
MICROPROCESSO�
SOFTWARE & HARDWARE

Workbook/Text Volume 1

Self-Study Course

Course 525A:

MICROPROCESSOR
SOFTWARE & HARDWARE

Workbook/Text

DEVELOPED & PUBLISHED BY:

INTEGRATED COMPUTER SYSTEMS

Course Development Division
© Copyright 1980

SENIOR AUTHOR:

Edward Dillingham. M.E., M.S.E.E.

ASSISTED BY:

Dr. Daniel M. Forsyth
Dr. Rudolf Hirschmann

Ms. Ruth H. Savoie
Dr. David C. Collins

EDUCATION IS OUR BUSINESS
™

All materials © copyright 1980 by Integrated Computer Systems.
Not to be reproduced without prior written consent.

Volume I

© Copyright 1980 by INTEGRATED COMPUTER SYSTEMS.
All rights reserved.

No pert of this publication may be reproduced. stored In a retrieval system. or transmitted In any form or
by any means. electronic. mechanical, photocopying, recording or otherwise. or translated Into any

language. without the prior written permission of the publisher.

MICROPROCESSOR SOFTWARE & HARDWARE

Two Volumes
ISBN 0-89438-009-5

Volume I
ISBN 0-89438-010-9

Volume II
ISBN Q-89438-011-7

TABLE OF CONTENTS

VOLUME I

I. . INSTRUCTIONS - SYSTEM SETUP AND TEST PROCEDURE

1.1

1.2

1.3

1.4

.I.5
1.6
1.7

1.8

i.9
1.10

RECEIVING INSPECTIONS
ASSEMBLY
POWER CONNECTION
INITIAL TEST
KEYBOARD TEST
PROGRAM LOADING TEST
SINGLE STEP TEST
PROM CHECKSUM TEST
READ-WRITE MEMORY TEST
SYSTEM EXPANSION

1 HARDWARE AND SOFTWARE FUNDAMENTALS

1.1
1.1.1
1.1.2
1.1. 3

1.1.4

1.2
1. 2.1

1.2.2
1.2.3
1. 2. 4
1. 2. 5
1.3

1. 3. 1

1. 3. 2

1. 3. 3
1. 3.4
1.4

1. 4.1
1.4. 2
1. 4. 3

1.4.4
1.4.5
1.4.6
1. 4. 7

BASIC CONCEPTS
Definition of a Computer
Basic Hardware Structure of a Computer
Basic Software Concepts
The res Self-Study Microcomputer
Training Course
NUMBER SYSTEMS AND REPRESENTATIONS
The Representation of Numbers
The Decimal Number System
The Binary Number System
Binary Addition and Counting
Hexadecimal Representation
THE ORGANIZATION OF MEMORY
Memory Words
Memory Module
Memory Access
Varieties of Memory
STRUCTURE OF THE·CPU
Functional Uni ts
The Execution of Instructions
Instruction Cycles
The Program Counter
The Instruction Register
The Accumulator
The Clock

1-1

1-1

I-2
I-2
i-3
1-4

1.:..5:
1-6
1-7
1-10

1-2

1-2
1-2
1-6·

1-9
1-10
1-10
1-12
1-14
1-16
1-19
1-22
1-22
1-24
1-26
1-28
1-31
1-31
1-33
1-34
1�35
1-37
1-38
1-38

i

TABLE OF CONTENTS

1. 5
1 • 5. 1
1. 5. 2
1. 5. 3
1. 5. 4
1. 5. 5
1. 6
1. 6 .1
1.6.2
1.6.3
1. 6.4
1. 6. 5
1. 6. 6
1. 6. 7
1.7

THE MTS MONITOR
Monitor Software
The MTS Keyboard and Display
Using the MTS
Inspectinlj Memory Contents
Changing Memory Contents
PHEPARING A PROGRAM
Instructions to Be Used
Program Specification
Writing (Coding) the Program
Loading Your Program in the MTS
Verifying and Correcting the Stored Program
Executing Your Program
Instruction Execution: Detailed Examination
SUMMARY

2 TWO AND THREE BYTE INSTRUCTIONS

2. 1
2. 1.1
2.1.2
2 .1. 3
2. 1. 4
2. 1. 5

2.2
2.3
2.3.1
2.3.2
2.3.3
2.4
2.5

PROGRAM EXERCISE 2
The ADI Instruction
The STA Instruction
Instruction Execution Details
Writing the Program
Loading and Executing the Program
DATA STORAGE CONVENTIONS
PROGRAM EXERCISE 3
The LDA Instructions
The JMP Instruction
Writing the Program
SUMMARY OF INSTRUCTIONS
REVIEW OF COMMAND KEYS

3 PROGRAM LOOPS

ii

3 .1
3. 1. 1
3.1. 2
3. 1. 3

3.2
3.3
3.4
3.5
3.6

PROGRAM LOOPS AND FLOW CHARTS
The Monitor RUN Command
The Conditional Jump
Flow Charts
PROGRAMMED MONITOR ENTRY
ADDITION BY COUNTING
EXERCISE
SUMMARY
SUMMARY OF INSTRUCTIONS

1-41
1-41
1-43
1-45
1-46
1-48
1-50
1-51
1-53
1-53
1-55
1-57
1-58
1-61
1-65

2-1
2-1
2-2
2-3
2-10
2-11
2-15
2-16
2-16
2-20
2-23
2-28
2-29

3-1
3-1
3-2
3-7
3-9
3-13
3-19
3-20
3-21

4 THE
4.1
4.2
4.3

OTHER REGISTERS AND MEMORY ADDRESSING
THE MOV INSTRUCTION

4. 3. 1
4.3.2
4.3.3
4.3.4
4.3.5
4.4
4. 4. 1

4.4.2
4.4.3
4.4.4
4.4.5
4.5
4.6
4.6.1
4.6.2
4.7
4.7.1
4.7.2
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.8.6
4.8.7
4.8.8
4.9
4.9.1
4.9.2
4.9.3
4.10
4.10.1
4.10.2
4.10.3
4.10.4
4.11

4.11.1
4.11.2

4.11.3
4.11.4

4.12
4.12.1
4.12.2

4.12.3
4.12.4
4.12.5

THE ADD INSTRUCTIONS
THE CARRY AND ZERO FLAGS
Carry
Multiple Precision - The
Exercise
Subtraction - SUB and SBB
Review and Self Test
IMMEDIATE INSTRUCTIONS

ADC Instruction

Move Immediate Instruction (MVI r)
Immediate Arithmetic Instructions
Multiplication by Repetitive Addition
Multiplication - Exercise
Table of Instructions
CONDITIONAL JUMPS
TRANSFER NOTATION
Instruction Definitions
Review and Self Test
THE MTS DISPLAY
Displaying a Bit Pattern
Display Digit Addresses
REGISTER PAIRS AND MEMORY ADORES.SING
The LDAX and STAX Instructions
Copy a List to Display - Exercise
Display of Eight Characters
Register Pair Loading - LXI
Register Pair Counting - INX, DCX
Delay Loops
Breakpoints
Review and Self Test
USE OF A MEMORY LOCATION AS A REGISTER
Memory Reference Instructions
Four Bye Addition Exercise
Counting in the Display - Exercise
INDIRECT ADDRESSING
Load and Store HL Direct
LHLD and SHLD - Example
Examining a Register Pair
Review and Self Test
COMPARISONS AND CONDITIONAL JUMPS
Comparison Instructions - CMP
Compare Immediate Instruction - CPI
Moving Message - Exercise
List of Intructions
SENSOR CORRECTION EXERCISE, VERSION 1
Sensor Characteristics
Organizing the Data Structure
Organizing the Program
Testing Sensor Correction
Review

TABLE OF CONTENTS

4-1
4-2
4-4
4-6
4-7
4-11
4-16
4-18
4-23
4-25
4-25
4-28
4-30
4-34
4-36
4-40
4-43
4-44
4-48
4-53
4-53
4-55
4-57
4-59
4-63
4-67
4-69
5-71
4-73
4-77
4-84
4-87
4-88
4-91
4-95
4-96
4-97
4-99
4-103
4-106
4-110
4-111
4-112
4-113
4-118
4-125
4-126
4-130
4-131
4-136
4-139

iii

TABLE OF CONTENTS

4.13
4.13.1
4.13.2
4.13.3
4.13.4
4.13.5
4.14
4.15

MULTIPLE TABLES WITH A DIRECTORY
Directory to Data Structures
Organizing the Program
Testing Sensor Numbers
Using the Directory
Testing Multiple Sensor Correction
SUMMARY
INSTRUCTION CHART

5 MEMORY AND CONTROL HARDWARE

5.1
5.1.1
5.1. 2
5.1.3
5.1.4
5.1. 5
5.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4
5. 4. 1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.5.3
5.5.4

SYSTEM CONTROLLER
Control Signals
Status Byte
Decoded Control Signals
MTS System Controller Logic
Intel 8228 System Controller
MEMORY TECHNOLOGY
CHIP SELECT LOGIC
Memory Enabling
RAM Chip. Se lee tion
ROM Chip Selection
Partial Decoding
Alternative Memory Addresssing
DATA BUS CONNECTIONS
Tri-State Circuits
Read-Write Control
DMA and Interrupts - Introduction
MEMORY SIGNALS AND TIMING
Machine States and Transitions
First State (Tl)
Second State (T2) and Wait (TW)
States T3, T4 and T5

6 MODULES, SUBROUTINES AND THE STACK

iv

6.1
6.1.1
6.1. 2
6.1.3
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

PROGRAM MODULES
In-Line Programming
Creating·Progra� Modules
Module Specification
SUBROUTINES
Subroutine Entry and Return
Tracing Subroutine Entry and Return
CALL Execution
Return Instructionn
Subroutine Nesting·

4-140
4-141
4-142
4-145
4-148
4-153
4-157
4-158

5-3
5-3
5-5
5-6
5-9
5-9
5-il
5-17
5-19
5-19
5-20
5-23
5-25
5-26
5-26
5-27
5-28
5-31
5-31
5-31
5-32
5-32

6-1
6-2
6-3
6-6
6-12
6-12
6-14
6-16
6-20
6-24

TABLE OF CONTENTS

6.3
6. 3. 1
6.3.2
6.3.3
6 .• 3. 4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10
6.3.11
6.4
6.5
6.5.1

·6.5.2
6.5.3

·6.5.4
6.6
6.6.1
6.6.2

· 6.6.3
6.6.4
6.7
6.8
6.8.1

6.8.2
6.8.3
6.8.4
6.8.5
6.9
6.9.1
6.9.2
6.9.3
6.9.4
6.9.5
6.10
6.10.l
6.10.2
6.10.3
6.10.4
6.10.5
6.10.6

6.10.7

SUBROUTINE SPECIFICATION
Program Development - Sensor Correction
Ma in Program
Input Subroutine
Conditional Calls
Subroutine DISPLAYRESULT

Subroutine SEARCHDIRECTORY

Program Data Initialization
Subroutine TABLELOOKUP

Stubs for Subroutines
Register Pair Addition
Program Integration
REVIEW AND SELF TEST

ADDITIONAL EXERCISES

Clear Result Display
Store and Recover Table Address
Two Byte Table Addresses
Empty Sensor Numbers
USING THE STACK FOR DATA

Testing Stack Usage
Using the Stack Inside a Subroutine
Processor Status Word (PSW)
Exchange Instructions
TEST DRIVER FOR MULTIPLY-EXERCISE
STACK POINTER INSTRUCTIONS AND RULES

Instructions that Affect Only the
Stack Pointer
Stack Operation

i_
Rules

Monitor Usage of the Stack
The Growing Sta4k Problem
Review and Self Test
SUBROUTINE CLASSIFICATION

Global Subroutines
Local Subroutines
Re-Entrant Suroutines
Interrupt Service Routine
Subroutine Transparency
MONITOR SUBROUTINES

Monitor Keyboard Scan Subroutine (SCAN)
Monitor Key Entry Subroutine (GETKY)
Monitor Data Byte Input Subroutine ·(ENTBY)
Monitor Data Word Input Subroutine (ENTWD)
Monitor Display Digit Subrout1ne (DISPR)
Monitor Display Byte Subroutine -
DMEM, DBYTE, DBY2

Monitor Display Word Subroutine -
DWORD DWD2

6.10.8 Monitor Subroutine CLRGT, CLEAR, CLRLP
6.10.9 Monitor Subroutine DELAY, DELYA

6-29
6-29
6-33
6-36
6-51
6-61
6-64
6-67
6-73
6-75
6-78
6-83
6-84
6-88
6-97
6-97
6-98
6-98
6-99
6-100
6-104

·6-105
6-107
6-110

.· 6-116

6-116
6-119
6-120

. 6-125
6-128
6-133
6-133
6-134
6-134
6-134
6-134
6-136
6-137
6-138
6-140
6-141
6-142

6-144

6-146
6-147
6-148

V

TABLE OF CONTENTS

7

vi

LOGIC
7.1
7 .1.1
7 .1. 2
7 .1. 3
7 .1. 4
7 .1.5
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.4
7. 4. 1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9
7.4.10
7.4.11
7.4.12
7.5
7.6
7.6.1
7.6.2
7.6.3

'7.6.4

AND BIT MANIPULATION
ROTATE COMMANDS

Rotate Exercise
Rotate Instructions for Control Functions
If-Then-Else Construct
Arithmetic Substitutes for RAL
Logical Rotate
BINARY ENTRY AND DISPLAY EXERCISE
LOGIC FUNCTIONS

Complement (CMA)
AND (ANA)
Inclusive OR (ORA)
Exclusive OR (XRA)
Immediate Logic Functions
Set and Complement Carry
LOGIC FUNCTIONS EXERCISE
Data Byte and Bit Marker
Keyboard Functions
Register Assignments
Subroutines for Logic Functions Exercise
Main Program for Logic Functions Exercise
Stubs for COMMAND and FUNCTION
Logic Functions DISPLAY Subroutine
Logic Functions DATA Subroutine
Additional Specifications for DATA
Logic Functions COMMAND Subroutine
Subroutine FUNCTION

Exercising Logic Functions
FLOW CONTROL TECHNIQUES
REVIEW AND ADDITIONAL EXERCISES
Traffic Control Exercise
Extended Traffic Control Exercises
Fire and Burglar Alarm
Model Railroad Simulator

7-1
7-1
7-3
7-9
7-11
7-17
7-18
7-22
7-29
7-29
7-30
7-31
7-32
7-33
7-34
7-35
7-37
7-39
7-40
7-40
7-43
7-45
7-49
7-52
7-56
7-60
7-65
7-69
7-72
7-78
7-79
7-85
7-88
7-88

TABLE OF CONTENTS

VOLUME II

8 INPUT/OUTPUT TECHNIQUES

8.1

8. 1. 1

8.1. 2

8 .1. 3

8.1.4

8.1. 5

8.1. 6

8.2

8.3

8.3.1

8.3.2

8.4

8.4.1

8.4.2

8.4.3

8.5

8.5.1

8.5.2

8.5.3

8.5.4

8.5.5

8.6

8.6.1

8.6.2

8.6.3

8.6.4

8.6.5

-8. 6. 6

8.6.7

8.6.8

ISOLATED INPUT/OUTPUT
1/0 Ports
Programmable 1/0 Ports
Keyboard Input
Subroutine KYIN
Keyboard Display Exercise
Other 1/0 Interfaces
MEMORY MAPPED INPUT/OUTPUT
DIRECT MEMORY ACCESS
Repetitive Direct Memory Access
DMA Input and Output
I/0 INITIATION
Programmed 1/0
Interrupt Driven I/0
The MTS Interrupt System
INTERRUPT SERVICE ROUTINES
Preserving the Environment
Identifying the Source of the Interrupt
Vectored Interrupt Systems
Priority Interrupt Systems
Timed Interrupt Systems
USING INTERRUPTS WITH THE MTS
Interrupt Dispatch
Interrupt Service Routine Exercise
Interrupt Service Routine Test
Memory Change Breakpoints
Interrupt Service Operation
Combining Interrupt Service with
monitor Functions
External Interrupt
Interrupt Handling -Summary

9 DATA FORMAT

9.1

9.1.1

9.1. 2

9.2

9.2.1

9.2.2

9.2.3

PARALLEL INPUT/OUTPUT
Paper Tape Reader Example
Computer to Computer Interface
SERIAL INPUT/OUTPUT
Signal Coding
Synchronous Communication
Asynchronous Communication

TABLE OF CONTENTS

8-2

8-2

8-9

8-15

8-16

8-26

8-33

8-35

8-39
8-41

8-45

8-49

8-49

8-52

8-66

8-73

8-73

8-75

8-75

8-76

8-76

8-77

8-77

8-81

8-83

8-88

8-91

8-99

8-100

8-101

9-3

9-3

9-7

9-14

9-14

9-16

9-17

vii

TAl;lLE OF CONTENTS

9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.4
9.4.1
9.4.2
9.4.3
9.5
9.5.1
9.5.2
9.5.3
9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
9.7

ASYNCHRONOUS TRANSMITTING AND RECEIVING
Serial Transmission Exercise
Character Data Pattern
Interrupt Service Routine
Main Program
ASYNCHRONOUS RECEIVING
Wait for Start Bit
Receive Data Bits
Receive Main .·.Loop ·,
MONITOR TAPE PROGRAMS AND SUBROUTINNES
Tape Recording Program
Tape Reading Program
Error Checking Character (LRC)
MONITOR SEND AND RECEIVE SUBROUTINES
SOTBT (0382)
Program Entry and Removal of Brekpoints
Subroutine BKMEM (01D3)
Subroutine SINWS (03CF)
Transmit/Receive with Monitor Su broutines
CALCULATING DELAY TIMES

10 BINARY AND DECIMAL ARITHMETIC

10.1
10.1.1
10.2
10.3
10.4
10.5
10.6
10.7
10.7.1
10.7.2
10.7.3
10.7.4

11 REVIEW

viii

11.1
11.2
11. 3
11. 4
11.4.1
11.5
11. 6
11. 7
11. 8
11.8.1
11.8.2
11.8.3

BINARY ADDITION
Multiple Precision
FOUR BYTE ADDITION
BINARY SUBTRACTION
DECIMAL ADDITION AND SUBTRACTION
BINARY MULTIPLICATION
DECIMAL MULTIPLICATION
O'rHER REPRESENTATIONS OF NUMBERS
Negative Binary Numbers
Change Sign, Add, Subtract Exercise
Signed Decimal Numbers
Fractional Numbers

DATA TRANSFER
COUNTING INSTRUCTIONS
ACCUMULATOR/CARRY INSTRUCTIONS
ARITHMETIC AND LOGICAL INSTRUCTIONS
The Flags
BRANCH INSTRUCTIONS
INPU'r /OUTPUT
UNDEFINED INSTRUCTIONS
OTHER MICROPROCESSORS
NEC 808A and NEC 8080AF
INTEL 8085
ZILOG Z-80

9-20
9-21
9-23
9-25
9-27
9-33
9-35
9-37
9 --39
9-44
9-44
9-45
9-46
9-47
.9 47
9-49
9-51
9-52
9-54
9-61

10-2
10-2
10-6
10-13
10-25
10-33
10-39
10-44
10-45
10-53
10-59
10-83

11-2
11-5
11-7

11-9

11-10
11-13
11-15
11-16
11-17
11-17
11-17

11-18

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

THE res MONITOR

BINARY/DECIMAL CONVERSIONS

CALCULATING TRIGONOMETRIC FUNCTIONS

THE S-100 ADAP TER CARD

AM TS SCHEMATICS

DIGI TAL LOGIC

TABLE OF CONTENTS

ix

LIST OF ILLUSTRATIONS

FIGURE

1-1

1-1
1-2
1-3

2-1
2-2
2-3
2-4
2-5

3-1

3-2
3-3

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11

4-12
4-13
4-14

4-15
4-16
4-17
4-18
4-19

X

LIST OF ILLUSTRATIONS

VOLUME I

TITLE

Read-Write Memory Test

MTS Board Layout
MTS Board Layout
MTS Board Layout

LOA Instruction Cycle
LOA Instruction Cycle (continued)
LOA Instruction Cycle (continued)
JMP Instruction Cycle
JMP Instruction Cycle (continued)

Conditional Jumps Flow Chart
Addition by Counting - Flow Chart
Addition by Counting - Program

Double Precision Addition
Double Precision Subtraction
MVI Instruction Cycle
Multiplication by Repetitive Addition
Bit Patterns for MTS Display
Instruction Cycle for STAX D Instruction
Hex Codes and Characters
Copy List to Display
Copy List to Display
Gradual Display with Clear
Four Byte Addition in Memory - Flow Chart

Four Byte Addition in Memory - Program
Counting in the Display
Moving Message - Flow Chart
Moving Message - Program
Sensor Calibration Curves
Sensor Correction
Mu ltiple Sensor Correction - Flow Chart
Correcting Multiple Sensors - Program

PAGE

I-8

1-5
1-30
1-42

2-17
2-18
2-19
2-21
2-22

3-10

3-14
3-15

4-17
4-22

4-27
4-38
4-52
4-61
4-62
4-66

4-72
4-76
4-90

4-93
4-94
4-116

4-122
4-129
4-134

4-144
4-150

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11

6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20

6-21
6-22
6-23
6-24

7-1

7-2

7-3

7-4

,7-5

7-6

7-7

7-8

7-9

7-10

7-11

7-12

7-13

7-14

7-15

7-16

7-17.

7-18

LIST OF ILLUSTRATIONS

Microcomputer Training System Configuration
MTS System Controller
Memory Addressing
Internal Address Decoding in a Memory Device
Chip Select Logic
MTS Memory Addresses
Minimum Chip Select
Memory Access Timing

Modular Sensor Correction - Flow Chart
Do Nothing Program with Do Nothing Module
Do Nothing Program
Call Instructions
Call Instructions (continued)
Return Instruction
Return Instruction (continued)
Nested Subroutines
Nested Do Nothing Subroutines
Sensor Correction with Subroutines
Sensor Correction - MAIN
Test GETKY and DBY2
Sensor Correction - INPUT (not complete)
Sensor Correction - INPUT (complete)
Sensor Correction - NEXTSENSOR
Sensor Correction - DIRECTORY AND DATA
Sensor Correction - DISPLAYRESULT
Sensor Correction - SEARCHDIRECTORY
Sensor Correction - MAIN and INITIALIZE
Sensor Correction - TABLELOOKUP
Sensor Correction - MULTIPLY
Complete Sensor Correction Program
Test Driver for MULTIPLY
Test Driver Program

Test Driver for SHIFT Subroutines
SHIFT Subroutines
Left and Right Shift Program
Sixteen Bit Logical Rotates
Binary Entry and Display Flow Diagram
Binary Entry and Display Program
Logic Functions - Main Program
Stubs for COMMAND and FUNCTION
Logic Functions DISPLAY Subroutine - Flow
Logic Functions - Subroutine DISPLAY
Logic Functions - Subroutine DATA
Logic Functions - Revised DATA
Logic Functions - Subroutine COMMAND
Logic Functions - Subroutine FUNCTION
Logic Functions - Self Test
Logic Functions with Dispatch Table
Traffic Control Program
Timer and Keyboard Scanner

5-2
5-8
5-12
5-14
5-18
5-22
5-24
5-30

6-5
6-9
6-10
6-17
6-19
6-21
6-23
6-25
6-26
6-30
6-34
6-40
6-49
6-58
6-59
6-60
6-63
6-66
6-72
6-77
6-81
6-89
6-111
6-112

7-7
7-8
7-15
7-21
7-24
7-27
7-46
7-47
7-48
7-51
7-55
7-59
7-64
7-66
7-71
7-76
7-83
7-87

xi

LIST OF ILLUSTRATIONS

FIGURE

8-1
8-2

8-3

8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8:-15
8-16
8-17
8-18
8-19.
8-20.
s-21
8-22·
8-23
8--24
8-25
8-26
8-27
8�28
g...;.29
s ... 30
8-31
8-32.

8-33

9-1
9-2

9-3

9-4
9-5
9-6
9-7
9-8

xii

LIST OF ILLUSTRATIONS

VOLUME II

TITLE

From INTEL Manual
Array of Input/Output Ports
Isolated Input/Output with the 8255
8255 Mode O Combinations
MTS 8255 and Key Input Scanning Circuit
Subroutine KYIN
First test for KYIN
KPRG, KTST, KYIN with Debugging Features
KPRG, KTST, KYIN with Debugging Removed
Keyboard Display Program - Flow Chart
Keyboard Display Program
Keyboard Display Program
Typical 1/0 Interfaces
Memory Mapped Input/Output with the 8255
Memory Mapped Display
DMA Circuit
DMA timing
Display Circuit
Keyboard Testing in the Monitor
Programmed Input/Output
Coding and Effect of RST Instructions
Interrupt Processing
Interrupt Processing (continued)
Interrupt Processing (continued)
(From INTEL Manual)
Restart Port with 8212
Vectored Restart Port
Vectored Interrupt Using Resistors
MTS Interrupt Circuit and Timing
Interrupt Service Exercise - Main
Interrupt Service Routine
Test for Interrupt Service
Interrupt Service Exercise

8255 Mode 1 Input
High Speed Paper Tape Reader lnterfac
8255 Mode 2 - Bidirectional 1/0
Interprocessor Communicati,on Using 82p5
Logic and Timing for Shared Memory I_ Serial Data Transmit Interrupt Servic Routine
Serial Transmit - Main
Serial Transmit - Data Entry

PAGE

8-3
8-4
8-8
8.,.10
8-14

· 8-22

8--23

8-24
8-25
8-27

.8-29
8-30
8-32
8-34
8-38
8-40
8-40
8-42
9 ... 48
8-50
8-56
5,..57
8-58

8-59
8-60
8-62
8-63
8:-64
8-68
8-80
9.,.a2
8-84
8-93

9-2
9-4
9-8
9-10
9-12
9-24
9-26

9-29

9-9
9-10
9-11

9-12
9-13
9-14

9-15
9-16
9-17

9-18

10-1

10-2·
10-3

10..;.4

10.,..5
10-6

10-7
10-8.
10-9

10-10
10-11
10..;.12

10:...13
10-14
10-15

10-16
10-17
10.,-18

10..;.19
10-20
10-21

10-22

10-23
10-24

10�25
10.,-26

10-27
10-28
10.,-29

10-30

LIST OF ILLUSTRATIONS

Transmit - Receive Data Entry
Wait for Start Bit
Receive Data Bits
Receive Main Loop
Transmit - Receive
Transmit/Receive with Monitor Subroutines
Transmit Interrupt Service with SOTBT
Transmit Main Loop with Breakpoint Entry
Receive Main Loop with SINWS
Instruction Timing

Main Programs for Four Byte Add and Display
Multi-Byte Add Subroutine
Main Program for 4 Byte Add and Display
Multi-Byte Addition Subroutine
Modify Main to Display Halt
Multi-Byte Subtract Suroutine
Main Progra m for 4 Byte Subtract
Display Halt
Multi-Byte Subtraction Subroutine
Program Modify Module
Modify Subroutine by Key Input
Multi-Byte Add/Subtract Subroutine
Modify Subroutine by Key Input
Modify Subroutine by Key Input (continued)
For Experiment with DAA
Binary Multiplication
B inary Multiply - Two Byte Product
Decimal Multiply Subroutine
Data Entry and Display for Decimal Multiply
Change Sign of Number
Change Sign by CMA, INR A
B inary and Decimal Arithmetic
Change Sign, Add, Subtract Exercise
Change Sign Exercise - Data Entry and
Command Interp retation
Command Execution
Change Sign Subroutine
Decimal Arithmetic
Two Byte Hundreds Complement
CHSIGN
SIGNMAG

9-32
9-34
9-36

9-38
9-40
9-53

9-55
9-56
9-58

9-60

10 7

10-8
10--9

10-10

10:...12
10'-17

10-18
10-19
10 20

10.:..22
10-23
10-24

10-26
10-27
10-32

10-35
10-36
10...;.40

10-:"41
10'.""47
10-50

10-:-54

10...;.55

10.,-56
10'.""57
10.,..58

10-65
10'.""75
10...;.78

10-82

xiii

MICROCOMPUTER TRAINING WORKBOOK

INSTRUCTIONS

SYSTEM SETUP AND TEST PROCEDURE

MICROCOMPUTER TRAINING SYSTEM SETUP AND TEST PROCEDURE

1.1 RECEIVING INSPECTION

Upon receipt of your Microcomputer Training System, unpack it and

inspect for any apparent shipping damage. If the equipment is

damaged, or if any of the items listed below is missing, telephone

Integrated Computer Systems for advice.

1.2 ASSEMBLY

Items Supplied

MTS Circuit Board

Power Supply

Microcomputer Training Workbook

Pad of Coding Sheets

Place the power supply on a table or desk with the sloping face

towards the user. Mount the computer to the power supply by placing

its lower edge on the table and its upper edge at the top of the

sloping surface of the power supply. Reach under the plastic cover

and push the two black plastic devices into mounting holes on the

power supply.

1-1

INSTRUCTIONS, SETUP AND TEST

1.3 POWER CONNECTION

Plug the multiconductor cable from the power supply into the socket

at the upper left corner of the circuit board. Plug the power cord

into a power outlet.

1,4 INITIAL TEST

Turn on the power switch at the back of the power supply. The numeric

display above the keyboard should show 8200 in the four left hand

digits. The next two digits should be blank, and the remaining

digits may contain any data. No further testing should be required

at this point, and the beginning user should now start reading the

course material. If any problems are encountered that appear to be

due to faulty hardware, it is recommended that the tests in the

following sections be performed before ·calling Integrated Computer

Systems for advice.

1-2

1.5 KEYBOARD TEST

INSTRUCTIONS, SETUP AND TEST

Press the following keys in the sequence shown. The displays that

should appear are shown at the right. (?? indicates that the display

is unpredictable.)

r s2_0_0J ' ----] l_ __ QJ)

[820:oJ [---341

Proceed through the remaining white keys, 5 through F. Note that B

is displayed as J.=:J to avoid confusion with 6, and D appears as

d·

1-3

INSTRUCTIONS, SETUP AND TEST

1.6 PROGRAM LOADING TEST

�oad this simple test program by pressing keys in the sequence given

below.

[asT J

EJ lJ-F l

EJI MEM I

EJ [�-­
[�-

�
-i

I I

! 7 l
I I

t __ �

This program is used in the fol lowing test.

1-4

: s201 I r--3�

I 8202) 371

1 8203 / C9J

I 8202 371

[82 0 1 I .'
! 3C I

I 8200 ! AF l

1.7 SINGLE STEP TEST

INSTRUCTIONS, SETUP AND TEST

Load the program given in the preceding section.

In the middle of the left side of the circuit board a red- handled

toggle switch projects slightly from under the plastic cover. Switch

it toward the bottom of the board, to the STEP po,sition. Press the

following keys, and observe the display and the two red indicators

(LED's) just to the left of the numeric display.

i
RST I

_____ ,J

I s200] L AF I

I STEP \ I s2-or-, r sc 1

I i
[_______ _;

The LED indicator lamp to the left of the display labeled ZERO should

be on. The other indicator (labeled CARRY) should be off.

r:1
Both indicators should now be off.

ISTE�

The indicator labeled CARRY should be on.

IRST l

I 8202 __ _

18200

37 J

C9 j

AF]

This test has demonstrated that the single step function of the MTS

is operating correctly, and has also tested the Zero and Carry

indicators.

1-5

INSTRUCTIONS, SETUP AND TEST

1.8 PROM CHECKSUM TEST

Set the red toggle switch to AUTO, and press the following keys in

sequence.

I ;

i ADDRJ

[ADDR

[:�
iADDR

I 1,

i�

�

l

_I

1

C

i
0

!
··---�----1

i
_:_J

r-i ..i
1 ______ ,,.l

(---,
I !
!3

�_J

,--�

i

i MEM

; __ , .. _I

:�

r-·-;-·-
1

i I:__ �

BRK

L
3�·

l OOOQ_]

---·- l
��oq __ c�or··,

�----;

2lj

The display will be blank·for a brief period, and then it will show:

I 03s21 L c-01J

The value displayed at the right hand two digits is a check sum for

the content of the PROM memory. It should be AA for all versions of

the monitor. Check the monitor version number by:

I 02so; 27\

The number shown at the right indicates that your MTS is equipped

with monitor version 2.7.

1-6

1.9 READ-WRITE MEMORY TEST

INSTRUCTIONS, SETUP AND T_EST

Load the program shown on the following page according to the

following procedure.

r=-1

I ADDRI

I MEM i
l..-·-----J

EJ [--·--· 0
· -·--·-- ·- - ·

r� - !

Fl EJ [-�

�I [0

r s�M;

,s01Rf1
, _____ .J

,-- ·soor1
I

??i .. '

I. '?'?_j

L .. _F3_i

21 I

Continue with the NEXT followed by two hex keys from the column

headed CODE on the coding sheet until address 8015 has b een loaded.

Review the program by

I 8002 J

etc.

1-7

I-­
LU
LU

. :::i:::
en

(.!)
z
0
0
CJ

LU
I-­
en
>­
en

(.!)
z
z

cc
l­
a:
LU
I­
::::,
0...
�
0
CJ
0
cc
CJ

�

en
�
LU
I­
en
>­
Cl)

cc
LU

A

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

0 8
CJ

0

cc

(.!)

z

I-8

D

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

D R

0 0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

0 A

0 B

0 C

0 D

0 E

0 F

1 a

1 1

1 2

1 3

1 4

1 5

6

7

8

9

A

B

C

D

E

F

0

2

3

4

5

6

7

8

CODE
READ-WRITE MEMORY TEST

F 3 D I

2 1 L X I H • 8 0 1 5 =· ·

1 5

8 0

2 3 I N X H

7 E M 0 V A
I M

2 F C M A

7 7 M 0 V M • A

B rE C M p M

C 2 J N z 8 0 1 2

1 2

8 0

2 F C M A

7 7 M 0 V M , A

A E X R A M

C A J z 8 0 0 4

0 4

8 0

C D C A L L D .J\1 w D

C E

0 2

7 6 H L T

INSTRUCTIONS, SETUP AND TEST

Now run the program by:

0 I sooo1
· ---·'

The program stops and displays a memory address at which it could not

write and read data. This is the next address beyond the memory

installed; 8800 if the MTS is equipped with 2048 bytes of memory.

An y other address indicates a memory failure.

After testing each byte the program restores the previous value, so

this test program may be run even when you have another program

loaded.

1-9

INSTRUCTIONS, SETUP AND TEST

1.10 SYSTEM EXPANSION

The Microcomputer Training System can be expanded in four ways:

a) An additional 2048 bytes of Read-Write memory can be plugged into

the circuit board, giving a total of 4K bytes of RAM. Purchase Intel

2114 (or equivalent) 1024 x 4 static RAM chips and insert them in the

empty sockets.

b) An additional 3K bytes of PROM can be plugged into the circuit

board for programs that you have developed and want to keep

permanently available. Also, by cutting and replacing some circuit

board traces it is possible to replace the lK PROM chips with 2K PROM

chips, for a total PROM capacity of SK bytes. Additional PROM

chips will be offered by ICS in the future to provide additional

built-in programs. Contact ICS for details.

c) The ICS Interface Training System can be connected to the MTS

through a cable connector at the upper edge of the MTS circuit board.

This training system includes additional input/output ports, interval

timers, a power driver, digital/ analog/digital converter, and an

extensive training course workbook covering the use of these devices,

real time programming, interrupt handling, and closed loop control.

1-10

INSTRUCTIONS, SETUP AND TEST

d) The MTS can be connected to an S-100 system to give access to a

full 64K memory, Teletype or CRT terminal, printer, floppy disc, and

other system devices. An interface cable and adapter board are

available from res to plug directly into the s-100 bus. Such a

system can support BASIC, FORTRAN, PLM and other high level

programming languages.

1-11

INSTRUCTIONS, SETUP AND TEST

This page intentionally left blank

1-12

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 1

HARDWARE AND SOFTWARE FUNDAMENTALS

INTRODUCTION TO CHAPTER 1

This chapter serves as the foundation upon which subsequent chapters

are based. The basic structure of computer systems is described,

principles of the binary number system are developed, the functional

organization of memory and the central processing unit is introduced

and the execution of several computer instructions iS presented in

some detail.

By writing and loading simple programs of your own, you will learn to

use the Microcomputer Training System keyboard and display. You will

observe first-hand the dynamics of program execution by watching,

step-by-step, the results of executing individual instructions on

your own computer.

If you are familiar with some of the topics covered here, skim but do

not skip the material. The basic concepts are related to the

structure and operation of the Microcomputer Training System.

After completing this chapter you will have a clear comprehension of

the basic fundamentals of computer hardware and software. Most

importantly, your knowledge will be rooted in hands-on usage of your

MTS computer system.

1-1

HARDWARE AND SOFTWARE FUNDAMENTALS

1.1 BASIC CONCEPTS

1.1.1 Definition of a Computer

A computer is an electronic system which performs arithmetic and

logical operations on data according to a sequence of instructions.

The system consists of both hardware (physical devices) and software

(sequences of instructions).

HARDWARE: The electromechanical components of a

cbmputer system�

1.1.2 Basic Hardware Structure of a Computer

A computer has three principal hardware subsystems: a Central

Processing Unit (CPU), a memory, and lnput/Outp�t (I/0) devices.

1-2

CPU: The central processing unit, a set of elements

which perform the actual arithmetic and logical

operations. The CPU also provides the central

control function of the computer system.

MEMORY: A physical device in which data and

instructions are stored for subsequent

processing

HARDWARE AND SOFTWARE FUNDAMENTALS

1/0 DEVICES: Electro-mechanical devices that provide

input of data and/or instructions to the

system and output of results. Usually

input devices are separate from output

devices, e.g., a keyboard for input and a

CRT display for o utput. Sometimes one

device can combine both functions, e.g.,

a Teletypewriter can be used to input

information and print o"utput information.

These three subsystems are interconnected such that each one can

communicate with the other two:

-
CPU -

, . ,

MEMORY
- -

I/0 DEVICES � -

1-3

HARDWARE AND SOFTWARE FUNDAMENTALS

The model for computer operation is as follows:

1. Instructions are input via an INPUT DEVICE and

stored in MEMORY.

2. Data are input via an INPUT DEVICE and stored

in MEMORY.

3. The data are processed in a sequence and manner

specified by the instructions.

4. The results of the data processing are output via

an OUTPUT DEVICE.

In Figure 1-1, showing the layout of the MTS computer, the principal

subsystems have been identified: The CPU, Memory, and Keyboard and

Display. We will look at these in more detail later in the chapter.

1-4

HARDWARE AND SOFTWARE FUNDAMENTALS

!! INT�TED CD'VlPlJrER 5Y5r&t15, lf\C.

FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY

PROCESSOR
HARDWARE
8080A Microprocessor
and Control Logic

OMA
Direct Memory
Access (OMA)
Channel

RAM MEMORY AUDIO CASSETTE
INTERFACE 2048 Bytes of RAM Memory for

Programs and Data. Expandable
On-Board to 4K Bytes.

Audio Cassette Interface and
Associated Software for Easy
Program Storage and Retrieval

DISPLAY
On-Board 8-Digit
LED Display

PROM MEMORY
Eraseable PROM Memory
(containing the Educational Monitor
Program) - 1024 Bytes.
Expandable On-Board to SK Bytes.

FREE AREA
Space for User's
Hardware Additions

PROGRAMMABLE PERIPHERAL INTERFACE
Programmable 1/0 Device Including Three 8-Bit Ports.

MTS Board Layout
Figure 1-1

KEYBOARD
On-Board Keyboard
with 25 Keys for
Program and Data
Entry.

1-5

HARDWARE AND SOFTWARE FUNDAMENTALS

1.1.3 Basic Software Concepts

The computer performs its functions under the control of a sequence

of instructions. As an i 11 ustra tion, consider using a computer to

convert miles to kilometers using the approximation that there are

eight kilometers in five miles. The rule, as it might appear in a

textbook, would say "Mu! tiply the number of miles by eight and divide

by five to ob ta in the answer in kilometers." The computer wi 11 need

more detailed instructions than this. First assuming that the

computer has been set up for the conversion by storing appropriate

instructions in memory, it will also require that data be stored in

memory. In this case the data are:

a. The number of miles to be converted.

b. The number 8.

c. The number 5.

Then, the sequence of operation might go as follows:

1-6

a. START.

b. Retrieve (miles) from memory.

c. Retrieve (8) from memory.

d. Multiply (miles) by (8).

e. Store result in memory under (temporary).

f. Retrieve (temporary) from memory when ready for next operation.

g. Retrieve (5) from memory.

h. Divide (temporary) by (5).

i. Store result in memo.ry under (result).

j. Output/Display (result) and STOP

HARDWARE AND SOFTWARE FUNDAMENTALS

A sequence of instructions which performs such a calculation (or

computation) is called a program.

PROGRAM: A sequence of instructions which performs a

specific calculation, computation or set of

logical operations.

Programs may be specified which perform a vast and varied number of

functions, including mathematical calculations, symbol manipulation,

word processing and the detailed control and sequencing of 1/0

devices. A collection of such programs is referred to as software.

SOFTWARE: 1) A collection of programs which perform

many different functions; 2) The program

component of a computer system in general,

as distinguished from the hardware or

physical component.

1-7

HARDWARE AND SOFTWARE FUNDAMENTALS

This. page intentionally left blank.

1-8

HARDWARE AND SOFTWARE FUNDAMENTALS

1.1.4 The ICS Self-Study Microcomputer Training Course

This course is designed to provide you with the basic knowledge and

practical experience which will give you the capability to:

-Specify and write programs for performing a wide

variety of different functions,

-Enter prograills and data into the Training Computer.

-Verify that your programs operate correctly and,

when they do not, modify them until they do.

-Learn design techniques by actually connecting

I/0 devices to the Training Computer and controlling

them with your own programs.

-Explore the many hardware/software interrelationships,

learn the cost-effective use of each, and design

complete systems of your own.

In the succeeding chapters of this book you will be given, in

step-by-step fashion, a sound foundation in both software and

hardware techniques. You will progress from the simplified concepts

of this introduction to a thorough understanding of these techniques

as you "learn by doing", implementing each new concept yourself on

your own computer.

1-9

HARDWARE AND SOFTWARE FUNDAMENTALS

1.2 NUMBER SYSTEMS AND REPRESENTATIONS

1.2.1 The Representation of Numbers

Physical representation of a decimal number requires an element with

ten possible states, one for each of the decimal digits 0-9. Such a

representation is found, for example, in the cog wheels of mechanical

calculators. Elements with more than ten states are also common, for

example in clocks.

Anyone having experience in solid state devices used in electronic

circuits will know. that substantial variability of characteristics

exists for nominally identical devices. These characteristics are

also usually a function of temperature. To stabilize such devices

and to hold tolerances tight enough to distinguish unambiguously

between multiple states would involve complex circuitry and would

reduce reliability. Fortunately, the solid state devices are ideally

suited for two-state operation in switching circuits, where an

ON-state and an OFF-state can be readily distinguished. Thus, in the

long run it is cheaper, simpler, and more reliable to work in terms

of two-valued states, which are often two voltage levels, but can be

for example - positive or negative polarity of a magnetic element.

In all cases, however, the computer operates on these two states in

terms of logic TRUE and FALSE. This is equivalent to using a

two-state or binary number system in which TRUE = 1 and FALSE = 0.

1-10

BINARY NUMBER SYSTEM: A two-valued number system

using only the digits O and 1.

HARDWARE AND SOFTWARE FUNDAMENTALS

In most applications with which we will be concerned, the ON or HIGH

voltage level will be equated to TRUE or 1, and the OFF or LOW

voltage level (usually near ground potential) will be equated to

FALSE or O. This constitutes a POSITIVE LOGIC SYSTEM. Sometimes a

NEGATIVE LOGIC SYSTEM is used, for ease of design in certain

applications. In the latter system ON or HIGH is equated to FALSE or

0, and OFF or LOW is equated to TRUE or 1. Unless otherwise stated,

we will use the POSITIVE LOGIC SYSTEM, which simply means that when

considering a binary system using only the digits O and 1, the

0-level is low and the 1-level is HIGH.

To understand the basic principles of computer operation, it is

essential to know something about digital logic and number systems.

If you need a review of the former, then please see Appendix F, "A

Primer on Digital Logic." We think you'll enjoy it. Now we will

turn our attention to number systems in general and binary numbers in

particular.

1�11

HARDWARE AND SOFTWARE FUNDAMENTALS

1.2.2 The Decimal Number System

Consider the following four ways of representing the decimal number

8192:

(1) (2) (3) (4)

8000 8 X 1000 8 X 10 X 10 X 10 8 X 10
3

100 1 X 100 1 X 10 X 10 1 X 10
2

90 9 X 10 9 X 10 9 X 10
1

2 2 X 1 2 X 1 2 X 10
°

8192 8192 8192 8192

All of these representations are familiar. Colwnn (1) indicates that

the number 8192 can be represented as the sum of four different

numbers. Columns (2) - (4) go further by illustrating that 8192

can be represented as the sum of four products. Col wnn (4),

however, exemplifies the basic principle of all nwnber systems: each

product can be obtained by multiplying a digit (in decimal the

symbols 0-9) times a base (in decimal the number 10) raised to a

power (see column 4 above).

1-12

DIGIT: One of the symbols used in a number system.

BASE: The number of different symbols used in a

number system.

POWER: The number of times that a base is multiplied

by itself to form a product.

HARDWARE AND SOFTWARE FUNDAMENTALS

The decimal number system has ten digits or symbols; therefore the

decimal number system has a base of ten, and in the example each

product is obtained by multiplying a digit times the base ten raised

to a power. The power to which the base is raised can be seen to be a

natural progression from the least significant digit (rightmost) to

the most significant (leftmost). The value of a base raised to a

power is thus a function of its position in a string of digits, where

position is counted from right to left starting with zero. In the

following table we call the quantity of a base raised to its

positional power a "multiplier".

digit to provide the final product:

POSITION 3 2

MULTI- 10
3

10
2

PLIER (1000) (100)

DIGIT 8 1

PRODUCT 8000 100

This number is multiplied by a

1 0

10
1

10
°

(10) (1)

9 2

90 2

Tables such as the above can be used to express the magnitude of a

number in a system with any arbitrary base. The binary number system

will be considered next.

1-13

HARDWARE AND SOFTWARE FUNDAMENTALS

1.2.3 The Binary Number System

The choice of base for a number system may be accidental or

deliberate. The decimal system doubtless became widespread because of

the ease of counting on ten fingers. Nonetheless, the Babylonians

used a base of sixty and the Mayans, a base of twenty. The binary

number system, which is most appropriate for computers, uses a base

of two, and the digits O and 1.

Consider the following binary number:

11011

Had we lived from birth with a binary number system, we would

immediately grasp its magnitude. As we have not, it is useful to

convert it to its decimal equivalent.

Knowing that binary numbers have a base of two, we can construct a

table similar to that for decimal numbers. The table converts binary

numbers to their decimal equivalent in the following fashion:

POSITION 4 3 2 1 0

MULTI- 24 23 22 21 20

PLIER (16) (8) (4) (2) (1)

DIGIT 1 1 0 1 1

PRODUCT 16 8 0 2 1

1-14

HARDWARE AND SOFTWARE FUNDAMENTALS

Thus 11011 (binary) = (16 x 1) t (8 x 1) +. (4 x 0)-+ (2 x 1)-+

(1 x 1) = 27 (decimal). Larger tables may be constructed for

converting longer strings of binary numbers.

Looking at the table again, it can be seen that the multiplier of

each digit position is exactly twice the value of the position

preceding it. Using this property, it is easy to calculate the

products which are to be summed.

Conversion from decimal to binary could also be accomplished by using

a table, but it is easier to use a process calle d "remaindering".

Dividing an even decimal number by two will produce a quotient with a

remainder of zero; dividing an odd decimal number by two will produce

a quotient with a remainder of one. The remainders are use d to

construct the binary number, in the following example for decimal 57:

Quotient Remainder

57/2 = 28 1 po�ition 0

28/2 = 14 0 1

14/2 = 7 0 2

7/2 = 3 1 3

3/2 = 1 1

41 l 1/2 = 0 1 5

1 1 1 0 0 1

Decimal 57 is the equivalent of binary 111001. W e may check this by

writing down the products, counting from position: (1 x 1)-+ (2 x 0)

t (4 x 0)-+ (8 x 1) t (16 x 1) t (32 x 1), which sum to 57.

1-15

HARDWARE AND SOFTWARE FUNDAMENTALS

1.2.4 Binary Addition and Counting

The rules for binary addition are very simple:

0 t O = 0

0 t 1 = 1

1 t O = 1

1 t 1 = 10

In performing the final addition, we would say to ourselves "One plus

one equals zero and carry one". The rule for carries in binary is

similar to that in decimal but much simpler, as there are only two

symbols to worry about instead of ten. In both systems, symbols

cycle (are successively incremented by 1) thru a digit position until

all have been used. The next higher position is then incremented and

the cycle is repeated.

The following addition tables illustrate counting rules for binary

and decimal numbers:

1-16

HARDWARE AND SOFTWARE FUNDAMENTALS

0 + 0 = 0 0 + 0 = 0

0 + 1 = 1 0 + 1 = 1

1 + 1 = 10 1 + 1 = 2

10 + 1 = 11 2 + 1 = 3

11 + 1 = 100 3 + 1 = 4

100 .. 1 = 101 4 + 1 = 5

101 + 1 = 110 5 + 1 = 6

110 .. 1 = 111 6 + 1 = 7

111 + 1 = 1000 7 .. 1 = 8

1000 t 1 = 1001 8 + 1 = 9

1001 + 1 = 1010 9 + 1 = 10

The binary portion of this table provides a graphic illustration of

the relationship between a digit's position in a string and the

power to which the base is raised at that position. In the "zero"

position, note that that O's and 1 's cycle. In the "one" position,

two O's cycle with two 1 's. In the "two" position, four O's wi 11

cycle with four 1 's. Each cycle is twice (base two) the length of

the previous cycle. For decimal numbers each cycle will be ten

times (base ten) the length of the previous cycle.

Subtraction, multiplication, division and the representation of

negative binary numbers will be discussed in a subsequent chapter,

but keep in mind that these operations are all derivatives of the

d.'-"\vtcl..
basic operation of addition - which in turn is eFiHea from counting.

1-17

HARDWARE AND SOFTWARE FUNDAMENTALS

When using more than one number system, their representations can

often become confusing. To avoid this problem, a number may be

subscripted to indicate its base:

(three)

(eleven)

In this manual whenever a number is not apparent from context, it

will be subscripted or labelled appropriately.

A number of nomenclature conventions are important to introduce at

thfs time: bit, string, bit position, most significant bit, and

least significant bit.

1-18

BIT: An abbreviation for binary digit.

BIT STRING: A sequence of bits.

BIT POSITION: The location of a bit in a bit string.

MOST SIGNIFICANT BIT: The leftmost bit of a bit string.

LEAST SIGNIFICANT BIT: The rightmost bit of a bit string.

HARDWARE AND SOFTWARE FUNDAMENTALS

1.2.5 Hexadecimal Representation

We have seen that binary numbers are ideally suited to machine

representation, and that they are easily added. .Subtraction,

multiplication and division are .also simple opera�ions in binary.

There is in fact only one drawback to the use of binary numbers: they

are difficult to perceive and describe if there are more than a few

bits in a number. Consider, for example, the binary number:

1011000100001001

It is almost impossible to look at such a number and remember the

digit in each bit position. There needs to be a way of encoding and.

naming such numbers so that they may be more easily comprehended;

while at the same time preserving the underlying binary notion. A

conventional arrangement is to separate the binary number into four

bit groups.

A group

0000 to

symbols

numerals

table.

of four bits can represent one of 16 numbers ranging from

1111, or from Oto 15. What we need is a set of sixteen

to represent each of the different numbers. We use the ten

0-9 and the six letters A-F, as indicated in the following

These correspond to the 16 white keys on the MTS keyboard.

1-19

HARDWARE AND SOFTWARE FUNDAMENTALS

0000 0 1000 8

0001 1 1001 9

0010 2 1010 A

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D

0110 6 1110 E

0111 7 1111 F

Returning to the original sixteen bit example,

1011 0001 0000 1001

B 1 0 9,

it can be seen that this notation is much easier to read and

remember. The introduction of a sixteen-symbol convention to

represent groups of four binary digits is for the convenience of the

user only. It can be seen, however, that we have in fact introduced

a new number system with a base of 16
10

, and which ls called the

hexadecimal number system (abbreviated hex).

1-20

HEXADECIMAL NUMBER SYSTEM: A sixteen-valued number system

using the symbols O - 9, A - F.

- �-

HARDWARE AND SOFTWARE FUNDAMENTALS

While it is possible to add hex numbers and construct tables for

converting hex to decimal and decimal to hex, we will not consider

these operations in any detail. The use of hex notation will be

limited solely to the representation of four-bit groups of binary

numbers, and is used only to facilitate describing them. The use of

numbers such as 3C
16

, 82FF
16

etc. will always be understood as a

simple encoding of binary numbers.

following hexadecimal numbers to binary.

00

02

08

10

14
I I I

63

7A

9F

8200

83F8

023D

For practice, convert the

1-21

HARDWARE AND SOFTWARE FUNDAMENTALS

1.3 THE ORGANIZATION OF MEMORY

1.3.1 Memory Words

Data

the

and instructions, represented as binary numbers, are stored in

computer's memory. The fundamental units of memory are word s,

each of which has a word size.

WORD: The basic unit of storage in a computer memory.

WORD SIZE: The number of bits contained in a ,word.

bit(N-1) •••••••••• bit 0 A word with word size N.

The word size of memory varies with the size of the computer system.

Very large computers have word sizes from 32 to 64 bits.

Mini-computers typically have word sizes of 16 or 24 bits.

Micro-computers usually have a word size of 8 bits, which is the size

of the MTS memory word. One factor is common to most - the word size

is divisible by eight. This has led to the adoption of a special term

for a a string of 8 bits.

1-22

BYTE: An 8-bit word. More generally, an 8-bit string,

which can be part of a larger word.

1 0 1 1 0 1 0 1 A byte representing 181 decimal

or B5 hex.

HARDWARE AND SOFTWARE FUND AMENTALS

Each word in a memory has a location which is identified by a memory

address.

MEMORY LOCATION: The position of a word in a memory.

MEMORY ADDRESS: A number specifying the exact location

of a memory word.

A memory's size is equal to the number of words in a memory.

MEMORY SIZE: The total number of words in a memory.

An address size is the number of bits used to specify a memory

address.

ADDRESS SIZE: The total number of bits which may be

used to specify a memory address.

1-23

HARDWARE AND.SOFTWARE FUNDAMENTALS

1.3.2 Memory Module

At first glance it might appear that memory size and address size are

directly related. For example, a computer with an address size of

eight bits can address 256 words; with an address size of sixteen

bits, 65,536 words can be addressed. However, the capability of

addressing words does not imply that the memory must contain that

many words. Most

available than they

computers, in fact, have far fewer �emory words

are capable of addressing. This is possible

because memory is usually available in modules, with each module

containing a few hundred or a few thousand words. The same CPU can

thus be used in a variety of configurations, with the size of memory

used dictated by the application for which the system has been

designed.

MEMORY MODULE: A unit of memory containing a fixed number

of words.

Memory modules contain a number of words or bytes which is generally

expressed as some factor of the quantity 1024 = 210. This is such a

convenient unit for describing memory size that the number 1024 has

been given the symbol_!: A memory module containing 4096 bytes is

referred to as a 4K memory; one with 512 bytes, a .5K memory. These

concepts may be illustrated by the diagram on the following page:

1-24

Address 87FF16

Address sooo
16

Address 03FF
16

Address 0

HARDWARE AND SOFTWARE FUNDAMENTALS

:MEMORY MODULE 2 (2K)

MEMORY MODULE 1 (lK)

The diagram describes the memory structure of a system with a word

size of eight bits, an address size of sixteen bits (Why are sixteen

bits required?), and a memory size of 3K words. It is in fact the

memory structure of a minimum MTS computer system. Two important

properties of memory organization are illustrated here. 1) Within a

memory module, addresses are numbered sequentially; 2) If two or

more modules are used, the first address of the second module is

independent of the last address of the first module (although for

ease of implementation it is usually some multiple of lK). This

independence is made possible by the fact that the two modules are

"wired in"; the addresses of available words are determined by the

hardware of the system.

1-25

HARDWARE AND SOFTWARE FUNDAMENTALS

1.3.3 Memory Access

The process by means of which a request is made to access a memory

word is conceptually simple. The requestor (the CPU or, in some

instances, an I/0 device) outputs the requested address on parallel

address lines, one line for each bit of the address. This signal is

interpreted by an address decoder, which then selects the single lead

which will access the desired memory word. The contents of the word

will then be made available on the data lines.

DECODER: A device containing a switching matrix which

responds to the pattern of a set of input

signals and outputs a signal determined by that

pattern. Usually the output takes the form of

activating a particular output line.

The diagram on the following page illustrates the process:

1-26

REQUESTER DECODER

HARDWARE AND SOFTWARE FUNDAMENTALS

MEMORY

A
L

rTr
0

0
1

1
0

0

0
0 ------··---··-·---
0

0 --------·-
0

0

DDRESS
)

MEMORY
INES SELECT
(BUS) LINES

r-------
- --------

10101111

!
I

t
>

ADDRESS 8300
16

(CONTENTS=AF)

{
DATA
LINES

(BUS)

16

The memory select lines are essentially internal to the memory

itself. The address lines and data lines serve as the communication

channels between the CPU and its memories and I/0 devices, and they

have special names: address bus and data bus.

ADDRESS BUS: The set of lines carrying address information.

The number of lines in the bus will be equal

to the address size of the system.

DATA BUS: The set of lines carrying data. The number of

lines will be equ al to the word size of the

system.

1-27

HARDWARE AND SOFTWARE FUNDAMENTALS

1.3.4 Varieties of Memory

There are two types of memory in your MTS computer system: Random

Access Memory (RAM), which may be read or written, and Read Only

Memory (ROM), from which data may be read but not written into. To

read data from memory, the address bus is used to select a word whose

contents can then be read out onto the data bus. To write data into

memory, the address bus is used to select a word whose contents are

then changed to that which is being sent on the data bus. Reading

the contents of a word leaves the word unchanged.

RAM� Random Access Memory which may be both read and

written.

ROM: Read Only Memory which may be read but not written.

Read and write operations are illustrated in the following diagram:

1-28

RAM OR ROM MEMORY

-------·

ADDRESS BUS

HARDWARE AND SOFTWARE FUNDAMENTALS

Read operations put the

contents of a word onto the

data bus.

DATA BUS

t,

RAM MEMORY ONLY

ADDRESS BUS

______ ..__.....__ ___ f's._

DATA BUS

,,

Write operations put the

information on the data bus

into a word.

In Figure 1-2 the RAM and ROM of your MTS system are indicated. There

are 2048 words of RAM and 1024 words of ROM. Your ROM contains

a set of programs called the MONITOR, designed to as sist you in

learning the system. The functions of the MONITOR will be defined

step-by-step as you progress through this manual. The RAM will be

used to store the different programs which you will write yourself.

ROMs are used for programs which do not need to be changed, and are

protected against inadvertent modification. RAM s are used for

program development (these programs can then be placed in a ROM, but

special equipment is required) and for storage of transient data in

actual applications. Some of the RAM in your MTS is required for use

by the MONITOR and is not available for user programs. This will be

discussed later.

1-29

HARDWARE AND SOFTWARE FUNDAMENTALS

.!!NTEGR,4TED CD'VlPLJrER svsr�, lt\C.

FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY

PROCESSOR

HARDWARE

8080A Microprocessor
and Control Logic

OMA
Direct Memory
Access (OMA)
Channel

1-30

RAM MEMORY AUDIO CASSETTE

INTERFACE 2048 Bytes of RAM Memory for
Programs and Data. Expandable
On-Board to 4K Bytes.

Audio Cassette Interface and
Associated Software for Easy
Program Storage and Retrieval

DISPLAY
On-Board 8-Digit
LED Display

PROM MEMORY
Eraseable PROM Memory
(containing the Educational Monitor
Program) - 1024 Bytes.
Expandable On-Board to BK Bytes.

FREE AREA
Space for User's
Hardware Additions

PROGRAMMABLE PERIPHERAL INTERFACE
Programmable 1/0 Device Including Three 8-Bit Ports.

MTS Boarcl Layout
Figure 1-2

KEYBOARD
On-Board Keyboard
with 25 Keys for
Program and Data
Entry.

. 1.4 STRUCTURE OF THE CPU

HARDWARE· AND SOFTWARE FUND AMENTALS

On the first page of this chapter, the CPU was described as a set of

elements which perform the arithmetical and logical operations and

also

We

let

serve as the central controlling elements of a computer system.

will look at some of these operations in more detail, but first

us review the structure of the system including the data bus and

address bus:

DATA BUS

CPU MEMORY

ADDRESS BUS

The CPU may send or receive data along the data bus which is

bidirectional. The CPU sends memory addresses out on the address

bus, but does not receive from the address bus.

1.4.1 Functional Units

Internally, the CPU consists of three primary functional units. One

is concerned principally with addressing functions, selecting

addresses which will be sent out on the ad�ress bus. A secon� unit

is concerned with interpreting and decoding the instructions which

are stored in memory. The third is the Arithmetic and Logical Unit

(ALU), in which all arithmetic and logical functions are performed.

These units are able to communicate with each other over an internal

1-31

HARDWARE AND SOFTWARE FUNDAMENTALS

data bus, which is the fou rth fu nctional component of the CPU. The

following diagram sche matically outlines this organization:

1-32

(internal data bus)

I,_____
� ARITHMETIC AND LOGIC

UNIT

INSTRUCTION UNIT I

DATA BUS

""-J AD
D

RE
SS

ING UNIT
1------•, ,---A-DD_

RE
_S_S_

B
_
U

_S---\
1/] ,._

(

CPU ORGANIZATION

HARDWARE AND SOFTWARE FUNDAMENTALS

The internal data bus is illustrated here only to indicate that there

is a physical pathway between the various internal units of the CPU.

The term data bus will always refer to the main (external) data bus,

to avoid confusion.

Each of the internal units of the CPU has one or more registers, one

or two byte storage elements which are similar to memory locations

but which are used for temporary storage, for holding the results of

a calculation, or for other dynamic purposes. The nature and

function of each register will be described as its use is first

encountered.

REGISTER: A one or two byte storage location used by

the CPU for temporary storage or other dynamic

purposes.

1.4.2 The Execution of Instructions

A computer is a system which performs operations on data according to

a sequence of instructions called a program. A program is created by

a user (programmer) to cause the computer to fulfill a particular

task. An instruction is the smallest element of the program that

conveys a complete meaning; it is similar to (and often represented

by) a command in human language such as ADD B to A. To be stored in

the computer's memory and handled by its electronic circuits, the

1-33

HARDWARE AND SOFTWARE FUNDAMENTALS

instruction must be represented as a binary number. This

representation is called a code, and a program in binary code ready

for use by the computer is said to be in machine language.

INST RUCTION: The smallest element of a computer

language that directs the computer

to perform a specific operation.

Each execution of an instruction will perform one small step in the

calculation or process which the program is designed to accomplish.

In turn, the execution of each instruction is broken up into a number

of steps which are performed one after another.

1.4.3 Instruction Cycles

The program will be stored in memory; therefore the execution of each

instruction will have to start with the transfer of an instruction

from memory to one of the registers of the CPU. Then the instruction

will be decoded (interpreted) and the operations specified will be

carried out. The total time taken to fetch and execute an instruction

is called an instruction cycle.

varies considerably, depending

performed. Every instruction

instruction fetch.

1-34

The length of an instruction cycle

upon the operations which must be

cycle, however, begins with an

HARDWARE AND SOFTWARE FUNDAMENTALS

INSTRUCTION CYCLE: The total time taken to fetch and

execute an instruction.

The basic sequence of events during an instruction cycle is:

FETCH INSTRUCTION FROM MEMORY

DECODE INSTRUCTION

EXECUTE SPECIFIED OPERATIONS

1.4.4 The Program Counter

To fetch an instruction from memory

address from which an instruction

contained in a CPU register called

requires a memory address. The

is to be fetched is always

the Program Counter (PC). There

are two strong implications in this statement: there must be a way

to initialize the PC with the address of the first instruction in a

program, and there must be a way to modify the PC after each

instruction cycle so that it will contain the proper address for the

next instruction to be fetched.

1-35

HARDWARE AND SOFTWARE FUNDAMENTALS

PROGRAM COUNTER: A register in the CPU which contains

the address of the next instruction

to be fetched.

Use of the PC is illustrated below:

1-36

CPU

Pc l1s _____ ----o I

'------� ADDRESS BUS

MEMORY

7 0
Word Containing
Next Instruction

HARDWARE AND SOFTWARE FUNDAMENTALS

1.4.5 The Instruction Register

When a memory word has been selected by the PC, its contents will be

gated onto the data bus and placed in a CPU register called the

Instruction Register (I).

INSTRUCTION REGISTER: A register in the CPU containing

the instruction currently be�ng

executed.

CPU MEMORY

' -····--------------,,--,
Ltnternal bus) DATA BUS

I 7 0

PC 'is----------01 � ./ 1--------·,
'V"�-----

1---
A

_
D
_
D
_
RE
_

s
_
s
_
B

_
u
_
s
�,

Word Containing
Rext Instruction

After the instruction has been loaded in I it is fed to the

instruction decoder. The instruction decoder looks at a pattern of

input binary signals and outputs a pattern of signals which will

sequence and control all of the steps required to execute the

instruction.

1-37

HARDWARE AND SOFTWARE FUNDAMENTALS

I

DECODER

1.4.6 The Accumulator

t

� ' '' ' _r-control and Sequencing

LSignals

The program counter is one of the registers contained in the

addressing unit. The instruction register is in the instruction

unit. The final register which we will define at this point is

called the Accumulator (A), an eight bit register in the arithmetic

and logic unit. It is the register most actively used by programs

because it contains the results of most arithmetic and logical

instructions executed by the system.

1.4.7 The Clock

The computer operates in a sequential fashion, a step at a time.

There must be no confusion or overlapping. Signals must be available

on the appropriate lines at the right time. Many circuits are

involved, each with inherent delays. Although the delays are short,

on the order of nanoseconds, it does take time to access a particular

device, e.g. memory, and get the response to the location required.

1-38

HARDWARE AND·SOFTWARE FUNDAMENTALS

These delays ultimately limit the speed of operation of the computer.

To ensure that each step is carried out in an orderly fashion, the

process is controlled by a clock. It outputs a series of regularly

spaced pulses that time all computer events. The clock frequency

must be high enough to ensure rapid processing.

The upper frequency limit is set by the inherent device delays. If

the frequency is too high, confusion will result because required

signals will not appear in time for a particular operation. In the

MTS system, there is an 8224 clock generator that uses an 8801 clock

generator crystal specifically selected for the MTS 8080A

microprocessor. The crystal frequency is 18.432 MHz (+0.005%). This

is counted down by a factor of 9, to produce pulses at intervals of

488 nanoseconds. Thus the time for a single step in the MTS system

is 488nS. Since a complete instruction may comprise about ten steps

or clock periods, on the average, we arrive at an average time for an

INSTRUCTION to be implemented of about 5 microseconds.

We will shortly begin active use of the Microcomputer Training

System, but before doing so the system monitor provided with the MTS

must be described briefly.

1-39

HARDWARE AND SOFTWARE FUNDAMENTALS

This page intentionally left blank.

1-40

HARDWARE AND SOFTWARE FUNDAMENTALS

1.5 THE MTS MONITOR

1.5.1 Monitor Software

The Microcomputer Training System has a CPU, memory (2K of·RAM, lK of

ROM) and two I/0 devices, a keyboard and a display (see Figure 1-3).

In addition to its hardware, the MTS also has a set of programs which

are stored in read-only memory. This built-in software allows you to

load your own programs into the RAM memory, and to control and

observe the execution of your programs. This observation function i�

called "monitoring", and the built-in programs in ROM memory are

collectively called the Monitor.

