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MICROCOMPUTER TRAINING SYSTEM SETUP AND TEST PROCEDURE 

1.1 RECEIVING INSPECTION 

Upon receipt of your Microcomputer Training System, unpack it and 

inspect for any apparent shipping damage. If the equipment is 

damaged, or if any of the items listed below is missing, telephone 

Integrated Computer Systems for advice. 

1.2 ASSEMBLY 

Items Supplied 

MTS Circuit Board 

Power Supply 

Microcomputer Training Workbook 

Pad of Coding Sheets 

Place the power supply on a table or desk with the sloping face 

towards the user. Mount the computer to the power supply by placing 

its lower edge on the table and its upper edge at the top of the 

sloping surface of the power supply. Reach under the plastic cover 

and push the two black plastic devices into mounting holes on the 

power supply. 
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1.3 POWER CONNECTION 

Plug the multiconductor cable from the power supply into the socket 

at the upper left corner of the circuit board. Plug the power cord 

into a power outlet. 

1,4 INITIAL TEST 

Turn on the power switch at the back of the power supply. The numeric 

display above the keyboard should show 8200 in the four left hand 

digits. The next two digits should be blank, and the remaining 

digits may contain any data. No further testing should be required 

at this point, and the beginning user should now start reading the 

course material. If any problems are encountered that appear to be 

due to faulty hardware, it is recommended that the tests in the 

following sections be performed before ·calling Integrated Computer 

Systems for advice. 
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1.5 KEYBOARD TEST 

INSTRUCTIONS, SETUP AND TEST 

Press the following keys in the sequence shown. The displays that 

should appear are shown at the right. (?? indicates that the display 

is unpredictable.) 

r s2_0_0J ' ----] l_ __ QJ) 

[820:oJ [ ---341 

Proceed through the remaining white keys, 5 through F. Note that B 

is displayed as J.=:J to avoid confusion with 6, and D appears as 

d· 
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1.6 PROGRAM LOADING TEST 

�oad this simple test program by pressing keys in the sequence given 

below. 

[asT J 

EJ lJ-F l 

EJI MEM I

EJ [�-­
[�-

� 
-i 

I I 

! 7 l
I I 

t __ � 

This program is used in the fol lowing test. 

1-4

: s201 I r--3� 

I 8202) 371 

1 8203 / C9J

I 8202 371 

[ 82 0 1 I .' 
! 3C I

I 8200 ! AF l 



1.7 SINGLE STEP TEST 

INSTRUCTIONS, SETUP AND TEST 

Load the program given in the preceding section. 

In the middle of the left side of the circuit board a red- handled 

toggle switch projects slightly from under the plastic cover. Switch 

it toward the bottom of the board, to the STEP po,sition. Press the 

following keys, and observe the display and the two red indicators 

(LED's) just to the left of the numeric display. 

i 
RST I 

_____ ,J 

I s200] L AF I 

I STEP \ I s2-or-, r sc 1 

I i 
[ _______ _; 

The LED indicator lamp to the left of the display labeled ZERO should 

be on. The other indicator (labeled CARRY) should be off. 

r:1 
Both indicators should now be off. 

ISTE� 

The indicator labeled CARRY should be on. 

IRST l 

I 8202 __ _ 

18200 

37 J 

C9 j 

AF] 

This test has demonstrated that the single step function of the MTS 

is operating correctly, and has also tested the Zero and Carry 

indicators. 
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1.8 PROM CHECKSUM TEST 

Set the red toggle switch to AUTO, and press the following keys in 

sequence. 

I ; 

i ADDRJ

[ ADDR 

[:� 
iADDR

I 1, 

i� 

� 

l 

_I 
---

1 

C 

-----

i 
0 

! 
··---�----1 

i
_:_J 

r-i ..i
1 ______ ,,.l 

(---, 
I ! 
!3 

�_J

,--� 

i 

i MEM 

; __ , .. _I 

:�

r-·-;-·-
1 

i I:__ � 

BRK 

---

L
3�· 

l OOOQ_] 

---·- l 
��oq __ c�or··,

�----; 

2lj 

The display will be blank·for a brief period, and then it will show: 

I 03s21 L c-01J 

The value displayed at the right hand two digits is a check sum for 

the content of the PROM memory. It should be AA for all versions of 

the monitor. Check the monitor version number by: 

I 02so; 27\ 

The number shown at the right indicates that your MTS is equipped 

with monitor version 2.7. 
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1.9 READ-WRITE MEMORY TEST 

INSTRUCTIONS, SETUP AND T_EST 

Load the program shown on the following page according to the 

following procedure. 

r=-1 

I ADDRI 

I MEM i 
l..-·-----J 

EJ [--·--· 0 
· -·--·-- ·- - ·  

r� - !

Fl EJ [-� 

�I [ 0

r s�M; 

,s01Rf1 
, _____ .J 

,-- ·soor1 
I 

??i .. '

I. '?'?_j

L .. _F3_i 

21 I 

Continue with the NEXT followed by two hex keys from the column 

headed CODE on the coding sheet until address 8015 has b een loaded. 

Review the program by 

I 8002 J

etc. 
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I-­
LU 
LU 

. :::i::: 
en 

(.!) 
z 
0 
0 
CJ 

LU 
I-­
en 
>­
en 

(.!) 
z 
z 

cc 
l­
a: 
LU 
I­
::::, 
0... 
� 
0 
CJ 
0 
cc 
CJ 

� 

en 
� 
LU 
I­
en 
>­
Cl) 

cc 
LU 

A 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

0 8 
CJ 

0 

cc 

(.!) 

z 

I-8

D 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

D R 

0 0 

0 1 

0 2 

0 3 

0 4 

0 5 

0 6 

0 7 

0 8 

0 9 

0 A 

0 B 

0 C 

0 D 

0 E 

0 F 

1 a 

1 1 

1 2 

1 3 

1 4 

1 5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

0 

2 

3 

4 

5 

6 

7 

8 

CODE 
READ-WRITE MEMORY TEST 

F 3 D I 

2 1 L X I H • 8 0 1 5 =· · 

1 5 

8 0 

2 3 I N X H 

7 E M 0 V A 
I M 

2 F C M A 

7 7 M 0 V M • A 

B rE C M p M 

C 2 J N z 8 0 1 2 

1 2 

8 0 

2 F C M A 

7 7 M 0 V M , A 

A E X R A M 

C A J z 8 0 0 4 

0 4 

8 0 

C D C A L L D .J\1 w D 

C E 

0 2 

7 6 H L T 



INSTRUCTIONS, SETUP AND TEST 

Now run the program by: 

0 I sooo1 
· ........ ---·' 

The program stops and displays a memory address at which it could not 

write and read data. This is the next address beyond the memory 

installed; 8800 if the MTS is equipped with 2048 bytes of memory. 

An y other address indicates a memory failure. 

After testing each byte the program restores the previous value, so 

this test program may be run even when you have another program 

loaded. 
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1.10 SYSTEM EXPANSION 

The Microcomputer Training System can be expanded in four ways: 

a) An additional 2048 bytes of Read-Write memory can be plugged into

the circuit board, giving a total of 4K bytes of RAM. Purchase Intel 

2114 (or equivalent) 1024 x 4 static RAM chips and insert them in the 

empty sockets. 

b) An additional 3K bytes of PROM can be plugged into the circuit

board for programs that you have developed and want to keep 

permanently available. Also, by cutting and replacing some circuit 

board traces it is possible to replace the lK PROM chips with 2K PROM 

chips, for a total PROM capacity of SK bytes. Additional PROM 

chips will be offered by ICS in the future to provide additional 

built-in programs. Contact ICS for details. 

c) The ICS Interface Training System can be connected to the MTS

through a cable connector at the upper edge of the MTS circuit board. 

This training system includes additional input/output ports, interval 

timers, a power driver, digital/ analog/digital converter, and an 

extensive training course workbook covering the use of these devices, 

real time programming, interrupt handling, and closed loop control. 
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d) The MTS can be connected to an S-100 system to give access to a 

full 64K memory, Teletype or CRT terminal, printer, floppy disc, and 

other system devices. An interface cable and adapter board are 

available from res to plug directly into the s-100 bus. Such a 

system can support BASIC, FORTRAN, PLM and other high level 

programming languages. 

1-11



INSTRUCTIONS, SETUP AND TEST 

This page intentionally left blank 

1-12



MICROCOMPUTER TRAINING WORKBOOK 

CHAPTER 1 

HARDWARE AND SOFTWARE FUNDAMENTALS 





INTRODUCTION TO CHAPTER 1 

This chapter serves as the foundation upon which subsequent chapters 

are based. The basic structure of computer systems is described, 

principles of the binary number system are developed, the functional 

organization of memory and the central processing unit is introduced 

and the execution of several computer instructions iS presented in 

some detail. 

By writing and loading simple programs of your own, you will learn to 

use the Microcomputer Training System keyboard and display. You will 

observe first-hand the dynamics of program execution by watching, 

step-by-step, the results of executing individual instructions on 

your own computer. 

If you are familiar with some of the topics covered here, skim but do 

not skip the material. The basic concepts are related to the 

structure and operation of the Microcomputer Training System. 

After completing this chapter you will have a clear comprehension of 

the basic fundamentals of computer hardware and software. Most 

importantly, your knowledge will be rooted in hands-on usage of your 

MTS computer system. 
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HARDWARE AND SOFTWARE FUNDAMENTALS 

1.1 BASIC CONCEPTS 

1.1.1 Definition of a Computer 

A computer is an electronic system which performs arithmetic and 

logical operations on data according to a sequence of instructions. 

