
pSOSystem Product Family

pRISM+ User's Guide

pRISM+ Version 2.0 for MIPS

~ ~".Ji,~rated
~ems

000-5444-001

-;;ljJ ~"::rated
~ems

Copyright © 1999 Integrated Systems, Inc. All rights reserved. Printed in U.S.A.
Document Title: pRISM+ User's Guide, pRISM+ Version 2.0 for MIPS
Part Number: 000-5444-001
Revision Date: May 1999

Integrated Systems, Inc.· 201 Moffett Park Drive· Sunnyvale, CA 94089-1322

Corporate pSOS or pRISM+ Support MATRIXx Support

Phone 408-542-1500 1-800-458-7767, 408-542-1925 1-800-958-8885, 408-542-1930

Fax 408-542-1950 408-542-1966 408-542-1951

E-mail

Home Page

ideas@isi . com psos_ support@isi.com

http : //www.isi.com

mx_support@isi . com

LICENSED SOFTWARE - CONFIDENTIAUPROPRIETARY
This document and the associated software contain information proprietary to Integrated
Systems, Inc., or its licensors and may be used only in accordance with the Integrated
Systems license agreement under which this package is provided. No part of this
document may be copied, reproduced, transmitted, translated, or reduced to any
electronic medium or machine-readable form without the prior written consent of
Integrated Systems.

Integrated Systems makes no representation with respect to the contents, and assumes
no responsibility for any errors that might appear in this document. Integrated Systems
specifically disclaims any implied warranties of merchantability or fitness for a particular
purpose. This publication and the contents hereof are subject to change without notice.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS252.227-7013 or its equivalent. Unpublished rights reserved under the copyright
laws of the United States.

TRADEMARKS
AutoCode, ESp, MATRIXx, pRISM, pRISM+, pSOS, SpOTLIGHT, and Xmath are registered
trademarks of Integrated Systems, Inc. BetterState, BetterState Lite, BetterState Pro,
Documentlt, Epilogue, HyperBuild, OpEN, OpTIC, pHILE+, pLUG&SIM, pNA+, pREPC+,
pROBE+, pRPC+, pSET, pSOS+, pSOS+m, pSOSim, pSOSystem, pXll+, RealSim,
SystemBuild, and ZeroCopy are trademarks of Integrated Systems, Inc.

ARM is a trademark of Advanced RISC Machines Limited. Diab Data and Diab Data in
combination with D-AS, D-C++, D-CC, D-F77, and D-LD are trademarks of Diab Data, Inc.
ELANIX, Signal Analysis Module, and SAM are trademarks of ELANIX, Inc. SingleStep is a
trademark of Software Development Systems, Inc. SNiFF + is a trademark of TakeFive
Software GmbH, Austria, a wholly-owned subsidiary of Integrated Systems, Inc.

All other products mentioned are the trademarks, service marks , or registered trademarks
of their respective holders.

Contents

Using This Manual xix

Organization xix

Conventions xxi

Font Conventions xxi

Symbol Conventions xx.ii

Mouse Conventions xx.ii

Note, Caution, and Warning Conventions xx.ii

Format Conventions xx.iii

Commonly Used Terms and Acronyms xx.iii

Related Publications xx.iv

Support xxv

Contacting Integrated Systems Support xxvi

1 Overview of the pRISM+ Environment

1.1 What is pRISM+? 1-1

1.2 pSOSystem ADE 1-3

1.3 pRISM+ Host Tools 1-4

1.3.1 pRISM+ Manager 1-4

1.3.2 pRISM+ Configuration Wizard 1-5

iii

Contents

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

1.3.10

1.3.11

pRISM+ User's Guide

pRISM+ Editor 1-6

pRISM+ Source Code Engineering Tool - SNiFF + [Optional) 1-6

Object Browser . 1-7

Embedded System Profiler (ESp) [Optional) 1-7

pRISM+ Shell 1-8

pRISM+ Cross-Compiler Suite 1-8

pRISM+ Source-Level Debugger - SearchLight 1-8

SingleStep Debugger [Optiona l) 1-9

Run-time Analysis (RTA) Suite [Optional) 1-9

1.4 pRISM+ Communications Infrastructure 1-10

1.4.l Communication Server 1-10

1.4.2 Debug Server. 1-10

1.5 Getting More Information About pRISM+ 1-10

1.5.l pRISM+ Documentation 1-10

1.5.2 Documentation Roadmap 1-11

2 Understanding pSOSystem

2.1 Whatls pSOSystem? 2-1

2.2 System Architecture 2-1

2.2.1 Target Architecture 2-4

2.2.2 Host Development System Layout 2-5

2.2.3 Sample Applications 2-11

2.3 System Configurations 2-12

2.3.1 Host System Configuration 2-12

2.3.1 pSOSystem System Library 2-14

2.4 Where to Go From Here? 2-14

iv

pRISM+ User's Guide Contents

3 Quick Start with a Tutorial

3.1 Before You Begin 3 -2

3.2 Launch pRISM+ 3 -3

3.3 Start A New Project with pRISM+ 3-4

3.4 Choosing a Project Tool 3 -4

3.5 Using pRISM+ Editor 3-5

3.5. l Choosing a pSOSystem Sample Application As a Starting Point .. 3 -5

3.5.2 Setting Up a New Project 3 -6

3.5.3 Getting Acquainted with pRISM+ Editor 3 -6

3.6 Using SNiFF+ 3-12

3.6. l Choosing a pSOSystem Sample Application As a Starting Point . 3 -12

3.6.2 Setting Up a New Project 3-12

3.6.3 Getting Acquainted with SNiFF + 3 -1 3

3.7 Configuring the Target Board 3 -1 9

3. 7 .1 Connecting the Target Board to the Host Machine 3 -1 9

3.7.2 Starting the Terminal Emulation Program on a Windows
Platform 3 -1 9

3.7.3 Starting the Terminal Emulation Program on a UNIX Platform .. 3 -20

3.8 Configuring the Target Communications Parameters 3-20

3.9 Adding a Target Board to the pRISM+ Target List 3-23

3.10 Downloading and Debugging with SingleStep Source-Level Debugger. . 3 -26

3.11 Downloading/Debugging with SearchLight Source-Level Debugger ... 3 -29

3.12 Using Object Browser 3 -32

3.12.1 About Object Browser. 3 -32

v

Contents pRISM+ User's Guide

3.13 UsingESp .. 3-36

3.13.1 Configuring an Experiment 3-36

3.13.2

3.13.3

Starting a Data Collection . 3-39

Analyzing the Data . 3-39

4 Understanding the pRISM+ Manager

4.1 The pRISM+ Development Environment 4-1

4.1.l Overview ... 4-1

4.1.2

4.1.3

4.1.4

4.1.5

pRISM+ Manager and the pRISMSpace 4-3

The Tool Manager 4-7

The Target Manager 4-9

After Downloading the Application . 4-11

5 pRISM+ Editor

5.1 Makefile Browser ... 5-1

5.1. l Makefile View 5-3

5.1.2 Source View ... 5-3

5.1.3 Additional Makefiles 5-3

5.1.4 Current Project and Current Target 5-4

5.2 Program Editor ... 5-4

5.3 Message View .. 5-5

5.4 Using the pRISM+ Editor. 5-5

5.4.1 Creating New Source Files 5-5

5.4.2 Saving New Source Files 5-6

5.4.3 Copying an Existing Source Files 5-6

5.4.4 Adding Source Files to Your Project 5-7

5.4.5 Error Checking Your Files 5-8

vi

pRISM+ User's Guide

5.4.6

5 .4.7

5.4.8

5 .4.9

5.4.10

5 .4.11

5 .4.12

5.4.13

Contents

Introducing an Error 5-9

Profiling Your Project 5-10

Accessing the Link Map Analyzer Tool 5-10

Including Custom Libraries 5-10

Adding a Makefile 5-10

Adding a BSP Makefile 5-11

Removing a Makefile 5-11

Using the Buffer List 5-11

6 Using SNiFF+ in the pRISM+ Environment

6 . 1 Overview .. 6-1

6 .2 Key Features of pRISM+ Application Development Framework 6-2

6.2.1 Source Code Comprehension 6-2

6.2.2 Team Development. 6-2

6 .2.3 Mixed-Platform Development 6-3

6.2.4 Integrated Make Support 6-3

6 .2.5 Flexible Application Development Framework 6-4

6 .3 Key SNiFF + Concepts 6-4

6 .3 .1 Code Comprehension and Browsing 6-4

6.3.2 Source Code Parsing 6-4

6.3 .3 Projects .. 6-5

6.3.4 Workspaces .. 6-10

6.3.5 Working Environments 6-11

6 .3 .6 How File Sharing Works 6-14

6.3 . 7 SNiFF + Build and Make Support 6-17

6 .3 .8 Building Targets When Using Team Working Environments 6-18

vii

Contents

viii

pRISM+ User's Guide

6.4 Using the pRISM+ Application Development Framework 6-18

6.4. l Team Development Support. 6-18

6.4.2 pRISM+ Default Working Environments Settings 6-19

6.4.3 Restoring the Default Working Environment Settings 6-22

6.4.4 What Can You Do with pRISM+ Team Support? 6-24

6.5 pSOSystem Source Projects 6-26

6.5. l File and Directory View of a pSOSystem Sample Application ... 6-26

6.5.2 pSOSystem Projects 6-28

6.5.3 Browse View Versus Build View of pSOSystem Source Projects . 6-34

6.5.4 Browsing pSOSystem 6-35

6.5.5 Utilities Programs 6-35

6.6 pRISM+ Make Support 6-35

6.6. l pRISM+ Make Options at a Glance 6-36

6.6.2

6.6.3

6.6.4

6.6.5

6.6.6

6.6.7

6.6.8

6.6.9

6.6.10

pSOSystem Application Make Structure 6-36

Make Attributes of pSOSystem Source Projects 6-39

Making a pSOSystem Target Executable 6-42

Using pSOSystem Makefiles 6-42

Using the SNiFF + Makefile-Generation Feature 6-43

Generating Makefiles for Your Project 6-45

Hybrid Make Model . 6-46

Doing Team-Based Builds 6-49

Building from the Command Line . 6-50

6.7 Using the pRISM+ Application Development Framework with SNiFF+ . 6-50

6.7.1 Starting a New Project with pRISM+ 6-51

6.7.2 Starting a Project from Your Existing Code Base 6-63

6.7.3 Working with Multiple Source Trees 6-80

6.7.4 Integrating a Custom Board Support Package into pRISM+ 6-82

pRISM+ User's Guide Contents

6.7.5 Converting a Project Made with pRISM+ Editor 6 -8 7

6 .7.6 Starting with an Existing Application for a Previous Version of
pRISM+/pSOSystem 6 -8 7

7 pRISM+ Configuration Wizard

7 . 1 pRISM+ Wizard Features 7-2

7.2 pRISM+ Wizard Interface and Modes 7-2

7 .2.l pRISM+ Wizard Interface 7-2

7.2.2 pRISM+ Wizard Modes 7-4

7.2.3 Error Checking 7-6

7 .2.4 Upgrading a Configuration File 7-6

8 The Searchlight Debugger - A Tutorial

8 . 1 What is SearchLight Debugger? 8 -1

8.2 Starting SearchLight Debugger and Downloading an Application 8 -2

8 .2. l Accessing SearchLight Debugger 8 -2

8.2.2 Downloading an Application 8 -2

8.3 Debugging in System Debug Mode 8 -4

8 .3 . l Step, Stepi, Next and Nexti Commands and Code Views 8 -4

8.3.2 Setting and Removing an OS Breakpoint 8 -9

8 .3 .3 Viewing Memory Variables 8 -12

8.3.4 Viewing Registers 8 -14

8 .3 .5 Navigating Through the Files Window 8 -15

8.3.6 Using Find to Locate a Text String and Set a Breakpoint 8 -17

8.3.7 Examining the Call Stack 8 -20

8 .3 .8 Examining System Objects 8 -22

ix

Contents pRISM+ User's Guide

8.4 Debugging in Task Debug Mode 8-25

8.4. l Accessing Task Debug Mode 8-25

8.4.2 Setting Breakpoints in TDM 8-28

8.4.3 Removing Tasks from Task Debug Mode 8-29

8.4.4 Exiting Task Debug Mode 8-30

8.4.5 Conclusion 8-31

9 The SingleStep Debugger - A Tutorial

9.1 What is SingleStep Debugger? 9-1

9.2 Using SingleStep Debugger 9-2

9.2.1 Before You Begin 9-2

9.2.2 Starting SingleStep Debugger for pSOSystem 9-2

9.2.3

9.2.4

9.2.5

9.2.6

The Toolbar and Source Windows 9-6

Invoking the Command Window 9-7

Running the System Debug Tutorial 9-7

Source, Mixed, and Disassembly Display Modes 9-9

10 ESp

10.1 ESp Prerequisites 10-2

10.2 Placing User-Defined Event in the Application 10-2

10.3 Refining Data Collection Needs 10-3

10.3.1 Buffer Management 10-3

10.3.2 Event Specification 10-4

10.4 Tailoring the Configuration Table 10-5

10.5 Tailoring the Application's Stacks 10-5

10.6 Post-Mortem Analysis in ESp 10-6

x

pRISM+ User's Guide Contents

11 Object Browser

11.1 Monitoring for Stack Problems 11 -4

11.1. l Stack Problem Setup 11-4

11.1.2 Understanding Your Stack Graphics Data 11-4

11.2 Finding Memory Leaks 11-4

11.3 Checking for Deadlocks and Priority Inversion 11-5

11.4 Logging Data in the CSV Files 11-7

11.5 Selective Logging of Data in Graph Frame 11-7

12 Run-Time Analysis (RT A} Suite

12.1 Overview 12-1

12.1.1

12.1.2

12.1.3

12.1.4

13 pRISM+ Shell

Run-Time Error Checker 12-1

Visual Interactive Profiler 12-1

Link Map Analyzer 12-1

Stack Use Analyzer. 12-2

13.1 Using Interactive pSOS-Aware Commands 13 -2

13.1.1 Obtaining Status of a pSOS Object. 13 -3

13.1.2 Modifying Communication Timeouts 13 -3

13.1.3 Downloading a pSOS+ Executable 13 -5

13.1.4 Using pRISM+ Shell with SearchLight Debugger 13 -5

13.2 Using and Invoking a pRISM+ Shell Tel Script 13 -8

13.2.1 Using an Existing Tel Script for Testing 13 -9

13.2.2 pRISM+ Shell Script Example 13 -11

13.3 Using Low-Level TCL/CORBA Services 13 -14

13.4 Customizing the pRISM+ Shell 13 -14

xi

Contents pRISM+ User's Guide

14 pRISM+ Target Agents

14.1 pMONT+TargetAgent. 14-1

14.1.1 Target Requirements for Monitoring an Application 14-2

14.1.2 Configuring pMONT+ 14-2

14.1.3

14.1.4

14.1.5

pMONT+ Driver Usage 14-4

pMONT+ Behavior on the Target 14-5

log__event() System Call 14-6

14.1.6 Memory Usage 14-7

14.2 pROBE+ Target Agent . 14-7

14.2.1 pROBE+ Behavior on the Target 14-8

14.2.2 Configuring pROBE+ 14-8

15 Customize the pRISM+ Tools/Environment

xii

15. 1 Customizing Your pRlSM+ Tools 15-1

15.1.1 Customizing Your Toolbar 15-1

15.1.2 Incorporating a Custom BSP for pSOSystem 15-3

15.2 Customizing Your pRlSM+ Environment 15-5

15.2.1 Multiple pRlSM+ Installations 15-5

15.2.2

15.2.3

15.2.4

15.2.5

15.2.6

Multiple-users Configuration (UNIX Only) 15-7

Mixed-Platform Development for Solaris and Windows 15-8

Redefining Your Environment Variables 15-12

Redefining Your Color Settings (Solaris and HP-UX) 15-13

Setting a Printer for On-line Help (Solaris and HP-UX) 15-13

pRISM+ User's Guide Contents

A Board-Support Package Information

Al pSOSystem/MIPS Operating Mode A-2

A.2 IDT 79S465 Evaluation Board A-3

A.2.1

A.2.2

A.2.3

A.2.4

A.2.5

A.2.6

Hardware Setup A-3

pSOSystem Boot Configuration A-5

Building pSOSystem Boot RO Ms A-7

Memory Layout and Usage A-8

Devices Supported for the IDT 79465 Evaluation Board A-10

Miscellaneous A-10

A.3 IDT79S440 Board A-10

A.3.1 Hardware Setup A-11

A.4 IDT79S500 Board A-14

A.4.1 Hardware Setup A-14

A.5 LSI4101 Board A-16

A.5.1

A.5.2

A.5.3

A.5.4

A.5.5

A.5.6

A.5.7

Hardware Setup A-16

pSOSystem Boot Configuration A-1 9

Building pSOSystem Boot ROMs A-20

Memory Layout and Usage A-21

Devices Supported for the MiniRISC and TinyRISC Evaluation
Boards A-23

MIPS16 Support. A-23

Miscellaneous A-24

B pRISM+ Environment Variables

B. l pRISM+ Variables for the Windows Environment B-1

B.2 pRISM+ Variables for the UNIX Environment B-5

xiii

Contents pRISM+ User's Guide

C pRISM+ Supported Host/Target Connections

xiv

C. l Using a Serial Connection C-1

C.1.1 Building a pSOSystem Application C-2

C.1.2

C.1.3

C.1.4

C.1.5

Configuring Target Environment C-2

Configuring Target Communications Parameters C-3

Configuring Host Tools Connection with the Target C-3

Using pRISM+ Tools C-4

C.2 Using an Ethernet Connection C-4

C.2.1 Building a pSOSystem Application C-4

C.2.2

C.2.3

C.2 .4

C.2.5

Configuring Target Environment C-5

Booting pSOSystem C-5

Configuring Host Tools Connection with the Target C-6

Using pRISM+ Tools C-6

C.3 Using a Communication Server Remotely C-7

C.3.1 Building a pSOSystem Application C-7

C.3.2

C.3.3

C.3 .4

Configuring Target Environment C-7

Booting pSOSystem C-9

Using pRISM+ Tools C-9

C.4 Using the TFTP Server C-9

C.4.1 Building a pSOSystem Application C-10

C.4.2

C.4 .3

C.4.4

C.4.5

Sys_conf.h Settings C-10

Configuring Target Environment C-10

Configuring Host Environment C-11

Using the TFTP Server Connection C-13

pRISM+ User's Guide Contents

D pRISM+ Shell Commands

D. l Overview .. D-1

D.2 Communication Server- and Debug Server-Based Commands D-2

boot. ... D-4

breakpoint. .. D-5

cb ... D-8

en ... D-9

comm ... D-10

condvar .. D-11

connect .. D-12

csabout .. D-13

db .. D-14

den ... D-16

debugger ... D-1 7

di .. D-19

disassemble ... D-20

disconnect. ... D-21

dl .. D-22

dm ... D-23

dr .. D-24

dssession ... D-25

ev .. D-27

evaluate .. D-28

evt .. D-29

fl ... D-30

fm .. D-31

xv

Contents pRISM+ User's Guide

go .. D-32

halt. .. D-33

he .. D-34

help .. D-35

il ... D-36

init ... D-37

initialize ... D-38

lb .. D-39

log ... D-40

memory ... D-41

mod .. D-43

mutex ... D-44

osbreakpoint .. D-45

partition ... D-50

pm ... D-51

pr .. D-52

probe ... D-53

psos .. D-55

q* .. D-59

queue ... D-63

quit. .. D-65

region ... D-66

register .. D-68

SC•••......••••••••••......•.••..••........••.•.• D-70

semaphore ... D-71

session .. D-72

sf .. D-76

xvi

pRISM+ User's Guide Contents

stackfrm ... D-77

t* ... D-78

target ... D-80

task ... D-82

tsd .. D-84

version .. D-85

D.3 Comparison of pROBE+ and pRISM+ Shell Commands D-86

D.4 TCL Commands .. D-88

type ... D-89

vinfo .. D-90

bind .. D-91

set .. D-92

new ... D-93

delete ... D-94

toString .. D-95

invoke ... D-96

slength .. D-97

E pSOSystem Source Projects

E. l Generic pSOSystem Projects E-1

E.2 Drivers Project. ... E-1

E.3 Bsp Projects ... E-2

E.4 Sample Application Projects E-2

E.5 Sample Application Projects E-2

E.6 VPATH .. E-2

E .6 . 1

E .6 .2

gnu gmake and VPATH E-2

$< Macro ... E-3

xvii

Contents

E.6.3

E.6.4

E.6.5

E.6.6

E.6.7

E.6.8

E.6.9

E.6.10

E.6.11

pRISM+ User's Guide

Compiler Option -o: E-3

Compiler Option -I@: E-3

Use of Relative Path for Overriding E-4

Generating Include and Link Paths E-4

Object and .opt files Overriding E-4

With or Without SNiFF + E-4

macros.incl File E-5

Problems Using Recursive Make E-5

Check_vpath Target E-5

E.6.12 Gnu Make .. E-5

E. 7 pLUGINS+ Scripts ... E-6

E. 7 .1 Scripts to Create SNiFF + Projects for pSOSystem+ E-6

E.7.2 Integration scripts: E-10

Glossary gloss-1

Index index-1

xviii

Using This Manual

This manual describes the pRISM+ Development Suite for real-time embedded
applications - a solution from Integrated Systems, Inc. that includes products pro­
duced by both !SI and third parties. The pRISM+ tools cover the life cycle of real­
time embedded applications development.

pRISM+ is the only development suite working with pSOSystem, the industry's lead­
ing real-time embedded operating system.

Organization

This document is organized as follows:

• Chapter 1, Overview of the pRISM+ Environment, provides information on the
advanced features of customizing your pRISM+ Environment.

• Chapter 2 , Understanding pSOSystem, provides an introduction to pSOSystem,
the scalable operating system that is incorporated into your pRISM+ applica­
tion. It also provides instructions on how to incorporate a custom BSP and how
to create a custom pSOS+ application.

• Chapter 3 , Quick Start with a Tutorial, provides a tutorial of how to use the
pRISM+ for pSOSystem tools to create, compile, build, download , and test your
pSOS+ application. It highlights how to use the pRISM+ Editor, SearchLight
debugger, pRISM+ Shell, ESp, and Object Browser.

• Chapter 4 , Understanding the pRISM+ Manager, provides an overview of the
pRISM+ Manager.

• Chapter 5 , pRISM+ Editor, provides an overview of the pRISM+ Editor the
pRISM+ project editor.

xix

Using This Manual pRISM+ User's Guide

xx

• Chapter 6 , Using SNiFF+ in the pRISM+ Environment, provides an overview of the
SNiFF + tools , a component of pRISM+.

• Chapter 7 , pRISM+ Configuration Wizard, provides an overview of the pRISM+
Configuration Wizard.

• Chapter 8 , The SearchLight Debugger - A Tutorial, provides a tutorial illustrating
the capabilities of the SearchLight debugger, using the pSOSystem sample
application pdemo .

• Chapter 9 , The SingleStep Debugger - A Tutorial, provides a tutorial illustrating
the capabilities of the SingleStep debugger using the pSOSystem sample appli­
cation pdemo.

• Chapter 10, ESp, provides additional informations when using ESp.

• Chapter 11 , Object Browser, provides additional information when using Object
Browser.

• Chapter 12, Run-Time Analysis (RTAJ Suite, provides a brief overview of the
Run-Time Analysis Suite.

• Chapter 13, pRISM+ Shell, provides detailed information on how to use the
pRISM+ Shell to modify your communication timeouts, create testing Tel
scripts, and use debugger type commands.

• Chapter 14, pRISM+ Target Agents, provides a information on how to use the
pSOSystem target agents.

• Chapter 15, Customize the pRISM+ Tools/Environment, provides information on
how to customize the pRISM+ tools environment.

• Appendix A, Board-Support Package Information, provides board-specific infor­
mation.

• Appendix B, pRISM+ Environment Variables , provides a list of special
pSOSystem and pRISM+ environment variables you can use.

• Appendix C, pRISM+ Supported Host/Target Connections, provides special infor­
mation on pRISM+ connections.

• Appendix D, pRISM+ Shell Commands, provides a list of the supported pRISM+
Shell commands.

• Appendix E , pSOSystem Source Projects , provides a description of the source
projects included with the pSOSystem.

pRISM+ User's Guide Using This Manual

• The Glossary defines terms relevant to the pRISM+ and pSOSystem develop­
ment environment.

Conventions

This section describes the conventions used in this document.

Font Conventions

This sentence is set in the default text font, Bookman Light. Bookman Light is used
for general text, menu selections, window names, and program names. Fonts other
than the standard text default have the following significance:

Courier :

bold Courier:

Courier is used for command and function names, file
names, directory paths, environment variables, messages and
other system output, code and program examples, system
calls , prompt responses , and syntax examples.

bold Courier is u sed for user input (anything you are ex­
pected to type in) .

italic Courier : Courier is used for command and function names, file
names, directory paths, environment variables, messages and
other system output, code and program examples , system
calls, prompt responses, and syntax examples.

bold italic bold italic Courier is used for user input (anything you
Courier: are expected to type in).

italic: Italics are used in conjunction with the default font for empha­
sis, first instances of terms defined in the glossary, and publi­
cation titles.

Bold Helvetica narrow: Bold Helvetica narrow font is used for buttons, fields , and icons in
a graphical user interface. Keyboard keys are also set in this
font.

Sample Input/Output

In the following example, user input is shown in bold Courier, and system
response is shown in Courier.

commstats

Number of total packets sent
Number of acknowl edgment t i meouts

160
0

xxi

Using This Manual pRISM+ User's Guide

Number of response timeouts 0
Number of retries 0
Number of corrupted packets received 0
Number of duplicate packets received 0
Number of communication breaks with target 0

Symbol Conventions

This section describes symbol conventions used in this document.

[] Brackets indicate that the enclosed information is optional. The brackets
are generally not typed when the information is entered.

A vertical bar separating two text items indicates that either item can be
entered as a value.

The breve symbol indicates a required space (for example, in user input).

% The percent sign indicates the UNIX operating system prompt for C shell.

$ The dollar sign indicates the UNIX operating system prompt for Bourne and
Korn shells.

Mouse Conventions

This document assumes you have a standard, right-handed three-button mouse.
From left to right, the buttons are referred to as MBl, MB2, and MB3. All instruc­
tions assume MBl unless otherwise noted.

click Press and quickly release a mouse button. MB 1 is assumed if "click" is
used without a button designation. For example, "click the root
window."

double-click Click MB 1 twice in quick succession.

drag Place the cursor over an object, then hold down MBl while moving the
mouse. Release the button when the object arrives at the desired loca­
tion on the screen.

Note, Caution, and Warning Conventions

xx ii

Within the text of this manual, you may find notes, cautions, and warnings. These
statements are used for the purposes described below.

NOTE: Notes provide special considerations or details that are important to the
procedures or explanations presented.

pRISM+ User's Guide Using This Manual

CAUTION: Cautions indicate actions that may result in possible loss of work
performed and associated data. An example might be a system
crash that results in the loss of data for that given session.

WARNING: Wunings indicate actions or circumstances that may result in
file corruption, irrecoverable data loss, data security risk, or
damage to hardware.

Format Conventions

The reference section in this manual adheres to a standard format. The name of the
command, a brief description, and its syntax appear at the top of the first page. The
remaining information about the command appears below the syntax and is orga­
nized under the following headings:

Description

Provides a description of the command.

Usage

Provides detailed usage information for the item being described.

See Also

Lists the location of other relevant information.

Commonly Used Terms and Acronyms

The following terms and acronyms are commonly associated with pSOSystem and
appear in this manual.

ASR

asynchronous
signal routine

callout

FD

FLIST

ISR

See asynchronous s ignal routine.

A function within an application that executes in response to an
asynchronous signal.

A function that a device driver uses to notify a pSOSystem compo­
nent of an interrupt event. A callout is called from an ISR.

File descriptor.

A contiguous sequence of blocks used to hold file descriptors on a
pHILE+ formatted volume.

See interrupt service routine.

xxi ii

Using This Manual pRISM+ User's Guide

interrupt service
routine

Kl

kernel interface

NFS

NI

RSC

remote service
call

ROOTBLOCK

socket

task

TCP/IP

UDP

A function within an application or device driver that takes control
of the system when the CPU has been triggered with an exception
from an external source.

See kernel interface.

A user-provided communication layer between nodes in a multi­
processing environment (pSOS+m).

Network file system.

Network interface.

See remote service call.

A service call made from one node to another in a multiprocessing
environment (pSOS+m).

The root block on a pHILE+ formatted volume, which contains all
information needed by pHILE+ to locate other vital information on
the volume.

The endpoint for communication across a network.

The smallest unit of execution in a system designed with
pSOSystem that can compete on its own for system resources.

Transport Control Protocol/Internet Protocol, a software protocol
for communications between computers.

User Datagram Protocol.

Related Publications

xx iv

As you read this manual, you may also want to refer to the other manuals in the
standard documentation set for more detailed descriptions:

• pSOSystem System Concepts: provides theoretical information about the opera­
tion of pSOSystem.

• pSOSystem System Calls: describes the system calls and C language interface to
pSOS+, pHILE+, pREPC+, pNA+, and pRPC+.

• pROBE+ User's Guide: describes how to use the pROBE+ System Debugger/
Analyzer.

• pSOSystem Advanced Topics: contains information on how to customize your
usage of your pSOSystem. It contains sections on using and creating BSPs and
Assembly Language information.

pRISM+ User's Guide Using This Manual

• pSOSystem Application Examples: describes the application examples that are
provided for you and tutorials on how to use these examples.

Based on the options you have purchased, you might also need to reference one or
more of the following manuals:

• Routing Architecture User's Guide: describes the pSOSystem Routing Architec­
ture for OpEN Shortest Path First (OSPF), Routing Information Protocol (RIP),
and other related routing protocols.

• RIP Version 2 User's Guide: describes how to use the pSOSystem RIP protocol.

• C++ Support Package User's Guide: describes how to implement C++ applica­
tions in a pSOSystem environment.

• SNMP User's Guide: describes the internal structure and operation of SNMP,
Integrated System's Simple Network Management Protocol product. This man­
ual also describes how to install and use the SNMP MIB (Management Informa­
tion Base) Compiler.

• OpEN User's Guide: describes how to install and use the pSOSystem OpEN
(OpEN Protocol Embedded Networking) product.

• OSPF User's Guide: describes the Open Shortest Path First (OSPF) pSOSystem
protocol driver

• TCP/IP for OpEN User's Guide: describes how to use the pSOSystem Streams­
based TCP /IP for OpEN (OpEN Protocol Embedded Networking) product.

Support

Customers in the United States can contact Integrated Systems Technical Support
as described below.

International customers can contact:

• The local Integrated Systems branch office.

• The local pSOSystem distributor.

• Integrated Systems Technical Support as described below.

xxv

Using This Manual pRISM+ User's Guide

Before contacting Integrated Systems Technical Support, please gather the following
information available :

• Your customer ID and complete company address.

• Your phone and fax numbers and e-mail address.

• Your product name, including components, and the following information:

• The version number of the product.

• The host and target systems.

• The type of communication used (Ethernet, serial).

• Your problem (a brief description) and the impact to you.

In addition, please gather the following information:

• The procedure you followed to build the code. Include components used by the
application.

• A complete record of any error messages as seen on the screen (useful for track­
ing problems by error code).

• A complete test case, if applicable. Attach all include or startup files, as well as
a sequence of commands that will reproduce the problem.

Contacting Integrated Systems Support

xxvi

To contact Integrated Systems Technical Support, use one of the following methods:

• Call 408-542-1925 (U.S. and international countries).

• Call 1-800-458-7767 (1-800-458-pSOS) (U.S. and international countries with
1-800 support).

• Send a FAX to 408-542-1966.

• Send e-mail to psos_ support@isi.com.

• Access our web site: http : I I customer . isi . com.

Integrated Systems actively seeks suggestions and comments about our software,
documentation, customer support, and training. Please send your comments by
e-mail to ideas@isi.com or submit a Problem Report form via the internet
~ttp : //customer.isi . com/report.shtml).

I Overview of the pRISM+
Environment

This chapter provides a brief overview of the pRISM+® for pSOSystem'M architecture
and components. It describes how to use pRISM+ to create a pSOSystem-based
embedded system application. A documentation roadmap, located at the end of the
chapter, will further assist you in finding more information about pRISM+ or any of
the products mentioned in this chapter.

1.1 What is pRISM+?

pRISM+ is an integrated development environment provided by Integrated Systems
Inc. for building embedded systems. It combines pSOSystem, a scalable, high per­
formance real-time operating system with a set of development, debugging and pro­
filing tools into one powerful environment to deliver run-time performance for
embedded systems and higher productivity to developers .

pRISM+ offers the embedded industry's most comprehensive set of tools. pRISM+
includes tools for every step of the embedded development process. From team
development and source code engineering tools to application building tools, and
run-time target debugging and profiling tools. pRISM+ offers more tools than ever
before for embedded developers. Based on the industry standard CORBA frame­
work, pRISM+ also provides an open interface for integration of third-party tools.

Available for Windows 95, Windows 98, Windows NT, Solaris, and HP-UX, pRISM+
offers native look and feel on each platform it supports. In addition, pRISM+ offers
extensive on-line documentation and context sensitive help for tools and operating
system components.

The pRISM+ Development Environment includes the following tools as part of this
pRISM+ release. Any optional pRISM+ products are noted.

1-1

1

Overview of the pRISM+ Environment pRISM+ User's Guide

1-2

• pSOSystem - Integrated Systems' family of scalable, multitasking, real-time
operating system and networking products. pSOSystem includes Board Support
Packages for many off-the-shelf CPU boards in source form, as well as target
agents necessary to support pRISM+ host-based tools.

• pRISM+ Host Tools

• pRISM+ Manager (page 1-4)

• pRISM+ Configuration Wizard (page 1-5)

• pRISM+ Editor (page 1-6)

• pRISM+ Source Code Engineering Tool - SNiFF+™
(an optional product) (page 1-6)

• pRISM+ Cross Compiler Suite - Diab Data™ Compilers (page 1-8)

• Run-Time Analysis Tool Suite (an optional product) (page 1-9)

• Object Browser (page 1-7)

• pRISM+ Source-Level Debugger - SearchLight (page 1-8)

• SingleStepTM Source-Level Debugger - SDS
(an optional product for PowerPC and 68K) (page 1-9)

• Embedded System Profiler (ESp®l (an optional product) (page 1-7)

• pRISM+ Shell (page 1-8)

• pRISM+ Communications Infrastructure

• Communication Server (page 1- 10)

• Debug Server (page 1- 10)

• pRISM+ for pSOSystem Documentation

• pSOSystem CD-ROM Documentation Set (page 1-11)

• pRISM+ on-line tutorials and interactive help (page 1- 10)

Figure 1-1 on page 1-3 shows the pRISM+ architecture and communication.

pRISM+ User's Guide Overview of the pRISM+ Environment

pRISM+ Manager
Project Editors ,. 1111 •111111 1111

• I I I I
I I I I I
I I I I I
I I I I I

I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
I I I I I I
: I I I I I .

1111
pSOSystem Development

on Host

TARGET

Debug Server Communication Server

pROBE+

Serial or Network
Connection

pMONT+

pSOSystem Running
on Target

FIGURE 1-1 pRISM+ for pSOSystem Architecture

1.2 pSOSystem ADE

pRISM+ is fully integrated with pSOSystem, Integrated Systems, Inc. family of real­
time embedded components including the pSOS+ kernel, the industry's leading
embedded RTOS. pSOSystem scales to match price/performance requirements of
the entire range of embedded applications from simple, stand-alone devices to com­
plex, networked, multiprocessing systems.

The pSOSystem family of run-time options includes the fast, efficient pSOS+ single­
processor and pSOS+m multiprocessing real-time kernels . Extremely compact, the
multitasking pSOS+ kernel supports both standard and custom hardware applica­
tions. The pSOS+m kernel allows you to create multiprocessor-based applications
with few code changes.

1-3

1

Overview of the pRISM+ Envi ronment pRISM+ User's Guide

The pSOSystem networking suite offers the industry's most advanced networking
capabilities. It includes support for all major industry-standard, UNIX-based TCP/
UDP /IP communications protocols , SNMP network management, OpEN (a
STREAMS-based networking framework and networking enabler). and STREAMS­
compliant protocols such as TCP /IP and X.25.

Other elements within pSOSystem include:

• the pROBE+ debugger (a target agent supporting the source level debugger).

• pMONT (the target agent supporting the Embedded System Profiling and Object
Browser tools).

• pREPC+ (a re-entrant ANSI C library)..

• pHILE+ (the file system manager, supports a variety of standard as well as opti­
mized file formats).

Two other essential components of an embedded target image are the application
code, written by the user, and a board support package (BSP). BSPs are provided in
source form as part of pSOSystem and give the developer with the interface software
that allows pSOSystem to operate on a particular hardware platform. In particular,
the BSPs include drivers for a host of common 1/0 devices, including serial,
Ethernet, SCSI, and timers.

NOTE: For more information on pSOSystem, refer to Chapter 2 of this manual
and the documentation set that accompanied your pRISM+ selection.

1.3 pRISM+ Host Tools

This section provides a brief description of the pRISM+ tools. To learn more about
the pRISM+ tools, complete the pRISM+ Getting Started tutorial in Chapter 3 .

1.3.1 pRISM+ Manager

1-4

The pRISM+ Manager is the central launch point for a ll the pRISM+ tools. From
pRISM+ Manager, you can:

• Access pRISM+ Editor, Makefile Browser, and Source Editor designed by
Integrated Systems, Inc.

• Access pRISM+ Source Code Engineering Tool - SNiFF+. Note that SNiFF+ is
an optional product.

• Configure pSOSystem using the pRISM+ Configuration Wizard.

pRISM+ User's Guide Overview of the pRISM+ Environment

1.3.2

• Compile an application using the build button.

• Configure target communication settings for each target using the Target Menu.

• Specify a target board selection using the Target Selection Window.

• Reset the Communication Server using the Reset button.

• Download the executable code to the target using the download button.

• Control target execution using the Go and the Halt buttons.

• Access the SearchLight Source-Level Debugger.

• Access the SingleStep Source-Level Debugger from SDS. SingleStep is an
optional product and it is only available for 68K and PPC processor families.

• Access the Object Browser to get Snapshots of the run-time target system.

• Access ESp to get event-by-event profile information of the run-time target
system.

• Access pRlSM+ Shell, a Tel shell with CORBA IDL extensions for direct pRlSM+
server access.

The pRlSM+ Manager stores information for each pRlSM+ session, such as the
choice of target board, target communication settings, location of project source
files. This information is entered once by you and then shared by all pRlSM+ tools.

pRISM+ Configuration Wizard

The pRlSM+ Configuration Wizard helps users to configure pSOSystem for each
embedded application. pSOSystem is a highly scalable and configurable operating
system. Users can custom fit SOSystem for each ap lication with a single header
file, sys_ conf . h . In its most simple mode, pRlSM+ Configuration Wizard is a
graphical editor of this pSOSystem configuration header file (sys_ conf. h). The
"Wizard" function of pRlSM+ Configuration Wizard provides a "guided tour" to the
configuration process. The Wizard can take users through the necessary configura­
tion parameters based on the e of aJ2I!lication and operating system com onents
included in the application. Users can also get on-line help for each configuration
parameter. Furthermore, pRlSM+ Configuration Wizard also provides error checking
on the value of configuration parameters and possible erroneous combinations of
parameters.

1-5

1

Overview of the pRISM+ Environment pRISM+ User's Guide

1.3.3 pRISM+ Editor

.---.The pRISM+ Editor is a flexible and easy-to-use, scalable, cross-platform project

1-...;;......L

and code development editor that allows you to create projects in C, C++, and other
languages. It is comprised of a Makefile Browser, a programmer oriented text editor,
and a Message View for tracking compiler error messages.

The Source editor allows you to create and modify application source files and inte­
grate source files into your pRISM+ project. Once you have modified your project,
you can use the Message View to find common mistakes, locate and correct the mis­
takes , and recompile your project. The Makefile Browser displays the targets of one
or more of your project's makefiles. The pRISM+ Editor is equipped with context­
sensitive help that will provide you insight to the major features of the pRISM+
Editor. For additional information, refer to the pRISM+ on-line help or Chapter 5 .

1.3.4 pRISM+ Source Code Engineering Tool - SNiFF+ [Optional]

1-6

SNiFF + offers an extensive and powerful set of source code engineering tools for
source code com rehension, project management, team-based development, inter­
face to CMVC tools , automated build support, and integrated documentation gener­
ation. SNiFF + also provides integration with a wide range of source editors to
support software development.

SNiFF + provides the most advanced browsing and cross-referencing features to help
users to gain rapid source code comprehension. Powerful filtering and visualization
techniques can work with large projects with many thousands of files, tens of thou­
sands of symbols, and millions of lines of code. SNiFF+'s powerful parsers can
extract the symbolic information from a code base even before the code is compiled.

SNiFF+'s project and workspace concepts support effective team development by
allowing a team to develop against a common code base. Seamless integrated with
CMVC tools such as ClearCase, SNiFF + can be adapted to any organization with big
projects thus supporting effective cooperation between teams.

Based on the project and workspace concept, SNiFF + facilitates the build process
with a set of make support files that are automatically generated and managed by
SNiFF+. The building framework supports complex projects organized in multiple
teams that are working on multiple concurrent configurations on multiple plat­
forms.

SNiFF + also provides flexibility in the choice of tools for software development.
Users can choose from the default SNiFF+ Source Editor or a wide range of other
source editors such as Emacs, vi or CodeWright. All changes in the code are imme­
diately reflected in all the browsing tools; no compilation is necessary.

pRISM+ User's Guide Overview of the pRISM+ Environment

Once SNiFF + has parsed a code base, it can generate documentation automatically,
as well as keep the documentation up-to-date based on software changes.

1.3.5 Object Browser

Object Browser is a run-time analysis tool. It monitors target behavior by taking
periodic snapshots of the operating system objects on the target while the target 1
system is running. Information on OS objects such as tasks, message queues,
semaphores, and other critical information such as stack and memory usage can be
displayed graphically. This gives a sampled view of the target run-time behavior over
time. Two intuitive graphical display modes exist. The Snapshot View is best suited
for displaying run-time attributes of system objects, for example, run-time status
and configuration parameters of a task. The alternative, Graph View, is best used to
display the level of usage , for an example, each task's stack usage as a percentage of
its own maximum allowed stack size. From these intuitive graphical displays, users
can easily spot problems such as stack overflow or memory leak over time. Each
collection of data obtained from the running target system can either be stored in
Object Browser and compared with past or future samples or exported to standard
desktop tools such as Microsoft Excel for documentation purposes.

1.3.6 Embedded System Profiler (ESp) [Optional]

Like Object Browser, ESp is also a run-time analysis tool. However, unlike the
Object Browser's sampled view of the target run-time system, ESp offers a time­
continuous, event-by-event view of target run-time system. ESp gives you the data
between samples offered by Object Browser displaying a more complete picture of
the behavior of the run-time system.

ESp acts as a logic analyzer for software. Between user-defined (trigger and detrig­
ger) points, ESp can log every event that takes place on the target. These events may
be operating system calls, context switches, or even user-defined events. Each event
is individually time-stamped and mapped to the task or the ISR which executed it,
and displayed in a time-indexed graph. These actions allow the developer to follow
the context switch history, task state transitions, interrupts , system calls, and all
other activities on the target. ESp is, therefore, an essential tool for studying sched­
uling behavior, task synchronization and timing to identify problems such as prior­
ity inversion, deadlock, and starvation. ESp can be configured to gather post­
processing information on a system enabling you to identify the events that led up
to a crash.

ESp can also tally CPU usage by each task and ISR. This can help developers to
identify performance bottlenecks in the system. For additional information, refer to
ESp chapter.

1-7

Overview of the pRISM+ Environment pRISM+ User's Guide

1.3.7 pRISM+ Shell

The pRISM+ Shell is a Tel shell with pRISM+ specific extensions. These extensions
provide several levels of services to pRISM+ users:

• pSOS+ queries (a quick access to your application)

• Tel scripting (assistance in testing your applications)

• TCL/CORBA services (allows any CORBA service to be called from TCL)

The most basic level of service pRISM+ Shell allows you to issue interactively to get
and set information about the operating system components running on the target
to obtain run-status. This can be used to augment source-level debugging which
may not have full OS-query services.

pRISM+ Shell also provides other pROBE+ commands such as making pSOS+ sys­
tem calls and breakpoint services. This gives you a way to query the target by
accessing the pRISM+ Communications Server and Debug Services just like other
pRISM+ client tools. The Tel shell scripting language allows you to script a debug
session and execute it from the command line.

For additional information, refer to Chapter 13, pRISM+ Shell.

1.3.8 pRISM+ Cross-Compiler Suite

For PowerPC, MIPS and 68K processors, pRISM+ is integrated with the D-CC and
D-C++ compiler suites provided by Diab Data, an Integrated Systems subsidiary.
Each suite is comprised of a C/C++ cross compiler, a program profiler, assembler,
linker, archiver, and ANSI compliant libraries. Each compiler is specifically created
for the CPU architecture it supports and each provides CPU-optimized code to en­
sure maximum performance from the CPU being used. The pRISM+ Cross Compiler
Suite also provides special support for embedded development such as flexible con­
trol over location of code and data segments in memory, ability to mix assembler
and C functions , and support of position-independent code and data.

1.3.9 pRISM+ Source-Level Debugger - Searchlight

1-8

SearchLight is a source-level debugger for advanced C, C++ and assembly level
debugging. It is available for PowerPC, 68K, and MIPS processors.

SearchLight features a simple point-and-click graphical interface. This provides fast
and easy access to target debugging information. Using this simple and intuitive
interface, you can control program execution, perform sophisticated breakpoint
operations, display and modify variables, and traverse complex data structures. In

pRISM+ User's Guide Overview of the pRISM+ Environment

addition, you can instantly access files , functions, stacks, and local and global
variables.

SearchLight supports debugging over serial and Ethernet target interfaces. For
more information on SearchLight, refer to the SearchLight on-line help or Chapter
8 .

1.3.10 SingleStep Debugger [Optional]

For PowerPC and 68K processors, the SingleStep source-level debugger from
Software Development Systems (SDS) is another debugger option. Users of
SingleStep can get full access to pSOSystem operating system information such as
state of tasks, queues, and semaphores as well as component configuration
information.

SingleStep features a simple point-and-click graphical user interface, proving fast ,
easy access to all debugging information. SingleStep supports advanced C, C++, and
assembly level debugging features , including program execution control, sophisti­
cated breakpoint definitions, multiple variable viewing and automated traversal of
complex data structures.

You can debug with SingleStep over serial interface, Ethernet interface, BDM/JTAG
interface, as well as many in-circuit emulators.

You can debug with SingleStep over a serial interface or an Ethernet interface, as
well as many in-circuit emulators.

1.3.11 Run-time Analysis (RTA) Suite [Optional]

The RTA Suite is a powerful combination of software tools, including a Visual
Interactive Profiler, a Run-Time Error Checker and a Visual Link Map Analyzer.
These tools draws on information from Diab Data's D-CC and D-C++ compiler suites
and the target application. This information provides the critical insight needed by
each developer to improve program performance, reliability, and memory usage in
advanced 32-bit applications.

The Visual Interactive Profiler provides users with code coverage information for a
run-time system. With VIP, users can easily identify hot spots and dead code in an
application. Tightly integrated with pSOSystem's memory allocation and dealloca­
tion algorithms, the Run-Time error checker can help customers to find elusive run­
time memory errors in their pSOSystem-based embedded applications. The Visual
Link Map Analyzer provides an intuitive, graphical interface to configure optimum
memory layouts. With the RTA Suite, pRISM+ users can profile and analyze the

1-9

1

Overview of the pRISM+ Environment pRISM+ User's Guide

underlying run-time behavior of their code and then invoke profile-guided optimiza­
tions for improved performance.

1.4 pRISM+ Communications Infrastructure

1.4.1 Communication Server

The Communication Server is responsible for target services such as reading mem­
ory, execution control, and pSOSystem-awareness. It is also responsible for commu­
nication with the target. It accepts requests from clients and interacts with the
target to satisfy these requests.

1.4.2 Debug Server

The Debug Server is responsible for the core debugging services such as symbol
management, breakpoint handling, and execution processing. It accepts requests
from the debugger client (for example: SearchLight) and interacts with the
Communication Server to satisfy these requests.

1.5 Getting More Information About pRISM+

This section contains a documentation road map and a list of manuals providing
additional information about pRISM+.

1.5.1 pRISM+ Documentation

1-10

pRISM+ documentation is available in both printed and on-line CD-ROM formats. A
complete list of all documents supporting pRISM+ is located in the pRISM+ Release
Notes.

Release Information

• pRISM+ CD-ROM Installationfor Windows booklet

• pRISM+ CD-ROM Installation for UNIX booklet

• System Administration Guide: License Manager for pRISM+

• pRISM+ Release Notes

• pRISM+ Upgrade Guide (for existing customers)

pRISM+ User's Guide Overview of the pRISM+ Environment

On-line Documentation

• On-line tutorials and on-line help.

• On-line Manuals.

Host Tools Documentations

• pRISM+ User's Guide (this book)

1.5.2 Documentation Roadmap

Figure 1-2 on page 1-12 provides a roadmap of pRISM+ for pSOSystem and sup­
ported host tools documentation.

1-11

1

Overview of the pRISM+ Environment

Building pSOSystem Applications

On-line
Tutorials

::r:]

pRISM+
Release
Notes "----

Jn_

pRISM+
User's
Guide

The pRISM+ User's Guide and on-line tutorials
introduce pRISM+ and pSOSystem software. It
also explains the basics of building, compiling,
and debugging pSOSystem applications.

l
pSOSystem Functionality

pSOSystem
System
Concepts

Explains the inter­
nal functionality of
the pSOSystem
software.

pSOSystem
System
Calls

Provides syntax/
usage information
for all pSOSystem
system calls and an
error code index.

pSOSystem Describes the BSPs
Advanced
Topics available for your

processor.

pRISM+ User's Guide

Com piling/Debugging

Host
1
Tools

Documentation
Set

~~~ 
The documentation on host 
tools goes into greater detail 
about the compiler and 
debugger tools. 

pSOSystem 
Program­
mer's 
Reference 

pROBE+ 
User's 
Guide 

Explains pSOSystem 
services; interfaces and 
drivers; configuration 
tables; and memory 
usage. 

Explains how to 
use the pROBE+ 
target agent. 

pSOSystem 
Application 
Examples 

Contains a brief explana­
tion of the application 
examples and tutorials on 
how to use the examples. 

"---mlll 

FIGURE 1-2 pRISM+ for pSOSystem Documentation Roadmap 

1-12 



Understanding pSOSystem 

This chapter introduces the internal organization and operating theory of the 
pSOSystem environment. 

2.1 What Is pSOSystem? 

pSOSystem is a modular, high-performance real-time operating system designed 
specifically for embedded microprocessors. It provides a complete multitasking envi­
ronment based on open systems standards. 

pSOSystem is designed to meet three overriding objectives: 

• Performance 

• Reliability 

• Ease-of-Use 

The result is a fast, deterministic, yet accessible system software solution. Accessi­
ble in this case translates to a minimal learning curve. pSOSystem is designed for 
quick start-up on both custom and commercial hardware. 

The pSOSystem software is supported by an integrated set of cross development 
tools that can reside on UNIX or Windows based computers. These tools can com­
municate with a target over a serial or TCP /IP network connection. 

2.2 System Architecture 

The pSOSystem software employs a modular architecture. It is built around the 
pSOS+ real-time multi-tasking kernel and a collection of companion software com-

2-1 

2 



Understanding pSOSystem pRISM+ User's Guide 

2-2 

ponents. Software components are standard building blocks delivered as absolute 
position-independent code modules. They are standard parts in the sense that they 
are unchanged from one application to another. This black box technique eliminates 
maintenance by the user and assures reliability, because hundreds of applications 
execute the same, identical code. 

Unlike most system software, a software component is not wired down to a piece of 
hardware. It makes no assumptions about the execution (target) environment. Each 
software component utilizes a user-supplied configuration table that contains appli­
cation and hardware related parameters to configure itself at start-up. 

Every component implements a logical collection of system calls. To the application 
developer, system calls appear as re-entrant C functions callable from an applica­
tion. Any combination of components can be incorporated into a system to match 
your real-time design requirements. pSOSystem includes the following components: 

NOTE: Certain components may not yet be available on all target processors. 
Check the release notes to see which pSOSystem components are 
available on your target. 

• pSOS+ Real-time Multitasking Kernel: A field-proven, multitasking kernel 
that provides a responsive, efficient mechanism for coordinating the activities of 
your real-time system. 

• pSOS+m Multiprocessor Multitasking Kernel: Extends the pSOS+ feature set 
to operate seamless across multiple , tightly-coupled or distributed processors. 

• pNA+TCP/ IP Network Manager: A complete TCP/IP implementation including 
gateway routing, UDP, ARP, and ICMP protocols; uses a standard socket inter­
face that includes stream, datagram, and raw sockets. 

• pRPC+ Remote Procedure Call Library: Offers SUN compatible RPC and XDR 
services; allows you to build distributed applications using the familiar C proce­
dure paradigm. 

• pHILE+ File System Manager: Gives efficient access to mass storage devices, 
both local and on a network. Includes support for CD-ROM devices, MS-DOS 
compatible floppy disks , and a high-speed proprietary file system. When used in 
conjunction with the pNA+ component and the pRPC+ subcomponent, offers 
client-side NFS services. 

• pREPC+ ANSI C Standard Library: Provides familiar ANSI C run-time func­
tions such as printf (), scanf (),and so forth, in the target environment. 



pRISM+ User's Guide Understanding pSOSystem 

• pROBE+: The pROBE+ debugger is a comprehensive system debugger and ana­
lyzer for the pSOSystem environment. 

Figure 2-1 illustrates the pSOSystem environment. 

pROBE+ 

~ 
~ 

C, C++ Interface 

pSOS+ 

pHILE+ pREPC+ 

Interrupt 
Handlers 

FIGURE 2-1 The pSOSystem Environment 

Drivers 

~ 
~ 

pRPC+ 

In addition to these core components, pSOSystem includes the following: 

• Networking protocols including SNMP, FTP, Telnet, TFTP, NFS, MLPP, X.25, 
ISDN, and STREAMS. 

• Run-time loader. 

• User application shell. 

• Support for C++ applications. 

• Boot ROMs. 

2-3 

2 



Understanding pSOSystem pRISM+ User's Guide 

• Pre-configured versions of pSOSystem for popular commercial hardware. 

• pSOSystem templates for custom configurations. 

• Chip-level device drivers. 

• Sample applications. 

This manual describes how to get started with pSOSystem. This includes building 
and debugging pSOSystem applications. 

2.2.1 Target Architecture 

2-4 

This section introduces the internal organization and operating theory of the 
pSOSystem environment. 

The purpose of the pSOSystem environment is to help you developing an application 
on a host system, then download, and run the application on an embedded com­
puter. The embedded computer is called the target system. The description of the 
pSOSystem environment begins with the target system architecture. The descrip­
tion of the host system starts in Section 2 .2 .2 , Host Development System Layout. For 
an illustration of the relationship between the host and the target system, see 
Figure 2-2. 

pSOSystem Host 

pSOSystem lets you 
develop an application 

for an embedded system 

Serial/Ethernet/BDM 
Connection 

pSOSystem Target 

a 

Running PC 
an executable image of pSOSystem 

FIGURE 2-2 Architecture of pSOSystem 



pRISM+ User's Guide Understanding pSOSystem 

In a pSOSystem environment model, the target system software is usually an appli­
cation that you develop on the host, as shown in Figure 2-2. Two major software 
elements run on the target hardware: the pSOSystem software and the application 

code. You link these elements together on the host system and download this combi­
nation to the target. The downloaded software is called an executable image. 

pSOSystem Software 

The pSOSystem software provides a standard set of services for the application code 
and debugging tools. It almost always contains the pSOS+ real-time kernel and fre­
quently contains the following companion software elements: 

• pREPC+, pROBE+, pNA+, and pHILE+ components. 

• Device drivers and interrupt handlers for the target hardware. 

• Configuration tables used to customize the operating system for a particular 
target system. 

The pSOSystem software is a combination of standard components, system configu­
ration code, and hardware-specific environment code. The hardware-specific code is 
known as a pSOSystem Board-Support Package, or BSP. Integrated Systems pro­
vides BSPs for several target boards. If you are using one of the boards, you can 
begin developing pSOSystem application code immediately. If you are using unsup­
ported or custom hardware, you must develop a board-support package for the tar­
get system. 

Application Code 

The application code is what makes one target system different from another. It 
implements the functional behavior of the target system. Normally, application code 
is very specialized and contains few standard software elements, if any. It is usually 
developed from scratch, although you can utilize code fragments from the sample 
applications that come with the pSOSystem software. 

2.2.2 Host Development System Layout 

pSOSystem code consists of read-only object libraries , include files , and source files. 
The code can be kept in a central location on the host system so that multiple users 
can have access to it. The directory tree that contains this shared code is the 
pSOSystem directory tree, and its root directory is the pSOSystem root directory. 

Within pSOSystem source files , path names generally begin with PSS_ ROOT. The 
environment variable PSS_ ROOT is set to the path name of the pSOSystem root 
directory by the installation procedure. 

2-5 

2 



Understanding pSOSystem pRISM+ User's Guide 

2-6 

You can create a pSOSystem executable image from any directory in the host sys­
tem, not just within the pSOSystem root directory tree. A directory where you create 
an executable image is called a working directory. For information on the contents of 
this directory, see section Working Directory on page 2-7. 

Configuration Files 

Source files that control the configuration of the pSOSystem environment are called 
configuration files. Configuration files exist for all systems built with the pSOSystem 
software, and these files are compiled and linked into the executable image. A set of 
the common configuration files resides in the PSS_ ROOT\configs\std directory. 
You should not need to make changes to these common files . 

The configuration files contain a variety of parameters that control the behavior of 
the pSOSystem software. Examples of these parameters are the baud rate for the 
serial channels and IP addresses in network systems. You can change these param­
eters either when you build the pSOSystem environment or through an interactive 
start-up dialog during run-time start-up. 

Configuration parameters are normally specified at system build time by the values 
you supply in the system configuration file sys_ conf. h . This system configuration 
file resides in the working directory. An option in sys_ conf. h allows you to specify 
that the operating system should try to locate saved versions of these parameters in 
the target board's nonvolatile storage area. This is useful when you are using the 
pSOSystem Boot ROMs because the executable image you then download can use 
the same parameter values you give to the Boot ROMs. You can also enable a special 
start-up dialog that allows you to change the parameters at run time start-up 
through an RS-232 connection. Both of these options are enabled by definitions in 
sys_ conf . h . 

The C source files in PSS_ ROOT\configs\std contain numerous conditional com­
pilation statements controlled by the contents of sys_ conf . h . The dialog. c file 
contains the source code for the optional system start-up dialog. Most of the other 
files contain the start-up code that builds the configuration tables for the various 
operating system components. These files are provided as read-only source files; 
you should not need to modify them. 

In addition to the source files , PSS_ ROOT\configs\std contains a file called 
config.mk, which the application's makefile must include. The directives in 
con fig. mk compile the files in the std directory. 



pRISM+ User's Guide Understanding pSOSystem 

Board-Support Package 

Directory PSS_ ROOT\bsps contains the software for several board support pack­
ages (BSPs). Details on these BSPs are provided in the pSOSystemAdvanced Topics 
manual. 

System Library 

The libsys. a file in the PSS_ ROOT\sys\os directory is the system library. It con- 2 
tains the various operating system components and the run time bindings that the 
application uses to make system calls to these components. The system library is 
usually built once as part of the pSOSystem host installation. It needs to be rebuilt 
only when you receive new or updated software components. 

Working Directory 

The pSOSystem executable image is built from within a working directory. The 
working directory contains the application code. Its location does not depend on the 
location of the pSOSystem root directory. A working directory must contain the 
following: 

• A system configuration file (sys_ conf . h) 

• A makefile 

• A driver configuration file (d r v_ conf. c ) 

• Application code 

System Configuration File 

The system configuration file sys_ conf . h is a C include file that must reside in the 
working directory. The sys_ conf . h file has many elements and affects many 
aspects of the pSOSystem environment. The following list illustrates the range of 
items that sys_ conf . h controls, namely: 

• Which pSOSystem components are built into the executable image 

• Which peripheral devices are enabled 

• Whether a start-up dialog is included 

• Various entries in the individual component configuration tables, such as the 
numbers of tasks, queues , and other objects, for the pSOS+ environment. 

2-7 



Understanding pSOSystem pRISM+ User's Guide 

2-8 

makefile 

This section describes the rules for writing a makefile to build pSOSystem appli­
cations. 

NOTE: The following examples use the UNIX slash type I. On Windows systems 
the slash type \ should be substituted. Refer to the sample applications 
installed on your system for the appropriate slash type to use. The sample 
applications are located in the directory $PSS_ ROOT/apps (UNIX) or 
$PSS_ ROOT\apps (Windows). 

The first items in the makefile are the following macro definitions: 

PSS_ BSP 

PSS_DRVOBJS 

PSS_ APPOBJS 

Supplies the path name of the pSOSystem board­
support package you use to build the executable 
image. This is usually one of the subdirectories of 
PSS_ ROOT /bsps . 

Defines the set of object files and libraries for drivers 
that you have added to the pSOSystem environment. 
It must include at least drv_ conf. o. 

Defines the set of all the object files and object 
libraries that make up the application. 

After the preceding macro definitions, the makefile must have the following lines: 

PSS_CONFIG=$(PSS_ROOT)/configs/std 

#------------------------------------------------------------------
# $(SNIFF_MAKE_CMD) . mk implements the SNiFF+ workspace over-riding 
# and should be included before any other file. For non SNiFF+ build 
# it has no effect . 
#------------------------------------------------------------------
include $(PSS_CONFIG)/$(SNIFF_MAKE_CMD) . mk 
include $(PSS_BSP)/bsp . mk 
include $(PSS_CONFIG)/config . mk 



pRISM+ User's Guide Understanding pSOSystem 

The remainder of the makefile contains the rules that define how to build applica­
tion modules. The * . mk files that you include define several macros. These macros 
are used in the following makefile commands: 

cc Invokes the C compiler 

COP TS Specifies options for the C compiler that are appropriate for 
building an executable image 

AS 

AOPTS 

Invokes the assembler 

Specifies options for the assembler that are appropriate for 
building an executable image 

The following is an example makefile for building an application that contains one 
object module, demo. o . 

PSS_DRVOBJS=drv_conf . o 
PSS_APPOBJS= demo . o 

PSS_CONFIG=$(PSS_ROOT)/configs/std 

#-----------------------------------------------------------
# $(SNIFF_MAKE_CMD) . mk implements the SNiFF+ workspace over­
# riding and should be included before any other file. 
# For non SNiFF+ build it has no effect. 
#-----------------------------------------------------------
include $(PSS_CONFIG)/$(SNIFF_MAKE_CMD) .mk 
include $(PSS_BSP)/bsp . mk 
include $(PSS_CONFIG)/config . mk 

clean : 
@rm 
@rm 
@rm 
@rm 

-f 
-f 
-f 
-f 

ram . coff * . cfe * . cof * . elf ram . * rom . * * . a 
* . o * . map * . hex *.x *.opt * . Lapp.* qpsos.tmp 
ram.dld rom.dld os . dld app . dld lib . dld driver.dld 
* . db * . db2 * . oul * . blk 

drv_conf . o : drv_conf . c \ 
makefile sys_conf . h $(PSS_BSP)/bsp . h 

$(CC) $(COPTS) -o drv_conf.o $< 

demo . o : demo . c \ 
makefile demo . h sys_conf . h 

$(CC) $(COPTS) -Xno-optimized-debug -o demo . a$< 

2-9 

2 



Understanding pSOSystem pRISM+ User's Guide 

2-10 

When you invoke make to build the pSOSystem executable image you can specify, 
as a parameter, one of the output targets listed in the following table: 

TABLE 2-1 Output Target File Options 

Output Parameter Description 

ram . hex An executable image in S-record format for Motorola 
processors or Intel Extended Hexadecimal format for 
Intel processors, suitable to download to the target 
board's RAM. 

ram.elf An executable image in ELF format, suitable for conver-
sion to a ram. hex file. 

ram . hex An executable image in S-record format for Motorola 
processors or Intel Extended Hexadecimal format for 
Intel processors, suitable for placement in ROM. 

ram.elf An executable image in ELF format, suitable for place-
ment in ROM. (It is seldom useful for producing ROMs 
unless the PROM programmer accepts ELF formatted 
input files.) 

os.hex An executable image of the pSOSystem software in 
S-record format for Motorola processors or Intel 
Extended Hexadecimal format for Intel processors 
without the application. 

os . elf An executable image of the pSOSystem software in ELF 
format, without the application. 

app.hex An executable image of the application (without the 
operating system) in S-record format for Motorola 
processors or Intel Extended Hexadecimal format for 
Intel processors. 

app.elf An executable image of the application (without the 
operating system) in ELF format. 

If you do not specify a target, the first target found in the makefile of the application 
is built. 

To build a system for downloading to the RAM of the target board using a source 
level debugger such as SearchLight, for example, you would build the ram. e 1 f 

target. 



pRISM+ User's Guide Understanding pSOSystem 

There are many build options for pRISM+ which depend on the project editor you 
use, and also on whether you are compiling from the pRISM+ IDE or the command 
line. Please refer to the chapters on pRISM+ Editor and SNiFF +for specific informa­
tion regarding how to build an executable in either environment. 

The pSOSystem build process also produces an ASCII map file. The map file con­
tains a load map and cross-reference listing of symbols. Its name is ram . map, 

rom . map , os. map , or app . map , depending on the output target you specify. 

Driver Configuration File 

The driver configuration file drv_ conf . c contains two routines that are called dur­
ing system start-up to install pSOSystem drivers in the appropriate pSOS 1/0 Jump 
tables. You can find more information about the pSOS 1/0 Jump tables in the 
pSOSystem System Concepts manual. Each of the pSOSystem sample applications 
includes an example driver configuration file . Normally, you do not need to edit this 
file unless you are adding special or custom drivers to the pSOSystem environment. 

The driver configuration file drv _conf.c contains three routines that are called dur­
ing system start-up. The routines are: 

SetUpDri vers () This function installs pSOSystem drivers in the appropri­
ate slot in the pSOS 1/0 jump table. You can find more 
information about the pSOS 1/0 jump in the pSOSystem 
System concepts manual. 

Dr vSysStartCO () This function is invoked during pSOS initialization. It sets 
up the Initial Device Name Table for all devices referred by 
the pSOS 1/0 jump table. This function also cleans up the 
driver specific data area when pSOSystem is re-initialized. 

SetUpNI () This routine sets up the Network Interfaces for pNA+. 

Each of the pSOSystem sample applications include an example driver configura­
tion file. Normally, you do not need to edit this file unless you are adding special or 
custom drivers to the pSOSystem environment. 

2.2.3 Sample Applications 

Directory P SS_ ROOT\ap ps contains several subdirectories, each of which contains 
a pSOSystem sample application. If you use a supported target platform, the sample 
applications allow you to build, download, and run an executable image without 
writing a single line of code. 

2-11 

2 



Understanding pSOSystem pRISM+ User's Guide 

Each sample directory contains source code, a makefile, and a README file for the 
application. You can use the source code for each sample as a starting point for an 
application or as a learning tool. For example, the following two sample applications 
are recommended starting points: 

hello 

pdemo 

This simple one-task application displays the message "Hello, 
world" to the target's serial port (system console) . 

A simple application that uses most of the pSOS+ services. 

The pdemo sample application is also used by the tutorials found in subsequent 
chapters of this manual. 

2.3 System Configurations 

The pRISM+ installation procedure configures your system's environment for using 
the development tools. This section describes the system configurations made by 
the installation procedure and, should you wish to examine them, contains instruc­
tions on how to view the changes made to your system's configuration. 

2.3.1 Host System Configuration 

2-12 

During the pRISM+ installation, the following environment variables are set: 

PSS_ ROOT The pSOSystem root directory. 

PSS_ BSP Path to BSP directory. 

DIABLIB Installation directory of the Diab Data compiler. 

In addition, the installation procedure sets the system path specification to include 
the host utilities directory and the compiler executables directory. 

To view the setting of a specific environment variable on UNIX systems use the 
command: 

echo $env_varname 

where env_varname is the environment variable name. 

On Windows systems, the environment variable settings can be displayed using the 
MS-DOS SET command. 



pRISM+ User's Guide Understanding pSOSystem 

Table 2-2 lists the environment variables set by the installation procedure and the 
value to which each sh ould be set. 

TABLE 2-2 Environment Variables Set By Install Procedure 

Environment Value 
OS 

Variable Comments 

UNIXC PSS - ROOT /usr/isi<target> 
or 
Bourne PSS - BSP $PSS_ ROOT /bsps/ targ 

shell 
targ specifies directory of target board's 
BSPs. For example, if target is Motorola 
FADS, value of targ is ads8xx . 

DIABLIB /isi<target>/diab_ ver 

ver is version number of compiler. For 
example, if compiler version is 4 .2b. 

Windows PSS - ROOT drive:\isi <target> 

drive: is install to drive. 

PSS - BSP $PSS_ ROOT\bsps \ targ 

targ specifies directory of target board's 
BSPs. For example, if target is Motorola 
FADS, value of targ is ads8xx . 

DIABL I B drive:\isi <target> \diab_ ver 

ver is version number of compiler. For 
example, if compiler version is 4.2b. 

NOTE: The <target> portion of each value is a variable, to be replaced with 
ppc, 68k , or mip as appropriate for your target processor. 

To verify that the system path variable includes the host utilities directory and the 
compiler executables directory on UNIX systems, enter the command: 

echo $PATH 

To view the path on Windows systems use the MS-DOS command: 

path 

2-13 

2 



Understanding pSOSystem pRISM+ User's Guide 

The host utilities directory settings are shown in the following table: 

TABLE 2-3 Host Utility Directories 

Path OS 

PSS_ ROOT/bin/hpux HPUX 

PSS_ ROOT/bin/solaris Solaris 

PSS_ ROOT\bin\win32 Windows 

The compiler executables directory is specified by the DIABLIB environment vari­
able (see Table 2-2) and should appear in the system path specification. 

If any of the host system configuration settings are not correct, the installation pro­
cess probably did not complete successfully. Refer to the pRISM+ Installation guide 
for more information on how to fix the configuration settings. 

2.3.1 pSOSystem System Library 

During the pRlSM+ installation process the pSOSystem system library is built. If 
this step completely successfully you will find the l ibsys . a file contained within 
the following directories: 

$PSS_ ROOT/sys/os (UNIX systems) 

$PSS_ ROOT\sys\os (Windows systems) 

If you are using the C++ compiler you will also find the file, libsys xx . a in the 
directories listed above. 

2.4 Where to Go From Here? 

2-14 

You can continue onto the tutorial chapters which describe building the he l lo and 
pdemo sample applications and using the SearchLight or SingleStep debugger. 

The tutorial chapters include: 

• Chapter 3 , Quick Start with a Tutorial 

• Chapter 8 , The SearchLight Debugger - A Tutorial 

• Chapter 9 , The SingleStep Debugger - A Tutorial 



pRISM+ User's Guide Understanding pSOSystem 

Along with source code for the application, each sample application directory 
includes the necessary build files and pSOSystem configuration files. For additional 
information about sample program files, refer to the pSOSystem Application 
Examples manual. 

2-15 

2 



Understanding pSOSystem pRISM+ User's Guide 

2-16 



I Quick Start with a Tutorial 

This chapter introduces the pRISM+ development environment by walking you 
through an edit, compile, and debug cycle with a pSOSystem sample application. It 
is intended as your first introduction to most of the tools in pRISM+ and the 
sequence to using these tools or Appendix A. 

It is strongly recommended that you go through this tutorial with a standard off­
the-shelf target board supported by this release of pRISM+. For a list of supported 
target boards, refer to the pRISM+ Release Notes. 

In this tutorial you will learn how to: 

• Complete prerequisites before starting the tutorial. Refer to Section 3.1 , Before 
You Begin on page 3-2. 

• LaunchpRISM+ on page 3-3. 

• Start A New Project with pRISM+ on page 3-4. 

• Select a project tool to use as the basis of your development environment, in 
Section 3.4, Choosing a Project Tool on page 3-4. 

• Select a pSOSystem sample application as a starting point on page 3-5. 

• Use the pRISM+ Editor as a development tool on page 3-5. 

• Use SNiFF + to perform some basic development tasks (if you purchased this 
optional product) on page 3-12. 

• Build the pSOSystem sample application pdemo to generate a target executable 
image. 

• Configure both the target connection and communication parameters. 

3-1 

3 



Quick Start with a Tutorial pRISM+ User's Guide 

• Configure pRISM+ host tools to connect to the target. 

• Download the target executable image using a source-level debugger. 

• Use Object Browser to take snapshots of the target run-time behavior. 

• Use ESp to profile the target run-time behavior. 

3.1 Before You Begin 

3-2 

In order to run this tutorial, you must first complete a list of prerequisites. This sec­
tion goes over the prerequisites that are required to use the pRISM+ Tutorial. 

Install pRISM+ 

Install pRISM+ if you have not already done so. To install pRISM+, follow the 
instructions provided in the installation booklet included in the pRISM+ CD-ROM 
jewel case. 

License pRISM+ 

If you have installed pRISM+ using the start-up key, you will be able to run pRISM+ 
for 60 days. After the 60 day period, you will need another license file . Please take 
some time out NOW to apply for your permanent license. To apply for your perma­
nent license, fill out the license request form and send to Integrated Systems, Inc. 

After you receive your permanent license file , install it by following the directions 
given in the Administration Guide: License Manager manual. 

Read release information 

For information such as new features in this release , bug fixes since last release and 
other release information, refer to the pRISM+ release notes. 

Set up a Target Board to Run the Tutorial 

The pRISM+ tutorial will take you through a typical edit-compile-debug cycle using 
pRISM+. This tutorial assumes that: 

• A pSOSystem Boot ROM or flash is installed on the board. 

• Your target board has a serial port, which a terminal emulation program will 
use to communicate with the Boot ROM/flash on the target board. 

• Your target board has an Ethernet port and your development host is connected 
to your target board via this Ethernet interface. 



pRISM+ User's Guide Quick Start with a Tutorial 

pRISM+ supports a number of off-the-shelf single board computers. We strongly 
recommend that you use one of the supported boards for the tutorial. A list of sup­
ported boards in this release is offered in release notes and Appendix A. Refer to 
Appendix A for information on how to set up one of the supported boards. 

For instructions on how to use pRISM+ over a BDM/JTAG connection or serial con­
nection, refer to Appendix C, pRISM+ Supported Host/Target Connections. 

Connect the Target Board to the Development Host 

Figure 3-1 shows the development configuration needed for the pRISM+ Tutorial. 

Development Host 
(PC or Unix Machine) 

Target Board 
(Off the Shelf Single 

Board Computer 
Supported by pRISM+) 

Serial and Network Connections J 
0 

J 
7L pSOSystem 

Boot ROM/Flash 

FIGURE 3-1 Host Target Hardware Connection for Tutorial 

Upon completing all the prerequisites, proceed to the next section to begin the 
pRISM+ tutorial. 

3.2 Launch pRISM+ 

Use this procedure to launch pRISM+ on both Windows and UNIX platforms. 

For Windows 

1. To start the Orbix Daemon, select Start ~ Programs ~ pRISM+ 2.0 target_ name ~ 
Orbix Daemon. 

This launches the Orbix Daemon needed by pRISM+ tools to communicate. 
Since the Orbix Daemon will not be used directly, you can choose to iconize the 
Orbix Daemon window. 

2. To launch pRISM+, select Start~ Programs~ pRISM+ 2.0 target_ name ~ pRISM+ 
target_ name. 

3-3 

3 



Quick Start with a Tutorial pRISM+ User's Guide 

For UNIX 

1. To start the Orbix Daemon, type orbixd & from the command line. 

This launches the Orbix Daemon needed by pRISM+ tools to communicate. 

2. To launch pRISM+, type prismplus20 & from the command line. 

3.3 Start A New Project with pRISM+ 

You start using pRISM+ by starting a new pRISMSpace. A pRISMSpace holds infor­
mation about your project such as location of project source files and your choice of 
a board support package (BSP). Once you set up a pRISMSpace, the information 
gathered on your project is stored in a pRISMSpace file in your project directory. A 
pRISMSpace file has the. psp extension. 

1. To start a new pRISMSpace, select File~New from the pRISM+ Manager as 
shown in Figure 3-2 . 

This starts the pRISMSpace Wizard to guide you through the rest of the steps in 
setting up a new pRISMSpace for your new project. 

, pRISM+ l!lfilEI 
1!11 ~iew .ErismSpace T~rget Iools jjelp 

r:-~~~~~~~~.,-~:-=-~-:--~-.-~ 

t:iew... Ctrl+N 

Qpen... Ctrl+O 

~ 

FIGURE 3-2 Selecting File~ New from the pRISM+ Manager 

3.4 Choosing a Project Tool 

3-4 

The first thing pRISMSpace Wizard will prompt you for is your choice of a develop­
ment tool. pRISM+ offers two choices for development tools: pRISM+ Editor and 
SNiFF+. 

NOTE: You will not see this window if you have not purchased the SNiFF+ option. 

pRISM+ Editor is an easy-to-use, fast-start editor specifically designed for BSP 
developers and other small project teams. The pRISM+ Editor provides a simple 
environment for embedded developers. By default, pRISM+ Editor is included in 
every pRISM+ development environment. 



pRISM+ User's Guide Quick Start with a Tutorial 

SNiFF + is a so histicated software engineering tool which brings tremendous bene­
fits to developers who work with large amounts of source code. SNiFF + offers power­
ful browsers for source code comprehension, automated makefile generation, 
automatic documentation generation, interface to CMVC tools and other source 
code engineering functions. SNiFF +is an optional package to pRISM+. It is available 
only if you have purchased this add-on option. 

Depending upon your choice of development tool, choose one of the following steps, 
then proceed to that section: 

1. If your choice is to use pRISM+ Editor, proceed to Section 3.5, Using pRISM+ 
Editor section. 

2. If your choice is to use SNiFF+, proceed to Section 3.6, Using SNiFF+. 

3.5 Using pRISM+ Editor 

This section will show you how to use pRISM+ Editor to perform several basic devel­
opment tasks. You can: 

• Select pRISM+ Editor as your development tool of choice. 

• Choose a pSOSystem sample application as a starting point. 

• Get acquainted with pRISM+ Editor. 

• Build the sample application to produce a target executable. 

From pRISMSpace Wizard, select pRISM+ Editor as your development tool then 
choose Next. 

3.5.1 Choosing a pSOSystem Sample Application As a Starting Point 

This tutorial will use a pSOSystem sample application, pdemo, to show you how to 
use pRISM+ tools. 

1. From pRISMSpace Wizard, choose Start with a pSOSystem example application , then 
click Next. 

2. From the list of pSOSystem sample applications, select pdemo and click Next. 

3-5 

3 



Quick Start with a Tutorial pRISM+ User's Guide 

3.5.2 Setting Up a New Project 

You are prompted to name your pRISMSpace. 

1. Enter projl in the pRISMSpace name field. 

pRISM+ Editor will place a copy of the pdemo sample application in the 
pRISMSpace directory. 

2. Click Finish to exit pRISMSpace Wizard. 

This starts the pRISM+ Editor. 

This completes the steps of configuring your first pRISMSpace. 

3.5.3 Getting Acquainted with pRISM+ Editor 

3-6 

Figure 3-3 on page 3-7 shows the pRISM+ Editor. These are points of interest in the 
pRISM+ Editor: 

• Name and definition of the project. In the tutorial example, the project name is 
pro j 1 and it is defined by a makefile. Double clicking on the application pro j 1 
folder gives the makefile for the pdemo project. 

• Name of the project, pro j 1, which is the same as the pRISMSpace name speci­
fied earlier. 

• The default target, ram . e 1 f, which is the default target to be built. 

• All the object files that make up the ram . elf target, such as begin . o, 

bspcfg . o, and so on. 

• The default BSP to be linked with this application. 

• Other libraries to be linked with this application. 

Extensive on-line help is available for pRISM+ Editor. To access a functional intro­
duction to pRISM+ Editor, select Help~ Welcome. 



pRISM+ User's Guide Quick Start with a Tutorial 

Object 
Files 
of 
ram.elf 

~ -.. pRIS M• Editor - c /1s1ppc/users /l e t1c1a/psosppc_pwe/apps/pro1l /proJl p s p l!!I~ El 
§earch Eroject rools ~indow J:!elp 

1±1 __J sysinit.o 
1±1··· bspcfg.o 
1±1 pnacfg.o 
1±1 __J prep ccfg.o 
1±1 .:::J dialog.a 
1±1 __J probecfg. 
$ ··· prpccfg.o 
1±1 psecfg.o 
1±1 .=:J pso scfg.o 
1±1 .:J pmontcfg.o 
1±1 2J polli o.o 
1±1·· philecfg.o 
1±1 gsbl kcfg.o 
1±1 __J plmcfg.o 
IB ..::J pnetcfg.o 

Makefile Browser 

I 

FIGURE 3-3 pRISM+ Editor Window 

Viewing Default Project Settings 

Program Editor 

To view the default project settings for pro j 1, select PrismSpace ~ Settings from 
pRISM+ Manager. Figure 3-4 displays the Project Settings dialog box. 

The following are the choices for the project settings: 

• pSOSystem Configuration File - Associated with each pSOSystem sample application 
is a pSOSystem configuration file called sys_ conf. h. This file is used to specify 
which OS components are to be included in an application and how these com­
ponents are configured. 

• Board Support Package - This specifies which Board Support Package is to be 
linked with pdemo . The current default value was set at installation time. 
Ensure that the setting matches the target board you are using with the tuto­
rial. If the value does not match the target board you are using, change it now 
before continuing with this tutorial. 

3-7 

3 



Quick Start with a Tutorial pRISM+ User's Guide 

3-8 

• Build Make Target - pSOSystem makefiles define a number of Build/Make targets 
to support embedded requirements. For example, the same target executable 
can be build for RAM or ROM. This field specifies the t)'Re of target executable 
you would like to build by default. For a description of what each of these tar­
gets are, refer to Table 2- 1, Output Target File Options. 

The target you need for this tutorial is ram . elf, which contains the application 
as well as the necessary OS components need by pdemo . It is intended to be 
downloaded to the target with either a source-level debugger or the Loader button 
in pRlSM+ Manager. 

Pro1ect Settings iJEI 

This pRISM Space is set up for pRISM+ Editor 

g_SOSystem Configuration File: 

jsys_conf.h Browse ... 

ftoard Support Package 

Jmlll Browse ... 

Build Make Iarget: 

jram.elf 

OK Cancel Help 

FIGURE 3·4 Project Settings Dialog Box 

Project Makefile 

pRlSM+ Editor's concept of a project is a set of files associated with a build and 
make target defined in a makefile. When you told the pRlSMSpace Wizard that you 
wanted to begin with a pSOSystem sample application pdemo using the pRlSM+ 
Editor, pRlSM+ Editor started by parsing the makefile of the pdemo sample applica­
tion and found the ram . elf target as part of the all rule. In essence, RlSM+ 
Editor's projects are makefile defined. 

To examine the project makefile for pdemo , double-click on the name of the project 
Application proj1 . In the makefile, you see the rules to compile the files that are part of 
the pdemo application, drv. conf. c and demo . c, and other SOSystem makefiles 
included by this makefile to generate the final executable ram . elf (see Figure 3 -5). 



pRISM+ User's Guide Quick Start with a Tutorial 

~"a. pRISM+ Editor - c· /isippc/users/leticia/psosppc_pwe/apps/projl /projl psp l!llil El 
.E_roject roo ls '!'.Yindow t!elp 

.:ll!J!Jlliil1!!lim 
Ni~11@ijifa14i@il96fl14®Dlliil§l@IU@!!i!)ht@tjijj. [j l~ 

El··· ram.elf 
· • ClO<.opt 

i· • cop! 
L.. .. • a.opt 
L ... • ill.opt 

$ ·· begin.o 
$·.:J ram.did 
$· sys init.o 
$ ··r::::.J bspcfg .o 
$ .:J pnacfg .o 
$ ·:::! prepccfg .o 
$.:.J dialog.o 
$· probecfg .o 
$ · .:J prpccfg .o 
$ psecfg .o 
$ ·..:.J psoscfg .o 
$ .:.J pmontcfg.o 
$ ·· pollio .o 
~- ..:J philecfg o 
$ gsblkcfg .o 

c l ean: 
@rm -f ram.coff •.cfe •. cof • . elf ram. • r am.• • . a 
@rm -f • . o •.map •.hex • . x •. op t • .L app.• qpsos.tmp 
@rm -f ram.dld r om.dld os.dld app.dld lib . dld driver . dld 
@rm -f • . db •.db2 •.oul • . blk 

drv conf . o~rv conf . c \ '\ 
- ~ak~fi le sys cont .h $ (PSS_BSP ) / bsp.h 

$ (CC) $(COPTS) -o drv_conf.o $< J 
ili 

$ ··.:::! pnetcfg .o 
$ ··..=.! plmcfg .o ~ 

FIGURE 3-5 Makefile Example 

Accessing Source Files 

The pRISM+ Editor offers two views to each project's source files. You can select a 
view with the tabs labeled Makefile or Source. To edit any source file, double click on 
the file name in either view. Note that you can open multiple source files with the 
pRISM+ Editor. 

Viewing Board Support Package Source Files 

In a previous section you learned how to determine which BSP is by default linked 
to your application, this section shows you how to view your BSP source files . 

To view the source file associated with the default BSP to be linked to pdemo , open 
the BSP project by opening the makefile for the BSP project. 

3-9 

3 



Quick Start with a Tutorial pRISM+ User's Guide 

3-10 

1. To open the BSP project, select Project ~ Add BSP Makefile. 

This command opens the Add BSP makefile dialog box, with your default BSP 
already highlighted. After adding your BSP makefile to the desktop, you will be 
able to peruse the source files associated with the BSP. 

2. Click OK to add your BSP project into the Makefile window. As shown in 
Figure 3-6, you can now access your BSP source files. 

'" pR.ISM+ Editor - c /pnsm+20/users/1sbach/psosppc_pwe/apps/projl /proJl psp 1!1100 £j 
Eroject Iools ~indow !:!elp 

_:] App lication proj1 

IE -=-.J 11Z1m 
.:;J Board Support Package mbx8)0( 

! "" 
/"" 
! "" 

component 1 

system . 

El ·· all 
El · libbsp.a 

,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~; 

····· • create_obj_dir 
!··· • c.opt 
'- · • a.opt 

1±1··· board .ia 
~··· asmcpu .o 
1±10 hdwcfg.o 
i±l ·~ init o 

#define 
#define 
#define 
#define 
#define 
#define 
#define 

S1T"" 

251 ,13 

SC_PSOS 
SC_PSOSM 
SC_PSOS_QUERY 
SC PROBE 
SC PROBE DISASM 
SC_PROBE_CIE 
SC_PROBE_QUERY 
gr. P'R nRF. nF.RTTr. 

FIGURE 3-6 Accessing BSP Source Files in the Makefile Window 

YES ! "" pSOS+ i:eal· 
MO ! "" pSOS+ i:eal· 
MO ! "" pSOS+ Quei:: 

YES ! "" pROBE+ (pi:c 
YES ! "" pROBE+ (dii 
YES / "" pROBE+ (COi 

YES / "" pROBE+ (qu( 
VF.5 I "" n"RnRF.+ 'ili • • 

lt is a common practice among ex erienced BSP developers to develo custom BSPs 
from existing BSPs. If you are working with several BSPs at the same time it is help­
ful to have multiple BSPs open. Note that you can open multiple BSPs by adding 
multiple BSP makefiles to the desktop. 

Building ram.elf 

Use this procedure to build the target executable ram . elf to continue with this 
tutorial. 



pRISM+ User's Guide Quick Start with a Tutorial 

1. Select ram . e 1 f by highlighting it as shown in Figure 3 -7 . 

2. Click Make the project to complete the build. You can also select Project~ Make ram.elf 
from the pRISM+ Editor menu. This will build ram . elf. 

If you have not modified any of the demo . c code, you should not experience any 
problems during the compile. Should any problems arise, error messages will be 
displayed in the Message View. Double-click on a compilation error message to 
locate the line in a file where the error occurred. 

~--... pRISM• Editor - c /1s1ppc/users/let1c1a/psosppc_pwe/apps/proJl /proJl psp 1!!1~£1 
File Edit Search Project Tools Window Help 

create_obj_dir 

• c.opt 
• a.opt 

~ w board.ia 
$ w asmcpu.o 
1±1 w hdwcfg.o 
l±l ·E:J init.o 
EH ::J board.a 
EH· ::::J resetvec.o 
1±1 ·· bpdialog.o 
1±1· E:J storage.a 
$ ~ mmumap.o 
EH···CJ isrcfg.o 
1±1 ··CJ pcicfg .o 
l±l···CJ pciisr.o 
l±l···EJ pc1 6x50.o 
l±l···C:J fdc3767x.o 
$ [:] ftash.o 

Makefile Source 

]Make successful 

,., C:>JSIPPC \users>Jet1c1a>psoSJJJJCJIWe\a11ps~1ro11\sys_conf.h ~ ~ 
; • @ ( #) p505ystem PoTJerPC / V2 . 5 . 0 : apps/ xxxx / sys conf . h (pdemo ppc) • 
/ 1t1t1t1t1t1t1t1t*1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1;1;1t1;1t1;1t1!1t1t1t1;1;1;1;1t1;1;1t1i";1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t~ 

; • 
; • MODULE: sys_conf.h 
I' DATE: 98 / 11/ 04 
I * PURPOSE : pSOSystem configm:ation definitions 

I * - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ----------
I' 
; • 
; • 
; • 

Copy:right 1991 - 1998, Integz:ated Systems, Inc. 
ALL RIGIITS RESERVED 

/ * Per:mission is her:eby gr:anted to licensees of Integ:rated System 
/ * Inc. p:roducts to use or: abs tr: act this computer: pr:ogr:a.m. for: the 
/ * sole pur:pose of implementing a pr:oduct based on Integr:ated 
/ * Systems, Inc. pz:oducts. No other: tights to r:epr:oduce, use, 
/ * oz: disseminate this computer program., whether in par:t or: in 

.!L_J . 

Making drv_conf.o from drv_conf.c 
Making demo.o from demo.c 
did ·@I.opt> ram .map 
ddump ·Iv ram .elf» ram .map 

ddump ·RV ram .elf ·O ram .hex 
.. Success .. 

2] ]1 ,1 

FIGURE 3-7 Building ram . e 1 f 

This concludes the pRISM+ Editor tutorial. For more information on the pRISM+ 
Editor, refer to Chapter 5 , pRISM+ Editor. 

Now you're ready to proceed to downloading the target. To download the executable 
you have just built to the target, continue to Section 3. 7 , Configuring the Target 
Board. 

3-11 

3 



Quick Start with a Tutorial pRISM+ User's Guide 

3.6 Using SNiFF+ 

In this section, you will learn how to use SNiFF + to perform some basic development 
tasks. You can: 

• Select SNiFF + as your development tool of choice. 

• Choose a pSOSystem sample application as a starting point. 

• Get acquainted with SNiFF+. 

• Build the sample application to produce a target executable. 

From pRISMSpace Wizard , select SNiFF + as your development tool of choice. 

3.6.1 Choosing a pSOSystem Sample Application As a Starting Point 

This tutorial will use a pSOSystem sample application, pdemo , to show you how to 
use pRISM+ tools. The steps are as follows: 

1. From pRISMSpace Wizard, choose Start with a pSOSystem example application, then 
click Next. 

2. From the list of sample applications, select pdemo , then click Next. 

3.6.2 Setting Up a New Project 

3-12 

NOTE: When you start with a pSOSystem sample application, the pRISMSpace 
name is, by default, the same as the name of the SOSystem sample 
application you're using. It is not user modifiable. You will also notice that 
the pRISMSpace directory is not user modifiable. The reason for this is 
ex lained in the ex loring SNiFF + section. 

Click Finish to exit pRISMSpace Wizard. pRISM+ will place your pRISMSpace file in 
the pRISMSpace directory. This will also start SNiFF +. 

pRISM+ Manager will start SNiFF+ and open a shared version of the sample 
application pdemo in your private workspace. 

This completes the steps of configuring your first pRISMSpace. 



pRISM+ User's Guide Quick Start with a Tutorial 

3.6.3 Getting Acquainted with SNiFF+ 

pRISMSpace Wizard will start SNiFF + for you and open the pdemo application. 
When this is successful, you will see the SNiFF + Project Editor window showing the 
pdemo project as in Figure 3-9 on page 3-14. 

NOTE: Extensive on-line help is available for SNiFF+. To access on-line help, 
click the ? in the SNiFF + menu bar as shown in Figure 3-8. 

;, SNiFF+ - letici11@letici11pc i l!!llil El 
Iools Project Windows 1 

Projects ] Working Environments J 

~ pdemo . shat:ed - adm PlJE: pp c -Pi:ivate 

FIGURE 3·8 SNiFF + Window 

Looking At pdemo with SNiFF+ Project Editor 

Now let's use SNiFF + to look at the pdemo sample application (see Figure 3-9 on 
page 3-14). SNiFF + offers a hierarchical project view. You can see the individual 
source files as well as the overall project structure. Some points of interest are: 

CD Source files of pdemo . shared. They're visible because of the check mark @. 

@ Check mark to decide if you want to display source files of a project 

@ Project Hierarchy 

3-13 

3 



Quick Start with a Tutorial pRISM+ User's Guide 

3-14 

Show source files 
for this project 

~ PE : pdemo.shared - adm PWE:ppc-Priv ... l!l~EJ 

JAii Files 

JPrivete +Shared 

Fi lter 

iJ Jwriteble + Reed On ly iJ 
Filters... I 

Source Files of pdemo.shared 

Fi le Project 

[} <k!mo.c pdemo.shar ed 

[El demo.h pdemo . shared 

[} drv_cofil.c pdemo . shared 

l!!l llldke:tile pdemo . shared 

~ pdemo. shared pdemo. shared 

@'.) r ead\'ie pdemo. shared 

sys_ com. h pdemo.shared 

Projects JFull T ree 

