User’s Guide

312489

June 1994
Order Number: 312489-003

Paragon"
User’s Guide

Intel® Corporation

WARNING

Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of atool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in-
stalled, and the front of the diagnostic station. There are no user service-
able areas inside the system. Refer any need for such access only to tech-
nical personnel that have been qualified by Intel Corporation.

CAUTION

This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer-
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re-
main the property of Intel Corporation. Use, duplication or disclosure by the
U.S. Government is subject to Limited Rights as set forth in subparagraphs
(a)(15) of the Rights in Technical Data and Computer Software clause at
252.227-7013. Intel Corporation, 2200 Mission College Boulevard, Santa
Clara, CA 95052. For all Federal use or contracts other than DoD Limited
Rights under FAR 52.2272-14, ALT. lll shall apply. Unpublished—rights
reserved under the copyright laws of the United States.

Paragon™ User's Guide : Using Paragon™ OSF/1 Message-Passing System Calis

The handler function you define must be written in C and must have four arguments of type long.
These arguments are passed the following values when the function is called:

1. Type of the message (as returned by infotype().

2. Length of the message in bytes (as returned by infocount()).

3. Node number of the process that sent the message (as returned by infonode()).
4. Process type of the process that sent the message (as returned by infoptype()).

For example, here’s a C code fragment that attaches the functions funct0(), functl(), and funct2() to
message types 0, 1, and 2, respectively. The message types that have handlers are referred to as
handled types.

#include <nx.h>

char buf0[100], bufl[100], buf2[100];
void functO0(), functl(), funct2();

hrecv(0, buf0, sizeof(buf0), funct0);
hrecv(l, bufl, sizeof(bufl), functl);
hrecv(2, buf2, sizeof(buf2), funct2);

. /* Now perform other work. No blocking happens. */

The declaration of funct1() looks like this (the other functions are similar):

void functl(long type, long count, long node, long ptype)
{

}

When a message of type 1 arrives, the message is stored in the buffer specified in the hrecv() call
(in this case, bufl), then functl1() is called with the type and length of the message and the node
number and process type of the sender as arguments. functl() and the main program then run
concurrently until funct1() returns. (In previous releases of Paragon OSF/1, the main program was
interrupted and did not run at all until funct1() returned.)

CAUTION

The handler runs in the same memory space as the main program
(but they have separate stacks).

3-19

Preface

This manual tells how to use the Paragonm OSF/1 operating system on an Intel supercomputer.

This manual assumes that you are an application programmer proficient in the C or Fortran language
and the UNIX operating system. The manual provides you with enough detail to begin using your
system.

NOTE

Programming examples in this manual are intended to
demonstrate the use of Paragon OSF/1 system calls, not as
examples of good programming practice.

For example, in some cases, the return values of functions are not checked for error conditions. This
is not recommended, but the error checks have been omitted in order to make the example shorter

and easier to read.
Organization

Chapter 1 Provides an overview of the Paragon OSF/1 software and Intel
supercomputer hardware.

Chapter 2 Describes the Paragon OSF/1 commands that you can enter at the shell
prompt and the Paragon OSF/1 cross-development commands that run on
supported workstations.

Chapter 3 Describes the message-passing system calls available to programs in Paragon
OSF/1.

Chapter 4 Describes the other general-purpose system calls available in Paragon OSF/1.

Preface

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Appendix A

Appendix B

Paragon™ User's Guide

Describes the parallel I/O calls you can use for parallel access to the Intel
supercomputer’s file systems.

Describes the pthreads package, which you can use to create and control
multiple threads (also called “lightweight processes”) within your programs.

Tells how to prepare an application for the Paragon OSF/1 operating system.
The steps described are applicable to applications that are written for a
parallel computer and applications that are ported from a sequential
computer. This chapter discusses three examples: an integration, a
matrix*vector multiplication, and the N-Queens problem.

Presents some techniques you can use to improve the performance of your
parallel applications.

Summarizes the commands and system calls of Paragon OSF/1. The
complete syntax of each command and call is provided, along with a brief
description of each.

Describes the level of support offered by Paragon OSF/1 for the commands
and system calls of the iPSC® system.

Notational Conventions

This manual uses the following notational conventions:

Vi

Bold

Ttalic

Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Identifies variables, filenames, directories, partitions, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace

Identifies computer output (prompts and messages), examples, and values of
variables.

Bold-Italic-Monospace

Identifies user input (what you enter in response to some prompt).

Bold-Monospace

Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break‘> <{s> {Ctrxl-Alt-Del>

Paragon™ Users Guide Preface

[1 (Brackets) Surround optional items.
(Ellipsis dots) Indicate that the preceding item may be repeated.
| (Bar) Separates two or more items of which you may select only one.

{1 (Braces) Surround two or more items of which you must select one.

Applicable Documents

Paragon™

For more information, refer to the following manuals. See the Paragon™ System Technical
Documentation Guide for information on the complete Paragon document set and ordering
information.

Manuals

. Paragonm Commands Reference Manual

. Paragonm Network Queueing System Manual

. Paragon"' C Compiler User’s Guide

« Paragon™ Fortran Compiler User’s Guide

. Paragonm C System Calls Reference Manual

. Paragon" Fortran System Calls Reference Manual

. Paragonm Application Tools User’s Guide

. Paragonm Interactive Parallel Debugger Reference Manual

. Paragonm System Administrator’s Guide

For information about limitations and workarounds, see the Paragon" System Software Release

Notes for the Paragon™ XP/S System. Release notes are also located in the directory
Ivolisharelrelease_notes on your Paragon system.

vii

Preface Paragon™ User's Guide

Other Manuals
e OSF/1 User’s Guide
¢ OSF/1 Programmer’s Reference
» OSF/1 Command Reference
» Effective Fortran 77 - Michael Metcalf
¢ C: A Reference Manual - Harbison and Steele
e The C Programming Language - Kernighan and Ritchie
¢ CLASSPACK Basic Math Library Use'r.’s Guide - Kuck & Associates

» CLASSPACK Basic Math Library/C User’s Guide - Kuck & Associates

viii

Paragon™ User's Guide

Preface

Commehts and Assistance

Intel Supercomputer Systems Division is eager to hear of your experiences with our products. Please
call us if you need assistance, have questions, or otherwise want to comment on your Paragon

system.
U.S.A/Canada Intel Corporation
phone: 800-421-2823

Internet: support@ssd.intel.com
Intel Corporation Italia s.p.a. United Kingdom Intel Corporation (UK) Ltd.
Milanofiori Palazzo Supercomputer System Division
20090 Assago Pipers Way
Milano Swindon SN3 IRJ
Italy England
1678 77203 (toll free) 0800 212665 (toll free)
France Intel Corporation (44) 7193 491056 (answered in French)

1 Rue Edison-BP303
78054 St. Quentin-en-Yvelines Cedex

(44) 793 431062 (answered in Italian)
(44) 793 480874 (answered in German)
(44) 793 495108 (answered in English)

France
0590 8602 (toll free)
Intel Japan K.K. Germany Intel Semiconductor GmbH
Supercomputer Systems Division Dommacher Strasse 1
5-6 Tokodai, Tsukuba City 8016 Feldkirchen bel Muenchen
Ibaraki-Ken 300-26 Germany
Japan 0130 813741 (toll free)
0298-47-8904
World Headquarters
Intel Corporation
Supercomputer Systems Division
15201 N.W. Greenbrier Parkway
Beaverton, Oregon 97006
US.A.

(503) 629-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 629-9147

If you have comments about our manuals, please fill out and mail the enclosed Comment Card. You
can also send your comments electronically to the following address:

techpubs@ssd.intel.com

Preface ' Paragon™ User's Guide

Table of Contents

Chapter 1
Introduction
Introduction ... vemersenannanns 1-1
SYSIEM HATAWANE ...t senas s s ess st s s sn s s s eas s sasssasens 1-2
NOGES ..eecicrmctiniiintieceetmttretecstessestessanssssosssaessssses s assesssssasssastsessstsesssnsessnnnans sestsesenssessesssnsssss sossansnesass 1-2
Node INterconNECt NEIWOIKc..occveiiieminniiiiisinssssssessensssnssss s sssmssnessan s s st sasessessssssssssssn sassssasssnes 1-2
1L B (= g = Vo= w12
Front Panel LEDS (Paragon XP/S ONIY)eeueeeeereesssssssssssssssesssessassssesssssssssessesssssssesssssssssssasssans 1-3
System Software certeeees sttt et e AR R e s eR e AR et een R ses 1-4
Paragon™ OSF/1 OPErating SYSIEIMcusecueesesscsssssssesssssnssssessssssssssssssssmsnssmssssssssssssnsasssssssasnes 1-4
USEI MOGEIueeiiieieiiciiiiiin i nesienissssnan st sessesssses s is s sssasssnnt sssssesnessnns snssssnssnnnssssenssssness s sasunasasnns 1-5
Programming Modelccccvvrvicnicinnisninenane reeteeriestestessnenes s tasr st anssn s sesseRaater seasesnbRsstes 1-6
Cross-Development FACIlityc.cccevceceinreiessnesnsnnisnssensnsessaiens rtrereseresuentenr e eneraesenaeesneeseasaean 1-6

xi

Table of Contents Paragon™ User's Guide

‘Chapter 2
Using Paragon™ OSF/1 Commands

INEFOAUCTION ... bR R s s b s sp s e 2-1
TEIMINOIOGY -ececerraerrreeriesitrsessissanesarasassinss e ssatassssessnsssseesasssnssstsssatssesssessasssasssnnassssanssnnssssasssanssnssansssas 2-1
Using Paragon™ OSF/1 Commands on the Intel SUPEICOMPULETc..eerseeesreesersssssssseasnessnees 2022
Using Paragon™ OSF/1 COMMANGS 0N WOTKSEAHONSccc.ecueeseeesnsaressesssssssssessssssesssssssssssssasssaseas 2-2
A QUICK EXBIMPIE ..c.veeeerrereeereesereresesersasersssensesssssesssssesasssesasessessssmsesssssssmssatanesssesssesssssssisenras s sasssssssessn 2-3

INFOIMALON YOU NEBEUvuvnrveesresscssnssesssssssssessssssssssssssssssssssesssssasssssssessassasesasssssssssasssassssassasssaseas 2-3
Compiling, Linking, and Executing an APpCAtONccceveeeiminincnincsnnscnnnsnsssssesnssssessesnesnnnas 23

Compiling and Linking ApplICatiONS ... s, 25
Configuring Your Environment for Cross-Developmentccoccvveinrecmniiisnessmssinsesssesmssasses 26
Tips for Compiling and Lihking ... 2-8

USING Other SWIHCNEScoceuriierricietieciiss st ses s st se s s sms s s e st s s sa s e smbns senn s bnsnnase e s 2-8
Including nx.hor fnx.h . eommscnsiainsenisassssessorsbasisinesnssissassassnssensrasssesessssesar s tssnrssseinssstresiin 2-8
Specifying Include File and Library Pathnamesceeeeereennnmninnenisnnssnsesnsssisssesssssnssassasns 2-8
Preprocessing @ FOrtran Programcccccoemeisssmmnnsssssissssnssssssssessssassnsssss sesssssessssasesaes 29
Order Of SWICNEScccucviiirieiiincrrisisisisse st ss e snsas sane s s s sasshsn s st sansassnsans 2-10

Running ApplICatiONSc.ccoerreemeeceersnecesensssssssescesssssessssssenas et s s e eRaa e s 2-11
L@ T 2 =T 1= (o o R ST 2-12
Controlling the Application’s Execution CharacteristiCscceusneernsrsseressssssnonsecsssssssnesssnnsasenenns 2-13

Using the Default Partition ...ttt sttt 2-14
Setting Your Default PArtitionccccoeeeecrercenmnresiisssessssssssssessssssesssssssnsssssssssssassesssssssenns 2-14
Determining the Current Default Partitionccccveerrrvirrcrcnrennncssenvsnssesesessesesesessessenes 2-15

Specifying APPlICAHION SIZ8 ...c.ccceveevrerreerieeresrnrrereersiesssessnsssssessssssesssssesssssessasssessassssssasssssasas 2-15
Specifying a Rectangle of NOAES ...t sases 2-16
Specifying a Particular Rectangle of NOUESc.ccocvererrvnnenrcessesssscsseenesesesssasssssssessssnes 2-16'
Using the Default SIZeccceecereiresirneeisiiresncsssesesreessesessseseessasennssessnsessesensesasssnssssnensasan 2-17

Specifying ApPlICAtION PrOMYccccceveireeneereenesnisnesesenessseessesssessesnesseseesesssesssessessenssssssesnassenes 2-17

SPECIfYING PrOCESS TYPE ..ceeeucrereiceeernrcssenesteseesssseesissssessessesssssessssensssessssesssesssessessesasssessnsnsssenns 2-18

Running a Program on a Subset of the NOAESccceceveriiereisnesnissnnsnsesissesnsnessnsseesessessesens 2-18

xii

Paragon™ User's Guide Table of Contents
Running Applications Consisting of Multiple Programsccceuvuicnminsciisnennisnsnsscnanns 2-21
Running an Application in a Particular Partitionccceiiiirinisnnseinscnnnnisssninicsssssnsnesssnenn 2-22

Managing Running ApplICatiONS ...t 2-23

Managing Partitions ...t sassass s ae 2-25

SPECIal PATIIONSccceceeericrerrniiisctitiassisss s cssassas s s sssesss e s s nnesaessassssnsssessssssssesssssssasssssss sasensasanns 2-26
The ROOt PArtitionccccceiiiimemiiniistiiiecienseinnteie st ens st isessseenaasssssesssnsssssnsssasssasssssns 2-26
The Service Partitioncoccccecnminmimniiiniiiiessnne st s ssssssssssasssssssssssssansssens 2-27
The CompuULe PArtitionc.cceccerinrinescrsiesesnmicesnsnestsssnsssancessessassessnesssesnessassanssssssssassasssrsans 2-27

Partition PathNaMESc.cccieciriricniimiiiniie st sassasseses s ssasssesesessessssssrsssse sossssnasaenss 2-28

Partition CharaCteriStCSccecuiviniccmimnnsensicsisnneisenesissisne e sassssssssasssnsssssssssasssssssnsassssnsssssnssasasass 2-29
Parent PArtItiONcoccoicmininnineininnnnscecsesnsenssnsinisans s ssas e sesssssssassssanesssssse sessssssenasssnssssanens 2-29
Partition NAMEccceeiiiiininiicc e st ns e st ss st s s e saan s saas s e s e s sssssarsna s smas sesaane 2-30
Nodes Allocated to the Partition ...t 2-30

Node Numbers Within @ Partitioncc.ccceveieninnnenisicninienessisesssssssnsessesssssenns 2-30
Unusable NOAEScccvuiiienimnniinnscccsenssns s ssassnsssssassnssnsas 2-31
Owner, Group, and ProteCtion MOUEScccevccercrneerrcecsisneesssesnsssessnsesassassssssassssanesesssnssnsssns 2-32
Scheduling CharaCteriStICSccvecerreererrrenseeseessesacssransssmrssesseesassssssessssessssssesassnessessssnsasasessesans 2-33
Standard SChEAUIINGcccceeiiniiiniininnenssstcss i ss et st snsnsaneessassssssnsanssassssasssns 2-34
Gang SChEAUIINGccvieiinneniiirrrce st ssssseessasesssnsnsneesssesnsssasssesnssssnssnns 2-35
SPACE SHAMNQccorrererriiienccinsitisisseranssnesesssnssnsssansssssssssaressesssessasassssssnsessessessesasssssesseseassns 2-37
Summary of SChedUIING TYPEScccccecererrcreireinncerrnsesessesneesesssessasssssnesassnssssssssssassesssssenens 2-38
A Scheduling EXAMPIEccccceerrcrrremrseresesserennessesseensacssnsessanssssessnssssssnnessssesasensssassssassnansen 2-39

MakKing Partitionsicccecvmnnmeiinimninininenticsiiiessmsisanesssesssmssmrsssnesorenssnssessassssenesesansasamssssassanssessnnsensns 2-39
Specifying the Nodes Allocated to the Partitionccccceceercerreeiresnecscneseesesseesessssnsness 2-40
Specifying ProteCtion MOGESc.c.vccivereiirereisenressecnrensesnsessnsessessnssmsesnessesnsssssenssnerasssssesassenanes 2-42
Specifying Scheduling CharaCteriStiCSc..ccvreererrerrrencsssareessssesarssesseessesseesassassnesnssssessasans 2-43

Removing PArtitioNScccccecvcmininecincmnnnnnsccninssnsinsssisssesescsssesssssesssssssssnssnans 2-45
Removing Partitions Containing Running Applicationsccccceeceeeeeeecneenne 2-45
Removing Partitions Containing Subpartitionsccecceeiietscnrnreneecsecsrernisesssnsessesseessessanssnes 2-45

xiii

Table of Contents Paragon" User's Guide

Showing Partition Characteristics cerasminerbinnusenes sesinssbeitinbunennisi s eitas ase 2-46

Probing for Pending MeSSagesccccrmerunrenesnsmsnesnssssssssssssssssssesssssssssnsssenssnns 3-14

Xiv

Showing Free NOTEScccviirmiicsiniiisniss s s s s sssas snanssaese s sessesssesssssssssssssssasasssnssassonas 2-48
Listing SUDPATHHONScceoireieiemiiersrisnisiitsis st sssssstssassssssses s snesssastssassse ensss s sassase s sassnsasssassassns 2-49
Recursively Listing SUDPArtfioNSccccrerecrinrerinmnsinsmnsieresessrssessesssssnsisnesssssssssssssssassesenessiens 2-50
Listing the Applications in @ Partitionc.ccecvceiiemmniimsinniscismnnssnecisnmssassiassssesessssssssssssssans 2-51
Applications in SUDPAIIONScccccicririicnsisseseenisisnnnesssssssssissssssssssssssssssssessssonsssessssssssnnss 2-52
Recursively Listing Applications in Subpartitionscceunnnnneiniicsnmnsnesns 2-54
Changing Partition CharaCteriStCSceccuerrernrerroniiresrsssseersscesecsessesnreesnsssaesasesesssesssnsssssssssssnsesaese 2-54
Chapter 3
. ™ .
Using Paragon = OSF/1 Message-Passing System Calls
INEPOAUCTIONcoeeeeeeetee st sees s s s sasss s sa s e s R e R A e e st n st 3-1
Process CharacteriStICS ... ssssssesss sassssssssssssssssssssssssans 3-3
Node Numbers emssansaissaismsansateinatissanersaisnarsas eansasiarsiastesasanessinaranseindasnsenasnasesatasisions unsnssnnorass 3-3
PrOCESS TYPES .uueeirecrieiiisemtisistesisnsssnesesssnesssasasessssassesanssssassasssssssns sosssst sassssssssenssassnsansssnssssenessasneans 3-4
Message Characteristics i itiassnsasstrasesssbesantas s SR onia s n AR SRS e sab e bt as st nn s Hens 35
MESSAGE LENGN ...ttt sne s st e s st ssn e as s sesn s ssassnsesns seme e seme e st same s e e e b e na s 3-5
Message Type teeintessstesieisanrensatnsssanasan snnsennnaneennss anesanaaest nessinsasasanatonssnnessansesesanns 3-6
MESSAQE ID ...ceeieeiiiiccireirneeicnieanrremssneeseessssessaesssssssssssasssnessssessassessnsssssas aessnnesnnsaseesane aeesnanassassanssannars 3-6
MESSAGE OFAEN ...t ssess e esr s s as st assss s s s s s b s s esn s s s san e 3-7
Names of Send and Receive Calls ... sessssssssesses 3-7
Synchronous Send and RECEIVE ... sess s ssssasssssssssssessans 3-8
Synchronous Send to MUMIPIE NOUESccoeereivicerrrrsiesnseessessseesnsasssesseessaessssnseressesaessnessessesnssssesess 39
Asynchronous Send and RECEIVE ... sessssss e sssssssessenes 3-10
Releasing MesSage IDScccccceeiienuincnnnincns st ssss s st sasassssssssssaassessssesassnssssasssnans 3-12
Merging MESSAQJE IDS ...cciiccieeereircririeeeneineiitessreratestesssssanessnasessessnsesessssessanssanesesnssassassssessasssenansan 3-13