MONITOR: A set of programs stored in Read Only

Memory, which provide ·for:

a) Loading programs into RAM

b) Controlling and observing the

execution of programs

c) Receiving data from the keyboard

d) Displaying data in the eight digit

display

While the monitor provides these facilities to enable you to use the

MTS immediately, in later chapters you will learn to write programs

for controlling the keyboard and display yourself.

1-41

HARDWARE AND SOFTWARE FUNDAMENTALS

� INT�TED CDVlAJrER svsr�, lf\C.

FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY

PROCESSOR

HARDWARE

8080A Microprocessor
and Control Logic

OMA

Direct Memory
kcess(DMA)
Channel

l-42

RAM MEMORY AUDIO CASSETTE

INTERFACE 2048 Bytes of RAM Memory for
Programs and Data. Expandable
On-Board to 4K Bytes.

Audio Cassette Interface and
Associated Software for Easy
Program Storage and Retrieval

DISPLAY
On-Board 8-Digit
LED Display

PROM MEMORY
Eraseable PROM Memory
(containing the Educational Monitor
Program) - 1024 Bytes.
Expandable On-Board to BK Bytes.

FREE AREA

Space for User's
Hardware Additions

PROGRAMMABLE PERIPHERAL INTERFACE
Programmable 1/0 Device Including Three 8-Bit Ports.

MTS Board Layout
Figure 1-3

KEYBOARD

On-Board Keyboard
with 25 Keys for
Program and Data
Entry.

HARDWARE AND SOFTWARE FUNDAMENTALS

1.5.2 The MTS Keyboard and Display

The MTS keyboard and display are shown in Figure 1-3. The display,

located in the upper-right corner of the MTS, consists of two sets of

four characters each. The characters are formed by sets of

light-emitting diodes (LEDs). In each character position, there are

eight LED elements arranged in the following fashion:

,-1

,-,

By activating one or more of the LEDs in a character position a

character is formed, for example 11A 11
:

We will use initially a character set consisting of 0-9, A-F, and R.

With a seven segment display, however, there are several ambiguities.

The ten decimal digits are easily created; but 11B 11 would be the same

as 118 11 , and 11b11 the same as 116 11 •

and 11R 11 the same as 11A 11 •

Also 1
1D11 would be the same as 110 11

1-43

HARDWARE AND SOFTWARE FUNDAMENTALS

These characters are, therefore, represented by:

B = D = R =

The keyboard is a five by five array. The upper row and right column

of this array are command keys, each of which requests the monitor to

perform a particular function. The remaining keys constitute the hex

characters 0-9, A-F. For the moment we will ignore the alpha

characters which appear on the 1, 2, 8 and 9 keys.

Using the keyboard and display, you will be able to:

-Inspect the contents of a memory word

-Change the contents of a memory word

-Inspect the contents of the program counter (PC)

-Change the contents of the program counter

-Inspect the contents of a register (e.g. A)

-Change the contents of a register

-Execute an instruction contained in a memory word

-Execute a program contained in memory

1-44

HARDWARE AND SOFTWARE FUNDAMENTALS

1.5.3 Using the MTS

When you use the monitor to control and observe execution of your

programs you will be able to display and alter the content of the

registers and program counter. Since the monitor is a program

running in the same computer that you are using, it uses the program

counter and registers itself. The information displayed has actually

been stored in memory by the monitor; only when you press STEP or RUN

is this information actually placed in the program counter and

registers. When we refer to the program counter or to a register in

this text we will generally be speaking of the values applicable to

your program.

When power is turned on, the monitor will set the content of your PC

to 8200, which is in RAM memory, and display this number in the left

four digits of the display panel. The content of location 8200 will

be displayed in the rightmost two digits. The monitor will then wait

for you to depress one of the keys on the keyboard. Initially, the

content of 8200 will be undefined; the contents of RAM memory are not

preserved when power is turned off, and will be random when power is

turned on. For convenience in writing, therefore, whenever a number

is undefined we shall represent it with question marks. When power

is turned on, your display will read:

Remember, the

will simply

predict!

1 s200 I ??J

display will not actually contain question marks; it

be a number which the author of this manual cannot

1-45

HARDWARE A ND SOFTWARE FUNDAMENTALS

1. 5. 4 Inspecting Memory Contents

Having turned on the MTS, take one of the blank coding sheets

provided. Note the columns labeled ADDRESS and CODE. Enter 8200 in

the first column, and its content (the two rightmost digits) in the

second column. We will now continue to examine the contents of the

first ten words of memory. To look at the content of 8201, press the

command key labeled I NEXT I
The display should now read:

Write 8201 in the

Press INE
:

TI again,

content. ontinue in

first column, and

and write down

this fashion until

1 s2011 ??I

its content in the second.

the address (8202) and its

the display reads 8209. You

should now know the contents of the first ten words of your memory,

in whatever random condition they may be.

The command key [;] (for RESTART) has the same effect as

turning power on: the user's PC will

8200 will appear i 11 the left four

content of 8200 will be displayed in

you have made an error, press

B

1-46

be set to 8200, memory address

digits of the display and

the rightmost two digits.

and start over.

the

If

HARDWARE AND SOFTWARE FUNDAMENTALS

This page intentionally left blank.

1-47

HARDWARE AND SOFTWARE FUNDAMENTALS

1.5.5 Changing Memory Contents

We wi 11 now consider changing the contents

The display will read:

of a memory word. Press

l 82001 ?? I

Now press key 1 The display will show Err • The monitor

demands a command before it will accept hexadecimal data, because

otherwise it does not know what was intended. By pressing the MEM

(for MEMORY) key, you command the monitor to accept data from the

keyboard and store

displayed. Press

read:

it at the memory location whose address is

then hex key [J ; the display wi 11

1 ·8200 I • 01 l

Notice the decimal point to the left of the memory content. This

indicates that data can be entered to memory. If it is not on, the

monitor will not accept the data.

Press hex key D the display will read:

I s200 I • 12 J

Press hex key D ; the display wi 11 read:

1 82001 .231

Each time a hex key is pressed, the right digit is shifted to the

left, displacing whatever was there, and the new digit is entered in

the rightmost position. Remember, a memory word can store onty two

hex characters (one byte). The monitor will allow you to press as

many hex keys as you desire, but only the last two will be stored.

This capability allows you to correct keying errors without the

necessity of pressing another command key. To see what all of the

1-48

HARDWARE AND SOFTWARE FUNDAMENTALS

hex characters look like on the display, continue pressing the keys

until you

and[]

Now press

have seen the entire set. Finally, press_ hex keys�

so that the display reads: L___J

I NEXT I followed by hex

1 82001 1 • 011

The

d i sp l a y w i 11 read:

keys� and�·

1 8201 l • 231

Pressing NEXT allows you to enter data in consecutive memory

addresses, provided that MEM has already been pressed. The decimal

point reminds you that MEM has been pressed.

NEXT increments by one the address displayed. After the first time

you press MEM, pressing MEM again will decrement the address by one

and display the memory content. This makes it easy to back up and

correct an error. Try incrementing and decrementing the address with

NEXT and MEM.

1-49

HARDWARE AND SOFTWARE FUNDAMENTALS

1.6 PREPARING A PROGRAM

You are now ready to prepare your first simple program. First, we

will define the instructions which will be used. Next we will write

the program down on paper. Then the program will be entered at the

keyboard and verified. Finally, the program will be executed one

instruction at a time, and the sequence of operations within the

system will be detailed for each instruction.

Instruction codes are one-byte, 8-bit binary words represented by two

hex characters. Neither the binary word nor its hex equivalent has

an intrinsic meaning, so for each instruction a short two, three or

four character mnemonic has been assigned. The mnemonic is a

shorthand representation of the meaning or functional description of

the instruction.

1-5�

HARDWARE AND SOFTWARE FUNDAMENTALS

1.6.1 Instructions to be Used

The first instruction we will use is defined as follows:

BINARY CODE:

HEX CODE:

MNE MONIC:

MEANING:

00000000

00

NOP

No Operation. This is an instruction

which does nothing at all. Its execution

has no effect on any memory location or

CPU register.

The chief purpose of NOP is to leave a ·space open in case you have to

fix something - like leaving a spare pin on the edge connector of a

printed circuit board. This instruction appears in the instruction

set of almost every computer on the market, from huge IBM

installations to microprocessors such as the one in your MTS. It is

in effect a non-instruction; when a pattern of all zeroes is

presented to the instruction decoder, no operation is specified.

Register A (the Accumulator) is the most important register in the

CPU from the programmer's point of view, and there are a number of

instructions which manipulate its contents. It is logical to

consider next an instruction which sets the contents of Register A to

zero.

1-51

HARDWARE AND SOFTWARE FUNDAMENTALS

BINARY CODE:

HEX CODE:

MNEMONIC:

MEANING:

10101111

AF

XRA A

Clear the contents of

Register A (set to zero)

The mnemonic for this instruction will appear a bit strange. This is

actually one bf a set of logical instructions. operating on the A

register. The full significance of the mnemonic will become apparent

when the other instructions are considered. The third instruction

which will be used in your first program is one which increments

(adds one) to the contents of the A register.

BINARY CODE:

HEX CODE:

MNEMONIC:

MEANING:

00111100

3C

INR A

Increment Register A (add one

to the contents of Register A)

With these three instructions, you can write a program which

initializes Register A with a value of zero and then successively

adds one to A until it contains a specified value. Although a very

simple routine, it will introduce and clarify some of the basic

concepts of instruction and program execution.

1-52

HARDWARE AND SOFTWARE FUNDAMENTALS

1.6.2 Program Specification

Writing a

beginning

programs

definition

program is a very structured exercise, and from the

you are urged to be methodical and precise about it. All

should originate in a program specification, a written

of what the program should accomplish. The specification

for your first program is:

"Write a program which begins with a "no operation" code, then sets

Register A to an initial value of zero and then, by successive

increments of one, ends with the number seven in Register A."

1.6.3 Writing (Coding) the Program

The next step is to write the program down on paper, using the same

notation which was used when you inspected the contents of the first

ten locations of your memory. An important addition to that format,

however, will be a column for comments. Programming mnemonics are so

terse that simply looking at a sequence of hex codes or mnemonics

will not convey the function, goal or intent of the program.

Comments are used to convey this information. Writing a program is

often called "coding", as it is a translation from a natural language

to computer code.

Your first program, written in the recommended format, should look

like Figure 1-4

1-53

1-54

1-w
w
I
(./)
(.9
z
0
0
(.)

�
w
1-(./)
>­
(./)
(.9
z
z

<t:
a:
l­
a:
w
1-
::>
a..
�
0
(.)
0
a:
(.)
�

(./)
�
w
1-(./)
>­(./)
a:
w
1-
::Ja..
�
0
(.)
0
w
�
a:
(.9
w
1-
z

A D D R

8 c:>L O O

cf .;2 0 1

Pc20 2

9c:JO 3,,;

RolO 4

�-20 5

)7c20 6

,,.P dt:) 7

2o20 8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

CODE

0 {)

If ;;
3 C
,1 C

3 C
3 C

c3 C
3 C
3 C

,,

Program and Exercise #1

N 0 p "fl_,,,� ,,,...V AA, ,I J ;I) jl'l .., J\ ,-,, tr", .:,.,•,-t_,)

X R h A fl�n,))�J.. "",. h, /J
1 /\) R . (-} (7,,.. ., _,, T. � . ,,'l /
I [\) R /- ;2

I /v R 1/- \�

r tJ R I- /.,f
J_ ;J IR A �

X ,v (J IA 6
T AJ I< A &�1 � '7

Fiqure 1-4

I

HARDWARE AND SOFTWARE FUNDAMENTALS

Remember, comments are used so that you will be able to look at a

program you wrote weeks or months ago and understand what it is your

program is doing. Even more important, when you are working as part

of a team, they help someone else understand what your program is

doing.

1.6.4 Loading Your Program in the MTS

Now that your program is committed to paper, it is time to load it in

the MTS memory. First, initialize the system by pressing �

which will establish the first entry point at 8200. The scenario

should be as follows:

I 8200 I ?? I

Set in write mode to enter data:

B I 8200 I .??!

Enter first instruction:

I s2ool • oo)

1-55

HARDWARE AND SOFTWARE FUNDAMENTALS

Advance to next instruction:

I NEXT I I 82011 .??!

Enter second instruction.

D D r s2011 • AF'!

Advance to next memory address.

EJ 8202! • ??i

D D 8202! • 3C!

EJ 8203! • ??l

DD 8203! • 3C!

EJ
8204! • ??i

DD
8204 ! • 3C !

EJ 8205! • ??!

D8 8205! • 3C!

1-56

HARDWARE AND SOFTWARE FUNDAMENTALS

8206! • ??l

8207! • 3C!

8208! • ??!

820AI .3a

Your program has now been entered in memory.

1.6.5 Verifying and Correcting the Stored Program

Now that you have loaded your program, it will be helpful to you to

verify it. It is easy to make a mistake at the keyboard, and the

computer is absolutely intolerant of mistakes in the sense that it

will do exactly what you tell it to do.

entries are correct, press B and then,

command, check the the contents of memory

coding sheet. If you detect an incorrect code

in a word, it can be easily corrected, e.g.

The entry at 8205 should have been 3C. To correct it,

Corrects the error.

I NEXTI

I 8205 I

8205!

I 82061

3DI

• 3C!

• 3CJ

1-57

HARDWARE AND SOFTWARE FUNDAMENTALS

Inspect the next memory byte, then continue.

When you are satisfied that the program is correct according to your

coding sheet, you are ready to execute the program.

1.6.6 Executing Your Program

To execute your program and follow the results of its operation on a

st

s

-b -step basis, three new commands must be introduced. These are

REG , l STE
:
I and l ADD

:
I . The � cCMDmand causes the

rig four 1g1 s of your 1sp ay to presen�egister name and its

contents. To use the � command, therefore, it is necessary

to follow it by pressing� key which is the name of the register

you wish to see. For the current program, we are interested only in

Register A. Using the protocol developed above:

82001 A-??!

The command REG followed by the hex character A leaves the

address at 8200, but the right four digits identify the register (A)

and its contents (undefined at .this point). All of the registers

will be represented in the right four digits according to the format:

register name/dash/register contents.

The ISTEPI command executes the instruction contained in the

location designated by the left four-digit display (the PC). After

each � command, the display wi
�

esent the address of the

hext lnWion. If the command .W 8 has been given

putting the system in the "display register mode, the contents of A

will also be displayed after each instruction has been executed.

1-58

HARDWARE AND SO FTWARE FUNDAMENTALS

Follow this scenario on your MTS. Use your coding sheet as a guide:

8200! 00!

Set PC to 8200 and display contents (NOP). Now display Register A.

8200! I A-??!

Before going on, be sure that the toggle switch at the left side of

the MTS is set to STEP. Now press the STEP key.

tTEPI 8201 J A-??)

The NOP instruction has been executed and the PC has been

incremented. Nothing has been done, so the content of A is still

undefined.

8201 ! AF!

ADDR displays the current program counter and the instruction at that

location. 8201 contains the instruction XRA A, clear Register A.

I STEP I I 8202 J I A-00!

Register A has now been cleared (it may have been empty before).

I STEP I 82031 A-01!

Register A has been incremented. Look at your coding sheet. The

instruction at 8203 is INR A.

Press I STEPI to execute it:

I smJ 8204! A-02l

1-59

HARDWARE AND SOFTWARE FUNDAMENTALS

Continue stepping through your program in this fashion until the PC

is set at 8209. At this point, Register A should contain the number

7. If it does not, you have made a mistake either in entering your

program or in pressing the command keys to execute it. If you have

finished with the wrong value, inspect the memory to make sure it

agrees with your coding sheet, then go through the above procedure

again.

Anytime

we can

contents

contents

we wish to see the memory contents at a particular address,

use l:D::l · Following this by 1::::1 causes the memory

at tha ticular address to be tr as an instruction,

being updated, if necessary, by the execution of the

instruction carried out by the STEP command. If EJ had not been

operated, we would display the next instruction.

1-60

HARDWARE AND SOFTWARE FUNDAMENTALS

1.6.7 Instruction Execution: A Detailed Examination

We will now look at the three different instructions used in your

program, describing what happens to the PC, and Registers A and I at

each stage of instruction execution. Initialize the system:

B 8200! dbl

When the command STEP is issued, the following operations will occur:

1) The processor sends the contents of (PC) to memory, selecting

address 8200.

A I ??! 00 8200

I I ??!
AF 8201

3C 8202

3C 8203
PC 8200

3C 8204

The contents of A and I are not yet defined.

1-61

HARDWARE AND SOFTWARE FUNDAMENTALS

2) Next, the memory sends the contents of address 8200 to the I

register and PC is incremented by 1.

----··· 00 8200

I AF 8201

3C 8202

* 3C 8203
PC �--((PC)--(PC)+l) 3C 8�04

The contents of A are still· undefined. The instruction is executed

and as it is a NOP, the instruction cycle is completed. The next

instruction will clear Register A:

lsml
1) The processor sends the contents of (PC) to the memory,

selecting address 8201:

A I?? I 00 8200

I � 8201

8202

8203
PC j 8201 f 3C 8304

(L-) in an expression should be read as
* The backward arrow �

b " Thus this expression reads:
"is replaced y .

"The contents of

PC are replaced by the contents of PC added to one".

1-62

HARDWARE AND SOFTWARE FUNDAM,ENTALS

2) The memory sends the contents of address 8201 to· Register I,

and the PC is incremented.

A

I

PC l 8202 I--((PC)- (PC)+�

00

AF

3C

3C

3C

8200

8201

8202

8203

8204

3) The instruction is executed and Register A is set to zero.

A �- ((A)�O) 00 8200

I !AF!
AF 8201

3C 8202

3C 8203

PC
� 3C 8204

The next instruction will increment Register A:

1-63

HARDWARE AND SOFTWARE FUNDAMENTALS

1) The processor sends the contents of PC to the memory,

selecting address 8202.

A

I

PC 8202t-----

00
AF

3C

3C

3C

8200
8201

8202

8203

8204

2) The memory sends the contents of address 8202 to Register I,

and the PC is incremented.

A � 00 8200

I
AF 8201

3C 8202

3C 8203
PC I 02031 • ((PC)�(PC) +l) 3C 8204

3) The instruction is executed and Register A is incremented

by 1.

A �- C (A)�(A)+l) 00 8200

I �
AF 8201
3C 8202

3C 8203
PC I s203I 3C 8204

1-64

1. 7 SUMMARY

HARDWARE AND SOFTWARE FUNDAMENTALS

This chapter has covered some very important basic concepts, both

of hardware organization and function and software preparation,

loading and executing. If you feel uncomfortable with any of the

materials presented,

should now understand

go back over the

the functions of

relevant sections. You

the following command

keys. Define each of the m mentally and then look at the

fol lowing page.

ADDR

NEXT

MEM

REG

STEP

RST

1-65

HARDWARE AND SOFTWARE FUNDAMENTALS

ADDR

NEXT

MEM

REG

STEP

RST

1-66

Displays the content of your program
counter, and the hex code of the
instruction addressed. It permits you
to enter another address, by following
ADDR with four (or more) hex keys.

Advances to the next address for display
of the memory content. NEXT does not
affect your program counter.

Enables entry of data to the memory location
displayed. The memory content display
indicates that data entry is enabled. NEXT
will advance to the next location, and data
entry is still enabled. Pressing MEM
repeatedly decrements the memory address.
MEM does not affect your program counter.

Followed by the name of a register (such as A)
displays the content of that register.

Causes execution of the instruction addressed
by your program counter. If STEP follows the
entry of a new address by (ADDRxxxx) then that
address is entered into your program counter,
and the instruction located there is executed.

Returns the computer to a standard condition.
Your program counter is set to 8200.

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 2

TWO AND THREE BYTE INSTRUCTIONS

2.1 PROGRAM EXERCISE #2

In your first program, all of the instructions used (NOP, XRA A, INR

A) were one byte instructions , fetched from memory and executed with

no further memory accesses required. Many instructions comprise two

or three bytes and require more than one memory access. In your next

program two such instructions will be considered. Additional memory

accesses are required whenever an instruction operates on data which

is stored in memory, or when the results of an operation must be

stored in memory.

2.1.1 The ADI Instruction

A number of instructions have the effect of adding a number to the

contents of the Accumulator (A). One of these is "Add Immed iate",

which translates to: "Add to the Accumulator the contents of byte

two of the instruction". Thus if the instruction is contained in

address m, the contents of m + 1 would be added to A.

. BINARY CODE:

HEX CODE:

SECOND BYTE:

MNEMONIC:

MEANING:

11000110

C6

Data

ADI

Add to the Accumulator the

contents of the next memory

address.

2-1

TWO AND THREE BYTE INSTRUCTIONS

The ADI instruction requires two memory fetches, the first to get the

instruction and the second to get the contents of the following word.

Each memory access which is requ ired during an instruction cycle is

called a machine cycle. The instruction INR A takes one machine

cycle; the instruction ADI takes two machine cycles.

_MACHINE CYCLE: The operation of accessing an address i

either for reading from or writing to

that address.

2.1.2 The STA Instruction

To transfer data from the Accumulator to a memory location takes even

more machine cycles (before reading further, close the manua l and try

to determine by yourself how many cycles are required). The

instruction to store the Accumulator is a three byte instruction.

Bytes two and three conta in the address in which the data is to be

stored:

BINARY CODE:

HEX CODE:

BYTE TWO:

BYTE THREE:

MNEMONIC:

MEANING:

2-2

00110010

32

Low-order part of storage address

High-order part of storage address

STA

Store the contents of the Accumulator

(A) at the address which is conta ined

in the following two memory locations.

TWO AND THREE BYTE INSTRUCTIONS

ADI is a two-byte instruction, STA is a three byte instruction.

Their execution is more complex than the execution of the single byte

instructions used in the previous program, so we will look at them in

detail before using them.

2.1.3 Instruction Execution Details

When the ADI code is fetched from memory and decoded, the logic

determines that a second memory read operation is required, and that

the data read is to be added into Register A. The operation looks

like this:

A

p C

A

p C

1) The processor sends (PC) to memory,

selecting address 8200 (for this example)

C6

� 07

??

8200

8

8

8

2) The memory sends the contents of address 8200

to the I register and (PC) is incremented by

C6 8

�
07 8

?? 8

C6

__ a_2_0_1 _ ___.! • C (PC) �· (PC) +l)

2 0 0

2 0 1

2 0 2

1.

2 0 0

2 0 1

2 0 2

2-3

TWO AND THREE BYTE INSTRUCTIONS

2-4

A

3) The instruction is decoded, and the processor again

sends (PC) to memory, selecting address 8201.

C6 8 2 0

� 07 8 2 0

?? 8 2 0

0

1

p C 82 01

p C

4) The memory sends the contents of address 8201, which

is added to the contents of Register A, and (PC)

is incremented by 1.

C6 8 2 0

� (A)+(8201) 0 7 8 2 0

(A) •
?? 8 2 0

[ill

8202 �(PC)� (PC)+l)

5) The instruction is completed. The memory has been

�ccessed twice (two machine cycles), and (PC) has

been incremented twice.

0

2

TWO AND THREE BYTE INSTRUCTIONS·

When the STA instruction is decoded, the logic "recognizes" that an

address must be obtained from memo�y before the instruction can be

completed, a.s the operation commanded is to store the contents of A

in that address. The contents of the two memory words following the

instruction STA must be read and stored temporarily in the processor

so that they may be used. This is accomplished by the use of two

registers which are called W and Z. The high-order bits of the

address (most significant eight bits) are stored in W and the low

order bits (least significant eight bits) are stored in z. The

sixteen bit quantity W, Z is then the address in which the contents

of A will be stored. Like Register I, Registers W and Z are for

internal use by the processor only and no instruction explicitly

refers to them.

W, Z REGISTERS: A temporary regi�ter pair in the address

logic used during internal execution

of instructions.

TWO AND THREE BYTE INSTRUCTIONS

The details of execution are:

A

w z

p C

A

w z

p C

1) The processor sends (PC) to memory,

selecting address 8200 (for this example):

32

00

83

??

?? ??

8200

2) The memory sends the contents of 8200 to

Register I and (PC) is incremented by 1.

.. 32

0 00

83

32 ??

?? ?? �

8201 • C (PC) - (PC)+l)

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

3) The instruction is decoded, and the processor

sends (PC) to memory, selecting address 8201.

A

w z

p C

2-6

0

GJ

?? ??

8201

32 8

00 8

83 8

?? 8

2 0 0

2 0 1

2 0 2

2 0 3

w z

p C

w z

p C

TWO AND THREE BYTE INSTRUCTIONS

4) The memory sends the contents of 8201 to

0

0

?? 00

8202

Register Z and (PC) is incremented by 1. Now Z

contains the low order part of the address in which

the contents of A will be stored. The desig n of

the processor requires that the low order part of

the add ress be stored immediately after the

inst ruction code, followed by the high order portion.

32 8 2 0 0

o"o 8 2 0 1

83 8 2 0 2

?? 8 2 0 3

c (PC) - (PC)+l)

5) Again the p rocessor sends (PC) to memory,

selecting address 8202.

32 8 2 0 0

� 00 8 2 0

83 8 2 0 2

Gu ?? 8 2 0 3

??
. . 00

8202

2-7

TWO AND THREE BYTE INSTRUCTIONS

A

w z

p C

A

w z

p C

2-8

6) The memory sends the contents of 8202 to

Register W, and (PC) is incremente d by 1. The

complete address in which the contents of A

are to be stored is now available.

32

� 00

83

??

00

8203 • ((PC) - (PC) +l)

7) The contents of W, Z are sent to memory,

selecting address 8300:

32

� 00

83

[ii] ??

83 00

� 8203

8 2

8 2

8 2

8 2

8 2

8 ?-

8 2

8 2

8 3

0 0

0 1

0 2

0 3

0 0

0

0 2

0 3

0 0

TWO AND THREE BYTE INSTRUCTIONS

A

w z

P C

8) The processor sends the contents of

Register A to address 8300 and the

instruction is completed.

�---

�
�

32
00
83
??

-

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

8 3 0 0

The execution of STA has required four machine cycles: an

instruction fetch, two memory reads, and the one memory write. Do

not be confused by the fact that the high and low order parts of the

address in this three-byte instruction (and all similar instructions)

are reversed. The arrangement was adopted by the micro processor's

designers to simplify parts of the internal circuitry.

Notice that throughout the execution of STA, the content of Register

A did not change. It was duplicated in the memory location at

address 8300 and remains in Register A as well.

2-9

TWO AND THREE BYTE INSTRUCTIONS

2.1.4 Writing the Program

You are now ready to observe the behavior .of these instructions in a

program. As before, we start with a program specification:

"Write a program which sets the Accumulator to an initial value

of seven and then, by successive increments of one, doubles the

initial value. Store the result in location 8300."

Before looking closely at the model coding sheet which follows, try

to write the program by yourself.

ADDRESS HEX MNEMONI C COMMENTS

8200 00 NOP Dummy operation

8201 AF XRA A Clear A

8202 C6 ADI Add immediate to A the number

8203 07 -- contained in this location

8204 3C INR A Increment Register A

8205 3C INR A

8206 3C INR A

8207 3C INR A -- continue to increment

8208 3C INR A

8209 3C INR A

820A 3C INR A Until (A) = 1410
= E 16

820B 32 STA Store result in

820C 00 location

8200 83 8300

820E 00 NOP Dummy operation.

2-10

TWO AND THREE BYTE .INSTRUCTIONS

Note that we have included two NOP instructions that were not in the

program specification. We will not normally write these into the

specification but will assume that the programmer will insert them

wherever he thinks it necessary, i.e., when he thinks space should be

left for future program amendment.

The instruction in location 8201 clears A. This is required because

ADI adds the contents of the next memory byte to A. STA operates to

replace the contents of 8300 with the new value. Adding and

replacing are both common operations, and the beginning programmer

must be careful to distinguish them.

2.1.5 Loading and Executing the Program

Review the directions for loading a program, then enter your new

program in the MTS memory. Do not forget to verify it! Before

executing your program, we need to look at memory address 8300. In

order to d
LJ

the command key IADDR I must be introduced,

Pressing
L�

wi 11 display the address contained in the PC and

the contents of that address, Since � always sets you,

program counter to 8200, you should see:

If

those

I ADDRI

I ADDR 1

keys will

8200! PPI

is follo�ed by four hex keys, the address specified by

be displayed with its contents:

BEJEJEJEJ 1 8300 I ??i

2-11

TWO AND THREE BYTE INSTRUCTIONS

If this sequence is now followed by I MEM I the address is now a

memory address and data may be entered. As this is the address which

your program will use to store a result, it would be instructive to

set some arbitrary initial value, so:

83001 771

Memory location 8300 now contains 77, and we are ready to execute

your program. Although we have addressed 8300, the program counter

still contains 8200. You can test this by:

I ADDR]

Only the

program,

I STEP I and

can change the

B commands,

program counter.

the current value of the program counter.

The contents of A are undefined here.

2-12

1 s2001 I ool

or execution of your

IADDR I always displays

I 8200 J l A-??)

TWO AND THREE BYTE INSTRUCTIONS

The instruction in 8200 was NOP; only (PC) changes.

I STEPI

I 8201 I I A-?? I

!8202) !A-00)

Looking at the coding sheet, we see that XRA A has cleared Register

A.

I STEP I !8204) IA-07)

The (PC) has been stepped by two, and A contains the results of the

ADI instruction.

I 8205 I I A-08 !

The first of the INR A instructions adds 1 to the contents of A.

I STEPI

I STEPI

! 8206) I A-09 I

I 82011 I A-OA)

1 82ost I A-oal

2-13

'.NVO ·AND THREE BYTE INSTRUCTIONS

I sml 8209) I A-OC!

! 820A I I A-OD)

820BI i A-OEI

Now A contains OE
16 = 14

10; the next instruction will store this

result in 8300:

!820El IA-OE!

The (PC) has been ste pped by th ree and the program has been executed.

Now take a look at location 8300:

BEJEJEJEJ 83001 OE!

If at any point your program execution did not produce the results

des cribed above, correct the bad instruction in your memory (If

there's an er ror, there's a bad instruction!) and start over.

2-14

2.2 DATA STORAGE CONVENTIONS

TWO AND THREE BYTE INSTRUCTIONS

Y ou may have wondered why 8300 was selected as the storage location

for this result. While it is somewhat arbitrary, the basic

requirement is to keep programs and data separated. It would have

been quite possible, for example, to store the results in location

820F. The program would execute exactly as before, except that the

results would be placed in a different memory word. Suppose,

however, that you wished to modify the program, to add instructions

to achieve some different purpose? The program could not utilize

additional consecutive addresses without changing the initial storage

address. In the example, only one such address was used, but in a

�omplex program with many storage addresses, the problem becomes

acute. Data addresses are therefore chosen to leave lots of space

between program and data areas.

N.B. As the monitor is stored in read�only memory, it requires part

of the RAM for temporary storage of data. Sixty four bytes of RAM,

addresses 83CO through 83FF, are allocated to the monitor; care

should be taken not to modify these memory locations.

2-15

TWO AND THREE BYTE INSTRUCTIONS

2.3 PROGRAM EXERCISE #3

2.3.1 The LDA Instructions

An instruction similar to STA has the effect of transferring data

from memory to the Accumulator:

BINARY CODE:

HEX CODE:

BYTE TWO:

BYTE THREE:

MNEMONIC:

MEANING:

00111010

3A

Low-order part of address.

High-order part of address.

LDA

Load the Accumulator with the

contents of the word whose

address is contained in the

following two memory locations.

The detailed instruction cycle for LDA is shown in Figures 2-1, 2-2,

and 2-3.

data bus.

In these figures note the mention of the address bus and

Review Section 1.3.3 and be sure you understand these

buses and their functions.

2-16

TWO AND THREE BYTE INSTRUCTIONS

PROCESSOR MEMORY

w

z

AF
AF

ADDRESS��B�U�S:__�-a�I 3A
/1----l

0
0

p C 8204 I

Processor sends PC

Memory selects 8204 and
returns its contents on
data bus

A

w

z

p C__a-_2 o_s__. G)

CONTENTS

� Processor loads data
Register I and increments PC

A

w

z

p C

3A

8205

©

I

Processor interprets 3A as a three
byte instruction

LDA Instruction Cycle

Figure 2-1

00
83

14

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

8 2 0 4

8 2 0 5

8 2 0 6

a 2 o 1

8 2 0 8

8 2 0 9

8 2 0 A

8 2 0 B

8 2 0 C

8 2 0 D

8 2 F F

8 3 0 0

8 3 0 1

2-17

TWO AND THREE BYTE INSTRUCTIONS

PROCESSOR MEMORY

®

®

0)

A

w

z

p C

3A

8205

Processor sends PC

Memory selects 8205 and
returns its contents
on data bus

A

bfil
3A

w

z 00

p C 8206

Processor loads data to

Register Z and increments

Processor sends PC

A

w

z

p C

3A

83

00

8207

PC

Memory selects 8206 and returns
its contents on data bus

Processor loads data to Register W
and increments PC

LDA Instruction Cycle (continued)

Figure 2-2
2-18

AF

3A

00

83

FF

14

FF

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

8 2 0 4

8 2 0 5

8 2 0 6

8 2 0 7

8 2 0 8

8 2 0 9

8 2 0 A

8 2 0 B

8 2 0 C

8 2 0 D

8 2 F F

8 3 0 0

8 3 · 0 1

@

TWO AND THREE BYTE INSTRUCTIONS

PROCESSOR MEMORY

A

-�

3A

w 83

}
@

z 00

p C 8207

Processor sends contents
of W and z on address bus

A

w

z

p C

3A

83

00

8207

Memory selects 8300 and returns
contents on data bus

Processor loads data from data
bus into Register A

LOA Instruction Cycle (continued)

Figure 2-3

AF

3A

00

83

8 2 0 0

,8 2 0 1

8 2 0 2

8 2 0 3

8 2 0 4

8 2 0 5

8 2 0 6

8 2 0 7

8 2 0 8

8 2 0 9

8 2 0 A

8 2 0 B

8 2 0 C

8 2 0 D

8 2 F F

8 3 0 0

8 3 0 1

2-19

TWO AND THREE BYTE INSTRUCTIONS

2.3.2 The JMP Instruction

To this point we have used instructions which perform an operation

and advance the program counter so that it points to the address of

the next sequential instruction. A very important class of

instructions allows a program to branch or "jump" to an instruction

at an arbitrary add ress. One of these instructions is JMP:

BINARY CODE:

HEX CODE:

BYTE TWO:

BYTE THREE:

MNEMONIC:

MEANING:

11000011

C3

Low-order part of address.

High-order part of add ress.

JMP

Load the PC with address contained

in the following two memory

locations.

The Execution cycle of the JMP instruction is shown in Figures 2-4

and 2-5.

2-20

TWO AND THREE BYTE INSTRUCTIONS

PROCESSOR MEMORY

8 2 0 0

A

�

8 2 0 1

8 2 0 2

I 32 AF 8 2 0 3

w 83 3A 8 2 0 4

z 00 00 8 2 0 5

p C 820B 83 8 2 0 6

3C 8 2 0

Processor sends PC 32 8 2 0 8

0 Memory selects 820B 00 8 2 0 9

and returns its content
83 8 2 0 A

8 2 0 8

8 2 0 C

8 2 0
A

C3
®

w 83
z 00

p C 820C

0 Processor loads data to Register I

and increments PC

Processor interprets C3 as three
byte instruction

FF 8 2 F F

Processor sends PC
15 8 3 0 0

�

8 3 0
A

C3

G) w 83

z 03
p C 820D

© Memory selects 820C and returns its

(j)
content on data bus

Processor loads data to Register z and
increments PC

JMP Instruction Cycle

2-21

Figure 2-4

TWO AND THREE BYTE INSTRUCTIONS

0
0

A

w

z

p C

PROCESSOR

C3

83

03

820D

Processor sends PC

Memory selects 820D

and returns content

A

w

z

p C 8203

I

Processor loads data into

®

Register w. Processor transfers

data from
Counter

W and z into Program

JMP Instruction Cycle (continued)

Figure 2-5

2-22

MEMORY

AF

3A

00

83

3C

32

00

83

C3

03

FF

15

FF

8 2 0 0

,a 2 0 1

8 2 0 2

8 2 0 3

8 2 0 4

8 2 0 5

8 2 0 6

8 2 0 7

8 2 0 8

8 2 0 9

8 2 0 A

8 2 0 B

8 2 0 C

8 2 0 D

8 2 F F

8 3 0 0

8 3 0 1

TWO AND THREE BYTE INSTRUCTIONS

2.3.3 Writing the Program

Program specification:

"Write a program which will clear the Accumulator, load it with

the contents of 8300, increment this number by one, and store the

result in 8300. Loop through this sequence repeatedly."

The program below starts with three consecutive NOPs, a convention

which would permit entering a three-byte instruction here, should we

wish to change the program later:

ADDR HEX MNEMONIC COMMENTS

8200 00 NOP Dummy

01 00 NOP

02 00 NOP

03 AF XRA A Clear A

04 3A LOA 8300 Load A from 8300

05 00

06 83

07 3C INR A Increment A

08 32 STA 8300 Store A in 8300

09 00

OA 83

OB C3 JMP 8203 Jump back to Start

oc 03

OD 82

8300 14 Arbitrary Data

2-23

TWO AND THREE BYTE INSTRUCTIONS

Load and verify the program, press RST to set (PC) to 8200, then

press STEP:

I STEP! 82011 ooJ.

STEP executes the first NOP instruction and displays the next one:

I STEPI 1 8202) 00)

I 82031 AF!

Two m ore STEP's get us to the Clear A instruction, AF, at 8203.

Execute this instruction.

lsTEPI I 8204 !

We have executed Clear A. The next instruction is LOA. (3A at

location 8204)

I STEP! I 82011

3Al

3Cl

We cannot see the internal steps. The three byte instruction LOA

occupies addresses 8204, 8205 and 8206. It has been executed and now

the INR A instruction at 8207 is displayed.

2-24

TWO AND THREE BYTE INSTRUCTIONS

Execute the INR A instruction.

321

This is STA, another three byte instruction.

1820B I C3l

We have come to the JMP instruction.

I 82031 AF!

And now we are back to the start. Examine Register A.

EJEJ ! 8203! ! A-15)

The program loaded 14 from 8300, incremented it and stored the new

value. Register A still holds that value. Execute the Clear A

instruction at 8203.

Now Register A has been cleared.

Now the LDA has reloaded from 8300.

I s204 I I A-oo I

!8207l IA-151

2-25

TWO AND THREE BYTE INSTRUCTIONS

I ADDRI I 82011 3C]

ADDR displays the in struction

I 8208! 1 A-161

Step executes it and again displays the reg ister we last examined.

Let's examine the memory location.

BEJEJEJEJ I 83001 15!

The new value has not been stored yet. DO NOT PRESS STEP NOW - The

computer would execute from location 8300. Use ADDR to recall the

current program counter.

I ADDRI j 8208l 32l

Then STEP.

I STEPI
820BI I A-lGI

And look again at 8300:

IADDRI EJ [] EJ EJ I s3oo I 16)

2-26

TWO AND THREE BYTE INSTRUCTIONS

Now the new value has been stored.

83001 .16!

MEM tells the monitor you did not intend to change the program

counter, but only the memory address. Therefore you can now use

STEP. The PC contained 8208, addressing the Jump instruction.

ISTEPI 18203 ! AF!

So we jumped. Using the MEM key disposed of.Register A display. The

memory address we last requested is still there, so pressing MEM will

fetch it back again.

EJ 18300 I .16!

We have introduced four new instructions and looked at the details of

their execution cycles. The instructions are summarized in Section

2.4, and the command key functions are reviewed in Section 2.5. In

Chapter 3 we will begin to develop some fundamental concepts of

programming.

2-27

TWO AND THREE BYTE INSTRUCTIONS

2.4 SUMMARY OF INSTR UCTIONS

3C INR A Increment Register A

One byte

one machine cycle

AF XRA A Clear Register A

One byte

One machine cycle

C6 ADI Add immediate

xx data Two bytes

Two machine cycles

32 STA Store Register A

xx low address Three bytes

xx high address Four machine cycles

3A LDA Load Register A

xx low address Three bytes

xx high address Four machine cycles

C3 JMP Jump

xx low address Three bytes

xx high address Three machine cycles

2-28

TWO AND THREE BYTE INSTRUCTIONS

2.5 REVIEW OF COMMAND KEYS

ADDR

STEP

REG

MEM

Display Program Counter and Instruction.

This instruction will be executed when you

press STEP. Permits entry of another memory

address to be examined or executed.

Executes one instruction. If STEP

immediately follows entry of an address,

that address is entered into the program

counter.

Must be followed by a register name

(e.g. A). Displays the content of that

register, and allows a new value to be

entered from the keyboard.

Enables entry of data to a memory location.

Lights a decimal point to indicate that data

entry is enabled.

If MEM directly follows ADDR, the contents

of the program counter become the

addressed memory location.

2-29

TWO AND THREE BYTE INSTRUCTIONS

NEXT

2-30

If MEM follows entry of an address that

beco mes the addressed memory location.

If MEM follows NEXT and data entry was no t

previously enabled, the displayed address

b�co mes enabled for data entry.

If data entry was already enabled, MEM

decrements the address.

If MEM follows REG or STEP it recalls the

previously displayed memory address.

If a memory address and its content are

displayed, NEXT increments the address and

stores it as the address to be recovered

by MEM. NEXT does not enable or disable

data entry. NEXT has other functions in

monitor display modes.

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 3

PROGRAM LOOPS

3. 1 PROGRAM LOOPS AND FLOW CHARTS

The program we used in Chapter 2 was a loop:

XRA A

LDA 8300

INR A

STA 8300

JMP 8203

Short loops of this kind are very common in computer programs, but

they always include some means of exit from the loop. Otherwise the

program would simply recycle through the loop forever, doing nothing

useful.

3.1.1 The Monitor Run Command

To this point you have used

programs. Each time ISTEPI

by your PC is executed, after

the I STEPI command to execute your

is pressed, the instruction pointed to

which the monitor is re-entered so that

it may activate the display and wait for your next command.

When the [;;]
command is issued , the monitor is also re-entered

after your instruction is executed. However, instead of waiting for

your command, it immediately allows your next instruction to be

executed. To demonstrate this, make sure that your program loop is

still in memory.

If you press to execute this loop, the display wi 11

disappear and nothing more will happen. Internally, the count at

3-1

PROGRAM LOOPS

location 8300 is being incremented again and again, but you have no

way of knowing what is happening. The keyboard is dead. Only the

RESET key (or the power cord) can interfere. There must be some

means of leaving such a closed loop.

In a sense, all computer programs are loops: they must somehow return

and repeat the same instructions, but operating on different data,

producing different outputs, and sometimes executing different

sections of the program depending on the data.

This chapter presents the conditional jump, an instruction that

alters the program flow as a function of the data. This is the most

common way of exiting from a short loop. The flow chart is

introduced, which describes the problem flow and is the principal

design tool for programming. Finally, another method of entering the

monitor for input and output will be provided.

3.1.2 The Conditional Jump

When certain instructions generate a zero result, a special "Flag"

flip flop is set. This condition is displayed by the bottom LED

labeled "Z" at the left of the numeric display. You will have seen

this

(if

is

turn on each time XRA A was executed in the previous exercises

not, try it now). When INR A causes a non-zero result, this LED

turned off. In tne program loop above, Register A is repeatedly

incremented. Once every 256 loops the content of A goes from FF to

00, setting the Zero flag. During the other 255 loops, the Zero flag

is not set. The condition of this flag can be sensed and acted upon

by the instruction "Jump if Not Zero" .

3·-2

BINARY CODE:

HEX CODE:

BYTE TWO:

BYTE THREE:

MNEMONIC:

MEANING:

We will now modify the

PROGRAM.LOOPS

11000010

C2

Low-order part of address.

High-order part of address.

JNZ

Jump to the address contained

in the following two words if

the result of the last counting,

arithmetic or logical operation

was not zero.

program loop above by replacing the jump

instruction with the conditional jump, as follows:

8203 AF XRA A

8204 3A LDA 8300

8205 00

8206 83

8207 3C INR A

8208 32 STA 8300

8209 00

820A 83

820B C2 JNZ 8203

820C 03

820D 82

PROGRAM LOOPS

Change the jump instruction by pressing:

820B) C3

820BI c2

Since the jump address for the JNZ instruction is the same as for the

old JMP, it need not be reentered. To avoid going through the loop

many times, set a high value, say FC, into address 8300. Then step

through the program:

83001 ??)

t a3oo I FCI

Now go back to the beginning and step.

E]EJEJEJEJ I 82001 00)

I 82011 001

Request display of Register A,

EJEJ I 82011 I A-??I

3-4

PROGRAM LOOPS

and step through the program, watching Register A.

I 8202 I I A-?? I

I 8203) I A-??I

I s204J I A-001

THE XRA A instruction at 8203 has cleared A. The Zero flag should

now be set.

I STEP] I 8207 l ! A-FCJ

The LDA instruction at 8204 has loaded A with the data from 8300.

The Zero flag does not change.

!STEP l
INR A done.

cleared.

I STEP]

(STA done)

I STEPI

(JNZ done)

! 8208 I !A-FD I

The result was non-zero, so now the Zero flag is

820Bl I A-FDI

I 8203 i I A-FD!

3-5

PROGRAM LOOPS

Continue stepping until you see:

I STEP/ ! 8207) ! A-FFj

(LDA done)

I STEP/ ! 8208) I A-00]

INR A done. Register A has been incremented from FF to 00. The Zero

flag is now set, indicating that when you reach the JNZ it will not

be executed.

I STEP/ I 820Bl ! A-00!

(STA done)

1 82oEI I A-ooj

Since the INR A instruction at 8207 has incremented the value to 00,

the JNZ instruction at 820B did not result in a jump. The three

machine cycles were still performed, loading I, Z and W with the

three bytes of the instruction and incrementing the program counter

three times. At the final step, however, the logic unit tests for

zero and sees that the condition for jumping is not met -- the result

was zero and so does not transfer Wand Z into the program

counter. Execution continues from the previously incremented

contents of the program counter to the next sequential instruction.

3-6

PROGRAM LOOPS

3.1.3 Flow Charts

A flow chart shows this operation in the following fashion:

Clear A

Load A from 8300

Increment.A

Store A at 8300

NO

YES

The diamond shape represents a program branch conditioned by data.

The branch to be followed depends on the results of the previous

operations.

Fl ow charts represent the design of computer· programs; they may be

considered the equivalent of schematics in electronic design.

Writing the final program is akin to the circuit board layout - the

3-7

PROGRAM LOOPS

function is fully defined but there is still some degree of freedom

for the designer. From here on, each exercise will either include a

flow chart or ask you to prepare one.

FLOW CHART: A symbolic representation of the logical

steps of a program, detailing control and

sequencing of the flow of data, procedures

to be followed, computations to be

performed, and input/output operations.

The flow chart above shows an incomplete program. If you continue to

step after passing the JNZ instruction, you will execute an

unintended instruction at location 820E. A closed loop such as we

started with has no value since it accomplishes nothing but merely

repeats itself. An open loop is intolerable because it will have

unintended results.

The purpose

inputs. We

of

have

the computer is

been obtaining

to provide outputs depending on

outputs by looking at Register A

contents after each step. You provided one input by loading data to

address 8300. You could also change the data in the A register by a

monitor command, but this is only effective at certain points in the

program, since Clear A and Load A will destroy anything you enter.

What we need is a means of entering data only at a certain position

in the program.

3-8

3.2 PROGRAMMED MONITOR ENTRY

PROGRAM LOOPS

It is possible to activate the monitor from your program, instead of

from the keyboard. The command is:

When this

available

BINARY CODE:

HEX CODE:

MNEMONIC:

MEANING:

command is executed, all

to you. This allows

11100111

E7

RST4

Restart the monitor at entry

point four.

of the monitor functions become

you to use the RUN command, but

permits your program to enter the monitor where you wish it to do so.

Now you can modify your program to provide additional inputs.

Consider the revised flow chart in Figure 3-1.

3-9

PROGRAM LOOPS

3-10

1 •

Clear A

1'f

Load A from 8300

-

.,

Increment A

1'f

Store A at 8300

NO
ZERO?

YES

Enter Monitor

, '

Put New Value in A

Conditional Jumps

Figure 3-1

PROGRAM LOOPS

To implement the program, make the following changes to your code:

820E

820F

8210

8211

E7

C3

07

82

RST4

JMP

Enter the monitor

Jump to the "INR A"

instruction.

Once again load a large value at 8300, then set the address to 8200

and step through the program.

When the address display shows:

(or)

have entered the monitor.

Now try RUN

1 0020) F31

I 00201 I A-??!

Step again and your jump instruction

Each time you press RUN the display

you

will

will

appear.

go blank briefly while the computer counts to FF and 00, and

then it will re-enter the monitor. Now press:

EJEJ ! 820Fl ! A-00!

Register A has reached 00, the zero flag is set, and the program

counter points to the jump instruction.

3:-11

PROGRAM LOOPS

EJEJ I 820F! I A-F'OI

you have entered a large value to Register A.

EJ 820Fj A-00!

This time the display should barely blink, because the program only

looped 16 times instead of 256.

This exercise illustrates the way in which timed delays may be

implemented using program loops, a feature which is common in many

process control operations.

3-12

3.3 ADDITION BY COUNTING

PROGRAM LOOPS

The next program

numbers by the

specification is:

exercise will demonstrate finding the sum of two

basic principle of counting. The program

"Write a program which will form the sum of two numbers by

successively incrementing the first number and decrementing

the second, until the second reaches a value of zero."

To implement this program a new instruction will be required:

BINARY CODE:

HEX CODE:

MNEMONIC:

MEANING:

00111101

30

OCR A

Decrement R egister A

A flow chart for the program will be helpful and one is presented in

Figure 3-2. Before looking at the coding sheet (Figure 3-3) try to

write this program all by yourself, then match it against the one

provided.

3-13

PROGRAM LOOPS

3-14

1,

Enter Monitor
to Obtain a Value

1 f

Store It at 8300

1 f

Enter Monitor for
Another Value

,,

Store It at 8301

'W

Load, Increment and
Store the Value

at 8300

,,

Load, Decrement and
Store the Value

at 8301

,,

NO
ZERO?

YES

1 f

Load the Value From
8300

Addition by counting

Figure 3-2

Go back to the monitor
to display the result
and obtain another value

1-w
w
I:
(/)

<.!)
z
Cl

0
(.)

�
w
I­
C/) >­
(/)

<.!)
z
z
<(
a:
l­
a:
w
I­
::,
Q..
�
0
(.)

0
a:
(.)

�

(/)
�
w
I­
C/)
>­
(/)
a:
w
I­
::,
Q..
�
0
(.)

Cl
w

a:
<.!) w
1-z

A D D R

8 o<. /) 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 o.2 / 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

aJ�o
1

2

3

4

5

6

7

8

CODE

6 {) }V {)

{} 0 }J 0

0 0 tJ 0

£ 7 "R s

s c:/ s T

() 0

J? 3

E '7 R s

i.3' ,2 s T

C) /

!' 3

.3 II L "D
0 ()

? 3

3 C I N

8 :)_ s 7

0 0

f 3

3 fl L D

{) /

? 3

3 D rD C
3 � s 7

{) I

J) 3

� c2 0 tJ

0 13

! cQ

J fl L 1)

t) {)

JJ 3

{!,, ..3 :::r M

C) 3

J' ;J..

ADDITION BY COUNTING

p
p
p

T 4
A �

T L/-
{J !

f) i

R fl

R F

A- R

R A

A R

"2 !

A i

p J'

.I

3 0

5 ()

3 {)

3 0

3 ()

3 t)

a D

3 0

� 0

{)

I

0

0

I

V

8

{)

3·1

- .

,,L "' ;-,JJ.. -· ! .. ·*-)

J (7_� _/ r. .. A. ' � (?, - -- lJ
I / "

�h.J - - ·17.._.,_ �

.,.. ., ,,. J....t:::i..R... ,. . A . ,. J

Jr -r ,. - ,,,A/ ,,:_.,_ Jl �:f, f,3c;O

I� -r;� --- .. -&_, �

.,..,.,. I LJ � +--I. IJ ,. ,._ /J "

). ... 17. J. • A1 � a.:.t Rao/

,A,,,..I • I �- - .,..

1�"-4 11.·_A / ,._A "J

I
L A Jo, ,,_ ·-- T. ,, ,A

A I";;,,, I r.Ja ./; . .,.
Jl>,J 4 _, , A ,J

I

.� ,.Aj H. _,,,,,,, ... ___ ,,./,

,,,._..A ,11

./)OJI J, 1.- A -• + ..-.. -• �
/I '1;;;,. () r�l'J

,,.,,.. A� ,,,I.J _,_A .. ,,

·.../!-� I �*� ---
..//.

,, - ,._ � J _.&.,,CL.) --1..a..J

J1.h: t: ,h. �) /� - ,,..

��.i ±A-L J,·: - -1-

�hl,A,_, ,,�..,. �_,

l"L. /,__ A J. �

,_,,,,,__·� �
d, ..: " /J A I 1--;:

, ,.

Figure 3-3

3-15

. '

PROGRAM LOOPS

Before stepping through your program, press RST and then enter a

small value in A:

EJEJEJ

Now press STEP repeatedly:

You have just entered the monitor.

Continue to STEP:

You have entered the monitor again.

Continue to STEP.

This is the beginning

of the loop. Continue to step.

You have done the first INR A.

The first value has been stored.

The second value, also 2, has been loaded,

decremented

3-16

I 8200 I I A-02 I

la2a11 IA-021

82021 1 A-crn1

I 8203] I A-021

I 0020 1 I A-021

I 8204) I A-02)

i 82Q7) j A-02j

aa2al I A-021

I 82081 I A-021

B2QJ3l I A-021

820EI I A-021

I 820FI I A-031

82121 I A-Ogl

82151 I A-021

82161 A-Oil

and stored.

The program is now at JNZ, the result is not zero,

and the jump occurs.

The first value is loaded,

incremented,

stored,

the second value is loaded,

decremented (and the Zero flag is set),

stored. The program is

again at JNZ but

the jump does not occur.

The first value is loaded

and now the jump

back to the beginning occurs.

The monitor again.

Step again. Back to your

program with A unchanged.

PROGRAM LOOPS

8219! A-Oil

s20B! A-Oll

820El A-o3j

820FI A-041

8212] A-041

82151 i A-011

82161 A-Obi

82191 ' A-Ooj

a21cl I A-001

821FI I A-041

8203l I A-041

t 0020 I I A-041

82041 A-b;;II

As the initial value placed in A (2) became the value of both the

first and second numbers, we can verify that the result (4) is in

fact their sum.

3-17

PROGRAM LOOPS

Now press RST and run your program for various pairs of numbers.

Remember each instruction takes only a few microseconds; the display

will not even blink .. Press RUN, then REG A (PC will be 8204) and

enter the first number. Press RUN, REG A (PC will be 8208) and enter

the second number. Press RUN again. The result will be displayed,

and you can key in a new pair. Any two numbers whose sum is less

than or equal to 255 (;FF hex) can be added in Register A.

3.4 .EXERCISE

PROGRAM LOOPS

The program we have developed enters the monitor twice to accept tw·o

numbers to be added together. The sum is displayed (in Register A)

and two more numbers are entered. Modify the flow chart of Figure

3-2 so that after a sum is displayed only one new number is entered,

and that number is added to the previous sum. With the modified

program you can sum a column of numbers.

3-1,9

PROGRAM LOOPS

3.5 SUMMARY

In this

use of

important

chapter several new instructions have been introduced, the

RUN and programmed monitor entry has been shown, and the

concept of flow charts has been presented. All of the

instructions used so far are summarized in Section 3.6. You may wish

to write a program of your own at this point, for practice. If you

do, follow the rules:

3-20

a) Specify the program

b) Draw the flow chart

c) Select memory areas for the program and for

data (Do not use locations 83CO - 83FF)

d) Write the code, with comments

e) Key in the code and verify it

f) Step through the program to check it, then

run it

3.6 SUMMARY OF INSTRUCTIONS

00

AF

3C

3D

3A

xx

xx

32

xx

xx

C3

xx

xx

NOP

XRA A

INR A

DCR A

LDA

low address

high address

STA

low address

high address

JMP

low address

high address

PROGRAM LOOPS

Do nothing

Clear Register A

Increment Register A

Decrement Register A

Load Register A

with the data stored

in the memory location

whose address is in the

second and third bytes.

Store the contents of

Register A in

the memory location

whose address is in the

second and third bytes.

Jump to the location

whose address is in the

second and third bytes.

3-21

PROGRAM LOOPS

3-22

C2

xx

xx

E7

JNZ

low address

high address

RST4

Jump if the result of

the last arithmetic

operation was not zero;

otherwise continue to

the next sequential

instruction.

Enter the monitor.

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 4

THE OTHER REGISTERS

THE OTHER REGISTERS AND MEMORY ADDRESSING

4. THE OTHER REGISTERS AND MEMORY ADDRESSING

In this chapter we introduce the general purpose Registers B, C, D,

E, H and L. These registers are used for:

1) Temporary data storage

2) Storing operands for arithmetic and logical operations

3) Counting

4) Memory addressing

For temporary data storage and counting, the general purpose

registers are equivalent to Register A. There are instructions for

all

data

seven

into

registers permitting data to

them from memory, moving

be moved among them, moving

data from them into memory,

incrementing and decrementing their contents. They are not identical

in all functions, however, and each has certain unique features.

Register A, or accumulator, is very different in that the results of

most arithmetic and logical operations are stored in Register A.

Similarly, input/output instructions use Register A.

4-1

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.1 THE MOV INSTRUCTIONS

It is often necessary to move data into one register from another.

The instruction to do this has the form "MOV destination. source".

Such an instruction exists for each possible pairing of registers.

For instance:

BINARY CODE:

HEX CODE:

MNEMONIC:

MEANING:

01001111

4F

MOV C, A

Move into C the content of A

The data remain unchanged in the source register and are copied into

the destination register, whose old content is lost. Note that in

the mnemonic the destination is listed first, then the source

register. Interchanging these is a common source of error, so be

careful. Think of the instruction as "move into C from A" or "set C

equal to A''. The table below contains a summary of the MOV

instructions. Note that the table is complete, ·including the useless

MOV A,A; MOV B,B; etc. These are totally valueless to the user, but

because of internal procedures in the microprocessor it would have

added complexity to omit them or to use the wasted instruction codes

for other purposes.

4-2

THE OTHER REGI,STERS A ND MEMORY ADDRESSING

Inter-Register MOV Inst ructions:

Source Register

A B C D E H L

MOV A,s 7F 78 79 7A 7B 7C 7D

MOV B,s
I

47 40 41. 42 43 44 45

MOV C,s 4F 48 49 4A 4B 4C 4D

MOV D,s 57 50 51 52 53 54 55

MOV E,s 5F 58 59 5A 5B 5C 5D

MOV H,s 67 60 61 62 63 64 65

MOV L,s 6F 68 69 6A 6B 6C 6D

As an example we might need to copy data from some memory location

into Register C:

3A

00

83

4F

LDA 8300

MOV C,A

The content of memory location 8300 is loaded into Register A and

then copied into Register c. Both A and C now contain the same data

as memory location 8300.

4-3

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.2 THE ADD INSTRUCTION

The program of Chapter 3 performed addition by counting. This is

inefficient in terms of both program space and execution time. A

single instruction will perform this function, now that we have a way

to put one operand into another register:

BINARY CODE:

HEX CODE:

MNEMONIC:

MEANING:

10000001

81

ADD C

Add into A the content of C

Any register content may be added to A, with the result always being

placed in A.

HEX

ADD A 87

ADD B 80

ADD C 81

ADD D 82

ADD E 83

ADD H 84

ADD L 85

4-4

THE OTHER REGISTERS AND MEMORY ADDRESSING

We can replace the repetitive loop i Il the program of Figures 3-2 and

3-3 with the ADD instruction.

8200 00 NOP

8201 00 NOP

8202 00 NOP
8203 E7 RST4 Enter Monitor
8204 32 STA 8300 Store Value Returned
8205 00
8206 83
8207 E7 RST4 Enter Monitor Again
8208 32 STA 8301 Store Value Returned
8209 01
820A 83
820B 3A LDA 8300 Load First Value
820C 00
820D 83
820E 4F MOY C,A First Value to C
820F 3A LDA 8301 Load Second Value
8210 01
8211 83
8212 81 ADD C Add First Value
8213 C3 JMP 8204 Go Back to Store and Display Sum
8214 04
8215 82

This program is equivalent to the modified program of exercise 3.4.

After finding a sum (by ADD C), we loop back to store the sum (STA

8300); enter the monitor to display the sum and accept a new number

(RST4). After the first sum is displayed in this program, we only

take one new number· each time, and always add it to the old sum.

There is an important difference between this program and the

"addition by counting" program, in its effect on the Carry flag.

4-5

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.3 THE CARRY AND ZERO FLAGS

In Chapter 3 we introduced the Zero flag and the conditional

instruction Jump if Not Zero (JNZ). There are several other flags,

Different instructions affect and conditional instructions.

different flags, and some of the rules are fairly complicated.

However, there are some simple general rules which may be defined

before proceeding.

4-6

a. Data Transfer instructions never affect any flags. These

include LDA, STA, MOV, and other similar instructions�

b. Counting (incrementing or decrementing) in any single register

(A, B, C, D, E, H, L) sets the zero flag if the result of

that count is zero. The condition of this flag at any given

time does not necessarily mean that the register contains

zero, however. Once the flag is set, a data transfer

instruction may load the register without changing the flag.

c. Jump and conditional jump instructions never affect any flags.

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.3.1 Carry

If two numbers are added whose sum is greater than FF, there should

be a Carry from the addition, e.g.:

75 (HEX)

t 94

= 109

(HEX)

(HEX)

This Carry is generated by the ADD instruction, among others, and

sets a condition flag called Carry. Like the zero flag, Carry can be

tested to c�use a conditional jump to occur, but it can also be used

in various arithmetic operations. Before discussing these, we will

step through the program of Section 4.2 and observe Carry. It is

indicated to the left of the numeric display by the top LED, labelled

"CY".

left.

(In this description, keys to be pressed are shown at the

The displays to be expected are shown at the right. (CY) and

(Z) are shown where those flags are set. Until the first ADD, their

states are unknown.)

RESET 8200 00

RUN (un ti 1 RST4) 8204 32

REG A 8204 A-??

6 8 (enter a number) 8204 A-68

RUN (un ti 1 RST4) 8208 A-68

2 0 (another number) 8208 A-20

STEP 8208 A-20

4-7

THE OTHER REGISTERS AND MEMORY ADDRESSING

The two values have been stored and we will now load the first value.

STEP

STEP

REG C

820E

820F

820F

A-68

A-68

C-68

The first value has been copied to Register C and we will load the

second value.

REG

STEP

STEP

A

(execute ADD C)

820F

8212

8213

A-68

A-20

A-88

We have added the two values. Note that both LED's left of the

numeric display are off. The result of the addition was not zero,

and did not generate a Carry.

4:...9

STEP

RUN (until RST4 done)

8204

8208

A-88

A-88

THE OTHER REGISTERS AND MEMOR Y ADDRESSING

The old result has been stored at 8300, and the monitor is waiting

for a new value, to be stored at 8301.

9 8 (enter a number) 8208 A-98

STEP (store it) 820B A-98

STEP (load the old result) 820E A-88

STEP (move it to C) 820F A-88

STEP (load the new number) 8212 A-98

Now the content of 8300 has been copied to register C and the content

of 8301 has been loaded into A. The next step will add these values.

The hexadecimal result should be:

88

+ 98

= 120

The sum is greater than FF, so a Carry will result and will be shown

in the upper LED to the left of the display.

STEP

RUN (until RST4)

(CY)

(CY)

8213

8208

A-20

A-20

Note that the jump and store instructions have not affected the Carry

flag. The value 20 (HEX) has been stored at 8300.

6

RUN

0 (enter new number) (CY) 8208

8208

A-60

A-80

We have added 20 + 60. The Carry flag is cleared, because the result

was not greater than FF.

4-9

THE OTHER REGISTERS AND MEMORY ADDRESSING

Now we shall allow 80 (HEX) to be used_for both values.

RUN (CY) (Z) 8208 A-00

A Carry was generated by adding 80 + 80, and the numeric result is

zero, so both Carry and Zero are set.

Use this program to add the column of numbers below. Write in the

result of each addition and note if the Carry is set.

First Number 04 Carry Sum

Second Number 44

60

95

32

Al

FO

C2

C2

80

44

60

FF

FF

OA

60

4-10

THE OTHER REGISTERS-AND MEMORY ADDRESSING

We have seen how the Carry flag is set or reset by the addition. Note

that with the ADD instruction any previous Carry was lost and did not

affect a further result. In the next section we shall see how the

Carry flag can be us�d in addition.

4.3.2 Multiple Precision - The ADC Instruction

A single byte of data in memory or in a register can represent an

integer value from 00 to FF (255 decimal). Obviously many computer

programs need to represent numbers much larger than this, so more

than one byte is used to represent such numbers. This is just like

the use of multiple digits to represent numbers greater than 9 in

decimal arithmetic.

Definitions:

MULTIPLE PRECISION: The use of two or more bytes to represent an

integer greater than FF (255 decimal).

DOUBLE PRECISION: The use of exactly two bytes to represent an

integer value from 0000 to FFFF (65535 decimal).

These definitions apply only to computers whose word size is 8 bits,

and only in the context of unsigned integer values. The phrases

convey similar ideas but with more complicated definitions in other

contexts.

4-11

THE OTHER REGISTERS AND MEMORY ADDRESSING

When we perform multi-digit addition the low order digits are added

without regard to Carry, but for all higher digits a Carry must be

considered.

Carry 1 0 1 X

7 6 3 9 (decimal)

+ l 5 4 3 (decimal)

= 9 1 8 2 (decimal)

Similarly the computer can add low order bytes without regard to

Carry, and then include the Carry for higher bytes using an ADC (add

with Carry) instruction.

Example: ADC B

BINARY CODE:

HEX CODE:

MNEMONIC:

MEANING:

4-12

100.01000

88

ADC B

Add the content of B to the content of A.

If Carry was set before the addition,

increase the result by 1. Place the result

into Register A. If the addition generates

Carry, set the Carry flag; otherwise reset

it. If the result of the addition is zero,

set the Zero flag; otherwise reset it.

THE OTHER REGISTERS AND MEMORY ADDRESSING

Note that ADD and ADC both set or reset Carry and Zero in exactly the

same way. The difference lies in the inclusion of Carry in the

addition. A full set of ADC instructions exists.

HEX CODE

ADC A SF

ADC B 88

ADC C 89

ADC D SA

ADC E SB

··ADC H SC

ADC L SD

Example: Add the content of Registers B and C to the content of

Registers D and .E. Here we consider C and E to contain the

low order. bytes to be added; B and D the high order bytes.

The result is to be placed in D and E-. Load this program.

8200 7B MOV A,E

8201 81 ADD C

8202 5F MOV E,A

8203 7A MOV A,D

8204 88 ADC B

8205 57 MOV D,A

8206 E7 RST4

8207 C3 JMP 8200

8208 00

8209 82

4-13

THE OTHER REGISTERS AND MEMQRY ADDRESSING

Before stepping through the prqgram pla_ce a two byte number (four HEX

digits) into Registers B and C, and another number into Regist_ers D

and E.

REG B 4 5 8200 B-45

REG C 8 5 8200 C-85

REG D 5 2 8200 D-52

REG E A 7 8200 E-A7

The numbers to be added are:

B, C 4585

D, E 52A7

The sum should be: 982C

Now step through the program.

ADDR 8200 78

REG A 8200 A-??

STEP 8201 A-A7

STEP (CY) 8202 A-2C

The low bytes (A7 and 85) have been added, resulting in the low byte

of the sum in Register A. Carry is set.

STEP (CY) 8203 A-2C

STEP (CY) 8204 A-52

We are about to add the high bytes (52 and 45) with Carry, which is

set.