~~~~ pdemo . shared (apps / pdemo) 
$.. ~D include . shar ed (i nc l ude)

.. ~~D sys_os . shared (sys / os)

t····
}
~ Ill II conf1gs_std . shared (conf1gs / std)

r::Jll bsp . sh ared (bsps / mbx8xx)

r Frozen r Lockers r History

FIGURE 3-9 PE Window

G) Source files of
pdemo.shared

Note the project structure that contains other parts of pSOSystem needed by pdemo

in the Projects area. This source roject is made u of SOSystem include files
(include . shared). o erating system com onents files (os . shared). system con­
figuration (con figs . std . shared). and the BSP roject (bsp . shared and
b sp-src . shared).

NOTE: Ensure that the BSP shown in the Project Editor window ma tches the
board you are using.

pRISM+ User's Guide Quick Start with a Tutorial

NOTE: If the BSP shown does not match what you plan to use for the tutorial,
select PrismSpace -7 Settings from pRISM+ Manager to change the BSP
setting as shown in Figure 3-10.

Project Settings DEJ

This pRISM Space is set up for SNiFF+

QSOSystem Configuration File:

;.min Browse ...

~oard Support Package:

Jmbx8xx ::J Browse ...
--------'

Build Make I arget:

Jram.elf

OK Cancel Help

FIGURE 3-10 Project Settings Dialog Box

Editing a File with SNiFF+

Use this procedure to use SNiFF + to edit a file.

1. To edit any file, double click on the name of the file in the Project Editor window.

NOTE: The pSOSystem SNiFF+ integration implements file sharing out-of­
the-box. In order not to corrupt shared files , refer to Chapter 6 on
how to use SNiFF + in your development environment after you
complete this tutorial.

2. Make a local copy of a file before you make any changes to the file. Otherwise,
you can corrupt the only version of this file in pSOSystem.

3. To make a local copy of any file, right click on the file and choose Make Local Copy
from the menu.

NOTE: You do not need to change anything in the pdemo sample aI:J lication
to be able to continue with the tutorial.

3-15

3

Quick Start with a Tutorial pRISM+ User's Guide

3-16

Configuring pSOSystem for Your Application

Associated with each pSOSystem sample application is a pSOSystem configuration
file called sys_ conf. h . This file is used to specify which OS components are to be
included in an aQ£lication and how these components are configured.

Use this procedure to configure your application for pSOSystem.

1. To see the default setup for pdemo sample application, double click on
sys_ conf . h in the file list to bring up the pRISM+ Configuration Wizard.

NOTE: The default editor for sys_ conf . h, the pSOSystem configuration file,
is the pRISM+ Wizard, and not the default SNiFF + Source Editor tool.

2. If you choose to use SNiFF+ Source Editor, right click on sys_ conf.h and
choose the Edit option.

NOTE: You do not need to change anything to continue with the tutorial.

Browsing pSOSystem with SNiFF

We will use some simple examples to see how SNiFF + can help you understand
pSOSystem code by allowing you to browse and navigate the pSOSystem source
tree.

First look at how the configuration parameters in sys_ conf . h file are used to con­
figure pSOSystem. Specifically, let's see what happens in SOSystem when you
select the pSOS+ component. To do so, follow these steps.

1. Right click on sys_ conf . h in the PE window.

2. Choose the Edit option from the pop-up menu to open sys_ conf . h in a source
editor window. From the source editor window you will see that pSOS+ is
selected for pdemo .

3. Locate and highlight sc PSOS and select Info~ Retrieve SC_PSOS from all source
projects.

You will see a list of every instance in pSOSystem where this parameter is used
(see Figure 3-11 on page 3-17). You can then navigate to a pSOSystem configu­
ration file sysinit. c where all the OS com anent initialization routines are
called if the com anent is enabled in sys_ conf. h file .

pRISM+ User's Guide Quick Start with a Tutorial

;) RE pdemo shared - adm PWE ppc-Pnvate 1!!1~13

lools file &_d~ ~how !nfo ~lass T a1get 'iiew Histgry 1

Filter. .. I

Files: 2 - Matches: 9

[[) .RFJIDIIE - bsp . shared

415: - If you are using pSOS+m, change SC_PSOS
' I

r Ignore Case r Whole Word

File Types

- If you are us i ng pSOS+m, change SC_PSOS
SC PSOSM to YES .

sys_ cont . h - pdeiro . shared

172: / • pSOS+: It is an error to specify both SC_PSOS and SC PSO:
Projects I Full Tree

pdemo.shared (apps / pdemo)

$··0 include . shared (incl ude)
236 : #define SC_PSOS YES ; • pSOS+ real-time kernel
237 : #de fi ne SC_PSOSM NO 1: p=~=+ :eal -t:me multipr~

--'

: ··0 sys_os . shared (sys/ os)
f····0 configs_std . shared (confi\
f····0 bsp . shared (bsps / mbx8xx)
B··0 bsp_src. shared (bsps / mbx8>

\§!! README (writable)

l....0 std_my-mbx8xx. shared (c

~J Preview

FIGURE 3-11 SNiFF +Retriever Tool

- SC_B OOT_ROM to YE S.
- If you are using pSOS+m , change SC_PSOS to NO

!il'i!llilltr to YES .
_J

c) Build the absolute rom image, type "psosmake roms" .
creates the abso l ute r am image that has i t ' s data s
re l ocated fr om RAH to ROM, and code moved to zero~

M to YE S.

I ~· I

The following steps show how the SNiFF + Symbol Browser ("SB") can help you to
quickly access any function of interest, and how the SNiFF + Cross Referencer can
help you to see call relationships between functions.

1. From the PE window, select Tools~ Symbol Browser to bring up the SNiFF + Symbol
Browser tool.

2. Use SB to look for a function called PsosSetup as shown in Figure 3- 12 on
page 3- 18. If Select from All Projects has not already been selected, you must do the
following:

a. Select pdemo. shared; right-click it.

b. Select Select from All Projects.

c. In the Filter tab, type in PsosSetup.

d. Press Enter to search for the function PsosSetup in the pdemo project.

3-17

3

Quick Start with a Tutorial pRISM+ User's Guide

3-18

!o SB. pdemo.shared - adm P'W'E .ppc-Privale 111!10013
Iools Info !;;lass ~iew Histgry 1

jAnsi CIC++

jfunction ij jAll Modifiers

Filter r:W-s-o-sS-e-tu-p--==----r Whole Word

S9mbols of pdemo.shared

Projects

pdemo . shared (apps / pdemo)

$- -~ include. shared (include)

JFullTree

3
Filters... I

. f ---·~ include_sys_include. shared (include / s1

f····~ netinet_include. shared (include/ netine

r--··~ inet_include . shared (include / inet)

!".; net_1nclude.shared (include / net) ' ~····

r····~ cxx_include . shared (include/ cxx)

G··~ rpc_include. shared (include/ rpc)

j B··~ misc_include . shared (include/ rpc / mi

! L. .. ~ misc_include_sys_include. shared

8--~ include_ envoy_ include. shared (include;

i l....~ include_envoy_include_h_include. she

$··0 ~ilogue_include. shared (include /ep~

r Frozen r Signature

FIGURE 3-12 Symbol Browser (SB) Window

3. If Select from All Projects has already been selected, double-click on PsosSetup to
take you to the source file where this function is implemented.

4. To see all the other functions PsosSetup refers to, from the SE window choose
Info .-+ PSOSSetup Refers-To. This will bring up the SNiFF+ Cross Referencer.

You will see a call tree that consists of PsosSetup and all the functions that it
refers to. From here, you can see exactly how pSOS+ is configured .

pRISM+ User's Guide Quick Start with a Tutorial

Building a Target Executable

Return to the Project Editor (PE) window to build and compile your sample applica­
tion to produce a target executable. In the PE window, highlight pdemo . shared and
select Target Make ram.elf.

This concludes the brief SNiFF + tutorial. For more information on using SNiFF +, see
Chapter 6 , Using SNiFF+ in the pRISM+ Environment.

To download the executable you have just built to the target, see Section 3.8, Con-
figuring the Target Communications Parameters. 3

3.7 Configuring the Target Board

This section shows how to configure your target board for communication with
RISM+ host tools. You will:

• Connect your board through a serial connection to the host.

• Start a terminal emulation program on your development host.

• Use the terminal emulation program to communicate with the pSOSystem Boot
ROM or flash on the target.

• Configure the target to wait for a connection re uest from a host-based source­
level debugger over the Ethernet.

NOTE: Make sure that you have completed the steps described in Section 3 .1
and Appendix A to install a pSOSystem Boot ROM or flash on your board.

3.7.1 Connecting the Target Board to the Host Machine

You need to connect your target board using a serial cable to your host machine.
This connection is needed by pSOSystem Boot ROM/flash to communicate to host­
based terminal emulation program. You may need a null-modem cable.

3.7.2 Starting the Terminal Emulation Program on a Windows Platform

From the Start menu, select Programs~pRISM+ 2.0<target_name>~pROBE+ Console (COMl
or COM2) to start a HyperTerminal session that is pre-configured to support the
pSOSystem Boot ROM or flash.

3-19

Quick Start with a Tutorial pRISM+ User's Guide

This HyperTerminal is used to communicate with the pSOSystem Boot ROM or flash
on your target board in order to set up your board to communicate with other
pRlSM+ host-based tools.

Proceed to Section 3.8, Configuring the Target Communications Parameters.

3.7.3 Starting the Terminal Emulation Program on a UNIX Platform

You need to configure a terminal emulation program on your UNIX host to have the
following settings:

9600 baud 8 data bits 1 stop bit no parity

Proceed to Section 3 .8 , Configuring the Target Communications Parameters.

3.8 Configuring the Target Communications Parameters

3-20

Use this procedure to configure the target communications parameters.

1. Power up or reset your target board. The pSOSystem Boot ROM or flash should
display a screen similar to the one in Figure 3 - 13 on page 3 -21.

2. To modify the default communication parameters, press any key within 60
seconds.

The objective is to set up your target board to wait for the host debugger
through a network connection on the next reset or start-up. If your board con­
tains nonvolatile storage to store these communication parameters, the settings
that you set will be intact even after a power-down.

3. When prompted to <M>odify or <C>ontinue, enter M to begin modifying the
default parameters stored in the pSOSystem Boot ROM or flash.

4. When prompted with How should the boa r d boot? , configure the board to
wait for the host debugger through a network connection on the next power up
or reset by choosing Option 3 as shown in Figure 3 -14 on page 3 -2 1.

pRISM+ User's Guide Quick Start with a Tutorial

€ PROBE+ Console (COMl) - HyperTermmal 111111~£1
Eile .Edit Y:iew .(;:all I ransfer l::!elp

Copyright (c) 19 91 - 1 998, Integrated Systems , Inc.

START-UP MODE:
Boot into pROBE+ stand-alone mode

HOST DEBUGGER CONNECTION (if activated):
Serial channel Oxl

NETWORK INTERFACE PARAMETERS:
LAN interface is disabl ed

HARDWARE PARAMETERS:
Serial channels will use a baud rate of 9600
MPC860EN (Rev 1. 2), running at 40 Mhz
4MB DRAM installed, 4MB Flash (soldered)
Board serial number 2832817
Thi s board's Ethernet hardware add r ess is 8:0:3E : 25 :C7: A4

PCI FUNCTIONS:
00 / 03 / 00 (00001800) ID/ Rev=056510ad / 05

Class: Bridge Device Subcl ass: PCI / ISA Bridge
00 / 03 / 01 (00001 900) ID/ Rev=Ol0510ad/ 05

Class: Mass Storage Controller Subclass: IDE Controller
After bo a rd is reset, start-up code will wait 60 seconds

To change any of this, press any key within 60 sec onds

(M)odify any of this or (C) ontinue? [M] I
-=======~====~====~~~~~~~~
Connected 0:30:22

FIGURE 3-13 pROBE+ Console (COM1)- HyperTerminal Window

€ PROBE+ Console (COMl) - HyperTermmal lll!l~EJ
Eile _E.dil)::'.iew i;;;all Iransfer l::!elp

How should the board boot?
1. pROBE+ stand-alone mode
2 . pROBE+ waiting for host debugger via seria l connection
3 . pROBE+ waiting for host debugger via a network c onnection
4. Run the TFTP Bootloader

one do you want? [1] 3_ -:::::!-;-j
I~=================================~~
Connected 0:37:13 --!Auto detect-- 9600 8-N-1--

FIGURE3-14 Board Start-Up Mode

3-21

3

Quick Start with a Tutorial pRISM+ User's Guide

3-22

5. When prompted for NETWORK INTERFACE PARAMETERS, as shown in
Figure 3-15, set your target board's network interface parameters to valid
values for your network. You must use a valid IP address.

£ PROBE+ Console (COM1) - HyperTermmal lll!l~EI
Eile J;,dit Y'.iew ~all Iransfer l::felp

NETWORK INTE RFACE PARAMETERS :
Do you want a LAN interface? [Y)
This board's LAN IP address(0.0 .0. 0 = RARP) ? (192 . 103.53. 2 50)
Subnet mask for LAN (0 for none)? (255.255 . 255.0)
Should there be a de f ault gateway for packet routing? [NJ

Conneded 0:42:05 Auto deted--~600 8-N-1

FIGURE 3-15 Network Interface Parameters Settings

6. When prompted for HARDWARE PARAMETERS, as shown in Figure 3-16, you do
not need to change the default baud rate used by the pSOSystem Boot ROM or
flash to communicate with the host for this tutorial.

NOTE: If you do change the default baud rate, the pre-configured
HyperTerminal settings on the Windows host will need to be changed
accordingly. The target board you are using might not su port a baud
rate that you selected. See the SOSystem BSP to see if a articular
baud rate is SUQ orted before you change this setting.

f" PROBE+ Console (COMl) - HyperTermmal 1!111~13
Eile E_dit '.Y'.iew .(:;all Iransfer t!elp

HARDWARE PARAMETERS:
Baud rate f o r serial c hannels [9600]

HARDWARE PARAMETERS:
Do you want to c hange the board's Ethernet address ? [N]
How long (in seconds) should CPU del ay before starting up? [3]

Connected 0:47:43

FIGURE 3-16 Default Baud Rate and CPU Delay Setting

In most cases, you do not need to change the board's Ethernet address.

pRISM+ User's Guide Quick Start with a Tutorial

7. Shorten the default CPU delay before starting up the setting, as illustrated in
Figure 3-16.

This parameter determines how many seconds after a reset your board will be
ready to respond to a connection request from a host based debugger over the
Ethernet. It will be set to 3 for this tutorial.

8. Enter C after you finish setting the parameters.

In this scenario, your target is ready to be connected to a source level debugger.

9. Check to see if your target board can res ond to a ing. If your target board
does not respond to a ping, check your network parameters. Make sure you can
ping your board before attempting to connect it to any pRISM+ host tools.

3.9 Adding a Target Board to the pRISM+ Target List

pRISM+ keeps a target list for all the target boards you use. All the pRISM+ tools use
this target list to get information on how to access target boards. Once you've regis­
tered a target board with pRISM+ by adding it to the target list, this target is acces­
sible by all pRISM+ tools. You only need to enter board information once for each
board.

In Section 3 .8 , Configuring the Target Communications Parameters, you learned to
set up your board to communicate over the Ethernet with pRISM+ host tools.

Use this procedure to add your board to the pRISM+ Target List so pRISM+ host
tools can connect to it.

1. To add a board to the pRISM+ Target List, select Target ~ List from pRISM+
Manager to bring up the Target List dialog box.

2. Click Add to add a board to the list; this action opens the Add Target dialog box.

3. In the Add Target dialog box, enter the name of the board you would like to use to
identify your board.

NOTE: This does not have to be the name of your board as used by DNS.

4. Click OK to open the Properties for Target board_ID board dialog box (see Figure 3-1 7).

3-23

3

Quick Start with a Tutorial pRISM+ User's Guide

3-24

Properties for Target mbxBxx board EJ

Seiver I
~Seiver Selection .. """""'I

r. Use jocal communications seiver

r Use local ~OM communications seiver

r l,!se remote communications seiver

r:- Remote Registration--------------~

Remote Seiver Host Name: J
..

Remote ~ommunications Seiver Executable:

J
~.

pROBE Target Connection-----------------.

r. ~etwork Network Name: j192.103.53.250

r ~erial
Port Number: 12

pMONT Target Connection -=""......,."""""""""""""""""""""""""--,

r. N~twork
r Serial

Network Name: 1192.103.53.2501

Port Number: 12

OK Cancel

FIGURE 3-17 Properties for Target Dialog Box

Help

5. As shown in Figure 3-1 7, make sure you set the following in the Properties for Tar­
get board_ID board dialog box:

a. In the Server Selection area, choose Use local communication server. This is the
default setting that tells pRISM+ to start a communication server on your
local host machine to handle host to target communications.

b. In the pROBE Target Connection area, choose Network as the connection type.
This setting tells pRISM+ to connect to target agent pROBE+ using the net­
work connection. This means you will be using your source level debugger
over the Ethernet to debug your application running on the target.

pRISM+ User's Guide Quick Start with a Tutorial

c. In the pROBE Target Connection area, set Network Name to the IP address of your
target or to the name of your target in the hosts file that DNS uses. This is
the name TCP /IP will use to find your target hardware.

NOTE: This name does not have to match the name of your target
entered in the last section.

d. There is usually no need to change the Port Number setting in the pROBE Target
Connection area.

e. In the pMONT Target Connection area, choose Network as the connection type to 3
tell pRISM+ to connect to target agent pMONT using the network connec-
tion. This means that you will be using Esp and Object Browser over the
Ethernet to analyze your target's run-time behavior.

f. In the pMONT Target Connection area, set Network Name to the IP address of your
target or name of your target in the hosts file which DNS uses. This is the
name TCP /IP will use to find your target hardware.

NOTE: This name does not have to match the name of your target
entered in the last section.

g. There is usually no need to change the Port Number setting in the pMONT Target
Connection area.

NOTE: You can configure your application so that pROBE+ and pMONT + use
different types of connections. For this tutorial, you will use the
Ethernet connection for all the tools.

6. Click OK to save your settings.

7. Click Select to select your target board as shown in Figure 3-18 on page 3-26.

This tells pRISM+ to connect host tools to this target by default when host tools
are invoked.

Once a target has been selected, you will see its name displayed in the pRISM+
Target window as shown in Figure 3-19 on page 3-26.

The target board and the host tools have been configured for communication.
You are ready to download , debug, and profile the sample application pdemo.

8. Click Close.

3-25

Quick Start with a Tutorial pRISM+ User's Guide

Target List DD

Target Configuration Qirectory:

jc:\pRISM+20\users\JSBach\targets

Iargets:

mbx8xx board

Status: Available

Close

FIGURE 3-18 Target List Dialog Box

Qhange ...

IL ~dd JI
Bemove I

2roperties... I

Select

!jelp

tf pRISM+ - proJl llll~EI
Eile Y'.iew ErismSpace

~/ I .11 :~ I lmbxBxx board

Ready

T~rget Iools l::felp

FIGURE 3-19 pRISM+ Target Window

3.10 Downloading and Debugging with SingleStep Source-Level Debugger

3-26

This section shows how to use SingleSte to download to the target the ram. elf file
built earlier. You will run pdemo and make sure the application is running on your
target successfully by examining the pSOS-specific information with the debugger.

NOTE: This section is not intended to be a debugger tutorial. For an in-depth
tutorial on SingleStep, see Chapter 9 , The SingleStep Debugger - A Tutorial
and the SingleStep User's Guide from SDS.

pRISM+ User's Guide Quick Start with a Tutorial

Use this procedure to download and debug with the SingleStep source level
debugger.

1. Click the SOS button in pRISM+ Manager to start SingleStep. The SingleStep
Debug dialog box appears (see Figure 3-20).

Debug EJ

File] Connection I Processor I Registers I Options Logging I

File

r Debug without a file
Browse

OK Cancel Help

FIGURE 3-20 SingleStep Debug Dialog Box

pRISM+ has passed on the location of ram . elf and the target connection infor­
mation to SingleStep. You can accept the default settings to begin the download.

Upon a successful connection of SingleStep to the target and a successful
download , the SingleStep window appears as illustrated in Figure 3-21 on
page 3-28.

2. Click Close on the Debug Status window.

The execution is halted at the first line of the root task.

3. To run pdemo, click the Go button.

4. Wait for a few seconds. Click the Stop button.

5. To use the pSOS-awareness of SingleStep to verify that pSOS+ is up and run­
ning on the target board, select Data ~ Kernel Objects to open the pSOS+ Kernel
Objects and Configuration window (see Figure 3-22 on page 3-29).

3-27

3

Quick Start with a Tutorial pRISM+ User's Guide

~- SingleStep to pRISM+ (PowerPC) - Debugl Stopped Task l!llll~Ei
Eile _Edit Bun ~reakpoint Qata Iools TQolBars Y\1'.indow l::!elp

Debugl Stopped Task

73 / *
74 / *
75 / *

76 / *
77 / *
78 / *
79 / *

80 / *

root: Sets up the evaluation program execution.

INPUTS: None

RETURNS:
OUTPUTS:
NOTE(S) : Exe cutes as task 'ROOT'.

* /
* /

*/
*/
* /
* /
* /

* /
81 / ***/
82 v oid
83 root (vo id)
84 {
85 unsigned long qidss, qid;
86uns i gned long iopb[4], ioretva l;
87 unsigned long date, time, ticks;
88 unsigned long tid [10], demo_tid;
89 void *data_ptr;
90 unsigned long re;
91 unsigned long ptid , nbufs;
92 uns igned long smid ;
93 void *seg_ptr;
94 unsigned long rnid, rsize;
95
96 /*---*/
97 / * Set date to May 1, 1995, time to 8:30 AM, and start the system * /
98 / * c lock running. * /
99 / *--- ----*/

100 date = (1995 « 16) + (5 « 8) + 1;
101 time = (8 « 16) + (30 « 8);

For Help. press Fl SOM: Stopped in Task: 'ROOT:00020000' Current Task: 'RC ,a

FIGURE 3-21 SingleStep Window

3-28

You can browse pSOSystem objects and configuration information.

6. To continue with the tutorial, you need to leave the target running. Click the Go
button again to tell the target to run, and minimize SingleStep.

This concludes the SingleStep Debugger tutorial section. For more information
about using SingleStep, refer to Chapter 9 . For a look at other tools proceed to
Section 3.12.

pRISM+ User's Guide Quick Start with a Tutorial

pSOS+ Kernel Objects and Configuration

r All Objeds I- Tasks r Node Roster

r Semaphores r Partitions

r Message Queues r Regions

r Component Versions

r Configuration Params

System Date

Name

'IDLE'
'ROOT'
'pINP'
'pOUT '
'PNAD '
'PHON'
'ASEU'

I. D.

exeee1eeee
exeee2eeee
exeee4eeee
exeee5eeee
exeeeGeeee
exeeerneee
exeeeseeee

Time

Prio Mode

e PRE , NOTSLICE
23e PRE , NOTSLICE
245 NOPRE , NOTSLICE
244 NOPRE , NOTSLICE
255 PRE , NOTSLICE
242 PRE , NOTSLICE
243 PRE , NOTSLICE

Ticks

FIGURE 3-22 pSOS+ Kernel Objects and Configuration Window

Dismiss

Advanced » I

Status Susp··

Ready
Running

Ready
EuWait
Ready

EuWait
EuWait

3.11 Downloading/Debugging with Searchlight Source-Level Debugger

You will learn how to u se SearchLight to download to the target the ram . elf file
that you built earlier. You n eed to run pdem o, and make sure that th e ap lication is
running on your target su ccessfully: by examining the SOS-specific informa tion
with the debugger.

NOTE: This section is n ot intended to be a debugger tutorial. For an in-depth
tutorial on SearchLight, see Chapter 8 .

Follow this procedure to download and debug with the SearchLight source-level
debugger.

1. Click the Searchlight button in pRISM+ Manager to open a SearchLight window.
Choose File ~ Load to open the Load dialog b ox. Accept the default settings in the
Load dialog box to b egin the download.

pRISM+ has passed on the location of ram . e l f and the target connection infor­
m ation to SearchLight.

3-29

3

Quick Start with a Tutorial pRISM+ User's Guide

3-30

~ Load EI

P Load

File: C \pRISM+20\users\JSBach\psosppc_p [f~rO.i:/S.~ JI
I Symbols I Image (i Both

/7Boot

Address : (i Default I Custom

P Initialize pSOS

FIGURE 3-23 Load Dialog Box

Upon a successful connection of SearchLight to the target and a successful
download, you will see the SearchLight window as shown in Figure 3-24.

The execution is stopped at the first line of the root task.

2. To run pdemo , click the Run button. Wait for a few seconds.

3. Click the Stop button.

4. To use the pSOS-awareness of SearchLight to verify that pSOS+ is up and run­
ning on the target board, select View -7 Tasks to open the Tasks window.

You can see that all the tasks in pdemo had been started.

5. To continue with the tutorial, you must leave the target running.

Click the Run button again to tell the target to run and minimize SearchLight
Debugger.

This concludes the SearchLight tutorial. For more information on using
SearchLight, see Chapter 8 .

pRISM+ User's Guide Quick Start with a Tutorial

~ Searchlight - ul 92 103 53 250 - ROOT Ox20000 Current Context l!I~ El
File Edtt View Debug Vlllndow Help

{) <.{ (.! • • rl
Restart Run Run To Show Step Next Stepi Nexti BrkPnt OS brkpt Edtt

I ROOT Ox20000 :::JI rootO demo.c#84 Oxc3fe4

1• root: Sets up the evaluation program execution. • /
1• •1
1• INPtrrS: None • /
1• • /
1• RETIJRNS: • /
1• OtrrPtrrS: •/
1• NOTE (S): Executes as task 'ROOT ' . • /
1• • /
/ ***/
void
root (void)

S>ll
uns igned l ong qidss, qid;
unsigned l ong iopb[4], ioretval;
unsigned long date , time, ticks;
unsigned l ong tid[lO], demo_tid;

I Local Variable

; EJ data_ptr

I [ill date

! [ill demo_lid

$ [j] iopb

jType

void*

unsigned long

unsigned long

unsigned longD

FIGURE 3-24 SearchLight Window

JAddress jvalue

Ox003f f6fc OxOOOOOOOO

R31 0

Ox003f f6ec 0

Ox003ff710

Ox003f f6f8 0

Jin 84,col 2

3-31

3

Quick Start with a Tutorial pRISM+ User's Guide

3.12 Using Object Browser

3.12.1 About Object Browser

3-32

Object Browser h elps you to understand run-time behavior of a target system by
taking eriodic sna shots of operating system objects at user-defined intervals
while your system is running.

The host-based Object Browser uses the pMONT target agent to obtain target infor­
m ation. Since pMONT runs a s a set of tasks on the target , your target application
must include pMONT and must be running for Object Browser to work.

NOTE: Make sure that your target is running prior to invoking Object Browser.

To invoke Object Browser, click the button in the RISM+ tool bar.

Eile ~ e~ To:ls \'II ndoY\' t!e p

~nn n = r.tP. -.

FIGURE 3-25 Object Browser Window

There are two kinds of graphical representations used by Object Browser: Snapshot
View and Graph View.

pRISM+ User's Guide Quick Start with a Tutorial

Graph View

The Graph View is used to display run-time information for the following objects
(see Figure 3-26):

• Stack

• Region

• Message Queue

~. Ob1ect Browser - Graph Frame 111!1~13
Eile '.:{iew Tools \6!'.indow !::!elp

L) Graph Frame 111!1~13

Sample Every:
(Seconds)

Sup. Stack Usage (%)

~-111 11111 1
08:42: 11 08:42:26 08:42:30 08:42:34 08:42:38 08:42:54

IDLE . ROOT. MEM1 . MEM2 0 101_0 102_. SRCE. SINK. SUDO.

Nov 16. 08:42:56 IDLE ROOT MEM1 MEM2 101_ 102_ SRCE SINK SUDO
Sup. Stack Usage(%) 21.00 6.00 11 .00 9.00 17.00 16.00 B.00 15.00 5.00

l• Stack J;m Queue JI Region J

For Help. press F1 e192.103.53.250

FIGURE 3-26 Graph Frame Window

3-33

3

Quick Start with a Tutorial pRISM+ User's Guide

Snapshot View

The Snapshot View is used to display run-time information for the following objects:

• Task

• Queue

• Semaphore

• Partition

• Region

• Stack Problem

• Mutex l ~ I

• Conditional Variables 1 1 £~} II

~.Object Browser - [Snapshot Frame] l!l~Ei

• Eile Y'.iew Tools \tiindow !::!elp

r Update Roster

• Task Snapshot Time-Nov 16, 08:45:32
i±J • System Tasks
B • Application Tasks

ffi t l!m
iB • 101_
i!i • 102
~ • MEMl

i 111m ID - Oxl 80000
iB 1$ Static Information
$ ~Mode

Sample Every: 12
(seconds)

Snapshot History

I Nov 16, 08:45:32 ::J

·· Task Snapshot Time-Nov 16, 08:44:58
8 • System Tasks
l±l • Application Tasks

$·0 Status - Blocked for a Time Interval _:J

19 Tasks J;m Queue J8 Semaph, J!i Partition Ja
For Help, press Fl e192.1 03.53.250

FIGURE 3-27 Snapshot Frame Window

3-34

pRISM+ User's Guide Quick Start with a Tutorial

Object Browser is used to take snapshots of your target system, and the data is dis­
played in one of the two graphical presentation modes.

1. Determine how often you want to sample by changing the value in the Sample
Every box.

2. Click Start to start periodic sampling of your target system.

In Figure 3-28, a snapshot of tasks is taken every two seconds. The current
sample appears on the left and the historic samples appear on the right.

~ .Object Browser- [Snapshot Frame] l!ll!IEJ
e Eile ~iew Tools 'l!'indow !::!elp

~
rehu'h

,· • Task Snapshot Time - Nov 16. 08:59:23
iB • System Tasks
iB • Application Tasks

Snapshot History

j2
Nov l6. 085923

, ·• Task Snapshot Time - Nov 16. 08:59:11 [tl····· 00···• Application Tasks

l• Tasks J7J> Queue)!§ Semaph. J!i Partition)I Region }[stackProb.l,.<I Mutex ~ Cond. Var.)

For Help. press Fl el 92.103.53.250 j_ -r
FIGURE 3-28 Periodic Sample

This concludes the Object Browser tutorial. For more information on Object
Browser, r efer to the Object Browser chapter.

3. Now stop any on-going sampling and quit Object Browser and proceed to the
n ext section on ESp.

3-35

3

Quick Start with a Tutorial pRISM+ User's Guide

3.13 Using ESp

ESp works like a logic analyzer for software. It can provide users with an event-by­
event view of your target run-time behavior between a user defined trigger point and
de-trigger point.

The host-based ESp uses the pMONT target agent to obtain target information.
Since pMONT runs as a set of tasks on the target, your target application must
include pMONT and must be running for Object Browser to work.

NOTE: Make certain that your target is running prior to invoking ESp.

To Launch ESp, click on the ESp button in pRISM+ Manager.

3.13.1 Configuring an Experiment

3-36

A session in which ESp collects data from the target is called an experiment. Before
you can start an experiment, configure the experiment by specifying the following:

• Trigger - This tells pMONT when to start a data collection. This can be any
pSOSystem system calls or user events.

• Log - This tells pMONT what to log and what to ignore while a data collection
runs. This can be any pSOSystem system calls or user events.

• Detrigger - This tells pMONT when to stop the data collection. This can be any
pSOSystem system calls, user events or end-of-target-buffer condition.

1. To start a new experiment, select File~ New Experiment from ESp main menu.

The Configuration window appears (see Figure 3-29 on page 3-37).

For this tutorial section you will perform the following steps:

1. Enter singbufl in the Experiment Name box. This is the name of your experiment.

2. Use the pSOS+ call rn_ getseg as the trigger. To do this , right click on the
rn_ getseg call in the SVC list.

3. Select Trigger to tell pMONT to begin logging data on the first rn_ getseg call
after you start the data collection.

4. Leave the default setting for Log . The default instructs pMONT to ignore the
i _ enter, i _ return , and tm_ tick calls .

pRISM+ User's Guide Quick Start with a Tutorial

-·" ESp - Configuration "~13
Ei le ~d it Y:iew £olledion 6nalyze Iools l'.!'.indow !::!e lp

Configuration

Experiment Name jlilllllli
Dire dory jc:\pRISM•20\users\JSBach\psosppc_pwe\ap

Comments jAdd your comments here ...

T rigger....,...,.,....~e==e==e==e==e==e===;=e==e==;==;===T'=;==;==;==;=="' I m Event Parameter Called b

r Delay

Log ==========-r=e==e==e==e==e===re==e==e==e===;=e==e==e==e===il
r- Single Buffer Event Parameter Called b

(-)i_enter N/A ISR[j
r Transmit (-)i_return N/A ISR[j
r Wrap Around (-)tm_tick N/A ISR[j

D
r Centered

I
r Duration

FIGURE 3-29 ESp - Configu ration Window

B O+ SVC
pSOS

. -+I as_ catch
' ·-+I as_notify
. ···· -+I as_return
' ··-+I as_send
: · -+I co_register
····-+I co_unregister
:.. -+I cv_abroadcas
L .. -+I cv_as ignal
'· -+I cv_broadcast
:. ·-+I cv_create

,··· -+I cv_delete
: ... -+I cv_ident

. -+I cv_signal
:. -+I cv_wait

, ·· -+I errno_addr
L ... -+I ev_asend
i ·-+I ev_receive

-+I ev_send
, ···· -+I i_enter
L .. -+I i_retu rn

-+I k_fatal
'-·· -+I k_terminate
·· -+I m_ext2int
: -+I m_int2ext
; ·· -+I mu_ create
' ... -+I mu_delete

-+I mu_ident
L .. -+I mu_lock ~

·' · ~
LOADED

If these calls were not m ade or did not function correctly, you would not h ave
been a ble to do everything you h ave done so far in this tutorial. By ignoring
these events, you are saving more space in the target m emory buffer for events
you do want to log and an alyze .

5. Choose Single Buffer in the Log area as the target buffer management sch eme.

3-37

3

Quick Start with a Tutorial pRISM+ User's Guide

3-38

This tells pMONT to start gathering data on Trigger, and s top gathering data on a
buffer full condition if it h appen s b efore the Detrigger point is r each ed . This Single
Buffer of data will then be sent to h ost-based ESp for an alysis.

6. Make sure that your settings ma tch those sh own in Figure 3-30.

··" ESp - Configuration lll!l~EI
Ei le ~d it Y:iew ~o lledion 6nalyze Iools l'.:iindow tfe lp

Configuration

Experiment Name jsinglebuf1

Dire dory jc:\pRISM•20\users\JSBach\psosppc_pwe\ap

Comments jAdd your comments here ...

r Delay

Log~~~~-.~~~~~~r==~~~==r~~~~~

r- Single Buffer Event Parameter Called b
(-)i_enter N/A ISR[j

r Transmit (-)i_return N/A ISR[j
r Wrap Around (-)tm_ti ck N/A ISR[j

D
r Centered

r Duration

! ·· -+I q_ create
i ·-+I q_delete
i··-+I q_ident
i· -+I q_notify
i ·· -+I q_receive
i -+t q_send
i -+I q_urgent
i····· -+I q_vbroadcast
i · -+I q_ vcreate
i ·-+I q_vdelete
i··· -+I q_vident
i -+I q_vnotify
i -+I q_vreceive
i -+I q_vsend
i -+t q_vurgent
i··-+I rn_create
i ·· -+I rn_delete
i -+I rn_getseg
i··· -+I rn_ident
i··· -+I rn_retseg
i -+I sm_av
! · -+I sm_create
i· -+I sm_delete
i· -+I sm_ident
i -+I sm_notify
i -+I sm_p
! -+I sm_v
i · -+I t_ ad dvar
! -+I t create

1..1:::==::::;:::;:::;:::;::;::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;:::;::::!.,. ~~~!-.... _-+l~L-d-el_e_te~~

FIGURE 3-30 Experiment Configu ration

pRISM+ User's Guide Quick Start with a Tutorial

3.13.2 Starting a Data Collection

Use this procedure to initiate a data collection.

1. To start a data collection, click on the Green Traffic Signal button.

The Experiment Monitor appears to show you the progress of ESp. A few sec­
onds later, you are notified that the experiment was ended by a buffer full con­
dition (see Figure 3-31).

ESp El

.
I Experiment ended by full buffer

FIGURE 3-31 Experiment Notification

2. Click OK to see the display of target events.

3.13.3 Analyzing the Data

You can look at what happened on the target from the time you started the data
collection to the time the target buffer is filled (see Figure 3-32 on page 3-40).

To analyze the data, use these steps.

1. Click on the very first event.

You get a time-stamped report on the event in the lower window (you might need
to zoom in) . This is a rn_ getseg call, which is expected since this was set as
the trigger point.

2. To turn on the legend, select View ~ Legend.

3. Click Task State to get a full display of task states. The solid green line represents
the CPU execution path.

4. Follow each event on the execution path to see exactly what happened on the
target.

5. Right click on any event. This allows you to make that event a reference point to
calculate delta time between that event and any other event in both directions
(see Figure 3-33). Click on another event.

3-39

3

Quick Start with a Tutorial pRISM+ User's Guide

« ESp - smglebufl exp 1!111~ Ei
file E,:dit ~iew ~olledion 6nalyze Iools !'.:!iindow t!elp

smglebufl exp

MEM1

PNAD

ISR[1]

0:0:0.000022 hr:mm:sec 0:0:0.002092

~ ~
Ev. #1 @0:0:0.000022 rn_retseg:RMEM Segment Addr:Ox3f7200

Zoom: Bx

1±1 ~ ISR[1] {1}
1±1 (J) Li st per service

Task states

--, Running

ISR
1±1 (J) List per component Suspend
El ~ List per icon

···· Ready
1±1 0 Tasks {22}
1±1 mJ Queues {223} •••• Blocked

1±1· ~ Semaphores {19•""' RSC
1±1 I Regions {27}
1±1 :; Partitions {193} Tasks

,II Mutexes {O} ~ CPU use

··~ Condition Variable p CS ratio
····~ TSDs {O}

!:!J Callouts {O}
1±1 B Events {3}

I Signals {O}
1±1 0 Timers {37}
~ pSOS+m {O}
~ ISRs {O}
H Glib. {O}
CJ Files {O}
k: Network {O}
~ Streams {O}

Regions

~ rn_getseg

p rn_retseg

Semaphores

~ sm_p

p sm_v

Objed states
~ ¢ 1/0 calls {97} -. ~

READY LOADED I -

FIGURE 3-32 Data Analysis

3-40

6. Choose to see only the CPU execution trace without any events; right click any­
where on in the events window and choose Execution only.

This gives you a way to look for patterns in CPU scheduling behavior (see Figure
3-34 on page 3-42).

7. To get CPU use by task, click on the name of a task in the Events window.

8. Quit ESp.

This concludes the ESp tutorial. For more information about using ESp, see
Chapter 10.

This also concludes the pRISM+ tutorial.

pRISM+ User's Guide Quick Start with a Tutorial

<1 ESp - srn g lebufl exp l!!l~EJ
Eile !;.dit l[iew Qollection e,nalyze Iools \t:,!indow !::!elp

srngl ebufl exp

fl!!!!~=====~=============~ 8 '7 List per task 1: ' ~ ISR[OJ {O}

Delta 0:0:0.000022 hr:mm:sec
0:0:0.000393 ..!.lJ
Ev. #6 @0:0:0.000922 q_receive:QMEM Wait for message?Yes Timeout:O [DE •
Ev. #5 @0:0:0.000800 rn_retseg:RMEM SegmentAddr:Ox316eOO [DELTA= -0:0:
Ev. #9 @0:0:0.001316 de_ write Device#:Ox30000 [DEL TA= 0:0:0.000393]

FIGURE 3-33 ESp Experiment Example

0 RSC {O}
8 0 MEM2 {33}

-ti q_receive {14}
·-ti rn_retseg {1 4}
-ti switch in {2}
-ti switch out {3}

l±l 0 102_ {349}
l±l 0 101 _ {342}
l±l 0 SINK {252}
l±l 0 SRCE {134}
8 0 MEMl {43}

· -ti q_send { 11 }
-ti rn_getseg {13}
-ti switch in {2}
-ti switch out {2}

. -ti tm_get {13}
-ti tm_wkafter {2}

l±l 0 PNAD {6}
l±l ~ ISR[l] {1}

<@ List per service
~ l/P List per component
' l/P List per icon

READY

rM
e
v
~
s
E.
t
s
k

Task states

__,Running

ISR

··· ·· ·Suspend

···· Ready

···· Blocked

..... RSC

s 1-----1 • r
g
n
s

~

j LOADED

T asks

~ CPU use

p CS ratio

Regions

~ rn_getseg

p rn_retseg

Semaphores

~ sm_p

p sm_v

Object states

e Created

() Deleted

"'

3-41

3

Quick Start with a Tutorial pRISM+ User's Guide

" ESp - single bull exp 1111~ El
fi le ~dit Y'.iew Qolledion e,nalyze Iools '.:{!indow l::!e lp

Task states ;====;;================ 1-------------- B·¢ Listpertask -,Running
. i ~ ISR[O] {O} -:ISR

MEM1

PNAD

ISR[1]

i O RSC {O}
s 0 MEM2 {33}

q_receive {14}
i : -+l rn_retseg {14}
i : -+l switch in {2}
i ·. -+l switch out {3}
iii 0 102_ {349}
ffi .. o 101_ {342}
ffi .. @ SINK {252}
~ 0 SRCE {134}
El 0 MEM1 {43}

·· -+l q_send {11}
-+l rn_getseg {13}

<.. -+l switch in {2}
! : :·-+l switch out {2}

0:0:0.038772 hr:mm:sec 0:0:0.149397 i 1 !····-+l tm_get {13}

~---~=·:::.....---=========::::::...-....;..!..l:::;• i ! ' -+l tm_wkafter {2}
@0:0:0.000922 q_receive:OMEM Wait for message?Yes Tin • i iii 0 PNAD {6} Ev.#6

Ev.#5
Ev. #9

@O:O 0 000800 rn_retsegRMEM Segment Addr Ox3f6e00 [D i ffi ... ~ ISR[1] {1}

. Suspend

···· Ready

••• Blocked
..... RSC

Tasks

~ CPU use

p CS ratio

Regions

~ rn_getseg

p rn_retseg

Semaphores

~ sm_p

p sm_v

@0:0:0.001316 de_write Device#:Ox30000 [DELTA = 0:0:0.00 iii ¢ List per service
iiJ. ¢ List per component

,._, _____________________ .._"'~ ffi .. ¢ List per icon
Object states

e Created

C:::~=============-----=---==--~------=-:-----jOlQDeleted
Zoom: 1 /8x READY LOADED

FIGURE 3-34 Patterns in CPU Sch eduling Beh avior

3-42

Understanding the pRISM+
Manager

This chapter explains more about the pRISM+ Manager, how to use some of the
pRISM+ Manager's features, and how these features affect the other pRISM+ Tools.

4.1 The pRISM+ Development Environment

The pRISM+ Development Environment provides a comprehensive set of tools for
constructing embedded applications. The central application you will use is the
pRISM+ Manager. It provides a context for your project, called a pRISMSpace. All
other tools work within this pRISMSpace context. Each of these tools will be
explained in the remaining chapters of this manual.

4.1.1 Overview

Using pRISM+ Manager, you will create a pRISMSpace for your project. The
pRISMSpace is the pRISM+ project definition. It contains information that enables
pRISM+ Manager to invoke additional tools in your project's context. This informa­
tion includes the project directory, the currently selected BSP, the current project
editor, and target-related information.

After creating a pRISMSpace, you will use pRISM+ Configuration Wizard to select
which operating system components you want to include in your application. Then
you will use the project editor's or pRISM+ Manager's build command to create your
application executable.

Once you have a downloadable image, you can use pRISM+ Manager to define and
select a physical target board. You can now use pRISM+ Manager or the debugger to
download your application to the board.

4-1

4

Understanding the pRISM+ Manager pRISM+ User's Guide

4-2

When your executable code is running on the target board you can use run-time­
analysis tools such as the SearchLight Debugger, ESp, or Object Browser to deter­
mine the state of your embedded application.

A typical development cycle involves these processes:

• Writing source code in a project editor.

• Compiling and linking the executable image.

• Downloading and debugging the embedded application.

pRISM+ provides alternate paths to accomplish this edit-compile-debug cycle.

While setting up a pRISMSpace, you are asked which project editor you want to use.
pRISM+ currently supports two project editors: pRISM+ Editor and SNiFF +. In addi­
tion, pRISM+ supports a variety of debuggers, including SearchLight for PPC, MIPS,
and 68K, from Integrated Systems; and SingleStep debugger for PPC and 68K, from
SDS. The default project editor and debugger are pRISM+ Editor and the Search­
Light debugger.

Which project editor you choose depends on what type of development you will be
doing.

• pRISM+ Editor is a fast-start environment targeted specifically at firmware
developers who are bringing up a custom board.

Its makefile orientation and simplicity are ideal for working with multiple make­
files, including switching between multiple BSPs. pRISM+ Editor focuses on
working with existing makefile, and presenting the optimal Compile-Edit cycle
in a familiar user interface.

• The optional project editor, SNiFF+, is targeted at larger groups of developers
and/or larger code bases. SNiFF+ is a code comprehension tool, also known as
a Source Code Engineering tool.

It is a collection of static analysis tools for source code analysis, browsing and
comprehension. The benefits are automating and simplifying manual and error
prone programming tasks, resulting in dramatic improvements in developer
productivity.

Choosing which debugger to use can be done later. You can use any Integrated
Systems-supported debugger for your target.

pRISM+ User's Guide Understanding the pRISM+ Manager

4.1.2 pRISM+ Manager and the pRISMSpace

pRISM+ Manager is your central control panel for pRISM+. (See Figure 4-1 on
page 4-3.) It provides three major services:

• Project management through the pRISMSpace.

• Target services for defining and selecting target boards.

• Tool services for integrating custom tools into the pRISM+ environment.

Each of these services is managed independently so that any new project can access
any previously defined tool or target. 4

, pRISM• - projl .psp l!l~EJ

Eile Y'.iew 2rismSpace T~rget Iools]jelp

Ready

FIGURE 4-1 pRISM+ Manager Toolbar

Creating a pRISMSpace

Select File ~ New from the pRISM+ Manager menu to initiate the pRISMSpace
Wizard. The pRISMSpace Wizard is a series of dialogs that lead you though the con­
struction of a pRISMSpace. The pRISMSpace Wizard presents options that pertain
to the project editor you are using, what code base to start with, and where you
want the pRISMSpace to be created.

1. If you have purchased and installed the SNiFF+ product, the first dialog shown
is the Tools Options dialog. Select the project editor that most meets your needs.

NOTE: If you did not purchase or install SNiFF +, the pRISMSpace Wizard
skips this dialog.

When you select either SNiFF+ or pRISM+ Editor in the Tools Options dialog and then
click the Next button, the Choose a Starting Point dialog box displays.

2. The Choose a Starting Point dialog is where you choose between using sample code
or existing code. You can pick pRISM+ sample applications or your existing code
or makefile to start a pRISM+ project.

4-3

Understanding the pRISM+ Manager pRISM+ User's Guide

4-4

• For pRISM+ Editor, you can choose between a pRISM+ sample application
or your own makefile-based project.

• For SNiFF +, you can choose between a sample application and an existing
code base.

The subtle difference here is that pRISM+ Editor requires that you have a make­
file, while SNiFF+ does not. In addition, SNiFF+ requires you to adjust the User
Shared Source Working Environment (SSWE) to point to your source tree (refer
to Chapter 8).

NOTE: If you want to use pRISM+ Editor but you do not have a makefile, you
can copy one of the makefiles from the sample application directory
under the pSOSystem directory. These makefiles contain the
appropriate references and structure for building a pSOS+
application. For example, you can copy the $PSS_ ROOT/apps/
pdemo/makefile to the directory that contains your source code,
and then modify the makefile to add your own source code files.

When you choose Start with a pSOSystem sample application, then click Next, the Choose
a pSOSystem example dialog appears.

3. The Choose a pSOSystem example dialog shows various sample applications you can
select.

The sample applications are useful for providing a starting point for new
projects. Select the sample that most closely matches your target application re­
quirements. Then you can modify the sample application to fit your needs.

NOTE: For additional information about the sample applications, refer to the
pSOSystem Application Examples manual or the sample application
READ ME files in each of the sample application directories.

After you select a code base to work with and click Next, the Finish this new project
dialog appears .

4. The Finish this new project dialog asks where the pRISMSpace should be located
and what it should be called.

By default, sample applications are set up under your home directory. You can
change this to point anywhere you want; for example, c : \MyEpro j ect \pdemo.

After you specify the location of your new pRISMSpace, click the Finish button to
begin creating the new pRISMSpace.

pRISM+ User's Guide Understanding the pRISM+ Manager

How pRISM+ Manager Sets Up Projects

pRISM+ Manager sets up projects slightly differently for pRISM+ Editor and SNiFF +.

• For pRISM+ Editor projects, pRISM+ Manager copies all necessary files to the
pRISMSpace directory.

• For SNiFF+, pRISM+ Manager copies only a subset of the files to the pRISM­
Space directory. SNiFF + uses an advanced feature called a virtual path to access
source files that are not in your pRISMSpace directory.

pRISMSpace Project Settings

In the pRISMSpace Project Settings dialog (see Figure 4-2 on page 4-6), you tell
pRISM+ Manager the following:

• the name of the pSOSystem configuration file (usually sys_ conf. h)

• the Board Support Package (BSP) to use with this project

• the default makefile target for the project

For more information about changing your BSP, see Section 15.1.2, Incorporating a
Custom BSP for pSOSystem on page 15-3.

The pRISMSpace Project Settings dialog also displays which project editor has been
selected for this project (SNiFF + or pRISM+ Editor) .

Normally, the pSOS configuration file is named sys_ conf . h . However, you can
enter a new name into the pSOSystem Configuration File field. Note that changing this file
requires your application to be completely recompiled and re-linked.

The Board Support Package field allows you to switch between BSPs. By default, the
drop-down list shows all the BSPs provided with pRISM+. These BSPs are in the
pSOSystem directory under the bsps subdirectory. Any additional BSPs you add to
this directory will show up in the list.

To add additional BSPs that do not reside in the bsps directory, you can enter the
path to your BSP directory, or use the Browse button to navigate to your BSP direc­
tory.

The last field in the pRISMSpace Project Settings dialog is Build Make Target. This is used
as the Current Target by pRISM+ Manager and pRISM+ Editor when building the
project.

4-5

4

Understanding the pRISM+ Manager pRISM+ User's Guide

4-6

Project Settings iJ El

This pRISM Space is set up for pRISM+ Editor

gSOSystem Configuration File:

j•••.mld Browse ...

6.oard Support Package:

jmbxBxx Browse ...

Build Make Iarget:

jram.elf

OK Cancel Help

FIGURE 4-2 Project Settings Dialog Box

Build Command

pRISM+ Manager passes the Current Target name to make when you press the Build
button on the toolbar (or select the PrismSpace ~ Build menu command). Normally,
you will use the project editor to build your applications. The pRISM+ Manager
Build command is provided as a shortcut.

The pRISM+ Manager Build command is configured by the Tools Manager. Under
the Standard tab of the pRISM+ Tools dialog is an entry for the Build command. You can
edit this command to customize your build process. See Section 4.1.3, The Tool
Manager on page 4 -7 for information about the pRISM+ Tools dialog.

When the Build command is run, the results display in the Log window. You can
access the Log window by selecting View~ Log Window.

Switching to a Different pRISMSpace

To switch to a different pRISMSpace, use the File ~ Open command to find the new
pRISMSpace, or select one from the "recently used" list at the bottom of the File
menu. Switching to a different pRISMSpace loads a new project context and closes
any open tools that were launched in the previous pRISMSpace context.

pRISM+ User's Guide Understanding the pRISM+ Manager

4.1.3 The Tool Manager

Tools are accessed from the Tools menu or from the buttons on the toolbar. Tools
have multiple levels of integration into pRISM+. The simplest integration is running
a program passing in pRISMSpace context information. Some tools integrate further
by implementing special interfaces that allow pRISM+ Manager to dynamically up­
date their pRISMSpace context.

pRISM+ Manager allows you to customize your standard pRISM+ Tools and add new
custom tools through the pRISM+ Tools dialog box. Choose Tools ~ Customize to open
this dialog box (see Figure 4-3).

Selecting a tool from the Tool List displays the properties of that tool. You can add
new tools and order the menu using the buttons on the dialog.

• The Title field is the name that appears on the Tools menu and in the tool tip for
the button.

• The Command field defines the name of the program to run.

• The Arguments field defines a list of items to pass when the command is invoked.
Use pRISM+ macros to pass current context information onto the tools. These
macros are available from the list displayed when you click the arrow button.

• You can control the current directory for the program you are running by set­
ting the Initial Directory field .

• The check boxes allow you to place the custom command onto the Tools menu or
the toolbar. If you select Add To Toolbar, you can specify bitmaps that will display
on the large and small toolbars.

The Advanced button brings up the Advanced Tool Properties dialog.

Advanced Tool Properties

The Advanced Tool Properties dialog is where you control when tools are launched. Each
tool can be started or stopped when certain events occur. These events occur when
a project or target is opened or closed and when the current application is started .
Check the box to enable the selection drop-down.

• If the tool needs exclusive access to the target, enable Used for controlling the Target.
When this control is enabled, pRISM+ Manager warns when conflicts occur.

• You can use the tool manager to start a COREA service that may be needed by
other tools. Check the CORBA Server check box and specify the COREA service
name.

4-7

4

Understanding the pRISM+ Manager pRISM+ User's Guide

4-8

pRISM+ Tools El
Standard Custom]

Iool List 8dd
Prism Plus Shel l
SingleStep Debugger Be move

MoveQown

T itle:]Prism Plus Shell

Qommand: start $(ProgramDir)\PrismPlusShell.e Browse ...

