another 
process. 

SUBROUTINE LED(state) Tum the node's green LED on or off. 

INTEGER state 

OOUBLE PRECISION FUNCTION Return time in seconds since booting the 
DCLOCKO system. 

iPsc8 and Touchstone DELTA Compatibility 

Table A·51. Fortran CaDs for iPSe- and Touchstone DELTA Compatibility (1 of 2) 

Synopsis Description 

SUBROUTINE FLUSHMSG(typesel, Flush specified messages from the system. 
nodesel, ptypesel) 

INTEGER typesel 
INTEGER nodesel 
INTEGER ptypesel 

INTEGER FUNCTION GJNV(graycode} Return the position of an element in the 
binary-reflected gray code sequence. Inverse 

INTEGER graycode ofgrayO. 

INTEGER FUNCTION GRA Y(position} Return the binary-reflected gray code for an 
integer. 

INTEGER position 

SUBROUTINE BWCLOCK(hwtime} Place the current value of the hardware counter 
into a 64-bit unsigned integer variable. 

INTEGER hwtime(2) 

INTEG.ER FUNCTION INFOPID() Return the process type of the process that sent 
a pending or received message. 

SUBROUTINE KILLCUBE(node, pill) Terminate and clear node process(es). 

INTEGER node 
INTEGERpid 

A-43 



Summary of Commands and System Calls Paragon'" User's Guide 

Table A·52. Fortran CaDs for iPSC· and Touebstone DELTA CompatibDity (2 of 2) 

Synopsis Description 

SUBROUTINE KILLPROC(node. pill) Terminate a node process. 

INTEGER node 
1 

INTEGERpid 

SUBROUTINE LOAD(filename. node. pid) Load a node process. 

CHARACTERfilename*C*) 
INTEGER node 
INTEGERpid 

INTEGER FUNCTION MCLOCKO Return the time in milliseconds. 

SUBROUTINE MSGCANCEL(mid) Cancel an asynchronous send or receive 
operation. 

INTEGER mid 

INTEGER FUNCTION MYPARTCrows. Obtain the height and width of the rectangle of 
cols) nodes allocated to the current application. 

INTEGER rows 
INTEGERcols 

INTEGER FUNCTION MYPID() Return the process type of the calling process. 

INTEGER FUNCTION NODED1M() Return the dimension of the current application 
(the number o~pdes ~located to the 
application is mumslOlI). 

INTEGER FUNCTION Return 0 (does nothing; provided for 
RESTRICTVOL(unit. nvol. vollist) compatibility only). 

INTEGER unit 
INTEGER nvol 
INTEGER voUist(*) 

A-44 



Paragon" Use". Guide Summary of Commands and System Calls 

110 Modes 

Table A·53. Fortran Calls for 110 Modes 

SynopsIS Description 

SUBROUTINE GOPEN(unit. path. iomode) Open a file on all nodes and set its 110 mode. 

INTEGER unit 
CHARACfERpath*(*) 
INTEGER iomode 

SUBROUTINE SETIOMODE(unit. iomode) Set the 110 mode for a file. 

INTEGER unit 
INTEGER iomode 

INTEGER FUNCTION IOMODE(unit) Return the current 110 mode for a file. 

INTEGER unit 

Reading and Writing Files in Parallel 

Table A·54. Fortran Calls for ReadiDg and Writing Files in Panllel (IoU) 

Synopsis Description 

SUBROUTINE CREAD(unit. buffer. nbytes) Read from a file. waiting for completion. 

INTEGER unit 
INTEGER buffer(*) 
INTEGER nbytes 

SUBROUTINE CWRITE(unit. buffer. Write to a file. waiting for completion. 
nbytes) 

INTEGER unit 
INTEGER buffer(*) 
INTEGER nbytes 

SUBROUTINE CREADV(unit. iov. iovcnt) Read from a file to irregularly-scattered 
buffers. waiting for completion. 

INTEGER unit 
INTEGER iov(*) 
INTEGER iovcnt 

A-45 



Summary of Commands and System Caits Paragon no User's Guide 

Table A·54. Fortran Calls for Reading and Writing Flies in Parallel (2 oU) 

Synopsis Description 

SUBROUTINE CWRITEV(unit, iov, iovcnt) Write to a file from irregularly-scattered 
buffers, waiting for completion. 

INlEGER unit 
INlEGER i01l(*) 
INlEGER iovcnt 

INlEGER FUNCTION IREAD(unit, buffer, Read from a file without waiting for 
nbytes) completion. 

INlEGER unit 
INTEGER buffer(*) 
INlEGER nbytes 

INTEGERFUNCTIONIWRlTE(unit, buffer, Write to a file, waiting for completion. 
nbytes) 

INlEGER unit 
INlEGER buffer(*) 
INlEGER nbytes 

INlEGER FUNCTION IREADV(unit, iov, Read from a file to irregularly-scattered 
iovcnt) buffers, without waiting for completion. 

INlEGER unit 
INlEGER io1l(*) 
INlEGER iovcnt 

INlEGER FUNCTION IWRITEV(unjt, iov, Write to a file from irregularly-scattered 
iovcnt) buffers, without waiting for completion. 

INlEGER unit 
INlEGER iov(*) 
INlEGER iovcnt 

INlEGER FUNCTION IODONE(id) Detennine whether an asynchronous I/O 
operation is complete. If complete, release the 

INlEGERid IIOID. 

SUBROUTINE lOW AIT(id) Wait for completion of an asynchronous 110 
operation and release the 110 ID. 

INlEGERid 



Paragon- U18r's Guide 

Detecting End-of-File and Moving the File Painter 

Table A·55. Fortran Calls for ))etecting End-of·Flle aDd Moving the FIle Pointer 

Synopsis Description 

INTEGER FUNCTION ISEOF(unit) Test for end-of·flle. 

INTEGER lDJit 

INTEGER FUNCTION LSEEK(lDJit. offset. Move the readlwrite file pointer. 
whence) 

INTEGER lDJit 
INTEGER offset 
INTEGER whence 

Flushing Fortran Buffered 1/0 

Table A·56. Fortran CaDs for Flushing Buffered I/O 

Synopsis Description 

SUBROUTINE FORCEFLUSHO Cause all buffered I/O to be flushed if an 
exception OCC1D'S. 

SUBROUTINE FORn.USH(lDJit) Rush all buffered I/O on a panicular uniL 

INTEGER lDJit 

Increasing the Size of a File 

Table A·57. Fortran Calls for Increasing the Size of a FIle 

Synopsis Description 

INTEGER FUNCTION LSlZE(lDJit. offset. Increase size of a file. 
whence) 

INTEGER lDJit 
INTEGER offset 
INTEGER whence 

A-47 



Summary of Commands and System Calls Paragon 1M User's Guide 

Extended File Manipulation 
Table A·58. Fortran CaDs for Extended FUe Manipulation 

Synopsis Description 

SUBROUTINE ESEEK(unit, ojJset, whence, Move file pointer in extended file. 
newpos) 

INTEGER unit 
INTEGER ojJset(2) 
INTEGER whence 
INTEGER newpos(2) 

SUBROUTINE ESIZE(unit, ojJset, whence. Increase size of extended file. 
newsize) 

INTEGER unit 
INTEGER ojJset(2) 
INTEGER whence 
INTEGER newsize(2) 

A-48 

, , 

~-~-~~-- --~,-,-,---,-------~~,-"--,.----,----' --~ 



Paragon" Ueer's Guide Summary of Commands and System Calls 

Performing Extended Arithmetic 
Table A·59. Fortran CaDs for PerfonniDg Extended Arithmetic 

Synopsis Description 

SUBROUTINE EADD(el, e2, eresult) Add two extended integers. 

UNr.r.E(l~el(2) 

UNr.r.E(l~ e2(2) 
UNr.r.E(l~ eresult(2) 

UNr.r.E(l~ FUNCnON ECMP(el, e2) Compare two extended integers. 

UNr.r.E(l~el(2) 

UNr.r.E(l~e2(2) 

SUBROUTINE EDIV(e, n, result) Divide extended integer by integer. 

UNr.r.E(l~ e(2) 
UNr.r.E(l~ n 
UNr.r.E(l~ result 

SUBROUTINE EMOD(e, n, result) Give extended integer modulo an integer 
(remainder when e is divided by n). 

UNr.r.E(l~ e(2) 
UNr.r.E(lER n 
UNr.r.E(lER result 

SUBROUTINE EMUL(e, n, eresult) Multiply extended integer by integer. 

UNr.r.E(l~ e(2) 
UNr.r.E(l~ n 
UNr.r.E(l~ eresult(2) 

SUBROUTINE ESUB(el, e2, eresult) Subtract two extended integers. 

UNr.r.E(l~ el (2) 
UNr.r.E(l~e2(2) 

UNr.r.E(l~ eresult(2) 

SUBROUTINE ETOS(e, s) Convert extended integer to string. 

UNr.r.E(l~ e(2) 
CHARACI'ER 8(*) 

SUBROUTINE STOE(s, e) Convert string to extended integer. 

CHARACI'ER 8(*) 
UNr.r.E(l~ e(2) 

A~9 



Summary of Commands and System calls Paragon OM User's Guide 



iPSC@ System Compatibility 

Introduction 
This appendix gives you information you can use to port programs to Paragon™ OSP!l from the 
iPSe- series of supercomputers from Intel Supercomputer Systems Division. 

This appendix lists the differences between iPSC system commands and system calls and those of 
Paragon TM OSP!I, and suggests alternatives that you can use for commands and calls that are not 
supported. Commands and calls that are not listed here should work the same in Paragon OSP!l as 
they do in the iPSC system. 

General Compatibility Issues 
In general, iPSC system programs can simply be recompiled and executed on the Paragon system. 
However, keep in mind the following basic differences between the two systems: 

There is no SRM. The Diagnostic Station is used only for system administration; all software 
development is done either on remote workstations or on the Paragon system itself. Parallel 
applications are run only on the Paragon system. 

• Host programs are not directly supported. See "Host Calls" on page B-9 for more information. 

• The node network is a 2-D mesh rather than a hypercube. You might want to change the data 
distribution in your application to take advantage of the different system topology. 

• An application can run on any number of nodes from 1 to the size of the compute partition (up 
to several thousand nodes). If your application depends on the number of nodes being a power 
of two or no greater than 128, you should re-write it so that it works on any number of nodes. If 
this is not possible, you should have the application print an error message if numnodesO is not 
a power of two or is too large for the application to handle. 



iPS08 System Compatibility Paragon'" User's Guide 

• If a message arrives at a node before the receive for the message has been posted, the message 
is stored in a system buffer. In the iPSe sys~ the space available for these system buffers is 
the entire free physical memory of the node. In the Paragon system. this space is more limited 
(1M bytes by default). This limitation results from the fact that the Paragon system supports 
multiple processes per node. 

NOTE 

Because of this limitation, iPSe system applications that use large 
amounts of system message buffering may slow down or hang on 
the Paragon system, especially when run on large numbers of 
nodes. 

If this occurs, you can increase the system message buffering space with the ·mbf switch, as 
described under "System Message Buffers" on page 8-16. However, it would be better to 
re-write the application so that receives are always posted before the message arrives, as 
discussed under "Avoid Message Buffering" on page 8-11. 

• The tenn process lD, or PlD. is used differently. In the iPSe system. each process has a UNIX 
PID used by the OS and an NX PlD used for message passing. In the Paragon system. the 
"UNIX PID" is just called the PlD, and the "NX PIO" is called the process type or ptype. 
Although the names have changed, the software worlcs the same. For example, mypidO and 
infopidO are supported as equivalents to myptype() and infoptypeO. Exception: on the 
iPSC/860, the NX PID is always 0; in the Paragon system, the process type can be any integer 
from 0 to 2,147,483.647 (~l_ 1) inclusive (but is usually 0). 

• Force types (special message types that use a limited flow control technique) are fully supported 
and worlc the same as they do in the iPSe system. However, in the Paragon system regular 
messages are just as fast as force type messages, so force types are not needed for performance. 

New Features 

B-2 

Paragon OSP!l offers the following features that were not available on the iPSC system. You can 
use these features to improve the performance and readability of your programs. 

• You can use the complete set of OSP!l commands on the Paragon system, as discussed in 
Chapter 2. 

• You can execute an application on multiple nodes just by typing its name on the command line, 
using command-line switches to control its execution, as discussed under "Running 
Applications" on page 2-11. 

• You can control the values of some important message-passing configuration parameters, as 
discussed under "Message-Passing Configuration Switches" on page 8-18. 



Paragon- U .. r'. Guide IP80e System Compatibility 

• You can allocate groups of nodes of any size and shape, and conttol the scheduling 
characteristics of applications that run in them, as discussed under "Managing Partitions" on 
page 2-25 and "Managing Partitions" on page 4-27. 

• You can have more than one process per node, as discussed under "Process Characteristics" on 
page 3-3. When sending messages, you specify a process by its process type (equivalent to the 
"NX PID" in the iPSC system). 

• You can tell the system to discard an asynchronous message m as soon as the send or receive 
completes with msgignore(), as discussed under "Asynchronous Send and Receive" on page 
3-10. 