STEP 8205 A-98

4-14

THE OTHER REGISTERS AND MEMORY !DDRESSING

The sum of 52 and 45 has been augmented by the Carry. No Carry

resulted from this addition, so the Carry flag is clear.

STEP

STEP

STEP

8206

0020

8207

A-98

A-98

A-98

We reentered the monitor at 0020 and are now at 8207 where we will

jump back to the beginning. Examine the registers.

REG

NEXT

NEXT

NEXT

.B 8207

8207

8207

8207

B-45

C-85

D-98

E-2C

The content of Registers Band C has not changed. Registers D and E

contain the sum, 982C.

We can again add the content of Band C to this sum merely by

pressing RUN.

RUN

REG D

The new sum is DDB1.

8207

8207

E-Bl

D-DD

4- 15

THE OTHER R EGIST ERS AND MEMORY ADDR ESSING

Before doing this again, predict the next sum an d 6arry.

B, C =

D, E =

4 5 8 5

D D B 1

Carry __ _ Sum ,,__.-, _______ _

RUN

NEXT

8207

8207

D-??

E-??

Does the result agree with your prediction? It should be Carry, 2336.

4.3.3 Exercise

Rewrite the program we have just used to add the content of Registers

B and C to the content of Registers Hand L, placing the result in

Registers Hand L.

The solution is given in Figure 4-1.

4-16

1-w
w
I
Cf)
(.9
z
0
0
u

�
w
I-­Cf)
>­
Cf)
(.9
z
z
<(
a:
l­
a:
w
I­
:)a..
�
0
u
0
a:
u
>-

Cf)
�
w
I-­Cf)
>­Cf)
a:
w
I­
:)a..
�
0
u
0
w

a:
(.9
w
1-
z

A D D R CODE

a�o 0 7 .l)
1 J' I
2 fl) F
3 7 c
4 ? J?
5 h 7
G E 7.
7 C 3
8 0 0
9 cf' ;2
A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E-

F

8 0

1

2

3

4

5

6

7

8

DOUBLE PRECISION ADDITION

M a V (} L

A- l) D c/
,VJ 0 V ·L fl
t1 D V A-

I

I./
fl- l) C t3

I

M 0 V i-1-)
�

I<. s 7 L/
J M p J' ,!)_ a [)

A J)]) ,S T ff E C ON7EA/T or-

R £ (_7 T s T E R (i 13 /1-/IID (? '->

.L- Al T 0 T 1-f E (:_' O;t/TEA/T /JF

I< E G L s T � IR 3 1-I /1-;t/ l) L

Figure 4-1

4-17

THE OTHER REGISTERS AND MEMORY ADDRES SING

4.3.4 Subtraction - SUB and SBB

Subtraction is defined as the inverse of addition:

If A = B + C

Then C = A - B

We can show that this rule applies in the computer as well as in

elementary school arithmetic . The 8080 has a set of subtract

instructions ; for example:

BINARY CODE:

HEX CODE:

MNEMONIC:

MEANING:

4-18

10010000

90

SUB B

Subtract the content of Register B from the

content of Register A. Place the result in

Register A. If the result i s zero, set the

Zero flag; otherwise reset the Zero flag.

If the content of Register B was greater

than the or iginal content of Register A,

set the Carry flag; otherwise reset

the Carry flag.

THE OTHER REGISTERS AND MEMORY ADDRESSING

To

Now

test the definition enter

8200

8201

8202

8203

8204

8205

enter data

REG

REG

REG

STEP

STEP

STEP

78

81

90

C3

00

82

into

B

C

A

B

MOV A,B

ADD C

SUB B

JMP 8200

and

8

1

C,

Adding 86 plus 12 gave 98;

this program:

and step

6

2

through the program observing

8200

8200

8200

8201

8202

8203

B-86

C-12

A-??

A-86

A-98

A-12

A.

subtracting 86 gave 12. The rule st i 11

holds even if the sum is greater than FF.

STEP 8200 A-12

REG C 9 0 8200 C-90

REG A 8200 A-12

STEP (move into A from B) 8201 A-86

STEP (add C, 86 + 90) (CY) 8202 A-16

STEP (subtract B, 16 - 86) (CY) 8203 A-90

4-19

THE OTHER REGISTERS AND MEMORY ADDRESSING

Although the Carry flag was set when a sum greater than·FF was

generated, this Carry was ignored by the SUB instruction. It was set

again by SUB when we subtracted 86 from 16.

As in addition, the Carry flag is used for multiple precision

arithmetic. The SBB (subtract with borrow) instructions are. used for

this purpose. Note that although this name speaks of a "borrow"

rather than a "carry" it is represented by the same flag in the 8080

microprocessor. The 8080 does not distinguish whether it resulted

from an ADD or SUB instruction.

BINARY CODE:

HEX CODE:

MNEMONIC:

MEANING:

4-20

1001 1000

98

SBB B

If the Carry flag is set, reduce the value in

Register A by 1. Subtract the content of

Register B from the content of Register A.

Place the result in Register A. If the result

is zero, set the Zero flag; otherwise reset

Zero. If the content of Register B was greater

than the content of Register A minus CY, set

Carry; otherwise reset Carry.

THE OTHER REGISTERS AND MEMORY ADDRESSING

SUB and SBB exist for all registers:

97 SUB A 9F SBB A

90 SUB B 98 SBB B

91 SUB C 99 SBB C

92 SUB D 9A SBB D

93 SUB E 9B SBB E

94 SUB H 9C SBB H

95 SUB L 9D SBB L

The double precision addition we programmed in Section 4.3.2 can

readily be converted to a double precision subtraction, using SUB and

SBB in place of ADD and ADC. Refer to Section 4.3.2 and write a

program to subtract the content of Registers B and C from the content

of Registers D and E. A solution is given in Figure 4-2.

From this point on we shall omit the binary codes when new

instructions are defined, showing only the hex codes. Binary codes

have been shown to stress that the computer recognizes binary

patterns, not hex characters. If you translate into binary the hex

codes above, and those for the MOV, ADD and ADC instructions given

previously, you can see the patterns recognized by the computer.

These are discussed in Chapter 11.

4-21

1-
w
w
I
(/)
(.'.)
z-
0

0
u

�
w
f­
(/)
>­
(/)

(.'.)
z
z
<{
a:
l­
a:
w
I­
:)
a..
�
0
u
0
a:
u
>-

(/)
�
w
I­
C/)
>­
Cf)
a:
w
f­
::::)
a..

4-22

�
0
u
0
w

a:
(.'.)
w
1-
z

A D D R CODE

8 �() 0 7 A
1 9 I
2 j-- �

3 7 R
4

9 cf
5 J '7

E ,7
7 (!, ··::t.

'-...)

8 0 D
9 y '/ ,X,

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

DOUBLE PRECISION SUBTRACTION

�j, () ,.
1

s u 8

fV) 0 v

M 0 l/
0 B C _ _, ')

M 0 V

k __) I L/
,I jVJ p

I+ J
�
--

C

·£
I I�

/f l l)
B
I)

'
f-) .,

,f
/)

:;x 0 '()

�"� j /;J'_, rJ _r�±-
L: -c

Y�--111 I� ·A;··r-

.J J / ;-1-;s /J .er-
·7J-/1-ey·

� A,1j/� h�..l)
' '

Figure 4-2

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.3.5 Review and Self Test

In Sections 4.1, 4.2 and 4.3 we ha ve introduced a number of

inst�uctions that involve using registers to store data, provide

operands, and count. Test your knowledge by answering the questions

below. Each question refers to the section in which it is answered.

The correct answers are given on the reverse side of this page.

1) What is the other name for Register A? (Section 4.0) ______ _

2) Name the other general purpose registers. (Section 4.0)_'------�

3) Which register receives results from arithmetic operations?

(Section 4.0)

4) Which register has its content changed by the instruction

MOV E,C? (Section 4.1)��

5) Which register has its content changed by the instruction

ADD B? (Section 4.2)

6) Which of the flags are affected by each of the following

instructions? (Section 4.3)

MOV E,C

ADD B

LDA 8300

INR A

OCR C

SBB D

ZERO CARRY

4-23

THE.OTHER REGIS TERS AND MEMORY A DDRESSING

Answers to Self-Test, Section 4.3.4

1) Register A is also called the Accumulator.

2) The other registers are B, C , D, E, H , L.

3) Register A receives the results of arithmetic and logic

operations.

4) MOV E,C moves into Ethe content of C. Register Eis affected;

Register C is unchanged.

5) ADD B adds the content of B to the content of A and places the

result in A. Register Bis unchanged.

6) MOV E,C affects no flags.

ADD B

LDA

INR A

OC RC

S BB D

4-24

affects all flags.

affects no flags.

affects Zero.

does not affect Carry.

affects Zero.

does not affect Carry.

affects all flags.

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.4 IMMEDIATE INSTRUCTIONS

Altho�gh we have distinguished program memory from data memory, it is

common to include some data in the program memory. Tables of fixed

values such as values of functions (e.g. trigonometric) or

calibration data are often stored at the end of a program. Some

instructions include data in the second, or second and third bytes of

the instruction. These are known as "immediate data" and the

instructions are called "immediate instructions". Such an

instruction (ADI) was presented in the second chapter.

A very common requirement is to load a register with some fixed

value.

4.4.1 Move Immediate Instructions (MVI r)

The MOV instruction has a complete set of MVI counterparts. The

general MVI instruction looks like this:

MNEMONIC:

SECOND BYTE:

MEANING:

MVI r

Data

Move the value contained in the

immediately following byte into

Register r.

4-25

THE OTHER REGISTERS AND MEMORY ADDRESS ING

Following is the complete set of MVI instructions:

MNEMONIC HEX CODE

MVI A 3E

MVI B 06

MVI C OE

MVI D 16

MVI E lE
. , ...

MVI H '26

MVI L 2E

The MVI instruction is often used to initialize a counter. For

example, in serial data communi.cations it is necessary to transmit

the eight bits of one byte sequen'tially. The counter is initialized

at 8 and successively decremented (using DCR) tci detect completion of

the transmission. Then a JNZ in�truction at the· end of the loop

causes repetition until the counter reaches zero. The instruction
- -

cycle for the MVI is shown in Figure 4-3.

THE OTHER REGISTERS

PROCESSOR

A

B

0

,

[p C 8205

G) CPU sends PC as address

G) .Memory selects 8205 and
returns data

A

B

06

p C

G) CPU loads data to Register I and
increments PC

CPU interprets 06 as a two byte
instruction

CPU as address

A

B 27

06

p C r:]707

Memory selects 8206 and returns data

CPU loads data to Register B and
increments PC

MVI Instruction Cycle

Figure 4-3

AND MEMORY ADDRESSING

MEMORY

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

8 2 0 4

06 8 2 0

27 8 2 0 6

8 2 0 7

8 2 0 8

8 2 0

8 2 0 A

8 2 0 B

8 2 0 C

8 2 0 D

8 2 F F

8 3 0 0

8 3 0 1

4-2.7

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.4.2 Immediate Arithmetic Instructions

It is sometimes necessary to add a fixed value to a number - for

instance one might want to count by threes. Although this could be

done by placing the desired value in a register and adding the

register content to Register A, the 8080 provides two instructions to

perform the function directly: ADI data (add immediate) and ACI data

(add with Carry immediate). We met the ADI instruction in Chapter 1;

ACI is defined here.

HEX CODE:

SECOND BYTE:

MNEMONIC:

4-28

CE

Data

Add the value contained in the immediately

fol lowing byte to the content of A. If Carry

was set before the addition, increase the result

by 1. Place the result in Register A. Set

or reset the Carry and Zero flags according to

the result.

THE OTHER REGISTERS AND MEMORY ADDRESSING

Similarly there exist immediate counterparts for SUB and SBB. Thus

we have:

C6 ADI data
data

CE AC! data
data

D6 SUI data
data

DE SB! data
data

Probably the most common use of the AC! instruction occurs when an

arithmetic operation is required to generate a result with more bytes

than the numbers being added. In the example of Section 4.3.2 we

repeatedly added the content of B and C to a value in Registers D and

E. When the sum exceeded FFFF a Carry occurred from the multi-byte

addition, but was lost when we repeated the addition again. If we

had provided for an additional byte in the result (say in Register L)

the Carries could have been added into that byte by:

MOV A,L

AC! 00

MOV L,A

This technique is used in multiplication or when a ·column of numbers

is to be added. The next exercise demonstrates this.

4-29

THE OTHER REGI STERS AND MEMORY ADDRESSING

4.4�3 Multiplication by Repetitive Addition

The process of multiplication that we use in decimal arithmetic is

exactly equivalent to repetitive addition.

3 X 8 = 8 + 8 + 8 = 24 (decimal)

The same is true in binary (or hexadecimal) arithmetic in a computer.

One way of performing multiplication is to add the multiplicand (8 in

the above example) into the product (initially set to zero)

repeatedly, multiplier times.

Definition,:

MULTIPLICAND: A number which is to be multiplied by another number,

called a MULTIPLIER to generate a PRODUCT.

4;...30

THE OTHER REGISTEJ1S AND MEMOiiY ADDRESSING

Although the multiplier and multtplicapd should be interchangeabie

without affecting the result, the distinction is useful in describing

the process. Load and test this:

8200

8201

8202

8203

8204

8205

.8206

8207

8208

8209

820A

820B

820C

820D

.820E

820F

8210

06
08
OE
03
lE
00
7B
80
5F
OD
c�

06
82
E7
C3
00
82

MVI B,08

MVI C,03

MVI E .. , 00

MOV A., E
ADD B ,-
MOV E:,4
DCR C

JNZ 8206

RST 4
JMP 8200

Place in Register B
The multiplicand
Place in Register C
The multiplier
Clear the product
to zero
Add jo product
The multiplicand
Sav� partial product
Count multiplier
down to zero

Re-enter monitor
Rep�at

The result (in Register E) is l&HEX (= 24 decimal). The program

works· since the product does not ex6e�d FF, �nd sti' can be stoied in a

single byte. What happens for larger values of multiplicand or

multiplier? If the immediate value for the multiplicand (at address

8201) is set to 70, then the final addition results in a Carry.

Initial Product

Add Multiplicand

Par ti a 1 Product

Add Multiplicand

Partial Product

Add Multiplicand

Product

= 00

+ 70

= 70

+ 70

= EO

+ 70

= 50

No Carry

No Carry

Carry Set

4-31

THE OTHER REGISTERS AND MEMORY ADDRESSING

Since the Carry is preserved, indicating a product of 150 (HEX) this

might be acceptable. If the multiplicand were 90, this process would

occur:

lni tial Product = 00

Add Mul tipl i.cand f 90

Partial Product = 90 No Carry

Add Multipli.cand -+ 90

Partial Product = 20 Carry

Add Multiplicand f 90

Product = BO No Carry

The intermediate carry is lost. The result should have been lBO, not

BO . If the multiplicand and multiplier were each set to FF, the

product would be FEOl, a two byte number.

We can fix the program above by using two bytes for the product (say

D and E). Both must be cleared initially. Then the multiplicand is

added to the low byte of the product. If a Carry results it must be

added into the high byte of the product. This is done with the

AC! 00 instruction as shown below:

4-32

THE OTHER REGISTERS AND MEMORY ADDRESSING

Program For Multiplication by Repetitive Addition

8200
8201
8202
8203
8204
8205
8206
8207
8208

8209
820A
8208

820C
820 D
820E
820F
8210
8211
8212
8213
8214
8215
8216

06
FF
OE
FF
lE
00
16
00
78
80
5F
7A

CE
00
57

O D
C2
08
82
E7
C3
00
82

MVI

MVI

MVI

MVI

MOV

ADD
MOV
MOV

ACI

MOV
DCR
JNZ

RST
JMP

B,FF

C,FF

E,00

D,00

A,E

B
E,A
A, D

00

D,A

C
8208

4
8200

Place in Register B
the multiplicand
Place in Register C
the multiplier
Clear product
low byte
high byte

Product low byte

Add multiplicand

Product hi gh byte
Add Carry

Count multiplier
down to zero

Enter monitor
Repeat

Step through this program for a few loops, observing Register A and

Carry . Then run it and look at the result in Registers D and E. Is

Carry set or cleared at the end?

4-33

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.4.4 Multiplication - Exercise

When we perform multiplication with pencil and paper, the number of

digits in the product depends on the sizes of the two numbers:

22

X 14

308

99

X 99

9801

We express the answers this way because we always discard leading

zeros, and assume that any higher order digits not shown must be

zero. In the computer, however, storage must be provided for as many

bytes as might be generated with the maximum values of multiplier and

multiplicand that are permitted by the program.

The product of two numbers may occupy as many bytes as the sum of the

number of bytes being multiplied. For example, a two byte number

multiplied by a one byte number generates a three byte result.

FFFF X FF = FEFFOl

(in decimal, 65535 X 255 = 16711425)

Write a program to multiply a two byte multiplicand by a one byte

multiplier. Take the multiplier from memory location 8300. Take the

low byte of the multiplicand from memory location 8301 and the high

byte from memory location 8302. Store the three byte result in

memory locations 8303 (low byte) to 8305 (high byte).

4-34

THE OTHER REGISTERS AND MEMORY ADDRESSING

Try to write this program by yourself, using the instructions listed

in Section 4.4.5. Remember to clear the product before starting the

repetitive additions. Hint: It is usually more efficient to use

registers for data than to loa d and store numbers in memory

repetitively. Make a table of memory and register assignments.

Meaning of Data Memory Location Register

Multiplier 8300

Multiplicand (low byte) 8301

Multiplicand (high byte) 8302

Product (low byte) 8303

Product (mid byte) 8304

Product (high byte) 8305

A solution is given in Figure 4-4, following the list of instructions

in Section 4.4.5.

4-35

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.4.5 Table of Instructions

Re-enter Monitor

E7 RST 4 (applies to ICS Microcomputer
Training System �nly)

Jump and Conditional Jump Instructions

C3
xx

xx

JMP Address
(low address)
(high address)

Data Transfer Instructions

3A LDA Address
xx (low address)
xx (high address)

78 MOV A,B

79 MOV A,C
7A MOV A,D
7B MOV A,E

7C MOV A;H
7D MOV A,L

(O ther register-to-register
Page 4-3.)

C2
xx

xx

JNZ Address
(low address)
(high address)

32 STA address
XX (low address)
XX (high address)

47
4F

57
5F

67
6F

MOV
MOV
MOV
MOV
MOV
MOV

B,A
C,A
D,A
E,A
H,A
L,A

MOV instructions are tabulated on

Immediate Data Transfer Instructions

3E MVI A, data
data
06 MVI B, data
data
OE MVI C, data
data
16 MVI D, data
data
1E MVI E, data
data
26 MVI H, data
data
2E MVI L, data
data

None of the above instructions affect any flags.

4-36

THE OTHER REGISTERS AND MEMORY ADDRESSING

Counting Instructions

These counting instructions set or reset Zero. The ·carry Flag is not

affected.

3C. INR A 3D OCR A

04 INR B 05 OCR B
oc INR C OD DCR C
14 INR D 15 DCR D
lC INR E lD DCR E
24 INR H 25 OCR H

2C INR L 2D DCR L

Arithmetic Instructions

Zero and Carry are set or reset by these instructions.

87 ADD A SF ADC A
80 ADD B 88 ADC B
81 ADD C 89 ADC C

82 ADD D 8A ADC D
83 ADD E SB ADC E
84 ADD H SC ADC H

85 ADD L 8D ADC L

C6 ADI data CE ACI data
data data

97 SUB A 9F SBB A

90 SUB B 98 SBB B
91 SUB C 99 SBB C
92 SUB D 9A SBB D

93 SUB E 9B SBB E
94 SUB H 9C SBB H

95 SUB L 9D SBB L

D6 SUI data DE SBI data
data data

4-37

1-
w
w
I
(/)
(.9 z
D
0
u

2
w
I­
C/)
>­
(/)
(.9
z
z
<(
a:
f­
a:
w
f­
::J
a..
2
0
u

0
a:
u

>-

(/)

2
w
I­
C/)
>­
(/)
a:
w
f­
::J
a..
2
0
u

D
w

a:
(.9
w
1-
z

4-38

MULTIPLICATION BY REPETIVE ADDITION
A D D R CODE

8 c:2. 0 0 I I�
1 () 6
2 � t.,
3 t) 111
4 b(F
5 0 {)
6 3 ll
7 a 0
8 1R 3
9 :? ;::.
A 3 ll
B 0 I
C p 3
D w ,c
E 3 l4
F {!) ;;

a ot. / o JJ 3
1 4 ·7
2 7 l)
3 Ji I
4 fn !=
5 7 C
6 '? J'
7 � 7
8 IJ ll
9 C E
A CJ �
B Ii 7
C I [7)
D f �
E I :2
F 2 .;2_

8 0

1

2

3

4

5

6

7

8

/v\ ii j_

M v I

M t) l

L l) f}

11 l) v'
L D (-/

M /) V
L }) IA

/Y) D \)
M 0 l/
I+ 1) u
M 0 V

M (') \/
/} � C
flt n \I
1Y1 0 ti
I+ C, I

M 0 v'
ITl C R
:1 N z

/ C C)

T> 0 1/J
I/

· /J /) /)
I

L () t)
I

:r c? 0

E I}
'? 3 0

(: A

JJ 3 0

8 fl
4

'
L

,

e
L ' A
4

I
1-I

A
,

H IJ
1-1- I

1)
0 {)

]) f)
I

E
� � I

tJ T I /J u

0

I

::J

dJ

& 1)

y/ A ,I)]) /-/ L
./.,..-,) -/� I ild £ .'r;

/ /] ,C.,.11� �

I

CY,� � J YI/ n t!h '- t / 0

/l /t)
I

h, 'H-�I ."' f",,,4 J E
I"""\ #

� � , v7l, IL/) ;1, c_,h_./'J •
>

Y:ff �/n�: 77A A,/
/3 /11 �� /,,;J ,I ('_

--;:/! ·�J-'�nltJ,dr>-N..J, 1/'J

(l,,1,.J />'YI '?. /} h I, l /J /; ,.,, di J
'

Y.� ,,./ J,,� crr/A'> JuvJuri7,

i"'o

/: fiJd � ,/M'./Jl�>,n-A I
I

'-fl,,,./) /�,.,, d.J1 i.n�/1 ,{'l-'

(/�A alt Ah� I
(I

l,77� • • , f-. /Y}1 I § I � ;, l � � A)

AA!u,1-71) .h A. �.J..

. tJ .. -·

'
NEx-, l)AG-G)

Figure 4-4a

1-­w
w
I
Cf)

(..9
z

-0
u

�w
I­
(/)
>­
(/)

(..9
z -
z

<(a:
l­
a:
w
1-­
::J
CL
�
0
u
0
a:
u
�

Cf)

� w
I­
(/)

>­
(/)

a:
w
I-

• ::J
CL
�
0u
0w

a:
(..9 w
1-­
z

MULTIPLICATION BY REPETIVE ADDITION (continued)

A D D R

ac:1/2 0

1

2

3

4

5

6

7

8

9

A

B
C

D

E
F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E
F.

8 0

1

2

3

4

5

6

7

8

CODE

7 v) M

3 :;] s

{J 3
i 3

7 e M

3 ;2_ s
0 �
f' .3
7 Ii M
3 =2 s

() j-

J' .. 3
..-

7 I(t::

(!_ ,q 0

() 0

J c2

�

0 \) 4 L f7 #rl) 1 j v;i _/)du-c.is

T /) '>r ,3 {) L3 ; _i h, /YJ1 /]/YVJ nU-1...
{I

{) \/ I+ H

T ft J' 3 {) LJ

0 u 4 D

T ft p B 0 6

s T .t-/ ,,CJ.,,,,, ·h.,t_, 'fYl /nf; rn_j·

M p S' .:J. {) u ��-2o J-r,,,.. A 1-

Figure 4-4b

4-39

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.5 CONDITIONAL JUMPS

In Sections 4.3 and 4.4 we used the Carry flag in addition (with ADC

or ACI) and in subtraction (SBB or SB!). This flag can also be

controlled in several ways other than by addition and subtraction.

Moreover, the Carry flag can be used to control execution of a

conditional jump just as the Zero flag has done in our programs thus

far.

Before proceding with this subject, let us review that single

register counting instructions (INR and DCR) affect the Zero flag,

but not the Carry flag. If the result of the count is zero, the Zero

flag is set; otherwise it is cleared.

Arithmetic and logical instructions, on the other hand, affect both

Zero and Carry. If the result of the operation is a zero in the

accumulator, the Zero flag is set; otherwise it is cleared. If the

operation generates a carry out of the highest bit the Carry flag is

set, otberwise it is cleared. Conditional jumps can be made with

tests for the set or clear state of each flag:

4-40

HEX CODE

C2 xxxx

CA xxxx

D2 xxxx

DA xxxx

MNEMONIC

JNZ address

JZ address

JNC address

JC address

MEANING

Jump if not Zero

Jump if Zero

Jump if not Carry

Jump if Carry

THE OTHER REGISTERS AND MEMORY ADDRESSING

All of these are three byte instructions. For instance:

8218

8219

821A

821B

D2

lC

82

14

JNC

INR

821C

D

If Carry is not set when the JNC instruction is executed, the jump to

821C is made. If Carry is set, the program continues at 821B. The

instruction cycle is similar to that for JMP. The entire instruction

is read, with the address being copied into temporary Registers W and

Z; the flag determines whether that address is copied into the

program counter.

The

the

ACI

for

means of adding the Carry into

which can be used instead of the

procedure shown above is another

high byte of a sum or product,

00 instruction. If the two instructions above are substituted

in the

product

given

will

MOV A,D

ACI. 00

MOV D,A

solution

be found.

for exercise

When no Carry

4.4.4 (Figure 4-4) the same

is generated by the mid-byte

addition, the JNC instruction passes over the INR D. When a Carry is

generated, the JNC is not executed, so Register D is incremented,

just as though the Carry had been added by ACI 00.

4-41

THE OTHER REGI STER S AND MEMORY ADDRESSING

There is one effect of the revised program different from the

original version. Since the multiplication of one byte times two

bytes cannot exceed the cipacity of the three byte product, ACI 00,

in the program of Figure 4-4, never generates a Carry. Therefore,

the original version of this program always finishes with no Carry.

In the version using JNC, if the mid byte addition ADC B generates a

Carry on the final. loop, that Carry remains at the end because

following JNC, INR D, DCR E instructions in that program do not

affect the Carry flag. With arbitrary multiplicand and multiplier we

cannot predict the state of the Carry at the end, and it conveys no

useful information. Therefore, the ACI 00 technique is generally

preferred in arithmetic programs, unless its very slightly slower

execution is important. JNC and JC were

typical programs much more often use the

making than for arithmetic.

4-42

introduced here because

Carry flag for decision

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.6 TRANSFER NOTATION

A number of new instructions have been introduced .• Most of these are

members of sets that perform similar functions using different

registers as a source and destination for data.

For convenience· in describing instructions, we sha 11' now introduce

."transfer notation". A capital letter designates·a specfic register

or a flag; a lower ca�� letter refers to a register which will be

identified in.the instruction. Parentheses imply "the content of"�

Thus:

ADD r (A) <- (A) t (r)

states that the content of Register r is added to the content of

Register A and the result is placed in Register A.

4-43

THE OTHER REGISTERS J\ND MEMORY ADDRESSING

4.6.1 Instruction Definitions

The instructions used so far in the course are described below using

transfer notation. Their effects on the Carry and Zero flags are

also indicated. (The other three flags of the 8080 are treated in

Chapters 10 and 11.) Review all of the instructions shown here to be

sure that you understand them.

LDA address

STA address

JMP address

4-44

(A) <- (address)

Regiser A is loaded with the content of the

memory location whose address is given in

bytes 2 and 3 of the instruction. No flags

are affected.

(address) <- (A)

The content of Register A is stored at the

memory location whose address is given in

bytes 2 and 3 of the instruction. No flags

are affected.

(PC) <- address

The address in bytes 2 and 3 of the instruction

is loaded into the program counter. Program

execution continues from that address. No

flags are affected.

JNZ address

JZ address

JNC address

JC address

MOV d,s

THE OTHER REGISTERS AND MEMORY ADDRESSING

If Zero flag is clear (PC) <- address

Otherwise program execution continues at the

next sequential instruction. No flags are

affected.

If Zero flag is set (PC) <- address

Otherwise program execution continues at the

next sequential instruction. No flags are

affected.

If Carry flag is clear (PC) <- address

Otherwise program execution continues at the

next sequential instruction. No flags are

affected.

If Carry flag is set (PC) <- address

Otherwise program execution continues at the

next sequential instruction. No flags are

affected.

(d) <- (s)

The content of source Register s is copied

into destination Register d. No flags are

affected.

4-45

THE OTHER REGISTERS AND MEMORY ADDRESSING

MVI r, data (r) <- data

Register r is loaded with the data contained

in byte 2 of ,the instruction. No flags are

affected.

INR r (r) <- (r) + 1

Register r is incremented. Zero is set or

reset. Carry is not affected.

DCR r (r) <- (r) - 1

Register r is decremented. Zero is set or

reset. Carry is not affected.

ADD r (A) <- (A) + (r)

Zero is set or reset. Carry is set or reset.

ADC r (A) <- (A) + (r) + (CY)

Zero is set or reset. Carry is set or reset.

ADI data (A) <- (A) + data

Zero is set or reset. Carry is set or reset.

ACI data (A) <- (A) + data + (CY)

Zero is set or reset. Carry is set or reset.

4-46

THE OTHER REGISTERS AND MEMORY ADDRESSING

SUB r (A) <- (A) - (r)

Zero is set or reset. Carry is set or reset.

SBB r (A) <- (A) - (r) - (CY)

Zero is set or reset. Carry is set or reset.

SUI data (A) <- (A) - data

Zero is set or reset r Carry is set or reset.

SBI data (A) <- (A) - data - (CY)

Zero is set or reset. Carry is set or reset.

XRA A (A) <-·oo

Zero is set. Carry is reset.

(Note: XRA A is a member of a set of logic

instructions which wi 11 be introduced later.

The above definition applies to XRA A only).

RST 4 Enter monitor

This applies to the !CS Microcomputer Training

System only.

4-47

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.6.2 Review and Self Test

In the preceding sections we have used data transfer instructions,

arithmetic and counting instructions, and immediate instructions.

Test your knowledge by answering the questions below. Correct

answers are on Page 4-51.

4-48

1) Use transfer notation to describe these instructions:

(Section 4. 5)

MOV C,E

SUB r

MVI D, 13

ADC E

AC! 00 '. I\

2) What instruction is described by each of the following

statements in transfer notation? (Section 4.5)

(8300) <- (A)

(PC) <- address

(r) <- (r) - 1

(A)<- (A) t data t (CY)

3) What instruction usually appears at the end of a repetitive

loop controlled by counting? (Section 4.4.1)

THE OTHER REGISTERS AND MEMORY ADDRESSING

4) Identify the register and flags affected by each of these

instructions. (Section 4.5)

INR D

MOV B,A

STA 8300

ADC E

Register Zero Carry·

4-49

THE OTHER REGISTERS AND MEMORY ADDRESSING

This page intentionally left blank.

4-50

THE OTHER REGISTERS AND MEMORY ADDRESSING

Answers to Self Test, Section 4.6.2

1) MOV C,E (C) <- (E)

SUB r (A) <- (A) - (r)

MVI D, 13 (D) <- 13

ADC E (A) <- (A) + (E) + (CY)

AQI 00 (A) <- (A)+ (CY)

2) STA 8300 (8300) <- (A)

JMP address (PC) <-address

DCR r (r) <- (r) - 1

AC! data (A) <- (A) + data t (CY)

3) A repetitive loop controlled by counting us ually ends with JNZ

4) Register Zero Carry

INR D D X

MOV B,A B

STA 8300 None

ADC E A X X

4-51

THE OTHER REGISTERS AND MEMORY ADDRESSING

Bit Pattern

0000 0000

0000 0001

0000 0010

0000 0100

0000 1000

0001 0000

0010 0000

0100 0000

1000 0000

1111 0111

4-52

0

Bit Patterns for MTS Display

Figure 4-5

Display

Off

(Top Horizontal)

(Upper Right)

(Lower Right)

(Bottom Horizontal)

(Lower Left)

(Upper Left)

(Middle Horizontal)

(Decimal Point)

(All Elxcept
· Bottom Horizontal)

THE OTHER REGISTER S AND MEMOR Y ADDRESSING

4.7 THE MTS DISPLAY

Until this point the only means we have used for input of data and

output of results has been to enter the monitor and look at registers

and memory locations. Now we will output directly to the display.

The hardware used in this process is described in Chapter 5; for the

moment simply accept the following functional description. Later we

will explain the external process.

4.7.1 Displaying a Bit Pattern

If you store a pattern of bits in a cetain memory location, that

pattern will be reproduced in one of the display digits. Note that

the bit pattern is not interpreted as a number, but reproduced as a

pattern. Figure _4-5 shows the segments illuminated by each bit. If

only one bit in the pattern is a 1 and all others are 0, then exactly

one segment will be illuminated. If two bits are l's, then two

segments will be illuminated. The last pattern in Figure 4-5 shows

seven bits set to 1; only the bottom horizontal is left off. Try this

with the following program.

4-53

THE OTHER REGISTERS AND MEMORY ADDRESSING

8200 32

8201 F8

8202 83

8203

8204

C3

03

8205 82

STA 83F8

JMP 8203

Before running this program, enter a value into register A.

REG

RUN

RESET

REG

RUN

A

A

4

F

0

7

8200

8200

8200

A.

A-40

32

A-F7

The bit pattern you enter into Register A is reproduced in the left

hand digit. The monitor destroys the pattern you have displayed, so

here we cannot reenter the monitor automatically, nor step through

the program.

to itself.

that jump,

Instead the program ends with an instruction that jumps

The program waits here indefinitely, simply repeating

until you press RESET. Therefore, we can now write

programs that have output functions but no input. Until we learn of

other means of input (in Chapter 6) we are limited to generating

displays that change only according to values built into the program,

or values entered before running the program. The following exercise

uses such a procedure.

4-54

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.7.2 Display Digit Addresses

You saw above that a pattern stored at memory location 83F8 appears

in the left digit. The next digit is controlled by 83F9, the third

by 83F A, etc. The right hand digit is controlled by the bit pattern

stored at 83FF.

We can load the display with a fixed pattern by a series of

instructions like:

MVI A, xx.

STA xxxx

To create the bit pattern for a desired display, draw the pattern in

seven segment format, and mark the bit numbers. For example:

0

5
6

4

3

1

2

76 54 3210
!oh !1!0 !1! 1!o!1 !

If the segment is to be illuminated, enter a 1 for that bit position

into the pattern; otherwise enter a O. Translate the bit pattern

into hexadecimal and use that value in a MVI A, data instuction. The

above example gives a HEX value of 6D, so the instruction is

3E MVI A, 6D

6D

4-55

THE OTHER REGISTERS AND MEMORY ADDRESSING

For example, the series below will display res.

8200 3E MVI
8201 06
8202 32 STA
8203 F8
8204 83
8205 3E MVI
8206 39
8207 32 STA
8208 F9
8209 83
820A 3E MVI

820B 6D
820C 32 STA
820D FA
820E 83
820F C3 JMP
8210 OF
8211 82

Exercise: Convert your

the patterns

pleases you.

4-56

A, 'I I

83F8

A, 'C I

83F9

A, Is I

83FA

820F

own initials or name

from Figure 4-5, and

\ I

into

make

characters, using

a display that

)

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.8 REGISTER PAIRS AND MEMORY ADDRESSING

In the examples and exercises of Sections 4.3 and 4.4 we often used

two registers to store a 16 bit number (and once, three registers for

a 24 bit number). The general purpose registers (B, C, D, E, H, L)

are equivalent to each other for the instructions used so far. They

store data, provide operands for arithmetic and logical instructions,

and count either up or down. When we stored a multiplicand in

Registers B and C we could equally well have chosen any other two

registers, or we could have reversed the order, using B for the low

byte and C for the high byte.

Many instructions of the 8080 treat the general purpose registers as

pairs, to hold sixteen bit numbers, in much the way we have been

using them:

Register Pair B B contains high byte
contains low byte

Register Pair D D contains high byte
E contains low byte

Register Pair H H contains high byte
contains low byte

Their arrangement is like that of Registers W and Z, and for the same

reason: a pair of eight bit registers.is able to store a 16-bit

memory address.

A number of instructions use register pairs for addressing the data

memory. There are several reasons for addressing the memory this

way. The least important (but not trivial) reason is efficiency. If

the same address is to be accessed repeatedly, it takes less program

space and running time to load the address into a register pair than

4-57

THE OTHER REGISTERS AND MEMORY ADDRESSING

to repeatedly load the memory address from the program memory into

W,Z. More importantly, if the same operation is to be performed on

data in a series of adjacent memory locations, that operation can be

performed in a repetitive loop, with the address being modified by

incrementing (or decrementing� the register pair.

In many applications · a memory address is calculated from variable

data, or loaded from another memory location.

4-58

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.8.1 The LDAX and STAX Instructions

Register pairs B,C and D,R are used for addressing by the LDAX and

STAX instructions. These correspond to the LDA and STA instructions,

differing only in the source of addres� information. As is the case

in all instructions using register pairs, the name- of the first

register is used to identiff the pair, as in LDAX B:

HEX CODE:

MNEMONIC:

MEANING:

OA

LDAX B

Load Register A with the content of the memory

location whose address is contained in

register pair B,C. No flags are affected.

This is called an indirect instruction, and is expressed as: " Load A

indirect from B". The term "indirect" means simply that the content

of the designated register is not to be loaded; rather, its content

is the address of a location to be loaded. The address is obtained

indirectly, rather than by directly specifying it as the LDA

instruction would have done.

4-59

THE OTHER REGISTERS AND :f,'1E-MQRY ADD RESSING

The other instructions in this set are:

lA LDAX D Load A indirect from D

(A) <- ((DE))

The STAX instructions similarly provide for storing data: -

02 STAX

12 STAX

B

D

Store A indirect at B

((BC)) <- (A)

Store A indirect at D

((DE)) <- (A)

The content of A is stored in the memory location whose address is

contained in the named register pair. Note that double parentheses

such as ((BC)) imply the content of the memory location whose address

is contained in register pair B,C.

Figure 4-6 illustrates the instruction cycle for STAX D, which

typifies this usage of register pairs.

Note the absence of LDAX H and STAX H. The register pair HL is ,used

to address memory in an even more powerful way, which will be

introduced in Section 4.9.

4-60

THE OTHER REGISTERS AND MEMORY ADDRESSING

A

D

E

p C

0

p

A

D

E

C

A

D

E

p C

PROCESSOR

-

83

01

8209

Memory selects 8209
and returns data

CPU loads data to I and
increments PC

83

01

12

CPU interprets instruction

CPU sends content of D, E
as an address

Memory selects 8301

09

820A

MEMORY

'
12

�

0 CPU sends content of A to :rnerrory

Instruction Cycle for STAX D Instruction

Figure 4-6

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

8 2 0 4

8 2 0 5

8 2 0 6

8 2 0 7

8 2 0 8

8 2 0 9

8 2 0 A

8 2 0 B

8 2 0 C

8 2 0 D

8 2 F F

8 3 0 0

8 3 0 1

4-61

THE OTHER REGISTERS'AND MEMORY ADDRESSING

A 77 a

B b 7C

C 39 C 58

D d 5E

E 79 e
F 71 f

G 3D g 6F

H 76 h 34

I 06 i 04
J lE j
K k

L 38 1 06

M use N,N m use n,n

N 37 n 54

0 7F 0 5C

p 73 p

Q q 67
R r 50

s 6D s

T t 78

u 3E u lC

V use u V use u

w use u,u w use u,u

X X

y 6E y

z 5B z

HEX Codes and Characters

Figure 4-7

'4-62

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.8.2 Copy a List to Display - Exercise

With the LDAX and STAX instructions it becomes easy to access data in

successive memory locations. In this exercise we will create a

sequence of characters translated into bit patterns and place this

sequence into'memory as we load the program. Then the program will

copy the characters into the display.

Figure 4-7 gives

Unfortunately K

HEX

and X

codes that can be

are impossible,

used for most characters.

M and W require double

characters, and several others are not very good representations

because of the physical limitations of, a 7-segment display. Use this

table to generate a list of characters to be displayed,,and store the

list starting at address 8300. For example:

8300 73

8301 5C

8302 06

8303 04

8304 58

8305 79

4-63

THE OTHER REGISTERS AND MEMORY ADDRESSING

Now write a program, using MVI instructions to load register pair BC

with the address of your list (8300); pair DE with the address of the

display (83F8), and Register L with the number of characters. Use

these addresses to copy the list into the display.

OA

12

LDAX B

STAX D

Load Character

Copy to display

Increment the addresses in Register C and Register E; (the high bytes

in B and D should not change); Count down in Register L and repeat

(use JNZ) until the required number of characters have been copied.

Finally jump back to the starting location (8200).

Write and code your program. Step through the program to test the

program flow, but do not expect to see any results in the display

while you are stepping. The monitor program uses the same display by

writing to the same memory locations you are using. After the first

time the JNZ instruction is executed, look at the registers to make

sure they contain the correct addresses and count.

4-64

REG

NEXT

NEXT

NEXT

REG

B

L

820A

820A

820A

820A

820A

B-83

C-01

D-83

E-F9

L-05(?)

THE OTHER REGISTERS AND MEMORY ADDRESSING

The count in Register L should now be one less than the number of

characters, since it has counted down once. The given solution

(Figure 4-8) has six characters. Your program may have fewer or more,

but not more than eight, since that is the size of our display.

4-65

1-
w
w
I
C/)

CD z
0
0
(.)

�
w
I­
C/) >­
(/)

(.9 z
z
<(
a:
l­
a:
w
I­
:)
a..
�
0
(.)
0
a:
(.)

>-

C/)
�
w
I­
C/) >­
(/)
a:
w
I­
:)
Q.
�
0
(.)

0
w

a:
(.9
w
1-
z

4-66

A D D R

so<O o

1

2

3

4

5

6

7

8

9

/?_�/) A
B

C

D

E

F

a o2 Io
1

2

3

4

5

6

7

8

9

A

B

C

D

E

f

8 , ;;n o
1

2

3

4

5

6

7

8

CODE

c) /,-;

l,P �

II> E
() /)

/ (u

J .. 3
I E

F p

.,j E

() 11,
() /I
/ c2.
0 C
I C

.:;__])

{!, /2

() II
y c2
(! 3
CJ 0

J' b/

7 3
5 C
() 0
() LJ
�- J'
'l 9

COPY LIST TO DISPLAY

/VI V T 6 p
..,

�j
/

M v L ·C {) {)

tV\. J T]) f 3
,

;vi v' I £ I� J'
,,

M 1) .I L 0 h
I

L J) I+ ·f,_ B
s 7 f} X.])
I N R C.
1 A) R E
1) C R. L
J N z p d,. L) fl

0 M p p ,::2 {) 0

L I s T {) ;:: C I-I

·,
I

>- (}�dhlfAA) �-�
/j}y-f.i .) 13�

k'

-....
l

I /JnlA1ro/l ..),-/��¥IPA., 7

../ _,,1-,/-..f 1 _7)£ I {I

J

. - (J M.h /J /' t;;-') f'. . . f:
,.
} A

(I j /1}, dJ /1 � . .� "--- - , -� j,

..,,1,;, -/2_,,, ,,,.., I/) d �
1

V},Lt/t_:: r1�
J

LI A ,a!fLEu

��/?f /) . /-,_, :,,,-; _, ;

(7,Ll � _,, -A r, i/

l-J{J .FU /J -j- / ; _,, � /

(_..//- � :,,, , .• &!.,
t1

J J-;; h -t-; cu1�
()

ltR!t-C T� RS

Figure 4-8

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.8.3 Display of Eight Characters

If you display exactly eight characters in the preceding program you

can make use of the fact that the final display location is 83FF.

When the display has been fully loaded, the INR E instruction will

count to 00, setting the zero flag. In your program, replace the DC R

L instruction with NOP (HEX code 00). Now exactly eight characters

will be displayed. If you want any blank characters, put zeros in

the table to turn off all segments.

4-67

THE OTHER REGISTERS AND MEMORY ADDRESSING

This page intentionally left blank.

4-68

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.8.4 Register Pair Loading - LXI

Because it is so common to use register pairs for addressing memory,

the 8080 includes special load immediate and counting instructions

fo�'register pairs.

01 LXI B, address
xx (low byte of address - to Register C)
xx (high byte of address - to Register B)

11 LXI D, address
xx (low byte of address - to Register E)
xx (high byte of address - to Register D)

21 LXI H, address
xx (low byte of address - to Register L)
xx (high byte of address - to Register H)

These instructions are similar to the MVI instructions, except that

two bytes of data follow the op-code and two registers are loaded.

Note that we will write the addresses in a mnemonic instruction in

the conventional way, with high byte first:

LXI D, 8300

When this is translated into 8080 machine language we must follow the

8080 convention (as in JMP instructions) with low byte first, then

high byte:

11 LXI D, 8300

00 (low byte of address)

83 (high byte of address)

4-69

THE OTHER REGI STERS AND MEMORY ADDRESSING

In transfer notation we use the abbreviation rp to designate any one

of the register pairs. The LXI instructions can then be defined as:

LXI rp, address

(low register of pair) <- (byte 2)

(high register of pair) <- (byte 3)

No flags are affected.

In your program for copying a list to the display, replace the MVI

instructions with LXI instructions.

Change These To These

06 MVI B,83 01 LXI B, 8300

83 00

OE MVI C,00 83

00 00 NOP

16 MVI D,83 11 LXI D, 83F8

83 F8

lE MVI E,F8 83

FS 00 NOP

The program operation will be unchanged.

4-70

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.8.5 Register Pair Counting - INX, DCX

In the program for copying a list to the display we started the list

at 8300, so for eight characters it ended at 8307. Suppose the list

were to start at 82FF. Then the first INR C instruction would

advance Register C to 00, but Register B would not be affected and

the address in B,C would be 8200. The 8080 includes register pair

counting instructions, which will count a sixteen bit number in a

pair.

03

13

23

INX B

INX D

INX H

OB

lB

2B

Again using rp to designate a register pair:

INX rp

DCX rp

(rp) < - (rp) -t 1

No flags are affected

(rp) < - (rp) -- 1

No flags are affected

DCX

DCX

DCX

B

D

H

Note that the register pair counting instructions do not affect any

flags. In the modified "Copy List to Display" program, using the

count of Register E to terminate the loop, we must continue to use

INR E, since INX D would fail to terminate the loop at 8400. We can

use INX B to address the list, and we are then not constrained to

start the 1 ist at any particular place. Figure 4-9 shows the fully

modified version of the given "Copy List to Display" program.

1-w
w
I en
(!)
z
0
0
(.)

2
w
I­C/)
>­
(/)

(!)
z

z
�
er::
I-­
er::
w
1-
::J
0..
2
0
(.)
0
er::
u

�

en
2
w
I­C/)
>­
(/)
er:
w
1-
::J
0..
:aE
0
(.)
0
w

er::
(!)
w
1-
z

4-72

A D D R

a ,-3_ {) o
1

2

3

4

5

G

7

8

9

J'c<'D A

B

C

D

E

F

a o2 I o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

2 ,,.J f= F
s

J

?{)o
1

2

3

4

5

6

7

8

CODE

() I

F F
? cZ
I /
;::- i
Jl l3
/) ()
0 0
0 0
CJ (J

f) A

I (,:2
I) -3
I C
0 D
(! :J.
(!) II
9 r2
{}, 3
C) {)
J' �

l'J ()
'7 3
6 C.
t) �

(") ti
5 R
7 q
I) t)
t!} t)

COPY LIST TO DISPLAY

L x T /3 p .;) F
/

L x I u J' 3 F
/

N () f
fl) a p
jJ () fJ
lV 0 p
L]) It x B
s T A- x 1)
1 N ·x B
J:. N R �

N D p
J N z 3 � 0 fl

J"" M p .8' c2 0 t)

L I s T 0 F C
� L A- tJ K
p
t)

L
.I

C

E

B L A tJ K'.

13 L- IIJ .N J<

r=

p

1-f

' �

rlr/d tiA-Aj�_A T

(C)k----1-1=
(.8)k-?c2

/JrldJ> ILA A) Y71;, /J//'1 �

(£.)k--FJJ (/ 0

(lJ)c--PS
.J ,rv} .h tJ J I, • ,r-h;�)

' t/

:'/J�:,.. J/'l,f'JJ,/J t}1j /J/-J /i / J
/\/\VI L c/ ,I

(' __/. /.J Ji A p_h·A. .. j .,,_, -7.. r
(��I� �j '7f'J� ,,.·�///JI. �

Y111£T fllnA ,-1 �-J-;,1/I
'-/!fl�/* /1 '.r1,; J-. ..

t?

� fl 11 fl -:I. � , .,.,,·7/· 1
JI � '_, l·_..,1 0 ,,/ _)

/

I y:J,; � 1 J ;/-;. A .h}), -j-;

IJ-Rffe 7 ERS

Figure 4-9

THE OTHER REGISTERS AND MEMOH.Y ADDRESSING

4.8.6 Delay Loops

Although most of the operations we have performed with the computer

appear to happen instantaneously, in fact each step in the computer

takes a defined time to occur. If a delay of a specific length of

time is desired it is easy to achieve, provided that the computer has

nothing else to do. The trick is to perform some simple operation a

very large number of times.

We will cause the display we created in the previous exercises to

appear gradually by inserting a delay loop between characters. The

program description becomes:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

Address List

Address Display

Copy one character

Set Delay

Count Delay down to

Next List Addresses

Next Display Digit

Repeat fro- 3 until

Clear the display

Repeat from start

to display

zero

finished

(BC) <- 82FF

(DE) <- 83F8

((DE)) <- ((BC))

(HL) <- 04 00

(BC) <-(BC)+ 1

'(E) <- (E) i 1

This will load the display as before but with a delay between

characters. Once loadeq, the display will be turned off by writing

zero into all the display locations, and the process will be

repeated.

4-73

THE OTHER REGISTERS AND MEMORY ADDRESSING

Steps 1, 2, 3 and 6, 7, 8 are the same steps we have been using. Step

4 uses another LXI instruction (LXI H,0400). The delay sequence is:

r · DCR

JNZ

DCR

-------JNZ

L

H

Register L repeatedly counts down from 00, FF, FE --- 01, 00. The

final count sets the Zero flag and register H is counted once. Then

L is counted down from 00 again, and so on until Registers H and L

have both reached zero. (Be sure you understand this - study the

sequence above carefully). For an 8080 running at normal speed this

delay loop takes 3855 clocks or .001882 second for each count in

Register H. Since we started with a count of 4 in Register H, the

delay would be only 7�5 milliseconds (.0075 second) at full speed,

still an imperceptible time. Because we are using the MTS monitor

your program is executed much more slowly, and the value given is

suitable for our purpose. The slow operation is explained in the

next section.

Note that we have placed the address incrementing instructions (INX

B, INR E) after the delay. The delay count uses the Zero flag, so

the INR E instruction must follow the delay so that it can terminate

the loop for displaying digits.

THE OTHER REGISTERS AND MEMORY ADDRESSING

To clear the display �e can ag�in load its address into (PE) and

write zeros into all eight locations.

Write this program yourself, referring to the program description.

Then compare your results with our solution. (Figure 4-10). The next

section describes a new technique for testing the program flow.

4-75

1-w
w
I
U)
(!) z
Cl
0
(.)

�w
1-U)>­U)
(!) z
z
<(
a:
l­
a:
UJ
1-
:J
Cl.
�
0
(.)
0
a:
(.)

2

U)
�
UJ
1-U)>­U)
a:
w
1-
:J
Cl.
�
0
(.)

Cl
w

a:
(!) w
1-z

4-76

A D D R CODE

Bc:20 o t) I
1 r �
2 J' :2
3 I I
4 F J''
5 p 3

P�()G 6 fl
7 I :2
8 c:2.- I
9 0 {)
A a JJ

YdlJ B � J>
C C :;
D (!) 8
E tf �
F l� :J

a o2 / o C :)
1 {) 13
2 J' .;?
3 {) 3
4 I C
5 C r2
6 ·CJ �
7 SJ (j_
8 / /
9 F J'
A f 3

B fr F
?c:2_/ C I d,

D I <3
E C <f2
F I C

8 o:1� 0 ? �
1 (3 3
2 0 0
3 IP :2
4

5

6

7

8

L

L

L

.s

L

J)

J

])

J

I
I

J

L

X

s

I

J

J

8
/)

GRADUAL DISPLAY WITH CLEAR

x I. 6
I/

x I l)
I

]) A- "i, 8
7 /)- X J)
x 7_ /-I I

/

C 1< L
N z g

C R H
N z ?

Iv' X B
IJ R E
Iv' z f

X I. J)
I

I

R A A
T 4 x J)
Iv R E

tJ z J'

M p J?

A M E])
� ;=- I. G-

y .;L F F

,f 3 ? J'

0 7' tJ 1)

o2 - {) 13

� 0 i3

� 0 l.0

y 3 F �P

di / C

c2_ CJ 0

R T I)
v1 R. E:

/) d d� ti ,A,A)('� ;I-:
I

r'J /Id;, 11 ,,,, A) if t � F ;J,,, • �

.... f� -t- -11, t7 ,,-i J ..,.

{/'

"-17/) J,,,.. I J '� .r)

{/ (/

II

f /tv!/-· (7../ a J.. /J fi:tiA_.,
'-/),/J;//- -/;. J • /-J I'],.,

·A�t'JA� ./J_.,."h'L

ti � ·_ j � � ,� Al
....

(T

// d1 d h /) ,a..a) i./), A• fl If /M J :

J.A.,.,) (/ t7 ,7 /J Jr ; .,J /,((I

I 0

(f})i:--O?J
<../1>:i� r 1::-- OLJ
0 £/r, '-/2 /-:}'., f ..

� �ri,.,_.,,-,t. /.J er,/� /J,,, - � _.,
fl

l�AJ,) L,., �.l.T,

L T'l'! /JT ?cl.FF

L/-9

Figure 4-10

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.8.7 Breakpoints

We have used the MTS monitor to step through programs to test the

program flow and look for errors. In a program that has short

repetitive loops this is a little tiresome; when a loop such as the

delay in this program is repeated a large number of times it is

impractical to step through it • . You would have to press STEP more

than 16,000 times to step all the way through this program.

The monitor has a powerful feature that avoids repeated stepping, yet

allows you to test program flow thoroughly.

Using the program solution given in Figure 4-10 we shall demonstrate

the breakpoint ability of the monitor. (Be sure that the toggle

switch at the left of the circuit board is in the "single step"

position.)

RESET

Do not press RESET again after the next steps.

ADDR

BRK

8 2 0 6

8200

8206

8206 BP.

01

OA

4-77

THE OTHER REGISTERS AND MEMORY ADDRESS ING

We have set a breakpoint at 8206, the LDAX B instruction.

ADDR 8200 01

This displays the present program address, at present the start of

the program.

RUN 8206 OA

Your program was executed until it reached the instruction whose

address you entered as a breakpoint.

been executed.

STEP

STEP

STEP

STEP

STEP

This instruction has not yet

8207

8208

820B

820C

820B

12

21

2D

C2

2D

We have now started the long countdown in Register L. We have 255

steps to go.

REG L 820B L-FF

4-78

THE OTHER REGISTERS AND, MEMORY ADDRESSING

Now we know that this piece of the program is operating. Enter

another breakpoint after this loop, at DCR H.

ADDR

BRK

RUN

8 2 0 F 820F

820F

(Z) 820F

25

BP.

L-00

The first segment of the delay loop has been executed and we have

reached the brea·kpoin t at 820F. The last register we displayed is

shown again, just as. though we had stepped 255 times . Register L has

counted down to zero (note that the zero flag is set) and we are

ready to count in Register H.

REG

STEP

STEP

RUN

RUN

RUN

H (Z) 820F

8210

820B

(Z) 820F

(Z) 820F

(Z) 820F

H-04

H-03

H-03

H-03

H-02

H-01

Note that we are always seeing the Zero flag set from counting down

in Register L.

4_-79

THE OTHER REGISTERS AND MEMORY ADDRESSING

The program is stopped before we execute the OCR H. Now we are about

to count H down to zero.

STEP

ADDR

STEP

The JNZ (C2) instruction was not executed.

addresses being incremented.

REG

STEP

C

(Z) 8210

(Z) 8210

(Z) 8213

H-00

C2

H-00

We can watch the

(Z) 8213

(Z) 8214

C-FF

c-oo

The Zero flag is still set from the previous DCR H. The next time

around we shall see that when (BC) becomes 8301 the Zero flag is not

affected.

Now we should STEP to be sure that the next untested instructions are

correct.

REG

STEP

STEP

ADDR

E

This is the LDAX B instruction.

REG A

(Z) 8214

8215

8206

8206

8206

Register A still contains the first character of the list.

STEP 8207

4-80

E-F8

E-F9

E-F9

OA

A-00?

A-73?

THE OTHER REGISTERS AND MEMORY ADDRESSING

We have loaded the second display character. When we press RUN that

character will appear momentarily on the display before we reach the

breakpoint at 820F.

RUN p

(Z) 820F A-73

REG H (Z) 820F H-04

RUN (Z) 820F H-03

RUN (Z) 820F H-02

RUN (Z) 820F H-01

We are about to leave the delay loop.

STEP (Z) 8210 H-00

STEP (Z) 8213 H-00

Watch REG C and the Zero flag.

REG C (Z) 8213 c-oo

STEP (Z) 8214 C-01

As promised, INX B did not affect Zero. We need not continue to

observe this part of the program, but we might want to see each

character displayed.

4-81

THE OTHER REGISTERS AND MEMORY ADDRESSING

We shall clear the breakpoint at 820F, but leave the breakpoint at

8206. Press BRK to display the breakpoint:

BRK

CLR

(Z) 820F

(Z) 8206

BP.00

BP.00

Clear removes the breakpoint displayed and shows the other one.

ADDR

RUN

RUN

,(Z) 8214

8206

lC

C-01

The third character appeared momentarily and we are about to send the

fourth. If you are now satisfied that this part of the program works

we can clear the breakpoint at 8206, and insert a new breakpoint at

8218, just before the display is cleared.

BRK

CLR

No breakpoints remain.

ADDR

BRK

ADDR

8

MEM

2 1

Pressing ADDR shows the instruction.

8

8206

8218

8218

8206

BP.00

BP.

11

BP.

.OA

MEM tells the monitor to

display the instruction instead of a register.

4-82

THE OTHER REGISTERS AND MEMORY A DDRESSING

Now run the remainder of the program.

RUN licE

(Z) 8218 11

After the rest of the message was shown we reached the breakpoint at

8218 when Register E counted to zero.

Step through the display clearing loop once, and then practice what

you have learned by setting breakpoints at the JNZ and JMP

instructions. After a couple of times through the clearing loop,

remove the breakpoint at JNZ, and watch the program stop at the JMP.

Finally, remove all breakpoints by pressing RESET, and run the whole

program.

It was pointed out in Section 4.8.6 that your program executes slowly

because of the MTS monitor. Before each of your instructions is

executed the monitor looks in its list of breakpoints to see whether

your program counter has reached one of them. This is done by the

8080 executing the monitor program. For every one of your

instructions that is executed the 8080 executes at least 68

instructions of the monitor program. When you have entered

breakpoints some of these must be executed in repetitive loops,

making the process even slower. You can make your program run at

full speed, after it is tested and operates correctly, by switching

the monitor off. At the left edge of the MTS circuit board there is

a switch. In its low position (STEP) the monitor is active; in AUTO

the monitor is inactive.

4-83

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.8.8 Review and Self Test

This section has introduced register pairs) and used them to address

memory. We have practl�ed the use of the MTS Display and used

repetitive loops to address successive locations in·memory and to

generate a time delay. Monitor breakpoints were introduced. Test

your knowledge with this quiz.

1) Identify the three register pairs, and tell which register is

used for the high byte and the low byte of an address stored in

the pair. (Sections 4.8, 4.8.1)

Register Pair Name High Byte Low Byte

2) Describe the following instructions using transfer notation.

(Sections 4.8.1, 4.8.4, 4.8.5)

LXI

INX

LDAX

STAX

B,

D

D

B

address

3) Which flags, if any, are affected by each of the above

instructions? (Sections 4.8.1, 4.8.4, 4.8.5)������������

4) Give the MTS key sequence to set a breakpoint at address 8218,

(Section 4. 8. 7)

4-84

.)

THE OTHER REGISTERS AND MEMORY ADDRESSING

5) Create a bit pattern to display the numeral 3, and translate it

into hexadecimal. (Section 4.7.1) ���������������

6) Give the two instructions to display a 3 in a digit addressed by

(DE). ·,\ � \ I
; '

7) What hexadecimal value should be written to a display location

for a blank digit? (Section 4.7.1)

4-85

THE OTHER REGISTERS AND MEMORY ADDRESSING

Answers to Self Test - Section 4.7.8

1) The register pairs ire:

B

D

H

2) LXI B, address
or

INX D

LDAX D

STAX B

B Stores the
Stores the

D Stores the
E Stores the

H Stores the
Stores the

(BC) <- address
(C) <- byte 2 of instruction

(low address)
(B) <- byte 3 of instruction

(high address)

(DE) <- (DE) + 1

(A) <- ((DE))

((BC)) <- (A)

high byte
low byte

high byte
low byte

high byte
low byte

3) None of the above instructions affects any flags.

4) To set a breakpoint press

ADDR 8 2 1 8 BRK

5) Bit Pattern for 3 = 01001111 = 4F

6) To display 3 at (DE)

MVI A, 4F

STAX D

7) Hexadecimal 00 gives a blank.

4-86

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.9 USE OF A MEMORY LOCATION AS A REGISTER

Register pair HL is primarily intended for addressing memory, and the

memory location addressed by (HL) is available to the CPU as though

it were another register. All of the register reference instructions

(MOV, MVI , INR, DCR, ADD , ADC, SUB, SBB, and others not yet

presented) have counterparts that perform the same function using the

memory location addressed by (HL). The flags are affected as though

the memory location were a general purpose register.

Before carrying out an exercise involving this type of memory

addressing, we will formally define some instructions involving

memory reference. Note that in transfer notation parentheses mean

"the content of", so (HL) refers to the content of register pair HL.

Doubled parentheses such as ((HL)) mean "the content of the memory

location addressed by the content of register pair HL". In memory

reference instructions that treat this memory location as a register,

we use M to designate the register. For example: INR M. Thus (M)

is always equal to ((HL)). Instead of LDAX H and STAX H we have

equivalent instructions.

7E

77

MOV

MOV

A,M

M,A

(A) <- ((HL))

((HL)) <- (A)

4-87

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.9.1 Memory Reference Instructions

4-88

HEX

34

35

36

xx

MNEMONIC

INR M

DCR M

MOV M,s
(See Section 4.11.4

for hex codes)

MOV d,M
(See Section 4.11.4

for· hex codes)

MEANING

Increment Memory
((HL)) <- ((HL)) + 1
Increment the content of the
memory location addressed
by the content of register
pair HL.
If ((HL)) becomes O then (Z)<-1

else (Z) <-O
The Carry flag is not affected.

Decrement Memory
((HL)) <- ((HL)) - 1
Decrement the content of the
memory location addressed
by the content of register
pair HL.
If ((HL)) becomes O then (Z)<-1

else (Z)<-O
The Carry flag is not affected.

Move into memory from register

((HL)) <- (s)
The memory location addressed
by the register pair HL is
loaded with the content of
source register s.
The flags are not affected.
The content of s is not affected.

Move into register from memory
(d) <- ((HL))
Destination register d is
loaded with the content
of the memory location
The flags are not affected.
The content of the memory
location is not affected.

MVI M,data Move immediate data into memory
((HL)) <- (byte 2)
The memory location addressed
by register pair HL is
loaded with the content of
byte 2 of the instruction.
The flags are not affected.

86

BE

96

9E

THE OTHER REGISTERS AND MEMORY ADDRESSING

ADD M

ADC M

SUB M

SBB M

Add memory to accumulator
(A) <-(A)+ ((HL))
The content of the memory
location addressed by register
pair HL is added to the
content of Register A and the
result is placed in Register A.
The content of the memory
location is not affected.
If (A) becomes O then (Z) <- 1

else (Z) <- O
If the result of the addition
is greater than FF (ie a
carry occurs) then (CY) <- 1

else (CY) <- O

Add memory to accumulator
with Carry.
(A) <- (A)+ ((HL)) + CY
Flags are affected as in ADD M

Subtract memory from accumulator
(A) <- (A) - ((HL))
The content of the memory
location addressed by (HL)
is subtracted from the content
of register A and the result
is placed in register A. The
content of the memory location
is not affected.

If the result is zero the Zero
flag is set. Otherwise the
Zero flag is reset.

If the content of the memory
location was greater than the
original content of A then
Carry is set to indicate a
borrow. Otherwise Carry is
reset.

Subtract memory from accumulator
with borrow.
(A) <- (A) - ((HL)) - CY

Flags are affected as in SUB M.

4-89

THE OTHER REGISTERS AND MEMORY ADDRESSING

4-90

C START

-

1'

Address Augencl
(DE)- 8300

Address Addend
(HL)- 8304

Load Byte Counter
(C) - 04

Clear A and CY

,.

Add Bytes with Carry
Store Sum
Increment Both Addresses
Decrement Byte Count

'I,

Not Zero

zero
1 �

Not Carry

carry

, �

Increment High Byte
of Sum

1 �

Enter Monitor

Four Byte Addition in Memory

Figure 4-11

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.9.2 Four Byte Addition Exercise

The use of ((HL)) as a register makes it easy to do arithmetic with

numbers that are too large (i.e., require too many bytes) to be kept

in the working registers. For example: add two numbers of four

bytes each and replace one of them (called the addend) with the sum.

Allow the sum to occupy five bytes (since it might be as great as

OlFFFFFFFE). Figure 4-11 is a flow chart for the program. We shall

use Register C for a byte counter; DE for the address of the augend

(the number to be added to the addend) and HL to address the addend.

The augend is stored at 8300 - 8303; the addend and sum at 8304 -

8308.

Because we shall do the multi-byte addition in a loop, we must use

the ADC addition instruction. Carry must be cleared before the first

addition. We have peviously used:

AF XRA A

to clear Register A; the same instruction also clears the Carry flag.

The addition loop is:

XRA A

LDAX D

ADC M

MOV M,A

INX D

INX H

DCR C

JNZ

4-91

THE OTHER REGISTERS AND MEMORY ADDRESSING

At the end of this loop Carry is set if the sum is too great for four

bytes. Then either of these techniques can be used:

[JijC MOV A,M

INR M AC! 00

RST 4 MOV M,A

JMP START RST 4

JMP START

We have used ADC M and INR M, treating M or ((HL)) as though it

were a register. A program solution is given in Figure 4-12.

For additional practice, convert this into a multiplication program.