Paragon™ User's Guide Table of Contents
Getting Information About Pending or Received Messageso.oucuneunnnee. 3-15
Message Passing with Fortran Commons 3-17
Treating a Message as an INterrupt ... 3-18
Passing Information to the HanAIErciineiiieiciiminnninneennneennsssienisassssesssmsssssesssnscsssses 3-20
Preventing Interrupts CeresestesisesissieseseieseEssieatieseiateesti et e ate et et eR SR R R R bR R e SRS e e R 3-22
Extended Receive and Probe ... cccsereessesessscsssnsessesssssssssssssssssssssssssssnes 3-24
GIObal OPEratioNs ...ttt cs e s s sb s s bR s 3-27
Chapter 4
. ™
Using Other Paragon ~ OSF/1
System Calls
INTPOAUCTION ...t s st sttt s s sn st st sn s s aasna s et enaanas s snena 4-1
Managing APPLICAtIONS ...t srssse s st snesssssnasasesens e sas 4-2
Controlling Application Execution with System Callsccceevrrricincneenrnrcsrisssneesnsnessessssssessssnsenns 4-3
Creating an Application With NX_iNIVE()ccccercerrrricnrenerrescrsessseresnrsssessssnessessnssssssnessnssnnsesens 4-4
Creating a Rectangular Application with NX_iNitve_reCt()cccceceerreererrimerreseressesseesesecssesnesansene 4-7
Setting an Application’s Priority with NX_Pri()ccccceerveneenernrcrecsanesnens 4-9
Copying a Process onto the Nodes with NX_Nfork()ccecceveeereeieineessercresrscsnscsncennesnenssseesnncs 4-10
Loading a Program onto the Nodes with nx_load()c.cccceeccrrerneccessanes .4-11
Loading a Program onto the Nodes With NX_I0AAVE()ccccerrrrrerrserremesersarssersnesessnesenssasenns 4-13
Waiting for Application Processes with nX_waitall()ccccceerrerranercncseensersnessaniessassaeessessnsesnans 4-14
USING PIDS ..coeeieriiiecinncicctnsnmsmrnesnssnissmssesssersssssnsssnssssssssnssasanssessasasssssseessessasessessnssaessassnssnnsssnaess 4-14
Getting Information About APPICALIONScccccevrrrcrrininssinnsientresnesisssserassssssssssesssenssssnsssesesassnssnans 4-16
Finding an Application’s Shape with NX_app_reCt() «...ccoceeerrreerrrrrrmnsrrssnsreesrnsnrennesnsns4-16
Listing an Application’s Nodes with nx_app_nodes()cc.oureerrrcereesneenes .. 4-17
Listing the Applications in a Partition with NX_pSpart()cceeveeecrseecrssnsessssnssnssessssasasnsssanenees 4-19

XV

Table of Contents ‘ Paragon™ User's Guide

THE COMIONING PIOCESS -vvrrereerrssemenerresssessssssssessensessssesssssseessssassssesssssssssssseesse it 4-21
PrOCESS GIOUPS .ccccreeerraeersenmesersssisneessasesssssssasssssnsssssssnessssasssasssssssssssstesssssnesnssasssssnssnensessansanes 4-22
Process Groups in Paragon’” OSF/T wee.eerseesseseessssssssssssesssssssssssssssssssassssssesssasssssanses 4-23

Killing Application PrOCESSESc.cviimivnmiiinmniisinnnsnnincssisisessissesssssssasessssssnssesssanssssssssnes 4-23

An Example Controlling ProCeSS ...c.ccvccrnrcmniriimnscnenisecicstrinecisesnnssssnesssnesnssensses cmeneeseeen 4-23
Message Passing Between Controlling Process and Application ProCeSSesvveueeiiresnssnessncnsninsssnnans 4-25
Managing Partitions ...ttt an s s s 4-27
LV F= 0 o T = T (1T g TSP 4-28
Removing Partitionsc.cccceeerrcccrevcnnnensncsesmsssnsssssns remressereissresnsrestaneirentehsinaatesttsseanttesetsnanesasrann 4-30
Getting Information ADOUL PartitionSccccceeerriicnenrniessesnsmnsssscees s sssesses s sessesssnmesssssssasssssssenses 4-31
Determining a Partition’s Attributes with nx_part_attr()cccceevmmiimirinncrcnscecrincenncsnisenccnennnes 4-32
Determining a Partition’s Nodes with nx_part_Nodes()cccceeerrmriirnenccriscncnnisnnssessensecssnenes 4-35
Changing Partition CharacteriStiCscueeruersrnremninsissniniecsisensssssnsssssssssesssssssessssnssesssssssssasssssssns 4-36
Listing Unusable Nodes ... O O S SO AR IR 4-40
HaNAING EXTOTS ...ttt sss s se s sass s s ass st ss s st ensasssssessnanen 4-42
UNAEISCOrE CallScecueiurierremesenissiinsitssesssiansssssssssessessssssssassssesssssssssssss sasssssasanssssssassssssassansos 4-42
COrE DUIMPS ...oecerecirenencersirensanesssssessessssnsessntssessstssasssssasssesssessesnsssasssnsssensesasssessssasssessnsnssansesessessnenes 4-44
Controlling Floating-Point BEhavior ... sssnsssssesssesnns 4-46
Detecting NOt-a-NUMDET ...t scese s reessncs e ssnesessnssanesassseessesennsssnmssns srmesse s snsanen 4-47
Controlling Floating-Point BENAVIOFccccccieerrircnsiesinessesssnessesseessssssesessssmesssessssseesnssessesessesmesnsens 4-47
ROUNAING MOGEc.ceerececeeniceresecrcnnceeeesanesnesesanessassaeesssesssesssssssssssesasssensassnsesnsasnes sranssnennsnsnssnvan 4-47
Exception Mask and StCKY FIAQScccvrereriinnnceiornsninssensnsseeseeesanssessssssssssssssnsssesssssarsessnesasssees 4-48

Fortran Exception Mask Valuescccccevvriieicninnneciensnncnsncnsesnnens creessns s s saaeas 4-49
MiSCEANEOUS CallS ...ttt s s sr s s s s s s s ess s sass s e 4-50
Temporarily Releasing Control 0f the ProCESSOrcccceuercerersrienscenniseiessesesnesacsssssesssssenssssssesasanns 4-50
TiMING EXECULIONcueeeiieeecreeerctesnnnresnsietesssnesnssessasesesssesserssassassssssssssssasssesasessesanssasasssnsssessasssnsssens 4-50
iPSC® and Touchstone DELTA COMPAbIlity CallScromermmmenens 4-52

Paragon™ User's Guide

Chapter 5
Using Parallel File I/0

Introduction

Table of Contents

Disks and File Systems
PFS File Systems and PFS Files
PFS Filenames and Pathnames

PFS Limitations

.e

Using PFS Commands
Displaying File System Attributes
Increasing the Size of a File ..

Using Parallel /O Calls

--

Opening Files in Parallel .

Using gopen() in C
Using gopen() in Fortran

Opening Files with Standard Operations
Special Considerations for Fortran

Formatted Versus Unformatted 1/O ...

New Files
Unnamed Files

--

Using /O Modes
M_UNIX (Mode 0)

M_LOG (Mode 1)

M_SYNC (Mode 2) ...

M_RECORD (Mode 3)
M_GLOBAL (Mode 4)

xvii

Table of Contents Paragon™ User's Guide

M_UNIX Output erersemressesenannsanas tersneenctssenssnetentesstrans i bnannsies 5-21
M_LOG OUIPULeoeeesceceecscmsessssesessessessessessessnssessssssssssssses st ssssessessassassastssssssasssssssssssssassanesnns 5-22
M_SYNC OQULPUL «.evvervrereeeasesseesesssssessnsssssansasssssssssessessassasssssssssssssassssassasesssssssasssestssssssssssssssasses 5-22
M_RECORD OULPULcoeereetreeerernssesasesmssssssamssssnessssssssssasssssssssssssssasasssssssssssssssessasssssssssasssns 5-23
M_GLOBAL OULPULovcecerneseeeernssessnsssssssssnssessesssssessesssssssssmsssssssssanssasssessssassans sesssssssssessassrsssas 5-23
Reading and Writing Files in Parallel s 5-24
Synchronous File I/O esseesesseeseesasessstessesentenseensaesattssttatenteaateaeataate Rttt e saaran e e e e asaraaranen 5-25
ASYNCHIONOUS File /O ..uueeeeieeiemrcectcnnnsitnisssessssenis s essssnnassssessansssnenessensassessssnssssessnmssnsinsans s s sessases 5-27
ClIOSING FlES N PAAIIGIcooooeeeeeeeeeeeeee e sesssssssesssssssssssssssssssnssssssssnenee 5-28
Detecting End-of-File and Moving the File Pointer vt 5-29
Flushing Fortran Buffered l/O s ssssssssssssesssssssssesssnns 5-30
USINg “H###” FIleNAMES ...ttt sass s sssesssesesss s snsnsssseas 5-31
Increasing the Size Of @ Flle ...t 5-32
USINg EXIENded FileS ... et es e mess s s sssnasesna 5-33
OSF/1 Calls that Do Not Support Extended FileScccoveeninnricsnnninsnnssrenssnsssesssnssssnsssssssesnsns 5-34
OSF/1 Commands that Do Not Support Extended Files cesbressssonshreneasnnssn srsnarR s rsans sRRaRasatnts 5-35
Manipulating EXteNded FileSccccverrrerrnrircnenrearennirsesscsereseessssseesasssessssssnsesssessassssesasssssssssenseen 5-36
Performing Extended ArthmetiCccccciecinenrrsnnnnsesiessncseensnssnssnens werssersnresanne st e rnesenesssnaesas 5-37
Getting Information About PFS File SyStemsccceverveesnssisesnsessssssssnes 5-39
Getting Information About All Mounted PFS File SYStEMSccvcverceeereeernenreceeseeesessssesnesessessens 5-39
Getting PFS Information About a Single File SyStemccccovvreeneneenressesesressecessssescecessevesens 5-41
Controlling Tape DEVICES ...t ssss s ssssessss s ssssssasenes 5-44
NamMing TAPE DEVICEScccivirrvimniiinistinerensisiecsiinisessse s ssssssssssssssssssssssssssnsssssasenssssnsssessssasassnssnen 5-44
Performing Operations 0N Tape DEVICEScccceeerenereerinenisnssnnansnessssssssssessessssssssessssesnssssssssnssesenns 5-45
Getting Status Of TAPE DEVICEScccereerrcernereseeserieisessesmsssesssessesssesnssesesssssssssssssssasssssssasssssssssssasns 5-46
SyNChronization SUMMATY ... s s ssessssss s sesssssnses 5-48

xviii

Paragon™ User's Guide Table of Contents

Chapter 6
Using Pthreads
Introduction ... ettt st bt eas s n e 6-1
The Pthreads Packageccceeeenersserserecssarsensees reersnesaneaen et sas s snanane 6-1
What's In This Chapterccccereecerecmircecseene teeteeseessmssasesneesasenssnasanarasereraransanases 6-2
Limitations of Pthreads crtersnetes st st n s 6-3
Recommended Safe Operating Environment ..., 6-4
Compiling and Linking a Pthread Application ... 6-5
Using Reentrant C Library Calls cerereses s et s s s esn s e ssnseneens 6-6
Using Pthreads Library Calls ...t 6-11
Pthreads Library Data Types and SYMDOISccocceeiineieiininenssniscnssensss e sensessessesssssnssssssnsansasse 6-11
The Main Thread EteeeieeesessssessersssessesseheneisesesesReeseiRsaateetaRae e anr e st aRsn et aaneaean 6-12
Managing Pthread EXECUONcoocneinmnincinsnssnssnsns s ssnssansnas . 6-13
Managing Pthread Attributes . eeeeesenssnstesnnasnenaenes 6-15
Managing MULEXESccecrirmeiimninnircsnr e s s e resesesanessessanens «..6-16
Managing Mutex Attributesccceeueue. certereser et 6-17
An Example Pthreads Programccccicnnceninissnsesssnssnssscssnsssssssens erreresseressnssnesranes 6-18
Using Condition Variables to Synchronize Pthreadsccoccveecienenscsnerscsennens . 6-21
Managing Condition Attributes teerseressnssaneneaessas s e saane 6-23
Examples of CONdition VariabIEsccceceerininrinissnicniicnniessnsnnessisnssnssmsssesssnessassssssssasssssassssnsas 6-24
Canceling Pthreads teetesssasesisneasassennnesanttesansssesseranesanans teeeesessesesteeesssataeeseaesannsesneaas 6-28
Cancelability StAeScecrreestesnsnissenessesensessessesnsssessnsssasasnssssssnsens S 6-28
Cancellation EXAmPIESccccceeereererererreeecerssnecseresessnssaesnssnesssssaseesnanens . . 6-30
Pthreads Cleanup Routines .. eeeeeaoteoteseessesatsasteetat et s nr et e s et e s s en s e st s S are e teesaes asne e anrenesenass 6-32
Managing Pthread Keysccecerrerennnene cerresrennesensnssnsnassnnns teesseessssssssessnaserssranness 6-33
Executing @ ROUtING ONCEcocieeererniiiecneiscnserennesaesesansessessssessasssscasenes 6-34
Managing Signals reetresstanereseesteesetsaeesaetesaraaesae st arases s st e e st e aenae e e anearn s na sarennans 6-34
Interfacing with Non-Thread-Safe Code ... 6-37
Message Passing and Pthreads Library Callsovrenncnnennee. 6-37

Xix

Table of Contents

File I/0 and Pthreads Library Calls
nx_nfork() and nx_initve() and Pthreads Library Calls

Signals and Pthreads Library Calls
5310 (7= U I8/ o 1= U
Signals are a Per-Process Resource
Dealing with Signals

Handling Errors
errno Confusion

perror() and nx_perror()
Calling eXit() ..ccevereceerernreerressersersarsnereaisrarssssnnenrans
Use of Underscore Versions of Paragon System Calls
Catch Signals Causing Core Dump by Default
When One Pthread Hangs

Chapter 7

Designing a Parallel Application

Parallel Programming Techniques
Separating the User Interface from the Computation
Balancing the Load

Domain Decomposition
Control Decomposition
Making the Program Independent of the Number of Nodes
Designing Your Communication Strategy
Using Global Operations
Using Alternate Node Topologies

--

Paragon™ User's Guide

Paragon™ User's Guide Tabile of Contents

Example Application: Calculating pi ... e 7-7

Example Application: Matrix*Vector Multiplication ... 7-11

Example Application: The N-Queens Problem s 7-13

Chapter 8

Improving Performance

Introduction seteeetustesustsatas et aseas Rt e aRe e as ne R ae e e AR RS R O Se e E s B E s A e s sE e R SRS e R e e e bR ens 8-1

Single Node Performance ... 8-2
USe Profiling TOOIScccccvniinmmiinseinircnneessnssossscssassensessnssssesssnssmsssssssssssessssssssasasasssonsssssss sasass 8-2
Avoid Repeated Use of System Callscccceverececrcernessesenrecsnsensseesseesereaseseneses .82
AVvOid Virtual MeMOrY PAgINgcccccecicisucsemssrssnsmssssanessmesssnssssnessssssssssssosssssssssssensesssssssnssssnasssssssssans 8-3
Use Compiler OPHIMIZALIONScccceeenrereesriesnessnesscsnrsssnressssesssssnssaseesassssesssassssnsssnsssnsssessssssssasssassnses 8-3
INCrease ProblemM SiZEcccccecrerrrrvnrriecessserseecssemeescsssnsssnesessasssssssanensasssanssneanss 85
Access Contiguous Memory LOCAHONSccccciiercrrcrcrerereersssseesnmssnereserssasessrcsossscseserssasnsanssnssnsenas 8-5
Use Caching Wisely teressesstrestesaseserstesaeatsatenesae et e as e s snesasraa asenneatane 85
Use Optimized Librariesccccceeeeennee. eeeeseneensssaressnesnnensnenns 8-6
Use Assembly LAnguAage SUDIOULINESccccvceeerenrieesemessensieecseesssssessssseerssssesssnensssesssssasssssssssssaanes 8-7
Avoid Error Checking (C Language Only)ccceeeecceresiremsesssnsresssessnessssassansessssssensssssssnesasssnssassasans 87

Multi-Node PerfOrMAaNCE ... reeierereeceeense st st estesssessassssssssssssssasssssessassssssssssassesses 87
Use Dynamic Memory Allocation for Large AITaysecuccccceccmcssessoressnsssnsssasessorssersns ..8-8
Avoid Serializing Callscccccceeereenenee reeseststeessantea st s ettt ae see s e e an e s aesrte e sR b st e ae s e en s rrnseransanes 8-9
USE PAraGraphceececerceiecieseecsnerencesenesarsssesnessssessssstsessssssassesseessessasesasssssssssssssasasnnssnsssaneenss 8-10
Maintain Data LOCAIILYccccceercceermmrresnreserestresssnnssassnssesssesnssssasssssssssssssssnasee 8-10
Overlap Computation and COMMUNICALIONccceeeerereeereercrerrseesserenesessanessessassssssnsssssnsssesesassssnees 8-10
Avoid Message BUFfErNGcccceeiicninninniscss s isncsnssessssnssnenssssnsnsssnsesnsssesssssnsosessens 8-11
Align Application BUffersc...ccecceeericercecnenrccrcrecreneene 8-12

Table of Contents Paragon™ User's Guide

Understand Message-Passing FIOW CONtrolccvernininisnesnnincncsessssssssessssesssssssesmessesseses 8-13
Overview of Message-Passing Flow Control “ teeemtteaeseennieiniasenraneset ses sttt sans sesensranseret 8-14
ProCesS LOCKING -.ciccvrererirrirerrssesssissassinsssssnsssesssessssnsssesssassssassnesesesassssssas ssssessnsssssans snsssasessananss 8-15
gz 101 74 1o 3 O T 8-16
System Message BUFEIS ..o s s sns e s sas s st s s se s snes 8-16
Message-Passing Configuration SWItChESc.cccuviiveieieiinsnicscnninnn e 8-18

Summary of the Message-Passing Configuration SWItchescccecvciirniiiicenenisiinnenn. 8-19

Default, Maximum, and Minimum ValUEScccceeiiererserinsseisnnnnsinssemsssesssisanesssssecsssees 8-20
Dependencies and ROUNAINGccccceeeeiirivcsnmnnssininnnssnssccs s ssmcssssessnssssssessssessasssssssnsse 8-21
RECOMMENUALIONScovvruerierianeeenssesesssssassnasansssansmssssssessssssesasssssissssessenssessassassnssssssssssssnsnsesssssen 8-21

/O PEIfOIMENCEooocereeeenseseeesseessssiessrsesstssesss s s sass s s s s sssss s sass s st sessessssssssassans 8-23

USE PFS File SYSIEMS ...ccceiiiiiieareeisisnissines e s s csessas s s sasssssssssssusssassss snsssnsnsesssassasssse 8-23

Use gopen() Instead of open() T O ST 8-23

USE PArallel /0O CallScerueeeerieerneeneriennereenesstsneassasessssesnsessasssessessesmasessssasssensisnsssnsesnessensnesnse 8-24

Use ASYNCHIONOUS CallSccccerierreriseisncenerscseneisessensanessassesssersssesssssssssssrsssessssnsssnsessensssesssssaneessnes 8-24

Use the Appropriate [/O MOAEccccveecmeemrsneeirsnesmsensssesessanssssessnsasasessisssesaessnssansessesssnssesnesnsssas 8-24

Align 1/O Buffers with Virtual MEMOrY PAgescceceeiernrenereneeesanssneesanssmsssnsseesnsssseessasssssassasssasases 8-25

Read or Write Whole File System BIOCKScccevmerimniinniiinsninissinsnssscsssnnnssnesssssessnssesesssnssssssssas 8-25

Make Good Use Of File StriPiNgcccevrernnminnniniicnncneciessennssssnesssscsssnsssssssssensssssssssssasssssnas 8-25

Appendix A

Summary of Commands
and System Calls

CoOMMANA SUMMANY ... cr e ssr s s sssssesssssases s ss st asss s e ssasessensnnen A-1
Compiling and Linking APPlICALIONSccceerermersirmeresnessreseesesssessssesssssssassesssssessesesaesssssessassssssssssans A-1
RUNNING APPHCAHONScoviiieirereerereiininensinnisnesnessensesessasesesasseseseesssssnesserasssssssnsssassnsrasssesssassassssssnean A-2
Managing PartitiONScccveerreieesmintrnesnneseineeseisnessssessasssssessnssssesessssssessersesssssssssessssrasesasssssssssaenses A-2
Parallel File System Commandsc.cccoececvrernnne rteessteesseresseteneesteatesteate e e e as s neranntesansransnnnsenn A-3
Miscellaneous COMMEANGScccceeeesinmsismsnsessssmsesssssssssmsasssssssesssssasssssssssnsnssssssssesssnssssssssssessensens A-3

xxii

Paragon™ User's Guide

C System Call Summary
Process Characteristics
Synchronous Send and Receive

Table of Contents

Asynchronous Send and Receivec.occceerrnessennees

Probing for Pending Messages
Getting Information About Pending or Received Messages
Treating a Message as an Interrupt
Extended Receive and Probe
Gilobal Operations