• You can merge together a number of asynchronous message-passing requests and wait for all 
of them to complete in a single call with 1llSlmerge(), as discussed under "Merging Message 
IDs" on page 3-13. 

• You can pass a parameter to a message intenupt handler with &ndx(), as discussed under 
''Treating a Message as an Interrupt" on page 3-18. 

• You can receive or probe for a message based on its sender, and receive information about a 
message along with the message, with the .. .x0 calls, as discussed under "Extended Receive and 
Probe" on page 3-24. 

• You can use system calls to conttol the execution characteristics of parallel programs, as 
discussed under "Managing Applications" on page 4-2. 

• You can open a file on all nodes at once very efficiently withgopenO, as discussed under 
"Opening Files in Parallel" on page 5-9. 

You can read the same data from a file into all nodes at the same time very efficiently with the 
lIO mode M_GLOBAL, as discussed under "Using lIO Modes" on page 5-13. 

• You can read data into or write data from a series of scattered memory buffers with the 
.. .readvO and ... writevO calls, as discussed under "Reading and Writing Files in Parallel" on 
page 5-24. 

• You can find out the characteristics ofPFS file systems (which are more configurable than CFS) 
with the getpfslnfoO and statprso calls, as discussed under "Getting Information About PFS 
File Systems" on page 5-39. 

• You can use the HIPPI and FOOl network interfaces. as discussed in the Paragon TN 

High-Performance Parallel Interface Manual and Paragon TN Fiber Distributed Data Interface 
Installation and Configuration Guide. 

You can use the Paragon application development tools to help you pon and optimize your 
code, as discussed in the Paragon TN Application Tools User's Guide. 



IPSOe System Compatibility Paragon til User's Guide 

Compilers 
The Paragon OSFIl compilers work the same as the iPSC system compilers. with the fonowing 
exceptions: 

• The compilers. linker. and other tools are now available on the Paragon system as wen as on 
workstations. They can be called by the standard names (ce. m.ld. and so on) as well as the 
names used in cross-<tevelopment (lee. if17.1d860. and so on). 

• The environment variable that specifies the root of the compiler directory tree is called 
PARAGON _ XDEV rather than IPSC _ XDEV. The default for this variable is now 
/usr/paragonlXDEV rather than /usr/ipsc/XDEV. 

• The compiler files are now found in the directory $PARAGON _ XDEV/paragon rather than 
$IPSC _ XDEVIi860. For example. your execution search path (path or PATH environment 
variable) should include the directory $PARAGON JIDEV/paragonlbin.m:d (where m. 
identifies the architecture of the system. such as paragon or sun4) rather than 
$IPSC _ XDEVIi860/bin.m or $IPSC _ XDEVli860/bin. 

• The -p switch is now ignored. See the Paragon TN Application Tools User's Guide for 
information on profiling. 

• The default for quad-alignment has been changed from -Mnoquad to -Mquad. This change 
results in up to four times better performance for some code. 

• The new switch -ox has been added. This switch generates a program that automatically starts 
itself on multiple nodes. as discussed under "Compiling and Linking Applications" on page 2-5. 
The switch -node is currently accepted as a synonym for -ox. but this support may be dropped 
in a future release. 

• You can now have a file called .icfrc in your home directory that defines the default compiler 
switches for you. 

SeetheParagonTN Fortran Compiler User's Guide or ParagonTN CCompiler User's Guide forrnore 
information on the Paragon OSFIl compilers. 

NOTE 

You cannot use the Paragon OSF/1 cross-compilers to produce 
programs for the iPse system, and you cannot use the iPSe 
system cross-compilers to produce programs for Paragon OSF/1. 

If you develop programs for the iPSC system as well for Paragon OSF/I. you must be sure that your 
execution search path (PATH or path variable) is set appropriately for your cmrent target system. To 
compile a program for Paragon OSF/I. the variable PARAGON _ XDEV must be set appropriately 



Paragon" U.r'a Guide IPS08 System Compatibility 

and your execution search path must include $PARAGON _ XDEVlparagonlbin.tJ!dl; to compile a 
program for the iPSe system. the variablelPSC _ XDEV must be set appropriately and your execution 
search path must include $IPSC _ XDEVli860Ibin.1lE.dJ instead. Be sure that your execution search 
path does not include both these directories at the same time. 

Commands 
In general, all of the standaId commands of UNIX System V are supported by Paragon OSF/l, but 
none of the iPSe-system-specific commands are supported. However, many of these commands are 
not needed in Paragon OSF/l, or have equivalent standard commands in OSF/l. 

Cube Control Commands 

The usage model of Paragon OSF/l is different from that of the iPSe system. Instead of allocating 
a cube with a certain number of nodes. loading a program onto the cube, and then releasing the cube. 
you run a parallel application simply by typing its name on the Paragon OSF/l command line. You 
can use command-line arguments to control its execution characteristics (such as the number of 
nodes on which it runs), and you can use standaId OSF/l process control commands such as kUI to 
control the program. (See Chapter 2 for more information on running and controlling applications in 
Paragon OSF/l.) 

For this reason, the following iPSe system commands. which create and control cubes, are not 
supported in Paragon OSF/l: 

attaehc:ube 

cubeinfo 

getcube 

This command is not needed in Paragon OSF/l because all nodes currently 
have the same architecture. 

This command is not needed in Paragon OSF/l because you do not have to 
attach to a cube before you can use it. 

Use the Ispart command to list the available partitions. ~ "Listing 
Subpartitions" on page 2-49 for more information. 

Use the ·sz switch on the application command line to specify the number of 
nodes allocated to the application. See "Specifying Application Size" on page 
2-15 for more information. 

The mkpart command is similar to getmbe in that it allocates a partition (a 
group of nodes). However, partitions are not the same as cubes: partitions can 
overlap, and a pattition can be used by several applications at once. 
Depending on the policies of your site, you may or may not be allowed to 
allocate partitions. See "Making Partitions" on page 2-39 for more 
information. 



iPS08 System Compatibility 

kiIlcube 

load 

newserver 

relcube 

startcube 

sysIog 

waitcube 

Paragon 1M User's Guide 

Use the OSF!l kill command to kill a running application. or press your 
interrupt key « Ctrl-a > or (Del». See "Managing Running 
Applications" on page 2-23 for more infonnation. 

Type an application's filename on the command line to run it on multiple 
nodes. See "Running Applications" on page 2-11 for more information. 

This command is not needed in Paragon OSF!1 because you can use the usual 
OSF!lIlO redirection characters to redirect an application's output. See "110 
Redirection" on page 2-12 for more infonnation. 

This command is not needed in Paragon OSF!1 because you do not have to 
release a cube once you have used it. The nodes allocated to an application 
are automatically released when all the processes in the application have 
terminated. 

The rmpart command is similar to releube in that it deallocates a partition 
(a group of nodes). However, partitions are not the same as cubes: partitions 
can overlap, and a partition can be used by several applications at once. 
Depending on the policies of your site, you may or may not be allowed to 
remove partitions. See "Removing Partitions" on page 2-45 for more 
information. 

This command has no equivalent in Paragon OSF!I. There is no way to load 
an application into the nodes' memory without starting it. 

This command is not needed in Paragon OSF!I because you can use the usual 
OSF!lIlO redirection characters to redirect an application's output. The 
standard 110 of a node process is connected to the same files or devices as the 
standard 110 of its controlling process. See "110 Redirection" on page 2-12 
for more information. 

This command is not needed in Paragon OSF!1 because, by default, your 
command prompt does not return until the application has completed. Also, 
you can redirect the output of any program with the usual OSF!I 110 
redirection characters (see "110 Redirection" on page 2-12 for more 
information). 



Paragon" Ueer's Guide IPSC8 System Compatibility 

CFS Commands 

The following iPSC system commands, which conttol the Concurrent File System and the SRM tape 
drive, are not supponed in Paragon OSP/I: 

cptape 

sbowvol 

star 

stream 

tapemode 

Use the cpio command instead. See cpio in the OSFll Command Reference 
for more information. 

Use the sbowfs command instead. See "Displaying File System Attributes" 
on page S-S for more information. 

Use the tar command instead. (Note that you must use the ·E switch to 
archive a tile larger than 20-1 bytes.) See tar in the Paragon 111 Commands 
Reference Manual and OSFll Command Reference for more information. 

- This command is not needed in Paragon OSP/I because there is no streaming 
tape drive. 

This command currently has no equivalent in Paragon OSP/I. There is no 
way to display or change the operating mode of the system's tape drives. 

System Administration Commands 

The following iPSC system commands, which are used for system administration, are not supported 
in Paragon OSP/l: 

c:backup 

makewbatls 

mkcfs 

Use the dump command instead. See dump in the OSFll System and 
Network Administrator's Reference for more information. 

Use the fsck command instead. See fsck in the OSFll System and Network 
Administrator's Reference for more information. 

Use the rdump command instead. See rdump in the OSFll System and 
Network Administrator's Reference for more information. 

Use the catman command instead. See c:atman in the OSFll Command 
Reference for more information. 

Use the newts command instead. See newts in the OSFll System and 
Network Administrator's Reference for more information. 

IH 



IPSOIt System Compatibility 

mkdev 

Paragon TIl User's Guide 

Use the mknod command instead. See mknod in the OSFll System and 
.. Network Administrator's Reference for more infonnation. 

plogonand piogofl' 
These commands currently have no equivalent in Paragon OSP/I. There is 
cw:ren1ly no way to log creation and deletion of partitions or running of 
applications. However, you can use the syslogd daemon to log other system 
activity. See syslogd in the OSFll System and Network Administrator' s 
Reference for more infonnation. 

Remote Host Commands 

The following iPSC system commands, which are used for program development on remote hosts, 
are DOt supported in Paragon aSP/I: 

rn7 

rid 

ras 

rar 

Use the IfT7 command instead. See the Paragon™ Fortran Compiler User's 
Guide for more infonnation. 

Use the ice command instead. See the Paragon TM C Compiler User's Guide 
for more information. 

Use the Id860command instead. See theParagon™ Fortran Compiler User's 
Guide or Paragon™ C Compiler User's Guide for more infonnation. 

Use the as860 command instead. See the Paragon TM Fortran Compiler 
User's Guide or Paragon™ C Compiler User's Guide for more infonnation. 

Use the ar86(tcommand instead. See the Paragon TM Fortran Compiler 
User's Guide or Paragon TM C Compiler User's Guide for more infonnation. 

Miscellaneous Commands 

The follOwing iPSC system commands are not supported in Paragon OSP/l: 

less 

manpath 

Use the more command instead. See more in the OSFll Command Reference 
for more information. 

Use theMANPATH environment variable instead. See man in the OSFll 
Command Reference for more information. 



Paragon" U88r'8 Guide IP~ Sya1am Compatibility 

DSb 

rebootcube 

Use the rIogin or teIDet command to log into the Paragon system from your 
workstation. See r1 .... or teInet in your workstation's documentation for 
more information. 

This command has no equivalent in Paragon OSF!I. There is no way for 
ordinary users to reboot the system. 

System Calls 
In general, all of the standard system calls of UNIX System V and most of the iPSC-system-specific 
system calls are supported by Paragon OSF!I. This section suggests alternatives for the unsupported 
calls. 

NOTE 

Some iPSC calls are provided for backward compatibility only, and 
are not intended for use in new programs. These calls are not 
documented in the online manpages or in the Paragon'" C System 
CsIls Reference Manual or Paragon'" Fortran System Calls 
Reference Manual. See ·iPS~ and Touchstone DELTA 
Compatibility Calls- on page 4-52 for a list of these calls. 

Include Files 

Host Calls 

Paragon OSF!I does not support the iPSC system include files <cube.h> or </cube.h>. You should 
replace any reference to <cube.h> with <nx.h>, and any reference to <ft:ube.h> with <fnx.h>. 

Applications in Paragon OSF!I do not usually have host programs. The usual programming model 
in Paragon OSF!I is to write a single program (which corresponds to a ''node program" in the iPSC 
system), link it with -ax, and execute the program on a group of nodes by typing its name (see 
"Running Applications" on page 2-11 for more infonnation). You may be able to eliminate all 
references to the following unsupported calls by rewriting your program to use this programming 
model. If your application requires a separate host program, you can rewrite your host program into 
a controlling process (see "Managing Applications" on page 4-2 for more information). 



iPS08 System Compatibility . 

8-10 

For this reason. the -host switch to the ce and m commands is oot supported (there is no separate 
host library; host programs use the same library as node programs). Also, the following iPSe system 
calls, which are used in host programs. are not supported in Paragon OSF/I: 

attachcube() This call currently has 00 equivalent in Paragon OSFIl. Unlike a host 
program, a controlling process cannot be associated with more than one 
application. Consider re-writing your host program as two or more separate 
programs, each of which creates one application and communicates with the 
other host program(s) using pipes, signals, or some other OSP/l interprocess 
communication method. See "Managing Applications" on page 4-2 for 
information on creating and controlling applications using system calls. 

cubeinfo() This call currently has no equivalent in Paragon OSF/l. However, because 
allocation of nodes in Paragon OSF/l is not exclusive, it is not usually 
necessary for programs to know how other users have allocated mdes. To get 
information on your own application (equivalent to the "current cube"), you 
can use calls such as numnodesO. 

getc:ube() Use ox JDitve() instead. See "Managing Applications" on page 4-2 for 
information on ox JDitve(). 