Arguments:

Initial Directory:

P AddToMenu r Redirect Qutput to Log Window

P Add To Toolbar

Large Image: jshelll.bmp

~~~~-==========' 
Small Image: Jshells.bmp 

Advanced ... 

OK Cancel 

FIGURE 4-3 pRISM+ Tools Dialog Box - Custom Page 

Browse ... 

Browse ... 

Help 

• The Implements pRISM+ Tool Interface check box is used for tools that want to com­
municate with pRISM+ Manager. This allows the tool to receive dynamic 
changes to the pRISMSpace context. 

For more information about integrating tools into pRISM+, see the Third Party 

Integration Guide. 



pRISM+ User's Guide Understanding the pRISM+ Manager 

4.1.4 The Target Manager 

You can set up different target board definitions in pRISM+ Manager using the 
Target Manager's Target List dialog. (See Figure 4-4 on page 4-9.) 

The Target List dialog is where you specify the Target Configuration Directory and 
define targets. 

Target List DEi 
Target Configuration Qirectory: 

jc:\ISIPPC\users\leticia\targets 

Iargets: 

rn arqet 
targl 

Status: Available 

Close 

FIGURE 4-4 Target List 

i;;hange ... 

IL ~dd ;;~~~ ..... JI 

Bemove I 
eroperties... 1 

Select 

!:!elp 

In a multi-user environment, you can share a Target Configuration Directory by setting 
the directory to a shared network resource. pRISM+ Manager will then help manage 
access to the targets, giving status and warning if the target is already in use. Click 
on the Change button to locate and set the shared network directory. 

Use the Add, Remove, and Properties buttons to edit target definitions . Select the Add 
button to see a prompt that asks for a symbolic name for the target. This name is 
displayed in the Targets list box, and in the Target Selection control in the toolbar. 
The Properties for Target dialog is displayed when you define a new target or when you 
click the Properties button. See Figure 4-5 on page 4-10. 

To activate a target, click the Select button - or use the Target Selection drop-down 
on the pRISM+ Manager toolbar. 

4-9 

4 



Understanding the pRISM+ Manager pRISM+ User's Guide 

4-10 

Properties for Target 

The Properties for Target dialog is where you specify the attributes of the Target 
Communication Server and the type of connection to u se for both pROBE and 
pMONT target agents . 

Properties for Target mytarget El 
Server I 

Server Seledion--------------------~ 

r- IQ~~T~:~~i ~~:~r.Y.i:~ci;~:~!i~:~~ ~:~61.~~ 
r Use local 6,DM communications server 

r ].lse remote communications server 

!"" Remote Registrati on===============~-. 

Remote Server Host Name: J " . 
Remote ~ommunications Server Executable : 

11 ( 

lo b!etwork 

r .S.erial 

JI 

Network Name: Jmytarget 
;...__~~--=:::-~~~~ 

Port Number: ]2 

r pMONTTarget Connection------------------.,==-i 

lo Ngtwork 

r Serial 

Network Name: Jmytarget J 
;...-~~~-r~~~~-" 

Port Number: ]2 ] 

OK Cancel Help 

FIGURE 4-5 Target List - Properties Page 

The Server Selection area of the dialog allows you to specify a local server, a remote 
server, or a BDM connection. 

• Normally, you Use a Local Communication Server for both serial and n etwork connec­
tions. 



pRISM+ User's Guide Understanding the pRISM+ Manager 

• A Remote communications server is used primarily when your target hardware has a 
serial connection to a machine other than your workstation. To use a remote 
Communication Server, you enter the host name of the remote machine and the 
path to the CommServ.exe on the remote machine. 

pROBE and pMONT target agents can be configured independently. This allows you 
to do debugging with a network or serial connection while dynamic analysis can be 
done with the opposite. 

• When selecting a network connection, you enter the IP address of the target. 
You can use either the number form (xxx . xxx . xxx . xxx) or the symbolic name 
form, if the name is resolvable by an available DNS server or appears in your 4 
local hosts file. You can also set the network port number. 

• For serial targets, you specify the serial device name (for example, COMl) and 
the Baud Rate. 

Setup Target 

pRISM+ Manager provides a Setup Target dialog that downloads your executable code 
to the target and starts it running. You can independently specify any of three 
sequential operations. 

1. Optionally download a file that you specify. 

2. Boot the machine at the default or specified address. 

3. You can optionally run the initialization of pSOS. 

4.1.5 After Downloading the Application 

After successfully downloading, you can use the Halt and Go buttons on the pRISM+ 
Manager toolbar. Once a program is downloaded and running, you can invoke 
debugging and analysis tools from the toolbar. SearchLight, ESp, and Object 
Browser are available. You can also download your executable code through your 
debugger. 

Target communications can be reset with the Target ~ Reset menu command. This 
causes the Communications server to disconnect and reset itself for a future ses­
sion. This command must be used each time the target board is physically reset. 
The Target ~ Reset command does not affect the state of the target board. 

To reconnect to a running target board, select Target ~ Connect to re-establish com­
munications. 

4-11 



Understanding the pRISM+ Manager pRISM+ User's Guide 

4-12 



pRISM+ Editor 

The pRISM+ Editor is a fast-start programming environment targeted specifically at 
firmware developers who are bringing up custom boards. Its makefile orientation 
and simplicity are ideal for working with multiple makefiles and switching between 
multiple BSPs. pRISM+ Editor focuses on working with existing makefiles and pre­
senting the optimal Compile-Edit cycle in a familiar user interface. 

pRISM+ Editor is composed of three major systems: Makefile Browser, Program 
Editor, and Message View. These three systems work together with pRISM+ Manager 
to form a comprehensive suite of embedded development tools. See Figure 5-1 on 
page 5-2. 

5.1 Makefile Browser 

When a pRISMSpace is selected in pRISM+ Manager, pRISM+ Editor will load the 
associated makefile and restore any state from the previous working session. 
Restoring state loads additional makefiles, opens previously loaded files , and 
restores window locations . 

The Makefile Browser reads the makefile, parses it and displays the file names 
found from the makefile. There are two views in the Makefile Browser: Makefile view 
and Source view. The Makefile View displays a dependency graph. The Source View 
displays a list of files referenced by the makefile. 

The Makefile Browser's knowledge of dependencies comes only from the makefile. 
This means that only files referenced by the makefile are displayed in either view. 
When the makefile is modified and saved, the Makefile Browser re-parses the make­
file and updates the Makefile Browser's views. 

5-1 

5 



pRISM+ Editor pRISM+ User's Guide 

;·"" pRISM• Editor - c /1 s1ppc/users/let1c1a/psosppc_pwe/apps/pro1l /pro1l psp l!lliJEI 
File Edit Search Project Tools Window Help 

Current Project: Application pr ... Mi~i'G4i'M4tiffi'IY6YUDQIWDQ®'•m1411us 
File Path 

lr:-----=======- (1 unsigned lonq tnid, t::iize; 

begin.s C:\ISIPPC\p ... 

beginapp.s C:llSIPPC\p ... 

bsp.h C:llSIPPC\p ... 

bspcalls .s C:\ISIPPC\p ... 
bspcfg.c C:llSIPPC\p ... 

demo.h c:lisippc\us ... 
dialog.c C:\ISIPPC\p ... 

drv_conf.c c:lisippc\us ... 

gsblkcfg.c C:llSIPPC\p ... 
ldcfg.c C:\ISIPPC\p ... 

lddriver.s C:\ISIPPC\p ... 

philecfg.c C:llSIPPC\p ... 

plmcfg .c C:llSIPPC\p ... 
pmontcfg .c C:\ISIPPC\p ... 
pnacfg.c C:llSIPPC\p ... 

pnetcfg.c C:llSIPPC\p ... 

polli o.c C:\ISIPPC\p ... 
posixcfg.c C:\ISIPPC\p ... 
prepccfg.c C:llSIPPC\p ... 

probecfg.c C:llSIPPC\p ... 
prpccfg.c C:llSIPPC\p ... 

C:\ISIPPC\p ... 

J w - -- -- - - - - - - - - - --- - - - ---- - - -- - - -- - - -- - - - - - - - - - - - - - -- - - - - - - -- -- -- - - -- - - 1t I 
/ 11 Set date to May 1 , 1995, t i me to 8 : 30 AM, and star.t the system 
1w clock r.unn i nq. 

• 1 
• I 

I * - - - -- - ----- - - - --- - - - - - --- - ------ - --- - - - - - --- - - - - - --- - -- - - -- - . 
date • (1995 « 16 ) + (5 « 8) + l; 
time • (8 « 16 ) + (30 « 8); 

Program Editor 

t ick::i = O; 

I 1t - -- - - - - --- - - - - -- - - - - - - -- - - - - -- -- - - -- - - - - - - -- - - - - - -- - - - - - - -- - - -- - - - - - - -ir I 
1w Ini t i a l ize the Timer and console device w / 

I w - -- -- - - -- - - - - - --- - - - - - -- - - -- -- -- - - -- - - - - - - -- - - - - - -- - - - - -- -- -- -- - - - - - - w I 
#if ! SC_AUTOINIT 
if ((re "' de_ ini t (DEV_TIMER, iopb, &ioretv al, &data_ptr)) !:: NOERR) 

k_fatal (OxlOOOO +re, 0); 

if ( (tc = de_ini t (CONSO LE, iopb, &iotetval, &data_ptt)) ! = NOERR) 

4 
I 11" f"'T'' 1 'nv 1 nnnn • r("' n \ · 

pos1xc1g.o nom t...::Jlti lt""' t" t...:}pssppC.Lt'IWCOnllgS}SIO}POSIXCTQ.C 
rtacfg.o from C:llSIPPC/pssppc.250/confi gslstdlrtacfg.c 

drv_conf.o from drv_conf.c 

demo.o from demo.c 
demo c , line 1 03 enot 11525) 1dent1fler facto1 not def lated 

·11SIPPC\pssppc .2501binlwin321gnulmake: - [demo.OJ Error 1 

ors in make --

• 1103,1 

Makefile 
View 

View 
Status 
Bar 

Makefile Browser 
Message 
View 

FIGURE 5-1 pRISM+ Editor Main Window 

5-2 

To add a new file to the Makefile Browser's view, you edit the makefile and then save 
it. This assumes that you have a knowledge of makefile rules and syntax. 

The Makefile View's dependency graph is controlled by the currently selected Make­
file Target. Changing the Current Target (such as ram . elf) setting in the Project ~ 
Settings ... dialog will change the Makefile View's display. 

The Source View's File List is controlled using the view's local (right-click) menu. 
You can display files from all makefiles , from the current project (makefile), or from 
just the current target (for example, ram. elf). 



pRISM+ User's Guide pRISM+ Editor 

5.1.1 Makefile View 

The Makefile View displays targets, sources and makefiles in a hierarchy. The Make­
file tab at the bottom of the Makefile Browser's view selects the dependency hierar­
chy. Each of the target's dependencies will be displayed hierarchically in this view. 
The dependency hierarchy is displayed with include files underneath source files, 
which are in turn underneath object files. 

The makefile is represented by the top node of each hierarchy. This node has a 
descriptive text field that is used for displaying the makefile node. You can edit the 
description using the Settings ... dialog on the Makefile View's popup menu. You can 
load the makefile into a Program Editor by right-clicking in the Makefile View and 
selecting Edit Makefile. The popup menu also provides a context sensitive Make com- 5 
mand; for example, preforming a right-click on the root. o or root. c will cause the 
popup menu to have Make root.o as the first command on the popup menu. 

Each makefile in the Makefile Browser has a Current Target setting. To access this set­
ting right-click in the Makefile View and select Settings ... You can change the Current 
Target to any of the top-level targets in the makefile . Top-level targets filter the file 
list. Top-level targets are defined to be targets that do not appear as dependent files 
of another target. 

5.1.2 Source View 

The Source tab, at the bottom of the Makefile Browser's view, displays a flat list of 
files derived from the makefile. The Source View can show sources from All 
Makefiles, from the Current Project, or the Current Target. Use the Source View's 
popup menu to select the set of files you want displayed. 

Dependent files that match the Filter mask pattern are displayed. The Filter can be re­
defined by editing the field at the bottom of the Source View. It can be set to a list of 
wild cards of the form: * . c , * . s , * . h. The Source View displays both the name 
and the path to the files. 

5.1.3 Additional Makefiles 

pRISM+ Editor has the ability to support multiple makefiles . Select Project ~ Add 
Makefile ... to add makefile that you want to work within your project. pRISM+ Editor 
has special support for Board Support Packages (BSPs). pRISM+ Editor works in 
conjunction with pRISM+ Manager to determine which BSP is used during the 
build. 

pRISM+ Manager has a BSP setting in the pRISMSpace ~Settings ... dialog. When this 
BSP value is changed, pRISM+ Manager notifies pRISM+ Editor of the change. Then, 

5-3 



pRISM+ Editor pRISM+ User's Guide 

pRISM+ Editor will use the new value for PSS_ BSP, which causes any new builds to 
use the new BSP. In this way, you can switch between two different BSPs. 

NOTE: You must completely rebuild your application whenever you change 
between BSPs. To rebuild the application, use Project -7 Rebuild All or Alt-F9. 

Select Project -7 Add BSP Makefile ... to add a BSP project. pRISM+ Editor displays a list 
of BSPs found in the PSS_ ROOT\bsp directory. You can add your custom BSPs to 
that directory to easily switch between sample and custom versions. Alternatively, 
you can use pRISM+ Manager to add a BSP that resides in another directory. Use 
pRISM+ Manager's pRISMSpace -7 Settings ... dialog to browse to your BSP directory. 
BSPs added this way show up in pRISM+ Editor's Add BSP Makefile ... dialog. 

5.1.4 Current Project and Current Target 

pRISM+ Editor starts up with a pRISMSpace passed in by pRISM+ Manager. Each 
pRISMSpace can contain multiple projects , where each project is defined to be a 
makefile. The Current Project is set using the drop-down list at the top of the Makefile 
Browser. This allows you to switch between different makefile projects in your 
pRISMSpace. The Project -7 Make Target -7 all and Project -7 Rebuild All commands operate 
on the Current Project. 

Each project can have unique Project Settings. Setting the Current Project and then 
selecting Project -7 Settings allows you to customize the Project Description, change the 
Build Command, and select the default Current Target. The Project -7 Make current target 
command operates on the Current Target. The Current Target specifies the default 
makefile target for makes and builds. 

5.2 Program Editor 

5-4 

The Program Editor provides text editing capabilities commonly found in program­
mer's editors. It supports on-the-fly syntax highlighting, brace matching, regular 
expression searching and keystroke macros. For additional information, see Editor 
Commands in the on-line help. The editor supports opening multiple files into 
Program Editors in the Program Editor panel. 

The Program Editor supports the notion of buffers. This allows you to work within 
one Program Editor (maximized perhaps) and switch between any files open in other 
windows. Select the Edit -7 Buffer list..., or Alt-B to open the buffer list. In the Buffer List 
window you can quickly access, save, and close files displayed in the Program 
Editor window. 



pRISM+ User's Guide pRISM+ Editor 

You can arrange and manage the Program Editor windows by using the commands 
on the Window menu. 

5.3 Message View 

The Message View collects output from the builds. The text is filtered into the 
message view. The message view displays the errors can make or compile. Double­
clicking on the error message opens the source file and displays the line of code 
where error occurred. 

The Message View displays messages from any tools that are run during the course 
of a build. Messages which conform to a particular format are Trackable. This 
means that the compiler or other tool has emitted file and line number information 
and the Message View can display the source file and line that is referenced in the 
message. 

5.4 Using the pRISM+ Editor 

In the Getting Started chapter you used the pRISM+ Editor to create a project and 
compile your project application. In this section will discover other pRISM+ Editor 
features that will assist you in your project development. 

You will learn how to: 

• Create a new source file 

• Save a new source file 

• Rename a source file 

• Add a new source file to your project 

• Error check your project 

• Include custom libraries 

5.4.1 Creating New Source Files 

1. From the pRISM+ Editor, select File~ New. 

An empty text window is displayed and available for you to use. 

2. Start editing your file. 

5-5 

5 



pRISM+ Editor pRISM+ User's Guide 

3. To explore other procedures in this section lets create a new file called greeting. 
Type the following in your new source file: 

EXAMPLES-1: g r eeting . c 

void greeting (void ) 

printf (" Howdy . \n "); 

4. Save your new source file such as greeting . c . See Section 5 .4 .2 , Saving New 
Source Files , for directions. 

5.4.2 Saving New Source Files 

1. From the pRISM+ Editor, select File~ Save. For Untitled files the Save file as dialog 
is displayed. 

2. In the Save file as dialog fill in the following fields: 

a. Enter the name of the file in the File name field. 

b. Select the location where you want the file to be saved. The default location 
is where your current opened project is stored. 

3. In the Save file as dialog, click Save. This saves the new source file. 

5.4.3 Copying an Existing Source Files 

5-6 

1. In pRISM+ Editor, click on the Program Editor you want to save in a new 
directory. 

2. From the pRISM+ Editor, select File~ Save As. The Save file as dialog is displayed. 

3. In the Save file as dialog fill in the following fields: 

a. Enter the name of the file in the File name field. 

b. Select the location where you want the file to be saved. The default location 
is where your current opened project is stored. 

4. In the Save file as dialog, click Save. This saves the new source file. You are now 
ready to modify the newly copied source file. 



pRISM+ User's Guide pRISM+ Editor 

5.4.4 Adding Source Files to Your Project 

Accessing the Makefile 

1. From the pRISM+ Editor, select the Makefile View 

2. In the Makefile view, right-click on any of the node of the makefile you want to 
edit. A popup menu is displayed. Select Edit Makefile. 

Editing Makefile to include new source file 

1. Scroll down to the end of the makefile. (See Figure 5-2 on page 5-7.) 

2. As the last entry point of the file , add the new source file name to the makefile. 5 
In this example you are going to add the file greeting.c. This file was created in 
Section 5.4.1 , Creating New Source Files on page 5-5. 

Object file to be Created Header Files Dependency List 

-o demo . a $< 

Source File Name Compiler ptions 

FIGURE 5-2 Example of Adding a Source File 

3. For the new entry, include any Header Files Dependencies that the new file 
depends on. 

4. For the new entry, include any compiler options. 

5. For the new entry, include the name of the object file to be created. 

6. Invoke the Search ~ Find dialog and type into the Text to find field 

PSS_APPOBJS 

7. In the Find dialog, select Search backward. 

5-7 



pRISM+ Editor pRISM+ User's Guide 

8. Click on the Find button. 

9. In the PSS_ APPOBJS line, add the name of the object you want created. This is 
the same name you defined in previous step. 

10. From the pRISM+ Editor, select File ~ Save . The makefile is now saved and 
re-parsed. 

11. Click on the Makefile tab. In the Makefile Browser the new source file will 
appear. See Figure 5-3 . 

? 
10101 10101 

Current Project: october • 

~ october 
~... configs\std\config.mk 
El··· ram.elf 

FIGURE 5-3 Makefile Browser 

$ .. ~ dtv_conf.o 
$· .. L.J demo.a 
$... data.a 
$ .. ·L.J demoload.o 
EJ... . greeting .a 

! ..... • sys_conf.h 
L .... • greeting .c 

! ..... • libbsp.a 

5.4.5 Error Checking Your Files 

5-8 

When you execute the make command, it reports any syntax errors in the Message 
View. In this section you will learn how to locate your errors using the Message 
View. 

NOTE: In this example we are going to use greeting . c file . This file was created 
in Section 5 .4 .1, Creating New Source Files on page 5-5. 

1. In the Makefile Browser, double-click on the greeting.c file. 

The greeting. c file will display in the Program Editor view. 



pRISM+ User's Guide 

p 

e and 
(The 

in this 

# ----------
# ~I en the 
# os an app 1cat1on are u1 t separate y 
# as part of the application download file. 
# UJhen the os and application are built together PSS APPOBJS will be 
# included in the system download file 
#-----------------------------------------------------------------------
PSS APPOBJS = demo.a data.a demoload.o greeting. o 

#-----------------------------------------------------------------------
# PSS_SHARED_LIBS is a list of shared libraries to make . 
# Each is made in a subdirectory named the same as the shared library. 

F.Ar.h Pl'lt".rv i fl 1 i f!t".Pn Af! 1 ih / 1 ih. fllh. 

-- Running make of target ram.elf--
dee -@e.opt-Xno-optimized-debug -o greeting.a greeting.e 
'greeting.e", line 4: error (1633): parse error near'}' 
C:\IS IPPC\pssppe.250\bin\win32\gnu\make: 

Locating an Error 
FIGURE 5-4 Locating an Error 

5.4.6 Introducing an Error 

pRISM+ Editor 

LI x 

J 

1. In the greeting. c file, remove the semicolon (;) from the printf line. See 
Figure 5-4. 

2. From the pRISM+ Editor, select Project -7 Make greeting.o. 

3. Observe the Message View for any errors. See Figure 5-4. 

4. The Message View will automatically track to the first error after the build is 
completed. 

5-9 

5 



pRISM+ Editor pRISM+ User's Guide 

You can double-click on any error message to display the source at the reported 
error's line number. This will open the file with the error. It will also highlight 
the error. 

In this instance you can add the semicolon(;) to the printf line to correct the 
error. 

5.4.7 Profiling Your Project 

Selecting Tools --? Profiler invokes the optional Run-Time Analysis Tools (RTA). The 
profiler is invoked from pRISM+ Editor either from the Tools menu or by right-click­
ing on the target in the Makefile View. Before you can profile your project you must 
edit your makefile and the sys_ conf . h file to include profiling compiler switches. 
For more information, see the sample application, RTADEMO. To learn more about 
RTA, refer to the Visual Run-Time Analysis Tools User Guide. 

5.4.8 Accessing the Link Map Analyzer Tool 

Selecting Tools--? Link Map Analyzer invokes the Run-Time Analysis Tools (RTA). The 
Link option can be invoked from within the pRISM+ Editor. Before you can Analyze 
your project with the Link Map Analyzer Tool you must edit your makefile and the 
sys_ conf . h file. To learn more about RTA, refer to the Visual Run-Time Analysis 
Tools User Guide. 

5.4.9 Including Custom Libraries 

Additional makefiles are generally used to add libraries to the project. For example if 
you have a sub-system that is built into a . lib file and then linked into your appli­
cation, you can include the makefile that builds the . lib into the pRISMSpace. 
This a llows you to access the source files from the . lib subproject. In addition, 
BSPs are generally built by a separate makefile and pRISM+ Editor provide special 
support for this operation (see Section 5.4.11 , Adding a BSP Makefile on page 5-11). 

5.4.10 Adding a Makefile 

1. From the pRISM+ Editor, select Project --? Add Makefile. A browser is displayed. 

2. Using the Browser, locate and select the makefile. 

3. Click the OK button to include this file to your current project. 

4. Click on the Makefile tab. In the Makefile Browser the new makefile will appear. 

5-10 



pRISM+ User's Guide pRISM+ Editor 

The Add BSP makefile menu item is a shortcut that allows you to select from the BSPs 
in the PSS_ ROOT /bsps directory. Placing your custom BSP under this directory will 
cause it to be included in this list. 

5.4.11 Adding a BSP Makefile 

1. From the pRISM+ Editor, select Project~ Add BSP Makefile. A BSP file list is dis­
played. The list shows all the bsps in the bsps directory. 

2. Select the bsp makefile. 

3. Click the OK button to include this file to your current project. 

4. Click on the Makefile tab. In the Makefile Browser the new BSP makefile appears. 5 

5.4.12 Removing a Makefile 

1. Click on the Makefile tab. 

2. In the Makefile Browser, select the makefile you want to remove and right­
mouse click. A popup menu is displayed. 

3. In the popup menu, select Remove Makefile. 

NOTE: The Remove Makefile command is enabled only if the project (such as pdemo) 

already has an associated makefile. 

5.4.13 Using the Buffer List 

The buffer List allows you to manage open files during your pRISM+ Editor session. 
To access the buffer list complete the following steps: 

1. From the pRISM+ Editor, select Edit~ Buffer List, or Alt-B. The Buffer List window is 
displayed. 

Accessing a file 

1. In the Buffer List window, select the file you want to access . 

2. Click the Edit button. This displays the file in the Program Editor view. 

NOTE: Double-clicking on a file loads that file into the Program Editor. 

5-11 



pRISM+ Editor pRISM+ User's Guide 

5-12 

Saving All Opened Files 

1. In the Buffer List window, hold the Shift key down and select the all files in the 
list. 

2. Click the Save button. This saves all the opened files. 

Another way to save all opened files is to select File --? Save all. 



Using SNiFF+ in the pRISM+ 
Environment 

This chapter explains more about SNiFF +, the optional pRISM+ project editor. This 6 
chapter consists of two parts. 

• The first part (Section 6.1 through Section 6.6) offers concepts and reference 
information on an application development framework section which is the 
result of integrating SNiFF + with pSOSystem. 

• The second part offers step-by-step instructions detailing how to use this appli­
cation development framework from various common starting points. 

For a complete description of the SNiFF + functionality, refer to the SNiFF + docu­
mentation located on the pRISM+ Documentation CD-ROM. 

6.1 Overview 

pRISM+ offers a range of powerful source code engineering tools collectively known 
as SNiFF+. The integration of SNiFF+ with pSOSystem provides users of pRISM+ 
with a powerful and versatile application development framework to develop 
pSOSystem-based applications. Some highlights of what this application develop­
ment framework offers users of pRISM+ are as follows: 

• pSOSystem code comprehension. 

• Powerful source code browsers for the user's application code. 

• Integrated Make support. 

• Interface to configuration management tools. 

• Support for team development. 

6-1 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

• Support for mixed-platform development. 

• Flexible application development framework. 

6.2 Key Features of pRISM+ Application Development Framework 

The pRISM+ application development framework is designed for today's team-based 
software development environment. It's application-centric and aimed at helping 
developers to enhance productivity by providing a wide range of powerful source 
code engineering tools that are seamlessly integrated with the pSOSystem code 
base. This framework can easily be extended and adapted to specific development 
environments and source code bases to optimize individual needs. 

This sections summarizes the major features of this development framework. More 
details will be offered in subsequent sections. 

6.2.1 Source Code Comprehension 

Rapid source code comprehension is essential to software development productivity. 
Today's software developers need to understand legacy code bases, purchased 
source code software, and software developed by other team members. pRISM+ 
offers an extensive set of source code browsers for code comprehension. Since 
pRISM+ browsers can work on code that is not necessarily syntactically correct, 
users can begin with pRISM+ browsers from the very beginning, before the code is 
compiled. 

In fact, Integrated Systems has applied the pRISM+ source browsers to the very 
pSOSystem code base you are using. Every pRISM+ is shipped with pre-parsed 
source projects so you can browse pSOSystem from the first day to understand 
exactly how it works and its interface to application code. 

6.2.2 Team Development 

6-2 

pRISM+ offers real team development support for today's development environment 
without compromising the ease of use for single users. pRISM+ offers sophisticated 
support for code sharing amongst team members. The default pRISM+ configuration 
allows a team to share a common pSOSystem code base, which resides on a server 
machine while individual developers can build against the common code base from 
their individual workstations. This code sharing framework can be easily extended 
to a customer's code base as well. pRISM+ offers precise instructions on how to 
extend this framework and how to achieve a seamless level of integration of a cus­
tomer's code with pSOSystem. 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

Furthermore, pRISM+ offers integration with most popular configuration manage­
ment tools, such as ClearCase, PVCS and RCS, making pRISM+ a complete team­
development solution. 

6.2.3 Mixed-Platform Development 

pRISM+ is designed to support mixed-platform development. In pRISM+ you can 
compile and debug on different host platforms. Many of today's development teams 
share common code repository on a server machine while team members compiles 
remotely from individual workstations of a different type. pRISM+ is designed to 
support this development configuration. 

6.2.4 Integrated Make Support 

pRISM+ offers a powerful integrated make support system that consists of three 
parts: 

• Support for code-sharing team-development. 

• Support for makefile generation. 

• Support for pSOSystem-specific make-requirements. 

Functionally, pRISM+ make support is an integral part of the pRISM+ team develop­
ment support and mixed-platform development support. pRISM+ make support 
allows multiple users to compile against a common code base across multiple plat­
forms with ease, leaving the tools to handle the complexity of team-based builds. 

With pRISM+ you can leave the complex task of managing makefiles for a team­
based project to the tools. pRISM+ can automatically generate makefiles to support 
team development and mixed-platform development. These pRISM+ generated 
makefiles are flexible enough to be used from the GUI framework or at the command 
line. Of course, pRISM+ can also be easily configured for you to use existing make­
files. 

In order to produce target executables, pRISM+ also provides easy-to-use utilities 
and concise instructions to help you integrate your applications with pSOSystem 
code. The hybrid-make model implemented in pRISM+ provides the best of both 
worlds - controlled and seamless integration with pSOSystem; flexibility and 
choice with application make. 

6-3 

6 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

6.2.5 Flexible Application Development Framework 

pRISM+ Application Development Framework is designed to be an application­
centric development environment that allows a maximum level of flexibility to adapt 
our tools to your environment and your application. It has a configurable and scal­
able design, making it equally relevant for a single user developing on one local 
machine and team members developing across multiple platforms. 

pRISM+ also provides you with ample flexibility without losing the level of specific 
pSOSystem support. Specific attention is given to the pSOSystem-to-application 
interface to ensure that you can easily incorporate your work into the development 
framework. pRISM+ offers many utility programs and concise documentation to 
help you to adapt the development framework to your environment and your appli­
cation code base. 

The following sections describe the pRISM+ Application Development Framework, as 
well as how to adapt it to your environment. 

6.3 Key SNiFF+ Concepts 

To understand the integration of SNiFF + with pSOSystem, you need to become 
familiar with some basic SNiFF + concepts. This section offers a list of relevant con­
cepts for the pSOSystem integration, together with brief descriptions of how these 
concepts are used by the integration. 

Refer to the SNiFF + documentation set for complete reference information on the 
SNiFF + concepts discussed in this section. 

6.3.1 Code Comprehension and Browsing 

SNiFF + provides the most advanced browsing and cross referencing capabilities to 
help you understand more code, more efficiently. Powerful filtering and visualization 
techniques work even with the biggest projects with many thousands of files, tens of 
thousands of symbols and millions of lines of code. No compilation is necessary to 
extract the symbolic information. With SNiFF +, you can browse code that has not 
yet been compiled. 

6.3.2 Source Code Parsing 

6-4 

SNiFF+ uses an efficient C/C++ parser which analyzes C++, ANSI C, or Kernighan & 
Ritchie C source code. No compilation is necessary in order to extract symbolic 
information. The parser is highly configurable and can optionally preprocess the 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

source code. The symbolic information is kept continually on disk, so that parsing is 
done only once for each file and then parsed again only after a change. 

If the source code of a project is edited, the symbolic information is updated imme­
diately. Saved files are re-parsed and all browsing tools are updated. Therefore, you 
are a lways working with the newest symbol information that correctly mirrors the 
source code. Also, cross reference information is instantly updated. 

6.3.3 Projects 

In this section you will learn about a very important concept in the SNiFF + project. 
A project is the main structuring element in SNiFF + for grouping together files and 
directories that logically belong together in your file system. Once projects are 
created, you can then use SNiFF + browsers to browse and understand the source 
code. 

Project Directories and SNiFF+ Generated Files 

Generally, you create a project from existing source files. When you create the 
project, you must specify the directory that will contain these source files. The 
directory you specify is the project directory. Each project in SNiFF + corresponds to 
a project directory in your file system. 

During project creation, SNiFF + generates the following files and directories in a 
project directory: 

• Makefile: This is the project makefile, generated when you choose to build your 
targets executables using SNiFF + Make Support. 

• Project Description File (PDF): Each SNiFF + project is described by a Project 
Description File (PDF) that stores the structure, the list of files, and the 
attributes of the project. SNiFF + maintains a project's PDF for you. 

• Project Generate Directory: This directory contains a number of files gener­
ated for the project and maintained by SNiFF+. Its default name is . sniffdir. 

Contents of a Project 

Each SNiFF + project contains the following: 

• Your source files: You can include any type and number of source files in a 
project. For example, a typical SNiFF + project might have C++ implementation 
and header files, yacc sources, documentation files, and files of a third-party 
documentation tools like FrameMaker. 

6-5 

6 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

6-6 

• A Makefile: This is either your own makefile or SNiFF +'s makefile, depending 
on whether or not you use SNiFF+'s Make Support. 

• The Project Description File (PDF): When you open a project, you are really 
telling SNiFF + to load the project's PDF. When you modify a project's structure 
in any way (for example, by adding or removing files to the project), its PDF will 
be changed accordingly. 

Subproject Structures 

You can include other projects to create a hierarchical project structure. The pro­
cess of including one project in another project is referred to in SNiFF + as adding a 
subproject. The included project is known as a subproject. 

Project Attributes 

Each SNiFF+ project is described by a project description file (PDF). The PDF stores 
information such as the structure, the list of files, and the attributes of the project. 
A project's attributes would include file types added in the project, make parame­
ters, parser options, and your choice of version control tools. These attributes are 
user-modifiable. Refer to the SNiFF+ User Guide for a complete list of project 
attributes. 

Project Types 

SNiFF + distinguishes between two different project types: shared and absolute. The 
following table outlines the differences between these two project types: 

Project Type Default 
Can project files be shared Project attributes refer to Extension 

among Developers? files and subprojects using 

Shared * .shared yes path relative to a root directory 

Absolute * . proj no absolute path names 

Shared Projects 

Shared projects are for team development. Each team member has access to a 
shared project and can make changes to its files and structure. Shared projects are 
always used in conjunction with a configuration management and version control 
(CMVC) tool of your choice. 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

Shared projects offer a great deal of flexibility. Since all references to files and sub­
projects are relative to a root directory, you can easily move a shared project to 
another location on a file system. 

It is recommended that you work with shared projects even if you do not initially 
work in a team development environment, since most single-user development work 
is eventually incorporated into a team development environment sometime during a 
project's life . With shared projects, the transition from a single-user to a team envi­
ronment is much smoother than with absolute projects. 

Absolute Projects 

Absolute projects are most suitable for browsing code. Setting up an absolute 
project is easy. If you need to get your source code into SNiFF+ for browsing only, it 
makes sense to use SNiFF +'s absolute project type. For development, however, it is 6 
recommend that you use shared projects. 

Organizing Project Structures 

Project structures in SNiFF + do not need to map directly to file system structures. 
Figure 6 - 1 on page 6 -8 illustrates this idea, using a pSOSystem example . 

In Figure 6 - 1 and Figure 6 -2 , you can see that although these directories are not 
subdirectories of $PSS_ ROOT/bsps/mbx8xx/src: 

• $PSS_ ROOT/bsps/devices/lan 

• $PSS_ ROOT/bsps/devices/mfp 

• $PSS ROOT/drivers 

these projects are subprojects of bsps_ src. shared: 

• mfp_ mbx8xx . shared 

• lan_ mbx8xx . shared 

• drivers_ mbx8xx . shared 

6-7 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

6-8 

l'h Exploring - devices l!!I~ El 
Eile Edit Y'.iew Iools .!::!elp 

All Folders 

$ ·· prism+ 
El· pssppc.250 

ttJ· 
~ 

~·· 
1±1 
B· 

..... 

El·· 

.sniffdir 

common 
icontrol 

Ian 
mfp 

paralle l 
pci 

powerpc 
scsi 

serial 
timer 
vme 

e403 
fads8xx 

mbx8xx 
sn iffprj 

src 
.sniffdir 

' 
obj 

····· sniffprj ~ 

.sn iffdir 
common 
icontrol 
Ian 
mfp 
parallel 
pci 
powerpc 
scs i 
serial 
timer 
vme 

~rules .mk 

13 object(s) 14.1 KB (Disk free space: 2.52GB) 

FIGURE 6-1 File System Structure (Partial View) of pSOSystem Code Base 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

~ PE pdemo shared - adm PWE ppc-Pnvate l!lll~Ei 
Iools Eile Project !nfo Target Y:iew Plug-Ins 1. 

IAllFi les ::J 17 Use Cache 

]Private+ Shared 

Filter 

::J ]writable + Read Only ::J 
Filters.. . I 

Source Files of pdemo.shared 

File Project 

[fl demo.c pdemo . shared 

!El demo . h pdemo.shared 

[fl drv_ con1'. c pdemo. shared 

l!ll maJ<efile pdemo. shared 

~ pdemo. shared pdemo . shared 

[[! reaaoe pdemo.shared 

sys_conf.h pdem.o. shared 

Projects JFullTree 

pdemo . shared (apps / pdemo) 

s ~ Ill• include.shared (inc l ude) 

, --~[;10 sys_os.shared (sys / as) 

f···-~ [;] 0 configs_std. shared (configs / std) 

f· ··-~ [;] 0 bsp . shared (bsps/ mbx8xx) 
B- -~ [;] 0 bsp_src. shared (bsps / mbx8xx / src) 

[·· ~ [;] 0 devices_mbx8xx. shared (bsps / devices) 

f·· ~ [;] 0 common_mbx8xx. shared (bsps/devices/ common) 

- -~ [;] !..,!..i.lilijilololi.iloi.,:'mbx8xx. shared (bsps / devices / icontrol) 
- -~ ;• (bsps/devices/ lan) 

--~ :. 
--~ [;] _ . shared (bsps/ dev i ces/ pci) 

--~ [;] 0 powerpc_mbx8xx . shared (bsps / devices/ powerpc) 

--~ [;] 0 serial_mbx 8xx . shared (bsps / devices/serial) 

- -~ [;] 0 mbx8xx_mbx8xx . shared (bsps / mbx8xx) 

--~ [;] figs / std) 

--~[;] drivers) 

FIGURE 6-2 Project Structure 

Tracking Dependencies in a Project 

If you use SNiFF + Make Support, SNiFF + tracks dependencies among source files . 
As a result, you can add files to a project or remove files from a project without 
having to worry about which files need to be recompiled. Only source files that n eed 
r ecompiling are recompiled. Before each build, just tell SNiFF + to update a project's 
dependency information to reflect your changes. 

6-9 

6 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

If you do not use SNiFF + Make Support, you must update your own makefiles to re­
flect any changes in dependencies. 

How to Create a SNiFF+ Project 

Section 6 .4 , Using the pRISM+ Application Development Framework on page 6 - 18 
shows how pRISM+ can help you to create source projects and integrate your source 
project with pSOSystem. 

You can also refer to the SNiFF+ User's Guide for a detailed description of how to use 
the SNiFF + Project Setup Wizard to create source projects. 

Choosing Which Project to Open 

To work on a source project, you first must open it. Suppose you have a project 
structure similar to that shown in Figure 6 -2 on page 6 -9 . You have the following 
options: 

• If you plan to modify and rebuild a single project - for example, any subproject 
of pdemo . shared - you can open only that project. 

• If you plan to modify and then rebuild the entire application pdemo. shared, 

SNiFF + will automatically open all of its subprojects. You can then work on 
pdemo . shared and all of its subprojects. 

• If you plan to modify and then rebuild the Board Support Package 
(bsp_ src. shared) SNiFF+ will automatically open all its subprojects. You can 
then work on bsp_ src. shared and all the subprojects it includes. 

6.3.4 Workspaces 

6-10 

Workspaces are the means by which SNiFF + implements the solution for two impor­
tant requirements: 

• De-coupling the changes of a single developer from those of other team 
members. 

• Sharing as much information as possible. 

A workspace is a directory tree where complete projects or parts of complete 
projects reside. Workspaces can override each other; SNiFF + provides a merged view 
of these workspaces. 

SNiFF + distinguishes between private workspaces and shared workspaces. A private 
workspace is the directory that belongs to only one user and is modified only by that 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

6.3.5 

user. Every user has a private workspace and all the modifications to a project are 
done in the private workspace. A shared workspace is a directory that is accessible 
to any number of team members. There can be any number of shared workspace(s). 

All private workspaces must have the same directory structure as the shared work­
spaces. Thus a private user makes a copy of a shared file or checks out a version of 
a shared file from the shared workspace. This private copy is stored in the private 
workspace which mimics the shared space in structure. During the rest file SNiFF + 
will use the private copy to override the shared version of the file to reflect any 
changes made to the file. 

For repository-based version tools, SNiFF + also treats the repository as a work­
space. Extensive discussion on workspaces is provided in the SNiFF+ User's Guide. 

Working Environments 

Working environments are physical directories on your file system in which SNiFF + 
shared projects reside. In SNiFF +, you open shared projects by first specifying in 
which working environment you work in. 

When workspaces are associated with a default version control configuration, they 
are referred to as Working Environments (WE). In this document, however, the 
terms workspace and working environment are used interchangeably. 

You must use Working Environments if: 

• You are a member of a development team that works on the same set of files, 
and you do not use a third-party configuration management tool that furnishes 
a workspace model of its own, such as ClearCase. 

• You develop software for multiple platforms (as a member of a development 
team or alone). 

• You work alone on projects and plan to share them in the future. 

NOTE: pRISM+ uses the Working Environments concept to enable team­
development out of the box. The following concepts are relevant only if 
you are using SNiFF + outside of the pRISM+ Application Development 
Framework. 

You need not use Working Environments if: 

• You work alone on a project and do not need to share your project with others 
now or in the future. 

6-11 

6 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

6-12 

• You already use a third-party configuration management tool such as 
ClearCase. 

• You use SNiFF + to browse source code only. 

For team-based development, Working Environments enable: 

• shared access to your team data Repository. 

• shared and transparent access to team source code. 

• shared access to platform-specific object code. 

• individual team members to work in isolation from the rest of the team. 

• individual team members to work on selected configurations of a team project. 

Single users can also benefit from using the Working Environments for the following 
reasons: 

• Working Environments are easily movable. 

• Working Environments enable you to always know which projects you are work­
ing on. 

• A Repository Working Environment allows you to maintain one directory for 
your data Repository and another for your workspace. 

• A Working Environment can be used by single users for single-platform or 
multi-platform development. 

Types of Working Environment 

There are four types of working environments: 

• Repository Working Environment (RWE). 

• Shared Source Working Environment (SSWE) . 

• Shared Object Working Environment. (Not supported by pRlSM+ Development 
Environment) 

• Private Working Environment (PWE). 

Make Support and Working Environments 

SNiFF+ Make Support maintains information about dependencies and include 

directives across working environment boundaries, by supplying this information to 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

your make utility and compiler. Although this information can be maintained in 
your own makefiles, it is recommended that you use SNiFF + Make Support when 
you are doing team-based development within SNiFF +. 

Working Environment and Teams 

Working Environments are designed to be used by teams. This section explains how 
Working Environments support team development. It also summarizes each working 
environment type and how the four types interact with each other. 

Shared Access to Your Team Repository 

Team members access and modify shared files using commands provided by your 
configuration management and version control (CMVC) tool. SNiFF + provides an 
interface to your CMVC tools. This interface needs to know the location of your 6 
Repository. 

You provide this information by defining a Repository Working Environment (RWE). 
which specifies the root directory of your Repository. 

Shared and Transparent Access to Team Source Code 

SNiFF + requires you to specify the root directory of your team's shared source code. 
Once you have such a root directory, you must tell SNiFF + where it is located. This 
is done by defining a Shared Source Working Environment (SSWE). 

All team members can view or share the latest version of your software system as 
reflected by the source files in the SSWE. When browsing the source files, this view 
is read-only. When editing source files, team members work on private copies of the 
shared source files they want to modify. Team members never directly modify the 
shared source files in the SSWE. The view to all other source files (those not being 
modified) remains read-only. 

Directories for Platform-Specific Object Code 

The SNiFF + Shared Object Working Environment is not used by pRlSM+. Refer to 
the SNiFF+ User Guide for a complete description of this type of working environ­
ment. 

Isolating Individual Work from the Team 

Developers must be able to work in isolation from other team members. They need 
their own workspaces to edit, compile and debug projects without interfering with 

6-13 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

the work of their team members. They also continually need to have access to their 
software system's most current source code and object code base. 

SNiFF + supports this type of work environment by allowing each team member to 
work in a private workspace. In SNiFF+, a Private Working Environment (PWE) is 
defined in order to specify the root directory of each team member's private work­
space. 

When working in your PWE, you have a read-only view of the shared source files 
located in your team's SSWE. When you need to modify shared source files , you 
check out the necessary files from your team's Repository. When you are satisfied 
that your changes are error free , you can check the modified files back into your 
team's Repository. 

The next time your team's SSWE is updated, these changes are incorporated, and 
the shared source files in the SSWE once again reflect the most current state of your 
software system. 

6.3.6 How File Sharing Works 

6-14 

SNiFF + supports file sharing among Working Environments by requiring that all 
affected Working Environments have the same project directory structure. This is 
the easiest way for file sharing to work. 

A SNiFF + project's PDF stores structural information about the project such as the 
names of project files, their location relative to the project directory, and the names 
and locations of any subprojects. When all Working Environments that share files 
have the same project directory structure, SNiFF + can easily find any project files or 
subprojects. 

The project directory structure of the Shared Source Working Environment (SSWE) 
is the basis for all other working environment project directory structures. SNiFF + 
automatically copies the SSWE's project directory structure into your private work­
ing environments when you open any shared projects from your private Working 
Environment. SNiFF + copies only the SSWE directory structure, not the directory 
contents. Figure 6-3 on page 6-15 illustrates the idea of equivalent project directory 
structures. 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

Shared Source Working Environment 

SSWE ROOT Directory: $PSS_ROOT 

Apps Configs Drivers sys 

pdemo std 
evices bx8xx OS 

Private Working Environment 6 

src 

Private Working Environment 

PWE1 ROOT Directory: $PSS_USER_PWE 

Apps Configs Drivers sys 

pdemo std 
evices bx8xx OS 

src 

FIGURE 6-3 How File Sharing Works 

6-15 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

The PWEs have the same project directory structure as the SSWE. The two team 
members working in PWEl and PWE2, respectively, share the source files in the 
SSWE. When browsing source files, their view to the files is read-only. When editing 
source files, they work on local, writable copies of the source files they have checked 
out from the Repository. When compiling in their PWEs, object code is created 
locally from both shared (read-only) source files and local (writable) sources files. 

A Closer Look at File Sharing 

Let's look more closely at the SSWE, PWEl and PWE2. For example, the foo project 
directory in the SSWE contains the following: 

• The Project Description File foo . shared . 

• The Project Makefile. 

• The following source files : foo . c , foo . h , bar . c, and bar . h . 

Figure 6 -4 shows the contents of the foo project directory in the SSWE, PWEl and 
PWE2. In this example, two developers (Joe Developer and Jane Developer) own the 
PWEs. Joe Developer owns and works in PWEl; Jane Developer owns and works in 
PWE2. Both Joe Developer and Jane Developer share common source files located 
in the SSWE. 

PWE1 SSWE PWE2 

I ·~ too.c [~ too.c I I~ too.c 

I~ too.h I~ too.h I I~ too.h 

[~ bar.c [~ bar.c I I ·~ bar.c 

I~ bar.h I~ bar.h I I ·~ bar.h 

I~ too.shared I~ too.shared I [ ·~ too.shared 

FIGURE 6-4 File Sharing 

6-16 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

As Figure 6-4 shows, Joe Developer has checked out only one file from the foo 
project directory in his PWE : foo. c . He has a read-only view to all other files. Jane 
Developer has checked out three files from the f oo project directory into her PWE: 
bar . c, bar. h, and the Project Description File, foo . shared. 

NOTE: To make structural changes to a SNiFF + project, you must check out the 
project's Project Description File. Examples of structural changes include 
adding and removing project files and subprojects, and changing project 
attributes, such as the name of project targets. 

Figure 6-4 shows that Joe Developer has a read-only view to files checked out by 
Jane Developer, and Jane Developer has a read-only view to files checked out by Joe 
Developer. While Joe Developer is making changes to his local copy of foo . c in his 
PWE, Jane Developer can only browse the original copy of the file located in the 
SSWE. 6 
This is an example of the exclusive file locking; when one team member has checked 
out a file in his PWE, all other team members can only browse this file . SNiFF + con­
figuration management and version control (CMVC) interface can provide other file­
locking mechanisms as well. Your CMVC tool determines which mechanisms are 
available for use. 

When Joe Developer builds foo . o from his private area. SNiFF+ ensures that his 
build will use the local copy of modified foo . c . SNiFF+ does this by having the local 
copy override the same file in the shared area for Joe Developer. SNiFF + allows Joe 
Developer to use all other files in the shared area in order to complete his build. 

Changes made to foo . c are local to Joe Developer and are not visible to Jane Devel­
oper. Similarly, Jane Developer can derive from the shared area her own copy of any 
of the files and make her modifications, eventually overriding the shared versions of 
the same files. 

6.3.7 SNiFF+ Build and Make Support 

SNiFF + Make Support offers the following features: 

• It comes with its own makefiles. 

• It is based on standard UNIX Make Tools. 

• It is fully integrated with Working Environments to build targets across multiple 
shared Working Environments. 

• It automatically generates make support files that contain data about include 
paths, dependencies lists, object files lists, and VPATH information for shared 
projects. 

6-17 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

• It automatically provides make rules for recursively building a project's target. 

• It provides automatic support for multi-platform development and works with 
compilers, linkers, archivers, and other build tools of your choice. 

• It maintains your build system by automatically updating make support files. 

6.3.8 Building Targets When Using Team Working Environments 

If you use SNiFF + Working Environments for your team software development 
projects, you must use SNiFF + Make Support in its entirety (including makefiles 
and make support files) for building your object files and targets. 

SNiFF + Make Support allows you to take full advantage of Working Environments 
by providing a mechanism for automatically sharing source and object files between 
members of a team. As a result, it is not possible to use any makefiles with shared 
Working Environment. 

One major exception is the pSOSystem makefiles which have been extended to sup­
port team environments. This allows you to use the hybrid make model in a team 
development environment. The hybrid make model is described in Section 6.6.8, 
Hybrid Make Model on page 6-46. For details about pSOSystem makefile extensions 
for team support, refer to Appendix E. 

6.4 Using the pRISM+ Application Development Framework 

This section provides a detailed description of the pRISM+ Application Development 
framework. In this section you will see how the SNiFF + concepts discussed in the 
previous section are applied in pRISM+ 

6.4.1 Team Development Support 

6-18 

The pRISM+ Application Development Framework is designed to address the needs 
of team-based embedded development projects based on pSOSystem. While the 
default configuration supports team development, single users can also reap the 
benefits of this set-up. This section describes the Team Development Support 
aspects of the pRISM+ Application Development Framework. 

You are encouraged to refer to the SNiFF + manuals for related concepts on team 
development. This section does not replace the SNiFF + reference material on this 
subject. While all the SNiFF + features are available to pRISM+ users , this document 
is produced to describe the use of these features within pRISM+. 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

6.4.2 pRISM+ Default Working Environments Settings 

The pRISM+ Application Development Framework provides the following default 
Working Environments: 

• RWE:pSOSystem-Repository 

• SSWE:pSOSystem-target 

• SSWE:pSOSystem-target-User 

• PWE:target-Private 

RWE:pSOSystem-Repository 

This is the Repository Working Environment (RWE) for pSOSystem code base. A 6 
repository contains version-controlled files of a project. Close examination of the 
Working Environment Root field shows that this Working Environment is pointing to the 
location $PSS_ ROOT /repository . 

k: Workmg Environments - JSBach@p1peorgan l!l~E'I 

Working Environments 

f:' RTJJE : pSOSystem-Repos1 tor' 

SSWE:pSOSystem-ppc 

El··· ssrVE : pSOSys tem- ppc-Use.r 

* adm PTJJE : ppc-Private 

1 

] 
Working Environment===========: 

Root $PSS_ROOT/repositoiy 

J c:/pRISM+20/pssppc.250/repositoiy 

Root on Remote Host 

r SSWE Hierarchy 

J 

FIGURE 6-5 Repository Working Environment (RWE) 

This Working Environment Root can be modified to point to any other directory where you 
keep source control information for your code base. If your project has an existing 
repository and you would like pSOSystem to be checked into your existing reposi­
tory, then you should point the Repository Working Environment Root to the location of 
your repository. 

Once you have set up your RWE root, you should check in all of your pSOSystem 
source files. For instructions on how to do this with various CMVC Tools, refer to 
the SNiFF+ User's Guide located on the pRISM+ Documentation CD-ROM. 

6-19 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

SSWE :pSOSystem-target 

This is the Shared Source Working Environment (SSWE), which contains the actual 
pSOSystem source-code base and pre-parsed pSOSystem source projects. Close 
examination of the Working Environment Root field shows that this Working Environment 
is pointing to $PSS_ ROOT, the location ofpSOSystem on your machine. 

k: Workmg Environments - JSBach@p1peorgan 111!1~113 

Iools Eile _Edit Y'.iew 1,!tils HistQry l 

Type JAii :::J Owner JAii :::J Working Environment----------­

Root J $PSS_ROOT Working Environments j,....T-re_e _____ :::J...,, 

J c:/pRISM+20/pssppc.250 
....-----------~ 

Root on Remote Host B·· . RliJE: p SOSystem-Reposi tory 

8 ~ SSWE: pSOSys telll- ppc 

SsrVE:pSOSystem-ppc-User 

~ adlll PliJE:ppc-Private 

~ Platform 

SSWE Hierarchy""""'"""""""""""""""""""""""""""""""""""""""""""""' 

FIGURE 6-6 Shared Source Working Environment (SSWE) 

6-20 

This Working Environment Root can be modified to point to the actual location of the 
pSOSystem code base your development team will share. 

You can easily modify this WE root by redefining the $PSS_ ROOT environment vari­
able in the start-up script in your pRISM+ installation directory. 

• On Windows hosts: Modify the envtarget. ksh file. 

• On UNIX hosts: Modify the envvtarget . sh or envvtarget. csh file. 

Once you have pointed this SSWE to your team's shared version of pSOSystem, you 
are on your way to doing team development with a common pSOSystem with the 
team members. 

NOTE: Figure 6 -6 shows a PowerPC-specific version of the SSWE. In general, the 
SSWE is identified as SSWE:pSOSystem-target, where target can be 
any one of ppc, 68k, mips, and so on, as appropriate for your particular 
target processor. 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

SSWE :pSOSystem-target-User 

This Shared Source Working Environment (SSWE) is pointed to by a user-defined 
environment variable $PSS_ USER_ SSWE. This environment variable points to the 
root directory of any existing code base which you will integrate with pSOSystem. 

You can redefine the $PSS_ USER_ SSWE environment variable in the start-up script 
in your pRISM+ installation directory. 

• On Windows hosts: Modify the envtarget . ksh file. 

• On UNIX hosts: Modify the envvtarget . sh or envvtarget . csh file. 

You can also choose to copy your existing code base into the default location pro­
vided by $PSS_ USER_ SSWE . 

k: Workmg Environments - JS8ach@p1peorgan l!!l~EJ 
Iools Eile Edit Y:iew l.!.tils HistQiy 1 
ja [,oi; ~m ~ 

Type JAii :::J Owner jAll 
Working Environments ]Tree 

El· _ RTJE: pSOSystem-Repos i tory 

9 .. ssr<7£ : pSOSys tem-ppc 

El ~ Ssr11E : pSOSys tem- ppc- User 

~ adm PTJE:ppc-Private 

Working Environment-----------• 

Root J $PSS_USER_SSWE 

J c:/ co pyofz af 

Root on Remote Host 

~ Platform 
J < d efau It> 

_ _. ... s_swE Hierarchy============.,.,. 

FIGURE 6-7 Shared Source Working Environment for Customer's Code 

Once you define this SSWE to contain your existing code base, you can then create 
your source projects in this SSWE. This results in a source projects that a team 
members can share. This SSWE is derived out of the first SSWE which points to 
$PSS ROOT . 

This u se of the SNiFF + Working Environments allows you to easily integrate your 
code with pSOSystem code so you can browse them together. Code you do not plan 
to u se with pSOSystem does not h ave to be located in a SSWE derived from the 
SSWE which points to the shared pSOSystem. 

You can extend this concept further to more than one additional SSWE if your exist­
ing code base resides under more than one root directory. 

6-21 

6 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

NOTE: Figure 6 -7 shows a PowerPC-specific version of the SSWE. In general, this 
SSWE is identified as SSWE: pSOSystem-target-User, where target 
can be any one of ppc, 68k, mips, and so on, as appropriate for your 
particular target processor. 

PW E: target-Private 

This is the Private Working Environment (PWE) for a private user who is on the team 
sharing the common pSOSystem. By default the PWE points to your 
$PSS_ USER_P WE , a subdirectory of your home directory. 

ik Working Environments - JSBach@p1peorgan 111111~ El 
Iools file fdit Y'.iew !,!tils HistQiy 1 

Type jAll Working Environment-----------1 

Root J $PSS_USER_PvVE Working Environments JTree 

B·· RIJE: p SOSystem-Reposi toi:y 

I c:/pRISM+20/users/ JSBach/psosppc_pwe 

Root on Remote Host J 
El·· , SSWE:pSOSystell-ppc 

El··· SSWE: pSOSys tell- ppc- Use.r 
L ... O • adm P1JE:ppc-Private 

ri Platform 
J <default> 

SSWE Hierarchy============! 

FIGURE 6-8 Private Working Environment (PWE) 

NOTE: Figure 6 -8 shows a PowerPC-specific version of the PWE. In general, this 
PWE is identified as PWE : target-Private, where target can be any 
one of ppc, 68k, mips, and so on, as appropriate for your particular 
target processor. 

You can redefine the $PSS_ USER_ PWE environment variable in the start-up script in 
your pRISM+ installation directory. 

• On Windows hosts: Modify the envtarget. ksh file. 

• On UNIX hosts: Modify the envvtarget . sh or envvtarget. csh file. 

6.4.3 Restoring the Default Working Environment Settings 

6-22 

When you start SNiFF+, it sources a set of preference files to get its initial settings. 
To view the default preferences set by the pRISM+ installation program, use Tools~ 
Preferences to display the SNiFF + Preferences Window, as shown in Figure 6 -9. 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

J Preferences EI 
Category: 

USER LEVEL I SITE LEVE L 

· Appearance 
· Tools 

'-····~ Source Editor 

t····:fj Retriever 

t····~ Cross Referencer 
i·····'i.§3 Documentation Editor 
! ·····~Shell 

ii.ii w ork1ng Environment 

··· New Project Setup 
··· Version Control System 
··· File Types 

General Settings-------------------­

··· Platform \.\/ or king Environment Con fig. Directory J $PSS_ R 0 0 T /workingenvs Dir. .. 

··· Others Default Working Environment adm PWE:ppc·Private 

FIGURE 6-9 Default Working Environment Settings Location 

Figure 6-9 shows that when you start SNiFF+, it looks to directory $PSS_ ROOT I 
workingenvs for Working Environment settings, and that it uses PWE:target-Private as 
the default working environment to open projects. 

NOTE: Figure 6-9 shows PowerPC-specific General Settings. 

6-23 

6 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

6.4.4 What Can You Do with pRISM+ Team Support? 

6-24 

Here let's use a typical set-up of a team to take a closer look at what pRISM+ team 
support can do for you. The example set-up is as follows: 

• The team shares one common pSOSystem, located on a remote UNIX host 
named muse. 

• The muse host contains the version control repository in directory 
team_ reposi tory . 

• The team is comprised of two developers, Joe Developer and Jane Developer, 
who use PCs as their development stations. 

• Joe Developer and Jane Developer both have third-party PC NFS software which 
allows them to access the UNIX file system. 

• Joe Developer and Jane Developer have installed pRISM+ on each of their PCs 
and they are ready to start development of their project based on a pSOSystem 
sample application, pdemo . 

Before they started, their SSWE administrator performed the following tasks: 

• Created a copy of pSOSystem code on muse and checked all of the pSOSystem 
code into RCS, this team's version control tool of choice. 

• Made sure that Joe Developer and Jane Developer have been able to mount 
muse's file system as a local drive, as e : \muse , on their respective PCs. 

For both Joe Developer and Jane Developer, pSOSystem is now located at 
e : \muse\pSOSystem_ sha r e . 

• Edited e nvtarget. ksh in Joe Developer and Jane Developer's individual 
pRISM+ installation directory to make $PSS_ ROOT point to 
e : \mu se\pSOSystem_ share . 

Now Joe Developer and Jane Developer are able to open pdemo. shared and see the 
read-only version of the shared files. They can both work on pdemo . shared by 
checking out files from the repository. When they make changes to a local copy of 
the shared files, this local file will override the shared file during a make. 

When no more changes are needed, Joe Developer and Jane Developer can check 
their changes back into the repository. Their changes will be made visible to the 
team when their system administrator performs an update of their SSWE. 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

~PE : pdemo.shared - adm P\llE :ppc-Private l!!I~ El 
!ools file Project !nfo T arnet Y:iew Plug-Ins 1 

IAll Files 

j Private+ Shared 

Filter 

:::J jw ritable +Read Only 

Source Files of pdemo.shared 

File 

[fl da t a.c 

delllO. C 

delllo . h 

dellloload . c 

drv conf. c 

Project 

pdemo. shai::ed 

pdemo . shai::ed 

pdemo . shai::ed 

pdemo . shai::ed 

pdemo . shai::ed 

makefile ; pdemo.shared 

.readme 

sys_c onf . h 

pdemo . shai::ed 

pdemo . shai::ed 

pdemo . shai::ed 

:::J 
Filters... I 

&I J pdemo . shared 
~..'.._~~~~~~===============-~~~~~====~--J 

Projects jFull Tree 

pdemo . shai::ed (apps / pdemo) 

1*1 · ~ [;] 0 include . shai::ed (inc lude) 

i··· · ·~ [;] 0 sys_os . shai::ed (sys / os) 

i··· · ·~ [;] 0 c onfigs_ s td. shai::ed (configs/s td) 

I · ····~[;] 0 bsp. shai::ed (bsps / mbx8xx ) 

1±1··· ~ ~ 11 bsp_src.shared (bsps / mbx8xx / src) 

r Frozen r Lockers r History 

FIGURE 6-10 Private View of a Shar ed Project 

:::J 

6-25 

6 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

6.5 pSOSystem Source Projects 

The pRISM+ Application Development Framework is application-centric, designed 
specifically for pSOSystem-based application development. To develop with 
pSOSystem, you must first understand pSOSystem and its structure, its contents, 
and its interface to the application code. This critical understanding of pSOSystem­
based code can be accomplished with the aid of the powerful SNiFF + source code 
browsers. 

This section describes the pre-parsed pSOSystem source projects that are shipped 
with pRISM+, which you can browse to gain the key understanding of pSOSystem. 

This section focuses on one particular kind of source projects; pSOSystem sample 
applications. These sample applications are perfect for studying the pSOSystem-to­
application interface since they are also designed as starting points for users to 
begin development with pSOSystem. 

Refer to the SNiFF + manuals for related concepts on source projects, how to create 
them and share them with team members. This section does not replace the SNiFF + 
reference material on these subjects. While all the SNiFF + features are available to 
pRISM+ users , this document describes the use of these features within pRISM+. 

6.5.1 File and Directory View of a pSOSystem Sample Application 

6-26 

pSOSystem sample applications are designed to serve as perfect starting points for 
developing a pSOSystem application. Some very simple applications, such as 
hello and pdemo, can also be used by Board Support Package (BSP) developers to 
test the basic working condition of newly developed BSPs. 

Each sample application is designed to illustrate one aspect of pSOSystem, but all 
of them have some things in common. Each application is made up of the following: 

• sample application code 

• sys_ conf. h 

• drv_ conf . c 

• makefile 

Sample Application Code 

Sample application code is the actual sample code that shows how to use certain 
pSOSystem features. 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

sys_conf.h 

The sys_ conf . h file is used to configure pSOSystem for your application. 
pSOSystem is a scalable operating system. In the sys_ conf. h file, you can simply 
say YES or NO for each operating-system component to either include or exclude it 
from the application. 

For operating-system components to be included in an application, you can also use 
the sys_ conf. h file to configure them. This file includes many other configurable 
settings, such as boot mode and 1/0 devices to include. This file is key to configur­
ing pSOSystem for your application. 

drv_conf.c 

The drv_ conf. c file is used to configure and initialize pSOSystem drivers based on 6 
information entered in the sys_ conf. h file. For each 1/0 device included by 
sys_ conf. h file, a set-up routine is called in this file for the device. 

makefile 

The makefile associated with each sample application is set up for building the sam­
ple application. Each makefile is a precise definition of files from pSOSystem needed 
to make a target executable for this application. 

By invoking the make command using the pSOSystem makefile , you can build a 
target execution image from the following: 

• files of sample application code 

• operating system configuration code and start-up code from the directory 
$PSS_ ROOT/config/STD 

• an object library known as the Board Support Package, libbsp. a , located in 
the $PSS_ BSP directory. 

BSP libbsp. a also contains high-level driver code located in $PSS_ ROOT I 
drivers and device code located in directory $PSS_ ROOT/bsps/devices 

• an object library, libsys. a, which contains all the operating-system compo­
nents in the $PS S_ ROOT Is y s Io s directory 

• other object libraries required by sample applications in directory $PSS_ ROOT I 
sys/libc 

• any other libraries an application might need 

6-27 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

NOTE: The $PSS_ ROOT points to the location of pSOSystem, and $PSS_ BSP 

identifies one of the Board Support Packages in the $PSS_ ROOT /BSPS 

directory. 

6.5.2 pSOSystem Projects 

6-28 

In pRISM+, pSOSystem comes as a set of pre-parsed shared source projects. These 
source projects are provided so you can get a quick start without having to learn all 
about SNiFF + right away. They are pre-parsed so they can be browsed immediately 
for code comprehension. Most importantly, the sample application projects can 
serve as starting points for development. 

Other projects such as BSP projects and driver projects can be integrated with your 
code as subprojects in much the same way as they are used as subprojects for 
pSOSystem sample application projects. 

This section looks closely at these pSOSystem source projects and how they are 
used. 

Types of pSOSystem Projects 

Pre-parsed pSOSystem projects can be categorized into the following groups: 

General pSOSystem Projects 

include . shared 

sys_ os . shared 

configs_ std . shared 

Project for pSOSystem include files which are in 
$PSS_ ROOT I include directory and subdirectories. 

Project for pSOSystem OS components which are in 
$PSS_ ROOT I sys/ os directory. 

Project for pSOSystem configuration files which are 
in $PSS_ ROOT/configs/std directory. 

pSOSystem Libraries Source Projects 

sysclass . shared Project for C++ pSOS class library source files in 
$PSS_ ROOT I sys/ libel src/ sysclass directory. 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

pSOSystem Drivers Project 

NOTE: This list may vary depending on version of pRISM+. 

dri ver_name_drv . shared Project for pSOSystem drivers in $PSS_ ROOT I 
drivers I directory. 

Board Support Package (BSP) 

bsp_src.shared 

bsp . shared 

Sample Application Projects 

<app_ name> . shared 

Project for individual pSOSystem BSP source in 
$P SS_ ROOT /bsps I <bsp_ name> Is re directory. 

Each bsp_ src . shared project also includes all the 
devices projects and drivers project that are relevant 
for this BSP. 

pSOSystem device code is located in $PSS_ ROOT I 
bsps/devices directory. 

Project for individual pSOSystem BSP in $PSS_ ROOT I 
bsps<bsp_ name> directory. 

Project for pSOSystem sample application in 
$PSS_ ROOT I apps/ <app_ name> directory. 

For a complete list of all the source projects that are available in pSOSystem, refer 
to Appendix E . 

Sample Application Projects 

We have established that in order to build a target executable for a sample applica­
tion, we also need many other parts of pSOSystem. In SNiFF + terminology, the 
project from which the executable target is defined is the super-project. Other 
projects that are needed for building the executable target in the super-project are 
its subprojects. 

In the case of a pSOSystem sample application project, it is the super-project. It in­
cludes things such as a Board Support Package and operating system components 
as subprojects. 

6-29 

6 



Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide 

6-30 

A typical pSOSystem application is made up of the following: 

• a sample application (super-project). 

• include. shared (added as a subproject to the sample application super­
project). 

• sys_ os. shared (added as a subproject to the sample application super­
project). 

• configs_ std. shared (as a subproject to the sample application super­
project). 

• bsp_ src . shared (subproject to the sample application super-project). Each 
bsp_src.shared also includes as its subprojects all the devices projects that are 
relevant for this BSP. 

• bsp. shared (subproject to the sample application super-project). 

• any other projects from the $PS S_ ROOT I drivers directory, added as sub­
project(s), if referred by the application 

• any other projects from the $PSS_ ROOT/sys/libc/src directory, added as 
subproject(s), if referred by the application 

Figure 6-11 on page 6-31 shows the pdemo . shared example used throughout this 
chapter. Note the project and subproject relationship that exists between 
pdemo . shared and its subprojects. 

pSOSystem as Source Project 

For your development, the pSOSystem sample application is analogous to the soft­
ware you are developing. The Board Support Package is analogous to the drivers 
you are developing for your custom hardware. All the other pieces in pSOSystem 
such as the operating systems components and configuration code are additional 
supporting software for your application. They can be thought of as pre-made, 
ready-to-use supporting subprojects for your application project. 

Converting Your Application to a pSOSystem Application Project 

As we will show you in the tutorial, pRISMSpace Wizard can help you turn your 
existing code base into a shared source project. Once this source project is made, 
you can use the Convert to pSOSystem Application option to append pSOSystem sub­
projects to your project. Depending on the type of application you have, you may 
need to adjust the subproject list slightly, but the Convert to pSOSystem app proj option 
provides a quick way of adding most of the common code you need out of 
pSOSystem. 



pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment 

~PE : pdemo.shared - adm P'WE :ppc-Pnvate ll!!lliJ El 
Iools file Project Info Ta19et ~iew Plug-Ins 1 

jAll Files 

J Private + Shared 

Filter 

::J jWritable +Read Only 

Source Files of pdemo.shared 

File 

[I data. c 

[I demo.c 

lli] demo . h 

C demoload. c 

sys_conf . h 

Project 

pdemo.shared 

pdemo . shared 

pdemo.shared 

pdemo. shared 

pdemo . shared 

pdemo.shared 

pdemo . shared 

pdemo.shared 

pdemo . shared 

::J 
Filters... I 

~~~~~~~~~~~~~~~~~~~~~~~~~ 

Projects

pdemo . shared (apps/pdemo)

~---~[;ID include .shared (include)

i·····~[;]D sys_os.shared (sys /os)

JFullTree

i·····~ [;] D configs_std . shared (configs/std)

!·····~ [;] D bsp . shared (bsps/mbx8xx)
1±1··· ~ 11111 bsp_src . shared (bsps / mbx8xx/src)

r Frozen r Lockers r History

::J

FIGURE6-11 pSOSystem Sample Application Source Project Hierarchy

Figure 6 - 12 on page 6-32 shows an example of a source project made by pRISM+
out of an existing code base prior to using the option Convert to pSOSystem App Proj . The
option Convert to pSOSystem App Proj is located on the SNiFF + Plug-Ins menu.

In Figure 6 - 13 on page 6 -33, you can see the results of choosing the option Convert to
pSOSystem App Proj for your project.

6-31

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-32

@PE myproj shared - adm PWE ppc-Pr l!I~ El
I ools Eile Project Jnfo Target '.:{iew

JAii Files

JPrivate + Shared

Filter

:::JP Use Cache

:::J Jwritable + Read Only

Filters ...

Source Files of myproj.shared

File Project

!fl dal!o.c myproj.shared

IEJ dallo.h myproj.shared

!!!} mdket'ile myproj. shared

~ myproj. shared myproj . shared

[fJ root.c myproj.shared

Projects

(myproj)

FIGURE 6-12 Source Project Before Convert to pSOSystem app proj is Performed

As you can see in Figure 6-13, the conversion made a pSOSystem superproject
pss_ main . shared and added your code as a subproject. It also added other
pSOSystem subprojects to the pss_ main. shared superproject.

Depending on what kind of application you are developing, the default pSOSystem
projects added by the conversion might not be sufficient. Refer to Appendix E for
other source projects your application might also need.

pss_main.shared Project

pss_ main . shared is the top-most pSOSystem super project which integrates your
code base with pSOSystem code. pss_main. shared contains the set of three files
that are essential to every pSOSystem application: sys_ conf. h, drv_ conf . c and
a pSOSystem makefile.

The sys_ conf. h and drv_ conf. c files used in pss_ main . shared are generic
template files. They are sufficient for a simple application such as the pdemo sample
application but they might not entirely fulfill your application requirements.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

~PE pss_mam shared - adm PWE ppc-P l!I~ El
Iools Eile Projed !nfo Target Y'.iew
Plug-Ins 1

I Private+ Shared

Filter

::J jw ritable +Read Only ::J
Filters... I

Source Files of pss_main.shared

File Projed

[l drv_ com. c

!BJ makefile

~ pss _ Illd:in. shared

!ill reame
sys_conf . h

pss_main.shared

pss_main.shared

pss_mai n . shared

pss_main.shared

pss_main. shared

Projects jFull Tree

pss_main.shared (MYPROJ/pss_main)

!··· ~ i;::;J D myproj. shared (myproj)

iii ·· ·~ i;::;J D include. shared (include)

'···~i;::;JD sys_os . shared (sys/ as)

···~ i;::;J D configs_std. shared (configs/ std)

·· ~ i;::;J D bsp . shared (bsps / mbx 8xx)

i±J ~Ill• bsp_src . shared (bsps / mbx8xx /s rc)

FIGURE 6-13 Source Project After Performing Convert to pSOSystem app proj

Compare the sys_ conf. h and drv_ conf . c files in a pSOSystem sample applica­
tion that closely resembles the type of application you are developing with the tem­
plate files. If there are differences , you can either import the changes n eeded by
yourself or simply copy s y s _ conf. hand drv_ conf. c from the pSOSystem sample
application that most closely resembles the type of application you are developing.

If your application code already contains sys_ conf. h and d rv_ conf. c, your
working version should replace the template version.

To see the role of pss_ main. shared plays in the build stage, refer to Section 6.6.8
Hybrid Make Model on page 6-46.

6-33

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.5.3 Browse View Versus Build View of pSOSystem Source Projects

6-34

pSOSystem is make-centric. Each pSOSystem sample application is defined by the
makefile used to build that application. Each pSOSystem application is defined by a
set of makefiles, each requiring a different set of files from the same pSOSystem
directory structure. Depending on the kind of application, the makefile explicitly
includes other makefiles from other parts of pSOSystem to pull in all the other files
necessary to build the application.

In order to present an accurate browse view for pRISM+ users, each pSOSystem
sample application project is specially constructed based on a unique file list as
defined by each sample application's makefile. There are, however, several excep­
tions where the browse view contains more files than what's actually used to make a
target.

The following table shows the level of accuracy of the "browse view" of pSOSystem
sample applications projects compared to the "build view" of the same projects as
defined by pSOSystem makefiles .

Project Name Browse View Accuracy with Build View

Sample application 100% reflection of build
super project

include.shared Contains all the include files in $PSS_ ROOT I include

sys_ os.shared 100% reflection of build

configs_ std.shared Contains all the start modules; only one is needed per
target

bsp_ src.shared 100% reflection of build

bsp.shared 100% reflection of build

Drivers projects 100% reflection of build

Library projects 100% reflection of build

The slight deviation in the file list does not affect the building of an executable
because the pSOSystem makefiles ultimately decide what files are included in the
build.

The slight deviation in file lists does affect accuracy in browsing. You can make
adjustments to project file list simply by adding or removing files , or subprojects,
from the projects. For example, the beginapp. s can be removed from the

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

configs_ std . shared if you are not going to build the app . e l f target, and conse­
quently will not need to browse beginapp. s with the application.

Refer to the pSOSystem makefiles for a complete file list for each target. Use this as
your guide to adjusting the file list for browsing.

6.5.4 Browsing pSOSystem

Browsing pSOSystem with SNiFF+

Refer to the SNiFF + User's Guide for instruction on how to use SNiFF + browsers.

Browsing pSOSystem with Preprocessing Enabled

pSOSystem code makes heavy use of preprocessing macros. Refer to the SNiFF + 6
User's Guide on how to enable preprocessing for browsing.

6.5.5 Utilities Programs

pSOSystem source projects were created using some utility programs in the form of
Bourne shell scripts. These scripts are included in pRlSM+ so you can use them to
create source projects for your existing code base. These scripts are located in
$PSS_ ROOT/bin/source/plugins/scripts directory. Functional descriptions of
these scripts are included in the script source.

It is recommended that you follow the steps in Using the pRISM+ Application Devel­
opment Framework with SNiFF+ on page 6-50 to create and work with project until
you are familiar with SNiFF+.

6.6 pRISM+ Make Support

The pRlSM+ Application Development Framework offers comprehensive make sup­
port which is pSOSystem-centric yet flexible enough to be extended to your environ­
ment. You can use the supplied pSOSystem makefiles or use SNiFF + makefile
generation feature to automatically generate makefiles for your code base.

pRlSM+ make support is also scalable, designed to address the need of single devel­
opers as well as team developers . This section describes the make support provided
by the pRlSM+ Application Development Framework.

6-35

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6.6.1 pRISM+ Make Options at a Glance

pRISM+ offers many make options ranging from simple to very advanced. These
make options are summarized below. Extensive details will be offered in subsequent
sections.

• Build your application using pSOSystem makefiles

• Build your application using SNiFF + Make Support

• Build your application using a combination of pSOSystem makefiles and
SNiFF + Make Support - the Hybrid Make Model

• Using your own make and makefile

• Building from the command line

6.6.2 pSOSystem Application Make Structure

6-36

This section describes pSOSystem makefiles structure. pSOSystem is supplied with
makefiles for building sample applications, BSP libraries, OS libraries and other
libraries that come in source form with pSOSystem. These makefiles can be used
with or without SNiFF+. When used with SNiFF+, pSOSystem makefiles provide
overriding of SNiFF + Workspaces.

NOTE: This document briefly explains SNiFF + workspaces and general concepts.
For detailed description refer to the SNiFF+ User's Guide and Reference

This section is a reference for anybody modifying, using, and writing makefiles for
pSOSystem. pSOSystem makefiles can be divided into three categories:

• Sample application makefiles.

• BSP makefiles.

• Makefiles to build system libraries and other libraries.

Sample Application Makefiles

Every sample application comes with a makefile to build the application targets.
This makefile ties the application to the rest of pSOSystem. It serves as a definition
of files that are needed for pSOSystem to build a target executable. If you want to
expand pSOSystem makefiles for your project, you should begin with this makefile.

Each sample application makefile or application makefile imports common defini­
tions and rules from the config . mk file in $PSS_ ROOT/configs/st d directory.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

This makefile is included by every application makefile. Each sample application
makefile also includes bsp. mk file from the BSP directory. Each sample application
makefile might also include one or more drivers/<drv_ name>/rules . mk file if
the application uses driver drv_ name.

If the application is built in the SNiFF + environment, a sample application makefile
also includes the file configs/std/$ (SNIFF_ MAKE_ CMD) . mk. This file implements
workspace overriding for pSOSystem applications in case of SNiFF+. In a non­
SNiFF + environment, inclusion of this file h as no effect.

NOTE: SNIFF_ MAKE_ CMD is defined to pss_ gnu . By default, the include
statement to add this file is commented out in the makefile.

The following sections are brief summaries of the makefiles included by the sample
application makefile. 6

$PSS_ ROOT /configs/std/config.mk

This makefile contains common compiler defines and options, rules for making con­
figuration file objects (psoscfg . o , pnacfg . o etc.). It also includes rules for all the
common application targets such as ram. elf, ram. hex etc. This makefile is
included by every sample application makefile.

$PSS_ ROOT/bsps/<bsp _ name>/bsp.mk

This makefile contains board specific defines and targets (for example, DFP=H) . This
is included by every application makefile. It is also included by the BSP makefile.

$PSS_ ROOT/drivers/<drv _ name>/rules.mk

This makefile contains rule for making <drv_name> driver (for example, PPP). It is
included by an application makefile if the application needs the <drv _name> driver.

BSP Makefiles

Every Board Support Package comes with a makefile to build an object library. This
makefile normally resides in $PSS_ ROOT/bsps/<bsp_ name>/src directory. Each
BSP makefile provides a definition of all other files that are needed out of
pSOSystem in order to build a BSP library. To expand the pSOSystem BSP makefile
for your custom board support package, you should begin with this makefile.

Each BSP makefile includes $PSS_ ROOT/bsps/<bsp_ name>/bsp.mk file to get the
BSP specific defines .

6-37

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-38

It also includes $PSS_ ROOT/drivers/rules .mk, $PSS_ ROOT/bsps/devices/

rules.mk and $PSS_ ROOT/bsps/devices/target/rules.mk. These rules.mk

files contain rules for making objects from the source files in the respective directo­
ries .

In a SNiFF + environment this makefile also includes the $ (SNIFF _ MAKE_ CMD) . mk

file.

The following are brief summaries of the makefiles included by BSP makefiles.

$PSS_ROOT/drivers/rules.mk

Contains rules to make the high level drivers from the drivers directory. It is
included by BSP makefiles using drivers from this directory.

$PSS_ ROOT /bsps/devices/rules.mk

Contains rules for making low level device drivers which come from $PSS ROOT I
bsps/devices/<device_ name> directory. It is included by every BSP makefile.

$PSS_ROOT/bsps/devices/target/rules.mk

Contains rules for making target-specific files from the $PSS_ ROOT/bsps/

devices I target directory. It is included in every BSP directory.

Makefiles to Build System Libraries and Other Libraries

$PSS_ ROOT I sys/ os directory contains makefiles to build the system libraries
libsys. a .

Putting It All Together

To generate a target executable, execute the make command on the project makefile
in the sample application directory. This makefile calls con fig. mk, bsp. mk and
rules. mk to compile the operating systems configuration code, BSP configuration
code, and any high-level driver code this application needs.

The object files generated are then linked with a BSP library (determined by the en­
vironment variable $PSS_ BSP) and the OS library to generate a target executable,
such as ram . elf.

The BSP libraries and OS libraries are built during installation. By default, they are
not recompiled with each application build. These libraries need to be recompiled
only if you have made modifications to files in any of the $PSS_ ROOT /bsps directo­
ries or the $PSS_ ROOT I sys directory.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.6.3 Make Attributes of pSOSystem Source Projects

In the previous section the pSOSystem make structure was described. This section
examines how pSOSystem make is integrated with SNiFF +. This will be done by
examining the make attributes of pSOSystem projects. Using the pdemo sample
application, you will examine the various aspects of Make Attributes. Double-click­
ing on a project name in the PE window displays the project's attribute sheets. Use
the SNiFF+ Reference Guide for descriptions of all make attributes. This section only
explains parameters relevant to pSOSystem integration.

Build Options

Figure 6-14 on page 6-40 shows the Build Options category in the Attributes dialog box
for pdemo . shared .

• Use SNiFF+ Make Support: This box is checked because you will be using the SNiFF +
Make Support system to generate the macros to support team development.
This is true even when you are using pSOSystem makefiles.

• Make Command: psosmake SNIFF _MAKE

• psosmake: The actual make command used on the command line.

• SNIFF _MAKE: This macro is used to turn on the options in the pSOSystem
makefile to enable the file overriding feature. You should always use it when
compiling from within the SNiFF + environment using pSOSystem makefiles.

If you follow the procedures in Section 6.7, Using the pRISM+ Application Develop­
ment Framework with SNiFF+ on page 6-50, the pRISMSpace Wizard ensures that
you use the correct make command based on your starting mode. You do not need
to modify project make attributes when you follow the procedures given in
Section 6 . 7 .

Table 6-1 contains a list of make commands used by various pRISM+ make models
on Windows and UNIX hosts.

TABLE 6-1 Make Command

UNIX Command Windows Command Descriptions

psosmake psosmake Used by command-line make.

psosmake SNIFF_ MAKE psosmake SNIFF_ MAKE Used with SNiFF+ when compiling
with pSOSystem makefiles

psosmake SNIFF_MAKE psosmake SNIFF_MAKE Used with SNiFF + when compiling
with SNiFF + generated makefiles

6-39

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

.; Attributes of pdemo EJ
Category:

$ ··· General
L Advanced

$.. l,,d@0.111
L Project Targets

t···· Build Structure
L Advanced

·· Parser

··Version Control System

·· File Types

- Options-------------------------

P' Use SNiFF+ Make Support
MakeCommandj~p-s_o_s_m_a-ke_S_N_IF_F ___ M_A_K_E------------~•

r Supportfornon-VPATH Make
General Targets],... a-1-l:c-le_a_n ___________________ ,

FIGURE 6-14 Build Options Category in Attributes Dialog Box

6-40

Project Targets

Figure 6-15 on page 6-41 shows the Build Options ~ Project Targets category in the
Attributes dialog box for pdemo . shared.

• Executable: Here you can see that, for the project pdemo . shared, the default
target is ram. elf .

• Other: This field shows all the other targets that can be made from this project.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

.; Attnbutes of pdemo El
Category:

$ ··· General

! '-···· Advanced

$ ··· Build Options

= .. MMMM
t····· Build Structure

'-···· Advanced

, ··· Parser

f····· Version Control System
L. ... File Types

Ansi C/C++] Java I
~

Executable ram.elf = ~ ! + Libraries Linked

R elinkable 0 biect) :
+ Libraries Linked -:1
Library)
Shared Library

Other I ram. hex: rom. elf: rom. hex: os. elf: os. hex: app. elf: app _Id. elf :a pp. hex: app.

r Use Standard Header 0 ependencies

Include Directive(s) I ~ Generate. I

FIGURE 6-15 Build Options~ Project Targets Category in the Attributes Dialog Box

Advanced Options

Figure 6-16 on page 6-42 shows the Build Options~ Advanced category in the Attributes
dialog box for pdemo. shared .

• Use Generated Files Directory: Location of the generated make support files. By
default, the generated make support files are located in the directory specified
in the General File Directory field of the Advanced Options view.

• *.incl: These files contain SNiFF+ generated macros for this project. pSOSystem
makefiles use vpath . incl to support team development. These files normally
reside in the location indicated by the Use Generated Files Directory.

6-41

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

.; Att11butes of pdemo El
Category:

$ ··· General
'-···· Advanced

$ ··· Build Options
··· Project Targets

t····· Build Structure
L .. t-1;;;ia;.1

, ··· Parser

f ····· Version Control System
L. ... File Types

- Make Support Files------------------­

\. Use Generated Files Directory
I Other Directory....----------

- Location======================

Dependencies I dependencies.incl

M acres J macros. incl
\..--~~~~---'=='-'=;;;;.=~=-"~==~====~'

Object File List I ofiles.incl
1---~~~-"=;.;;;;;.;;;;====;.;;;;;.;;;;====~==~~==o=!'

VPA TH J vpath. incl
Include File List r-1 i-nc-lu-d-e.-inc-1--====-'==-"=====~===·

r Use Include Directives for Dependencies Generation

FIGURE 6-16 Build Options ~ Advanced Category in the Attributes Dialog Box

6.6.4 Making a pSOSystem Target Executable

Using the pdemo. shared example, to make the ram. elf target, select Target ~ Make
~ ram.elf in the PE window.

6.6.5 Using pSOSystem Makefiles

6-42

pSOSystem makefiles are the default makefiles used by pRISM+ and integrated into
the SNiFF + Make Support structure.

pSOSystem makefiles represent the way pSOSystem is built and tested. All the tests
done on pSOSystem are based on builds done with these makefiles. For these rea­
son you should not fundamentally alter the structure of these makefiles or attempt
to regenerate these makefiles with SNiFF +.

pSOSystem makefiles have been extended for the integration with SNiFF +. Although
pSOSystem makefiles implement workspace overriding when used with SNiFF +
Working Environments, these makefiles themselves do not have SNiFF + awareness.
For example, when you start your development based on a pSOSystem sample

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

application, you will start by default start with a pSOSystem makefile. When a new
file is added to this project, the pSOSystem makefiles are not automatically updated
with the new file information. The makefiles should be updated for the change to
take effect.

pSOSystem was not compiled using SNiFF + generated makefiles for many reasons.
Each pSOSystem application defines multiple targets , for execution in RAM, in
ROM, in . e l f format or . hex format, etc. Each of these targets is built using a
different set of files out of the same pSOSystem source tree. pSOSystem makefiles
provide the mapping for what is needed for each target. These targets require spe­
cific ordering of object files at link time. Many of the pSOSystem files require specific
compiler flags on a per-file basis. These special make requirements makes it
impractical to use SNiFF + generated makefiles to compile pSOSystem code because
too many projects would have to be made, specifically, one separate for every target.
This is also the reason why Integrated Systems discourages you from regenerating
makefiles with SNiFF + to compile pSOSystem sample applications.

6.6.6 Using the SNiFF+ Makefile-Generation Feature

SNiFF + provides automatic make support for multi-platform development that can
be configured to work with any compilers, linkers, archivers, and other build tools of
your choice. Once a project source tree is constructed using SNiFF + Project Editor,
makefiles can be automatically generated for this project. When additional files are
added to the project source tree, the generated makefiles are automatically updated
to reflect the changes. The SNiFF + automatic makefile generation feature is tightly
integrated with the project management aspects of SNiFF +, namely the Workspace
and Working Environment concepts. Together they allow a team of engineers to
share and compile against a common code base between them.

pRISM+ supports and extends this SNiFF+ feature with some additional pSOSystem
specific make support files as well as a mechanism to allow SNiFF + "made" modules
to be incorporated back into a pSOSystem build in order to produce a target execut­
able. Together with modification to pSOSystem makefiles, pRISM+ offers a powerful
solution for team-based development project based on pSOSystem.

Refer to the SNiFF+ User Guide for detailed information about the SNiFF + Make
Support system. This section documents only the integration of SNiFF + with
pSOSystem.

SNiFF+'s Makefiles and Make Support Files

Refer to the SNiFF+ User Guide for information about SNiFF +'s makefiles and Make
Support files.

6-43

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-44

pRISM+ Specific Makefiles

In addition to the standard SNiFF + Makefiles and Make Support Files , there are sev­
eral addition files to support the use of the automatic makefile generation feature for
pSOSystem-based applications. They are as follows:

• diab_ target_ $ (HOST) .mk: (Located in $SNIFF_ DIR/make_ support direc­
tory) This is an additional pRISM+ platform makefile which integrates SNiFF +'s
make system with pRISM+ embedded platform.

• genera l .mib.mk: (Located in $SNIFF_ DI R/make_ support directory) This is
an additional language makefile to support the mib file type.

pRISM+ Platform Makefile

In addition to SNiFF + Makefile and Make Support files, also located in
$SNIFF _ DIR/mak e _ support is a platform makefile that supports the use of the
SNiFF+ automatic makefile generation feature for pSOSystem-based applications.
Each platform makefile is unique for a pRISM+ for a specific processor family.

This platform makefile is included by the SNiFF+ general makefile general . mk . All
the pRISM+ specific make options are specified in this file. These options include
compiler, assembler, linker, and archiver invocation commands and options.

Per-File Compile Options

SNiFF+ Make Support uses all compile options on a per-platform basis. This means
that the compiler options in the pRISM+ platform makefiles are used for every file
for this platform. However, in embedded development it's common to compile files
with per-file options. To support this , an additional macro, COPT_ PER_ FI LE is
defined in general. c. mk to allow you to specify compile options on a per-file basis.