4-92

1-w
w
::i:

<.'.)
z
Cl
0
u

�w
I­
C/)
r
CJ)

<.'.)
z
z
<(
a:
l­
a:
w
1-
::J
Cl.
�
0
u
0
a:
u
2:

CJ)
�w
1-
(/)
r
(/)
a:
w
1-
::J
Cl.
�
0
u
Cl
w
�
a:
<.'.) w
1-
z

A D D R

8 ·') 0 0"
1

2

3

4

5

6

7

8

,Vc:70 9

A

B

C

D

E

F

s J / o

1

2

3

4

.YJ/ 6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

I I
I/? 0
i' :s
bZ I
{) ,�
J7 '-3
0 E
C, 14
'ff F
I l4
fl c
7 7
/ 3

� 3
0 lJ
C 2,
0 9
J' c2.
ll) l?
/ �

JJ ;2_
? -'I

E 7
e .,

() ()
IJ' r:2-

FOUR BYTE ADDITION IN MEMORY

L X. I])

L x 1 //

M \) ..L C
1

)(I<. /J /i
L l) It '>(
A D C M

M 0 V M

I IV x D
I tJ ·-1. 1-1
D C R C

J N z

J 1V C

I Iv R M

R s T '-I
J M p

J" d
I/

? 3
/

0 ¥
/

])

I f),

cf c2. ()

g d2 I

g c2 {)

I) 0

0 ,�

9

0

0

Clol.dL/7 /1 A .n) �"/., '/� d _, .,.,//
I

(/

i('}r!,,1h. A A A '/}dd�_.J at.,,,J

-��/1Lzi�
(/

(7 ;J/) /.A . /J � (!_, y

tl � /) ,//- ..L -�J h�I'I
(L , __ ,, � J. # ,,,,.,,�) f"'J /7 I. .4 ,,�

l_y 7)?/l �,,r , � ,,., n -:r (/•<

� dAI", � ·(!'� _ _} - , ;:,.,7
F_, ToL ��- � /fi. c/

Figure 4-12

4-93

I-,)

THE OTHER REGISTERS'AND MEMORY ADDRESSING

4-94

START

Address Display
Left Hand Digit

Count in Memory

Not Zero

Address Next Location
Count in Memory

Zero

Not Zero

Counting in the Display

Figure 4-13

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.9.3 Counting in the Display - Exercise

A trivial but amusing use of the INR M instruction allows us to view

a counting operation as it occurs. Since the display is controlled

by eight specified memory-locations, we can count in those locations

and see the effect on the display. Figure 4-13 shows the program

flow chart. The left hand digit of the display memory counts very

rapidly, using only two i�structions:

C
INR

··· JNZ

M

With the monitor disabled (set the STEP/AUTO switch to AUTO) this

loop is executed once in 10 microseconds. A full cycle in that digit

takes about .00256 second. The secon� digit counts 256 times more

slowly; allowing for the extra instructions, but a clock rate

slightly greater than 2 MHZ, a full cycle in the second digit takes

0.646 second� and the thitd completes • cycle in 165 seconds. How

long will it be before the display is all blank again?

THE OTHER RE GISTERS AND MEMORY ADDRESSING

4.10 INDIRECT ADDRESSING

We have previously described LDAX B (or MOV A,M) as "indirect

addressing". This is Intel usage of the phrase, but more

conventionally indirect addressing implies taking an address from one

location in memory to point to another memory location. This can be

done in two ways in the 8080.

LXI

MOV

IN X

MOV

Now register pair

stored in memory

powerful, as we

store an address

desired data.

4-96

H,

C,M

H

B,M

8300

BC contains an address

locations 8300 and 8301.

shall see in the later

which was (and still is)

This technique is very

exercises.

in memory, and later use that

A program can

address to find

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.10.1 Load and Store HL Direct

In order to use a memory location as a working register, its address

�ust be in register pair HL. We can load an address into pair BC as

above and then copy it to HL by using MOV L,C and MOV H,B. It is so

important to be able to do this kind of function that the 8080

provides an instruction to do it:

2A

xx

xx

LHLD Address

(low address)

(high address)

Load H and L Direct

(L) <- (address)

(H) <- {address t 1)

No flags are affected.

This is a three byte instruction similar to LDA address, but it loads

two bytes of data from memory. The byte stored at "address" is

copied into Register L, and the following byte is copied into

Register H. Be sure to understand the difference between LXI H

address and LHLD address.

LXI H, 8300 (L) <- 00

(H) <- 83

LHLD 8300 (L) <- (8300)

(H) <- (�301)

The reverse function is also available:

22 SHLD Address Store H and L Direct

xx (low address) (address) <- (L)

xx (high address) (address t 1) <- (H)

4-97

THE OTHER REGISTERS AND MEMORY ADDRESSING

Note that these are ca 11 ed "direct" instructions because the program

provides the address where the data are stored. Their principal use

is for indirect addressing; having loaded H and L directly, we now

use the information we loaded as an address to find other data.

LHLD

MOV

8300

A,M

We have loaded Register A from memory, using another pair of memory

locations (8300, 8301) to provide an address.

4-98

THE OTHER R EGISTERS AND MEMORY ADDRESSING

4.10.2 LHLD and SHLD - Example

To make these instructions more clear, enter and step through this

program:

8200 AF XRA A Clear A
8201 21 LXI H,8400 An address for data
8202 00

8203 84
8204 77 MOV M,A Store datum
8205 22 SHLD 8300 Store address

8206 00
8207 83
8208 21 LXI H,FFFF Discard the address
8209 FF to prove it has
820A FF been stored
820B 7D MOV A,L Discard the datum
820C 2A LHLD 8300 Recover the address
820D 00
820E 83
820F 7E MOV A,M Recover the datum
8210 23 INX H Next address
8211 3C INR A Next datum
8212 C2 JNZ 8204 Repeat 256 times
8213 04
8214 82
8215 E7 RST 4 Enter monitor
8216 C3 JMP 8200
8217 00

8218 82

The following pages describe the results of this program as you step

through it.

4-99

THE OTHER REGISTERS AND MEMORY ADDRESSING

This program will store the content of A (MOV M,A) at the address

contained in HL. At the beginning it stores 00 at.address 8400, and

stores 8400 at 8300 and 8301. Set the STEP/AUTO switch to step and

go through the first six instructions.

RST

STEP

STEP

STEP

STEP

STEP

STEP

Now inspect the registers and memory locations.

4-100

REG

REG

NEXT

ADDR

ADDR

NEXT

A

H

(the next register)

8 4 0

8 3 0

0

0

(the next memory location)

8200

8201

8204

8205

8208

820B

820C

820C

820C

820C

8400

8300

8301

AF

21

77

22

21

7D

2A

A-FF

H-FF

L-FF

00

00

84

THE OTHER REGISTERS AND MEMORY ADDRESSING

The registers contain garbage, but the ini tial value of A i s sto red

at 8400 and tha t address is stored at 8300, 8301.

ADDR

This is the LHLD instruction. Watch H.

REG

STEP

REG

H

L

820C

820C

820F.

820F

2A

H-FF

H-84

L-00

The address has been recovered by LHLD 8300, and (HL) now contains

8400.

REG A 820F A-FF

Register A still contains garbage but the next instruction (MOV A,M)

will recover the data from (8400).

STEP 8210 A-00

Place a breakpoint here (at 8210) and step thro ugh the next several

instructions.

ADDR

STEP

STEP.

BRK 8210

8211

8212

BP.

A-00

A-01

4-101

THE OTHER REGISTERS AND MEMORY ADDRESSING

Register pair H now contains the next address for data storage (8401)

and Register A contains the next datum.

STEP 8204 A-01

The new value in A wili be stored at 8401 by MOV M,A and the new

address will be stored at 8300, 8301.

RUN 8210 A-01

We have gone through the store and recover instructions, so once

again the address and datum have been recovered from memory by LHLD

8300 and MOV A,M.

REG

NEXT

ADDR

H

8 4 0 1

8210

8210

8401

H-84

L-01

01

Register pair HL points to memory location 8401, which contains the

datum 01, which we have already loaded into A.

We shall continue stepping through this program in the next section.

4-102

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.10;3 E�amining a Register Pair

The MTS monitor provides a convenient means of examining a register

pair and the memory location addressed by the register pair. Note

that key 8 is also labelled H. This refers to register pair H.

ADDR H MEM 8401 HL.01

The monitor is now addressing the same memory location that is

addressed by (HL).

NEXT 8402 ??

Next displays the next memory location. It does not affect the

contents of Hand L.

ADDR H

Run through the loop

RUN

ADDR H

We can look backward

MEM

MEM

MEM

again.

MEM

in memory by pressing:

8401 HL.01

8210 23

8402 HL.02

8401 • 01

8400 • 00

4.;,.103

THE OTHER REGISTERS AND MEMORY ADDRESSING

Repeat this a few more times.

RUN 8210 23

ADDR H MEM 8403 HL.03

RUN 8210 23

RUN 8210 23

ADDR H MEM 8405 HL.05

Remove the breakpoint and run all the way.

BRK 8210 BP.00

CLR BP.

RUN (Z) 8216 C3

The program has run all the way and is ready to start over.

REG A 8216 A- 00

ADDR H MEM 8500 HL.??

Now look through the memory.

ADDR 8400 8400 00

NEXT 8401 01

NEXT 8402 02

4-104

THE OTHER REGISTERS AND MEMORY ADDRESSING

Review what has been done. During each loop we stored a data byte in

a memory location (8400, then 8401, then 8402, etc.) and stored the

address of that memory location in a pair of other memory locations.

Then we used the registers for some other undefined purpose. Then we

recovered the address and the data byte, incremented both, and

repeated. The important points here are the storage of an address in

memory so that it could be found later, and indirectly loading data

from the addressed location.

4-105

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.10.4 Review and Self Test

The use of registers pairs for addressing memory, and the use of the

memory location addressed by (HL) as a working register are extremely

important features of the 8080 microprocessor. The next two

exercises use these features. Before going on, test your knowledge.

1) Assume (for the program below) that �emory contains:

8300
8301
8302
8303
8304
8305
8306
8307

03
83
03
06
QA
6F
FF
84

For each step in the following program indicate which registers

and/or memory lbcati6ns are affected, and give the content of the

register or memory location after execution of the instruction.

8200 LXI

8203 LDAX
8204 LXi

8207 ADD
8208 LHLD

820B INX

820C MOV
820D SHLD

8210 LHLO.

8213 DCR

4-106

B, 8302

a
H, 8304

M

8306

H

M;A
8309

8300
'

M

Register or
Memory Location

Content

\'·,

THE OTHER REGISTERS AND MEMORY ADDRESSING

2) Which instructions in the program above affect the Zero flag?

3) Which instructions affect Carry?

4) If you press the following keys after the instruction at 8213 has

been executed, what will be displayed?

ADDR H MEM

5) Neither of the following instructions exists in the 8080. What

equivalent instructions do exist?

LDAX H

STAX H

6) There is no instruction to load BC or DE in the same way that

LHLD loads HL. There are several ways to accomplish the same

function with three or four instructions. Give three ways to

load register pair B with the data stored at addresses 8300 and

8301. Which takes the fewest bytes of program memory?

) .

4-107

THE OTHER REGISTERS AND MEMORY ADDRESSING

Answers to Self Test, Section 4.10.4

1) After execution of: Register or Content
Memory Location

8200 LXI B, 8302 C 02
B 83

8203 LDAX B A 03
8204 LXI H, 8304 L 04,

H 83
8207 ADD M 4 OD
8208 LHLD 8306 L FF

' H 84
820B INX H L 00

H 85

820C MOV M,A 8500 OD
820D SHLD 8306 8306 00

8307 85
8210 LHLD 8300 L 03

H 83
8213 DCR M 8303 05

2) The Zero flag is reset by:

8207 ADD M (result = OD)

8213 DCR M (result = 05)

3) The Carry flag is reset by:

8207 ADD M

4) ADDR H MEM displays 8303 HL.05

4-108

THE OTHER REGISTERS AND MEMORY ADDRESSING

5) Instead of LDAX H use MOV A,M

Instead of STAX H use MOV M,A

6) To load BC with data from memory locations 8300 and 8301:

a) �DA 8301

MOV C.,A

LOA 8300

MOV B,A

This takes 8 bytes of program memory.

b) LXI H, 8300

MOV C,M

INX H

MOV B,M

This takes 6 bytes of program mempry.

c) LHLD 8300

MOV C,L

MOV B,H

This takes 5 bytes of program memory.

4-109

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.11 COMPARISONS AND CONDITIONAL JUMPS

We have repeatedly used the Zero flag in counting and repeating a

loop (DCR, JNZ).

We have

setting

and SBB

used the Carry flag in arithmetic in several exercises:

or resetting the flag by ADD and SUB; using it in ADC or ACI

or SBI; and demonstrated a conditional jump (JNC) in one

arithmetic program. There are a number of other ways to set or reset

the flags, and they are most often used with the conditional jumps.

Review the four conditional instructions that have been introduced so

far:

C2 xxxx

CA xxxx

D2 xxxx

DA xxxx

JNZ address

JZ address

JNC address

JC address

Jump if not zero

Jump if zero

Jump if not carry

Jump if carry

Recall that both Zero and Carry are affected by arithmetic and logic

instructions. Zero is affected by single register counting

instructions (INR, DCR) but not by register pair counting (INX, DCX).

Carry is not affected by counting. Pata movemen t instructions and

jump instructions do not affect any flags.

4-110

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.11.1 Comparison Instructions - CMP

In addition and subtraction the Carry. and Zero flags were set or

reset as a result of the arithmetic operation. There is a set of

comparison instructions whose only function is to affect the flags.

These instructions permit a program to determine whether the content

of Register A is greater than, equal to, or less than the content of

any specified general purpose register (including M). The operation

is identical to subtraction except that the numeric result is

discarded instead of being placed in Register A.

For comparing Register C with Register A the instruction is:

HEX CODE:

MNEMONIC:

MEANING:

B9

CMPC

Subtract the content of C from the

content of A and set the flags

accordingly. The content of A is not

changed.

This sets or clears the Zero and Carry flags as follows:

A greater than C

A equal to C

A less than C

Zero

Cleared

Set

Cleared

Carry

Cleared

Cleared

Set

4-111

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.11.2 Compare Immediate Instruction - CPI

The CPI instruction compares the content of the immediately following

data byte with the content of A.

HEX CODE:

SECOND BYTE:

MNEMONIC:

MEANING:

FE

Data

CPI

Subtract the value in the immediately

following byte from the content of A.

Set or reset all flags to reflect the

The content of of A is not changed.

For all of the arithmetic and logical instructions that operate on

data in Register A and one general purpose register, there are

corresponding immediate instructions. These may be thought of as

referring to a phantom register, created just to provide a desired

data byte.

4-112

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.11.3 Moving Message - Exericse

In our previous display exercises we have been limited by the eight

digit display. Here we shall output a longer message, shifting it

across the display. The message will be terminated by a character

with a period (decimal point) and then it will start again. Recall

that the decimal point in a display digit is controlled by bit 7 in

the byte written to the display memory, so:

79 = "E"

F9 = "E."

We can test for the decimal point by:

CPI 80

Any character that does not have a period or decimal point is less

than 80 (see Figure 4-7) so CPI 80 must set Carry unless a period is

present. Thus we can continue a loop to shift the display as long as

this instruction sets Carry; when the period appears we will restart

the message.

4-113

THE OTHER REGISTERS AND MEMORY ADDRESSING

The procedure to be used is this:

1) Copy 8 bytes of message to display. If the end of the message

is reached, continue from the start of the message until the

display is filled.

2) D elay

3) Examine the character displayed at the left. If it contains

a period, address the start of the message. If not, address

the next following character in the message table.

4) Repeat from (1).

We need to keep track of two message addresses - the start of the

message and the message location most recently displayed at the left.

During Step 1 we will increment the message address eight times and

then discard the final address. The starting location and the most

recent left hand location will be kept in memory.

4-114

8300, 8301

8302, 8303

Message start location

Most recent left character location

THE OTHER REGISTERS AND MEMORY ADDRESSING

A program flow chart is shown in Figure 4-14.

Write � and code this program yourself. The next section lists all of

the instructions we have introduced so far. Generate a message using

the characters from Figure 4-7 and store it in memory, or else use

one of two character tables that are in Read Only Memory -- at 02B3

or 0326. One of these displays the HEX characters and the other

displays the register name�, followed by some garbage characters.

Your own message can be more interesting.

A program solution is given in Figure 4-15, following Section 4.11.4.

4-115

THE OTHER REGISTERS AND MEMORY ADDRESSING

4-116

(from next
page)

START

store Message Starting Address
(HL)- Start of Message
(8300,8301) - (HL)

Store Left Character Location
(8302,8303) - (HL)

Address Left Digit of Display
(DE)- 83F8

Copy Character is Display
(A) - ((HL))

((DE)) - (A)
Test for Period
Address Next Character

No Period (Carry)

Period (No Carry)

Address Message Start
(HL) - (8300,8301)

Address Next Display Digit
(E) - (E) + 1

Not Zero

(to next page)

Moving Message

Figure 4-14a

THE OTHER REGISTERS AND MEMORY ADDRESSING

Set Delay

(from previous
page)

(HL)- 0400
Count Down Delay

Address Left Character
(HL) - (8302,8303)

Test for Period.
Address Next Character

Not Period

Address Start of Message
(HL) - (8300,8301)

Movi.ng Message (continued)

Figure 4.:.14b

4-117

THE·OTHER REGISTERS AND-MEMORY ADDRESSING

4.11.4 List of Instructions

Re-enter Monitor

E7 RST4 (applies to res Microcbmputer Training System
only.)

Jump and Conditional Jump Instructions

C3 JMP address Unconditional Jump
xx (low address)
xx (high address)

C2 JNZ address Jump if Not Zero.
xx (low address) xx

xx (high address) xx

CA JZ address Jump if Zero
xx (low address) xx

xx (high address) xx

D2 JNC address Jump if Not Carry
xx (low address)
xx (high address)

DA JC· address Jump if Carry
xx (low address)
xx (high address)

4-118

THE·OTHER REGISTERS AND MEMORY ADDRESSING

Data Transfer Instructions

3A LOA address 32 STA address
xx (low address) xx (low address)
xx (high address) xx (high address).

OA LDAX B 02 STAX B

lA LDAX D 12 STAX D

78 MOV A,B 47 MOV B,A
79 MOV A,C 4F MOV C,A
7A MOV A,D 57 'MOV D,A
78 MOV A,E 5F MOV E,A
7C MOV A,H 67 MOV H,A
7D MOV A,L 6F MOV L,A

7E MOV A,M 77 MOV M,A

Other register-to-register MOV instructions are tabulated below.

MOV A,s
MOV B,s
MOV C,s
MOV D,s
MOV E,s
MOV H,s
MOV L,s
MOV M,s

SOURCE REGISTER

A B C

7F 78 79.
47 40 42
4F 48 49
57 50 51
5F 58 59
67 60 61
6F 68 69
77 70 71

Immediate Data Transfer

3Exx
06xx
OExx
16xx
lExx
26xx
2Exx
36xx

MVI A,
MVI B,
MVI C,
MVI D,
MVI E,
MVI H,
MVI L,
MVI M,

data
data
data
data
data
data
data
data

D

7A
42
4A
52
5A
62
6A
72

E

7B
43
4B
53
5B
63
6B
73

None of the above instructions affect any flags.

H L M

7C 7D 7E
44 45 46
4C 4D 4E
54 55 56
5C 5D 5E
64 65 66
6C 6D 6E
74 75

4-119

THE OTHER REGISTERS AND MEMORY ADDRESSING

Register Pair Data Transfer Instructions

01 LXI B address
xx (low address)
xx (high address)

11 LXI D, address
xx (low address)
xx (high address)

21 LXI H, address
xx (low address)
xx (high address)

2A LHLD address
xx (low address)
xx (high address)

22 SHLD address
xx (low address)
xx (high address)

Register Pair Counting Instructions

03 INX B OB DCX B
13 INX D lB DCX D

23 INX H 2B DCX H

None of the above affect any flags.

4-120

THE OTHER REGISTERS AND MEMORY ADDRESSING

Counting Instructions

These counting instructions set or reset Zero. The Carry flag is not

affected.

3C INR A 3D OCR A
04 INR B 05 DCR B
QC INR C OD OCR C
14 INR D 15 DCR D
lC INR E 1D OCR E
24 INR H 25 OCR H
2C INR L 2D DCR L

34 INR M 35 DCR M

Arithmetic Instructions

Zero and Carry are set or reset by these instructions.

87 ADD A BF ADC A
80 ADD B 88 ADC B

81 ADD C 89 ADC C

82 ADD D SA ADC D
83 ADD E 8B ADC E
84 ADD H SC ADC H

85 ADD L SD ADC L

86 ADD M SE ADC M

C6 ADI data CE ACI data

data data

97 SUB A 9F SBB A
90 SUB B 98 SBB B
91 SUB C 99 SBB C
92 SUB D 9A SBB D
93 SUB E 9B SBB E
94 SUB H 9C SBB H
95 SUB L 9D SBB L

96 SUB M 9E SBB M
D6 SUI data DE SBJ data

data data

BB CMP A
B9 CMP B
BA CMP C
BB CMP D
BC CMP E

BD CMP H

BE CMP L

BF CMP M
FE CPI data
data

4-121

1-­
w
w
I
en
(!Jz
0
0
.u

�
w
1-­
U) >­
en
(!Jz-z
<(
a:
l­
a:
UJ
1-­
:J
0..
�
0
u

0
a: u
>-

en
�
w
I­
C/) >­
U)
a:
w
1-­
:J
0..
�
0
u
0
w

a:
(!J
w
1-­
z

4-122

A D D R CODE

s�a 0 =2 I
1 /3 3
2 b c)_
3

(� �
4 () 0
5 f1 3

�2!) 6 --2 o2.
7 {) ,.;2
8 j? 3
9 I I
A F f
B p 3

g';-2 {) C 17 kE"
D I 2
E F £

F F 0

a o2 I 0 ,;l 3
1]) A
2 I '7
3 f1 :2,
4 �� fl
5 {) 0
6 fl 3

cFc:21 7 / L.J

8 {!, o2
9 () C
A 1J' l2
B c2. I
C 0 l)
D I {)

,,P:;2 I E hL :0
F (!, ;2

8 o:),2 0 I E
1 cf c:2.
2 cX �

3 e :)
4 J E

J-':;7 .2. 5 JJ 2
6

7

8

MOVING MESSAGE

L '>(I 1-I () �
�

s /-I L lJ % 3 0

s J+ L l) % g 0

L i :r]) j 3
./

/vJ 0 V A M
3 7 If- x J)
C p T J" {)

1 Iv' Y..' I-I

J"" C .? � I

L /-J L '"J) J? 3 ()

I 1J R E

J � z g ;;_ a

L I. J_ I+ I 0
I

7) C R L
J" N z U' � I

IJ C R H

J N z ; r2_ I

(C {J IV ' I N u

13 ,3

u

b'2

F J'

7

0

C

a (J

E

;::.

E])

ih�;, -t-. d l/lu...v.uuhV
I� 3-'/cj?f' 7 - - -E ;±1"-f<
I ()l_.,I < < 4..tL.J cJ..3d t;;)
A.h-n; ./1�Af �

,.7n " .A ,, J.,-; ,,,., ,,
I/

ti

..J!;b;1 J) �/PJ.dZ:
t?.�n}, /J f,7;.,1, �-1/?,.-;-7/ ;.,,..�

'-iJ1 °.A.nJ A , � --Yf? --<()

('-tL:..-i J .l,,)�. 11 l�;;J>)
1,,.t1; ,n /}), / j,d__; � Ji,

I I

(]dd1r �4<j,) /YJ.,-/ti. �,)/) h

Cl,,-v J) j·J /'ll.kC ,,,, "J. � Jtd._)

II JI t? I

I'- '../ JJ/Jh ./J' /)AdhtJA .. �

�lli .A � /J--1¢!. /"YJ'f 1 A A }J � (J
I �

IY?fl.11.;1 d, >-;: 1-
�- .<.; ;hi(/i ,11..:. l"I J /) 1_.f

� J ',-,d, f-; dj n� I';-, /I
. {/ cf

A1' f'; � b CA JJ, 'i:....,, i

(I

(�� -A� -/)fl()/) .J.J.
(/

)
Figure 4-15a·

1-
w
w
I
Cf)

(.9
z

0

0
u

2
w
I-­
Cf)
>­
Cf)

(.9
z
z
<(
er:
l­
a:
w
1-
::J
Cl..
2
0
u

0
er:
u

>-

Cf)
2
LU
I-­
Cf)
>­
Cf)
er:
w
1-
::J
Cl..
2
0
u

0
w

er:
(.9
w
1-
z

A D D R

B 0

1

2

3

4

5

R�c2. 6

7

8

9

A

B

C

D

E

F

8 ,_.,2..:J 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

.:1. I} L

tJ a?

p ,3

7 E M
F E C
J' {)
.;J_ :3 I

]) II J

t? �

,J' . .J
..2. fl L

0 CJ

f 3

(!, 3 3

() l,
J' c2

MOVING MESSAGE (continued)

1-1- L]) F 3 () :2 !Z-J� � D A A) tJ,, ,/./-

r1 J H /1 .J A .--,·/-�t_)

D V I+ M 1, '-/" /I -}-; 1/j>-, f)AJ./�j

p -r R 'o / I

N X ff /j 1AAJ.. ·" A • J,,,, ,,,;/ ""l.a h)

C p ;2 {) It; J t} h d_/.;." / ,,,-, � �
j � - ;},, _,;1.A _J /) ,. ' f/, � _/

I

/4 L }) ,P 3 /) () 11),..J d h IJ A A] /1-rAI). f-.
� �/IA>� ,r) J).,, ,

jl �

M p J> _J_ CJ 6)i} .h, al./ -,. fl ;J /l .. j

I #'

Figure 4-lSb

4-123

THE OTHER REGISTERS AND MEMORY ADDRESSING

This page intentionally left blank.

4-124

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.12 SENSOR CORRECTION EXERCISE, VERSION 1

This exercise introduces a more complete and realistic problem than

any we have dealt with previously. It has four purposes:

1) to suggest the kind of task that a microcomputer may perform in

a measurement or control application;

2) to bring in the idea of a data structure;

3) to demonstrate table lookup and calculating an address; and

4) to give you practice in using the instructions that you have

learned.

4-125

THE OTHER REGISTERS AND· MEMORY ADDRESSING

4.12.1 Sensor Characteristics

A sensor is a device for measuring a physical variable such as

temperature, pressure, sound intensity, light, etc. With our nerve

cells we detect coldness and warmth; the familiar mercury thermometer

converts that same physical variable into the length of a column of

mercury; a semiconductor device called a thermistor con�erts that

variable into a resistance that can be detected electrically.

The computer itself cannot measure resistance. External circuits

must be attached to convert the variable resistance of a thermistor

into a number that can be handled by the computer. This process is

part of what is called "interfacing" -- connecting a computer to the

external world. We shall not treat that subject here
J but assume

that our computer receives a number representing a measurement. We

must process the number, perhaps to display or record a temperature

or control a heater.

Suppose that we had an unmarked thermometer. To measure temperature

in inches or millimeters of mercury would be meaningless, because the

relationship depends on the size of the.well of mercury at the bottom

of the thermometer and the inside diameter of the glass tube. We

could immerse the thermometer in a pot of melting ice, to give one

repe�table temperature, and mark the point on the tube that the

mercury reached. Then if we placed the thermometer in a pot of

boiling •ater we could mark another point on the tube. Such a

procedure is called "calibration". If we label the two points O and

100, and mark off equal spaces between them, we have calibrated our

thermometer to the Celsius scale of temperature.

4-126

THE OTHER REGISTERS. AND MEMORY ADDRESSING

Similarly, if we have a sensor and an interfacing system connected to

the computer, we can relate numbers we receive to known temperatures

(or other physical qualities). Generally some arithmetic must be

done to relate the electronically generated numbers to a familiar

scale; this is similar to the procedure of converting a temperature

measured in Fahrenheit to a Celsius temperature:

C = (F-32) (5/9)

Since Fahrenheit measurements relate to the same physical sensing

device as Celsius measurements, this formula applies to any

Fahrenheit thermometer. When we use a fundamentaly different sensing

device such as a thermister, we have a more difficult problem. This

is partly because the manufacturer of these devices is less

consistent; each device may need a different offset and a different

scaling factor.

C = (measured value-offset) (scaling factor)

An additional problem arises with many electronic sensors:

non-linearity. A formula such as that above may give correct answers

over a limited range of measurement, but be increasingly in error

outside of that range. Provided that the device gives conslstent

measurements, the measurements can still be converted to a standard

scale, but simple arithmetic may not be sufficient. We may have to

calibrate the device by making measurements at many known

temperatures instead of just two. For each measurement we record the

number received by the computer, and the known temperature. The

resulting list is called a calibration table. Then in normal

4-127

THE OTHER REGISTERS AND MEMORY ADDRESSING

operation, when we receive a new measurement we can look in the table

to find the correct value. Such a procedure is part of the sensor

correction exercise.

If all possible measurements are recorded in the table, it is easy to

address the table and obtain the final result required. Sometimes,

however, we can conserve memory space by including only a partial

table. Suppose that we have a sensor which is linear over most of

the range of measurements we are interested in, but at one end of the

scale it has significant departure f�om linearity. Such behavior is

suggested in the curve of Figure 4-16. If we had an ideal linear

sensor, it would give a straight line in this plot, from O up to FF

(if this is the possible range). Our real sensor is linear

everywhere above about OC, but at the low end we have measured

different values. These measurements are tabulated below.

4-128

SENSOR CALIBRATION TABLE

Sensor Value
0

1
2

3

4

5

6

7

8

9

A

B

> B

Corrected Value
0

3

4

5

6

7

8

9

9

A

B

B

Linear

Value as
Measured
by Sensor

10

C

8

4

THE OTHER REGISTERS AND MEMORY ADDRESSING

Ideal Linear
Sensor

Real
Sensor

Actual Physical Value

Sensor Calibration Curves

Figure 4-16

4-129

THE OTHER REGISTERS AND MEMORY ADDRESSING

With this table we can correct the real sensor input to be equivalent

to that of an ideal sensor. If the input is greater than OB, no

adjustment is required; if less than that we must obtain an adjusted

value from the table. There is no offset here --0 input means O true

-- but we will have to multiply the actual or adjusted measurement by

a scaling factor.

4.12.2 Organizing the Data Structure

We shall develop a program to adjust a non-linear sensor input value

by table look-up, and multiply the result by a scaling factor. The

adjusted values will be listed in a table, with one entry for each

possible measurement up to the point-where the sensor becomes linear.

Because the same program may be used for a different sensor, which

may have a different linear point and a different scaling factor,

these values will also be stored in the table. Such a combination of

related but different kinds of values is called a "data structure".

The data structure will have this form:

8308 Scaling Factor

8309 Linear Point

830A Adjusted value for input = 00

830B Adjusted value for input = 01

830C Adjusted value for input = 02

(more adjusted values up to the linear point)

We shall see later how we can use an identical data structure, but

with different information, to describe a second sensor which is also

processed by the computer.

4-130

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.-12� 3 Organizing the Program

This program requires both input and output - obtain a value, correct

it, and display it. We shall use a single programmed entry to the

monitor (RST4) to accomplish the output from one calculation and the

input to the next calculation. Each time the monitor is entered

(after the first) Register A will contain a result. We shall display

Register A to see this, enter a new input data byte to Register A,

and press RUN to perform the next calculation.

At this point we must perform the following tasks:

1) Address the data structure ind load the sc,ling f�ctor into

register E.

2) Increment the address and compare the input value with the

linear point.

If the input value is equal to or greater than the linear point, skip

the next three steps. Otherwise:

3) Increment the address to reach the adjusted value

corresponding to a zero input.

4) Add the input into the address to reach the adjusted value

corresponding to the actual input.

5) Replace the input value (A) with the adjusted value from

memory.

Register A now contains either an input value which is in the linear

range or an adjusted value.

4-131

THE OTHER REGISTERS AND MEMORY ADDRESSING

6) Copy the (adjusted) input value to Register C from A.

7) Clear register pair HL for the product (C) * (E).

8) Perform the multiplication. (see Section 4.4.3)

9) Jump back to enter the monitor again, with Register A

containing the high byte of the result.

Note that using (HL) to address memory gives us two advantages here.

We can move the scaling factor directly into Register E from memory,

without disturbing Register A where we have the input, and we can

compare (A) with memory to test whether the input is linear.

We have located the data structure starting at address 8308. Write

the program

Figure 4-17a.

yourself; then compare it with the solution given in

Copy the data structure from Figure 4-17b. Note that

a scaling factor of 00 is given there. If you perform multiplication

by repetitive addition, without special precautions, a zero

multiplier does not result in a zero product.

4-132

Add multiplicand into product

Decrement multiplier

Not zero

THE OTHER REGISTERS AND MEMORY ADDRESSING

If the multiplier is initially 01, the first decrement will set the

Zero flag and end. the process after the multiplicand has been added

in once. If the multiplier is initially 00, the first decrement will

make it FF, not zero, and the loop will be repeated 256 times. This

technique does not admit the existance of multiplication by zero;

instead it takes 00 in the multiplier (but not in the multiplicand)

to mean 100 HEX.

We shall use this feature as a convenience here. An input of (say)

36 will be multiplied by 100 HEX, giving 3600 as a product. The high

byte remains in (A) at the end of the multiplication, and is to be

displayed. For initial testing of this program it will be easier if

the adjusted result has not been scaled but merely shows the data

from the table. A multiplier of 00 does this. Later we shall change

to a different scaling factor.

4-133

1-w
w
I(/)
{!) z
0
0
u

�
w
I­
V) >­(/)
(.9 z
z
<{
a:
l­
a:
w
I­
::,
Cl.
�
0
u
0
a:
u
�

(/)
�
w
I­
V) >­
(/)
a:
w
I­
::,
a..

�
0
u
0
w

a:
{!)
w
1-z

4-134

A D D R CODE

a c>1r) 0 CJ 0
1 () tJ
2 111 0
3 II-) F

Yc2t)·4 It= 7
5 � I

G 0 j
7 p 3
8 IS E
9 - � 3
A 13 E
B]) �
C I :;
D ; c2
E :;_ 8
F 9

-

.. :;
8 c2_ / 0 6 ;::

1 7 £
R,2/ 2 L/ ;:

3 c2 I
4 C) D
5 0 r?

P:2/ 6 ·7 l>
7 p I
8 h ,c
9 7 C
A (! E
B {) I')
C &? 7
D / l)
E (!_, �
F I 6

8�� 0 ? ,2
1 C 3
2 () L/.
3 p c:a
4

5

6

.·

8

Iv 0
tJ 0
N 0
)(R
R s
L 'I..

M 0
I N

C M
J N

.L IV
1-1-])
M 0
M 0
/'1 D
L X.

M 6
A })
M 0
f/1 ()
/) c..

M 0
J) C.
J N

"3" M

SENSOR CORRECTION

p
fJ
p

A j-}
·r L.J
I II J? .. 3 a

/

\) E
l

1)-;1
-I. 1-1

,

p M
C g c2. I l2.

-x: H

7) L,
V L f}
V I+

I

M
\/ C.

I

ll
I /I- (

)
0

/

V 4 ' L
1) C

V L \ A
v' A

I

H
I. () b

V H- I f-}
R E
2- 9 :2. I (:,

p ,J � D i/-

lf'

VJ

(J_l,.,_ .-n 1'J _) � A , , tf-r
/C' J /ri,, -j-_ -• -- J '-4, II ,±

l!JA��/J AA))()(} /-A�
J f.1. n ./' -Jj"; J J. ii ,

(E)� �I--� §4 � ,; 4,,;t;;,v
��A�qhL; 41.,,�:_.-1-;
�'

'1 • . 'l
.,_,,,l t) .,1 ,_,, .r, ,,

.)'');,;," '// .Ji h, fl IJJ. A� • .L)

. J� - : f- ..:::> j1 · I '
� • §,,J -",J . . ,__, ,,aLJ
ti /

I] ('}J A A, " A A) };, J, I')� .I

lidcl J _: � ' ·"/- � abl.../ ;_ • I • 1J
t -...,'-,;f Jt, _,., ,,/} ,';, �7,, d.,

. . -1Jliad.)� 11.m IL,,; /)AA V..fl, . .

(c.)1. /e1;-J .,, , J;;d'°\. -. ., ,t-
lf')o/),A _ _!,, k ... A J, ,,;-/-,,

I

1--fil 11 /}:/-:'� /), , ./, .J

"t-/1; . (/ .honJJ · ·J ·•�J

I d '/7: ..) /1 rJ J ,·JM(j

{,,/.t"J p t.) h /YW ""-"·, �

6 r11J.,;A I},,.. 1,J �
I �

Figure 4-17a =·-. .

w
w

I
U)

c.,
z

Cl
0
(.)

�
w
1-
U)
>­
U)

c.,
z
z
<(
a:
l­

a:
w
I­
:)
a..
�
0
(.)
0
a:
(.)

>-

U)
�
w
1-
U)
>­
V)
a:
w
I­
:)
a..
�
0
(.)

Cl
w

-�
a:
(!)
w
1-
z

A D D R CODE

8 0

1

2

3

4

5

6

7

J' ::JO 8 0 IIJ
9 /) C

A {) ()
B 0 3
C {) 4
D {) _,-
E 0 0
F {) 7

a,3 / 0 0 g
1 t) CJ
2 {) 9
3 CJ II
4 [) ,8
5 CJ 13
6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

�

*"

SENSOR CORRECTION - DATA STRUCTURE

··-

..
-�-··

\/ '-------·· . -- -

s C A L I tJ G- F A- CTOR

L I N [; A R p 0 I NT
I fJ ? u T

·-
0 lfJ A- D:, I) oTE D VALUE

I tJ p u T = 0 I
I IJ p u -r

-
{) �

I I\) p Ll T = 0 3·

L tJ p u T - 0 J./-
T A) p u T - a s

..L ;J p u T ;; 0 G
T tJ p Ll T = C> 7
T N p u T -= () g
T ;J p u T ;:: {) 9
T tJ p u T

-
(') /I

I tJ p u T ::;; {) 13

s c_ f-t L I tv CT F A CTOR TO ·13 I=

C. H A- tJ G [:; t) L F\ TE-R

-

Figure 4""."17b

4-135

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.12.4 Testing Sens or Correction

After writing your program and comparing it with Figure 4-17, you can

test it by entering data and observing results . First, however, you

should step through it to be sure there are no mistakes. If your

program is different from Figure 4-17, follow the procedure below

approximately, taking into account the differences.

RST

RUN

8200

8205

We have entered the monitor. Now it is time to enter data.

REG

3

STEP

STEP

STEP

A 8205

8205

8208

8209

820A

00

21

A-00

A-03

A-03

A-03

A-03

We should now have copied the scaling factor into (E) and addressed

the linear point.

4-136

REG

ADDR

STEP

E

8/H MEM

(CY)

820A

8309

820B

E-00

HL.OC

D2

THE OTHER REGISTERS AND MEMORY ADDRESSING

The linear point (OC) is greater than the input value (03), so Carry

was set by CMP M at 820A. The JNC will not be executed.

STEP

STEP

Now we shall add the input value to the table address.

REG

STEP

STEP

ADDR

A

8/H MEM

820E

820F

820F

8210

8211

830D

23

85

A-03

A-OD

A-OD

HL.05

We have addressed the table for an input value of 03. The adjusted

value is 05.

STEP 8212 4F

STEP 8213 21

STEP 8216 7D

All of the registers have been prepared for the multiplication.

REG C (multiplicand) 8216 C-05

REG E (multiplier) 8216 E-00

REG H (product) 8216 H-00

NEXT 8216 L-00

NEXT 8216 A-05

4-137

THE OTHER REGISTERS AND MEMORY ADDRESSING

Step through the multiplication loop once or twice and then press

RUN.

RUN 8205 A-05

Multiplication by 100 HEX made the high byte of the product equal to

the multiplicand.

ADDR 8/H MEM 0500 HL.??

Test the program with each of the non-linear values (00 through OB)

and see that the results agree with the tabulated values. Switch to

AUTO mode to speed up the lengthy multiplication.

Now change the scaling factor at 8308 to 88. Then try these input

values and see if y our results agree.

Input Result

00 00
01 01
02 02
03 02
04 03
05 03
06 04
09 05
OD 06
10 08
20 11

30 19
40 22
80 44
co 66

4 ... 138

THE OTHER REGISTERS AND MEMORY ADDRESS1NG

4.12.5 Review

In this exercise we have introduced the idea of a data structure -- a

combination of related but different kinds of values. Often the

arrangement of the data structure has an important effect on the

efficiency of a program. If we had placed the scaling factor after

the table of adjusted values, instead of before, we could still have

found it but with several more program steps. In any program with

variable data that can be structured, the data organization should be

an early step in program development.

The table lookup in this program is a typical requirement in real

measurement and control systems. Adding a physical quantity to an

address seems peculiar on the surface -- like adding the number of

passengers on a train to its speed, the numbers do not have the same

dimensions. Adding a physical value to an address is only meaningful

in the context of a data structure or table.

We have seen here the use of addressing memory with the register pair

HL, thereby making a memory location available to be treated as a

register. We used a comparison and the Carry flag to make a

decision -- to adjust or not to adjust.

In the next exercise, which is a continuation of this one, we shall

see further use of table lookup using HL memory addressing, and more

decision making.

4-139

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.13 MULTIPLE TABLES WITH A DIRECTORY

In the sensor correction exercise of Section 4.12 we had a single

sensor whose characteristics were described by the contents of a data

structure.

sensors.

We shall now extend that program to handle multiple

Both a sensor number and a physical measurement will be

taken as inputs. The sensors, although similar in kind, will have

different scaling factors, linear points and adjustment tables.

We shall add a second set of data with the same data structure as the

existing one. The content of this second copy of the data structure

will be:

8316 CB Sealing factor

8317 08 Linear point

8318 00 Adjusted value, input = 00

8319 02 input = 01

831A 04 input = 02

831B 04 input = 03

831C 05 input = 04

831D 06 input = 05

831E 07 input = 06

831F 07 input = 07

Now on the basis of the sensor number the program must select the

appropriate table. Although we have specified addresses for the two

tables in this example, the program must be written in a general way

that permits more sensors, each having its own copy of the data

structure with different data.

4-140

In writing the program, then, we

THE OTHER REGISTERS AND MEMORY ADDRESSING

shall assume that the number of sensors and the lengths of their

tables are unknown; they are to be provided as initial information

later on. For simplicity we shall allow not more than seven sensors,

numbered from 1 to 7; and require that all of the sensor data will

fit within 120 (decimal) bytes, from 8308 through 837F.

4.13.1 Directory to Data S tructures

To find the address for the data relating to a particular sensor, we

shall create an additional, different, data structure called a

"directory". This is a different data structure in that the data

contained in it do not have the same meanings as those for the

individual sensors. The directory contains a list of the addresses

of sensor data structures. It also contains, as its first entry, the

highest sensor number for which data is stored in memory. The

directory is to be located at 8300 - 8307.

8300 02 Highest existing sensor number

8301 08 Address for sensor number 1

8302 16 Address for sensor number 2

8303 00 Not used

8304 00

8305 00

8306 00

8307 00

4-141

THE OTHER REGISTERS AND MEMORY ADDRESSING

Since we have only two sensors in this exercise, there are no tables

for 3 through 7, and their positions in the directory are empty.

Because we have specified that all of the data are in page 83xx, we

have stored only the low byte of each data structure address.

4.13.2 Organizing the Program

We shall accept sensor number as an input to the program at the same

time that we accept the measured data. The sensor number probably

will be one for which a data table is in the memory (in our example,

1 or 2). A wise programmer protects against errors, so we shall

test for illegal sensor numbers -- 00 is forbidden, and any number

greater than the first entry in the directory is forbidden.

We shall again use a monitor entry (RST4) to accept inputs. To avoid

having to enter a sensor number every time, we shall keep the sensor

number in Register B and allow but not require that it be changed.

Thus you can test the program for one sensdr at a time� without

touching Register B.

4-142

THE O THER REGISTERS AND MEMORY ADDRESSING

Let us list the steps required in the program.

1) Clear the result (A) <- 00

2) Set a legal sensor number (B) <- 01

3) Enter the monitor to display the result and accept new data.

Also accept sensor number if desired.

4) Test sensor number for a legal value -- not zero, and not greater

than the highest sensor number in the directory. If illegal,

take some special action, to be determined.

5) Use sensor number with dire·ctory to address the data structure for

the sensor.

6) Load the scaling factor into register E.

7) Test data input:

If less than linear point, address the adjustment table; jind

and load the adjusted value.

8) Multiply the (adjusted) value times the scaling factor.

9) Go to Step 3 and display the result.

4-143

THE OTHER REGISTERS AND MEMORY ADDRESSING

4-144

START

(i\ _ __,____ \.:.) Initialize - Clear
Result and Carry

0---
\..:.) (B) - 01

Set Legal Sensor

G)--E""'n-t�e-r-M�o1..n""
1.
"'l"t_o_r.....,.t-o---.

Display Result
Accept Input
Possibly Change

Sensors

(JMP)
17\------
\V Test for Legal

Sensor Number

ts'---\:.) Address Data

© _ ____,,___Load Scaling Factor
Compare Input to
Linear Poin

t:;\--.J...-­\.!..) Address and Load
Adjusted Value

Multiply

for Sensor

(JMP}

Multiple Sensor Correction

Figure 4-18

THE OTHER REGI STERS AND MEMORY ADDRESSING

Figure 4-18 shows the program as a flow diagram. The circled numbers

correspond to the steps listed above. Reviewing these, steps 6

through 9 are identical to the program of Section 4.12. Steps 4 and

5 replace the LXI H, 8308 instruction which addressed the single data

structure in the previous program. We can replace that LXI

instruction with a JMP to some other location where we perform Steps

5·
, then jump back to Step 6 to finish the remaining program 4 and

steps. This is shown in Figure 4-18. As indicated in the flow

diagram, if an illegal sensor number is detected we shall go back to

set a legal sensor number again.

4.13.3 Testing Sensor Number

At return from the monitor we have two bytes of data to be handled.

(A)= data input

(B) = sensor number

At this point we jump to another program segment to test the sensor

number and find its data structue address.

We shall need Register A for making comparisons, so move the input

data to another register. Then address the directory at 8300.

MOV C,A

LXI H, 8300

Memory location 8300 contains the hi ghest existing sensor number.

4-145

TijE OTHER REGISTERS AND MEMORY ADDRESSING

We are required to reject the input if the sensor number is greater

than the highest existing number. Recall the way flags are set by a

comparison (section 4.11.1).

CMP r

(A) greater than (r)

(A) equal to (r)

(A) less than (r)

Zero

Cleared

Set

Cleared

Carry

Cleared

Cleared

Set

To make the decision with a single conditional jump we must make the

comparison by:

MOV

CMP

A,M

B
v'

').
0 e

Highest existing sensor

Compare sensor number

This sets Carry if the sensor number is too great. Then a single JC

·will handle this error condition. If we used

'\

MOV A,B

.. ,·-

CMP M
.,

then either Carry or Zero would indicate a legal sensor number, and

two conditonal jumps would be needed.

We must also test for the other illegal condition, sensor number

zero. This can be done by

MOV A,B

ORA A

which sets Zero if the sensor number is zero.

4-146

THE OTHER REGISTERS AND MEMORY ADDRESSING

it would be convenient if the error condition were somehow indicated�

and if the illegal sensor number were kept available fcir inspection

at reentry to the monitor. When the sensor number is legal we go to

the monitor with (A)= high byte of the multipli6ation result, and

carry clear from the multiplication. Let us define the error result

as follows:

Carry set

(A)= illegal sensor number

(B) = sensor number 1

The following procedure will do the testing and give the above

result.

MOV

LXI

MOV

CMP

MOV

JC

ORA

STC

JZ

C,A

H, 8300

A,M

B

A,B

8202

.A

8202

(C) <- Input Value

Address Directory

Highest Sensor Number

Test sensor number

(A) <- sensor number

To set (B) = 01 and

display (A) with Carry

Test for sensor = 0

Mark·error

To set (B) = 01 and

display (A) with Carry

If both tests are satisfied (the sensor number is legal) .we must find

the address of its data structure.

4-147

THE OTHER REGISTERS AND MEMORY ADD RESSING

4.13.4 Using the Directory

Assuming that we have a legal sensor number, we shall now use it to

look in the directory and address the data structure for this sensor.

In the table lookup of Section 4.12 we added the input value to a

table address to find another address where desired data was stored.

Here we do the same thing. Recall that the directory contains:

8300

8301

8302

02

08

16

Highest existing sensor number

Data structure address for

Sensor Number 1

Data structure address for

Sensor Number 2

Register pair HL contains 8300, and the sensor number is already in

Register A.

Add the sensor number into the address:

ADD L

MOV L,A

and now (HL) contains either 8301 or 8302. (Since Register L

contained 00 we could skip the ADD L, but that would only work with a

directory starting at a page boundary such as 8300).

Now (HL) points to a memory location containing the address of

another memory location. Since all of the data are· in a single page

we can finish the indirect addressing with only one more instruction:

MOV L,M Address data table

4-148

THE OTHER REGISTERS AND MEMORY ADDRESSING

Note that we can load L with a data byte from a memory location

addressed by HL. By the time Register L is affected we no longer

need the old address in HL. If the directory entries were two byte

addresses we would use a more conventional indirect addressing means.

We have now loaded HL with the address of the data structure for the

given sensor number.

For Sensor Number 1, (HL) = 8308. We have replaced the instruction

LXI H, 8308 that existed in the earlier program. One more step is

required before going back to the original program: copy the input

value back into Register A where it was placed originally.

MOV A,C

JMP 8208

Now for Sensor Number 1 the program should behave exactly as it did

with the program of Section 4.12. When you change the sensor number

you will receive different results.

When you have loaded your program and the directory and second set of

data, we shall step through the program. The addresses shown below

refer to the given solution (Figure 4-19). Follow your own program

through the same process.

4-149

f­
w
w
I
(/)

(..'.J

z

0

0
u

�w
f­en
>­en
(..'.J

z -z
<(
a:
f­

a:
w
f­
::J
a.
�
0
u
0
a:
u
�

en
2!
w
f­
en
>­
en

a:
w
f­
::J
a.
�
0
u
0
w

�
a:
(..'.J
w
f­z

4-150

A D D R CODE

8 �{) 0 3 £

1 (} {)

Y...-2 0 2 6 0
3 c) I

Fcx
-1 0 4 £ 7

5 C 3
6 3 0
7 y ,2

P.;2D a 5 E
9 l� 3
A 13 f;
B 7) �
C I CJ

D ! c2
E b2 3
F J' 5"

8 c,2, / 0 h F
1 7 E

J7c2/ 2 ¥ F
3 :2_ I
4 ·.o V)
5 0 {)

l7c:2 J 6 1])
7 g J
8 b �
9 7 C
A <2 E
B 0 0
C h 7
D I l2)
E {!_ c2.
F I �

8 c;}'c2 0 J' c2.
1 C 3

2 () If
3 J? c2
4

5

6

7

8

CORRECTING MULTIPLE SENSORS
.,,.,

fv\ V 7 ff 0 a (!&a-4.J';(:/�
I

IV\ \) --L ·8 6 J JfJ -J-. � /�/" i/ .. .i�. -A A ,,n)
/

Yi�;(! A ls) J :

I< 5 T 4-

J '"' p S' d- 3 1) Jt-J'.-· a.de� _Lm_J
�} f;,, � J7r., fl -/;/). t1)

M 0 V E 1V) /I'

I- (\)
i.

H

C tvl p /V)
-:s ;v C g c2 I c2 L LJ ,? -t. b.

0

'2a de,. 2c,
,:J-.,J f'i ,, 1 h ll 4-/(pv

(/

J N i. H
A D D L

M 0 V L
l A

jv) D v f-1-
I

/Vl
1v1 D V C,

J

/I
L ,;__ I /fl/ 0 a 0 0

I

M D V I+ L

A- 1) D {
I

M 0 v L
I p,

M \/ A
I

f4 0

1-1 C I 0 h

/VI n I) H- A
J) C I(E
3 fJ z R d I �

J M p B7 c2 () It/-

'V

Figure 4-19a

1-
UJ
UJ
I
CJ)

t, z
0
0 u

UJ
I­
C/) >­
(/)

(!) z
z
<i
er:
I-­
er:
UJ
1-
::J
a..
2
0
u
0
er:
u

2

; (/)
·2

UJ
I­
(/)
>­
(/)
er:
UJ
1-
::J a..
2
0
u

0
UJ

; I-
<!
er:
t,
UJ
1-z

A D D R CODE

ac:Jt3 0 I.J F
1 � I
2 t) a
3 p 3
4 7 E.
5 8 J
G '7 J'
7 :D f}
8 6 :J.
9 ? d.
A IA ·7
B 3 ·7
C C /l
D () Q
E f 61
F f 6�

8 o?-'-/ 0 6 F
1 c.a
2 7 19
3 C 3
4 0 Jl
5 .P �
6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4 -

5

6

7

8

MULTIPLE SENSORS - TEST, ADDRESS DATA

M 0 \/ C.
L 'I.. J_ H .

J

M D \/ I-
C M p f

,

fv1 0 V A- .
:r C 1'

l!J p' /I /}
8 T C

\.T z S'

1/J]) l) L

M 0 \/ L

M 0 \/
I

L

M V A-
,

0
:;-M p t?

fl,

J' 3 CJ t)

M

B
� t) c:)

{� {) 2

A
1'1

C
c2 () r

7e2 � /I •• -L 'fii 1h _)
?t.il ,,Jh ,I � }) '-fl 'JhiJ(i�

/ J) .. � j ,, .--r', /J ./ ._ r;;:,,, � 0
(J

/1 ,; - A _.A"l.) /71 / .I . I� ;J

.1� +- c. V .,· ., j! JI� r, a£;

(A) &--�_I_ ,'h J� v_ I. A

J ,J _J • -11 '1,., .,.., ,., tJ a., 1 ·?'?t--"

///,. . ._ /1// ff., 1 L -- .r1 ./r"L.;/

�.,_, ___ �J�(h .. �.
-I. � J h1) /J, fl /!..-tr./ (I

I CJ

IJ../- ., . - � J t!J cYJ _;zjJ
t�:/ � � _ r /J ., ., /J � ., _ �

/)1 , !_ _ _, /�)hL"/./ � J..A.

1}.rl-l; /J" • A ;/Jr. .I /,�0
, � _/,;, A., J... .. A-h ,1A CJ ,/}.J,.

(I A Ah/) .l �"vi� in Ph::. ;..t;.,1, •

r,4) � =} ,,.. r 7Jfl-f"A;

JL h,
7

h.hfh.,
�-. L,, ,_ �
/1"'7 • J1 ./-. (, f/ , .,

/I 0

Figure 4�19b

4-151

")

_)

1-
w
w
I
Cf)

CJ
z

0
0
u

2
w
I­
C/)
>­
Cf)

CJ
z-
z
<t:
a:
l­

a:
w
I­
:)
a..
2
0
u

0
a:
u

>-

Cf)
2
w
I­
C/)
>­
Cf)

a:
w
I­
:)
a..

2
0
u

0
w

�
a:
CJ
w
1-
z

4-152

A D D R CODE

8J/J 0 C) =2
1 CJ 9
2 I I/,,
3 {) 0
4 () a

5 () 0
6 () ()
7 CJ 0

£-ro a 2 if'
9 if) d
A 0 l!J
B 0 3
C () �
D· () 5
E {) b
F 0 7

8 .3 / 0 c) f
1 0 q
2 (') 9
3 C) fl
4 () f3
5 {) f3

?3/ 6 c_ ,, r

7 � /J
8 {) 0
9 0 ,Q
A 0 1./
B 0 ;/-
C t) 5
D c) �
E 0 7
F VJ 7

8 0

1

2

3

4

5

6

7

8

- MULTIPLE SENSORS - DIRECTORY AND DATA

H 1 G /-f £ s T s E Ir/SOR NLA 1v1 B.ER
]) ff· T /) It])]) R E 5S - S'E lv'.5�cJ R I
]) ft T /-f- A]) J) R. E s s - :S.t-!Vc50 R o2

R E s E l< V E D F. o'R

A];,]) I T l 6 ;v A- L 3 £ lv'SaR. .S

S' C A L .I tJ G F A c,aR - .SE AJSOR I

J_ "I. N E A- 1� p 0 l l\J'

A- D 0 u s T E D v ALUSS

F 0 17< 0 J

I) :2

0 3
0 .1/
0 5

() 0
C) 7
u g
() 9

r) 11
{) 6

t) C A L I tJ G- F A e, TcJ R -- S)EAJ SuR c:2.

L 1. t--1 E A R p 0 I !VT

A I) � LA :s T f::- 1) V A-LLAES

F 0 R () I

0 �

0 3
{) L/
0 15
0 0

(!) 7

Figure 4-19c

THE OTHER REGISTERS AND MEMORY ADDRESSING

4.13.5 Testing MULTIPLE SENSOR CORRECTION

First, let us try the program with an illegal sensor to check on the

test:

RST 8200 3E

RUN 8205 C3

REG B 8205 B-01

3 8205 B-03

REG A 8 8205 A-08

RUN (CY) 8205 A-03

The illegal sensor number is displayed with Carry set. B has been

loaded with 01 again. Let 03 stay as an input value.

STEP

STEP

STEP

STEP

(CY)

(CY)

(CY)

(CY)

8230

8231

8234

8235

A-03

A-03

A-03

A-02

We have loaded the highest existing sensor number. Now the comparison

(CMP B):

STEP 8236 A-02

Since Register B contains a legal number (01) Carry is reset. We

move the sensor number into A, do not execute JNC , and test for zero.

STEP

STEP

STEP

8237

823A

823B

A-01

A-01

A-01

4 -153

THE OTHER REGISTERS AND MEMORY ADDRESSING

Neither Carry nor Zero is set by the test for zero (ORA A at 823A),

but now the program sets Carry before the conditional jump, which

will not be executed.

STEP

STEP

(CY)

(CY)

823C

823F

A-01

A-01

ADD L clears the Carry but, since (L) = 00 it changes nothing else.

STEP

STEP

8240

8241

We have now addressed the directory entry for Sensor Number 1.

ADDR 8/H MEM 8301

ADDR 8241

This is the MOV L,M instruction.

STEP 8242

ADDR 8/H MEM 8308

We have addressed the scaling factor for Sensor Number 1.

STEP 8243

REG A 8243

STEP 8208

We are ready for table lookup and multiply.

RUN (Z) 8205

Multiplication has set Zero (by OCR E) but left Carry clear.

4'--154

A-01

A-01

HL.08

6E

79

HL.88

C3

A-03

A-03

A-02

THE OTHER REGISTERS AND MEMORY ADDRESSING

Check the two byte result of the multiplication:

ADDR 8/H MEM 02A8 HL.??

The data in HL represent the product. Because this happens also to

represent a memory address within the monitor, a data byte is shown,

but it is meaningless here.

Now try the other sensor.

REG

REG

B

A

2

8

Set a breakpoint at the instruction after the JMP 8230.

ADDR

RUN

8 2 0 8 BRK

8205

8205

8208

8208

B-02

A-08

BP.

A-08

The input data has been restored.

structure address.

Check the sensor number and data

REG

ADDR

B

8/H MEM

8208

8316

We have addressed the data structure for sensor number 2.

RUN

REG A

8205

8205

8-02

HL.C8

C3

A-06

The entry value (08) was not adjusted, but it was multiplied by CS.

The two byte product is:

ADDR 8/H MEM 0640 HL.??

4-155

THE OTHER REGISTERS AND MEMORY ADDRESSING

It all of this has worked, set AUTO mode to speed up the operation.

Try the following input data and check that your results agree. T}J.e

inputs have been chosen to include some that give identical results�

Sensor Input Result[Two Byte Product
(B) (A) (A) (HL)

01 00 00 0000

01 01 01 0198
01 04 03 0330

01 07 04 04C8

01 08 04 04C8

01 09 05 0550

01 OA 05 05D8

01 OB 05 05D8

01 oc 06 0660

01 80 44 4400

02 03 03 0320

02 06 05 0578

02 07 05 0578

02 08 06 0640

02 09 07 0708

02 oc 09 0960

02 80 64 6400

4-156

THE OTHER REGISTERS AND MEMORr ADDRESSING

4.14 SUMMARY

In this chapter we have met many of the 8080 instructions. Registers

have been used for temporary data storage, providing operands for

ADD, SUB, CMP, etc., and for counting. Exercises have been used to

introduce arithmetic, including double precision addition,

subtraction and multiplication.

We have used register pairs to address memory, using LDAX and STAX,

and using ((HL)) as a register. The concept and practice of indirect

addressing was introduced, and we have used several methods of

obtaining memory addresses from other memory locations.

The technique of operating the MTS display by storing data in certain

memory locations was also

dealt extensively with memory.

hardware and how some of

physical sense.

used. Overall, then, this chapter has

The next chapter teaches about memory

these addressing techniques work in a

4-157

THE OTHER REGISTERS AND MEMORY A DDRESSING

4.15 INSTRUCTION CHART

The instruction chart on the following page shows all of the 8080

instructions. Most of the data transfer, counting and arithmetic

instructions have now been introduced, as well as a few of the branch

instructions. Study the organization of this chart so that you can

readily find an instruction when you need it. A hard copy of this

chart is supplied for convenient reference.

4-158

DATA
TRANSFER A B

MOV A,s 7F 78
MOV B,s 47 40
MOV C,s 4F 48
MOV D,s 57 50
MOV E,s 5F 58
MOV H,s 67 60
MOV L,s 6F 68
MOV M,s 77 70

LXI rp 01

LDA addr 3A
STA addr 32

LDAX rp OA
STAX rp 02

LHLD addr
SHLD addr

SPHL
PCHL
XCHG
XTHL

PUSH rp C5
POP rp C1

COUNTING A B

INR d 3C 04
DCR d 3D 05
INX rp 03
DCX rp OB

ARITH/LOGIC A B
DAD rp 09
ADD s 87 80
ADC s BF 88
SUB s 97 90
SBB s 9F 98
ANA s A7 AO
XRA s AF AB
ORA s B7 BO
CMP s BF B8

ACCUMULATOR RLC RRC
AND CARRY 07 OF

BRANCH JMP CALL
UNCOND C3 CD
COND NZ C2 C4

z CA cc

NC D2 D4
C DA DC
PO E2 E4
PE EA EC
PLUS F2 F4
MINUS FA FC

INPUT/OUTPUT IN OUT
&INTERRUPT DB D3

RESTART RST O AST 1
(CALL TO) 0000 0008
HEX CODE C7 CF

THE OTHER REGISTERS AND MEMORY ADDRESSING

HEX CODES FOR 8080 INSTRUCTIONS

SOURCE REGISTER
IMMEDIATE

C D E H L M SP (DATA FROM PROGRAM)

79 7A 7B 1C 7D 7E MVI A 3E
41 42 43 44 45 46 MVI B 06
49 4A 48 4C 4D 4E MVI C OE
51 52 53 54 55 56 MVID 16
59 5A 5B 5C 5D 5E MVI E 1E
61 62 63 64 65 66 MVI H 26
69 6A 6B 6C 6D 6E MVI L 2E
71 72 73 74 75 - MVI M 36

11 21 31 2 DATA BYTES
FROM PROGRAM

ADDRESS FROM
PROGRAM (2 BYTES)

1A ADDRESS FROM
12 REGISTER PAIR

2A ADDRESS FROM
22 PROGRAM (2 BYTES)

F9 SP+-HL
E9 PC+-HL (BRANCH)
EB DE.+HL
E3 STACK TOP._.HL

D5 E5 PUSH PSW F5 SP.._SP- 2
D1 E1 POP PSW F1 SP+-SP + 2

C D E H L M SP FLAGS AFFECTED

oc 14 1C 24 2C 34 Z,S,P,AC
OD 15 1D 25 2D 35 Z,S,P,AC

13 23 33 NONE
1B 28 38 NONE

C D E H L M SP IMMEDIATE
19 29 39 (DATA FROM PROGRAM)

81 82 83 84 85 86 ADI C6
89 BA 88 SC SD BE ACI CE
91 92 93 94 95 96 SUI DG
99 9A 98 9C 9D 9E SBI DE
A1 A2 A3 A4 A5 A6 ANI E6
A9 AA AB AC AD AE XRI EE
B1 B2 B3 B4 B5 B6 ORI F6
B9 BA BB BC BD BE CPI FE

INSTRUCTION FLAGS

RAL RAR DAA CMA STC CMC ONLY THE CY FLAG IS AFFECTED EXCEPT:

17 1F 27 2F 37 3F CMA NO FLAGS

DAA ALL FLAGS

RET PCHL HLT NOP
BRANCH AND IN/OUT INSTRUCTIONS

DO NOT AFFECT ANY FLAGS

C9 E9 76 00 DATA TRANSFER INSTRUCTIONS DO NOT

co AFFECT ANY FLAGS EXCEPT:

ca POP PSW AFFECTS ALL FLAGS

DO ARITHMETIC/LOGIC INSTRUCTIONS

DB
AFFECT ALL FLAGS EXCEPT:

DAD AFFECTS CY ONLY

EO INR AND DCR AFFECT ALL FLAGS
EB EXCEPT:

FO CY

F8 INX AND DCX DO NOT AFFECT ANY FLAGS

El DI IN AND OUT ARE TWO BYTE

FB F3 INSTRUCTIONS WITH PORT ADDRESS

RST 2 RST 3 RST 4 RST 5 RST 6 RST 7
0010 0018 0020 0028 0030 0038
07 OF E7 EF F7 FF

4-159

THE OTHER REGISTERS AND MEMORY ADDRESSING

This page intentionally left blank.

4-160

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 5

MEMORY HARDWARE

,<

INTRODUCTION TO CHAPTER 5

Having explored (in Chapters 2 and 4) the ways that programs address

the memory, we will now examine the physical addressing of the

memory. This chapter discusses the following subjects:

Control Interface

Memory Technology - ROM and RAM

Memory Addressing and Address Decoding

Data Bus Connections and Tri-State Circu�ts

Direct Memory Access and Interrupt Inputs

Memory Signals and Timing

The principal purpose of this chapter is to discuss the connection of

memory devices to the microprocessor. This requires a cursory

understanding of the control signals between the CPU and the memory.

For the sake of completeness Section 5.1 discusses these control

signals in some detail, but it is suggested that the student skim

much of this section now, and refer back to it when other control

signals are brought up in later chapters.

5-1

CJ1
I

l\:I

AUTO/STEP
SELECT

,]

,

[

..
;....;.._

..c
Cl
""'C.

r-C

�.� .�
o.�RESET J

TKEY
lm

r;::>

WAIT
Ao -

A15RDY WR;:
OBIN

HLDA
HOLD I+-

B080A

INT
Do - .

INTE D7 D5
,

t/>1 t/>2
... � ' RESET

·�

SYNC

8224

RESIN
STSTB

i:J

• •
INTERRUPT -
GENERATOR -�

CHIP
SELECT

I::: n--------------

i.
'

.. I�

MEMR

Ml:MW

SYSTEM

B
PROM

2708/2711

' '-, � - l '
"

� I

- -

I,

"'

AB0 AB1
I I

lJ
cs

PROM
12708/ 2716

' I,

' I,

Do 7

u
CE1

RAM

loo 211i/W
1

"
"' ''

-
' JI
"'

II

DATA

lJ
CE1

RAM
2114

1) V OD. R
t, �

' I,

.
,

'

r

_ Ao A1 CS
CONTROL -_,, RD r-+ LATCH DECODER

LER
b--.c WR

8255 8212 -
--- PBo 7 PC0 7 PAo 7STST I

. "'

4)

t
, ,

·rt
'

'IP � . �
� LED DISPLAY

,

' I,
\,

-

� 24 KEYS
- DMA

- TRANSFER - _ CONTROL -- -

1 II ' I, I, ..

1/0 " " "
CVTCAIIJA PERIPHERAL

Microcomputer Training System Configuration
Figure 5-1

.

7401

�

,0--

,0--
o.c.

HLDA

ABo 15

DBo 7

ABo

AB1

AB2

0�

z
0

0
z

0

�
0

�

5.1 SYSTEM CONTROLLER

MEMORY AND CONTROL HARDWARE

A computer must include a CPU (central processing unit), memory, and

input/output devices (Figure 5-1). The 8080 microprocessor demands

additional hardware (the System Controller) to allow the necessary

connections to memory and I/0, because of pin limitations. To

overcome this limitation,

times they are inputs to

outputs.

some pins are bi-directional -- at some

the CPU, and at other times they are

The CPU controls the usage of the address and data buses, giving

control signals to memory, I/0, and other external devices to

indicate the functions to be performed. To further extend the

functions of the limited number of pins, certain of the control

signals are output on the data bus, and must be accepted and stored

by the System Controller so that the data bus can be used to transfer

other data. The control signals output via the data bus are referred

to collectively as the "status byte".