Controlling Application Execution

Getting Information About Applications
Partition Management
Finding Unusable Nodes
Handling Errors
Floating-Point Control
Miscellaneous Calls
iPSC® and Touchstone DELTA Compatibility ...
/O Modesoceeneuneans

--

Reading and Writing Files in Parallel

Detecting End-of-File and Moving the File Pointer
Increasing the Size of a File
Extended File Manipulation
Performing Extended Arithmetic
Getting Information About PFS File Systems

Managing Pthread Executioncccccceverivrircnnncnnes

Managing Pthread Attributes

Managing Mutexes

Using Condition Variables to Synchronize Pthreads

Canceling Pthreads

Pthreads Cleanup Routines
Managing Pthread Keys

--

Miscellaneous Pthread Callsccoceccerenne

xxiii

Table of Contents Paragon™ User’s Guide

Fortran System Call Summarycconeueeee. R ceresensinsisssnasoemiembinnnnis A-28
Process CharacteriStiCScccirieininmmneinimniisnsensesinnsse i resssssesssesiesessssssese s ssssnssnssssnssssssssssnes A-28
Synchronous Send and Receive reeseesiesresaisasbn st pras e e eta e iR th bt e Rt smbnn seemessaneane A-29
AsSynchronous Send and RECEIVEc.coccivirieiiisiiiersiinnnnsessssssisssesanenesasssssssssssssssssssnsensessessanes A-30
Probing for Pending MESSAJEScccuveirsrserenrssensssnsineissisenisssssssssssssssssasssssissssssassssasssssessasssssnsonsnsas A-31
Getting Information About Pending or Received MESSagescccviveereissinenssnssensnsnssssnsenseessenns A-31
Treating a Message as an INEITUPLcccviinininiccnictiec e ssre s s as s e s s asssssssosnnssnsnsenasen 'A-32
Extended ReCeive and ProbE ...t st nss s sesse s s sasssssessassssssssessssenanssen A-33
GIODAI OPEIALIONScoceeeermrerneerrserserinmrsassessssssssssssasssnsssarsansssssssssssssssrensassesssasassssmesessessaraseasans - A-35
Controlling Application EXECULIONcccceiiinceiensenisnisersetrsaisessenessesesersassassisassmsssssssessssas sensssssesnnnss A-38
Getting Information ADOUt APPIICALIONSccceeeerirrerereisersnssnrsessessessesesasssesssassesnsssssessesessensssssnssnssnsas A-39
Partition Management ...t sss sassssssssssssessesnsssssssssssssesssssmasesseseenassnns A-40
Finding Unusable Nodes S OO S SRS A-42
HANAING EITOISoiveeereceiieececrccereeessessnnsserseisassssessersssssssessassesessansons seassesanssassnssssesnsssse s sasssssssmasnans A-42
Floating-Point CONLIOlcccocieiieciinmnnnsinnnininnississiesssessensnressesnessssnssnssesnsssssssensssassnsssssssssssssessesens A-42
MiSCElANEOUS CallSccvirrivererniiniinistnntsest st s snsnssesassssassssansne s snsnssssnensansessensasaens A-43
iPSC® and Touchstone DELTA Compatibility trinressesssassrsstssansinisssnseionnnen ..A-43
O MOOEBSeeeiniireseirine st csss st ssassssssass s s st sasssessesessssassesessssesesesesssssns st enesnssseesassnsnsasnnennnn A-45
Reading and Writing Files in Parallelccoeceenninnecnsinssnisisnnsinsssssisassssmssessnsnssssssnssssssssnenses A-45
Detecting End-of-File and Moving the File POINLErcccoevieriiiininernnencs e se e snssenes A-47
Flushing Fortran BUffered /O ..ot se e snesessessssssansssssssasssnsssns A-47
InCreasing the Size Of @ Filecccceeciniiirmeneniiecerieeecccrnsnces e s sae s esesesssesnese s s e ssesnsnnasnsanessssanas A-47
EXtENAEA File MANIPUIALON ...vvvvvevrevesesseeessssessnseesesssseeeemsseessssesessssssssessessssssasessesessssesssos ossesssseseees A-48
Performing Extended ARtMELICcciiccrcnininicnnininice e ssesseesressasse e ssass s se e snsssssssssassassessessnne A-49

Paragon™ User's Guide Table of Contents
Appendix B
iPSC® System Compatibility
INEFOAUCTION ...t st ssses s e s sr s snssssass s ss s s snsstss s e s aasasasasnenss B-1
General Compatibility ISSUES ...ttt B-1
NEW FEATUIES ... en s sessesssss s assasaseas sessensbasssnssastsnssnssass st st s ssnssns B-2
COMPIIEES ...ttt e ss s s e n s e ses s sn s s s st ss s aasase s aensas B-4
COMMABNAS ...t enesen e st sm s s ssass s e es b s et a s s bR st a bbb snst et asneen B-5
Cube Control COMMEANGSccocerereenmressressiansnsssrsnssuesssnssessnstssssssssesassasssssassssnssassessssssssnssssassassnsssnss B-5
CFS COMMANGScooveemirnienreessennessensseesnressessessassassssssesssssssessessaressassssssssssasssnmenss sens nasssnesasssnsssnssssses B-7
System Administration COMMEANGSccceeieemseninininnssiiisis st ssssasssssensssssssssesssssssssssssasaas B-7
Remote HOSt COMMANASc..cceermiermenrentessessseresanssessasssarsnssasssansanarsmssstessessssessasssnssnsssnessrssnssssssass B-8
MisCellaneous COMMANGAScciecrisimmeminemsnisisssisissisesssssssisnessesssesssssssstassssssssssssessssnsns sesssmsansesssnas B-8
SYSIEM CAIIS ...ttt et en s s s sse s s s st s e sesres s aas s nse st aanass B-9
INCIUAR FIES ..cuveiierererreremrcceresen i ersesesenssanssesssenessrssnssansasesssssassnnesssessanerasssessassersesanessesssssnnssnnanssans B-9
HOSE CAIS ...uceereriencnineninitie e see s s sessssasseessenssnssessnsssssssnsnssssesssansenassessnssasssnsessassssnsssssssassancsnessnssnes B-9
Byte-SWapping CallSccccceiecieieerriiicnnnctseisstaissnesnensesssssnsnsssssasssasasssesaesasssssasssss sessssssessesssnesassas B-14
Floating-Point Control Callsccccouiieeninenieenmscnsnsrssanssmsensssnesmssesssesssssssnsssessassssansssassssasssnsssss B-15
CFS CalS ..cueeieeirririsisie s se s sessssassssssessssssssssssssensssassasssansssssasssassnsassnssnssssnsesssassssnsssssssas B-15
MiISCEHANEOUS CallSccoceieiieieiiciccininrieennintrss st ssnssasssassssnessnesanssnssnessseseasasssssassssssnssessensansnses B-16
SUIMMANY ...ttt srse s st st s s e s ss s ssne s st s s s eseass e sase s e anesn e s banes B-17

Table of Contents

Figure 1-1.
Figure 1-2.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 4-1.
Figure 7-1.
Figure 7-2.

Figure 7-3.

Figure 8-1.

Paragon™ User’s Guide
List of lllustrations

Front Panel LEDS (Paragon™ XP/S ONlY)cecueeesseessssssssssesessessssssssssssssssssasssssasens 1-3
NOGE ACHVILY LEDScoceeueererenerrenrocsneassassnsenssesssessesssssesesssessssssessnnssstasssssessssassasssnssanans 1-4
The Root Partition of a 32-Node Systemccciveinnnnncsnisnnn s 2-27
Node Numbers in Contiguous and Noncontiguous Partitionscceceeveniienecsinnanene 2-31
Node Numbers in Overlapping Partitionsccccveirvenerisessssssnnerssssssssnsssasssesssssnesnn 2-32
Sample Partition for nx_part_attr() and nx_part_nodes()cceceererrecerrrenveenensersneseeranes 4-34
Using Domain Decomposition to Achieve Load Balancingc.ccceceivcninsnnsceicnncnens 7-4
The Decomposition Used for the pi EXamplecciviveiiniinisnsccincnnncineesensssene 79
The N-Queens Solution Tree for a 4 X 4 BOArdccceeceevirenersercsnercssernessesnessessanes 7-15
Two Methods of Improving I/O Performance with M_RECORDcccccovvvvvnrerenerrecnne 8-27

Paragon™ User's Guide Table of Contents
List of Tables
Table 2-1. Summary of Scheduling Types teteeeestesssesarsresarantesatare e asate nessarene saseassarsaasssnnsenn 2-38
Table 5-1. File Operations that Accept “#HH” FIleNamesc.cccccrnrissinssniimennsnnsesesenssssssseeeecses 5-31
Table 5-2. OSF/1 Calls Not Supporting Extended Filesccccereeienieenensinssinssssssssesssssssssnenns 5-34
Table 5-3. OSF/1 Commands Not Supporting Extended Filesccccoovvmrmririnrircisnsnnsecseceseennne 5-35
Table 5-4. Synchronization in EQCh 1/0 MOTEcccvreceerrmenerrenesserersceseeesesesscssarsecsaresesssssassssasns 5-48
Table 5-5. File /O Calls that SYNCAIONIZEcccorrersenneninninnnnessnserssssesssnsssssssssssssssssssasssessssesene 5-48
Table 6-1. Calls in Reentrant C Library (libc_r.a) reesnmeeesesssareesastaseenntesassnsaresnntarerananen 6-7
Table 8-1. Message-Passing Configuration SWItChescccceceiinninciiicsninnncsnnniesicsnensaseenns 8-20
Table A-1. Commands for Compiling and Linking Applicationsccoceceneivnmnsccscssnsnecesensnss A-1
Table A-2. Commands for Running ApPlICAtioNScecevinernnsmnsnsessnmssesnnnssensessnssssnssnssnssssssssesaes A-2
Table A-3. Commands for Managing Partitionsccceecnesnniinenencmniss e A-2
Table A-4. Parallel File System COMMANGScccceceeereeccrmreremsserreseesseesanssesnsesesssaesansssnessssesansssens A3
Table A-5. Miscellaneous COMMANAScccoceerieiiirisensnisemseinisssssssssssessssassssssssssssssssssasasssnsssassanses A-3
Table A-6. C Calls for Process CharaCteriStiCsccosumuinmmsssarsesssscsensnsssssesssssssssssassssssssssesassas A4
Table A-7. C Calls for Synchronous Send and RECEIVEcocureirnnicesisnnieissnsnssenessnssssessonnsssns A-5
Table A-8. C Calls for Asynchronous Send and RECEIVEccccereerrerreerseenrseesseneesnesassserasesesensesnes A-6
Table A-9. C Calls for Probing for Pending Messages reeesteeeasisaeesnanansasennane A7
Table A-10. C Calls for Getting Information About Pending or Received MesSagesccceeeeeeeenee A7
Table A-11. C Calls for Treating a Message as an INterruptccceeveereesrnssesessnsesssssesssssessnsesessenns A-8
Table A-12. C Calls for Extended Receive and Probeccuceeerenssrsesnnnnse .. A9
Table A-13. C Calls for Global Operationscc..ceeeeeeiscssresnsessssassesssssssssssssssssasssssssensassssaasasssnes A-10
Table A-14. C Calls for Controlling Application EXECULIONccceerereeerrensncsncesessencaseseennssnsassesaens A-12
Table A-15. C Calis for Getting Information About APpliCationsccccceveeriiensensecnsnssereesnssessessnes A-13
Table A-16. C Calls for Partition Management eeetesaeensessessnesseesatesasesstessasasee e ranee aneasesnaessarennns A-14
Table A-17. C Calis for Finding Unusable Nodes A-15
Table A-18. C Calls for Handling Errors .. ceeeerreanssnenennas A-15

Xxvii

Table of Contents

Table A-19.
Table A-20.
Table A-21.
Table A-22.
Table A-23.
Table A-24.
Table A-25.
Table A-26.
Table A-27.
Table A-28.
Table A-29.
Table A-30.
Table A-31.
Table A-32.
Table A-33.
Table A-34.
Table A-35.
Table A-36.
Table A-37.
Table A-38.
Table A-39.
Table A-40.
Table A-41.
Table A-42.
Table A-43.
Table A-44.
Table A-45.
Table A-46.
Table A-47.
Table A-48.

xXxviii

Paragon™ User's Guide
List of Tables

C Calls for Floating-Point CONtIOLcccccircrrinincasinsniennsennmsenisssssssssssssssssmssssssnssens A-16
MisCellanEous C CallScccvvrcriimiiniiiitre sttt as e st ssn s s e s s s sessasanne A-16
C Calls for iPSC® and Touchstone DELTA COMPAIDIlItYeeeseeeeernerscesseersensenneseneas A-17
C Calls fOr I/O MOGES ...ooerrrerciiiisisssiniiesnestsstssessssssssssassssssnssssas srassasanssssssnssssssssnns A-18
C Calls for Reading and Writing Files in Parallelccoenenmnniiennccnniennnneianene A-19
C Calls for Detecting End-of-File and Moving the File Pointercccccoevieinnninecees A-20
C Calls for Increasing the Size of @ Fileccccrvrreerminisisinicsisscsiscsnensssenaee A-20
C Calls for Extended File Manipulationccccvivininncinsninnncsniscssssssassssssisnsssnsaes A-21
C Calls for Performing Extended Arithmeticcoceceuvenirenneeenenncnnensnecscnnsseninneeneens A-22
C Calls for Getting Information About PFS™ File SyStemsc..ccoveeerennsernssseniessens A-23
C Calls for Managing Pthread EXECULIONcccceiviiiininiinicnssisisnnssssesssnsssesesssesessene A-24
- C Calls for Managing Pthread ARIMDULESccccoceeuemuninenisisinec s seneene A-24
C Calls for Managing MUEEXESccccceecrniinssnnisrisssesisessnssssnsassrssesnnassansasssnensseassessees A-25
C Calls for Using Condition Variables to Synchronize Pthreadsccccecceveeeenvecrane A-26
C Callls for Canceling Phreadscceevsereiniesnnsnsssnncnnnnssnessssssessessnssssnssssesssssenas A-26
C Calls for Pthreads Cleanup ROULINESccccerererrnnensnesersenssssnsessarssseessassseesasessenes A-27
C Calls for Managing Pthread KEYSccccvervirrrcrneenerennseseensssnsesssessesssessassassassnssasans A-27
Miscellaneous Pthread Callsccciinnniinmiinesininsnissemessssssssssasssesssssssssneses A-27
Fortran Calls for Process CharacteristiCscccurvmicmnncinicinnnnneninnessensnssnssesnesaesens A-28
Fortran Calls for Synchronous Send and RECEIVEcccocuernireecuerenenercccrsnssssessesnesenas A-29
Fortran Calls for Asynchronous Send and RECEIVEcccveevureeeeerennrercnnsanseeneenssesnses A-30
Fortran Calls for Probing for Pending MeSSagesccccvrrernrrarersareersneerassrsessnrssnesens A-31
Fortran Calls for Getting Information About Pending or Received Messages A-31
Fortran Calls for Treating a Message as an INterruptccocceceeeeecveriereverreesnreresesssnens A-32
Fortran Calls for Extended Receive and Probecccceeceeecerereeincrcesensessecaesesaesaeens A-33
Fortran Calls for GIobal OPErationsccccouereeeereereerrernenessmseessnerssesssssssssssssssssssesseas A-35'
Fortran Calls for Controlling Application EXECULIONcceccveereeerrsmrsnnssensansscssssssesensens A-38
Fortran Calls for Getting Information About Applicationsccccccveecrcnrrnerereeneenreaens A-39
Fortran Calls for Partition Managementcc.ceccereermeeemsncrnscrssesssnssnssnsessessessssessnnns A-40

Fortran Calls for Finding Unusable NOAESccceueerrirennecrinnnnscesnesienecsnsnssscsmsesssenns A-42

Paragon™ User's Guide

Table A-49.
Table A-50.
Table A-51.
Table A-52.
Table A-53.
Table A-54.
Table A-55.
Table A-56.
Table A-57.
Table A-58.
Table A-59.

Table B-1.
Table B-2.
Table B-3.

Table of Contents
List of Tables

Fortran Calls for Handling EITOrSccocrecmenmicnseniissesnessnssssssssssns s esessessasssassasans A-42
Fortran Calls for Floating-Point CONrolccceecereeenieessnnssnesneessesssnsesesssnssnsessassanes A-42
Miscellaneous FOrran Callsc.curiiinnincnscsnineiesnnsiessssisnsssessisesseases A-43
Fortran Calls for iPSC® and Touchstone DELTA COmMpatibilitye.seeeeereeseerreneee A-43
Fortran Calls for I/O Modes ettt s st st s s st s an s n s s senaas A-45
Fortran Calls for Reading and Writing Files in Parallelccooonecrecrivcrerenecnens A-45
Fortran Callis for Detecting End-of-File and Moving the File Pointerccceceveeeueens A-47
Fortran Calls for Flushing Buffered /Occccceeeercericnrnennne . .. A47
Fortran Calls for Increasing the Size of @ Fileccccceceeeeveemerccrscrnnennceeseeseseesncsnees A-47
Fortran Calls for Extended File Manipulationc..ccceveeenncnecnnecnenssnencnsnnccsnssnsenssnnas A48
Fortran Calls for Performing Extended Arithmeticc......... A-49
Unsupported iPSC® System Byte-Swapping Callscccevueerenessssssnssnnseessssssssssnsns B-14
Summary of Unsupported iPSC® System Commandscccceeueesmnuccsnsnsnsssnsseanne B-17
Summary of Unsupported iPSC® System Callsccccvceverernmnresnseseeseesnsssessesseans B-19

Table of Contents Paragon” User's Guide

Introduction

Introduction

This chapter introduces the Paragon™ OSF/1 operating system and the hardware it runs on.

In an Intel supercomputer, a large number of processors called nodes work concurrently on the parts
of a problem. Each node can run multiple processes, and each process can have multiple threads.
The processes and threads on each node time-share the node’s processor, using the standard OSF/1
scheduling mechanisms. Each process can be a stand-alone program (such as a shell, compiler, or
editor), or can be part of a parallel application.

A parallel application consists of a group of closely related processes that work together on a single
problem. They synchronize their actions and share information by passing messages, which are
created and controlled by special Paragon OSF/1 system calls.

The processes in an application can also share disk files; Paragon OSF/1 parallel I/O calls insure
that access to these files is efficient and properly synchronized.

Introduction

Paragon™ User’s Guide

System Hardware

Nodes

The Paragon OSF/1 operating system runs on several models of Intel supercomputers. These
systems all have a large number of nodes connected by a high-speed node interconnect network, and
anumber of I/O interfaces to communicate with the outside world.

Each node is essentially a separate computer, with one or more i860% processors and 16M bytes or
more of memory. Nodes can run distinct programs and have distinct memory spaces. They can team
up to work on the same problem and exchange data by passing messages. An Intel supercomputer
can have up to 2000 nodes. Each node can run more than one process at the same time; these
processes can belong to the same or different applications.

The system administrator can choose to dedicate some nodes to interactive processes, such as shells
and editors, and other nodes to compute-intensive applications. The nodes used for interactive

- processes are called service nodes, and the nodes used for compute-intensive applications are called

compute nodes. However, there are no physical differences between these two types of nodes.

Node Interconnect Network

The nodes are connected by a high-speed node interconnect network. Each node interfaces to this
network through special hardware that monitors the network and extracts only those messages
addressed to its attached node. Messages addressed to other nodes are passed on without interrupting
the node processor. For most applications, you can think of each node as being fully connected to all
the other nodes. :

/O Interfaces

Some nodes are equipped with a SCSI interface, Ethernet interface, or other I/O connection. These
nodes manage the system’s disk and tape drives, network connections, and other I/O facilities.

Nodes with I/O interfaces communicate with the other nodes over the node interconnect network.

However, this access is transparent: processes on nodes without I/O hardware access the I/O
facilities using standard OSF/1 system calls, just as though they were directly connected. Nodes with
/0 interfaces are otherwise identical to nodes without I/O interfaces, and can run user processes.

Paragon™ User's Guide

Front Panel LEDs (Paragon” XP/S Only)

Introduction

On the Paragon XP/S system, each cabinet has a number of Light-Emitting Diodes (LEDs) on its
front panel that inform you of the status of the system, the nodes, and messages between nodes. The

front panel LEDs are shown in Figure 1-1.

Message going left (yeliow)

ond-ot - SR | DO T

=< =<
— > = =
Message going up —— Message going down
(yellow) (green)
o o«— Node fault (red)
== =
s— > =
Message going right (green) Node activity (green)

Figure 1-1. Front Panel LEDs (Paragon” XP/S Only)

Each cabinet has four LED panels, each of which shows the status of 16 nodes in a 4 by 4 grid. Figure
1-1 shows the upper left corner of one LED panel. The meanings of the LEDs are as follows:

» The round green LED in the upper left coner of the top LED panel in each cabinet indicates
that power has been supplied to the cabinet. (The corresponding LED:s in the other three panels

never illuminate.)