1dIlcube() This call is supported, but can only be used to kill and flush all processes on 
all nodes (ldDcube(-l,-l». 

IdIlprocO 

You can use kiUO to kill a single process, as discussed for kiUprocO below. 

This call is supported, but can only be used to kill all processes on all nodes 
(ldDproc(-l,-l». 

You can use kiUO to kill a single process, given its OSF/l process 10. killO 
is supported in both e and Fortran. To determine the OSF/l process ID of a 
process created by ox _ nforkO, ox _loadO, or ox Joadve(), use the values 
stored into the pid _array argument. These calls store the OSP/l PIDs of the 
processes created into the elements of this array, as discussed under "Using 
PIDs" on page 4-14. 

For example, to kill the process on node number node: 

#include <signal.h> 

n = DX_nfork(NULL, -1, ptype, pid_array); 
• 
• 
• 

kill (pid_array [node] , SIGKILL); 



Paragon- Uaer's Guide 

ldIIsyslog() 

newserverO 

rekubeO 

setpidO 

setsyslogO 

IPSOS System Compatibility 

Note that process types (ptype in this example) in Paragon OSF/I are 
equivalent to NX PIDs in the iPSC system. PIDs (pill_array in this example) 
in Paragon OSF/I are standard UNIX process IDs. 

See the OSF/l Programmer's Reference for information on kino; see 
"Managing Applications" on page 4-2 for information on !IX _ nforkO. 
mUoadO. and !IX_loadveO. 

Use freopeaO instead, to close the standard output and standard error output 
and reopen them to /dev/tty. See fteopenO in the OSF/l Programmer's 
Reference for more information. 

freopenO is not currently suppotted for Fortran programs. However. it is 
supported for C programs. You can write a C ''wrapper'' function, as follows: 

#include <stdio.h> 

void killsyslo9_() { 
freopen("/dev/tty", "w", stdout); 
freopen("/dev/tty", "w", stderr); 

} 

Note the underscore at the end of the function name. Once you have compiled 
this function and linked it into your Fortran program. you can call1dUsyslog() 
as described in the iPSC system documentation. 

This call is not necessary in Paragon OSFIl. The standard 110 of a controlling 
process (host process) is connected to the same files or devices as the standard 
110 of its node processes. 

This call is not necessary in Paragon OSF/I. The nodes allocated to an 
application are automatically released when all the processes in the 
application have terminated. 

Use setptype() instead. "Process Characteristics" on page 3-3 for information 
on setptype(). and "Message Passing Between Controlling Process and 
Application Processes" on page 4-25 for information on using setptype() in 
a controlling process. 

This call is not necessary in Paragon OSF/I. The standard 110 of a controlling 
process (host process) is connected to the same files or devices as the standard 
110 of its node processes. 

B-11 



iPS08 Systam Compa1llillly 

waitaUO 

8-12 

Paragon" User's Guide 

To wait for all processes on all nodes (waitaII(-1, -1», call ox _ waitallO. See 
"Waiting for Application Processes with IlX_ waitallO" on page 4-14 for more 
information. 

To wait for a single node process (waitall(node,pid), use the OSFIl system 
call waitpidO to wait for the process with a particular OSF!1 process 10. To 
detennine the PIO of a process created by ox_ nforkO, ox _loadO, or 
ox _loadveO, use the values stored into the pill _array argument. These calls 
store the OSF/l PIDsofthe processes created into the elements of this array, 
as discussed under "Using PlOs" on page 4-14. 

For example. to wait for the process on node number node: 

n = DX_nfork(NULL, -1, ptype, pid_array); 
• 
• 
• 

waitpid(pid_array[node) , &status, 0); 

Note that process types (ptype in this example) in Paragon OSF/l are 
equivalent to NX PIDs in the iPSe system. PIDs (pill_array in this example) 
in Paragon OSF/l are standard UNIX process IDs. 

See the OSF/l Programmer's Reference for information on wait() and 
waitpldO; see "Managing Applications" on page 4-2 for infonnation on 
ox _ nforkO, ox JoadO. and ox JoadveO. 

waltO is supported in both e and Fortran, but waitpidO is not currently 
supported in Fortran. You can make waitpidO callable from Fortran by 
writing a e ''wrapper'' function, as follows: 

#include <sys/types.h> 
#include <sys/wait.h> 

int waitpid_(int *process_id, 

} 

int *status_location, 
int *options) { 

return«int)waitpid«pid_t)*process_id, 
status_location, 
*options) ; 

Note the underscore at the end of the function name. Once you have compiled 
this file and linked it into your Fortran program, you can call waitpidO as 
described in the OSF/1 Programmer's Reference. The wrapper function 
waitpidO takes three Integer*4 parameters and returns an Integel"'4 value. 



Paragon-lJtIer'8 Guide IPSCCI System Compatibility 

To wait for the first node process in the entire application to complete 
(waltone(-l, -1, cnode, cpid, ccode». use the OSFIl system call waltO. For 
example: 

D - DX_Dfork(DOdes, NUMNODES, ptype, pids); 
• 
• 
• 

pid = wait(&status); 

After this call. the status of the first process to complete is stored in status and 
its OSF/l process ID is stored in pid. To detennine the process's node 
number. look for the value of pid in the pills array returned by ox _ nforkO. 
oxJoadO. or ox_l~ve(). 

To wait for a single node process (waltoDe(node,pid, cnode, cpid, ccode». 
use the same technique described for waitall(node, pid): 

D = DX_Dfork(NULL, -1, ptype, pid_array); 
• 
• 
• 

pid - waitpid(pid_array[Dode], &status, 0); 

In this case. the status of the process is stored in status and its OSF/l process 
ID is stored inpid. To determine the process's node number. look for the 
value of pid in pid _ array as described above. 

See the OSFIl Programmer's Reference for infonnation on wait() and 
waltpidO; see "Managing Applications" on page 4-2 for infonnation on 
ox _ nforkO. ox JoadO. and ox JoadveO. walt() is supponed in both C and 
Fortran. but waitpidO is not; to call waitpidO from Fortran. use the technique 
discussed previously under waitallO. 

8-13 



iPsce System Compatibility Paragon" User's Guide 

Byte-Swapping Calls 

createstrueO 
CTOHCO 
CTOIID() 

8-14 

'The calls listed in Table B-1. which swap bytes between the fonnat used on the cube and the fonnat 
used on some remote hosts. are not supponed in the current release of Paragon eSF!I. 

Table B-1. Unsupported iPSC· System Byte-Swapping Calls 

CTOHFO HTOCCO HTOCLO 
CTOBLQ HTOCD() HTOCSO 
CTOHSO HTOCFO relstnac() 

You can use the standard OSF!1 system calls btoniO. btonsO. ntoblO. and ntobsO to swap bytes 
between the standard fannat for your machine and the Internet network fannat. See btoniO. btonsO. 
ntoblO. and ntobsO in the OSP!l Programmer's Reference for more infonnation. 

btonlO. btoosO. ntoblO. and ntobsO are not currently supported for Fortran programs. However. 
they are supported for C programs. You can make them callable from Fortran by writing C 
''wrapper" functions. as follows: 

#include <netinet/in.h> 

long htonl_(long *hostlong) { 
return«long)htonl«unsigned long)*hostlong); 

} 

short htons_(short *hostshort) { 
return«short)htons«unsigned short)*hostshort); 

} 

long ntohl_(long *netlong) { 
return«long)ntohl«unsigned long)*netlong); 

} 

short ntohs_(short *netshort) { 
return«short)ntohs«unsigned short)*netshort); 

} 

Note the underscore at the end of each function name. Once you have compiled this flle and linked 
it into your Fortran program. you can call btoniO. btonsO. ntoblO. and ntobs() as described in the 
OSP!l-Programmer's Reference. 'The wrapper functions btoniO and ntohlO take an integer4'4 
parameter and return an integer4'4 value; the wrapper functions btons() and ntobsO take an 
integer4'Z parameter and return an integer4'Z value. 



Paragon" Ueer'a Guide IPSOS System Compatibility 

Floating-Point Control calls 

CFSCalis 

The Paragon OSF/I C system calls fpgetstickyO and fpsetstIekyO. which get and set the i860 
microprocessor'sjloating-point exceptionstic/cy flags, and fpgetmaskO and fpsetmaskO, which get 
and set the floating-point exception mask, do not suppon the exception value FP _ X _ DNML, which 
represents a denormalization exception in the iPSC system. 

The Paragon OSP!I Forttan system call fpsetmaskO also does not suppon the denormalization 
exception, and uses different numeric values to represent the various exceptions than the 
couesponding iPSC system call. See "Controlling Floating-Point Behavior" on page 4-46 for the 
couect values for Paragon OSF!I. 

In Paragon OSF!I, the iPSC system's Concurrent File System (CPS) has been replaced by the 
Parallel Flle System (PFS). PFS calls are compatible with CPS calls; however, PPS offers additional 
functionality (see Chapter S for more information). This section lists the differences that may affect 
some programs that use CPS calls. 

iftadO and iwrite() 
These calls work in Paragon OSF!I just as they do in the iPSC system. In both 
systems, the number of 110 IDs is limited; however, the limit in Paragon 
OSF!l is much smaller than in the iPSC system. (In the iPSC system the limit 
is SOOO; in Paragon OSF!! it is at least 256, but may vary from release to 
release.) For this reason, it is very impottant that you use iodone() or iowaitO 
to release each ID as soon as possible after you use it. If you program in C, 
you can use JreadO or _iwrite() to detect the "too many requests" error 
(EQNOMID). 

openO Many iPSC system programs use code like the following to open a file on all 
nodes: 

if(mynode() -= 0) { 
fd - open("myfile", O_CREAT I O_RDWR, 0644); 
gsync() ; 

} else { 
gsynC() ; 
fd = open("myfile", O_RDWR, 0644); 

} 

setiomode(fd, iomode); 

The openO call worlcs the same in Paragon OSF!l as it does in the iPSC 
system. However, if this code is executed on many nodes, the large number 
of openO requests arriving simultaneously at the 110 node can cause the 110 
node to slow down, hang, or even crash. This can even cause the system to 
crash. 

8-15 



1PS08 System Compatibility 

Miscellaneous Calls 

Paragon 111 User's Guide 

You should always use the gopen() call instead of this type of code. For 
example. you should replace the lines shown above with the following: 

fd = gopen("myfile", O_CREAT r O_RDWR, 
iomode, 0644); 

gopenO opens a file simultaneously on all nodes and sets its I/O mode in a 
single operation. It is much more efficient than having each node call openO. 
and avoids this type of system crash completely. 

Note that lOpenO opens the same file on each node. If each node is opening 
its own file. you must still use openO. However. you should try to avoid using 
openO together with gsyncO. to prevent all the openO requests from arriving 
at the I/O node at the same time. 

The following iPSC system calls work differently or are not supported in Paragon OSP/I: 

ddockO 

llushmsgO 

getlphostsO 

PrO 

8-16 

This call works in Paragon OSP/I just as it does in the iPSC system: it returns 
the time since the system was booted. in seconds. However. in a 
gang-scheduled partition your application may be rolled out and then rolled 
in again. While it is rolled out, the application is stopped but the dclockO 
clock keeps going (reflecting "wall-clock" time). which means that ddockO 
cannot be used to determine the amount of time your application has actually 
been running. 

Using ddockO in a gang-scheduled partition may result in incorrect 
MFLOPS estimates. You can use the time command, getrusage() system call 
(C only). or the etimeO ord1ime() routine (Fortran only) instead to determine 
your application's CPU usage. See the OSFIl Com.mmuJ Reference for 
information on dme. the OSF/l Programmer's Reference for information on 
getrusage(). and theParagonTK Fortran Compiler User's Guide for 
information on etime() and dtimeO. 

This call currently has no equivalent in Paragon OSP/I. It may be supported 
in a future release. 

This call currently has no equivalent in Paragon OSP/I. However. because the 
OSP/I operating system automatically routes network traffic using all 
available Ethernet ports. it is not usually necessary to know the network 
names of the available ports. 

This call is not supported in Paragon OSP/I. The exclusive OR operator is not 
associative. and gives unpredictable results when used on more than two 
nodes. 



Paragon- U.". Guide 

bandlerO 

IPSOI System Compatibility 

This call is not supported in Paragon OSF/I. The exclusive OR operator is not 
associative, and gives unpredictable results when used on more than two 
nodes. 

Use the signalO system call instead (signalO is supponed for both C and 
Fortran). See sipalO in the OSF/I Programmer's Reference for information 
on signal handling; see signal() in the Paragon Ttl. Fortran Compiler User's 
Guide for information on the Fortran interface to sigDalO. 

plogonO and plogotr() 

sedpbostO 

Summary 

These calls CUIIeDtly have no equivalent in Paragon OSF/I. There is currently 
no way to automatically log creation and deletion of partitions or running of 
applications. However, you can use the sysIogO call to log activities under 
program control. See sysiogO in the OSF/I Programmer's Reference for 
more information. 