5.1.1 Control Signals

In Chapters 1, 2 and 4 we described in some detail the series of

steps required to execute each of several instructions. Such a

series is an "instruction cycle". In general each of the steps is a

"machine cycle", and in each step the address and data buses may be

used differently. The control signals are largely concerned with

defining the functions of the buses, controlling the operations of

different external devices.

5-3

MEMORY AND CONTROL HARDWARE

Some of the control signals contain timing information, and vary

within a machine cycle. These signals have assigned pins on the 8080

chip. Other signals remain effective throughout one machine cycle.

These are output on the data bus at the beginning of a machine cycle

as the status byte and are latched by the System Controller.

The timing signals are:

SYNC

OBIN

WR

WAIT

HLDA

Designates status byte time.

CPU will accept data from bus.

CPU places d·ata on bus.

Acknowledge "Not Ready".

Acknowledge "Hold".

The two signals OBIN and WR are actually sufficient for a system that

does not use interrupts, and which uses "memory mapped" input/output.

(These 1/0 schemes are described in Chapter 8.)

When OBIN is true (high) the memory or input device addressed should

deliver data onto the data bus to be read by the CPU. When WR is

true (low) the memory or output device addressed should accept data

placed on the data bus by the CPU. These signals do not distinguish

memory from 1/0 devices.

If the memory or 1/0 device is too slow to deliver or accept data

within the time available, it can give the 8080 a Not Ready input

which will extend the time of OBIN or WR for one or more clock

cycles. WAIT acknowledges this request.

5-4

MEMORY AND CONTROL HARDWARE

If. some other device needs to use the address and dltl bu�es, it may

ask the CPU.to suspend its operations and relea-se the buses. HLDA is

a si gna 1 that grants- such a ,request.

SYNC actually extends both before and after the time that the status

byte is present on the data bus. It must be gated with the phase 1

clock (a narrow pulse) to latch the status byte into the System

Controller. This function is performed by the 8224 clock generator,

which receives SYNC and outputs STSTB, the narrow pulse.

5.1.2 Status Byte

The status byte output on the data bus at SYNC time is defined below.

The major function of the System Controller is to latch (hold) the

status byte and also decode it to give signals that are more

convenient for use by the memory and 1/0 devices. The data bus line

that carries each signal is designated in parentheses.

Some of the functions mentioned below have not been defined, and will

not be discussed until later chapters. The student is urged to

ignore them for now, and refer back to this chapter when appropriate.

A detailed understanding of these controls is necessary for the

hardware designer, but not for the programmer.

5-5
?

MEMORY AND CONTROL HARDWARE

a. MEMR (D7) This machine cycle is to read from memory. The

signal is true during instruction fetch,memory read, stack read,

and halt machine cycles.

b. WO (D1) This machine cycle is to output from the CPU to

memory or 1/0. The signal is true (low) during memory write,

stack write, and output machine cycles.

c. !NP (D6) An IN instruction is being executed. The

addressed input device should place data on the bus during OBIN.

d. OUT

addressed

�.

(D4) An OUT instruction

output device should accept

is being executed. The

data from the bus during

e. Ml (D5) An instruction fetch cycle is being executed.

This is true only and always for the first machine cycle of

every instruction cycle.

f. STACK (D2) The current address is from the stack pointer.

g. HLTA (D3) Indicates that the CPU is in a Halt state.

h. INTA (DO) Acknowledges an interrupt.

5.1.3 Decoded Control Signals

The System Controller gates the various status byte and timing

signals to generate control signals that are convenient for memory

and 1/0 devices. In subsequent discussion of memory and 1/0

hardware, we will refer to the .following signals:

5-6

MEMORY AND CONTROL HARDWARE

a. MEMW An active low signal indicating that the data bus

content should be stored at the addressed memory location. It

is true (low) during WR time if WO is true and OUT is false.

b. MEMR An active low signal indicating that data from the

addressed memory location should be placed on the data bus. It

is true (low) during DBIN time of an instruction fetch, memory

read or stack read machine cycle.

c. IOW An active low signal indicating that the addressed
.. �+l"--1:
fiiput device should accept data from the bus. It is true (low)

during WR time if WO is true and OUT is true.

d. IOR An active low signal indicating that the addressed

input device should place data on the bus. It is true during

OBIN time of an input read machine cycle.

e. INTA An active low signal indicating that an interrupt has

been acknowledged, and the interrupt instruction should be

placed on the data bus. It is true during DBIN time if INTA of

the status byte is true.

f. Ml An active high signal indicating that the current

machine cycle is the first (or only) machine cycle of an

instruction cycle. It is the latched value of Ml in the status

byte.

5-7

MEMORY AND CONTROL HARDWARE

8080 SYSTEM

DATA BUS 7___
DATA BUS

lJ7 fs g� DB t--
6
_________ DB7

WR

-9. 46B
fl, I71! DB 10

D6---t-e--_..,.....,D0
�---------

...12. 8216
114 DI DB 13

DS ----e,-�-_.,.....&.f DO

DB6

DBS

r1 Di
D4 ---+-�..,...._.......,...:=-t DO

DB t---,::3;___________ DB4
�----'

r---+----+--11--f--::..-=--=-�· i;�·I _ ____.Y 1

6 ri DI

D3---t---+-+-+--+-+ -� 4 DO
DBt------------

D2
f2 g6
12

ITT gb Dl
g

ITTl DI
DO --+-+-+-+-�-+-+�=4 DO

46A 13
DBt------------

8216 13
DB t-----------.....;__

10
DBt------------

wr:-_I ___ ,•__.
.....,...-1---t--t--+-t.......+---

")
6,,,,,I

' • 1 12 11 �11

DB3

DB2

DBI

DBO

139- 12 46C
I�

� LS368 .l!! 13 MEMW ... -

'--+----:::3.....,,1) I Q i--=2::..,.------1
..._......,._,..11....., D 46D Q 10 6 � 7

...___,._6_... D . Q 7 2 ,: �

___,__14_... DLS174 Q
15 4 :s

----+--4� 0 Q 5 ----u--1

--

13 ---�---1 D Q _12
CLK CLR

IOW

IOR

MEMR

INTA

STSTB

BUSEN

�---.-��+---�9__,I ?l
+S

+5, I 5 _ 6

DBIN

HLDA

n 10 1 3 4-)23
+5 12 D J; 9 2 23 -- �

11 c LS 7 4 8 9 -----------1
R v 8

--�, �:.....,l�n-
8�-�?.t,.::l::;..3 __ �18:._n,..,�

n-
- ------'

MTS System Controller
Figure 5-2 5-8

MEMORY AND CONTROL HARDWARE

5.1.4 MTS System Controller Logic

Figure s�2 shows the detailed logic of the MT� system controller. The

two 8216 · bidirectional bus drivers provide electrical isolation of

. the 8080 data bus from the system bus. The 74LS174 six bit latch

stores the required bits of the status bytes. (STACK and HLTA are

not used.) The 74LS368 tri state buffer (upper section) generates

either MEMW or IOW during WR time, depending on whether OUT is false

or true. The lower section of the 368 generates IOR, MEMR or INTA

during DBIN time, depending on whether IN, MEMR, or INTA of the

status byte was true. These signals are further qualified by the

flip flop and gates at the bottom of the diagram, which have the

effect of inhibiting the signals when a HOLD request has been given

by the OMA channel and acknowledged by the 8080 1 on HLDA�

5.1.5 Intel 8228 System Controller

All of the functions of the system controller can be provided by the

Intel 8228. This is a 28 pin chip, is fairly inexpensive, and is

used in most 8080 microcomputer systems. In fact, Intel refers to

the 8080 microprocessor, 8224 clock generator and 8228 system

controller as the "CPU Groupll.

In addition to latching and decoding the control signals, the 8228

isolates· the system data bus from the 8080 data bus, providing

additional power drive capability to support large memories and

allowing certain data bus uses to overlap in time.

Although the 8228 is applicable in most microcomputer designs and is

typically more economical than the several logic chips required to

5-9

MEMORY AND CONTROL HARDWARE

replace it, the 8228 is unfortunately not compatible with the S-100

data bus. Therefore, the MTS was designed without the 8228 because

its use would have precluded system expansion to the S-100 bus.

This incompatibility arose because the S-100 Bus was defined prior to

the development of the 8228 by Intel. For good engineeririg reasons,

the 8228 does not handle the status byte exactly as r�quired for

S-100 compatibility. In particular, the 8228 isolates the system data

bus from the 8080 data bus during SYNC time, and does not place the

status byte on the external bus. This has the advantage that an

addressed memory or input device can place data on the bus prior to

the DBIN signal, which slightly increases the effective memory speed.

On the other hand� the S-100 Bus definition requires that the status

byte be available on the data bus.

used with an S-100 interface.

Therefore, the 8228 cannot be

The 8228 has two additional functions that are useful in some

interrupt systems, as wi 11 be described in Chapter a. INTA is

principally an output signal from the 8228, acknowledging an

interrupt and indicating that an external device should enter an

instruction to the 8080. If this pin is pulled up through a lK

resistor to +12 volts, the 8228 will supply the instruction code FF,

which is RST7. (See Chapter 8.) In the MTS controller this function

is accomplished by resistor pullups on the data bus.

The 8228 also recognizes a CALL instruction being placed on the data

bus in response to INTA, and controls the buses to accept from the

external device the second and third bytes of the CALL.

5-10

5.2 MEMORY TECHNOLOGY

MEMORY AND CONTROL HARDWARE

A memory device includes semiconductor circuits or elements to serve

four functions:

a) Store data in an ordered array

b) Decode the address inputs to select a certain location

c) Alter the stored data at the selected location upon command

d) Output the data from the selected location upon command

The memory

addressed by

devices used in the MTS

the low-order ten bits of

each have 1024 locations,

the system address bus. The

ROM and RAM memories of your MTS system are shown in Figure 5-3. The

ROM devices store eight bits at each location. The RAM devices store

four bits at each location, so two devices are used for the eight

bits that must be stored for each address.

5-11

MEMORY AND CONTROL HARDWARE

U')
I-.,_.

U') ,:::Q
=>

,:::Q lO.

U') e::::
U') L1J

�52
AO
A
<C :::z:::

t!) .,_.
:::z:::

U')
I­
=>

U') ,:::Q
=>

,:::Q 0
r-1

U')
U') e::::
L1J L1J
e:::: A
A e::::
AO
<C

5-12

3;
0
....J

-
"'

-/

�

U')
=>

,:::Q

<C
I--
<C
A

CHIP

SELECT

DECODER
} TO ADD I Tl ONAL

MEMORY

LOCATIONS

NOT SUPPLIED

• II n I

CE CE CE CE

ROM
RAM RAM RAM

1024 LOCATIONS
1024 1024 1024
X X X

8 BITS EACH 4 4 4

'

ONE ROM CHIP

PROVIDES 8 BITS

TWO RAM CHIPS

SELECTED TOGETHER

PROVIDE 8 BITS

Memory Addressing

Figure 5-3

I

CE

RAM

1024
X

4

MEMORY AND CONTROL HARDWARE

The electronic means of storing data depends on the kind of memory

device used. Permanent (mask) Read Only Memory (ROM) has, for each

bit, a transistor that is either created or destroyed during the

semiconductor manufacturing process. In eraseable and Programmable

Read Only Memory (PROM) devices, such as the MTS's 2708, a physical

qualit� of the semiconductor material at each bit position is altered

by a relatively high voltage pulse during programming. The change is

reversible but non-volatile:' it will remain indefinitely until a new

programming operation is performed. The MTS has no facility for

applying such high energy pulses, so data cannot be written to the

PROM while it is in the c1rcuit. The PROM can be rewritten by

removing it from the circuit board, erasing it by exposure to intense

ul traviolei light, and writing a new program with a special

programming device.

In read�write memory the data are stbred in the form of current or

charge in transistors. Static RAMs, such as the MTS's 2114, include

a flip tlop circuit for each bit. Such a circuit has two stable

stat2s; one tran�istor conducts while a second is cut off. Dynamic

RAM� store data in the form of a charge, which gradually leaks away

and must be refreshed at approximately one millisecond intervals.

Refreshing r�quire� additional external circuitsj which' is not

appropriate in small systems. However, many more bits can be stored

in one dynamic device, which is desirable in large systems.

5-13

MEMORY AND CONTROL HARDWARE

U)

::l
11:1

U)

U)

Q)
1-1

'd
'd

lH
H 0

U) U)

Cll .µ
Q) ·r-t
1-1

"Cl

1-1
0

0
....:l

0

.....

CHIP
�ELECT

5-14

DECODER

DECODER

1/16

11

I '\

I
I

Selected Location

of Four Bits

..

V

1/64

11'\ ' '\

' ,,

/ i'\

/
l-'"

64 X 64

Internal Address Decoding in a Memory Device

Figure 5-4

, ' I I'\.,
,, ,,

array

("\

,.,

I

)

MEMORY AND CONTROL HARDWARE

The MTS read-write memory devices have an array of 4096 storage

locations, arranged as a square 64 cells high and 64 cells wide. The

ten address lines received by the device are divided into two groups,

of six and four bits. The six lines are decoded to select one of 64

columns, as shown in Figure 5-4. The other four lines are decoded by

a one-of-16 decoder to select four of the 64 rows, provided that the

chip select input to the memory device is active. Thus a unique ten

bit address, plus chip select, addresses a single set of four bits

out of the 4096 bits stored in the memory device. These four bits

are connected to control logic in the memory device to be read or

written as required.

The PROM addressing is similar, except that these devices store 8192

bits, arranged as 1024 sets of eight bits.

5-15

MEMORY AND CONTROL HARDWARE

This page intentionally left blank.

5-16

MEMORY AND CONTROL HARDWARE

5.3 CHIP SELECT LOGIC

The MTS provides for mounting four ROM (or PROM) chips and four pairs

of RAM chips. It is supplied with one PROM device and two RAM chip

pairs; the other locations are empty. Each memory device receives

the ten low order lines of the address bus (ABO through AB9) to

select one byte (or half byte, in the RAM). The six high order

address lines (ABlO through AB 15) are decoded externally to select

one PROM or two RAM chips. These six lines can select among 64

possible positions of which only three are occupied and only eight

can exist on the MTS circuit board. If one of the four PROM

locations or one of the four RAM pair locations is addressed,

decoding logic shown in Figure 5-5 will generate the appropriate chip

select signal.

This is an active low signal, so one of eight chip select lines goes

low.

In the following description it is assumed that the reader has at

least a slight knowledge of TTL logic and conventional symbols.

Readers lacking this knowledge should skip to Section 5.4.

5-17

MEMORY AND CONTROL HARDWARE

SlOO PHANTOM

ABlS

AB14

AB13

AB12

AB11

ABlO

MEMR

MEMW

DMA. ENABLE

ABU

ABll

ABlO

1542

@
A

EN

B

@
A

NOTE: Circled numbers are for reference to text only.

5-18

Chip Select Logic

Figure 5-5

100011

100010 CHIP

SELECTS

100001
TO

PAIRS

100000

000011

000010
CHIP

SELECTS
000001 TO

ROM's
000000

MEMORY AND CONTRO L HARDWARE

5.3.1 Memory Enabling

Two signals, MEMR and MEMW, are derived by the system controller

logic from data output by the microprocessor at the beginning of each

machine cycle. If this cycle is to read from memory, MEMR becomes

true (low). This occurs for an instruction fetch (the first machine

cycle of every instruction cycle), and again to read the second and

third bytes of multi-byte instructions or to load data from memory

into the microprocessor.

If a data byte is to be written to memory (as in loading a program or

in a STA instruction, for instance) MEMW becomes true. Either MEMR

or MEMW implies that memory is to be addressed. Various other

operations do not require access to the memory and neither of these

signals is true. The negative OR gate (1) in Figure 5-5 recognizes

that memory access is required and enables gates (2) and (3).

5.3.2 RAM Chip Selection

O ne pair of RAM memory chips (1024 bytes) will be selected by one of

the output lines from the decoder (5). This occurs under the

following conditions.

The S-100 PHANTOM is a signal derived from the S-100 bus that can

inhibit the addressing of any of the memory on the MTS. This signal

must be false. Then if the three high bits of the address bus

contain 100, the 74LS42 decoder selects the output line labeled 100

in Figure 5-5, and gives a true (low) signal to gate (2). Gate (3)

receives a false (high) signal from the line labeled 000, so its

output will remain false.

5-19

MEMORY AND CONTROL HARDWARE

Finally, address bus line 12 (AB12) must be low to make gate (2) have

a true output and enable the decoder (5). Now this decoder selects

among four RAM chip select lines according to ABll and ABlO. These

lines are labeled with the six bits of the address bus that make them

active. The bottom line of this group (100000) addresses the RAM

pair for memory addresses 8000 - 83FF. These 1024 bytes include the

display, monitor variable data, stack, and all ·the programs developed

in this course. This leads to an important point for the design of

small microcomputer systems. To address this 1024 byte RAM pair it

would be sufficient to recognize only the high bit of the address bus

if no other devices were addressed in the 8000 - FFFF memory area.

Gate (4) allows the selection of the 8000 - 83FF RAM pair in response

to DMA ENABLE. This signal is generated during the repetitive

accesses to memory to operate the display. At frequent intervals the

8080 processor stops its operations to allow the display circuits to

obtain data for the seven segment displays. During this "Direct

Memory Access" neither MEMR nor MEMW is active, so both decoders (5)

and (6) are disabled, and the RAM chips are selected by the DMA

ENABLE signal.

5.3.3 ROM Chip Selection

Now consider gate (3) and decoder (6). These select among the ROM or

PROM chips. As for RAM chip selection, either MEMR or MEMW must be

true. (In fact only MEMR should be true, since it is not possible to

write to the ROM's, but the system hardware does not enforce this

limitation.)

5-20

MEMORY AND CONTROL HARDWARE

The 74LS42 decoder selects the lowest output line (000) if the three

high bytes of the address bus contain 000. Now if AB12 is also 0,

gate (3) output becomes true, and enables decoder (6). This selects

among its four output lines according to ABll and ABlO, to enable one

of the four ROM positions on the MTS. Since the monitor program

occupies addresses 0000 through 03FF, only the lowest of these four

lines will ever be active in normal operation of the MTS as supplied.

You can read from a non-existing location:

ADDR 0400 MEM 0400 • FF

Pul lup resistors on the data bus force the bus content high when no

other device drives it. If you now press a hex key the monitor

program will attempt to write to this location. The monitor always

tests after writing, and indicates an error if writing is not

successful.

5-21

MEMORY AND

5-22

CONTROL HARDWARE

Address

0000-03FF

0400-07FF

0800-0BFF

OCOO-OFFF

1000-7FFF

8000-83FF

8400-87FF

8800-SBFF

8C00-8FFF

9000-FFFF

AB15-AB10

000000

000001

000010

000011

000100

to

011111

100000

100001

100010

100011

100100

to

111111

MTS Memory Addresses

Figure 5-6

Memory Selected

Monitor PROM

Empty ROM Position 1

Empty ROM Position 2

Empty ROM Position 3

No MTS Memory

RAM Pair 0

RAM Pair 1

Empty RAM Pair 2

Empty RAM Pair 3

No MTS Memory

MEMORY AND CONTROL HARDWARE

5.3.4 Partial Decoding

The memory locations that are addressed by the high six bits of the

address bus (AB15-AB10) are tabulated in Figure 5-6. In the monitor

and in the programs developed in this course only addresses 0000-03FF

(the monitor) and 8000-83FF (RAM) are used. The logic of Figure 5-7

would be sufficient to select the RAM if AB15 = 1 and ROM if AB15 =

O.; Such an arrangement is perfectly suitable for small microcomputer

systems dedicated to well defined applications. With this

arrangement, five bits of the address bus are ignored (AB14-AB10).

Addresses 8000, 8400, 8800, 8COO, 9000, 9400, etc., are exactly

equivalent, any of them reading or writing the same byte in memory.

This is referred to as "partial decoding". Its only disadvantage is

that it precludes expansion of the system. The MTS uses "full

decoding", uniquely addressing each byte of memory, to permit

expansion of the system through the S-100 bus interface.

5-23

MEMORY AND CONTROL HARDWARE

5-24

DMA ENABLE

MEMR

MEMW

AB15

Minimum Chip Select

Figure 5-7

RAM SELECT

ROM SELECT

MEMORY AND CONTROL HARDWARE

5.3.5 Alternative Memory Addressing

Refer again to Figure 5-5, and note that provision is made for

changing the address decoding. The jumpers between the 74LS42

decoder (Figure 5-5) and gates (2) and (3) allow the user to move the

physical memory devices on the MTS circuit board to different logical

addresses. This is not permissible with the MTS educational monitor,

which must be located at addresses 0000-03FF and must have memory at

8000-83FF.

The jumpers between AB12-AB10 and gate (3) and decoder (6) may be

reconfigured to permit use of ROM or PROM chips containing 2048 bytes

instead of 1024 bytes each. Thus a total of 8192 bytes of ROM could

be installed on the MTS for a large system.

The S-100 bus defines the signal S-100 PHANTOM. If this is made

true, all of the MTS memory is disabled. Suppose that you have

developed a program which is ultimately to operate at memory

locations 0000-07FF. You can use the MTS monitor to load this

program into memory physically located in the S-100 system. Then by

setting S-100 PHANTOM true you di.sable the MTS monitor and use the

S-100 memory to run your program. Such operations are beyond the

scope of this course, and this is mentioned solely to explain the

PHANTOM si gna 1.

5-25

MEMORY AND CONTROL HARDWARE

5.4 DATA BUS CONN ECTIONS

Figure 5 -1 shows that the inputs and outputs of all the memory

devices are connected to a common data bus. Only the chip (or

pair of RAM chips) that has been enabled by the high address decoder

is �llowed to use the data bus: when the bus is active it is

driven by one device (memory, CPU, or input) and it drives one

device (memory, CPU, or output).

5.4.1 Tri-State Circuits

The device that is to receive data from the bus expects e�ch line of

the bus to be in a clearly defined state - one or zero. To achieve

this the driving device either pulls the bus down to a voltage level

close to O vol ts or pulls it up to a voltage level well above 0

volts between about 2.5 and 5 volts. Other devices that are

capable of driving the bus must not interfere with this operation.

A semiconductor· circuit for this purpose is called a Tri-State

circuit: it has three output states, high, low, and off,

analogous to a three-way on-off-on toggle switch.

No Connection

5-26

+5 Volts

high

O 'o---- Data Bus Connection
low

and is

MEMORY AND CONTROL HARDWARE

Clearly we could connect many su ch switches to a data bus line and

if exactly one switch is high or low the line will be in a well

defined state.

transistors. If

The circuit used

the high transistor

in

is

the memory uses MOS

turned on, the circuit

delivers current to the line from the 5 volt supply. If the low

transistor is turned on, the circuit sinks current to ground. If

both are off, the circuit exhibits a high impedance to the line.

Tri-state circuits are used for all connections capable of driving

the address bus or the data bus. This includes the 8080 CPU,

the System Controller, each 2708 ROM and 2114 RAM (on the data bus

only), and the 8255 Peripheral Interface.

5.4.2 Read-Write Control

In addition to allowing many devices to share the data bus,

the tri-state circuit allows the individual device to use the same

pins for input and output. When a device has been selected by the

address bus decoder it observes the control lines from the system

controller (the control bus), signals which are derived from the CPU.

A memory read operation causes the selected memory device to connect

the outputs of the selected memory location to the system data

bus by enabling the tri-state output to enter its high or low state.

When its tri-state circuits are in the high impedance state the

device can sense data that the CPU has placed on the data bus.

When a signal from the CPU commands a memory write operation, the

selected device copies data from the bus to the inputs of the storage

flip flops addressed by its internal decoder.

5-27

MEMORY AND CONTROL HARDWARE

A similar operation occurs in the 8255 Peripheral Interface device

when the CPU commands an input or output operation. On input the

8255 copies data from its external ports (from the keyboard, for

instance) onto the data bus. On output the 8255 senses the data bus

�nd copies the data to the output ports.

Some memory devices (such as·the 2101) have separate input and output

pins; but st ill include tri-sta te c ire ui ts control-led to permit both

inputs and outputs to be connected to the data bus •. Other memory

devices (such as the 2102) do not permit such direct connection of

outputs and inputs.

these are enabled

Although the outputs

whenever the chip is

have tri-state circuits,

selected. Therefore a

separate tri-state circuit must isolate the outputs from the data bus

during memory write.

5.4 •. 3 OMA and Interr·upts - Introduction

The 8255 provides for programmed input and output. lt sends data to

the CPU from the external world when the program requests it, and

it sends data to the external world when the program so specifies.

There are two other means of input

and the MTS employs both of them.

Interrupts both provide for input

external device instead of on demand

and output used in computers,

Direct Memory Access and

or output on demand of an

by a program. These subjects

are discussed in detail in a later chapter; at the moment we are

concerned with their relationship to memory and the buses.

Direct memory access permits a� external device to read or write to

the computer's memory without program control or CPU intervention.

5-28

MEMORY AND CONTROL HARDWARE

When the device needs access to the memory it generates a signal

to the CPU requesting a HOLD state. When the CPU finishes the

current machine cycle it acknowledges the hold and relinquishes

control of the memory, placing its address and data bus

drivers into the high impedance condition. The external device --

the OMA channel -- now drives the address lines and the read and

write control lines. If memory read is being requested, the selected

memory device dri.ves the data bus just . as if the CPU had commanded

a memory read the memory does not know the difference. The

DMA channel accepts the data from the bus, then returns control to

the CPU by dropping the hold request.

The Interrupt method of externally controlled input and output

involves only the data bus. An interrupt request is deliver�d to

the CPU, which finishes the current instruction and relinquishes

control of the buses. The interrupting device proceeds to place

an instruction on the data bus, and the CPU treats this as though it

were an instruction read from the program memory. Eight RST

instructions are provided for this purpose. As you have seen, RST4

as an instruction in your program causes an entry to .the

monitor program. If it were entered by means of an external

interrupt, exactly the same process would occur. Usually the

interrupt initiates a programmed input or output operation; this is

treated in Chapter 8.

5-29

C1I
I

I
Tl ti)

0

Clock - � 1 (8224) I I

Clock � 2 (8224) I I

Sync (CPU) I I

Status Stroke (8224) I

Address Bus

Data Bus (CPU)

Data Bus (rerory)

OBIN (CPU)

Meno:ry Read

Write (CPU)

Merrory Write

· Ready /Wait

I
T2

I
'1w

I
T3

I
T4

I I II I I I I

I I I 11 I I I I I I I

I I I I I

I I I I

' '

P:EOGRM-1 a)UN'l'ER

s TUS ur

Memory Access Timing
- -

I
Tl

I
T2

1
Tw

I T3
I a::

t,:J

f:!:;

n n n n I @
�

>

I I I I I I I I I I I I 11
z
0

()
0
z

I I I I I I I
�
:::ti
0

I I I I I ::i::

0

>
:::ti
ti:J

_J s TUS X 'IO RY

DATA 'IO MEMI

5.5 MEMORY SIGNALS AND TIMING

5.5.1 Machine States and Transitions

MEMORY AND CONTROL HARDWARE

Figure 5-8 shows the signals involved in memory access during the

MOV M,A instruction cycle. The

clock generator, which includes

system clock is driven by the 8224

an oscillator controlled by an

external crystal. The oscillator is counted down and divided into

a two phase clock: the pl and 12 clocks, as shown. SYNC is generated

by the CPU at the beginning of each machine cycle. The)fl clock

period marks "states" of the processor. Each machine cycle has three

or more states (clock periods). Each instruction cycle has one or

more machine cycles. We will proceed along the time axis and explain

the states as we meet them.

5.5.2 First State (Tl)

During the last half of state Tl and the first half of state T2, the

CPU generates a SYNC signal, and outputs on the data bus an eight-bit

status word designating the kind of machine cycle that is being

performed. In the first machine cycle of any instruction this is

always an instruction FETCH.

The clock generator receives the SYNC signal and generates a status

strobe in response: This is a narrow pulse which the system

controller uses to latch the status data.

The CPU also connects its program counter outputs onto the address

bus during the instruction FETCH machine cycle. This connection is

retained through most of the machine cycle. All of the memory

5-31

MEMORY AND CONTROL HARDWARE

devices receive the address (10 low-order bits) and decode it, and

the external decoder selects one of the memory devices.

The system controller recognizes that this is an instruction FETCH

cycle and generates the MEMORY READ signal. This is an active low

signal; the near O volts condition tells the memory to read. It is

timed by DBIN to ensure that the memory does not drive the data bus

until the CPU has released the bus.

5.5.3 Second State (T2) and Wait (TW)

During state T2 a signal (DBIN) is raised to receive data. The OBIN

signal is terminated during state T3. Some memory devices are too

slow to delive� data to the CPU by this time, or if the memory is

physically separated from the CPU the cables may introduce an

excessive delay. To provide for this� if the READY signal to the CPU

is low at the end of T2 the CPU enters a WAIT state, TW. The WAIT

state is repeated until READY is high at the end of a clock period.

Figure 5-8 shows one WAIT cycle with each memory access. This does

not occur in the MTS when it operates with its own memory, but is

required if it operates with S-100 memory. The READY signal can also

be used during input or output to slow peripheral devices.

5.5.4 States T3, T4 and T5

During T3 the data bus is read by the CPU, and since this is an

instruction FETCH it is loaded to Register I. The instruction is

interpreted during T4, at the end of which a new machine cycle

begins. The T5 state is available for certain instructions, but if

not required Tl follows T4.

5-32

MEMORY AND CONTROL HARDWARE

Since the instruction in Figure 5-8 is MOY M,A a MEMORY WRITE cycle

is required. The CPU again outputs SYNC, Status and an address, but

·now the address is the content of (H,L). During T2 the CPU places

the content of Register A on its data bus and the system controller

passes it on to the system data bus. The CPU status indicates that a

memory write cycle is required, so the system controller generates

MEMW. Once again a WAIT state is sh6wn. After TW the standard T3

state occurs. With fast memory the T3 state provides time enough for

writing. The TW state doubles that time, while reducing the

processor's speed by about 25%.

5-33

MEMORY AND CONTROL HARDWARE

This page intentionally left blank.

5-34

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 6

MODULES., SUB-ROUTINES AND THE STACK

·I . q

6.1 PROGRAM MODULES

The design and hardware of a complex machine are always divided

into modules, each having a limited function and a limited set of

inputs and outputs. The purpose is to make each module

comprehensible to the designer and to make it fit within a

physically realizable structure (such as a circuit board). Often

modules operate in parallel because their functions are separable

but must or can overlap in time.

The design of a machine that uses a microprocessor is handled the

same way. The microprocessor is part of a solution; it is

surrounded by other hardware modules that relate to it. The

program of the microprocessor is similarly divided into modules,

which relate to each other and to the surrounding hardware. Your

microcomputer

clear example

displayed, but

between the

training system and its monitor program include a

of this: when you press numeric keys they are

in the hardware there is no physical connection

keyboard and display. There is a program module

which services the keyboard and a program module which services

the display. These operate independently, and other program

modules determine their interactions, which vary with time and

history. When you press a hexadecimal key it may be displayed

in any of six positions depending on what command key and _other

hexadecimal keys you pressed before. (In a later chapter we

will examine the design of the MTS and its input and output

electronics and·programming.)

6-1

MODULES, SUBROUTINES AND THE STACK

6.1.1 In-Line Programming

Consider the sensor correction program of Chapter 4:

If the input and output functions were part of your program you

might program them all "in-line", with a series of instructions

to accept hexadecimal keys and display them (possibly with a loop for

input of two or more keys), followed by the instructions for the

directory search and table lookup for a linearized value, followed by

the multiplication for scaling, then the commands to output the

result, and finally a jump back to the beginning.

Obtain the 'Input

Search Directory

Table Lookup

Multiply

Display Result

6-2

MODULES, SUBROUTINES AND THE STACK

6.1.2 Creating Program Modules

As these procedures become sufficiently complex, it is desirable

to distinguish each of

develop it independently.

them as a separate module and

This can be done with a subsequent

integrati on of the several modules into an in-line program.

Consider an in-line procedure comprising input, process, and output.

-
I

j ',

Demand Input

! Input Program
-

' Hardware
Module

Input Data

I

l
Input

l Data

Process Data
I

i Program Module

Result

I

I
Command Output

I
Output Hardware

Program Module
-

i Result Data

6-3

MODULES, SUBROUTINES AND THE.STACK

The input may involve several data items (for instance, sensor

number and data input), and the input program module retains

control until the requisite data items have been obtained.

There may be loops and decision points within the .module, but

control stays there until the task has been completed. Then

some data processing occur�, which may i��olve 16ops, table

lookup, and perhaps use of previous data. Again, control remains

with this program module until its task is done. Finally results

are passed to an output module which sends out the data. Such a

procedure is exemplified by the sensor correction problem in

Chapter 4, although we entered the monitor for i�pu{ �nd output. (By

the end of this chapter you will have learned ways to call upon ;the

monitor for input and output as separate functioris.)

Another way of organizing a program is to write the separat� modules,

locating them in different areas of program memory, and provide a

control program that jumps to each module in turn. This is suggested

in Figure 6-1. Why would we do this? In the �ensor correction

exercise of Section 4.12 we used a directory procedure that required

all data tables to fit into a single page (8300 --) of memory. If we

found later that more sensors or larger table� were needed, we might

need a directory with two byte addresses. If the program were

organized as Figure 6 -:1 we could rewrite the SEARCH DIRECTORY module

with no effect on any other module. If we found it desirable to have

the microprocessor select the sensor to be read instead of taking

sensor number as an input, we would modify the input module, and

possibly add a new module to select the sensor.

6-4

MODULES, SUBROUTiNES AND THE STACK

CONTROL PROGRAM .MODULES

Initialize

. -.

JMP to Input - INPUT -:

� JMP back

JMP to Search .

SEARCH
Directory DIRECTORY

JMP back

JMP to Table Lookup
-

- TABLE LOOKUP

� JMP back

JMP to Multiply . MULTIPLY

� JMP back

JMP to Display - DISPLAY
RESULT

JMP back�

Program Modules with Control Program

Figure 6-1

6-5

MODULES, SUBROUTINES AND THE STACK

As long as the overall function remains unchanged and no new modules

are added, the main program retains the same jumps - one to the start

of each module. Each module jumps back to the main program location

following the instruction that jumped to the module. Wh�n each jump

occurs, there usually is some information to be passed to the module

or back to the main program: at least the inputs and results. These

data may be in registers (the inputs and outputs, for instance) while

other data might be in specified memory locations.

6.1.3 Module Specification

Now consider the program specification for each module • . Suppose each

were to be designed independently; what must its designer be given?

Here are some of the important considerations:

Function:

Specify the "black box" algorithm·for the module.

Entry:

The address to which the master program must jump.

Extent:

The range of program memory allotted to the module (starting
and ending addresses or number of memory words used).

6-6

MODULES, SUBROUTINES AND THE STACK

Inputs:

Identify the inputs to be given to the module. What are
they, and where will they be? In what register or memory
location? How many bytes? (Recali the specification of
register assignments in Section 4.4.4.)

Outputs:

Identify the results the module is to generate.
they, and where must the module place them?

Registers:

What are

What registers are used or preserved?
preserved sensor number in Register B.)

(Recall that we

Constraints:

What memory. areas may the module use for data storage,
either temporary or permanent? Is the module permitted to
use all of the registers, or must certain ones be preserved?
How much time is permitted for the module's function?

It may appear that the need to specify all of this (and often much

more) ma�es the use of program modules a nuisance. In fact it is·

one 9f the best reasons for modular design:

discipline that may otherwise be neglected.

it forces a

When such items

are well-defined, many programming errors may be avoided.

Suppose that one module serves a function that is needed several

times in the program - displaying data, for instance. In the

sensor correction program it would be desirable to display the sensor

number and the input data; later we display the result. If we jumped

to the display module with an additional variable (perhaps in an

unused register) indicating whether the entry is for input or

result, the display module could test that variable and decide where

to return. This would demand that the specification include

two return addresses and a definition of the new control variable.

6-7

MODULES, SUBROUTINES AND THE STACK

A much better procedure is for the main control program to pass

the return address as a variable. Then we need a jump instruction

that can use a variable address. We have such an instruction:

HEX CODE:

MNEMONIC:

MEANING:

E9

PCHL

Move the content� of re�ister pair H,L

into the program counter and continue

program execution from that address.

To experiment with this we will write a trivial program that

does nothing except load a variable> return,address\and jump to a

module, which does nothing except jump back. Figure 6-2 is a flow

chart of the program shown in Figure 6-3. The return address to

be loaded must be the address of the instruction following the jump

into the module.

6-8

MODULES, SUBROUTINES AND THE STACK

Do nothing

Load immediate

return address

to HL

Jump to module

Do nothing,

Load immediate

return address

to HL

Jump to module

Do nothing

Jump to start

Do nothing

Jump back

to main

(PCHL)

Do Nothing Program With Do Nothing Module

Figure 6-2

6-9

1-
UJ
UJ
:I:

(.!)
z
0
0
(.)

�
UJ
1-
C/'J
>­
C/'J

(.!)
z -
z
<(
C:
I­

C:
UJ
I­
:>
c..
�
0
(.)
0
C:
(.)

�

C/'J
�
UJ
1-
C/'J
>­
C/'J

a:
UJ
I­
::>
c..
�
0
(.)

0
UJ

C:
(.!)
UJ
1-z

6-10

A D D R CODE

8e>(/JO {) 0
1 I) t)
2 0 {)
3 c2. I
4 () f
5 JJ ;;
6 {!, 3
7 c2 tJ

8 f' �

9 t) CJ
A o2 I

B / tJ

C p c?
D e 3

E b? t)
F jJ �

8 � / 0 tJ c)
1 e 3

2 {) CJ
3 J' '2
4

5

6

7

8

9

A

B

C

D

E

F

8 o<e2. 0 {) !)
1 1£ 9
2

3

4

5

6

7

8

Iv

L

0

N
L

0

/J

J

tJ
p

DO NOTHING PROGRAM

1/J f

x _L !-I j' c2 ()
/

M p f � d 0

0 p

x l /./- J) e1. I
,,

M p f d /1 0

0 p
M p f d 0 0

0 p
c.,. I+ L

9

0

/7_.J,,JL A A A 'd- � �/r

NO p
L _-/-.� .,. �..:._I

(L - ��_JI /�

fl
,

/J�A1L 1 - _... d -1 A�/c

Al c) p . -L - -/!I I A �A. A)

()_ - 7'-,A a .Jt •• �,, J

/ I

() -�

/ /

'IJloJ.u .l.t. /

A/-;;• I:

(l -1 :Z�

tt �PL

Figure 6-3

MODULES, SUBROUTINES AND THE STACK

When you have loaded the program, step though it. The program

counter should show this sequence:

8200 00 NOP

8201 00 NOP

8202 00 NOP

8203 21 LXI H, 8209

8206 C3 JMP 8220

8220 00 NOP

8221 E9 PCHL

8209 00 NOP

820A 21 LXI H, 8210

820D C3 JMP 8220

8220 00 NOP

8221 E9 PCHL

8210 00 NOP

8211 C3 JMP 8200

8200 00 NOP

8201 00 NOP

etc.

Of course if H,L were needed for other purposes we could have stored

the return address in memory. In fact, the use o f a variable return

address is so common that the microprocessor has special jump

instructions that do this for us automatically. When these are

used the module becomes a subroutine.

6-11

MODULES, SUBROUTINES AND THE STACK

6.2 SUBROUTINES

A subroutine is a program module that uses built-in features of the

computer for entry to the module, and return from the module.

6.2.1 Subroutine Entry and Return

The entry to a subroutine is made by a special kind of jump

instruction, CALL, which includes the address of the subroutine

ordinary jump instruction includes an address. The

automatically generates and saves an address for a

back to the calling program, executed at a RETurn

just as an

mic:r:oprocessor

subsequent jump

instruction.

6-,12

SUBROUTINE: A program module which is entered by means

of a CALL instruction and which normally

returns to the calling program by means of a

RETurn instructio�.

CALLING PROGRAM: The program module which has called a

subroutine. The calling program may be

the main program or another subroutine.

MODULE:S, SUBROUTINES AND THE STACK

The CALL instruction is:

HEX CODE:

MNEMONIC:

SECOND BYTE:

THIRD BYTE:

MEANING:

CD

CALL

Low address

High address

Save the address of the next following

instruction, and jump to the subroutine

whose first instruction is located at the

address given in Bytes 2 and 3.

The CALL instruction executes a jump, but instead of discarding

the present content of the program counter it stores (PC) in an

assigned memory area called the stack.

STACK: An area of memory assigned by the programmer

for the temporary storage of return addresses

or other d ata. It is addressed by a dedicated

16-bit counter called the Stack Pointer.

The jump back to the calling program is made by the RETurn

instruction:

HEX CODE:

MNEMONIC:

· MEANING:

C9

RET

Recove� the add�ess stored by

CALL and jump to that location.

6-13

MODULES, SUBROUTINES AND THE STACK

6.2.2 Tracing Subroutine Entry and. Return

Revise the Do Nothing program (Fi�ure 6-3) by

following op-codes (the JMP addresses are not changed):

replacing the

Address Was Change To

8206 C3 JMP CD CALL

820D C3 JMP CD CALL

8221 E9 PCHL C9 RET

Again trace the program flow and observe that the program

counter sequence is the same; only the instructions change.

The two LXI H instructions could be changed or removed with no

effect. Now we will examine and define the CALL and RET

instructions more thoroughly, and discuss the stack.

Use the "Do Nothing" program to foll ow this.

program to 8206, the CALL:

STEP

Step through your

8206 CD

The monitor can display the stack pointer as a register pair. Key 1

is also labelled P to designate the stack pointer.

ADDR 1/P MEM 83EO SP.??

Now step once to execute the CALL instruction:

STEP 8220 00

6-14

MODULES, SUBROUTINES AND THE STACK

Display the stack pointer again:

ADDR 1/P MEM 83DE SP09

The stack pointer contains the address in memory where the low byte

of the return address (8209) is stored. The next memory location

contains the high byte of the return address:

NEXT 83DF 82

Any time that you display a register pair and the memory location it

addresses you can see the following sequential memory location by

pressing NEXT. In debugging progra ms you

interested in the return address than the

pointer. Key 2 is labelled T to designate the

in the stack.

ADDR 2/T MEM

The stack top contains the return address.

Now step twice to return to the main program:

STEP

STEP

will

value

stack

more

of

top -

8209

8221

8209

The return address has been placed in the program counter.

often be

the

two

stack

bytes

STOO

C9

00

6-15

MODULES, .SUBROUTINES AND THE STACK

6.2.3 CALL Execution

Figure 6�4 Shows the program counter addressing 8206 and the

CALL instruction being loaded into the instruction register. The

program counter is incremented three times as the op code and the

following two bytes are loaded into Registers I, Z and W

respectively.· So far the proc�ss is identical to that of a JMP

instruction, as described in Chapter 2. We see that the

program counter 'now addresses the next instruction following CALL,

which is to be the return address. Registers W and Z contain

the jump. address. The stack pointer addresses·a location (83EO)

near the top of memory; this was loaded by the monitor program when

power was turned on. (The description continues on the next page.)

6-16

p

s

p

s

p

p

s

w

z

C

p

w

z

C

p

w

z

C

p

I

w

z

C

p

MODULES, SUBROUTINES AND THE STACK

CALL INSTRUCTIONS

PROCESSOR

21

0
8206

83EO

0
Address

820T

83EO

CD

20

Address
83EO

Data
CD

82
20

8209

83EO

MEMORY

21
09

82

CD

20
82

00

�
9

8 2

8 2

8 2

8 2

8 2

8 2

8 2

8 2

s 2

8 2

8 2

8 2

8 2

8 3

8 3

8 3

8 3

8 3

8 3

8 3

8 3

As in a jump instruction, the PC is used to address

0 0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

0 A

0 0

2 0

D A

D B

C C

D D

D

D F

E 0

E 1

the instruction code and the b.o following bytes, which are ·loaded into
I, z and W respectively

Figure 6-4 6-17

MODULES, SUBROUTINES AND THE STACK

Figure 6-5 shows the stack writing operation in a CALL instruction.

The content of the stack pointer is decremented (7) and sent out on

the address bus (8). The high byte of the program counter is sent

out on the data bus (9) to be written to the selected location in

the stack area of the memory. Now the stack pointer is decremented

again (10) and the low byte of the program counter is written to

the memory at the next location below the high byte (11, 12). Any

8080 instruction that stores an address places it in the same

position sequence - low byte at the lower memory location.

Finally the subroutine address is moved (13) from Registers Wand Z

into the program counter, as in a normal jump, and program

execution continues with the instruction there.

6-18

w

z

p C

s p

w

z

p C

s p

w

z

p C

s p

w

z

p C

s p

MODULES, SUBROUTINES AND THE STACK

CALL INSTRUCTION

PROCESSOR MEMORY

,..-...._

CD

82

20 21

8209 09

83EO 82

CD

20

82

00

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

8 2 0 4

8 2 0 5

8 2 0 6

8 2 0 7

8 2 0 8

8 2 0 9

8 2 0 A

Fo?9
�

8 2 2 0

8 2 2 1

20
/

Address

82 09

83DE
8 3 D

8 3 D

8 3 D

8 3 D

I 09 8 3 D

82 8 3 D

8 3 E

8 3 E

83DE

The stack po inter is decremented (7) and sent out as an
. address (8). The high byte of the program counter is
sent on the data bus (9) and wri tten to the addressed
merrory location. This is repeated for the low byte of the program
counter (10,11,12). · Then the content of W,Z, is noved to PC.

Figure 6-5 6-19

A

B

C
D

E

F

0

1

MODULES, SUBROUTINES AND THE STACK

6.2.4 Return Instruction

The RET instruction recovers the last address entered in the stack

and executes· a jump to that address. Note that a 1 though RET is a

jµmp it only requires one byte in the program (like PCHL) because the

address tp wh_ich it jumps is a variable stored by the CALL. The

RET instruction cycle is shown in Figures 6-6 and 6-7.

HEX CODE:

MNEMONIC:

MEANING:

C9

RET

Return to the calling program.

Figure 6-6 shbws the fetch and execution of the NOP instruction at

8220 and fetch of the RET instruction (C9) at 8�21� Execution of

the return is shown in Figure 6-7.

MODULES, SUBROUTINES AND THE STACK

PROCESSOR MEMOFlY

8 2 0 0

. r
. .

CD 8 2 0 1

w. 82 8 2 · 0 . 2
...

z 20 21 8 2 0 3

p C 8220 09 8 2 0 4

s p 83DE
0 82 8 2 0 5

CD 8 2 0 6

0 20 8, 2 0 7

82 8 2 0 8

00 8 2 0 9

w 8 2 0 A

z

p C 8221

s p 83DE

8 2 2 0

G
8 2 2 1

cg·

w

z

p C 8222

s p 83DE
8 3 D A

8 3 D B

The NOP instruction at 8220 is 8 3 D C

fetched and executed and the
8 3 D D

return instruction at 8221 is
D fetched. 09 8 3 E

82 8 3 D F

8 3 D 0

8 3 D 1

Figure 6-6

MODULES, SUBROUTINES AND THE STACK

In Figure 6-6 we saw the RET instruction loaded to the I register.

Its execution appears in Figure 6-7. The stack pointer provides a

memory address (7) and the low byte of the return address is moved

into Z (8). The stack pointer is incremented (9) to address the high

byte (10), which is moved into W (11). The stack pointer is

incremented again (12) and the content of W and Z is moved to the

program counter to accomplish the jump (13). Notice that this

process is identical to a normal jump except that after the

instruction fetch, the stack pointer is used instead of the program

counter to read the jump address.

6-22

w

z

p C

s p

w

z

p C

s p

w

z

p C

s p

w

z

p C

s p

MODULES, SUBROUTINES .AND THE STACK

RETURN INSTRUCTION Cont'd

PROCESSOR

C9

8222

83DE

C9

09

8222

83DF

C9

82

09

8222

83EO

83EO

0

--

--

MEMORY

21

09

82

CD

20

82

00

09

82

09

82

The stack pointer addresses the low byte
of the return address which is loaded
to Z (7,8). The stack pointer is incremented
(9} and the high byte is loaded to W (10, 11}.
The stack pointer is incremented again (12)
and the program counter is loaded from W and z.

Figure 6-7

8 2 0 0

8 2 0 1

8 2 0 2

8 2 0 3

8 2 0 4

8 2 0 5

8 2 0 6

8 2 0 7

8 2 0 8

8 2 0 9

8 2 0 A

8 2 2 0

8 2 2 1

8 3 D A

8 3 D B

8 3 D C

8 3 D D

8 3 D E

8 3 D F

8 3 E 0

8 3 E 1

6-23

MODULES, SUBROUTINES' AND .THE STACK

6.2.5 Subroutine Nesting

Why is the return address stored in memory? Since a 16 bit

register exists

return address

(the stack pointer), why not simply place the

in that register? In fact, this scheme was used in

early computers, and still appears in such small microprocessors as

the 4004 and 4040. The problem is that if only one register exists

there can be only one level of subroutine: one subroutine cannot

call another subroutine. The 4004 and 4040 have four return address

registers, so that four levels of subroutines can be used.

This is still a noticeable limitation� Using a memory stack

permits unlimited subroutine nesting. Figure 6-8 shows some nested

subroutines • . Note that there is no inherent "level" to a subroutine.

Any subroutine can be called from the· main program or fr'om any

other subrotitine.

Load the program (Figure 6-9) and

described on the following pages •

. 6�24

trace the program flow, as

MODULES, SUBROUTINES. AND THE STACK

CALL SUB1 i SUB1

CALL SUB2 SUB2

RET CALL SUB3

RET

CALL SUB3 SUB3

RET

Figure 6-8

6-25

1-
UJ
w
J:
U'J
(!)
z
0
0
<.)

�
UJ
I­
en
>­
en
(!)
z
z
<(
a:
l-
a:
UJ
I­
:>
a..
::;;E
0 u
0 a:
u
�

U)
::;;E
l.1J
1-U'J
>­
en
a:
w
1-
::>
a..
::;;E
0
u
0
w

a:
(!)
w
1-z

6-26

A D D R

a a< O o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 o2 / 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

10 0

(2])

I 0

IP c2
/) 0

<!. "])

I e.

p ,:2

II) {)
(! 3

tJ t)

? J

C) {)

� })
I 6

jJ ,:;

C) ()

(!_ 9

0 ()
(!])

I C

? :)

{) tJ

C q

"cJ {)

(! q

NESTED DO NOTHING SUBROUTINES

;f/ a p /Vt A-I.tv
(1 /I L L s u (3 J

tJ 0 p

(!. 11 L L s IJ B 3

l,J 0 p

J M p f d- c) �

"

IN () p �l)8 /
('_ f} L L s u B d

tJ () p

R E T '�

N {) p Sl)'"R !).

(!, fl- L L s u [3 3

}J () p

R £ T 'II

N 0 p 0UB 3

R £ 7 t

Figure 6-9

MODULES, SUBROUTINES AND THE STACK

Trace the program flow through the dummy subroutines of Figure 6-9.

Step to address 821C.

RST 8200

STEP - - - - - STEP 821C

Di splay the stack pointer, and examine the stack.

ADDR 1/P MEM 83DA

NEXT 83DB

NEXT 830C

NEXT 8300

NEXT 83DE

NEXT 83DF

Now execute the NOP and RET intructions.

STEP 821D

STEP (back in SUB 2) 821A

00

. 00

SPlA

}

Return

82 to SUB 2

14} Return

82 to SUB 1

04

}

Return

82 to MAIN

C9

00

6-27

MODULES, SUBROUTINES AND THE STACK

The stack pointer now addresses the return address that will take us

back to SUB 1.

ADDR 1/P MEM 83DC SP14

STEP 8213 C9

STEP (back in SUB 1) 8214 00

The stack pointer now addresses the return address that will take

us back to MAIN.

ADDR 1/P MEM 83DE SP04

STEP 8215 C9

STEP (back in MAIN) 8204 00

STEP (call SUB 3) 8205 CD

STEP (in SUB 3) 821C 00

STEP 821D C9

ADDR 1/P MEM 83DE SP08

STEP (back in MAIN) 8208 00

6-28

6.3 SUBROUTINE SPECIFICATION

MODULES , ·SUBROUTINES AND THE STACK

The central reason for writing modules as subroutines is to permit

the same module to be called from various program locations; however,

there are two extra advantages: The single byte RET saves program

space, and it avoids the need to specify the return address during

program design. Therefore most program modules are written as

subroutines even if they are to be used only once.

We commonly

DIRECTORY,

give a name to a subroutine (INPUT, DISPLAY, SEARCH

TABLELOOKUP, MULTIPLY). This is a convenience for the

programmer, like the mnemonic names of instructions. It is much

easier to remember a name than an address, and the name conveys

some meaning. However, a subroutine has an address, the address of

its first instruction. When you write the CALL instruction you

must, of course, use the hexadecimal address of the subroutine, just

as you would use an address in a jump instruction.

Figure 6-10 shows a flow chart for the sensor correction problem

written as a series of subroutines and a main program. We shall

briefly define all of the subroutines, and then develop them one at a

time, with· detailed specifications.

a ... 29_

MODULES, SUBROUTINES AND THE STACK

6-30

CONTROL PROGRAM SUBROUTINES

Initalize

-

CALL INPUT INPUT

Process -

RET -

CALL SEARCH
-

SEA'RCH
D.IEECTORY

-
DIRECTORY

RET

CALL TABLE LOOKUP
-

TABLE LOOKUP -

Process - RET

CALL MULTIPLY
-

MULTIPLY-

Process
-

RET�

CALL DISPLAY RESULT -

DISPLAY RESUL'J -

Process
-

� RET

Sensor Correction with Subroutines

Figure 6-10

MODULES, SUBROUTINES AND THE STACK

6.3.1 Program Development - Sensor Correction Problem

Developing a program generally involves these steps:

a) Define the problem

b) Conceive a program solution

c) Divide the solution into comprehensible and

realizable program modules

d) Specify the modular functions

e) Specify the interfaces

f) Develop the main control program

g) Develop and test the modules

h) Integrate and test the system

In Chapter 4 we defined the sensor correction problem and conceived

a solution. Now we have divided the program into moqules. It

remains to specify the functions and interfaces of the modules, to

develop and integrate them. First we will give brief functional

specifications. These will be developed more fully later.

6-31

MODULES, SUBROUTINES AND THE STACK

Subroutines for Sensor Correction

Input:

Accept data input from the keyboard. Display the data as it
is entered. On a specified command, change the sensor
number. Return when a command is entered.

Search Directory:

Find the table address for the present sensor number.

Table Lookup:

Obtain the scaling factor and linearized .value of the input
from a data table

Multiply:

Generate the product of the scaling factor and the linearized
value of the input as a double precision result

Display Result:

Display the double precision result.

We must also define the displays to be generated by this program.

Data to be displayed are the sensor number, input byte, and result.

I I I I I I I

L
input

Blank

Result

'--����Sensor Number

6-32

MODULES, SUBROUTINES AND THE STACK

6.3.2 M ain Program

A good procedure for developing a program that comprises a number of

subroutines is to �evelop the main program first, using CALL

instructions to call the various subroutines. At earih subroutine

location enter nothing but a RET instruction. You can then step

through the main program to test the program flow, even though the

subroutines do nothing. Then develop each subroutine in turn; as

these are entered you can test them by running the main program. When

all of the subroutines have been developed and tested, the entire

program has also been integrated and te�ted. This approach is part

of what is called "Top Down Programming" because you have started at

the top (the main program) and worked down to the bottom.

Often a main program is required to load data, or move data around in

registers, before calling a subroutine, and to store data returned by

a subroutine. If you leave some space between the CALL statements it

becomes easy to insert such functions into the main program later.

The main program for sensor correction is shown in Figure 6-11.

Three

MOV's

NOP's are left between CALL's. This is enough space for three

or one LXI, LDA, STA, LHLb, or SHLD. If more manipulation is

needed the three NOP's can be replaced by a CALL, and another

subroutine can

required. We

ini tia 1 iza tion.

be created to load, store or manipulate the data as

have left three bytes at the beginning for

6-33

6-34

1-w
w
ICl)
(!)
z
0
0
u

�w
I­C/)>­
Cl)

(!)
z-
z
<(
a:
l­
a:
w
I­
:)
c...
�
0 u
0
a: u
2:

Cl)
�
w
I­
C/) >­Cl)
a:
w
I­
:) c...
�
0
u
0
w

a:
(!)
w
1-
z

. A D D R CODE

8 o20 0 0 0
1 0 {)
2 0 Q
3 c_ J)
4 Lj ()
5 J7 b1
6 {) 0
7 {) 0

8 r) 0
9 C J).
A 6 0
B J? c2
C C {)
D t) a
E CJ 0
F � J)

8 o2_ / 0 ! ()
1 J' r2
2 (!) a
3 () 0
4 0 0
5 (2 :D
6 -f)- a
7 IJ7 �
8 (3 {)
9 tJ 0
A {) ()
B c_ '])
C C t)
D ! r2.
E C 3
F () 3

8 o?c2. 0 1 t2.
1

2

3

4

5

6

7

8

SENSOR CORRECTION - MAIN

tJ 0 /J �M) �·-,,·�-,�:,,. IL
tv' {) p 0

w {) p

c fl L L 7- tJ p u T �,--Yt>&P'

tJ 0 p 'Jy /1?(_ /L.A 1 ./} n ti A 7; _J

tJ 0 p ,,:...,,,_,-J' � _)

JJ 0 p
I

C I+ L L s E A- R C HDIRECraRY

N 0 p

tJ 0 p

IJ {) p

C A L L T A B L E LOoJ<'u P

I\) {) p ..::.k �;? . J1 � I..-, ·t;

tJ 0 p Y7i, i1 J, rJl,n-/:;.

Iv 0 p
C,, A- L L M I.,{ L T I PLY

A) Q p d.v f)JJAA{))/l._,1-A,,,ff.

tJ 0 p
I

A) 0 p

(!_ A L L D I s p L A-Y'RSSULT

J" �,,, p s d tJ 3 ·--P.,, II IJ /> T. '"fll� ,1 �,I , .:R � II') i
I V [

I

Figure 6-11

MODULES, SUBROUTINES AND THE STACK

This is a very straightforward program. Most commonly the main

program makes decisions, therefore including comparisons and

conditional jumps. These should be designed in from the start, not

patched in later. Programs, like machines, must be designed before

they are built, or they are likely to fail. The spaces we have left

are intended only for data movement, which is not fundamental to the

design.

In Figure 6-11 we have arbitrarily placed the subroutines as follows:

8240

8260

8280

82AO

82CO

INPUT

SEARCHDIRECTORY

TABLE LOOKUP

MULTIPLY

DISPLAYRESULT

Thus 32 bytes (20 hex) are allotted to each subroutine. If this is

not enough we can easily relocate a subroutine and change the address

in the main program.

Load

the

the main program, and enter a RET instruction (C9) at each of

addresses above. Step through to make sure the program operates

correctly.

with only

established

Note one of the advantages of "Top Down" programming -

vague aefinitions of the program modules we have now

the relationships among them. This will help immensely

in specifying the modules.

6-35

MODULES, SUBROUTINES AND THE STACK

6.3.3 Input Subroutine

The definition for this subroutine was given as:

Accept data input from the keyboard.

Display the data as it is entered.

On a specified command, change the sensor number.

Return when � command is entered.

Nothing has been said here about register or memory assignments, and

the mention of changing sensor number is vague indeed. A better

definition is essential before we can design this module�

We shal 1 switch temporarily from "Top Down" programming to "Bottom

Up" programming. When you have no idea of how to accomplish a

function, it is often much better to work out some details before

proceeding with a design just as we may experiment with a

breadboard electronic circuit, or look in catalogs to see what is

available, before specifying and designing hardware.

You do not yet have enough knowledge of the MTS hardware, nor of the

8080 instructions, to write a keyboard input subroutine. There is a

built-in subroutine, GETKY, which you can use without understanding

how it works just as you can buy and use an integrated circuit. This

subroutine is used by the monitor when you key in a program or enter

commands such as STEP or RUN. In fact, when you ire using the

monitor it spends almost all of its time in subroutine GETKY, waiting

for you to press a key. The specification is given here:

6-36

MODULES, SUBROUTINES AND THE STACK

6.3.3.1 Subroutine GETKY

Function:

Read the keyboard repeatedly until a key is pressed. Wait
until the key is released; then return the value of the key
and indicate whether it is a command or hex key.

Entry:

Inputs:

CD CALL GETKY

30
02

No data required at entry.

Returns:

The value of the key pressed, with Carry set if hex key;
Carry cleared if command.

Registers:

(A)= (C) = Key Value
(B) = 00

All other registers are preserved. All flags are affected.

Note that this specification is not quite complete. No mention is

made of the possibility of several k�ys being pressed at once, and

there are some constraints that you need not worry about. We have

not stated the values returned for the command keys; you wi 11

determine that by testing the subroutine.

6-37

MODULES, -SUBROUTINES AND THE STACK

·6.3.3.2 Monitor Display Subroutine DBY2

Although you have operated the MTS display directly, by writin� to
. .

me,mory locations 83F8 to 83FF, and you could develop your own display

subroutine, it will be easier to use another monitor subroutine that

displays a byte of data in two digits.

Subroutine DBY2

Function:

6-38

Display one byte of data in two specified digits of the MTS
display.

�ntry:

Inputs:

CD
98
02

CALL DBY2

Byte to be displayed in Register A. Display address for low
digit in register pair DE.

Outputs:

The byte displayed is duplicated in Registers A and C. The
display address is decremented by two, pointing to the
memory location below the left digit location.

Registers:

(A)= (C) = byte displayed
(DE)= Entry value of (DE) - 2
(B), (H), (L) preserved
Carry and Zero are cleared

Constraints:

For an effective display the entry value of (DE) must be in
the range 83F9-83FF. No test is made on the address; DBY2
will store symbols for two digits at the address in (DE) and
the next lower address. Only two memory locations and
display digits are affected.

We can

context

test

of

MODULES, SUBROUTINES AND THE STACK

both of these subroutines (GETKY and DBY2) within the

the sensor correction subrbutine INPUT. AT 8240, enter

the calls and required input data for these two subroutines, followed

by RET. Do this yourself, and then compare your work with Figure

a�12.

6-39

I­
LU
LU

I
C/)

(!)
z
0
0
u

�
LU
I­
C/)
>­
(/)

(!)
z
z
<{
a:
l­

a:
LU
I­
=>
a.

�
0
u
0
a:
u

�

Cl)

�
LU
I­
C/)
>­
(/)

cc
LU
I­
=>
a.

6-40.

�
0
u

0
LU

cc
(!)
LU
1-
z

A D DJ R

a,-:).;/ 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

· CODE

C l)

3 J)

6 a

/)

F 8
g 3

(] J)

9' Jl

C) a

C 9

TEST GETKY AND DBY2

C I+ L L G E T

L " l]) J' 3
I/

C fJ L L]) B y

R £ 7

J< V

p 8

c;/

(,:,)k-- �
\V

(] /J,d)_h ·, J.. .,A A - J. -
.

d4 A' ,.,1fl I, • •

3;,,,,,�4

rtlr',--h' �

0

1'1J. __,;.. / /) � � r/1-)·
V (f

Figure 6-12

MODUL ES , SUBROUTINES AND THE STACK

6.3.3.3 Testing GETKY and DBY2

These subroutines are guaranteed to work, so press RUN. The display

will go blank. Press and release a key; its value will be displayed.

With a display address. of 83FB, the byte will appear in digits 3 and

4 of the display.

See that the hex keys of O - F are displayed as 00 - OF. Make a list

of the values returned by GETKY for commands.

REG MEM BRK CLR RST

STEP

RUN

ADDR

NEXT

You will find that RST does not return a value from GETKY -- it

resets the microcomputer. Electrically, RST is not part of the

keyboard input circuit. in�tead, it provides a direct input to the

microprocessor and its function cannot be changed.

Place a breakpoint at the LXI D instruction, after the call to GETKY.

ADDR 8 2 4 3 BRK 8243 BP.

6-41

MODULES, SUBROUTINES AND THE STACK

Enter arbitrary data into the registers:

REG A A 8200 A-OA

NEXT B 8200 B-OB

NEXT C 8200 c-oc

NEXT D 8200 D-OD

NEXT E 8200 E-OE

NEXT F 8200 F-OF

NEXT 8 8200 H-08

NEXT 9 8200 L-09

NEXT 8200 A-OA

RUN

The monitor blanks the display. You are now in subroutine GETKY.

Press and release key 6. The program stops at the breakpoint.

6 (CY) 8243 A-06

Examine the registers and note the Carry and Zero indicators.

Confirm that GETKY returns (A)= (C) = key; (B) = 00; that D, E, H

and L are preserved; that Carry was set by a hex key.

"Register" F actually displays the content of the five flags of the

8080; the only ones we are interested in are Carry and Zero, which

appear in the LED indicators. The others will be described in later

chapters.

6-42

MODULES, SUBROUTINES AND THE STACK

Press RUN. The key you entered is displayed by DBY2 as before.

Press RUN again. This time it is an entry to GETKY for your program.

Again execution stops at 8243. Confirm that GETKY has returned (A)=

(C) = 14 and (B) = 00. (DE) contains the value entered by your

program decremented by 2, or(82F9j This was returned by DBY2; GETKY
'63f '\

has not disturbed it. Registers H and Lare still preserved. Carry

is cleared in response to the command key. Zero is also cleared in

response to RUN. What key returns Zero set?

Now place a breakpoint at the RET instruction (8249), retaining the

breakpoint at 8243. Run the program and press a key. When the

program stops at 8243 i enter arbitrary data into Registers B and C,

and press RUN. At the 8249 breakpoint confirm that Register B has

been preserved; (A) has been copied into Register C; and again (DE)=

83F9.

Be sure that you understand these two monitor subroutines before

going on. Experiment further with them if you want.

6-43

MODULES, SUBROUTINES AND THE STACK

6.3.3.4 Definition of Sensor Correction INPUT Subroutine

Now that we have some tools (the monitor subroutines GETKY and DBY2)

we can define the INPUT subroutine for the sensor correction program.

We want it to accept hex keys followed by a command, just as the

m6nitor does, assembling two suc�essive keys into a byte. We shall

see how to do that in the next section. If some specified command

key is entered, we are to "change" sensor number. The original

definition was vague about this. What command key causes the change?

Exactly what is meant by "change"? Is the user allowed to enter

input data for the new sensor before making the change? If not, what

is to be done with data entered before the change? Must new data be

entered after the change?

You can make your own decisions about these questions. The solution

given here is the simplest to program, but other approaches might be

more interesting.

For simplicity we will use the following rules:

Key MEM calls for a change in sensor number. (MEM returns

Zero set from GETKY.)

A data byte for the new sensor is to be entered before the

change (MEM) command.

If no hex key is entered, the input value returned will be

zero.

If only one hex key is entered, it will be t�ken as the low

digit, and the high digit will be zero.·

6-44

MODULES, SUBROUTINES AND THE STACK

If two hex keys are entered, the earlier will be the high

digit; the later will be th� low digit.

If more than two hex �eys are entered, the oldest will be

discarded and the last two wi�l be used to form the.input

data byte.

The change 1n sensor number will be to set the next higher

allowable sensor number. The changes will be effected by

another subroutine, NEXTSENSOR, which is called by INPUT in

response to the MEM key. (Note that by defining another

subroutine we are spared worrying about its details now.

This is "Top Down" design again.)

Now we must also assign registers for data to be returned by INPUT,

and decide whether it requires any input data from the main program.

The only input data that INPUT might need would be the sensor number.

INPUT itself has no need for this; only SEARCHDIRECTORY and

NEXTSENSOR use the sensor number.. Let us say that it wi 11 be stored

in memory, and leave the memory location to be defined later.

INPUT must return the data byte keyed in, and display it. Since

GETKY and DBY2, between them, use Registers A, B, C, D and E but

preserve H and L, we can only use Register H or L to accumulate the

data as it is keyed in. Since NEXTSENSOR will surely need the

Accumulator, it is probably easiest to return the data in one of

these registers; we shall choose Register L. The specification for

INPUT is given below.