» The round red LED just below the green power LED indicates a fault in the cabinet’s power
subsystem. If a fault is detected by the cabinet’s self-tests, this LED illuminates. (The

corresponding LED:s in the other three panels never illuminate.)

» The square groups of horizontal green LED bars show the amount of computational activity on
the nodes. Each group represents one node. The more active a node is, the more green LEDs are
illuminated, in a bar graph moving out from the center. Figure 1-2 shows the six possible ways

these LEDs can be illuminated, showing activity levels from 0% to 100%.

1-3

Paragon™ User's Guide

0%

20% 40% 60% 80% 100%

Figure 1-2. Node Activity LEDs

+ The arrow-shaped yellow and green LED bars indicate messages. When a message is passed
from one node to another, all the arrow LEDs along its path illuminate. (Messages always travel
first in the X direction (horizontally), then in the Y direction (vertically). Messages never
change direction more than once.) Yellow arrows show messages going up or to the left; green

“arrows show messages going down or to the right. When the arrows are illuminated, a light
pattern moves along the arrow to show the direction of motion.

« The round red LED associated with each node indicates a hardware fault on the node. If a fault
is detected by the node’s self-tests, the red LED illuminates.

System Software

The nodes run the Paragon OSF/1 operating system, based on the OSF/1 operating system from the
Open Software Foundation. The same operating system runs on every node. OSF/1 is a version of
the UNIX operating system that supports most industry standards; Paragon OSF/1 is an extended

- version of OSF/1 with enhancements to support parallel processing.

The Intel supercomputer also comes with a cross-development facility, which you can use to compile
and link Paragon OSF/1 programs on supported workstations.

Paragon” OSF/1 Operating System

14

Paragon OSF/1 provides all the standard features of OSF/1, with extensions to provide a single
system image across multiple nodes. This single system image makes all the nodes appear to be one
large system. For example, all the nodes share a single file system, all the nodes have equal access
to the system’s I/O devices, and process identifiers (PIDs) are unique throughout the system. A
process on one node can pipe its output to a process on another node, and the command kill pid on
any node kills the specified process, no matter which node the process is running on.

Paragon™ User's Guide Introduction

The single system image does not combine all the nodes’ memory into a single address space.
Rather, each process has its own address space. The physical memory available to each process is
limited to the memory of the node on which it is running. However, because OSF/1 provides virtual
memory, a process’s address space can be up to 2G bytes in size; memory pages that do not fit in
physical memory are paged to disk. As in most multi-user systems, the address spaces of the
different processes on the system are completely independent, unless two or more processes make
special shared virtual memory calls to explicitly share part of their memory.

In addition to the standard facilities of OSF/1, the Paragon OSF/1 operating system provides
message passing capability, Parallel File System access, and various other utilities to programs
running on the Intel supercomputer. With Paragon OSF/1 calls, your programs can perform the
following functions:

« Exchange messages with processes running on other nodes (or the same node).
» Read and write files on the Intel supercomputer’s Parallel File System.

« Perform 64-bit integer arithmetic.

» Find out information about the computing environment.

» Perform global operations.

» Create and control parallel applications and partitions.

User Model

The Paragon OSF/1 operating system is a complete implementation of OSF/1, and provides a full
range of services, commands, and system calls. It has its own file system, shells, compilers, editors,
network connections, and all the other features needed in a stand-alone computer system. It also
supports NFS, the Network File System, so it can share data with other systems on your network.
You can edit and compile programs, send and receive mail, read online manual pages, and do all
your other daily work on the Intel supercomputer.

You access the Intel supercomputer by logging into a separate computer (typically your UNIX
workstation) and then connecting to the Intel supercomputer over a local-area network, using a
command such as rlogin or telnet. The Intel supercomputer does not have any dedicated hardware
terminals.

You compile and link your application with the self-hosted Paragon OSF/1 compilers and linker.
You then execute your application on the nodes of the Intel supercomputer simply by typing the
application’s name on the shell command line. Command-line switches, or arguments to system
calls in the program, determine the number of nodes on which the application executes.

1-5

Introduction

Paragon™ User's Guide

When you run an application, it runs in a partition. A partition is a group of nodes with an associated
set of parameters that controls some of the run-time characteristics of the applications within it. You
can use commands or system calls to create, modify, and remove partitions. However, the operations
you are allowed to perform on your system’s partitions may be restricted by the policies of your site.

The Paragon OSF/1 operating system also provides a suite of program development tools, such as a
debuggerr,uproﬁler, and parallel performance analysis tools. These tools are described in the
Paragon ~ Application Tools User’s Guide.

Programming Model

The most common programming model used with Paragon OSF/1 is the “single program, multiple
data” (SPMD) model. In this model, the same program runs on each node in the application, but each
node works on only part of the data.

» For some problems, called “perfectly parallel” problems, each node can do its work without
access to data held by other nodes. In this case, each node operates completely independently.

- For other types of problems, each node needs data from other nodes to do its work. In this case,
the nodes can share data by passing messages. Messages can also be used to synchronize node
operations. ; , ;

Because each node is an independent computer, you can also use other programming models. One
example is the “manager-worker” model, in which one “manager” program starts up several
“worker” programs on other nodes, then gathers and interprets their results.

Cross-Development Facility

Paragon OSF/1 comes with a complete program development environment, including compilers,
linker, libraries, and related tools. You can perform all phases of program development on the Intel
supercomputer. In addition, the compilers, linker, and libraries for Paragon OSF/1 are also available
on selected UNIX workstations. This cross-development facility lets you edit, compile, and link
Paragon OSF/1 programs on your own workstation.

Note, though, that the cross-development facility does not include a way to run a Paragon OSF/1
executable that resides on your workstation’s disk. You must transfer your executable files to the
Intel supercomputer for execution and debugging. You can do this by mounting your workstation’s
file system onto the Intel supercomputer, or the Intel supercomputer’s file system onto your
workstation, using the Network File System (NFS). You can also use commands such as rep or ftp
to copy the executable files to the Intel supercomputer. To execute files on the Intel supercomputer
once they are transferred, you can use the standard rsh or remd command.

16

Using Paragon™ O

/1 Com

Introduction
This chapter tells you how to use Paragon OSF/1 commands to perform the following tasks:
« Compiling and linking applications.
« Running applications.
* Managing running applications.
« Managing partitions.

The commands discussed in this chapter are available to all users. See the Paragon™ System
Administrator’s Guide for information on commands that require root privilege.

This chapter does not discuss NQS, the Network Queueing System, which is used at some sites to
schedule application execution. See the Paragon™ Network Queueing System Manual for
information on NQS.

Terminology
This chaptér uses the following terms:

» A parallel application, usually just called an application in this manual, is a group of
cooperating processes that runs on the nodes of the Intel supercomputer.

» A programis a file (source or executable). An application consists of one or more programs
running on one or more nodes. The term program is also used to refer to a non-parallel program
(an ordinary program that runs on one node).

2-1

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

» A partition is a named group of nodes. When you run a parallel application, you must select a
partition to run it in (if you don’t, it runs in your default partition). The partition places limits
on some of the execution characteristics of the application, such as how many nodes it can use
and how long it can use them before it is “rolled out” and another application is “rolled in.” You
can allocate all of the nodes of the partition to the application, or just some of them. This
allocation may or may not be exclusive, depending on the characteristics of the partition.

All Intel supercomputers have two special partitions called the service partition and the compute
partition. The service partition is used to run non-parallel programs such as shells and editors,
and the compute partition is used to run parallel applications. The other partitions on your
system, and what you can do with them, are determined by your system administrator.

Using Paragon” OSF/1 Commands on the Intel Supercomputer

The Paragon OSF/1 operating system provides all of the standard commands of OSF/1, such as cat
and Is, which work as specified by the Open Software Foundation. These commands are not
described in this chapter; see the OSF/I Command Reference for information on these commands.

Paragon OSF/1 also provides several commands that are not specified by the Open Software
Foundation, such as mkpart and rmpart. These commands are described in this chapter, and
manual pages for these commands are provided in the Paragon” Commands Reference Manual.

To use any of these commands, you must first log into an Intel supercomputer. Intel supercomputers
have no directly-attached terminals; you must first log into another system (typically a workstation
running some variant of the UNIX operating system) and then log into the Intel supercomputer over
the network, using a command such as rlegin or telnet. Once you have logged in, you use these
commands in the same way as commands on any other computer running OSF/1.

Using ParagonTM OSF/1 Commands on Workstations

22

The Paragon OSF/1 operating system also comes with several commands that run on workstations
(for example, the icc and if77 cross-compilers). These commands are described briefly in this
chapter; complete descriptions and manual pages for these commands are provided in the Paragon™
C Compiler User’s Guide and Paragon™ Fortran Compiler User’ s Guide.

To use these commands, you must first log into a workstation on which these commands are
supported, then configure your account as described under “Configuring Your Environment for
Cross-Development” on page 2-6. Once you have done this, you can use the Paragon OSF/1
cross-development commands in the same way as other commands on the workstation. However, if
you compile an application on a workstation you must transfer the executable file to an Intel
supercomputer to execute it. Depending on your local configuration, you may be able to use the
Network File System (NFS), the rcp command, the ftp command, or some other technique to do this.
Ask your system administrator about how files are shared between the Intel supercomputer and other
systems on your network.

Paragon™ Users Guide Using Paragon™ OSF/1 Commands

A Quick Example

Here is a quick example that shows you how to compile, link, and execute a simple application on
an Intel supercomputer.

Information You Need

Before you begin, you will need the following information:

« The network name of your Intel supercomputer.

+ The command to use to log into the Intel supercomputer, such as rlogin or telnet.
» Your user name and password on the Intel supercomputer (if necessary).

» The name of the default partition you should use to run parallel applications.

This information should be available from your system administrator.

Compiling, Linking, and Executing an Application

Once you have the necessary information, the procedure to compile, link, and execute an application
is as follows:

1. Log into the Intel supercomputer, as instructed by your system administrator.
2. Set the environment variable NX_DFLT PART to the name of your default partition:
» If you use the C shell, use the following command:
% setenv NX_DFLT PART partition_name
« If you use the Bourne or Korn shell, use the following commands:

$ NX_DFLT PART=partition_name
$ export NX _DFLT PART

2-3

Using Paragon™ OSF/1 Commands

3. Type in a short program:

Paragon™ User’s Guide

o If you are a Fortran programmer, type the following program into the file myapp.f.

100

program hello

include

'fnx.h'

write(*,100) mynode()
format('Hello from node', i4, '!')

end

« If you are a C programmer, type the following program into the file myapp.c:

#include <nx.h>

main()

{

printf("Hello from node %d!\n", mynode());

}

4, Compile the program into an executable file:

» If you are a Fortran programmer, use the following command:

$ f77 -nx -o myapp myapp.f

» If you are a C programmer, use the following command:

$ cc -nx -o myapp myapp.c

5. Execute the resulting file, myapp, on four nodes with the following command:

% myapp -sz 4

Hello
Hello
Hello
Hello

from
from
from
from

node
node
node
node

0!
3!
1!
2!

The order in which the output lines appear may vary.

That’s all there is to it! Of course, Paragon OSF/1 provides many additional commands and switches
you can use to control the behavior of the compiler and the resulting application. These commands
and switches are described in the rest of this chapter.

2-4

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

Compiling and Linking Applications

Command Synopsis Description

cc -nx [switches] sourcefile... Compile a Paragon OSF/1 application written
in C on an Intel supercomputer.

77 -nx [switches] sourcefile... Compile a Paragon OSF/1 application written

in Fortran on an Intel supercomputer.

icc -nx [switches | sourcefile... Compile a Paragon OSF/1 application written
in C on an Intel supercomputer or
cross-development workstation.

if77 -nx [switches] sourcefile... Compile a Paragon OSF/1 application written
in Fortran on an Intel supercomputer or
cross-development workstation.

You can compile and link applications on the Intel supercomputer itself, or on a workstation that
supports the Paragon OSF/1 cross-development environment. On the Intel supercomputer, you can
use the “native” commands cc and £77 or the “cross-development” commands icc and if77. On a
workstation, you must use the cross-development commands icc and if77. The native and
cross-development versions of each command take the same switches and work identically.

When compiling and linking an application, you should generally use the switch -nx on the
command line. The -nx switch has three effects:

« Ifused while linking a C or Fortran program, it links in libnx.a, the library that contains all the
system calls described in this manual.

» If used while linking a C or Fortran program, it links in a special start-up routine that starts up
the program on multiple nodes, as specified by standard command line switches and
environment variables.

» If used while compiling a C program, it defines the preprocessor symbol __NODE. The
program being compiled can use preprocessor statements such as #ifdef to control compilation
based on whether or not this symbol is defined. (This preprocessor symbol is not defined if -nx
is used while compiling a Fortran program.)

For example, the following command line compiles and links the file myapp.c to create an
executable file called myapp (on the Intel supercomputer):

% cc -nx -o myapp myapp.c

2-5

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

The following command line has the same effect (on the Intel supercomputer or a cross-development
workstation):

% icc -nx -o myapp myapp.c

NOTE

Do not use -nx if your application calls nx_initve().

The Paragon OSF/1 operating system provides nx_initve() and related functions to give your
application more control over the way it starts up. They let the application perform actions for itself
that are normally performed for it by -nx. If you link your application with -nx and it also calls
nx_initve() itself, the application’s call to nx_initve() will fail and return -1. See “Managing
Applications” on page 4-2 for more information on nx_initve() and related functions.

Tolink an application that calls nx_initve(), use the switch -Inx instead of -nx. The -Inx switch links
in libnx.a, but without the special start-up routine supplied by -nx. A program linked with -Inx can
use all the calls described in this manual, but does not automatically start itself on multiple nodes.
(Note that the -Inx switch must appear on the compiler command line after the filenames of any
source or object files that use these calls.) Note that the preprocessor symbol __NODE is not defined
by -Inx.

A program that is not linked with -nx and does not call nx_initve() is not a parallel application. It
does not recognize the command-line switches described under “Running Applications” on page
2-11, and it always runs on one node in the service partition. (If it creates additional processes by
calling fork(), they may run on the same node or a different node, but they will always run in the
service partition.)

Configuring Your Environment for Cross-Development

2-6

Before you can use the icc and if77 commands on your workstation, you must configure your
environment as follows:

+ The environment variable PARAGON_XDEV must be set to the pathname of the directory that
contains the Paragon OSF/1 cross-development facility. If you don’t know this pathname, ask
your system administrator.

* Your execution search path (PATH or path variable) must include the directory
$PARAGON_XDEV/paragon/bin.grch, where grch identifies the architecture of your
workstation (such as sun4 for a Sun-4 workstation).

+ If you want to read Paragon OSF/1 online manual pages on your workstation, your online
manual page search path (MANPATH variable or equivalent facility) must include the directory
$PARAGON_XDEV/paragon/man.

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

You should put the definitions of these variables into your .cshrc or .login file (or the equivalent
start-up file for your shell). For example, suppose the Paragon OSF/1 cross-development facility is
installed in the directory /usr/local/XDEV. If you use the C shell, you would add these lines to your
.cshrc file:

setenv PARAGON_XDEV /usr/local/XDEV
set path=($path $PARAGON_XDEV/paragon/bin.‘arch')
setenv MANPATH "${MANPATH):${PARAGON_XDEV}/paragon/man"

(The curly braces in "$ {MANPATH]) : $ { PARAGON_XDEV } /paragon/man" are necessary
because a colon after a variable name is special to the C shell.)

Once your environment is properly configured, you can use the icc or if77 command to compile and
link applications on your workstation. For example, the following command line compiles and links
the file myapp.fto create an executable file called myapp:

$ if77 -nx -o myapp myapp.f

The executable file, myapp, can only be executed on the Intel supercomputer. You can do this by
putting it in a directory that is shared between your workstation and the Intel supercomputer with the
Network File System (NFS), or by copying it to the Intel supercomputer with the ftp or rcp
command. If you use the ftp command, the resulting file may not have execute permission; if this
happens, use the chmod command on the Intel supercomputer to give myapp execute permission.

NOTE

The Paragon OSF/1 versions of the compilers are not the same as
their iPSC® system equivalents.

If you develop programs for the iPSC series of supercomputers from Intel Corporation as well as for
Paragon OSF/1, you must be sure that your execution search path (PATH or patrh variable) is set
appropriately for your current target system. To compile a program for Paragon OSF/1, the variable
PARAGON_XDEV must be set appropriately and your execution search path must include
$PARAGON_XDEV/paragon/bin.grch; to compile a program for the iPSC system, the variable
IPSC_XDEV must be set appropriately and your execution search path must include
$IPSC_XDEV/i860/bin.grch instead. Be sure that your execution search path does not include both
these directories at the same time.

27

Using Paragon™ OSF/1 Commands . ! Paragon™ User's Guide

Tips for Compiling and Linking

2-8

The following sections give you some tips for compiling and linking Paragon OSF/1 applications
(on either the Intel supercomputer or a cross-development workstation).

Using Other Switches

The cc, £77, icc, and if77 commands have a variety of switches to control their operation. For a
description of these switches and other information on these commands, see the online manual pages
for the commands or the following printed manuals:

cc, ice Paragon™ C Compiler User’s Guide.

£77,i677 Paragon™ Fortran Compiler User’s Guide.

Including nx.h or fnx.h
As a general rule, always include the file ax.h in all Paragon OSF/1 C programs. This file contains
definitions and declarations needed by the Paragon OSF/1 C system calls. Although a specific
application may not need the definitions and declarations contained in nx.h, the overhead involved
in including it in all programs is minor. Include it in your C programs as follows:

#include <nx.h>

For Fortran programs, the corresponding file is fiax.h. Include it in your Fortran programs as follows:

include 'fnx.h'

Specifying Include File and Library Pathnames

The standard include and library directories depend on whether you are using the native
development commands or the cross-development commands:

« The native development commands search for include files in the directory /usr/include, and
they search for libraries in the directories /usr/ccs/lib (searched first) and /usr/lib (searched
second).

- The cross-development commands search for include files in the directory
$PARAGON_XDEVI/paragonlinclude, and they search for all libraries in the directory
$PARAGON_XDEV/paragon/lib-coff.

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

Note, though, that on the Intel supercomputer the directories /usr/paragon/XDEV/paragonilib-coff
and /usr/ccs/lib are identical, the directories /usr/paragon/XDEV/paragonl/include and /usr/include
are identical, and the default for SPARAGON _XDEYV is lusr/paragon/XDEV, so this difference may
not be significant.

If you need to include a file that is not in the standard include directory or in the same directory as
the source file, you must use the -I switch on the compiler command line to identify the nonstandard
directory. For example, the following command line compiles and links an application that uses
include files in the directory /usr/locallinclude:

% icc -nx myapp.c -I/usr/local/include

If you need to link to a library that is not in one of the standard library directories, then you must
modify the command line in one of the following ways:

e Use the -L switch to provide the pathname of the directory in which the library is located. For
example, the following command line compiles and links an application that depends on the
library libfft.a located in the directory /usr/local/lib:

$ icc -nx ?L/us.r/l ocal/1ib myapp.c -1fft

» Specify the complete pathname of the appropriate library or libraries on the command line. For
example, the following command line also compiles and links an application that depends on
the library libfft.a located in the directory /usr/local/lib:

$ if77 -px myapp.c /usr/local/lib/libfft.a

Prepr ocessing a Fortran Pr ogram

If your Fortran program is in a file whose filename ends with an uppercase “.F” (rather than the
standard lowercase “.f”), the if77 command runs a preprocessor (like the standard C preprocessor)
on the file. This enables you to use lines like the following in a Fortran program:

#include <file.h>

#define MAX 87

2-9

Using Paragon™ OSF/1 Commands Paragon™ User’s Guide

2-10

Order of Switches

Most cc, £77, ice, and if77 switches are not order-sensitive. However, order is important for the -I,
-L, and -1 switches and for listing libraries when linking. When constructing command lines, keep
the following guidelines in mind:

List include directories (-I switch) in the order in which they should be searched. The list of
include directories you specify with -I switches is collected together and used for all source files
you specify. For example, the following command looks for include files in the directory
myincludes, then the directory ../includes, and finally the standard include directory when
compiling a.c, b.c, and c.c:

$ icc a.c -Imyincludes b.c -I../includes c.c

List libraries in the order in which they should be searched. The Paragon OSF/1 linkers are
single-pass linkers; they cannot resolve a backward library reference (i.e., a reference to a
library object that was defined in a library that has aiready been searched). Note that this means
that if you use the -Inx switch, you should place it after any source files that need it, as follows:

$ if77 -o myapp myapp.f -lnx

Backward references between objects (.o files), however, are not a problem, as all listed objects
are linked unconditionally.