If a file with the . cop extension exists , the content of it is passed to the compiler
when compiling the corresponding . c , . cc , . c xx, and . s files. For example, if you
want to instrument the source file demo . c with the Diab compiler option -Xrtc in
order to use RTA Suite to perform run-time error checking on this file, you need to
make a file named demo . cop to include -Xrtc. This . cop file should be kept in
your private workspace.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.6.7 Generating Makefiles for Your Project

When to Use This Feature

pRISM+ provides integration to support use of SNiFF+ makefile generation feature
because it is a very powerful paradigm for building large applications and for man­
aging a team build environment. It is not recommended that you remove
pSOSystem makefiles and regenerate them using this makefile generation feature
for the following reasons:

• Possible exposure of complexity of pSOSystem make structure to users

• Certain functionality limitations in SNiFF + Make Support system.

• Possible difficulties for Integrated Systems support staff to recreate your envi­
ronment in order to track down a problem.

Use SNiFF+ to generate makefiles for your code base only. pRISM+ provides mecha­
nisms for you to integrate your modules that are compiled with SNiFF + generated
makefiles in to a pSOSystem based build. This is the base of the Hybrid Make Model
which is recommended by Integrated Systems to users who want to use the auto­
matic makefile generation feature .

How to Use This Feature

In order to use the makefile generation feature , you must create a source project for
your code base. The SSWE : pSOSystem-target-User is specifically designed to
hold your code.

To make this SSWE contain your code, edit the $PSS_ USER_ SSWE environment vari­
able in the start-up script in your pRISM+ installation directory; define
$PSS_ USER_ SSWE to the root of your code.

• On Windows hosts: Modify the envtarget . ksh file.

• On UNIX hosts: Modify the envvtarget. sh or envvtarget. csh file .

After editing the start-up script file , you need to restart SNiFF+ for the new setting
to take effect.

Now you are ready to make a source project under the SSWE : pSOSystem-target­
User which will enable sharing of the new project. Since your new project is derived
from a SSWE that is derived from SSWE: pSOSystem-target, you can later make
your project a pSOSystem subproject.

6-45

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

k: Working Environments - JSBach@prpeorgan 111!1~ El
Iools Eile Edit Y'.iew !.!tils Hist.Qry l

t :i ~ ~m ~

Type IAll :::J Owner JAii Working Environment=============

Root J SPSS_USER_SSWE Working Environments]Tree
J c:/copyofzaf

EJ.. . RTJE : pSOSystem-Reposi tory

El·· , SSk'E: pSOSys tem-ppc
Root on Remote Host

II Platform El ~ SSf<'E : pSOSys t em- ppc- Us er

• adm PTJE :ppc-Private L ..) <default>

SSWE Hierarchy ============~

J pSOSystem-ppc

Version Control Configuration(s) ========="'!·

Jij Generate Dire dory Root

FIGURE 6-17 Working Environment Window

Once a project is made with this target-sharing enabled, you can compile by select­
ing Target ~ Make ~ Update Makefile followed by Target ~ Make ~ your target in the PE
window. Refer to Section 6. 7 , Using the pRISM+ Application Development Framework
with SNiFF+ on page 6 -50, for additional step-by-step instructions.

6.6.8 Hybrid Make Model

6-46

The Hybrid Make Model is the method you use to combine the SNiFF + automatic
makefile generation with the pSOSystem make system in order to produce a
pSOSystem-based target executable. This make model offers the best of both
worlds:

• Use of Integrated Systems-supplied pSOSystem makefiles for OS specific compi­
lation requirements.

• Use of the SNiFF + powerful automatic makefile generation feature for your code
base.

The Hybrid Make Model combines control with flexibility. Integrated Systems
strongly recommends that pRISM+ users avoid regenerating pSOSystem makefiles

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

with SNiFF +. The Hybrid Make Model is the recommended method if you want to
use the SNiFF+ Make Support system with pRISM+.

This section explains the benefits of this make model and integration that exists in
the pRISM+ Application Development Framework to support this model.

Who Should Use the Hybrid Make Model?

The Hybrid Make Model is designed for the following users:

• Users with an existing code base and who would like to use SNiFF + to generate
and manage makefiles.

• Users who are starting a new project and would like to automate the makefile
generation and management process.

• Users who are using SNiFF + support for team development.

How Does Hybrid Make Model Work?

The Hybrid Make Model works as follows:

1. You begin by pointing pRISM+ to an existing code base and create a shared
source project for the existing code base. In the simplest case, this "existing
code base" can be an empty directory to be populated by a new project. This
step is performed with the help of the pRISMSpace Wizard.

2. Once you have started in this mode from the pRISMSpace Wizard, pRISM+ will
automatically enable the makefile generation option.

3. You can then compile your code with the SNiFF + generated makefiles and a
relinkable object is generated by default.

To integrate your code with pSOSystem, you run the Convert to pSOSystem app proj
script. This script does the following:

• It adds a pSOSystem superproject name pss_ main. shared to your source
project. Your source project then becomes a subproject to pss_ main . shared.

pss_ main. shared contains a template pSOSystem makefile with rules for
pSOSystem-based target executables such as ram.elf . This template makefile
also contains a macro which is to hold the name of your relinkable object in
order to include it in the final build.

6-47

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-48

• It enters the name of your relinkable object into the template pSOSystem make­
file in pss_ main. shared so when you invoke the pSOSystem make, your
object module is linked into the target executable.

• It also appends most of the common pSOSystem subprojects to
pss_ main. shared, which can be browsed with your code.

• You complete the final build by invoking make on the top-level pSOSystem
makefile to generate a pSOSystem-based target executable.

pss_main.shared Project

pss_ main. shared is the top-most pSOSystem super project which integrates your
code base with pSOSystem code. pss_ main. shared contains a set of three files
that are essential to every pSOSystem application: sys_ conf. h , drv_ conf. c and
a pSOSystem makefile.

The sys_ conf . h and drv_ conf. c files used in pss_ main. shared are generic
template files. They are sufficient for a simple application such as the pdemo sample
application but they might not reflect the needs of your application entirely.

Compare the sys_ conf. h and drv_ conf. c files in a pSOSystem sample applica­
tion (one that closely resembles the type of application you are developing) with the
template files. If there are differences, you can either import the needed changes, or
simply copy the sys_ conf. h and drv_ conf. c from the pSOSystem sample
application that closely resembles the type of application you are developing.

If your application code already contains sys_ conf . h and drv_ conf. c , your
working version should replace the template version.

The pss_ main . shared makefile is a slightly modified pSOSystem application
makefile. The structure and function is similar to all the pSOSystem makefiles that
can be found in any pSOSystem sample application in $PSS_ ROOT I apps directory.
This makefile, however, differs slightly from other pSOSystem sample application
makefiles in the following aspects:

• The PSS_ APPOBJS macro contains the name of your custom module. The option
Convert to pSOSystem Application inserts the project name. This module is then
linked when any targets are made.

• Unlike sample application makefiles that also contain all the specific libraries
those applications need, the template makefile of the pss_ main. shared does
not contain the name of any other libraries. You need to enter into the makefile
any other libraries that your application requires.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.6.9 Doing Team-Based Builds

SNiFF+ make system is integrated tightly with the concepts of workspace and over­
riding of workspaces. This is reflected by the fact that SNiFF + generated makefiles
use the concept of VPATH to allow team-based builds and sharing of files.

To support this team-build concept consistently, for files that are compiled with
SNiFF + generated makefiles as well as those made by pSOSystem makefiles, pSOS­
ystem makefiles have been written to support the concept of workspace as well.
These extensions in pSOSystem makefiles assist the team of developers in sharing a
common pSOSystem.

This section describes the sharing of pSOSystem code in a team build environment.

SNiFF+ and Overriding of Workspaces

A workspace is a directory tree in the file system in which complete SNiFF + projects
or parts of projects reside. SNiFF + distinguishes between workspaces that are
owned by only one developer (Private Workspaces or PWSs) and workspaces that are
shared by a team (Shared Workspaces or SWSs).

A workspace can share files that it does not have, but contained in another work­
space. For example, private workspace can share files with shared workspace. A
practical application of Private Workspace and Shared Workspace file sharing allows
individual team members to build against a common code base without having to
maintain local copies of the common files.

A workspace can override another workspace. Files in one workspace can hide files
that have the same name and relative position in another workspace. For example,
suppose both PWS and SWS contain files apps/hel l o/root . c . The apps/hello/
root . c file in PWS hides the same file in SWS.

A practical application of file overriding between workspaces allows a team member
to check out a copy of a shared file into his Private Workspace. After some modifica­
tions, this modified version of the file will be used in his next build, overriding the
original shared version of the file by the same name in the Shared Workspace.

Both sharing and overriding of files in workspaces are collectively referred as over­

riding in this document.

Sharing of pSOSystem Code

In the pSOSystem context, $ P s S_ ROOT serves as the root of the SWS. A PWS is cre­
ated for every developer in the team in his own $HOME/psosppc_ pwe directory.
When a shared project is opened in a developer's PWE, only a makefile (and . mk files

6-49

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

included by the makefiles) is created in the PWE. No other source files are copied to
the PWS.

When modification to a shared file is needed, you can either make a local copy of a
file or check it out from the version control tool. This local copy of the file will then
hide the same file in the SWE for the developer. pSOSystem makefiles understand
SNiFF + workspaces and they implement sharing and overriding. Because of this
feature, users on the same development team can effectively share on common
pSOSystem tree.

Refer to Appendix E for specific modifications made to pSOSystem makefile to
enable the support for overriding workspace.

6.6.10 Building from the Command Line

Use the command psosmak e SNIFF _ MAKE target_ name to build from the com­
mand line.

6.7 Using the pRISM+ Application Development Framework with SNiFF+

6-50

This section provides step-by-step instructions on how to use pRlSM+ Application
Development Framework with SNiFF +, how to start, how to configure the tools for
your environment, and how to proceed with developing your application.

The material in the section is organized in terms of several typical usage scenarios,
each with a distinct starting point. These starting points are as follows:

1. Starting a New Project with pRISM+ on page 6-51

2. Starting a Projectfrom Your Existing Code Base on page 6-63

3. Integrating a Custom Board Support Package into pRISM+ on page 6-82

4. Converting a Project Made with pRISM+ Editor on page 6-87

5. Starting with an Existing Application for a Previous Version of pRISM+ I
pSOSystem on page 6-87

If you are new to pRlSM+, we strongly recommend that you start from Section 6.7.1 ,
Starting a New Project with pRISM+ on page 6-51 and go through all the material in
that section to familiarize yourself with the tools. After that, pick a starting point
that is the closest to your real development needs and proceed from there.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

6.7.1 Starting a New Project with pRISM+

Who Should Use This Procedure?

This usage scenario is intended for the following users:

• First time users of pRISM+ who would like an in-depth tutorial on the pRISM+
Application Development Framework.

• Platform developers who build Board Support Packages (BSPs) and application
developers who work closely with pSOSystem.

• Users who are starting a brand new application with no legacy code base, and
therefore want to begin development based on a pSOSystem sample application.

NOTE: For this usage scenario, automatic makefile generation is not enabled by
default. SNiFF + will use pSOSystem makefiles when you build your
application. If you are starting with no existing base, but would like to use
the SNiFF + makefile generation feature for your project, go to
Section 6. 7.2, Starting a Project from Your Existing Code Base on
page 6-63.

Step-by-Step Instructions

In this usage scenario, you are starting your development with a pSOSystem sample
application. There is a variety of sample applications in $PSS_ ROOT I apps directory,
each illustrating one aspect of pSOSystem; for example , SNMP, NFS, etc. Choose
one that is the closest to your application type. Once you have selected a sample ap­
plication to begin with, pRISM+ will attach a Board Support Package (BSP) to this
sample application. This way, when you generate a target executable, the executable
will be able to run on the board supported by the BSP.

The default Board Support Package is selected at installation time by the installer.
To see or to change the default setting of BSP, from pRISM+ Manager, select
pRISMSpace ~ Settings. When you are starting development in this mode, you will
begin by opening a shared pSOSystem sample application project in your private
workspace. After you begin, your private workspace will contain the following set of
files :

• sys_ conf . h - pSOSystem configuration file that belongs to the sample appli­
cation you have selected.

• makefile - pSOSystem makefile that belongs to the sample application you
have selected.

6-51

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-52

• . sniffdir - a directory used by SNiFF+.

• sniffprj - a directory used by SNiFF+.

Other files, such as the actual source files and header files that belong to the sam­
ple application and other pSOSystem files necessary to build a target executables,
are residing in the shared source workspace. You do not have private copies of
shared files in your private workspace by default. Private, or local copies are made
when you either manually make copies of files or when you check files out from your
source control tool through SNiFF +.

To this base line pSOSystem sample application you will:

• Add your own files into your private workspace directory.

• Modify the pSOSystem makefile in your private workspace to include new files
you have added in your build.

• If necessary, switch between different BSPs in order to run your application on
a variety of target hardware.

• Make target executable and proceed to debugging and testing.

Version Control

We strongly recommend that you put all your source files under source control
before starting development. SNiFF + supports a number of CMVC tools. If you are
not currently using a CMVC tool, we advise using RCS, which is shipped with
SNiFF+.

We recommend that you check the entire pSOSystem directory structure into your
CMVC tool prior to using SNiFF+. For details on how to check source files into
CMVC tools, contact your Systems Administrator and reference the SNiFF+ User's
Guide.

For the purpose of this tutorial, RCS is used as the version control tool and the
entire pSOSystem source tree is checked in. All the examples used in this section
assume this.

Start New pRISMSpace

Now you are ready to make a new pRlSMSpace for your application. A pRlSMSpace
holds all the information regarding each pRlSM+ session such as your host tools
settings, your choice of targets, the location of your source project etc. This session

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

information is stored in a pRISMSpace file name . psp, where name is a name you
can give your pRISMSpace.

1. To start a new pRISMSpace from the pRISM+ Manager, select File -7 New to start
the pRISMSpace Wizard. This Wizard will guide you through the pRISMSpace
configuration process.

2. In the Tools Options dialog, select SNiFF+ as your project editor and click the Next
button.

3. In the Choose a starting point dialog, choose Start with a pSOSystem Sample Application and
click the Next button.

4. In the Choose a pSOSystem example dialog, you will see a list of sample applications.
Choose an application that is the closest to the type of application you are de­
veloping. This tutorial uses pdemo , which is a simple sample application that
demonstrates some basic use of pSOSystem.

Choose pdemo from the list, then click the Next button. This displays the last
dialog of the Wizard, Finish this new project.

5. In the Finish this new project dialog:

• pRISMSpace Name is the name you use to identify your new pRISMSpace. It is
always the same as the name of the sample application you opened.

• pRISMSpace directory is the directory that contains your pRISMSpace file ,
name . psp . This directory is your private workspace directory.

See the section What Really Happened? on page 6-75 for a detailed discus­
s ion of working with shared projects as a private user.

Click the Finish button.

Congratulations, you have completed the steps to start a new pRISMSpace!

pRISM Manager will now call SNiFF + with your project settings and start SNiFF + for
you. A log window now appears and it shows all the communication between pRISM
Manager and SNiFF +. A little later, a SNiFF + Project Editor Window appears with
the pSOSystem sample application you chose and the BSP you chose (see
Figure 6-18).

6-53

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-54

~PE pdemo shared - adm PWE ppc--Pnvate l!I~ El
Iools Eile Project !nfo Target Y:iew Plug-Ins 1

jAll Files :::JP' Use Cache

jPrivate +Shared

Filter

:::J jwritable + Read Only :::J

Source Files of pdemo.shared

File Project

[I demo.c

lfil demo . h

[I drv_ conf. c

[l:!}mdke~ile
~ pdemo. shdred

[[! redd.111.e

sys_con1.h

Projects

pdemo. shar ed

pdemo. shared

pdemo. shared

pdemo . shared

pdemo. shared

pdemo. shared

pdemo. shared

jFullTree

pdemo.shared (apps/ pdemo)

S··~r;:;JD include . shared (include)

, ··~ [;] D sys_os. shared (sys/ as)

i····~ [;] D confiqs_std. shared (confiqs / std)

f····~ [;] D bsp. shared (bsps / mbx8xx)

i±J ~ ~ 111 bsp_s r c . shared (bsps/mbx8xx/src)

FIGURE 6-18 First PE Window

Filters ...

By completing the steps in previous sections, you have opened a pSOSystem sample
application, pdemo. shared, as a private user. From the PE window, you see the
source files in this project pdemo. share as well as the project hierarchy.

Working with the Sample Application

By completing the steps in previous sections, you have opened a pSOSystem sample
application, pdemo. shared as a private user. Now you can browse all the files in
the sample application, build the target of the project, beginning development with
this example. Now let us look at how to perform some basic tasks within this devel­
opment framework.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

Building a Target Executable

To build a target executable, do the following from the Project Editor window:

1. Highlight the project for which you want to build an executable. In our case,
highlight pdemo . shared.

2. From the Project Editor menu, choose Target~ Make ~ ram.elf or another target.

In this usage scenario, you are using a pSOSystem makefile, not SNiFF + generated
makefiles. But because pSOSystem makefiles have been enhanced to support file
overriding, they use the VPATH macro generated by SNiFF+ to locate the shared
files.

Because file overriding is supported, any local copy of a source file will override the
shared version of the same file. For example, if you checked out demo . c from your 6
version control tool and modified it, the next time you compile, your modified ver-
sion of demo . c is used instead of the demo. c in the shared workspace, such as
$PSS ROOT.

Start a New File and Add It to the Project

To start a new file and add it to the project:

1. Check out pdemo . shared, the PDF file, from version control so you can modify
the project structure. You will also be prompted to reload the project. Perform
the reload. The PE window will refresh its display.

2. Start a new file and add it to your project by selecting Project ~ Add New File to
pdemo.shared.

3. Enter the name of the new file you are about to compose and add to
pdemo. shared, then click OK.

The name of your file appears in the file list in the Project Editor window (see
Figure 6-20 on page 6-57). Double-click the file name to open an editor window.
Refer to the SNiFF+ User's Guide for information about how to change the
default new file template used by the SNiFF + Source Editor when you start a
new file.

4. Save your changes to the project structure by selecting Project ~ Save Project in
the PE Window.

5. Preserve the project structure change by checking in the modified PDF file for
the project, pdemo. shared (choose File~ Check In).

6·55

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-56

~PE pdemo shered - edm PWE ppc-Privete 111!1~ El
Iools Eile Project Y'.iew Plug-Ins 1.

JAii Files :::JP' Use Cache

JPrivete + Shered

Filter

:::J Jwriteble + Reed Only :::J

Source Files of pdemo.sh11red

File Lockers

[I demo . c RCS

IEJ demo .h RCS

[I drv_ conf. c RCS

IBJ lllill<efile RCS

~ pdeJT"O. shared RCS JSBach:

!ill re•d.lile RCS
sys _cont .h RC S

Filters... I

Project
pdemo . shared

pdemo . shared

pdemo.shared

pdemo .shared

pdemo . shared

pdemo . shared

pdemo . shared

Projects JFullTree

~Ell !':ii pdemo . shared (apps/pdemo)

~···~[;JO include.shared (include)

i·····~ [;] D sys_os . shared (sys / as)
i·····~ [;] D configs_std. shared (configs / std)

i····~ [;] D bsp. shared (bsps / mbx8xx)

rB···~ [;] D bsp_src. shared (bsps/ mbx8xx / src)

r Frozen P' ~ockers: r History

FIGURE 6-19 Project Reloaded

6. Update SSWE if you want others to see and share the changes. For complete
instructions on how to update SSWE, refer to the SNiFF+ User's Guide.

NOTE: You need to edit the makefile in order to add this file to your next build.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

~PE . pdemo.shared - adm PWE.ppc-Private l!I~ !Cl
Iools Eile Project Info Target ~iew Plug-Ins 1

JAii Files :::JP' Use Cache

J Private + Sh a.red

Filter

:::J J Writa.b I e + Re a.d 0 n ly :::J

Source Files of pdemo.shared

File

[l demo.c

IEJ demo .h

[l drv_ conf. c

c
l!!J makefile

~ pdemo. shared

[I reddme

~

~ J pdemo. shared

Lockers

RCS
RCS

RCS

RCS

RCS JSBach:

RCS

Filters... I

Project

pdemo. shared

pdemo.shared

pdemo . shared

pdemo. shared

pdemo.shared

pdemo.share~

Projects !Full Tree :::J
r~~ !ll !."J pdemo. shared (apps/pdemo)

~- .. ~[;I D include . shared (include)

i····~i;:;J D sys_ os.shared (sys /as)

!·····~ [;] D confiqs_std . shared (confiqs/std)

!·····~ [;] D bsp . shared (bsps / mbx8xx)

ll··~ [;] D bsp_src. shared (bsps / mbx8xx/src)

r Frozen P' Lockers r History

FIGURE 6-20 Foo File Added to Project

Adding Files To and Removing Files From The Project

To add files to the project, or remove files from the project:

1. Check out pdemo. shared, the PDF file, from version control so you can modify
the project structure. You will also be prompted to reload the project. Perform
the reload.

2. From the Project Editor window, choose Project ~ Add/Remove files to/from
pdemo.shared. This will add or remove files to or from the pdemo . shared project
from your private workspace directory.

6-57

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-58

3. Save your changes by selecting Project ~ Save in the PE Window. Preserve the
project structure change by checking in the modified PDF file for the project,
pdemo. shared.

4. Update SSWE if you want others to see and share the changes. For precise
instructions on how to update SSWE, refer to the SNiFF+ User's Guide.

NOTE: You need to edit the makefile in order to reflect the changes you have
made to your project in your next build.

Adding/Removing a Whole Directory of Code to/from pdemo.shared

To add a whole directory of code to pdemo. shared project:

1. For the directory of code you want to add to pdemo . shared, recursively make
shared source projects out of it and all of its subdirectories.

2. Check out pdemo. shared, the PDF file , from version control so you can modify
project structure. You will also be prompted to reload the project. Perform the
reload.

3. Add the new source project as a subproject to pdemo. shared by choosing
Project ~ Add Subproject to pdemo.shared

4. Save your changes by selecting Project~ Save in PE Window. Preserve the project
structure change by checking in the modified PDF file for the project,
pdemo . shared.

5. Update SSWE if you want others to see and share the changes. For complete
instructions on how to update SSWE, refer to SNiFF + User's Guide.

Several methods can be used to perform step 1:

• Using instructions given in Section 6 .7.6, Starting with an Existing Application
for a Previous Version of pRISM+/pSOSystem on page 6-87. This is the recom­
mended method.

• Using SNiFF +Wizard - Refer to the SNiFF + manuals for instructions on how to
use this. Use this method only if you are a proficient user of SNiFF+ already.

• Manually make the project with SNiFF+. Use this method only if you are a profi­
cient user of SNiFF + already.

After you add a subproject or subprojects to pdemo. shared, note that you need to
edit the makefile in order to reflect the changes you've made to your project in your
next build.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

Modifying a Shared File

In the top part of the PE window's file list, the files whose names are in italic are
local copies of the shared files. Other files are shared and should NOT be modified
until you do the following:

1. Make a local copy of any shared file you want to modify.

2. Check your local copy into a version control tool and then check it out again.
This effectively gives you a private copy of this file.

NOTE: A right click on any file name will give you a local menu to perform
copy, check in, check out, and edit functions.

The file sys_ conf . h file uses the pRISM+ Configuration Wizard as the default
editor. Since you have a copy of this file in your private directory, you can simply 6
double click on it to modify it with the pRISM+ Configuration Wizard. If you choose
to use the SNiFF+ Source Editor to edit sys_ conf . h , you can access the simple edit
function by performing a right mouse click.

Switching to Another BSP

pSOSystem comes with many Board Support Packages for off-the-shelf single board
computers. One BSP is chosen as the default BSP at installation time by the
installer. This BSP is then attached to all pSOSystem sample applications you open.

Figure 6-21 on page 6-60 shows an example of a Project Settings dialog. This figure
shows the default BSP as mbx8xx , a PowerPC-specific BSP. If your target is a differ­
ent processor, the default will be something different.

To attach the sample application you are working with to another BSP, you must
modify your pRISMSpace settings. To change your pRISMSpace settings, select
PrismSpace ~Settings from pRISM+ Manager, and then change the default Board Sup­
port Package.

For your changes to take effect, you must quit out of SNiFF + from its Launch Pad
and then restart it again from pRISM Manager by clicking on the Development Tool
button. This will let you reopen your sample application with another BSP.

If you have a custom BSP that you would like to integrate into the pRISM+
Application Development Framework, refer to the section Integrating a Custom
Board Support Package into pRISM+ on page 6-82 .

6-59

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-60

Project Settings IDEi

This pRISM Space is set up for SNiFF+

g_SOSystem Configuration File:

JSW•·lllH Browse ...

_6.oard Support Package:

JmbxBxx Browse ...

Build Make Iarget:

jram.elf

OK Cancel Help

FIGURE 6-21 Project Settings Dialog Box

What Really Happened?

What really happened in your file system when you started a new pRISMSpace with
a sample pSOSystem application?

On UNIX hosts , you can do the exploring from the command line.

On Windows hosts , take a look with one of the pRISM+ utility programs. From the
Start button, select Programs ~ pRISM+ 2.0target_CPU ~ Utilities ~ DOS Prompt target_CPU
(where target_CPU can be PPC , MIPS, or 68K). This opens a DOS window within the
pRISM+ environment settings.

Your Private Workspace

Now, change directory to $PSS_ USER_ PWE, your Private Working Environment root
directory. This is the root of your private workspace. You can confirm this by using
the SNiFF + Working Environment Tool.

In the $PSS_ USER_ PWE directory you will immediately see a mirroring directory
structure that resembles the pSOSystem top-level directory structure. This is
because SNiFF+ created the directories when you opened a shared pSOSystem sam­
ple application project, namely pdemo. shared.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

,, DOS Prompt PPC l!ll!l~EJ

FIGURE 6-22 Contents of pdemo Directory

When a shared project is opened from a PWE, SNiFF + always creates a mirroring
directory structure in the private working space to mimic the directory structure of
the shared source workspace. This mirroring directory structure in your private
workspace is later used to hold the files you copy or check out from the shared
source workspace.

rl DOS Prompt PPC 11!1~ EJ

FIGURE6-23 Contents of Your Private Workspace

6-61

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-62

Because pdemo . s hared resides in $PSS_ ROOT /apps/pdemo in the shared source
workspace, your private workspace for it is $PSS_ USER_ PWE/apps/pdemo .

Change directory to $PSS_ US ER_ PWE/apps/p demo to examine its contents.
Depending on the type of sample application you have opened, the number of files
might vary from what is shown in Figure 6-23 . However, what is shown is typical of
what happens after the opening of any shared pSOSystem sample application
sample_ app . sha r ed .

The pdemo directory shown in Figure 6-22 contains the following files and subdirec­
tories:

ma kefile A local copy of the pSOSystem makefile for your project.

You always have a local copy of the makefile by default in pRISM+.

sys_ conf . h A local copy of the pSOSystem configuration file.

You always have a local copy of sys_ conf . h files by default in
pRISM+ to allow the use of pRISM+ Configuration Wizard within
SNiFF+.

s niffprj This is an empty directory used by SNiFF+ internally .

. sniffdir Contains all the intermediate files SNiFF+ generates.

For an explanation of the files found in this directory, refer to the
SNiFF+ Reference Manual.

pdemp . psp Your pRISMSpace file.

Any new source files you add to pdemo . shared will be kept in this pdemo directory,
as will any private copies of shared files.

As a small experiment, you can right-click on demo . c and choose Make local copy.
After that, you will see demo . c in your private workspace.

Source Files and File Overriding

Notice that in your private workspace for p demo . shared, there are no other source
files associated with the pdemo sample application because those files are shared.
You get a local copy only when you:

• Make a local copy.

• Check a copy out of the version control system (if one is in use).

When you do make a local copy of a file or check out a version for local use from
your version control tool, this local version of the file will override the file by the

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

same name in the shared code base when you perform a build. pSOSystem makefile
automatically handles this file overriding feature. For more details about file sharing
and overriding, refer to the SNiFF+ User's Guide.

As a small experiment, you can right click on demo . c and choose Make local copy.
After that, you will see demo . c in your private workspace. This demo . c will override
the shared demo . c in the shared source workspace (namely, under $PSS_ ROOT I
apps \pdemo), the next time you compile pdemo . shared.

This concludes the tutorial on how to use pRISM+ to begin development with a
pSOSystem sample application using SNiFF +.

6.7.2 Starting a Project from Your Existing Code Base

Who Should Use This Procedure?

This usage scenario is intended for the following users:

• Users who have gone through a pRISM+ tutorial and are now ready to begin
development starting with their existing code.

NOTE: If the code base you refer to is a custom Board Support Package you
have developed, go to Section 6.7.4, Integrating a Custom Board
Support Package into pRISM+ on page 6 -82 . If you have not gone
through a pRISM+ tutorial, begin with Usage Scenario 1 in the
previous section.

• Application developers who have a medium- or large-sized existing code base
which they would like to browse, build and eventually integrate with
pSOSystem code to produce an embedded application.

• Users who are starting a brand new application with small- or no existing code
base, who would like pRISM+ to automatically generate and manage makefiles
for the project.

Step-by-Step Instructions

First pRISM+ will make a shared source project out of your code base. By default,
the project is created recursively to include all directories and subdirectories in a
source tree. Makefiles are generated when your project is created. Once your code is
turned into a source project, you can then browse this code, add files to your
project, automatically update makefiles, and continue your development.

6-63

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-64

Automatic makefile generation is by default enabled for this usage case. As pRISM+
is making source projects out of your code, when a makefile is not detected in a
directory, pRISM+ will place a generated makefile there. pRISM+ will then update
the makefile when new files are added and dependencies change as you add files to
your project.

If you already have working makefiles for your code that resides within your code
base, don't worry, pRISM+ will not over-write your makefile . You can go on using
your own makefile instead of generating new makefiles.

If you are starting with no code but anticipate your project code base to grow and
eventually have a substantial amount of code, you can start by generating an empty
source project. pRISM+ will then update the makefile when new files are added and
dependencies change.

Once you have made source projects out of your own code base, pRISM+ can auto­
matically integrate your code with the rest of pSOSystem code in order to produce a
target executable.

Version Control

We strongly recommend that you put all your source files under source control
before starting development. SNiFF + supports a number of CMVC tools. If you are
not currently using a CMVC tool, you are advised to use RCS, which is shipped with
SNiFF+.

We also recommend that you check in the entire pSOSystem directory structure into
your CMVC tool prior to using SNiFF +. For details on how to check in source files
into CMVC tools , contact your Systems Administrator and reference the SNiFF +
User's Guide.

For purpose of this tutorial, RCS is used as the version control tool and the entire
pSOSystem source tree is checked in. All the examples used in this section assumes
this.

Locate Your Existing Code Base

Before you start pRISM+, it is necessary that you set an environment variable which
pRISM+ will use to locate your code base. For simplicity, we are now assuming that
your code base has a single root. If your code base has more than one root, refer to
the section Working with Multiple Source Trees on page 6-80.

While your code can reside anywhere in your file system, the need to integrate with
pSOSystem code requires that your existing code base is located in a known loca-

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

tion to pRISM+. pRISM+ uses the environment variable $PSS_ USER_ SSWE to point
to your code.

To point this environment variable to your code, edit envtarget_ CPU . ksh (on
Windows hosts) or envvtarget_ CPU (on UNIX hosts) in the pRISM+ installation
directory.

Modify this line:

PSS_USER_SSWE= 11 $HOME/psos Target_CPU_workspace 11

to this:

PSS_USER_SSWE= 11 location_of_your_code 11

where location_ of_ your_ code is the root directory of your code.

Upon a new pRISM+ installation, $ PSS_ USER_ SSWE points to the default location
$HOME/psosTarget_ CPU_ workspace . For a large existing code base, it is easier
for you to redefine the environment variable than to copy your entire code base into
the $HOME/psos Target_ CPU_ workspace location.

Once you have redefined $PSS_ USER_ SSWE , SNiFF+ will treat the directory that
$PSS_ USER_ SSWE points to as the Shared Source Working Environment root direc­
tory. SNiFF+ can then make a shared project for you out of the source code in
$PSS_ USER_ SSWE directory.

You can then work with this shared project in your PWE, $PSS_ USER_ PWE , just as
you can with any shared pSOSystem sample application, as illustrated in
Section 6 . 7 .1 , Starting a New Project with pRISM+ on page 6-51 .

Later on, you can run the Convert to pSOSystem App Proj command to integrate it with
pSOSystem.

NOTE: If you and your team are sharing this code, this step should be performed
by a team shared code administrator. For more information on how to set
up team-based development, refer to the SNiFF+ User's Guide.

NOTE: You must change $PSS_ USER_ SSWE prior to invoking any pRISM+ tools
for the change to take effect.

NOTE: Makefile generation is automatically enabled when you use pRISM+ in
this usage scenario. If you want to take advantage of this feature, remove
or rename any existing makefiles in your source tree. If SNiFF + detects a
makefile in a directory as a source project is being made, it will not
overwrite the existing makefile even when Make Support is enabled.

6-65

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

Locating Existing Code Base

This tutorial uses a small example to simulate an existing code base. This example
code is in c : \my cod e \mypro j. You will tell pRISM+ the location of this code base
by modifying the pRISM+ environment file envtarget_ CPU . ksh and by setting
$PSS_ USER_ SSWE to c : \mycod e , as shown in Figure 6 -24.

If your code base resides in more than one location, refer to Section 6.7.3, Working
with Multiple Source Trees on page 6 -80.

FIGURE6-24 Change PSS_ USER_ SSWE

6-66

Now you are ready to start pRISM+.

Start New pRISMSpace

Now you are ready to make a new pRISMSpace for your application. A pRISMSpace
holds all the information regarding each pRISM+ session such as your host tools
settings, your choice of targets , the location of your source project etc. This session
information is stored in a pRISMSpace file [name).psp , name is a name you can give
your pRISMSpace.

3. To start a new pRISMSpace from the pRISM+ Manager, select File~ New to dis­
play the pRISMSpace Wizard. This Wizard will guide you through the
pRISMSpace configuration process.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

4. In the Tools Options dialog, select SNiFF + as your project editor choice and click
on the Next button.

5. In the Choose a starting point dialog, choose Start with an existing codebase and click on
the Next button.

6. The Locate the code starting point dialog prompts for the location of your existing
code base.

If you have su ccessfully redefined the $PSS_ USER_ SSWE environment to point
to the root directory of your code base, you will see your new definition of
$PSS_ USER_ SSWE expanded and displayed in this dialog. Browse to the location
of your code.

In this tutorial example, $PSS_ USER_ SSWE points to C : \mycode , and the
source files are in the subdirectory \mypro j .

7. The Set relinkable object name dialog prompts for the name to be used by pRISM+ to
refer to the relinkable object made from your code.

NOTE: When you start pRISM+ in this mode, with an existing code base,
automatic makefile generation is enabled by default. If your code base
does not have working makefiles, pRISM+ can generate makefiles
automatically and build a relinkable object out of your code base.
This relinkable object is then linked with the rest of pSOSystem code
wh en you perform the Convert to pSOSystem App Proj operation followed
by building of a target executable su ch as ram . elf . For more
information about the pRISM+ Hybrid Make Model, refer to
Section 6.6.8, Hybrid Make Model on page 6-46.

For this tutorial example, you will name the executable myp ro j . o . This name
will be entered into pSOSystem makefiles by pRISM+ when you perform the
Convert to pSOSystem App Proj operation later in this tutorial.

Note that even if you are not using SNiFF + to generate a makefile but want to
use your existing makefiles , you can also enter a name for a relinkable object for
the purpose of integration with pSOSystem code. After you do so, make sure
you modify your makefile to make this relinkable object.

8. The Finish this new project dialog prompts for the name of your pRISMSpace and
shows the default location of your pRISMSpace file.

• pRISMSpace Name is the name you use to identify your new pRISMSpace. It is
always the same as the name of the shared project you open as a private
user.

6-67

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-68

• pRISMSpace directory is the directory which contains your pRISMSpace file,
[name] . psp . This directory is your private workspace directory. See What
Really Happened? on page 6-75 for a detailed discussion of working with
shared projects as a private user.

9. Click on the Finish button.

Congratulations, you have completed the steps to start a new pRISMSpace!

pRISM Manager will now call SNiFF + with your project settings and start SNiFF + for
you. A log window appears and shows the communication between pRISM Manager
and SNiFF+.

A little later, a SNiFF + Project Editor Window appears showing a shared source
project made out of your code opened in your private working environment.

~PE myproJ shared - adm PWE ppc-Pr l!I~ El
I ools Eile Project !nfo Target Y'.iew
Plug-Ins l

JAii Files

]Private+ Shared

Filter

::JP' Use Cache

:::J]writable + Read Only

Filters ...

Source Files of myproj.shared

File Project

~ d"1ll0 . c myproj.shared

[!!) d"1ll0.h myproj.shared

l!!J maket'ile myproj. shared

~ lllYPCOj. shiil'ed myproj. shared

~ root.c myproj.shared

Projects JFullTree

(myproj)

FIGURE 6-25 mypro j . shared in Project

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

Working with Your Source Project

By completing the steps in the previous section, you have accomplished the
following:

• Made a shared source project that a team can share and compile against.

• From your screen, you can see that you have also opened this shared project as
a private user.

• Generated makefiles that were placed in your source directories when makefiles
were not detected in the directories as the source projects were being made.

Now you are ready to beginning development with pRISM+ Application Development
Framework. Now let us look at how to perform some basic tasks within this develop-
ment framework. 6

Compiling Your Code

Automatic makefile generation is enabled by default. To compile your code:

1. Update the makefile by selecting Target--? Update Makefile in the PE window.

2. Make the relinkable object needed for later integration with pSOSystem by
selecting Target--? Make myproj.o in the PE window.

Now you are ready to add files to browse your source projects, add files to your
projects, and compile them.

Start a New File and Add It to the Project

To start a new file and add it to the project:

1. Check in the newly created source project myproj. shared, then check out the
PDF file myproj . shared from version control so you can modify the project
structure. You will also be prompted to reload the project. Perform the reload.

2. Start a new file and add it to your project by selecting Project --? Add New File to
pdemo.shared in the PE window.

3. In the New File dialog box, enter the name of the new file you are about to com­
pose and add to pdemo . shared, then click OK.

The name of your file now appears in the file list in the Project Editor window.
Double-clicking the file name to open an editor window.

6-69

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-70

Refer to the SNiFF+ User's Guide for information about how to change the
default new file template used by the SNiFF + Source Editor when you start a
new file.

~PE myproJ shared - adm PWE·ppc-Pr l!l~EI
Iools Eile Project [nfo Target Y'.iew
Plug-Ins 1

~ ~ QJ&l ~~~~gm E! ~ B!-
JAllFiles

jPrivate + Shared

Filter

:::J jwritable + Read Only

Filters ...

Source Files of myproj.shared

File Project

!BJ make:tile

~ myproj. shared

[l root . c

•
i# J m,yproj • shared

myprnj . sh ai::ed

myprnj . shai::ed

Projects jFull Tree

r ==k&mww;iw•

FIGURE 6·26 New File Added

4. Save your changes to project structure by select Project ~ Save Project in the
SNiFF +window. Preserve the project structure change by checking in the modi­
fied PDF file for the project, mypro j . shared.

5. Update SSWE if you want others to see and share the changes. For complete
instructions on how to update SSWE, refer to the SNiFF+ User's Guide.

After adding files to your project, you must update your makefile to reflect the
changes. To update your makefile, select Target ~ Update Makefile in the PE window.
SNiFF +will then update your makefile automatically.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

Adding Files To and Removing Files From the Project

To add files to or remove files from the project:

1. Check out pdemo. shared, the PDF file, from version control so you can modify
the project structure. You will also be prompted to reload the project. Perform
the reload.

2. From the Project Editor window, choose Project --? Add/Remove files to/from
myproj.shared. This will add files to or remove files from the mypro j . shared

project from your private workspace directory.

3. Save your changes by selecting Project --? Save in PE Window. Preserve the project
structure change by checking in the modified PDF file for the project,
myproj. shared.

4. Update SSWE if you want others to see and share the changes. For complete
instructions on how to update SSWE, refer to the SNiFF+ User's Guide.

5. You need to update the makefile in order to reflect the changes you've made to
your project in your next build. To update your makefile, from PE window,
select Target--? Update Makefile. SNiFF+ will then update your makefile automati­
cally.

Adding/Removing a Whole Directory of Code to/from a Project

To add a whole directory of code to the mypro j . shared project:

1. Make a source project out of the directory (and all of its subdirectory) of code
you want to add to mypro j . shared, and then save the project.

2. Check out myproj. shared, the PDF file , for the myproj .shared project, so you
can modify the project structure.

3. Add this new source project as a subproject to myproj.shared by choosing Project
--? Add Subproject to myproj.shared.

4. Save your changes by selecting Project --? Save in the PE Window. Preserve the
project structure change by checking in the modified PDF file for the project,
pdemo.shared.

5. Update SSWE if you want others to see and share the changes. For precise
instructions on how to update SSWE, refer to SNiFF + User's Guide.

NOTE: After you add a subproject or subprojects to myapp.shared, note that you
need to update makefile in order to reflect the changes you have made to

6-71

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-72

your project in your next build. To update your makefile, from PE
window, select Target ~ Update Makefile. SNiFF + will then update your
makefile automatically.

Several methods can be used to perform step 1 on page 6-71. They are as follows:

• Using instructions given in Section 6.7.2, Starting a Project from Your Existing
Code Base on page 6-63. This is the recommended method. Once you've source
project out of the directory or directories of code you want added to your project,
add them as subprojects to your project.

• If the root of this directory isn't under your current $PSS_ USER_ SSWE, refer to
the section titled Working with Multiple Source Trees.

• Using SNiFF+ Wizard - Refer to the SNiFF+ manuals for instructions on how to
use this. Use this method only if you are a proficient user of SNiFF+ already.

• Manually make the project with SNiFF+. Use this method only if you are a profi­
cient user of SNiFF + already.

Modifying a Shared File

In the top part of the PE window's file list, the files whose names are in italic are lo­
cal copies of the shared files. Other files are shared and should NOT be modified un­
til a user:

• Make a local copy of it.

• Check it into a version control tool and then check it out again. This effectively
gives you a private copy of this file.

A right-click on any file name will pop up a local menu to perform copy, check in,
check out and edit functions.

In the case of sys_ conf . h file, it uses the pRISM+ Configuration Wizard as the
default editor. Since you by default have a copy of this file in your private directory,
you can simply double-click on it to modify it with the pRISM+ Configuration
Wizard. If instead you choose to use the SNiFF + Source Editor to edit sys_ conf . h
file , you can access the simple edit function by preforming a right-mouse click.

Integrate Your Code with pSOSystem

In order to browse your code together with pSOSystem code and to produce a
pSOSystem-based target executable, you must integrate your code with pSOSystem.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

1. Run the Convert to pSOSystem app proj option on your source project to integrate it
with pSOSystem code. Figure 6-27 shows the results of this operation.

2. Build a target executable (for example ram . elf) from the pSOSystem super­
project, pss_ main . shared.

Convert to pSOSystem Application Project

1. To integrate your code with pSOSystem, from PE window, highlight
myproj. shared and then select Plug-ins ~ Convert to pSOSystem app proj.
Figure 6-27 shows your project, myproj. shared, after the conversion.

~PE p ss_mam shared - adm PWE ppc-P l!I~ El
Iools Eile Projed !nfo Target Y:iew
Plug-Ins 1

JAii Files :::JP Use Cache

J Private + Shared

Filter

:::J]w ritable+ Read Only :::J
Filters... I

Source Files of pss_main.shared

File Projed

[l drv_ COM. C

[ff) makefile

~ pss _ mdin. shared

Im rea<ne
sys_conf.h

pss_main. shared

pss_main.shared

pss_main. shared

pss_main.shared

pss_main. shared

Projects JFull Tree

pss_main.shared (MYPROJ / pss_main)

j ~ [;] D myproj. shared (myproj)

iii ·· ·~[;] D include . shared (include)

!·····~[;JD sys_os.shared (sys / as)
j ~ [;] D configs_std. shared (configs / std)

L .. ~ [;] D bsp. shared (bsps / mbx 8xx)

1±1 ~Ell II bsp_src . shared (bsps / mbx 8xx / src)

FIGURE 6-27 Converting Your Project

6-73

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-74

As you can see from the figure, the convert process performed the following:

• Added a pSOSystem superproject, pss_ main . shared as the top-most project.

• Made your project a subproject to pss_ main. shared.

• Added a collection of typical pSOSystem subprojects to pss_ main . shared.

Refer to the section Using pss_main.shared Project on page 6-79 for some important
information regarding this pSOSystem superproject.

Building a Target Executable

After you run the Convert to pSOSystem App Proj on your project, you are ready to build a
pSOSystem-based target executable.

1. To complete the target build, highlight pss_main.shared in the PE window and
select Target ~ Make ~ ram.elf (or another kind of target executable) .

Now you can proceed to downloading and debugging your module on the target.

Building a Target Executable Using Your Existing Makefile

When a source project is created and a makefile is detected by SNiFF + in a direc­
tory, then no generated makefile will be placed in that directory even if automatic
makefile generation feature is enabled. In other words, SNiFF + will NOT overwrite
any existing makefile you have in your source code base.

If you have existing and working makefiles, you may need to modify the default
project attributes to have SNiFF + to invoke your make command and using your
makefiles. For complete instruction on how to configure SNiFF + to use your make
and makefiles, refer to the SNiFF + User's Guide.

If you do choose to use your own make or makefiles to build your own module , you
can follow the steps below to integrate your code with pSOSystem and build a target
executable:

1. Modify your makefile to generate a relinkable object.

2. Integrate your code with pSOSystem code for browsing and build by selecting
Plug-ins~ Convert to pSOSystem app proj.

Switching to Another BSP

pSOSystem comes with many Board Support Packages for off-the-shelf single board
computers. One BSP is chosen as the default BSP at installation time by the

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

installer. This BSP is then attached to all pSOSystem sample applications you open.
In our example, by examining the PE window, we can see that mbx8xx is set as the
default BSP.

To attach the sample application you are working with to another BSP, you must
modify your pRISMSpace settings. To change your pRISMSpace setting, from
pRISM+ Manager, select PrismSpace ~Settings and change the default Board Support
Package.

Project Settings ID EI

This pRISM Space is set up for SNiFF+

gSOSystem Configuration File:

JMR.Mld Browse ...

~oard Support Package:

jmbx8xx Browse ...

Build Make Iarget:

Jram.elf

OK Cancel Help

FIGURE 6-28 Project Settings Dialog Box

For your changes to take effect, you must quit out of SNiFF + from its Launch Pad
and then restart it again from pRISM Manager by clicking on the Development Tool
button. This will let you reopen your sample application with another BSP.

If you have a custom BSP that you would like to integrate into the pRISM+ Applica­
tion Development Framework, refer to Section 6 .7.4, Integrating a Custom Board
Support Package into pRISM+ on page 6-82.

What Really Happened?

On UNIX hosts, you can explore from the command line.

6-75

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-76

On Windows hosts, using one of the pRISM+ utility programs, take a look at what
actually happened.

From Start, select Start ~ Programs ~ pRISM+ 2.0 target_CPU ~ Utilities ~ DOS Prompt
target_ CPU. This opens a DOS window with the pRISM+ environment settings.

Your Shared Source Workspace

First look at what happened in your shared code base. Change directory to
$PSS_ USER_ SSWE ; for example, to the location of your shared source workspace (in
this example, c : \mycode) and then to mypro j .

, DOS Prompt PPC R~EJ

FIGURE 6-29 Shared Source Workspace

In addition to the files you have in your code base, there are now some new items in
your directory:

makefile

sniffprj
directory

This is a project makefile generated by SNiFF+.

This is the directory that holds the PDF (Project Definition File) for
your shared project myproj . shared.

For precise definition of Project Definition File, refer to the section
SNiFF+ Basics and SNiFF+ User's Guide.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

pss_ main
directory

Contains files from the pss_main.shared project. This is added by
the Convert to pSOSystem App Proj script you used to integrate your
module with pSOSystem code.

For more information on the pss_ main . shared and its use, refer to
the section Using pss_main.shared Project on page 6 -79.

NOTE: This directory is not present before you run the Convert to
pSOSystem App Proj command.

Your Private Workspace

Next, let's turn our attention to the PE windows which shows your private view of
the shared project myproj.shared. Upon completing the steps above, you have in
fact accomplished the following:

• Created a shared source project for your team.

• Opened myproj.shared in your private workspace.

• Generated makefile for your project

Now let us look at what's taken place in your private workspace. Close examination
of $PSS_ USER_ PWE directory will reveal that a new directory with the name of your
source project has been created. For our example, in $PSS_ USER_ PWE there is a
new directory myproj which is the new private workspace for the shared project
myproj. shared.

When you check out files from SSWE, a copy is placed here for you to modify. Same
is true when you copy files from SSWE.

6-77

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-78

it oos Prompt PPC l!l~EJ

FIGURE 6-30 Private Workspace

For now, upon creation, it contains the following:

makefile SNiFF+ generated project makefile.

sniffprj A directory used by SNiFF+ .

. sniffdir A directory used by SNiFF+.

pss_ main. shared This is your private workspace directory for
pss_ main. shared project, the pSOSystem superproject
used to integrate your code with pSOSystem.

For more information on pss_ main. shared, refer to the
section Using pss_main.shared Project on page 6 -79.

NOTE: This directory is not present before you run the
Convert to pSOSystem App Proj command.

Source Files and File Overriding

Notice that in your local workspace, there are no other source files present from
your shared source project because those files are shared. You get a local copy when
you:

• Make a local copy

• Check a copy out of version control system if one is in use

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

When you do make a local copy of a file or check out a version for local use from
your version control tool, this local version of the file will override the file by the
same name in the shared code base when you perform a build. pSOSystem makefile
automatically handles this file overriding feature. For more details on file sharing
and overriding, refer to SNiFF+ User's Guide.

The SNiFF + Project Editor tool shows that you've opened a shared project as a pri­
vate user, for example, in your private workspace. You are looking at shared source
files and project files as if they were in your local directory, although earlier we veri­
fied that there are not local copies of files yet.

Using pss_main.shared Project

What Is It For?

pss_ main. shared is a pSOSystem superproject designed specifically for integra­
tion of your code with pSOSystem code. It is a generic pSOSystem superproject to
be used as the parent of the source project you want to integrated with pSOSystem.
It contains a set of essential pSOSystem files needed by every pSOSystem applica­
tion, including a pSOSystem makefile which integrates your build into a pSOSystem
build in order to generate a pSOSystem-based executable.

Where Is It Stored?

pss_ main. shared is stored in a subdirectory in your shared source workspace;
that is, in the directory pointed to by $PSS_ USER_ SSWE. It was put there by the
Convert to pSOSystem App Proj command when you converted your project.

What Does It Contain?

pss_ main. shared contains the following:

Makefile This is a template pSOSystem makefile which contains rules to
build pSOSystem targets.

drv_ conf. c This file is essential to every pSOSystem application.

sys_ conf. h This file is essential to every pSOSystem application.

readme Readme file for pss_main. shared

sniffprj A directory used by SNiFF+ which contains the PDF for
pss_ main. shared.

6-79

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

Using pSOSystem Application Signature Files (makefile, drv_cont.c, sys_cont.h)

Makefile in pss_main.shared

The makefile contained in pss_ main . shared is a generic template pSOSystem
makefile used to integrate a custom module in a pSOSystem build. This makefile is
generic and might NOT include all the parts of pSOSystem code you would need for
your application. For example, if you are using SNMP, you need to modify the make­
file to include the pSOSystem SNMP library. You are responsible for making sure
that this makefile is complete. Reference pSOSystem sample application makefiles
for what's needed from pSOSystem for each type of application.

This makefile contains a macro PSS_ APPOBJS which should contain the name of
the relinkable object made of your custom module. This module is placed in the
makefile by pRlSMSpace Wizard when you configure this pRlSMSpace. This macro
can be modified by users. If there are other libraries you want to be linked into the
final build, you can also add them here. For information on the make system, refer
to Section 6.6.8, Hybrid Make Model on page 6-46.

This makefile assumes that it resides in the same directory as the sys_ conf . h and
drv_ conf . c files which comes in the pss_ main . shared project.

sys_conf.h in pss_main.shared

The sys_ conf . h file contained in pss_ main . shared is a generic template
sys_ conf . h file used to integrate a custom module in a pSOSystem build. This
sys_ conf . h file is generic and might NOT reflect the needs of your application. For
example, you may be using more OS components than what the default is set for.
You are responsible for making sure that this makefile is complete. Refer to the
sys_ conf . h file in pSOSystem sample applications for what is needed from
pSOSystem for each type of application.

6.7.3 Working with Multiple Source Trees

6-80

In previous sections we have shown you how to incorporate your existing code base
into the pRlSM+ Application Development Framework if your code base existed
under a single root directory. This section explains how to incorporate multiple
source trees into pRlSM+.

Suppose your legacy code consists of three source trees under directories I root 1
and /root2 , and you would like to incorporate all the code into pRlSM+. The rec­
ommended method is an extension of the method we used earlier to incorporate one
source tree.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

To incorporate all the code into pRISM+:

1. Edit envtarget_ CPU . ksh in pRISM+ installation directory and point
$PSS_ USER_ SSWE to /rootl.

2. Edit envtarget_ CPU . ksh in pRISM+ installation directory and add
$PSS_ USER_ SSWE2 environment variable to point to /root2 .

3. Proceed with steps given in Section 6.7.2, Starting a Project from Your Existing
Code Base on page 6-63 to create source project for code in I root 1.

4. Using SNiFF + Working Environment Tool, create another SSWE derived from
$PSS_ USER_ SSWE as shown in Figure 6-31.

k: Workmg Environments - JSB11ch@p1peorg1rn l!l~Ei
Iools file fdit '.l::'.iew l,!tils HistQiy 1

B··® RWE: pSOSystem-Repo5i tor.y

El·· , SSWE: pSOSys teM-ppc

8 f:< SSf<IE : pSOSysteM-ppc-User

El·· _ SSWE: pSOSysteM-ppc-User2

adm. PTJE : ppc-Pr.iva.te

Working Environment

Root I $PSS_USER_SSWE

r c:(rootl

Root on Remote Hos'.!

ij Plattorm
j <defau lt>

l r~ssWE Hierarchy

I pSOSystem-ppc

l r~soWE Hierarchy

~ Ve rsio n Control Configuration(s)

J~
Generate Directoiy Root

FIGURE 6-31 Incorporating Multiple Source Trees into pRISM+

The SSWE root should be set to $PSS_ USER_ SSWE2 which points to /root2 .

J

I

,,

l1

5. Move the PWE as shown in Figure 6-32, to below the SSWE for code in /root2 .

Make sure that when you move the PWE, the Owner field is blank. Some pRISM+
scripts will not work correctly if your user is in the owner field.

6. Save the new Working Environment settings.

7. Using the SNiFF + Working Environment Tool or the SNiFF + Project Setup
Wizard , you can make a source project for code in /root2.

6-81

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

J Working Environment - New Private based on SSWE Ei

Working Environment J ppc-Private Type J Private

r ·Working Environment

Root J $PSS_USER_PWE Directoiy .1
J c:/prism•20/users/ JSBach/psosppc_pwe

Root o~ R~ Hostj

fl Platform
l<default>

J pSOSystem-ppc-User2:pSOSystem-ppc-User :pSOSystem-ppc

~ SOWE Hierarchy

~ Version Control Configuration(s)

Generate Directoiy Root---------------~.

FIGURE 6-32 Make Sure Owner Field is Left Blank

8. Once you have set up a source project for code in /root2 and code in /rootl,
you will be able to browse files from both source t trees together by adding
root 1 . shared as a subproject of root2 . shared.

NOTE: Convert to pSOSystem App Proj only works for the child SSWE derived directly
from the $PSS ROOT SSWE.

6.7.4 Integrating a Custom Board Support Package into pRISM+

6-82

Who Should Use This Procedure?

This usage scenario is intended for the following users:

• Users who want to integrate custom BSPs into the pRISM+ Application
Development Framework and use them in the same integrated fashion as other
BSPs shipped with pRISM+.

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

• Users who want to derive a custom BSP out of a pRISM+ BSP and be able to tog­
gle between the derived BSP and the pRISM+ BSP frequently for development
and testing purposes.

Step-by-Step Instructions

For a custom BSP to be integrated into pRISM+ you must first perform the following
tasks so your custom BSP conforms to the form needed by pRISM+ for integration.
These steps are as follows:

• Copy your custom BSP under $PSS_ ROOT /bsps so it can be visible to the rest
of pSOSystem code which references BSPs with an environment variable rela­
tive to $PSS ROOT.

• Organize your BSP directory structure so that it follows standard pSOSystem 6
BSP format.

• Create a file list which contains all the files (including path information) for your
BSP. SNiFF + will use this file list to create a source project for your BSP.

• Run the pRISM+ supplied script plugins_ create_ bsp to create a SNiFF+
project for your custom BSP.

Upon completion of these steps, your BSP will be browser-ready and you are ready
to continue with the development and testing of your BSP within the pRISM+ Appli­
cation Development Framework.

Note that steps illustrated in this section show you how to integrate your BSP into
the pRISM+ environment. If you need information on how to port a custom BSP to
support this release of pSOSystem, refer to the pRISM+ Upgrade manual.

In this section we will use an example to illustrate the steps required to integrate a
custom BSP into the pRISM+ environment for browsing, further development and
integration with pSOSystem-based applications.

Copy Custom BSP into $PSS_ROOT/bsps

The pRISM+ development environment and tools are set up to allow users to build
the same applications to run on many different target boards. pRISM+ accomplishes
this by providing an easy toggling mechanism to allow users to work with many dif­
ferent BSPs. This is done with an environment variable $PSS_ BSP which is defined
relative to $PSS_ ROOT, the root directory of pSOSystem. This is why your custom
BSP must reside inside the pSOSystem tree in order for the rest of pSOSystem
source projects to have visibility of your custom BSP.

6-83

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-84

Reorganize Your BSP Directory Structure

All pSOSystem BSPs have a certain directory structure as follows:

• Each BSP resides under the directory $PSS_ ROO T /bsps/ <eustom_ bsp> ,

where eustom_ bsp is the name of a BSP.

• Each BSP directory has a subdirectory Is re which contains the source code for
the BSP that's specific to this board.

• Each Is r e directory contains a makefile, in the form of a pSOSystem makefile,
NOT SNiFF + generated makefile, which:

• Provides rules for compiling files in the /src directory.

• Includes other makefiles, such as ru l es . mk , to include other source files
needed by this BSP. Most commonly, these other files are drivers code and
devices code that are board-independent. pSOSystem driver code resides in
$PSS_ ROOT/drivers directory and devices code reside in $PSS ROOT/

bsps/deviees directory.

• When used in a make, produces a object library, called libbsp . a , which is
placed in the parent directory of /sre , which is $PSS_ ROOT/bsps/

<eustom_ bsp> .

NOTE: Make sure that you organize your custom BSP to conform to this basic
structure.

NOTE: Your current BSP makefile might not contain all the drivers and devices
you need out of the current pSOSystem now. Do not worry, they can be
added later.

Create a File List for Your BSP

An important part of integration of your BSP into the pRISM+ environment is to
make it browsing-enabled for SNiFF+. For SNiFF+ to be able to browse your code,
you must first turn your source tree into a source project. pRISM+ provides you
with a script which automatically performs this for a custom BSP which resides in
$PSS_ ROOT/bsps/<eustom_ bsp> and which conforms to the basic BSP directory
structure described in the last section. This script requires a file list which contains
all the files that makes up your BSP, including the path for each file.

Generate a file list that meets the following requirements:

• It contains a list of ALL files which make up your BSP, including drivers code
and devices code

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

• Name this file list . snifff1 .1st.

• Place your .snifffl.lst in $PSS_ ROOT/bsps/custom_ bsp/src directory, where
custom_ bsp is the name of your custom BSP.

• First file name in this file should be from $PSS_ ROOT /bsps/ custom_ bsp/ src
directory, where custom_ bsp is the name of your custom BSP. You can place
list for files in $PSS_ ROOT I drivers and I devices after that.

• Your . snifff1 .1st should include the file: configs/ std/ snf_ gnu. mk at the
end.

All standard pSOSystem BSP source projects are created by Integrated Systems us­
ing file lists such as the one you are creating for your BSP. Go to any pSOSystem
BSP directory to see an example file list used by Integrated Systems to generate the
standard BSP projects.

Armed with the file list, you are ready to run the script to perform the final integra­
tion of your BSP into pRISM+.

Run plugins_create_bsp to Create a SNiFF+ Project

To perform the final step of integration of your custom BSP into the pRISM+ envi­
ronment, you need to run the p1ugins_ create_ bsp to create a SNiFF+ project for
it.

About plugins_create_bsp

p1ugins_ create_ bsp is:

• A sh script

• Located in $PSS_ ROOT /bin directory.

p1ugins_ create_ bsp creates:

• bsp_ src. shared under $PSS_ ROOT /bsps/ custom_ bsp/ src/ sniffprj

• bsp. shared under $PSS_ ROOT /bsps/ custom_ bsp/ sniffprj

p1ugins_ create_ bsp assumes:

• You have pRISM+ environment set-up.

• You are using a makefile derived from a pSOSystem BSP makefile and not
SNiFF + generated makefiles.

6-85

6

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-86

plugins_ create_ bsp uses:

• plugins_ create_ proj from $PSS_ ROOT/bin/source/plugins/scripts

• plugins_ add_ target from $PSS_ ROOT /bin

plugins_ create_ bsp Usage Syntax:

plugins_ create_ bsp <bsp_ dir> [-f <file_ list file>

where bsp_ dir is $PSS_ ROOT /bsps/ custom_ bsp

Using plugins_create_bsp

On Windows hosts , execute this shell script by following the steps below:

1. Start the pRISM + ks h by selecting Programs ~ pRISM+ 2.0 target_ CPU~ Utilities ~ Korn
Shell target_ CPU from the Windows Start menu. This starts the Korn Shell window.

2. From the command line, execute

plugins_ create_bsp <bsp_ dir> [-f <file_ list file>

where

• bsp_ dir is $PSS_ ROOT/bsps/custom_ bsp

• file_ list_ file is the file list you generated for your custom BSP

On UNIX hosts , this script can be executed from a sh command line.

You will see SNiFF+ invoked by the shell script through sniffaccess program to
create your BSP project. On completion of this final step, you have integrated your
custom BSP into the pRISM+ environment.

Verifying Your Integration

To verify that you have succeeded in integrating your BSP into pRISM+:

1. Open any pRISMSpace you have made according to the steps illustrated in
Starting a New Project with pRISM+ on page 6-51 .

2. Change the BSP settings of your previously made project by selecting PrismSpace
~ Settings ~ Board Support Packages. By now you should see your BSP added to the
list.

3. Select your BSP from the list

pRISM+ User's Guide Using SNiFF+ in the pRISM+ Environment

4. Shut down SNiFF + from the SNiFF + Launch Pad. There is no need to close the
current pRISMSpace.

5. Restart SNiFF + again from the pRISM Manager by clicking on the "Development
Tool" button (second from the left). This should bring up the pSOSystem sample
application again with your BSP.

6.7.5 Converting a Project Made with pRISM+ Editor

Who Should Use This Procedure?

This usage scenario is intended for the following users:

• Those who use pRISM+ Editor to do their development but want to parse and
browse their source files with SNiFF+. 6

• Those who have previously used pRISM+ Editor but want to transition to using
SNiFF + to continue their projects.

Users of pRISM+ Editor who simply want to use SNiFF + to browse their source files
can treat the body of code they want to browse as an existing code base referred to
in Starting a Project from Your Existing Code Base on page 6-63.

Users of pRISM+ Editor who want to transition to using SNiFF + to continue their
projects should first evaluate their team development needs and then proceed with
the instructions given in Starting a Project from Your Existing Code Base on
page 6-63 .

6.7.6 Starting with an Existing Application for a Previous Version of pRISM+/pSOSystem

Refer to the pRISM+ Upgrade Guide for complete directions.

6-87

Using SNiFF+ in the pRISM+ Environment pRISM+ User's Guide

6-88

pRISM+ Configuration Wizard

pRISM+ Wizard helps you configure your pSOSystem application by providing easy
editing of the configuration parameters that control pSOSystem and its compo- 7
nents. These parameters are briefly described in the pRISM+ Wizard on-line help
and fully described in the Programmer's Reference manual. These parameters
include, but are not limited to, the following:

• Which operating system components are built into the system.

• Serial channel characteristics of the target.

• LAN driver inclusion; if so, the IP address .

• Shared memory network interface (SMNI) inclusion; if so, the IP address.

• Optional device drivers in the system, including SCSI and RAM disk drivers, the
TFfP pseudo driver, and any application-specific drivers you may have added.

• Values for most component configuration table entries. For example, the maxi­
mum of currently active tasks and message queues in the system.

pRISM+ Wizard allows you to edit these parameters in a window environment with
helpful editing features . For instance, pRISM+ Wizard provides intelligent default
values for target-specific parameters and automatically checks for inconsistencies
between parameter settings.

The output ofpRISM+ Wizard is the file sys_ conf . h, which is read at system start­
up to initialize the pSOSystem configuration tables. pRISM+ Wizard enables you to
quickly set the appropriate values in the pSOSystem file sys_ conf . h, which con­
trols pSOSystem configuration.

7-1

pRISM+ Configuration Wizard pRISM+ User's Guide

7.1 pRISM+ Wizard Features

The basic building blocks of pSOSystem are software components such as pSOS+,
pROBE+, and pREPC+. Associated with each component is a configuration table,
which is used to set configuration parameters.

During system startup, pSOSystem initializes all required component configuration
tables. The code that initializes configuration tables is the shared, read-only file
$PSS_ ROOT/configs/std/sysinit . c .

The source code in sysinit . c contains many lines whose compilation depends on
values defined in the application's pSOSystem configuration file , sys_ conf. h.

pRlSM+ Wizard includes the following features:

• A graphic view of configuration parameters, organized into folders , sub-folders,
and pages

• Two parameter indexes, sortable by title or symbolic name

• A Find feature that lets you search by title or phrases within a title

• Fly-by help: Descriptions of all parameters, pages, and folders

• pSOSystem reference information

• Intelligent validation of field values and consistency checking

• Logically stepped instructions for configuration, including the ability to skip
forward or backward and to return to the next necessary step

• The ability to import values from bsp . h files

7.2 pRISM+ Wizard Interface and Modes

This section describes the pRlSM+ Configuration Wizard's interface and the differ­
ent modes you use to modify your configuration file.

7.2.1 pRISM+ Wizard Interface

7-2

The pRlSM+ Wizard is composed of a Navigation panel, a toolbar, a Parameter
Setting panel, and a Wizard Control panel. See Figure 7- 1 on page 7-4 .

pRISM+ User's Guide pRISM+ Configuration Wizard

• The toolbar provides quick access to quick most commonly used commands,
such as:

• The Save, Open, and Create commands, which assist in the updating of your
configuration file.

• The Find command, which assists in locating parameters.

• The Check command, which provides error checking for your updated config­
uration file.

• The Help command, which displays the parameter help window.

• The Wizard command, which launches the Configuration Wizard.

• The Parameter Setting panel displays the current parameters.

• The Wizard Control panel has navigational buttons that are enabled when the 7
Wizard command is invoked.

• The Navigation panel allows you select the mode you want to use to modify your
configuration file.

7-3

pRISM+ Configuration Wizard pRISM+ User's Guide

~ pRISM+ Wizard - C./MyEprojects/pdemo/sys_conf.h l!llilEI
File View Tools Help

~
New Open Save V\llzard Check Find Help IP Addr .

Standard Setup V\llzard

Target Board Support Package

Select the name of board support package you are using. If your board is not listed then
select "custom".

i;i.. pS OSystem
; .. @) Board Support Pack

i = Kerne l Type

!"" = Components

! .. @ Libra ries

L .. @) Startup Parameters

i = Serial Channels

J @) Lo cal Area Network

I @) 110 Devic es

! @) 110 Devic e parameter

$.. Shared Memory Drive

J @) General Serial Block:

L .. @) Miscellaneous

pSOsystem I Board Support Package

Value

MBXBXX

Stop I
Pause I
< Back I
Next>

Navigation Panel Parameter Setting Panel

FIGURE 7-1 pRISM+ Configuration Wizard

7.2.2 pRISM+ Wizard Modes

Wizard
Control
Panel

pRISM+ Wizard provides three modes for editing configuration parameters. When
you invoke pRISM+ Wizard, a selection dialog is displayed. In the dialog you can

7-4

pRISM+ User's Guide pRISM+ Configuration Wizard

select which configuration editing mode you want to use; these modes are described
in Table 7 -1.

TABLE 7-1 pRISM+ Configuration Wizard Modes

Modes Description

Run default configuration wizard Runs the default wizard to set up a typical
pSOSystem configuration.

Choose a configuration wizard Allows you to choose a wizard to set up a
special pSOSystem configuration (e.g.,
adding networking components).

Just edit configuration parameters Puts pRISM+ Wizard in simple editing
mode so you do not have to follow a wizard
sequence.

• Each wizard provides an easy step-by-step process for making changes. Simply
review the properties and values displayed in your configuration window, then
click Next to go to the next step until completion.

If you wish to review what you have already done , the Back button takes you
back sequentially.

And if you skip ahead to a different topic, pRISM+ Wizard brings you back to the
last stage of configuration by graying out other options and highlighting Resume.

Verify your BSP settings before you save your file.

Once you have completed the configuration, select File ~ Save to save the
sys_ conf . h file. You can then exit the Wizard and go on to edit and compile
your application as you would normally.

• To edit your configuration without the wizard , select the third option (Just edit
configuration parameters). When the pRISM+ Wizard is displayed you can select
the Symbols tab. Use the Find option to quickly locate your parameter.

Verify your BSP settings before you save your file.

7-5

7

pRISM+ Configuration Wizard pRISM+ User's Guide

7.2.3 Error Checking

Once you have completed the configuration, select the Check button from the toolbar
to verify the settings you have made. If there are errors or incompatibilities between
settings, you will be directed to the incorrect or incompatible settings.

You can modify the parameter settings and select the Check button again to verify
the settings you have made.

Once you have completed your check, select File~ Save to save the sys_ conf. h file.
You can then exit the Wizard and go on to edit and compile your application as you
would normally.

7.2.4 Upgrading a Configuration File

7-6

To upgrade a sys_ conf . h file which you have used in a previous version of
pRISM+, select File~ Upgrade, rather than File~ Save.

This will upgrade your sys_ conf . h file with the new fields for this version of
pRISM+.

II The Searchlight Debugger -
A Tutorial

This chapter provides a brief introduction to the SearchLight debugger and a tuto­
rial that shows how to use SearchLight to debug a pSOSystem application.

You will learn how to read and display memory variables, set breakpoints, and tog- 8
gle between System Debug Mode and Task Debug Mode.

8.1 What is Searchlight Debugger?

The SearchLight Debugger is a source-level debugger that communicates to the
Communication Server and Debug Server which in turn communicates to the
pROBE+ target agent and pNA+ on your target. SearchLight has many features
available to you to use to debug your pSOS+ application. The following list is the
SearchLight product feature highlights:

• A graphical user interface.

• Tracking and control of target executable.

• Breakpoint services.

• Monitoring of language variables.

• C++ language support.

• System and Task Level Debug modes.

• OS breakpoints.

• Debugging Interrupt Service Routines (ISR).

• Query pSOS objects such as tasks, semaphores, and queues.

8-1

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8.2 Starting Searchlight Debugger and Downloading an Application

This tutorial illustrates the features of SearchLight debugger using the pSOSystem
sample application pdemo .

NOTE: For simplicity, the figures and samples in this tutorial are PowerPC
examples. The SearchLight debugger supports PowerPC, 68K, and MIPS
processors.

8.2.1 Accessing Searchlight Debugger

1. Complete the tutorial described in Chapter 3 , Quick Start with a Tutorial.

2. From the pRISM+ Manager, .V I
click the SearchLight debugger button: . L.l

8.2.2 Downloading an Application

8-2

1. From the SearchLight main window, click on File ~ Load. The Load dialog box
appears, as shown in Figure 8-1.

;,f! Load El
p- Load

File: - C-:\1-S-IP_P_C-\u_s_e-rs-\l-et-ic-ia-\p_s_o_sp_p_c_-p_w_e_\ _ Browse ... I
\ Symbols Image e Both

P- Boot

Address: \e Default \ Custom

p- Initialize pSOS

~ Cancell~

FIGURE 8-1 Load Dialog Box

2. If the application file to load already appears in the File text box, go to the next
step, otherwise, click the Browse button in the Load dialog box to locate the file
named ram . elf . If you already know the path and file name, you can type it

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

into the text entry field labeled File. Addresses and values may vary due to hard­
ware differences .

3. Click on th e OK button to start the load process.

The debugger proceeds to download the executable image and places a status box
on th e screen to indicate that th e download has started. When the download is com­
pleted, the SearchLight Main window contains source code and context information
as sh own in Figure 8-2.

f' Searchlight - ul 0 200 6 44 - ROOT Ox20000 Curre nt Context l!!I~ El
~e Edit View Debug W ndow Help

~ ~
Restert Run

I ROOT Ox20000

~ <>
Run To Show

'-!
Step

r.1
Next

::J l rootO demo.c#86 Oxc3fc4

~ iii> • • Stepi Nexti BrkPnt OS brkpt Edi

Menus

FIGURE 8-2

1• root : Se ts up the evaluati on program execution . ' !
1• • /
! ' INPT.ITS : None ' !
! ' ' !
! ' RETURNS : ' !
1• OtrrPtrrS : ' !
! ' NOTE(S) : Executes as task 'ROOT'. ' !
! ' ' !
I "*'* 'lt'A" 1t *1t * 1:.,, *'*" *1: *'*" 1:11" * 1:" *'*"***'A""*******"** it'A" 1: 1:11" 1t 1: * **"**it 1: 1t ** 1t 1: * **" ** 1t* 'It I
void
root(v oid)

~
wtsigned long qidss, qid;
wtsigned long iopb[4], ioretval;
wisigned long date, time, ticks;
tms i gned long tid[lO], demo_tid;
v oid *data_ptr;
unsigned l ong re;
unsigned long ptid, nbufs;
Wlsigned l ong smid;
void "Kgeg_ptr ;
unsigned l ong rnid, i::size;

/ * - - -- - - - -- - - - - -- - -- - - -- - - - - -- --- -- --- - - - -- --- -- - - - - - - -- - -- -- - - - -- - -- - - *I
/ "" Set date to Mav L 1995, time to 8 : 3 0 AM,

SearchLight Main Window

Toolbar

Source
Window

8-3

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8.3 Debugging in System Debug Mode

This section describes how to use SearchLight in the System Debug mode. For infor­
mation on how to use the Task Debug Mode, refer to Debugging in Task Debug Mode
on page 8-25.

8.3.1 Step, Stepi, Next and Nexti Commands and Code Views

8-4

The Step, Stepi , Next and Nexti commands are used to single step through the applica­
tion code. A brief description of these commands is contained in the following table:

TABLE 8-1 Single Step Debugger Commands

Command Icons Description

Step

~
Executes one line of source code stepping into function
calls. p

Stepi

~
Executes one assembly language instruction stepping into

. subroutine calls .

Next

~
Executes one line of source code stepping over function
calls. xi

Nexti

~
Executes one assembly code instruction and stepping over

. subroutine calls .

The following set of instructions demonstrate stepping commands and code viewing
options.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

1. Twice click on the Step command icon located in the Tool bar.

After the second step command has finished executing, the PC (Program
Counter) pointer () is positioned at the source code line shown in Figure 8-3 .

unsigned long tid[lO], demo_tid;
void "data__pti::;
unsigned long i::c;
unsigned long ptid, nbufs;
unsigned long smid;
void "seg__pti::;
unsigned long i::nid, i::size;

/ "---"/
/ " Set date to May l, 1995, time to 8 : 30 AM, and stai::t the system " /
/ " clock i::unning. " /
/ "---"/

• date = (1995 << 16) + (5 << 8) + l;
¢ @MM• M
• ticks = O;
• tm_set(date, time, ticks);

!"---"/
I" Ini tialize the Timei:: and console device " /
!"---"/
#if 1 SC_AUTOINIT
if ((i::c = de_init(DEV_TIMER, iopb, &ioi::etval, &data__pti::)) 1 = NOERR)

k_fatal(OxlOOOO + i::c, O);

if ((i::c = de_init(CONSO LE, iopb, &ioi::etval , &data__pti::)) !=NOERR)
k_fatal(OxlOOOO + i::c, O) ;

end if

FIGURE 8-3 Show Pointer (PC) Position After Two Step Command Executions

In addition to a C/C++ source code viewing, the SearchLight debugger allows
you to view the underlying assembly instructions or both at once.

8-5

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8-6

2. Click on View ~ Assembly option.

The SearchLight debugger disassembles the machine code residing on the target
board and displays it in assembly instructions as shown in Figure 8-4.

~ 3fe0 3FE007CB lis t 31, 0x7CB
c3fe4 63FF0501 oti t31 ,t31,0x501

~c3fe8 3FC00008 lis t 30 , 0x8
c3fec 63DE1EOO oti t 30 ,t30 , 0xlEOO
c3ff0 3BAOOOOO li t 29 , 0x0
c3ff4 7FE3FB78 mt t3 , t31
c3ff8 7FC4F378 mt t4,t30
c3ffc 7FA5EB78 mt t5,t29
c4000 48017535 bl tm set
c4004 39200002 li t9,0x2
c4008 91210034 StlJ t9,52(sp)
c400c 38810034 addi t4,sp,52
c4010 38Al0018 addi t5,sp, 24
c4014 38Cl 001C ad di t6,sp, 28
c4018 3C600003 lis t 3 , 0x3
c40l c 480178Cl bl de init
c4020 7C7ClB 78 mt t 28 ,t3
c4024 2C lCOOOO cmpi t 28 ,0
c4028 41 820010 beq- demo#l34
c402c 3C7C0001 addi s t 3,t28 ,l
c4030 38800000 li t4,0x0
c4034 480175B5 bl k_fatal
c4038 3C60000C lis t 3 ,0xC
c403c 38634E4C ad di t 3 ,t3, 20044
c4040 38Cl 0010 ad di t6,sp,16
c4044 38800008 li t4,0x 8
c4048 38A00006 li t 5 Ox6

FIGURE 8-4 Assembly View

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

3. From the SearchLight tool bar, click on the Stepi command icon several times to
advance the pointer to the following a s sembly instructions . The Stepi command
is used to s tep through assembly code. See Figure 8-5.

Power PC mr r3 , r31

68K jsr _ tm_ set

MIPS move aO , s8

~3e0 4 3FE007CB l is i:31, 0x7CB
43e08 63FFOS01 oi: i i:31 , i:31 ,0x501
43e0c 3FC00008 li s i: 30,0x8
43e l 0 63DE1E OO oi: i i:30 ,i:30,0xl EOO
43el 4 3BAOOOOO li i:29 , 0x0

S>43el8 7FE3FB78 JD.I: i:3 , i:31
43elc 7FC4F378 JD.I: i:4 , i:30
43e20 7FASEB78 ID.I: i:S , i:29
43e24 4800F91D b l tm._set
43e28 39200002 li i:9,0x2
43e2c 91210034 StlJ i:9,52(sp)
43e30 38810034 ad di i: 4,sp,52
43e34 38Al0018 ad di i:S , sp , 24
43e38 38Cl001C ad di i:6 , sp , 28
43e3c 3C600003 ! is i:3 , 0x3
43e40 4800 FCA9 bl de_init
43e44 3C600004 l is i:3 , 0x 4
43e48 38634AS4 ad di i:3,i:3, 19028
43e4c 390100 44 ad di 1:8,sp,68
43e50 38800030 li i:4,0x30
43e54 38A01000 li i:S,OxlOOO
43e58 38C00200 l i i:6 , 0x200
43e5c 38EOOOOO li i:7 , 0x0
43e60 4800F3FD b l t _ci:eate
43e6 4 3C600004 l is i:3,0x4

FIGURE 8-5 Stepi Example

8-7

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8-8

4. Click on View -7 Source option. The SearchLight debugger returns to source view
mode. The PC pointer is positioned on the source code line corresponding to the
assembly code instructions viewed in the previous step. See Figure 8-6.