The system consists of both hardware (physical devices) and software 

(sequences of instructions). 

HARDWARE: The electromechanical components of a 

cbmputer system� 

1.1.2 Basic Hardware Structure of a Computer 

A computer has three principal hardware subsystems: a Central 

Processing Unit (CPU), a memory, and lnput/Outp�t (I/0) devices. 

1-2

CPU: The central processing unit, a set of elements 

which perform the actual arithmetic and logical 

operations. The CPU also provides the central 

control function of the computer system. 

MEMORY: A physical device in which data and 

instructions are stored for subsequent 

processing 



HARDWARE AND SOFTWARE FUNDAMENTALS 

1/0 DEVICES: Electro-mechanical devices that provide 

input of data and/or instructions to the 

system and output of results. Usually 

input devices are separate from output 

devices, e.g., a keyboard for input and a 

CRT display for o utput. Sometimes one 

device can combine both functions, e.g., 

a Teletypewriter can be used to input 

information and print o"utput information. 

These three subsystems are interconnected such that each one can 

communicate with the other two: 

-
CPU -

, . , 

MEMORY 
- -

I/0 DEVICES � -
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The model for computer operation is as follows: 

1. Instructions are input via an INPUT DEVICE and

stored in MEMORY.

2. Data are input via an INPUT DEVICE and stored

in MEMORY.

3. The data are processed in a sequence and manner

specified by the instructions.

4. The results of the data processing are output via

an OUTPUT DEVICE.

In Figure 1-1, showing the layout of the MTS computer, the principal 

subsystems have been identified: The CPU, Memory, and Keyboard and 

Display. We will look at these in more detail later in the chapter. 
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!! INT�TED CD'VlPlJrER 5Y5r&t15, lf\C. 

FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY 

PROCESSOR 
HARDWARE 
8080A Microprocessor 
and Control Logic 

OMA 
Direct Memory 
Access (OMA) 
Channel 

RAM MEMORY AUDIO CASSETTE 
INTERFACE 2048 Bytes of RAM Memory for 

Programs and Data. Expandable 
On-Board to 4K Bytes. 

Audio Cassette Interface and 
Associated Software for Easy 
Program Storage and Retrieval 

DISPLAY 
On-Board 8-Digit 
LED Display 

PROM MEMORY 
Eraseable PROM Memory 
(containing the Educational Monitor 
Program) - 1024 Bytes. 
Expandable On-Board to SK Bytes. 

FREE AREA 
Space for User's 
Hardware Additions 

PROGRAMMABLE PERIPHERAL INTERFACE 
Programmable 1/0 Device Including Three 8-Bit Ports. 

MTS Board Layout 
Figure 1-1 

KEYBOARD 
On-Board Keyboard 
with 25 Keys for 
Program and Data 
Entry. 
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1.1.3 Basic Software Concepts 

The computer performs its functions under the control of a sequence 

of instructions. As an i 11 ustra tion, consider using a computer to 

convert miles to kilometers using the approximation that there are 

eight kilometers in five miles. The rule, as it might appear in a 

textbook, would say "Mu! tiply the number of miles by eight and divide 

by five to ob ta in the answer in kilometers." The computer wi 11 need 

more detailed instructions than this. First assuming that the 

computer has been set up for the conversion by storing appropriate 

instructions in memory, it will also require that data be stored in 

memory. In this case the data are: 

a. The number of miles to be converted.

b. The number 8.

c. The number 5.

Then, the sequence of operation might go as follows: 

1-6

a. START.

b. Retrieve (miles) from memory.

c. Retrieve (8) from memory.

d. Multiply (miles) by (8).

e. Store result in memory under (temporary).

f. Retrieve (temporary) from memory when ready for next operation.

g. Retrieve (5) from memory.

h. Divide (temporary) by (5).

i. Store result in memo.ry under (result).

j. Output/Display (result) and STOP
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A sequence of instructions which performs such a calculation (or 

computation) is called a program. 

PROGRAM: A sequence of instructions which performs a 

specific calculation, computation or set of 

logical operations. 

Programs may be specified which perform a vast and varied number of 

functions, including mathematical calculations, symbol manipulation, 

word processing and the detailed control and sequencing of 1/0 

devices. A collection of such programs is referred to as software. 

SOFTWARE: 1) A collection of programs which perform 

many different functions; 2) The program

component of a computer system in general, 

as distinguished from the hardware or 

physical component. 
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1.1.4 The ICS Self-Study Microcomputer Training Course 

This course is designed to provide you with the basic knowledge and 

practical experience which will give you the capability to: 

-Specify and write programs for performing a wide

variety of different functions,

-Enter prograills and data into the Training Computer.

-Verify that your programs operate correctly and,

when they do not, modify them until they do.

-Learn design techniques by actually connecting

I/0 devices to the Training Computer and controlling

them with your own programs.

-Explore the many hardware/software interrelationships,

learn the cost-effective use of each, and design

complete systems of your own.

In the succeeding chapters of this book you will be given, in 

step-by-step fashion, a sound foundation in both software and 

hardware techniques. You will progress from the simplified concepts 

of this introduction to a thorough understanding of these techniques 

as you "learn by doing", implementing each new concept yourself on 

your own computer. 
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1.2 NUMBER SYSTEMS AND REPRESENTATIONS 

1.2.1 The Representation of Numbers 

Physical representation of a decimal number requires an element with 

ten possible states, one for each of the decimal digits 0-9. Such a 

representation is found, for example, in the cog wheels of mechanical 

calculators. Elements with more than ten states are also common, for 

example in clocks. 

Anyone having experience in solid state devices used in electronic 

circuits will know. that substantial variability of characteristics 

exists for nominally identical devices. These characteristics are 

also usually a function of temperature. To stabilize such devices 

and to hold tolerances tight enough to distinguish unambiguously 

between multiple states would involve complex circuitry and would 

reduce reliability. Fortunately, the solid state devices are ideally 

suited for two-state operation in switching circuits, where an 

ON-state and an OFF-state can be readily distinguished. Thus, in the 

long run it is cheaper, simpler, and more reliable to work in terms 

of two-valued states, which are often two voltage levels, but can be 

for example - positive or negative polarity of a magnetic element. 

In all cases, however, the computer operates on these two states in 

terms of logic TRUE and FALSE. This is equivalent to using a 

two-state or binary number system in which TRUE = 1 and FALSE = 0. 

1-10 

BINARY NUMBER SYSTEM: A two-valued number system 

using only the digits O and 1. 
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In most applications with which we will be concerned, the ON or HIGH 

voltage level will be equated to TRUE or 1, and the OFF or LOW 

voltage level (usually near ground potential) will be equated to 

FALSE or O. This constitutes a POSITIVE LOGIC SYSTEM. Sometimes a 

NEGATIVE LOGIC SYSTEM is used, for ease of design in certain 

applications. In the latter system ON or HIGH is equated to FALSE or 

0, and OFF or LOW is equated to TRUE or 1. Unless otherwise stated, 

we will use the POSITIVE LOGIC SYSTEM, which simply means that when 

considering a binary system using only the digits O and 1, the 

0-level is low and the 1-level is HIGH.

To understand the basic principles of computer operation, it is 

essential to know something about digital logic and number systems. 

If you need a review of the former, then please see Appendix F, "A 

Primer on Digital Logic." We think you'll enjoy it. Now we will 

turn our attention to number systems in general and binary numbers in 

particular. 
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1.2.2 The Decimal Number System 

Consider the following four ways of representing the decimal number 

8192: 

( 1) (2) (3) (4) 

8000 8 X 1000 8 X 10 X 10 X 10 8 X 10
3 

100 1 X 100 1 X 10 X 10 1 X 10
2 

90 9 X 10 9 X 10 9 X 10
1 

2 2 X 1 2 X 1 2 X 10
°

8192 8192 8192 8192 

All of these representations are familiar. Colwnn (1) indicates that 

the number 8192 can be represented as the sum of four different 

numbers. Columns (2) - (4) go further by illustrating that 8192 

can be represented as the sum of four products. Col wnn ( 4), 

however, exemplifies the basic principle of all nwnber systems: each 

product can be obtained by multiplying a digit (in decimal the 

symbols 0-9) times a base (in decimal the number 10) raised to a 

power (see column 4 above). 

1-12 

DIGIT: One of the symbols used in a number system. 

BASE: The number of different symbols used in a 

number system. 

POWER: The number of times that a base is multiplied 

by itself to form a product. 
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The decimal number system has ten digits or symbols; therefore the 

decimal number system has a base of ten, and in the example each 

product is obtained by multiplying a digit times the base ten raised 

to a power. The power to which the base is raised can be seen to be a 

natural progression from the least significant digit (rightmost) to 

the most significant (leftmost). The value of a base raised to a 

power is thus a function of its position in a string of digits, where 

position is counted from right to left starting with zero. In the 

following table we call the quantity of a base raised to its 

positional power a "multiplier". 

digit to provide the final product: 

POSITION 3 2 

MULTI- 10
3 

10
2 

PLIER (1000) ( 100) 

DIGIT 8 1 

PRODUCT 8000 100 

This number is multiplied by a 

1 0 

10
1 

10
° 

(10) ( 1 ) 

9 2 

90 2 

Tables such as the above can be used to express the magnitude of a 

number in a system with any arbitrary base. The binary number system 

will be considered next. 
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1.2.3 The Binary Number System 

The choice of base for a number system may be accidental or 

deliberate. The decimal system doubtless became widespread because of 

the ease of counting on ten fingers. Nonetheless, the Babylonians 

used a base of sixty and the Mayans, a base of twenty. The binary 

number system, which is most appropriate for computers, uses a base 

of two, and the digits O and 1. 