The -L switch affects only the search path of libraries that are listed after the -L switch. For
example, the following command searches only the standard library directories for the library
libnews.a, but searches the directory ../mylibs (as well as the standard library directories) for the

library libgx.a:

% icc -nx myprog.c -lnews -L../mylibs -lgx

Paragon™ User's Guide

Using Paragon™ OSF/1 Commands

If you specify more than one -L switch, the named directories are searched in reverse order (the
directory specified by the first -L switch on the command line is searched after the directory
specified by the second -L switch on the command line). For example:

% icc -nx myprog.c -lnews -L../mylibs -1gx -Llocallibs -llocal
This command searches for libraries as follows:

- Itsearches only the standard library directories for the library libnews.a.

- It searches the directory ../mylibs and then the standard library directories for the library
libgx.a. '

- It searches the directory locallibs, then ../mylibs, and then the standard library directories
for the library liblocal.a.

Note that the -L switch also affects system libraries; in fact, directories specified by -L are
searched for system libraries before the standard library directories.

Running Applications

Once you have compiled your application into a Paragon OSF/1 executable file (and, if necessary,
copied the executable to an Intel supercomputer), you run it by typing its name at your Paragon
OSF/1 shell command prompt, as you would for any other compiled program.

For example, if myapp is a compiled application, you can execute it with the following command:

% myapp

The way the application runs depends on how you linked it and on what system calls it makes:

If myapp was linked with the -nx switch, this command runs myapp on your default number of
nodes in your default partition. The section “Controlling the Application’s Execution
Characteristics” on page 2-13 tells you more about the default partition, and about the
environment variables and command-line switches you can use to control the execution
characteristics of applications linked with the -nx switch.

If myapp was linked with the -Inx switch, this command runs myapp on the nodes and partition
specified by system calls within the application. The section ‘“‘Managing Applications” on page
4-2 tells you how to use these system calls. If myapp does not specify the nodes and partition in
these calls, it defaults to running on your default number of nodes in your default partition. If
myapp does not make any of these calls, it runs on one node in the service partition.

If myapp was linked without the -nx or -Inx switch, it is an ordinary non-parallel program, and
it runs on one node in the service partition.

2-11

Using Paragon™ OSF/1 Commands ' : Paragon™ User's Guide

If you see the error message “request overlaps with nodes in use,” it means that your default partition
does not allow overlapping applications and someone else is already running an application in that
partition. Try again later, or use a different partition (as described under “Running an Application in
a Particular Partition” on page 2-22). You can use the pspart command to determine which
partitions have applications running in them, as described under “Listing the Applications in a
Partition” on page 2-51.

If you see the error message “partition permission denied” or “exceeds partition resources,” check
to be sure the environment variables NX_DFLT PART and NX DFLT _SIZE are properly defined.
See “Using the Default Partition” on page 2-14 and “Specifying Application Size” on page 2-15 for
more information on these variables; see your system administrator for information on the proper
settings for these variables at your site.

If you see the error message “error 216 occurred, unknown,” it means that the application was
compiled on a previous release of the Paragon OSF/1 operating system and uses an out-of-date
version of the libraries. (Error 216 is “parallel application incompatible with OS release”, but the
“unknown” message may appear if the application is so out-of-date that it doesn’t know about the
existence of this error.) If this occurs, recompile the application and try again.

I/O Redirection

2-12

You can redirect the standard input, standard output, and standard error of an application with the
usual OSF/1 techniques. For example, the following command redirects the input and output of the
application myapp:

$ myapp < myfile.in > myfile.out

This command runs the application myapp with its standard input redirected from the file myfile.in
and its standard output redirected to the file myfile.out.

Note that, by default, all the nodes read and write their standard input, standard output, and standard
error using PFS I/O mode 0. In mode O, all file access requests are honored on a first-come,
first-served basis. You can change this behavior by selecting a different I/O mode; see “Using /O
Modes” on page 5-13 for more information. The standard input, standard output, and standard error
are line-buffered by default. This means that if all the nodes write to standard output or standard
error, the output from all the nodes is intermixed in the output, line by line; if all the nodes read from
standard input, each line of the input goes to an arbitrary node.

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

Controlling the Application’s Execution Characteristics

Command Synopsis Description

application [-sz size | -sz hKXw | -nd hXw:n] Execute a Paragon OSF/1 application.
[-pri priority] [-pt ptype]
[-on nodespec] [-pn partition]
[mp_switches]
[\s app2 [-pt ptype] [-on nodespec]] ...

When you run an application, you can use command-line switches and environment variables to
control the way the application executes. This section discusses all the switches and environment
variables except for the mp_switches, which are used for message-passing performance tuning; for
information on the mp_switches, see “Message-Passing Configuration Switches” on page 8-18.

Command-line switches can appear in any order on the command line, and may be intermixed with
application-specific switches and arguments. If you specify the same command-line switch more
than once in a single command, the last occurrence overrides the earlier ones. For example, the
following two commands are equivalent:

$ myapp -sz 4 -sz 50 -pri 8 file.dat
$ myapp -pri 8 -sz 4 file.dat -sz 50

Each of these commands runs the application myapp, with the argument file.dat, at priority 8 on 50
nodes of your default partition.

If the application was linked with the -nx switch, the command-line switches discussed in this
section are interpreted and removed from the command line before the application starts up. In the
previous examples, the arguments -pri 8, -sz 4, and -sz 50 are interpreted and removed by the -nx
code; myapp sees only the argument file.dat (if myapp is a C program argc is 2, argv[0] is “myapp”,
and argv(1] is “file.dat™).

NOTE

All the examples in this section assume that myapp was linked
with the -nx switch.

An application that is not linked with -nx controls its own execution with system calls, as discussed

under “Managing Applications” on page 4-2. Such an application may or may not obey the
command-line switches discussed in this section, depending on how it was programmed.

2-13

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

2-14

Using the Default Partition

When you run a parallel application on the Intel supercomputer, it runs in a partition. The partition
determines the maximum number of nodes used by the application and how the application is
scheduled, as described later in this chapter. An application stays in the same partition for its entire
run,

If you do not specify otherwise, the application runs in the partition specified by the environment
variable NX_DFLT PART. If the environment variable NX_DFLT PART is not set, the application
runs in the compute partition, a special partition that is present on “all Intel supercomputers. The
partition specified by NX_DFLT PART (or, if this variable is not set, the compute partition) is called
your default partition.

For example, to run the application myapp in your default partition, use the following command:
% myapp

This command runs the application myapp in the partition specified by the environment variable
NX_DFLT_PART, or in the compute partition if NX_DFLT PART is not set.

If you see an error message such as “partition not found” or “partition permission denied,” ask your
system administrator what your default partition should be, then use the commands described in the
next section to set the variable NX_DFLT PART to that value. You can also use the -pn switch
(described under “Running an Application in a Particular Partition” on page 2-22) to run an
application in a different partition.

For more information about partitions, see “Managing Partitions” on page 2-25.

Setting Your Default Partition
The command you use to set or change your default partition depends on which shell you use.

« If you use the C shell, use the setenv command. For example, if you are a C shell user, the
following command sets your default partition to mypart:

% setenv NX_DFLT_ PART mypart

setenv is a built-in command of the shell; see csh in the OSF/I Command Reference for more
information.

You can put this command in your .login or .cshrc file on the Intel supercomputer to have your
default partition set to mypart each time you log in.

Paragon™ Users Guide Using Paragon™ OSF/1 Commands

« If you use the Bourne or Komn shell, set the variable and use the export command to make its
value available to commands other than the shell. For example, if you are a Bourne or Korn shell
user, the following commands set your default partition to mypart:

$ NX_DFLT PART=mypart
$ export NX_DFLT PART

You do not have to use the export command each time you set the variable. You only have to
export a variable once in each login session. export is a built-in command of the shell; see sh
or ksh in the OSF/1 Command Reference for more information.

You can put these commands in your .profile file on the Intel supercomputer to have your
default partition set to mypart each time you log in.

You can use an absolute or relative partition pathname as the value of NX_DFLT PART. For
example, the following C shell commands are equivalent:

% setenv NX_DFLT PART myorg.mypart
% setenv NX_DFLT PART .compute.myorg.mypart

See “Partition Pathnames” on page 2-28 for more information on partition pathnames.

If you use the C or Korn shell, you can create an alias to change your default partition. For example,
the following C shell command creates a “setpart” alias that sets your default partition to its

argument:

% alias setpart ’setenv NX_DFLT_PART \!#*'

Determining the Current Default Partition
To find out your default partition once you have set it, use the echo command. For example:

% echo SNX _DFLT PART
mypart

This command works the same in any shell.

Specifying Application Size

An application’s size is the number of nodes allocated to the application from the partition. The
processes of the application run only on this set of nodes, and do not exchange messages with
processes on nodes outside this set. Depending on the characteristics of the partition, this allocation
may or may not be exclusive: some or all of these nodes may also be allocated to other applications
and/or other partitions. An application keeps the same size for its entire run.

2-15

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

2-16

To set an application’s size, use the switch -sz size, where size is any positive integer less than or
equal to the number of nodes in the partition. For example, to run the application myapp on 64 nodes
of your default partition, use the following command:

$ myapp -sz 64

The -sz size switch attempts to allocate a square group of nodes if it can. If this is not possible, it
attempts to allocate a rectangular group of nodes that is either twice as wide as it is high or twice as
high as it is wide. If this is not possible, it allocates any available nodes; in this case, nodes allocated
to the application may not be contiguous (that is, they may not all be physically next to each other).
If the requested number of nodes is not available, the command fails and the application does not
run; an error message is printed to explain why the specified number of nodes is not available.

No matter what the shape of the application, node numbers within the application (as returned by
mynode()) will always be sequential from O.

Specifying a Rectangle of Nodes

To force allocation of a contiguous rectangle of a particular size and shape, use the switch -sz AXw,
where h and w are positive integers that specify the height and width of the desired rectangle. (You
can use an uppercase or lowercase letter X between the integers h and w.) For example, to run myapp
on an 8 by 8 node rectangle of your default partition, use the following command:

% myapp -sz 8x8

If successful, this command runs myapp on an 8 by 8 node rectangle of nodes, which could be
located anywhere within the partition that it fits. If no 8 by 8 node rectangle is available in the default
partition, the command fails immediately and the application does not run, even if there are 64 nodes
free in the partition. If this occurs, the command fails with the error message “exceeds partition
resources” if no such rectangle can be found that fits within the partition, or “request overlaps with
nodes in use” if the rectangle fits within the partition but some of its nodes are busy).

Specifying a Particular Rectangle of Nodes

To force allocation of a contiguous rectangle of a particular size and shape at a particular location
within the partition, use the switch -nd hZXw:n. (This switch is called -nd, rather than -sz, because it
specifies a particular set of nodes rather than just a size or shape.)

In the -nd hXw:n switch, h and w are positive integers that specify the height and width of the
desired rectangle, and # is a positive integer that specifies the node number within the partition for
the upper left comer of that rectangle. You can use an uppercase or lowercase letter X between the
integers h and w. When choosing the value of n, remember that in an m-node partition the nodes are
numbered left to right and top to bottom from O to m-—1.

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

For example, to run myapp on an 8 by 8 node rectangle in the upper left comer of your default
partition, use the following command:

$ myapp -nd 8x8:0

In this case, if the specified nodes are not available in the default partition, the application fails
immediately (even if there is a different 8 by 8 node rectangle available).

Using the Default Size

If you don’t use the -sz or -nd switch, the application’s size is specified by the environment variable
NX_DFLT SIZE, whose value must be a single positive integer. You can use the techniques
discussed for the NX_DFLT PART variable in the previous section to get and set the value of the
NX_DFLT _SIZE variable. If NX_DFLT_SIZE is not set, the application runs on all nodes of the
partition, and its size is set to the size of the partition. The size specified by NX_DFLT_SIZE (or, if
this variable is not set, the size of the partition) is called your default number of nodes.

An application can determine its size by calling numnodes(), and each process in the application can
determine its node number within the application by calling mynode(). mynode() returns a node
number from O to one less than the application’s size. (See “Process Characteristics” on page 3-3 for
more information on these calls.) For example, with -sz 64, -sz 8x8, or -nd 8x8:0, numnodes()
returns 64 and mynode() returns a number from O to 63 inclusive. There is no way for an application
to change its size.

An application can determine its shape by calling nx_app_rect(), which returns the height and width
of the rectangle of nodes allocated to the application. If the nodes allocated to the application do not
form a rectangle, nx_app_rect() returns a height of 1 and a width equal to numnodes().
(nx_app_rect() can also be called by the name mypart() for compatibility with the Touchstone
DELTA System.)

Specifying Application Priority

An application’s priority is an integer associated with the application that is used in determining how
much of a node’s processor time the application gets when the node is allocated to more than one
application at once. O is the lowest priority, and 10 is the highest.

The application’s priority is only one of several factors that determine how much processor time it
gets. For example, the application’s processor time can be affected by the priorities of other
applications in the system and by the effective priority limit of the partition in which the application
runs. See “Scheduling Characteristics” on page 2-33 for more information.

To set the priority of the application, use the switch -pri priority, where priority is an integer from
0 to 10 inclusive. If you don’t use the -pri switch, the application’s priority is set to 5.

2-17

Using Paragon™ OSF/1 Commands i Paragon™ User's Guide

2-18

For example, to run the application myapp with a priority of 6, use the following command:
% myapp -pri 6

An application can change its priority by calling nx_pri() (see “Setting an Application’s Priority
with nx_pri()” on page 4-9 for more information).

Specifying Process Type

A process’s process type, or ptype, is an integer associated with the process that differentiates it from
any other process in the application that is on the same node. The process’s node number and process
type together form the process’s “address” for messages within the application.

To set the process type of each process in the application, use the switch -pt ptype, where prype is
an integer from O to 2,147,483,647 (23! — 1) inclusive. If you don’t use the -pt switch, the process
type of each process is O.

For example, to run the application myapp with a process type of 1 for each process, use the
following command:

$ myapp -pt 1

A process can find out its current process type by calling myptype(). For example, with -pt 1,
myptype() returns 1 on all nodes. Once a process’s process type has been set to a valid value, it
cannot change its process type and no other process in the same application on the same node can
use that process type for the run of the application. See “Process Characteristics” on page 3-3 for
information on process types and the myptype() and setptype() system calls.

The -pt switch is most commonly used when running multiple programs in one application, as
discussed under “Running Applications Consisting of Multiple Programs” on page 2-21. In most
other circumstances, you can use the default process type of O.

- Running a Program on a Subset of the Nodes

Usually you run the same program file on all the nodes allocated to the application from the partition.
However, you can also run a program on just some of the nodes, leaving the other nodes vacant for
other programs. When you do this, the other nodes are allocated to the application, but no processes
are started on them.

Paragon™ Users Guide Using Paragon™ OSF/1 Commands

To run a program on a subset of the nodes of an application, use the switch -on nodespec, where
nodespec is one of the following:

X The node whose node number is x.
x.y The range of nodes from numbers x to y.
n The last node of the partition.

nspec[,nspec]... 'The specified list of nodes, where each nspec is a node specifier of the form
X, X..y, Or n (no node may appear more than once in this list). Do not put any
spaces in this list.

If you don’t use the -on switch, the program is run on all nodes allocated to the application.

NOTE

The numbers you use with -on are node numbers within the
application (which always range from 0 to one less than the size
of the application), not node numbers within the partition.

For example, to run the program myapp on the first three nodes of a 20-node application, use the
following command:

% myapp -sz 20 -om 0,1,2
This command creates an application of size 20 in your default partition and runs myapp on nodes
0, 1, and 2 of the application. Within this application, the function numnedes() returns 20, and the
function mynode() returns a number from O to 19 inclusive. However, no processes are started on
nodes 3 through 19.
You can use the letter n to represent “the last node in the application.” For example, the following
command creates an application of your default size in your default partition and runs myapp on the
first and last nodes of the application:

% myapp -on 0,n

For example, if your NX_DFLT SIZE variable is set to 64 (and there are at least 64 nodes in your
default partition), this would run myapp on nodes O and 63 of the application.

2-19

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

2-20

You can also use a pair of numbers separated by two periods (x..y) to specify “nodes x through y
inclusive.” For example, the following command creates an application of size 100 in your default
partition and runs the program myapp on nodes 10 through 90:

% myapp -sz 100 -on 10..90

It doesn’t matter whether y is greater than x or vice versa. For example, the following command also
creates an application of size 100 in your default partition and runs the program myapp on nodes 10
through 90:

% myapp -sz 100 -on 90..10

These notations can be combined. For example, the following command creates an application of
your default size in your default partition and runs myapp on all nodes but node O of the application:

$ myapp -on l..n

Another example: the following command creates an application of your default size in your default
partition and runs myapp on node 1, node 3, nodes 5 through 10 inclusive, and the last node of the
application:

$ myapp -on 1,3,5..10,n

NOTE

Do not use -on if you just want to run a single program on a
specific number of nodes.

The -on switch is designed to be used when running multiple programs as a single application, as
discussed in the next section. You can also use the -on switch to run a “manager” program on one
or a few nodes of an application; the “manager” program can then run “worker” programs on other
nodes by calling nx_nfork(), nx_load(), or nx_loadve() (see “Managing Applications” onpage 4-2
for information on these functions).

The -on switch is not designed to run an application on a particular number of nodes or a particular
set of nodes. If you want to run an application on a particular number of nodes, use the -sz switch.
If you want to run an application on a particular set of nodes, allocate a partition containing those
nodes and run the application on all nodes of that partition (see “Managing Partitions” on page 2-25
for information on partitions).

If you use -on when you should be using -sz, the application will be allocated more nodes than it
needs. Also, if you use -on and do not run a program on every node of the application, global
operations will hang. (The global operations described under “Global Operations” on page 3-27,
such as gdsum(), block until they are called by every node in the application. If you run a program

- ononly a subset of the nodes, these operations will block forever.)

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

Running Applications Consisting of Multiple Programs

You can run multiple program files as a single application. For example, you could run two or more
separate programs on every node (the resulting processes must have different process types, and the
processes time-share the processor while the application is active). You might also run a manager
program on one node and worker programs on the other nodes. The programs should be written to
work together; you would not usually run two arbitrary programs together in one application.

To run multiple program files as a single application, use the following syntax:
$ file [switches] [\; file [-pt ptype] [-on nodespec]] ...

That is, you use two or more complete commands on one line, separated by an escaped semicolon
(backslash followed by semicolon).

NOTE

The escaped semicolon (\;) must be preceded and followed by a
space or tab. Otherwise, it will be considered part of the preceding
or following argument.

The first file must either have been linked with -nx or must call nx_initve() without overriding the
command line; the second and subsequent files may have been linked with or without -nx, but must
not call nx_initve().

The command-line switches you can use with the files are different:

* You can use any application switches (-sz, -pri, -pt, -on, -pn, and mp_switches) with the first
file. The effect of these switches varies according to the switch:

- The -sz, -pri, -pn, and mp_switches switches you use with the first file affect the entire
application.

- The -pt and -on switches you use with the first file affect the first file only.

* Youcan use only the -pt and -on switches with the second and subsequent files. These switches
affect the associated file only.

If you run multiple processes on a single node, you must use the -pt switch to specify a unique
process type for each process. When two or more processes in an application run on the same node,
each must have a different process type. If you don’t use the -pt switch, each process will have
process type O, and you will receive an error message.

2-21

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

For example, to run the programs myapp and myapp?2 as a single applxcatlon, use the following
command:

% myapp \; myapp2 -pt 1

This command runs the program myapp with process type O and the program myapp2 with process
type 1 on your default number of nodes in your default partition.

To run the program manager on node 0 of a 20-node application and the program worker on the
remaining nodes, use the following command:

% manager -sz 20 -on 0 \; worker -on l..n

This command creates an application of size 20 in your default partition. It then runs the program
manager on node O of the application and the program worker on nodes 1 through 19 of the
application. All the resulting processes have process type 0, but this does not create a conflict
because manager and worker run on different nodes.

NOTE

If you forget the backslash before the semicolon, the first program
is run as an application by itself and the second program runs after
the first program finishes. This usually results in unexpected
behavior from the programs.

Running an Application in a Particular Partition

To run an application in a partition other than your default partition, use the switch -pn partition.
You must have execute permission for the specified partition. The partition specified by -pn
overrides the value of NX_DFLT PART, if any. If you don’t use the -pn switch, the application runs
in your default partition, as described under “Using the Default Partition” on page 2-14.

NOTE

If your default number of nodes, as specified by the environment
variable NX_DFLT_SIZE, is greater than the number of nodes
available in the specified partition, you may get a “partition
resources exceeded” or “request overlaps with nodes in use”
error.

If you see this error, use the -sz switch or change the value of NX DFLT SIZE to specnfy an
application size less than or equal to the size of the specified partition.