File Edd View Debug \Allndow Help

~ C.{ (.{ fit • • Restart Run Run To Show step Next stepi Nexti To Rtn BrkPnt OS brkpt Edd

I ROOT Ox20000 31 rootO demo.c#105 Oxc3ff4 3
-:1 unsigned long re ; -'

unsigned long ptid, nbufs;

unsigned long smid ; ~
void *segytr;
unsigned long rnid, r s ize;

/*---* /
/* Set date to May 1, 1995, t ime to 8 : 30 AM, and start the system */
/* cl ock running. */
/*---*/

• date = (1995 << 16) + (5 << 8) + l;
• time = (8 << 16) + (30 << 8) ;
• ticks = O;

c:::t>tm_set(date, t ime, ticks);

/*---*/
/* Initialize the Timer and console device */
/*---*/
#if 1SC_AUTOINIT
if ((r e = de_init(DEV_TIMER, i opb, &i oretval, &datayn)) != NOERR)

k_fatal(OxlOOOO +re , O);

if ((re= de_init(CONSO LE, iopb , &ioretval, &dataytr)) != NOERR)
k_fatal (Ox l OOOO +re, O) ;

#endif

•J /*---J---------------------------*/ .iJ
FIGURE 8-6 Source Code View

To step over function calls located in the C/C++ source code use the Next
command.

5. Click on the Next command icon located in the Tool bar. The SearchLight debug­
ger steps over the tm_ set () function call and positions the pointer on the next
source code line.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

8.3.2 Setting and Removing an OS Breakpoint

This section shows how to set and remove OS breakpoints. We are going to examine
a complex breakpoint when a queue receives a message. This breakpoint will stop
the program when a task or ISR make a queue receive call to any queue.

Setting an OS Breakpoint

1. Click on Debug -7 OS Breakpoint or click on the OS brkpt icon located in the Tool bar.
The OS Breakpoint dialog box appears as shown in Figure 8-7 .

;:~ OS Breakpoint El
~------ OS Breakpoint Description

System Call TaskJISR Parameter

IPsosTask ~
PsosTask *(any)

1

*(any)
IDLE Ox1 0000 IDLE Ox10000

PsosPartition ROOT Ox20000 ROOT Ox20000
PsosRegion plNP Ox40000 'plNP Ox40000
PsosSemaphore pOUT Ox50000 , pOUT Ox50000
PsosDevice PNAD Ox6 0000 PNAD Ox6 0000
PsosTimer PMON Ox70000 PMON Ox70000
PsosMisc ASEV Ox80000 ASEV Ox8 0000
t_re start PMCM Ox90000 PMCM Ox90000
t_resume ~

Add I Remove I Exit I ~
com. isi.prism. osobject_ imp/. PsosDeviceService

FIGURE 8-7 OS Breakpoint Dialog Box

2. Open the System Call drop-down selection list and select PsosQueue from the list.

A list of system calls related to queues is placed into the System Call column.

3. Select q_ receive () from the first (System Call) column then choose *(any)
from the second (Task/ISR) and third (Parameter) columns .

8-9

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8-10

After your selections are made the OS Breakpoint Description field contains a
description of the OS breakpoint you selected as shown in Figure 8-8.

;,j!. OS Breakpoint El
OS Breakpoint Description

11 Fund/On: qJece/ve Ottg/n: • (!Illy} Paramelr. • (any}

System Call

PsosQueue

q_asend
q_avsend
q_aurgent
q_avurgent
q_broadcast
q_create
q_delete
q_ident

~

TaskJISR

*

*(any)
IDLE Ox1 0000
ROOT Ox20000
plNP Ox40000
pOUT Ox50000
PNAD Ox60000
PMON Ox70000
ASEV Ox80000
PMCM Ox90000

Parameter

RQOO OxcOOOO
CQOO OxdOOOO
PMCQ Ox11 0000
PMWQ Ox1 20000

[A:~~:JI Remove I Exit I ~
OS breakpoint added successfully

FIGURE 8-8 OS Breakpoint Description Field Filled In

4. Click on the Add button to establish the OS breakpoint.

5. Click on the Exit button to close the dialog box.

6. Click on the Run command icon R! I located in the Tool bar.

The debugger executes the program until it reaches the OS Breakpoint function
call. The debugger will stop on the assembly instruction for the OS function call.
To view the source code that made the call, click on the Call Stack tab and double­
click on the second entry, sink ()demo. c for this example. The Call Stack window
will be explained in greater detail later in this tutorial.

7. To display the source code, click on the Call Stack tab.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

8. In the Call Stack window, double-click on sink ()demo. c The source code win­
dow brings into view the code containing the breakpoint. See Figure 8-9.

,fl Searchlight - ul 0 200 6 44 - SINK Oxl eOOOO l!l[il EJ
File Edit View Debug V\llndow Help

{I :J{ ~ c::> 0'1 • • Restart Run Run To Show stepi Nexti To Rtn BrkPnt OS brkpt

I SINK Ox1 eOOOO :::JlsinkO demo.c#4 25 Oxc 492c . {
\Ulsigned l ong qidss, tidsrce, re;
\Ulsigned long date, time , ticks ;
\Ulsigned long msg[MSGLEN] ;

• if ((re= q__ident("SS_", 0, &qidss)) 1 = NOERR)
• PrintErrMessage(_FILE __ LINE_, r e) ;

• if ((re = t_ident("SRCE", 0, &tidsrce)) 1 = NOERR)
PnntErrMessage (_FILE_, _LINE_, r e) ;

1Jh ile (1)
{

[:> if ((re= q__receive(qidss, Q_NO~AIT, 0 , msg)) == ERR_NOMSG)
{

t _resume(tidsrce); 1• No more messages at
tm_get(&date, &t ime, &ticks) ; 1• the queue. Resume
ticks = ticks & Ox F; 1• SRCE and sleep for a

•/
•/
•/

tm_1Jkafter(ticks); 1• random amo\Ult of time. "f>/

1•
• Log a "Use r Event" into pMONT so that this event can be

Call Stack

• vie1Jed by the Esp tool.
•/

else if (re == NOERR)
log_event(l, msg[O]) ;

q_re ceive Unknown#-1 Oxdb 3e0

s in kO demo.c#4 25 Oxc 492c

task_wrapper_exit Unknown#-1 Ox1 Ob64c

~~lcall Stac~ Registers

Jsvs JHatted Service Call Break

FIGURE 8-9 OS Breakpoint Encountered

Jin 425,col 40 ~ l§QJ B;J ~ lfililll DI

8-11

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

Removing an OS Breakpoint

In this section you will remove the breakpoint you set in the previous section.

1. Click on Debug ~ OS Breakpoint.

2. From within the OS Breakpoint dialog box ensure that the q_ receive system call
with parameters is selected then click on the Remove button.

This action removes the previously set OS breakpoint.

3. Select the Exit button, to close the OS Breakpoint dialog box.

8.3.3 Viewing Memory Variables

8-12

The following instructions demonstrate how to change a variable value using
the SearchLight debugger.

You can modify the msg [0 J array element. The memory variables for the cur­
rent context are viewed in the context view window area of the SearchLight main
window.

1. In the SearchLight main window, select the Locals tab. The memory variables are
displayed in the Locals tab as shown in Figure 8-10.

, ... J::
void root (void)

ct><
unsigned l ong qidss, qid;

(D umligned long- iopb (4], i oi:: etval; I
~tr=- -~
I Local Variable lvalue

~I itH~ data_ptr(Vaid•) (Ox08071ebcc)

f·- fill date (Unsignedlong) 0 - c
8-181 iopb (UnsignedlongO)

ontext
(Ox0807feb90) t-, Vi

! ! .. fill 0 (Unsignedl ang) 0 w
i i .. ·fill 1 (Unsignedl ong) 0

~ i i .. ·· fill 2 (Unsignedl ang) 0
l Lfill J (Unsignedl ang) 0
l...fill ioretval (Unsignedlong) 0

ew
indow

Local~ .watc~ .call Stac~ .Registers Taskl/Oj

~rconte xt View Selection Tab;/l l§l l§Ql Q;J ~ EJ ID

FIGURE 8-10 Current Context View Window

2. Ensure that the local variables display is in view by selecting the Locals context
view tab.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

3. Expand the view of the msg array by clicking on the expand icon (1±)).

Figure 8-11 shows the expanded view of the msg[] array.

Local Variable Type Address Value . ___,

r· liil date UnsignedLong Ox3ed848 0

~ Ii] msg UnsignedLongO Ox3ed854 Ox3ed854 <--'

!·· liil 0 UnsignedLong Ox3ed854 l

! liil 1 UnsignedLong Ox3ed858 0

i·liil 2 UnsignedLong Ox3ed85c 406448

' liil 3 UnsignedLong Ox3ed860 36914

L.. iii] qidss UnsignedLong Ox3ed840 1966080
L .. liil rr. l Jn~innP.rll nnn in YPNi ~t.Pr n .

FIGURES-11 msg [] View Expanded

4. Ch ange the value of the msg [0] array element by selecting the value field and
entering OxffOOOOOO . You must press <Enter> for the change to take effect. 8
The Locals window allows values to entered in either hexadecimal or decimal for-
mat regardless of the current display format. The value will automatically be
converted to conform to the current display format. The display format can be
changed through the Edit ~ Preferences dialog. The available choices are decimal,
hexadecimal, and both.

Local Variable Type Address Value _ __:,
r· l!!I date Unsignedl ong Ox3ed848 0

$ 1Bl msg UnsignedLongD Ox3ed854 Ox3ed854 I-"
: : l!!I 0 Unsignedlong Ox3ed854 4278190080

: 1TI1 1 Unsignedlong Ox3ed858 0

~ I L l!!J 2 Unsignedlong Ox3ed85c 406448

L l!!J 3 Unsignedlong Ox3ed860 36914
decimal value of i l!!I qidss Unsignedl ong Ox3ed840 1966080

! fiil_rc_ I JnRinnerlLonn_ in_J"ertiM.n ln_ . OxffOOOOOO

FIGURE 8-12 msg [0] Modified

5. Click on View ~ Memory to access the Memory dialog box.

6. Type the address of the msg array variable (for example: 3ed854) into the
address field and press <Enter> . Do not enter the leading numbers, Ox of the
address Ox3ed854.

8-13

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8.3.4

8-14

7. The value of the memory locations corresponding to the msg [0] element are
changed to ff 00 00 00 as shown in Figure 8 - 13 .

.&' Memo1y · ul 0 1 1 155 1111~ EJ
File View

Address: I 3ed854 Range: le Auto Value

003ed854 ff 00 00 00 00 00 00 00 00 06 33 bO 00 00 90 3
003ed863 32 00 00 00 00 00 00 00 00 de ad de ad 00 00 2
003ed872 00 00 00 00 00 00 00 00 00 05 00 12 a2 54 00 T .
003ed881 06 34 b4 00 00 00 00 00 00 00 00 00 00 00 00 . 4
003ed890 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
003ed89f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
003ed8ae 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
003ed8bd 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
003ed8cc 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
003ed8db 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
003ed8ea 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00
003ed8f9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
003ed908 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

FIGURE 8-13 msg Memory View

8. On the Memory window, click on File ~ Close.

Viewing Registers

This section shows how to examine the CPU registers of the current context.

1. Click on the Registers tab. (Refer to Figure 8 - 10 for diagram showing the location
of the Registers tab.)

The register tab shows the four types of registers: General, FPU, MMU, Control.

jName Jvalue I
~ - General

~ .. FPU
~ .. MMU
1±1 · Control

FIGURE 8-14 CPU Registers

Individual registers can be viewed by selecting the expand button of a register
type.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

Name

2. Click on the General expand button to view the individual general purpose regis­
ters. See Figure 8-15.

Jvalue

i?· General
!···· RD

'-··· R1

Ox8000002a

Ox003f05b0

Ox00143aac

Ox00140000

OxOOOOOOOl

OxOOOOOOOO

: .. R2

R3

R4

1--- R5
! RR

FIGURE 8-15 General Registers Type

...llx..0..0..3

Register values can be changed by selecting a value field and entering a new
value. For now leave the register values unchanged. 8

8.3.5 Navigating Through the Files Window

This section shows how you can access a source code file through the Files
Window. You will also learn how to set a breakpoint from the source code
window.

1. Click on View -7 Files or click on the Files icon (jaaa l) that is located in the Status
bar to bring up the Files window. See Figure 8-16 on page 8-16.

The Files Windows displays the list of files that are part of your application.
Through this window you are able to easily access and edit your selected file.
Double-click on the file you want to view.

8-15

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8-16

~.~~ Files - ul .. . !lliJ El
I Name

1 §'} bspcfg.c

I ~ :~~~~fc
! - gsblkcfg .c

I §'} ldcfg .c

i = philecfg .c

FIGURE 8-16 The Files Window

2. Double-click on the drv_ conf. c filename , in the Files window. This opens the
drv_ conf . c file and displays it in a source code window.

3. From within the drv_ conf. c source code view window you can use the vertical
scroll bar to examine this source code file. See Figure 8-1 7 on page 8-1 7 .

4. To set a breakpoint in this window, click on the breakpoint icon located just
below the Menu bar.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

~ C:\ISIPPC\users\leticia\psosppc_pwe\apps\projl \drv_conf.c l!lliJ El
File Edit View

e II
BrkPnt Find

..!.I

@(#) pSOSystem PowerPC/V2 . 5.0 : apps/xxxx/drv conf . c 4.18 (&U&) 98/10 . ..!.1

**.:._]

MODULE:
DATE :

drv conf . c
98/10/23

PURPOSE : pSOSystem driver configuration and initialization

These are the functions in this file:

SetUpDrivers to setup drivers except for Network drivers·
DrvSysStartCO to setup Initial Device Name Table
SetUpNI to setup Network drivers

Copyright 1991 - 1998, Integrated Systems, Inc.
ALL RIGHTS RESERVED

Permi ss i on i s hereby granted to licensees of Integrated Systems,
Inc. products to use or abstract this computer program for the
sole purpose of implementing a product based on Integrated
Systems, Inc. products. No other rights to reproduce, use, "iJ

FIGURE 8-17 Function Source Code window

5. To close the Function Source Code window, click on File ~ Close.

6. Close the Files window.

8.3.6 Using Find to Locate a Text String and Set a Breakpoint

This section you will use the Find command to search for a text string. You will a lso
set a breakpoint.

1. Select Edit ~ Find. The Find dialog box will display. See Figure 8-18 on page 8-18.

2. In the Find dialog box, type:

process_ data

8-17

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8-18

3. Click on the Find button. Select the Find button again until your cu rsor s tops a t
the source line :

process_data(char *Buf)

.)

;~---~/
1 ~ By Defaul t , the output to stderr is disab l ed, to enable the */
1 ~ printing to stderr (Serial Console or Host Debugger), set ~ ;

1 ~ "gPseudoDemo" flag to "non- sero". *I
; ~--- - --------------------------------------- ------------------~/
if (gPseudoDemo) {

fputs (1JriteBuf, stnnnr.\:
fgets(ReadBuf, s i z
fputs(ReadBuf, std

Search El

tlll_wkafter(360); Find: process_ data

/ 1'i1'i1;1'i1'i1'i1'i1'it:1'i

1 ~ process_data: Simulate proc
1 ~

J Maleh Case J Find Backwards 1'i1'it: /

~ 1

~ 1

~ 1

*/
* /
~ 1

*/
~ 1

1 ~

1 ~

r
1 ~

1 ~

1 ~

INPUTS: Buffer address

RETURNS:

OUTPUTS:
NOTE(S): 1his function just simulates processing of data .

/ 1'i1'i1'i1'i1'i1'i1'i1'i1'i1'i1'it:1'i1'i1'it:1'i1'i1'i1'i1'i1'i1'i1'i1'i1'i1;1;1;1;1;t;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1'i1'i1'i1'i1'i1'i1'i1'i1'i1'i1'i1'it:1'i1'i1'i1'i1'i1'i1'i1'i1'i1'i1'i /

static void
1lii4Q¥MIMI!(chai:: 1iBuf) . {

i nt Index ;

/*---~/
/ * Process the data, just complement it */

FIGURE 8-18 Locating Text String

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

4. Place your cursor in the Source Window's left margin on the line:

for (Index = 0 ; Index< BLOCK_ SIZE ; Index++)

OUTPUTS :
NOTE(S) : This function just simulates processing of data.

/ ***
static void
process_data(char •Buf) . {
I i n t Index;

~ S> .)

/*---*
; • Process the data , j ust complement it •
;•---•
for (Index = O; Index < BLOCK_SIZE; Index++)

Buf[Index] = - Buf[Index];

FIGURE 8-19 Setting a Breakpoint

5. Perform a right-mouse click in the Source Window's left margin. This creates a
breakpoint.

6. Click on the Run command icon
3(

Run located in the Tool bar.

The debugger executes then stops at the Breakpoint.

7. Place your cursor in the Source Window's left margin on the breakpoint.

8. Perform a right-mouse click in the Source Window's left margin. A dialog box is
displayed asking if you want to remove this breakpoint.

9. Click on the Remove button to remove the breakpoint.

8-19

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8.3.7 Examining the Call Stack

8-20

This section contains information on how to examine the call stack.

1. The Call Stack context tab to bring the call stack into view. See Figure 8-20 on
page 8-21. (See Figure 8-10 on page 8-12 for a diagram showing the location of
the context tabs.)

In this example, the Call Stack displays the function call trace of the displayed
task. The first line of the display describes the next statement to be executed by
the task. The remaining lines display the function call history from the most
recent to the earliest. Each line lists the function name, source file name, line
number, and the program address of the stack frame.

2. To view the corresponding function code of io2 () or i ol (), do one of the fol­
lowing steps:

a. Double-click on the io2 () or iol () function call in the Call Stack tab. (See
Figure 8-20.)

b. Click on the Call Stack Context Control (see Figure 8-20). A drop-down list
shows the call stack. Select the io2 () or io l () function call from this list.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

,~ Se1uchlight - ul 0 200 6 46 - 101 _ Oxl 110000 Current Context l!!llil El
File Edd View Debug V\olndow Help

t) c.< 11! • • Restart Run Run To Show Step Next Stepi Nexti To Rtn BrkPnt OS brkpt Edd

j101_ Ox1aOOOO :::J process_dataO demo.c#635 Oxc4d84 ..
static void io10 demo.c#4 70 Oxc4a0c
pi::ocess_data(cha task_wrapper_exit Unknown#-1 Ox1 Ob70c . {

int Index;

;~--- ~/
1~ Process the data , just complement it ~/

;~--- ~/
c:::>I for (Index = O; Index < BLOCK_SIZE; Index++)
• Buf[Index] = -Buf[Index]; . }

!call Stack

process_dataO demo.c#635 Oxc4d84

io1Odemo.c#470 Oxc4a0c

task_wrapper_exit Unknown#-1 Ox1 Ob70c

FIGURE 8-20 Call Stack Context T ab

I 1n 635 ,col 1

Call Stack Tab

8-21

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

3. Select the io2 () or iol () function from the call stack list.

The source window changes to show the source code of the io2 () or iol ()

function. A call pointer indicates the call point. See Figure 8-21.

•
•

iopb.b_blockno = O;
iopb.b_bcount = l;

do

/ * read fr om block O *I
/ * read l block */

• if ((re= pt_getbuf(ptid, (void**) &bufaddr)) ==NOERR)
{

• / * addr of data block */ iopb . b bufptr = bufaddr;
1>t111111111nun**€¥i=mal!i-;-..11•m+~m1-n•~!l!l11iffi!ll!Gm111 .. 11

•
•

•

if ((re= de read(DEV RAHDISK, &iopb, &ioretval)) != NOERR)
PrintErrMessage(~FILE~, ~LINE~, re);

pt_retbuf(ptid, bufaddr);

FIGURE 8-21 i o 2 () or i o 1 () Function

4. Click on the Show icon on the Tool bar to return to the source code of the current
context.

8.3.8 Examining System Objects

8-22

The SearchLight debugger offers many features that help you perform "kernel
aware" debugging. You can examine the state of kernel objects such as regions,
queues, partitions, and semaphores. Or, you can examine threads of control (tasks).
SearchLight provides a view into the internal kernel data structures and presents
the relevant information to simplify your task of debugging a real time application.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

1. Click on View -7 pSOS Objects.

The pSOS Objects window is displayed. A lis t of a ll of the tasks and their corre­
sponding task IDs is displayed as shown in Figure 8-22.

,,f pSOS Objects - ul 0.200.6.44 l!!ll!J El
e rask
ffi .. I suoo -oxoo1 roooo

ffi I SINK- Ox001 eOOOO

$ I SRCE - Ox001 dOOOO

dJ I 102_ - Ox001 cOOOO

ffi. I 101 _ - Ox001 bOOOO

0 I MEM2 - oxoo1 aoooo

~ I MEM1 - Ox00190000

$.. . PMCM - Ox00090000

ffi • ASEV - Ox00080000

ffi I PMON - Ox00070000

$ I PNAD - Ox00060000

& - -.... --.------------.... - --------....--------...... .

·~ m Queues I Partitions I Regions ~ Semaphores ~ Mutexs

FIGURE 8-22 Tasks Lis t View Tab

8-23

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8-24

2. Click on the expand (8) control of the SRCE task to view more information
about this task. A view of the SRCE task is displayed similar to Figure 8-23.

;, ,~ pSOS Objects - ul 0.200 .6. 44 !lliJ £j
e rask

$.. I SUDO - Ox001 fOOOO

$.. I SINK - Ox001 eOOOO

$·· I SRCE - Ox001 dOOOO

!···· ~ Initial PC - Oxc4 7fB

! Priority- 128

$ ·· '@.Mode

l····O Task Status - Ready

!···· I!. Suspended? - Yes

ffi .. e pSOS2.5 Info

$ ·· I 102_ - Ox001 cOOOO

$·· I 101 _ - Ox001 bOOOO
' ·-· ·- - -- . ----
• f asksl m Queues II Partitions I Regions ~ Semaphores ~ Mutexs

FIGURE 8-23 SRCE Tasks List Displayed

You can also view other system objects (queues , regions , partitions, and sema­
phores) by pressing the appropriate tab control located at the bottom of the
pSOS Objects window.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

3. Click the Semaphores tab.

The list of Semaphore system objects, similar to Figure 8-24, is displayed.

;,~ pSOS Objects - ul 0.200 .6. 46 ~(ii El
~ Semaphore

$··I RAMO
$.. I RELW

' i 111,1,~ [ID - Ox001 00000

$.. Stati c Information

1 "123 Token Count- 1

I· .. 21: Number ofTasks Waiting - O

: ffi. e pSOS2.5 Info

$.. . ccoo
$.. I TCOO

$.. I WAOO

ffi .. I RADO

• Tasks I m Queues I II Partitions I • Regions I ~ lsemaphoresl ~ Mutexs

FIGURE 8-24 Semaphore Objects

4. Click on the other control tabs, Queue, Region, Partition, and Mutexs to examine
their contents also.

5. Close the pSOS Objects window.

8.4 Debugging in Task Debug Mode

The following section describe how to use and access SearchLight's TDM (Task
Debug Mode). For additional information on the usage of SearchLight access the
online help within the SearchLight Debugger.

8.4.1 Accessing Task Debug Mode

1. From the SearchLight menu bar, click on Debug -7 Mode. The Debug Mode dialog
box will appear. See Figure 8-25 on page 8-26.

2. In the Debug Mode dialog box, click on the Task radio button.

8-25

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8-26

3. In the task list window, select the task you want to debug. For example in this
tutorial click on the Debug checkbox corresponding to the IO 1 and I02 tasks.

4. Click on the OK button.

;~ Debug Mode El
(°' System (9 Task

I Task

ROOT Ox20000

MEM1 Ox1 80000

MEM2 Ox1 90000

101 _ Ox1 aOOOO

102_ Ox1 bOOOO

SRCE Ox1 cOOOO

SINK Ox1 dOOOO
QI lr"\f"\ nv1 onnnn

l Separate Task Windows

loebug

~ Cancel I~

FIGURE 8-25 Debug Mode Dialog

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

5. From the SearchLight menu bar, click on View ~ Tasks. A task list window will
appear.

All of the tasks which are not debug tasks are greyed in the list. The IO 1 and
102 tasks will not be greyed. The debugger is now in Task Debug Mode. See
Figure 8-26.

;~ Tasks - ul 0.200.6.46 l!llilEI
I Name 110 I state

ROOT Ox20000 Ready- Suspende

MEM1 Ox180000 Time Interval Wait

MEM2 Ox190000 Queue Message V\

S> 101 ox1 aoooo Running

102 Ox1 bOOOO Ready

SRCE Ox1 cOOOO Ready- Suspende

SINK Ox1 dOOOO Time Interval Wait

SUDO Ox1 eOOOO Time Interval Wait

FIGURE 8-26 Task View List in TDM

8-27

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8.4.2 Setting Breakpoints in TOM

8-28

1. From the Debug m enu , select OS Breakpoint or click OS brkpt button from the
SearchLight main window. The OS Breakpoint dialog box appears .

2. Open the System Call drop down menu selection and select pSOSPartition. A list of
related system calls is displayed in the System Call column. See Figure 8-27.

;f! OS Breakpoint El
~------ 08 Breakpoint Description ------­

J FIHlction: pt_ident Ot1gin: • (any) Parameter. • (any)

System Call

I PsosPartition

pt_ create
pt_de lete
pt_getbuf
pt_1dent
pt_retbuf
pt_sgetbuf

TaskJISR Parameter

"'(any)
IDLE Ox1 0000 PTN1 Ox1 50000
ROOT Ox20000
plNP Ox40000
pOUT Ox50000
PNAD Ox60000
PMON Ox70000
ASEV OxBOOOO
PMCM Ox90000
MEM1 Ox1 80000 ~

[:A~:~:J I Remove I Exit I ~
OS breakpoint added successfully

FIGURE 8-27 Setting OS Breakpoints in TDM

3. Select the pt_ ident from the System Call column then choose * (any) from the
Task/ISR and Parameter columns . Click the Add button to add the breakpoint.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

4. Repeat steps 2 and 3, selecting the functions shown in the following table. Click
the Add button. A status bar will display. Check to see if all the breakpoints were
added as specified.

TABLE 8-2 TDM Tutorial Settings

System Call Function Calls
Task/ISR Parameter
settings settings

Partition pt_ident * *

Partition pt_getbuf * *

Partition pt_retbuf * *

Device de_read * -

Device de_ write * -

5. Click on Run in the SearchLight main window.

SearchLight runs until the program execution finds IO 1 or I02 makes one of the
above system calls. The source window is updated to show assembly code.

6. In the SearchLight window, click on the Call Stack context selection tab. Double­
click on the iol() or io2() task, whichever appears. The source window updates
to show the line corresponding to one of the above function calls.

7. Click on Run again until any five breakpoints have been found.

Observe the breakpoint source line using the Call Stack tab. By now you would
have stopped in the IO 1 or I02 tasks. The debugger will only stop tasks on the
TDM list. In this case the tasks are IO 1 and I02.

8.4.3 Removing Tasks from Task Debug Mode

1. Choose Debug~ Mode from the SearchLight main window, and deselect the IOl
task from the debug list and click on OK.

I02 is the only debug task at this stage. IO 1 should be grayed in the Tasks
window.

2. Click on Run and observe the breakpoint source line using the Call Stack tab.
Check if the debugger stops execution only for a breakpoint for the I02 task.

Continue execution this way, until the debugger finds any five breakpoints.

8-29

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8.4.4 Exiting Task Debug Mode

8-30

1. From the SearchLight menu bar, click on Debug~ Mode. The Debug Mode dialog
box will appear.

2. In the Debug Mode dialog box, click on the System radio button.

3. Click on the OK button.

4. From the SearchLight menu bar, click on View ~ Tasks. A task list window will
appear. See Figure 8 -28.

ROOT Ox20000 Ready- Suspende

MEM1 Ox180000 Time Interva l Wait

MEM2 Ox190000 Queue Message V\

101 ox1 aoooo Ready

102 Ox1 bOOOO Ready

SRCE Ox1 cOOOO Ready - Suspende

SINK Ox1 dOOOO Ready

SUDO Ox1 eOOOO Time Interval Wait

IDLE Ox10000 Ready

pl NP Ox40000 Ready

~ pOUT Ox50000 Running

PNAD Ox60000 Ready

PMON Ox700 00 Event Wait

ASEV Ox80000 Event Wait

PMCM Ox90000 Component Re soL

FIGURE 8-28 Task View List in SDM

With the exception of Restart, all the commands available in the System Debug
Mode are available in the Task Debug Mode.

5. From the SearchLight menu bar, click on View ~ Breakpoints. A list of all the
breakpoints will appear.

6. Highlight all the breakpoints.

7. Select Delete Breakpoint button. This will remove all the breakpoints you set during
this tutorial.

pRISM+ User's Guide The Searchlight Debugger - A Tutorial

8.4.5 Conclusion

You have now concluded the SearchLight debugger tutorial. Additional information
on the SearchLight Debugger is located in the on-line help in the SearchLight main
window. To access SearchLight help from the SearchLight main window click on Help
-? Contents. In the Windows environment, you must have a default browser config­
ured for your system in order to access the SearchLight html help files.

8-31

8

The Searchlight Debugger - A Tutorial pRISM+ User's Guide

8-32

The SingleStep Debugger -
A Tutorial

The SingleStep debugger from Software Development Systems, Inc. is included as
an optional component in pRISM+ for 68K and PowerPC processors. This chapter
introduces SingleStep and provides a tutorial that shows how to use SingleStep to
debug a SOSystem application.

9.1 What is SingleStep Debugger?

SingleStep debugger lets you control the execution of source-level or assembly
language programs, so you can easily find the errors in your applications. You con­
trol program execution by setting breakpoints on specified memory address or
source location. Execution is then suspended enabling you to examine the variables
accessed. The SingleStep debugger also allows you to step line-by-line through a
program, either in source-level or assembly language.

The SingleStep debugger operates with the pROBE+ target level debugger. pROBE+
provides a debug connection to the target using a Serial or Ethernet connection.

SingleStep debugger supports BDM (Motorola 68K) and JTAG (IBM and IBM/
Motorola PowerPC) target control mechanisms, which are especially useful in situa­
tions where target resources are extremely constrained and communication must be
simplified. For additional information on BDM or JTAG, refer to Appendix C.

SingleStep Debugger product features include:

• A graphical user interface with multiple windows.

• Automatic tracking of program execution through source code.

• Traces and breaks on high-level language statements.

9-1

9

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

• Monitoring of language variables and system-level objects such as tasks,
queues , and semaphores.

• Full-featured C++ language support.

• Ability to debug optimized code.

9.2 Using SingleStep Debugger

This section illustrates the features of SingleStep debugger using the pSOSystem
pdemo sample application.

9.2.1 Before You Begin

Before you can complete this tutorial you must have completed defined in the Chap­
ter 3 , Quick Start with a Tutorial.

9.2.2 Starting SingleStep Debugger for pSOSystem

9-2

To start SingleStep Debugger for pRISM+ and download the pdemo application to
the target, complete the following steps:

1. From the pRISM+ Manager, click Tools .-+ SingleStep Debugger. This launches the
SingleStep Debugger.

The Debug window and the SingleStep main window are displayed. See
Figure 9-1 for an example of the Debug window.

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

Debug El

File J Connection J Processor Options Logging J

File JOSPPC_PWE\userapps\proil \ram.elf :::J

r Debug without a file Browse

I ._I _oK___.] Cancel Help

FIGURE 9-1 Debug Window

NOTE: The name of file you want to download should appear in the File field . If
not, complete step 2 through 7 . If your filename does appear in the file
field , go directly to step 8 .

2. Click the Browse button in the Debug window and locate the ram . elf file.

NOTE: If you already know the path and file name, you can simply type it in the
space labeled File.

3. Highlight the ram.elf file by clicking on it and click the OK button.

9-3

9

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9-4

4. Click on the Connection tab.

The Connection window is displayed (Figure 9-2).

File

Type""""""'"""'"""'"""'"""'"""'"""'"""'"""'"""'~
lo Network Host

r Serial Port

Details """'"""'"""'"""'"""'"""'"""'"""'"""'"""'""f•
Host: J 1 01. 20.1.1 34

lo UDP (direct pROBE+ connection)

r TCP (pROBE +via NETROM)

OK Cancel Help

FIGURE 9-2 Debug Window with Connection Selected

5. Select Network Host in the Type section of the Connection window.

6. In the Details box, select UDP and enter the name or your target board (if DNS is
available) or its IP address in the Host field.

7. Click on the Logging tab and select the Log to screen (always) option.

8. Click the OK button.

The system proceeds to make the network connection and download the executable
image. The Debug Status window displays status messages as this takes place. When
the download is complete, the Image Downloading , Target Reset. and Execute until 'main'
fields should show Completed, and the Debug Session field should show Started
Success f ully (Figure 9-3 on page 9-5).

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

Debug Status

File: IC: \IS I PPC\U sers\leticia\PS 0 S PPC_PvVE \user apps\projl \r

Image Downloading)completed

Target A eset)completed

Execute until 'main' Jcompleted

Debug Session Jstarted Successfully

Loading: 452 Kbytes

~ ~
0 452 K

l : : ::: :: : ::~i?.~:~:: ::: : : : :: l l

FIGURE 9-3 Debug Status Window

NOTE: The status of the download is displayed in the bottom of the Debug Status
window.

9. Click the Close button to close the Debug Status window.

9-5

9

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9.2.3 The Toolbar and Source Windows

9-6

After establishing the connection and successfully downloading the executable
image, SingleStep opens the working windows (see Figure 9-4). These working
windows are your main work area.

- 0 x

Debug l!l~EJ

79 unsigned long iopb[4] , ioretval ;
BO unsigned long date . time , t icks ;
81 unsigned long t i d[l O];
82 vo i d • data_ptr ;
83 unsigned long re ;
84 unsigned long ptid , nbufs ;
85 unsigned long said ;
86 vo i d • seg_p tr ;
87 uns i gned long rnid .
BB
89 / •---• /
90 / • Set da te to May 1 , 1995 , time to 8 : 30 AM . and start the system • /
91 / • clock running . • /
9 2 / • ---• /

• 93 d ate • (1995 « 1 6) + (5 « 8) + 1 ;
94 tiae • (8 « 16) + (3 0 « 8) ;
95 ticks • O;
96 tm_set(date , ti•e . ticks) ;
97
9 8 #if !SC_AUTOINIT
99 de_init(DEY_TI MER , iopb , &ioretval. &data_ptr) ;

100 de_init(CONSOLE . iopb , &ioretval. &data_ptr) ;
101 #endif
10 2
103 / *---*/
104 / * Nov i n i t ialize the RAM disk driver . Although this a pplication */
105 / * does not use the pHILE+ file systea manager , it does read and write • /
10 6 / * blocks from the "RA.H disk" device . The reading and wri t i ng of * /

s 0

~-PWE\use.~s\pfoj1 \demo.c .J root ... 83 18 St~
J

EJlU"~o, OEAOOEAD
A1 : 003FEAFO

R2: 00008894
A 3, 00000000
R4: OOOOllOO
A 5: 00000000
As, 00000000
A7: OOJOOlJO
o o. nnnnnnnn

For Help, press F1 Stopped

FIGURE 9-4 Toolbar and Source Windows

The first time SingleStep is invoked, three working windows are displayed:

• Debug window

• Source panel

• Stack panel (shows both function calls and local variables)

• Register panel

• Toolbar window

• Watch window

#,

- 0 x

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

NOTE: By default, these three windows are detached windows: The windows are
not connected together. Additional windows that are not visible at this
time are accessed from the SingleStep toolbar menu. Refer to the
SingleStep User Guide for more complete information on these windows.

9.2.4 Invoking the Command Window

The Command window, as shown in Figure 9-5, is the interactive shell for entering
commands.

- Command l!I~ EJ
SingleStep > I

FIGURE 9-5 Command Window

To invoke the Command window, select Command from the Window menu selection on
the Toolbar menu.

9.2.5 Running the System Debug Tutorial

This section covers various basic SingleStep Debugger for pSOSystem tasks.

9-7

9

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9-8

Memory Manipulation

To examine memory, complete the following steps:

1. Enter read -1 -m 18 Ox400 from the Command window.

The read command requests a hex display of memory. The -1 requests memory
to be displayed in long words. The 18 requests (and displays) eighteen lines of
memory as shown in Figure 9-6.

- Command 11111~ EJ
00000500 7FF343A6 7FE80 2A6 7FF243A6 48000005
00000510 7FE802A6 57FF002E 93DFOODO 7FDA02A6
Sing l eStep > write - b -f Ox12 -c 7 Ox41 0
SingleStep > write -b Ox412 .. 0xAB
SingleStep > read -1 -m 18 Ox400
(Ox400)
00000400 7FF343A6 7FE802A6 7FF243A6 48000005
00000410 1212AB12 1212122E 93BFOOCC 93DFOODO
00000420 7F8242A6 7FD342A6 93BFOOE4 93DFOOD4
00000430 7FBA02A6 7FDB02A6 93BFOOEC 93DFO OFO
00000440 7FA00 0 26 93BFOO D8 73DE0032 7FAOOOA6
00000450 7FBDF378 83DFOOCO 7FBDF378 7FA00124
00000460 4C00012C 57FE047E 67DE0001 83BFOOC4
00000470 93DFOOFC 7FA803A6 3BFFOOC8 4E800020
00000480 7FF343A6 7FE80 2A6 7FF243A6 48000005
00000490 7FE802A6 57FF002E 93DF0000 7FDA02A6
000004AO 93DFOOEC 7FDB02A6 93DFOOFO 9421FF4 8
0 0000480 93A10084 83BFOODO 400C2022 00000 0 00
000004CO 00000000 00088 1EO 41245623 00000008
00000400 811E00 10 00 1 2C264 40000000 00604000
000004 EO OOA89440 000885A4 42C008AO 811E00 10
000004FO 00001032 84 100400 OC080004 008A0044
00000500 7FF343A6 7FE802A6 7FF243A6 48000005
00000510 7FE802A6 57FF002E 93DFOODO 7FDA02A6
SingleStep >

FIGURE 9-6 Output of the read Command

2. Fill an area of memory with Oxl2 by entering:

write -b -f Ox12 -c 7 Ox410.

The -b directs the write command to operate on byte (8-bit) elements. Each
byte in the range of 410 through 417 is now set to Oxl2.

NOTE: The address range may be unique to each board. Check for a valid
address range.

3. Now set one byte in this range to a different value by entering:

write -b Ox412=0xAB

This sets the byte at location 0 x 412 to AB Hex.

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

4. View the results of the write commands by entering:

read -1 -m 18 Ox400

5. If your target is not responding, complete step 6 through 8 . If your target is
responding, go to step 9 .

6. Press the reset button on your target board.

7. From the pRISM+ Manager toolbar, click the Reset button.

8. Download the application again by selecting File ~ Debug and clicking OK.

9. Click on the Close button in the Debug Status Window after the download is
completed.

9.2.6 Source, Mixed, and Disassembly Display Modes

SingleStep Debugger supports three display modes while you are debugging:

• Source

In source-level mode, you debug code at the C/C++ language level, so the Code
window shows the C/C++ language source code.

NOTE: When in source-level mode, a single Step command lets you execute one or
more C/C++ language statements.

• Mixed

In mixed mode, you are shown assembly language with the corresponding high­
level source statements interspersed.

• Disassembly

In disassembly mode, debugging is at the assembly-language level, so the Code
window shows assembly-language code.

Executing CIC++ Statements One Line at a Time

The source window now displays source code for the ROOT task. The SingleStep
Debugger for pRISM+ has highlighted the opening brace of the ROOT task, which is
the current point of execution. (When control is entering a procedure, SingleStep
highlights the opening brace.)

9-9

9

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9-10

Two commands can be used to step through either source lines or machine instruc­
tions . These are:

• Step

• Step In

The difference between Step and Step In is that Step In steps into subroutines, and Step
executes entire subroutine calls and halts when the called subroutine returns.

Step Command

1. You can execute C/C++ statements one at a time by pressing the F10 button or
selecting Step from the Run menu.

2. Repeat the Step command until the line containing the subroutine call
tm_ set () is highlighted (which may require more than one Step).

The highlighted line moves down because you are single-stepping lines of exe­
cutable code. The complexity of the code determines whether the SingleStep
Debugger requires more than one step to complete a single line.

NOTE: In some cases, SingleStep may appear to execute several lines of C or C++
code with a single Step. This is a result of compiler optimizations.

3. Single-step again and repeat until you are on the de_ ini t () (this is another
assembly routine) .

4. Now switch to mixed mode by selecting M button on the Debug window.

The source window display changes, showing that the instructions making up
the current source line consist of preparation for the call (argument passing).
the actual subroutine call, and maybe some cleanup after the subroutine call,
depending on the target processor architecture.

Step In and Go Until Command

The Step In command single-steps either source lines or machine instructions,
according to the debugger mode. Step In can be invoked either by selecting it from the
Run pull-down menu, clicking Stepln button or by pressing F8.

1. Press the F8 key several times , until the actual assembly-language subroutine
call (e.g. jsr on a 68k, bl on a PowerPC) is highlighted.

2. Press F8 once more, and the first instruction of the subroutine should be high­
lighted.

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

3. Now return to high-level mode by selecting Source from the mode selection bar in
the source window.

SingleStep either switches back to source code mode, or continues to display
assembly-language, depending on the target processor you are using. This
occurs because it is not always possible to trace back up the call chain from the
first instruction of a subroutine. In this case you may get out of the called sub­
routine and back to C code by using the Step Out command from the Run menu. If
necessary, try it now, and you should return to C source code.

The Go Until command allows you to set a temporary breakpoint and resume execu­
tion of the application.

1. Select Go Until from the Run menu.

2. In the dialog box that opens, specify root# 16 6 as the location for the temporary
breakpoint, and click the OK button.

SingleStep should break at line # 166.

Querying System Objects

SingleStep offers many features that help you perform "kernel aware" debugging.
You can:

• Examine the state of other kernel objects and the pSOSystem configuration.

• Examine the state of the currently executing task.

• View into the internal kernel data structures.

• Debug your application using a command line interface.

• Set task-specific breakpoints.

9-11

9

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9-12

1. Select Kernel Objects from the Data pull-down m enu. See Figure 9 -7 .

The pSOS+ Kernel Objects and Configu ration window is displayed:

pSOS+ Kernel Ob1ects and Conflgurahon

r AllObiects

r Semaphores

\.' Tasks

r Partitions

r Node Roster

r Component Versiom

r Configuration Params r Message Queues r Regions

System Date

Ha111e

'IDLE'
'ROOT'
'pMHG'
'pIHP'
'pOUT'
'pROC'
'PHAD'
'PMOH'

9

Ox00010000
Ox00020000
Ox00030000
Ox00040000
Ox00050000
Ox00060000
Ox00070000
Ox00080000

Time Ticks

Pl'"io Mode

0 PRE,HOTSLICE
230 PRE,HOTSLICE
247 HOPRE,HOTSLICE
246 HOPRE,HOTSLICE
245 HOPRE,HOTSLICE
244 HOPRE,HOTSLICE
255 PRE,HOTSLICE
242 PRE,HOTSLICE

FIGURE 9-7 Tasks Displayed

Dismiss

Advanced »I

Status

Ready
Runn i ng
EuWait

Ready
Eu Wait

Ready
Ready

EuWait~

A list of all of the tasks is sh own, including information about each one . Notice
tha t task 'ROOT' is currently running, and that all of the other tasks are either
ready or blocked for some reason (for example, waiting for events).

You can view other system objects by pressing the appropria te radio button in
the kernel objects window.

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

2. Click the Semaphores radio button.

The lis t of Sem a phore system objects is displayed in Figure 9-8.

pSOS+ Kernel Ob1ects and Configuration

r All Objects r Tasks Node Roster Dismiss

r- r~e.~.~P.E~r.~~ r Partitions
r Message Queues r Regions

I• r Component Versiom

r Configuration Params Advanced » I

System Date Time Ticks

Ha111e Ac cess QType Coun t TQ Lengt

'RELW ' OxOOOBOOOO Local FIFO 0000000001 00000000
'RDA1' OxOOOEOOOO Local FIFO 0000000001 00000000
'WRA1' OxOOOFOOOO Local FIFO 0000000001 00000000
'RXC1' Ox00100000 Local FIFO 0000000000 00000000
'TXC1' Ox00110000 Local FIFO 0000000000 00000000
'RAMD' Ox00120000 Local PRIO 0000000001 00000000

!..I

FIGURE 9-8 Sem aphores Displayed

3. Now click the Message Queues radio button.

9-13

9

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9-14

The list of Message Queue system objects is displayed in Figure 9-9.

pSOS+ Kernel Ob1ects and Conhgurahon

r AllObjects r Tasks r Node Roster

r Semaphores r Partitions r Component Versions

r Configuration Params (e' r~e.s.~~~e.A~i.~i.~ r Regions

System Date 1 c Time Ticks

Dismiss

Advanced » I

Ha Ille Uar? Access QType MQ Length

'PMCQ'
'PMWQ'
'SS

OxOOOCOOOO
OxOOODOOOO
Ox001BOOOO

Ho
Ho
Ho

Local FIFO
Local FIFO
Local PRIO

FIGURE 9-9 Message Queues Displayed

0000000000
0000000000
0000000000

4. Now close the Kernel Objects window by clicking on the Dismiss button.

5. Execute the application until just past the point where another message queue
has been created by selecting Go Until from the Run menu.

6. Enter root#190 in the dialog box, and click OK.

7. When execution stops at line #190, look at the list of message queues again by
selecting Kernel Objects from the Data pull-down menu (you may need to click the
Message Queues radio button again).

Message queue "QMEM," created by the system call on line 182, is now dis­
played as well.

8. Click on the Dismiss button to close the Kernel Objects and Configuration window.

Reading a Variable

To read the value of program variables, complete the following steps:

1. In the Source window, double-click on the 'seg_ ptr' variable on line 190.

2. Select Read from the Data pull-down menu so that the Read window appears.

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

This method can be used to display the value of a local variable in the function
currently displayed in the Read window:

•• Read lll!l~EJ

Ox3EC9CC

FIGURE 9-10 Read Window

3. Close the Read window.

Displaying a Variable

You can also control the information displayed for a variable.

1. In the Stack panel, select the nbufs variable and then click the right mouse but­
ton anywhere in the window.

A pop-up menu appears .

2. From the pop-up menu, select Properties.

The "Display Properties for nbufs" window is displayed.

3. Select the Format tab, turn on the Address checkbox, and click the OK button.

The Locals window should now show the address of variable nbufs as well as its
value, as shown in Figure 9-11 on page 9-16.

9-15

9

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9-16

Modifying a Variable

tid[6) = 1769472 = Ox180000
tid[7) = 1835008 = Ox1 COOOO
tid[8) = 1900544 = Ox1 DODOO
tid[9) = 0

data_ptr = OxO
re= 0
ptid = 2031616 = Ox1 FOOOO

bufs at Ox3FEB44 =

smid = 2097152 = Ox200000
seg_ptr = Oxdeaddead
rnid = 0
rsize = 404908 = Ox62DAC

FIGURE 9-11 Locals Window

To modify a variable , complete the following steps:

1. Select re in the Stack panel, and then right click and select Modify from the popup
menu that appears.

A dialog box opens where the value of re can be changed.

2. Enter any new value and click OK when done.

Watching a Variable

A watched variable is displayed in the Watch window. SingleStep updates the value
of a watched variable each time control is returned from the target to the debugger.
In contrast, the Read window gives the value of the variable at a point in time but
the value is not updated as the execution of the program continues.

To demonstrate the difference:

1. In the Source window, double-click on rsize (on line 192).

2. Select Watch ... from the Data menu.

3. Select Read ... from the Data menu.

Notice that both the Watch and Read windows show the same value for rsize.

pRISM+ User's Guide The SingleStep Debugger - A Tutorial

4. Execute three lines of source by hitting F10 three times.

Notice that the value of rsize changed in the Watch window but not in the Read
window.

NOTE: You can control the information displayed for watched variables just as
you did for read variables. Just click the right mouse button in the Watch
window and select Properties ... from the pop-up menu.

This concludes the SingleStep Debugger for pRlSM+ tutorial.

5. To complete your tour of the pRlSM+ tools, return to the Quick Start with a Tuto­

rial chapter.

NOTE: For additional information on the SingleStep Debugger, refer to the
SingleStep User Guide on the pRlSM+ Documentation CD-ROM.

9-17

9

The SingleStep Debugger - A Tutorial pRISM+ User's Guide

9-18

11 ESp

A pSOSystem application usually consists of several tasks. When the application is
executed, these tasks can be blocked, waiting, or pre-empted by higher priority
tasks. These tasks request resources by means of semaphores and queues. In this
situation, untangling the interaction using a standard debugger can be difficult.
ESp helps you visualize the tasks interaction.

ESp displays the interactive behavior of groups of tasks and events. Color coding 1 Q
shows whether a task is running, idle, blocked, or waiting for a semaphore. You can
visually follow context switches, task-state transitions, interrupts , system calls, and
other major application activities.

ESp also enables you to view real-time stack and CPU usage, context information,
and user-defined events.

ESp views your application as a series of pSOSystem-specific events. ESp collects
events as your application runs on the target in a session that you start and stop. It
can collect any of the following events:

• Service calls - all pSOS+, pHILE+, pNA+, pRPC+, pSE+, pTLI and pSKT system
calls.

• 1/0 calls
de close .

de_ init, de_ open, de_ cntrl , de_ read, de_write, and

• Context switches - transitions of tasks from and to the Running state.

• Interrupts - Entry and exit from interrupt handles.

• User events - Events defined by the user in their application.

10-1

ESp pRISM+ User's Guide

The session in which ESp collects events is called an experiment. Before you begin
an experiment, you must create an experiment configuration that tells ESp which
events to collect and how to collect them. You create the experiment configuration in
the Configuration Window.

After you run an experiment, you can study the events in ESp's main window, the
Analyzer Window. The Analyzer window displays the execution thread of your appli­
cation with icons that represent different events. In addition, it displays profiles of
task, semaphore, and region use.

In a typical ESp session you will run an initial experiment to identify the general
area of a problem. You will run more experiments and fine-tune your collection of
events, enabling you to narrow down the area of analysis .

ESp stores all the information for each experiment - the configuration information
and the collected events - under a single name that you provide in the Configura­
tion window. As you run successive experiments, ESp asks you to provide a new
name for each experiment. You may want to name the experiments sequ entially; for
example expl, exp2 , etc.

ESp expects you to create a new configuration each time you run an experiment,
but you can use the same configuration repeatedly as long as you provide a new
name for each new experiment.

10.1 ESp Prerequisites

Before you can use ESp, your application must meet the following prerequisites:

1. Your application must be built with the pMONT+ target agent enabled.

2. ESp uses Serial or Ethernet to communicate to the target. ESp needs its own
serial channel for communication to the target.

3. Your application must be compiled, downloaded and running on your target
board. Refer to Chapter 3 , Quick Start with a Tutorial for instructions.

10.2 Placing User-Defined Event in the Application

10-2

The user event call log_ event () is an option that lets you be more specific when
you determine the events that begin and end data collection. If, for example, you are
not sure about which area of an application is creating a problem, you can insert
user event calls to begin and end a data collection run around the suspected

pRISM+ User's Guide ESp

10.3

portions of code. During normal operation, the call has a negligible effect on system
overhead.

Refining Data Collection Needs

The appropriate specification of events and buffer management is crucial to making
data analysis concise and effective. For example, with an overly general event speci­
fication, the Analyzer window shows an unnecessarily large amount of information.
Therefore, the sections that follow describe the effects of various buffer management
schemes and event specifications.

10.3.1 Buffer Management

The allowable buffer management overhead and the frequency of application prob­
lems influence your buffer management choice. You may want to collect only a small
amount of data, or you may need pMONT + to monitor the application for days to
capture the relevant events. In descending order of overhead, the most complex
buffer management scheme is Transmit, then Wraparound, and finally, Halt on
Buffer Full. The buffer management choice should be appropriate to your analysis
~a~. 10

Transmit

The Transmit buffer option has the most impact on application behavior because it
is the only option with a periodic update mechanism. This causes pMONT + to com­
municate with the host system during the data collection run (if it does not halt first
because of other factors). Because it consumes a greater amount of system
resources, you should select Transmit buffer only when necessary, such as when
you need a large amount of collected data.

With the Transmit buffer management option, you should be aware of the influence
of the communication medium and event parameters. Ethernet does not create a
problem for pMONT+. For a serial connection, however, a lower baud rate (below
19.2 Kbps) can keep pMONT+ from transmitting to the host fast enough if pMONT+
rapidly logs events. As the following subsections explain, the choice of events affects
the rate at which pMONT + logs events. If pMONT + cannot transmit events fast
enough because of a s low serial connection, it stops collecting data. The ESp tool
then posts the following message to the console :

Experiment ended because buffer full .

If you must use a serial connection at a low baud rate, try to specify events effi­
ciently as described in Section 10.3.2, Event Specification.

10-3

ESp pRISM+ User's Guide

Wraparound

The Wraparound option is useful for analyzing program errors because it directs
pMONT + to capture the events leading up to an exception. For example, if an unde­
sirable condition occurs once every few days, you can select Wraparound so that
pMONT + captures only the one buffer that surrounds the event.

The Wraparound option is much less intrusive than Transmit because it requires
pMONT + to transmit to the host once - when data gathering ceases. While the data
gathering proceeds, pMONT + continuously overwrites the buffer until the end trace
event or other termination occurs. If you want the data collecting process to run
without pMONT + reporting to the host until the run is terminated, select Wrap­
around.

Halt on Buffer Full

The simplest buffer management option is Halt on Buffer Full. If you want to exam­
ine the program's execution within a specified window of events, use this option.

10.3.2 Event Specification

10-4

Whenever possible, you should configure the data collection so it provides the
needed information with the least amount of overhead. Otherwise, the result may be
an inaccurate picture of what the application is doing. With a more complex event
specification scheme, pMONT+ intrudes more on the application, because it contin­
uously checks an application against the criteria specified in the data collection
configuration. Furthermore, for a finely tuned application, the degradation that
pMONT + overhead causes to the application's performance is more significant.

A group of parameters requires less overhead than a specification with the same
number of parameters you specify individually. For example, if you do not want to
log any level of ISR, it is more efficient to specify ISR (for a ll ISRs) in Events to Ignore
than to specify each ISR level for pMONT + to ignore.

Begin Trace Events

Before event collection actually begins, pMONT + looks for only a begin trace event.
In general, the best approach is to specify the least number of begin trace events.

End Trace Events

After event collecting actually begins, pMONT + checks for end trace events, the
events to log, and the events to ignore, so you should consider your choices for
these events in relation to overhead.

pRISM+ User's Guide ESp

Center Trace

The effect of Center Trace (a feature of End Trace Events) is to log the events sur­
rounding an end trace event. Its purpose is to help reveal what happened around
the end of a data collection run.

Events to Log

To help minimize the overhead created by Events to Log, try using the Events to
Ignore specification as a complement to Events to Log. See Events to Ignore on
page 10-5.

Events to Ignore

Events to Ignore overrides duplicate specifications in Events to Log, so be sure not
to cancel event logging you really want in Events to Log. On the other hand, you can
complement the Events to Log by using Events to Ignore to make data collecting
more efficient. For example, if an application has six interrupt levels but you want
to log only five , specify all interrupt levels in Events to Log and one level in Events to
Ignore. This is more efficient than specifying each interrupt level in Events to Log,
because pMONT + checks for two conditions in the former approach and five condi- 1 Q
tions in the latter.

10.4 Tailoring the Configuration Table

When you consider the size of the pMONT+ buffer (traceBuffSize), make sure it is
large enough to accommodate the scope of information you want your application to
supply to pMONT+. The traceBuffSize value is part of the typedef struct . You
set this parameter by changing the value of PM_ TRACE_ SIZE in the sys_ conf . h
file.

10.5 Tailoring the Application's Stacks

If an application's stack size is such that it can be pushed very close to its size limit,
pMONT + may detect an error. If pMONT + detects a write operation to either the
highest or the lowest eight bytes, pMONT + flags it as a corrupted boundary (but only
if Enable Checking is selected in the ESp Stack menu; otherwise, corrupted bound­
aries are undetected). Therefore, you may want to consider setting a slightly larger
stack size within your application if peak stack usage tends to be at or near the
stack size limit.

10-5

ESp pRISM+ User's Guide

10.6 Post-Mortem Analysis in ESp

10-6

The post-mortem analysis capability in ESp allows you to capture the events leading
up to a fatal error or target crash. You can later analyze this data with ESp to pin­
point the problem.The following are the steps to collect post-mortem data for a tar­
get crash:

1. In ESp, select File ~ New Experiment.

2. In the Configuration window, click on Wrap Around so that the data is continuously
collected in a wrap around buffer on the target.

3. Select Collection ~ Start Now or Collection ~ Start at Reset.

4. If you selected Collection ~ Start at Reset, re-initialize pSOS+ and run the target
application.

5. When you suspect the target application has crashed, stop the experiment by
selecting Collection~ Stop.

6. ESp will try to communicate with the target to stop the experiment. Since the
target application has crashed, this operation will fail. ESp will report that the
experiment is aborted. Click the OK button.

7. DO NOT exit ESp.

8. Soft-reset the target. Press the target board's reset button.

CAUTION: DO NOT power off or on.

9. Setup the target (i.e., load the application, boot pSOS+, and initialize pSOS+)
and run the application, as described in Chapter 3 .

10. Go back to ESp and select File ~ New Experiment.

11. ESp will detect that the previous experiment was aborted. It will ask you if you
want to get any unrecovered experiment data from the target.

12. Click on the Yes button.

ESp will recover the post-mortem data and bring up the Analyzer window so
that you can analyze the crash. If the target reset corrupted pMONT's experi­
ment buffer, the post-mortem data is not available. In this case, ESp will display
an error message that the experiment buffer was corrupted.

I I Object Browser

Object Browser is a run-time analysis tool. It monitors target behavior by taking
periodic snapshots of the operating system objects on the target while the target
system is running. Information on OS objects such as tasks, message queues,
semaphores, and other critical information such as stack and memory usage can be
displayed graphically. This gives a sampled view of the target run-time behavior over
time.

Two intuitive graphical display modes exist:

• The Snapshot View is best suited for displaying run-time attributes of system
objects, for example, run-time status and configuration parameters of a task.

• The alternative, Graph View, is best used to display the level of usage, for an
example, each task's stack usage as a percentage of its own maximum allowed
stack size.

From these intuitive graphical displays , users can easily spot problems such as
stack overflow or memory leak over time.

Each collection of data obtained from the running target system can either be stored
in Object Browser and compared with past or future samples or exported to stan­
dard desktop tools such as Microsoft Excel for documentation purposes.

You can use Object Browser to analyze the runtime behavior of your target system
after you download and execute your application on the target. The following are
examples of what you can use Object Browser to learn about in your application:

• Error conditions, such as stack overflows, stack underflows, memory leaks, and
deadlocks (See Monitoring for Stack Problems on page 11-4, Finding Memory
Leaks on page 11-4, and Checking for Deadlocks and Priority Inversion on
page 11-5.)

11-1

11

Object Browser pRISM+ User's Guide

11-2

• Operating system object status such as information on: tasks, regions, parti­
tions and semaphores

You can also use Object Browser to learn an unfamiliar application. Without viewing
the source code, you can start immediately to look at the runtime behavior to
understand how an application works.

When multiple programmers work on the same project, each can use Object
Browser to view the rest of the application and determine whether all the parts are
synchronized well.

pSOSystem objects you can monitor

Using the corresponding snapshot or graph page, you can monitor the following
pSOSystem objects:

Tasks

Stacks

Semaphores

Regions

Partitions

Queues

Mutex

The smallest unit of execution that can compete on its own for
system resources. The pSOSystem application is made up of a
series of tasks. The task can be viewed in snapshots only.

The memory allocated to each pSOSystem task. The stack can be
viewed in graphs only.

A mechanism for inter-task and task-ISR synchronization that is
commonly applied to the producer-consumer problem, and the
problem of controlling access to shared resources. It is defined to
be a counter with an associated task-wait-queue.

A user-defined, physically contiguous block of memory. Tasks
allocate memory segments from regions.

A user-defined, physically contiguous block of memory divided into
a set of equal-sized buffers. Tasks allocate buffers from partitions.

A flexible, general-purpose mechanism for tasks to synchronize
and communicate with each other. Tasks send and receive
messages from queues.

A synchronization primitive used to provide mutual exclusion
among tasks by serializing access to the critical regions of the
code. It is similar to a binary semaphore. It also provides the ability
to prevent unbounded priority inversion.

pRISM+ User's Guide

Cond. Var.

Object Browser

A general purpose synchronization primitive that provides a sleep­
wakeup or signal-wait mechanism. A condition variable has an
associated user-defined condition.

The flexibility of binding any user defined predicate with a
condition variable makes it a very powerful primitive for building
complex synchronization mechanisms.

It operates in conjunction with a mutex so that the evaluation and
alteration of the predicate, and signaling/waiting for the predicate
can be performed as an atomic operation, thereby avoiding the
races inherent in implementing such synchronization mechanisms
on a pre-emptible multi-tasking system.

Object Browser target overhead

Object Browser communicates with the pMONT+ target agent to obtain the informa­
tion from your target system. This operation uses CPU time on the target. The
amount of CPU used depends on which objects are monitored and the update rate.

Object Browser Prerequisites

Before you can use Object Browser, your application must meet the following pre- 11
requisites:

• Your project application must have pMONT + target agent as part of its
components.

• Object Browser uses Serial or ethernet to communicate to the target.

• Your application must be compiled, downloaded and running on your target
board. Refer to the Quick Start with a Tutorial chapter for instructions.

11-3

Object Browser pRISM+ User's Guide

11.1 Monitoring for Stack Problems

11.1.1 Stack Problem Setup

Stack overflows are among the most difficult problems for the real-time developer.
With the Object Browser, the stack utilization of tasks can be monitored. If a
problem occurs, the Object Browser will show it. To monitor for stack problems
complete the following steps:

1. Complete the Object Browser prerequisites, Object Browser Prerequisites on
page 11-3.

2. From the pRISM+ Manager, click on the Object Browser button.

3. From the Object Browser toolbar, click on View ~ Snapshot ~ Stack Problems.

The Stack Problems window will appear.

4. In the Snapshot window, right-mouse click to display the pop-up menu. Click
on the Update Pages menu. Verify that the Update Stack Problems menu item has been
selected. The Update current page and Update Stack Problems menu items are selected
by default.

5. Start sampling.

In the Stack Problems window, you can monitor any stack overflow issues.

11.1.2 Understanding Your Stack Graphics Data

This section describes how to analyze the Stack Graphics data for the PowerPC and
68K processors.

If a task is created with Supervisor Stack = X and User Stack Size =Y, Object
Browser returns the stack information as Supervisor Stack Size = X + Y and the
User Stack Size = 0. For additional details on stack usage information, refer to the
pSOSystem System Calls manual.

11.2 Finding Memory Leaks

11 -4

The Object Browser can display the amount of free memory in various regions.
Since all systems have a Region 0 (required). that is often where programs will go for
temporary needs. You can monitor the free space in Region 0 and, if you notice its
slow decline through the use of the Update All Pages option as well as select other

pRISM+ User's Guide Object Browser

items of interest in your system to determine the cause and effect relationship. To
locate memory leaks complete the following steps:

1. Complete the Object Browser prerequisites, Object Browser Prerequisites on
page 11-3.

2. From the pRISM+ Manager, click on the Object Browser button.

3. From the Object Browser toolbar, click on View ~ Graphs ~ Stack.

The Stack Usage Graphs window appears.

4. In the Periodic Update area of the Stack Usage window, set the parameters to begin
polling the Stacks Usage page.

a. Select Update All Pages option.

b. In the Sample Every (Seconds) field, click on the arrow to increase the sample
time to 8 seconds.

c. Click on the Start button to begin the sampling of your running application.

You can monitor the free space in Region 0 .

11.3 Checking for Deadlocks and Priority Inversion

A deadlock is a situation in which two tasks are unknowingly waiting for resources
that are held by each other. You can use Object Browser to examine the behavior of
your tasks and queues. The following procedures provides a brief scenario that will
assist you in understanding how you can possibly detect if your application has
deadlocks or priority inversion situations.

1. Complete the Object Browser prerequisites, Object Browser Prerequisites on
page 11-3.

2. From the pRISM+ Manager, click on the Object Browser button.

3. From the Object Browser toolbar, click on View ~ Snapshot ~ Queue.

The Queues Snapshot window appears.

Examining Messages in the Queue

4. Click on the + icon on each queue to observe the number of messages in your
application's queues.

11-5

11

Object Browser pRISM+ User's Guide

11 -6

5. In the Snapshot window, right-mouse click to display the pop-up menu. Select
Update Page menu. Verify that the Queues menu item has been selected.

6. In the Periodic Update area of the Queues window, set the parameters to begin poll­
ing this page.

a. Select Update Roster option.

b. In the Sample Every (Seconds) field, click on the arrow to increase the sample
time to 8 seconds.

c. Click on the Start button to begin the sampling of your running application.

Examining Tasks Waiting for Messages

7. Click on the + icon on each queue to observe the number of messages in your
application's queues.

8. If the queue indicated it had more than 0 messages, click on the + icon on
Number of Tasks Waiting for Messages. Observe which tasks are waiting for message
from which queue.

NOTE: An increased number of messages in a queue sometimes signifies that
deadlock situation might have occurred.

9. Click on the Snapshot History arrow to compare the object's (queue, task, and mes­
sage) status in the various snapshots.

a. Are the objects behaving as expected?

b. Are the objects waiting too long for a resource?

c. If there is a problem with an object's behavior then deadlock or priority
inversion has occurred.

d. Use a pRISM+ debugger or a pRISM+ Project Editor to examine and locate
this problem in your application.

e. Correct and compile your application and complete these steps again.

pRISM+ User's Guide Object Browser

11.4 Logging Data in the CSV Files

Object Browser logging is done in . csv (Comma Separated Value) format, which any
editor capable of supporting this format can view. You can use Microsoft Excel to
reformat this file to aid in analyzing or presenting your data. You can also use a typ­
ical text editor to view the log data.

1. Complete the Object Browser prerequisites, Object Browser Prerequisites on
page 11 -3 .

2. From the pRISM+ Manager, click on the Object Browser button.

3. From the Object Browser toolbar, click on View ~ Graphs ~ Queue.

The Queues Graph window appears .

4. Right-click anywhere in the graph window and select Log in CSV format from the
popup menu. This action saves the graph samples as text in a CSV file.

5. In the Periodic Update area of the Queues window, set the parameters to begin poll­
ing the Queues page.

a. Select Update All Pages option.

b. In the Sample Every (Seconds) field, click on the arrow to increase the sample
time to 8 seconds.

c. Click on the Start button to begin the sampling of your running application.

6. Using Microsoft Excel or another text editor, open the CSV file.

7. Repeat the same procedure for Snapshot Frame.

11.5 Selective Logging of Data in Graph Frame

1. Click on options button in toolbar.

2. Select the objects (stack/queue/region) and the condition for displaying and
logging data.

3. Start sampling.

11-7

11

Object Browser pRISM+ User's Guide

11 -8

12.1

Run-Time Analysis (RTA) Suite

The Run-Time Analysis Suite draws on information from Diab Data's D-CC and
D-C++ compiler suites and the target application to provide the critical insight
needed by each developer to improve program performance, reliability, and memory
usage in advanced 32-bit applications.

For additional information on this optional product, refer to the RTA Suite Visual
Run-Time Analysis Tools User Guide.

Overview

12.1.1 Run-Time Error Checker

Compiler options generate code to catch invalid pointer references, out-of-bounds
array references, stack overflow, memory leaks, and other memory-related errors.
When code is run in the interactive RTA, double-clicking on an error message opens
the source file at the error.

12.1.2 Visual Interactive Profiler

Analyzes profile data collected from instrumented code run on the target, and dis­
plays tables and charts showing function timing and call counts, line counts, and
code coverage. This tool can be accessed from the pRlSM+ Editor and SNiFF+.

12.1.3 Link Map Analyzer

Displays a linker command file in three ways: text, tree, and maps. Graphically dis­
plays memory setup to precisely locate code and data. This tool can be accessed
from the pRlSM+ Editor and SNiFF+.

12-1

12

Run-Time Analysis (RTA) Suite pRISM+ User's Guide

12.1.4 Stack Use Analyzer

Reports maximum stack depth and the functions called to reach it by combing
static analysis of the target executable with data from profiling runs.

12-2

11 pRISM+ Shell

The pRISM+ Shell provides multiple levels of services to you by the means of TCL,
Tool Command Language. For many applications, you will probably only need the
interactive pSOS-aware commands. For some applications, you might use the
scripting capability of TCL. For a few applications , you could use the ability to talk
to pRISM+ CORBA services directly to allow dynamic interpretation of CORBA
requests. In some instances you can use the pRISM+ shell's modified version of
TCL/CORBA commands to create and run TCL/CORBA based scripts.

The levels of service are:

• Interactive pSOS-aware commands

This includes commands that communicate to pROBE+ by the means of the
communications server and for targets that support it, commands that commu­
nicate to pROBE+ through the communications and debug servers.

These commands supplement the GUI tools for debugging for example, Search­
light and SingleStep. Commands at this level are typically run one command at
a time and in an interactive manner. See Appendix C for the complete list of
commands.

An example of using commands to modify pROBE+ communication parameters
is provided in Section 13.1.2, Modifying Communication Timeouts on page 13-3.
Other typical uses of these commands are to display information about pSOS
objects and to modify their values.

For more information, refer to Section 13.1.4, Using pRISM+ Shell with Search­
Light Debugger on page 13-5 and Appendix D, pRISM+ Shell Commands.

13-1

13

pRISM+ Shell pRISM+ User's Guide

• TCL scripts

This pRISM+ shell level is used to write scripts of commands for example to per­
form menial tasks or to automate testing. In addition to the pSOS-aware com­
mands provided by pRISM+, standard TCL built-in commands are used to
handle program control-flow, to assign variables, to do input/output etc.

Example TCL scripts are provided. For more information, refer to Using and In­
voking a pRISM+ Shell Tel Script on page 13-8 and pRISM+ Shell Commands.
Refer to one of the numerous TCL textbooks for more information about TCL
scripting.

• Low-level TCL/CORBA services

The pRISM+ Shell also allows any CORBA service to be called from TCL. In this
case, it is possible to write TCL scripts that directly call the communications or
debug server IDL interfaces. This level is only intended for advanced tool cus­
tomization and is not normally needed to develop pSOS applications.

The interactive pSOS-aware commands, provided in TCL source form in the
pRISM+ installation directory, uses this TCL/CORBA mechanism and may be
seen as examples for how to use the underlying services. For more information,
refer to pRISM+ Shell Commands appendix.

• Interactive host commands

The pRISM+ Shell passes unknown commands through to the underlying
default host shell. For example, if on UNIX platform the ls command is run in
the pRISM+ Shell, it is passed to the underlying shell. Then the resulting output
is passed back to the pRISM+ Shell for display. Using the interactive host com­
mands are useful you need to run commands in the same execution context as
pRISM+ for example, the environment variables like PSS_ROOT etc. See the
numerous TCL textbooks for more information about the use of TCL as a gen­
eral shell.

13.1 Using Interactive pSOS-Aware Commands

13-2

In this section you will see different examples of how to use the pRISM+ Shell's with
interactive pSOS-aware commands. You will see three variations on how to use the
pRISM+ shell at this level.

pRISM+ User's Guide pRISM+ Shell

In this section you start at simple usage to a more complex usage. You will learn
how to:

• Obtain information about pSOSystem objects.

• Use communication commands for troubleshooting purposes.

• Debug your application with SearchLight and pRISM+ Shell.

13.1.1 Obtaining Status of a pSOS Object

The simplest and most commonly used pRISM+ Shell command is show command.
You can use this command to obtain information about your tasks, queues, sema­
phores, mutexes, and conditional variables. With this version of the pRISM+ Shell
you do not always need the ID number of the object you want to see. You can now
call the object by name. For example:

If you want the status of the active tasks, type the following. An example of the
results is also shown:

task show

Name

IDLE
ROOT

ID Priority Susp

OxOOOlOOOO OxOOOOOOOO NO
Ox00020000 Ox000000E6 Yes

Status Parameters Ticks

Ready
Ready

If you want the status of the pROBE flag settings, type the following. An example of 13
the results is also shown:

probe show

RBUG Flag is ON
No Dots Flag is ON
No Manual Break Flag is OFF
No Page Flag is OFF
Profile FLag is OFF
Silent Mode Flag is OFF
Current Interrupt Level 1
Default Interrupt Level 1

13.1.2 Modifying Communication Timeouts

A more complicated method of using the pRISM+ Shell is in troubleshooting. You
can use the pRISM+ Shell to modify your timeout commands. You might use these
commands when the pRISM+ Manager reports communication problems. Special

13-3

pRISM+ Shell pRISM+ User's Guide

13-4

communication timeout commands are available for times when heavy network traf­
fic causes errors such as Target Not Respond i ng .

When the Communication Server sends a packet to pROBE+, it expects an acknowl­
edgment from pROBE+ indicating that pROBE+ received the packet.

This acknowledgment must arrive within the time specified by the acknowledgment
timeout parameter (acktimeout). If the packet does not arrive in time, the Commu­
nication Server assumes that pROBE+ never received the packet and the packet is
resent. The number of times the communication resends the same packet is deter­
mined by the retries parameter.

After the Communication Server gets the acknowledgment from pROBE+, it expects
pROBE+ to process the request and return the result within the replytimeout
period. If the reply does not arrive in time, the Communication Server assumes the
connection to the target is down.

The following steps show how you can redefine communication timeouts to try avoid
error communication error messages for example, Target Not Responding :

1.

2.

3. To display the current settings, in the pRlSM+ shell use the following syntax:

session open
debugger show

The current settings for retries, timeout , and acktimeout are displayed.

4. Set the retries number:

debugger set retries 10

5. Verify that the retries was modified.

debugger show

This will display the current settings for retries, timeout , and acktimeout .
Other related debugger communication commands include:

debugger set timeout
debugger set acktimeout

pRISM+ User's Guide pRISM+ Shell

13.1.3 Downloading a pSOS+ Executable

If you want to use the pRISM+ Shell to download, boot, and initialize your pSOS
executables.

1.

2.

3. In the pRISM+ Shell, type

dssession open

This opens the communication to the debug server. OK will display at a success­
ful completion.

4. In the pRISM+ Shell, use the following syntax:

dssession load C:/File_Path/ram .elf all

This will begin the downloading process of your ram.elf executable. OK will dis­
play at a successful completion.

5. In the pRISM+ Shell, type

boot

This boots your executable that is now on the target. OK will display at a suc­
cessful completion.

6. In the pRISM+ Shell, type

initialize

This initializes your executable that is now on the target. OK will display at a
successful completion.

You are now ready to run and debug your psos application.

13.1.4 Using pRISM+ Shell with Searchlight Debugger

The pRISM+ shell allows you access to the pSOSystem calls within the pROBE+
context. You can use this special pROBE+ access with the SearchLight debugger.
The following steps provide an example of how this can be done. You can use the
pRISM+ Shell separately with all the supported processors.

13-5

13

pRISM+ Shell pRISM+ User's Guide

NOTE: Before you can begin the steps in this tutorial you must complete the
pRISM+ Tutorial in the pRISM+ Getting Started chapter.

Accessing the pRISM+ Shell and Setting Up Your Project

1. To access the pRISM+ shell, click on the Shell
Manager. A DOS-like window will appear.

button from the pRISM+

2. From the pRISM+ Manager, select File ~ proj1. This project was created during
the pRISM+ Tutorial.

3. From the pRISM+ Manager, select targ1 from the Target List pull-down menu.
This target was defined during the pRISM+ Tutorial.

Accessing Searchlight and Setting Up Your Application

1. From the pRISM+ Manager, click on the Debug button to invoke the SearchLight
debugger.

2. From the SearchLight window, click on File~ Load. A status box will display. The
download is complete when the status box displays: Download Complete and

OS boot message.

3. From the SearchLight source window, scroll through the application and locate
the line void source (void) . Place your cursor in this line, click on the brkPnt
button. A red circle appears identifying the location of the breakpoint as shown
in Figu re 13- 1:

0 0 0 0

/ ***;
static void
source(void)

c:::>ll
unsigned long qid, re;
unsigned long msg[MSGLEN]; /* Message , four long words ~

• unsigned long msgid = O;

• if ((r e = q_ident("SS_", 0, &qid)) 1 = NOERR) /* Get the queue ID ~

• PrintErrMess~eJ_ FILE ...£.. LINE ...£.. rcJ.;

FIGURE 13-1 void source Breakpoint

13-6

pRISM+ User's Guide pRISM+ Shell

4. From the SearchLight tool bar, click on View ~ pSOS Objects. The pSOS Objects dia­
log box will display.

5. In the pSOS Objects dialog box, click on the Queue tab.

6. Click on the Run button. The application will run until it reaches the breakpoint
set in step 4.

NOTE: By running the application you can see a group of tasks and queues were
created. In the queue window notice an SS_ queue has been created.

Sending a Message to a Queue

1. Click on the + button next to the SS_ queue. The components of this queue
appears .

2. In the pRISM+ shell, type:

session open
queue show

All the queues and their status will display. See Figure 13-2

FIGURE 13-2 Queue Show Command Results

3. In the pRISM+ shell, type:

psos call q_send Ox00140000 123 456 789 0

13-7

13

pRISM+ Shell pRISM+ User's Guide

Use the SS_ queue's ID number, as shown in the above example. A brief mes­
sage will display in the pRISM+ shell indicating that the message has been sent
and received by the queue.

Viewing your Message

1. To refresh the pSOS Objects dialog box from the SearchLight tool bar, click on View
~ pSOS Objects. Click on the + button next to the SS queue.

Notice that the Number of Messages has changed status from 0 to 1.

2. To receive your message, in the pRISM+ shell type:

psos call q_receive Ox00140000

The message is displayed as show in Figure 13-3.

% psos call q_send Ox00140000 123 456 789 O
(4291182357 New Connection (leticiapc is1 com.CommSru_leticia_ffc3ef01 .•.letici
a.pid 0 4291040293.optimised1]
psos call completed
ok
% psos call q_receiue Oxl40000
psos call completed
return ualue(s) • (message[O] Ox0000007B) (message[l] OxOOOOOlC8) {message[2] OxO
0000315) (message[3] OxOOOOOOOO)
ok
%

FIGURE 13-3 psos call q_receive Command Results

Conclusion

This concludes this tutorial on how to use the pRISM+ Shell with the SearchLight
debugger. For additional information on the pRISM+ Shell, refer to pRISM+ Shell
Commands appendix.

13.2 Using and Invoking a pRISM+ Shell Tel Script

13-8

You can use the pRISM+ shell commands within the pRISM+ Shell (see
Section 13.1.4, Using pRISM+ Shell with SearchLight Debugger). You can also create
a specialized tel script that contains the pRISM+ Shell commands. With the pRISM+
Shell command you can create a test script to assist you in debugging your applica­
tion. You can set a breakpoint at a certain address, send a message, or redefine the
pROBE+ flags.

pRISM+ User's Guide pRISM+ Shell

In this section you will learn how to attach a tel script through the pRISM+ Shell. In
order to do this procedure you must have already created a tel script using the
pRISM+ Shell commands. In this instance we will use a Tel scrip provided in the
PrismPlusShell directory.