6-45

MODU�ES, su:aROUTINES AND THE STACK

Subroutine INPUT

Function:

Accept a byte of data from the keyboard, followed by a
command. If the command is MEM, call NEXTSENSOR to set the
next legal sensor number. If no hex keys are entered,
return 00 for the data byte. Display the data byte in the
third and fourth digits of the MTS display.

Entry:

Inputs:

CD
40

82

CALL INPUT

None needed for INPUT.

Outputs:

Data byte entered from keyboard.

Registers:

Constrafnts:

A, B, C, D, E and L are used.
At return (L) = dat� byte entered·.
Register H is preserved.

In response to MEM command calls NEXTSENSOR, which must
preserve Registers Hand L.

Processing of successive hex keys wili be as defined in
Sec ti on 6. 3. 3. 4.

6-46

6.3.3.5

With

out

byte?

MODULES, SUBROUTINES' AND THE STACK

Design of Sensor Correction INPUT Subroutine

a firm definition and the necessary subroutines we can now work

the program for INPUT. How can we combine two keys into one

When the first hex key is entered, it is considered to be the low

digit of the byte. When another hex key is entered, the earlier key

becomes the high digit, and the -later key the low digit. Recall that

in a hexadecimal number the high digit has a value of 10 hex (16

decimal) times the number. That is:

10 = 1 x 10 (hex)

20 = 2 x 10 (hex)

30 = 3 x 10 (�ex)

and FO = F x 10 (hex)

With two non-zero digits, the value is 10 (hex) times the higher

numeral, plus the value of the lower numeral.

24 = 2 x 10 (hex)+ 4

a.,...47

MODULES, SUBROUTINES AND THE STACK

To convert two digits into a byte, then, we must multiply the older

digit by 10 (hex) or 16 (decimal). We could, of course, add the

older digit into a product sixteen times, but there is a much easier

procedure. Add the digit to itself once to get two times its value.

Add that result to itself to get four tim es the digit value; again

for eight times the digit value and once more for sixteen (10 hex)

times. Now add in the low digit. Thus with the old digit in L and

the new digit in C:

MOV A,L Old Digit

ADD A 2 X Old Digit

ADD A 4 X Old Digit

ADD A 8 X Old Digit

ADD A l0 1"'x Old Digit

ADD C 10
1b

x Old -+ New

MOV L,A = Data Byte

Let us program this into our INPUT subroutine and test it. Start by

entering a zero into Register L; call GETKY; test for a command key

(Carry clear) and jump to the return if a command is entered.

Otherwise do the process above; address 83FB and display the result,

and jump back to call GETKY again. Try to program this yourself,

then compare your program with Figure 6-13. We have not yet handled

the call to NEXTSENSOR; this is covered in Section 6.3.4 •.

6-48

LU
LU
I
U)

l?
z
C)
0u

�
LU
r
U) >­
U)

l?
z
z
<l'.a:
r
a:
LU
r
:::i c..
�
0u
0a:
u
>-

U)
�
LU
r
U)
>­
U)
cc
LU
r
:::i c..
�
0u
C)
LU

a:
l?
LU
rz

A . D D R

aJ-¥ o
1

,-f:.;? .L/ 2

3

4

5

6

7

8

9

A

B

C

D

E

F

a ot-:5-' o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

c2.. E M ii
{) ()
{!_,, J) {!, I+
3 :0
u .2
J) � J tJ
� J7
! c2

7 l) !V1 t)
,f 7 A D

J' 7 ft 1)
,f 7 I}- D

J' 7 ff])
cP / 4-])
� F /v1 c)
I I L X

F /3
J' 3
� J) C fl-
9 Jl
(2 a

� 3 J M
4 L2
0 �

e q /� E

.I. 0 0
/

L L· G E T

C p c2 5

V fl- L
D I}

,

]) II

J) A

]) fi
[D C

,j L �

D
)

J' 3 T
J

L L]) B y

p J) /2 If

T

K y

JT

/- 8

,:2_

c2.

�c,vt.} d,.. �,, �- ,�n.

,:1'

t/l)k- re)�;__ �j J

\ �-

o,, ,_ •A"J j·_,L /7.-- = JI
I(! I /

� rJL ',a� -/-

J -,(A _Jl,.J oL�./;: T
.i/ y.. � c.11,·�· �
?')i. �_/ �?-;.; /-.

//))(. o-ecL d; �·j-/-

I /J 7- ct-eel) f- � ,. .,

(i_) 1:-� "�_;u_,
(L-JdJ, t} A �) d_. _. �°ti /1 j J

" 1·

10 J .,,·/) f/ r1 d ola..t;v J, . h
p (7 {7

A

'� 11 _v'")

I('� JI _±, hExrS'EAISoR.
7:. /�) .,-� AJ,..dd fl J

Figure 6-J.3

6 49 -

MODULES, SUBROUTINES AND THE STACK

The main program of Figure 6-11 and this input subroutine can be run

as we did the test of GETKY and DBY2. When you fir st enter a hex key

it is displayed as the low digit, with a zero in the high digit. The

next hex key shifts the old digit to the high position and enters the

second key at the right. If you enter more hex keys the oldest one

is lost. What happened to it? Review the multiplication by 10 hex.

Place a breakpoint at the first ADD A (8249 in Figure 6-13) and run

the program. ·Enter one hex key - 7. Program execution stops at the

breakpoint.

Carry is

.00 X 10

RUN

7

REG C

REG A

set because a

(hex) and add

hex

7.

(CY) 8249

(CY) 8249

(CY) 8249

key was entered.

87

C-07

A...:.oo

We are about

When you press RUN the result

to multiply

is displayed

and the program waits for another key. The Carry indicator stays on.

RUN (CY) 07

5 (CY) 8249 A-07

REG C (CY) 8249 C-05

RUN (CY) 75

8 (CY) 8249 C-08

REG A (CY)· 8249 A-75

The old value is 75 from the first two digits. or binary 0111 0101.

Now step through the multiplication.

STEP 8249 A-EA

6-50

MODULES, SUBROUTINES AND THE STACK

Carry is now off. 2 X 75 = EA with no Carry. This can also be

viewed as a left shift of the binary value.

Bit Positions _CY 7 6 5 4 3 2 1 0

Old Value (75) 1 0 1 1 1 0 1 0 1

2 X Old Value (EA) 0 1 1 1 0 1 0 1 0

The old Carry is lost. The high bit (0) has been shifted into Carry,

and the other bits have shifted left.

times and see the hex values shown below.

Now you can step three more

4 x Old Value (D4)

8 x Old Value (AS)

10 x Old Value (50)

1

1

1

1 1 0 1 0 1 0 0

1 0 1 0 1 0 0 0

O 1 0 1 0 0 0 0

All four bits of the oldest key (7) have been shifted out of Register

A. The next step will add the new key from (C).

10 x Old t New (58) 0 0 l O 1 1 O O 0

This addition clears Carry, so now all four bits of the oldest key

are irretrievably lost.

RUN 58

The equivalence of a left shift to a multiplication by two is used in

binary multiplication, as we shall see in Chapter 7.

When you test the subroutine, note any flaw you see in its operation,

and correct the flaw.

6-51

MODULES, SUBROUTINES AND THE STACK

6.3.4 Conditional Calis

We have still to handle the call to NEXTSENSOR in response to the MEM

command. Subroutine INPUT (Figure 6-13) jumps to 8258 when any

command key is pressed. There we must test the command key value and

if it is MEM (= 10) then call NEXTSENSOR. Obviously this can be done

by:

CPI 10 I • JNZ to return

CALL NEXTSENSOR

RET

Test Command

CALL and RET are special forms of JMP, and the 8080 provides the same

conditional variations of CALL and RET as it does for JMP.

C3

C2

CA

D2

DA

JMP

JNZ

JZ

JNC

JC

CD

C4

cc

D4

DC

CALL

CNZ

CZ

CNC

cc

C9

co

CB

DO

DB

RET

RNZ

RZ

RNC

RC

Four more variations of each, not listed above, also exist.

If the specified flag is set or reset, according to the instruction,

execute the Jump, Call or Return. Otherwise continue program

execution at the next sequential instruction.

defined in detail.

6-52

Call if Zero is

cc

xx

CZ address

(low address)

xx (high address)

MODULES, SUBROUT INES AND THE STACK

Call if Zero

Read the;three byte instruction into Registers I, Zand w. If

the Zero flag is set, save the program counter in the stack and

move W and Z into the program counter. Other wise proceed with

program execution at the next location after the three byte CZ

instruction.

No flags are affected.

6.3.4.1 Completion of Subroutine INPUT

With conditional call instructions we can avoid spending three bytes

on a conditional jump instruction. Instead of JNZ, CALL, we shall

use:

CPI 10

CZ NEXTSENSOR

RET

As before, NEXTSENSOR is called if and only if the command key value

is 10 (MEM). If you did not detect the flaw in the operation of

INPUT, make this test. Run the program, key in a hex value and NEXT.

The number is displayed. Now press NEXT again. According to the

specification, pressing a command key with no preceding hex keys must

return a value of zero, but the display shows the old value. What

actually happened? Review the program and figure it out.

6-53

MODULES, SUBROUTINES AND THE STACK

To correct this flaw, display the content of Register L after a

command key is pressed. The solution given below in Figure 6-14 uses

the same call to DBY2 both for hex keys and the command, thereby

saving a little space in the program. This is not important - memory

space is cheap. If your version of INPUT takes more than 20 (hex)

bytes, relocate SEARCHDIRECTORY to 8270 instead of 8260. It will fit

easily in 10 (hex) bytes. Since we have not done anything with it

yet, the only change required is in the main program:

CD CALL TABLELOOKUP

70

82

Remember to insert:

8270 C9 RET

6.3.4.2 Subroutine NEXTSENSOR Definition

This subroutine was not included in the original list of subroutines

in Section 6.3.1, but we have described it in the course of

developing INPUT (Section 6.3.3.4). We must assign a location for

storage· of the sensor number. We have two possibilities - in a

register or in memory. In the sensor correction program of Chapter 4

we reserved Register B for the cur�ent sensor number, but here

Register B has been affected by GETKY. INPUT preserved Register H,

but this will be used in SEARCHDIRECTORY and MULTIPLY. Generally it

is better to use memory to store a variable that must be retained

indefinitely and changed only occasionally. We hav� previO<Usly said

that the directory occupies 8300-8307 and the data tables 8308-837F;

6�54

MODULES, SUBROUTINES AND THE STACK

let us now assign memory location 8380 for the current sensor number.

Assign memory locations 82EO through 82FF to this subroutine.

Subroutine NEXTSENSOR

Function:

Select the· next legal sensor number following
sensor number. If the current sensor number is
allowable, set the sensor number equal to 1.
new sensor number in the left hand digit.

Entry Address: 82EO

the current
the highest
Display the

(The call from INPUT will be CZ, but this is not a part of
the subroutine specification.)

Inputs:

None required in registers. The following data must be in
memory.

8380

8300

Outputs:

Current Sensor Number
Highest Existing Sensor Number

Memory location 8380 is updated to contain the new current
sensor number.

Registers:

A, C, D and E are used. B, H .and L are preserved.

Constraints:

The sensor number is to be displayed at the left by storing
its display symbol at 83F8. ·The next display position
(83F9) must be left blank. Memory location 83F7 must not be
affected. {This location is reserved for use. by the
monitor, whose operation will be affected if you enter data
there.)

6-55

MODULES, SUBROUTINES AND THE STACK

6.3.4.3 Subroutine NEXTSENSOR Program

The function of this subroutine may be listed in six steps.

Load and increment the sensor number •.

Test for a legal number (greater than zero; less than or equal to

highest existing sensor number�)

Skip the next step if legal.

Set sensor number to 1.

Store the sensor number.

Display the sensor number.

You should be able to program all of this.

Remember that Registers H and L must be preserved. This does not

forbid you to use them, but if you need them you must preserve their

data by moving it elsewhere and restoring it to H and L before

return.

The display function introduces a problem. We have been using DBY2

for display, but this subroutine displays a byte in two digits. We

want to display the sensor number in the left hand digit (83F8) but

we are required to leave the second digit (83F9) blank, and we are

forbidden from disturbing memory location 83F7. Can you solve this

problem?

(One helpful hint: The Read Only Memory contains a table of symbols

for the numerals O - F, starting at 02B3.)

6-56

..

MODULES, SUBROUTINES AND THE STACK

6.3.4.4 Testing INPUT and NEXTSENSOR

Once again, test the new subroutine using the main program to call

it. When you enter hex keys they should be displayed; when you enter

MEM a sensor number should be displayed. Your test should include

not only checking the displays, but als6 making sure that the entire

specificatio.n for each of these subrou.tines is met.

For this test to be successful you must have stored the highest

allowable sensor number· at memory location 83 00. Try different

values there. This may also be a convenient time to enter the

directory and data tables. A complete version of INPUT and

NEXTSENSOR, and the directory and data tables, are shown in Figures

6�14, 6-15 and 6-16.

6-57

6-58

t­ww::c
Cl)

{!) z
Cl
0
(.)

2w t­
C/) >­
Cl)

{!)
z
z
a:
t­
a:w
t­::::,a..
2
0
(.)
0a:
(.)

2

Cl)
� wt­
C/) >­
Cl)

a:w
t­::::,
Q.
�
0
(.)

Qw

a:
(.!) w 1-z

A D D R /

8 oJ.t/- 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a c)�o
1

2

3

5

6

7

8

9

A

B

C

D
E

F
3 0

1

2

3

4

5

6

7

8

CODE

c2- r
0 �l

(! K)

3 J)

0 c2
i/ 7
7 D
]) l=2

j- 0

,P e2.
JI 7'
tf 7

7
J' ,7
tf 0
0 F
I I
F 8
y 3
(!_ 1)

q J'

{) �

7 p
F E

/ (J
]) 4

IL/ c2

p tl.
C C
£ 0
J7 �
C q

SENSOR CORRECTION - SUBROUTINE INPUT

M V 1 L
/

C. II L L· G

M 0 \) B '
M 0 t/ I+/
J N C, F

/-}]) :D A

/J l)]) A

ft]) b /-)
A J)]) /l
1ft _/) J) B

flf () V L
L x I])

I

I/

C A- L L D

/'11 0 V I+ I

C p T
,

I 0

J C. !

(! z N G)(

R £ 7

() 0

E T /(y

4
L

� ,:J 0

fl -�
.9 3 F- 8

[3 y �

B

;) ,1 � -

T s E N

{ fj) �- ;(.,{,,
,I

{/t)k-/J-dt, ��-)
(L .Y"l ·J, /7 _:__J f.,.. � -1:.. l.-'./ _f../ - , ;, (..

� I /

c2 x �9td ��-)
4' X. o--&h ·-., �� I! -,

;? I o-fdl,, .--A
. (I
l ,1_,1 _,.,.,)

//) � d-J.1 . ..ho��-)
/ /))(� -f-/11_ -� ,�

tL) <:-- � In / ·-� flu r.
?J >ldhd,AA)d:,-,. f:-_,)

d' c-L� ;JJ -� (/

� � � /l .Ir, � 1 J,,,,I j /J.,"1 J,, , ,J j

V tJ

�-;: /?_ () fi ff./H � ,J, ,U .L

''·-/, .A -+.. J _. ' ..J ,!J,1/ (I

/
/

·-If.., - � f�,/
V I /

SOR

II.).J� == /t1FM
ti

Figure b-.Ll:l

f­
w
w
I
C/)
(..!)
z
0
0 u

w
f­
C/)>­
C/)
(jz
z
�cc
f­
ee
w
f­
::J
0..
2
0
(.)
0 cc
(.)
2

Cf.)
2
w
f­
er.,
>­
Cf.)
cc
w
f­
::J
C.

2
0
(.)
0
w

cc
(..!)
w
f­z

A D D R CODE

a c:tE o -']
�1 fl

1 y {)
2 J7 -3
3 3 C
4 C fl
5 r)

6 f c1
7 L/ �
8 .3 f}
9 0 C)
A y 3
B 6 9
C 17 9
D J) cJ
E lP :J.
F IJ' .=2_

ac2F 0 3 £:-
0 I

J''.:2 F 2 3 c2.
3 ef' {)
4 J1 3
5 I I
6 /3 3-
7 {J �
8 Ji 3
9 5' F
A I fl
B l31 c:2
C F f
D i 8
E e 9
F

8 0

1

2

3

4

5

6

7

8

SENSOR CORRECTION - SUBROUTINE NEXTSENSOR

/_ D A f 3

LZ /\) R ll

3 Z, J7

/v1 a V C.
L 1) A J1 3

C M p C

M 0 1/ A-
·3 tJ C 2

M V l fl-

s T A 2 3

L 'I. I u
/

A]) J) E

M 0 V E
L]) A- -.,I. J)
s T A J7 3

R E 7

J7 Q

cJ F 0

A
0 V

C

l:z F d

0 I

J> [)

() d B 3

IA

F /i?

c/-J J <.'.- r��r
J,1 _,, A /'/""LI � , . Ln.)

V&_u_t J,, ,r A - YZ_, /,--"1.A)

Jy -""'/7 J.-,,�/111-r

t
i
,/.C/.. .,,, ,,�);£, A��,J,l /

vf,,..J,,_ -/J If _/_6' J ,, ,,,, IA 11- ;
c:? \

../1A ., A "-1..- ,.,..,,/� ./. __,,..__)

(It)� 701/.f /1 .1-A �/11.)

(\, / �, r, � §. i./_ d,, � ,rJ 1/.;

l{I /') � tl_,j/J A t, ;n) < ::zl-,_,j 1.;:I;
C/

.A/)� .111 - /0 tn) #/

JJ-;;:,.i: �
/I ,, � .,,, ,rt__,j /11. ,I , /, ,,,. 1

() d} A'lL A ,, ,.., _,, -� /,��)

JA-1) AI--F

(),Id_, /),1 _. J7trJ /HJ . J_ .-,, �

1/J .,.J ,,/j ,_, /I A /\) C4.£,L tf /w'I _/)

A -·A}� L) /7,r • A.tr/..)#

�,.:,,.i;711tf:a+ ti,/
? (I ()

Figure 6-15

6-59

6-60

1-
w
w
I
Cf)

(.:J
z
0
0
u

�
w
I-­
Cf)
>­
Cf)
<.:)
z
z
<(
a:
l­
a:
w
1-
::J
a.
�
0
u

0
a:
u

�

Cf)

�
w
I-­
Cf)

>­
Cf)

a:

w
1-
::J
a.
�
0
u

0
w

a:

(.:J
w
1-
z

A D D R

a .3 O o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a ..3 / o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

{) 62
0 J?
I ',1

0 0
0 0
0 t)

0 u
() {)

.J' cf
{) 13
0 {)

() 3
0 L/
0 l:5-
() �

(') 7
t1 If
() ·9

0 9
0 /I
I/J 8
t!) ,8
{!_ g

·o 7
cJ 0
0 c2_
() 1/
() w
0 L5-"
/J �

(j 7

{) 7

SENSOR CORRECTION - DIRECTORY AND DATA

If I G !-I E s T
s E IV s 0 R

s F- tJ s·J R

R I= s £ R V E
f) D D I T T

c� E tJ s {) R

C {) R R E C T
V A L LA f- s

s £ N s 0 R

C 0 R Q E c_ T
V A L u E s

s £-

I T
j T
J) r-
0 ;J A-

I s

L
E

J Y"'>

J

cJ. s
L

E 1))

-

/JS'D !� Al LI ;\.I) i3 E-R
fJBLE 19-b])PJ;s s
A/3LE fl-})]) I? E .ss
aR
'- 3EN,5Gl2S'

C/JLIAJG FA{!.T()R
J:.NE/1 R P{)1-#T

LNPU-\ = C>O
= CJ I
=- {) c2

== /J3
= at/.
� {)5
::, ot,
::: CJ7
== C)?
= 69
= (!)/)
;:. {)b

�fl-LI ;JG Pf>CT()R
INcAR POTNT

IAJ?t JT:. {JI)
=- c)/
� (l!J.
= /J3
= OLf
-= (JS
=- 0�
- /?)/J'

Figure 6-16

MODULES, SUBROUTINES AND THE STACK

6.3.5 Subroutine DISPLAYRESULT

It is often convenient to develop input and output subroutines for a

program at an early stage, because these provide tools for testing

othef program modules. We now have the input subroutine with its own

display, and we have a monitor subroutine that makes it easy to

displ�y the result. DBY2 only shows one byte; we want to display two

bytes, but that merely involves two calls to DBY2, one for each byte.

Remembering that DBY2 preserves the content of Registers H and L

suggests that these registers can be used for the two byte number to

be displayed.

Subroutine DISPLAYRESULT

Function:

Display two bytes of data in the four right hand digits.

Entry Address:

82CO

Inputs:

(L) = low byte to be displayed
(H) = high byte to be displayed

Outputs:

(Specification of the outputs is left as an exercise for the
student. Review the specification of DBY2 in Section
6.3.3.2, and state what each register will contain at return
from DISPLAYRESULT.)

6-61

MODULES, SUBROUTINES AND THE STACK

To test DISPLAYRESULT, remember that INPUT places the entry data in

Register L, and preserves Register H. Before running the program,

use the monitor to load arbitrary data into H; this should be

displayed every time. The data keyed in through INPUT should appear

in digits 7 and 8 as well as digits 3 and 4.

Note that we are able to test each subroutine as we develop it, using

the main program and earlier subroutines as testing tools.

Figure 6-17 gives a solution for subroutine DISPLAYRESULT.

6-62

1-
UJ
UJ
I
C/)

(.!)
z
0

0
u

2
UJ
I­
C/)
>­
(/)

(.!)
z
z
<(
a:
l­

a:
UJ
I­
::>
a.

2
0
u
0
a:
(.)

�

C/)

2
UJ
I­
C/)

' >­
(/)

a:
UJ
I­
::>
a.

2
0
(.)

0
w

a:
(.!)
w
1-
z

A D D R CODE

a ,-.Jc o I I
1 p ;=
2 Jl 3
3 7 LZ>
4 C J)
5 9 p
6 {) 2
7 7 C
8 c_])
9 q f
A (!) :2
B C q
C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

b�NbUK CUKK�CTLUN - bUHK ULb�LAI K�bULT

L -x j_ '])

/V} 0 v' It-
(2 � L L

M 0 \) I+
(!_ fJ- L L

R E- T

E N T E R

(L) -=

(J-f J -

R E: T u R

(t3) .
C A-)

-

(1) E)

f 3

L

Ii: 13 Y'

!-I
'J) B V

v,) I
L 0 vJ
I-+ I G

tJ

(I+)

(C.)
:::; 'x 3

F F

�

,2

T H
8

H

(
I_

(
F �

�--,J;-; J. -A_ j r])EJ --
23FF -.-:J :: J)3F.D

-

A/: /J .·1. -A A 1Yil) =fc) .:(JI)
(1)1=.,) = ,P._ q F.f?

'/TE OF Kf;�UL T

B'ITE

L ') �RE-Sf:-R\JEt)
H-)

-

Figure 6-17

6-63

MODULES, SUBROUTINES:AND THE STACK

6.3.6 Subroutine SEARCHDIRECTORY

This subroutine is to be used to return the address of the data table

.for a particular sensor - the.one whose sensor µumber was stored at

memory location 8380 by subroutine NEXTSENSOR. With the sensor

number, directory and data tables all in a single page of memory

(83xx) this subroutine can use single byte indirerit addressing. It

is further simplified by the assignments in the directory:

8301 Table address for sensor 1

8302 Table address for sensor.2

The indirect addressing then is mer�ly:

(H) < -

(L) < -

(L) < -

83

(8380)

((HL))

This can be coded as:

LXI

MOV

MOV

H,8380

L,M

L,M

(H) <.­

(L) < -

(L) < -

83

(8380)

((8380))

Remember, however, that at the return from INPUT we have the input

data byte in Register L. This is why we provided NOP instructions in

the main program - to make space for MOV instructions. Although we

could specify that SEARCHDIRECTORY move the content of L to some

other register, this is generally undesirable. Keep subroutines as

nearly single purpose as possible in order to improve readability of

the program and generality of the subroutine.

6-64

MODULES, SUBROUTINES AND THE STACK

Subroutine SEARCHDIRECTORY

Function:

Load into register pair HL the address of the data table
corresponding to the sensor number.

Entry Address: 8260

Inputs: Sensor number stored at 8380

Outputs: Data Table Address in (HL)

Registers: Only (H) and (L) are used

Constraints:

A directory must be stored in memory at 8301 - 8307. The
data tables must also be in page 83xx.

Test SEARCHDIRECTORY using the main program, INPUT, NEXTSENSOR and

DISPLAYRESULT. Since TABLELOOKUP and MULTIPLY do nothing yet, the

address returned by SEARCHDIRECTORY wi 11 be displayed by

DISPLAYRESULT. For Sensor Number 1 the address returned by

SEARCHDIRECTORY should be 8308; for Sensor 2 it should be 8316.

This subroutine (Figure 6-18) is so short that it could easily be

programmed in-line (i.e., in the main program) or it could be

included in TABLELOOKUP. In another exercise we shall see reasons

for not doing so.

6-65

6-66

1-w
w
I
(./)

(!)
z

0
0
u

�w
I­
(./)
>­
(./)

(!)
z
-

z

<(
a:
l­
a:
w
I­
:> a..
�
0
u
0
a:
u

2

(./)

�
w
I­
(./)
>­
(./)

a:
w
I­
:> a..
�
0
u
0
w

a:
(!) w
1-
z

A D D R

a ,-:::? C:> o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

.;2_ I

y 0
,Y 3

� .£

{; £.

C CJ

SENSOR CORRECTION - SEARCHDIRECTORY

L x 1

M D V
M 0 \)

R E- T

I-I
,

L
. ,

L

y 3 JI D

M

fvl

Figure 6-18

MODULES, SUBROUTINES AND THE STACK

6.3.7 Program Data Initialization

At this point we can see a need for setting initial values into the

program data. In this program the only variable that is retained

from one iteration of the main loop to the next is the sensor number.

Recall that in Chapter 4 we always tested the sensor number before

proceeding with the directory search and table lookup. Now we have

delegated the task of testing sensor number to a subroutine that is

only called in response to a user command. This implies the

possibility of having an illegal sensor number stored when the

program starts to run; hence making improper calculations. The risk

is not immediately obvious, because we have already exercised

subroutine NEXTSENSOR, thereby storing a legal sensor number at

memory location 8380. Store an illegal number at that location and

run the program already loaded, without pressing MEM. The address

displayed will be neither 8308 nor 8316, which are the only proper

table addresses. When you press MEM, thereby calling NEXTSENSOR, the

table addresses become legal.

In the final program, if we accept data entry while an illegal sensor

number is stored, the result will be meaningless. This must be

forbidden. Also, of course, we want the sensor number displayed

right from the start.

6-67

MODULES, SUBROUTI�ES AND THE STACK

We can ensure that a legal sensor number is set and displayed by

calling NEXTSENSOR as an initialization step.

main program, enter:

At the start of the

8200 CD

8201 E O

8202 82

CALL NEXTSENSOR

· Test this. Either a 1 or 2 should appear at the left. Press MEM to

change sensors. The only weakness is that on the first run you

cannot predict which will appear. If this !llatters, an initial value

must be stored before calling NEXTSENSOR.

6.3.7.1 Alternate·Entry to Subroutine

There is another technique available which must be used with care.

Examine the given solution for NEXTSENSOR (Figure 6-15). After

incrementing the sensor number and finding it illegal (either 00 or

greater than the highest allowable) the program reaches 82FO. The

code there is:

82FO MVI

STA

LXI

ADD

MOV

LO.AX

STA

RET

6-68

A,01

8380

D,02B3

E

E,A

D

83F8

Set Sensor 1

Address symbols

Add sensor numer

Address and load

Symbol for sensor

Display at left

MODULES� SUBROUTINES AND THE STACK

The code above can be us�d as a subroutine bJ itself; to set and

display Serisor Nri�ber 1. Th� initialization in the maih program· could

be:

· 8200 CD

8201 FO

8202 82

CALL 82FO

· If your NEXTSENSOR program is �imilar to Figure 6�15, you can use

this procedure Successfully.

·Entry" to subroutine NEXTSENSOR.

Address 82FO is then an "Alternate

Suppose now that a slightly more clever program had been written for

NEXTSENSOR:

82EO LXI D,8380

82E3 LDAX D

82E4 INR A

82E5 JZ 82'Fl

82E8 MOV C,A

82E9 LDA 8300

82EC CMP C

82ED MOV A,C

82EE JNC 82F3

82Fl MVI A,01

82F3 STAX D

82F4 LXI D,02B3

etcetera

6-69

MODULES,. SUBROUTINES. AND THE STACK

T�is program is one byte shorter than the solution of Figute 6-15. If

you were to call this at the MVI A,01 instruction, however, it would

fail, because the STAX D instruction could store 01 anyplace - in tQe

middle of your program, for instance. This is the danger of

alternate entries to subroutines. If used without great care they

can be disastrous.

The only safe way to use alternate entries is at the beginning of a

subroutine. For instance, the display subroutine we have been using,

DBY2, is actually an alternate entry to the monitor subroutine DBYTE,

w.hich starts at 0295 with LXI D,83FF. A call to DBYTE displays the

byte in (A) in the two right hand digits; the alter nate entry DBY2

allows you to select a different pair ot display digits. It only

bypasses the one instruction that loads a constant into the display

address.

6.3.7.2 External Alternate Entry

In the discussion above we referred to address 82FO as a possible

alternate to NEXTSENSOR. The risk of using such an entry comes from

the fact that it is inside the subroutine � hence it may be called an

"internal alternate entry". We could avoid using an alternate entry

by· creating a separate initialization subroutine to be called by th�

main program.

6-70

XRA

STA

CALL

RET

A

8380

NEXTSENSOR

Set Sensor = 0

Set Sensor = 1

This

coding

MODULES, SUBROUTINES AND THE STACK

procedure is safe, because we are not relying on any specific

can modify this to the of subroutine NEXTSENSOR. We

XRA A

STA 8380

JMP NEXTSENSOR

Set Sensor = O

Set Sensor = 1

This has an �ssentially identical effect. When it is called by main,

a rettirrt address (8203) is p�aced in the stack. After setting sensor

number equal to zero, it jumps to NEXTSENSOR to increment the number •.

When. th� RET instruction is encountered at the end of NEXTSENSOR,

address 8203 is recovered from the stack so the return is directly to

the main program inst�ad of to another RET� This is 6alled an

"external alternate entry". We shall use this technique for

initializatiort of sensor number.

Figure 6-19 shows the revised main program and subroutine INITIALIZE.

Test that we now always sta·rt with Sensor Number 1 displayed, and

that no improper table address occurs.

t­w
UJ
I
Cl)

(.9
z
D
0
(_)

2UJ
t­
U)

>­
U)

(.9
z
z

<(
a:
t­
a:
UJ

. t­
::,
c..
2
0
(_)

.. 0
a:
u
>-

U)
2
UJ
t­
U)
>­
U)
a:
UJ

. t­
::,c..

6-72

2
0
u
D
UJ

a:
(.9 UJ
1-z

A D D R

8�/) 0

1

2

3

4

5

6

8

9

A

B

C

D

E

F

a�/ o ·

,.
2

3

4

5

6

7

8

9

A

B

C

D

E

F

8�,t) 0

.P�.2· 1 : '

2

3

4

5

6

7

8

CODE

C I,
'

ct I
,f c2
C J)
4 (]

1J' a
a 0

0 (J
7])
C J)
t, 0

2 2

C> 0

(!) 0

{!) �

c. [l)
9 0

,f a:,

e 0

{) 0

c1) {)
(i l?.)

1ft 0

SJ tl.
{) 1)
{) 0

ltJ {)
(2 [D
(:, 0.
12 ::2
C 3
() l3
? Q
It F
1 1:J
? 0
,f 3
C 3

IE 0
I�

c2

SENSOR CORRECTION - MAIN AND INITIALIZE

C if ·L L I tJ

C A L L I Iv

/\) a p
A) a p

M 0 v 4 : L

C, A- L L s E-

IAJ {) p
JJ u p
IA/ 0 p

(2 /) L L ·r A-

N a fJ
JJ 0 p
/J a p

(}_ A L L M Ll

/I.} 0 p
N ll) /J.
/J u /J

(l /J, L L 1) -I

J M p g o2

X R A A
8 T A � 3 �

.T M p N E-

J_

p

A

·B

L

s

()

Q

x

T I. /+LIZ,&

LA tT

R

L

T

?

k'�

T

(L >k-�il f 7'h"!;iJ
f

(Pr)1:-= L � , J, ../Jn � J
e H 1YI � E .. C TO�\/

(J-IL)1:: i,J,£},. �

6 L{)QkLl p
IE)�-..1? ,, J, -·� f� \. :J� A n-i j

. (ft Ji.r /J ,,i) : II A tf{t ..._ L ,,. . t-;
! ii

:: ..

I PL\/
)

(HLJ1::-(r;.)*(AJ

L AV �E-'SULT
IY'. }, , �11.r, . J (/-IL)

--'·./- i" .. - . i +.-
cJ

s

INI.T:L!il-IZE:
),, ./-)A-,.A�) .;l::.C)

s �JJSOR
J. -J- j" .. _JftrJ /J:, /

Figure 6-19

MODULES, SUBROUTINES AND THE STACK

6.3.8 Subroutine TABLELOOKUP

This subroutine is specified to load data from the table whose

address is supplied by SEARCHDIRECTORY. The scaling factor is loaded

from the first entry in the table and the input data (in Register A)

is compared with the linear point, the second item in the table.

MOV E,M

INX H

CMP M

If the in�ut data byte is equal to or greater than the linear point

Carry· is cleared by the comparison and no adjustment is necessary.

Here we can use the conditional return, RNC, since the task of the

subroutine is finished.

Return if Not Carry

Hex Code: DO

Mnemonic: RNC

If. the Carry flag is clear, recover a return address from the

stack and jump to that address.

If Carry is set, continue program execution at the next

sequential instruction, leaving the returh address in the stack.

If the input value is less than the linear point (Carry is set) we

must bbtain an adjusted value fr6� the t�ble. In Chapter 4 we did

this by:

6-73

MODULES, SUBROUTINES AND THE STACK

INX
ADD
MOV
MOV

L
L,A
A,M

Address table for 00 input

Since Carry is set (else we would have returned) we can use a trick

here: instead of INX H, ADD L we use ADC L. Adding in the Carry has

the same effect, of adding table addre�s + 1 plus input value.

Subroutine TABLELOOKUP

Entry Address: 8280

�ntry Data:

Return Data:

(A)= Measured Input

(E) = Scaling Factor

If the input is greater than or equal to the linear point:

(A) preserved
(HL) addressing linear point

(A)= adjusted input value
(HL) addressing table location for the input value

Registers:

A, E, H and L Used
B, C, and D Preserved

To test this program we can again use our existing main program and

subroutines. (Remember that MAIN must include MOV A,L before the

call to SEARCHDIRECTORY.) Since we have not yet programmed the

subroutine MULTIPLY, (HL) contains the address in the table, and this

will be displayed. For a data input less than the linear point we

should see the table address corresponding to the sensor number and

input value. For greater inputs we should see the address of the

linear point. Test your prqgram in this mode, comparing inputs and

results with the data tables of Figure 6-16.

6-74

MODULES, SUBROUTINES AND THE STACK

6.3.9 Stubs for Subroutines

When we first entered the main program into the computer we placed a

RET instruction at each subroutine location. Only one of these

remains now (at MULTIPLY); all the others have been replaced by

subroutines. Such a RET instruction is called a "stub" - it is a

very short subroutine. Sometimes it is useful or necessary to have a

stub that performs some reasonable substitute for the program module.

For instance, if we did not yet have the data tables available,

TABLELOOKUP could enter a fix�? scaling factor into Register E, and

do no adjustment on the input data. We could even think of our

present version of TABLELOOKUP as a stub for a much more

sophisticated program that might eventually provide for interpolation

or some complex calculation.

6-75

MODULES, SUBROUTINES AND THE STACK

The usual purpose of a stub is to permit other program modules to be

tested in the absence of a module which has not yet been written.

Somtimes a stub is substituted for a program module (even though that

module may have been finished and tested) in order to make the test

of a new module easier. Let us replace the existing stub of MULTIPLY

(which has been simply RET) with a new stub which will cause the

adjusted input and the scaling factor to be displayed.

82AO

82Al

82A2

67

6B

C9

MOV

MOV

RET

H,A

L,E

(H) < - Input

(L) < - Scaling Factor

Now the program will display the results of TABLELOOKUP. This might

discover some error in the data tables that otherwise would be

concealed by the multiplication.

see the scaling factory (88)

adjusted input in digits 5 and 6.

this stub for MULTIPLY.

6-76

Now for Sensor 1 we should always

in the right hand digits, and the

Figure 6-20 shows TABLELOOKUP and

1-w
w
I
en
�
z
0
0
u

�
w
I­en
>­en
�
z
z
<{
a:
l­

a:
w
I­
::>
Q..

�
0
u
0
a:
u
>-

en
�
w
I­en
>­en
a:
w
I­
::>
Q..

�
0
u
0
w

a:
(!) w
1-
z

A D D R CODE

8 r.:2:? 0 (5 E

� 3
2 . 13 E:
3 .. 7) /)

4 R 7)

5 t� �
. 6 7 E

7 C q
8

9

A

B

C

D

E

F

8 c.-2 /9- 0 6" 7
1 � .8
2 C 9
3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

SENSOR CORRECTION - TABLELOOKUP

Iv) D \/ £ /'11

I- Al ·x: !-I

(2 f-1 p ·M ..

R JJ C

A- 1) C L

M {J V L A
M. 0 II lt

I

/v1

R E 7

M () V J-1- H STLJ � � f/lUL TI.PLY

M t/ L (,<1 "at �Jc) 0

F? E T
I

-

..

Figure 6-20

6-77

MODULES, SUBROUTINES AND THE STACK

6.3.10 Register Pair Addition

In Chapter 4 we used a repetitive double precision addition to

perform multiplication.

LXI

MOV

ADD

MOV

MOV

ACI

MOV

DCR

JNZ

H,0000

A,L

C

L,A

A,H

00

H,A

E

Clear product

Add multiplicand (C)

into product (HL)

Decrement multiplier

The 8080 provides instructions that perform the double precision

addition in a single step.

6.3.10.1 Double Precision Add - DAD

DAD rp

6-78

Add the 16 b
i

t content of register pair rp

to the content of register pair HL, placing the

result in HL

(HL) < - (H) + (rp)

If the resul is greater than FFFF, set Carry.

Otherwise cl ar Carry. No other flags are

affected.

MODULES, SU BROUTINES AND THE STACK

The hex codes for the DAD intructions are:

09

19

29

DAD B

DAD D

DAD H

(HL) < - (HL) t (BC)

(HL) < - (HL) t (DE)

(HL) < - (HL) t (HL)

6.3.10.2 Subroutine MULTIPLY

If our sensor data tables were more extensive, and might cross page

boundaries, we would have used a DAD instruction in TABLELOOKUP.

Here we shall use it in MULTIPLY.

We must still clear (HL) for the product. To use DAD we must place

the multiplicand in the low byte of a register pair, and clear the

high byte of that pair. Then to duplicate the multiplication of

Chapter 4 we would do:

[:::: JNZ

As before, multiplication by zero would be equivalent to

multiplication by 100 hex. Although that was convenient in Chapter 4

we will here use a technique that gives the correct result of 0000 if

the scaling factor is 00. We can readily test a register content for

zero by:

lC INR E

lD DCR E

6-79

'MODULES, SUBROUTINES AND THE STACK

The register content is restored and the Zero flag is set or reset

according to the content. Now we can use a conditional return:

CB RZ Return if Multiplier Zero

If the multiplier was zero this returns before we have added the

multiplicand the first time. Otherwise, execute DAD B; then jump

back to DCR E, RZ.

Write. and load this final subroutine.
1

Once again, the main program

provides a test, described in Section 6.3.10.3.

·e-so

1-
w
w
I
U)
(.9
z

0
0
(.)

�
w
1-
U)
>­
U)
(.!)
z

z

<t:
a:
l­
a:
w
I­
:)
a..
�
0
(.)
0
a:
(.)
�

U)
�
w
1-U)
>­
U)

a:
w
I­
:)
a..
�
0
(.)
0
w

a:
(.!)
w
1-
z

A D D R

s ,..3. A o

1

2

3

4

5

J-' o<-'1 /) 6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

� /

t) 0

0 0

4 1.t:
4 ,S

I C
/ Lo
C ,,f
() 9
C 3

/-1 t:,
IP ,;2

SENSOR CORRECTION - MULTIPLY -
L x I H 0 0 a a ChaAJ. ��,,L,,r -

/\1 a v' C A (c. Jk- YlJ, iJ1-·-,LC!�� �

/VJ () v' Fi' If (/lJ)k- !')0
I

I /I) R E
v -

0) C R lE

R z

J) IA-1) [3
:, M p g .;) A 0

Figure 6..-21

6-81

MODULES, SUBROUTINES AND THE STACK

6.3.10.3 Final Test

With subroutine MULTIPLY written and entered we are ready for a final

test. W� shall use the same data that were used in Chapter 4.

Sensor

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

Input

00

01

04

07

08

09

OA

OB

oc

80

03

06

07

08

09

oc

80

Two Byte

(HL)

0000

0198

0330

04C8

04C8

0550

05D8

05D8

0660

4400

0320

0578

0578

0640

0708

0960

6400

Product

This test does not fully prove the MULTIPLY subroutine, since only

two different multipliers (88 and CB) have been used. This is one

6-82

MODULES, SUBROUTINES AND THE STACK

case where we should properly write a "driver" program to test the

subroutine. Such a program would test MULTIPLY for all possible

multipliers and multiplicands. The exercise of Section 6.7 involves

writing a test driver for MULTIPLY .

6.3.11 Program Integration

Historically, every program module was written and tested separately,

using "driver" programs to supply simulated input data and test the

results. Then a giant task called "program integration" would bring

all of the modules together, and find out why they did not work. Top

down programming has brought us to a finished product when the last

subroutine was written and tested.

listing the program in one place.

Program integration consists of

(This listing appears at the

beginning of Section 6.5, where some additional exercises are

suggested.)

No special test programs to try out the modules were written - the

main program tested each module. The only exception was the special

stub for MULTIPLY, used for testing TABLELOOKUP. We also indicated

the need to test MULTIPLY with a "driver" program.

This does not imply that final testing is not needed, but the purpose

of the test should be to prove that the program handles all

conditions - not to debug modules and their interfaces. Of course it

is not this easy with a big program, but that is where top down

programming really pays off.

6-83

MODULES, SUBROUTINES AND THE STACK

6.4 REVIEW AND SELF TEST

This chapter has introduced the very important concepts of program

modules and subroutines, and "top down" programming. We have used a

main program with subroutines, and used stubs for subroutines that

had not yet been written.

Section 6.2 described how the stack pointer works with the CALL and

RET dnstructions, and· we used the monitor to examine the stack

pointer and the contents of the stack. We have also used �onitor

subroutines for input and output. Section 6.10 defines a number of

additional monitor subroutines that you will use in this course;

others appear in Appendix A, Volume II.

Review the new instructions that have been introduced in this

chapter. You have already used six of these fourteen.

09

19

29

Double Precision Add

DAD B

DAD D

DAD H

(HL) < -

(HL) < -

(HL) < -

(HL) i (BC)

(HL) -+ (DE)

(HL) -+ (HL)

These instructions set or reset Carry but do not aff�ct Zero or any

other flag.

E9

Indirect Jump

PCHL (PC) < - (HL)

Jump to the location whose address

is in (HL)

MODULES, SUBROUTINES AND THE STACK

Call and Return Instructions

CD CALL address Unconditional Call

C4 CNZ address Call if Not Zero

cc CZ address Call if Zero

D4 CNC address Call if Not Carry

DC cc address Call if Carry

Calls are three byt_e instructions. The returns are single byte·

instructions.

C9

co

CB

DO

DB

RET

RNZ

RZ

RNC

RC

Unconditional Return

Return if Not Zero

Return if Zero

Return if Not Carry

Return if Carry

Refresh your memory by answering the following questions.

1) What instructions are used to enter a subroutine? What

supplies the subroutine address? �-

2) What instructions exit from a subroutine? What supplies the

return address?

3) What is an internal alternate entry to a subroutine? Why is

it undesirable? How can you avoid the difficulties?

4) What happens to the stack pointer when a CALL is executed?

What datum is found in the memory location addressed by the

stack pointer after the CALL?

6-85

MODULES, SUBRO UTINES AND THE STACK

5) What happens to the stack pointer when a RET is executed?

6) What happens to the stack pointer if the instruction RNZ is

encountered when the Zero flag is set? What happens to the Zero

flag?

7) Show the content of the three register- pairs and the Carry

and Zero flags after each instruction in the following program

segment.

Star ting Data

LXI H,2000

MOV C,L.

MOV B,H

LXI D,4000

DAD B

DADD

DAD H

CY z

1 0

·,

BC DE; HL

0654 83F8 6400

·--·

'

.;_
. .

, ._.

MODULES, SUBROUTINES AND THE STACK

Answers to Self Test, Section 6.4

1) CALL and conditional c�lls enter a subroutine. Bytes 2 and 3 of

the intruction supply the address.

2) RET and conditional returns exit from a subroutine.. The return

address. is t�ken from the stack.

3) An internal alternate entry is a location within the body of a

subroutine that may be called from another program module. It

requires that the coding of the subroutine be designed to permit the

alternate entry to a specific location. An external alter nate entry

avoids this requirement because it reaches the normal starting point

of .the subroutine.

4) A CALL instruction causes the ·stack pointer to be decremented

twice. The high byte of the return address is stored after the first

decrement; then the low byte is stored after the second decrement, so

the siack pointer addresses th� low byte of the return address.

5) A RET ·instruction recovers the return address from the stack, and

.in the process the stack pointer is incremented twice.

6) RNZ is not executed if the Zero flag is set. Therefore the stack

'and stack pointer are not changed.

not affect any flags.

Call �nd return instructions do

(The answers t o question 7 are on the next page)

6-87

MODULES, SUBROUTINES AND THE STACK

7) Show the content of the three register pairs and the Carry and

Zero flags after each instruction in the following program segment.

Starting Data

LXI H,2000

MOV C,L

MOV B,H

LXI D,4000

DAD B

DAD D

DAD H

CY z

1 0

1 0

1. 0

1 0

1 0

0 0

0 0

1 0

BC DE HL

0654 83F8 6400

0654 83F8 2000

0600 83F8 2000

2000 83F8 2000

2000 4000 2000

2000 4000 4000

2000 4000 8000

2000 4000 0000

The first two DAD's clear carry. The final DAD H adds 8000- + 8000,

giving a carry. Even though the result is 0000 the Zero flag is not

affected.

6.5 ADDITIONAL EXERCISES

The following exercises will give you added experience in

programming, but more importantly, in specifying subroutines. All of

these involve changes to the sensor correction exercise, whose given

solution is repeated here for convenience. Read the descriptions of

all four changes. Then write new specificatons for INPUT and

NEXTSENSOR. Revise and test the program after each change. Note how

easy this is with a main program and subroutines.

6-88

1-w
w
I
ti)

(!)

z

0
0
u

�
UJ
I­
C/) >­
C/)

(!)
z
z

cc
I-
CC
w
I­
::) a.
�
0
u
0
cc
u
:E

C/)

� w
I­
C/)

>­
Cl)

cc
UJ
I­
::) a.
�
0
u
0w

cc
(!) w
1-
z

A O O R CODE

a oJ I) o C J;,
1 .o2 l

2 ,f o2
3 C J)
4 4 1/J
5

Ip a
6 0 0
7 {) 0
8 7])
9 e J)
A � I()
B ,2 c2.
C () 0
0 � 0
E {!) Z)
F {!, [])

8� / 0 J' 0
1 ,¥ �
2 0 t)
3 {) t)
4 C} (J
5 (J 7')
6 /� ()
7 !? �
8 I) 1)-
9 (!) 0
A ltJ ()
B (2 l])
C C. 0
D 5? :2,
E C 3
F f) lB

ar-!}� o J' o2
. ..f.�2 1 fr F

2 ·q ,.:}
3 � 0
4 ·,; 3
5 C 3
6 ,£ 0
7 � �
8

SENSOR CORRECTION - MAIN AND INITIALIZE

C I+ L L I

(!, fJ L L I
..

N 0 p
N /J p
M D \} · 4

C A- L L s

A) 0 p
}) c:) p
JJ 0 p
(I A L L T

N 0 fJ
JJ 0 /J
;J 0 p

(}_ A L L M

IN D p
N () /J
fJ /J /J

('. A L L 1)

J M p g

X R A A

s T A 2 3

.T M p N

tJ I T I.

1v p u rT

L
E A- R e

/J, B L £

() L T I

I s � L

� t) '�

S' u

E- X. T s

/+LIZ&

{ L ') 1:::- �-L #, f. Th r;;)

· { A)k--. _L � , , + ../"J� ti J
f-\ 1YI. "RE. C TO�\/
(ff L)'-= 1 .. 1. iJ,. /l�t1 A1, ,u .f J

L()QJ< Ll P
{J=,)� �},;, /,1 � ,.-, \. .:::J/) /I 7"ui I

I {A-)� /1,J . I I A t;fi � � .,,,11 ,r,

i1 II

PLY
(HLJ i:- (G-) � (A)

RY KE-SULT
'-IL� "n1/,, f (HL 'J

-.' + L ,_ '*
�

INIT.Lf:Jj_IzE
.. I,� I._, Ah?) �{)

f;;.JJ SOR
).i- j,,_l.,,1)1.)fo/

Figure 6-22a

6-89

6-90

1-
UJ
UJ

:I:
en

{!)
z

0
0
u

�
UJ
I­
en

{!)
z

z
<(
a:
l-
a:
UJ
I­
::,
a.
:E
0
u
0
a:
u
:aE

en
�
UJ

>­
en
a:
UJ
I­
::,
Q.
:;:
0 u
0
UJ

a:
{!)
UJ
1-
z

A D D , R

� a?¥' 0

I 1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 o),�O
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

CODE

cJ_ ;:::-
r)

C :D
3 l)

{) :2
1./ 7

7 l)

JJ ',.2
1"' 0
J' .J.
? 7

j? 7
j7 7
J' 7
11' I()
th F
I I

IF B

y i3

(!_ 7)

q :J'
() �

·7 IP
F- E
/ IIJ
1) ;::;

L/ o2
.,.P :J.

C C

E o ·

f' b.2
(!_ q

SENSOR CORRECTION - SUBROUTINE INPUT

M v' 1 L
/

C I} L L· G-

/VJ 0 V B I

M IIJ ti A-"
J N c.. ff

/t]) X) A
I) T>]) A

ft J)]) 1/J
fl J)]) Ii
IA-]') 7) B

M {) V L
L i I])

I

I/

C ,4 L L D

/YI 0 \/ A- ,
· c p r J 0

3" C. l

C z N G. x

R E 7

C) 0

E T k y

ll
L

;;._ ,.:] 0

fl
.9 3 F ,/3

[3 y �

B

c1 1-1 b.?.

T s E N

{6) l-;{-!,.,
{R)���)
(L

�
•J, 11

A _l . t!� _;'2 • 1, � � = r

I /

d2.. x {}td � ·-)
4x. o-U)_,. l

'- I i 'nJ

9 y. tJ-fdu. � 1 (/ ,, , ·-
/ /J "- ,,_;J A,/. .J ',.. �.)
/ /])(dd- + /11 ,J,
(/ 1� d /.> I;,_ ,J ·-i � ' ., 71,
(} ddh A A A)A,,'.-. . 1-:.. ')

t.5' /L, ,.Ii 4 Cf

1.../7, _..; l"l / ,,... J J l1,, J //.'- J.,, ,J .,'

V ti"

�1:
/7_

11 /'JA.,tf. /,,,,'

--/,,A ·+. J �) 1 ,,.,/ {/

/ ,I

-� .. ,- ,I·,_/, /,, /,
V I /

SOR
)J�--· -H /l - ,,/} _ - ft'! .CM
tJ

Figure 6-22b

1-w
w
I
(/)
(!)
z

a
0
u

�
w
I­C/)
>
(/)

(!)
z

z

cc
I-
CC
w
I­
=>Cl..
�
0
u
0
cc
u
�

(/)
�
w
I­C/)
>
(/)

cc
w
I­
=>Cl..
�
0
u
a
w

cc
(!)
w
1-
z

A D D R CODE

8 ,-2� 0 c2_ I
1 y 0
2 r

,(,/ 3
3 � £
4 If, £
5 C CJ
6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a 0

1

2

3

4

5

6

7

8

SENSOR CORRECTION - SEARCHDIRECTORY

L x .1 I-I I j) 3 Jl D
,

M 0 l/ L M

M D ,/ L M

R f-
,

T

Figure 6 ... 22c

6-91

1-
w
w
:c
Cl)

(!J
z
0
0
CJ

�
w
I­
C/)
>­
(/)

(!J
z
z
�
a:
l­

a:
w
1-
::i
c..

-�
0
CJ
0
a:

>-

Cl)
�
w
I­
C/)
>­
(/)

cc:
w
1-
::,
c..
�
0
CJ

0
w

a:
(!J
w
1-
z

6-92

A D D R·

a-1 _JJ o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

CODE

c5" E
..1.. 3

L3 E

'� 0

I)? 11)
t-, ,c

7 j:

c· q

SENSOR CORRECTION - TABLELOOKUP

t1 0 v £ M
L /J ·'/._ H

-,

C fVl fJ . /VI

R N C,

A ,7) C L

M 0 V L f

M 0 V A-
I

,vf
R E T

I "'\.

Figure 6-22d

f­
UJ
UJ
I
(J)

(.'.)
z
0

0
u

�
UJ
f­
(J) >­
(J)

(.'.)
z
z

er:
f­

er:
UJ
f­=>
0.
�
0
u

0
er:
u

�

(J)
�
UJ
f­
C/)
>­
Cl)

er:
UJ
f­=>
0.

-�
0
u
0
UJ

er:
(.'.)
UJ
f­
z

A D D R

8,3_/t 0

1

2

3

4

5

·,.Vo?� 6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

CODE

c2.. /
t!) {)

0 !J
14 ;=
14 -<

I (2

I l2)
C ,!'

(') 9
C $

/1 l

IP c:2

SENSOR CORRECTION - MULTIPLY

L l.. I H

M () v' C
/VJ t) v 1-=i ,

1 N � E
v

]) C R lE

R z
J) IA 1) [3

� M p g

0 0 a a

R
H

l,.,1 � 0

-

(7�,,,A A 'id_ " _:J, .,,. r

(C Jk- 7?7, 111-·,,,L,e:��

(A'\4-/)�
/

..

Figure 6-22e

6-93

._,

6-94

I­
LU
LU
I
Cl)
(.9
z
Q
0
(.)

2
LU
I­
C/)
>­
Cl)
(.9
z
z

a:
l-

a:
LU
I­
::>
c..
2
0
(.)
0a:
(.)
�

Cl)
2
w
I­
C/)
>­
Cl)
a:
LU
I­
::>
c..
�
0
(.)
Q
LU

a:
(.9
w
1-z

A D D R CODE

8 ,.J (: 0 / J

;= F
2 JJ 3
3 7 l2)
4 C J)
5 9 9
6 a c2
7 7 C,
8 e :J)
9 q f
A (!') c2
B C q
C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

SENSOR CORRECTION - SUBR DISPLAY RESULT

L i I
----:-,

i 3 F FL .

/V) 0 t/ A- l
C, I+ L L 11: 13 y �

:�-;-;-;,b _,. - (J)E) �
P3FF -,:J = ,1)3,c])

M 0 \) ,4 1-1

C!. A- L I 1) B V :J --

'I/:_// 1-J, AA A)II}) ;(CJ _;fl.I)

I (])1=,) = ,P :;' FA
R E- T

E Iv T E R w I T H

(L) -= L 0 w 8 '/TE OF �f::'5ULT
(H I) = H- I G 1-1 B'IT E

R E- T u R tJ

(e) . (I-+) (L J -PRE-5 �R \IE: t)

C A-)

·-
((_) /.::. (H-)

(1) E) :::: 't 3 F 'G

Figure 6-22f

A D D R

8 r.J..£ 0

1

2

3
f-
w

4 w

I
Cl) 5
(!)

',

z 6

Cl

. 0 7
u

8

9

A

B

C

�
D w

Cl) E

F
(!)

s ,.._J_ F o
z

<{ 1
a:

W"o2F 2f-

a:
w

3

:::>
0. 4

�
0 5
u

0
6 a:

u

� 7

8

9

A
Cl)

� B
w

C Cl)

Cl) D a:
w

E

:::>
F 0.

0 3 0
u

Cl 1
w

2

a:
(!) 3

4 z

5

6

7

8

CODE

i3 ;:;
J' 0
cf 3
3 C.
C fl

F 1/J
J7 �

IL/ ,c
..3 w
CJ I/J
y 3

8 19
17 9

J) k?
F :;_
iA' d1..
3 E
()

3 o2

cf' �

jl 3
/ I
/3 3
{) l'.7
ur 3

� F
I fl

l3 o2
[,.c: IA'

IY 8
e 9

SENSOR CORRECTION - SUBROUTINE NEXTSENSOR

L 7) A

II!v' R fl

312.. ?c2F{)

Ma V C A
Ll) A

CMP C

Mo \I I+ C

3 tJ C

MV.L I+ 0/

Mov £ IA

1R ITIA J' 3 F J?

RE7

/I /J - -]r1 .. J /71. ", I. ,U l

I

A --· /. ��. L),,-,,, -·,,, AA-#

p 711 I)

Figure 6-22q

6-95

6-96

1-w
w
I

(!)
z

0
0
u

�
w
I­C/)
>­Cl)
(!)
z

z

cc

I­
CC
w
1-
::JCl.
�
0
u
0
cc
u
�

Cl)
�
w
I­C/)
>­Cl)
cc
w
1-
::J
Cl.
�
0
u
0
w

cc

(!)
w
1-
z

A D D R CODE

a.300 C) o2
1 0 J?
2 I '�

3 0 0
4 {) 0
5 0 tJ
6 CJ ()
7 C) 0
8 p t?
9 C) /3
A () 0
B {) 3
C () '-I
D () �
E c) �
F c) 7

8 ...5' ,/ 0 () f
1 . 6 9
2 a 9
3 {) /l
4 Ir, A
5 CJ .8
6 ·(! g
7 C) 7
8 � 0
9 () :2.
A C) J/
B ,1 w
C r) �
D /) �
E () 7
F {) 7

3 0

1

2

3

4

5

6

7

8

SENSOR CORRECTION - DIRECTORY AND DATA

IH II G !-I E s T

s E JJ s 0 R

s r- ;J s . C) R

R l= s
,.-

R V E c

fr D D J_ T T

rC::: E ,J s 0 R

C 0 R R E C. T
V A L u f s

s E N s 0 R
,.

C 0 R Q £ C. T
V A- L u £ s

s £
I T
j T

µ) r-
0 tJ A-

I s

L
E:- J)D

)

� s
L

E I)D
_)

1·
'

;JSD I� /IIU 1VJ !3E-R
t9 FJLE /-f-]),7)f.?£S s

..

ft/3LE ft-7)])/?E SS
fJR
L 3EN'Su1?S

CftLI-JJG FA{!,TCJR
I.NEAR PCJLJ,./T
LNPUT = {)O

= 0)

= CJ 2.
. .

:: /J3
= o'-1
::,- CJ5'
= Oh
= CJ7
= C)f
= 69
= cJ!l
;;: {)/3

':../I-LI ;JG F.ACTCJR

LNEA-R POINT

IN? I J T = C)!J
=- CJ/
= (}!).

= /J.3
= (') Lj.
= ()5

=- l)�
- /f)�

Figure 6-22h

MODULES, SUBROUTINES AND THE STACK

6.5.1 Clear Result Display

While a new data input is being entered, the old result still appears

at the right. During this time the. dlsplay is showing misleading

data - an input at the 1 eft with a result at the right that does not

correspond to the input being displayed. Revise the specification of

INPUT to require that the right hand display be blanked as soon as a

key is entered.

6.5.2 Store and Recover Table Address

The sensor correction main program calls subroutine SEARCHDIRECTORY

every time we receive new input data, even though the address

returned is always the same unless NEXTSENSOR has been called, by

INPUT. It would be more efficient to combine the two functions.

Revise NEXTSENSOR

SEARCHDIRECTORY to

to

store

call SEARCHDIRECTORY;

the sensor table address

MAIN, simply load the table address from memory.

and require

in memory. In

Alternately, require that INPUT and NEXTSENSOR return Zero set if a

MEM command has been entered; Not Zero for other commands. Then have

MAIN call SEARCHDIRECTORY only after a MEM command.

Very often it is useful to have a subroutine preserve or restore the

flags, especially if the subroutine is expected to be called

conditionally. In this case NEXTSENSOR could set Zero (by XRA A or

CMP A); then the above requirement would be met.

6-97

.MODULES, SUBROUTINES AND THE STACK

6.5.3 Two Byte Table Addresses

Revise the directory to include two byte addresses for the data

tables. Since each entry will now require two bytes we cannot do the

simplified indirect addressing previously used in SEARCHDIRECTORY�

This was:

LXI, H, 8380 Address Sensor Number

MOV L,M Address Di.fee tory

MOV L,M Address Table

RET

To obtain a two byte address from the sensor number, you must double

the sensor number and add it to a fixed value to generate the correct

address. Be careful about selecting the fixed value.

6.5.4 Empty Sensor Numbers

The existing data table and directory include only Sensor Numbers 1

and 2. The program allows for higher sensor numbers, but there is an

assumption that no gaps exist in the sequence. If the sensor number

were greater than zero and less than or equal to the highest

allowable, then it is legal, and the directory must have an entry for

it.

Remove that constraint by testing for the existence of a valid

directory entry as part of the new NEX TSENSOR subroutine. If a

sensor does not exist, its directory entry should be 0000. Make

sensor 1 non-existent and use its data table for sensor 3.

6-98

6.6 USING THE STACK FOR DATA

MODULES, SUBROUTINES AND THE STACK

The stack can provide temporary storage of data as well as storage of

return addresses. You have probably seen a spring loaded stack of

dishes in a restaurant. The busboy puts clean dishes on top and

their

spring

weight pushes them down.

pops the next one up.

When one is taken from the top, the

The microprocessor has PUSH and POP

instructions to place data into the stack, and recover it. Since the

stack exists mainly to hold addresses, the data are entered and

recovered two bytes at a time, from and to register pairs:

C5

D5

PUSH B

PUSH D

E5 PUSH H

Cl

01

El

POP B

POP D

POP H

Push data into ·the stack from

register pair B, D or H

Pop data into register pair B, D

or H from the stack.

Suppose that a program needs to call MULTIPLY and DISPLAYRESULT but

also

is

needs to retain other data in HL. Since each of the registers

used in at least one of these subroutines, we must save the

content of HL in memory. We could do this with SHLD and LHLD, but at

the expense of three bytes for each instruction and two bytes in data

memory at least partially dedicated to this purpose. PUSH H before

the call to MULTIPLY and POP H after return from DISPLAYRESULT will

save and recover the data. The content of any of the three register

pairs can be saved in this manner.

6-99

MOD ULES, SUBROUT INES AND T HE STACK

6.6.l T esting Stack Usage

Enter this program in order to observe the operations.

8200 01
8201 oc

8202 OB
8203 11
8204 OE

8205 OD
8206 21
8207 09
8208 08
8209 E5
820A D5
820B C5
820C CD
820D 15
820E 82
820F Cl
8210 01
8211 El
8212 C3
8213 09
. 8214 82
8215 04
8216 oc

8217 14
8218 lC
8219 24
821A 2C
821B C9

LXI

LXI

LXI

PUSH
PUSH
PUSH
CALL

POP
POP
POP ·
JMP

INR
INR
INR
INR
INR
INR
RET

!3,0BOC

D,ODOE

H ,0809

H
D
B
8215

B
D

H
8209

B
C
D

E
H
L

L oad registers
with easily
recognized data

Save HL
Save DE
Save BC

Restore BC
Restore DE·
Restore HL

Subroutine·

N ote. that this program pushes the register pairs in the sequence H,

D, B and pops them in reverse sequence. T he last bytes pushed are

the first bytes popped. We shall see this in operation. Step

through the first three instructions and examine the registers.

6-100

RST

REG B

NEXT

NEXT

NEXT

STEP STEP STEP 8209

8209

8209

8209

_8209

E5

B-OB

c-oc

D-OD

E-OE

NEXT (Ignore F)

NEXT

NEXT

Examine the stack pointer.

ADDR 1/P MEM

Now we shall execute PUSH H

ADDR

STEP

ADDR 1/P MEM

NEXT

MODULES, SUBROUTINES AND THE.STACK

8209 F-??

8209 H-08

8209 L-09

83EO SP.??

8209 E5

820A D5

83DE SP.09

83DF 08

The contents of pair HL have been pushed into the stack. The stack

pointer has been decremented by 2, and points to the location where

the low byte (from L) has been stored. The next higher memory

location contains the high byte (from H).

Execute the next two push intructions.

ADDR 820A D5

STEP 820B C5

STEP 820C CD

ADDR 1/P MEM 83DA SP.QC

NEXT 83DB OB

NEXT 83DC OE

NEXT 83DD OD

NEXT 8�DE 09

NEXT ·83DF 08

6-101

MODULES, SU!3ROUTINES AND THE STACK

The stack contains the six bytes we have saved. The top of the stack

(the most recent two bytes stored) contains the d�ta from register

pair B, the last one pushed.

ADDR 2/T MEM

The next instruction is the call to 8215.

ADDR

STEP

ADDR 1/P MEM

The stack pointer has been decremented two more times.

The stack top now contains the return address.

ADDR 2/T MEM

OBOC

820C

8215

8308

820F

ST.??

CD

04

SP.OF

ST.Cl

The registers have not been altered by any of these in$tructions.

Step through the subroutine, which increments each of tbe six

registers. Review the registers again to check that we now have:

(B) = OC (C) = OD (D) = OE (E) = OF (H) = 09 (L) = OA

The stack still contains the original data.

Now execute the return and three POP instructions.

8212 check that the six registers have been restored.

stack pointer.

ADDR 1/P MEM

When you reach

Also check the

82EO SP.??

The stack pointer is back to its original position, and the entire

6-102

MODULES, ·suBROUTINESAND THE STACK

stack is available for other uses.

Transfer

source or

example:

notation for PUSH an4 POP refers to th.e ."Stack Top" as the

destination. This means two bytes in the stack. For

PUSH B

POP H

(ST) < - (BC)

(SP) < - (SP) - 2

(HL)

($�)

< - (ST)

< - (SP) + 2

6;...103

MODULES, SUBROUTINES· AND THE STACK

6.6.2 us·ng the Stack Inside a Subroutine

It is perfectly legitimate to use.the stack for data outside of a

subrout·ne, as we have just done, arid also inside a subroutine.

Replace the subroutine abdve with:

8215 C5

8216 01

8217 00

8218 00

8219 Cl

821A C9

PUSH B'

LXI B,0000

POP B

RET

(ST)

(BC)

(BC)

(BC)

0000

(ST)

Now ste through the program again until you reach 8219. (Do not use

a breakpoint.) Examine the stack. The stack pointer now contains

83D6, rhere (C) has been stored again. The register contents can be

saved
r

nd restored by PUSH and POP either outside or inside the

subrout
L

ne. It is crucial, however, that these not be mixed. The

PUSH a

]

n(l POP instructions must be balanced in each program module.