Consider the following binary number: 

11011 

Had we lived from birth with a binary number system, we would 

immediately grasp its magnitude. As we have not, it is useful to 

convert it to its decimal equivalent. 

Knowing that binary numbers have a base of two, we can construct a 

table similar to that for decimal numbers. The table converts binary 

numbers to their decimal equivalent in the following fashion: 

POSITION 4 3 2 1 0 

MULTI- 24 23 22 21 20 

PLIER (16) (8) (4) ( 2) ( 1 ) 

DIGIT 1 1 0 1 1 

PRODUCT 16 8 0 2 1 
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Thus 11011 (binary) = (16 x 1) t (8 x 1) +. (4 x 0)-+ (2 x 1)-+ 

(1 x 1) = 27 (decimal). Larger tables may be constructed for 

converting longer strings of binary numbers. 

Looking at the table again, it can be seen that the multiplier of 

each digit position is exactly twice the value of the position 

preceding it. Using this property, it is easy to calculate the 

products which are to be summed. 

Conversion from decimal to binary could also be accomplished by using 

a table, but it is easier to use a process calle d "remaindering". 

Dividing an even decimal number by two will produce a quotient with a 

remainder of zero; dividing an odd decimal number by two will produce 

a quotient with a remainder of one. The remainders are use d  to 

construct the binary number, in the following example for decimal 57: 

Quotient Remainder 

57/2 = 28 1 po�ition 0 

28/2 = 14 0 1 

14/2 = 7 0 2 

7/2 = 3 1 3 

3/2 = 1 1 

41 l 1/2 = 0 1 5 

1 1 1 0 0 1 

Decimal 57 is the equivalent of binary 111001. W e  may check this by 

writing down the products, counting from position: (1 x 1)-+ (2 x 0) 

t (4 x 0)-+ (8 x 1) t (16 x 1) t (32 x 1), which sum to 57. 
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1.2.4 Binary Addition and Counting 

The rules for binary addition are very simple: 

0 t O = 0 

0 t 1 = 1 

1 t O = 1 

1 t 1 = 10 

In performing the final addition, we would say to ourselves "One plus 

one equals zero and carry one". The rule for carries in binary is 

similar to that in decimal but much simpler, as there are only two 

symbols to worry about instead of ten. In both systems, symbols 

cycle (are successively incremented by 1) thru a digit position until 

all have been used. The next higher position is then incremented and 

the cycle is repeated. 

The following addition tables illustrate counting rules for binary 

and decimal numbers: 
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0 + 0 = 0 0 + 0 = 0 

0 + 1 = 1 0 + 1 = 1 

1 + 1 = 10 1 + 1 = 2 

10 + 1 = 11 2 + 1 = 3 

11 + 1 = 100 3 + 1 = 4 

100 .. 1 = 101 4 + 1 = 5 

101 + 1 = 110 5 + 1 = 6 

110 .. 1 = 111 6 + 1 = 7 

111 + 1 = 1000 7 .. 1 = 8 

1000 t 1 = 1001 8 + 1 = 9 

1001 + 1 = 1010 9 + 1 = 10 

The binary portion of this table provides a graphic illustration of 

the relationship between a digit's position in a string and the 

power to which the base is raised at that position. In the "zero" 

position, note that that O's and 1 's cycle. In the "one" position, 

two O's cycle with two 1 's. In the "two" position, four O's wi 11 

cycle with four 1 's. Each cycle is twice (base two) the length of 

the previous cycle. For decimal numbers each cycle will be ten 

times (base ten) the length of the previous cycle. 

Subtraction, multiplication, division and the representation of 

negative binary numbers will be discussed in a subsequent chapter, 

but keep in mind that these operations are all derivatives of the 

d.'-"\vtcl.. 
basic operation of addition - which in turn is eFiHea from counting. 
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When using more than one number system, their representations can 

often become confusing. To avoid this problem, a number may be 

subscripted to indicate its base: 

(three) 

(eleven) 

In this manual whenever a number is not apparent from context, it 

will be subscripted or labelled appropriately. 

A number of nomenclature conventions are important to introduce at 

thfs time: bit, string, bit position, most significant bit, and 

least significant bit. 

1-18

BIT: An abbreviation for binary digit. 

BIT STRING: A sequence of bits. 

BIT POSITION: The location of a bit in a bit string. 

MOST SIGNIFICANT BIT: The leftmost bit of a bit string. 

LEAST SIGNIFICANT BIT: The rightmost bit of a bit string. 
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1.2.5 Hexadecimal Representation 

We have seen that binary numbers are ideally suited to machine 

representation, and that they are easily added. .Subtraction, 

multiplication and division are .also simple opera�ions in binary. 

There is in fact only one drawback to the use of binary numbers: they 

are difficult to perceive and describe if there are more than a few 

bits in a number. Consider, for example, the binary number: 

1011000100001001 

It is almost impossible to look at such a number and remember the 

digit in each bit position. There needs to be a way of encoding and. 

naming such numbers so that they may be more easily comprehended; 

while at the same time preserving the underlying binary notion. A 

conventional arrangement is to separate the binary number into four 

bit groups. 

A group 

0000 to 

symbols 

numerals 

table. 

of four bits can represent one of 16 numbers ranging from 

1111, or from Oto 15. What we need is a set of sixteen

to represent each of the different numbers. We use the ten 

0-9 and the six letters A-F, as indicated in the following

These correspond to the 16 white keys on the MTS keyboard. 
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0000 0 1000 8

0001 1 1001 9

0010 2 1010 A 

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D 

0110 6 1110 E

0111 7 1111 F 

Returning to the original sixteen bit example, 

1011 0001 0000 1001 

B 1 0 9, 

it can be seen that this notation is much easier to read and 

remember. The introduction of a sixteen-symbol convention to 

represent groups of four binary digits is for the convenience of the 

user only. It can be seen, however, that we have in fact introduced 

a new number system with a base of 16
10 

, and which ls called the 

hexadecimal number system (abbreviated hex). 
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HEXADECIMAL NUMBER SYSTEM: A sixteen-valued number system 

using the symbols O - 9, A - F. 
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While it is possible to add hex numbers and construct tables for 

converting hex to decimal and decimal to hex, we will not consider 

these operations in any detail. The use of hex notation will be 

limited solely to the representation of four-bit groups of binary 

numbers, and is used only to facilitate describing them. The use of 

numbers such as 3C
16 

, 82FF
16 

etc. will always be understood as a 

simple encoding of binary numbers. 

following hexadecimal numbers to binary. 

00 

02 

08 

10 

14 
I I I 

63 

7A 

9F 

8200 

83F8 

023D 

For practice, convert the 
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1.3 THE ORGANIZATION OF MEMORY 

1.3.1 Memory Words 

Data 

the 

and instructions, represented as binary numbers, are stored in 

computer's memory. The fundamental units of memory are word s, 

each of which has a word size. 

WORD: The basic unit of storage in a computer memory. 

WORD SIZE: The number of bits contained in a ,word. 

bit(N-1) •••••••••• bit 0 A word with word size N. 

The word size of memory varies with the size of the computer system. 

Very large computers have word sizes from 32 to 64 bits. 

Mini-computers typically have word sizes of 16 or 24 bits. 

Micro-computers usually have a word size of 8 bits, which is the size 

of the MTS memory word. One factor is common to most - the word size 

is divisible by eight. This has led to the adoption of a special term 

for a a string of 8 bits. 

1-22

BYTE: An 8-bit word. More generally, an 8-bit string, 

which can be part of a larger word. 

1 0 1 1 0 1 0 1 A byte representing 181 decimal 

or B5 hex. 
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Each word in a memory has a location which is identified by a memory 

address. 

MEMORY LOCATION: The position of a word in a memory. 

MEMORY ADDRESS: A number specifying the exact location 

of a memory word. 

A memory's size is equal to the number of words in a memory. 

MEMORY SIZE: The total number of words in a memory. 

An address size is the number of bits used to specify a memory 

address. 

ADDRESS SIZE: The total number of bits which may be 

used to specify a memory address. 
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1.3.2 Memory Module 

At first glance it might appear that memory size and address size are 

directly related. For example, a computer with an address size of 

eight bits can address 256 words; with an address size of sixteen 

bits, 65,536 words can be addressed. However, the capability of 

addressing words does not imply that the memory must contain that 

many words. Most 

available than they 

computers, in fact, have far fewer �emory words 

are capable of addressing. This is possible 

because memory is usually available in modules, with each module 

containing a few hundred or a few thousand words. The same CPU can 

thus be used in a variety of configurations, with the size of memory 

used dictated by the application for which the system has been 

designed. 

MEMORY MODULE: A unit of memory containing a fixed number 

of words. 