Refer to Appendix D , pRISM+ Shell Commands for the list of the supported pRISM+
Shell commands.

13.2.1 Using an Existing Tel Script for Testing

1. Locate the dsdemo_ u. tel and dsdemo_ w. tel files, which are located in the
directory Ii s i Target_ name/pri sm+ I lib/Pr i smP l us She 11, where Target_
Name is ppe , 68k, or mips .

2. Create a folder or directory labeled TestSeripts .

3. Place a copy of the dsdemo_ u . tel and dsdemo_ w. tel files in the
TestSeripts directory.

NOTE: If you are developing in the UNIX environment, modify the dsdemo_
u . tel file. If you are developing in the Windows environment, modify the
dsdemo w. tel file.

4. Use a text editor to modify the dsdemo_ u. tel or dsdemo_ w. tel file. Change
all entries of the dummy project location with the location of the project you
created when you completed the Quick Start with a Tutorial. (See Example 13-1
on page 13-10.)

a. Replace all isiTarget references with references to your processor (ppe,
68k, or mips).

b. Replace all the user_ name references with your login name; for example,
jsmith.

c. Save your modified script.

d. Copy the modified file dsdemo_ u . tel or dsdemo_ w. tel back to the origi­
nal directory, I isi Target_ name/prism+ I lib/P rismP lusShel l.

13-9

13

pRISM+ Shell pRISM+ User's Guide

EXAMPLE 13-1: Locating the Pathnames

%dssession load

C: \isiTarget \users\user_name \PSOSTARGET_PWE\userapps\copy_ of_ pdemo\ram . elf
all

%boot
% •••
%csabout license

proc demo_ window {args}

tout << " %dssession open\n " ; # Print message on shell screen
tout<< " [eval dssession open)\n " ; #Execute the command "dssession open "

tout << " %dssession load C: \isiTarget \users\user_name \PSOS TARGET_
PWE\userapps\copy_ of_ pdemo\ram . elf all\n "

tout << " [eval dssession load C : \isiTarget \users\user_name \PSOS TARGET_
PWE\userapps\copy_ of_ pdemo\ram . elf all)\n "

13-10

5. From the pRISM+ Manager, select File ~ proj1. This project was created during
the pRISM+ Tutorial.

6. From the pRISM+ Manager, select targ1 from the Target List pull-down menu. This
target was defined during the pRISM+ Tutorial.

7. From the pRISM+ Manager, click on the pRISM+ Shell button to invoke the
pRISM+ Shell.

8. To execute your script, in the pRISM+ Shell use one of the following commands:

a. In the Windows environment, type

dsdemo_window > output.txt

b. In the UNIX environment, type

dsdemo_unix > output.txt

The results of the test script are located in the output . t x t file.

pRISM+ User's Guide pRISM+ Shell

13.2.2 pRISM+ Shell Script Example

In each pRISM+ for pSOSystem installation there are several Tel script examples.
The demo_ u . tel (UNIX script) and demo_ w . tel (Windows script) files are sample
scripts you can use for this brief tutorial. You can also use these scripts as a start­
ing point to create your own test scripts.

The demo_ w. tel script (Example 13-2) or demo_ u . tel script when invoked opens
a debug session. It will load and boot your ram. e 1 f , redefine your communication
timeouts, then suspend and resume a task.

EXAMPLE 13-2: Windows Example Test Tel Script

#**
Filename : demo_ w. tcl

Description : A demo program for Windows
Details:

Running some shell commands .
Date : Aug . 25 , 1998 .

#**

Procedure to implement " demo_ window " command . To execute the procedure ,
type " demo_window " on the shell .
%demo_window
To save the output result to a file named "output . txt ", type
%demo_ window > output . txt
#--
Executing the above procedure is equal to typing the commands on the shell
one by one :
%dssession open
%dssession load

C : \isiTarget \users\user_name \PSOS TARGET_PWE\userapps\copy_of_pdemo\ram . elf
all

%boot
% •••
%csabout license

13-11

13

pRISM+ Shell pRISM+ User's Guide

13-12

The next few commands will open a debug session and allow you to download, boot,
and initialize your application.

proc demo_ window {args}

tout << " %dssession open\n "
Print message on shell screen
tout<< " [eval dssession open]\n "
Execute the command "dssession open "

tout << " %dssession load C: \isiTarget \users\user_
name \PSOS TARGET_PWE\userapps\copy_of_ pdemo\ram . elf all\n "

tout<< " [eval dssession load C: \isiTarget \users\user_
name \PSOS TARGET_PWE\userapps\copy_of_ pdemo\ram . elf all\n "

tout << " %boot\n "
tout << " [eval boot]\n "

tout << " %initialize\n "
tout << " [eval initialize]\n "

tout << "%go\n "
tout << " [eval go]\n "

tout << " %halt\n "
tout << " [eval halt]\n "

tout << "%session open targl\n "
tout << " [eval session open targl]\n "

tout << " %debugger show\n "
tout << " [eval debugger show]\n "

The next few commands will set and show the communication timeouts values.

tout << " %debugger set timeout 6000\n "
tout << " [eval debugger set timeout 6000]\n ""

tout << " %debugger set acktimeout 300\n "
tout << " [eval debugger set acktimeout 300]\n "

tout << " %debugger set retries 6\n "
tout << " [eval debugger set retries 6]\n "

tout << " %debugger show\n "
tout << " [eval debugger show]\n "

tout << " %debugger set timeout 5000\n "
tout << " [eval debugger set timeout 5000]\n "

pRISM+ User's Guide

tout << " %debugger set acktimeout 200\n "
tout<< " [eval debugger set acktimeout 200]\n "

tout << " %debugger set retries 5\n "
tout<< " [eval debugger set retries 5]\n "

pRISM+ Shell

In the next few commands you will view various pSOS+ component tables.

tout << "%psos show table pna\n "
tout << " [eval psos show table pna]\n "

tout << "%psos show table pmont\n "
tout << " [eval psos show table pmont]\n "

tout << " %task show\n "
tout<< " [eval task show]\n "

In the next few commands you will suspend and resume a task. You will also
explore the csabout command.

tout << " %psos call t_suspend Ox00010000\n "
tout<< " [eval psos call t_suspend Ox00010000]\n "

tout << " %session reopen\n "
tout<< " [eval session reopen]\n "

tout << " %task show\n "
tout<< " [eval task show]\n "

tout << " %psos call t_resume Ox00010000\n "
tout<< " [eval psos call t resume Ox00010000]\n "

tout << " %session reopen\n "
tout<< " [eval session reopen]\n "

tout << " %task show\n "
tout<< " [eval task show]\n "

tout << " %csabout version\n "
tout<< " [eval csabout version]\n "

tout << " %csabout license\n "
tout<< " [eval csabout license]\n "

set result [tout string]
tout clear

The following commands prints the results of this script to a file .

13-13

13

pRISM+ Shell pRISM+ User's Guide

Save output result to a file if user requests
set fileCheck [lindex $args OJ
if { $fileCheck == " >" } {

set filename [lindex $args 1] ;
Obtain filename from user input
set fileid [open $filename w]
puts -nonewline $fileid $result
close $f ileid

return $result

For additional scripts to use, explore /ISITarget_ Name/prism+/lib/Prism­
PlusShell directory.

13.3 Using Low-Level TCL/CORBA Services

The pRISM+ Shell allows any COREA service to be called from TCL. This allows you
the capability to create TCL scripts that can communicate with the Communication
or Debug Server IDL interfaces. Of course this type of pRISM+ Shell usage is specif­
ically designed for the advanced usage.

13.4 Customizing the pRISM+ Shell

13-14

You can create a startup script, which will can be executed every time the pRISM+
Shell is invoked. The location of the startup script is:

• In the Windows Environment

%HOME%\ . tclshrc

• In the UNIX Environment

$HOME/ . tclshrc

Inside the startup script, you can specify the commands provided by pRISM+ Shell.
For example:

%puts [session open $_ targetName]
%puts [dssession open]

pRISM+ User's Guide pRISM+ Shell

Every time the pRISM+ Shell starts, the target connection will be open automatically
by the startup script. For example:

% puts [session open $_ targetName]
% puts [dssession open]
% puts [breakpoint show]
% puts [task show]
% puts [semaphore show]

When the pRISM+ Shell starts, the pRISM+ Shell will connect to the target but it will
also make these specific queries to the target to get information on tasks and
semaphores.

13-15

13

pRISM+ Shell pRISM+ User's Guide

13-16

pRISM+ Target Agents

pRISM+ has two target agents: pROBE+ and pMONT+. The target agents perform
specific functions on the target as requested by the pRISM+ Tools. They assist in
obtaining target status and communication. These target agent functions are
described in this chapter. To use the pRISM+ Tools (such as ESp, Object Browser,
SearchLight, RTA Tool suite, or SingleStep for pRISM+) you must incorporate in
your pSOS+ application one or more Target Agents . These target agents also make it
possible for communication to occur between the target and the pRISM+ tools.

The pRISM+ Tools communicate to the pRISM+ Communication Server that resides
on the host system. The pRISM+ Communication Server then communicates to the
target agents through a Serial or Ethernet connection. In case of serial connection
to the target, the pRISM+ Communication Server must be running on the host
machine which is connected serially to the target. 14

14.1 pMONT + Target Agent

The pMONT + target agent performs the following functions on the target:

• Collects run-time events requested by you through ESp.

• Establishes a connection with pRISM+ Communication Server.

This section describes the following pMONT + target agent topics:

• Target requirements for monitoring an application

• Configuring pMONT +

• Target behavior

14-1

pRISM+ Target Agents pRISM+ User's Guide

• log_ event () call

• pMONT + memory requirements

• Warnings about buffer support

14.1.1 Target Requirements for Monitoring an Application

For the ESp and Object Browser tools to acquire information about an application,
you must configure the target-resident pMONT+ component to be running when the
application is running. The pMONT + configuration and startup process is the same
as for other pSOSystem components from Integrated Systems.

After start-up, the ESp and Object Browser tools controls pMONT+ behavior accord­
ing to your specifications. pMONT + processes ESp and Object Browser requests and
interacts with the target's pSOSystem environment to supply information to ESp
and Object Browser.

14.1 .2 Configuring pMONT+

The pMONT+ configuration table is defined in the sys_ conf. h file. The
sys_ conf . h parameter settings become assignments in the typedef structure
located in the pmontcfg . h file. For the definitions of pMONT+ Configuration Table
entries, refer to the Programmer's Reference manual, Chapter 4.

typedef struct
{

void (* code) ();
long data ;
long dataSize ;
long cmode ;
long dev ;
char *traceBuff ;
long traceBuffSize ;
unsigned long (* tmFreq) () ;
void (*tmReset) () ;
unsigned long (* tmRead) () ;
long resl ;
long res2 ;
long res3 ;
long res4 ;

pMONT_ CT ;

14-2

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Address of pMONT+ module */
start of pMONT data */
size of pMONT data */
comm . mode : NETWORK_ TYPE_ CONN , PSOSDEV_ . . */
IO dev maj/minor# in form pSOS expects */
Buffer for logging trace events */
trace events buffer size */
returns second timer frequency */
resets second timer */
reads counter value of second timer */

pRISM+ User's Guide pRISM+ Target Agents

where the parameters are defined as follows:

code

data

dataSize

cmode

Starting address of pMONT + code.

Starting address of pMONT + data area. If data is 0, the data
area is allocated from Region 0.

The size of the pMONT + data area. If you specify the address
with data , you must also specify dataSize .

Specifies the communication that pMONT + uses:

• cmode= 1 means Ethernet communication through the pNA+
network manager.

• cmode=2 means serial communication through a pSOS+
device.

dev The pSOS+ I/O major:minor device number if cmode is 2. If
cmode is 1, dev is not used.

traceBuff Address of the buffer for logging trace data. If traceBuff is 0,
traceBuffSize defines the size, and the pSOSystem environ­
ment supplies the buffer. pMONT+ does not allocate traceBuff
from Region 0 because the buffer should remain intact. If
pMONT+ allocated traceBuff from Region 0 , system initializa­
tion could result in unreliable buffer content.

traceBuffSize The size of traceBuff in bytes, 1 kilobyte minimum.

tmFreq

tmReset

tmRead

res[0-3)

Pointer to a user-supplied routine to return the frequency
(counts per second) of an extra timer for finer timekeeping dur­
ing resolution a data collection run.

Pointer to a user-supplied routine to reset the extra timer and
start counting.

Pointer to a user-supplied routine to return the current count of
the timer: the returned count must be between 0 and tmFreq
and must indicate a sequence counted up from 0. The count
must not exceed 24 bits within the span of 1 pSOS+ tick.

If you do not use timers and are not running under pSOSystem,
then all three of the preceding timer entries must be 0.

An array reserved for pMONT+ use. Each element of res [J
should be initialized to zeroes (0000).

If you are configuring pMONT + under the pSOSystem environment, you can specify
a macro in the sys_ conf . h file to set or disable the extra timer automatically by
setting PM_ TIMER to YES or NO, respectively.

14-3

14

pRISM+ Target Agents pRISM+ User's Guide

The node configuration table , defined through parameter settings made in the
sys_conf . h file, includes a pointer to the pMONT+ configuration table and point­
ers to other pSOSystem components. The struct NodeConfigTable is as follows:

struct NodeConfigTable
{

INT32
MPCT
pSOSCT
pROBECT
pHILECT
pREPCCT
pICCT
pNACT
pSECT
pMONTCT
INT32

NODE_CT ;

cputype ;
*mp_ct ;
*psosct ;
*probect ;
*philect ;
*prepcct ;
*picct ;
*pnact ;
*psect ;
*pmontct ;
rsvd[6] ;

/* CPU type */
/* pSOS+m configuration table pointer */
/* pSOS+ configuration table pointer */
/* pROBE+ configuration table pointer */
/* pHILE+ configuration table pointer */
/* pREPC+ configuration table pointer */
/* pIC+ configuration table pointer */
/* pNA+ configuration table pointer */
/* pSE+ configuration table pointer */
/* pMONT configuration table pointer */
/* Unused entries */

To run pMONT+ with pSOS+, pROBE+, and any other components, for example
pNA+ for networking, you need to have the necessary pointers set in the node con­
figuration table as indicated above.

14.1.3 pMONT+ Driver Usage

14-4

pMONT+ does not initialize any drivers. It starts up as ifthe necessary driver initial­
ization has already taken place. For pMONT + to start successfully under this
scheme, the driver must be configured to use the autoini t feature of a pSOS+
driver. Note that if you enable autoini t for a particular device , the kernel first calls
the de_ init () function of the driver with minor device number of 0. The kernel
does this before any task starts running.

To use auto in it , you must set the eighth bit in the second reserved field of the
pSOS+ 1/0 jump table of a particular device. The following example shows the
pSOSystem convention for installing a driver in drv_ conf . c (a file residing in each
pSOSystem application directory):

InstallDriver (SC_DEV_SERIAL , Cnslinit , NULL , NULL , CnslRead , \
CnslWrite , CnslCntrl , 0 , 0 , 1<<8) ;

where 1<<8 sets autoinit .

For pMONT + to run, you must use the preceding method to initialize the timer. For
serial communication, you must also initialize the serial driver, which then operates
with the following characteristics:

pRISM+ User's Guide pRISM+ Target Agents

• Blocking I/ 0

• ASCII mode

• Echoing off

• Carriage return to signal the end of a record

• No conversions for a new-line character

pMONT+ uses the serial driver through the pSOS calls de_ open (), de_ read () ,
and de_ wr i te (). It makes the de_ open () call before proceeding to use the driver
to read and write. The de_ open () call should thus set the driver for pMONT + usage
if autoinit has not already done so.

You should use autoini t to initialize the driver and de_ open () to change set­
tings (if needed). In cases where the installed driver has specific functionality for
each of the 1/0 calls, you can install a dummy driver for pMONT+ in which
de_ open () calls the actual serial driver to perform any necessary initialization that
autoinit does not do.

14.1.4 pMONT + Behavior on the Target

This section describes those aspects of pMONT + behavior you should consider when
planning the use of the system.

ESp and Object Browser communication with pMONT + takes place across the
medium that you define in the target definition. For its part, pMONT + creates three
tasks to communicate with the ESp and Object Browser tools and process their
requests. These tasks are PMCM, PMON, and ASEV. They run at priorities Oxfl,
Oxf2, and Oxf3, respectively. Any user task (including ROOT) must be at a priority
below that of the pMONT + tasks at the time of the user task's creation.

Using pROBE+ with pMONT + requires caution. You should not set breakpoints in
the application if the ESp and Object Browser tools and target frequently communi­
cate with each other because this could break the connection. However, when no
communication takes place between host and target, you can use the full function­
ality of the pROBE+ debugger. If you use pMONT + and the pROBE+ debugger
together, the pROBE+ interrupt level should be such that it prevents any interrupts
in the system from occurring. Otherwise, if interrupts occur in the pROBE+ debug­
ger, timing errors show up in the display of events.

pMONT + does not require the presence of the pROBE+ debugger. However, if the
debugger is present and configured correctly, you can use the pROBE+ gs com­
mand to start a data collection run from the beginning of an application. With the

14-5

14

pRISM+ Target Agents pRISM+ User's Guide

pMONT+ and ESp and Object Browser modules, gs can also cause an application
warm start.

A warm start under pMONT + means that the application restarts while an ESp or
Object Browser session is already in progress. With this feature , pMONT+ can col­
lect trace data from the time an application starts up. Alternatively, you can reset
the board to achieve the same result. You can specify a data collection run to start
with the application by the following method:

• Through the ESp and Object Browser interfaces, you can define a data collec­
tion run to begin upon the next restart of the connected target.

• On the target, you can break into pROBE+ by using a manual break or by
pressing the RESET button on the board. You must then enter gs and, if
pROBE+ is not set to silent startup mode, enter go to start the application. The
data collection run begins automatically when the application starts running.

If you are not running the pROBE+ analyzer, you must restart your application
manually before a data collection run can begin.

To perform its role in event logging and profiling, pMONT + captures system activity
through the kernel. By this method, pMONT + minimizes the intrusion it causes to
the application. The amount of intrusion depends on the level of requested services.
For example, logging trace events from tasks only is less intrusive than logging all
trace events. Setting up more items to filter or either to log or not log also adds to
the load. Also, for dynamic profiling operations, metering fewer system activities is
less intrusive than metering all.

14.1.5 log_event() System Call

14-6

pMONT+ supports one system call, log_ event (). The log_ event () call logs an
event in the trace buffer. The log_ event () call takes effect when the ESp data col­
lection run begins. Note that user-event logging happens only if your event specifi­
cation has not made log_ event () an event to ignore. The log_ event () call
always returns 0. The syntax of the log_ event () call is as follows:

log_ event(
unsigned long user_ event_ id ,
unsigned long event data
)

/* User-defined event ID */
/* User-defined event data */

pRISM+ User's Guide pRISM+ Target Agents

where the parameters are as follows:

user_ event id A number for each user-event call. The maximum value the
ID can have is Oxff. Providing an ID for each call can help
you keep track of user events.

event data Optional 32-bit data you can log for test purposes.

14.1.6 Memory Usage

pMONT + requires memory for two reasons:

• To keep track of information about creation and deletion of system objects.

This memory buffer is allocated from region 0 and the size is 96 * KC_ NLOCOBJ

bytes. KC_ NLOCOBJ is the maximum number of pSOS+ kernel objects which is
set in the sys_ conf . h file. In case of a multi-processor system with pSOS+m,
the equivalent number is 96 * (KC_ NLCOBJ + MC_ NGLBOBJ). MC_ NGLBOBJ is the
maximum number of global objects.

• To Log the events during an ESp experiment.

This memory buffer is known as the trace buffer. Its size and starting address
are specified in the sys_ conf. h file. If you want to allocate the memory for the
trace buffer, the variable PM_ TRACE_ BUFF should be set to the starting address
of such memory. The PM_ TRACE_ S I ZE should be set to the size of this memory.

If PM_ TRACE_ BUFF is zero and PM_ TRACE_ S I ZE is non-zero , then pMONT + allo­
cates this memory from FreeMemPtr during system startup.

PM_ TRACE SIZE should be at least 1000 bytes for an ESp experiment to be
configured.

14.2 pROBE+ Target Agent

pROBE+ is a target resident agent which functions as both a cross-development
target agent and a stand-alone debugger. It provides the pSOS+ kernel-aware
debugging functions, but is not dependent on pSOS+ kernel. This allows developers
to obtain debug support during the BSP development process.

As a component, pROBE+ does not depend on certain types of peripheral hardware.
It only requires the proper communication drivers and the simple exception wrap­
pers. The interface of the communication drivers is common for all CPU families .

14-7

14

pRISM+ Target Agents pRISM+ User's Guide

The interface of the exception wrappers is common for all CPU types within one CPU
family.

14.2.1 pROBE+ Behavior on the Target

As a target agent pROBE+ enables advanced host-based source level debugging fea­
tures. For example, System Debug Mode (SDM) and Task Debug Mode (TDM).

In SDM, if the target is stopped, due to exception or breakpoint, the whole applica­
tion, pSOS+ kernel and all other non-pROBE+ components are stopped. Only the
pROBE+ component and the communication driver which is used for the data
transfer between the host and target are active. The developers will receive a snap­
shot of the target activities. The SDM is especially useful to debug the interrupt ser­
vice routines or to examine the state of any pSOS+ kernel object and the values of
any data structures when an exception occurs.

In TDM, the tasks are divided into two groups, the background and the foreground.
Often the foreground group is called the debug task list or debug list. If the applica­
tion hits a breakpoint or an unexpected exception occurs in a task context, all tasks
in the debug task list will be stopped and the tasks in the background will keep run­
ning. You can add or remove a task to the debug task list through the host debug­
ger. When a background tasks hits an unexpected exception, the task will
automatically be added to the debug task list. If an unexpected exception occurs
while in an interrupt service routine or if a pSOS+ fatal error occurs, pROBE+ will
switch to the SDM mode if it was in TDM. The TDM is most useful when it becomes
necessary to debug an individual task or an group of tasks while the reset of the
system continues to run.

14.2.2 Configuring pROBE+

14-8

pROBE+ consists of five parts that provide degrees of the scalability. To allow
pROBE+ to work with the host debugger, the Processor Service and remote
Debugger Service have to be selected. If the pSOS+ kernel awareness is required,
the Query Service has to be included. In the sys_ conf. h provided by the
pSOSystem sample application, you have to set SC_ PROBE and SC_ PROBE_ DEBUG to
YES . If the Query Service is needed, set SC_ PROBE_ QUERY to Yes .

The pSOSystem provides two communication drivers for the data transfer between
the host debugger and target, one is for using the network and one is for using the
serial port. You have to select the proper driver for your environment.

For more information on pROBE+, refer to the pROBE+ User Guide manual.

Customize the pRISM+
Tools/Environment

15.1 Customizing Your pRISM+ Tools

In this chapter you learn how to customize your pRISM+ tools. You will learn how to
customize your toolbar and how to cu stomize your project.

15.1.1 Customizing Your Toolbar

In this sample you are going to customize the pRISM+ Manager toolbar so you are
able to list a ll the files in a pRISMSpace directory.

1. From the pRISM+ Manager menu bar, click Tools ~ Customize. The pRISM+ Tools
dialog is displayed. See Figure 15-1.

2. In the pRISM+ Tools dialog, click on the Custom tab.

3. In the Custom page, click the Add button. A default title of New Tool Entry appears .
Delete this entry and enter List pRISMSpace Files as the tool name.

15-1

15

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

15-2

pRISM+ Tools EJ

Standard Custom]

!ool List:

Title: Jll!MdlR

~ommand:

Arguments:

[nitial Directory:

8dd

fiemove

Move!J.p

rowse ...

P' AddToMenu

r Add To T oolbar

r Redirect Qutput to Log Window

Advanced ...

OK Cancel Help

FIGURE 15-1 pRISM+ Tools Dialog

List pRISMSpace Files

Enter ls to list
directory contents

$(Prism Dir)

Define icons

4. In the Command field, enter ls to list the contents of a directory.

5. Click the arrow next to the Initial Directory field.

6. Select pRISMSpace Directory. The proper environment variable, $ (Pr i smD i r) , is
placed in the field.

7. Click the Add to Menu, Add to Toolbar, and Redirect Output to Log Window options.

By selecting the Add to Toolbar option your custom tool will display bitmaps icons
on the pRISM+ Manager toolbar. Of course you need to specify which bitmaps
the pRISM+ Manager will use for the toolbar.

pRISM+ User's Guide Customize the pRISM+ Tools/Environment

8. Specify which bitmap files to display:

a. To specify which bitmap files to display in the pRISM+ toolbar, fill the file
names in the Large Image and Small Image fields.

b. Click the Browse button next to the Large Image and/or Small Image fields and
select any of the bitmaps included with pRISM+, or your own bitmaps. If
you do not care which icons are used, leave both or either of the fields
blank. The pRISM+ Manger, by default, will use a hammer icon.

c. If you wish to use your own bitmaps, note the following:

• The format should be . bmp files, not Xl 1 bitmaps.

• Large bitmaps should be 32 x 32 pixels; small bitmaps should be 15 x
16 pixels.

• Specify no more than 16 colors.

• Make sure that the system has read access to your . bmp file(s). You can
use the Browse button to direct the system to your bitmaps.

d. Click OK in the Open dialog after selecting the bitmaps.

9. Click OK on the pRISM+ Tools dialog.

Notice that a new icon appears for your tool on the right end of the toolbar, and
that a Tool Tip string appears with the title of the tool when you mouse over the
icon. Notice also that an entry for the tool appears when you click the Tools
menu on the pRISM+ toolbar.

10. Open a project and click on the List pRISMSpace Files icon.

11. The pRISM+ Log Window appears and provides the listing.

15.1.2 Incorporating a Custom BSP for pSOSystem

In this section we will explore how to incorporate your custom BSP into an existing
application. There are two methods you can use to incorporate your custom BSP
into an existing project; you can copy your custom BSP into the bsps directory, or
you can reference your custom BSP.

15-3

15

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

15-4

Copying the BSP

1. Copy the directory that contains your custom BSP into the following directory:

/ISI<TargetName>/pss<TargetName> . <version>/bsps

where Target Name is one of the following: 68k , p p c , or mi ps .

2. Launch orbixd and pRISM+. Refer to Chapter 3 , Quick Start with a Tutorial.

3. From the pRISM+ Manager, open your pRISMSpace project, where
Project_ Name is the name of your existing application you created with the
pRISM+ Editor or SNiFF +.

4. From the pRISM+ Manager, click pRISMSpace ~Settings. The Project Settings dialog
is displayed.

5. In the Project Settings dialog, use the drop-down button next to the Board Support
Package field to locate and select your BSP.

6. Click the OK button to accept the changes.

7. You must completely rebuild your application. Use the project editor to rebuild.
For example perform a makeclean and a make all .

Referencing the BSP

1. Launch orbixd and pRISM+. Refer to Chapter 3 , Quick Start with a Tutorial.

2. From the pRISM+ Manager, open your pRISMSpace project.

3. Select an existing application you created with the pRISM+ Editor or SNiFF +.

4. From the pRISM+ Manager, click pRISMSpace ~Settings. The Project Settings dialog is
displayed.

5. In the Project Settings dialog, type in the full path and name of your custom BSP in

the Board Support Package field. You can use the Browse button to locate the BSP
directory.

6. Click the OK button to accept the changes.

7. You must completely rebuild your application. Use the project editor to rebuild.
For example perform a makeclean and a make all.

pRISM+ User's Guide Customize the pRISM+ Tools/Environment

15.2 Customizing Your pRISM+ Environment

In this section you will learn about some of the advanced features of pRISM+. You
will learn how to:

• install multiple pRISM+ versions (page 15-5)

• define your environment for a multiple-user configuration (page 15-7)

• develop in a mixed-platform environment (page 15-8)

• redefine your color settings (page 15-13)

• configure your pRISM+ help print options (page 15-13)

15.2.1 Multiple pRISM+ Installations

pRISM+ for pSOSystem allows you to have multiple pRISM+ installations on your
PC and Workstation.

Multiple Installations In the Windows Environment

In this section you will learn how to install and use multiple pRISM+ installations in
a Windows environment.

Installing Your Second pRISM+ Installation

During the installation, install your second pRISM+ installation in a different direc­
tory, for example:

C : \68K\isi68k\

C : \powerpc\isippc\

C : \PPC1_ 2_ 3\isippc\

The default installation directory is:

C : \isiTargetName\

where TargetName represents ppc , 68k , or mi ps .

During the installation, select Browse directory to create or choose a directory for your
pRISM+ installation.

15-5

15

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

Multiple Installations In the UNIX Environment

In this section you will learn how to install and use multiple pRISM+ installations in
a UNIX environment.

Installing Your Second pRISM+ Installation

During the installation, install your second pRISM+ installation in a different direc­
tory for example:

/User_ Home_ directory/68K/isi68k/

/User_H ome_ directory/Powerpc/is i ppc/

/User_H ome_ directory/PPC1_ 2_ 3/isippc/

isiTargetName

prismrc
prismrc.csh

..,,.. _______ pRISM+ Installation

Directory

Power PC

isiTargetName

prismrc
prismrc.csh

FIGURE 15-2 Multiple UNIX Environment pRISM+ Installation Sample Directories

15-6

The default installation directory is:

/User_ Home_ directory/isiTargetName/

where TargetName represents ppc , 68k , or mips .

Running Your Second pRISM+ Installation

To run one of your pRISM+ installations, you need to reset your environment vari­
ables. The p rismrc or p r ismrc . csh files identify your pRISM+ installation and the
environment variables.

pRISM+ User's Guide Customize the pRISM+ Tools/Environment

1. At the command line , type the following:

cd /User_Home_directory/isiTargetName

where TargetName represents ppc , 68k , or mips . You need to be in the direc­
tory of the pRISM+ installation you want to access . (See Figure 15-2.) This com­
mand will take you to the pRISM+ installation directory.

2. At the command line , type one of the following:

source prismrc
source prismrc.csh

You can now use this pRISM+ installation directory for pSOSystem develop­
ment.

3. To switch to another pRISM+ installation, you must repeat steps 1 and 2.

15.2.2 Multiple-users Configuration (UNIX Only)

Multiple users can run pRISM+ on the same workstation. The default mode of oper­
ation for pRISM+ is for a single user to run it on a single workstation. This section
describes the necessary steps you need to perform in order to have multiple users
running on the same workstation.

Orbix Configuration for Multiuser Support

1. To enable multiple user support on a Solaris machine, run the following sample
script, $PRISM_ DIR/bin/multi-user-support. sh, after the installation is
completed. Note that in order to run the script root privilege is required.

2. Issue this command to start the Orbix daemon after the multi-user-support

script has been executed.

/etc/init.d/orbix start

3. Users on this workstation need to set an environment variable in their profile
(for example, . profile or . login) to point to the directory containing
Orbix.cfg. For example:

IT_CONFIG_ PATH=/etc
export IT_CONFIG_PATH

or

setenv IT_ CONFIG_PATH /etc

A log file /var I adm/ orbix will be created for logging Orbix daemon activities.

15-7

15

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

Memory Considerations (Solaris)

When multiple users are running pRISM+ from the same workstation, you can run
into problems if the system is not adapted for multiple users. pRISM+ uses shared
memory and when multiple users are using the workstation, the shared memory
kernel parameters need to be tuned. You need to remember to allocate an equal
amount of shared memory by using the swap space on the system.

See the document SunOS 5.x Administering Security, Performance and Accounting,

Appendix A, Tuning Kernel Parameters for additional details. You can also use the
answer book to get this information.

If the Target Setup window hangs when you are trying to download to your target,
this can be one of the problems. The following error may appear to inform you that
you need to tune your system:

No room for another process

15.2.3 Mixed-Platform Development for Solaris and Windows

15-8

This section describes how to develop a pSOSystem application in a mixed-platform
environment. Specifically, it describes how to compile an application on the Solaris
platform and debug the application using a Windows 95 or 98 or Windows NT based
source level debugger.

System Environments and Configurations

• A UNIX workstation running Solaris 2.5. l or 2.6 and pRISM+ version 2.0 or
later.

• A PC running Windows 95, pRISM+ version 2.0 that includes SingleStep version
7.4, and NFS client software from Net Instrument.

Before You Begin

• Consult the UNIX man pages on the share command to find out how to export
part of your UNIX file system so you can NFS-mount it from your PC.

• For this example, /e xport/usrl contains pRISM+ on your Solaris machine for
the PowerPC processor type and pRISM+ has been installed into the directory
export/usr l /isiTargetName.

• Install NFS client software on your Windows 95 or Windows NT machine. NFS­
mount /e xport/usrl and map it to the local drive F : \ .

pRISM+ User's Guide Customize the pRISM+ Tools/Environment

Make sure you can browse to this directory before proceeding:

F : \isi<TargetName>\pss<TargetName> . <version>

Building Your Application in the UNIX Environment

Build your application according to the Quick Start with a Tutorial chapter. Ensure
that the resulting ram . elf output file is place into a directory named /export/

usrl/myapp . If you cannot copy your ram . elf to /export/usrl/myapp then you
must ftp your file to your PC. Use a Windows ftp application to copy ram . elf from
your UNIX workstation to your PC.

It is recommended to copy the ram . elf to this directory:

/ISI<TargetName>/users/<user_ ID>/PSOS<TargetName>_ PWE/apps

Debugging Your Application in the Windows Environment

To debug this application from the Windows based SingleStep Debugger, do the
following:

1. Launch Orbixd and pRISM+ Manager. Refer to Chapter 3 .

2. From the pRISM+ Manager, select the pRISM+ Shell button.

3. In the pRISM+ Shell, type the following:

• For PowerPC: psmppc

• For 68K: psm68k

The Debug window and the SingleStep main window are displayed. See Figure
15-3 on page 15-10 for an example of the Debug window.

15-9

15

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

15-10

Debug El

File J Connection J Processor I Options J Logging J

File JDSPPC_PWE\userapps\proj1 \ram.elf iJ

r Debug without a file Browse

DK Cancel Help

FIGURE 15-3 Debug Window

4. In the Debug window, enter the path and the n ame of the ram . elf file in the
File field.

5. Click on the Connection tab.

pRISM+ User's Guide Customize the pRISM+ Tools/Environment

The Connection window is displayed (Figure 15-4).

Debug Ef

File Connection] Processor] Options] LogginlLI

Type-----------~,

r+ Network Host r
r Serial Port r

Details============i

Host]101 .20.1.1 34

r+ UDP (direct pAOBE +connection)

r TCP (pROBE +via NET ROM]

OK Cancel Help

FIGURE 15-4 Debug Window With Connection Selected

6. Click Network Host in the Type section of the Connection window.

7. In the Details box, select UDP and enter the n a me of your target board (if DNS is
available) or its IP address in the Host field.

8. Click on the Logging tab and select the Log to screen (always) option.

9. Click OK.

The system proceeds to m ake the n etwork connection and download the executable
image. The Debug Status window displays s ta tus messages as this takes place. When
the download is complete, the Image Downloading, Target Reset , and Execute until 'main'
fields should show Completed, and the Debug Session field sh ould show Started

Successfully (see Figure 15-5).

NOTE: The s tatus of the download is displayed in the bottom of the Debug Status
window.

10. Click Close to close the Debug Status window.

Your ram . elf file is now ready for you to debug.

15-11

15

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

Debug Status

File: IC: \IS I PPC\U sers\leticia\PS 0 S PPC_PWE \user apps\projl \r

Image Downloading)completed

Target Reset JCompleted

Execute until 'main')completed

Debug Session JStarted Successfully

Loading: 452 Kbytes

~ ~
0 452 K

l : ::: : :: : ::~i?.~:~:: ::: : : : :: ll

FIGURE 15-5 Debug Status Window

15.2.4 Redefining Your Environment Variables

15-12

The pRISM+ software installation includes a script file that sets up the pRISM+
environment. In the Windows environment the installation script automatically sets
your environment variable to the default settings.

In the UNIX environment you must run a script in order to set your environment
settings. These environment variables are set by the prismrc or prismrc. csh

script (depending on your platform). To ensure that these settings are made every
time you log in, add prismrc or prismrc . csh to your startup or profile file.

NOTE: The variable PSS_ BSP setting is changed when you are using the pRISM+
Manager. When you change the PSS_ BSP setting you must exit and
restart pRISM+. The installation provides a default setting.

In the Windows Environment the environment file is called envTarget_name . ksh:

• env68k. ksh for the 68K environment

• envppc . ksh for the PowerPC environment

• envmip. ksh for the MIPS environment

pRISM+ User's Guide Customize the pRISM+ Tools/Environment

This script file is created at installation and is run automatically each time you start
pRISM+. You can edit the envTarget_ name . ksh file if you would like to change the
pRISM+ environment settings. Each time you make a change to the script, you must
first exit the Orbix daemon and pRISM+ Manager, make the change, then restart the
Orbix daemon and pRISM+ Manager.

In the UNIX Environment, you can also edit these variables. You can modify your
environment variables in the following files:

• envvTarget_ Name . csh, where Target_ Name can be one of the following: 68K,
PPC, or MIPS

• envvTarget_ Name. sh, where Target_ Name can be one of the following: 68K,
PPC, or MIPS.

• prismrc

• prismrc . csh

These environment files are text files that can be easily edited by using any text edi­
tor. For additional information on the environment variables, refer to Appendix B,
pRISM+ Environment Variables.

15.2.5 Redefining Your Color Settings (Solaris and HP-UX)

The color settings for pRISM+ Manager, ESp, Object Browser, and pRISM+ on-line
help can be set through your . Xdefaults file. A sample . Xdefaults file is pro­
vided in the $PRISM_ DIR/lib directory. This sample . Xdefaults file can be
appended to the end of your current . Xde faults file.

Now, run the following command to replace the current property settings with the
changes in your . Xde faults file:

xrdb $HOME/.Xdefaults

The color settings for SNiFF+ are contained in the . UserPrefs . sniff file, which is
copied to your $HOME directory the first time you run pRISM+. See the SNiFF+ docu­
mentation for information relating to the setting of the colors for SNiFF +.

NOTE: The colors cannot be set for pRISM+ Wizard or the SearchLight user
interface at this time.

15.2.6 Setting a Printer for On-line Help (Solaris and HP-UX)

This section describes how to correctly define a printer so you can print the pRISM+
on-line help. These directions are for the UNIX environment only.

15-13

15

Customize the pRISM+ Tools/Environment pRISM+ User's Guide

15-14

LPTl and LPT2 are valid printer slots provided by pRISM+. By using pRISM+, you
need to create a Postscript file and redirect the applicable file to a printer denoted
by either LPTl or LPT2.

To configure LPTl or LPT2, do the following steps:

1. Edit the win. ini file . You can obtain this file from your $HOME/windows/

win. ini directory, which resides in your home directory.

2. Change the print commands for LPTl or LPT2 to redirect the output to a printer
of your choice. For LPTl, you can choose between two commands.

For LPTl, type in the following default value:

"LPTl:=lp -c -s "%s" "

However, you can change the LPTl command to the following

"LPTl:=lp -dprintername -c -s "%s" "

where printername is your specified printer.

For LPT2, type in the following default value:

'LPT2:=1p -c -s "%s" '

Board-Support Package
Information

This appendix provides information about individual supported hardware products,
including jumper settings, RAM configurations, and ROM locations. The sections
are organized by manufacturer and product. Table A-1 summarizes the specific
boards described in this chapter.

TABLE A-1 Summary of Board-Specific Information

Board Board Support Package (BSP) Appendix Page

IDT 79S465 Evaluation Board $PSS_ ROOT/bsps/idt79465 A.2 A-3

IDT 79S440 Evaluation $PSS_ ROOT/bsps/idt79465 A.3 A-10
Daughtercard

IDT 79S500 Evaluation $PSS_ ROOT/bsps/idt79465 A.4 A-14
Daughtercard

LSI400X MiniRISC and $PSS_ ROOT/bsps/lsi4101 A.5 A-16
LSI4101 TinyRISC Evaluation
Boards

A-1

A

Board-Support Package Information pRISM+ User's Guide

A.1 pSOSystem/MIPS Operating Mode

A-2

This section describes the operating mode of pSOSystem/MIPS. It applies to all
board-support packages and to all pSOSystem/MIPS components.

Operating
Mode

Endian
Mode

Memory
Management

pSOSystem/MIPS runs exclusively in kernel mode. The processor
must remain in kernel mode at all times.

All pSOSystem components operate in 32-bit mode, even on MIPS
processors that support 64-bit mode.

pSOSystem/MIPS runs exclusively in big-endian mode.

All pSOSystem components are built as big-endian objects and will
not work with little-endian code or libraries.

pSOSystem/MIPS does not use the processor Memory Manage­
ment Unit (MMU). Since MIPS pSOSystem does not support an
MMU, the only valid address s2aces are ksegO and ksegl. Access
to any other virtual address space is undefined and not supported.

The rocessor converts ksegO virtual addresses to hysical
addresses by subtracting Ox80000000 from the virtual address. It
converts ksegl virtual addresses to physical addresses by sub­
tracting OxAOOOOOOO from the virtual address.

Table A-2 describes the virtual address space of the pSOS+ kernel.

TABLE A-2 Kernel Virtual Address Space

Segment Virtual Address Range Access

kuseg Ox OOOOOOOO - Ox7FFFFFF Not supported.

ksegO OxSOOOOOOO - Ox9FFFFFF 0.5 GB Unmapped Cached.

ksegl OxAOOOOOOO - OxBFFFFFF 0.5 GB Unmapped Uncached.

ksseg OxCOOOOOOO - OxDFFFFFF Not supported.

kseg3 OxEOOOOOOO - OxFFFFFFF Not supported.

pRISM+ User's Guide Board-Support Package Information

A.2 IDT 79S465 Evaluation Board

The $PSS_ ROOT/bsps/idt79465 directory contains a pSOSystem Board Support
Package (BSP) for the IDT 79S465 Evaluation Board. The IDT 79S465 BSP supports
the IDT R4640, R4650, R4 700, and R5000 processors.

For R4640 and R4650 processors, see also IDT 79S5440 Daughtercard documenta­
tion.

For the R5000 processor, see also IDT 79S500 Daughtercard documentation.

A.2.1 Hardware Setup

Table A-3 shows the IDT 79S465 Jumper/switch settings for the R4700 processor.

TABLE A-3 IDT 79S465 Jumper/ switch Settings (R4 700 Processor)

Jumper/
Setting Description

Jumper/
Setting Description

Switch Switch

Jl 2-3 4 Mbyte Sl.l On R4k write-compatible

J2 2-3
SRAM mode

J3 2-3 Sl.2 On Clock divide

J4 2-3 Sl.3 On
by2

J5 2-3 Sl.4 On N/C

J6 2-3 Sl.5 Off DRAM

J7 2-3 XS-bit Sl.6 Off
Disabled

JS 1-2
Flash

Sl.7 On SRAM Enabled

J9 1-2 4 Mbyte Sl.S Off 4 Mbyte SRAM

JlO 1-2
DRAM

S2.l On N/C 64-bit
Jll 1-2 mode S2.2 On N/C

Jl2 1-2 S2.3 On Clock divide by 2

J20 Close Int. 5 routed to S2.4 Off Big Endian
internal timer

J23 Close Sync In Routed to CPU S2.5 On R4.XXX Compatible mode

J24 1-2 Clock for R4 700 S2.6 Off 64-bit bus mode

A-3

A

Board-Support Package Information pRISM+ User's Guide

A-4

TABLEA-3 IDT 79S465 Jumper/switch Settings (R4700 Processor) (Continued)

Jumper/
Setting Description

Jumper/
Setting Description

Switch Switch

J25 Open Clock for R4 700 S2.7 On 100% CPU output drive

Wl 1-2 4 Mbyte DRAM
strength

W2 1-2 4 Mbyte DRAM S2.8 On Int. 5 routed to internal

W3 1-2 5V System
timer

ROM Image Options

The IDT 79S465 Evaluation Board supports an 8-bit wide or a 32-bit wide Boot
ROM interface. The jumper settings for the two options are in Table A-4.

TABLE A-4 Flash Size for IDT 79S465 Evaluation Board

Jumper XS Bit X32 Bit

J7 2-3 1-2

JS 1-2 2-3

The IDT79465 pSOSystem BSP supports both options.

RAM Options

The IDT 79S465 Evaluation Board supports three different RAM configuration
options. These are the options:

• SRAM only

• DRAM only

• SRAM/DRAM

The switch settings for the three options are shown in Table A-5.

TABLE A-5 RAM Options for IDT 79S465 Evaluation Board

Switch SRAM Only DRAM Only SRAM/DRAM

Sl.5 off on on

Sl.6 off on on

pRISM+ User's Guide Board-Support Package Information

TABLE A-5 RAM Options for IDT 79S465 Evaluation Board (Continued)

Switch SRAM Only DRAM Only SRAM/DRAM

Sl.7 on off on

Sl.8 off off off

Ethernet Configuration

The pSOSystem BSP for the IDT79S465 board supports the Ethernet interface on
the target board. The Ethernet interface is located on the AUi port marked J22. The
Ethernet hardware address is a software configuration parameter for the IDT
79S465 Evaluation Board. This parameter should be set according to the Ethernet
address assigned to the board. Consult the IDT documentation that comes with the
board for the proper address. The Ethernet hardware address is configured in the
pSOS startup dialog.

Serial Configuration

The pSOSystem BSP for the IDT 79S465 Evaluation Board supports two serial
channels. The pSOSystem serial channel number 1 corresponds to the port marked
Jl6 on the IDT 79S465 board, and channel number 2 corresponds to the port
marked J 1 7 on the board.

The pSOSystem Boot ROM shipped with this BSP uses serial channel 1 as the sys­
tem console. The default serial protocol is 9600 baud, 8-bit data, 1 stop bit and no
parity. You should connect a terminal (or terminal emulator) to the proper port.

SCSI Configuration

The pSOSystem BSP for the IDT 79S465 board supports the SCSI Bus interface on
the target board. The SCSI interface is located on the port marked Jl3, and requires
a special cable from IDT. Fuse Fl must be in place for the SCSI interface to work
properly.

A.2.2 pSOSystem Boot Cont iguration

This section describes the various methods for configuring Boot ROMs for the
IDT79S465 Evaluation Board.

Boot ROM images are configured in the rom.dld file in the PSS_ BSP directory. The
default boot configuration copies text and data to RAM and executes text from RAM.
This configuration provides the fastest code execution, but requires more RAM

A-5

A

Board-Support Package Information pRISM+ User's Guide

A-6

space. The default configuration requires one Megabyte of RAM space to operate
properly. When building Boot ROMs with the default configuration, the
SC_ RAM_ SIZE parameter in sys_ conf. h must be set to OxFFOOO.

An alternative boot configuration is to copy data to RAM and leave text in ROM. This
configuration will use less RAM space, but the code will execute slower. (Execution
speed can be increased by using 32-bit wide Boot ROMs.) In this configuration, the
SC_ RAM_ SIZE parameter in sys_ conf . h can be left at its default value. To set up
this alternative boot configuration, perform the following procedure:

1. Make a backup copy of rom . dld:

UNIX: cp rom.dld rom.dld.org
PC: xcopy rom. dld rom. bak

2. Edit the rom . dld file as follows:

a. Search for an entry named:

. CpSrcBg (TEXT) : {}

b. Move this entry so that it is just after the entry:

. text end (TEXT) : {}

c. The very next entry should read:

} > mem8

d. Change this entry so that it reads:

} > mem7

e. Next, search for an entry named:

. CpDstBg (TEXT) : {}

f. Move this entry so that it is just after the entry:

. data (DATA) : { }

g. Save the new rom . d l d file and follow the instructions for building
pSOSystem Boot ROMs in the next section.

NOTE: In this configuration, the mem6 memory definition in ram . d l d

can be made larger. For example, if SC_ RAM_ SIZE = Ox3 1 000 :

mem6 : 0x80031000 l = Ox3CF000 /* SRAM/DRAM * /

pRISM+ User's Guide Board-Support Package Information

A.2.3 Building pSOSystem Boot ROMs

The boot ROM for the IDT79S465 Evaluation Board is built using the tftp sample
application located in $PSS_ ROOT/apps/tftp . Perform the following procedure to
build new boot ROMs:

1. Copy $PSS_ ROOT/apps/tftp to a working directory, and make the working
directory the current directory:

UNIX:
% cp -r $PSS_ROOT/apps/tftp $PSS_ROOT/apps/idt79465boot
% cd $PSS_ROOT/apps/idt79465boot

PC:
> xcopy apps\tftp apps\idt79465boot /E
> cd apps\idt79465boot

2. Set the PSS_BSP environment variable to the absolute pathname of the
IDT79465 BSP, as shown in the following example:

UNIX:
% setenv PSS_BSP ${PSS_ROOT}/bsps/idt79465

PC:
> set PSS_BSP = %PSS_ROOT%\bsps\idt79465

3. Depending on your boot configuration, edit sys_ conf. h and change
SC_ RAM_ SIZE to the appropriate value. The SC_ RAM_ SIZE value specifies the
maximum amount of RAM available to the tftp Boot ROM.

4. Make the tftp application with the following command:

psosmake roms

The resulting image files are Motorola Srecord files. The 8-bit Boot ROM image file is
named rom. 0 and the 32-bit Boot ROM image files are named rom. u51 - rom. u54 .

The 8-bit wide ROM must be placed in socket u51 and the 32-bit wide ROMs must
be placed in the sockets corresponding to the extension of the image file with which
they were programmed.

A-7

A

Board-Support Package Information pRISM+ User's Guide

A.2.4 Memory Layout and Usage

A-8

This section describes the memory layout for using the IDT79465 BSP.

Memory Layout

The IDT79S465 board comes default with 4 megabytes of SRAM and 4 megabytes of
DRAM. The physical memory layout of the three RAM configuration options is
described here: :

SRAM only start OxOOOOOOOO
end Ox003FFFFF

DRAM only start OxOOOOOOOO
end Ox003FFFFF

SRAM/DRAM SRAM start OxOOOOOOOO
SRAM end Ox003FFFFF

DRAM start Ox00400000
DRAM end Ox007FFFFF

The IDT79S465 peripherals are mapped as follows::

ROM lFCOOOOO - lFDFFFFF

Expansion CS 1F700000 - 1F7FFFFF

Ethernet 1F600000 - 1F6FFFFF

NVRAM 1F500000 - 1F5FFFFF

SCSI 1F400000 - 1F4FFFFF

SERIAL 1F300000 - 1F3FFFFF

pRISM+ User's Guide Board-Support Package Information

Memory Usage

Table A-6 shows the ROM/RAM memory usage map for pSOSystem boot ROM.

TABLE A-6 ROM/RAM Usage Map for pSOSystem Boot ROM (IDT 79S465 Board)

ROM/RAM

ROM

RAM

RAM

Memory

OxBFCOOOOO - OxBFCOOlFF

OxBFC00200 - OxBFC0027F

OxBFC00280 - OxBFC002FF

OxBFC00300 - OxBFC0037F

OxBFC00380 - OxBFC003FF

0xBFC00400 - OxBFC0047F

OxBFC00480 - OxBFCOOFFF

OxBFCOlOOO - OxBFC7FFFF

Ox80000000 - Ox8000007F

Ox80000080 - Ox800000FF

Ox80000100 - Ox8000017F

Ox80000180 - Ox800001FF

Ox80000200 - Ox8000027F

Ox80000280 - Ox80000FFF

Ox80001000 -
Ox80001000 + SC_ RAM_ SIZE

Usage

Reset vector

Bootstrap TLB vector

Bootstrap extended TLB vector

Bootstrap cache error vector

Bootstrap general vector

Bootstrap P3 vector

Unused

pSOSystem Boot ROM text and
initialized data

TLB vector

Extended TLB vector

Cache error vector

General vector

P3 vector

Reserved for pSOSystem

Reserved for pSOSystem Boot
ROM application

Ox80001000 + SC_ RAM_ SIZE Free
- Ox803FFFFF

A-9

A

Board-Support Package Information pRISM+ User's Guide

A.2.5 Devices Supported for the IDT 79465 Evaluation Board

Table A-7 provides a list of the devices supported by the IDT79465 BSP.

TABLE A-7 Supported Devices IDT 79S465 Evaluation Board

Device Support Description

National bsps/devices/lan/dp83932c Sonic Network Interface
DP83932 Controller

Zilog 85C30 bsps/devices/serial/z85230 . c Serial Communications
Controller

NCR53C90A bsps/devices/scsi/ncr53c90 . c SCSI chip

R4XXXX bsps/devices/timer/r4000t . c R4000 internal timer

A.2.6 Miscellaneous

For SNiFF users , src/ . sniffl . lst contains a list of all the pSOSystem files that
make this BSP. The file is used by bin/source/p l ugins/scripts/p l ugins_ *
scripts to create a precise SNiFF + project for the BSP. If you create a custom BSP
using this BSP as a template and want to use the pl ugins script, update this file.

For further IDT79S465 board-specific information, see the IDT 795465 Evaluation
Board Hardware User's Manual.

A.3 IDT79S440 Board

A-10

The IDT79S440 Daughtercard interfaces an R4640 or R4650 processor to the
IDT79S465 Evaluation Board. The R4640 processor operates in 32-bit bus mode
only, and the R4650 processor can operate in 32-bit or 64-bit bus mode. The
IDT79S465 board (described in Section A.2 on page A-3) provides setup information
for the IDT79S465 board with an R4 700 processor. This section describes additional
information specific to the IDT79S440 Daughtercard.

pRISM+ User's Guide Board-Support Package Information

A.3.1 Hardware Setup

Table A-S shows the IDT 79S465 Jumper/switch settings for IDT79S440 in 32-bit
bus mode.

TABLE A-8 IDT 79S465 Jumper/ switch Settings (3 2-bit Bus Mode)

Jumper/
Setting Description

Jumper/
Setting Description

Switch Switch

Jl 2-3 2 Mbyte Sl.l On R4k write-compatible

J2 2-3
SRAM mode

J3 1-2 Sl.2 On Clock divide

J4 2-3 Sl.3 Off
by 3

J5 2-3 Sl.4 On N/C

J6 1-2 Sl.5 Off DRAM

J7 2-3 XS-bit Sl.6 Off
Disabled

JS 1-2
Flash

Sl.7 On SRAM Enabled

J9 2-3 2 Mbyte Sl.S Off 2 Mbyte SRAM

JlO 2-3
DRAM

S2.l On N/C 32-bit
Jll 2-3 mode S2.2 On N/C

Jl2 2-3 S2.3 On Clock divide by 3

J20 Close Int. 5 routed to internal S2.4 Off Big Endian
timer

S2.5 On R4XXX Compatible
J23 Close Sync In Routed to CPU mode

J24 1-2 Clock for 4640 I 4650 S2.6 On 32-bit bus mode

J25 Open S2.7 On 100% CPU output

Wl 2-3 2 Mbyte DRAM
drive strength

W2 2-3 S2.S On Int. 5 routed to

W3 1-2 5V System
internal timer

NOTE: The 32-bit conversion kit(# IDT79S467) must be installed to run in 32-bit
mode.

A-11

A

Board-Support Package Information pRISM+ User's Guide

A-12

Table A-9 shows the IDT 79S465 Jumper/switch settings for the IDT79S440 in 64-
bit bus mode.

TABLEA-9 IDT 79S465 Jumper/switch Settings (64-bit Bus Mode)

Jumper/
Setting Description

Jumper/
Setting Description

Switch Switch

Jl 2-3 4 Mbyte Sl.l On R4k write-compati-

J2 2-3
SRAM ble mode

J3 2-3 Sl.2 On Clock divide

J4 2-3 Sl.3 Off
by 3

J5 2-3 Sl.4 On N/C

J6 2-3 Sl.5 Off DRAM

J7 2-3 XS-bit Sl.6 Off
Disabled

JS 1-2
Flash

Sl.7 On SRAM Enabled

J9 1-2 4 Mbyte Sl.S Off 4 Mbyte SRAM

JlO 1-2
DRAM

S2.l On N/C 64-bit
Jll 1-2 mode S2.2 On N/C

Jl2 1-2
(See NOTE:)

S2.3 On Clock divide by 3

J20 Close Int. 5 routed to internal S2.4 Off Big Endian
timer

S2.5 On R4XXX Compatible
J23 Close Sync In Routed to CPU mode

J24 1-2 Clock for 4640 / 4650 S2.6 Off 64-bit bus mode

J25 Open S2.7 On 100% CPU output

Wl 1-2 4 Mbyte
drive strength

W2 1-2
DRAM

S2.S On Int. 5 routed to

W3 1-2 5V System
internal timer

NOTE: Only the R4650 processor can run in 64-bit bus mode.
The R4640 must not be operated in this mode.

RAM and ROM options described in IDT 795465 Evaluation Board on page A-3 are
also valid for the IDT79S440 Daughtercard.

pRISM+ User's Guide Board-Support Package Information

NOTE: The IDT 795466 Daughtercard will work with the same IDT79S465
Evaluation Board jumper/switch settings described in Tables A-8 and
A-9.

Table A-10 gives the jumper settings for the IDT79S440 with R4650 enabled and for
the IDT79S465 with R4640 enabled, respectively.

TABLE A-10 Jumper Settings for IDT 795440 (R4650 Enabled) and IDT 795465 (R4640
Enabled)

Jumper/ IDT 79S440 with R4650 Enabled IDT 79S465 with R4640 Enabled

Switch Setting Setting

Wl 2-3 2-3

W2 2-3 2-3

W3 2-3 2-3

W4 2-3 2-3

W5 1-2 2-3

W6 1-2 1-2

W7 1-2 2-3

W8 2-3 1-2

W9 2-3 1-2

WlO 1-2 2-3

Wll 1-2 2-3

Wl2 1-2 2-3

J3 2-3 2-3

J4 open open

The IDT79S440 Daughtercard operates at a different clock frequency than the
default clock frequency in the IDT79S465 BSP. The CPU clock frequency setting
must be changed for accurate timing. To change the CPU clock frequency, edit the
file bspcfg . c in the PSS_ BSP directory and change this variable:

const ULONG cpuClkFreq=SOOOOOOO;

to the proper value and recompile the application.

A-13

A

Board-Support Package Information pRISM+ User's Guide

For further IDT79S440 Daughtercard-specific information, see the IDT 795440 Eval­
uation Board Hardware User's Manual.

A.4 IDT79S500 Board

The IDT79S500 Daughtercard interfaces the R5000 processor to the IDT79S465
Evaluation Board. The IDT79S465 board (described in Section A.2 on page A-3) pro­
vides setup information for the IDT79S465 board with an R4 700 processor. This
section describes additional information specific to the IDT79S500 Daughtercard.

A.4.1 Hardware Setup

A-14

CAUTION: Failure to connect a 5V power supply to connector J 12 may
result in damage to both the 795500 Daughtercard and 795465
Evaluation Board.

Table A-11 shows the IDT 79S465 Jumper/switch settings for IDT79S500.

TABLEA-11 IDT 79S465 Jumper/switch Settings (for IDT79S500)

Jumper/
Setting Description

Jumper/
Setting Description

Switch Switch

Jl 2-3 4 Mbyte Sl.l On R4k write-compati-

J2 2-3
SRAM ble mode

J3 2-3 Sl.2* Off Clock divide by 4

J4 2-3 Sl.3* On (See NOTE:)

J5 2-3 Sl.4 On N/C

J6 2-3 Sl.5 Off DRAM Disabled

J7 2-3 XS-bit Flash Sl.6 Off DRAM Disabled

JS 1-2 XS-bit Flash Sl.7 On SRAM Enabled

J9 1-2 4 Mbyte Sl.S Off 4 Mbyte SRAM

JlO 1-2
DRAM

S2.l On N/C 64-bit
Jll 1-2 mode S2.2 On N/C

Jl2 1-2 S2.3 On Clock divide by 4

pRISM+ User's Guide Board-Support Package Information

TABLEA-11 IDT 79S465 J umper/ switch Settings (for IDT79S500) (Continued)

Jumper/
Setting Description

Jumper/
Setting Description

Switch Switch

J20 Close Int. 5 routed to internal S2.4 ** Off N/C (See NOTE:)
timer

S2.5 On R4XXX Compatible
J23 Close Sync In Routed to CPU mode

J24 2-3 Clock for 5000 S2.6 Off 64-bit bus mode

J25 Close Clock for 5000 S2.7 On 100% CPU output

Wl 1-2 4 Mbyte DRAM
drive strength

W2 1-2 4 Mbyte DRAM S2.8 On Int. 5 routed to

W3 1-2 5V System
internal timer

NOTE:* For older boards with R5000 < 180 MHz:

Sl.2 On
Sl.3 Off

NOTE: ** Switch S2.4 must be On for the 2 X clock option

RAM and ROM options described in IDT 79S465 Evaluation Board on page A-3 are
a lso valid for the IDT79S500 Daughtercard.

Table A-12 gives the IDT79S500 jumper settings for the 1 X Clock Option.

TABLE A-12 IDT 79S500 Jumper Settings (1 X Clock Option)

Jumper/
Setting Description

Jumper/
Setting Description

Switch Switch

Wl 1-2 Normal Master WlO 2-3 512kb Secondary Cache
Out to Socket

Wll SRAM only (See NOTE:) open

W2 1-2 Normal Master Wl2 1-2 1 X Clock
Clock to Socket

Wl3 Big Endian open

W3 1-2 Normal TClockl Wl4 open Sysclock from S500

W4 1-2 Normal TClockO
oscillator

W5 1-2 Normal RClockl Wl5 open N/C

A-15

A

Board-Support Package Information pRISM+ User's Guide

TABLEA-12 IDT 79S500 Jumper Settings (1 X Clock Option) (Continued)

Jumper/
Setting Description

Jumper/
Setting Description

Switch Switch

W6 1-2 Normal RClockO Wl6 1-2 One buffer delayed clock

W7 1-2 512 KB
for read operations

W8 1-2
Secondary

Wl7 2-3 Refer to Wl6 for buffer Cache
W9 2-3

delays

NOTE: For the DRAM only or DRAM/SRAM option, Wl 1 must be shorted.

The IDT79S500 Daughtercard operates at a different clock frequency than the
default clock frequency in the IDT79S465 BSP. The CPU clock frequency setting
must be changed for accurate timing. To change the CPU clock frequency, edit the
file bspcfg. c in the PSS_ BSP directory and change the variable:

const ULONG cpuClkFreq=SOOOOOOO;

to the proper value and recompile the application.

For further information and 2 X Clock Jumper settings, see the IDT 79S500 Evalua­
tion Board Hardware User's Manual.