This call is not necessary in Paragon OSF/I. The OSF/I operating system 
automatically routes network traffic using all available Ethernet ports; it is not 
necessary to select one pan to perform network operations. 

There are two different versions of this call in Paragon OSF/I. The standard 
version of setpgrp(), found in libbsd.a, is equivalent to setpgidO and is not 
compatible with the iPSC/860 version. The System V version of setpgrpO, 
found in libsysS.a, is equivalent to setsidO and is compatible with the 
iPSC/860 version. To get the iPSCl86O-compatibie version, be sure to use the 
switch -lsysS when linking. 

Table B-2 summarizes the Paragon OSF/I equivalents for the unsupported iPSC system commands. 

Table 8-2.. Summary of Unsupported iPSC- System Commands (1 of 2) 

IPSC- System Command paragon'" OSF/1 Equivalent 

arebcube (none) 

attacbeube (none) 

cbackup dump 

cfscbk fsck 

cptape cpio 

crestore rdump 

cubeinfo Ispart 

8-17 



iPSOI System Compatibility Paragon no User's Guide 

Table B-2. SUIIIIIIIU'Y ofUlISupported iPSe- System Commands (2 of 2) 

IPSce System Command Paragon 1M OSF/1 Equivalent 

getcube -sz switch on application command line 

IdUcube kill 

less more 

load Application's filename 

makewhatis catman 

manpatb MANPATH environment variable 

Blkefs newfs 

mkdev 
-.-

mknod 

newserver I/O redirection characters 

DSb rlogin or telnet 

plogoff (none) 

pIogon (none) 

rar ar860 

ras as860 

n:c icc 

rebootcube (none) 

relcube (none) 

rf77 itT7 

rid Id860 

showvol shod 

star tar 

starteube (none) 

stream (none) 

syslog I/O redirection characters 

tapemode (none) 

waiteube (none) 

8-18 



Paragon" Ueer'a Guide iPS08 System CompatibiHty 

Table B-3 summarizes the Paragon OSFIl equivalents for the unsupponed iPSC system calls. 

Table B-3. Summary of Unsupported IPSC· System Calls (1 of 1) 

IPSC- System Cell Paragon" OSF/1 Equivalent 

attacbcube() (none) 

cubeinfoO (none) 

dclockO Supported. but use getrusage() (C) or 
etime()ldtime() (Forttan) to determine CPU 
usage in gang-scheduled partitions. 

fpgetstickyO. fpsetstickyO. fpgetmaskO. Supponed. except for FP _ X_DNML. but 
fpsetmaskO Fortran mask values are different. 

flushmsgO (none) 

getcube() DXJDitveO r 

getlpbostsO (none) .. 

PrO (none) -

PrO (none) 

bandIer() signalO 

ireadO. iwriteO Supported. but number of 110 IDs is much 
smaller. 

1dUcube() Use kiUcube(-l,-l) to kill and flush all 
processes; use klUO to kill one process 

kiIIsysIog() (none) 

kiIIprocO Use kiUproc(-l,-l) to kill all processes; use 
kUlO to kill one process 

newserver() freopenO 

openO Supported. but use lOpenO instead if possible. 

plogono (none) 

plogonO (none) 

relcubeO (none) 

setipbostO (none) 

setpgrp() Supponed. but be sure to link with -lsysS to get 
the correct version. 

8-19 



iPSC8 System Compatibility Paragon no User's Guide 

Table B-3. Summary of Unsupported iPSC~ System Calls (2 on) 

IPSce System call Paragon 1'111 OSF/1 Equivalent 

setpidO setptype() 

setsysiogO (none) 

waitaDO Use DX_ waitallO to wait for all processes; use 
waitO or waitpidO to wait for one process 

waitoneO wait() or waitpidO 

Byte-swapping calls htoniO. htoosO. ntobiO. and ntohsO 

8-20 



Symbols 
### in filenames 5-31 

• (dot) in partition pathnames 2-28 

. (root) partition 2-26 

.compute partition 2-28 

.F extension 2-9 

.service partition 2-28 

lets directory 5-13 

Idev/ioO/rmt6 device 5-46 

Ipfs file system 5-5 

lusr/ccsllib directory 2-8 

lusr/include directory 2-8 

lusrllib directory 2-8 

lusr/paragonlXDEV directory 2-9 

lusrltmp directory 5-13 

\;file (second program in an application) 2-21 

_NODE preprocessor symbol 2-5 

_creadO system call 5-26 

_creadvO system call 5-26 

_crecvO system call 4-42 

_cwriteO system call 5-26 

_cwritevO system call 5-26 

Index 

_r calls 6-1 0 

_REENTRANT preprocessor symbol 6-5, 6-41 

-1 
as error retum 4-42 
as message type 3-6 
as node number 3-3, 4-25 
as process type 3-4 
as sending node number 3-24 
as sending process type 3-24 

64-bit integers 5-37 

A 
absolute partition pathname 2-28 

access methods 5-13 
synchronization of 5-48 

accessO system call 5-31 

accessing contiguous memory locations 8-5 

active and inactive applications 2-35 

address space 1-5 

algorithms 8-1 

aligning application buffers 8-12 

aligning 110 buffers 8-25 

ALLOCATE statement 8-8, 8-15 

allocating memory 8-8 

Index-1 



Index 

allocating nodes to a partition 2-30, 2-40 

allocating nodes to an application 2-15, 4-4 

allocating space to a file 5-7,5-32 

allocator configuration parameters 2-36 

alternate node topologies 7-6 

anonymous files 5-13 

applicable documents vii 

application buffers 
aligning 8-12 

"application" command 2-13, A-2 

Index-2 

Paragon" User's Guide 

. applications 1-1, 2-1 
active and inactive 2-35 
allocating nodes to an application 4-4 
Bourne shell 2-24 
compiling and linking 2-5 
compiling, linking, and executing 2-3 
contiguous nodes 2-16, 4-5, 4-28 
control decomposition 7-5 
controlling execution characteristics 2-13 
controlling process 2-24, 2-28, 4-4, 4-21 
controlling with system calls 4-2 
creating and controlling 4-4 
debugging 2-34 
decomposition 7-3 
default partition 2-14 
designing 7-1 
designing a communication strategy 7-6 
domain decomposition 7-3 
error handling 4-42 
error messages 2-12 
executing 2-11 
-gth switch 8-18 
1/0 redirection 2-12 
independent of number of nodes 7-5 
interactive 2-34 
killing application processes 4-23 
listing the applications in a partition 2-51 
-Inx compiler switch 2-11 
load balancing 7-3 
managing running applications 2-23 
matrix*vector example 7-11 
-mbf switch 8-16 
-mea switch 8-17 
message buffers 3-14 
message passing with controlling process 4-25 
-mex switch 8-19 
-noc switch 8-17 
node numbers 3-3 
nqueens example 7-13 
-nx compiler switch 2-11 
-on switch 2-19 
order of switches 2-13 
over1apping 2-36 
partition of 2-14 
perfectly-parallel 7-2 



Paragon" User's Guide 

performance improvement techniques 8-1 
pi example 7-7 
-pkt switch 8-16 
-plk switch 8-3, 8-15 
-pn switch 2-22 
-pri switch 2-17 
priority of 2-17,2-35,4-9 
process type of 2-18, 3-4 
-pt switch 2-18, 3-4 
rectangular dimensions of 4-16 
rectangular size 2-16 
removing partitions containing 2-45 
running in a particular partition 2-22 
running multiple programs 2-21 
running on a subset of the nodes 2-18 
-set switch 8-18 
separating the user interface from the 

computation 7-3 
shell scripts 2-24 
size of 2-15 
-sth switch 8-18 
-sz switch 2-16, 3-3 
waiting for application processes 4-14 

arbitration between processes 2-33 

arbitration mechanisms 6-1 

archcube command 8-5 

architecture of your workstation 2-6 

argc and argv parameters 4-5, 4-13 

arithmetic, extended 5-37 

arrays 
accessing contiguous memory locations 8-5 
dynamic allocation of 8-8 
large 8-8 
memory layout in C and Fortran 8-5 

arrow LEOs 1-4 

assembly language programming 8-1, 8-7 

asynchronous and synchronous calls 8-10 

asynchronous and synchronous I/O calls 8-24 

asynchronous cancelability 6-29 

asynchronous file 1/0 calls 5-27 

asynchronous message-passing calls 3-6, 3-7, 
3-10 

with interrupt handler 3-7 

attachcube command B-5 

attachcubeO system call 8-10 

attributes of file systems 5-5 

attributes of pthreads 6-15 

available nodes 2-48 

avoiding virtual memory paging 8-3 

B 
backward compatibility calls 8-9 

backward library references 2-10 

bad nodes 2-31 , 2-48, 4-40 

balancing the load among the nodes 7-3 

Basic Unear Algebra Subroutines (BLAS) 7-13 

Basic Math Ubrary (libkmath.a) 8-6 

bg command 2-23 

binary files in PFS file systems 5-4 

BLAS library 8-6 

blocking 3-8, 5-48 
on child processes 4-14 
with pthreads 6-37 

blocks, file system 8-25 

bold text vi 

Bourne shell (sh) 2-24 
with Pthreads 6-39 

brackets, in syntax descriptions vii 

broadcast 3-9 

Index 

Index-3 



Index 

buffering 
of Fortran 1/0 ~O 
of messages 3-14 
of standard 1/02-12 

buffers for 1/0 8-25 

buffers for messages 8-11 
aligning 8-12 

buffers, message 8-16 

bureaucracy in node programs 7-5 

bytes read or written 5-26 

byte-swapping calls B-14 

c 
C library, reentrant 6-2 

C preprocessor on a Fortran program 2-9 

C programs 
error handling 4-42, 8-7 
file descriptors 5-8 
including nx.h 2-8 
memory access considerations 8-5 
pointers to message buffers 8-13 
structure padding 8-13 

cache lines 8-5, 8-12 

caches 
data 8-5 
instruction 8-6 

caching 8-5 

canceling pthreads 6-28 

cat command 5-5, ~5 

cbackup command B-7 

Index-4 

cc command 2-4, 2-5, A-1 
-host switch B-1 0 
-I switch 2-9, 2-10 
-L switch 2-9, 2-10 
-Mquad switch B-4 
-node switch 8-4 
-nx switch 2-5, B-4 
order of switches 2-10 
-p switch B-4 

CFS 5-1, B-7 

lets directory 5-13 

Paragon"'User'8 Guide 

CFS_MOUNT environment variable 5-13 

-Gfschk command B-7 

changing partition characteristics 2-54, 4-36 

changing process type 3-4 

characteristics of a partition 2-29 
default 2-29 

characteristics of processes 3-3 

chdirO system call 5-31, 8-9 
with pthreads 6-9 

chess example 7-13 

chgrp command 5-35 

child partitions 2-29, 2-34 
creating 2-39 
listing 2-49 
removing 2-45 
removing partitions containing 2-45 

child processes 4-10,4-11,4-14 

chmod command 5-35 

chmodO system call 5-31, 8-9 

chown command ~5 

chownO system call ~1 

chpart command 2-29, 2-54, A-2 

CLASSPACK 8-6 

cleanup routines for pthreads 6-32 



Paragon- Ueer's Guide 

clock, global 4-50 

closeO system call 5-28 
synchronization 5-48 

closing parallel files 5-15, 5-28 

code segment 8-15 

commands 2-1 
compiling and linking applications 2-5 
cross-development 2-5 
executing applications 2-11 
iPSe system compatibility B-5 
managing partitions 2-25 
managing running applications 2-23 
native 2-5 
on the Intel supercomputer 2-2 
on workstations 2-2 
PFS5-5 
summary A-1 

commons in message passing 3-17 

communication 
overlapping with computation 8-10 

compatibility with the IPse system B-1 

compiler switches 2-5, 2-8, 2-10, B-4 

compilers, iPSe system 2-7 
compatibility with B-4 

compiling and linking 
optimization 8-3 

compiling and linking applications 1-5, 2-5 
-host switch B-10 
-Inx switch 2-6 

order of 2-10 
-Mquad switch B-4 
-node switch B-4 
-nx switch 2-5, B-4 
-p switch B-4 
quick example 2-3 
specifying include file pathnames 2-8 
specifying library pathnames 2-8 
tips 2-8 
with pthreads 6-5 

complete (synchronous) system calls 
file I/O 5-24 
message passing 3-7 

compress command 5-35 

computation 
overlapping with communication 8-10 

computational kernel of an application 7-3 

compute nodes 1-2 

compute partition 2-2, 2-27, 2-28 

Concurrent File System 5-1, B-7 

condition variables 6-21 

configuration parameters of the allocator 2-36 

configuring message passing 8-18 

configuring your environment 
for cross-development 2-6 
for online manual pages 2-6 