Memory modules contain a number of words or bytes which is generally 

expressed as some factor of the quantity 1024 = 210. This is such a 

convenient unit for describing memory size that the number 1024 has 

been given the symbol_!: A memory module containing 4096 bytes is 

referred to as a 4K memory; one with 512 bytes, a .5K memory. These 

concepts may be illustrated by the diagram on the following page: 
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:MEMORY MODULE 2 (2K) 

MEMORY MODULE 1 (lK) 

The diagram describes the memory structure of a system with a word 

size of eight bits, an address size of sixteen bits (Why are sixteen 

bits required?), and a memory size of 3K words. It is in fact the 

memory structure of a minimum MTS computer system. Two important 

properties of memory organization are illustrated here. 1) Within a 

memory module, addresses are numbered sequentially; 2) If two or 

more modules are used, the first address of the second module is 

independent of the last address of the first module (although for 

ease of implementation it is usually some multiple of lK). This 

independence is made possible by the fact that the two modules are 

"wired in"; the addresses of available words are determined by the 

hardware of the system. 
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1.3.3 Memory Access 

The process by means of which a request is made to access a memory 

word is conceptually simple. The requestor (the CPU or, in some 

instances, an I/0 device) outputs the requested address on parallel 

address lines, one line for each bit of the address. This signal is 

interpreted by an address decoder, which then selects the single lead 

which will access the desired memory word. The contents of the word 

will then be made available on the data lines. 

DECODER: A device containing a switching matrix which 

responds to the pattern of a set of input 

signals and outputs a signal determined by that 

pattern. Usually the output takes the form of 

activating a particular output line. 

The diagram on the following page illustrates the process: 
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The memory select lines are essentially internal to the memory 

itself. The address lines and data lines serve as the communication 

channels between the CPU and its memories and I/0 devices, and they 

have special names: address bus and data bus. 

ADDRESS BUS: The set of lines carrying address information. 

The number of lines in the bus will be equal 

to the address size of the system. 

DATA BUS: The set of lines carrying data. The number of 

lines will be equ al to the word size of the 

system. 
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1.3.4 Varieties of Memory 

There are two types of memory in your MTS computer system: Random 

Access Memory (RAM), which may be read or written, and Read Only 

Memory (ROM), from which data may be read but not written into. To 

read data from memory, the address bus is used to select a word whose 

contents can then be read out onto the data bus. To write data into 

memory, the address bus is used to select a word whose contents are 

then changed to that which is being sent on the data bus. Reading 

the contents of a word leaves the word unchanged. 

RAM� Random Access Memory which may be both read and 

written. 

ROM: Read Only Memory which may be read but not written. 

Read and write operations are illustrated in the following diagram: 
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Read operations put the 

contents of a word onto the 

data bus. 

DATA BUS 

t, 

RAM MEMORY ONLY 

ADDRESS BUS 

______ ..__.....__ ___ f's._ 

DATA BUS 

,, 

Write operations put the 

information on the data bus 

into a word. 

In Figure 1-2 the RAM and ROM of your MTS system are indicated. There 

are 2048 words of RAM and 1024 words of ROM. Your ROM contains 

a set of programs called the MONITOR, designed to as sist you in 

learning the system. The functions of the MONITOR will be defined 

step-by-step as you progress through this manual. The RAM will be 

used to store the different programs which you will write yourself. 

ROMs are used for programs which do not need to be changed, and are 

protected against inadvertent modification. RAM s are used for 

program development (these programs can then be placed in a ROM, but 

special equipment is required) and for storage of transient data in 

actual applications. Some of the RAM in your MTS is required for use 

by the MONITOR and is not available for user programs. This will be 

discussed later. 
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On the first page of this chapter, the CPU was described as a set of 

elements which perform the arithmetical and logical operations and 

also 

We 

let 

serve as the central controlling elements of a computer system. 

will look at some of these operations in more detail, but first 

us review the structure of the system including the data bus and 

address bus: 

DATA BUS 

CPU MEMORY 

ADDRESS BUS 

The CPU may send or receive data along the data bus which is 

bidirectional. The CPU sends memory addresses out on the address 

bus, but does not receive from the address bus. 

1.4.1 Functional Units 

Internally, the CPU consists of three primary functional units. One 

is concerned principally with addressing functions, selecting 

addresses which will be sent out on the ad�ress bus. A secon� unit 

is concerned with interpreting and decoding the instructions which 

are stored in memory. The third is the Arithmetic and Logical Unit 

(ALU), in which all arithmetic and logical functions are performed. 

These units are able to communicate with each other over an internal 
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data bus, which is the fou rth fu nctional component of the CPU. The 

following diagram sche matically outlines this organization: 
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The internal data bus is illustrated here only to indicate that there 

is a physical pathway between the various internal units of the CPU. 

The term data bus will always refer to the main (external) data bus, 

to avoid confusion. 

Each of the internal units of the CPU has one or more registers, one 

or two byte storage elements which are similar to memory locations 

but which are used for temporary storage, for holding the results of 

a calculation, or for other dynamic purposes. The nature and 

function of each register will be described as its use is first 

encountered. 

REGISTER: A one or two byte storage location used by 

the CPU for temporary storage or other dynamic 

purposes. 

1.4.2 The Execution of Instructions 

A computer is a system which performs operations on data according to 

a sequence of instructions called a program. A program is created by 

a user (programmer) to cause the computer to fulfill a particular 

task. An instruction is the smallest element of the program that 

conveys a complete meaning; it is similar to (and often represented 

by) a command in human language such as ADD B to A. To be stored in 

the computer's memory and handled by its electronic circuits, the 
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instruction must be represented as a binary number. This 

representation is called a code, and a program in binary code ready 

for use by the computer is said to be in machine language. 

INST RUCTION: The smallest element of a computer 

language that directs the computer 

to perform a specific operation. 

Each execution of an instruction will perform one small step in the 

calculation or process which the program is designed to accomplish. 

In turn, the execution of each instruction is broken up into a number 

of steps which are performed one after another. 

1.4.3 Instruction Cycles 

The program will be stored in memory; therefore the execution of each 

instruction will have to start with the transfer of an instruction 

from memory to one of the registers of the CPU. Then the instruction 

will be decoded (interpreted) and the operations specified will be 

carried out. The total time taken to fetch and execute an instruction 

is called an instruction cycle. 

varies considerably, depending 

performed. Every instruction 

instruction fetch. 
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INSTRUCTION CYCLE: The total time taken to fetch and 

execute an instruction. 

The basic sequence of events during an instruction cycle is: 

FETCH INSTRUCTION FROM MEMORY 

DECODE INSTRUCTION 

EXECUTE SPECIFIED OPERATIONS 

1.4.4 The Program Counter 

To fetch an instruction from memory 

address from which an instruction 

contained in a CPU register called 

requires a memory address. The 

is to be fetched is always 

the Program Counter (PC). There 

are two strong implications in this statement: there must be a way 

to initialize the PC with the address of the first instruction in a 

program, and there must be a way to modify the PC after each 

instruction cycle so that it will contain the proper address for the 

next instruction to be fetched. 
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PROGRAM COUNTER: A register in the CPU which contains 

the address of the next instruction 

to be fetched. 

Use of the PC is illustrated below: 
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1.4.5 The Instruction Register 

When a memory word has been selected by the PC, its contents will be 

gated onto the data bus and placed in a CPU register called the 

Instruction Register (I). 

INSTRUCTION REGISTER: A register in the CPU containing 

the instruction currently be�ng 

executed. 

CPU MEMORY 

' -····--------------,,--,
Ltnternal bus) DATA BUS 

I 7 0 

PC 'is----------01 � ./ 1--------·,
'V"�-----

1---
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_
D
_
D
_
RE
_

s
_
s
_
B

_
u
_
s
�, 

Word Containing 
Rext Instruction 

After the instruction has been loaded in I it is fed to the 

instruction decoder. The instruction decoder looks at a pattern of 

input binary signals and outputs a pattern of signals which will 

sequence and control all of the steps required to execute the 

instruction. 
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I 

DECODER 

1.4.6 The Accumulator 

t 

� ' '' ' _r-control and Sequencing

LSignals 

The program counter is one of the registers contained in the 

addressing unit. The instruction register is in the instruction 

unit. The final register which we will define at this point is 

called the Accumulator (A), an eight bit register in the arithmetic 

and logic unit. It is the register most actively used by programs 

because it contains the results of most arithmetic and logical 

instructions executed by the system. 

1.4.7 The Clock 

The computer operates in a sequential fashion, a step at a time. 

There must be no confusion or overlapping. Signals must be available 

on the appropriate lines at the right time. Many circuits are 

involved, each with inherent delays. Although the delays are short, 

on the order of nanoseconds, it does take time to access a particular 

device, e.g. memory, and get the response to the location required. 
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These delays ultimately limit the speed of operation of the computer. 

To ensure that each step is carried out in an orderly fashion, the 

process is controlled by a clock. It outputs a series of regularly 

spaced pulses that time all computer events. The clock frequency 

must be high enough to ensure rapid processing. 

The upper frequency limit is set by the inherent device delays. If 

the frequency is too high, confusion will result because required 

signals will not appear in time for a particular operation. In the 

MTS system, there is an 8224 clock generator that uses an 8801 clock 

generator crystal specifically selected for the MTS 8080A 

microprocessor. The crystal frequency is 18.432 MHz (+0.005%). This 

is counted down by a factor of 9, to produce pulses at intervals of 

488 nanoseconds. Thus the time for a single step in the MTS system 

is 488nS. Since a complete instruction may comprise about ten steps 

or clock periods, on the average, we arrive at an average time for an 

INSTRUCTION to be implemented of about 5 microseconds. 

We will shortly begin active use of the Microcomputer Training 

System, but before doing so the system monitor provided with the MTS 

must be described briefly. 
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1.5 THE MTS MONITOR 

1.5.1 Monitor Software 

The Microcomputer Training System has a CPU, memory (2K of·RAM, lK of 

ROM) and two I/0 devices, a keyboard and a display (see Figure 1-3). 