2-22

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

For example, to run the application myapp on your default number of nodes in the partition mypart,
use the following command:

$ myapp -pn mypart

You can use an absolute or relative partition pathname with -pn (see “Partition Pathnames” on page
2-28 for information on partition pathnames). For example, the following commands are equivalent:

$ myapp -pn myorg.mypart
$ myapp -pn .compute.myorqg.mypart

For more information about partitions, see “Managing Partitions” on page 2-25.

Managing Running Applications

You use the standard OSF/1 techniques to manage running applications. For example, you use your
interrupt key (usually or <Ctrl-c>) to interrupt a running application. If you use the C
shell or Komn shell, you can use your suspend key (usually <ctrl-z>) to suspend an application,
and the fg or bg command to resume it. See csh, sh, or ksh in the OSF/1 Command Reference for
more information on these techniques.

NOTE

Interrupting or suspending an application that is “rolled out” will not
take effect until the application is “rolled in” again.

Parallel applications can be gang-scheduled to make more efficient use of system resources. In gang
scheduling, an application is allowed to run for a time period, called the rollin quantum, and then is
“rolled out” and another application is “rolled in” in its place. If the rollin quantum is long, you may
not see any response to a <Ctrl-e> or <Ctrl-z> for along time. See “Scheduling
Characteristics” on page 2-33 for more information on gang scheduling.

2-23

Using Paragon™ OSF/1 Commands Paragon™ User’s Guide

2-24

You can also use the ps command to determine the status of an application, and the kill command
to terminate it. For example: ‘

% myapp &
[1] 7045
% ps
PID TT STAT TIME COMMAND
5841 p3 s + 0:02.50 -csh (csh)
7045 p3 R 0:00.30 myapp
$ kill 7045
$ ps
PID TT STAT TIME COMMAND
5841 p3 s + 0:02.55 -csh (csh)
[1] + Terminated myapp
%

The ps command shows only processes running in the service partition. See ps and kill in the OSF/1
Command Reference for more information on these commands. To show processes running in
partitions other than the service partition, use the pspart command.

The myapp process that you see in the output of ps is a special process called the controlling process
that runs in the service partition; you do not see the other application processes in the output of ps.
However, sending a signal to the controlling process with , <Ctrl-c>, <Ctrl-z>,orkill
signals all the processes in the application. See “Managing Applications” on page 4-2 for more
information on the controlling process.

If the application was started from the Bourne shell (sh) or from a shell script, you will see wo
processes with the name of the application in the output of ps. One of these two processes is the
controlling process; the other is another special process, called the shepherd process. The shepherd
process is necessary for the application; do not kill it. When the application terminates, this process
will terminate as well.

To determine which process is which, use the command ps -f and examine the PPID (parent PID)
fields of the two processes. The shepherd process is the parent of the controlling process. For
example:

$ ps -f

USER PID PPID $CPU STARTED TT TIME COMMAND
chris 131125 131124 0.0 13:55:51 p2 0:00.28 -sh (sh)
chris 131129 131125 0.0 13:56:36 p2 0:00.05 myapp
chris 131130 131129 0.0 13:56:36 p2 0:00.03 myapp

In this case the second myapp process (PID 131130) is the controlling process. The first myapp
process, PID 131129, is the parent of the controlling process and is therefore the shepherd process.

You can use the pspart command to determine the status of all the applications in a particular
partition. See “Listing the Applications in a Partition” on page 2-51 for information on this
command.

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

You can also use the Interactive Parallel Debuggel:ngipd) to control the execution of an application,
down to the machine instruction. See the Paragon Interactive Parallel Debugger Reference
Manual for information on ipd.

Managing Partitions

The nodes of the Intel supercomputer are divided into overlapping groups called partitions. When
you run a parallel application, you must select a partition to run it in. The partition places limits on
the execution characteristics of the application, such as which nodes it can use, whether or not it can
use nodes that are already in use, and how long it can use them before it is “rolled out” and another
application is “rolled in.”

Depending on the policies of your site, you may or may not have to know any more about partitions
than what has been discussed in this chapter so far.

» At some sites, the system administrator configures all the partitions; ordinary users can simply
set the NX_DFLT PART variable to an appropriate value (or leave it unset and use the compute
partition) and then forget all about partitions. If your site is like this, you do not have to read this
section. However, you may wish to read it to help you understand how the system works.

» Atother sites, users create and configure their own partitions. If your site is like this, you should
read this section.

This section includes the following information about partitions:

» Some special partitions that every Intel supercomputer has.

» Specifying partitions with partition pathnames.

e The characteristics of a partition.

« Making partitions with the mkpart command.

« Removing partitions with the rmpart command.

» Showing the characteristics of a partition with the showpart command.
» Listing the subpartitions of a partition with the Ispart command.

» Listing the applications in a partition with the pspart command.

» Changing the characteristics of a partition with the chpart command.

2-25

Using Paragon™ OSF/1 Commands ' Paragon™ User's Guide

Special Partitions

2-26

Every Intel supercomputer has three special partitions:

» The root partition directly or indirectly contains all the other partitions in the system. It is the
only partition that does not have a parent partition.

» The service partition is the partition in which the users’ shells and other commands run. Its
parent is the root partition.

« The compute partition is the partition in which parallel applications run. Its parent is also the
root partition.

The characteristics of these partitions are determined by the system administrator. In particular, the
system administrator sets the ownership and permissions of these partitions according to local
policies. These ownerships and permissions determine whether or not ordinary users can create
partitions for their own use, or whether they must run applications in partitions provided for them by
the system administrator. If ordinary users are allowed to create partitions, the system administrator
can also place restrictions on the characteristics of partitions they create and the use of certain
application switches within partitions.

Typically, the service partition and compute partition are the only two children of the root partition
and do not overlap. However, the system administrator can choose to configure these partitions
differently, and may also create additional child partitions of the root partition.

For example, some systems have an I/O partition: a third child of the root partition, which does not
overlap with either the service or compute partitions, and which contains the nodes that control disks
and other /O devices. In other systems, the I/O “partition” is not a true partition, but a set of nodes
in the root partition that are not part of either the service or the compute partition.

The Root Partition
The root partition is the basis for all other partitions. The name of the root partition is . (dot).

The root partition contains every usable node in the system. Depending on the underlying hardware,
there may be unusable nodes within the root partition as well. The root partition organizes all the
nodes in the system into a two-dimensional grid, or mesh. For example, Figure 2-1 shows the root
partition of a 32-node system that is configured as a 4 by 8 node mesh. The nodes are numbered from
Oto 31.

NOTE

The root partition is always rectangular. (This is not true of
partitions other than the root partition.)

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

® 6@ ® 6
® Q@ 6
® ® @ ®
® ® 60 @
® ® ® ®
® ® @ ©
® 6® @ @
® 6 6@

Figure 2-1. The Root Partition of a 32-Node System

For example, a system with 31 nodes would also be a 4-by-8-node rectangle, numbered as shown in
Figure 2-1, but one of the nodes would be an unusable node, as described under “Unusable Nodes”
on page 2-31. You would not be able to start any processes or allocate any subpartitions using this
node.

The Service Partition

The service partition is the partition in which the users’ shells, OSF/1 commands, and other
non-parallel programs run. The name of the service partition is service. The service partition may
not contain any subpartitions.

When you log into the Intel supercomputer, a shell is started for you on a node in the service
partition; when you execute a command in this shell, the command runs on a node in the service

partition. Note that the node the command runs on is not necessarily the same node that the shell runs
on; the system starts each new process on the node that is currently the least busy.

The Compute Partition

The compute partition is the partition in which parallel applications run. The name of the compute
partition is compute.

2-27

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

When you execute a parallel application, one process (called the controlling process) runs in the
service partition; the other processes of the application run in the compute partition, or in a
subpartition of the compute partition. You can specify which partition an application runs in when
you execute it.

Your system administrator determines whether or not you can create subpartitions in the compute
partition and whether or not you can execute applications in the compute partition itself. There may
also be other local policies that affect how you use the compute partition; for example, you may be
required to run your applications in certain subpartitions during the day and others at night.

Partition Pathnames

2-28

Since partitions have a hierarchical structure like directories, they also have pathnames like
directories. Like a file or directory pathname, a partition pathname identifies a partition within the
hierarchical partition structure by describing the path from a known location to the specified
partition.

Unlike file and directory pathnames, however, partition pathnames use a dot (.) instead of a slash
(/) to separate the elements of the pathname. This is why the name of the root partitionis . (dot).
There is also no special partition pathname for “current partition” or “parent of the current partition.”
Also, you cannot use wildcards (* and ?) in partition pathnames.

There are two types of partition pathnames:

e An absolute partition pathname specifies the path from the root partition to the specified
partition. An absolute partition pathname begins with a dot (.)

* Arelative partition pathname specifies the path from the compute partition to the specified
partition. A relative partition pathname does not begin with a dot.

NOTE

Relative partition pathnames are always relative to the compute
partition (there is no “current partition”).

The absolute partition pathnames of the root partition, service partition, and compute partition are
. (dov), .service, and .compute respectively. Because these partitions are not subpartitions of the
compute partition, they do not have relative partition pathnames.

If the partition mypart is a subpartition of the compute partition, its absolute partition pathname is
.compute.mypart and its relative partition pathname is just mypart.

If subpart is a subpartition of mypart, its absolute partition pathname is .compute.mypart.subpart
and its relative partition pathname is mypart.subpart.

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

Partition Characteristics
Each partition has the following characteristics:
» A parent partition that contains it.
e A name that identifies it.
» A set of nodes that is allocated to it.

« Anowner and group and a set of protection modes, like those of a file or directory, that
determine what actions a given user is allowed to perform on it.

« A setof scheduling characteristics that determine how applications are scheduled in it.

A partition’s characteristics are set when the partition is created. The mkpart command, described
under “Making Partitions” on page 2-39, lets you specify most of these characteristics on the
command line; if you don’t specify otherwise, the characteristics of a new partition are set to the
same values as those of its parent partition.

You can use the showpart command, described under “Showing Partition Characteristics” on page
2-46, to determine a partition’s current characteristics.

A partition’s parent partition and nodes cannot be changed. You can change the other characteristics
with the chpart command, described under “Changing Partition Characteristics” on page 2-54.

Parent Partition

Each partition is contained within another partition. The containing partition is called the parent
partition, and the contained partition is called a child partition or subpartition of the parent partition.
(There is one exception to this rule: the root partition has no parent.)

You specify a partition’s parent when you create it with mkpart. The parent partition determines the
set of nodes that are available to be allocated to the new partition (a partition cannot include any
nodes other than the nodes of its parent). The parent partition also determines the default
characteristics of the new partition, as mentioned earlier. A partition’s parent does not change for the
life of the partition.

2-29

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

2-30

Partition Name

Each partition is identified by a name. A partition’s name must be unique among all the partitions
with the same parent. Partition names can be any length, but must consist of only uppercase letters
(A-Z), lowercase letters (a-z), digits (0-9), and underscores ().

You specify a partition’s name when you create it with mkpart, and you can use chpart to change
an existing partition’s name (you must have write permission on the partition’s parent partition).

Nodes Allocated to the Partition

Each partition has a set of nodes allocated to it from its parent partition. Depending on the
characteristics of the parent partition, this allocation may or may not be exclusive: some or all of
these nodes may also be allocated to other partitions and/or applications. The number of nodes in
this set is called the partition’s size.

You can specify the set of nodes allocated to the partition when you create it with mkpart. You can
specify the partition’s size and let the operating system select the nodes, or you can specify certain
node numbers from the parent partition. If you don’t specify either, the new partition consists of all
the nodes of the parent partition.

The set of nodes allocated to a partition does not change for the life of the partition (that is, partitions
never move or change their size or shape). Depending on how you allocate the nodes, they may or
may not be contiguous (all adjacent to each other). Figure 2-2 shows examples of contiguous and
noncontiguous partitions.

Node Numbers Within a Partition

Each node in a partition has a node number within the partition: an integer from O to one less than
the partition’s size. The nodes in a partition are typically numbered from left to right and then from
top to bottom, as shown in Figure 2-2.

NOTE

Because partitions can overlap, a single physical node can have
many logical node numbers.

For example, Figure 2-3 shows two partitions, called Partition A and Partition B, that have the same
parent partition. Partition A consists of nodes 1 through 4 of the parent partition, and Partition B
consists of nodes 4 through 8 of the parent partition. In this case, node 4 of the parent partition is also
known as node 3 of Partition A and node O of Partition B.

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

O O
O O
O O

00O OO0l®lo

Contiguous Partitions Noncontiguous Partitions

Figure 2-2. Node Numbers in Contiguous and Noncontiguous Partitions
Unusable Nodes

Occasionally a node may become unusable because of a hardware or software failure. If this occurs,
the node is still allocated to any partitions to which it was allocated before it became unusable, but
no applications can be run on that node and no new partitions can include that node until the node
becomes usable again. The showpart and Ispart commands indicate if there are any unusable nodes
in a partition.

For example, suppose you make a partition containing 20 nodes and later one of those nodes

becomes unusable. If you attempt to run an application or make a subpartition with all 20 nodes of
this partition while the node is unusable, the attempt will fail.

2-31

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

Parent Partition
Partition A Partition B

: l
O[O0 O 0O[0]O O O ©

Partition Node Numbers
Parent 0 1 2 3 4 5 6 7 8
A - 0 1 2 3 - - - -
B - - - - 0 1 2 3 4

Figure 2-3. Node Numbers in Overlapping Partitions
Owner, Group, and Protection Modes

Each partition has an owner, a group, and a set of protection modes, like those of a file or directory,
that determine who can perform what operations on the partition.

When you create a partition with mkpart, you become the new partition’s owner; the new partition’s
group is set to your current group (see newgrp in the OSF/1 Command Reference for more
information on groups). If you are the owner of a partition, you can use chpart to change an existing
partition’s group; only the system administrator can change an existing partition’s ownership.

2-32

Paragon™ Users Guide Using Paragon™ OSF/1 Commands

A partition’s protection modes consist of three groups of three permission bits (read, write, and
execute for owner; read, write, and execute for group; and read, write, and execute for “other”), as
described for the chmod command in the OSF/1 Command Reference. The read, write, and execute
permission bits have the following meanings for a partition:

r (read) Allows listing the subpartitions and characteristics of the partition.

w (write) Allows creating and removing subpartitions in the partition and changing the
partition’s characteristics.

X (execute) Allows executing applications in the partition.

The system administrator (roof) is not affected by these permission bits. root can do anything to any
partition at any time.

The permission bits can be expressed as a three-digit octal number (as for the chmod command) or
as a string of the form rwxrwxxrwx (as used by the Is -l command, where a letter represents a bit
that is “on” and a dash (-) represents a bit that is “off”). For example, the octal number 754 is
equivalent to the string rwxr -xr- -; both grant all permissions to the owner, read and execute
permissions to the group, and read permission only to all other users.

‘When you create a partition with mkpart, you can specify its protection modes. If you don’t specify
a partition’s protection modes when you create it, they are set to the same values as those of the
parent partition. If you are the owner of a partition or the system administrator, you can use chpart
to change an existing partition’s protection modes.

Scheduling Characteristics

Each partition has a set of scheduling characteristics that determine how the applications running in
the partition are scheduled (that is, how the system arbitrates between processes when there are
several processes running on a single node).

You can specify a partition’s scheduling characteristics when you create it with mkpart and change

them with chpart. If you don’t specify a partition’s scheduling characteristics when you create it,
they are set to the same values as those of the parent partition.

2-33

Using Paragon™ OSF/1 Commands ‘ Paragon™ User's Guide

2-34

A partition uses one of three different forms of scheduling: standard scheduling, gang scheduling,
or space sharing.

Partitions that use standard scheduling use the standard OSF/1 scheduling mechanisms. This
gives good response to user input, but may result in poor performance for parallel applications
(when one process in the application becomes inactive, other processes that depend on that
process for information have to wait until it becomes active again).

Partitions that use gang scheduling use a modified scheduling mechanism that makes all the
processes in a parallel application active at the same time. Also, where standard scheduling
swaps processes in and out frequently (typically every 100 milliseconds), gang scheduling
swaps applications in and out on the basis of the partition’s rollin quantum: a time period that
can be up to 24 hours long. A long rollin quantum gives good performance for parallel
applications, because the application can run for a long time without being interrupted, but may
result in poor response to user input (when you give input to an application that is rolled out, the
application does not respond until it is rolled in again).

Partitions that use space sharing allow only one application per node. When you run an
application in a space-shared partition, the partition checks to see if another application or
partition is already using the requested nodes. If any of the nodes are in use, your application
fails immediately with the error message “request overlaps with nodes in use.” However, if all
the specified nodes are available, your application begins running immediately and continues
running, without interruption, until it completes.

Standard-scheduled partitions should be used to run interactive applications and applications that are
being debugged; gang-scheduled and space-shared partitions should be used to run non-interactive
(typically either computationally-intensive or /O-intensive) applications.

The following sections give you more information about these three forms of scheduling.

Standard Scheduling

Standard scheduling is the same as the scheduling technique used on single-processor OSF/1
systems. Standard scheduling is always used in the service partition.

In a partition that uses standard scheduling, each node is scheduled like a separate computer; there
is no attempt to coordinate related processes running on separate processors.

NOTE

A partition that uses standard scheduling may not contain
subpartitions, and may not overlap any other partitions that use
standard scheduling.

Paragon™ Users Guide Using Paragon™ OSF/1 Commands

In a partition that uses standard scheduling, each process has a priority, a number from -20 (high
priority) to 20 (low priority), that is used in determining how much processor time the process gets.

Partitions that use standard scheduling give good interactive performance for each individual
process in the partition. However, there is no guarantee that related processes are active at the same
time. This means that a process in a parallel application running in such a partition may find itself
waiting for a message from a process that is not active, which reduces the performance of the
application. To avoid this problem, you can use gang scheduling.

Gang Scheduling

Gang scheduling is a special scheduling technique that coordinates the scheduling of related
processes running on separate processors. Gang scheduling is typically used only in the compute
patrtition, or is not used at all (this is determined by your system administrator).

In a partition that uses gang scheduling, the nodes are scheduled so that all the processes in an
application are active at the same time. If there are multiple processes per node in the active
application, standard scheduling is used to schedule these processes against each other while the
application is active.

Partitions that use gang scheduling may contain subpartitions, and may overlap other partitions of
any type.

In a partition that uses gang scheduling, not only does each process have a priority, but there is a
separate priority for the application as a whole. An application’s priority is a number from O (low
priority) to 10 (high priority). A gang-scheduled partition also has a priority of its own, as well as
two other quantities called the effective priority limit and the rollin quantum:

e A pattition’s priority is the lower of the following:
- The priority of the highest-priority application or subpartition in the partition.
- The partition’s effective priority limit.

« A partition’s effective priority limit is a number from O to 10 that places an upper limit on the
partition’s priority. It does not affect the priorities of applications or partitions within the
partition.

» Apartition’s rollin quantum is the amount of time each application in the partition is allowed to
be active before the system considers running another application instead. The term “rollin
quantum” comes from the application being “rolled in” when it is made active, and “rolled out”
when it is made inactive.

A gang-scheduled partition’s effective priority limit and rollin quantum are set when the partition is
created, and do not vary unless you change them with the chpart command. A gang-scheduled
partition’s priority may vary over time, depending on the priorities of the applications and
subpartitions in the partition.

2-35

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

2-36

A partition that uses standard scheduling does not have an effective priority limit or rollin quantum.
It also does not have a numeric priority; instead, its priority is “infinite” (that is, higher than the
priority of any gang-scheduled partition or application).

Gang scheduling is performed recursively, partition by partition. For each gang-scheduled partition
in the system, starting with the root partition, the operating system examines all the entities
(applications and partitions) within the partition:

1. Entities that do not overlap other entities (that is, they have no nodes in common with any other
entity in the partition) are simply scheduled to run for the partition’s rollin quantum.

2. Where two or more entities overlap, the priorities of the overlapping entities are compared, and
the highest-priority entity is scheduled to run for the partition’s rollin quantum.

3. If two or more entities overlap and are tied for highest priority, they are scheduled in a
round-robin fashion (each takes turns running for one full rollin quantum).

4. If an entity that is scheduled to run is a partition, the operating system examines and schedules
the entities in the partition as described above. This process continues recursively as necessary.

At the end of each partition’s rollin quantum, the operating system examines and schedules the
entities in the partition again.

Note that rules 2 and 3 mean that, when applications or partitions overlap, the one with the highest
priority gets one rollin quantum after another until it completes. Entities with lower priorities get no
processor time at all until the higher-priority entity has completed. If there is a tie for highest priority,
the tied high-priority entities take turns running, but entities with lower priority get no processor time
until all the high-priority entities complete. Partitions that use standard scheduling always have the
highest priority, so if a standard-scheduled partition overlaps a gang-scheduled partition or an
application, the standard-scheduled partition always wins.