contiguous memory locations 8-5 

contiguous nodes 2-16, 2-40, 4-5, 4-28 

contiguous partitions 2-31 

control decomposition 7-5 
example 7-14 

Index 

controlling application execution with system calls 
4-2 

controlling process 2-24, 2-28, 2-51, 4-4,4-21 
global operations 4-25 
message passing 4-25 
node number of 4-25 
process type of 4-25 

controlling tape devices 5-44 

controlling the application's execution 
characteristics 2-13 

coprocessor 8-10 

copying processes onto nodes 4-10 

core dumps 4-44 

Index-5 



Index 

core files in PFS file systems 5-4 

correspondents parameter 8-17 

count parameter 3-5 

Courier font vi 

cp command 5-5, 5-35 

cpio command 5-35 

cprobeO system call 3-14, A-7, A-31 

cprobex() system call 3-16, 3-24, A-9, A-34 

cptape command 8-7 

creadO system call 5-15, 5-25, A-19, A-45 
synchronization 5-48 

creadv() system call 5-25, 5-48, A-19, A-45 

creatO system call 5-31 

createstrucO system call 8-14 

creating an application 4-4 

creating partitions 2-39, 4-28 

crecv() system call 3-8, A-5, A-29 
message buffering 8-11 

crecvx() system call 3-16, 3-24, A-9, A-33 

crestore command 8-7 

critical code 3-22 

cross-compilers 2-2 

cross-cJevelopment facility 1-6 
commands 2-5 
configuring your environment 2-6 

csendO system call 3-8, A-5, A-29 
message buffering 8-11 

csendrecvO system call 3-8, A-5, A-29 

cthreads 6-2 

CTOH ••• O system calls 8-14 

<CtrI-c> key 2-23 

<CtrI-z> key 2-23 

Index-6 

cube control commands B-5 

cube.h file 8-9 

cubeinfo command 8-5 

cubeinfoO system call 8-10 

current partition 2-28 

Paragon 1M User'S Guide 

cwriteO system call 5-15, 5-24, 5-25, 5-31, A-19, 
A-45 

synchronization 5-48 

cwritevO system call 5-25, 5-48, A-19, A-46 

D 
data cache 8-5 

data locality 8-10 

data segment 8-15 

dclockO system call 4-50, A-16, A-43, 8-16 

dead nodes 2-31, 2-48, 4-40 

deadlock 8-17 

dealing out data to the nodes 7-3 

debugging applications 2-34 

declaring large arrays 8-8 

decomposition 7-3 
control decomposition 7-5 
domain decomposition 7-3 

default application size 2-17 

default characteristics of a partition 2-29 

default partition 2-2, 2-14 
determining 2-15 
listing applications in 2-51 
listing subpartitions of 2-49 
setting 2-14 
showing characteristics of 2-46 

<Det> key 2-23 

DELTA System 4-52 



Paragon'" Ueer's Guide 

designing a communication strategy 7-6 

designing a parallel application 7-1 

desUo~ng~ons2~,~O 

detecting end-of-file 5-29 

determining your default partition 2-15 

Idev/ioO/rmtS device 5-46 

devices, disk 5-2 

df command 5-7 

diff command 5-35 

differences between iPSC and Paragon B-1 

disk space allocated to a file 5-7, 5-32 

disks and file systems 5-2 

displaying file system attributes 5-5 

distributed memory 7-2 

distributing computation among the nodes 7-3 

distributing data among the nodes 7-3 

documents, related vii 

domain decomposition 7-3 
example 7-8 

dot (.) in partition pathnames 2-28 

dot (.) partition (root partition) 2-26 

du command 5-35 

dumping core 4-44 

dynamic algorithm selectiQn 3-27 

dynamic memory allocation 8-8 

E 
eaddO system call 5-37, A-22, A-49 

ecmp() system call 5-37, 5-38, A-22, A-49 

eel command 5-35 

eelivO system call 5-37, 5-38, A-22, A-49 

effective priority limit 2-35, 2-44, 2-56 

efficiency of PFS files 8-23 

ellipses ( ... ), in syntax descriptions vii 

emadO system call 5-37, 5-38, A-22, A-49 

emulO system call 5-37, A-22, A-49 

encl-of-file 5-29 

environment variables 
CFS_MOUNT 5-13 
for compiling and linking 2-6 
for online manual pages 2-6 
IPSC_XDEV B-4 
MANPATH2-6 
NX_DFlT_PART 2-3, 2-12, 2-14 
NX_DFlT_SIZE 2-12, 2-17, 2-22 
of child processes 4-13 
PARAGON_XDEV 2-6, 2-9 
PATH 2-6 

envp parameter 4-13 

ermo variable 4-42 
with pthreads 6-41 

"error 216 occurred, unknown" error 2-12 

error handling 4-42, 8-7 
in parallel file I/O calls 5-26 
with pthreads 6-41 . 

error messages 2-12 

eseekO system call 5-36, A-21 , A-48 
synchronization 5-48 

esizeO system call 5-36, A-21 , A-48 

esize_t structure 5-37 

estat structure 5-36 

estatO system call 5-36, A-21 

estath file 5-37 

estatfs structure 5-41 

esub() system call 5-37, A-22, A-49 

Index 

Index-7 



Index 

Ethernet interface 1-2 

etosO system call 5-37, A-22, A-49 

ex command 5-35 

example of compiling and linking 2-3 

examples 
iomodes 5-17 
matrix*vector 7-11 
nqueens 7-13 
pi 7-7 
pthreads 6-18 
triangle 7-18 

"exceeded allocator configuration parameters" 
error 2-36 

"exceeds partition resources" error 2-12, 2-16 

exception mask 4-48 

exceptions 5-31 

execO system call 3-5 
with pthreads 6-9 

executable files in PFS file systems 5-4 

execute (x) permission on a partition 2-33 

executing applications 2-3, 2-11 
after cross-compilation 1-6 
controlling 2-13 

execution search path 2-6 

execution timing 4-50 

exitO system call, with pthreads 6-9, 6-42 

extended arithmetic 5-37 

extended files 5-33 

extended receive and probe 3-24 

F 
.F extension 2-9 

Index-8 

m commancl2-4, 2-5, A-1 
-host switch 8-10 
-I switch 2-9, 2-10 
-L switch 2-9, 2-10 
-Mquad switch B-4 
-node switch B-4 
-nx switch 2-5, B-4 
order of switches 2-10 
-p switch B-4 

failed nodes 2-31,2-48,4-40 

fault LEOS 1-3 

tentiO system call 5-4, 5-34 

teube.h file 8-9 

festatO system call 5-36, A-21 

FFT library 8-6 

fg command 2-23 

fgetposO system call 5-34 

FIFO size 8-12 

Paragon 1M User's Guide 

file I/O, parallel (see also "parallel file 110") 5-1 

file pointers 5-14 

file system blocks 8-25 

file systems 5-2 
attributes of 5-5 
getting information about PFS file systems 5-39 

filelD parameter 5-8 

filenames, length of 5-3 

files 
extended 5-33 
file descriptors 5-8 
file pointers 5-14 

moving 5-29 
maximum open at once 5-4 
size of 5-7, 5-32 

find command 5-35 

fixed-size records 5-16 



Paragon 1M Ueer'a Guide 

f1ickO system call 4-50, A-16, A-43 

floating-point control calls 4-46 

f1ockO system call 5-4 

f1ockfile() system call 6-1 ° 
flow control of messages 8-13 

flushing Fortran buffered 1/0 5-30 

f1ushmsg() system call 4-52, A-17, A-43, 8-16 

fnx.h file 2-8 

force types 3-6, 8-2 

forceflushO system call 5-30, A-47 

forflushO system call 5-30, A-47 

forkO system call 2-6, 3-5,4-10,5-13 
with pthreads 6-9 

forking processes onto nodes 4-1 ° 
form=''formatted'' parameter 5-11 

form="unformattecl" parameter 5-11 

formatted files 5-11 

fort.nnn files 5-13 

Fortran programs 
error handling 4-42 
file va on parallel files 5-24 
flushing buffered I/O 5-30 
including fnx.h 2-8 
memory access considerations 8-5 
message passing with Fortran commons 3-17 
opening new files 5-12 
opening parallel files 5-11 
parallel file va calls 5-25 
preprocessing 2-9 
sequential files 5-26 
unformatted files 5-26 
units 5-8 

fpgetmaskO system call 4-46, A-16 

fpgetround() system call 4-46, A-16 

fpgetsticky() system call 4-46, A-16 

fpsetmaskO system call 4-46, 5-31, A-16, A-42 

fpsetroundO system call 4-46, A-16 

fpse1stickyO system call 4-46, A-16 

fread() system call 8-24 

free nodes 2-48 

front panel LEOs 1-3 

fseekO system call 5-34 

fsetpos() system call 5-34 

fsplit command A-3 

fstatO system call 5-34 

fstatfs() system call 5-41 , 8-25 

fstatpfs() system call 5-39, 8-26, A-23 

ftellO system call 5-34 

FTNxxxxxxxx.nn files 5-13 

tip command 1-6,2-7,5-35 

ftruncateO system call 5-34 

full stripe size 8-25 

funlockfileO system call 6-10 

G 
gang scheduling 2-35, 2-43, 2-55 

with pthreads 6-4 

Gauss-Seidel method 8-11 

gcolO system call 3-27, A-10, A-35 

gcolxO system call 3-27, 7-6, 7-13, A-10, A-35 

gdhighO system call 3-27, A-10, A-35 

gdlowO system call 3-27, A-10, A-35 

gdprodO system call 3-27, A-10, A-35 

Index 

gdsumO system call 3-27, 3-28, 7-6, A-10, A-35 

general cancelability 6-28 

Index-9 



Index 

getcube command 8-5 

getcubeO system call 8-10 

getiphostsO system call 8-16 

getmntinfoO system call 5-39 

getpfsinfoO system call 5-39, A-23 

getrusageO system call 8-9 

getting information about PFS file systems 5-39 

GFLOPS8-2 

giandO system call 3-27, A-10, A-35 

gigabyte files 5-33 

gihighO system call 3-27, A-10, A-36 

giiowO system call 3-27 , A-11 , A-36 

ginvO system call 4-52, A-17, A-43 

giorO system call 3-27, A-11, A-36 

giprod() system call 3-27, A-11, A-36 

gisumO system call 3-27, A-11, A-36 

give_threshold parameter 8-18 

gixorO system call 8-16 

gland() system call 3-27, A-11, A-36 

global clock 4-50 

global operations 3-4,3-27,5-9,5-13,5-14,5-48, 
7-6 

and controlling process 4-25 
effect on-noc switch 8-22 
with -on switch 2-20 
with pthreads 6-4, 6-37 

global predicate variables 6-21 

glorO system call 3-27, A-11, A-36 

glxorO system call 8-17 

gopenO system call 5-9, 8-23, A-18, A-45 
synchronization 5-48 
with pthreads 6-4 

Index-10 

Paragon" User's Guide 

gopfO system call 3-27, A-11 , A-37 

gprof command 8-2 

gray() system call 4-52, A-17, A-43 

green LEOs 1-3 

group of a partition 2-32, 2-56 

groups of processes 4-22 . 

gsendxO system call 3-9, A-5, A-29 

gshighO system call 3-27, A-11, A-37 

gslowO system call 3-27, A-11, A-37 

gsprodO system call 3-27, A-12, A-37 

gssumO system call 3-27, A-12, A-37 

gsyncO system call 3-27, A-12, A-37 
with openO 8-16 
with pthreads 6-4 

-gth switch 8-18 

H 
handled message-passing calls 3-7 

handled types 3-19 

handler() system call 8-17 

handling errors 4-42, 8-7 
with pthreads 6-41 

hard disk 5-2 

hardware 1-2 

hardware failures 2-31 

heap 8-15 

''hello, world" program 2-4 

hierarchical partition structure 2-28 

host calls 8-9 

-host switch 8-10 

hparam parameter 3-21 



Paragon" User's Guide 

hrecv() system call 3-18, A-8, A-32 
with pthreads 6-38 

hrecvx() system call 3-24, A-9, A-34 

hsend() system call 3-18, 3-20, A-8, A-32 
with pthreads 6-38 

hsendrecvO system call 3-18, 3-20, A-8, A-32 

hsendxO system call 3-20, A-8, A-33 

HTOC ..• () system calls 8-14 

hwclockO system call 4-52, A-17, A-43 

I/O buffers 8-25 

I/O calls, efficiency of 8-24 

I/O IDs 5-27 

I/O interfaces 1-2 

I/O modes 5-9, 5-13 
efficiency of 8-24 
example 5-17 
inheritance across forkO 5-13 
M_GLOBAL 5-17 
M_LOG 5-15 
M_RECORD 5-16, 8-26 
M_SYNC 5-15 
M_UNIX 5-14 
standard I/O 2-12 
synchronization of 5-48 