What ould happen if you executed a. POP B inside the subroutine,

without a preceding PUSH? The two bytes at the top of the stack

would be copied into register pair B, and the stack pointer would be

increm nted

instrudtion

the sJack

twice. Now BC contains the return address, and a RET

will jump to the location found in the next two bytes of

OBOC in the program above. Test this by deleting the

PUSH B at 8215 and stepping through the program�

6-104

I

MODULES, SUBROUTINES AND THE STACK

6.6.3 Processor Status Word (PSW)

The content of the accumulator and flags can also be saved .in the

stack. For PUSH and POP only, Register A and the flags are treated as

a register pair, called the "Processor Status Word".

F5

Fl

PUSH

POP

PSW

PSW

These instructions save and restore the content of the accumulator

and all five 8080 flags (Zero, Carry, and three others not yet

described.)

Recall in the sensor correction subroutine INPUT (Figure 6-22b) we

copy an input key to Register B, and after displaying the hex value

we test (B) to determine whether a hex key, or command MEM, or some

other command was entered.

CALL GETKY

MOV B, A

MOV A,B

CPI 10

JC 8242

CZ NEXTSENSOR

RET

MODULES, SUBROUTINES AND THE STACK

The CPI 10 instruction was in fact done in GETKY, which returns Carry

for hex keys; Not Carry, Zero for MEM, Not Carry, Not Zero for the

other commands. Then the above sequence could have been:

CALL GETKY

PUSH PSW

POP PSW

JC 8242

CZ NEXTSENSOR

RET

It is fairly common to need the results of a test after some

intervening operations .that affect the flags; PUSH PSW and POP PSW

provide this facility. In these instructions the flags are treated

as the low byte of the pair (stored in the lower memory location of

the stack) and the accumulator is treated as the high byte. PUSH PSW

and POP PSW are the only instructions that treat the flags as a

register, or as part of a register pair; there is no LXI PSW

instruction.

6-106

MODULES, SUBROUTINES AND THE STACK

6.6�4 -Exchange Instructions

With two exceptions the data movement instructions of the 8080 are

all one-way. MOV A,C copies into A the content of C; Register C is

not affected. SHLD. stores the contents of H and L; the registers are

not affected. In each case the old content of the destination is

lost.

The two exchange intructions are the exceptions.

6.6.4.1 Exchange (HL) with (DE)"

EB XCHG (HL) < - > (DE)

The content of Register E is exchanged

with the content of Register L.

The content of Register D is exchanged

with the content of Register H.

Flags are not affected.

Here all four data bytes are preserved, but in different registers.

This instruction is especially useful when two different memory

locations are successively addressed, or when some following

operation must use HL. It can also sometimes be used merely as a

single instruction to substitute for MOV E,L; MOV D, H. For instance,

to load four bytes from memory:

LHLD 8300

XCHG

LHLD 8302

6-107

MODU LES, SUBROUTINES AND THE STACK

There is no corresponding instruction involving pair B; the other

8080 exchange involves the stack.

6.6.4.2 Exchange HL with Stack Top

E3 XTHL (HL) < - > (ST)

The operation involves the stack pointer and the temporary Registers

Wand z. The data byte addressed by the stack pointer is copied into

Z and the stack pointer is incremented; the data byte now addressed

by the stack pointer is copied into w. Register His copied into the

stack and the stack pointer is decremented; RegisterL is copied into

the location so addressed. Wand Z are copied into Hand L. There

is no net effect on the staik pointer; it ends up where it started.

The process could be shown as:

(WZ) < - (ST)

(ST) < - (HL)

(HL) < - (WZ)

(like a POP)

(like·a PUSH)

(like an LXI)

This powerful one byte instruction effectively adds one more register

pair to the 8080 set. This is particularly useful where three memory

locations are to be addressed and one register is wanted for a

counter. To add two multibyte numbers and place the result in a

separate location, for example:

6-108

XRA A

'LXI H,

PUSH H

LXI H,

LXI D,

MVI C,

LDAX D.

ADC M

XTHL

MOV M,A

INX H

XTHL

INX H

INX D

DCR C

i---JNZ

POP H

MODULES, SUBROUTINES AND THE STACK

address of sum

address of augend

address of addend

byte count

The XTHL instruction is also useful for doing arithmetic in

registers. To multiply two numbers of two bytes each, giving a four

byte result requires eight registers; BC, DE, HL and ST provide just

enough.

6-109

.MODULES, SUBROUTINES A ND THE STACK

6.7 TEST DRIVER FOR MULTIPLY-EXERCISE

We observed in Section 6.3.10 that subroutine MULTIP LY is not fully

tested by the procedure we have used, since only a very small sample

of all possible multiplicands (adjusted input values) and multipliers

(scaling factors) have been rised. O ne way of testing such a

subroutine is to try either all possible values or a large random

sample of possible values. Then each answer must be checked by some

different calculation. We need 65536 tests to try all possible

multipliers and multiplicands - a lengthy but reasonable task.

By sequentially testing all multipliers, starting at 00, it is easy

to predict the correct result •. The first product should be 0000;

each following product should be the previous product plus the

multiplicand. Figure 6-23 shows the test driver program. Note that

when all . multipliers have been tested with a given multiplicand we

display that multiplicand; this is to.provide assurance that the

program is running. The test for each multiplicand, in AUTO mode,

takes about half a second; in STEP mode more than 40 seconds.

Write the program, using PUSH, PO P and XCHG instructions where

appropriate. Step through one loop to test the program flow, then

switch to AUTO mode and run the program for the full cycle of tests.

6-110

MODULES, SUBROUTINES AND THE STACK

START

Clear BC for Mul tipl_icand

Clear E for Multiplier
Clear HL for Product

Save BC,DE,HL in Stack
Call MULTIPLY

(HL) - (E) * (A)
(DE) - (liL) = Product
(HL) - (ST) = Expected Product
Test for Equal

Equal

Not Equal

Re-enter Monitor on Error

(DE) - (ST) = Multiplier (in E)
(BC) - (ST) = Multiplicand (in C)
(HL) - (HL) + (BC) = Next Product
(E) - (E) + l = Next Multiplier

Not Zero

Display Completed Multiplicand
(C) - (C) + 1 = Next Mul�iplicand

Test Driver for MULTIPLY

Figure 6-23

Finished)

6-111

. W
w

I
(./J

6-112

(!)
z
0
0
(.)

�wr­(./J>­(./J
(!)
z -
z
<(
C:
r­
e:
w
r­
::::>c...
2
0
(.)
0
C:
(.)
?-

(./J

�
w
r­
(./J >­
(./J

C:
w
r­
::::>c...
�
0
(.)
0
w

�
C:
(!)
w
r­
z

A D D R CODE

a o1a o {) I
1 0 CJ
2 0 {)

Po?zJ3 /) J.:
4 � F
5 0· 7
6 I� �

,,P....:?L) 7 C
-

J .

8]) lS
V

9
..

�- _3-v
L--

A 17 19
B C lD
C 1-l 0
D J' ;2_
E E /3
F i£ I

8 e:.f / 0 7 "
1 13 lZ)
2 C ,;l
3 I 1/-J
4 J7 ;J_
5 1'7 /.l
6 l3

C
7 C l4
8 I 13
9 X r2.

��/· A I= 7
pc:;/ B [2) I

C C I
D () q
E I Vi

_,
F C c:2

3 _j c:2J 0 0 7
1 J7 ;;)._
2

3
4

5

6

7

8

TEST DRIVER FOR MULTIPLY

L x I ,8
/

)(R, A A
M 0 \I &
M {) v J-/- '
1'1 0 v' L

p LA s H 'B
p (J\ 5 i-i D
p Ll 5 µ H
M 0 I) 4
C A L L M

X C /-} 6
p 0 p /-I
M 0 \} /-1-
C M p ·

,
L

0 N z g

M 0 1/ ff
C M p If/

I

3 z J1

f.< s T �

p 0 p D
p 0 p B
D II-]) B
II Al R £

:r N z. J)

(C 0 ;J T r.

{) 0 0 0

A
fJ
f}

C

u L T I

E

.:2 I I}

J)

� I .6

:2_ {) I?'

A.) Ll E D

(7 �a.-1..,) AC,
J,,_' -- ,.17 :� ,,/ ,'i - _/.,, v,

I /

(1 /L, A ,A .,,...,,,, • , /)J-,.,, d � _,/ j

(' /inn J j /J ,/-" • ;: #:;;l,
//

__r1),. ,, ,,1 , , AT

} I ·'F J· jJ .� •)/J;'J,f ,,f,) , /'l AA -

.J(]u).V --A 1J� �IJ.��'

J� 1' ,�",,;-#id}_,/]/,,d

(fl-)� /'--· ,, /) J-: � '·>.,,,, ,.,J
PLY

7/

{J.;LJ=-(£)4k(A,') -

{DE)� 'f-kd.LLCL
/-IL}.-f!., _. ,,,,tt;/iL -fL�Luci
,i,1 --±)�. ,_; ,r;-_ _)

__w-1.>, j b /, / L'

...J.Jll)J.n� .,., Ji.�
//�ft*,

� },·,,. J j 7----r- ,
� 0 t:fl

';,.. j . 4 ./. • � tl
'(t., (__ � �7 � ./. . , /, .,

J

(I v I 7
I...J/ "J.,},�

tJ
I;,, . ft h � - h -• 'A• ' /J'¥ --· I ;�

(G)� ,--- . /] j- -.... /), � A J

(c.�, .. ,J-J-c-...'/ · �

0 �.A/t ".,J /'I ,, ,.,' J;;-;; �.,r, . '6 : �-

YUut: ,�! , II/-_._,;�, I

�- k.. ,- - / /JI-:-: ii.�
(I t' I/

)

Figure 6-24a

1h

A D D R

8 0

1

. �.,?,:} 2

1-w
w
::c
(/)
(.9 z
Cl
0
u

�
w
I­C/)>­
(/)
(.9 z
z
<{ a:
l­
a:
w
1-
::J
a..
�
0
u
0a: u
�

(/)
�
w
I­C/)>­
(/)

a:
w
1-
::J
0...
�
0 u
Cl
w

a:
(.9
w
1-z

3

4

5

6

7

8

9

A

B

C

D

E

F

s o2_ /lo
1

2

3

4

5

R..-:J .,4 6

7

8

9

A

B

C

D

E

F

3 0

1

2

3

4

5

6

7

8

CODE

7 q

I /
IF �

? 3

C .])
9 p
{) .2

() C,
e. g

cJ .3
J' �

c1., I

{) ()
0 r

I/ �

I/ .'5"
I e

I J)
C p

0 9
C 8
f}- lbJ
y �

TEST DRIVER FOR MULTIPLY (continued)

/VI 0 V ·/+
/.._ x T .D

C. fl- L L

T N R C

.3" M p

L X T /--1-

,v1 {) ti c..

lv1 a II A

I Iv R J:;
r.D C R E

R z.

]) (+ I) B

.J M p

C,
y 3

/

1) i3 y

� � ()

lrJ 0
I

. (-} '
J-1

J? ,1 I+

F F

c2

,3

0 0

t

'-/) I � r, I /7 , , (J fa--v,,I ,, tt ,iT, cf_.
u ;(I-,. ,/. ·t fi ,,..,...,,,, -� ·,4 �.r.-

I

'fl"_,/f: ,...... , , ;J/;'n ./, C'' - ,J,
� ..h:

, .
A-.iO.,,h : ,'l /) A ,> j,)

� . /)*',,ti., :u) ,,� Al'
I

• .,., • .• _,1 • • n

I

M1 J L TT PI....Y
/1, ., \ < /J. ,.,I f-. i},, -·, A J -,, -fl "1 .n

Figure 6-24b

6-113

MODULES, SUBROUTINES AND THE STACK

This is not a complete and perfect test because we have entered

MULTIPLY with the flags and unassigned registers containing tixed

information. For instance, the given version of MULTIPLY (Figure

6-24b) contains the instructions MOV B,L and MOV C,A to place the

multiplicand in pair BC for the DAD instruction. If either of. these

were left out inadvertently the subroutine would be wrong, but our

test program would not catch the error because the test program uses

pair BC the same way.

Suppose the repetitive addition in MULTIPLY had been written like

this:

LXI H,0000

MOV C,A

INR E

DCR E

RZ

MOV A,L

ADC C

MOV L,A

MOV A,H

AC! 00

MOV H,A

JMP

Can you see the error? The test program will not find it, because

the test for equality between the value returned by MULTIPLY and the

known correct result will always clear the carry. Nevertheless, the

6-114

MODULES, SUBROUTINES AND THE STACK

routine is wrong because if it were entered with carry set it would

give a wrong answer. This error would not be detected in the sensor

correction program either - TABLELOOKUP always returns carry cleared,

just before the call to MULTIPLY. Imagine using-such a subroutine

successfully, believing you have tested it with a test driver, and

some day copying it into a new program that occasionally calls it

with carry set. Even then the error isn't obvious - it only affects

the least significant bit of the result.

The design of test programs is extremely difficult - especially for

testing your own programs. It is easy to test for errors that you

can think of, but those are not the errors you make. If at all

possible someone else should write the test, using only the module

specification as a guide.

6-115

MODUL.ES, SUBROUTINES AND THE STACK

6.8 STACK POINTER INSTRUCTIONS AND RULES

6.8.1 Instructions that Affect Only the Stack Pointer

These intructions are deftned for completeness. You are urged not to

use ·them when working with MTS until you fully understnd the monitor
'

.

· program. The first, however, is a vital part of any real program:

31

xx .

yy

LXI SP

low address.

high address

. .

.
.

Lo ad· an i n i ti a 1

-v�lue to the

stack pointer.

This instruction must be executed befbre the stack can be used for

data storage or for subroutine calls. Address 0000 to see it: it is

the first instruction in the monitor, and ini t ia 1 i zes the stack at

power-on or reset. Other instructions include:

33

3B

39

F9

INX

DCX

DAD

SPHL

SP

SP

SP

Increment stack pointer

Decrement stack poiner

(HL) < -

(SP) < -

(HL) + (SP)

(HL)

These manipulate the stack pointer. It may be incremented (with INX

SP) to discard data or a return address that has been pushed into the

stack, or decremented (with DCX SP) to recover data that has been

pushed and popped •

. , , 6'.""116

MODULES, SUBROUTINES AND _THE, STACK

The only way of finding the content of the stack pointer is this:

' '

LXI H,0000

DAD SP

Now (HL) is equal to (SP); Using this together with '.'LXI SP,

address" per mi ts you : to assign a different area ln memory ,_for· the

stack, a�d later restore the previous stack address.

LXI H,0000

DAD SP

LXI

PUSH

POP

SPHL.

SP, _address

H

H

Get existing stack pointer

Address new stack

Save old stack pointer

Recover old stack pointer

Restore old stack pointer.

· 6-117

MODULES, SUBROUTINES. AND THE s·TACK

This page intentionally left blank.

6-118

MOD_ULES, SUBROUTINES AND THE STACK

6.8.2 Stack Operation Rules

There are some restrictions on use of the stack.

a) For every CALL there must be a RETURN. You must not jump

into or out of a subroutine except by CALL and RETU.RN.

b) For every PUSH there must be a POP. You must not repeatedly

push data onto the stack, or you will write into your program

memory.

c) To restore registers saved by PUSH, the POP instructions

must be in reverse order from the push instructions, because the

last data entered is the first data returned.

d) PUSH and POP must be in the same program module. If a

subroutine executes a POP with no preceding PUSH, the data

recovered will be the return address.

These rules are not absolute: if you understand what you are doing

you may use violations of the rules to good purpose. For instance,

one program module might push data into the stack for retrieval by

another module. This is referred to as unbalanced usage of the

stack. It can lead to serious problems unless great care is

utilized. (See Section 6.6.2.)

It may be desirable to jump from any of several subroutines to a

specia.1 location in the .main program when an error is detected. This

is called an abnormal return. The error handling module may then

return to the calling program, it may POP the return address to a

register pair and discard it, or it may initialize the stack. Avoid

6.-119

MODULES, SUBROUTINES AND THE STACK

such procedures until you are reasonably expert.

6.8.3 Monitor Usage of the Stack

The MTS monitor program shares the stack with your program. You will

not notice any effect from this except if you manipulate or examine

the stack p6inte�. The· monitor operates by ."interrupting" your

program before each of your instructions is executed. (The subject

of interrupts is treated in Chapter 8.) The monitor program pushes

yotir registers into the stack, and calls its own subroutines. When

you display the register contents the monitor calculates their

locations in the stack and displays the contents of those locations .

When you display the stack pointer, the monitor calculates the

address that will be contained in the stack pointer before your next

instruction is executed. To look into this, let us again use a

program that places readily identified data in the registers.

8200 AF XRA A Clear Carry, Set Zero
8201 3E MVI A,OA
8202 OA
8203 ·01 LXI B,OBOC
8204 oc

8205 OB
8206 11 LXI D,ODOE
8207 OE
8208 OD
8209 21 LXI H, 0809
820A 09
820B 08
820C E5 PUSH H
820D C5 PUSH B

820E D5 PUSH D
820F F5 PUSH PSW
8210 C3 JMP 8210
8211 10
8212 82

6-120

MODULES, ,SUBROUTINES AND THE _S�ACK

6.8.3.1 Examining the Monitor Stack

Step through this program to the JMP instruction at 8210. (Do not

use breakpoints.) Check the register contents.

(A)�OA (B)=OB (C)=OC (D)=OD (E)=OE (F)=46 (K)=08 (L)=09

Look at your stack:

ADDR .1/P MEM 83D8 SP.46

NEXT 83D9 O A

· NEXT· .83DA OE

NEXT 83DB OD

NEXT 83DC oc

NEXT 83DD OB

NEXT 83DE 09

NEXT 83DF 08

Now let us look into the monitor's part of the stack'. The data shown

depend on your following these steps ex·ac t ly; a different key

sequence could give different data in the first fe'W bytes here.

ADDR 8 3 C 2 · 82C2 A2

NEXT 82C3 02

MODULES, SUBROUTINES AND THE STACK

This is a return address within the subroutine DBY2, placed in the

stack when DBY2 called another subroutine. It has since been used by

a RET instruction. POP and RET do not remove the data or return

address from the stack memory; they recover the data and increment

the stack pointer. The contents of following locations can be seen by

pressing NEXT.

The entire stack is listed here and on the following page:

The return address

described above

The address previously

displayed, from PUSH H

The return address

into DBY2 again

The address of the byte

previously displayed

Another return address

for a display subroutine

A return address from

the NEXT command

A return address to

the main monitor program

6-122

83C2

83C3

83C4

83C5

83C6

83C7

83C8

83C9.

83CA

83CB

83CC

83CD

83CE

83CF

A2

02

C2

83

A2

02

C7

83

Dl

02

FA

01

A6

00

MODULES, SUBROUTINES AND THE STACK

PSW pushed by monitor 83DO 4q

8301 OA

DE pushed by monitor 83D2 OE

83D3 OD

BC pushed by monitor 8304 oc

83D5 OB

HL pushed by monitor 83D6 09

83D7 08

PSW pushed by your program 83D8 46

83D9 OA

DE pushed by your program 83DA OE

83DB OD

BC pushed by your program 83DC OC

83DD OB

HL pushed by your program 83DE 09

83DF 08

The monitor has used 22 (decimal) bytes in the stack. Until

breakpoints are set this is the most it uses.

There is no need for you to be familiar with the details above. In

fact one of the great advantages of a stack is that you can use it,

following some simple rules, without any concern over where a

particular piece of data is stored. However, an understanding of the

stack is very useful in troubleshooting programs that misbehave.

6-123

MODULES, SUBROUTINES AND THE STACK

6.8.3.2 Breakpoints in the Stack

The MTS monitor breakpoint system also uses the stack, but in a

special way. It moves all of the existing stack downward (to lower

addresses) in memory, and places the breakpoint information above the.

stack. Four bytes are stored for each breakpoint. Press RST twice

and then step to 8210 again. Now enter a breakpoint.

ADDR BRK 8210

This has moved the stack down four bytes.

ADDR 8 3 B E 83BE

NEXT 83BF

Most of the same data we looked at before are again in

BP.

A2

02

the stack,

at locations four bytes lower. A few bytes are different because

have displayed different locations. Look at your stack pointer:

ADDR 1/P MEM 83D4 SP.46

but

we

Your stack has also been moved down by four bytes. Examine the rest

of your stack by pressing NEXT.

NEXT (Register A) 83D5 OA

NEXT (E) 83D6 OE

NEXT (D) 83D7 OD

NEXT (C) 83D8 oc

NEXT (B) 83D9 OB

NEXT (L) 83DA 09

NEXT (H) 83DB 08

6-124

MODULES, SUBROUTINES AND THE STACK

The next two bytes contain the value of your program counter the last

time you pressed RST. Because you pressed it twice, this is 8200.

NEXT

NEXT

(Program counter at RST)

Now we find the breakpoint data.

NEXT

NEXT

NEXT

(The address, 8210)

(The data byte (JMP))

(An optional count)

83DC

83DD

83DE

83DF

83DO

83El

00

82

10

82

C3

00

Each breakpoint you enter occupies another four bytes in the stack.

6.8.4 The Growing Stack Problem

When you use the stack for data in complicated problems it is easy to

make a mistake and have more PUSH instructions than POP instructions.

If this occurs in a repetitive loop the stack will grow by two bytes

each time through the loop, and eventually fill the memory with stack

data until it destroys the program.

6-125

MODULES, SUBROUTINES AND THE STACK

The monitor breakpoint system can be used to protect against a

growing stack . In addition to stopping your program when ·the program

counter reaches a breakpoint, the monitor will stop execution if the

data stored at any breakpoint address is changed. This feature has

two uses: to stop when a loop that is writing to various locations

reaches some particular position; or to stop if your program writes

in some specific but undesired location. If we choose a location

somewhere between the lowest address the stack should ever reach, and

the highest address (within page 83xx) that is occupied by variable

data, we should expect no change in data at that location. By

protecting it with a breakpoint we can detect a growing stack.

Try this disastrous program:

8330 21 LXI H,1111

8331 11

8332 11

8333 E5 PUSH H

8334 C3 JMP 8333

8335 33

8336 83

Be sure to set STEP mode, and set a breakpoint at 83AO before

running.

6-126

ADDR

ADDR

RUN

8 3

8 3

A

3

0

0

BRK 83AO

8330

8334

BP.

21

C3

Now look at the stack:

ADDR

NEXT

1/P MEM

MODULES, SUBROUTINES AND THE STACK

83AE

83AF

SP.11

11

You will find 11 in all locations up through 83DB. The unbalanced

PUSH has wiped out the memory content in this area, but the

breakpoint at 83AO protected everything below 8398. The monitor

detected the growing stack at the next instruction after your stack

pointer reached 83AE, because the monit or itself had ihen written

irito 83AO. Then the monitor's display operations used another eight

bytes of stack, down through 8398.

Now let us see what happens without the breakpoint protection.

RST

ADDR 8 3 3 0 R UN

The display goes blank (probably - depending on the garbage pushed

into the stack other things could happen.) Push RST and look at the

test program (8330 up). It has been destroyed by the repeated PUSH.

To protect your programs against such errors, follo� these rules:

Avoid using memory locations between 8398 and 83F F, except for

the stack and display.

Place a breakpoint at 83AO.

Operate the computer in STEP mode (rather than AUTO) until you

are satisfied that your program is correct.

6-127

MODULES, SUBROUTINES AND THE STACK

6.8.5 Review and Self Test

At this point you have completed �wo program developments in which

you used subroutines that you wrote yourself, and also monitor

subroutines for input and output. You have used the stack to store

data, and seen how the monitor allows you to examine the stack

pointer and the stack. The questions and problems below will help

you to judge your understanding of the stack.

1) Identify the four PUSH instructions. Show their effects using

transfer notation.

2) Identify the two exchange instructions, and show their effects

in transfer notation. How do they affect the length of the stack?

3) How many bytes in the stack are used in the following program

segment?

PUSH B

PUSH D

CALL

CALL

POP

POP

STUB (just a return)

STUB

D

B

4) The monitor initializes the stack pointer, so you need not do

so when using the res Microcomputer Training System. For almost

any other machine your program must initialize the stack. What

intruction would you use?

6-128

MODULES, SUBROUTINES AND THE STACK

5) You are writing a main program, , and intend· to call a

subroutine called QUIZ whose specification states:

Entry data: (DE)= Address for Data

Return data: (A) - Answer

Registers: All registers are used.

The data address you must pass to QUIZ is stored in memory

locations 8300, 8301. Register pairs DE and HL presently contain

data that you wi 11 need in subsequent operations. Write a program

segment to save the data, load the address, call the subroutine,

and recover the data.

6) Identify the serious flaw in this multiplication subrbutine

for (E) * (A), which is re�uired to preserve (BC). Fix it without

making the subroutine longer.

PUSH B (ST) < - (BC)
LXI H,0000 Clear Product
MOV B,L (BC) < - Multiplicand
MOV C,A

INR E Test multi plier
DCR E and exit if zero
RZ

C
DAD B Multiplication Loop
DCR E
JNZ

POP B (BC) < - (ST)
RET

7) How does your corrected version of the above multiplication

subroutine affect Zero and Carry? Modify it_ to preserve the Carry

flag, and return Zero set if the product is 0000. How many bytes

in the stack are used when the subroutine is called?

6-129

MODULES, SUBROUTINES AND THE STACK

Answers to Self Test, Section 6.8.5

1) The four PUSH instructions are:

C5 PUSH B

D5 PUSH ;{t;

E5 PUSH H

F5 PUSH PSW

(ST)

(SP)

(ST)

(SP)

(ST)

(SP)

(ST)

(SP)

< - (BC)

< - (SP) - 2

< - (DE)

< - (SP) - 2

< - (HL)

< - (SP) - 2

< - (PSW)

< - (SP) - 2

2) The two exchange instructions are:

EB XCHG

E3 XTHL

(HL) < - > (DE)

(HL) < - > (ST)

XCHG does not use the stack. XTHL does not change the length of the

stack, although it temporarily changes the stack pointer.

3) Each PUSH and each CALL uses two bytes in the stack, but the two

CALL's use the same stack locations. Therefore the segment uses six

bytes in the stack.

4) LXI SP, address initializes the stack pointer. You can also use

LXI H, address; SPHL.

6-130

MODULES, SUBROUTINES AND THE STACK

5) Program segment:

PUSH D (ST) < - (DE)
PUSH H (ST) < - (HL)
LHLD 8300 (HL) < - Address
XCHG (DE) < - Address
CALL QUIZ (A) < - Answer
POP H (HL) < - (ST)
POP D (DE) < - (ST)

Equally good:

PUSH H (ST) < - (HL)
LHLD 8300 (HL) < - Address
PUSH D (ST) < - (DE)
XCHG (DE) < - Address
CALL QUIZ (A) < - Answer
POP D (DE) < - (ST)
POP H (HL) < - (ST)

Equivalent, but two bytes longer:

PUSH H (ST) < - (HL)
PUSH D (ST) < - (DE)
LXI H,8300 Address the address
MOV E,M (DE) < - Address
INX H
MOV D,M
CALL QUIZ (A) < - Answer
POP D (DE) < - (ST)
POP H (HL) < - (ST)

6-131

MOD ULES; SUBROUTINESAND THE STACK

6) The bad multiplication subroutine ittempts t& exJt = f6r·a zero

multiplier with (BC) in the stack. The version shown below corrects

the problem by testing for a zero multiplier before saving (BC) and

placing the multiplicand there. This change goes not add or change

any instructions.

LXI

INR
DCR
RZ
PUSH
MOV
MOV

C
OAD
OCR.
JNZ
POP
RET

H,0000
E
E

B

B ,L
C,A

B
E

B

Clear Product
Test mu1 tiplier
and exit if zero

(ST) < - (BC)
(BC) < - multiplicand

Multiplication Loop

(BC) < - (ST)

7) The given solution to 6 preserves Carry if the multiplier is

zero; .otherwise it returns.Carry ·clear. It-always returns Zero set.

The following version meets the requirement stated •.

LXI

INR
DCR
RZ
INR
OCR
RZ
PUSH
PUSH

C
DAD
DCR
JNZ

·POP

POP
RET

H,0000
E

E

A

A

PSW
B

B

-E

B

PSW

Clear Product
Test multiplier
and exit"if zero

Test multiplicand
and exit if zero

Save Carry, Not Zero
(ST) · < - (BC)·

Unless the product is zero, a call to this subroutine uses six bytes

in the stack.

6-132

MODULES, SUBROUTINES AND THE STACK

6.9 SUBROUTINE CLASSIFICATION

We will define four kinds of subroutines.

exclusive.

These are not mutually

Global Subroutines

Local Subroutines

Reentrant Subroutines

Interrupt Service Routines

6.9.1 Global Subroutines

A global subroutine is one which is available to be called from any

other program module. Typically it serves a general purpose function

such as input, output, multiplication, exponentiation� etc. It must

be fully specified so that other programmers may use it. A number of

restrictions are usually applied, although none are absolute:

a) It always returns to the calling program - it does

not make abnormal returns.

b) Any use of the stack is balanced.

c) No data are preserved from one call to the next, except

in memory locations specified by the calling program.

The global subroutine may have memory areas reserved for

its own use.

In the sensor correction problem, MULTIPLY and DISPLAYRESULT could be

considered as global subroutines.

6-133

MODULES,.SUBROUTINES AND THE STACK

6�9.2 Local Subroutines

A local subroutine has testrictions that limit its use by other

program modules. Typically it is a small or special purpose

procedure.

unbalanced

permanently

modules.

It may have restrictions on entry, abnormal r�ttirns,

stack usage, or it may preserve variable data in

assigned memory locations which are also used by other

In the sensor correction problem the subroutines that use

the directory and data table are clearly local, because the data

organization is highly specialized. INPUT could have been writt�n as

a global suroutine, but because it calls NEXTSENSOR it must be

considered local to the sensor correction problem.

6.9.3 Re-Entrant Subroutines

A re-entrant suroutine is one that can be called even though it is

already in use. A few of the monitor subroutines are re-entrant.

Any subroutine that is subject to interrupts and which is called by

an interrupt service routine must be re-entrant. Full discussion of

this type of subroutine is beyond the scope of this text.

6.9.4 Interrupt Service Routine

An interrupt service routine is executed when an external interrupt

occurs. There are very special requirements for interrupt servici�g,

which we will present in Chapter 8 with other input and output

functions.

6.9.5 Subroutine Transparency

Transparency implies that a subroutine avoids changing register

6-134

.MODULES , SUBROUTINES AND THE STACK

contents except as necessary for returning results to the calling

program. It is generally a desirable quality in a global subroutine,

since the calling program is less likely to need PUSH and POP

instructions. The monitor subroutine GETKY is a good example; it

preserves D, E, H and L. The fact that the key value is returned in

(BC) as well as in (A) is used by many programs that call GETKY. It

also. returns useful information in the Carry and Zero flags.

The display subroutines of the monitor are not as transparent as

would be desirable. It would be sufficient to pass two bytes to

DBY2� the dati t6 be displayed and the display location; all other

registers and the flags could be preserved since DBY2 has no useful

information to be returned except the next display location. It is

only converiient for DBY2 itself that the data displayed is copied

into Register C·
J

calling programs seldom if ever use that

information. An earlier version was even worse; it destroyed the

contents of Registers A and B.

The use of alternate entries to a subroutine tends to make it

difficult to achieve transparency. This is especially true of

internal alternate entries, since registers cannot be pushed into the

stack at the beginning of the subroutine. Subroutine DBYTE, for

example, loads (DE) with the address 83FF to display a byte in the

right hand digit. It could save BC and DE in the stack, but the

alternate entry DBY2 could not then be used_ to display data at other

locations.

6-135

MODULES, SUBROUTINES AND THE STACK

6.iO MONITOR SUBROUTINES

The remainder of this chapter describes monitor subroutines that

are available to you. Others will be found in Appendix A. Timing

data are given for some subroutines. These are in decimal count of

clocks and include the time for the CALL to the subroutine (17

clocks). The MTS clock rate is 2048000 clocks per second. Operation

of the monitor greatly extends the time for the display subroutines

(by a factor of approximately 100). Operation of the display OMA

channel very slightly extends the time, typically by about 0.1

percent.

6-136

· MODULES, . SUBROU'.l'INES- AND THE STACK

6.10.1 Monitor Keyboard Scan Subroutine (SCAN)

Function

Scan the keyboard once, and if a key is pressed decode it
and r•turn with the key value in Registe� A, -and the CY f)ag
set. If no key is pressed return with CY clear.

CALL

CD
57
02

Extent

CALL SCAN

0257 through 0281

Inputs

Keyboard

Outputs

No key pressed: Cy clear, (A)= 00
Key pressed: Key value in A; CY set

Registers

A

Constraints

Uses Output Port C and Input Port A. Interface adaptor
must be programmed for these. This is done by the monitor.

Leaves Output Port C loaded with different data depending on
which key was pressed.

The monitor is disabled during operation and at return.

Timing

200 to 553 clocks, depending on input key. 457 clocks, if no
key is pressed. Add 5432 clocks if the monitor is enabled.

6-137

MODULES, SUBROUTINES AND THE STACK

6.10.2 Monitor Key Entry Subroutine (GETKY)

Function

Obtain one key input from the keyboard. Return when a key
has been pressed and released.

Call

CD
3D
02

Extent

CALL GETKY

023D through 0256.
Calls SCAN

Inputs

Keyboard

Outputs

a) Value of the key entered, duplicated in Registers A and
C. A hexadecimal key returns the hexadecimal value as
the low four bits. Command keys return the following:

MEM 10
REG 11
ADDR 12

STEP 13
RUN 14
NEXT 15
BRK 16
CLR 17

RST causes a general reset to the processor and is not
handled by the subroutine.

b) The Carry flag is cleared if a command key is entered;
it is set if a hexadecimal key is entered.

Registers

Registers A, B and C are used. Register B is cleared. The
contents of Registers D, E, H and L are preserved.

6-138

MODULES, SUBROUTINES AND THE STACK

Constraints

a) Input Port A and Output Port C are used.

b) GETKY retains control utttil a key has been 'pressed
and released. It delays until release has been continuously
detected for 20 milliseconds (debouncing).

c) The monitor is disabled during key entry. At return the
monitor, display, and keyboard are enabled.

6-139

MODULES, SUBROUTINES AND THE STACK

6.10.3 Monitor Data Byte Input Subroutine (ENTBY)

Function

Accepts hexadecimal keys and one command key.
Successive hexadecimal keys are combined into a byte and
the last two keys pressed are displayed and returned in
Regi.ster L. The preceding two keys (if any) are
.returned in Register H. Returns when a command key has been
pressed, released and debounce_d, with the command key
value in Registers A and c •.

Call
·--

CD
36
03

CALL ENTBY

Extent

0336 through 0345.
Calls DBYTE and KEYS.

Inputs

Keyboard

Outputs

Command key in Registers A and
keys combined as a byte in L.
keys combined as a byte in H.
pressed in Register D. Register B
no hexadecimal keys were pressed •

. Registers

A, B, C, D, H, L

Constraints

See GETKY Constraints.

6-140

c. Last two hexadecimal
Two preceding hexadecimal

Number of hexadecimal keys
is cleared. Zero is set if

Carry is cleared.

MODULES�· SUBROUTINES AND THE STACK

6.10.4 Monitor Data Word Input Subro'utine (ENTWD)

Function

Accepts hexadecimal keys and one command key.
Successive hexadecimal keys are combined into two bytes,
and the last four k�ys pressed are displayed and returned in
Registers· H and L. When four or more key have been pressed
the content of the memory location addressed by those keys is

. displayed. Returns when a command key has been

Call

pressed, released and debounced, with the command key value
in Registers A and C.

CD
46
03

CALL ENTWD

Alternate Entry (See Note)

CD CALL ENTW2

49

03

Extent

0346 through 0364
Calls DWORD, DMEM, CLEAR

Inputs

Keyboard

Outputs

Command key in Registers A and C. Last four hexadecimal
keys in Registers H and L. Number of hexadecimal keys
pressed in Register D. Zero set if no hexadecimal keys
entered. Register B cleared.

Registers

Note

A, B, C, D, H, L

Register pair (HL) is cleared at entry ENTWD, so if no
hexadecimal keys are pressed (HL) = 0000. If entry ENTW2 is
used (HL) is preserved until a hexadecimal key is pressed;
then the leading three digits are cleared.

Constraints

See GETKY Constraints.

6-141

MODULES, SUBROUTINES AND THE STACK

6.10.5 Monitor Display Digit Subroutine (DISPR)

Function

Display one hexadecimal digit at a specified display
position. The input is a hexadecimal value; the output to
the display is encoded in the seven segment format.

Call.

CD CALL DISPR
A6
02

Extent

02A6 through 02C2

Inputs

a) Hexadecimal value in Register A.

b) Display digit address stored in register pair D,E as
follows:

Outputs

(D,E)
83F8

83F9
83FA
83FB
83FC
83FD
83FE

83FF

Left digit
Second digit
Third digit
Fourth digit
Fifth digit
Six th digit
Seventh digit
Right digit

a) The seven segment code for the hexadecimal input
value is placed in the address provided. If the address
is one of those listed above the value will be displayed
bi the OMA chanrtel, provided th�t the channel has been
turned on. (Note: the monitor leaves the OMA channel turned
on, so unless you use other outputs this need not concern
you.) If a different address is specified, the seven segment
value will be stored the�e.

b) The address in Register D, E is decremented by one.

6-142

MODULES, SUBROUTINES AND THE STACK

Registers

a) Registers A, C, D, E, H, L are used.
b) Only the memory location addressed by D,E 1s affected.
c) Register A is preserved and copied into Register c.

d) Zero and Carry flags are cleared�

Constraints

Hardware control outputs are not affected.
effective the display must be enabled by
PORTOC7.

Timing 82 clocks

For display to be
a high output at

6-143

MODULES, SUBROUTINES AND THE STACK

6.10.6 Monitor Display Byte Subroutine - DMEM, DBYTE, DBY2

Function

Dtsplay
display
off.

Call

CD
94

02

CD
95
02

CD
98
02

Extent

a byte of data as two hexadecimal digits. The
is coded in sev�n segment format; decimal points are

CALL DMEM

Display ((HL)) in tight hand
digits

CALL DBYTE
Display (A) in right hand digits

Call DBY2
Display (Af at location ((DE))

0294 through 02A5
Calls DISPR and DIGHI

Inputs

DMEM
DBYTE
DBY2

6-144

Memory address in H,L
Byte in A
Byte in A and memory address for display in DE.

DMEM and DBYTE initialize register pair DE to 83FF to
display the byte �n the �ight hand positions.

MODULES, SUBROUTINES AND THE STACK

Outputs

Registers A and C contain byte displayed.

Register pair D,E is decremented by two.

Memory location addressed by contents of register
pair DE (at entry) is loaded with the seven
segment code for the low order four bits of the input
byte.

The next lower memory location (DE) - 1 is loaded with
the seven segment code for the high order four bits of
the input byte.

Registers

Registers A, C, D, E are used

Registers B, H, L are preserved Register A is preserved
except by DMEM.

Constraints

Successive calls to DBY2 will display bytes in
successive pairs of digits. DBY2 does not test the
address, so the codes may be stored in other memory
locations. If data are stored in locations between
83CO and 83F7 the monitor operation may be disrupted.

The monitor, display, and keyboard are enable���t exit.

Timing

DMEM

DBYTE

DBY2

332 clocks
325 clocks
315 clocks

6-145

MODULES, SUBROUTINES ANn THE STACK

6.10.7 Monitor Display Word Subroutine - DWORD DWD2

Function

Call

Display two bytes of dat� as four hexadecimal digits.

CD
Dl
02

CD
D4
02

CALL DWORD
Displays content o+
register pair; H, L in
four left digits.

CALL DWD2
Displays cont�nt of
register pair H,L
in specified digit

Extent

02Dl through 02DB
Calls DBY2

Inputs

a) Data to be displayed: in (HL)
b) For DWD2 only, displ•y address in register pair DE

Outputs

Registers A and C contain more significant byte of display.
Register pair DE i� decremented by 4 from the initial
value provided by DWORD or at entry to DWD2.

Registers

Registers A, C, D and E are used. Registers B, H and L are
preserved.

Constraints

Successive calls to DWD2 may be made without
re-initializing (D,E), :provided the first call addressed
83FF. The address supplied in DE is not tested, so the
seven segment codes may be stored in other memory
locations. If data ar� stored in locations between 83CO and
83F7 the monitor operation may be disrupted.

Monitor interrupts, keyboard and display are enabled at exit.

Timing 660 clocks

6-146

MODULES, SUBROUTINES AND THE STACK

6.10.8 Monitor Subroutine CLRGT, CLEAR, CLRLP

Function

Call

Clear part or all of the display or memory.

CD
82
02

CD
87
02

CD
BC

02

CALL CLRGT
Clears four right hand
display digits

CALL CLEAR
Clears entire display

CALL CLRLP
Enter with number of bytes to be cleared
in (B) and highest address to be cleared
in (HL)

Extent

0282 through 0293

Inputs

CLEAR, CLRGT - none
CLRLP - number of bytes in B

highest address in (H,L)

Outputs

Contents of display memory area starting at
right are set to O (except for CLRLP)

(B) = 00
(HL) decremented by number of bytes cleared,

addressing memory location below last
byte cleared.

Registers

B, H, L are used. Zero is set. Carry is preserved.

Timing

284 clocks
174 clocks

CLEAR
CLRGT
CLRLP 27 clocks + 30 clocks for each byte cleared.

6-147

MODULES, SUBROUTINES AND THE STACK

6.10.9 Monitor Subroutine DELAY, DELYA

Function

Wait in a loop for a defined time.

Call

CD
36
02

CD
38
02

CALL DELAY
Wait for one millisecond

CALL DELYA

Wait for a time
set in Register A

Extent

0236 through 023C

Input

DELAY - None

DELYA - Enter with a value in Register A,
proportional to the delay desired.

Output

(A) = 00

Registers

Zero flag set. Carry preserved

A is used.

Timing for DELYA

Delay 15 clock times for each count in
Register A, plus CALL and RET (27 clocks).

With the monitor enabled the delay is 1381
clocks for each count in Register A, plus
1393 clocks for CALL and RET.

Exact Timing for DELAY

1999 clocks = 0.976 milliseconds. With
monitor enabled 182994 clocks = 375 milliseconds.

6-148

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 7

LOGIC AND BIT MANIPULATION

7. LOGIC AND BIT MANIPULATION

It is often necessary to perform functions that depend on individual

bits in a byte. This is common, for example, in control problems,

where data bits may represent discrete signals rather than numeric

values.

In this chapter two sets Of instructions will be introduced: rotate

commands, which work on the Accumulator and Carry flag only; and

logical functions, which generally involve the Accumulator and

another register.

7.1 ROTATE COMMANDS

Rotate is a command to move each bit in the Accumulator to an

adjacent position.

17 RAL Rotate Accumulator Left Through Carry

Move each

position.

Carry flag.

the least

affected.

bit

Move

in Register A to the

the most significant

next higher

bit into the

Move the contents of the Carry flag into

significant bit. Carry is the only flag

7-1

LOGIC AND BIT MANIPULATION

lF RAR Rotate Accumulator Right Through Carry

Move each bit in Register A to the next lower

position. Move the least si gnificant bit into the

Carry flag. Move the content of the Carry flag into

the most significant bit. Carry is the only flag

affected.

These two rotate commands are sometimes called "arithmetic shift"

because they can be used to double or halve the value of the content

of Regi$ter A and are used in multiplication and division. They can

also be used to obtain access to an individual bit. To illustrate

the arithmetic properties of rotate, consider the following simple

binary numbers:

0000 0111 {=07) 0000 1110 {=OE, or 14 decimal)

The second number results from a left shift of the first, and as a

result has been doubled in magnitude.

LOGIC AND BIT MANIPULATION

7.1.1 Rotate Exercise

A byte can be doubled by moving it -into Register A, clearing the

Carry, and rotating lefti Thts places its most significant bit (MSB)

i.n ···the Carry. To double a two byte value, perform this operation on

the less significant· byte (Register L), move the result back to L,

and repeat on the more significant byte (Register H), but without

clearing the Carry:

FIRST STEP

F SECOND STEP

The result is that each bit in the sixteen bit word has been shifted

left one position.

The word can be halved by the reverse process. It must start wtth

the more significant byte and shift right:

FIRST STEP

SECOND STEP

7-3

LOGIC AND BIT MANIPULATION

In this exercise we shall use the rotate left and rotate right

commands in two ways: to perform the arithmetic function of doubling

or halving a two byte value, and to move specific bits of a command

byte into the Carry so they can be tested. We shall use monitor

subroutines to accept data and display the results. The result of

the operation is to be preserved until a new command is entered, so

that we can (according to the command) either use newly entered data

or pertorm another operation on the previous result.

The result can be displayed by the subroutine DISPLAYRESULT from

Chapter 6 if you still have that in memory. Otherwise use an almost

identical monitor subroutine. DWD2 is an alternate entry to DWORD,

which displays two bytes in the left hand four digits. To place the

display at the right, preload (DE) with 83FF and call DWD2.

CD CALL DWD2 Display the content

D4 of HL in the digits

02 addressed by (DE).

To display in the left hand digits:

CD CALL DWORD Display the content

Dl of HL in the

02 left hand digits.

We shall use the monitor subroutine ENTWD to obtain two data bytes

and a command key, and act on the data word according to the command

key entered.

7-4

CD

46

03

CALL ENTWD

LOGIC AND BIT MANIPULATION

(HL) < - hex keys

(A) < - command key

ENTWD displays the hex keys as they are entered,· using the four left

hand digits of the d1splay. When four or more digits have been

entered a byte is also displayed at the right. This is of no

interest here; it is part of the function of ENTWD in the monitor

when you press ADDR followed by four keys.

The arithmetic operations are to be performed by subroutines:

SHIFTRIGHT

Shift the content of register pair HL right one bit. Shift a zero

into the high bit of (H). All flags and all other registers must be

preserved.

SHIFTLEFT

Shift the content of register pair HL left one bit. Shift a zero

into the low bit of (L). All flags and all other registers must be

preserved.

7-5

LOGIC AND BIT MANIPULATION

Because we

subroutines,

are

it

using some new instructions

is desirable here to start

programming. Use a simple test driver:

8200 CALL

CALL

LXI

CALL

JMP

ENTWD

SHIFTLEFT

D,83FF

DWD2

8200

and new monitor

with "bottom-up"

Write the subroutine SHIFTLEFT and test it. Then write SHIFTRIGHT

and change the call in the test driver. Try the programs with simple

numbers for data entry and observe that SHIFTLEFT doubles the value

and SHIFTRIGHT halves the value.

7-6

w
w
::c
en

(..9
z
Cl
0
<.)

2
w
I-­
en
>­
en

(..9
z

z
<(
a:
l­

a:
w
I­
::::>
0..
2
0
<.)
0
a:
<.)

2

en
2
w
I-­
en
>­
en

a:
w
I­
::::>
0..
2
0
<.)

Cl
w

a:
(..9
w
1-­
z

A D D R CODE

ac,{O o {!__ J)
1 .!/ 0
2 (!'} 3
3 C])
4 4 I]
5 t Q
6 / I
7 ;= ;:-
8 J' 3
9 C J)
A]) IJ
B 0 2
C e 3

D t) 0
E JJ :..-2.
F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

TEST DRIVER FOR SHIFT SUBROUTINES

(! /I- L L E- lv T vi D

C (-) L L s /-f T F 7 LEl=T

. (' _j � � ,,.,,, J *- �r.:2;,Jc)

-�'"' �<:!J-IIFr/.?IG-/iT
L K I D t 3 F ;::- /

1-'

{! fJ- L L J) vJ J) :;;

J M p J' c2. 0 0

.

7-7

, Wigure 7-1

7-8

1-
w
w
I
Cl)

(.9
z
0
0
<.)

2
w
I­
C/)
>­
Cl)

(.9
z-
z
<l'.
a:
l­

a:
w
I­
::>
a..
2
0
<.)
0
a:
<.)

2

Cl)
2
w
I­
C/)
>­
Cl)

a:
w
I­
::>
a.
2
0
<.)

0
w

a:
(.9
w
1-
z

A D D R · CODE

8 ,j ¥- 0 .IJ F
1 7 I>
2 I 7
3 //J F
4 7 C
5 / 7
6 lb 7
7 C CJ
8

9

A

B

C

D

E

F

sotoo ilt I=
1 1'7 C
2 / �

3 6 7
4 7])
5 I ;:::
6 1-, !=
7 i(),, 9
8

9

A

8

C

D

E

F

8 0

1

2

3

4

5

6

7

8

SHIFT SUBROUTINES

X R A A 3H.iFTLFl=T

M 0 V l+ L

R A- L
,

M n \/ L IA
M 0 v A- I-I

R A L

M /) v 1+ I A

R E- T

X R A A SHIJ:TRI.GH:T

M 0 V 4 H
R A- 1<

,

: fv' () V 1+ IA
M 0 vi

A- I'
L

R A ,R

M 0 v L r+
R E- IT

'

Figure 7-2

LOGIC AND BIT MANIPULATION

7.1.2 Rotate Instructions for Control Functions

In the final program the command keys are to be defined as follows:

MEM (=0001 0000) Halve the new hex value

REG (=0001 0001) Double the new hex value

ADDR (=0001 0010) Halve the previous result

STEP (=0001 0011) Double the previous result

RUN (=0001 0100) Same as MEM

NEXT (=0001 0101) Same as REG

BRK (=0001 0110) Same as ADDR

CLR (=0001 0111) Same as STEP

Thus the control is exercised according to the two low bits of the

command key value. Bit O (the least significant bit) selects the

arithmetic function; Bit 1 chooses between new data or an old result.

The command key definitions can be remembered easily if you use only

the top row. The left keys (REG and MEM) use new data and the right

keys (BRK and CLR) use the old result. The outside keys (REG and

CLR) double the value and the inside keys halve it.

The main program must make all decisions and call subroutines as

required. The decisions are based on the two low bits of the command

character:

Bit 0

Bit · 1

0 = Halve the data

1 = Double the data

0 = Use new data

1 = Use old result

7-9

LOGIC AND BIT MANIPULATION

The first decision depends on Bit 1. This can be moved into Carry,

where it can control a conditional jump, by two RAR instructions.

These also move Bit O into Bit 7.

The old result must be kept in memory, since ENTWD uses all registers

except E. Let us assign 8300, 8301 for .the result.

ENTWD will display newly entered data in the left digits. When an

old result is to be used for the new calculation, it will be

desirable to display it at the left. We can display it now, but must

save the command character:

RAR

RAR

---- JNC

LHLD

PUSH

CALL

POP

RAL

8300

PSW

DWORD

PSW

Bit Oto Sit 7 and Bit 1 to CY

If new data to be used

(HL) < - Old Result

Save Command

Display Result at Left

Recover Command

(CY) < - Halve/Doubl�

The RAL instruction moves the original Bit O of the command from a1t

7, where two RAR's put it, into Carry.

LOGIC AND BIT MANIPULATION

7.1.3 If - Then - Else Con�truct

With the Carry flag set to distinguish between SHIFTLEFT' arid

SHIFTRIGHT we could do this:

....---- JNC

CALL

JMP

._ __ ._ CALL

SHIFTLEFT

SHIFTRIGHT

(Display Result)

A more attractive way to do this is:

PUSH

cc

POP

CNC

PSW

SHIFTLEFT

PSW

SHIFTRIGHT

Because it has no jump instructions this has fewer bytes and fewer

opportunities for mistakes. (It is slower ,bY el ther 6 or 11

microseconds than the former arrangement.)

7-11

LOGIC AND BIT.MANIPULATION

Either of these constrtictions is shown in a block diagram as:

Not Carr

SHIFTRIGHT SHIFTLEFT

It is de cribed in words (in computereze) as:

. I

If Carry Then Shiftleft

Else Shiftright

This is a very powerful construe tion (or "construct," in computereze)

and the best computer languages (such as PASCAL) use it very

commonly.
I

7-12

LOGIC AND BIT MANIPULATION

Now let us describe the main program as though we were writing it in

a "higher level language" - a computer language that understands

words instead of binary intructions.

1) Input Data and Command

2) If (Command Bit 1) = 1 then do the following:

Replace Input Data with Old Result

Display Old Result

3) If (Command Bit 0) = 1 then Shiftleft

Else Shiftright

4) Store Result

5) Display Result

6) Go to step 1

7-13

LOGIC AND BIT MANIPULATION

The completed program solution is given in Figure 7-3. but for·

practice you should write and code it youse lf. Then experiment with

numbers.

1 ·2 3 4 REG 1234 2468

CLR (2 x Old) 2468 48DO

CLR (2 x Old) 48DO 91AO

BRK (Old/2) 91AO 48DO

BRK 48DO 2468

BRK 2468 1234

BRK 1234 091A

BRK 091A 048D

Up to ttiis point we �an restore the previous value, because we have

only shitted zeros out.

CLR (2 x Old) 048D 091A

BRK (Old/2) 091A 048D

:One more shift right will lose the one in the least significant bit.

BRK 048D 0246

CLR (2 x Old) 0246 048C

CLR 048C 0918

CLR 0918 1230

Try other numbers to see where you lose data.

7-14

1-w
w
IU)
(!)
z

0
0
(.)

w
1-U)
>­U)
(!)
z

z

<l:
cc
I­
CC
w
I­
:)
a..

�
0
u

0
cc
(.)
�

U)
�
w
1-U)
>­U)
cc
w
I­
:)
a..

�
0
(.)
0
w

cc
(!)w
1-
z

LEFT AND RIGHT SHIFT - MAIN PROGRAM
A D D R CODE

a dr) o C. l)
1 .i/ �
2 6 .3
3 I F
4 I ;:::
5]) �
6 / ()
7 2 .2
8 c1 I}
9 () ()
A J 3
B � 5
C C 11.....7)

D l]) J
E 0 :2
F F I

8 o2 / 0 I ·7
1 F s-'
2 JJ C
3 .i/ {)
4 p ,�
5 ;:=- /
6

2)
14

7 _j-�G)
8 J' o2
9 c2 lo7
A /) n
B J' �
C I I
D r::- F
E 9 3
F C])

8 o/d 0]J 1-
1 () t2
2 (; 3
3 I) 0
4 f' :L
5

6

7

8

C: fr L

/(f} 1£
I<. If R
.) Al C

L /-I L

p LA s
c_ f+ L

p 0 p
R A L
p u .s

c._ C

p 0 p

C rJ C.

·� H L

L)(.I

�- ft L

..

J flt p

L E N T

g (_2 I

J) i 3 a

l-f p s yJ
L 1) IA) u

p s M

i·--l p 'S \Al

s H I F

p s vJ
s /-t T F-

"D g 3 0

J) . R 3,

J rD w D

? Ix 0

w D

0

{)

R J)

' L

T R

0

F F

�

Q

(!-IL)�-. L ,., , ·-F 7)� t
{ A-)1::-- �- /I - /� .. .,I}}

''

1/ ('c v) k- rf. r, /
1

\ (t't 7 7)1..,- '°7'Q - r. ;?j
[\ . ,_ �·_//71 ,J J,)-' d /?7';; _)

{/ ,A/ l�j �,,-4�) ' •,

f H L J -1::--;()U ';/d/1 ,, . t!r-

.A;, • A j /I � j ,r.-,,,//! 1>- - A - ,,t)
-I).� ,"I Ii-�(, J,,j h /J�d/H-

.· � . �/"./� cLc,�;r.;;
p' ,:;/

A ,!1&...la.A J .. _ •. n� I) J

(CV i=--A: �I')

� .,,�..) /Jfl. �L., .,/

E- p:: T (/

J__.J C!:. V �,. -/)
() ..,, j_ '., ./�I,, ./r.

f_4_ � _) � J ·.11,,,. >;J. 7.

T G-HT I 0

. .A ft ;, ·. h ,,, ... , H.

.../J�:.. �"-·· .I J...IJ.A .I/�

a!i:, p:-..d�
0

'·

Figure 7-3a

7-15

7-16

1-
UJ
UJ
J:
ti)

(!)
z
0
0
u

::2Ew
I­
t/)
>­en
(!)
z
z
�
a:
l­
a:
w
I­
�
Q.

�
0
u
0
a:
u
�

en
�w
1-
U)
>­
C(J
a:
w
I­
�
Q.

�
0u
0w
�
a:
(!) w
1-
z

A O O R

8 .,..j .tj. 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 ,...:?110

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a 0

1

2

3

4

5

6

7

8

CODE

fJ I=
7 :l)

I 7
� F

7 {;

I 7
ih 1
C c;

I} j:.

-� C

/ .c

I� 7
7])

/ .c
I ,t; ;=
(1� q

SHIFT SUBROUTINES

X R A ft 3H.IFTLF�T

M a V 14 L

R A- L

� n ,J L iA
M D v fJ- 1-4
R A

I

L

M � ,J H-. A

R & T

x R. A A � HT l=TRT GI-\,

M 0 V 4 H
R A- 1<

'

(V 0 V I+ A
M In v' (+ L

R A IR
M 0 v L f+
R E- IT

Figure 7-3b

(·

LOGIC AND BIT MANIPULATION

7�1.4 A�ithmeti� Substitutes for RAL

We hive seen that RAL doubles the content of A. This can equally

well be done by adding the content of A to itself by ADD A or ADC A.

87

BF

ADD A

ADC A

(A) < -

(A) < -

(A) + (A)

(A) + (A) + (CY)

ADD A discards the old content of Carry. Since the value is doubled

it must result in an even number, with O in the least significant

bit. ADC A adds the old Carry in, so it is identical to RAL in its

numeric result. In SHIFTLEFT we can discard the XRA A, whose

function was to clear Carry, and replace the first RAL with ADD A.

Replace the second �AL with ADC A. Test to see that the result is

identical.

These instructions differ from RAL in that all flags are affected,

whereas RAL affects only the Carry flag. Sometimes one usage or the

other is preferred because. of the different effect on· flags.

We also h-ve available the double precision add instruction DAD H.

This shifts · left the 16 bit number in (HL), so we can replace the

entire SHIFTLEFT $Ubroutine by:

8240

8241

29

C9

DAD Ii

RET

(HL) < - (HL) + (HL)

Like RAL this affects only the Carry flag. MaJ,ce the substitution and

see ·that the program operation is unchanged.

There is p.o arithmetic instruction equivalent to· HAR.

7-17

LOGIC AND BIT MANIPULATION

7.1.5 Logical Rotate

Two other rotate commands are provided in the 8080, which are similar

to RAL and RAR except for their handling of the Carry and the most

and least significant bits.

07 RLC

OF RRC

Rotate Left into Carry

Move each bit in Register A to the next higher

position. Move MSB into the Carry flag...!IDL_ into LSB.

Only the Carry flag is affected •.

Rotate Right into Carry

Move each bit in Register A to the next lower

position. Move LSB into the Carry flag and into MSB.

Only the Carry flag is affected.

These two instructions are called logical rotate because they treat

7-18

LOGIC AND BIT MANIPULATION

the Accumulator as an eight bit ring in which MSB and LSB are

conceptually juxtaposed. The operation does not have an arithmetic

equivalent.

The logical shifts discard the old value of the Carry flag. If in

the SHIFTLEFT and SHIFTRIGHT subroutines you replace both RAL

commands (17) with RLC (07) and both RAR commands (lF) with RRC (OF)

you will see that the two bytes are now independent of each other.

If you enter two new bytes, using REG to shift left, and then BRK to

shift the same data right, the input value will be restored. Now if

you use either BRK or CLR eight times each byte will be shifted back

to its original value. After four shifts in one direction the digits

of each byte are interchanged:

1 2 3 4

CLR

CLR

CLR

REG 1234

2468

48DO

90Al

2468

48DO

90Al

2143

Another four shifts in either direction will restore the initial

values.

Can you modify the SHIFTLEFT and SHIFTRIGHT subroutines to achieve

sixteen bit logical rotates? This will �reserve all bits, so that

pressing BRK or CLR sixteen times will restore the initial value.

Think of the solution before looking at Figure 7-4.

7-19

LOGIC AND BIT MANIPULATION

This page intentionally left blank.

7-20

1-UJ
UJ
I
U)
(!J
z
0
0
()

�UJ
1-U)
>­U)
(!J
z
z
<{
a:
l­
a:
UJ
1-
::J a..
�
0
()
0
a:
()
�

U)
�
UJ
1-U)
>­U)
a:
UJ
1-
::Ja..
�
0
()
0
UJ

a:
(!J
UJ
1-
z

A D D R

8 ,--J"-/ 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a -�--<o

1

2

3

4

5

6

7

9

A

B

C

D

E

F

3 0
.1

2

3

4

5

6

7

8

CODE

7 c M

I 7 R

'7 Z> M
/ 17 R
h ;= 1'1

7 C /1
/ ·7 R

� 7 rv

C q R

7 .2) /VJ

/ ,c R

7 C M

/ C: R
0 7 M
7 l) /\I)

/ F R
6 � M
C 9 R

{) v' fl- JI .S /�_I. I= T LE .,CT

fJ L
I'

{) \/ 11 I L

ft L
t) tJ L fl
0 V

f-t I

N

A L

0 V 1-1- A
t::- T

0 II I+ L �H:IFTRL6HT
,

A R

1) V A- /-1
A- R

,

0 \) 1-J \ fl
0 v' A-
A R

I

0 \/ L A

E:- T

Figure 7-4

7-21

LOGIC AND BIT MANIPULATION

7.2 BINARY ENTRY AND DISPLAY EXERCISE

In the preceding exercise we accepted hexadecimal keys and displayed

hexadecimal values, using monitor subroutines. Now we shall use the

display techniques learned in Chapter 4 to display a number in binary

form. Monitor subroutine GETKY will be used to read in one key at a

time, and distinguish commands from hex keys.

CD

3D

02

CALL GETKY (A) = (C) < - Key

Carry set if hex

At any moment we shall control one bit of the number being entered,

and one digit of the display. This bit and display digit can be

changed back and forth between O and 1. A command key will move on

to the next bit and display digit.

Only the least significant bit of a hex key will be used. If it is

zero, we shall put a zero into the bit being entered; if it is one,

put a one into the bit being entered. Display O or 1 in the

corresponding display digit, using 3F for 0, 06 for 1. Until a bit

has been entered display a decimal point only (80) in the digit.

A convenient way of both testing and keeping the data bit entered

uses the RRC intruction. This sets Carry if the least significant

bit (Bit 0) is one, and also copies Bit O into Bit 7. Save this in

Register L.

7-22

LOGIC AND BIT MANIPULATION

·When any command key is entered, do the following:

If no hex key has yet been entered for the current position, enter

· and display a zero.

Shift the data bit entered for the current position into the least

significant bit of a data by�e, shifting preceding bits left.

Address the next digit of the display. If still within the eight

digit display then loop to accept data for the next bit. At the end

of the display, when eight bits have been entered, clear the binary

display and show the eight bit value in hexadecimal.

Figure 7-5 shows the program af3 a flow diagram.

7-23

LOGIC AND BIT MANIPULATION

7-24

START

Clear the Data Byte (H)
Address the Left Digit

B ,-...-------------..-.

Mark the Digit Addressed
with a Decimal Point

Call GETKY
(A) = (C) - Key

CY Set if Hex

Command (Not Carr

Hex (Carry)

Shift LSB into CY and Bit 7
Copy_ Result into (L)

LSB = 0 LSB = 1

.Display O Display 1

Binary Entry and Display Program

Figure 7-5a

i.OGIC AND BIT MANIPULATION

Test Display Digit for Decimal
Point or Binary Display

Decimal Point

Enter O into ({L)
Display O (3F)

Shift Data Byte (H) Left
and Shift Bit 7 of (L)

into Bit O of (H)
Address Next Bit Position

Within 8 Bits
B14�--------<

(Not·zero)
of Display
Data Byte

Clear Display
Display Data Byte (H)

A

Figure 7-Sb

7-25

LOGIC AND BIT MANIPULATION

· Since the display digit contains only a decimal point (80) until a

hex key has been pressed, we can test for that value when a command

is entered. If nothing has been entered, replace 80 by 3F to display

O. Also enter OOinto Register L.

Register H is used for the data byte entered; the high bit of

Register L contains the new data bit. DAD H will shift the data byte

and enter the new bit.

We have monitor display routines to clear the display and show the

data byte (H) in hex.

CD

87

02

CALL CLEAR Clear the display

Uses (B) and (HL)

Since CLEAR uses Register H but not A, precede this with MOVA, H.

Then .use:

CD

95

02

CALL DBYTE Di splay (A)

at the right

Write the program and try entering binary values. The next exercise

will use similar techniques.

7..-26
I- --l

... .J

....
L1J
L1J
I
(/)

(.'.)
z
0
0
u

�
L1J
....
(/) >­
(/)

(.'.) z
z
�
c:::
....
c:::
L1J
....
:::>
0..
�
0
u

0
c:::
u

>-

(/)
�
L1J
....
(/) >­
(/)
c:::
L1J
....
:::>
0..
�
0u
0
L1J

c:::
(.'.)
L1J
....z

A D D R

8 o-2/) 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

a o2 / o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

.
4

5

6

7

8

CODE

--2 � /Vl 1/
0 r]
I / L X
F k'

% 3

3 E M V

,P 0
I .-2 s T
(!_ .]) C A

3 J)
0 �

l1) ,:} J N
l,.j /)

.fJ �,J
r) F R R

0 F M 0

3 E M V
,q ,;::-

[7) l? J N
() 'l
12 �

3 E M v

0 0
e 3 "J M
CJ 7

J7' ;;_

I /-f I () 0

I ·L ' J1 3
I

I. I+\ J1 0

IJ-)(D
L L 6 E T

C C () M

C

v L IA
J_ f-t I/ ,Ji' I=",

C 3 � 0

T If I 0 16,

p g � 0

F i

K y

M ft

7

7

{/-F..J f'IJ,_;, A J/-1.�,h /�� ti;
t::T

/?,,J d,),- ,1 � - i /J A j +-d,ia: �
I' (7

(E) Yll� h j, ,,.ii.,, >··. -/.
(7 r..7} _), a.,...l,,,J.,_,,, AJ�d• J,,_j ' ,/:

Lvi.CL J,, d, .__ ., � ,, - ... i-,

(t1-)
I

1\/".b

e V �-A: f. /Jan.£
�) A--/- 7� (L)

"-� L.-:;;;A-= h
� '1j /) _,, J .,JJ...: ,., J ./.I , � n

V {/

f P � o) d.� � ·- /L. , 1 /

1/ 0

:

Figure 7-6a

7-27

1-w
w
I
(./')

(.9
z
0
0
(.)

2w
I-­en
>­en
(.9
z
z
<(er:
l­
a:
w
1-::Ja.
2
0
(.)
0
er:
(.)

>-

en
2w
I-­en
>­en
er:
w
1-
::Ja.
2
0
(.)

7-28

0w

er:
c.:iw
1-z

A D D R

ao?cJ.o
1

2

3
4

5

6

7

8

9

A

?o?.� B

C

D

E

F

8 c:23 0

1
2

3
4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

I ll
F E

? 0
e ,2

:l t3
JJ :2.,
� E

0 0
3 E
3 F

I .2,
� 9

I C

C c2
1/J s

r.P c:l
7 C,

C J)

g 7

0 c2
C u
q ()
() b2
C 3

{) rJ
i' c2

BINARY ENTRY AND DISPLAY (continued)

L 1) A- X D
L, p T_ j,f {)

J" rJ 2 rf'

!"1 (/ I L
I

/II \) I It
I

. .s T I+ X b

]) I+ J) fl
_L N R E
3" N 2- J7

/VI 0 \) /-I
C II L L c

C A L L])

"3" M p J?

c.J d- 8

0 0

,3 p

(� () 6
,,.