In addition to its hardware, the MTS also has a set of programs which 

are stored in read-only memory. This built-in software allows you to 

load your own programs into the RAM memory, and to control and 

observe the execution of your programs. This observation function i� 

called "monitoring", and the built-in programs in ROM memory are 

collectively called the Monitor. 

MONITOR: A set of programs stored in Read Only 

Memory, which provide ·for: 

a) Loading programs into RAM

b) Controlling and observing the

execution of programs

c) Receiving data from the keyboard

d) Displaying data in the eight digit

display

While the monitor provides these facilities to enable you to use the 

MTS immediately, in later chapters you will learn to write programs 

for controlling the keyboard and display yourself. 
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1.5.2 The MTS Keyboard and Display 

The MTS keyboard and display are shown in Figure 1-3. The display, 

located in the upper-right corner of the MTS, consists of two sets of 

four characters each. The characters are formed by sets of 

light-emitting diodes (LEDs). In each character position, there are 

eight LED elements arranged in the following fashion: 

,-1 

,-, 

By activating one or more of the LEDs in a character position a 

character is formed, for example 11A 11
: 

We will use initially a character set consisting of 0-9, A-F, and R. 

With a seven segment display, however, there are several ambiguities. 

The ten decimal digits are easily created; but 11B 11 would be the same 

as 118 11 , and 11b11 the same as 116 11 • 

and 11R 11 the same as 11A 11 • 

Also 1
1D11 would be the same as 110 11 
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These characters are, therefore, represented by: 

B = D = R = 

The keyboard is a five by five array. The upper row and right column 

of this array are command keys, each of which requests the monitor to 

perform a particular function. The remaining keys constitute the hex 

characters 0-9, A-F. For the moment we will ignore the alpha 

characters which appear on the 1, 2, 8 and 9 keys. 

Using the keyboard and display, you will be able to: 

-Inspect the contents of a memory word

-Change the contents of a memory word

-Inspect the contents of the program counter (PC)

-Change the contents of the program counter

-Inspect the contents of a register (e.g. A)

-Change the contents of a register

-Execute an instruction contained in a memory word 

-Execute a program contained in memory
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1.5.3 Using the MTS 

When you use the monitor to control and observe execution of your 

programs you will be able to display and alter the content of the 

registers and program counter. Since the monitor is a program 

running in the same computer that you are using, it uses the program 

counter and registers itself. The information displayed has actually 

been stored in memory by the monitor; only when you press STEP or RUN 

is this information actually placed in the program counter and 

registers. When we refer to the program counter or to a register in 

this text we will generally be speaking of the values applicable to 

your program. 

When power is turned on, the monitor will set the content of your PC 

to 8200, which is in RAM memory, and display this number in the left 

four digits of the display panel. The content of location 8200 will 

be displayed in the rightmost two digits. The monitor will then wait 

for you to depress one of the keys on the keyboard. Initially, the 

content of 8200 will be undefined; the contents of RAM memory are not 

preserved when power is turned off, and will be random when power is 

turned on. For convenience in writing, therefore, whenever a number 

is undefined we shall represent it with question marks. When power 

is turned on, your display will read: 

Remember, the 

will simply 

predict! 

1 s200 I ??J 

display will not actually contain question marks; it 

be a number which the author of this manual cannot 
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1. 5. 4 Inspecting Memory Contents 

Having turned on the MTS, take one of the blank coding sheets 

provided. Note the columns labeled ADDRESS and CODE. Enter 8200 in 

the first column, and its content (the two rightmost digits) in the 

second column. We will now continue to examine the contents of the 

first ten words of memory. To look at the content of 8201, press the 

command key labeled I NEXT I
The display should now read: 

Write 8201 in the 

Press INE
:

TI again, 

content. ontinue in 

first column, and 

and write down 

this fashion until 

1 s2011 ??I 

its content in the second. 

the address (8202) and its 

the display reads 8209. You 

should now know the contents of the first ten words of your memory, 

in whatever random condition they may be. 

The command key [;] (for RESTART) has the same effect as 

turning power on: the user's PC will 

8200 will appear i 11 the left four 

content of 8200 will be displayed in 

you have made an error, press 

B 
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1.5.5 Changing Memory Contents 

We wi 11 now consider changing the contents 

The display will read: 

of a memory word. Press 

l 82001 ?? I 

Now press key 1 The display will show Err • The monitor 

demands a command before it will accept hexadecimal data, because 

otherwise it does not know what was intended. By pressing the MEM 

(for MEMORY) key, you command the monitor to accept data from the 

keyboard and store 

displayed. Press 

read: 

it at the memory location whose address is 

then hex key [J ; the display wi 11 

1 ·8200 I • 01 l

Notice the decimal point to the left of the memory content. This 

indicates that data can be entered to memory. If it is not on, the 

monitor will not accept the data. 

Press hex key D the display will read: 

I s200 I • 12 J

Press hex key D ; the display wi 11 read:

1 82001 .231 

Each time a hex key is pressed, the right digit is shifted to the 

left, displacing whatever was there, and the new digit is entered in 

the rightmost position. Remember, a memory word can store onty two 

hex characters (one byte). The monitor will allow you to press as 

many hex keys as you desire, but only the last two will be stored. 

This capability allows you to correct keying errors without the 

necessity of pressing another command key. To see what all of the 
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hex characters look like on the display, continue pressing the keys 

until you 

and[]

Now press 

have seen the entire set. Finally, press_ hex keys�

so that the display reads: L___J 

I NEXT I followed by hex 

1 82001 1 • 011 

The 

d i sp l a y w i 11 read: 

keys� and�·

1 8201 l • 231

Pressing NEXT allows you to enter data in consecutive memory 

addresses, provided that MEM has already been pressed. The decimal 

point reminds you that MEM has been pressed. 

NEXT increments by one the address displayed. After the first time 

you press MEM, pressing MEM again will decrement the address by one 

and display the memory content. This makes it easy to back up and 

correct an error. Try incrementing and decrementing the address with 

NEXT and MEM. 
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1.6 PREPARING A PROGRAM 

You are now ready to prepare your first simple program. First, we 

will define the instructions which will be used. Next we will write 

the program down on paper. Then the program will be entered at the 

keyboard and verified. Finally, the program will be executed one 

instruction at a time, and the sequence of operations within the 

system will be detailed for each instruction. 

Instruction codes are one-byte, 8-bit binary words represented by two 

hex characters. Neither the binary word nor its hex equivalent has 

an intrinsic meaning, so for each instruction a short two, three or 

four character mnemonic has been assigned. The mnemonic is a 

shorthand representation of the meaning or functional description of 

the instruction. 
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1.6.1 Instructions to be Used 

The first instruction we will use is defined as follows: 

BINARY CODE: 

HEX CODE: 

MNE MONIC: 

MEANING: 

00000000 

00 

NOP 

No Operation. This is an instruction 

which does nothing at all. Its execution 

has no effect on any memory location or 

CPU register. 

The chief purpose of NOP is to leave a ·space open in case you have to 

fix something - like leaving a spare pin on the edge connector of a 

printed circuit board. This instruction appears in the instruction 

set of almost every computer on the market, from huge IBM 

installations to microprocessors such as the one in your MTS. It is 

in effect a non-instruction; when a pattern of all zeroes is 

presented to the instruction decoder, no operation is specified. 

Register A (the Accumulator) is the most important register in the 

CPU from the programmer's point of view, and there are a number of 

instructions which manipulate its contents. It is logical to 

consider next an instruction which sets the contents of Register A to 

zero. 
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BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

10101111 

AF 

XRA A 

Clear the contents of 

Register A (set to zero) 

The mnemonic for this instruction will appear a bit strange. This is 

actually one bf a set of logical instructions. operating on the A 

register. The full significance of the mnemonic will become apparent 

when the other instructions are considered. The third instruction 

which will be used in your first program is one which increments 

(adds one) to the contents of the A register. 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

00111100 

3C 

INR A 

Increment Register A (add one 

to the contents of Register A) 

With these three instructions, you can write a program which 

initializes Register A with a value of zero and then successively 

adds one to A until it contains a specified value. Although a very 

simple routine, it will introduce and clarify some of the basic 

concepts of instruction and program execution. 
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1.6.2 Program Specification 

Writing a 

beginning 

programs 

definition 

program is a very structured exercise, and from the 

you are urged to be methodical and precise about it. All 

should originate in a program specification, a written 

of what the program should accomplish. The specification 

for your first program is: 

"Write a program which begins with a "no operation" code, then sets 

Register A to an initial value of zero and then, by successive 

increments of one, ends with the number seven in Register A." 

1.6.3 Writing (Coding) the Program 

The next step is to write the program down on paper, using the same 

notation which was used when you inspected the contents of the first 

ten locations of your memory. An important addition to that format, 

however, will be a column for comments. Programming mnemonics are so 

terse that simply looking at a sequence of hex codes or mnemonics 

will not convey the function, goal or intent of the program. 

Comments are used to convey this information. Writing a program is 

often called "coding", as it is a translation from a natural language 

to computer code. 

Your first program, written in the recommended format, should look 

like Figure 1-4 
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Remember, comments are used so that you will be able to look at a 

program you wrote weeks or months ago and understand what it is your 

program is doing. Even more important, when you are working as part 

of a team, they help someone else understand what your program is 

doing. 