I/O nodes 5-2 

I/O partition 2-26 

I/O redirection 2-12 

I/O request size 8-23, 8-25 

I/O to parallel files 5-24 

I/O, parallel (see also "parallel file I/O") 5-1 

i860 microprocessor 1-2, 8-5 
cache line 8-12 
data cache 8-5 
FIFO size 8-12 
floating-point control registers 4-47 
instruction cache 8-6 
physical memory page 8-12 

icc command 2-5, A-1 
environment variables 2-6 
-I switch 2-9, 2-10 
-Knoieee switch 8-4 
-L switch 2-9, 2-10 
-MnostrideO switch 8-4 
-Mquad switch B-4 
-Mvect switch 8-4 
-node switch B-4 
-nx switch 2-5, B-4 
-0 switch 8-4 
order of switches 2-10 
-p switch B-4 

10 of a message 3-6 

IEEE math library 8-4 

IEEE NaN 4-47 

if/else blocks, efficiency of 8-6 

im command 2-5, A-1 
environment variables 2-6 
-I switch 2-9, 2-10 
-Knoieee switch 8-4 
-L switch 2-9, 2-10 
-Ikmath switch 7-13 
-MnostrideO switch 8-4 
-Mquad switch B-4 
-Mvect switch 8-4 
-node switch B-4 
-nx switch 2-5, B-4 
-0 switch 8-4 
order of switches 2-10 
-p switch B-4 

image enhancement 7-3 

improving performance 8-1 

Index 

Index-11 



---~-~ ----

Index 

inactive applications 2-35 

include directories 2-8 

include files 
cUbe.h 8-9 
estat.h 5-37 
fcube.h 8-9 
fnx.h 2-8 
mtio.h 5-44 
nx.h2-8 

incomplete (asynchronous) system calls 
file 1/0 5-24 
message passing 3-7 

increasing problem size 8-5 

increasing the size of a file 5-7,5-32 

info parameter 3-25 

info ... () system calls, with pthreads 6-38 

infocountO system call 3-15, A-7, A-31 

infonode() system call 3-15, A-7, A-31 

infopidO system call 4-52, A-17, A-43 

infoptypeO system call 3-15, A-7, A-31 

information about messages 3-15 

infotypeO system call 3-15, A-7, A-31 

innermost loops 8-4 

instruction cache 8-6 

instruction pointer 6-1 

Intel supercomputer 
hardware 1-2 
software 1-4 
using commands on 2-2 

interactive applications 2-34 

interconnect network 1-:-2 

interfaces 1-2 

interrupt key 2-23 

Index-12 

interrupts 
preventing 3-22 

Paragon no User's Guide 

treating messages as interrupts 3-18 

INVALlD_PTYPE constant 3-5 

ioctl() system call 5-44 

iodoneO system call 5-24, 5-27, 5-28, A-19, A-46 

iomodeO system call 5-13, A-18, A-45 

iowaitO system call 5-24, 5-27, 5-28, A-19, A-46 

iprobeO system call 3-14, A-7, A-31 

iprobexO system call 3-16, 3-24, A-9, A-34 

iPSCsystem 
CFS compatibility 5-1 
commands B-5 
compatibility calls 4-52 
compatibility with 8-1 
compilers 2-7, B-4 
IPSC_XDEV environment variable B-4 
system calls 8-9 

ireaclO system call 5-27, A-19, A-46, 8-15 
synchronization 5-48 

ireadvO system call 5-27, 5-48, A-19, A-46 

irecvO system call 3-10, A-6, A-30 

irecvxO system call 3-24, A-9, A-33 

isendO system call 3-10, A-6, A-30 

isendrecvO system call 3-10, A-6, A-30 

iseofO system call 5-15, 5-24, 5-26, 5-29, A-20, 
A-47 

synchronization 5-48 

isnanO system call 4-46, A-16 

isnandO system call 4-46, A-16 

isnanfO system call 4-46, A-16 

italic text vi 

iwriteO system call 5-27, 5-31, A-19, A-46, 8-15 
synchronization 5-48 



Paragon" Ueer's Guide 

iwritevO system call 5-27, 5-48, A-19, A-46 

K 
kernel of an application 7-3 

kernel threads 6-3, 6-16 

kill command 1-4, 2-24,2-51 

killO system call 4-15, 4-23 

killcube command B-6 

killcube{) system call 4-52, A-17, A-43, 8-10 

killing application processes 4-23 

killproc{) system call 4-52, A-17, A-44, 8-10 

killsyslog() system call 8-11 

-Knoieee switch 8-4 

L 
ladO system call 4-52, A-16, A-43 

LEOs 1-3 

length of a filename or pathname 5-3 

length of a message 3-5, 3-15 

less command 8-8 

lestat() system call 5-36, A-21 

libe_r.a 6-2, 6-6 
error handling 6-42 

lib-coff directory 2-8 

libkmath.a 8-6 

libmach.a 6-5 

libnx.a2-5 
with pthreads 6-3 

libpthreads.a 6-2, 6-11 
error handling 6-42 

libraries 
Basic Math Ubrary 8-6 
BLAS 7-13 
command-line switches 2-10 
IEEE math Ubrary 8-4 
libkmath.a 7-13 
libnx.a2-5 
pthreads package 6-5 
search path for 2-10 
Signal Processing Library 8-6 
specifying 2-8 

libsignal.a 8-6 

life of a process type 3-5 

limitations of PFS 5-4 

limitations of pthreads 6-3 

link switches 2-10 

IinkO system call 5-31 

linking an application 2-3 
single-pass linker 2-10 
specifying library pathnames 2-8 
with pthreads 6-5 

listing partitions 2-49 

listing the applications in a partition 2-51 

-Ikmath switch 7-13 

-Inx switch 2-6 
effect on execution 2-11 
order of 2-10 
with pthreads 6-5 

load balancing 2-33, 7-3 

load command 8-6 

loadO system call 4-52, A-17, A-44 

loading processes onto nodes 4-11 

locality of data 8-10 

locking a process in memory 8-15 

locking and unlocking pthreads 6-16 

Index 

Index-13 



Index 

locking data into memory 8-15 

logical node numbers 2-30 

loops, innermost 8-4 

loops, size of 8-6 

Is command 5-5, 5-35 

IseekO system call 5-15, 5-17, 5-26, 5-29, 5-34, 
A-20,A-47 

synchronization 5-48 

Isize command 5-7, A-3 

IsizeO system call 5-32, A-20, A-47 

Ispart command 2-31, 2-49, A-2 
-r switch 2-50 

IstatO system call 5-34 

M 
M_GLOBAL 1/0 mode 5-17, 8-24 

M_LOG 1/0 mode 5-15 

M_RECORD 1/0 mode 5-16, 8-24, 8-26 

M_SYNC 1/0 mode 5-15. 8-24 

M_UNIX VO mode 5-14,8-24 

Mach kernel interface 6-5 

Mach threads 6-2 

madviseO system call 5-34 

magnetic tapes, controlling 5-44 

main thread 6-12 

maintaining data locality 8-10 

makewhatis conmand B-7 

making partitions 2-39, 4-28 

making the program independent of the number of 
nodes 7-5 

maliocO system call 8-8, 8-13, 8-15 

Index-14 

Paragon no User's Guide 

manager-worker decomposition 7-5, 7-14 

managing partitions 2-25 
with system calls 4-27 

managing running applications 2-23 

manpath command 8-8 

MAN PATH environment variable 2-6 

manual pages, configuring your environment for 2-6 

masktrap() system call 3-22, A-8, A-33 

math library, IEEE 8-4 

matrix*vector example 7-11 

maximum capacity of a PFS file system 5-3 

maximum length of a filename or pathname 5-3 

maximum number of open files 5-4 

maximum size of a PFS file 5-3 

-mbf switch 8-16 

mclock() system call 4-52, A-H, A-44 

-mea switch 8-17 

memory 
accessing contiguous memory locations 8-5 
allocated to message buffers 8-16 
distributed 7-2 
dynamic allocation 8-8 
locking 8-15 
locking data into memory 8-15 
of nodes 1-2 
physical 1-5 
physical pages 8-5, 8-12 
static allocation 8-8 
virtual 1-5, 8-3, 8-15 

memory_each parameter 8-17 

memory_export ipc_option 8-19 

merging message IDs 3-13 

message buffers 8-16 

message coprocessor 8-10 



Paragon" U.". Guide 

message handlers 3-20 

message_buffer parameter 8-16 

message-passing configuration switches 8-18 

message-passing flow control 8-13 

message-passing system calls 3-1 
with pthreads 6-4, 6-37 

messages 1-1, 7-2 
as interrupts 3-18 
asynchronous calls 3-10 
buffers 3-14,8-11 

aligning 8-12 
configuration options 8-18 
designing a communication strategy 7-6 
exchanging with controlling process 4-25 
force types 3-6 
getting infonnation about 3-15 
handled types 3-19 
memory allocated to message buffers 8-16 
merging message IDs 3-13 
message characteristics 3-5 
message 10 3-6 
message IDs 3-10 
message length 3-5, 3-15 
message order 3-7 
message passing with Fortran commons 3-17 
message type 3-6, 3-15 
names of message-passing calls 3-7 
pending messages 3-14, 8-11 
performance improvement techniques 8-7, 

8-21 
pthreads 6-37 
releasing message IDs 3-12 
synchronous calls 3-8 
typesel masks 3-6 
zero-length messages 3-6 

-mex switch 8-19 

MFLOPS8-2 

miscellaneous system calls 4-50 

mkcfs command B-7 

mkdev command B-8 

mkdirO system call 5-31 

mknodO system call 5-31 

mkpart command 2-29, 2-39, A-2 
-epl switch 2-44 
-mod switch 2-42 
-nd switch 2-40 
-rq switch 2-43 
-sps switch 2-43 
-ss switch 2-43 
-sz switch 2-40 

mmapO system call 5-4, 5-34 

-MnostrideO switch 8-4 

modes for I/O 5-13 
synchronization of 5-48 

modes of a partition 2-32, 2-42, 2-56 

monospace text vi 

more command 5-35 

mount points 5-2 

moving the file pointer 5-29 

mp_switches 8-18 

mprotect() system call 5-34 

-Mquad switch B-4 

msgcancelO system call 4-52, A-17, A-44 

msgdone() system call 3-10, 3-16, A-6, A-30 

msgignoreO system call 3-10, A-6, A-31 

msginfo array 3-16, 3-25 

msgmergeO system call 3-13, A-6, A-31 

msgwaitO system call 3-10, 3-16, A-6, A-30 

msync() system call 5-34 

MT operations 5-44 

mtio.h file 5-44 

multi-node performance 8-7, 8-21 

multiple nodes 3-9 

Index 

Index-15 



Index 

multiple programs in an application 2-21 

munmap() system call 5-34 

mutexes 6-1, 6-16 

mv command 5-5, 5-35 

-Mvect switch 8-4 

myapp (any application) command 2-11 

myapp.c2-4 

myapp.f2-4 

myhostO system call 4-25, A-4, A-28 

mynodeO system call 2-17, 3-3, 8-2, A-4, A-28 

mypart() system call 2-17, 4-17, 4-52, A-17, A-44 

mypidO system call 4-52, A-17, A-44 

myptype() system call 2-18, 3-4, 8-2, A-4, A-28 

N 

name of a partition 2-30, 2-56 

named commons in message passing 3-17 

names of message-passing calls 3-7 

NaN (Not-a-Number) 4-47 

native commands 2-5 

new features in Paragon OSF/1 B-2 

new files 5-12 

newts command 5-35 

newserver command B-6 

newserverO system call 8-11 

NEXTPATH() macro 5-40 

NFS (Network File System) 1-6,2-7,5-2 
accessing PFS files 5-4 
parallel 1/0 to 5-24 