1-J
L E= A- R

t3 y T E

c2_ 0 0

� ,,,/}, � ,,..,;f,,., , � ,..-yjc;;/
:LA,)/JA 1 ... �� JI I /J !:., A/ ti--

I I

L. _, ,;-i ;�) /. _;_ �,

1 �· J/r,., /} A,, �(111 /·�
(/ (I /

1/'d.. �_) f/� � j C

� '-74/V._,,r;"") L

/J �, .,I £I, .:.. #0 .I /i , .J n
, (/

)1,-�f, /k;/J � �h (JI)
/J �/Ph (J A A ' /J1 I} ,I IT

I,_; .I, /J � .-/ . d...,,,, -i,,,, f-

/).,,,,, ,-ii /!,/'hf � �,,,�,, /)

./,_,,.7;/, ;1�d1
(j)')� ,,.£-, h ; l.v � r; 1

f1h/)}.)_ �,�,,./1��

d,/ �· ,. //)/..I.
v-

/ (/

'12 . . :/) IJ .ru 1 /I b t;;,) �.,7;
(I

(/ t7

Figure 7-6b

r··
';-·--·-··

l
1

1,.l..·-··-·-··;·

7.3 LOGIC FUNCTIONS

LOGIC AND BIT MANIPULATION

Logic functions operate on individual bits or pairs of bits. The

defined functions are:

Complement

AND

Inclusive OR

Exclusive OR

7.3.1 Complement (CMA)

If a bit is O, its complement is 1; if a bit is 1, its complement is

O. The complement is o:ften symbolized by a bar, read as NOT. Thus:

If X = 1, X = 0

If X = O, X = 1

(If X equals one, NOT X equals zero)

(I:f X equals zero, NOT X equals one)

The complement of a byte is the byte comprising the complements of

each of the bits of the original byte. For example:

01101100 = 10010011

or 6C = 93

This function is generated in the 8080 by the instruction:

2F CMA Complement Accumulator

(A) < - (A)

No flags are affected.

The complement function is also involved in arithmetic, as you will

see in later chapters.

t--
7-29

LOGIC AND BIT MANIPULATION

7.3.2 AND (ANA)

The AND of two bits is 1 if and only if both bits are 1. The AND is

symbolized by a dot, or by the intersection symbol n ' or simply

by placing two symbolic characters next to each other. Since we will

be dealing with bytes for Which mul�iplication is also defined, we

will use ,'\

X ny (X). AND (Y)

The operation of a logical function is often shown by a truth table.

The

AND

X

0

0

1

1

AND of two bytes

of corresponding

01101100

or 6C

y (X) n (Y)

0 0

1 0

0 0

1 1

is the byte comprising the bits

bits in the two original bytes.

11101001 = 01101000

E9 = 68

generated by the

For instance:

A logic function of two bytes expressed in hexadecimal is not obvious

at·,� glance � one usually has to expand the bytes to binary

re pre sen ta ti.on•:

The AND of the bytes in Register A and any other register (or M, the

LOGIC AND BIT MANIPULATION

memory location addressed by the content of register pair H) is

generated, and the result placed in Register A, by:

ANA r

7.3.3 Inclusive OR (ORA)

And (r) with (A);

place the result in A.

(A) <- (A) ,'\ (r)

The Carry flag is cleared.

Other flags are set or cleared

.according to the result.

The inclusive OR of two bits is 1 if either of the bits is 1. The OR

is symbolized by a -+ sign or the Union symbol U

addition is defined for bytes, we use\....)

X

0

0

1

1

y

0

1

0

1

(X) V (Y)

0

1

1

1

The OR of two bytes it the OR of corresponding bits:

01101100 \....)

or 6C U

11101001 = 11101101

E9 = ED

Again, since

· The OR of the·bytes in.Register A and any other register (or M) is

generated, and the result placed in Register A, by ORA r.

7-31

LOGIC AND BIT MANIPULATION

ORA r OR (r) with (A);

place the result in A.

(A) <- (A) \.._) (r)

The �arry flag is cleared.

Other flags are set or cleared

according to the result.

Since l\._.)l == 1 and o\.._)o = 0, the function ORA A do.es not change the

content of Register A, but s�ts the Zero flag if (A)= 0, and clears

it otherwise. It similarly sets or clears the other flags which have

not yet been defined. We have used it to clear the Carry flag.

7.3.4 Exclusive OR (XRA)

The Exclusive OR of two bits is 1 if one but not both of the bits is

1. The Exclusive OR, commonly referred to as XOR. (sometimes EXOR),

is symb?l ized ©

X y (X) 0 (Y)

0 0 0

0 1 1

1 0 1

1 1 0

The XOR of two bytes is the XOR of corresponding bits:

01101100

or 6C.

8
0

11101001 = 10000101

E9 = 85

The XOR of the byte in Register A and any other register (or M) is

generated, and the result placed in Register A, by XRA r.

7-32

XRA r

LOGIC AND BIT MANIPULATION

XOR (r) with (A);

place the result in A.

(A) <- (A) 8 (r)

The Carry flag is cleared.

Other flags are set or cleared

according to the result.

Recognize that since 1G) 1 = O, and oG) O = O, then (A)G) (A) = O.

Therefore XRA A is used to clear Register A (SUB A could also be

used.)

7.3.5 Immediate Logic Functions

For each of the logic functions except complement, there is a set of

instructions using each of the registers (or the referenced memory

location) as a sourc� for the data byte. These instructions are

tabulated in the instruction chart. As with the arithmetic

instructions, there are also immediate versions of each:

E6

xx

F6

xx

EE

xx

AN!

ORI

XRI

AND Immediate data

with Register A.

OR Immediate data

with Register A.

XOR Immediate data

with Register- A.

These generate the indicated logic function of the content of

Register A with the content of Byte 2 of the instruction and place

7-33

LOGIC AND BIT MANIPULATION

the result i Register A. The Carry flag is cleared and other flags

are set or cl
J
lared according to the result of the operation.

The instruct on ANI is especially useful in masking unwanted data

from the re!ult of an input operation. For instance, if you are

concerned with Bit 4 of an input byte and want to jump if it is one,

it is more efficient to write:

ANI

JNZ

10 (00010000)

than to shif the data bit to the Carry flag and jump if Carry. Even

more importan , ANI can test for any of several bits:

ANI

JNZ

58 (01011000)

If Bit 3 or Bit 4 or Bit 6 of Register A is 1, the result is not

zero.

7.3.6 Set and
r
omplement Carry

These two ins ructions affect only Carry.

37

3F

STC

CMC

Set Carry

Complement Carry

We have seen several ways of clearing the Carry flag, but these also

affect other flags. STC,CMC clears Carry with no effect on other

flags.

7-34

'LOG-IC AND BlT MANIPULATION

7.4 LOGIC FUNCTION EXERCISE

Now we shall plan an exercise using bit shifting and masking

techniques· to demonstrate the logic functions. We sha 11 ac't�ept eight

data bits· as a sequence of ones and zeros from the keyboard and

display them as they are received, l!Sing the decimal point to mark

the bit position, as in the exercise of Section 7.2. At the same

time, we shall perform a logic function, combining the new data bit

with one previously entered in the

the old bit, and the result of

displayed togeth�r.

same bit position.

the logic function

Top Horizontal = Logic Function

Middle Horizontal = Old Bit

Bottom Horizontal = New Bit

• Decimal Point = Bit Marker

The new bit,

wi 11 all be

A blank horizontal bar will represent O and an illuminated bar ·will

represent 1.

7...;.35

LOGIC AND BIT MANIPULATION

The logic function of the old and new data bytes will be selectable

by command keys. Define the commands in the top row of keys for this

purpose.

REG = ORA

MEM = ANA

BRK = XRA

CLR = CMA

These commands are to be stored, so that whenever a bit is changed

the function most recently selected can be generated and displayed.

Define the command keys at the right for moving data.

NEXT

ADDR

RUN

srnP

Move to next bit position

Ignore - has no purpose here

Replace old data with result

of logic function

Replace old data with new data

These commands are only executed when entered, so they need not be

stored.

7-36

LOGIC AND BIT MANIPULATION

7.4.1 Data Byte and Bit Marker

In this new exercise we will not clear the data byte after entering

eight bits, but wrap around to the most significant bit. When NEXT

is pressed we shall move on to the next bit, preserving the existing

bit, rather than inserting a zero. With this rule, the shifting

technique we used for entering bits into a register in Section 7.2 is

no longer suitable; instead we must use a masking technique. Use

Register D for the data byte. In Register H keep a mark indicating

position:

80 = Most significant bit (Bit 7)

40 = Bit 6

20 = Bit 5

10 = Bit 4

08 = Bit 3

04 = Bit 2

02 = Bit 1

01 = Bit 0

The bit marker keeps track of which bit is to be entered, and we will

use it to modify individual bits. For example:

Replace this bit

Bit Marker (H) 00100000

Data Byte (D) 01100111

7�37

LOGIC AND BIT MANIPULATION

There are several ways of entering the new bit. One obvious way is

to test the key (in the Carry after a shift right) and jump to one of

two separate procedures:

Key is zero:

Key is one:

Bit marker

Complement

Da ta byte

00100000

11011111

01100111

AND result 01000111

Bit set to o����__.t

Bit marker

Da ta byte

00100000

01100111

OR result 01100111

Bit set to 1�����-t

We shall consider alternative methods later.

The bit marker itself is changed when NEXT is pressed. It move� to

the right by one bit position, until it is 00000001, marking the

least significant bit. Now it must wrap around to the most

significant bit. This is exactly the function of the RRC instruction,

so the response to NEXT will be:

7-38

MOV A,H

RRC

MOV H,A

LOGIC AND BIT MANIPULATION

7.4.2 Keyboard Functions

Review the responses to the keyboard entries:

a) When a hex key is pressed, enter its least significant bit into

Register D in the bit position marked by (H). Display the new data.

Calculate the logic function and display the new result.

b) When NEXT is pressed, move the bit marker in (H). Display the

bit marker.

c) When STEP is pressed, replace the old data byte with the new data

byte. Display the newly replaced "old" data byte. Calculate the

logic function and display the result.

d) When RUN is pressed, replace the old data byte with the result of

the logic function. Display the newly replaced "old" data byte.

Calculate the logic function again (now using different "old" data)

and display the result.

e) When REG, MEM, BRK or CLR is pressed, replace the logic function

selector. Calculate the new logic function and display the result •.

From the above we can see that most keys require calculation and

display of the logic function. Only NEXT and ADDR have no effect on

the function result. Therefore it is reasonable to recalculate the

logic function and display it after every key has been processed.

Once displayed it need not be retained.

7-39

LOGIC AND BIT MANIPULATION

7.4.3 Register Assignments

We can keep all of the data for this program in registers, using_ the

stack for temporary storage.

assignments are convenient:

In the main program the following

(D) = New Data

(E) = Old Data

(H) = Bit Mark

(L) = Logic Function Selector

These registers are preserved by GETKY, and other subroutines must

affect them only as required by the data and command entries.

7.4.4 Subroutines for Logic Functions Exercise

Let us define the following subroutines to accept and process data

and comm.ands.

GETKY The monitor subroutine (at 0230) which accepts one key and

returns:

(A) = (C) = key value

(B) = 00

Carry set for a hexadecimal key

Carry clear for a command key

D, E, Hand L are preserved.

DATA A local subroutine to enter the least significant bit of a hex

key into the new data byte (D) and display the byte.

7-40

LOGIC AND BIT MANIPULATION

COMMAND A local subroutine to interpret the commands. The logic

function commands (REG, MEM, BRK, CLR) will be stored; the other

commands will be processed immediately.

FUNCTION Generate the logic function selected by (L) (ORA, ANA,

XRA, CMA), of new data (D) with old data (E). Return the result· in

Register A,

DISPLAY Display one byte of data which may be the new data, old

data, logic function or bit marker as selected by the calling

program. Enter with:

(A) = data to be displayed

(B) = symbol for data], as follows:

01 = Logic Function (Top Horizontal)

40 = Old Data (Middle Horizon ta 1)

08 = New Data (Bottom Horizontal)

80 = Bit Marker (Decimal Point)

All segments of each display digit, except the segment designated by

(B), must be preserved.

7-41

LOGIC AND BIT MANIPULATION

THIS PAGE INTENTIONALLY LEFT BLANK •

. \

7-42

LOGIC AND BIT MANIPULATION

7.4.5 Main Program for Logic Function Exercise

Having assigned registers and identified subroutines we can now

proceed to develop the program, again using the top-down approach.

Initialize Registers

Display Bit Marker (DISPLAY)

Calculate Logic Function (FUNCTION)

Display Logic Function (DISPLAY)

Accept a key (GE T.KY)

If hex key, enter (DATA)

If command, process (COMMAND)

The bit marker is displayed by a call from MAIN because we do not

want to wait until a key is pressed to show the location. There are

two reasons for placing the logic function display in MAIN rather

than in FUNCTION. When the command key RUN is pressed we must

calculate the function in order to replace the old data, but do not

particularly want to display it. Second, FUNCTION will require jumps

to each of the logical functions (ORA, ANA, XRA, CMA); the subroutine

will be shorter if each of these can be followed by RET instead of

calling DISPLAY.

7.;.43

LOGIC AND BIT MANIPULATION

Assign the following memory locations to the subroutines and write

the main program.

8220 DISPLAY

8240 DATA

8260 COMMAND

82AO FUNCTION

Use stubs (RET) !or the subroutines.

initialized as follows:

The registers should be

(D) < - 00

(E) < - 00

(H) < - 80

(L) < - 17

for new data byte

for old data byte

mark most significant bit

for CMA function

LXI instructions can be used for these.

With no subroutines except GETKY the display will be blank and

pressing keys will have no visible effect. Place a breakpoint after

the return from GETKY and step through the program to be sure that

DATA and COMMAND are called appropriately in response to hex and

command keys.

7-44

LOGIC AND BIT MANIPULATION

7.·4�6 Stubs for COMMAND and FUNCTION

These subroutines will be fairly complicated, but we must at least

react to NEXT before we can enter data and observe the display. It

will also be useful to have something returned by FUNCTION, for

testing the display.

The stub for COMMAND can test for NEXT,

perform the logical rotate right on (H).

then ignore it.

and if the command is NEXT

If the command is not NEXT

A convenient stub for FUNCTION returns the complement of the new

data. This is the same function that CLR will give us when COMMAND

and FUNCTION are completed. Since DATA does not yet exist, register

D will always contain 00, and FUNCTION will return FF. The stubs are

shown in Figure 7-8.

Test the operation of COMMAND by setting a breakpoint at 8265. It

should only be reached after a NEXT key. The content of H should be

halved each time NEXT is pressed, until after 01 it becomes 80.

1-
w
w
I
(/)
t'.J
z

0
0
u

>­
w

. (/)
>­
(/)

· z-
z
4:
a:
l­
a:
w
1-
::J
a..
>-
0
u
0
a:
u
>-

(/)
>­
w
I­
C/)

. (/)

7--46

a:
w
1-
::J
a..
�
0
u

0
w

�
a:
t'.J
w
1-
z

A D D R

aJa 0

1

2

3

4

5

6

Rc-J.. () 7

8

9

A

B

C

D

E

F

8c;:L/O

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

I /

0 0

{) {)
o<. I

/ 7

J' 0
,7 C

0 h
? {)

(!_ JJ
l2 ()

? :J
C l)
/-1- {)
f �
{J 6

{) I
(!_))
d2 0
% 65'

C -l)
c.3 .7)

{)' ;J_'
J) C
J./ 0
JJ c2
]) 4
6 {)

ff ,:;
C 3
0 6

t t2

LOGIC FUNCTIONS - MAIN

L I. 1]) () () a {) ,._L_, �-��,: t7
,

(£) 1::- , 1� '-17cLZ2f...;
(lJ) i.- � 71n --j;;;

L >< T J-1- p 0 I 7
/

(L)1:.- CM fl J,};7�
(/l)ic--� Y7'�

M () t/ fl- !-I -11 A :.., 11,,.. u y:{ · f Y7c.a.>? .i)
/Y\ \) I B

J

j1 {) _) (I fHd ,� J ;dL 7Jl-,' L'
':= OU.��� d J) � � ,-I';

� Ii L L 7) T_ s p L AV I

e A- L L F lA)J � T TON

(/-))4-, ifn_,�{L)
rl {,])) , L,. /-I (£_)

M V T i3 () J - !!. �-;{M�j�)
I

iY - .h:::/i) .A/0�°',. ---- /4 f

C fl L L l) I s p L AV
/ :::1

·-fL : .rif/ /"J I ' � , - _,, /-:; ;.__
tr (/

C fJ L L G I= T k V /-2-, /1 /J ,, + A �----r; ,
c)'U�

c_ C D A- ' A . �- ,J,,,/ /} _., -r-z,)

17

C tJ C C 0 M M I+ ND
IJ¥,�,,,;-�d

p' _/)_h ./'){:_�/_ye_) ;,1+-1 �
J 1'1 p g d 0 (o I

Figute· 7-7 , ..

I­
LU
LU
I
(J'J

(!)
z
Cl

0
u

2
LU
1-
(/J
>
en
<.!)
z
z
<(
a:
l­

a:
LU
I­
=>
0..

2
0
u
0
a:
u
�

(J'J

2
LU
1-
(/)
>
(/)

a:
LU
I­
=>
0..

2
0
u
Cl
LU

a:
(!)
LU
1-
z

A D D R CODE

8 r.20 0 ,F G

1 I 5
2 c :2
3 to q
4 J L1
5 7 C
6 � ,c
7 6 7
8 C 9

J'd6 9 C '7
A

B

C

D

E

F

8 �/-1- 0 7 /-}
1 &.. F
2 C. q
3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

STUBS FOR COMMAND AND FUNCTION

C, p I N E- i ... T CDMM Arv]) 3-, UR

J" Af z y· ;J fl, 9

/'1 D V !1- 1-1
f< R

/I
-

I� n \I H fl
1R E- T

R E- T

fl/ {) v' II-]) FU t./C:.. T .1.n Al STuB
C M A
R f- T

..

Figure 7-8

7-47

LOGIC AND BIT MANIPULATION

7-48

DISPLAY

Save (HL) in Stack
Address Display

(HL)- 83F8

Logical Rotate Left
the Data Byte in (A)

Save Data Byte
in Stack

Not·carry Carry

Clear Segment
in Display

(M) - (M) AND 1Bf

Set Segment
in Display

(M) - (M) OR (B)

Recover Data Byte
Increment Display Address

Not Zero

Zero

Recover (HL)

RETURN

Lo�ic Functions Display Subro�tine

Figure 7-9

LOGIC AND BIT MANIPULATION

7.4.7 Logic Functions DISPLAY Subroutine

Now create the subroutine DISPLAY, since this will be a necessary

tool for the rest of the program. It will also give you some

familiarity with the logic function commands.

In accordapce with the description in Section 7.4.4, DISPLAY receives

a byte of data in Register A and a symbol in Register B. It must

preserve all segments of each display digit except the segment

designed by (B). For each bit in (A) the designated segment of the

corresponding displ�� digit must be cleared or set. Figure 7-9 shows

one design for DISPLAY. Although a shorter version could be written,

this has the ad.vantage of simplicity.

Enteri�g the symbol (B) into a display digit is done by the OR

function.

MOV A,M

ORA B

MOY M,A

Entering a zero requires that (B) be complemented and used as a mask.

MOV A,B

CMA

ANA M

MOV M,A

When (B) is complemented all bits except the designated symbol bit

become 1, while the symbol bit becomes O. The AND function then

preserves ali display segments except the one designated.

7-49

LOGIC AND BIT MANIPULATION

Stepping through DISPLAY is unrewarding because it takes existing

data from the display, but thi� is upset by the monitor. The best

way to debug a display subroutine is to substitute some different

memory locations such as 82F8 - 82FF when stepping.

With DISPLAY and the stub for COMMAND you can observe the bit marker

move in response to NEXT. Since we cannot yet enter data, the bottom

segments will remain off, and the top segments will all be turned on

because FUNCTION returns the complement of (D). Try a different

initial value for D to see the effect.

7-50

I­
LU
LU
I
(/)
(!)
z

Cl
0
u

�
LU
I­
C/)
>­
(/)
(!)
z

z

<:(
a::
l-

a::
LU
I­
:)
Cl.
�
0
u

0
a::
u

�

(/)
�
LU
I­
C/)
>­
(/)
a::
LU
I­
:)
Cl.
�
0
u

Cl
LU

a::

(!)
LU
t­
z

A D D R

8 r-..?=2 0

1

2

3

%o.-1c2. 4

5

6

7

-· 8

9
Cj,

A

B

C

D

E

F

8 c2. '� 0

1

2

Yc:1·3 3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

i

2

3

4

5

6

7

8

CODE

E 15
d. I

F �
? 13
{) 7

F 15
2J ,4
d 0

g ;J

7 y
14- ,c
If �.

7 7
C 3

3 3
% :2
·7 cP
g r;,
7 7

lF I

b? C
C �

cf< tJ
y ;2_

E- /
C. q

LOGIC FUNCTIONS - SUBROUTINE DISPLAY

p lA 5 /--l

L X L I+

R L c..
p u ,S l+

;-T C

M 0 v 4

C fv1 A

A- /J A- (\/)
Jv1 0 v' M

J ,vi p

M () V fl-

0 R ft M

M D v ,vJ

p 0 p p
j N R L

3 tJ z

p 0 p fl

R f:- T

!

fl

J er 3

p s vJ

f' .;).. 3

B
I

f)
J c2 3'

8
I

I f}
s w

?' {) �

F g

D

c�

'I

.

1/J J,,_.A 1_
/1-,1 -I; { R)

/) II �--1-) ,Uk14 ,, /--:- (/1)
,

7,. -,I- ,; A - -· �·� ct3)
(l

Figure 7-10

7-51

LOGIC AND BIT MANIPULATION

7. 4. 8 Logic Functions DATA Subroutine

This subroutine was defined as follows: Enter the least significant

bit of a hex key irito the new data byte (D) and display the byte.

The bit marker in (H) identifies the bit position in (D) where the

bit is to be entered. We have used one method for entering a bit

into a byte, in the DISPLAY subroutine. There we make a conditional

jump; if the input bit is 1 we OR the symbol into the display digit;

if the input bit is Owe mask the display with the complemented

symbol.

A possibly more efficient procedure is to force the bit to 1 by an

OR, and then complement that bit by XOR with the bit marker if the

key is zero (leaving the OR result if the key was one):

Bit marker 00100000

Data byte 01100111

OR result 01100111

Bit set to l

Bit marker 00100000

XOR if key 0

Bit set to O

01000111

This procedure is efficient if we can make the decision after the

7-52

LOGIC AND BIT MANIPULATION

first OR operation. Since the logic instructions (except CMA) affect

all flags, this is a little awkward.

The following procedure avoids any jump instructions, but requires

use of an extra register. First, combine the input data with the bit

mask:

Key 0 Key 1

RAR (Clears Carry) (Sets Carry)

SBB A (A) = 00000000 11111111

ANA H (A) = 00000000 00010000

Location of Bit Marker t t
Save this result in another register, and create a reverse mask from

the bit marker by complementing it.

MOV B,A (B) = 00000000

MOV A,H (A)= 00010000

CMA (A) = 11101111

00010000

00010000

11101111

AND this with the existing data byte to force the marked bit position

to zero; OR the desired bit; and return the new byte to D.

(D) = 10110010 10110010

ANA D (A) = 10100010 10100010

ORA B (A) = 10100010 10110010

MOV D,A (D) = 10100010 10110010

tBit reset or set

7-53

LOGIC AND BIT MANIPULATION

The revised data byte is now in (D) where it is to be kept, and also

in (A), ready to be displayed. L0ad (B) with the symbol fQr the new

data byte and call DISPLAY.

Reviejing the MAIN prog�am we can see an addition�! requi�ement to be

placed on DATA •. We used:

CC DATA

CNC COMMAND

If command is not to be called after a hex key, then DATA must return

'with Carry set. The 8080 provides an instr�cti6n:to perform this:

37 STC Set the Carry Flag

(CY) < - 1

No othet flags or registers

are affected.

This can be placed just before the return from DATA, to inhibit the

foilowing CNC COMMAND in the main program.

Code and test the program. You can now enter data with hex keys and

move the bit marker with NEXT. The stub for FUNCTION returns the

complement of the data entered, so data entered appear in the bottom

�6rizontals and the complements appear in the top�

Figure 7-11 gives the coded subroutine.

7-54

1-
w
w

I
(/'J

l!)
z

0
0
(.)

�
w
1-
(/'J >­
(/'J

l!)
z -z
<(
a:
l-
a:
w
1-
::,
a.
�
0
C.J
0
a:
C.J

�

(/'J
�
w
1-
(/'J >­
(/'J
cc
w
1-
::,
a.
�
0
C.J
0
w

a:
l!)
w
1-
z

A D D�R

ad¢ o
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

CODE

J �

9 F
7J 'I
L/ 1
7 C

::)__ F

IA- :2
13 {)
1 7
CJ 6
0 ,;
C J)
1...1 I)

? '2.
3 7

C 9

LOGICAL FUNCTIONS - SUBROUTINE DATA

IR 111- R
s B B ,LI
p Al f} 1-i
M 0 V 13
M {) V I+
(1 M A-
A- Ii) It J)
() R A A
/v1 /'J \) J)

M \I i R

() fl- L L

1,<l T ,�
I...,,

R E T u R

.

.. /J
If

/./ .
,

, A
,

/") ,f.,,

D I s p L

tJ

I\
I (/3) k-- I cJ'V cJ

1 � J // 1 , A J. 11 J -r- /,, ·. -f-.

� ,,._;. h.:.....�

' }" A) � <./2 � /,l, :-h
11. ·r1 & · /�h- , ./�.;

{/

i,, ,.., . • I.. A • ..J- � ,J"JA-,• i-'"""" •

. (/}-)���- 1 ·/J .. h /: './A
/'j)) L:-�

1
,, ,,rr 11.. IA A C/ :7';;

p /, .. / ,.l,.)� i t°'ll.,-+.: .
� J! --ll/ ' JI, . � I _,., �J • • A

.,

A-V t?

7f. � . II J2. • i./l� ,._, .i) h .A 7, -:7';

I._, I A .Pl. J ./ sJ · t�j'J_ J
IYJ',11 .. /, J ,a�)_ �A�/ !?I��

,

Figure 7-11

7-55

LOGIC AND BIT MANIPULATION

7.4.9 Additional Specifications for DATA

We have previously indicated that the bit marker is to be moved only

in response to NEXT. You might prefer to move it also whenever a hex

key is pressed. If we allow NEXTCOMMAND (at 8280) as an internal

alternate entry to COMMAND, it can be called by DATA. An alternative

would be for DATA to enter a simulated NEXT command, and clear Carry

to force a call to COMMAND.

·rhe 8080 does not provide an explicit "clear Carry" command, but the

logic instructions (ORA, ANA, XRA) all clear Carry. We have used XRA

A to clear both Carry and the content· of A; this works because the

exclusive or of a bit with itself is always zero.

1

0

G)

8

1 = 0

0 = 0

ORA A and ANA A have the effect of clearing Carry and preserving the

content of A. They set or reset Zero (and the other flags) according

to the content of A; in fact they are exactly equivalent to CPI 00.

Another way of controlling the flags is to compare (A) with itself.

CMP A will clear Carry and set Zero without affecting the content of

Register A.

Replace the STC instruction at the end of DATA with any of these

intructions:

7-56

BF

B7

A7

CMP

ORA

ANA

A

A

A

LOGIC AND BIT MANIPULATION

followed by:

3E

15

MVI

C9 RET

A,15

Now the bit marker moves in response to hex keys as well as NEXT.

There was some purpose in the o�iginal design of DATA, that did not

shift the bit marker after a hex key: observation of the effects of

the several logic functions is more convenient if you can switch one

bit back and forth easily. Since we are using only the least

significant bit of a hex key as data, it is possible to define

additional bits for other purposes.

0 Enter zero into current bit position

1 Enter one into current bit position

2 Enter zero into current bit position

and shift bit marker to next position

3 Enter one into current bit position

and shift bit marker to next position

Recall that GETKY returns the key value in both A and C, and neither

DATA nor DISPLAY affects Register C (in the given solutions, at

least; check your own program designs.)

Set or reset Carry according to bit 1 of the command.

MOV A,C

RAR

RAR

7-57

LOGIC AND BIT MANIPULATION

This procedure makes Carry the opposite of what we wanted according

to the definitions of the hex keys, since 2 and 3 will set Carry

which inhibits the CNC command.

this:

3F CMC

The end of DATA then becomes

79 MOV A,C

lF RAR

lF RAR

3F CMC

3E MVI A, 15

15

C9 RET

Another 8080 instruction corrects

Complement Carry

(CY) < - (CY)

No other flags or registers

are affected.

The completed program appears in Figure 7-12. Write a specification

for the subroutine, indicating the function, entry data and return

·data.

·7-58

1-
UJ
UJ
I
(/)

(!)
z

0
0
u

�
UJ
1-
(/)
>­
(/)

{!)
z
z
<(
a:
l­
a:
UJ
I­
::,
Q.
�
0
u

0
a:
u

�

(/)
�
UJ
1-
(/)
>­
(/)

a:
UJ
I­
::,
Q.
�
0
u
0
UJ

�
a:
(!)
UJ
1-
z

A D D R CODE

8 ,�L./' 0 I F
1 CJ F
2 ff ¥
3 '-I 7
4 7 G
5 .� ;:::.

6 II- r:2

7 8 0
8 .j-7
9 6 6
A 0 ,f
B C, �
C W' t>
D J7 c2
E ,7 9
F

I F
s ,..:J_�o / ;::.

1 3 F

2 3 E

3 I 1..,
�

4 (:_ 1q
5

6

7

8

9

A

B ·

C

D

E

F

8 0

1

2

3

4

5

6

7

8

LOGICAL FUNC'l'.lUN::i - J:<,l!;V.l::>.!:.LJ .:>U.C.t\UUJ..U'I.C.. IJ.M..L.M.

.f f} I<
s B 13 A

It Al I+ /�
/vj 0 V f3 A
/VI 0 V

/+

I
/I H

C M fl

A A) fJ J)

D R ,4 8
1'1 0 \I])

I IA
�1 v I IR

I

{) s

t2 fl- L L D I s p L AY

/Vl 0 V ft I
C

R A- R

R ft R

C /Y1 C
I� V _J_ ft

I I �
/

R E- T

R E V I s E- D V E R'Bia,J 0 ,=:-

s u B R 0 u T .I. N E 11 DA-TA- h

/-+ D \) A- ,J c.. E- s 13 TT PDSITTorJ
x.. F H- E-)(I< E. y � C)'R 3

Figure 7-12

7-59

LOGIC AND B.IT MANIPULATION

7.4.10 Logic Functions COMMAND Subroutine

The command keys are interpreted according to the definitions below.

REG

MEM

BRK

(11)

(10)

(16)

CLR (17)

STEP (13)

RUN (14)

ADDR (12)

NEXT (15)

Set Logic Function ORA

Set Logic Function ANA

Set Logic Function XRA

Set Logic Function CMA

Replace Old Data with New Data

(E) < - (D)

Replace Old Data with Logic Function

of Old Data (E) with New Data (D)

selected according to (L)

Ignore

Rotate Bit Marker (H)

The sequence above reflects the physical arrangement of the keys.

Numerically, keys of value greater than NEXT (15) or less than ADDR

(12) are· to be stored in (L) as logic function commands. Keys of

value greater than ADDR but less than NEXT (STEP = 13 and RUN = 14)

replace Old Data. This suggests that we can separate the key

commands with three

conditional instructions.

CPI 15

CPI 12

CPI 14

7-60

Compare Immediate instructions and fl ve

Set Zero if = NEXT

Set Carry if< NEXT

Set Zero if= ADDR

Set Carry if< ADDR

Set Zero if = RUN

LOGIC AND BIT MANIPULATION

The coding for subroutine COMMAND to make and act on these tests is

indicated below:

CPI 15 NEXT

JZ to Rotate Bit Marker

JNC to Store Function Selector

CPI 12 ADDR

RZ Ignore ADDR

JC to Store Function Selector

CPI 14 RUN

MOV A,D If not Run,

CZ FUNCTION If Run, A <

Replace Old Data and Display
MOV E,A
MVI B,40

JMP DISPLAy

Store Function Selector
MOV L,A
RET

Rotate Bit Marker
MOV A,H
RRC
MOV H,A
RET

A< - New data

- Function

Note that for the first test (CPI NEXT) there are two conditional

jumps each with a completed decision. If neither of these

conditions is met, another test is made, followed by two conditional

instructions (RZ, JC) for the two completed decisions. The final

test (CPI RUN) is only testing for two possibilities - RUN or STEP -

since all others have been eliminated. Here we make an assumption

about the result - MOV A,D to copy the "new" data into A, to replace

"old data" and display it, if the command was STEP. Now we can use

7-61

LOGIC AND BIT MANIPULATION

the conditional call (CZ FUNCTION) if in fact the command was RUN.

This · is permissible because FUNCTION has been defined to return the

logic function in Register A, and does not use Register A for input

data. -Therefore· we come to "Replace old Data and Di splay" with the

appropriate value in Register A for either STEP or RUN. Note also

that JMP DISPLAY is used instead of CALL DISPLAY, RET.

This subroutine has four exits - RZ for ADDR; JMP DISPLAY for STEP

and RUN; RET after Store Function Selector and RET after Rotate Bit

Marker. The multiple exits are efficient, because. using a single

return instruction would require three jumps to reach it. There is a

disadvantage to this efficiency. Suppose that in the course of

testing the entire program you should find that it occasionally

"derails" it fails to return ,to the main program. You might want

to set a breakpoint at the return from COMMAND to examine the stack.

With multiple exits you must enter multiple breakpoints. This is a

minor nuisance here, but becomes a substantial problem with bigger

programs, many subroutine calls, and extensive usage of the stack.

Write the COMMAND subroutine. A solution is given in Figure 7-13.

With COMMAND in place, we can see the effect of STEP and RUN as well

as NEXT. STEP causes the middle horizontal segments to duplicate the

bottom segments; RUN causes the middle to duplicate the top. We

still have only the one. logic function, CMA, in operation, so we

cannot readily see the effect of the other command keys. One way to

observe them is to store the function selector in memory and set a

monitor breakpoint to detect a memory data change at that location.

In the stub of FUNCTION, insert SHLD 8300. This will store the

LOGIC AND BIT MANIPULATION

function selector at 8300 and the bit marker at 8301. Set a

breakpoint at 8300. Although data will be written there on every pass

through the main program loop, the monitor will only detect a change

which occurs only when REG, MEM, BRK or CLR has been pressed. (It

will also occur the ftrst time the program is run.}·

7-63

7-64

1-w
w
I
(/)

(.9
z
0
0
u

�
w
1-
(/)
>­
(/)

(.9
z
z
<(
a:
l­
a:
w
I­
::>
a..
�
0
u
0
a:
u
�

(/)
�
w
1-
(/)
>­
(/)
a:
w
I­
::>
a..
�
0
u
0
w

a:
(.9
w
1-
z

A D D R CODE

8 c:l(j;, 0 1F E
1 I .'?
2 C /l
3 7 C
4 JJ -2
5 l1) SJ
6 7 ll
7 J7 �
8 F E
9 I .:;
A e ?
B l> f}
C r7 fl
D f c2
E r- E
F I ¥

sd7 o 7 II
1 (! C
2 II 0
3 p .;2
4 1-5- F
5 0 6
6 L/ 0
7 C 3
8 � ()
9 J' 62

P;?�A I� F
B (! q

Yd'7c 7 C
D 0 ,c.
E � 7
F (! C)

8 ' 0

1

2

3

4

5

6

7

8

LOGICAL FUNCTIONS - SUBROUTINE COMMAND

C p j_ Al £

J z J

J /V C J'

C 1-::> I If D

R z

J C J?

C p 17 IR u

/V\ {J V I+ '

C z F LA

M 0 \/ £ ,
1'1 V I R

I

IT M p D I

M 0 i} j_

i� f- T
I

M 0 ·J A-

R R C

,v1 0 t/ 1-1-
I

R E
'

T

i 7

c2 7 C

� 7 I)

D R

.;t 7 w

tJ

D

N C IT

A
'-I D

s p L

A

H

A

I

A-

IJ/(1; ··.-?(. ,/ ·- 111.E>(T
!u, 7'7:. h ,.:h--/: LJ, - - �L J

Iv'

I�;; - ,,,, _ ,.fJ > A/E)(7
1
(.:: 8RJ< trU (/LR.)

lu,() ..r;, /l fl /L�-#- •��.,:r-71:..___,
li:1 I

JCht..M O ./ /ll>J:>R
I� ,; �d <{ 1VE)(T
lf; /vfcM tJU l<EG-)

CV) 7;, /};/£}�_;,/ ./ , /I ·A �,I)
[.7 /

(fJ)6:-��fsr�p)
C) rJ
(A)/:-, :I - -· � h �, cR a Al)

�fl}nAr> ��#;;"

'fl� .A ,., ti /.o • , --A, r, tJ /1 ,,�,., j))

(I �'21:·h
iv

MEf/1 J<EG BRK CLJ?

�Ji 0/J r'UJ)..4 .,.,�.,_� /__A_ ;·J':,,_

A�£ >(T -

,...L., � .r. I #�-/-; . ..P� J+

i? � � 'r,- '-/JJ/H j, .':
t1

Figure 7-13

LOGIC AND BIT MANIPU LA TION

7.4.11 Subroutine FUNCTION

Finally we come to the subroutine which performs the basic purpose of

this entire exercise. FUNCTION must recognize the seiector and

perform one of the four logic functions - ORA, ANA, XRA or CMA.

At entry the registers contain:

(D) = new data

(E) = old data

(L) = function selector

Returrt the selected function of (D) with (E) in register A. Preserve

all other registers.

The function selector in L is the key value used to select the

function:

(L) = 10 = MEM = ANA

(L) = 11 = REG = ORA

(Lj = 16 = BRK = XRA

(L) = 17 = CLR = CMA

Write the subroutine yourself. A solution is given in Figure 7-14,

followed by an explanation of this solution.

7-65

7-66

1-w
w
I
en
(!)
z
0
0
u

�
w
I­
V)

>­VJ
(!)
z

z
<(
a:
l­
a:
w
I­
::) a.
�
0
u
0
a:
u
�

en
�
w

I-­en
>­
en
a:
w
I­
::) a.
�
0
u
0
w

a:
(!)
w
1-
z

A O O R

ad/J. o

1

2

3

4

5

6

7

8

9

A

B

C

D

E

.,?,...JA F
ao2/?o

J'r� '3 1

2

3

4

5

,Yc:2A 6

7

8

9

A

B

C

D

E

F

a 0

1

2

3

4

5

6

7

8

CODE

7 1)
E �

{) 3
0 �

CJ F

? 7
7 �-

7) ,4

8 I
J' b.?
(l, o7

IA F

g .;2
It 3
C 9

t3 3
C 9
C c:;
/3 C,
? o2_
/-}- g
(!, 9
cX, I=
(2, q

LOGICAL FUNCTIONS - SUBROUTINE FUNCTION

M 0 L IJ L I/A- J�:_ L ;Jt7 /1 /7J-7 �
ff IJ .L {) :3) /0/J :== /11E M

I

//o � REG (

R R C ,-

.?o = BRr
j2_ R /1 (!1J = 17 LR ._, ..)

fl- l1> J) A ,) .. �/ Cha//_) {:, V a/Yld Z

M 0 t/ t+
J J) { 1-J-Y � 7"l.,u1Y :./i, ·t ,

J C g :2 8 I n, - 1 • ../ B;f I(,!)v c·L,e
I " /

J"" tJ z jJ � I+ F /VIEM o-u l?E6-
GL - ,L.) _,; iL, .e £ &
ti ii /

fl-tJ A £ MEM ·=: /-lAJ /l
R. E- 7
(J R fl- E RE&� /JR/J·
R E

s /J z p .2 13 6 J3R� o--u {!LR
ICt, ., �.n _ _;../ CLR
II ' ti

x R A I: f3Rt< ::: ><RA
R E T
C M A f!LR == CMA
R E IT

E N T R 'I LI) A T A
(D) - N E w D ftTA
(E-) = 0 L 1) D A-TA

(L J - F u IJ C, T Lo t--.1 'SE LE=-C TCJR

R f; rr u R tJ .s
(IA-) - L. n G I C F Ll /\JCT Io rJ

Figure 7-14

LOGIC AND BIT MANIPULATION

The given solution for FUNCTION achieves its efficiency by setting

two flags (Zero and Carry), to distinguish the four selector values.

This permits loading A with the "new" data byte _before making a,ny

jumps. By masking out the unwanted Bits 2 through 7, and rotating

Bits 1 and O into Bits 7 and 6, the four selector values become:

00000000 = MEM = ANA

01000000 = REG = ORA

10000000 = BRK - XRA

11000000 = CLR = CMA

Now ADD A shifts Bit 7 into Carry, to distinguish ANA and ORA from

XRA and CMA. It also leaves (A) = 00 and sets Ze.ro for MEM and BRK;

it leaves (A)= so; so Not Zero, for ORA and CMA.

A conceivably useful feature is that it returns Carry set if the

function is CMA, since that does not affect Carry while ORA, ANA and

XRA clear Carry • . This information is not used in the program.

.7-67

LOGIC AND BIT MANIPULArION

This page intentionally left blank.

7-68

LOGIC AND BIT MANIPULATION

7.4.12 Exercising Logic Functions

Now with the final program in operation we can experiment with the

logic functions and test your knowledge of them. It is particularly

instructive to see the results of the functions on identical data

bytes and on data bytes which are complementary. Enter some data -

say 11000000. Store this value as the old data (STEP). Observe the

functions:

REG (ORA)

MEM (ANA)

BRK (XRA)

CLR (CMA)

11000000

11000000

00000000

00111111

ORA and ANA duplicate the data bytes when the two bytes are

identical; XRA gives a zero result. Recall the use of ORA A or ANA A

to clear Carry and control Zero without changing the data , and XRA A

to clear Register A.

Now store the complement of the data byte (CLR, RUN), and try the

functions again.

REG

MEM

BRK

(ORA)

(ANA)

(XRA)

11111111

00000000

11111111

These same values will occur for any data if its complement is

stored. Try entering other data, followed by CLR, RUN, REG, MEM, BRK.

7-69

LOGIC AND BIT MANIPULATION

We wil 1 use the program to test your knowledge of the logic

functions.

Problem 1) Enter the data byte 01101100 and store it as old

data by pressing STEP. Enter the new data byte 11010101.

Before using REG, MEM and BRK, calculate the results yourself

and fill in the blanks in Figure 7-15. Then use the program to

check your results.

Problem 2) Store the result of XRA by pressing BRK, RUN. Enter

new data 00010011. Calculate the next set of results, and again

check.your answers.

Problem 3) Store the result of XRA from Problem 2. Calculate a

new data byte needed to generate the last three results in

Figure 7-15.

7-70

1) Enter

2)

Store Data (STEP)

New Data

ORA (REG)

ANA (MEM)

XRA (BRK)

Replace old data

Old Data

New Data

ORA (REG)

ANA (MEM)

XRA (BRK)

with XRA

LOGIC AND BIT MANIPULATION

0 1 1 0 1 1 0 0

1 1 0 1 0 1 0 1

(press BRK, RUN)

0 0 0 1 0 0 1 1

------- -

-- ---- ·- -

3) Replace old data with XRA (press BRK, RUN)

Old Data

New Data

ORA (REG)

ANA (MEM)

XRA (BRK)

1 0 l 1 1 1 1 1

1 0 0 0 0 0 1 0

0 0 1 1 1 1 0 1

Logic Functions - Self Test

Figure 7-15

7-71

LOGIC AND BIT MANIPULATION

7�5 FLOW CONTROL TECHNIQUES

In the logic functions exercise we saw two schemes to decide which of

several possible actions to take, based on a data byte from the

keyboard. In the COMMAND subroutine we used numeric comparisons:

CPI NEXT

JZ to rotate bit mark

JNC to select logic function

CPI ADDR

RZ

JC to select logic function

CPI RUN

In the FUNCTION subroutine we shifted control bits and used JC and

JNZ instructions:

MOV A,L

ANI 03

RRC

RRC

ADD A

JC to BRK or CLR

JNZ to REG

These were reasonably efficient because the numeric values of the

control bit patterns had convenient relationships. If the key

definitions had been random it might have been necessary to use seven

CPI, JZ segments in COMMAND.

7-72

LOGIC AND BIT MANIPULATION

It is possible to use a directory, or "dispatch table" instead of

such a procedure. The command, or control pattern, is added to a

table address. This locates a memory byte where we have stored

another address. This is just like the directory procedure we used

in the sensor correction programs of Chapters 4 and 6. In this case,

however, we want to jump to the address obtained from the table,

rather than using it to find more data.

If register pair HL is not in use for other data, it is very

convenient to use it with a dispatch table, as we did with the sensor

correction directory.

If all of the program segments to which we might jump are in the same

memory page as the dispatch table, we can use single byte indirect

addressing:

LXI H, TABLEADDRESS

ADD L

MOV L,A

MOV L,M

This has loaded into register pair HL the address to which we will

jump. Recall the indirect jump instruction:

E9 PCHL Jump to the address contained

in register pair HL.

(PC) < - (HL)

No flags are affected.

If we do not want to use register pair HL, but do have another pair

available, we can use this technique:

7-73

LOGIC AND BIT MANIPULATION

LXI

ADD

MOV

LDAX

MOV

B, TABLEADDRESS

C

C,A

B

C,A

This has loaded the jump address into register pair BC. There is no

"PCBC" instruction, but we can use the stack.

PUSH

RET

B (ST) < - Address

Jump to (ST)

Here we place the address into the stack top, and a RET jumps to that

address.

A third method uses HL and the stack.

PUSH H Save (HL)

LXI H, TABLEADDRESS

ADD L

MOV L,A

MOV L,M

As in the first method, we have loaded the address into HL. Now we

can recover the data that we saved, and put the jump address into the

stack.

XTHL

RET

Exchange stack top with HL

Jump to (ST)

Any of these techniques can be used, with only slightly more

7-74

LOGIC AND BIT MANIPULATION

complexity, if two byte indirect addressing is needed.

When a dispatch table is used for MTS command keys, remember that

these keys

subtract 10

return the values 10-17. Therefore, we must either

from the command before adding it to the table address

or, more efficiently, load the register pair with an address 10 hex

bytes below the actual table location.

Recall that subroutine GETKY returns with Register B cleared and the

key in C as well as in Register A. This is designed to make the use

of dispatch tables easy.

PUSH

LXI

DAD

MOV

XTHL

RET

H

H, DISPATCHTABLE -10

B

L,M

(Monitor subroutines ENTBY and ENTWD similarly return with Register B

cleared and the command key in C as well as A.) This technique can

be used in the logic functions program COMMAND subroutine. Change

the specification of COMMAND to require that (B) = 00 and (C) =

command key. (This change requires a change in DATA.) Rewrite

COMMAND to use a dispatch table. A solution is shown in Figure 7-16.

7-75

7-76

1-
w
w
I
Cf)
(!)
z
0

0
u

>­
LU
1-
Cf)
>­
Cf)
(!)
z
z

a:
l­
a:
LU
1-
::J
a.
>-
0
u

0
a:
u

>-

Cf)

>­
w

1-
Cf)

>­
Cf)

a:

w
1-
:J
a..
>-
0
u

0
w

a:

(!)
w
1-
z

A D D R CODE

8 o?",L 0 I � .
9 F 1

2 f} ;f
3 14' 7
4 7 c
5 � p
6 fl- o(
7 6 0
8

.,.,
7,:J

9 {) &;
A 0 g
B C l)
C rX 0
D 3 c2
E ? q
F I F

8 �,S' 0 / F
1 1 F
2 0 I
3 / s
4 0 {J
5 (}, 9
6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

*

·-*
*

·-*

*

REVISED SUBROUTINE DATA

I< A I<.
S1 H 8 (}
h tJ fJ Ii
/II () \/ f II
/VJ D v) /I- I-I

C /11 A
A tJ It .])
!) R A /3
M [J \/ 1) A
M I) I R

'
I/) 8

I

(!_ f} L L]) I. .s p L AV

11 0 V a C
R f-+ R

'

R A R
C ,vi C
L X. I B 0 0 I 5

I/

v.? E T

R E V I s £ 0 V ,r; R S10AI
s L,\ s ·R 0 u T I tJ f:- "DATA"
F 0 R L 0 G- I C FU N'TIOtJS
p R 0 & R A J\/J (', � F I..6-UR E 7-7

p u T s II N E X T II (iQM M A-�h
.J_ Al (p

,,,-.) T 0 A 1Y\J A �lr'J=
B I T p /) � T T ..L. 0/\J

:r= \=' H- [:- x K � y - o2 r1R '",>

tV D T E C H- A tV G ES

Figure 7016a

f­
UJ
UJ
I
(J)

(.'.)
z
0
0
0

>-
UJ
f­
(J)
>­
(J)

(.'.)
z
z
<(
a:
f­

a:
UJ
f­
::J
Cl.
>-
0
0
0
a:
0
>-

(J)
>­
UJ
f­
(J)
>­
(J)

a:
UJ
f­
::J
Cl.

�
0
0
0
UJ

�
a:
(.'.)
UJ
f­
z

A D D R CODE

8 .-.::? (� 0 E _J:)-.,
1 d I

2 _,- CJ
3 ? -�
4 tJ CJ
5 t E
6 E ,..3
7 7 Iii

R--2 0 a C CJ

S'o< 6 9 7 fl
A 7 A
B 6 S'
C 7 1¥
D 7 I
E 'l C
F 7 /i

Bd70 7 It

J7�71 C�])
2 /} ()
3 % l.Q

r:f'dJ74 ") �
5 1/J �
6 .// 0
7 e 3
8 � 0
9 p a.

�,:)'/ A i 1
B � 9

j7r{J7' C 7 C
D 0 �
E 6 7
F (! q

8 0

1

2

3

4

5

6

7

8

·-*

"*

�

REVISED SUBROUTINE COMMAND

f [A 5 /-I
L X I i-i

7) ,4]) g
M 0 V /,

i ·r fl L
JV1 {> v jJ
R e T

M E M

R i; G

A]) 1) R
s T F- p
IR u /\)
IAJ E 'A 7
i� R I<

(' L R
C A L L

!'I 0 V £
M V I A

,\ M p

IM D V L-

R [:;- -,

M 0 V A
R R C

M 0 \I l-1-
''R E- T

R E V ..L s

l� u IB R
L () G _I_

E 1J T E R

(()
-

C �) ·-

�) D T .[=

I}
]) T s

]),

D
/

F u I\) c...

A
I

4- 0,

J) .I s p

C,

H
I

A
r

i;. L) C
0 u. T I

e r::. u

\l� I T
C 0 IV) ��
/) 0
C I+ A fJ

p

T

L

t)
N

tJ
H

A-

G-

ftTCH 171-/?L/: -/t)

/J)k-� tJaizL (:STEP)

Dis PATCJ\T!tOL £

j /I - A-'> _a.,)
� -/Ji� -<:-- �ur /J. �
,41,ly}n -J-:.,, � 4,,_,flE�

,/ _L, -i/ r, -A ·_r_. Y?t;,, ,. h J
p'

LON (t<u l\JJ

-
� r, tJ A .A O ';j..fd), d.r11 if::_,

,

A"\/
1'-ft; n/},;,;t .n h_d ,,,,tJ fH Ad�

11.r;d) tf'c/],.,�)

MEM "RE-6- BR\< C.LR
!� I Al tJ/l A� � ·d. ., . ,f, n.'- 1� '1, - -I-

N'r::-XT
�a,; ,d Ji /J� ;/; ./_,1 -LI-

(/ d A 1-. �A �d J.)
C/

M f"\ Pt N 1)
l=- (-DR

C.., T.In tJ �

IN'D

ES Figure 7-16b

7-77

L OGIC AND BIT MANIPULATION

7�6 R EVIEW AND ADDITIONAL EXERCISES

The logic and bit manipulation techniques taught in this chapter are

most commonly used for control operations and decision making. The

additional exercises suggested in the following sections simulate

some control applications.

We have introduced four types of instructions:

Arithmetic and Logical Rotate

arithmetic intructions ADD A,

. properties.

RAR, RAL, RRC, and RLC, and the

ADC A and DAD H that have related

Logic Functions - ORA, ANA and XRA, which combine two data bytes by

the OR, AND and Exclusive OR rules; also CMA which complements (A)

without involving another data byte.

Flag Control Instructions STC and CMC, plus the logic and

arithmetic instructions that can be used to control flags - ORA A,

ANA A, XRA A, CMP A.

Masking The use of ANI to mask (discard) unwanted bits in a byte

used for control functions.

The exercises of this chapter have also given practice in important

flow control techniques: the IF-THEN-EL SE construct; the use of

conditional calls and returns; sequential testing procedures; and

dispatch tables. We saw the use of making assumptions before

executing a conditional jump, call or return.

Once again we saw the convenience of top-down programming and

7-78

L OGIC AND BIT MAN IPULATION

·subroutines, with stubs for incomplete subroutines. We passed

arguments to subroutines. This is especially noticeable in the

DISPLAY subroutine, where we placed various data bytes in (A) and a

symbol in (B), but all of the subroutines in the exercise of Section

7.4 involved passing arguments.

Finally, we again used features that are specific to the ICS

Microcomputer Training System -- the monitor subroutines DWORD and

ENTWD in Section 7.1, and GETKY in the later exercises; the display

system; and the use of a breakpoint to detect a change in memory

content in Section 7.4.10.

It is recommended that you work out at least one of the exercises in

the following four sections to obtain additional experience. Glance

through all of the descriptions before choosing which you will

pursue.

7.6.1 Traffic Control Exercise

Develop a

controller.

simulator for a street intersecti9n traffic light

This can use the same display subroutine and much of the

same main program as the logic functions program.

Traffic lights are simulated by horizontal segments in the display.

A top segment represents a red light, middle segment a yellow light,

and a bottom �egment a green light. Allow two lights to appear at

the same time by initializing the bit marker (H) to 10000001 (81).

Let (D) represent green lights and (E) represent yellow lights.

Initialize (D) to 80, to start with one green light.

7-79

LOGIC AND BIT MANIPULATION

We no longer want to display the bit marker; it is convenient to

disp�ay the green light where previously we displayed the bit marker .

The display of the logic functions can be retained to display the red

light instead.

Different subroutines are called for FUNCTION and COMMAND. These are

defined as follows:

.Subroutine REDS (replaces FUNCTION)

Function:

From given yellow and green lights, return other lights as

red.

Entry Address� 82DO

Entry Data:

(D) = Green Lights (E) = Yellow Lights (H) = Light Positions

Return Data:

(A)= Red Lights

Registers:

All registers except (A) are preserved.

Constraints:

Entry of data to Register D without properly modify ing the

content of E may cause an improper condition of both lights

being the same color.

7-80

LOGIC AND BIT MANIPULATION

Comment: The CC DATA instruction has been retained in the

main program to permit forcing an error into Register D.

Test your program initially without any error protection in

subroutine REDS.

Subroutine SWITCH (replaces COMMAND)

Function:

Change any green light to yellow. If a light was previously

yellow, change the other light to green, and turn off the

yellow light.

Entry Address: 82CO

Entry Data:

(D) = green lights

(E) = yellow lights

(H) = light positions

Return Data:

(D) = new green lights

(E) = new yellow lights

_Registers:

A, D and E are affected.

B, C, H and L are preserved.

7-81

LOGIC AND BIT MANIPULATION

Constraints:

It is assumed that the main program will display red and

green lights.

Subroutines DISPLAY and DATA from the logic functions exercise are

also required,

In this version of the program the lights only change in response to

command keys. In Section 7.6.2 a timer will be introduced. It is

suggested that you copy the changes of Figure 7-17a into the main

program of Section 7.4, but develop subroutines SWITCH and REDS

yourself.

7-82

1-w
w
Ien
c.,
z
Cl
0
(.)

�
w
I­
C/')

>­
(/)

c.,
z

z

a:
l­
a:
w
1-
::J
Cl..

�
0
(.)
0
a:

(.)

2

(/)
�w
I­
V)
>­
U)

a:
w
1-
::Ja.
�
0
(.)

Cl
w

a:
c.,w
1-
z

A D D R CODE

8 ,,-.:}/) 0 I I
1 tJ !)
2 g 0
3 c2.. J
4 I ?J
5 f' I
6 7 I)
7 () '/)

8 CJ p
9 C b

A ;/_ ()
B J' .:2
C C I>
D l> {)
E g Q
F 6 6

8 oL / 0 0 /
1 C]>
2 b:2 !)
3 'P �
4 C J)
5 3 J)
6 CJ c2
7 7J C
8 '-I 0
9 ? :]
A]) 14
B C f)
C f c2.
D {; 3
E 0 6
F p :l

8 0

1

2

3

4

5

6

7

8

*"

·*

*

·*

*

·-*

TRAFFIC CONTROL - MAIN

L x .L]) J R 0 0
I

L i.. I. I+ ' ,f / I
/

/v1 0 \/ I+];,
M v I A R

I

(' fJ L L .D ..L s p

C A L L R E-]) s

M \) I 8 ' () I
/

{} A L L D 1 � p

C A L L G- £ T K

C C J) A T A

C, tJ c.. s \J I. T

.:r M p g d {) (:,

C. � A N 6- E s F
L 0 6 I- C F LA �

t)

7

L

L

y

C

R

C.

... L; J;',,,:, 1f,. : 17
/l

fE)� lb ,1/"'C:) oCc-1 I::
Ci))L:- fi)1, /1 /),;,/) ,...:;/; (I J1 -,; } ' -, 0

/L)b-1_:... d , zt /1 J/i .�/JO .

t'rt-)1c-..::Lr.i I; �� ·17�
iZ/1.. '('/ HA I� ; Ar\ tJ,_, I J ;2;,_,.,') • ·,..-,,J, ·-,-;,

' - (/1/, �) (/ ,/.A(,..., �

J��,:.._ .,7/;,, t!A J

A-Y 0

/I /1

{II)� '-/1,,; ,£__:r.1 t: .
(/

�
v'L : ... Jr.,� '4d��11:
,,-_ '/;.Y

0
L.n7_.,� �-°h; J_ I

AY
' Cl

\-\

0 \V')
TI.O�S t>Ro6�'4l" �

Figure 7-17a

7-83

7-84

1-
UJ
UJ
I en
(..'.)
z
0
0
u

�
UJ
I-­
Cf)
>­en
(..'.)
z
z
<(
a:
·l­
a:
UJ
I­
=>a..
�
0
u
0
a:
u
�

en
�

'UJ
I-­
Cf)
>­en
a:
UJ
I­
=>a..
�
0
u
0
UJ

a:
(..'.)
UJ
1-
z

A D D R CODE

sc2c 0 7 g
1 /f It
2 /f 1./
3 C I-)
4 C IJ
5 f' j
6 If C

,f' o?d 7 ti 17
8 7 g
9 t) 0
A .t/ 0
B (2])
C c2 D
D p .Q
E

(! q
F

8 ._,21) 0 17 f}
1 (3 3
2 ff C
3 (!_ q
4

5

6

7

8

9

A

B

C

D

E

F

8 0

1

2

3

4

5

6

7

8

TRAFFIC CONTROL SUBROUTINES

/vi 0 V /)
M D \) E'
ft A · 1-1

,

Iv
J z f'

X R A H
M D V])
M II A-

,

{J

M V I B
'
,

(!_, /1 L L D

R E- T

IM n V A '

0 R A- E
'

><. R A H
R E- T

N /) T £
,
.

s u R R () u

R [;; ({> u I R
F- I G- Ll

F I G u

£

])

cJ,. {! 7

f}
E
'+ [)

I s p L

D

D I IS p

T J_ N '=

� D .
� E: '7

R E '7

(/l-)�a JI� ,,-,,-fn L � J

f'L" (/ ' 0
� • _J r,,',f ALJ�J . ../r. ,J -, J J -JJ-'

w_ "' � (I ti, .� /;/-,J J,I /) 1/,,,

1-..l:l,.:. � Ci/J _.flz{I'
v/;;,,.. _,, # /)�a.,H;,

l'.7.A ,� .I_.,) / I, �-.t Z: .. i

lf7ff - /i cf_ '/d - ,, '/-' n_.,,,, Ao ,,

h A,,./J_) � � AA,,/J

t7

A '\/

RF I')S - hoh 1hJJ � .I

,?
(,

(/f) - /7 �ti d� * CVc-L}

·/i ,
...... " , ., � ·a,,, // 0 ,,

.

�- Hf�/n..r_,')

t1'

LPtY Pr tvl::> uA-,A

s A-\.< E: Al.-'SO
SEJ='..
- IQ 1)IS 'PLPtV
- \ Q. �A-TA

Figure 7-17b

LOGIC AND BIT MANIPULATION

7.6.2 Extended Traffic Control Exercise

Elaborate the traffic control program of Section 7.6.1 in the

following ways.

7.6.2.1

Revise subroutine REDS to protect against an error that sets both

lights green at once. If such an error occurs, correct it by

modifying the content of (D).

7.6.2.2

Replace the CALL GETKY instruction with a call to a time delay

subroutine. This should set a relatively short delay for a yellow

light; a longer delay for a green light. Review the discussion of

time delays in Section 4.8.6 if necessary.

7.6.2.3

Replace the time delay subroutine with one that tests the keyboard

during the time delay. If a key is pressed, call GETKY and return

without completing the time delay. The monitor subroutine SCAN

(0257) reads the keyboard once: if no key is pressed it returns Not

Carry and (A)= 00; if a key is pressed it returns Carry set and the

key value in Register A. SCAN takes a relatively long time; reduce

your time delay count to compensate for this. This subroutine is

shown in Figure 7-18. It permits you to change the lights at will,

instead of waiting for the time delay.

7-85

LOGIC AND BIT MANIPULATION

7.6�2.4

Revise the traffic control program function to simulate a triggered

traffi c controller. This will normally keep the main street traffic

light (the left hand digit) green, and the side street traffic light

(the right hand digit) red. When a key is pressed, call SWITCH and a

time delay four times, to allow side street traffic to flow. This

can best be done 9y having the main program call a new subroutine

intead of SWITCH.

7-86

A D D R CODE
TIMER AND KEYBOARD SCANNER

so?£ o 0/ L "/....L B I O O o J,. -r. � _ .L .
00

,
2 / 0 {/

I t7

C oc2- / ' (7

� 1 ?fl MoV /t ,8a: 1--------+-'--4-'<-�---f.----+'=-+-'"---l----+'--+-+--+=-l---+--+--+------------1

� l------2-----1--C-13--'-';'--'-__ �0-4-'R�A--'4---4-C-=-.----1-· --------+---------
� 1-----3 -i-=e.,:.+-��--4-"J=+'-/J-+Z=-+--+---+->P<---+-"--'c:J.:+-=Ec.....+---A-'-+---+------------1
� 4 E. II21-------+=-+:--�---f.__...-+---+---+---+--+---1---+--+--+------------1

81---__ s_---1-'..w.....+:J' ,Q=+---1---+-+---1f--+---+-+---+---+--+--+------------1
� 1-----6-'"""4·-=(!,+.[qk+--....J.!--R�E=+LT___._-+--+-+----l,-..-+--t--+------------1
� £-:J � 1 CJ) 1<1 /-IL L GE TI< V � .

8 3D
9 {) :2.

u, 1------A-�C=-+...L......1--q -+'-R----l--=--'-E-l--'-T-4---1-----1---+---+----+-+---+--------
2 B
W1------l--+--+------&.---+-+---+--+--+--+---+__..,--+--+------------1
t; C
)-1------1--+--+------&.----+---+---+--+--+--+---+---+--+--+------------I
en o THIS su BRouT.INE ,o �& a: 1------1--+--+------&.----+----l---+--+---+-=-+---+-..:+���=--=--'--=-----==:...::....._----1

� 1----E--+--+-----'11-------4-'C=:....+:-A�L-+-L---+-""��D--+--+-J_"'-+--/J-+-=S-+-T:.......CE-'----'--'A;._;"D:...._,..;...O;;;;..__;_F-___ -----I

� 1-----F -�---+---I--G+c-£--1T....:...__i...;lc.....::...< +,-J

I

"-++--+---1i-a-Pt.:..+-'-T+----lf-""-9-=,c2�/...L....-¥ ____ ----I

0 8 0 ./
(.) l-------l--+--�----&.---+-+---+---+---+--+---+---+--+--+------------1

@__ __ 1 --1�-----'---'=I::..:....i-:--r:=-1--�/J-l-=-D��k'-l-"E=---+--'\/-l---1-1-P___._R...!:...:G=:....;S=-S---=E.......::D:::....._ __ -----1

� 2 Rf / L(R /VS ft F TE R._ T.I.H ErJ<.AT a: 1------4---4--+-------l-.!....!....j.!::.....+--!���+-=-l---1-!�---+-,!--=-�____,.!.-=-____;_;;:=---...:...!--'----4

� 1----3--+--+-----'li------4-"vJ-"--+=I==+-'--T--+-<l--=-'-l-+-----'1_2-+'E=+-R--'+-""ny......+--+-..;....:,N-=0..,.:.T---....:::C.=-=-A---'---'--R;:....:.'R.-=v+----i
� 1-----4----+--+---4-�·

L....L.j..!..;
A-JJ�1)�--=-C-+=-A-�) -----l--"'{'-l--'fj�.J--..........lf<---=c=--)�---=O=:...i.>(,..,L-'-----1

5

a IF I'(EI\/ L'S "PRE:S' s ED
1 R � rr u R � s A- s G-E-Tf<V ----�
a Figure 7-i�

7-87

LOGIC AND BIT MANIPULATION

7.6.3 Fire and Burglar Alarm

Let the keys 0, 1, 2 and 3 represent two fire (or smoke) detectors

and two burglar alarm sensors. If a fire is detected, flash the

message FIRE in the display repeatedly. If a burglar is detected;

flash the message POLICE. If both are detected, alternate the two

displays.

Accept some sequence of the higher digits (4 through F) to simulate a

combination lock used for an authorized entry, and turn off any

alarm. If a wrong sequence is entered, or a long delay occurs between

keys, call the police.

7�6.4 Model Railroad Simulator

If at this point you want to undertake a much more difficult program,

simulate a model railroad in the display. Represent a train by a

string of ·segments following each other around a track. Represent

switches by the decimal point indicators. These can be set or reset

by hex keys O through 7. The following rules are suggested for train

control.

a) When a train is moving on the bottom track and encounters a

switch which is set, it turns up to the middle track, where it

resumes its previous direction.

b) When a train is moving on the middle track, and sees a

switch set, it turns toward the bottom track where it resumes

its previous direction.

c) If a train is moving on the top track it ignores the

7-88

LOGIC AND BIT MANIPULATION

indicated switches. If one of the hex keys 8 through Fis bei�g

held down when the train reaches the corresponding position,

then the train turns toward the bottom track. If it encounters

a set switch, then it resumes its previous leftward or rightward

direction. (This will reverse its clockwise or

counter-clockwise direction.) If the train encounters a switch

which is not set it must stop until the switch is set.

This program is difficult and lengthy.

you want a real challenge.

Do not undertake it unless

7-89

LOGIC AND BIT MANIPULATION

This page intentionally left blank.

7-90

INT�TED CD'v1FUfER SYSff/111S

EDUCATION IS OUR BUSINESS
T

•

NORTH AMERICAN HEADQUARTERS

Integrated Computer Systems. Inc.
3304 Pico Bou:evard
P.O. Box 5339
Santa Monica. California 90405 USA

Telephone: (213) 450-2060
TWX: 910-343-6965

FRANCE
ICSFrance
90 Ave Albert ler
92500 Rueil-Malmaison
France

Telephone: (01) 749 40 37
Telex: 204593

NORTH AMERICA - EASTERN REGION

Integrated Computer Systems. Inc.
300 North Washington Street
S�itel03
Alexandria. Virginia 22314 USA

Telephone: (703) 548-1333
TWX: 710-832-0045

GERMANY

ICSDGmbH
Leonrodstrabe 54
8000 Munich 19
West Germany

Telephone: (089) 19 80 66
Telex: 5215508

EUROPEAN HEADQUARTERS

ICSP- U.K.
Pebblecoombe. Tadworth
Surrey KT20 ?PA
England

Telephone: Leatherhead (03723) 79211
Telex: 915133

SCANDINAVIA

ICSP Inc. - Scandinavia
Utbildningshuset AB
Box 1719
S-221 01 Lund. Sweden

Telephone: (046) 30 70 70
Telex: 33345