A.5 LSl4101 Board

The $PSS_ ROOT/bsps/lsi4101 directory contains a pSOSystem BSP for the
µMeteor MiniRISC BDMR400X Evaluation Board, and the µMeteor TinyRISC
BDM4101 Evaluation Board. The MiniRISC Evaluation Board supports the LSI400X
processors, and the TinyRISC Evaluation Board supports the LSI4101 processor.
The LSI4101 rocessor is a MIPS 16 ISA-com

~~~·-~ 

A.5.1 Hardware Setup 

A-16 

Table A-13 shows the MiniRISC jumper settings for LSI400X. Table A-14 on page 
A-17 shows the TinyRISC jumper settings for LSI4101. 

TABLE A-13 MiniRISC Jumper Settings (LSI400X) 

Jumper/ 
Setting Description 

Jumper/ 
Setting Description 

Switch Switch 

Jl Out Big Endian Jll Out 8 word I Cache Refill Size 

J2 In Write Burst Request Jl2 In Configuration Register 



pRISM+ User's Guide Board-Support Package Information 

TABLE A-13 MiniRISC Jumper Settings (LSI400X) (Continued) 

Jumper/ 
Setting Description 

Jumper/ 
Setting Description 

Switch Switch 

J3 Out D Cache Jl3 Out 4 word D Cache 
Wraparound Refill Size 

J4 In No I Cache Jl4 In Configuration Register 
Wraparound 

Jl5 In 4 word D Cache 
J5 In OSRAM Refill Size 

J6 In 
Wait States 

Jl6 In Configuration Register 

J7 Out Half speed BCLK Jl7 In On board 

JS In MR400X as Arbiter JlS In 
3.3V source 

J9 Out S word I Cache Jl9 1-2 Sonic Enable 
Refill Size 

J20 Out Test Point 

JlO In Configuration Register J21 In ThinNet Ethernet 

TABLE A-14 TinyRISC Jumper Settings (LSI4101) 

Jumper/ 
Setting Description 

Jumper/ 
Setting Description 

Switch Switch 

Jl Out Big Endian Jl3 Out 4 word D Cache 

J2 Out No Write Burst 
Refill Size 

Request Jl4 In Configuration Register 

J3 Out D Cache Jl5 In 4 word D Cache 
A 

Wraparound Refill Size 

J4 In No I Cache Jl6 In Configuration 
Wraparound Register 

J5 Out 3 SRAM Wait States JlS Out Arbiter Enabled 

J6 Out 3 SRAM Wait States Jl9 Out Enable Sonic Link 

J7 Out Half speed BCLK J20 In Connect 

JS In MR4l01 as Arbiter J21 In 
3 .3V 

A-17 



Board-Support Package Information pRISM+ User's Guide 

TABLEA-14 TinyRISC Jumper Settings (LSI4101) (Continued) 

A-18 

Jumper/ 
Setting Description 

Jumper/ 
Setting Description 

Switch Switch 

J9 Out 8 word I Cache J22 In Power to 
Refill Size CPU 

JlO In Configuration Register J23 In 

Jll Out 8 word I Cache J25 1-2 Onboard oscillator for 
Refill Size ICE port 

Jl2 In Configuration Register J26 In Serial Port B on J27 

RAM Options 

The MiniRISC and TinyRISC Evaluation Boards support both SRAM and DRAM. 
Both boards come default with one megabyte of onboard SRAM, and an optional 
four-megabyte or eight-megabyte DRAM module. The LSI4101 pSOSystem BSP can 
operate in either RAM space. Note that DRAM and SRAM are not contiguous. 

Ethernet Configuration 

The pSOSystem BSP for the LSI4101 board supports the Ethernet interface on the 
target board. The Ethernet interface for the MiniRISC board is located on the AUi 
port marked U72 or the BNC port marked U63 (see jumper J21 for port selection). 
The Ethernet interface for the TinyRISC board is located on the RJ45 port marked 
J29. 

The Ethernet hardware address is a software configuration parameter for both the 
MiniRISC and TinyRISC Evaluation Boards. This parameter should be set according 
to the Ethernet hardware address assigned to the board. Consult the LSI documen­
tation that comes with the board for the proper address . The Ethernet hardware 
address is configured in the pSOS startup dialog. 

Serial Configuration 

The pSOSystem BSP for the MiniRISC and TinyRISC Evaluation Boards supports 
two serial channels. The pSOSystem serial channel number 1 corresponds to the 
port marked U28 on the MiniRISC board and J28 on the TinyRISC board. Serial 
channel number 2 corresponds to the port marked U43 on the MiniRISC board and 
J27 on the TinyRISC board. 

NOTE: The pSOSystem BSP for the LSI4101 TinyRISC Evaluation Board does not 
support the serial ICE port. 



pRISM+ User's Guide Board-Support Package Information 

The pSOSystem Boot ROM shipped with this BSP uses serial channel 1 as the 
system console. The default serial protocol is 9600 baud, 8-bit data, 1 stop bit and 
no parity. You should connect a terminal (or terminal emulator) to the proper port. 

The m68681 DUART serial chip implements two fixed baud rate sets for both chan­
nels. To select the baud rate set, set BD_ M6 8 6 8 l _ BRG_ SET in board. h to the 
desired set. Refer to the M68681 User's Manual for available baud rates in each set. 

NVRAM 

There is no Non-Volatile storage available on the MiniRlSC and TinyRlSC Evaluation 
Boards. All startup parameters are saved in SRAM and are not retained when power 
is removed from the board. 

A.5.2 pSOSystem Boot Configuration 

This section describes the various methods for configuring Boot ROMs for the 
MiniRlSC and TintRlSC Evaluation Boards. 

Boot ROM images are configured in the rom. dld file in the PSS_ BSP directory. The 
default boot configuration copies text and data to RAM and executes text from RAM. 
This configuration provides the fastest code execution but requires more RAM 
space. The default configuration requires one Megabyte of RAM space to operate 
properly. When building Boot ROMs with the default configuration, the 
SC_ RAM_ SIZE parameter in sys_ conf . h must be set to OxFFOOO. 

An alternative boot configuration is to copy data to RAM and leave text in ROM. This 
configuration will use less RAM space, but the code will execute slower. In this con­
figuration, the SC_ RAM_ SIZE parameter in sys_ conf . h can be left at its default 
value. 

To set up this alternative boot configuration, perform the following procedure: 

1. Make a backup copy of rom . dld: 

UNIX: cp rom.dld rom.dld.org 
PC : xcopy rom. dld rom. bak 

2. Edit the rom. dld file as follows: 

a. Search for an entry named: 

. CpSrcBg (TEXT) : {} 

A-19 

A 



Board-Support Package Information pRISM+ User's Guide 

b. Move this entry so that it is just after the entry: 

. tex tend (TEXT ) : {} 

c. The very next entry should read: 

} > mem5 

d. Change this entry so that it reads: 

} > mem4 

e. Next, search for an entry named: 

. CpDstBg (TEXT ) : {} 

f. Move this entry so that it is just after the entry: 

. data (DATA) : { } 

g. Save the new r om . d ld file and follow the instructions for building 
pSOSystem Boot ROMs in the next section. 

NOTE: In this configuration, SRAM can be used for downloading 
applications, but first the mem3 definition in ram. dld must be 
changed to reserve space for Boot ROMs. For example, if 
SC_ RAM_ SIZE = Ox 3 1 000 : 

mem3:0 x 80031000 l = Ox CFOOO /* SRAM */ 

A.5.3 Building pSOSystem Boot ROMs 

A-20 

The boot ROMs for the MiniRISC and TinyRISC Evaluation Boards are built using 
the tftp sample application located in $P S S_ ROOT/apps/t f tp. Perform the 
following procedure to build new boot ROMs: 

1. Copy $P SS_ ROOT /apps/tftp to a working directory, and make the working 
directory the current directory: 

UNIX: 
% cp -r $PSS_ROOT/apps/tftp $PSS_ROOT/apps/lsi4101boot 
% cd $PSS_ROOT/apps/lsi4101boot 

PC: 
> xcopy apps\tftp apps\lsi4101boot 
> cd apps\lsi4101boot 



pRISM+ User's Guide Board-Support Package Information 

2. Set the PSS_BSP environment variable to the absolute pathname of the LSI4101 
BSP, as shown in the following example: 

UNIX : 
% setenv PSS_ BSP ${PSS_ROOT}/bsps/lsi4101 

PC : 
> set PSS_ BSP = %PSS_ ROOT%\bsps\lsi4101 

3. Depending on your boot configuration, edit sys_ conf. h and change 
SC_ RAM_ SIZE to the appropriate value. The SC_ RAM_ SIZE value specifies the 
maximum amount of RAM available to the tftp Boot ROM. 

4. Make the tftp application with the following command: 

psosmake roms 

The resulting image files are Motorola Srecord files. The Boot ROM image files are 
named rom.u5 - rom.u8. The ROMs must be placed in the sockets corresponding 
to the extension of the image file with which they were programmed for the 
TinyRISC board. 

For the MiniRISC board, 

• rom . u5 goes in socket u8 

• rom. u6 goes in socket ul9 

• rom. u 7 goes in socket u29 

• rom . u8 goes in socket u40 

A.5.4 Memory Layout and Usage 

This section describes the memory layout for using the LSI4101 BSP. 

Memory Layout 

The MiniRISC and TinyRISC boards come default with one megabyte of SRAM and 
an optional four- or eight-megabyte DRAM module. The physical memory layout of 
the RAM is described here: 

SRAM start OxOOOOOOOO 
end OxOOOOFFFF 

DRAM start OxOlOOOOOO 
end Ox013FFFFF ( 4 megabyte option) 
end Ox017FFFFF (8 megabyte option) 

A-21 

A 



Board-Support Package Information pRISM+ User's Guide 

The MiniRISC and Tiny RISC peripherals are mapped as follows:: 

ROM l FCOOOOO - lFDFFFFF 

Ethernet l COOOOOO - lCOOOOFF 

Serial l EOOOOOO - 1E00003F 

Memory Usage 

Table A-15 shows the ROM/RAM memory usage map for pSOSystem boot ROM for 
the MiniRISC and TinyRISC boards. 

TABLE A-15 ROM/RAM Usage Map for pSOSystem Boot ROM (LSI Boards) 

ROM/ 
Memory Usage 

RAM 

ROM OxBFCOOOOO - OxBFCOOOFF Reset vector 

OxBFCOOlOO - 0xBFC0017F Bootstrap TLB vector 

OxBFC00180 - OxBFCOOlFF Bootstrap general vector 

OxBFC00200 - OxBFCOOFFF Unused 

OxBFCOlOOO - 0xBFC7FFFF pSOSystem Boot ROM text and 
initialized data 

SRAM Ox80000000 - TLB vector 
Ox8000007F 

Ox80000080 - General vector 
OxBOOOOOFF 

Ox80000100 - Unused 
Ox800003FF 

SRAM Ox80000400 - Reserved for pSOSystem 
Ox80000FFF 

Ox80001000 - Reserved for pSOSystem Boot 
Ox80001000 + SC_ RAM_ SIZE ROM application 

Ox80001000 + SC_ RAM_ SIZE - Free 
Ox800FFFFF 

A-22 



pRISM+ User's Guide Board-Support Package Information 

TABLE A-15 ROM/RAM Usage Map for pSOSystem Boot ROM (LSI Boards) (Continued) 

ROM/ 
Memory Usage 

RAM 

DRAM Ox81000000 - Free (4 megabyte option) 
Ox813FFFFF 

Ox81000000 - Free (8 megabyte option) 
Ox8 1 7FFFFF 

A.5.5 Devices Supported for the Mini RISC and TinyRISC Evaluation Boards 

Table A-16 provides a list of the devices supported by the LSI4l01 BSP. 

TABLE A-16 Supported Devices for LSI4101 BSP 

Device Support Description 

National bsps/devices/lan/dp83932c Sonic Network Interface 
DP83932 Controller 

Motorola bsps/devices/seria l /m6861 . c DU ART 
M68681 

AMD bsps/devices/common/29f0x0 . c Flash memory 
29FOxO 

A.5.6 MIPS16 Support 

The LSI4101 processor supports the MIPS16 ISA. Applications can be compiled for 
the MIPS16 ISA by two methods: A 
• To compile the entire application using the MIPS16 ISA, edit the application 

makefile. Find the definition for PSS_ APPCOPTS and add the compiler switch 
for MIPS16 ISA. The new definition should be: 

PSS_ APPCOPTS = -tMIPS16EN:psos 

• To compile individual C files using the MIPS16 ISA, edit the application 
makefile . Find the rule for the C file and add the compiler switch for MIPS16 
ISA. 

A-23 



Board-Support Package Information pRISM+ User's Guide 

The following example shows what needs to be added (indicated by the bold 
text): 

root . o : root . c \ 
sysconf . h \ 
makefile 
$ (CC) $(COPTS) -o root . a$< 

will be changed to: 

root . o : root . c \ 
sysconf . h \ 
makefile 
$(CC) $(COPTS) -tMIPS16EN :psos -o root . a$< 

A.5.7 Miscellaneous 

A-24 

For SNiFF users, src/ . sniffl .1st contains a list of all the pSOSystem files that 
make this BSP. This file is used by bin/source/plugins/scripts/plugins_ * 
scripts to create a precise SNiFF + project for the BSP. If you create a custom BSP 
using this BSP as a template and wish to use the plugins script, update this file. 

For further MiniRISC Evaluation Board-specific information, see the following: 

• MiniRISC BDMR400X Evaluation Board User's Guide 

• MiniRISC CW400X Microprocessor Core Technical Manual 

For further TinyRISC Evaluation Board-specific information, see the following: 

• TinyRISC BDMR4101 Evaluation Board User's Guide 

• TinyRISC TR4l01 Microprocessor Core Technical Manual 



pRISM+ Environment 
Variables 

This appendix describes how you can set up your pRISM+ environment. In this 
appendix you will learn what variables are available for modification. 

The following sections contain an explanation of the environment variables set in 
the script. Each explanation is followed by the relevant code. All examples show the 
default values set by the pRISM+ installation. 

NOTE: For simplicity, the remainder of this appendix makes use of the "ppc" 
target indicator. If you are using a 68k, x86, MIPS, or ARM targets, s imply 
substitute "68k", "x86'', "mip'', or "arm" wherever "ppc" is used. 

B.1 pRISM+ Variables for the Windows Environment 

The environment variable PSS_ ROOT must be set to point to the directory that con­
tains pSOSystem: 

PSS_ ROOT= "C: /PRISM_ INST_ DIR/pssppc . <ver> " 

$PSS_ ROOT\bin\$HOST must be added to your path so pSOSystem can find the 
binaries it needs for various utilities. 

HOST=win32 
PATH= " $PSS_ ROOT/bin/$HOST ; $PATH " 

The environment variable PSS_ BSP must point to the directory that contains your 
board support package. (Replace the path in the line below with the path to your 
target BSP) . 

PSS_BSP= " $PSS_ROOT\\bsps\\mbx8xx " 

B-1 

B 



pRISM+ Environment Variables pRISM+ User's Guide 

B-2 

NOTE: Use the pRISM+ Manager to set the BSP you want to use. See the 
pRISMSpace settings dialog in the on-line help. 

The environment variable ESP _ TYPE must be set when building application for ARM 
or THUMB processors. This variable is used to specify which execution model the 
application should be built for. The following table shows the ESP _ TYPE values: 

BSP_TYPE Execution Model 

321 ARM Mode 32-bit) Little Endian 

32b ARM mode (32-bit) Big Endian 

161 THUMB mode (16-bit) Little Endian 

16b THUMB mode (16-bit) Big Endian 

To build an ARM mode Little Endian application use the following syntax: 

BSP_ TYPE=32el 

ARM Compiler and Debugger Environment Variables 

The ARM compiler and debugger require two environment variables called ARMINC 

and ARMLIB . These variables direct the compiler where to find include files and 
library files (for linking). In addition to these variables, the BIN directory must be 
added to the Windows PATH: 

ARMINC= " C : /PRISM_ INST_ DIR/ARM211 . a/INCLUDE " 
ARMLIB= " C : /PRISM_ INST DIR/ARM211 . a/LIB/EMBEDDED " 
PATH= " C : /PRISM_ INST_ DIR/ARM211 . a/BIN ; $PATH " 

Diab Data Environment Variables 

NOTE: The Diab Data environment variables are only for the 68K, MIPS, and 
PowerPC target processors. 

The environment variable DIABLIB must be set to point to the directory where you 
installed the Diab Data compiler. This enables the compiler to find its libraries, 
headers and binaries. Also, the compiler's binary directory must be added to the 
PATH : 

DIABLIB= " C : /PRISM_ INST_ DIR/Diab/4 . 3p5 " 
PATH= " $DIABLIB/$ HOST/Bin ; $PATH " 



pRISM+ User's Guide pRISM+ Environment Variables 

SingleStep Environment Variables 

NOTE: The SingleStep environment variables are only for the 68K and PowerPC 
target processors. 

For SingleStep, add the binary directory to the PATH . SingleStep can find all the 
other pieces it needs relative to the executable that is run: 

PATH= "C: /PRISM_ INST_ DIR/sds74/cmd; $PATH " 

SNiFF+ Environment Variables 

The environment variable SNIFF _ DIR must point to the SNiFF + installation direc­
tory. Also, the SNiFF + binary directory must be added to the path: 

SNIFF_ DIR= "C: /PRISM_ INST DIR/Sniff " 
PATH= " $SNIFF_ DIR/Bin ; $PATH " 

The IT_ CONFIG_PATH variable points to the Orbix configuration directory and is 
required by both the Orbix daemon and SNiFF +. 

IT CONFIG_ PATH= " $PRISM_ INST_ DIR/orbix " 
PATH= " $PRISM_ INST_ DIR/orbix ; $PATH " 

MKS Toolkit Environment Variables 

The ROOT DI R and SHELL environment variables must be set using UNIX-style for­
ward slashes instead of DOS-style back-slashes. ROOTDIR points to the base of the 
MKS executables. It also locates other files needed by the MKS tools: 

ROOTDIR= " c : /isi<target>/sniff/mks/mks-6 . 1 " 

SHELL is set to the full path and file name of the sh (ksh) executable for MKS: 

SHELL= " $ROOTDIR/mksnt/Sh . exe " 

The environment variable TMPDIR must be set to an existing directory. The installa­
tion copies the value from either the TEMP or TMP variable in the MS-DOS environ­
ment, so really all three variables (TMPDIR, TEMP, and TMP) should point to the same 
directory. Also, add the binary directory for the MKS tools to the PATH: 

TMPDIR= "C:/TEMP " 
PATH= " $ROOTDIR/mksnt ; $PATH " 

B-3 

B 



pRISM+ Environment Variables pRISM+ User's Guide 

B-4 

CAD-UL Environment Variables 

NOTE: The CAD-UL environment variables are only for the X86 target processor. 

The environment variable CC386TMP must be set to an existing directory. The com­
piler and XDB debugger's binary directory must be added to the PATH: 

CC386TMP= " C : /PRISM_ INST DIR/CADUL/TMP " 
PATH= " C : /PRISM_ INST_ DIR/CADUL/BIN ; $PATH " 
PATH= " C : /PRISM_ INST_ DIR/CADUL/XBD/X36 4b1XX ; $PATH " 

pRISM+ Variables 

Set the environment variable PR I SMD I R to the directory that contains the pRISM+ 
binaries: 

PRISM_ DIR= "C:/PRISM_ INST_ DIR/pRISM+ " 

Set the environment variable CONF I G to the name of the configuration file to include 
in builds (con fig . mk , configxx. mk, etc.): 

CONFIG= " config " 

Add the binary directory to the PATH : 

TCL_ LIBRARY= " $PRISM_ INST_ DIR/pRISM+/Lib/PrismPlusShell/library" 
PATH= " $PRISM_ INST_ DIR/licenses/Bin/$HOST ; PRISM_ DIR/ 
bin ; $PRISM_ INST_ DIR/JRE/1 . 1 . 7/Bin ; $PATH" 

Also, add the system directory to the path. This enables the pRISM+ executables to 
pick up the DLLs they need: 

PATH= ".; $PATH" 

Additional PATH and Windows Settings 

The pRISM+ installation path is added before the existing PATH to ensure that the 
pRISM+ executables come before any files you had in your PATH prior to the instal­
lation. 

• USE RNAME is set to the login name of the current user. 

USERNAME= "PRISM_ INST_ DIR/pRISM+/bin/MyName . exe " 

LOGNAME = " $USERNAME " 

• On both 95 and NT, we set the HOME variable to 
" C : \\PRISM_ INST DIR\\Users\\$USERNAME " 



pRISM+ User's Guide pRISM+ Envi ronment Variables 

License File Environment Variable 

All the pRISM+ tools use FLEXlm for licensing and will add the LM_ LICENSE_ FILE 
variable to locate the license file: 

LM_ LICENSE FILE= "C: \\PRISM_ INST_ DIR\\Licenses\\License . dat " 

B.2 pRISM+ Variables for the UNIX Environment 

The following table contains descriptions of general-purpose shell environment 
variables. 

Table B-2 contains descriptions of the environment variables used by psosmake, 
the make facility pRISM+ calls by default. 

TABLE B-1 General-Purpose Shell Environment Variables 

Variable Description 

$PRISM_ INST_ DIR Set to the directory path where pRISM+ is installed. 

$SNIFF_ DIR Set to the directory path where SNiFF + is installed 

$PSS_ ROOT Set to the directory path where pSOSystem is installed 

$DIABLIB Set to the directory path for the directory where the 
Diab Data compiler suite is installed. 

$LM_ LICENSE_ FILE A list of files (full path name separated by a colon) . 

The list must contain files that have the license keys for 
ESp, SNiFF+, and the compiler and debugger. (The 
information in the files is used by the FlexLM license 
manager to allocate a license to the user for these tools.) 

For more information about these files , see the 
installation publications for SNiFF+ 3 .0.2 and the 
SingleStep User Guide. 

$LD - LIBRARY_ PATH Specifies an ordered list of directories. 

The information is used by the host operating system 
to search for shared libraries used by executables. 

B-5 

B 



pRISM+ Environment Variables pRISM+ User's Guide 

B-6 

Table B-2 contains a list of the variables required by gmake . 

NOTE: Use the pRISM+ Manager to set the BSP you want to use. See the 
pRISMSpace Settings dialog in the on-line help. 

TABLE B-2 Variables Required by gmake 

Variable Description 

$PSS_ BSP Specifies the directory of the board support package for your 
target board. 

You must set this variable to $PSS_ ROOT /bsps/ board_ name, 
where board_ name is a board support package provided by 
Integrated Systems. 

BSPs are located in the directory $PSS_ ROOT /bsps and have 
names that correspond to the boards they support. 



Ii pRISM+ Supported 
Host/Target Connections 

pRISM+ for pSOSystem offers many ways to communicate to your target. This 
appendix provides the requirements for your applications and hardware and host 
configuration for each communication option. 

In this appendix, you will learn about the parameters and options that need to be 
set before you can compile your application. You will also see what hardware and 
host configurations are re uired to use a articular communication mode. 

This appendix describes the following communication configurations: 

• Using a Serial Connection on page C-1 

• Using an Ethernet Connection on page C-4 

• Using a Communication Server Remotely on page C-7 

• Using the TFTP Server on page C-9 

C.1 Using a Serial Connection 

This section provides the necessary information on how to use pRISM+ with a serial 
connection to communicate to the target board. It is recommended that you use the 
pRISM+ Tutorial in Chapter 3 before developing your own application. This section 
refers back to the pRISM+ Tutorial. 

C-1 

c 



pRISM+ Supported HosVTarget Connections pRISM+ User's Guide 

C.1.1 Building a pSOSystem Application 

Sys_conf.h Settings 

To configure your application to communicate to the pRISM+ tools through a serial 
connection, you must set the following parameters in your application's 
sys_ conf . h file. 

TABLEC-1 sys_ conf . h File Settings 

Parameters 

SC_ PROBE 

SC_ PROBE_ DEBUG 

SC_ PMONT 

SC_ SD_ DEBUG_ MODE 

SD_ DEF_ BAUD 

SC_ DEV_ SERIAL 

SC_ RBUG_ PORT 

Settings 

YES 

YES 

YES (optional) 

Storage or host/ serial 

Default is 9600 

Serial channel is in the form of a port number and a 
driver number. 

Should not be the same value as SC_ APP _ CONSOLE and, 
if using pMONT + and ESp, PM_ DEV 

C.1.2 Cont iguring Target Environment 

C-2 

Set up your hardware connection as shown in the following figure. 

HOST 

D serial 
connection 

FIGURE C-1 Serial Hardware Configuration 

TARGET 
J 

rLD 
pSOSystem 
Boot ROM 

J 

The building and installation of the boot ROMS are defined in Appendix A. 



pRISM+ User's Guide pRISM+ Supported Host/Target Connections 

C.1.3 Configuring Target Communications Parameters 

To boot your application, refer to Section 3 .8 , Configuring the Target Communica­

tions Parameters on page 3-20. When booting your pSOSystem, you must remember 
three things: 

1. Set your communication mode to 2 , as shown in the example below: 

For each of the following questions , press <Return> to keep the 
value in braces , or you can enter a new value . 
How should the board boot? 
1 . pROBE+ standalone mode 
2 . pROBE+ waiting for host debugger via a serial connection 
3 . pROBE+ waiting for host debugger via a network connection 
4 . Run the TFTP bootloader 
Which one do you want? [1] 

Enter 2. 

2. Set your baud rate. 

3. When you h ave finished configuring and booting your application, you must 
disconnect from your HyperTerminal or tip session. 

C.1.4 Configuring Host Tools Connection with the Target 

Refer to Section 3.9, Adding a Target Board to the pRISM+ Target List on page 3-23 
for corresponding figures. 

1. From pRISM+ Manager, select Target ~ List. The Target List dialog is displayed. 

2. Click the Add button. The Add Target dialog is displayed. 

3. Enter a name for your target and click OK. The Target Properties dialog is displayed. 

4. In the Target Properties dialog, do the following: 

a. Verify that Server Selection is set to Use Local Communications server. 

b. Choose Serial in both the pROBE Target Connection and pMONT Target Connection 
areas. 

c. In the Port Name field of both the pROBE Target Connection and pMONT Target 
Connection areas, enter the serial port names to be used for these connec­
tions. 

Typically on a PC they can be COMl or COM2 . On a Solaris machine they can 
be /dev/ttya or /dev/ttyb . 

C-3 

c 



pRISM+ Supported HosVTarget Connections pRISM+ User's Guide 

d. In the Baud Rate field of both the pROBE Target Connection and pMONT Target Connec­
tion areas, set the baud rate. The default is 9 6 0 0. 

e. Click OK to accept the information. 

5. Click Select. This registers the target as the current target for the pRISMSpace. 

6. Click Close to close the Target List dialog. 

C.1.5 Using pRISM+ Tools 

All the pRISM+ Tools that are in your pRISM+ Development Environment are avail­
able to you use when using a serial connection. For additional information on the 
pRISM+ Tools, refer to the corresponding chapters or to Chapter 3 , Quick Start with 

a Tutorial. 

C.2 Using an Ethernet Connection 

In Chapter 3 , Quick Start with a Tutorial, you used an Ethernet connection. This 
section provides the necessary information on how to use pRISM+ with an Ethernet 
connection to communicate to the target board. It is recommended that you use the 
pRISM+ Tutorial in Chapter 3 before developing your own application. This section 
refers back to the pRISM+ Tutorial. 

C.2.1 Building a pSOSystem Application 

C-4 

Sys_conf.h Settings 

To configure your application to communicate to the pRISM+ tools through an 
Ethernet connection, you must set the following parameters in your application's 
sys_ conf . h file. 

TABLEC-2 sys_ conf . h File Settings 

Parameters Settings 

SC_ PROBE YES 

SC_ PROBE_ DEBUG YES 

SC_ PMONT YES (optional) 

SC_ SD_ DEBUG_ MODE Storage or host/network 



pRISM+ User's Guide pRISM+ Supported Host/Target Connections 

TABLE C-2 sys_ conf. h File Settings (Continued) 

Parameters 

SD_ DEF_ BAUD 

SC_ DEV_ SERIAL 

SC_ RBUG_ PORT 

SC_ PNA or 
SC_ PNET 

Settings 

Whatever the board supports 

To a non-zero value 

Should not be the same value as SC_ APP _ CONSOLE and 
SC_ PROBE_ CONSOLE 

YES 

C.2.2 Configuring Target Environment 

C.2.3 

In order to download your application to the target, you must set up your hardware 
connection as shown in the following figure. 

HOST 

D serial and netw ork 
connections J 

TARGEr 

r1o 
pSOSystem 
Boot ROM 

FIGURE C-2 Ethernet Hardware Configuration 

] 

The building and installation of the boot ROMS are defined in Appendix A. 

Booting pSOSystem 

To boot your application, refer to Section 3 .8 , Configuring the Target Communica­

tions Parameters on page 3-20. When booting your pSOSystem, you must remember 
the following: 

• Set your communication mode to 3 , as shown in the example below: 

For each of the following questions , press <Return> to keep the 
value in braces , or you can enter a new va l ue . 
How should the board boot? 

C-5 

c 



pRISM+ Supported HosVTarget Connections pRISM+ User's Guide 

1 . pROBE+ standalone mode 
2 . pROBE+ waiting for host debugger via a serial connection 
3 . pROBE+ waiting for host debugger via a network connection 
4 . Run the TFTP bootloader 
Which one do you want? [l] 

Enter 3 . 

• Set your baud rate 

C.2.4 Configuring Host Tools Connection with the Target 

Refer to Section 3.9, Adding a Target Board to the pRISM+ Target List on page 3-23 
for corresponding figures. 

1. From pRISM+ Manager, select Target~ List. The Target List dialog is displayed 

2. Click the Add button. The Add Target dialog is displayed. 

3. Enter a name for your target and click OK. The Target Properties Dialog is displayed. 

4. In the Target Properties dialog, do the following: 

a. Verify that Server Selection is set to Use Local Communications server. 

b. Choose Network in both the pROBE Target Connection and pMONT Target Connection 
areas. 

c. In the Network Name field of both the pROBE Target Connection and pMONT Target 
Connection areas , enter either the name of your target (if you are correctly 
configured for DNS) or the IP address of your target. 

d. Click OK to accept the information. 

5. Click Select. This registers the target as the current target for the pRISMSpace. 

6. Click Close to close the Target List dialog. 

C.2.5 Using pRISM+ Tools 

C-6 

All the pRISM+ Tools that are in your pRISM+ Development Environment are avail­
able to you use when using an Ethernet connection. For additional information on 
the pRISM+ Tools, refer to the corresponding chapters or to Chapter 3 , Quick Start 
with a Tutorial. 



pRISM+ User's Guide pRISM+ Supported Host/Target Connections 

C.3 Using a Communication Server Remotely 

This section describes how to use a remote communication server. 

C.3.1 Building a pSOSystem Application 

To use the pRISM+ communication server remotely, your application must use the 
parameter settings defined for an Ethernet connection. See Section C.2, Using an 

Ethernet Connection on page C-4. 

C.3.2 Configuring Target Environment 

In most cases the target host is connected to your PC or workstation. If the target 
host is connected to another PC or workstation you can still use that target board. 
(See Figure C-3.) This section will describe how you can use a target host that is 
connect to another system. 

Host Host 
Ethernet 

Target 

(Serial or 
Ethernet) 

c___+----~f--------1 D 

pRISM+ Manager 
Orbix Daemon 

Communication Server 
Orbix Daemon 

FIGURE C-3 Hardware Connection 

pSOSystem 
Boot ROM 

1. From the pRISM+ Manager, select File~ proj1. This project was created during 
the tutorial in Chapter 3 . C 

2. From the pRISM+ Manager toolbar, click Target~ List. The Target List dialog box 
will display. 

3. Click Add. The Add Target dialog will appear. 

4. In the Add Target dialog, enter the name of your target in the Target Name field. The 
target name can be any name. In this instance use targ2 for a target name. The 
Properties for Target dialog will appear. See Figure C-4 on page C-8. 

C-7 



pRISM+ Supported HosVTarget Connections pRISM+ User's Guide 

Properties for Target T arg2 f3 

Server J 

Server Selection---------------------. 

r Use ]ocal communications server 

r Use local ~DM communications server 

f." !Jse remote communications server 

Remote Registration---------------¥ 

Remote Server Host Name: Godivapc.isi.com 

Remote b:ommunications Server Executable: 

JC: \isippc\pR ISM+ \bin\CommS erv. exe 

pROBE Target Connection---------------

(." Network 

r ~erial 

Network Name: JlosgatoscO 

Port Number: J2 

pMONT Target Connection-----------=====~ 

(." N~twork 

r Se!ial 

Network Name: JlosgatoscQ 

Port Number: J2 

OK Cancel Help 

Remote 
target 
server 

Define location of 
remote 
CommServ 

Target 
connection 

FIGURE C-4 Properties for Target Dialog 

C-8 

NOTE: The target server is only case-sensitive if it is connected to a UNIX 
workstation. 

5. Define the target's properties in the dialog box. 

a. In the Server Selection area, select Use remote communications server. 



pRISM+ User's Guide pRISM+ Supported Host/Target Connections 

b. In the Network Name field of both the pROBE Target Connection and pMONT Target 
Connection areas, enter either the name of your target (if you are correctly 
configured for DNS) or the IP address of your target. 

c. In the Remote Server Host Name field of the Remote Registration area, enter the 
name of the PC or workstation that is connected to your target. 

d. In the Remote Communications Server Executable field of the Remote Registration area, 
enter the path of the Communication Server. This communication server 
must be on the same system as the remote target server. The remote target 
server was defined in step c . 

e. Click OK to accept the changes. 

6. In the Target List dialog, click Close. 

7. On the remote target host server, start the orbixd daemon. 

8. From the pRISM+ Manager, select Target ~ targ2. This will launch the 
Communication Server on the remote host you defined in step 5 . 

You are now ready to download your application to the remote target board. 

C.3.3 Booting pSOSystem 

When booting your pSOSystem, you need to use the same options described for an 
Ethernet connection. See Section C.2, Using an Ethernet Connection on page C-4. 

C.3.4 Using pRISM+ Tools 

C.4 

When using pRISM+ Tools, you can use the same types of tools described for an 
Ethernet connection. See Section C.2, Using an Ethernet Connection on page C-4. 

Using the TFTP Server 

This section provides the necessary requirements in order to use the TFTP Server for 
Windows only. We recommend you use the pRISM+ Tutorial in Chapter 3 before 
developing your own application. This section refers back to the pRISM+ Tutorial. 

The TFTP Server for Windows supplied by ISi implements the common Trivial File 
Transfer Protocol (RFC 1350). The TFTP server allows a tftp client (typically a target 
system or a diskless node) to download a file (a boot image for a target system or 
diskless node) . It only supports TFTP Read Request (RRQ), to transfer file to a target 

C-9 

c 



pRISM+ Supported HosVTarget Connections pRISM+ User's Guide 

(which runs the client side of the protocol). It does not support Write Request (WRQ) 

to transfer files to the server. 

The TFTP server can be accessed by selecting Start~ Programs ~ pRISM+ 2.0<target_CPU> 
~ Utilities ~ TFTP Server. The tftpd.exe file is invoked and a windows application 
appears . 

C.4.1 Building a pSOSystem Application 

Target Hardware Requirement 

TFTP Server is an independent application that does not depend on the target. How­
ever to use the TFTP server to download the boot image, the BootROM should have 
TFTP (client) support. If the TFTP is not built into the BootROM you will not be able 
to use the TFTP server option to boot the target. 

pRISM+ Tools Supported 

The pRlSM+ Tools that are in your pRlSM+ Development Environment are available 
for you to use when using this downloading mechanism. For additional information 
on the pRlSM+ Tools , refer to the corresponding chapters or to the Quick Start with 

a Tutorial chapter. 

C.4.2 Sys_conf.h Settings 

TFTP Server does not require special setting in the sys_ conf . h file. TFTP Server 
only requires that the BootROM has the TFTP support. If the TFTP is not built into 
the BootROM you will not be able to use the TFTP server option. 

C.4.3 Configuring Target Environment 

C-10 

In this section you learn about the target environment requirements when using 
TFTP Server. 

BootROM Settings 

TFTP Server only requires that the target board BootROM has the TFTP support. If 
the TFTP is not built into the BootROM you will not be able to use the TFTP server 
option. Refer to Appendix A for additional information on how to create a bootROM 
using the TFTP application. 



pRISM+ User's Guide pRISM+ Supported Host/Target Connections 

C.4.4 Configuring Host Environment 

In this section you learn about the host environment requirements wh en using 
TFTP Server. 

pRISM+ Host Setting 

Before you can download you r compiled executable code using the TFTP Server, you 
must configure the TFTP Server settings. See the section Configure on page C-11 . 

TFTP Server Commands 

When invoked, the program opens a window and waits for the user to select a 
command from the Tftpd menu. A status line is displayed at the bottom of the 
window that displays the status of the server. The Tftpd menu supports the following 
commands: 

Start 

Starts the TFTP server. You must select this command to start the TFTP server. 
Before you can start the server you must configure it by selecting the Configure com­
mand from the menu. 

Stop 

This command is used to stop the TFTP server. Before stopping, the server waits for 
a ll existing client sessions to terminate. Once all sessions are closed, the TFTP 
server is stopped. To start the server again, you need to select the Start command. 

Configure 

Configures the TFTP server. You must issu e this command before you can run the 
server. The following configuration entries are required. 

TABLE C-3 Tftpd Settings Description 

Options Description 

Home Directory Home directory of the tftp server. This is the root directory for 
a ll download requests. You will h ave to copy your application 
boot image into this directory before the target can download 
the boot image. 

Number Of Clients This is the maximum number of simultaneous tftp clients 
supported. 

C-11 

c 



pRISM+ Supported HosVTarget Connections pRISM+ User's Guide 

TABLE C-3 Tftpd Settings Description (Continued) 

Options Description 

Logging Desired Specifies whether the tftp server's operation needs to be 
logged. This also includes error messages. 

Log File Name Specifies the filename into which the messages will be logged. 

Verbose Logging Controls the verbosity of log messages. If turned on, more 
messages are logged. 

Tftpd Settings El 

Home Directory 
Browse 

Number of Clients 

Logging Desired r Check to enable logging 

Log File Na.me Browse 

Verbose Logging r Check for verbose logging 

Cancel 

FIGURE C-5 Tftpd Settings Dialog Box 

C-12 

Exit 

This command is used to exit the TFTP server program. When issued, the program 
simply exits . It does not wait for any existing clients to terminate. 



pRISM+ User's Guide pRISM+ Supported Host/Target Connections 

C.4.5 Using the TFTP Server Connection 

In this section you learn about how to configure your connection to use the TFTP 
Server, how to download your application, and how to connect to the pRISM+ 
Manager so you can use the pRISM+ Tools. 

Configuring the TFTP Server 

1. Select Start ~ Programs~ pRISM+ 2.0<target_CPU> ~ Utilities ~ TFTP Server. The TFTP 
Server dialog box will display. 

2. In the TFTP Server window, select Tftpd ~Configure. 

3. In the TFTP Settings dialog box, fill in all the fields in the dialog box. See Figure 
C-5 on page C-12 . 

Once you defined the TFTP settings you can begin the downloading process. 

Downloading your Application 

You have defined the TFTP Server settings; you can begin the downloading process. 

1. Select Start~ Programs~ pRISM+ 2.0<target_CPU> ~ pROBE+ Console (COM1).ht or pROBE+ 
Console (COM2).ht. The HyperTerminal window will display. 

2. In the TFTP Server window, select Tftpd ~Start. This starts the server. 

Booting pSOSystem 

1. Power on your target board or reset your target. 

2. To boot your application, refer to Section 3.8, Configuring the Target Communi­
cations Parameters on page 3-20. 

When booting your pSOSystem, you must remember these things: 

1. Set the communication mode to 4 , as shown in the example below: 

For each of the following questions , press <Return> to keep the 
value in braces , or you can enter a new va l ue . 
How should the board boot? 
1 . pROBE+ standalone mode 
2 . pROBE+ waiting for host debugger via a serial connection 
3 . pROBE+ waiting for host debugger via a network connection 
4 . Run the TFTP bootloader 
Which one do you want? [1] 

Enter 4. 

C-13 

c 



pRISM+ Supported HosVTarget Connections pRISM+ User's Guide 

C-14 

2. Set the IP address of the target board. 

3. Set the IP address of the Server host where the TFTP server is running. 

4. Set the filename of host image. 

5. If the target and host reside on different IP subnets, set the default gateway 
address to reach the host from the target. 

A status message is displayed: TFTP download completed , transferring 

control to the download code . 

Connecting to the pRISM+ Manager 

1. Add your target board to the pRISM+ target list. Refer to Section 3.9, Adding a 
Target Board to the pRISM+ Target List on page 3-23 for directions. 

2. From pRISM+ Manager, select the target you defined in the previous step. 

3. From the pRISM+ Manager toolbar, select Target -7 Connect. This connects your 
downloaded application to the pRISM+ Tools. You are now able to use all your 
pRISM+ Tools. 

All the pRISM+ Tools that are in your pRISM+ Development Environment are avail­
able to you use when using this connection. For additional information on the 
pRISM+ Tools, refer to the corresponding chapters or to Chapter 3 , Quick Start with 
a Tutorial. 



pRISM+ Shell Commands 

The pRISM+ Shell, based on TCL, is part of the pRISM+ Development Environment. 
Unless otherwise noted, the pRISM+ Shell supports all functionality supported by 
TCL. This chapter describes all the pRISM+ Shell commands and their syntax; it 
a lso describes enhancements to the TCL commands that pRISM+ Shell supports. 

For more information about the TCL language, see the scriptics web site at 
www.scriptics.com, or consult one of the numerous books available on the subj ect. 

D.1 Overview 

The pRISM+ Shell commands are functionally grouped in two categories: CommSrv 
(Communication Server) based commands and DbgSrv (Debug Server) based com­
mands. 

• The DbgSrv-based commands invoke and communicate with the target through 
the debug server. 

• The CommSrv-based commands invoke and communicate with the target 
through the communication server. 

The majority ofpRISM+ Shell commands are CommSrv-based commands. If you are D 
accustomed to using pROBE+ console commands, see Section D.3 for a table com-
paring pRISM+ Shell commands to pROBE+ commands. 

D-1 



pRISM+ Shell Commands pRISM+ User's Guide 

D.2 Communication Server- and Debug Server-Based Commands 

0-2 

This section documents the pRISM+ Shell commands in alphabetical order. Each 
entry provides a description, syntax, and examples of the commands. 

Some pRISM+ Shell commands are shortcut equivalents to regular pRISM+ Shell 
commands with longer names; for example, command cb is a shortcut for the com­
mand breakpoint clear. These shortcut command names match the names of 
pROBE+ commands with identical (or similar) functionality. 

This list summarizes the pRISM+ Shell commands and their basic functionality: 

boot - boot the operating system 
breakpoint - manage instruction breakpoints 
cb - clear breakpoints (shortcut) 
en - connect to a target (shortcut) 

comm - display or set communication parameters 
condvar - display information about conditional variables 
connect - connect to a target 

csabout - display CommSrv information 
db - define a breakpoint (shortcut) 
den - disconnectfrom a target (shortcut) 
debugger - set and show debug session settings 
di - disassemble instructions (shortcut) 

disassemble - disassemble instructions 
disconnect - disconnect from a target 
dl - download afilefrom the host (shortcut) 
dm - display memory (shortcut) 
dr - display register (shortcut) 

dssession - manipulate, open, or load the target through the pRISM+ Shell 
ev - evaluate variable (shortcut) 

evaluate - evaluate local and global variables 
evt - set events (shortcut) 

fl - display and set pROBE+ flags (shortcut) 
fm - fill memory (shortcut) 
go - continue execution of foreground tasks or halted application 
halt - stop execution of target application or allforeground tasks 
he - display summary of all pRISM+ Shell commands (shortcut) 
help - display help for all the available pRISM+ Shell commands 
il - display and set pROBE+ interrupt level (shortcut) 

init - initialize pSOS+ on the target (shortcut) 
initialize - initialize pSOS+ on the target 
lb - list all breakpoints (shortcut) 



pRISM+ User's Guide pRISM+ Shell Commands 

log - log packets to a log file (shortcut) 
memory - allocate, deallocate, read, fill, and write ranges of memory 
mod - set debugging mode (shortcut) 
mutex - display information about mutual-exclusion objects 
osbreakpoint - manage all operating-system-specific breakpoints 
partition - display information about partitions 
pm - patch memory (shortcut) 
pr - patch register (shortcut) 
probe - display and set pROBE+ flags and interrupt level 
psos - make a pSOS+ system call 
q* - query-related commands (shortcuts) 
queue - display information about queues 
quit - close the session and exit the pRISM+ Shell window 
region - display information about regions 
register - manage task-specific and shared registers 
sc - make a pSOS+ system call (shortcut) 
semaphore - display information about semaphores 
session - manipulate, open, and load the target through the pRISM+ Shell 
sf- display stackframe information (shortcut) 
stackfrm - display stack frame information 
t* - task-related commands (shortcuts) 
target - manage target definitions 
task - manage task operations 
tsd - display task-specific data 
version - display pRISM+ Shell version 

D-3 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

boot boot the operating system 

boot 

Description 

The boot command, normally used at the beginning of a target debug session, 
causes the operating system to be booted. By default, the debugger uses the entry 
point of the executable file for the boot address . 

Examples 

• To boot the operating system, using the entry point of the executable file for the 
boot address: 

boot 

See Also 

initialize on page D-38 

0-4 



pRISM+ User's Guide pRISM+ Shell Commands 

breakpoint manage instruction breakpoints 

breakpoint help 
breakpoint show 
breakpoint set {linelfunction) location_specifiers [count number] [disable] 
breakpoint set address bp_address [ task (task_IDl*lisr) ] 
breakpoint {clearlenableldisable) (bp_indexlall) 

Description 

Usage 

The breakpoint command displays syntax information; displays the status of all 
breakpoints; sets a breakpoint on a source-code line, a function, or an address; and 
enables, disables, or clears breakpoints. 

breakpoint help 

Displays the syntax of the breakpoint command. 

breakpoint show 

Displays all the breakpoints and the status of each (enabled or disabled). 

breakpoint set line line_number source_f ile exe_f ile 
[task (task_IDl*lisr)] [count number] [disable] 

Sets a breakpoint on line line_ number in the file source_ file in the speci­
fied executable e x e_ file for the task task . 

The task option can specify a task ID number, a " *" for "any task", or an ISR 
number. If you specify a task ID or an ISR, the breakpoint is specific to only that 
task or ISR. If you omit a tas k , any task or ISR can hit the breakpoint. 

The count option specifies the number of times the line of code must execute 
before the breakpoint occurs. If you do not specify a count number, the break­
point breaks the first time the line is reached. 

The disable option specifies that the breakpoint is to be set but also disabled. 

breakpoint set function function_name source_file exe_file 
[task (task_IDl*lisr)] [count number] [disable] 

Sets a breakpoint on function function_ name in the file source_ file in the 
specified executable exe_ file . 

D-5 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

The task option can specify a task ID number, a" *" for "any task", or an ISR 
number. If you specify a task ID or an ISR, the breakpoint is specific to only that 
task or ISR. If you omit a task , any task or ISR can hit the breakpoint. 

The count option specifies the number of times function function_ name must 
execute before the breakpoint occurs. If you do not specify a count number, 
the breakpoint breaks the first time the function is reached. 

The disable option specifies that the breakpoint is to be set but also disabled. 

breakpoint set address bp_ address [ task (task_ IDl*lisr) ] 

Sets a breakpoint on the specified address. The task option can specify a task 
ID number, a "*" for "any task", or an ISR number. If you specify a task ID or an 
ISR, the breakpoint is specific to only that task or ISR. If you omit a task , any 
task or ISR can hit the breakpoint. 

breakpoint clear (bp_indexlall) 

Removes a specified breakpoint or all breakpoints. 

breakpoint enable (bp_ indexlall) 

Activates the specified breakpoint or all breakpoints. 

breakpoint disable (bp_indexlall) 

Deactivates the specified breakpoint or all breakpoints. 

Examples 

0-6 

• To set a breakpoint at the 8th execution of line 404 of the source file demo.c, 
used in the executable file ram.elf, enter this command: 

breakpoint set line 404 demo . c ram . elf count 8 

• To set and disable a breakpoint at the entry point of function process_data in 
file data.c, used in executable file ram.elf, enter this command: 

breakpoint set function process_data data.c ram.elf disable 

• To set a breakpoint at address Ox0033BF4, enter this command: 

breakpoint set address Ox0033BF4 



pRISM+ User's Guide pRISM+ Shell Commands 

• To disable the breakpoint whose index is 2, enter this command: 

breakpoint disable 2 

• To clear the breakpoint whose index is 3, enter this command: 

breakpoint clear 3 

See Also 

cb on page D-8 
db on page D-14 

D-7 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

cb clear breakpoints (shortcut) 

cb (bp_indexlall) 

Description 

The cb command clears a specified breakpoint, or all breakpoints. This command is 
a shortcut for the breakpoint clear command and the osbreakpoint clear 

command. 

Usage 

cb bp_index 

Clears the breakpoint whose index number is bp_ index. 

cb all 

Clears all breakpoints. 

Examples 

• To clear one breakpoint, where 5 is the breakpoint index: 

cb 5 

• To clear all breakpoints: 

cb all 

See Also 

0-8 

breakpoint on page D-5 
osbreakpoint on page D-45 



pRISM+ User's Guide pRISM+ Shell Commands 

en connect to a target (shortcut) 

en [ hot ] target_name ] 

Description 

Usage 

The en command opens both a CommSrv session and a DbgSrv session for debug­
ging. This is a shortcut for the connect command. 

en hot 

Connects to the default target, which is running. 

en [ hot ] target_name 

Establishes contact to target target_ name through the pRISM+ Shell. Use this 
command first, before you enter any other CommSrv commands. If you specify 
hot , the target is running; otherwise, the target is halted. 

If the connection is through an Ethernet, target_ name is the target's network 
name or its IP address. If the connection is serial, target_ name is the target's 
serial port number (or name) and baud rate, separated by a comma. 

Examples 

• To connect to a running default target: 

en hot 

• To connect through an Ethernet to a halted target and to a running target: 

en seant3 
en hot 152 . 216.226 . 158 

• To connect through a serial port to a halted target and to a running target: 

en COMl,9600 
en hot /dev/ttya,19200 

D-9 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

comm display or set communication parameters 

comm [ timeout acktimeout retries ] 

Description 

Usage 

The comm command, given without arguments, displays the current communication 
parameters of the CommSrv-to-pROBE+ connection. Given with arguments, the 
comm command sets the parameters as specified. 

comm 

Shows the current settings for communication parameters of the CommSrv-to­
pROBE+ connection. 

comm timeout acktimeout retries 

Sets the specified communication parameters. 

• timeout specifies how long the CommSrv must wait (in milliseconds) for a 
response to a request before it re-sends the request. 

• acktimeout specifies how long the CommSrv must wait (in milliseconds) 
for an acknowledgement to a request before re-sending the request. In most 
cases you should adjust the acktimeout value before modifying the 
retries or timeout value(s) . 

• retries defines the number of times the CommSrv will re-send the same 
request if an acknowledgement is not received. 

Examples 

0-10 

• To show the current communication parameters: 

comm 

• To set communication parameters: timeout 
ms, retries = 6 attempts: 

comm 6000 300 6 

6000 ms, acktimeout 300 



pRISM+ User's Guide pRISM+ Shell Commands 

condvar display information about conditional variables 

condvar help 
condvar show [ (condvar_IDl'condvar_name') ] 

Description 

Usage 

The condvar command displays information about the conditional variables in the 
application. 

condvar help 

Displays the syntax of the condvar command. 

condvar show [ (condvar_IDl'condvar_name') 

Without arguments, condvar show displays a summary of all active condi­
tional variables in the application. The display includes conditional-variable 
names and IDs, pSOS+m access, type of queue used, deferred signals, associ­
ated mutex name and ID, and task queue length. 

If you specify a conditional variable by ID or name, this command displays the 
status (name, ID, access, queue type, etc.) for that variable. 

Examples 

• To show information about all the conditional variables: 

condvar show 

• To show detailed information about specified conditional variables: 

condvar show Ox00170000 
condvar show 'CV_l' 

D-11 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

connect connect to a target 

connect [ hot ] [ target_name ] 

Description 

Usage 

The connect command opens both a CommSrv session and a DbgSrv session for 
debugging. 

This is equivalent to a session op en command followed by a dssess i on op en 
command. 

connect hot 

Connects to the default target, which is running. 

connect [ hot ] target_name 

Establishes contact to target target_ name through the pRISM+ Shell. Use this 
command first, before you enter any other CommSrv commands. If you specify 
hot, the target is running; otherwise, the target is halted. 

If the connection is through an Ethernet, target_ name is the target's network 
name or its IP address. If the connection is serial, target_ name is the target's 
serial port number (or name) and baud rate, separated by a comma. 

Examples 

• To connect to a running default target: 

connect hot 

• To connect through an Ethernet to a halted target and to a running target: 

connect seant3 
connect hot 152.216.226.158 

• To connect through a serial port to a halted target and to a running target: 

connect COMl,9600 
connect hot /dev/ttya,19200 

0-12 



pRISM+ User's Guide pRISM+ Shell Commands 

csabout display CommSrv information 

csabout help 
csabout (versionllicense) 

Description 

The csabout command displays information about the communication server in 
the application. 

Usage 

csabout help 

Displays the syntax of the csabout command. 

csabout version 

Displays the version number of the communication server. 

csabout license 

Displays the license information of the communication server; for example: 

This server is licensed ! 
Floating license 
Total license 2 
Inuse license 1 

Examples 

• To display the CommSrv version number: 

csabout version 

• To display the CommSrv license information: 

csabout license 

D-13 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

db define a breakpoint (shortcut) 

db address [ (*lisrltask_ID) ] 
db se system_call parameter origin 
db di (task_IDl'task_name' I*) 
db ti (ticksldate_and_time) 

Description 

Usage 

0-14 

The db command defines a breakpoint to be an instruction break, a pSOS+ service 
break, a dispatch break, or a timed break (relative or absolute). 

db address [ (*lisrltask_ID) ] 

Sets a breakpoint on an instruction at address . You can set the breakpoint for 
all tasks (" *"). an ISR, or a task specified by its task ID. This command is a 
shortcut for the breakpoint set address command. 

db se system_call parameter origin 

Defines a pSOS+ service-call break, which stops execution when the application 
makes a qualifying system call into the pSOS+ kernel. 

This command is a shortcut for the osbreakpoint set syscall command. 
See the definition of osbreakpoint on page D-45 for a discussion of the 
parameter and origin components of the db se system_ ca l l command. 

Refer to Table D-1 on page D-4 7 for a complete list of the qualifying pSOS+ sys­
tem calls and their parameters. 

db di (task_IDl'task_name' I*) 

Sets a dispatch breakpoint on the task specified by task_ ID or task_ name, or 
on any task (if you specify "* "). This command is a shortcut for the osbreak­
point set dispatch command. 

db ti (ticksldate_and_time) 

Sets a relative timer breakpoint or an absolute timer breakpoint. If you specify 
ticks, the db ti command sets a relative timer breakpoint to occur ticks 
clock ticks after the target has started running. If you specify date_ and_ time , 



pRISM+ User's Guide pRISM+ Shell Commands 

db ti sets an absolute timer breakpoint to occur at the specified date and time. 
Argument date_ and_ time takes this form: 

date_ num-month-year hours :minutes : [seconds] 

where valid values for each date_ and_ time component are as follows: 

date_ num 

month 

01 - 31 

JAN, FEB , MAR, APR,MAY, JUN, 
JUL, AUG, SEP, OCT, NOV, DEC 

hours 01 

minutes 0 

24 

59 

year 0 - 9999 seconds 0 - 59 

The seconds component is optional; if not specified, it defaults to 0 . 

Examples 

• To set a breakpoint at address Oxl0438c: 

db Ox10438c 

• To set a system-call breakpoint at q_ send for any task: 

db se q_send * * 

• To set a dispatch breakpoint for task Oxl60000: 

db di Ox160000 

• To set a relative timed break to occur 100 clock ticks after the target has started 
running: 

db ti 100 

• To set an absolute timed break: 

db ti 01-AUG-1999 8:30:21 

See Also 

breakpoint on page D-5 
osbreakpoint on page D-45 

D-15 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

den disconnect from a target (shortcut) 

den 

Description 

The den command closes both the CommSrv session and the DbgSrv session. This 
command is a shortcut for the disconnect command. 

Examples 

• To disconnect the current connected target: 

den 

See Also 

0-16 

disconnect on page D-21 
dssession on page D-25 
session on page D-72 



pRISM+ User's Guide pRISM+ Shell Commands 

debugger set and show debug session settings 

debugger help 
debugger show 
debugger set (timeoutlretrieslacktimeout) number 
debugger include filename 

Description 

Usage 

The debugger command modifies the debugger object, which represents attributes 
that are global to all debug sessions. These attributes are generally set once and re­
main unchanged during the rest of the session. 

debugger help 

Displays the syntax of the debugger command. 

debugger show 

Shows the current settings for communication parameters of the CommSrv-to­
pROBE+ connection. 

debugger set acktimeout milliseconds 

Specifies how long the CommSrv must wait (in milliseconds) for an acknowl­
edgement to a request before re-sending the request. In most cases you should 
adjust the acktimeout value before modifying the retries or timeout 
value(s). 

debugger set retries decimal_number 

Defines the number of times the CommSrv will re-send the same request if an 
acknowledgement is not received. 

debugger set timeout milliseconds 

Specifies how long the CommSrv must wait (in milliseconds) for a response to a 
request before it re-sends the request. 

debugger include filename 

Reads in and executes a pRISM+ Shell command file. 

D-17 

D 



pRISM+ Shell Commands 

Examples 

0-18 

• To show the debug session settings: 

debugger show 

• To set the timeout parameter to 4000 milliseconds: 

debugger set timeout 4000 

• To set the acktimeout parameter to 100 milliseconds: 

debugger set acktimeout 100 

• To set the retries parameter to 3: 

debugger set retries 3 

• To include a source file: 

debugger include /homes/hair/ShellTest . tcl 
debugger include c:\homes\hair\ShellTest . tcl 

pRISM+ User's Guide 



pRISM+ User's Guide pRISM+ Shell Commands 

di disassemble instructions (shortcut) 

di address [ number ] 

Description 

Usage 

The di command disassembles instructions, starting at the specified address. The 
default number of instructions to be disassembled is 10; to disassemble a different 
amount, you must specify the number argument. 

di address 

Disassemble 10 instructions, starting from address address . 

di address number 

Disassemble number instructions (where number is a decimal integer), starting 
from address address . 

Examples 

• To disassemble 10 instructions (the default amount), starting from address 
Oxl0438c: 

di Ox10438c 

• To disassemble 20 instructions, starting from address Oxl0438c: 

di Ox10438c 20 

See Also 

disassemble on page D-20 

D-19 

D 



pRISM+ Shell Commands 

disassemble disassemble ins tructions 

disassemble help 
disassemble address start_ addr [ number ] 
disassemble line start_ line end_ line filename 

Description 

pRISM+ User's Guide 

The disassemble command disassembles ins tructions s tarting a t a specified 
address or over a specified range of source-file lines. The default number of ins truc­
tion s to b e disassembled is 10. 

Usage 

disassemble help 

Displays the disassemble command syntax and available options. 

disassemble address start_ addr [ number ] 

Disassembles number ins tructions s tarting from address start_ addr. 

disassemble line start_ line end_ line filename 

Disassembles ins tructions from line start line to line end_ line of source 
file filename . 

Examples 

• To disassemble 10 ins tructions from s tart address Ox l0438c 

disassemble address Ox10438c 

• To disassemble 20 ins tructions from s tart address Ox l04350 

disassemble address Ox104350 20 

• To disassemble ins tructions from line 414 to line 41 6 in file demo.c 

disassemble line 414 416 demo.c 

See Also 

di on page D-19 

0-20 



pRISM+ User's Guide pRISM+ Shell Commands 

disconnect disconnect from a target 

disconnect 

Description 

The disconnect command closes both the CommSrv session and the DbgSrv ses­
sion. This command is equivalent to a session close command followed by a 
dssession close command. 

Examples 

• To disconnect the current connected target: 

disconnect 

See Also 

connect on page D-12 
dcnon page D-16 
dssession on page D-25 
session on page D-72 

D-21 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

di download a file from the host (shortcut) 

dl filename [ [ all ] lsymbollimage ] 

Description 

Usage 

The dl command loads/downloads the specified file filename from the host to the 
DbgSrv or the target, as appropriate. This is a shortcut for the dssession load 

command. 

Options are to do the following: load the symbol table into the DbgSrv and download 
the executable image to the target; load the symbol table into the DbgSrv only; 
download the executable image to the target only. 

dl filename [ all ] 

Load the symbol table of file filename into the DbgSrv and download the exe­
cutable image of file filename from the host to the target. This is the default. 

dl filename symbol 

Load the symbol table of filename into the DbgSrv, only. 

dl filename image 

Download the executable image of filename from the host to the target, only. 

Examples 

0-22 

• To load the symbol table of file ram.elf to the DbgSrv and download its execut­
able image to the target: 

dl c:/isi/users/me/apps/pdemo/ram.elf 
dl isi\users\me\apps\pdemo\ram . elf 

• To load the symbol table of the same ram.elf file to the DbgSrv, only: 

dl c:/isi/users/me/apps/pdemo/ram.elf symbol 
dl \isi\users\me\apps\pdemo\ram.elf symbol 



pRISM+ User's Guide pRISM+ Shell Commands 

dm display memory (shortcut) 

dm[.width] (addresslstart_addr .. stop_addr) 

Description 

Usage 

The dm command displays memory units in the specified width (unit size); either for 
Ox40 bytes starting at the specified address, or over the specified range. The dm 

command is a shortcut for the memory read command. 

dm[.width] address 

Displays 64 (Ox40) bytes of memory starting at address address. Without a 
. width argument, each unit of memory is one byte wide (the default). With a 
. width argument, each unit of memory has width width, where valid values 
for width are c (for char, one byte, the default). s (for short , two bytes). and l 

(for long, four bytes). 

dm[.width] start_addr .. stop_addr 

Displays a range of memory, starting at address start_ addr and ending at 
address stop_ addr. Without a . width argument, the memory is displayed in 
one-byte units, the default. With a . width argument, the memory is displayed 
in units of width width , where valid values for width are c (for char, one byte, 
the default). s (for short, two bytes). and l (for long, four bytes). The two dots 
( .. ) are required to indicate a range of memory. 

Examples 

• To display memory in short (two-byte) units, from address Oxl040 for the 
default 64 (Ox40) bytes (to address Oxl080): 

clm.s Ox1040 

• To display memory in char (one-byte) units (the default) from address Oxl040 to 
address Oxl090: 

elm Ox1040 .. Ox1090 

D-23 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

dr display register (shortcut) 

dr ( [ general ] lfpu) 
dr (mmulcontrol) 

task_ ID 

Description 

Usage 

The dr command displays the names and numbers of the general or floating-point 
registers of a task, or of the MMU or control registers for the entire application. This 
command is a shortcut for the register show category command. 

dr [ general ] [ task_ID ] 

Displays the general register values. This is the default. If no task_ ID is speci­
fied, the contents of the registers are displayed relative to the default task. 

dr fpu [ task_ID ] 

Displays the floating-point (FPU) register values. If no task_ ID is specified, the 
contents of the FPU registers are displayed relative to the default task. 

dr (mmulcontrol) 

Displays the MMU or control register values. (MMU and control registers are 
shared by all tasks). 

Examples 

• To display the floating-point unit register values of task Oxl60000: 

dr fpu Ox160000 

• To display MMU register values of the target application: 

dr mmu 

See Also 

register on page D-68 

0-24 



pRISM+ User's Guide pRISM+ Shell Commands 

dssession manipulate, open, or load the target through the pRISM+ Shell 

dssession help 
dssession (openlclose) 
dssession reset 
dssession load file_name [ alllsymbollimage ] 

Description 

Usage 

The dssession command manipulates, opens, and loads the target through the 
pRISM+ Shell. This command can also initiate a target debug session, which begins 
when you open a connection to a specified target. 

dssession help 

Displays the dssession command syntax and available options. 

dssession open 

Establishes contact to an existing predefined target through the pRISM+ Shell. 
Use this command first, before entering any other commands. 

dssession close 

Closes the existing debug session. Use this command before exiting the debug­
ger shell. 

dssession reset 

Reestablishes contact to an existing predefined target through the pRISM+ 
Shell. 

dssession load filename [ alllsymbollimage ] 

Loads/downloads the specified file filename to the DbgSrv or the target, as 
appropriate. Options are to do the following: 

• all - load the symbol table into the DbgSrv and download the executable 
image to the target 

• symbol - load the symbol table into the DbgSrv only 

• image - download the executable image to the target only 

D-25 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

Examples 

• To open a debug session for the DbgSrv, enter this command; it will r eturn a 
session number : 

dssession open 

• To close a debug session for the DbgSrv, enter this command before exiting the 
debugger shell: 

dssession close 

• To load the symbol table of file ram. elf to the DbgSrv and download its execut­
able image to the target: 

dssession load c:/isi/users/me/apps/pdemo/ram.elf 
dssession load isi\users\me\apps\pdemo\ram . elf 

• To load the symbol table of the same ram.elf file to the DbgSrv, only: 

dssession load c:/isi/users/me/apps/pdemo/ram.elf symbol 
dssession load \isi\users\me\apps\pdemo\ram.elf symbol 

• To reset the target connection, enter this command: 

dssession reset 

See Also 

session on page D-72 

0-26 



pRISM+ User's Guide pRISM+ Shell Commands 

ev evaluate variable (shortcut) 

ev var_name frame_number [task_ID] 

Description 

The ev command evaluates the named variable in the specified stack frame of a task 
(default or specified). The ev command is a shortcut for the evaluate command. 

Usage 

ev var_name frame_number 

Evaluates variable var_ name in frame frame_ number of the default task. 

ev var_name frame_number task_ID 

Evaluates variable var_ name in frame frame_ number of the task task_ ID. 

Examples 

• To evaluate variable i in frame 0 of the task whose ID is OxlbOOOO: 

ev i 0 OxlbOOOO 

• To evaluate variable i of frame 0 in the default task: 

ev i 0 

See Also 

evaluate on page D-28 

D-27 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

evaluate eva luate local and global variables 

evaluate help 
evaluate var_ name frame frame_ number [task task_ ID] 

Description 

The evaluate command evaluates local and global variables. Use this command 
with the stackfrm command. 

Usage 

evaluate help 

Displays syntax for the evaluate command. 

evaluate var_ name frame frame_ number [task task_ ID] 

Evalua tes variable var_ name in fram e frame_ number of the specified task 
task_ ID, or of the default task (if no task_ ID specified) . 

Examples 

• This example shows how to u se the evaluate command: 

a. Set the default task: 

task set Ox00170000 

b. Show the s tack fra mes for the default task: 

stackf rm show 

c. Evalua te variable i of fram e 0 in the default task (as set in the preceding 
step a .) : 

evaluate i frame 0 

See Also 

0-28 

ev on page D-27 
stackfrm on page D-77 



pRISM+ User's Guide pRISM+ Shell Commands 

evt set events (shortcut) 

evt event_code_mask 

Description 

You can receive information from CommSrv about certain events occurring in the 
target, such as an instruction break, creation or deletion of an object, an output 
request, and so on. Each event is represented by an event code, which can be ORed 
together to generate an event mask. 

To receive information about an event, you must first register with CommSrv for 
that event (that is , "set" the event) with the evt command. 

When you have registered for an event, CommSrv reports occurrences of that event 
in the pRlSM+ Shell window. This is a shortcut for the target set event com­
mand. See the description of target on page D-80 for a list of event codes. 

Examples 

• To register for target 1/0 request events: 

evt Ox1800 

D-29 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

fl display and set pROBE+ flags (shortcut) 

fl [ flag (onloff) 

Description 

Usage 

The fl command displays and sets pROBE+ flags. This is a shortcut for the probe 
set flag flag_ type command. 

fl 

Displays the pROBE+ flags and their current status. 

fl flag (onloff) 

Sets the specified pROBE+ flag either ON or OFF. The available pROBE+ flags 
are nopage, nomanb, nodots , rbug, and smode . For an explanation of the 
meaning of these flags, see the entry for the probe command on page D-53 . 

Examples 

• To display pROBE+ flags: 

fl 

• To set pROBE+ flags to ON or OFF as needed: 

fl nomanb on 
fl nodots off 
fl nopage off 
fl smode on 
fl rbug off 

See Also 

probe on page D-53 

D-30 



pRISM+ User's Guide pRISM+ Shell Commands 

f m fill memory (shortcut) 

fm[.width] start_ addr .. stop_ addr data 

Description 

Usage 

The fm command fills a range of memory with a specified value. This is a shortcut 
for the memory fill command. The two dots( .. ) are required to indicate a range 
of memory. 

fm start_ addr .. stop_addr data 

Fills a range of memory in one-byte units with the value of data, starting at ad­
dress start_ addr and ending at address stop_ addr. 

fm.width start_addr .. stop_addr data 

Fills a range of memory with the value of data, starting at address start_ addr 
and ending at address stop_ addr. The value of data is zero-extended to 1, 2 , 
or 4 bytes, as specified by width . Valid values for width are c (for char, one 
byte, the default), s (for short , two bytes), and l (for long, four bytes). 

Examples 

• To fill address range OxlO to Ox20 with the one-byte value Ox7b: 

fm.c OxlO .. Ox20 Ox7b 

See Also 

dm on page D-23 
memory on page D-41 

D-31 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

go continue execution of foreground tasks or halted application 

go 

Description 

In system debug mode (SDM). the go command continues execution of your halted 
target application. 

In task debug mode (TDM). this command continues the execution of all foreground 
tasks. 

Examples 

• To run the halted target program: 

go 

See Also 

halt on page D-33 

0-32 



pRISM+ User's Guide pRISM+ Shell Commands 

halt stop execution of target application or all foreground tasks 

halt 

Description 

In system debug mode (SDM), the halt command stops execution of the target 
application. 

In task debug mode (TDM) the halt command causes all foreground tasks to stop 
executing. Use halt only if the foreground tasks are currently executing. Once the 
foreground tasks are halted, the setting for the default task changes . 

Examples 

• To stop the running target: 

halt 

See Also 

go on page D-32 

D-33 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

he display summary of all pRISM+ Shell commands (shortcut) 

he 

Description 

The he command prints a list of all pRISM+ Shell commands and a brief description 
of what each command does. This command is a shortcut for the help command. 

Examples 

• To display all the pRISM+ Shell commands: 

he 

See Also 

help on page D-35 

0-34 



pRISM+ User's Guide pRISM+ Shell Commands 

help display help for all the available pRISM+ Shell commands 

help 
help [ conunand_name 

Description 

Usage 

The he l p command provides information about pRISM+ Shell commands, their 
purpose and syntax. 

help 

Displays a list of all pRISM+ Shell commands and a brief description of what 
each command does. 

help conunand_name 

Displays information about the pRISM+ Shell command command_ name, 
including its syntax and options, and gives examples of how the command is 
used. 

Examples 

• To display all the pRISM+ Shell commands: 

help 

• To display the syntax and options of the breakpoint command: 

help breakpoint 

D-35 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

ii display and set pROBE+ interrupt level (shortcut) 

il [ i_level 

Description 

Usage 

The il command displays the current pROBE+ interrupt level and sets the pROBE+ 
interrupt level to level i _ level . 

il 

Displays the current pROBE+ interrupt level. This is a shortcut for using the 
probe show command. 

il i_level 

Sets the pROBE+ interrupt level to level i level. This is a shortcut for the 
probe set ilevel i _ level command. 

• On the MIPS processor, the interrupt level can range from 0 to 1. 

For more information about the available interrupt levels, see the Programmer's 
Reference manual. 

Examples 

• To set the pROBE+ interrupt level to 1 (one): 

il 1 

See Also 

probe on page D-53 

0-36 



pRISM+ User's Guide pRISM+ Shell Commands 

in it initialize pSOS+ on the target (shortcut) 

init 

Description 

The init command initializes or re-initializes pSOS+ on the target. This command 
is a shortcut for the initialize command. 

Examples 

• To initialize your downloaded application: 

init 

See Also 

boot on page D-4 
initialize on page D-38 

D-37 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

initialize initialize pSOS+ on the target 

initialize 

Description 

The initialize command initializes or re-initializes pSOS+ on the target. 

Examples 

• To initialize your downloaded application: 

initialize 

See Also 

0-38 

boot on page D-4 
init on page D-37 



pRISM+ User's Guide pRISM+ Shell Commands 

lb list all breakpoints (shortcut) 

lb 

Description 

The lb command lists all current breakpoints and their status. This is a shortcut 
for the breakpoint show command and the osbreakpoint show command. 

Examples 

• To list all breakpoints: 

lb 

See Also 

breakpoint on page D-5 
cb on page D-8 
db on page D-14 
osbreakpoint on page D-45 

D-39 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

log log packets to a log file (shortcut) 

log (log_filelend) 

Description 

The log command turns on and off the logging of packets exchanged between 
pROBE+ and CommSrv to a specified log file. This is a shortcut for the session 
log command. 

Usage 

log log_ file 

Starts the logging of packets to the log file log_ file . 

log end 

Turns off the logging of packets started with a previous log log_ file . 

Examples 

• To generate this log file , data pkt. txt: 

Send : QUERY_ RQT Type : Al l Regions , Request: NEW , 
Packet Dump: 

0 : oc 84 00 00 00 00 00 00 FF FF FF 
Recv : QUERY RPY status : pROBE_ OK , More ?: 
Packet Dump : 

0 : SC 00 01 00 00 00 00 02 52 4E 23 
16 : 00 30 00 80 00 7F FF 00 00 00 01 
32 : 00 76 AA 00 00 00 00 00 00 00 00 
48 : 00 22 00 00 00 AE AS 00 00 00 08 
64 : 00 00 07 00 00 00 07 00 00 00 00 

enter this series of commands: 

See Also 

log datapkt.txt 
qr 
log end 

session on page D-72 

0-40 

FF 
FALSE , 

30 00 
00 00 
00 52 
00 00 
00 00 

Node : -1 

. . .. . ... . . .. 
Part i a l ? : FALSE , Ni tems : 

00 00 00 . . .. . ... RN#O. 
76 D4 00 . 0 . . . ..... . .. 
4D 45 4D .v . ......... R 
00 00 80 II ... . . . . . ... 
00 00 00 . . ... ... . . ... 

2 



pRISM+ User's Guide pRISM+ Shell Commands 

memory allocate, deallocate, read, fill, and write ranges of memory 

memory help 
memory allocate ulong_units 
memory deallocate address 
memory read address [ width (11214) ] [ count number] 
memory fill address value data [ width (11214) ] [ count number 
memory write address value data [ data ... ] [width (11214) ] 

Description 

Usage 

The memory command allocates, deallocates, reads, fills, and writes ranges of 
memory. 

memory help 

Displays the syntax of the memory command. 

memory allocate ulong_units 

Sets aside ulong_ units (a decimal integer> 0) of memory, where each unit is 
the size of an unsigned long, so the application can use the memory later. 
The memory allocate command returns the start address of the allocated 
block. 

memory deallocate address 

Frees a block of previously allocated memory, starting at address address . 

memory read address [ width (11214) ] [ count number] 

The memory read command reads the contents of a region of memory, starting 
at address address . If you specify a width argument Wand a count argument 
number, the memory is read as number W-byte-sized units. Default values for W 
and number are 4 and 1, respectively. 

memory fill address value data [width (11214) ] [ count number] 

The memory fill command fills a region of memory with a specified value, 
starting at address address . 

D-41 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

The value of the data argument is zero-extended to 1, 2, or 4 bytes, as specified 
by the width qualifier (4 is the default width). The zero-extended data argu­
ment is duplicated number times (1 is the default value of number). 

memory write address value data [ data ... ] [width (11214) 

The memory write command modifies the contents of a memory address by 
writing the data element(s) to memory, starting at address address . The value 
of each data argument is zero-extended to 1, 2 , or 4 bytes, as necessary, as 
specified by the width qualifier (4 is the default width) . 

NOTE: If a data element is larger than the specified width value, CommSrv 
truncates it and takes the least significant bits. For example, if you 
attempt to write Oxl234 to a byte, CommSrv writes it as Ox34. 

Examples 

0-42 

• To read memory contents starting from memory address Ox003FlBC4 and 
reading four units (count 4 ) of I-byte data (width 1): 

memory read Ox003F1BC4 width 1 count 4 

• To write to memory starting at memory address Ox003FlBC4, writing data 
items that are each two bytes wide (width 2). consisting of data item Oxl234 
and data item Ox5678: 

memory write Ox003F1BC4 value Ox1234 Ox5678 width 2 

• To fill memory, starting at address Ox003FlBC4, with the value Ox55AA66BB -
which is a long word (width 4) - and insert the fill value two times (count 2): 

memory fill Ox003F1BC4 value Ox55AA66BB width 4 count 2 

• To allocate a block of memory the size of two unsigned long values, and 
return the start address of the allocated block: 

memory allocate 2 

• To deallocate a block of previously allocated memory, starting at the block's 
start address Ox00231Bl6: 

memory deallocate Ox00231B16 



pRISM+ User's Guide pRISM+ Shell Commands 

mod set debugging mode (shortcut) 

mod (tdm I sdm) 

Description 

The mod command specifies the debugging mode (task debug mode or system debug 
mode). This is a shortcut for the session set mode command. 

Usage 

mod tdm 

Sets the debug mode to task debug mode. 

mod sdm 

Sets the debug mode to system debug mode. 

Examples 

• To set the debugging mode to task debug mode: 

mod tdm 

See Also 

session on page D-72 

D-43 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

mutex display information about mutual-exclusion objects 

mutex help 
mutex show [ (mutex_ IDl'mutex_ name') ] 

Description 

Usage 

The mutex command displays information about the mutual exclusion objects in 
the application. 

mutex help 

Displays the syntax of the mutex command. 

mutex show (mutex_ IDl'mutex_ name') 

Without arguments, mutex show displays a summary of all active mutual 
exclusion objects in the application. The display includes conditional-variable 
names and IDs, pSOS+m access, nest lock, type of queue used, priority invert­
ers, ceil priority, task name, task ID, node, hold count, and task queue length. 

If you specify a mutex object by ID or name, this command displays the status 
(name, ID , access, queue type, etc.) for that object. 

Examples 

• To display information about all mutex objects in the application: 

mutex show 

• To display detailed information about mutex Ox00130000: 

mutex show Ox00130000 

0-44 



pRISM+ User's Guide pRISM+ Shell Commands 

osbreakpoint manage all operating-system-specific breakpoints 

osbreakpoint help 
osbreakpoint show 
osbreakpoint clear [ osbp_indexlsessionlall ] 
osbreakpoint set dispatch [(task_IDl'task_name' I*)] 
osbreakpoint set time time_and_date 
osbreakpoint set ticks number 
osbreakpoint set syscall system_call origin parameter 

Description 

Usage 

The osbreakpoint command manages all operating-system-specific breakpoints. 
Currently, this set consists of pSOS+ specific breakpoints such as service-call, dis­
patch, and timer breaks. 

osbreakpoint help 

Displays the syntax and options of the osbreakpoint command. 

osbreakpoint show 

Displays all the currently set OS breakpoints. The display is grouped by OS 
breakpoint type (dispatch, timer, or service-call). Each OS breakpoint is 
assigned a unique OS breakpoint index number. 

osbreakpoint clear [ osbp_indexlsessionlall 

Removes an OS breakpoint from the breakpoint table. You can remove an indi­
vidual breakpoint (by osbp_ index). all the OS breakpoints for the current ses­
sion, or all OS breakpoints for the target application. 

The pRlSM+ Shell does not display an error message if the specified OS break- D 
point does not exist in the breakpoint table. 

osbreakpoint set dispatch [(task_IDl'task_name' I*)] 

Sets a dispatch breakpoint on the default task (if no task ID or name specified), 
or on the specified task. 

D-45 



pRISM+ Shell Commands pRISM+ User's Guide 

0-46 

A dispatch breakpoint is a breakpoint that stops execution of the target applica­
tion if one of the following occurs: 

• The task is pre-empted. 

• The task blocks. 

• The task becomes the running task. 

osbreakpoint set time time_ and_ date 

Sets an absolute timer breakpoint to occur at the specified time and date. Argu­
ment time_ and_ date takes this form: 

hours minutes [seconds] [ month date_ num year ] 

where valid values for each time_ and_ date component are as follows: 

hours 

minutes 

seconds 

1 

0 

24 

59 

0 - 59 

date_ num 

month 

year 

1 - 31 

JAN, FEB, MAR, APR, MAY, JUN, 
JUL, AUG, SEP, OCT, NOV, DEC 

0 - 9999 

The seconds component is optional; it defaults to 0 if not given. If you do not 
specify the three date components, osbreakpoint uses the current date. 

osbreakpoint set ticks number 

Sets a relative timer breakpoint to occur number clock ticks after the target has 
started running. 

osbreakpoint set syscall system_ call origin parameter 

Defines a pSOS+ service-call break, which stops execution when the application 
makes a qualifying system call into the pSOS+ kernel. 

The origin 

The origin specifies that the service break is to be further qualified by the 
entity executing code when the service break is hit. The origin can be one of 
the following: a task name, a task ID, the * character, or the isr option. 

origin= 'task_name' I task_ID 

Specifies that the service break must be hit by this specified task to stop 
execution. The task can be identified by either a task name or task ID. 



pRISM+ User's Guide pRISM+ Shell Commands 

origin = * 
Specifies that the service break can b e hit by any task or ISR (in system 
debug mode) or any debug task (in task debug mode) to stop execution. 

origin = isr 

Specifies that the service break must be hit by any interrupt service routine 
(ISR) to stop execution. This origin is valid only in system debug mode. 

The parameter 

The parameter specifies the function-related parameter that further qualifies a 
break on a specific system call. For each system call, the parameter value is 
one of the following types , or no parameter at all, as specified in the table on the 
next page: 

• a conditional variable name or ID ( Condvar) 

• a device number (Device) 

• a mutual-exclusion object name or ID (Mutex) 

• a name (four letters enclosed in single quotes, su ch as ' SRCE ' or ' I0_ 2 ') 

• a partition name or ID (Partition) 

• a queue name or ID (Queue) 

• a region name or ID (Region) 

• a semaphore name or ID (Semaph) 

• a task name or ID (Task) 

Tables D- 1 and D-2 identify the pSOS+ system calls on which a service break 
can occur and, for each call, list the qualifying parameter type (Parm Type) . For 
detailed information about these system calls , see the pSOSystem System Calls 

manual. The calls in Table D-2 are new for pSOS+ version 2 .5. D 
TABLE D-1 pSOS+ System Calls for osbreakpoint set syscall Command 

System Call Parm Type System Call Parm Type System Call Parm Type 
as - catch None q_ aurgent Queue sm_ delete Semaph 

as_ notify None q_ avsend Queue sm_ ident Name 

as - return None q_ avurgent Queue sm_ p Semaph 

as - send Task q_ broadcast Queue sm_ v Semaph 

D-47 



pRISM+ Shell Commands pRISM+ User's Guide 

TABLE D-1 pSOS+ System Calls for osbreakpoint set syscall Command (Continued) 

System Call Parm Type System Call Parm Type System Call Parm Type 
de - close Device q_ create Name t - create Name 

de - ctrl Device q_ delete Queue t - delete Task 
de - init Device q_ ident Name t _get reg Task 
de _open Device q_ receive Queue t - ident Name 

de - read Device q_ send Queue t _mode None 

de _write Device q_urgent Queue t - restart Task 
errno - addr None q_vbroadcast Queue t - resume Task 
ev - a send Task q_vcreate Name t _setpri Task 
ev - receive None q_vdelete Queue t _set reg Task 
ev - send Task q_vident Name t - start Task 
k - fatal None q_vreceive Queue t_suspend Task 
k - terminate None q_vsend Queue tm_ cancel None 

m - ext2int None q_vurgent Queue tm_evafter None 

m_ int2ext None rn - create Name tm_evevery None 

pt_create Name rn - delete Region tm_evwhen None 

pt_ delete Partition rn_getseg Region tm_get None 

pt_getbuf Partition rn - ident Name tm_ set None 

pt_ ident Name rn_retseg Region tm_tick None 

pt_ retbuf Partition sm_ av Semaph tm_wkafter None 

pt_sgetbuf None sm_ create Name tm_wkwhen None 

q_ a send Queue 

TABLED-2 pSOS+ Version 2.5 System Calls for osbreakpoint set syscall Command 

System Call Parm Type System Call Parm Type System Call Parm Type 
co_register None dnt - remove None q_notify Queue 

co_unregister None ioj_bind None q_notify Queue 

CV - abroadcast Condvar ioj_bindany None sm_notify Semaph 

cv_asignal Condvar ioj_getent None t - addvar Task 
cv_broadcast Condvar ioj_ lock None t - delvar Task 
CV - create Name ioj_ unlock None tm_getticks None 

CV - delete Condvar mu - create Name tsd_ create Name 

CV - ident Name mu - delete Mutex tsd_ delete None 

cv_signal Condvar mu - ident Name tsd_getval None 

cv_wait Condvar mu - lock Mutex tsd_ ident Name 

dnt - add None mu - setceil Mutex tsd_ set val None 

dnt find None mu unlock Mutex - -

0-48 



pRISM+ User's Guide pRISM+ Shell Commands 

Examples 

• To set a dispatch OS breakpoint: 

osbreakpoint set dispatch OxOOOlOOOO 
osbreakpoint set dispatch 'IDLE' 

• To set an absolute timer breakpoint at 14: 12: 10 on July 4 , 1999: 

osbreakpoint set time 14 12 10 JUL 4 1999 

• To set a relative timer breakpoint to break after 100 ticks have elapsed: 

osbreakpoint set ticks 100 

• To set a system-call breakpoint to break when the program calls the pSOS+ 
system call q_ send (for any queue and from any task or ISR): 

osbreakpoint set syscall q_send * * 

Refer to Table D-1 on page D-4 7 for the list of supported system calls. 

• To show information about all the OS breakpoints set: 

osbreakpoint show 

• To clear the OS breakpoint whose index number is 3: 

osbreakpoint clear 3 

• To clear all OS breakpoints for the current session: 

osbreakpoint clear session 

• To clear all OS breakpoints: 

osbreakpoint clear all 

See Also 

breakpoint on page D-5 
cb on page D-8 
db on page D-14 
lb on page D-39 

D-49 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

partition display information about partitions 

partition help 
partition show [ (partition_IDl'partition_name') ] 

Description 

Usage 

The partition command displays information about the partitions of your current 
application. 

partition help 

Displays the syntax of the partition command. 

partition show 

With no argument, partition show displays a summary of all active parti­
tions in the application. The display includes partition names and IDs, buffer 
size, access (local or global). whether the delete override (DO) bit is set, the 
number of total buffers, the number of free buffers, and the starting address. 
The display is similar to the output of the QP command in pROBE+. 

partition show [ (partition_IDl'partition_name') ] 

Given a parti tion_ ID or parti tion_ name, this command displays informa­
tion about the specified partition. 

Examples 

• To display information about partitions Ox00150000 and PTNl: 

partition show Ox00150000 
partition show 'PTNl' 

See Also 

0-50 

psos on page D-55 
queue on page D-63 
region on page D-66 
semaphore on page D-71 
task on page D-82 



pRISM+ User's Guide pRISM+ Shell Commands 