-noc switch 8-17 

node interconnect network 1-2 

Index-16 

Paragon'" User's Guide 

node numbers 3-3 
in filenames 5-31 
in overlapping partitions 2-32 
logical 2-30 
of a received or pending message 3-15 
of controlling process 4-25 
physical 2-30 
within a partition 2-30 

node parameter 3-3 

_NODE preprocessor symbol 2-5 

node programs 
error handling 8-7 

",node switch 8-4 

nodedim() system call 4-52, A-18, A-44 

nodes 1-1, 1-2, 7-2 
allocated to a partition 2-30, 2-40 
allocated to an application 2-15, 4-4 
compute nodes 1-2 
contiguous 2-16, 2-40, 4-5, 4-28 
copying processes onto nodes 4-10 
designing a communication strategy 7-6 
free 2-48 
1/0 nodes 5-2 
load balancing 7-3 
loading processes onto nodes 4-11 
making programs independent of number of 

nodes 7-5 
node numbers 3-3 
node topologies 7-6 
operating system 1-4 
partitions 2-25 
running application processes on a subset 2-18 
service nodes 1-2 
unusable nodes 2-31, 2-48, 4-40 

nodesel parameter 3-3 

nodespecs 2-19, 2-40 

noieee switch 8-4 

noncontiguous nodes 2-16, 2-40, 4-5, 4-28 

noncontiguous partitions 2-31 



Paragon- Ueel's Guide 

non-parallel programs 2-11 , 2-27 

nostrideO switch 8-4 

Not-8-Number (NaN) 4-47 

notational conventions used in the manual vi 

nqueens example 7-13 

nsh command 8-9 

number of bytes read or written 5-26 

numbers, extended 5-37 

numerical methods 8-1 

numnodes() system call 2-17 , 3-3, A-4, A-28 

-nx switch 2-5, B-4 
actions performed by 4-3 
and nx_initveO 4-4 
command-line switches 2-13, 8-18 
effect on execution 2-11 
with pthreads 6-5 

nx.h file 2-8 

nx_ ••• () system calls, error handling of 4-42 

nx_app_nodesO system call 4-16, A-13, A-39 

nx_app3ectO system call 2-17, 4-16, 8-10, A-13, 
A-39 

nx_chparLepl() system call 4-36, A-14, A-41 

nx_chparLmodO system call 4-36, A-14, A-41 

nx_chparLnameO system call 4-36, A-14, A-41 

nx_chparLownerO system call 4-36, A-15, A-41 

nx_chparLrqO system call 4-36, A-14, A-41 

nx_chparLschedO system call 4-36, A-15, A-41 

NX_DFL T _PART environment variable 2-3, 2-12, 
2-14 

NX_DFL T _SIZE environment variable 2-12 2-17 
2-22 ' , 

nx_empty_nodesO system call 4-40, A-15, A-42 

nx_failed_nodesO system call 4-40, A-15, A-42 

Index 

nx_initveO system call 4-3, 4-4, 4-21, A-12, A-38 
linking 2-6 
with pthreads 6-39 

nx_initve_rect() system call 4-3, 4-7, A-12, A-38 

nx_loadO system call 2-20, 3-5, 4-3, 4-11,4-14, 
A-13, A-39 

nx_loadveO system call 2-20, 3-5, 4-3, 4-13, 4-14, 
A-13, A-39 

nx_mkpartO system call 4-28, A-14, A-40 

nx_mkparLmapO system call 4-28, A-14, A-40 

!1~_mkpart_rectO system call 4-28, A-14, A-40 

nx_nforkO system call 2-20, 3-5, 4-3, 4-10, 4-14, 
A-12, A-38 

with pthreads 6-39 

nx ... parLattr() system call 4-31 ,A-14, A-40 

nx...,P8rt_nodesO system call 4-31, A-14, A-41 

nx...,perror() system call 4-42, A-15, A-42 
with pthreads 6-42 

nx...priO system call 4-3, 4-9, A-12, A-38 

nx...,pspart() system call 4-16, A-13 

nx_rmpartO system call 4-30, A-14, A-40 

n~waitallO system call 4-3, 4-14,4-45, A-13, A-39 

o 
-on switch 2-19 

openO system call 5-10, 5-11, 5-31, 8-23,8-15 

opening parallel files 5-9 
### in filenames 5-31 
special considerations for Fortran 5-11 
with standard operations 5-11 

operating system 1-4 

''Operation not supported by this file system" error 
5-4 

Index-17 



Index 

optimization 
compiler 8-3 

optimizations 8-3 

order of application switches 2-13 

order of compiler switches 2-10 

order of messages 3-7 

organization of the manual v 

OSFI1 operating system 1-4 
commands 2-2 

OSFI1 PIDs 4-15 

other system calls 4-1 

overlapping computation and communication 8-10 

overlapping partitions or applications 2-36 

owner of a partition 2-32, 2-56 

p 

-p switch B-4 

packeCsize parameter 8-16 

packetization 8-16 

padding in common blocks 3-17 

pages of physical memory 8-5 

paging 8-3 
preventing 8-15 

Paragon OSFI1 operating system 1-4 
commands 2-1 
message-passing system calls 3-1 
new features B-2 
other system calls 4-1 
parallel file 1/0 5-1 
programming model 7-2 

Paragon system 
hardware 1-2 
software 1-4 

PARAGON_XDEV environment variable 2-6, 2-9 

Index-18 

Paragon 1M User's Guide 

$PARAGON_XDEVlparagon directory 2-8 

ParaGraph performance visualization tool 8-1 0 

parallel applications 1-1, 2-1 

parallel file I/O 5-1 
### in filenames 5-31 
asynchronous 1/0 calls 5-27 

efficiency of 8-24 
closing files 5-28 
detecting end-of-fiIe5-29 
efficiency of 8-24 
error handling 5-26 
file pointers 5-14 
flushing Fortran buffered 1/05-30 
formatted VS. unformatted 1/0 5-11 
I/O modes 5-9,5-13 

efficiency of 8-24 
1/0 performance 8-23 
in Fortran programs 5-25 
increasing the size of a file 5-7, 5-32 
manipulating extended files 5-36 
moving the file pointer 5-29 
new files 5-12 
opening files 5-9 

with standard operations 5-11 
reading and writing files 5-24 
scattered read and write 5-25 
special considerations for Fortran 5-11 
synchronizing calls 5-9,5-13,5-14 
synchronizing operations 5-48 
synchronous 1/0 calls 5-25 
system calls 5-8 
tapes, controlling 5-44 
to NFS files 5-24 
to the user's terminal 5-31 
unnamed files 5-13 
with pthreads 6-4, 6-38 

parallel file system (see also "PFS") 5-1 

parallel programming techniques 7-2 

parent partition 2-29 

"partition permission deniedll error 2-12 



Paragon" U .. r's Guide 

partitions 1-6, 2-2, 2-25 
allocating nodes to applications 2-15 
changing partition characteristics 2-54, 4-36 
characteristics 2-29 
child partitions 2-29, 2-34 
compute partition 2-2, 2-27, 2-28 
contiguous and noncontiguous 2-31 
contiguous nodes 2-40 
current 2-28 
default characteristics 2-29 
default partition 2-2, 2-14 

determining 2-15 
setting 2-14 

dot (.) partition (root partition) 2-26 
effective priority limit 2-35, 2-44, 2-56 
error messages 2-14 
execute (x) permission 2-33 
free nodes 2-48 
gang-schecluled 2-35, 2-43, 2-55 
hierarchical structure 2-28 
110 partition 2-26 
listing 2-49 
listing the applications in a partition 2-51 
making partitions 2-39, 4-28 
managing 2-25 
managing with system calls 4-27 
name of a partition 2-30,2-56 
nodes 2-30 
nodes allocated to a partition 2-40 
overlapping 2-36 
owner and group 2-32, 2-56 
parent partition 2-29 
pathnames 2-28 
permission bits 2-32, 2-42, 2-56 
priority 2-35 . 
protection modes 2-32, 2-42, 2-56 
read (r) permission 2-33 
removing partitions 2-45, 4-30 
rollin quantum 2-34, 2-35, 2-43, 2-55 
root partition 2-26, 2-29 

shape of 2-26 
running applications in 2-22 
scheduling characteristics 2-33, 2-43 
service partition 2-2, 2-24, 2-27 
showing partition characteristics 2-46 

space-shared 2-37, 2-43, 2-56 
special 2-26 
standard-scheduled 2-34, 2-43 
subpartitions 2-29, 2-34 
unusable nodes 2-31 , 2-48, 4-40 
write (w) permission 2-33 

passing information to the handler 3-20 

PATH environment variable 2-6 

pathnames of partitions 2-28 

pathnames, length of 5-3 

pending messages 3-14, 8-11 
getting information about 3-15 

perfectly-paraJlel applications 1-6, 7-2 

performance improvement techniques 8-1 

performance of PFS files 8-23 

performance visualization 8-10 

performing extended arithmetic 5-37 

permissions of a partition 2-32, 2-42, 2-56 

per-node vector size 8-5 

Index 

perror() system call, with pthreads 6-9, 6-42 

Index-19 



Index 

PFS5-3 
accessing via NFS 5-4 
commands 5-5 
core files in 5-4 
executable files in 5-4 
file systems 5-3 
filename and pathname length 5-3 
files 5-3 
getting information about PFS file systems 5-39 
limitations of 5-4 
manipulating extended files 5-36 
maximum capacity 5-3 
maximum file size 5-3 
maximum number of open files 5-4 
mount points 5-2 
opening PFS files 5-9 

with standard operations 5-11 
performance 8-23 
special files in 5-3 
stripe directories 5-3 
stripe units 5-3 

/pfs file system 5-5 

PFS file systems 
block size 8-25 
striping 8-25 

pfsmntinfo structure 5-39 

physical memory 1-5 

physical memory page 8-12 

physical memory pages 8-5 

physical nodes 2-30 

physical topology 7-6 

pi example 7-7 

PIDs (process lOs) 4-14 
contrasted with process types 4-15 

-pkt switch 8-16 

-plk switch 8-3, 8-15 

plockO system call 8-15 

plogon and plogoff commands 8-8 

Index-20 

Paragon" User's Guide 

plogonO and plogoffO system calls 8-17 

pmake command A-3 

-pn switch 2-22 

pointers to message buffers 8-13 

porting iPSe programs 8-1 

porting serial codes 7-5 

POSIX threads 6-1 

preallocating disk space 5-33 

preprocessing a Fortran program 2-9 

preprocessor symbol_NODE 2-5 

preventing interrupts 3-22 

-pri switch 2-17 

priority 
effective priority limit of a partition 2-35, 2-44, 

2-56 
of a partition 2-35 
of a process 2-35 
of an application 2-17,2-35,4-9 

probing for pending messages 3-14 
extended 3-24 

problem decomposition 7-3 

problem size 8-5 

process group lOs 2-51 

process group leaders 4-4, 4-22 

process lOs (PIDs) 4-14 

process locking 8-15 

process types 3-4 
changing 3-4 
contrasted with OSFI1 PIOs 4-15 
INVALlD_PTYPE 3-5 
life 013-5 
of a received or pending message 3-15 
of an application 2-18 
of controlling process 4-25 
with pthreads 3-5,6-37 



Paragon" UeeI's Guide 

processes 
arbitration between 2-33 
characteristics 3-3 
child processes 4-10, 4-11, 4-14 
controlling process 2-24, 2-28, 2-51, 4-4, 4-21 
copying processes onto nodes 4-1 0 
loading processes onto nodes 4-11 
PIDs (process IDs) 4-14 
priority of 2-35 
process groups 4-22 
process types 3-4 
threads 1-1,6-1 
waiting for application processes 4-14 

processor time 2-17 

processors 1-1 

prof command 8-2 

profiling B-4 

profiling tools 8-2 

program development tools 1-6 

programming model 1-6, 7-2 

programming techniques 7-2 

programs, non-parallel 2-1, 2-27 

protection modes of a partition 2-32, 2-42, 2-56 

ps command 2-24 

pspart command 2-51 , A-2 
-r switch 2-54 

-pt switch 2-18,3-4 

pthreacCattccreateO system call 6-15, A-24 

pthread_attr_deleteO system call 6-15, A-24 

pthread_attr..QetstacksizeO system call 6-15, A-24 

pthreacCattr_setstacksizeO system call 6-15, A-24 

pthread_cancelO system call 6-28, A-26 

pthread_cleanup-POPO system call 6-32, A-27 

pthreaCcleanupJ)ush() system call 6-32, A-27 

Index 

pthread_cond_broadcastO system call 6-21, A-26 

p1hread_cond_destroYO system call 6-21, A-26 

p1hread_cond_initO system call 6-21 , A-26 

pthread_cond_signalO system call 6-21 , A-26 

p1hread_cond_timedwaitO system call 6-21, A-26 

pthread_cond_wait() system call 6-21 , A-26 

pthread_condattr_create() system call 6-23, A-26 

pthreacCcondattr_deleteO system call 6-23, A-26 

pthread_createO system call 6-13, A-24 

pthread_detachO system call 6-13, A-24 

pthreaCequaJO system call 6-13, A-24 

pthreacCexitO system call 6-13, A-24 

pthread..QetspecificO system call 6-33, A-27 

pthread..,joinO system call 6-13, A-24 

pthread_keycreateO system call 6-33, A-27 

pthread_mutex_destroyO system call 6-16, A-25 

p1hreacLmutex_init() system call 6-16, A-25 

pthread_mutex_lockO system call 6-16, A-25 

pthread_mutex_tryIockO system call 6-16, A-25 

pthread_mutex_unlockO system call 6-16, A-25 

pthread_mutexattr_create() system call 6-17, A-25 

pthread_mutexattr_deIeteO system call 6-17, A-25 

pthread_onceO system call 6-34, A-.27 

pthreacLselfO system call 6-13, A-24 

pthread_setasynccancelO system call 6-28, A-26 

pthread_setcancel() system call 6-28, A-26 

pthread_setspecificO system call 6-33, A-27 

pthread_testcancelO system call 6-28, A-26 

pthread-yieldO system call 6-13, A-24 

Index-21 



Index 

pthreads 
attributes of 6-15 
Bourne shell 6-39 
canceling 6-28 
cleanup routines 6-32 
compiling and linking 6-5 
condition variables 6-21 
data types and symbols 6-11 
error handling 6-41 
example program 6-18 
execution of 6-13 
file I/O 6-38 
global predicate variables 6-21 
kernel threads 6-3 
keys 6-33 
libraries 6-2 
limitations of 6-3 
locking and unlocking 6-16 
main thread 6-12 
message-passing calls 6-37 
mutexes 6-16 
non-thread-safe code 6-37 
priority of 6-15 
process types 3-5 
pthreads library calls 6-11 
pthreads package 6-1 
pthread-specific data Objects 6-33 
recommended safe operating environment 6-4 
reentrant C library 6-6 
signals 6-34, 6-39 
stack size of 6-15 
synchronization of 6-21 