NOTE

Use of gang scheduling may be limited by the policies of your site.

Your system administrator can require all compute partitions to use space sharing. If gang
scheduling is allowed, the administrator can restrict the number of gang-scheduled partitions in the
system, can set a minimum rollin quantum, and can restrict the number of applications that can
overlap in each gang-scheduled partition. If you try to create a partition that would exceed these
restrictions, you see an error message such as “exceeded allocator configuration parameters” or
“scheduling parameters conflict with allocator configuration.” See your system administrator for
information on the policies in force at your site.

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

Space Sharing

Space sharing, also referred to as tiling, is a scheduling technique that prevents partitions and
applications from overlapping. (Overlapping means having any physical nodes in common.) Space
sharing is typically used in all partitions other than the service and compute partitions. If your system
administrator has disallowed gang scheduling, space sharing is used in all partitions other than the
service partition. Within a space-shared partition:

» Subpartitions may not overlap other subpartitions.
« Applications may not overlap other applications.
« Active subpartitions may not overlap applications.

An active subpartition is a subpartition in which one or more applications is running.

NOTE

If an application is running anywhere in a subpartition or any of its
sub-subpartitions—even on a single node— the entire subpartition
is considered active, and is not allowed to overlap with a running
application.

If a subpartition is not active (contains no running applications), it can overlap a running application,
but it cannot overlap another partition.

In a space-shared partition, any attempt to create a partition or run an application that would cause
an overlap fails immediately. However, once an application is successfully started, it continues
running without interruption until it completes. (Exception: if a space-shared partition overlaps with
another partition, the entire partition can be interrupted by applications running in that other
partition. This can only occur if the space-shared partition’s parent is a gang-scheduled partition.

Space sharing is the opposite of the “time sharing” used in standard scheduling and gang scheduling.
In time sharing, multiple applications can use the same nodes at the same time, but each application
gets only a fraction of its nodes’ processor time. In space sharing, no two applications can use a node
at the same time, but each application gets 100% of its nodes’ processor time.

Although space sharing allows only one application per node, you can have more than one process
per node within a single application. If there are multiple processes per node within an application,
standard scheduling is used to schedule these processes against each other on each node.

Partitions that use space sharing may contain subpartitions, which cannot overlap. The space-shared

partition itself can overlap another partition of any type, but the advantages of space sharing may be
lost if space-shared partitions overlap with other partitions.

2-37

Using Paragon™ OSF/1 Commands

Paragon™ User's Guide

Like gang-scheduled partitions, space-shared partitions have a priority and an effective priority

limit. Each application within a space-shared partition has a priority from O to 10, and the partition’s
priority is the lesser of the effective priority limit and the highest application priority in the partition.
Since applications in space-scheduled partitions never overlap, their priorities are never compared
with each other. However, the priorities of applications in a space-scheduled partition are important

because they determine the partition’s priority when compared with other partitions at its own
hierarchical level.

Unlike gang-scheduled partitions, space-shared partitions do not have a rollin quantum (since
applications never overlap, they never have to be rolled in or out). In effect, the rollin quantum of a
space-shared partition is “infinite.”

Summary of Scheduling Types

Table 2-1 summarizes the differences between the three scheduling types.

Table 2-1. Summary of Scheduling Types

Characteristic Standard Scheduling Gang Scheduling Space Sharing
Scheduling method used | Each process is scheduled | All processes in an All processes in an
within partition by itself using standard application run at the application run at the

UNIX techniques same time; applications | same time; each
may be rolled in and out application runs until it
completes
Partitions that typically | Service partition Compute partition, or All other partitions
use this scheduling type none at all
Restrictions on partition | Partition may not overlap | Partition may overlap Partition may overlap
overlap other standard-scheduled | other partitions other partitions (but
partitions overlap can lose benefits
of space sharing)
Restrictions on Subpartitions are not Subpartitions may Subpartitions may not
subpartition overlap allowed overlap; maximum depth | overlap other
of overlap can be subpartitions; active
restricted by system subpartitions may not
administrator overlap applications
Restrictions on Applications may overlap | Applicationsmayoverlap; | Applications may not
application overlap to any depth maximum depth of overlap other applications
overlap can be restricted or active subpartitions
by system administrator
Special partition Partition priority Partition priority, Partition priority,
characteristics (always “infinite”) effective priority limit, effective priority limit
rollin quantum

2-38

Paragon™ Users Guide Using Paragon™ OSF/1 Commands

A Scheduling Example

Suppose that a partition has 10 nodes, and an application is currently running on 5 of those nodes. If
you attempt to run a new application on 6 nodes of that partition, the results depend on the partition’s
scheduling type:

« If the partition uses standard scheduling, both applications run at once. Where the applications
overlap, the two applications’ processes time-share the node. No attempt is made to coordinate
when the processes are active with the rest of the application.

« If the partition uses gang scheduling, the two applications’ priorities are compared:

- If the new application’s priority is greater than the old application’s, the entire old
application is immediately rolled out and the new application starts running. The new
application runs until it finishes, then the old application is rolled back in.

- Ifthe new application’s priority is less than the old application’s, the entire new application
waits until the old application finishes. (During this time it may appear to be “hung.”) When
the old application finishes, the new application is rolled in and runs until it finishes.

- Ifthe two applications’ priorities are equal, the applications alternate running on each rollin
quantum. If one application finishes first, the other runs in every rollin quantum until it
finishes.

« If the partition uses space sharing, the new application fails with the error message “request
overlaps with nodes in use” and does not run.

You can use the pspart command to determine which applications are currently running in a

partition and what their priorities are, and you can use the command showpart -f to determine which
nodes in a partition have applications running on them.

Making Partitions

Command Synopsis Description

mkpart [-sz size | -sz hXw | -nd nodespec] Create a partition.
[-ssI[[-sps|-rq time][-eplpriority]]]
[-mod mode] name

To create a partition, use the mkpart command. You can specify either a relative or an absolute
partition pathname for the new partition. The specified new partition must not exist; the parent
partition of the new partition must exist and must grant you write permission.

2-39

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

For example, to create a partition called mypart whose parent partition is the compute partition, you
can use the following command:

$ mkpart mypart
The following command has the same effect, but uses an absolute partition pathname:

$ mkpart .compute.mypart

Specifying the Nodes Allocated to the Partition

The mkpart command gives you three ways to specify which nodes are allocated to the new
partition:

-SZ size Creates a partition whose size (number of nodes) is size. The -sz size switch
attempts to create a square partition if it can. If this is not possible, it attempts
to create a rectangular partition that is either twice as.wide as it is high or
twice as high as it is wide. If this is not possible, it uses any available nodes.
In this case, the nodes allocated to the partition may not be contiguous.

-5z hXw Creates a contiguous rectangular partition that is 2 nodes high and w nodes
wide. (You can use an uppercase or lowercase letter X between the integers h
and w.)

-nd nodespec Creates a partition that consists of exactly the specified nodes, where
nodespec is one of the following:

x The node whose node number is x.
Xooy The range of nodes from numbers x to y.
hXw:n The rectangular group of nodes that is 4 nodes high

and w nodes wide and whose upper left corner is node
number n. (You can use an uppercase or lowercase
letter X between the integers 7 and w.)

nspecl,nspec]... The specified list of nodes, where each nspec is a node
specifier of the form x, x..y, or AXw:n (no node may
appear more than once in this list). Do not put any
spaces in this list.

The numbers you use with -nd are node numbers within the parent partition,
which always range from O to one less than the size of the partition.

If you don’t use the -sz or -nd switch, all the nodes of the parent partition are allocated to the new
partition. You can use at most one -sz or -nd switch in a single mkpart command.

240

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

The following examples all create a 50-node partition called mypart whose parent partition is the
compute partition (that is, the new partition’s absolute partition pathname is .compute.mypart):

« This command creates a 50-node partition with no specified shape or location:
% mkpart -sz 50 mypart

The nodes of the new partition are selected from the parent partition by the system, and they
may not be contiguous.

« This command creates a partition 10 nodes high and 5 nodes wide:
$ mkpart -sz 10x5 mypart

The position of the new partition within the parent partition is selected by the system, but the
new partition is a contiguous rectangle.

» This command creates a partition 10 nodes high and 5 nodes wide located in the upper left
comer of the parent partition:

$ mkpart -nd 10X5:0 mypart

The shape and position of the new partition are specified by the user, and the new partition is a
contiguous rectangle.

« This command creates a partition that consists of nodes 30 through 79 of the parent partition:
$ mkpart -nd 30..79 mypart

The specific nodes of the partition are specified by the user, and the new partition may or may
not be contiguous (its shape depends on the size and shape of the compute partition).

« This command creates a partition that consists of node O, nodes 3 through 16, and a S by 7 node
rectangle located at node 21 of the parent partition:

% mkpart -nd 0,3..16,5X7:21 mypart

The specific nodes of the partition are specified by the user, and the new partition is not
contiguous (its shape depends on the size and shape of the compute partition).

2-41

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

2-42

No matter how you specify the partition’s size, nodes are always numbered from O to one less than
the partition’s size. In most cases, they are numbered from left to right and then top to bottom, as
discussed under “Nodes Allocated to the Partition” on page 2-30. However, if you use the -nd
switch, the nodes in the new partition are numbered in the order you specified them in the -nd switch.
For example, the following command creates a partition that consists of nodes 30 through 79 of the
compute partition:

$ mkpart -nd 79..30 mypart
In this case, node 79 of the parent partition is node O of the new partition; node 78 of the parent

partition is node 1 of the new partition; and so on to node 30 of the parent partition, which is node
49 of the new partition.

Specifying Protection Modes
The mkpart command gives you two ways to specify the protection modes of the new partition:

-mod nnn Creates a partition whose protection modes are specified by the three-digit
octal number nnn, as used by the chmod command (see chmod in the OSF/1
Command Reference for more information).

-mod string Creates a partition whose protection modes are specified by the
nine-character string string. The string must have the form rwxrwxrwx,
where a letter (x, w, or x) represents a permission granted and a dash (-)
represents a permission denied, as displayed by the command Is -1 (see Is in
the OSF/1 Command Reference for more information).

You can use at most one -mod switch in a single mkpart command. If you don’t use the -mod
switch, the new partition is given the same protection modes as its parent partition.

For example, the following command creates a partition that is readable, writable, and executable by
you; readable and executable by your group, and only readable by others:

% mkpart -mod rwxr-xr-- mypart
The following command has the same effect, but uses an octal number:

% mkpart -mod 754 mypart

Paragon™ User's Guide

Using Paragon™ OSF/1 Commands

Specifying Scheduling Characteristics

The mkpart command gives you three switches to specify the scheduling characteristics of the new

partition:

=SS

-rq time

Creates a partition that uses standard scheduling.
-ss cannot be used with -sps, -rq or -epl.

Creates a partition that uses gang scheduling with a rollin quantum of time,
where time is one of the following:

n n milliseconds (if # is not a multiple of 100, it is
silently rounded up to the next multiple of 100).

ns n seconds.

nm n minutes.

rnh n hours.

0 “Infinite” time: once rolled in, an application runs until
it exits.

The maximum rollin quantum is 24 hours; the minimum rollin quantum for
your system is determined by your system administrator.

-rq cannot be used with -ss or -sps. -rq can be used with or without -epl; if
you use -rq without -epl, the new partition is a gang-scheduled partition with
the same effective priority limit as its parent partition.

If gané-sclwduled partitions are not allowed at your site, or creating a
gang-scheduled partition would exceed the maximum number of
gang-scheduled partitions, any attempt to create a partition with -rq fails.
Creates a partition that uses space sharing.

-sps cannot be used with -ss or -rq. -sps can be used with or without -epl; if

you use -sps without -epl, the new partition is a space-shared partition with
the same effective priority limit as its parent partition.

2-43

Using Paragon™ OSF/1 Commands , Paragon™ User's Guide

2-44

-epl priority Creates a partition with an effective priority limit of priority, where priority
is an integer from O to 10 inclusive (O is low priority, 10 is high priority).

-epl cannot be used together with -ss. If you use -epl without either -sps or
-rq, the results depend on the scheduling type of the parent partition:

» If the parent partition is a space-shared partition, the new partition is a
space-shared partition with the specified effective priority limit.

« If the parent partition is a gang-scheduled partition, the new partition is
a gang-scheduled partition with the specified effective priority limit and
the same rollin quantum as its parent. If this would exceed the maximum
number of gang-scheduled partitions, the new partition is a space-shared
partition instead. .

If you don’t use the -ss, -rq, or -sps switch, the new partition uses the same scheduling technique,
rollin quantum, and effective priority limit as its parent partition.

For example, the following command creates a partition that uses standard scheduling:
$ mkpart -ss mypart

The following command creates a partition ﬁlat uses gang scheduling with a rollin quantum of 10
seconds and the same effective priority limit as its parent partition:

% mkpart -rq 10s mypart

The following command creates a partition that uses space sharing with the same effective priority
limit as its parent partition:

$ mkpart -sps mypart

The following command creates a partition that uses gang scheduling with a rollin quantum of 5
minutes and an effective priority limit of 6:

% mkpart -rq 5m -epl 6 mypart

Paragon™ Users Guide Using Paragon™ OSF/1 Commands

Removing Partitions

Command Synopsis Description

rmpart [-f] [-r] partition Remove a partition.

To remove an existing partition, use the rmpart command. You must have write permission on the
parent partition of the partition to be removed. You can specify the partition to be removed with
either a relative or an absolute partition pathname.

For example, to remove the partition called mypart, whose parent partition is the compute partition,
you can use the following command:

$ rmpart mypart
The following command has the same effect, but uses an absolute partition pathname:

$ rmpart . compu te.mypart

Removing Partitions Containing Running Applications

If you specify a partition that contains any running applications, you see an error message and the
partition is not removed. You can force rmpart to remove a partition that contains running
applications with the -f switch. When you use the -f switch, rmpart terminates all the applications
running in the specified partition and then removes it.

For example, if there are applications running in mypart, use the following command to terminate
the applications and remove the partition:

% rmpart -f mypart

Removing Partitions Containing Subpartitions

If you specify a partition that contains any subpartitions, you see an error message and the partition
is not removed. You can force rmpart to remove a partition that contains subpartitions with the -r
switch. When you use the -r switch, rmpart recursively removes all the subpartitions in the

specified partition (and their sub-subpartitions, and so on) and then removes the specified partition.

2-45

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

For example, if there are subpartitions in mypart, use the following command to remove mypart and

all its subpartitions:
$ rmpart -r mypart

rmpart -r is an “all or nothing” operation. If any subpartitions cannot be removed, the command
fails and no subpartitions are removed.

The -r switch does not imply -f. If mypart or any of its subpartitions contains any running
applications, you see an error message and none of the partitions are removed. You can force rmpart
to remove a partition that contains subpartitions and running applications by using the -r and -f
switches together. When you use both these switches, rmpart terminates all the applications running
in the specified partition and its subpartitions, removes all the subpartitions in the specified partition,
and then removes the specified partition.

Showing Partition Characteristics

246

Command Synopsis Description

showpart [-f] [partition] Show the characteristics of a partition.

To show the characteristics of a partition, use the showpart command. You can specify the partition
with either a relative or an absolute partition pathname. If you don’t specify a partition, showpart
shows the characteristics of your default partition (see “Using the Default Partition” on page 2-14).
In either case, you must have read permission on the specified partition.

For example, to show the characteristics of the partition called mypart, whose parent partition is the
compute partition, you can use the following command:

% showpart mypart

USER GROUP ACCESS SIZE FREE RQ EPL
smith eng 777 9 5 15m 5
R +
o]|
4] . * * % |
8] . * * x |
12] . % * % |
+-----mo - +

The following command has the same effect, but uses an absolute partition pathname:

% showpart .compute.mypart

Paragon” User's Guide

Using Paragon™ OSF/1 Commands

The columns at the top of the showpart output have the following meanings:

USER

GROUP

ACCESS

SIZE

FREE

RO

EPL

The owner of the partition, in this case smith.
The group of the partition, in this case eng.

The access permissions, expressed as an octal number, in this case 777 (which
represents the permissions rwxrwxrwx).

The number of nodes in the partition, in this case 9.

The number of free nodes in the partition, in this case 5 (see “Showing Free
Nodes” on page 2-48 for more information on free nodes).

The rollin quantum or scheduling type of the partition, as follows:

- The partition uses standard scheduling.
SPS The partition uses space sharing.
time The partition uses gang scheduling with a rollin

quantum of time. The time is expressed as a number
followed by an optional letter: no letter for
milliseconds, s for seconds, m for minutes, or h for
hours.

In this case, the partition is a gang-scheduled partition with a rollin quantum
of 15 minutes.

The effective priority limit of the partition, in this case 5, or a dash (-) for a
standard-scheduled partition.

See “Partition Characteristics” on page 2-29 for information on these partition characteristics.

The rectangular picture at the bottom of the showpart output shows the size, shape, and position of
the specified partition within the system:

« The large rectangle represents the root partition. In this case, the root partition is 4 nodes high
and 4 nodes wide.

« The numbers to the left of the rectangle show the node numbers of the nodes in the first column
of each row. In this case, the first node in the top row is node 0, the first node in the second row
is node 4, the first node in the third row is node 8, and the first node in the bottom row is node 12.

2-47

Using Paragon™ OSF/1 Commands ' ‘Paragon™ User's Guide

2-48

» Asterisks (*) within the rectangle represent nodes that are allocated to the specified partition;

periods (.) represent other nodes. In this case, mypart consists of nodes 5-7, 9-11, and 13-15
of the root partition.

« If yousee adash(-) or an X within the rectangle, it represents an unusable node that is allocated
to the specified partition. You cannot run any applications or allocate any partitions using this
node. See “Unusable Nodes” on page 2-31 for more information.

Showing Free Nodes

The output of Ispart or showpart includes the number of free nodes in the FREE column. A node
is free if no application is running on that node and no subpartition in which any applications are
running includes that node. (Note that all the nodes of a subpartition are considered busy if an
application is running anywhere in the subpartition, or in any of its sub-subpartitions. This occurs
because partitions are scheduled recursively.)

You can use the -f switch of showpart to see which nodes are free. The output of showpart -fis the
same as the regular showpart output, except that free nodes are shown as an F instead of an asterisk.

For example, to show the free nodes in the partition called mypart, whose parent partition is the
compute partition, you can use the following command:

% showpart -f mypart

USER GROUP ACCESS SIZE FREE RQ @ EPL
smith eng 777 9 5 15m 5
e +
0] . .
4| . * * x|
8] . * FF |
12 . FF F |
LR LR +

In this case, mypart has five free nodes: nodes 4, 5, 6, 7, and 8 of the partition.

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

Listing Subpartitions

Command Synopsis Description
Ispart [-r] [partition] List the subpartitions of a partition.

To list the subpartitions of a partition with their characteristics, use the Ispart command. You can
specify the partition with either a relative or an absolute partition pathname. If you don’t specify a
partition, Ispart lists the subpartitions of your default partition (see “Using the Default Partition” on
page 2-14). In either case, you must have read permission on the specified partition.

For example, to list the subpartitions of the partition called mypart, whose parent partition is the
compute partition, you can use the following command:

$ lspart mypart

USER GROUP ACCESS SIZE FREE RQ EPL. PARTITION
chris eng 777 16 4 15m 3 mandelbrot
chris eng 777 16 16 - - debug
pat mrkt 755 4 0 SPS 10 slalom

* * * * * * * pr ivate

The following command has the same effect, but uses an absolute partition pathname:
$ lspart .compute.mypart

The columns in the output of Ispart are the same as the top part of the output of showpart (see
“Showing Partition Characteristics” on page 2-46), with the addition of the partition name. In this
case, mypart has four subpartitions: mandelbrot, debug, slalom, and private.

» mandelbrot is owned by user chris in group eng; it has permissions rwxrwxrwx and a size of
16 nodes, of which 4 are free (see “Showing Free Nodes” on page 2-48 for more information on
free nodes). It is a gang-scheduled partition with a rollin quantum of 15 minutes and an effective
priority limit of 3.

» debug is also owned by user chris in group eng; it has permissions rwxrwxrwx and a size of
16 nodes, of which all 16 are free. It is a standard-scheduled partition, so it has no rollin quantum
or effective priority limit.

slalom is owned by user pat in group mrkt; it has permissions rwxr-xr-x and a size of 4
nodes, of which none are free. It is a space-shared partition with an effective priority limit of 10,

» private’s access permissions do not grant you read permission, so all its characteristics are
shown as asterisks (*).