1.6.4 Loading Your Program in the MTS 

Now that your program is committed to paper, it is time to load it in 

the MTS memory. First, initialize the system by pressing � 

which will establish the first entry point at 8200. The scenario 

should be as follows: 

I 8200 I ?? I

Set in write mode to enter data: 

B I 8200 I .??! 

Enter first instruction: 

I s2ool • oo)
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Advance to next instruction: 

I NEXT I I 82011 .??!

Enter second instruction. 

D D r s2011 • AF'!

Advance to next memory address. 

EJ 8202! • ??i

D D 8202! • 3C!

EJ 8203! • ??l

DD 8203! • 3C!

EJ 
8204! • ??i

DD 
8204 ! • 3C !

EJ 8205! • ??!

D8 8205! • 3C!
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8206! • ??l

8207! • 3C!

8208! • ??!

820AI .3a 

Your program has now been entered in memory. 

1.6.5 Verifying and Correcting the Stored Program 

Now that you have loaded your program, it will be helpful to you to 

verify it. It is easy to make a mistake at the keyboard, and the 

computer is absolutely intolerant of mistakes in the sense that it 

will do exactly what you tell it to do. 

entries are correct, press B and then, 

command, check the the contents of memory 

coding sheet. If you detect an incorrect code 

in a word, it can be easily corrected, e.g. 

The entry at 8205 should have been 3C. To correct it, 

Corrects the error. 

I NEXTI 

I 8205 I 

8205! 

I 82061 

3DI 

• 3C!

• 3CJ
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Inspect the next memory byte, then continue. 

When you are satisfied that the program is correct according to your 

coding sheet, you are ready to execute the program. 

1.6.6 Executing Your Program 

To execute your program and follow the results of its operation on a 

st

s

-b -step basis, three new commands must be introduced. These are 

REG , l STE
: 
I and l ADD

: 
I . The � cCMDmand causes the

rig four 1g1 s of your 1sp ay to presen�egister name and its 

contents. To use the � command, therefore, it is necessary 

to follow it by pressing� key which is the name of the register 

you wish to see. For the current program, we are interested only in 

Register A. Using the protocol developed above: 

82001 A-??! 

The command REG followed by the hex character A leaves the 

address at 8200, but the right four digits identify the register (A) 

and its contents (undefined at .this point). All of the registers 

will be represented in the right four digits according to the format: 

register name/dash/register contents. 

The ISTEPI command executes the instruction contained in the 

location designated by the left four-digit display (the PC). After 

each � command, the display wi
�

esent the address of the 

hext lnWion. If the command .W 8 has been given

putting the system in the "display register mode, the contents of A 

will also be displayed after each instruction has been executed. 
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Follow this scenario on your MTS. Use your coding sheet as a guide: 

8200! 00! 

Set PC to 8200 and display contents (NOP). Now display Register A. 

8200! I A-??! 

Before going on, be sure that the toggle switch at the left side of 

the MTS is set to STEP. Now press the STEP key. 

tTEPI 8201 J A-??) 

The NOP instruction has been executed and the PC has been 

incremented. Nothing has been done, so the content of A is still 

undefined. 

8201 ! AF! 

ADDR displays the current program counter and the instruction at that 

location. 8201 contains the instruction XRA A, clear Register A. 

I STEP I I 8202 J I A-00! 

Register A has now been cleared (it may have been empty before). 

I STEP I 82031 A-01!

Register A has been incremented. Look at your coding sheet. The 

instruction at 8203 is INR A. 

Press I STEPI to execute it:

I smJ 8204! A-02l
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Continue stepping through your program in this fashion until the PC 

is set at 8209. At this point, Register A should contain the number 

7. If it does not, you have made a mistake either in entering your 

program or in pressing the command keys to execute it. If you have 

finished with the wrong value, inspect the memory to make sure it 

agrees with your coding sheet, then go through the above procedure 

again. 

Anytime 

we can 

contents 

contents 

we wish to see the memory contents at a particular address, 

use l:D::l · Following this by 1::::1 causes the memory

at tha ticular address to be tr as an instruction, 

being updated, if necessary, by the execution of the 

instruction carried out by the STEP command. If EJ had not been

operated, we would display the next instruction. 
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1.6.7 Instruction Execution: A Detailed Examination 

We will now look at the three different instructions used in your 

program, describing what happens to the PC, and Registers A and I at 

each stage of instruction execution. Initialize the system: 

B 8200! dbl 

When the command STEP is issued, the following operations will occur: 

1) The processor sends the contents of (PC) to memory, selecting

address 8200.

A I ??! 00 8200 

I I ??! 
AF 8201 

3C 8202 

3C 8203 
PC 8200 

3C 8204 

The contents of A and I are not yet defined. 
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2) Next, the memory sends the contents of address 8200 to the I

register and PC is incremented by 1.

----··· 00 8200 

I AF 8201 

3C 8202 

* 3C 8203
PC �--( (PC)--(PC)+l) 3C 8�04 

The contents of A are still· undefined. The instruction is executed 

and as it is a NOP, the instruction cycle is completed. The next 

instruction will clear Register A: 

lsml 
1) The processor sends the contents of (PC) to the memory,

selecting address 8201:

A I?? I 00 8200 

I � 8201 

8202 

8203 
PC j 8201 f 3C 8304 

(L-) in an expression should be read as
* The backward arrow � 

b "  Thus this expression reads:
"is replaced y .  

"The contents of 

PC are replaced by the contents of PC added to one".
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2) The memory sends the contents of address 8201 to· Register I,

and the PC is incremented. 

A 

I 

PC l 8202 I--( (PC)- (PC)+� 

00 

AF 

3C 

3C 

3C 

8200 

8201 

8202 

8203 

8204 

3) The instruction is executed and Register A is set to zero.

A �- ( (A)�O ) 00 8200 

I !AF!
AF 8201 

3C 8202 

3C 8203 

PC 
� 3C 8204 

The next instruction will increment Register A: 
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1) The processor sends the contents of PC to the memory,

selecting address 8202.

A 

I 

PC 8202t-----

00 
AF 

3C 

3C 

3C 

8200 
8201 

8202 

8203 

8204 

2) The memory sends the contents of address 8202 to Register I,

and the PC is incremented.

A � 00 8200 

I 
AF 8201 

3C 8202 

3C 8203 
PC I 02031 • ( (PC)�(PC) +l) 3C 8204 

3) The instruction is executed and Register A is incremented

by 1.

A �- C (A)�(A)+l ) 00 8200 

I � 
AF 8201 
3C 8202 

3C 8203 
PC I s203I 3C 8204 
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This chapter has covered some very important basic concepts, both 

of hardware organization and function and software preparation, 

loading and executing. If you feel uncomfortable with any of the 

materials presented, 

should now understand 

go back over the 

the functions of 

relevant sections. You 

the following command 

keys. Define each of the m mentally and then look at the 

fol lowing page. 

ADDR 

NEXT 

MEM 

REG 

STEP 

RST 
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ADDR 

NEXT 

MEM 

REG 

STEP 

RST 

1-66

Displays the content of your program 
counter, and the hex code of the 
instruction addressed. It permits you 
to enter another address, by following 
ADDR with four (or more) hex keys. 

Advances to the next address for display 
of the memory content. NEXT does not 
affect your program counter. 

Enables entry of data to the memory location 
displayed. The memory content display 
indicates that data entry is enabled. NEXT 
will advance to the next location, and data 
entry is still enabled. Pressing MEM 
repeatedly decrements the memory address. 
MEM does not affect your program counter. 

Followed by the name of a register (such as A) 
displays the content of that register. 

Causes execution of the instruction addressed 
by your program counter. If STEP follows the 
entry of a new address by (ADDRxxxx) then that 
address is entered into your program counter, 
and the instruction located there is executed. 

Returns the computer to a standard condition. 
Your program counter is set to 8200. 
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2.1 PROGRAM EXERCISE #2 

In your first program, all of the instructions used (NOP, XRA A, INR 

A) were one byte instructions , fetched from memory and executed with

no further memory accesses required. Many instructions comprise two 

or three bytes and require more than one memory access. In your next 

program two such instructions will be considered. Additional memory 

accesses are required whenever an instruction operates on data which 

is stored in memory, or when the results of an operation must be 

stored in memory. 

2.1.1 The ADI Instruction 

A number of instructions have the effect of adding a number to the 

contents of the Accumulator (A). One of these is "Add Immed iate", 

which translates to: "Add to the Accumulator the contents of byte 

two of the instruction". Thus if the instruction is contained in 

address m, the contents of m + 1 would be added to A. 

. BINARY CODE: 

HEX CODE: 

SECOND BYTE: 

MNEMONIC: 

MEANING: 

11000110 

C6 

Data 

ADI 

Add to the Accumulator the 

contents of the next memory 

address. 
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The ADI instruction requires two memory fetches, the first to get the 

instruction and the second to get the contents of the following word. 

Each memory access which is requ ired during an instruction cycle is 

called a machine cycle. The instruction INR A takes one machine 

cycle; the instruction ADI takes two machine cycles. 

_MACHINE CYCLE: The operation of accessing an address i

either for reading from or writing to 

that address. 

2.1.2 The STA Instruction 

To transfer data from the Accumulator to a memory location takes even 

more machine cycles (before reading further, close the manua l and try 

to determine by yourself how many cycles are required). The 

instruction to store the Accumulator is a three byte instruction. 