ptype (see also "process type") 2-18 

ptype parameter 3-4 

ptypesel parameter 3-4 

Q 
quad-alignment B-4 

queens example 7-13 

quick example 2-3 

Index-22 

Paragon 1M User's Guide 

quotaon command 5-4 

R 
_r calls 6-10 

RAID (Redundant Array of Inexpensive Disks) 5-2 

rar command 8-8 

ras command B-8 

rcc command B-8 

rcmd command 1-6 

_~ command 1-6, 2-7, 5-35 

read (r) permission on a partition 2-33 

read statement 5-24 

read() system call 5-25 
with pthreads 6-4 

reading files in parallel 5-24 

readlink() system call 5-31 

readv() system call 5-25 

rebootcube command B-9 

receiving messages 3-8 
extended 3-24 

record size 5-16 

rectangular applications 2-16 

rectangular dimensions of an application 4-16 

recursively listing applications in subpartitions 2-54 

recursively listing subpartitions 2-50 

recursively removing subpartitions 2-45 

red LEOs 1-3 

redirecting I/O 2-12 

reentrant C library 6-2, 6-6 

_REENTRANT preprocessor symbol 6-5, 6-41 

reentrant software 6-1 



Paragon'" User's Guide 

related documents vii 

relative partition pathname 2-28 

relcube command B-6 

relcubeO system call 8-11 

releasing control of the processor 4-50 

releasing 1/0 IDs 5-28 

releasing message IDs 3-12 

relstrucO system call 8-14 

remote host commands 8-8 

removing partitions 2-45, 4-30 

renameO system call 5-31 

repeated use of system calls 8-2 

"request overlaps with nodes in use" error 2-12, 
2-16,2-34 

request size 8-23, 8-25 

resources 6-1 

restrictvolO system call 4-52, A-18, A-44 

rewinding a tape 5-46 

rfl7 command B-8 

ring topology 7-6 

rid command 8-8 

rlogin command 1-5 

rm command 5-35 

rmdirO system call 5-31 

rmpart command 2-45, A-2 
-f switch 2-45 
-r switch 2-45 

rollin and rollout 2-2, 4-50 

rollin quantum 2-34, 2-35 
of a partition 2-43, 2-55 

root account 2-26, 2-33, 2-56 

root partition 2-26, 2-29 
shape of 2-26 

rounding mode 4-47 

RPM global clock 4-50 

rsh command 1-6 

Index 

running a program on a subset of the nodes 2-18 

running applications 2-11 

s 

consisting of multiple programs 2-21 
in a particular partition 2-22 
removing partitions containing 2-45 

sat command A-3 

scattered read and write 5-25 

scheduling characteristics of a partition 2-33, 2-43 

scheduling mechanisms 1-1 

"scheduling parameters conflict with allocator 
configuration" error 2-36 

scratch files 5-13 

SCSI interface 1-2, 5-2 

-set switch 8-18 

sdotO BLAS function 7-13 

search path 2-6 

search path for libraries 2-10 

seeking on a file 5-29 

send_avail value 8-17 

send_countparanHrter8-17 

send_threshold parameter 8-17 

sending messages 3-8 

sending to multiple nodes 3-9 

separating the user interface from the computation 
7-3 

Index-23 



IndeX 

sequential files 5-26 

serial codes, porting 7-5 

serializing calls 8-9 

service nodes 1-2 

service partition 2-2, 2-11 , 2-24, 2-27 

setiomode() system call 5-13, A-18, A-45 
synchronization 5-48 
with pthreads 6-4 

setiphost() system call 8-17 

setpart alias 2-15 

setpgrp() system call 8-17 

setpid() system call 8-11 

setptype() system call 3-4, A-4, A-28 
in controlling process 4-25 

setsyslog() system call 8-11 

setting your default partition 2-14 

sh command 2-24 
with pthreads 6-39 

shadow buffers 8-11 

shape of an application 4-16 

shape of the root partition 2-26 

shell 2-27 

shell scripts 2-24 

shepherd process 2-24 

showfs command 5-5, 8-26, A-3 

showing partition characteristics 2-46 

showpart command 2-29, 2-31, 2-46, 2-50, A-2 
-f switch 2-48 

showvol command 8-7 

Signal ProceSSing Ubrary (Iibsignal.a) 8-6 

signalO system call 4-44 

signals, with pthreads 6-5, 6-34, 6-39 

IndeX-24 

Paragon" User's Guide 

sigwait() system call 6-5, 6-34, A-27 

single program multiple data (SPMD) programming 
model 1-6, 7-2 

single system image 1-4, 7-2 

single-node performance 8-2 

64-bit integers 5-37 

size 
of a file 5-7, 5-32 
of a message 3-5 
of a packet 8-16 
of a partition 2-40 
of an application 2-15 

rectangular 2-16 

size of a problem 8-5 

sizeof operator 3-6 

sleep system call, with pthreads 6-9 

software failures 2-31 

space sharing 2-37, 2-43, 2-56 

special partitions 2-26 

specifying application priority 2-17 

specifying application size 2-15 

specifying nodes allocated to a partition 2-40 

specifying process type 2-18 

speed of calculation 8-2 

speedup of a parallel program 7-2 

SRM B-1 

stack 6-1, 8-15 

stack size of pthreads 6-15 

standard include directory 2-9 

standard input and output, redirecting 2-12 

standard scheduling 2-34, 2-43 

star command 8-7 



Paragon no User's Guide 

startcube command B-6 

start-up routine 2-5 

statO system call 5-31, 5-34, 8-9 

statfsO system call 5-31, 5-41, 8-25 

static memory allocation 8-8 

statpfs structure 5-39 

statpfsO system call 5-39, 8-26, A-23 

status of a tape device 5-46 

status="new" parameter 5-12 

status="scratch" parameter 5-13 

-sth switch 8-18 

sticky flags 4-48 

stoe() system call 5-37, 5-38, A-22, A-49 

stream command 8-7 

stripe directories 5-3, 8-25 

stripe example 8-26 

stripe factor 8-25 

stripe unit 5-3, 8-25 

strip-mining loops 8-5 

structures, padding of 8-13 

subpartitions 2-29, 2-34 
creating 2-39 
listing 2-49 
listing the applications in a subpartition 2-54 
removing 2-45 
removing partitions containing 2-45 

succ() function 7-7 

summaries of commands and system calls A-1 

supercomputer 
hardware 1-2 
software 1-4 
using commands on 2-2 

suspend key 2-23 

SVR328-9 

switches 
compiler 2-8 
compiler optimization 8-3 
-gth switch 8-18 
-host switch 8-10 
in nx_initve() 4-6 
-mbf switch 8-16 
-mea switch 8-17 
-mex switch 8-19 
mp_switches 8-18 
-Mquad switch B-4 
-noc switch 8-17 
-node switch B-4 
-nx switch 2-5, 2-13, 8-18, B-4 
-on switch 2-19 
order of switches 2-13 
-p switch B-4 
-pkt switch 8-16 
-plk switch 8-3, 8-15 
-pn switch 2-22 
-pri switch 2-17 
-pt switch 2-18, 3-4 
-set switch 8-18 
-sth switch 8-18 
-sz switch 2-16, 3-3 

symlinkO system call 5-31 

synchronization of pthreads 6-21 

synchronizing calls 5-9, 5-13, 5-14 

synchronizing operations 5-29,5-30 
summary 5-48 

synchronous and asynchronous calls 8-10 

synchronous and asynchronous I/O calls 8-24 

synchronous file I/O calls 5-25 

synchronous message-passing calls 3-7, 3-8 
with pthreads 6-37 

sys/estalh file 5-37 

sysacct command 5-4 

syslog command B-6 

Index 

Index-25 



Index 

system administrator 2-26, 2-33, 2-56 

system buffers 3-14,8-11 

system calls 
asynchronous file 110 calls 5-27 
asynchronous message-passing calls 3-10 
backward compatibility 4-52, 8-9 
closing files in parallel 5-28 
controlling application execution 4-2 
controlling tape devices 5-44 
detecting end-of-file 5-29 
error handling 4-42, 8-7 

in parallel file 110 calls 5-26 
extended arithmetic 5-37 
floating-point control 4-46 
flushing Fortran buffered I/O 5-30 
global operations 3-27, 7-6 
110 modes 5-13 
110 to parallel files 5-24 
increasing the size of a file 5-32 
information about messages 3-15 
iPSe system compatibility 4-52, 8-9 
manipulating extended files 5-36 
message buffers 3-14,8-11 
message passing with Fortran commons 3-17 
message-passing 3-1 
miscellaneous 4-50 
moving the file pointer 5-29 
names of message-passing calls 3-7 
opening files in parallel 5-9 
other system calls 4-1 
parallel file I/O 5-8 
parallel file 110 synchronization 5-48 
partition management 4-27 
reading and writing files in parallel 5-24 
repeated 8-2 
summary of e system calls A-4 
summary of Fortran system calls A-28 
synchronization 5-48 
synchronous file I/O calls 5-25 
synchronous message-passing calls 3-8 
timing 4-50 
treating messages as interrupts 3-18 
underscore versions 4-42,8-7 

with pthreads 6-43 

Index-26 

system hardware 1-2 

system message buffers 8-16 

system software 1-4 

System V UNIX 8-9 

-sz switch 2-16, 3-3 

T 
tail command 5-35 

tape devices, controlling 5-44 

tapemode command 8-7 

tar command 5-35 

task decomposition 7-5 

Paragon'" User's Guide 

techniques for improving performance 8-1 

techniques for parallel programming 7-2 

telnet command 1-5 

temporarily releasing control of the processor 4-50 

terminalI/O 5-31 

terminology 2-1 

threads 1-1, 6-1 
(see also "pthreads") 

thread-safe software 6-1 

tiling 2-37 

timing execution 4-50 

tips for compiling and linking 2-8 

tools for program development 1-6 

topics in this manual v 

topologies 7-6 

Touchstone DELTA System 4-52 

treating a message as an interrupt 3-18 

tree search 7-5 



Paragon- U.". Guide 

triangle example 7-18 

truncateO system call 5-31 , 5-34 

type of a message 3-6, 3-15 

type parameter 3-6 

typesel masks 3-6 

typesel parameter 3-6 

U 
UFS file systems 5-2 

underscore versions of system calls 4-42, 8-7 
with pthreads 6-43 

understanding message-passing flow control 8-13 

unformatted files 5-11, 5-26 

unit stride 8-4 

units (Fortran 1/0) 5-8 

UNIX System V 8-9 

unlinkO system call 5-31 

unlocked_ .•• O system calls 6-10 

unlocke(Lfseek() system call 5-34 

unlocking pthreacls 6-16 

unnamed files 5-13 

unusable nodes 2-31,2-48, 4-40 

uppercase .F extension 2-9 

user interface of an application 7-3 

user model 1-5 
differences from iPSC system B-5 

using Paragon OSFI1 commands 
on the Intel supercomputer 2-2 
on workstations 2-2 

using PIDs 4-14 

using the default partition 2-14 

lusr/ccsllib directory 2-8 

lusrlinclude directory 2-8 

lusrnib directory 2-8 

lusr/paragonIXDEV directory 2-9 

lusr/bnp directory 5-13 

utimesO system call 5-31 

V 
variables 

CFS_MOUNT 5-13 
errno4-42 

with pthreacls 6-41 
IPSC_XDEV B-4 
MAN PATH 2-6 
NX_DFLT_PART 2-12,2-14 
NX_DFLT_SIZE 2-12, 2-17, 2-22 
PARAGON_XDEV2-6,2-9 
PATH 2-6 

vector library 8-6 

vector multiplication 7-11 

vector operations 3-27 

vector size 8-5 

vi command 5-35 

virtual memory 1-5, 8-3, 8-15 

virtual topology 7-6 

visualization of performance 8-10 

vm_stat command 8-3 

W 
waitO system call, with pthreads 6-9 

waitallO system call 8-12 

waitcube command B-6 

waiting for application processes 4-14 

Index 

Index-27 



.~. :. '. . " 

,", '\ 

.. " 

Index 

w8ltoneO system call 8-13 

witdcards in partition pathnames 2-28 

wiring memory 8-15 

workstations 
architecture of 2-6 
using· commands on 2-2 

workstations, working at 1-6 
·i:;'·r:f.-~';.}. • ...... 1'-"-

~~ .,;,., 

. write (w) permission on a partition 2-33 
. ",' 

write statement 5-24 

writeO system call 5-25 
with pthreads 6-4 

writevO system call 5-25 

writing files in parallel 5-24 

x 
x (execute) permission on a partition 2-33 

xprof and xgprof commands 8-2 

y 

yellow LEOs 1-4 

Z 
zero-length messages 3-6 

Index-28 

Paragon'" User's Gu~ 