2-49

Using Paragon™ OSF/1 Commands

2-50

Paragon™ User's Guide

If you see two numbers separated by a slash in the SIZE column, it indicates that one or more of the -
nodes allocated to the indicated partition is unusable. For example: ~

$ lspart mypart
USER GROUP ACCESS SIZE FREE RQ EPL PARTITION
chris eng 777 14 / 16 10 15m 3 mandelbrot
This indicates that there are 16 nodes allocated to mandelbrot, but 2 of them are currently unusable.

You cannot run any applications or allocate any partitions using unusable nodes. See “Unusable
Nodes” on page 2-31 for more information.

Recursively Listing Subpartitions

To recursively list all of a partition’s subpartitions, sub-subpartitions, and so on, use the -r switch.
For example:

% lspart -r mypart

USER GROUP ACCESS SIZE FREE RQ EPL PARTITION
.compute.mypart:

chris eng 777 16 4 15m 3 mandelbrot

chris eng 777 16 16 - - debug

pat mrkt 755 4 0 SPS 10 slalom

* * * * * * * Private
.compute.mypart.mandelbrot:

chris eng 777 16 16 15m 10 hi_pri

chris eng 777 16 16 15m 1 lo_pri

The Ispart -r output reveals that mypart.mandelbrot has two subpartitions, hi_pri and lo_pri, neither
of which has any sub-subpartitions, and that slalom and debug have no subpartitions. No information
is available on the subpartitions of private (if any), because private does not grant you read
permission.

NOTE

If you specify a partition that has no subpartitions, Ispart produces
no output.

For example, since mypart.slalom has no subpartitions, an Ispart command on this partition gives
no output:

% lspart mypart.slalom
$

To get information about mypart.slalom itself, use the showpart command.

Paragon™ User's Guide Using Paragon™ OSF/1 Commands

Listing the Applications in a Partition

Command Synopsis Description

pspart [-r] [partition] List the applications in a partition.

To list the applications in a partition, with information about the rollin/rollout status of each, use the
pspart command. You can specify the partition with either a relative or an absolute partition
pathname. If you don’t specify a partition, pspart lists the applications in your default partition (see
“Using the Default Partition” on page 2-14). In either case, you must have read permission on the
specified partition.

For example, to list the applications in the partition mypart, whose parent partition is the compute
partition, you can use the following command:

% pspart mypart

PGID
12345
23456
34567

USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND

pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
chris 67 4 Jan 21 - - 0:12.30 boggle
smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft

The following command has the same effect, but uses an absolute partition pathname:
% pspart .compute.mypart
The columns in the output of pspart have the following meanings:

PGID The process group ID of the application (see “Process Groups” on page 4-22
for more information).

The process group ID of an application is always the same as the process ID
of the application’s controlling process. This means that you can use this
number with the kill command to kill the application; for example, given the
pspart output above, the command kill 34567 would kill the application

myfft.
USER The login name of the user who invoked the application.
SIZE The number of nodes allocated to the application from the partition (see

“Specifying Application Size” on page 2-15 for more information).

PRI The application’s priority (see “Specifying Application Priority” on page
2-17 for more information).

START The time the application was started. If the application was started more than
24 hours ago, the date it was started is shown instead.

2-51

Using Paragon™ OSF/1 Commands Paragon™ User's Guide

TIME ACTIVE The amount of time the application has been active (rolled in) in the current
rollin quantum (see “Gang Scheduling” on page 2-35 for more information).
The time active is shown both as an absolute time (in the format
minutes : seconds . milliseconds for times less than one minute or
hours : minutes : seconds for times of one minute or more) and as a percentage
of the partition’s rollin quantum. If the application is not active in the current
rollin quantum, a dash (-) is shown for both quantities. If the partition uses
space sharing, the time shown is the total amount of time the application has
been running and the percentage is always 100%.

In the example above, the partition mypart is a gang-scheduled partition with
arollin quantum of one minute. The application mag has been active for 45
seconds, or 75% of the rollin quantum; the application boggle is not currently
active; and the application myfft has been active for one minute, or 100% of
the rollin quantum.

TOTAL TIME The total amount of time the application has been rolled in since it was
started, in the format minutes : seconds . milliseconds or
hours : minutes : seconds. If the partition uses space sharing, the TOTAL
TIME is always the same as the TIME ACTIVE.

In the example above, the application mag has been active for a total of 4
minutes and 41 seconds; the application boggle has been active for a total of
12.30 seconds; and the application myfft has been active for a total of 2 hours,
12 minutes, and 3 seconds.

COMMAND The command line by which the application was invoked.

Applications in Subpartitions

If there are any applications running in subpartitions of the specified partition, the subpartitions
appear in the output of pspart as follows:

% pspart mypart

PGID USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
12345 pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
23456 chris 67 4 Jan 21 - - 0:12.30 boggle
34567 smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft
Active Partitions
OWNER GROUP SIZE PRI START TIME ACTIVE TOTAL TIME NAME
smith eng 64 6 09:16:30 - - 1:18.10 subpart

2-52

Paragon™ Users Guide

Using Paragon™ OSF/1 Commands

The columns for the list of active partitions have the following meanings:

OWNER

GROUP

SIZE

PRI

START

TIME ACTIVE

TOTAL TIME

NAME

The owner of the subpartition.

The group of the subpartition.

The size of the subpartition (note that all nodes of a subpartition containing
an active application are considered active, even if not all the nodes in the
subpartition are actually in use by applications).

The current priority of the subpartition (this is the highest priority of all the
applications in the subpartition or the subpartition’s effective priority limit,
whichever is lower).

The time or date when the oldest application in the subpartition was started.

The amount of time the subpartition has been active (rolled in) in the current -
rollin quantum.

The total amount of time the subpartition has been rolled in since it was
started.

The name of the subpartition.

See “Scheduling Characteristics” on page 2-33 for more information on how subpartitions are

scheduled.

2-53

Using Paragon™ OSF/1 Commands

Paragon™ User’s Guide

Recursively Listing Applications in Subpartitions

If there are applications running in a subpartition, the output of pspart normally shows only that the
subpartition is active. To list the applications in subpartitions (and, recursively, in sub-subpartitions
and so on), use the -r switch. For example:

% pspart -r mypart

mypart:

PGID USER SIZE PRI START TIME ACTIVE TOTAL TIME COMMAND
12345 pat 256 5 11:42:20 45.00 75% 0:04:41 mag -sz 256
23456 chris 67 4 Jan 21 - - 0:12.30 boggle
34567 smith 192 10 02:21:51 0:01:00 100% 2:12:03 myfft

Active Partitions
OWNER GROUP SIZE PRI START TIME ACTIVE TOTAL TIME NAME
smith eng 64 6 09:16:30 - - 1:18.10 subpart

mypart.subpart:

PGID USER
smith 56 7

45678

TOTAL TIME COMMAND
1:18.10 span

SIZE PRI START TIME ACTIVE
09:16:30 - -

In this case, the -r switch shows that the subpartition subpart has one application, span, which is
running on 56 nodes of the subpartition. (Note that even though the application is not running on
every node of the subpartition, whenever the application is rolled in the entire subpartition is rolled
in. This occurs because subpartitions are scheduled recursively, as discussed under “Gang
Scheduling” on page 2-35.)

Changing Partition Characteristics

2-54

Command Synopsis Description

chpart [-rq time | -sps] [-epl priority] Change certain partition characteristics.
[-nm name] [-mod mode]

[-g group 1[-0 owner| . group]]

partition

To change the characteristics of a partition, use the chpart command. The permissions required
depend on the switches you use. You can specify the partition with either a relative or an absolute
partition pathname.

Paragon™ Users Guide Using Paragon™ OSF/1 Commands

chpart can change the following partition characteristics:
» Rollin quantum.

« Effective priority limit.

« Partition name.

» Protection modes.

* Owner and group.

+ Scheduling type (space-shared to gang-scheduled, or gang-scheduled to space-shared with
certain limitations; a partition cannot be changed to or from standard scheduling).

A partition’s size and parent partition are determined when the partition is created and cannot be
changed.

The switches of chpart, which can be used together or separately and in any order (except as noted
below), are similar to the corresponding switches of mkpart:

-rq time Changes the partition to a gang-scheduled partition with a rollin quantum of
time, where time is one of the following:

n n milliseconds (if » is not a multiple of 100, it is
rounded up to the next multiple of 100).

ns n seconds.

nm n minutes.

nh n hours.

0 “Infinite” time: once rolled in, an application runs until
it exits.

The maximum rollin quantum is 24 hours; the minimum rollin quantum for
your system is determined by your system administrator.

-rq can be used only on a gang-scheduled or space-shared partition, and

cannot be used together with -sps. To use -rq, you must have write
permission on the specified partition.

2-55

Using Paragon™ OSF/1 Commands

-Sps

-epl priority

=nm name

-mod nnn

-mod string

=g group

Paragon™ Users Guide

Changes the partition to a space-shared partition.

-sps can be used only on a space-shared or gang-scheduled partition, and
cannot be used together with -rq. If the partition is currently gang-scheduled,
it must not contain any overlapping subpartitions or any applications. To use
-Sps, you must have write permission on the specified partition.

Changes the partition’s effective priority limit to priority, where priorityis an
integer from O to 10 inclusive.

-epl can be used only on a gang-scheduled or space-shared partition. To use
-epl, you must have write permission on the specified partition.

Changes the partition’s name to name, where name is a valid partition name
(a string of any length containing only uppercase letters, lowercase letters,
digits, and underscores). To use -nm, you must have write permission on the
parent partition of the specified partition.

Note that -nm can only change the partition’s name “in place;” there is no
way to move a partition to a different parent partition.

Changes the partition’s protection modes to the value specified by the
three-digit octal number nnn. To use -mod, you must be the owner of the
specified partition or the system administrator.

Changes the partition’s protection modes to the value specified by the
nine-character string string. The string must have the form rwxrwxrwx,
where a letter (x, w, or x) represents a permission granted and a dash (-)
represents a permission denied. To use -mod, you must be the owner of the
specified partition or the system administrator.

Changes the partition’s group to group. The group can be either a group name
or a numeric group ID. To use -g, you must be the owner of the specified
partition and a member of the specified new group, or you must be the system
administrator.

-0 owner] . group] Changes the partition’s owner to owner. If . group is specified, also changes

2-56

the partition’s group to group. The owner and group can be either user/group
names or numeric user/group IDs. To use -0, you must be the system
administrator.

Paragon”™ User's Guide Using Paragon™ OSF/1 Commands

For example, the following command changes the rollin quantum of mypart to 20 minutes:
$ chpart -rqg 20m mypart

The following command changes mypart to a space-shared partition:
% chpart -sps mypart

The following command changes the effective priority of mypart to 2:
$ chpart -epl 2 mypart

The following command changes the protection modes of mypart so that it is readable, writable, and
executable by the owner but not by anyone else:

$ chpart -mod rwx------ mypart

The following command has the same effect as the previous three commands combined, but uses an
absolute partition pathname and an octal protection mode specifier:

% chpart -epl 2 -rq 20m -mod 700 .compute.mypart
The following command changes the owner of mypart to smith, but does not affect its group:
% chpart -o smith mypart
The following command changes the group of mypart to support, but does not affect its ownership:
% chpart -g support mypart
The following command changes the owner of mypart to smith and the group to support:
% chpart -o smith.support mypart
The following command changes the name of mypart to newpart.
% chpart -nm newpart mypart

The following command also changes the name of mypart to newpart, but uses an absolute partition
pathname:

% chpart -nm newpart .compute.mypart

Note that the new name is specified as a name only, not a pathname.

2-57

Using Paragon™ OSF/1 Commands Paragon™ User’s Guide

2-58

Using Paragon’ OSF/1
Message-Passing System Calls

Introduction

Message passing is the standard means of communication among processes in Paragon OSF/1. As
independent processor/memory pairs, the nodes do not share physical memory. If the node processes
need to share information, they can do so by passing messages. The calls described in this chapter
let your programs send and receive messages.

This chapter introduces the Paragon OSF/1 message-passing system calls. It includes the following
sections:

« Process characteristics.

* Message characteristics.

» Names of send and receive calls.

» Synchronous send and receive.

e Asynchronous send and receive.

« Probing for pending messages.

» Getting information about pending or received messages.
¢ Message passing with Fortran commons.

« Treating a message as an interrupt.

« Extended receive and probe.

» Global operations.

31

Using Paragon™ OSF/1 Message-Passing System Calls Paragon™ User's Guide

3-2

Within each section, the calls are discussed in order of increasing complexity. That is, the “base”
calls are discussed first, and the “extended” calls are discussed later.

Each section includes numerous examples in both C and Fortran. A call description at the beginning
of each section or subsection gives a language-independent synopsis (call name, parameter names,
and brief description) of each call discussed in that section. Differences between C and Fortran are
noted where applicable. See Appendix A for information on call and parameter types; see the
Paragon™ C System Calls Reference Manual or the Paragon' Fortran System Calls Reference
Manual for complete information on each call. :

This chapter does not describe all the Paragon OSF/1 system calls. For information about system
calls that provide general services other than message passing, see Chapter 4. For information about
the calls used with the Parallel File System, see Chapter 5. For information about the calls used with
graphical interfaces, such as DGL and the X Window System, see the Paragon = Graphics Libraries
User’ s Guide. For information about the system calls that require root privileges, see the ParagonTM
System Administrator’ s Guide.

Paragon OSF/1 programs written in C can also issue OSF/1 system calls. The Paragon OSF/1
operating system is a complete OSF/1 system and fully supports all the standard OSF/1 system calls.
See the OSF/1 Programmer’s Reference for information on these calls.

Paragon OSF/1 programs written in Fortran cannot make OSF/1 system calls directly, but the
Fortran runtime library includes a number of system interface routines. These routines make a
number of OSF/1 system calls available to Fortran programs. See the Paragon™ Fortran Compiler
User’s Guide for information on these routines.

Paragon™ Users Guide Using Paragon™ OSF/1 Message-Passing System Calls

Process Characteristics

Each process within an application is identified by its node number and process type. A process must
have a valid node number and process type to send and receive messages.

Node Numbers

Synopsis Description

mynode() Obtain the calling process’s node number.

numnodes() Obtain the number of nodes allocated to the
current application.

A process’s node number is an integer that identifies the node on which it is running. Node numbers -
are assigned by the system, and range from zero to one less than the number of nodes in the
application. A process can find out its node number by calling mynode(); the node number does not
change for the life of the process. A process can also find out the number of nodes in the application
by calling numnodes(); the maximum node number in the application is numnodes() - 1.

When you run an application that was linked with the -nx switch, the system creates one process on
eachnode of the default partition (unless you specify otherwise on the application’s command line).
Each process is the same as the others except for its node number, which is different in each process.

All message-sending system calls have a node parameter that specifies the node to which the
message is sent. You can use any valid node number, or the special value -1 to send the message to
all nodes in the application except the sending node itself.

Some message-receiving system calls have a nodesel parameter that specifies the node from which
the message was sent. A nodesel parameter can be a valid node number (to receive only messages
from that node), or the special value -1 (to receive messages from any node). Message-receiving
system calls that do not have a nodesel parameter always receive messages from any node.

The node numbers used in message-passing calls are always node numbers within the application,
not physical slot numbers or node numbers within the partition in which the application is running.
For example, if you run an application on 30 nodes of a 64-node partition by using the switch -sz 30,
the node numbers within the application will always be 0 through 29. However, those nodes might
not be nodes O through 29 of the partition. They might be nodes O through 29, or 10 through 39, or
a completely arbitrary set of nodes.

Using Paragon™ OSF/1 Message-Passing System Calls Paragon™ User's Guide

Process Types
Synopsis Description
myptype() Obtain the calling process’s process type.
setptype(ptype) Set the calling process’s process type (only

permitted if the process type is currently
INVALID_PTYPE).

A process’s process type, or ptype, is an integer that distinguishes the process from other processes
in the same application running on the same node. Process types are assigned by the user, and can
be any integer from O to 2,147,483,647 (23! — 1) inclusive. A process can find out its process type
by calling myptype(). A process cannot change its process type once it has been set to a valid value.

When you run an application that was linked with -nx, the system sets the process type of all
processes in the application to the value you specify with the -pt switch on the application’s
command line (default 0).

All message-sending system calls have a prype parameter that specifies the process type to which the
message is sent. You must specify the process type; you cannot use -1.

Some message-receiving system calls have a ptypesel parameter that specifies the process type from
which the message was sent. A prypesel parameter can be a valid process type (to receive only
messages from that process type), or the special value -1 (to receive messages from any process
type). Message-receiving system calls that do not have a ptypesel parameter always receive
messages from any process type.

Certain system calls that involve all the nodes in the application, called global operations, require
that every node in the application has one process with the same process type. All these processes
must call the global operation before the application can proceed.

Within a single application, multiple processes running on the same node must have different
process types. However, processes on different nodes may (and usually do) have the same process
type. Two processes running on a single node may have the same process type only if they belong
to different applications.

NOTE

The -pt switch (or, if not specified, the default process type of 0)
applies only to the process type of the initial processes created by
running the application.

Paragon™ User's Guide Using Paragon™ OSF/1 Message-Passing System Calis

If an application creates additional processes after it starts up, and no process type is specified for
the new process, the new process’s process type is set to the special value INVALID_PTYPE (a
negative constant defined in the header file nx.h). A process whose process type is
INVALID_PTYPE cannot send or receive messages. It must use the system call setptype() to set
its process type to a valid value before it can send or receive any messages. (This is the only valid

use of setptype().)

The Paragon OSF/1 system calls that create node processes (nx_nfork(), nx_load(), and
nx_loadve()) have a prype parameter that specifies the process type of the newly-created processes.
However, the standard OSF/1 system call fork(), which creates a new process on the same node as
the process that calls it, does not provide any way to specify the new process’s process type. This
means that the process type of a process created by fork() is set to INVALID_PTYPE. The new
process must call setptype() before it can send or receive messages. The specified process type must
be different from the parent’s, and different from the process type of any other process in the same
application on the same node.

A process’s process type is inherited across an exec(). This means that if you do a fork() followed
by an exec(), you can call setptype() either before or after the exec(). However, the setptype() must -
follow the fork(). g

Once a process has used a process type, that process type is associated with the process for the life
of the application. No other process on the same node in the same application can ever use that
process type, even if the original process terminates.

If a process has multiple pthreads, all the pthreads in the process have the same process type. See
Chapter 6 for information on pthreads.

Message Characteristics

Messages are characterized by a length, a type, and sometimes an ID. These characteristics are set
when the message is sent, and do not change for the life of the message.

Message Length

The length of a message is the number of bytes of information contained in the message. Messages
in Paragon OSF/1 can be of any length.

All message-passing system calls have a count parameter that specifies the length of the message to
be sent or received. The length you specify must be less than or equal to the size in bytes of the buffer
used in the call. Message-sending calls read exactly that number of bytes from the buffer and send
them as a message; message-receiving calls generate an error if a message is received that is larger
than the specified length.

3-5

Using Paragon™ OSF/1 Message-Passing System Calls . Paragon™ User's Guide

If you program in C, when you send a message you can use the sizeof operator to determine the size
of your message in bytes. If you program in Fortran, you will need to add up the sizes of all the data
elements within the message; see the Paragonm Fortran Compiler User’s Guide for information on
the default size of each data type. If you pass named common blocks as messages, you may also have
to include the space taken up by padding within the common block, as discussed under “Message
Passing with Fortran Commons” on page 3-17.

You can also send and receive zero-length messages. This is useful if the message type is sufficient,
and there is no need to supply any message content. For example, one process could tell another
process to start or stop doing something by sending a zero-length message of type 1 to start, or a
zero-length message of type 2 to stop.

Message Type
The type of a message is an integer whose meaning is determined by the programmer.

All message-sending system calls have a type parameter that specifies the type of the message sent.
You can use any integer from 0 to 999,999,999 (inclusive) as a message type.

All message-receiving system calls have a rypesel parameter that specifies the type (or types) of
messages the call will receive. A typesel parameter can be an integer from O to 999,999,999 (to
receive only messages of the specified type) or the special value -1 (to receive messages of any type).

There are also special message types outside the range 0 to 999,999,999, called force types and
typesel masks, that you can use. Sending with a force type sends a message that uses a limited flow
control technique; receiving with a typesel mask receives messages of a selected set of types. See
the Paragon™" Fortran System Calls Reference Manual or Paragon™ C System Calls Reference
Manual for information on these special message types. Note, though, that in Paragon OSF/1 regular
messages are just as fast as force type messages, so force types are not needed for performance.

Message ID

The ID of a message is an identifier used to check for the completion of asynchronous messages.
Synchronous messages do not have IDs.

When you send or receive a message with an asynchronous message-passing call (one that returns
before the message is completely sent or received), the call returns an ID that you can use to check
whether or not the send or receive is complete. See “Asynchronous Send and Receive” on page 3-10
for more information on message IDs.

Paragon™ User's Guide Using Paragon™ OSF/1 Message-Passing System Cal<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>