pm patch memory (shortcut) 

pm[.width] address value 

Description 

Usage 

The pm command changes the value of a location in memory to a new specified 
value. 

pm.width address value 

Replaces the contents of a width -sized region of memory, starting at address 
address, with the specified value value . Valid values for width are c (for 
char, one byte, the default), s (for short, two bytes), and l (for long, four 
bytes). 

Examples 

• To change the value of four bytes at address Oxl020 to Oxl2345678: 

pm.l Ox1020 Ox12345678 

See Also 

fm on page D-31 
memory on page D-41 

D-51 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

pr patch register (shortcut) 

pr reg_num value ([general] lfpu) 
pr reg_num value (mmulcontrol) 

task_ ID 

Description 

Usage 

The pr command changes the value of a specified register to a new specified value. 
To find the reg_ n um number associated with a register name, use the dr command 
or the register show command. 

pr reg_num value ([general] lfpu) [ task ] 

Changes the contents of the general or floating-point register reg_ num for task 
task to the new value value. If no task_ ID is specified, the specified register 
of the default task is changed. 

pr reg_num value [ (mmulcontrol) 

Changes the contents of the MMU or control register reg_ num (shared by all 
tasks) to the new value value. 

Examples 

• To change the contents of general register 6 of the default task to the value 
OxlO: 

pr 6 OxlO 

See Also 

register on page D-68 

0-52 



pRISM+ User's Guide pRISM+ Shell Commands 

probe display and set pROBE+ flags and interrupt level 

probe help 
probe show 
probe set flag flag_type (onloff) 
probe set ilevel i_level 

Description 

Usage 

The probe command sets pROBE+ flags and interrupt level. 

probe help 

Displays the probe command syntax and available options. 

probe show 

Displays the current settings of all pROBE+ flags and the interrupt level. 

probe set flag flag_type (onloff) 

Sets a pROBE+ flag to ON or OFF. These are valid values for flag_ type: 

• no dots - prevents output of the periods normally sent to the console by 
the dl command 

• nopage - disables paging 

• rbug - directs the pROBE+ target agent to operate in distributed debug 
mode 

• nomanb - specifies whether you can halt a running application (off means 
you can halt it, on means you cannot) 

• smode - directs the pROBE+ target agent to run in silent debug mode 

probe set ilevel i_level 

Sets the pROBE+ interrupt level to level i _ level. 

On the MIPS processor, the interrupt level can be 0 or 1. 

For more information about the available interrupt levels, see the Programmer's 
Reference manual. 

D-53 

D 



pRISM+ Shell Commands 

Examples 

• To show pROBE+ flag settings and interrupt levels : 

probe show 

• To set pROBE+ flags to ON or OFF as n eeded : 

probe set flag nomanb on 
probe set flag nodots off 
probe set flag nopage off 
probe set flag smode on 
probe set flag rbug off 

• To set the pROBE+ interrupt level to 1: 

probe set ilevel 1 

See Also 

0-54 

fl on page D-30 
il on page D-36 
psos on page D-55 

pRISM+ User's Guide 



pRISM+ User's Guide pRISM+ Shell Commands 

psos make a pSOS+ system call 

psos help 
psos show (datelversionlmultiprocessor) 
psos show (devicenametableliojumptable) 
psos show table table_ type 
psos show object [ obj_ type 
psos call system_ call 

Description 

Usage 

The p sos command displays information about the date, version number, target 
multiprocessors, tables, and pSOS+ objects; you can also make pSOS+ system calls 
with this command. 

psos help 

Displays the psos command syntax and available options. 

psos show {datelversionlmultiprocessor) 

Displays the date, the version numbers of installed pSOS+ components (such as 
pROBE+, pMONT, and so on). and the node number and sequence number of 
each target multiprocessor. 

psos show (devicenametableliojumptable) 

Displays information about the pSOS+ device name table or 1/0 jump table, 
respectively. 

psos show object [ obj_ type ] 

Displays information about all the pSOS+ objects currently active in the target 
application (with no obj_ type specified) or about the specified obj_ type . Valid 
values for obj_ type are task, partition, region, queue , semaphore, 
mutex, and condvar. 

psos show table table_type 

Displays information about the specified pSOSystem configuration table 
table_ type. Valid values for table_ type are node, psos , probe , prepc, 
phile, pna , pse, pmont , or multiprocessor. 

D-55 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

0-56 

psos call system_ call parameter 

Makes a pSOS+ call directly from the pRISM+ Shell to manually s timulate or 
simulate portions of an application. Due to potential race conditions, only a 
subset of pSOS+ calls a re supported . 

Tables D-3 and D-4 identify the supported pSOS+ system calls and, for each 
call, list the requisite parameters (by type). The calls in Table D-4 are new for 
pSOS+ version 2.5. For detailed inform ation a bout these system calls , see the 
pSOSystem System Calls manual. 

TABLE D-3 pSOS+ System Calls for psos cal l Command 

Para-
System Call meter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 

as - send t I D s i gna l 

ev send t I D evnts -

pt_ getbuf pt ID 

pt_ retbuf pt ID bufaddr 

q_ broad q I D msg_ buf [ 0 ] msg_ buf[l] msg_ buf[2 ] msg_ buf[3] 
cast 

q_ receive q I D 

q_ send qID msg_ buf [ 0] msg_ buf [ l] msg_ buf [2] msg_ buf[3] 

q_urgent qID msg_ buf [ 0 ] msg_ buf[l] msg_ buf[2] msg_ buf[3] 

q_vbroad qID msg_ buf msg_ l en 
cast 

q_ vreceive q I D 

q_ vsend qID msg_ buf msg_ l en 

q_vurgent qID msg_ buf msg_ l en 

sm_ p smID 

sm_ v smID 

t resume t I D -

t _ setpri tID newprio 

t _ set reg t I D regnum reg_ va l ue 

t _ suspend t I D 

tm_ set date t i me ticks 

tm_ tick 



pRISM+ User's Guide pRISM+ Shell Commands 

TABLE D-4 pSOS+ Version 2.5 System Calls for psos call Command 

System Call Parameter 1 Parameter 2 Parameter 3 

as_notify evnts 

cv_signal cvID 

cv_broadcast cvID 

q_ not i fy qID tID evnts 

q_vnotify qID tid evnts 

sm_ notify smID tID evnts 

In tables D-3 and D-4 , the specified parameters have the following meanings: 

cvID Conditional-variable ID regnum Register number 

date Date ( dd-mmm-yyyy) reg_ value Register value 

evnts Bit-encoded events signal Bit-encoded signal list 

msg_ buf Message buffer smID Semaphore ID 

msg_ len Length of message ticks Number of elapsed clock ticks 

newprio New priority tID Task ID 

pt ID Partition ID time Time (hh : mm[ss] ) 

qID Queue ID 

Examples 

• To display multiprocessor information: 

psos show multiprocessor 

• To display all the pSOS+ objects: 

psos show object 

• To display all the pSOS+ task objects: 
D 

psos show object task 

• To display the pSOS+ node configuration table: 

psos show table node 

• To display the pSOS+ pREPC+ configuration table: 

psos show table prepc 

D-57 



pRISM+ Shell Commands pRISM+ User's Guide 

• To send an asynchronous signal of bit-encoded value Oxl2 to task OxOOOBOOOO: 

psos call as_send OxOOOBOOOO Ox12 

• To send an event signal of bit-encoded value Oxl3 to task OxOOOBOOOO: 

psos call ev_send OxOOOBOOOO Ox13 

• To send an urgent message to a variable-length queue (whose ID is 
Ox00250000) where Ox803ea864 is the message buffer start address and 2 is 
the message length: 

psos call q_vurgent Ox00250000 Ox803ea864 2 

Refer to Table D-3 on page D-56 and Table D-4 on page D-57 for a complete list 
of the supported pSOS+ system calls. 

See Also 

0-58 

partition on page D-50 
probe on page D-53 
queue on page D-63 
region on page D-66 
semaphore on page D-71 
task on page D-82 



pRISM+ User's Guide 

q* 

qc [ table_type ] 
qcs 

query-related commands (shortcuts) 

qcv [ (condvar_IDl'condvar_name') 
qd 
qdnt 
qioj 
qmu [ (mutex_IDl'mutex_name') ] 
qo [ obj_type ] 
qp [ (partition_IDI 'partition_name') 
qq [ (gueue_IDl'queue_name') [ nodata] 
qr [ (region_IDl'region_name') ] 
qs [ (semaphore_IDl'semaphore_name') 
qsv 
qt [ ( task_ID I ' task_name' ) ] 
qtsd 
qtv [ (task_IDI 'task_name')] 
qv 

Description 

pRISM+ Shell Commands 

The q* commands are shortcuts for lengthier pRISM+ Shell commands. See the 
Usage section for details about which q* shortcut command matches which 
pRISM+ Shell command. 

Usage 

qc [ table_type ] 

qcs 

Queries a configuration table. With no argument, qc queries the node configu­
ration table. Given a table_ type argument, qc displays information about 
configuration table table_ type, which can be any of the following: psos, 
probe, prepc , phi le, pna , pse, pmont , or mpc (multiprocessor). 

This command is a shortcut for the psos show table table_ type com­
mand. 

Queries the CommSrv version and license numbers; shortcut for the cs about 
version command. 

D-59 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

0-60 

qcv [ (condvar_IDl'condvar_name') ] 

qd 

Queries conditional variable(s). With no argument, qcv displays a summary of 
all active conditional variables in the application. Given a condvar_ ID or 
condvar_ name argument, qcv displays information about the specified condi­
tional variable. This command is a shortcut for the condvar show command. 

Queries the date; shortcut for the psos show date command. 

qdnt 

Queries the device name table; shortcut for the psos show devicenametable 
command. 

qioj 

Queries the 1/0 jump table; shortcut for the psos show iojumptable com­
mand. 

qmu [ (mutex_ID I 'mutex_name' ) 

Queries mutual exclusion objects. With no argument, qmu displays a summary 
of all active mutual exclusion (mutex) objects in the application. Given a 
mutex_ ID or mutex_ name argument, qmu displays information about the spec­
ified mutex object. This command is a shortcut for the mutex show command. 

qo [ obj_type 1 

Queries pSOS+ objects. With no argument, qo displays a summary of all objects 
in the application. Given an obj_ type argument, qo displays information 
about specified object obj_ type, which can be any of the following: task , 
queue , semaphore , region,partition , mutex ,or condvar. 

This command is a shortcut for the psos show object command. 

qp [ (partition_ IDI 'partition_ name') ] 

Queries partition(s). With no argument, qp displays a summary of all partitions 
in the application. Given a parti tion_ ID or parti tion_ name argument, qp 
displays information about the specified partition. 

The qp command, without arguments, is a shortcut for the psos show object 
partition command or the partition show command. 



pRISM+ User's Guide pRISM+ Shell Commands 

qq [ (queue_IDl'queue_name') [ nodata] ] 

Queries queue(s) in the application. With no argument, qq displays a summary 
of all active queues in the application. Given a queue_ ID or queue_ name argu­
ment, qq displays detailed information about the queue. 

Given the nodata option, qq displays only the specified queue's ID number, 
size, and address; without the nodata option, qq also displays the first 16 bytes 
of the queue's message contents. This command is a shortcut for the queue 
show command. 

qr [ (region_IDI 'region_name') 

Queries region(s) in the application. With no argument, qr displays a summary 
of all active regions in the application. Given a region_ ID or region_ name 
argument, qr displays detailed information about the region. This command is 
a shortcut for the region show command. 

qs [ (semaphore_IDl'semaphore_name') ] 

qsv 

Queries semaphore(s) in the application. With no argument, qs displays a sum­
mary of all active semaphores in the application. Given a semaphore_ ID or 
semaphore_ name argument, qs displays detailed information about the sema­
phore. This command is a shortcut for the semaphore show command. 

Queries the pRISM+ Shell version number; shortcut for the version command. 

qt [ (task_IDI 'task_name') ] 

Queries task(s) in the application. With no argument, qt displays a summary of 
all active tasks in the application. Given a task_ ID or task_ name argument, 
qt displays detailed information about the task. This command is a shortcut for 
the task show command. 

qtsd 

Queries the task-specific data (TSD). such as task name, task ID, size, Nindex, 
allocation, and so on; shortcut for the tsd show command. 

qtv [ (task_IDl'task_name') ] 

Queries task variables for the specified task task_ ID or task_ name. This com­
mand is a shortcut for the task variable command. 

D-61 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

qv 

Queries the version numbers of all the pSOSystem components available on the 
target. This command is a shortcut for the psos show version command. 

Examples 

• To query the node configuration table: 

qc 

• To query the pROBE+ configuration table: 

qc probe 

• To query all objects: 

qo 

• To query the task object: 

qo task 

• To query partition PTN 1: 

qp 'PTNl' 

• To query the queue whose ID number is OxlEOOOO and display only its ID num­
ber, size , and address (no message contents): 

qq OxlEOOOO nodata 

• To query the task variables for the task whose ID number is Oxl60000: 

qtv Ox160000 

See Also 

D-62 

condvar on page D-11 
mutex on page D-44 
partition on page D-50 
psos on page D-55 
region on page D-66 
task on page D-82 
tsd on page D-84 
version on page D-85 



pRISM+ User's Guide pRISM+ Shell Commands 

queue display information about queues 

queue help 
queue show [ (queue_ID l'queue_name') [ datalnodata] ] 

Description 

Usage 

The queue command displays information about the queues in the application. 

queue help 

Displays the queue command syntax and available options. 

queue show 

Without arguments, queue show displays the current settings of all the active 
queues in the application. The display includes the queue names and IDs, 
length of the task queue, length of the message queue, maximum message 
queue length, status of the buffer pool, type of queue, and whether a queue is a 
variable-length message queue. 

queue show [ (queue_ID l'queue_name') [ datalnodata] ] 

If you specify a pSOS+ queue object (by ID number or name). the settings of that 
particular object are displayed. You can also specify data or nodata for a given 
queue object. The nodata option additionally displays the queue's ID number, 
size, and address. The data option additionally displays the queue's ID num­
ber, size, and address, and also the first 16 bytes of the message. 

Examples 

• To show all queue information: 

queue show 

• To show detailed information for queue OxOOOEOOOO: 

queue show OxOOOEOOOO 

D-63 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

• To show detailed information for queue OxOOOEOOOO with no message contents 
displayed: 

queue show OxOOOEOOOO nodata 

See Also 

D-64 

region on page D-66 
task on page D-82 
semaphore on page D-71 
partition on page D-50 
psos on page D-55 



pRISM+ User's Guide pRISM+ Shell Commands 

quit close the session and exit the pRISM+ Shell window 

quit 

The quit command closes the session and exits the pRISM+ Shell window. 

D 

D-65 



pRISM+ Shell Commands pRISM+ User's Guide 

region display information about regions 

region help 
region show [ (region_IDl'region_name') ] 

Description 

Usage 

The reg i on command displays information about the active regions in the applica­
tion. 

region help 

Displays the region command syntax and available options 

region show 

Without arguments, reg i on s h ow displays a summary of all active regions in 
the application. The display includes the region names and IDs, starting ad­
dress of each region, length of each region, unit size in each region, number of 
free bytes, the largest contiguous size, the length of the task wait queue, 
whether the delete override (DO) bit is set, and the type of queue used. 

region show [ (region_IDl'region_name') ] 

If you specify a valid region object (by ID number or name), the pRISM+ Shell 
displays detailed information about that region. In addition to all the informa­
tion displayed for region show, this command displays the contents of the 
specified region's task wait queue and a detailed breakdown of memory usage 
with the region. The display is similar to the output of the QR <region> com­
mand in pROBE+. 

Examples 

• To show a summary of all active regions: 

region show 

• To show detailed information for region Ox00220000: 

region show Ox00220000 

0-66 



pRISM+ User's Guide 

See Also 

partition on page D-50 
psos on page D-55 
queue on page D-63 
semaphore on page D-71 
task on page D-82 

pRISM+ Shell Commands 

D 

D-67 



pRISM+ Shell Commands pRISM+ User's Guide 

register manage task-specific and shared registers 

register help 
register show [number reg] [category ([general] lfpu)] [task task_ ID 
register show [number reg] category (mmulcontrol) 
register set reg value [category ([general] lfpu)] [task task_ ID 
register set reg value category (mmulcontrol) 

Description 

Usage 

0-68 

The register command displays and modifies the value of a specified register in a 
task. 

register help 

Displays the syntax of the register command. 

register show [number reg] [category general] [task task_ID] 
register show [number reg] category fpu [task task_ ID] 

The register show command, without arguments, displays the contents of all 
the general registers of the default task. Registers are separated into categories 
so a more manageable group can be displayed at one time. 

• To display the contents of register reg, specify the number reg argument. 
To find the reg_ num number associated with a register name, use the dr 
command or the register show command. 

• To display the floating-point registers, give the category fpu option. 

• To display general or floating-point registers for a specific task, also specify 
a task task_ ID argument. 

• To display memory-management unit (MMU) or control registers, which are 
shared by all tasks, give the category mmu or category control option. 
When the MMU and control registers are displayed, any task specifier given 
is ignored. 



pRISM+ User's Guide pRISM+ Shell Commands 

register set reg value [category ([general] lfpu)] [task task_ID] 
register set reg value category (mmulcontrol) 

Examples 

The register set reg value command, without additional arguments , sets 
the contents of the default task's general register reg to the value value. 

• To set the value of floating-point register reg, give the category fpu 

option. 

• To set general or floating-point register reg for a specific task, also specify a 
task task_ ID argument. 

• To set memory-management unit or control register reg, give the category 
mmu or category control option. When the MMU and control registers 
are set, any task specifier given is ignored. 

• To show the contents of general registers related to task Ox00160000: 

register show task Ox00160000 

This command is equivalent to the following set of commands: 

task set Ox00160000 
register show 

NOTE: The task set command sets the default task, and the register 
show command displays the registers for that default task. 

• To show the contents of floating-point registers related to the default task: 

register show category fpu 

• To show the contents of floating-point register 2 related to task Ox00160000: 

register show number 2 category fpu task Ox00160000 

• To set the contents of task Ox00150000's floating-point register 3 to the value 
Oxl2345678: 

register set 3 Ox12345678 category fpu task Ox00150000 

See Also 

dr on page D-24 
pr on page D-52 

D-69 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

SC make a pSOS+ system call (shortcut) 

sc system_call 

Description 

Usage 

The sc command executes a pSOS+ system call. This is a shortcut for the psos 
cal l command. 

sc system_call 

Executes a pSOS+ system call. Depending on the system call, you might also 
need to specify one or more system-call parameters. Refer to Table D-3 on page 
D-56 and Table D-4 on page D-57 for a complete list of the supported pSOS+ 
system calls and their requisite parameters. 

Examples 

• To suspend the task whose task ID is Oxl60000: 

sc t_suspend Ox160000 

• To send an asynchronous signal of bit-encoded value Oxl2 to task OxOOOBOOOO: 

sc as send OxOOOBOOOO Ox12 

• To send an urgent message to a variable-length queue (with ID Ox00250000) 
where Ox803ea864 is the message buffer start address and 2 is the message 
length: 

sc q_vurgent Ox00250000 Ox803ea864 2 

• To acquire a semaphore token where OxOOOAOOOO is the semaphore ID: 

sc sm_p OxOOOAOOOO 

See Also 

psos on page D-55 

0-70 



pRISM+ User's Guide pRISM+ Shell Commands 

semaphore display information about semaphores 

semaphore help 
semaphore show [ (sem_ID l'sem_name') ] 

Description 

Usage 

The semaphore command displays information about the semaphores in the appli­
cation. 

semaphore help 

Displays the semaphore command syntax and available options. 

semaphore show (sem_ID l'sem_name') 

Without arguments, semaphore show displays a summary of all active sema­
phores in the application. The display includes the semaphore names and IDs, 
the current count number, the task queue length, and the type of queue used. 
The display is similar to the output of the QS command in pROBE+. 

If you specify a valid semaphore object (by ID number or name), the pRISM+ 
Shell displays detailed information about that semaphore. In addition to all the 
information described for semaphore show, this command displays the con­
tents of the semaphore's task wait queue. The display is similar to the output of 
the QS <semaphore> command in pROBE+. 

Examples 

• To show detailed information for semaphore OxOOOBOOOO: 

semaphore show OxOOOBOOOO 

See Also 

partition on page D-50 
psos on page D-55 
queue on page D-63 
region on page D-66 
task on page D-82 

D-71 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

session manipulate, open, and load the target through the pRISM+ Shell 

session help 
session open [hot] [ target_name ] 
session close 
session reopen 
session show [statistics] 
session set [mode] (tdmlsdm) 
session (addldelete) (task_IDl'task_name') 
session log {log_filelend) 

Description 

Usage 

0-72 

The session command manipulates, opens, and loads the target through the 
pRISM+ Shell. This command also initiates a target debug session, which begins 
when you open a connection to a specified target. 

session help 

Displays the session command syntax and available options. 

session open [ target_name ] 

Establishes contact to an existing halted predefined target through the pRISM+ 
Shell. Use this command first, before you enter any other CommSrv commands. 
If the connection is through an Ethernet, target_ name is the target's network 
name or its IP address. If the connection is serial, target_ name is the target's 
serial port number (or name) and baud rate, separated by a comma. 

If you do not specify a target_ name, the default target you selected in the 
pRISM+ Manager is used. 

session open hot [ target_name 

Establishes contact to the specified running target. 

session reopen 

Reestablishes contact to an existing predefined target through the pRISM+ 
Shell. Use this command during the same debug session when the communica­
tion link to the pROBE+ target agent breaks. For example, if a cable came loose 



pRISM+ User's Guide pRISM+ Shell Commands 

and then was reconnected, you would use this command to re-establish com­
munication. 

session close 

Disconnects contact from the target. Given the session close command, the 
pRISM+ Shell terminates the communication channel to the target. 

session show [statistics] 

Displays information about the target debug session, including the processor 
type on the target, the name of any log file, the names of executable files down­
loaded, and the current debug mode. 

If you specify the statistics option, this command also displays communica­
tion statistics, such as the number of packets sent. 

session set [mode] (tdmlsdm) 

Sets the debug mode to TDM (task debug mode) or SDM (system debug mode). 

session add (task_IDl'task_name') 

Specifies a task to add to the set of tasks being debugged (that is, the fore­
ground tasks). This command can be used only when the debug mode is TDM. 

session delete (task_IDl'task_name') 

Specifies a task to remove from the set of tasks being debugged (that is, the 
foreground tasks). This command can be used only when the debug mode is 
TDM. 

session log (log_filelend) 

Examples 

Manages the packet log file (a log of packets exchanged between CommSrv and 
the target). Command session log log_ file starts logging to file log_ file, 

while session log end stops the logging. 

• To connect through an Ethernet to a halted target and to a running target: 

session open seant3 
session open hot 152.216.226.158 

D-73 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

0-74 

• To connect through a serial port to a halted target and to a running target: 

session open COMl,9600 
session open hot /dev/ttya,19200 

• To reopen the current debug session (re-establish the connection after the com­
munication channel has been lost): 

session reopen 

• To close the current debug session: 

session close 

• To display information about the current debug session: 

session show 

• To set the debug mode to TDM (Task Debug Mode): 

session set tclm 

• To set the debug mode to SDM (System Debug Mode): 

session set mode sclm 

• To add a task (ID= Ox00010000 or name= CHAR) to the debug list: 

session add OxOOOlOOOO 
session add 'CHAR' 

• To delete a task from the debug list: 

session delete OxOOOlOOOO 
session delete 'NUMS' 

• To open a log file to record packet exchange information between CommSrv and 
the target: 

session log log_1020.txt 

• To end the current logging session: 

session log end 



pRISM+ User's Guide pRISM+ Shell Commands 

• The commands session log filename and session log end s h ould 

a lways be used in pairs . For example , enter this serie s of commands: 

session log datapkt. t xt 
region show 
session log end 

to generate this log file, d a tapkt.txt: 

Send: QUERY_RQT Type: AllRegions , Request : NEW , 
Packet Dump : 

0: oc 84 00 00 00 00 00 00 FF FF FF FF 
Recv: QUERY RPY status: pROBE_ OK , More? : FALSE , 
Packet Dump : 

0: SC 00 01 00 00 00 00 02 52 4E 23 30 00 
16: 00 30 00 80 00 7F FF 00 00 00 01 00 00 
32: 00 76 AA 00 00 00 00 00 00 00 00 00 52 
48: 00 22 00 00 00 AE AS 00 00 00 08 00 00 
64: 00 00 07 00 00 00 07 00 00 00 00 00 00 

See Also 

log on page D-40 

Node: - 1 

.. . . . . . . . . . . 
Partial?: FALSE , Nitems : 2 

00 00 00 . . . . . . . . RN#O . 
76 D4 00 . 0 . . . . . . . .. . . 
4D 45 4D . v . . . . . . . . . . R 
00 00 80 " . . . . . . .. . . . 
00 00 00 . . . . . . . . . . . . . 

D-75 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

sf display stack frame information (shortcut) 

sf [ task_ ID 

Description 

Usage 

The sf command displays the stack frame for the default task or for a specified 
task. This is a shortcut for the stackfrm show command. 

sf [ task_ID ] 

The sf command displays a summary of all stack frames in the application. If 
you specify a task_ ID, the command displays a summary of information about 
the stack frame for that task. 

Examples 

• To display the stack frame of the task whose ID is OxlbOOOO: 

sf OxlbOOOO 

0-76 



pRISM+ User's Guide pRISM+ Shell Commands 

stackfrm display stack frame information 

stackf rm help 
stackfrm show [ task (task_ID) ] 

Description 

The stackfrm command displays information about the stack frames. 

Usage 

stackf rm help 

Displays the syntax of the stackfrm command. 

stackfrm show [ task (task_ID) ] 

The stack frm show command displays a summary of all stack frames in the 
application. If you specify a task_ ID, the command displays a summary of 
information about the stack frames for that task 

Examples 

• To show stack frame information for the default task and task Ox00160000, 
respectively: 

stackf rm show 
stackfrm show task Ox00160000 

D-77 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

t* task-related commands (shortcuts) 

tadd (task_IDl'task_name') 
tdef [ (task_IDI 'task_name') 
tdel (task_IDl'task_name') 
tin string [ task_ID ] 

Description 

Usage 

0-78 

The t * commands are shortcuts for lengthier pRISM+ Shell commands. 

See the Usage section for details about which t * shortcut command matches which 
pRISM+ Shell command. 

tadd (task_IDl'task_name') 

Adds the specified task to the debugger list when in task-debug mode; shortcut 
for the session add command. 

tdef [ (task_IDl'task_name') ] 

Displays or sets the default task. Without arguments , tdef displays the default 
task. This is a shortcut for the tas k default command. 

Given a task ID or name, tdef sets the default task to the specified task. This is 
a shortcut for the task set command. 

tdel (task_IDl'task_name') 

Deletes the specified task from the debugger list when in task-debug mode; 
shortcut for the sess i on delete command. 

tin string task_ID 

Inputs a string from the pRISM+ Shell to a task. The input is given to the default 
task unless you specify a task_ ID. Use this command when a task calls 
db_input to get input. This is a shortcut for the task input command. 



pRISM+ User's Guide pRISM+ Shell Commands 

Examples 

• Add to the debug list the task whose ID is Oxl60000 and the task whose name 
is I02_, respectively: 

tadd Ox160000 
tadd 'I02 ' 

• Show the default task 

tdef 

• Set the default task to the task whose ID is Oxl60000: 

tdef Ox160000 

• Delete from the debug list the task whose ID is Oxl60000 and the task whose 
name is I02_, respectively: 

tdel Ox160000 
tdel 'I02 ' 

• Input string "ABcd" to the target to task OxlbOOOO. 

tin ABcd OxlbOOOO 

See Also 

session on page D-72 
task on page D-82 

D-79 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

target manage target definitions 

target help 
target set event event_ code_ mask 

Description 

0-80 

You can receive information from CommSrv about certain events occurring in the 
target, such as an instruction break, creation or deletion of an object, an output 
request, and so on. 

Each event is represented by an event code, which can be ORed together to generate 
an event mask. These are the events defined for each event code: 

OxOOOOOOOO No event 

OxOOOOOOOl Instruction Break 

Ox00000002 Memory Access Break 

Ox00000004 Service Call Break 

OxOOOOOOOS Kernel Break 

OxOOOOOOlO Exception (Exe) Break 

Ox00000020 Background Exe Break 

Ox00000040 TDM-off Break 

OxOOOOOOSO Manual Break 

OxOOOOOlOO Fatal Error Break 

Ox00000200 Unexpected Break 

Ox00000400 ASM Step Break 

OxOOOOOSOO Input Request 

OxOOOOlOOO Output Request 

Ox00002000 Experiment Data 

Ox00004000 End Experiment 

OxOOOOSOOO Perfmeter Data 

OxOOOlOOOO Stack Problem 

Ox00020000 Object Create 

Ox00040000 Object Delete 

OxOOOSOOOO Application Restart 

OxOOlOOOOO Invocation Complete 

Ox00200000 Target Load Module 

Ox00400000 Target Unload Module 

OxFFFFFFFF All events 

To receive information about an event, you must first register with CommSrv for 
that event (that is, "set" the event) with the target set event command. 

When you have registered for an event, CommSrv reports occurrences of that event 
in the pRISM+ Shell window. 



pRISM+ User's Guide pRISM+ Shell Commands 

Usage 

target help 

Displays the target command syntax and available options. 

target set event [ event_code_mask ] 

Registers target events for which you want to receive notification. The 
event_ code_ mask is one event code or a combination of event codes ORed 
together. 

If you have previously registered for events and are no longer interested in some 
of them, changing the event_ code_ mask causes CommSrv to immediately 
search through all saved events and remove those that are no longer of interest. 

Examples 

• To register target Input Request (Ox00000800) events and Output Request 
(OxOOOOlOOO) events: 

target set event Ox00001800 

D-81 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

task manage task operations 

task help 
task default 
task {showlsetlvariable) [ (task_IDl'task_name') 
task input string [ (task_IDl'task_name') ] 

Description 

Usage 

0-82 

The task command manages task operations, including setting the default task. 

task help 

Displays the tas k command syntax and available options. 

task default 

Displays the task ID of the default task. The default task is set when you invoke 
the sess i on open command. 

task show [ (task_IDl'task_name') 

With no argument, tas k show displays a summary of all tasks in the applica­
tion. This summary display includes the task names and task IDs, priorities, 
mode, status, suspension state, and, if the task is blocked, the reason for the 
blockage. The display is similar to the output of the QT command in pROBE+. 

Given a specific task ID or name, the command displays detailed information 
about that task, if it exists. This task-specific display includes the values of all 
software registers; initial pc, sp, priority, and mode; ASR address and mode; 
pending events and ASR; and outstanding timers. The display is similar to the 
output of the QT <task> command in pROBE+. 

task set [ (task_IDl'task_name') ] 

Sets the default task, overriding the previous setting of the default task. 

task input string [ (task_IDl'task_name') ] 

Inputs a string from the pRISM+ Shell to a task. 

The input is given to the default task unless you specify another task by ID or 
name. Use this command when a task calls db_ input to get input. 



pRISM+ User's Guide pRISM+ Shell Commands 

task variable [ (task_IDl'task_name') ] 

Displays task variables for the specified task or, if no task ID or name is speci­
fied, for the default task. 

Examples 

• To show information about all tasks: 

task show 

• To show detailed information about task OxOOOAOOOO 

task show OxOOOAOOOO 

• To set task OxOOO 10000 as the default task for debugging: 

task set OxOOOlOOOO 

• To show the default task ID: 

task default 

• To input the string "ABCD" from the pRISM+ Shell to the default target: 

task input ABCD 

• To show variables of task Ox00020000: 

task variable Ox00020000 

See Also 

partition on page D-50 
psos on page D-55 
queue on page D-63 
region on page D-66 
semaphore on page D-71 

D-83 

D 



pRISM+ Shell Commands 

tsd 

tsd help 
tsd show 

Description 

pRISM+ User's Guide 

display task-specific data 

The tsd command displays task-specific data for the default task, such as task 
name, task ID, size, Nindex, allocation, and so on. 

Examples 

• To display all task-specific data for the default task of the target application: 

tsd show 

0-84 



pRISM+ User's Guide pRISM+ Shell Commands 

version display pRISM+ Shell version 

version 

Description 

The version command displays the version number of the pRISM+ Shell. 

Example 

• To display version information about the pRISM+ Shell: 

version 

See Also 

q* on page D-59 

D 

D-85 



pRISM+ Shell Commands pRISM+ User's Guide 

D.3 Comparison of pROBE+ and pRISM+ Shell Commands 

What the Command Does 
pROBE+ 

pRISM+ Shell Command(s) 
pRISM+ Shell 

Command Shortcut 

Memory Commands 

Display memory DM memory read dm 

Patch memory PM memory write pm 

Fill memory FM memory fill fm 

Search memory SM N/A --

Move memory MM N/A --

Compare memory CM N/A --

Disassemble memory DI disassemble di 

Assemble into memory AS N/A --

Download S-record file from host DL dl dl 

Verify download from host VL N/A --

Upload to host UL N/A --

Register Commands 

Display registers DR register show dr 

Patch register PR register set pr 

Display offset registers DO N/A --

Display floating-point registers DF register show f pu dr 

Breakpoint Commands 

Set breakpoints DB breakpoint set db 
osbreakpoint set 

Show breakpoints LB breakpoint show lb 
osbreakpoint show 

Remove breakpoints CB breakpoint clear cb 
osbreakpoint clear 

Execution Commands 

Start the execution GO go go 

Initialize pSOS+ kernel GS initialize --

Go until pSOS+ exit GX N/A --

Stepping ST N/A --

0-86 



pRISM+ User's Guide pRISM+ Shell Commands 

What the Command Does 
pROBE+ 

pRISM+ Shell Command(s) 
pRISM+ Shell 

Command Shortcut 

Query Commands 

Query component version QV psos show version qv 

Query configuration tables QC psos show table qc 

Query date and time QD psos show date qd 

Query object tables QO psos show object qo 

Query partitions QP partition show qp 

Query queues QQ queue show qq 

Query regions QR region show qr 

Query semaphores QS semaphore show qs 

Query tasks QT task show qt 

Profiling Commands 

Clear profile data CP N/A --

List profile data LP N/A --

Miscellaneous Commands 

Help; display list of commands HE help he 

Enter host communication mode HO N/A --

Make pSOS+ system call SC psos call SC 

Evaluate constant EC N/A --

Set pROBE+ flags FL probe show fl 
FL "f" ON probe set flag f on fl f on 
FL "f" OFF probe set flag f off fl f off 

Set pROBE+ interrupt level IL probe show il 
IL "val" probe set ilevel val il val 

D 

D-87 



pRISM+ Shell Commands pRISM+ User's Guide 

D.4 TCL Commands 

0-88 

This section describes the built-in TCL commands used to construct pRISM+ Shell 
commands. These commands need only be used if you want to extend the provided 
set of commands. These commands are not needed for typical interactive use of the 
shell. 

The pRISM+ Shell allows you to access and use specialized TCL commands. These 
new commands have been developed to allow you to incorporate TCL scripts to 
interact with the CommSrv and DbgSrv via COREA. 

The built-in extensions to the TCL shell that allow access to the CommSrv and 
DbgSrv are known collectively as TCLCorba. 

TCLCorba binds the COREA interfaces defined by pRISM+ to the TCL language. 
These interfaces are only used if you want to extend the command set. 

NOTE: These commands are for advanced users who understand TCL and can 
develop their own TCL scripts. 

These are the pRISM+ TCL commands: 

• The type command opens a connection to an Interface Repository (IR). 

• The vinfo command allows a TCLCorba script to construct an object reference to 
a COREA service. 

• The bind command allows a TCLCorba script to bind an object reference to a 
COREA service. 

• The set command is an enhanced version of the TCL set command. 

• The new command creates a new instance of a COREA object. 

• The delete command removes a COREA object. 

• The toString command converts an instance of a basic type COREA. 

• The invoke command sends a request to COREA service. 

• The slength command provides the length of the sequence. 



pRISM+ User's Guide pRISM+ Shell Commands 

type opens a connection to the IR 

type open (ir hostname) I (TypeStore filename) 
type save TypeStore filename 

Description 

The type command opens a connection to the Interface Repository. Type provides 
the connection of the database you require to use the remaining pRISM+ Shell TCL 
commands to run a TCL script with pRISM+. TCLCorba extends the type environ­
ment of TCL by extracting this information from the Interface Repository. The syn­
tax is: 

To invoke one or more CORBA services, TCLCorba needs to know about the inter­
faces provided by the services and about the IDL types defined by these interfaces. It 
obtains this information from the Interface Repository (IR) as follow: 

type open ir hostname 

Where hostname is the name of the system where the IR services is located. The 
open option retrieves all the type information contained in the specified IR. 

This process may be very time consuming. TCLCorba provides a command to save 
the information from the IR in a local storage and retrieve it later: 

type save TypeStore filename 

Where filename is a name of a local file. All type store file names have the .ts 
extension. 

D-89 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

vinfo allows a TCLCorba script to construct an object reference to a 
CORBA service 

vinfo type [typeName] I interface [interfaceName] 

Description 

0-90 

Use vinfo command to check which database types and interface types known to 
TCLCorba are available. The syntax is: 

The following command displays all the types known to TCLCorba: 

vinfo typename 

To specify a particular type known to TCLCorba, use the following command: 

vinfo type typeName 

If typeName is specified as an argument to vinfo type, only information about that 
type is shown. 

The following command displays all the interfaces known to TCLCorba: 

vinfo interface 

If interjaceName is specified as an argument to vinfo interface, only information 
about that interface is shown. 



pRISM+ User's Guide pRISM+ Shell Commands 

bind allows a script to bind an object reference to CORBA services 

bind ObjectReference 

Description 

ObjectReference is one of the following: 

• hostname is the name of the system where the CORBA services is located. 

• serverName is the name of the CORBA services. In IDL, server name is the name 
of the IDL interface. 

• marker is the marker for that particular server. 

• interjaceMarker is the marker for that particular interface. 

More information about CORBA object references can be obtained from Iona or 
other CORBA vendors. 

D-91 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

set extended form of the built-in TCL set command 

set (tcl_ varltcl_ corba_ object) value 

Description 

0-92 

This set command is an extended form of the built-in TCL set command. 
TCLCorba script can invoke set to assign values to TCL variables or to TCLCorba 
basic-type objects. 

NOTE: The ability to assign values to TCLCorba complex-type objects is not yet 
implemented. 



pRISM+ User's Guide pRISM+ Shell Commands 

new creates a TCLCorba object 

new typename 

Description 

typename is the type name of the object. typename must be known to the instance 
of TCLCorba running. To verify if this type is available use vinfo type typename. 

D-93 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

delete removes a previously created TCLCorba object 

delete obj_ ref 

0-94 



pRISM+ User's Guide pRISM+ Shell Commands 

toString converts a basic-type TCLCorba object into a printable form 

toString obj_ref 

You can also use "*" as a short-cut of toString. 

D 

D-95 



pRISM+ Shell Commands pRISM+ User's Guide 

invoke sends a request to CORBA services 

invoke obj_ref operation [args]* 

0-96 

obj_refis obtained from a previous use of bind. 

operation is the name of an operation defined by the interface bind to by obj_ref. 

args is one or more argument to the request. 



pRISM+ User's Guide 

slength 

pRISM+ Shell Commands 

returns the current and maximum length of a TCLCorba sequence 
or array object 

slength arraylsequence obj_ref 

D-97 

D 



pRISM+ Shell Commands pRISM+ User's Guide 

0-98 



pSOSystem Source Projects 

E.1 Generic pSOSystem Projects 

include . shared Project for pSOSystem include files: $PSS_ ROOT I 
include and subdirectories. 

sys_os . shared Project for system library: sys/ os directory. 

configs_std. shared Project for pSOSystem configuration files: configs/std 
directory. Projects for sys/ os/ src/ dir_name: 

sysclass . shared Project for C++ library: sys I libel src/ sysclass 
directory. 

profiler . shared Project for profiler library: sys I libel src/prof iler 
directory. 

E.2 Drivers Project 

enetdlpi_drv . shared Project for drivers/enetdlpi. 

lap_drv . shared 

modem_drv . shared 

otcp_drv . shared 

ppp_drv.shared 

slip_drv . shared 

x25_drv.shared 

Project for drivers/lap. 

Project for drivers/modem. 

Project for drivers/otcp. 

Project for drivers/ppp 

Project for drivers/slip . 

Project for drivers/x25. 

E 

E-1 



pSOSystem Source Projects pRISM+ User's Guide 

E.3 Bsp Projects 

bsp_ src . shared 

bsp . shared 

Project for BSP sources: bsps/ bsp_ name/ src directory. 

Project for each bsps I bsp_ name. 

E.4 Sample Application Projects 

<app_name>.shared Project for each sample apps I app_ name 

E.5 Sample Application Projects 

Following projects are added as subprojects to the application projects: 

• include.shared 

• sys_ os. shared 

• configs_ std.shared 

• bsp_ src.shared 

• bsp. shared 

• Projects from the drivers and sys/libc/src if referred by the application. 

E.6 VPATH 

Makefiles implement workspaces overriding using the make VPATH facility. VPATH 
is a way to specify list of directories to the make that it should search for depen­
dency files. 

E.6.1 gnu gmake and VPATH 

E-2 

For gmake, VPATH define specifies the directory list. Directory names are separated 
by colons or blanks. The search can be qualified using 'vpath' . For example: 

VPATH = $(PSS_ROOT ) /apps/hello : /tmp/apps/hello 

Specifies to gmake to look for any dependency in $(PSS_ROOT)/apps/hello and 
/tmp/apps/hello when not found in the current directory. 



pRISM+ User's Guide pSOSystem Source Projects 

vpath %. h $ (PSS_ ROOT ) /apps/hello : /tmp/apps/hello 

Specifies to make to look for any .h dependency in $(PSS_ROOT)/apps/hello and 
/tmp/apps/hello when not find in the current directory. 

E.6.2 $< Macro 

For VPATH to work correctly $< should be use in all the compilation rules. $< 
expands to prerequisite file with the directory name, wherever the file is found. For 
example, say 

VPATH=$ (PSS_ ROOT ) /apps/hello 

and you are building under $(HOME)/psosppc_pwe/apps/hello. The rule for mak­
ing root.o should be written as follows: 

root.o: root.c 

$ (CC ) $ (COPTS ) -o root . o $< 

$< is expanded to $(PSS_ROOT)/apps/hello/root.c by make when root.c is not 
found in the local directory. 

E.6.3 Compiler Option -o: 

Some compilers, in absence of -o option, generate .o file in the source file directory 
instead of the current directory. DIAB does that when compiling .s files. 

Init . o : init . s 
$ (AS ) $ (AOPTS ) -o init . o $< 

In the above rule $< may expand to file coming from some distant directory. Without 
-o compiler would generate .o file in that directory. 

E.6.4 Compiler Option -I@: 

This option specify compiler to strictly follow include directory order given with -I 
directives. In absence of this option, compiler treats source file directory as the cur- E 
rent directory for include filename directives. This is required for the case when a 
included file is overridden but not the file including it. For example, assume root.c 
file includes sys_conf.h using include sys_conf.h directive. The SWS contains both 
these files. The developer has a modified copy of sys_conf.h in his PWS, which 
should hide the sys_conf.h in SWS. Since the source files is coming from the SWS, if 
-I@ is not used, sys_conf.h from the SWS will be used. 

E-3 



pSOSystem Source Projects pRISM+ User's Guide 

E.6.5 Use of Relative Path for Overriding 

Relative paths should be used in the makefiles for overriding to work. For example, 
assume SWS points to the PSS_ROOT and user is building hello in his PWS, if rule 
is written as follows 

sysinit . o : $ (PSS_ ROOT ) /configs/std/sysinit.c 
$ (CC ) $ (COPTS ) -o sysinit . o $< 

sysinit.c file will always come from SWS $(PSS_ROOT)/configs/std directory even if 
a copy exist in the PWS. The rule should be modified to have relative path when 
using SNiFF +, i.e. 

sysini t . o : .. I . . I conf igs/ std/ sysinit. c 
$ (CC ) $ (COPTS ) -o sysinit . o $< 

make would look for .. / .. /configs/std/sysinit.c first. If not found it will get the file 
from $PSS_ROOT /configs/std. 

With SNiFF +, PSS_ROOT (and PSS_BSP, wherever applicable) is redefined to a rela­
tive path inside the makefiles. 

E.6.6 Generating Include and Link Paths 

Since VPATH is a make feature and is not supported by the compiler/linker/ 
archiver, complete include and link path have to be generated using the VPAT H to 
pass it to the compiler /linker. For example, when building in PWS using include 
path - I . - I .. / .. / includ e and VPATH set to $P SS_ ROOT/ap ps/ h e ll o , the fol­
lowing include path should be generated and passed to the compiler for overriding 
to work: 

-I. -I$ (PSS_ ROOT ) /apps/hello/ . -I . . / . . /include -I$ (PSS_ ROOT ) /apps/ 
hello/ . . / .. /include 

E.6.7 Object and .opt files Overriding 

Since Compiler/linker/archiver do not understand VPATH, object and .opt files are 
to be generated in the local PWS and cannot be overridden. 

E.6.8 With or Without SNiFF+ 

E-4 

The makefiles are written to work with or without SNiFF +. In absence of SNiFF +, 
makefiles work as tradition makefiles, i.e., any pSOSystem application or BSP can 
be build under PSS_ROOT or outside PSS_ROOT by just defining PSS_ROOT and 
PSS_BSP environment variables. 



pRISM+ User's Guide pSOSystem Source Projects 

With SNiFF + these makefiles support overriding of workspaces. 

E.6.9 macros.incl File 

SNiFF + generates macros.incl file that has definition for SNIFF _ShSW macro. This 
macro contains list of workspace directories. This file is included by 
$(SNIFF_MAKE_CMD).mk file . $(SNIFF_MAKE_CMD) .mk uses SNIFF_ShSW to gen­
erate VPATH. 

E.6.10 Problems Using Recursive Make 

Because PSS_ ROOT (and PSS_ BSP) are defined to a relative path in the snf_ gnu . mk 

file, recursive make rules can cause problems. For example, the relative PSS_ ROOT 

value for apps/loader is . . I .. and for apps/loader/loadable is . . I .. I . . . 
Now if make for loadable is called from the loader makefile , it would import the 
PSS_ ROOT definition . . I . . from the loader makefile which would be incorrect. The 
correct value of PSS ROOT and PSS_ BSP is passed to sub-make using the 
RECURSIVE_ MAKE SETUP define statement. 

E.6.11 Check_vpath Target 

Before building any targets, check_ vpath target is made. This is invoked with the 
-e option to make . The check_ vpath target generates the definition of 
PSS_ SNIFF_ ShSWS using the absolute value of PSS_ ROOT . This macro is used to 
specify the VPATH value to make. This is required because PSS_ ROOT is redefined to 
a relative path in the makefile and VPATH needs the absolute PSS_ ROOT value. This 
target also adds EXP _ PSS_ ROOT, EXP _ PSS_ BSP, and ESP _ BASE define statements. 
EXP _ PS S_ ROOT and EXP _ PS S_ BSP contain the absolute value of PS S_ ROOT and 
PSS_ BSP, respectively, which can be used during normal make when PSS_ ROOT 

and PSS_ BSP are changed to have a relative path. BSP _ BASE is defined to the base 
of PSS_ BSP directory. 

E.6.12 Gnu Make 

The standard gnu make command is invoked by psosmake on Unix. On PC plat-
forms gnu make sources are modified to convert '\' to '/ ' for pSOSystem related E 
environment variables. 

E-5 



pSOSystem Source Projects pRISM+ User's Guide 

E.7 pLUGINS+ Scripts 

There are two types of plugins scripts: scripts which are used for creating SNiFF + 
projects for pSOSystem+ and scripts which integrate pmanager with SNiFF + / 
pSOSystem+. 

E.7.1 Scripts to Create SNiFF+ Projects for pSOSystem+ 

E-6 

These scripts exist in the $PSS_ ROOT/bin/source/plugins/scripts directory. 
They run on Unix under the Bourne Shell and on Windows under the mks shell. 
These scripts are shipped with pSOSystem+ and can be used to facilitate the cre­
ation of SNiFF + projects that have a complex code directory structure. These scripts 
(with some cha nges, if needed) automate the creation of a SNiFF + project for the 
inclusion of the project's code. A project created using these scripts works on Unix 
as well as Windows platforms. 

plugins_create_proj 

Given a file list, relative to PS S_ ROOT , this script creates a SNiFF + project. It creates 
the main SNiFF + project in the directory where the first file of the list exists. Since 
SNiFF + does not support files from different directories in a single project, this 
script creates projects for every directory in the list. These projects are added to the 
main project as subproject. 

By default, the PDFS file of the main project has the name ' basename 

MAIN_ PROJ_ DIR '. shared. The remainder of the PDFS files have the name ' base­

name project_ dir '_<TAG>.shared, where TAG is the basename of the main 
project directory. An alternative name for the main project can be specified using -n 
<main_ proj_ name> option, where main_ proj_ name is the name of the main 
project without the extension. An alternative TAG name can also be specified using 
-t <TAG> option. 

By default, the lists of files are read from the . sniff fl . 1st file from the current 
directory. Alternatively, -f <filename> option can be used to specify a filename. 

Option -m can be used to generate make support files (* . incl files) for the main 
project. 

Usage: plugin_ create_ proj [-f <filename>] [-n <main_ proj_ name>) [-t 

<TAG> ] [-m] 

The script assumes that SNiFF+ is running (sessionO). 



pRISM+ User's Guide pSOSystem Source Projects 

When creating SNiFF + projects for the pSOSystem, the directory attribute of the 
' Project Description ' Fi1eType in the preferences file is set to sniffprj . As 
a result, project PDFS files are created under the sniffprj subdirectory of the 
main project directory. 

plugins_create_app 

This script uses the p1ugins_ create_ proj and p1ugins_ add_ target scripts 
and creates a SNiFF + project for a pSOSystem+ application. It first creates the main 
project using the p1ugins_ create_ prj script. It then adds generic pSOSystem+ 
projects and bsp projects to the main project and if referred to by the application, it 
also adds drivers projects. 

This script modifies the application project to use the PSS_ BSP environment vari­
able to refer to bsp projects bsp. shared and bsp_ src. shared. The application 
project is also modified to add the build targets (ram . hex , for example). 

The p1ugins_ create_ a11 script is used to create pSOSystem application projects. 
To use plugins_create_app in stand-alone mode to create an application project the 
following must apply: 

• SNiFF + should already be running (sessionO) 

• The script should be invoked from the application dir 

• The application directory should contain the . sniff fl .1st file. 

• The p1ugins_ create_ app script and scripts used by it should be in the path 

Usage: p1ugins_ create_ app 

plugins_create_all 

This is the master script which creates SNiFF + projects for the entire pSOSystem+. 
The following must be setup before you start this script: 

• The environment variables PSS_ ROOT, PSS_ BSP and SNIFF _ DIR are set. 
PSS_ BSP can be set to any valid bsp. This is used when creating application E 
projects. The references to the BSP is changed to use $PSS_ BSP. 

• The $SNIFF _ DIR/bin directory is in the path. 

• PSS_ ROOT contain the workingenvs directory. 

• PSS_ ROOT contains . sniff fl .1st files. 

E-7 



pSOSystem Source Projects pRISM+ User's Guide 

This script creates the following SNiFF + projects: 

TABLEE-1 SNiFF+ Projects 

Project Description 

Generic pSOSystem Projects 

include.shared Project for $PSS_ ROOT I include and its subdirecto-
ries. No file list needed. Should have automatic add 
remove property for . h files . 

sys_ os.shared Project for sys I os directory. Should have automatic 
add remove for . s and . o files. No file list needed. 

configs_ std.shared Project for configs/std. No file list needed. 

sysclass . shared Project for sys/libc/src/sysclass. No file list 
needed. 

profiler.shared Project for sys/libc/src/profiler. No file list 
needed. 

NOTE: The list of directories under sys I os/ src is not hard coded. This script looks 
for subdirectories under $PSS_ ROOT/sys/libc/src and creates projects 
for every one of them. 

Drivers Projects 

enetdlpi . shared Project for drivers/enetdlpi. No file list needed. 

lap.shared Project for drivers/lap . No file list needed. 

modem.shared Project for drivers/modem. No file list needed. 

otcp . shared Project for drivers I ot cp. No file list needed. 

ppp.shared Project for drivers/ppp . No file list needed. 

slip.shared Project for drivers/slip. No file list needed. 

x25.shared Project for drivers/x25. No file list needed. 

NOTE: The list of drivers is not hard coded. This scripts looks for subdirectories 
under the $PSS_ ROOT I drivers directory and creates projects for every one 
of them. 

E-8 



pRISM+ User's Guide pSOSystem Source Projects 

TABLE E-1 SNiFF + Projects (Continued) 

Project Description 

Bsp Projects 

bsp_ src . shared For each bsps/<bsp_name>/src. Created using 
pl ugins _create _prj. 

bsp.shared Project for each bsps/<bsp_name>. No file list 
needed. 

App Projects 

<app_ name> . shared Project for each apps/<app_name>. Created using 
plugins_create_app script. Application projects 
should be created at the end of the script because 
they refer to the projects created above. 

When a project contains files only from a single directory and all the files from that 
directory go into the project, no file list is needed to create the project. In this case a 
SNiFF + project created by default, will be accurate. 

The include . shared and sys_ os . shared files need to have the automatic add 
and remove property for files because files under these directories depend upon 
what components of pSOSystem are installed. There are two ways to achieve this: 

• Create these projects like any other project and change them using sed/ awk 

(sniffaccess does not provide a way to change these attributes) or, 

• Use the specialized preferences file. This method has a simpler approach and is 
the method used by the scripts. 

The preferences files used for creating projects for pSOSystem+ differs from what is 
shipped with pSOSystem+ for the customer. 

These difference are: 

• MakeFileSupport in these files is set to FALSE. 

• Default working environment is set to SSWE : pSOSystem-ppc, the directory 
where the projects are created. 

• For include and sys/os directories a different preferences file is used. 

• Directory attribute of Project Description FileType is set to sniffprj, 

which is where all SNiFF + projects are generated. 

E-9 

E 



pSOSystem Source Projects pRISM+ User's Guide 

This script copies the appropriate umenupref to $HOME/. sniffdir on the Unix 
platform or $SNIFF_ DIR/Preferences/$LOGNAME on the PC platform before 
creating any projects. 

To implement an override of the working environment, main, (makefile as oppose to 
.mk files) makefiles includes a SNiFF+ generated macros . incl file. SNiFF+ gener­
ates*. incl files only if the project has the MakeFileSupport attribute set. Option 
-m is used by plugins_ create_ proj to set this attribute of the main project. For 
the projects not created using plugins_ create_ proj , this option is set by 
plugins_ create_ all. 

The following scripts are used by plugins_ create_ all : 

• plugins_ add_ target 

• plugins_ create_ proj 

• plugins_ create_ app 

Usage: plugins_ create_ all 

plugins_clean_all 

This script deletes all the SNiFF+ projects and . sniffdir from $PSS_ ROOT. It can 
be used to restore the pSOSystem to its previous state in the event that 
plugins_ create_ all script fails to complete properly. 

Usage: plugins_ clean_ all 

E.7.2 Integration scripts: 

E-10 

These scripts integrate pmanager with SNiFF+/pSOSystem+. 

plugins_open_proj 

This script is invoked by the pmanager when user selects File~New~SNiFF+~'Start 

from the pSOSystem sample application'. This script is also invoked when the SNiFF+ but­
ton is pressed for an existing pRISMSpace. It opens an existing SNiFF + project in 
the user's PWE. It takes the project directory name as the input parameter and 
looks for the SNiFF + project file under this directory using the following order: 

• pss_ main/sniffprj/pss_ main.shared 

• sniffprj/'basename dirname' .shared 



pRISM+ User's Guide pSOSystem Source Projects 

• sniffprj/bsp_ src.shared 

Usage: plugins_ open_ proj <dir_ name> 

plugins_create_uproj 

This script is invoked by the pmanager when user selects File--7New--7SNiFF+--7'Start 
from an existing code base'. It creates a SNiFF + project (recursively) for the given direc­
tory. The directory should be a subdirectory of $PSS_ USER_ SSWE. This script then 
opens the project in user's PWE. This script also adds relinkable_ obj_ name as a 
relinkable target for the SNiFF + project. 

Usage: plugins_ create_ uproj <prj_ dir> [relinkable_ obj_ name] 

plugins_ convert_proj 

This script is invoked when the user selects "plug-ins->"convert to pSOSystem sam­
ple application" from the SNiFF + PE window. It converts a SNiFF + project to the 
pSOSystem application project. It performs the following: 

• Creates the pss_ main directory under the project directory and copies the tem­
plate sys_ conf. h, drv_ conf. c and makefile under pss_ main from the 
$PSS_ ROOT I apps/ snf_ tmpl directory. 

• Extracts the relinkable object name from the project description file. 

• Modifies the pss_ main makefile to define PSS_ APPOBJS to a relinkable object 
and adds a rule for it. 

• Creates a SNiFF+ project for pss_ main and adds pSOSystem generic projects to 
it as subprojects. It also adds the project being converted as the subproject of 
this project. 

Usage: plugins_ convert_ proj <proj_ name> 

plugins_add_target 

This script modifies a SNiFF + project to add pSOSystem target names. These targets E 
are then displayed by SNiFF + under PE--7 Target--7Make menu. The list of targets are 
hard coded in this script and should be changed whenever there is a change in tar-
gets defined in con fig . mk . 

Usage: plugins_ add_ target <project_ name> 

E-11 



pSOSystem Source Projects pRISM+ User's Guide 

E-12 

plugins_create_bsp 

This script creates SNiFF + projects for a custom BSP. These projects are required to 
integrate custom BSPs into pRISM+. The BSP should be located under $PSS_ ROOT I 
bsps and should follow the standard pSOSystem BSP format, ( <custom_ bsp>/ src 
source format). Before you invoke this command you would need to create a file 
containing a list of files which make this BSP. The default name of this file is 
. snifffl .1st and should exist under <custom_ bsp>/src . 

First file name in this file should be from <custom_ bsp>/src . An example can be 
found in one of the standard BSPs. This script creates bsp_ src. shared under 
$PSS_ ROOT /bsps/ <custom_ bsp>/ src/ sniffprj and bsp. shared under 
$PSS_ ROOT/bsps/<custom_ bsp>/sniffprj and assumes that the pRISM+ envi­
ronment setup the makefile derived from pSOSystem BSP makefile. It uses 
plugins_ create_ proj from $PSS_ ROOT/bin/source/plugins/scripts and 
plugins_ add_ target from $PSS_ ROOT /bin 

Usage: plugins_ create_ bsp <bsp_ dir> [ -f <file_ list_ file> J 

Where bsp_ dir is $PSS_ ROOT /bsps/ <custom_ bsp> 

plugins_make_copy 

For every file type in SNiFF + a custom menu command can be added, which can be 
invoked by right clicking on the file in PE. This script is invoked to make a local copy 
of a file from SSWE to PWE when the user selects the "Make a local copy" command 
from this custom menu. 

Usage: plugins_ make_ copy <src> <dst> 

plugins_edit_file 

This script opens a file in the SNiFF+ source editor. It assumes that SNiFF+ is run­
ning with sessionO and one of the open projects contains this file. This script is typ­
ically used with SDS to replace its editor with SNiFF + SE. User should alias _edit to 

On Unix: alias edit ' plugins_ edit_ file \ ! : 2 \ ! : 1 ' 

On PC: alias _ edit ' sh -f plugins_ edit_ file \ ! : 2\!:1 ' 

This can be done in SDS command window or in the sstep. ini file. Output of this 
script (such as errors) is displayed in the SDS cmd window. 

Usage: plugins_ edit_ file <filename> [linenumber] 



pRISM+ User's Guide pSOSystem Source Projects 

plugins_pwizard 

solaris/plugins_ pwizard, hpux/plugins_ pwizard, or win32/ 
plugins_ pwizard . bat are invoked by SNiFF+ as a result of a double click on the 
sys_ conf. h file . This script invokes pRISM+ wizard on the sys_ conf . h file. 

Usage: plugins_ pwizard <full path to sys_ conf.h> 

psosmake 

This is a wrapper to the actual make command and is host specific. There are three 
different scenarios in which make is called: 

• make using pSOSystem makefile in a Non-SNiFF + environment 

• make using pSOSystem makefile with SNiFF + 

• make using SNiFF + generated makefile. 

This wrapper, depending upon the make situation, calls the appropriate make 
commands. 

Usage: 

In SNiFF+ environment: psosmake SNIFF _ MAKE [target_ name] 

In non SNiFF+ environment: psosmake [target_ name] 

E-13 

E 



pSOSystem Source Projects pRISM+ User's Guide 

E-14 



Glossary 

apps 

browser 

BSP (Board-Support Package) 

build 

communication server 

CORBA (Common Object Request Broker 
Architecture) 

A pSOSystem directory that contains a number of 
subdirectories with sample pSOSystem applications. 

A tool that is used to view data, but not make changes to 
it. A complete pRISM+ package has four SNiFF+ 
browsers. Each browser is designed for a specific task. 

The hardware-specific code in the pSOSystem software; 
contained in the $PSS_ ROO T /bsp s directory. 

The process of creating an executable program and 
installing it on a target system. The build steps are 
usually described in make files that are executed by 
programs like make. A build involves translations of 
source files and the construction of binary files by 
compilers, linkers, and other tools. 

An application that runs on the host machine and is 
responsible for interaction with the target agent. 

CORBA is a middle-ware specification created by the 
Object Management Group (OMG). a group of 500 leading 
companies in the software industry. CORBA allows 
applications to communicate with one another no matter 
where they are located or who has designed them 

gloss-1 



Glossary 

CORBA bus (ORB) 

editor 

host system 

JTAG (Joint Test Action Group) 

make 

MLIB 

multitasking 

multi threading 

object file 

gloss-2 

pRISM+ User's Guide 

The middle-ware that establishes the client/server 
relationships between objects. Using an ORB, a client 
can transparently invoke a method on a server object, 
which can be on the same machine or across a network. 
The ORB intercepts the call and is responsible for finding 
an object that can implement the request, pass it the 
parameters, invoke its methods, and return the results. 
The client does not have to be aware of where the object 
is located, its programming language, its operating 
system, or any other system aspects that are not part of 
an object's interface. In so doing, the ORB provides 
interoperability between applications on different 
machines in heterogeneous distributed environments, 
and seamlessly interconnects multiple object systems. 

A tool that is used to both view and change data. pRISM+ 
contains the SNiFF + Project Editor, and two source code 
editors, the SNiFF + Source Code Editor and emacs. 

The system on which the source application program 
resides. 

A mechanism for controlling a target processor. JTAG is 
based on the IEEE 1149.1 standard and was originally 
designed as a way to perform in-circuit testing during 
manufacturing. The current version is used for 
debugging embedded applications. 

The program that reads make files and drives the build 
process. 

A communication protocol used by the pRISM+ 
Communication Server and the pMONT target agent. 

The breaking up of a program into several tasks. Each 
task has its own system resources and competes with the 
other tasks in the system for CPU time. 

The situation wherein a single process has several 
threads of execution. Each thread inherits its 
environment from its parent and shares the resources of 
the parent process. A process can have several threads, 
whereas a task does not have any threads. 

A derived file that is generated from source code using 
the build process. 



pRISM+ User's Guide 

Object Query Language (OQL) 

Object Request Broker 

OQL 

ORB 

pRISMSpace 

project 

project description file (PDF) 

pSOSystem 

pSOSystem directory tree 

pSOSystem environment 

RBUG 

Glossary 

The Object Database Management Group's (ODMG) 
object language specification. OQL provides full object 
query capabilities and contains almost all the SQL-92 
query language as a subset. The Object Management 
Group (OMG) is working with the ODMG to create a 
single query language for objects. 

A CORBA-based service provided by an object bus that 
lets clients invoke methods on remote objects either 
statically or dynamically. The ORB included in pRISM+ is 
Orbix from IONA Technologies. 

See Object Query Language. 

See Object Request Broker and CORBA bus (ORB). 

The directory in which pRISM+ stores all the files for your 
application project. You must create a pRISMSpace when 
you start a pRISM+ project. 

The main organizational element in SNiFF +. A project 
consists of files, attributes, and subprojects, and is 
described by a project description file (PDF) . Project 
hierarchies can be built around projects and subprojects, 
which are also projects on their own. 

A file that describes a project's attributes, structure, and 
contents. A PDF is a structured ASCII file that is created, 
saved, and opened by SNiFF+. 

An operating system used on embedded controllers. Its 
code consists of read-only object libraries, include files 
and source files. 

The central location of pSOSystem on the host system. It 
contains the shared pSOSystem code so that multiple 
users can have access to it. 

A standard set of services for the application code. It 
usually contains the pSOS+ kernel and the following 
companion software elements: pROBE+, pNA+, pHILE+, 
device drivers , interrupt handlers, and configuration 
tables to customize the pSOSystem environment for a 
particular target system. 

The communication protocol used by the pRISM+ 
Communication Server and the pROBE+ target agent. 

gloss-3 



Glossary 

repository 

services 

symbol 

symbol repository 

sys_conf.h 

target agent 

target system 

tool 

version 

version control 

version tree 

gloss-4 

pRISM+ User's Guide 

Storage for persistent data. 

Services store and provide information that can be used 
by any tool or service. Components that use the services 
are known as the clients of the service. Services are 
primarily implemented as servers and by background 
processes without a user interface. 

A named language construct in source code. 

The information base for a development project. The 
symbol repository contains information about the 
declaration, definition, and use of named program 
elements such as classes, methods, variables, and 
functions. Each project has its own symbol table that is 
filled in by the parser. Symbol repositories are kept in 
memory and persistently stored to disk. pRISM+ has two 
symbol repositories: The SNiFF + Symbol Table is for 
static data and the pRISM+ Repository is for runtime 
data. 

The pSOSystem configuration file. It is an include file 
that must reside in the working directory. 

The software and/or hardware that is responsible for 
controlling the state of the target being debugged. 

The system on which the embedded operating system 
and the compiled embedded application reside. 

Tools visualize and manipulate information provided by 
the system services. All tools have a user interface. Tools 
can also provide some services that can be used by other 
tools . 

A particular revision and an element of the version tree of 
a file. A version is created by checking in a working file. 
Versions are checked out as working files. 

The process of managing and administering versions of 
files. The SNiFF + Project Editor is the main tool for 
version control in pRISM+. 

The hierarchical structure in which all versions of a file 
are organized. A version tree has one main branch and 
can have several sub-branches. The version tree is 
typically stored in a repository file. 



pRISM+ User's Guide 

working directory 

workspace 

Glossary 

A directory in which you build a pSOSystem executable 
image. You can locate your working directory under 
$PSS_ ROOT. 

A directory tree that contains projects and working files. 
There are two kinds of workspaces: private and shared. A 
shared workspace is accessed among several developers 
in a team and is overridden by their private workspaces. 
Shared workspaces can be split into shared source and 
object workspaces in order to separate platform­
independent from platform-dependent files. Shared 
workspaces can override other shared workspaces , 
resulting in multiple levels of overriding workspaces. The 
common part of overridden workspaces must have the 
same directory structure. The workspace variables 
indicate the locations of workspaces. 

gloss-5 



Glossary pRISM+ User's Guide 

gloss-6 



Index 

A boot command, pRISM+ shell D-4 

analysis break 

post-mortem, ESp 10-5 on high-level language statements 9-1 

analysis tool breakpoint 

ESp 1-7 setting 

Object Browser 1-7 SearchLight Debugger 8-17 

application breakpoint command, pRISM+ shell D-5 

downloading BSP 2-7 

SearchLight Debugger 8-2 adding custom 15-3 

application code 2-5 bsps directory 2-7 

application stack size 10-5 buffer list, using 

applications pRISM+ Editor 5-11 

sample 2-11 buffer management 10-3 

apps directory 2-11 ESp 10-3 

ARM debugger environment variables B-2 Halt on Buffer Full 10-3 

ASEVtask 14-5 Transmit 10-3 

autoinit 14-4 warnings 14-2 

Wraparound 10-3 

B build command 4-6 

begin trace events, ESp 10-4 

bind command, pRISM+ shell D-91 c 
boards CAD-UL 

IBM 403GA/GC A-3 environment variables B-4 

IDT79S440 A-10 call stack 

IDT79S500 A-14 examining 

LSI4101 A-16 SearchLight Debugger 8-20 

board-support package 2-5, 2-7 cb (clear breakpoints) command D-8 

index-1 



Index pRISM+ User's Guide 

cmode parameter 14-2 delete D-94 

en (connect to target) command D-9 db (define breakpoint) D-14 

code den (disconnect) D-16 

application 2-5 di (disassemble) D-19 

environment, hardware-specific 2-5 disassemble D-20 

system configuration 2-5 disconnect D-21 

code parameter 14-2 dl (load or download) D-22 

Code window 9-9 dm (display memory) D-23 

color settings dr (display registers) D-24 

changing 15-13 dssession D-25 

comm (communication parameters) ev (evaluate variable) D-27 
command, pRISM+ shell D-10 evaluate D-28 

commands evt (set events) D-29 
breakpoint fl (flags) D-30 

SearchLight Debugger 8-17 fm (fill memory) D-31 
build 4-6 go (run) D-32 
go , pROBE+ 14-5, 14-6 halt D-33 
pRISM+ shell he (help) D-34 
pRISM+ Shell 13-2 help D-35 
pSOS-aware il (interrupt level) D-36 

pRISM+ Shell 13-1 init D-37 
SearchLight Debugger single step 8-4 initialize D-38 

commands, pRISM+ shell invoke D-96 
bind D-91 lb (list breakpoints) D-39 
boot D-4 log D-40 
breakpoint D-5 memory D-41 
comm (communication mod (debugging mode) D-43 

parameters) D-10 
mutex D-44 

condvar D-11 
new D-93 

connect <to target> D-12 
osbreakpoint D-45 

cb (clear breakpoints) D-8 
partition D-50 

en (connect to target) D-9 
pm (patch memory) D-51 

csabout D-13 
pr (patch register) D-52 

debugger D-17 
probe D-53 

index-2 



pRISM+ User's Guide Index 

psos D-55 pMONT+ 14-2 

q* (query shortcut) D-59 system 2-12 

queue D-63 configuration table 

quit D-65 ESp 10-5 

region D-66 configuration tables 

register D-68 Node Configuration Table 14-4 

sc (system call) D-70 configuration table , query D-59 

semaphore D-71 configuring pMONT 14-1 

session D-72 connect <to target• command D-12 

set D-92 corrupted stacks 

sf (stack frame) D-76 boundaries 10-5 

slength D-97 CPU trap entry points 14-6 

stackfrm D-77 Cross-Compiler Suite 

t* (task-related) D-78 Diab Data 1-8 

target D-80 csabout command, pRISM+ shell D-13 

task D-82 CSV files 

toString D-95 Object Browser 11-7 

tsd (task-specific data) D-84 custom BSP 

type D-89 adding 15-3 

version D-85 customize 

vinfo D-90 pRISM+ Environment 15-5 

commands, pROBE+ toolbar 4-7 

pRISM+ shell D-86 customizing 

Communication pRISM+ Shell 13-14 

pRISM+ Shell 13-3 C++languagesupport 8-1 , 9-2 

Communication Server 

definitions 1-10 D 
pRISM+ shell D-13, D-17 data collection 

compilers refining 

Diab Data 1-8 ESp 10-3 

conditional variable , pRISM+ shell D-11 data parameter 14-2 

condvar command, pRISM+ shell D-11 dataSize parameter 14-2 

configuration db (define breakpoint) command D-14 

multiple users 15-7 den (disconnect) command D-16 

index-3 



Index pRISM+ User's Guide 

deadlocks directory, working 2-6 

checking disassemble command D-20 

Object Browser 11-5 disconnect command D-21 

Debug Server dl (load or download) command D-22 

definitions 1-10 dm (display memory) command D-23 

pRISM+ shell D-25, D-28 download 

debugger command, pRISM+ shell D-17 pRISM+ Shell 13-5 

debuggers dr (display registers) command D-24 

SearchLight 1-8 drv_conf.c 14-4 

SingleStep 1-9 dssession command, pRISM+ shell D-25 

debugging modes 

high level, assembly language 9-9 E 
definitions 1-8, 1-9 Embedded System Profiler 

Communication Server 1-10 See Also ESp 1-7 

Debug Server 1-10 Enable Checking 10-5 

Diab Data Compiler 1-8 end trace events 

ESp 1-7 delay 10-5 

Object Browser 1-7 environment variables 2-13 

pRISM+ 1-1 changing 15-12 

pRISM+ Configuration Wizard 1-5 UNIX B-5 

pRISM+ Editor 1-6 Windows B-1 

pRISM+ Shell 1-8 error checking 

pSOSystem 1-3, 2-1 pRISM+ Wizard 7-6 

RTA Suite 1-9 ESp 

SNiFF+ 1-6 begin trace events 10-4 

delete command, pRISM+ shell D-94 buffer management 10-3 

dev parameter 14-2 configuration table 10-5 

di (disassemble) command D-19 definitions 1-7 

Diab Data Compiler end trace events 10-4 

definitions 1-8 event specification 10-4 

environment variables B-2, B-5 events 

dialog.c file 2-6 ignore 10-5 

directories log 10-5 

host 2-14 log_ event 14-6 

index-4 



pRISM+ User's Guide Index 

memory usage 14-7 F 
placing user-defined events 10-2 features 
post-mortem 10-5 pRISM+ 1-1 
prerequisites 10-2 pRISM+ Editor 3-6, 5-1 
refining data collection 10-3 pRISM+ Manager 4-1 
transmit 10-3 pRISM+ Wizard 7-1 
wraparound option 10-4 SearchLight Debugger 8-1 

ESp communication with pMONT 14-5 file 
Ethernet connection dialog.c 2-6 

booting pSOS+ C-4 include 2-5 
host tools configuration C-4 source 2-5 
how to C-4 sys.lib 2-7 
pRISM+ tools C-4 sys_conf.h 2-6, 2-7 
sys_conf.h settings C-4 .map 2-11 

ev (evaluate variable) command D-27 files 
evaluate command, pRISM+ shell D-28 adding to project, pRISM+ Editor 5-7 
event logging 14-6 configuration 2-6 
events copying 

begin trace, ESp 10-4 pRISM+ Editor 5-6 
end trace, ESp 10-4 creating, pRISM+ Editor 5-5 
ESp 10-5 driver configuration 2-11 
precedence to ignore 10-5 drv_conf.c 14-4 
specification 10-3 error checking, pRISM+ Editor 5-8 

ESp 10-4 makefile 2-8 
specification overhead 10-4 saving, pRISM+ Editor 5-6 
user-defined sys_conf.h 14-2 

placing, Esp 10-2 Find dialog box 
event_data parameter 14-7 using, SearchLight Debugger 8-17 
evt (set events) command D-29 fl (flags) command D-30 
executable image 2-5, 2-6 fm (fill memory) command D-31 

format 

Intel Extended Hexadecimal 2-10 

Motorola S-record 2-10 

index-5 



Index 

G 
go command 

go (run) command, pRISM+ shell 

gs command 

H 
halt command, pRISM+ shell 

Halt on Buffer Full overhead 

hardware-specific environment code 

he (help) command 

help command, pRISM+ shell 

host 

directories 

IBM 403GA/ GC boards 

IDT79S440 boards 

IDT79S500 boards 

il (interrupt level) command 

include files 

init command 

initialize command, pRISM+ shell 

installation 

memory considerations 

installations 

multiple 

InstallDriver 

installing a driver 

Intel 

Extended Hexadecimal format 

interface 

pRISM+ Wizard 

invoke command, pRISM+ shell 

IP address 

index-6 

14-6 

D-32 

14-5 

D-33 

10-4 

2-5 

D-34 

D-35 

2-14 

A-3 

A-10 

A-14 

D-36 

2-5 

D-37 

D-38 

15-8 

15-5 

14-4 

14-4 

2-10 

7-2 

D-96 

2-6 

pRISM+ User's Guide 

K 
kernels 

pSOS+ 

pSOS+m 

L 
launch 

2-2 

2-2 

pRISM+ 3-3 

lb (list breakpoints) command D-39 

libraries 

including custom, pRISM+ Editor 5-10 

library 

pSOSystem 

system 

Link Map Analyzer 

description, RTA 

log command, pRISM+ shell 

log_ event() 

return value 

LSI4101 boards 

M 
makefile 

2-14 

2-7 

12-1 

D-40 

10-2, 14-6 

14-6 

A-16 

makefile browser, pRISM+ Editor 

makefile view, pRISM+ Editor 

makefiles 

2-8 

5-1 

5-3 

adding, pRISM+ Editor 

removing, pRISM+ Editor 

memory 

usage 

ESp 

5-3, 5-10 

5-11 

14-7 

Object Browser 14-7 

target agent 14-7 

viewing, SearchLight Debugger 8-12 



pRISM+ User's Guide Index 

memory command, pRISM+ shell D-41 examining tasks waiting for 

memory considerations messages 11-6 

installation 15-8 finding memory leaks 11-4 

memory leaks log_ event 14-6 

finding, Object Browser 11-4 memory usage 14-7 

memory requirements, pMONT 14-2 monitoring stack problems 11-4 

MKS Toolkit Prerequisites 11-3 

environment variables B-3 object libraries 2-5 

mod (debugging mode) command D-43 optimized code 9-2 

modes OS Breakpoint command 

pRISM+ Wizard 7-4 removing, SearchLight Debugger 8-12 

monitoring setting, SearchLight 
Debugger 8-9 , 8-28 

target requirements 
osbreakpoint command, pRISM+ 

pMONT+ 14-2 shell D-45 
Motorola output parameters 2-10 

S-record format 2-10 

mutex command, pRISM+ shell D-44 p 

partition command, pRISM+ shell D-50 
N peak stack usage 10-5 
navigating Files window pHILE+ 

SearchLight Debugger 8-15 file system manager 2-2 
new command, pRISM+ shell D-93 pm (patch memory) command D-51 
Next command PMCM task 14-5 

using, SearchLight Debugger 8-8 PMON task 14-5 
Node Configuration Table 14-4 pMONT 

autoinit 14-4 
0 cmode parameter 14-2 
Object Browser code parameter 14-2 

checking for deadlocks 11-5 configuration 14-1 
checking for priority inversion 11-5 data parameter 14-2 
CSV files 11-7 dataSize parameter 14-2 
definitions 1-7 dev parameter 14-2 
examining messages in queue 11-5 list of related topics 14-1 

memory requirements 14-2 

index-7 



Index pRISM+ User's Guide 

system call 14-2 SNiFF+ 3-12 

target behavior 14-1 using 3-4 

tasks 14-5 pRISM+ 

tmFreq 14-2 architecture 1-2 

tmRead 14-2 definitions 1-1 

tmReset 14-2 documentation 1-10 

traceBuff parameter 14-2 environment variables B-4, B-5 

traceBuffSize parameter 14-2 features 1-1 

pMONT Configuration Table 14-2 launching 3-3 

pMONT+ pRISM+ Configuration Wizard 

behavior on target 14-5 definitions 1-5 

configuring 14-2 pRISM+ Editor 

monitoring target requirements 14-2 adding files to projects 5-7 

pNA+ adding makefiles 5-10 

network manager 2-2 copying files 5-6 

pr (patch register) command D-52 creating files 5-5 

pREPC+ definitions 1-6 

ANSI C standard library 2-2 error checking files 5-8 

Prerequisites features 3-6, 5-1 

Object Browser 11-3 including custom libraries 5-10 

prerequisites makefile browser 5-1 

ESp 10-2 makefile view 5-3 

using pRISM+ 3-2 makefiles 5-3 

printing program editor 5-4 

issues, UNIX 15-13 removing makefiles 5-11 

priority inversion saving files 5-6 

checking for, Object Browser 11-5 source view 5-3 

pRISMspace using 3-5 

creating 4-3 using buffer list 5-11 

pRISM+ Manager 4-3 pRISM+ Manager 

pRISMspace Settings 4-5 definitions 1-4 

pRISMspace Wizard features 4-1 

pRISM+ Editor 3-5 pRISMspace 4-3 

index-8 



pRISM+ User's Guide Index 

pRISM+ Shell di (disassemble) D-19 

communication timeouts 13-3 disassemble D-20 

customizing 13-14 disconnect D-21 

definitions 1-8 dl (load or download) D-22 

downloading application 13-5 dm (display memory) D-23 

features 13-1 dr (display registers) D-24 

levels of service 13-1 dssession D-25 

pSOS objects 13-3 ev (evaluate variable) D-27 

pSOS-aware commands 13-1 evaluate D-28 

queue command 13-7 evt (set events) D-29 

SearchLight Debugger 13-5 fl (flags) D-30 

Tel script examples 13-8 fm (fill memory) D-31 

TCL scripts 13-2 go (run) D-32 

timeouts 13-3 halt D-33 

pRISM+ shell he (help) D-34 

Communication Server D-13, D-17 help D-35 

conditional variable D-11 il (interrupt level) D-36 

Debug Server D-25, D-28 init D-37 

pROBE+ commands D-86 initialize D-38 

pRISM+ shell commands invoke D-96 

bind D-91 lb (list breakpoints) D-39 

boot D-4 log D-40 

breakpoint D-5 memory D-41 

cb (clear breakpoints) D-8 mod (debugging mode) D-43 

en (connect to target) D-9 mutex D-44 

comm (communication new D-93 
parameters) D-10 osbreakpoint D-45 

condvar D-11 partition D-50 
connect <to target• D-12 pm (patch memory) D-51 
csabout D-13 pr (patch register) D-52 
db (define breakpoint) D-14 probe D-53 
den (disconnect) D-16 psos D-55 
debugger D-17 queue D-63 
delete D-94 quit D-65 

index-9 



Index pRISM+ User's Guide 

q* (query shortcut) D-59 pROBE+ commands 

region D-66 pRISM+ shell D-86 

register D-68 Profiler 

sc (system call) D-70 description, RTA 12-1 

semaphore D-71 program 

session D-72 execution tracking 9-1 

set D-92 program editor 

sf (stack frame) D-76 pRISM+ Editor 5-4 

slength D-97 project editors 

stackfrm D-77 See Also pRISM+ Editor 1-6 

target D-80 See Also SNiFF + 1-6 

task D-82 project settings 3-7 

toString D-95 projects 

tsd (task-specific data) D-84 new, pRISM+ 3-4 

type D-89 protocols 

t* (task-related) D-78 list 2-3 

using in pRISM+ Shell window 13-2 pRPC+ 

version D-85 remote procedure call library 2-2 

vinfo D-90 psos command, pRISM+ shell D-55 

pRISM+ Wizard pSOS IO jump table 14-4 

error checking 7-6 pSOS Object 

features 7-1 pRISM+ Shell 13-3 

interface 7-2 pSOSystem 

modes 7-4 architecture 2-1 

See Also pRISM+ Configuration components 2-1 , 2-2 
Wizard 1-5 definitions 1-3, 2-1 

probe command, pRISM+ shell D-53 environment 2-3 
pROBE+ facilities 2-3 

behavior on target 14-8 overview 2-1 
configuring 14-8 root directory 2-5 
go command 14-6 pSOS+ 
gs command 14-5 real-time multitasking kernel 2-2 
target agent 14-7 

index-10 



pRISM+ User's Guide 

pSOS+m 

multiprocessor multitasking 
kernel 

PSS_APPOBJS 

PSS_BSP 

PSS_DRVOBJS 

PSS_ROOT 

2-2 

2-8 

2-8 

2-8 

directory 2-6, 2-7 , 2-8, 2-11 

environment variable 2-5 

PSS_ROOT /bsps 

Q 

queue 

examining messages 

Object Browser 

pRlSM+ Shell 

queue command, pRlSM+ shell 

quit command, pRlSM+ shell 

q* (query shortcut) commands 

R 
region command, pRlSM+ shell 

register command, pRlSM+ shell 

Registers 

2-8 

11-5 

13-7 

D-63 

D-65 

D-59 

D-66 

D-68 

viewing, SearchLight Debugger 8-14 

remote communication connection 

host tools configuration C-7 

remote communication server connection 

how to 

pRlSM+ tools 

sys_conf.h settings 

RTA 

C-7 

C-7 

C-7 

Link Map Analyzer description 12-1 

Profiler description 12-1 

Run-Time Error Checker 
description 

RTA Suite 

definitions 

Run-time Analysis Suite 

See Also RTA Suite 

run-time analysis tool 

ESp 

Object Browser 

Run-Time Error Checker 

description, RTA 

s 
sc (system call) command 

SDM 

See Also System Debug Mode 

SearchLight Debugger 

accessing 

commands 

breakpoint 

next 

Index 

12-1 

1-9 

1-9 

1-7 

1-7 

12-1 

D-70 

8-4 

8-2 

8-17 

8-8 

OS Breakpoint 

step 

8-9, 8-12 , 8-28 

8-5 

stepi 8-7 

downloading application 8-2 

examining call stack 8-20 

examining system objects 8-22 

features 8-1 

Files window, navigating 8-15 

Find dialog box 8-17 

pRlSM+ Shell 13-5 

setting breakpoint 8-17 

single step commands 8-4 

starting 8-2 

index-11 



Index pRISM+ User's Guide 

System Debug Mode 8-4 source editors 

Task Debug Mode, using 8-25 See Also pRISM+ Editor 1-6 

TDM See Also SNiFF+ 1-6 

See Also Task Debug Mode 8-25 source files 2-5 

viewing memory 8-12 source view 

viewing registers 8-14 pRISM+ Editor 5-3 

SearchLight debugger 1-8 stack problems 

definitions 1-8 monitoring, Object Browser 11-4 

semaphore command, pRISM+ shell D-71 stackfrm command, pRISM+ shell D-77 

serial connection startup 

booting pSOS+ C-1 dialog.c file 2-6 

host tools configuration C-1 start-up 

how to C-1 dialog 2-6 

pRISM+ tools C-1 Step command 

sys_conf.h settings C-1 , C-9 using, SearchLight Debugger 8-5 

serial driver 14-4 Stepi command 

server using, SearchLight Debugger 8-7 

Debug Server 1-10 system calls 

servers pMONT 14-2 

Communication Server 1-10 system configuration code 2-5 

session command, pRISM+ shell D-72 System Debug Mode 

set command, pRISM+ shell D-92 SearchLight Debugger 8-4 

sf (stack frame) command D-76 system library 2-7 

SingleStep System Objects 

debugger environment variables B-3 examining, SearchLight 

SingleStep debugger 1-9 Debugger 8-22 

definitions 1-9 sys_conf.h file 2-6, 2-7 

s length command, pRISM+ shell D-97 

SNiFF+ T 

definitions 1-6 target 

environment variables B-3, B-5 system 2-5 

using 3-12 target agent 

log_ event 14-6 

memory usage 14-7 

index-12 



pRISM+ User's Guide Index 

pMONT + configuration 14-2 tmFreq parameter 14-2, 14-3 

pROBE+ 14-7 tmRead parameter 14-2, 14-3 

pROBE+ configuration 14-8 tmReset parameter 14-2, 14-3 

target behavior tool bar 

pMONT 14-1 customize 4-7 

target command, pRlSM+ shell D-80 toString command, pRlSM+ shell D-95 

target configuration directory 4-9 trace events 

target definition 14-5 begin, ESp 10-4 

target requirements, pMONT 14-1 end,ESp 10-4 

task command, pRlSM+ shell D-82 traceBuff parameter 14-2, 14-3 

Task Debug Mode traceBuffSize parameter 10-5, 14-2, 14-3 

SearchLight Debugger, using 8-25 tracking of program execution 9-1 

tasks transmit 

ASEV 14-5 ESp 10-3 

PMCM 14-5 Transmit buffer overhead 10-3 

PMON 14-5 tsd (task-specific data) command, 

tasks waiting pRlSM+ shell D-84 

examining, Object Browser 11-6 type command, pRlSM+ shell D-89 

Tel Script t* (task-related) commands D-78 

pRlSM+ Shell 
u examples 13-8 

TCL scripts user events 10-2 

pRlSM+ Shell 13-2 user_event_id parameter 14-7 

Tel shell 

See Also pRlSM+ Shell 1-8 v 
TCL/CORBA variables 

pRlSM+ Shell 13-1 ARM debugger B-2 

TFTP Server connection CAD-UL B-4 

booting pSOS+ C-9 Diab Data compiler B-2, B-5 

host tools configuration C-9 environment 2-13 

how to C-9 UNIX B-5 

pRlSM+ tools C-9 Windows B-1 

timeouts MKS Toolkit B-3 

pRlSM+ Shell 13-3 pRlSM+ B-4, B-5 

index-13 



Index pRISM+ User's Guide 

SingleStep debugger B-3 

SNiFF+ B-3, B-5 

version command, pRISM+ shell D-85 

vinfo command, pRISM+ shell D-90 

w 
warnings 14-2 

window 

Code 9-9 

working directory 2-6, 2-7 

wraparound 

ESp 10-4 

Wraparound buffer overhead 10-4 

index-14 