Bytes two and three conta in the address in which the data is to be 

stored: 

BINARY CODE: 

HEX CODE: 

BYTE TWO: 

BYTE THREE: 

MNEMONIC: 

MEANING: 

2-2

00110010 

32 

Low-order part of storage address 

High-order part of storage address 

STA 

Store the contents of the Accumulator 

(A) at the address which is conta ined

in the following two memory locations. 
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ADI is a two-byte instruction, STA is a three byte instruction. 

Their execution is more complex than the execution of the single byte 

instructions used in the previous program, so we will look at them in 

detail before using them. 

2.1.3 Instruction Execution Details 

When the ADI code is fetched from memory and decoded, the logic 

determines that a second memory read operation is required, and that 

the data read is to be added into Register A. The operation looks 

like this: 

A 

p C 

A 

p C 

1) The processor sends (PC) to memory,

selecting address 8200 (for this example)

C6 

� 07 

?? 

8200 

8 

8 

8 

2) The memory sends the contents of address 8200

to the I register and (PC) is incremented by

C6 8 

� 
07 8 

?? 8 

C6 

__ a_2_0_1 _ ___.! • C (PC) �· (PC) +l ) 

2 0 0 

2 0 1 

2 0 2 

1. 

2 0 0 

2 0 1 

2 0 2 
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2-4

A 

3) The instruction is decoded, and the processor again

sends (PC) to memory, selecting address 8201.

C6 8 2 0 

� 07 8 2 0 

?? 8 2 0 

0 

1 

p C 82 01 

p C 

4) The memory sends the contents of address 8201, which

is added to the contents of Register A, and (PC)

is incremented by 1.

C6 8 2 0 

� (A)+(8201) 0 7  8 2 0 

(A) •
?? 8 2 0 

[ill 

8202 �(PC)� (PC)+l ) 

5) The instruction is completed. The memory has been 

�ccessed twice (two machine cycles), and (PC) has 

been incremented twice. 

0 

2 
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When the STA instruction is decoded, the logic "recognizes" that an 

address must be obtained from memo�y before the instruction can be 

completed, a.s the operation commanded is to store the contents of A 

in that address. The contents of the two memory words following the 

instruction STA must be read and stored temporarily in the processor 

so that they may be used. This is accomplished by the use of two 

registers which are called W and Z. The high-order bits of the 

address (most significant eight bits) are stored in W and the low 

order bits (least significant eight bits) are stored in z. The 

sixteen bit quantity W, Z is then the address in which the contents 

of A will be stored. Like Register I, Registers W and Z are for 

internal use by the processor only and no instruction explicitly 

refers to them. 

W, Z REGISTERS: A temporary regi�ter pair in the address 

logic used during internal execution 

of instructions. 
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The details of execution are: 

A 

w z 

p C 

A 

w z 

p C 

1) The processor sends (PC) to memory,

selecting address 8200 (for this example):

32 

00 

83 

?? 

?? ?? 

8200 

2) The memory sends the contents of 8200 to

Register I and (PC) is incremented by 1.

.. 32

0 00 

83 

32 ?? 

?? ?? � 

8201 • C (PC) - (PC)+l ) 

8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

3) The instruction is decoded, and the processor

sends (PC) to memory, selecting address 8201.

A 

w z 

p C 

2-6

0 

GJ 

?? ?? 

8201 

32 8 

00 8 

83 8 

?? 8 

2 0 0 

2 0 1 

2 0 2 

2 0 3 



w z 

p C 

w z 

p C 

TWO AND THREE BYTE INSTRUCTIONS 

4) The memory sends the contents of 8201 to

0 

0 

?? 00 

8202 

Register Z and (PC) is incremented by 1. Now Z

contains the low order part of the address in which

the contents of A will be stored. The desig n of

the processor requires that the low order part of

the add ress be stored immediately after the

inst ruction code, followed by the high order portion.

32 8 2 0 0 

o"o 8 2 0 1 

83 8 2 0 2 

?? 8 2 0 3 

c (PC) - (PC)+l ) 

5) Again the p rocessor sends (PC) to memory,

selecting address 8202.

32 8 2 0 0 

� 00 8 2 0 

83 8 2 0 2 

Gu ?? 8 2 0 3 

?? 
. . 00 

8202 
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A 

w z 

p C 

A 

w z 

p C 

2-8 

6) The memory sends the contents of 8202 to

Register W, and (PC) is incremente d by 1. The 

complete address in which the contents of A

are to be  stored is now available.

32 

� 00 

83 

?? 

00 

8203 • ((PC) - (PC) +l ) 

7) The contents of W, Z are sent to memory,

selecting address 8300:

32 

� 00 

83 

[ii] ?? 

83 00 

� 8203 

8 2 

8 2 

8 2 

8 2 

8 2 

8 ?-

8 2 

8 2 

8 3 

0 0 

0 1 

0 2 

0 3 

0 0 

0 

0 2 

0 3 

0 0 
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A 

w z 

P C 

8) The processor sends the contents of

Register A to address 8300 and the

instruction is completed.

�---

� 
� 

32 
00 
83 
?? 

-

8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

8 3 0 0 

The execution of STA has required four machine cycles: an 

instruction fetch, two memory reads, and the one memory write. Do 

not be confused by the fact that the high and low order parts of the 

address in this three-byte instruction (and all similar instructions) 

are reversed. The arrangement was adopted by the micro processor's 

designers to simplify parts of the internal circuitry. 

Notice that throughout the execution of STA, the content of Register 

A did not change. It was duplicated in the memory location at 

address 8300 and remains in Register A as well. 

2-9



TWO AND THREE BYTE INSTRUCTIONS 

2.1.4 Writing the Program 

You are now ready to observe the behavior .of these instructions in a 

program. As before, we start with a program specification: 

"Write a program which sets the Accumulator to an initial value 

of seven and then, by successive increments of one, doubles the 

initial value. Store the result in location 8300." 

Before looking closely at the model coding sheet which follows, try 

to write the program by yourself. 

ADDRESS HEX MNEMONI C COMMENTS 

8200 00 NOP Dummy operation 

8201 AF XRA A Clear A 

8202 C6 ADI Add immediate to A the number 

8203 07 -- contained in this location 

8204 3C INR A Increment Register A 

8205 3C INR A 

8206 3C INR A 

8207 3C INR A -- continue to increment 

8208 3C INR A 

8209 3C INR A 

820A 3C INR A Until (A) = 1410 
= E 16

820B 32 STA Store result in 

820C 00 location 

8200 83 8300 

820E 00 NOP Dummy operation. 
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Note that we have included two NOP instructions that were not in the 

program specification. We will not normally write these into the 

specification but will assume that the programmer will insert them 

wherever he thinks it necessary, i.e., when he thinks space should be 

left for future program amendment. 

The instruction in location 8201 clears A. This is required because 

ADI adds the contents of the next memory byte to A. STA operates to 

replace the contents of 8300 with the new value. Adding and 

replacing are both common operations, and the beginning programmer 

must be careful to distinguish them. 

2.1.5 Loading and Executing the Program 

Review the directions for loading a program, then enter your new 

program in the MTS memory. Do not forget to verify it! Before 

executing your program, we need to look at memory address 8300. In 

order to d
LJ 

the command key IADDR I must be introduced, 

Pressing 
L� 

wi 11 display the address contained in the PC and 

the contents of that address, Since � always sets you, 

program counter to 8200, you should see: 

If 

those 

I ADDRI 

I ADDR 1

keys will 

8200! PPI 

is follo�ed by four hex keys, the address specified by 

be displayed with its contents: 

BEJEJEJEJ 1 8300 I ??i 
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TWO AND THREE BYTE INSTRUCTIONS 

If this sequence is now followed by I MEM I the address is now a 

memory address and data may be entered. As this is the address which 

your program will use to store a result, it would be instructive to 

set some arbitrary initial value, so: 

83001 771 

Memory location 8300 now contains 77, and we are ready to execute 

your program. Although we have addressed 8300, the program counter 

still contains 8200. You can test this by: 

I ADDR]

Only the 

program, 

I STEP I and

can change the 

B commands, 

program counter. 

the current value of the program counter. 

The contents of A are undefined here. 

2-12
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TWO AND THREE BYTE INSTRUCTIONS 

The instruction in 8200 was NOP; only (PC) changes.

I STEPI

I 8201 I I A-?? I 

!8202) !A-00)

Looking at the coding sheet,  we see that XRA A has cleared Register 

A. 

I STEP I !8204) IA-07)

The (PC) has been stepped by two, and A contains the results of the 

ADI instruction. 

I 8205 I I A-08 ! 

The first of the INR A instructions adds 1 to the contents of A. 

I STEPI

I STEPI

! 8206) I A-09 I

I 82011 I A-OA) 

1 82ost I A-oal 
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'.NVO ·AND THREE BYTE INSTRUCTIONS 

I sml 8209) I A-OC! 

! 820A I I A-OD)

820BI i A-OEI 

Now A contains OE
16 = 14

10; the next instruction will store this

result in 8300: 

!820El IA-OE! 

The (PC) has been ste pped by th ree and the program has been executed. 

Now take a look at location 8300: 

BEJEJEJEJ 83001 OE! 

If at any point your program execution did not produce the results 

des cribed above, correct the bad instruction in your memory (If 

there's an er ror, there's a bad instruction!) and start over. 
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2.2 DATA STORAGE CONVENTIONS 

TWO AND THREE BYTE INSTRUCTIONS 

Y ou may have wondered why 8300 was selected as the storage location 

for this result. While it is somewhat arbitrary, the basic 

requirement is to keep programs and data separated. It would have 

been quite possible, for example, to store the results in location 

820F. The program would execute exactly as before, except that the 

results would be placed in a different memory word. Suppose, 

however, that you wished to modify the program, to add instructions 

to achieve some different purpose? The program could not utilize 

additional consecutive addresses without changing the initial storage 

address. In the example, only one such address was used, but in a 

�omplex program with many storage addresses, the problem becomes 

acute. Data addresses are therefore chosen to leave lots of space 

between program and data areas. 

N.B. As the monitor is stored in read�only memory, it requires part 

of the RAM for temporary storage of data. Sixty four bytes of RAM, 

addresses 83CO through 83FF, are allocated to the monitor; care 

should be taken not to modify these memory locations. 
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TWO AND THREE BYTE INSTRUCTIONS 

2.3 PROGRAM EXERCISE #3 

2.3.1 The LDA Instructions 

An instruction similar to STA has the effect of transferring data 

from memory to the Accumulator: 

BINARY CODE: 

HEX CODE: 

BYTE TWO: 

BYTE THREE: 

MNEMONIC: 

MEANING: 

00111010 

3A  

Low-order part of address. 

High-order part of address. 

LDA 

Load the Accumulator with the 

contents of the word whose 

address is contained in the 

following two memory locations. 

The detailed instruction cycle for LDA is shown in Figures 2-1, 2-2, 

and 2-3. 

data bus. 

In these figures note the mention of the address bus and 

Review Section 1.3.3 and be sure you understand these 

buses and their functions. 
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TWO AND THREE BYTE INSTRUCTIONS 

PROCESSOR MEMORY 

w 

z 

AF 
AF 

ADDRESS��B�U�S:__�-a�I 3A
/1----l 

0 
0 

p C 8204 I 

Processor sends PC 

Memory selects 8204 and 
returns its contents on 
data bus 

A 

w 

z 

p C ....__a-_2 o_s__. G) 

CONTENTS 

� Processor loads data 
Register I and increments PC

A 

w 

z 

p C 

3A 

8205 

© 

I 

Processor interprets 3A as a three 
byte instruction 

LDA Instruction Cycle 

Figure 2-1 

00 
83 

14 

8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

8 2 0 6 

a 2 o 1

8 2 0 8

8 2 0 9

8 2 0 A

8 2 0 B 

8 2 0 C 

8 2 0 D

8 2 F F 

8 3 0 0 

8 3 0 1 
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TWO AND THREE BYTE INSTRUCTIONS 

PROCESSOR MEMORY 

® 

® 

0) 

A 

w 

z 

p C 

3A 

8205 

Processor sends PC 

Memory selects 8205 and 
returns its contents 
on data bus 

A 

bfil 
3A 

w 

z 00 

p C 8206 

Processor loads data to 

Register Z and increments 

Processor sends PC 

A 

w 

z 

p C 

3A 

83 

00 

8207 

PC 

Memory selects 8206 and returns 
its contents on data bus 

Processor loads data to Register W 
and increments PC 

LDA Instruction Cycle (continued) 

Figure 2-2 
2-18

AF 

3A 

00 

83 

FF 

14 

FF 

8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

8 2 0 B 

8 2 0 C 

8 2 0 D 

8 2 F F 

8 3 0 0 

8 3 · 0 1 
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TWO AND THREE BYTE INSTRUCTIONS 

PROCESSOR MEMORY 

A 

-� 

3A 

w 83 

} 
@

z 00 

p C 8207 

Processor sends contents 
of W and z on address bus 

A 

w 

z 

p C 

3A 

83 

00 

8207 

Memory selects 8300 and returns 
contents on data bus 

Processor loads data from data 
bus into Register A 

LOA Instruction Cycle (continued) 

Figure 2-3 

AF 

3A 

00 

83 

8 2 0 0 

,8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

8 2 0 B 

8 2 0 C 

8 2 0 D 

8 2 F F 

8 3 0 0 

8 3 0 1 
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TWO AND THREE BYTE INSTRUCTIONS 

2.3.2 The JMP Instruction 

To this point we have used instructions which perform an operation 

and advance the program counter so that it points to the address of 

the next sequential instruction. A very important class of 

instructions allows a program to branch or "jump" to an instruction 

at an arbitrary add ress. One of these instructions is JMP: 

BINARY CODE: 

HEX CODE: 

BYTE TWO: 

BYTE THREE: 

MNEMONIC: 

MEANING: 

11000011 

C3 

Low-order part of address. 

High-order part of add ress. 

JMP 

Load the PC with address contained 

in the following two memory 

locations. 

The Execution cycle of the JMP instruction is shown in Figures 2-4 

and 2-5. 
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TWO AND THREE BYTE INSTRUCTIONS 

PROCESSOR MEMORY 

8 2 0 0 

A 

� 

8 2 0 1 

8 2 0 2 

I 32 AF 8 2 0 3 

w 83 3A 8 2 0 4 

z 00 00 8 2 0 5 

p C 820B 83 8 2 0 6 

3C 8 2 0 

Processor sends PC 32 8 2 0 8 

0 Memory selects 820B 00 8 2 0 9 

and returns its content 
83 8 2 0 A 

8 2 0 8 

8 2 0 C 

8 2 0 
A 

C3 
® 

w 83 
z 00 

p C 820C 

0 Processor loads data to Register I

and increments PC 

Processor interprets C3 as three 
byte instruction 

FF 8 2 F F 

Processor sends PC 
15 8 3 0 0 

� 

8 3 0 
A 

C3 

G) w 83 

z 03 
p C 820D 

© Memory selects 820C and returns its

(j) 
content on data bus 

Processor loads data to Register z and 
increments PC 

JMP Instruction Cycle 
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TWO AND THREE BYTE INSTRUCTIONS

0 
0 

A 

w 

z 

p C 

PROCESSOR 

C3 

83 

03 

820D 

Processor sends PC 

Memory selects 820D 

and returns content 

A 

w 

z 

p C 8203 

I 

Processor loads data into 

® 

Register w. Processor transfers 

data from 
Counter 

W and z into Program 

JMP Instruction Cycle (continued)

Figure 2-5 
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MEMORY 

AF 

3A 

00 

83 

3C 

32 

00 

83 

C3 

03 

FF 

15 

FF 

8 2 0 0 

,a 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

8 2 0 B 

8 2 0 C 

8 2 0 D 

8 2 F F 

8 3 0 0 

8 3 0 1 



TWO AND THREE BYTE INSTRUCTIONS 

2.3.3 Writing the Program 

Program specification: 

"Write a program which will clear the Accumulator, load it with 

the contents of 8300, increment this number by one, and store the 

result in 8300. Loop through this sequence repeatedly." 

The program below starts with three consecutive NOPs, a convention 

which would permit entering a three-byte instruction here, should we 

wish to change the program later: 

ADDR HEX MNEMONIC COMMENTS 

8200 00 NOP Dummy 

01 00 NOP 

02 00 NOP 

03 AF XRA A Clear A 

04 3A LOA 8300 Load A from 8300 

05 00 

06 83 

07 3C INR A Increment A 

08 32 STA 8300 Store A in 8300 

09 00 

OA 83 

OB C3 JMP 8203 Jump back to Start 

oc 03 

OD 82 

8300 14 Arbitrary Data 
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TWO AND THREE BYTE INSTRUCTIONS 

Load and verify the program, press RST to set (PC) to 8200, then 

press STEP: 

I STEP! 82011 ooJ. 

STEP executes the first NOP instruction and displays the next one: 

I STEPI 1 8202) 00) 

I 82031 AF! 

Two m ore STEP's get us to the Clear A instruction, AF, at 8203. 

Execute this instruction. 

lsTEPI I 8204 ! 

We have executed Clear A. The next instruction is LOA. (3A at 

location 8204) 

I STEP! I 82011 

3Al 

3Cl 

We cannot see the internal steps. The three byte instruction LOA 

occupies addresses 8204, 8205 and 8206. It has been executed and now 

the INR A instruction at 8207 is displayed. 
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TWO AND THREE BYTE INSTRUCTIONS 

Execute the INR A instruction. 

321 

This is STA, another three byte instruction. 

1820B I C3l 

We have come to the JMP instruction. 

I 82031 AF! 

And now we are back to the start. Examine Register A. 

EJEJ ! 8203! ! A-15)

The program loaded 14 from 8300, incremented it and stored the new 

value. Register A still holds that value. Execute the Clear A 

instruction at 8203. 

Now Register A has been cleared. 

Now the LDA has reloaded from 8300. 

I s204 I I A-oo I 

!8207l IA-151
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TWO AND THREE BYTE INSTRUCTIONS 

I ADDRI I 82011 3C] 

ADDR displays the in struction 

I 8208! 1 A-161 

Step executes it and again displays the reg ister we last examined. 

Let's examine the memory location. 

BEJEJEJEJ I 83001 15! 

The new value has not been stored yet. DO NOT PRESS STEP NOW - The 

computer would execute from location 8300. Use ADDR to recall the 

current program counter. 

I ADDRI j 8208l 32l

Then STEP. 

I STEPI
820BI I A-lGI 

And look again at 8300: 

IADDRI EJ [] EJ EJ I s3oo I 16) 
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TWO AND THREE BYTE INSTRUCTIONS 

Now the new value has been stored. 

83001 .16! 

MEM tells the monitor you did not intend to change the program 

counter, but only the memory address. Therefore you can now use 

STEP. The PC contained 8208, addressing the Jump instruction. 

ISTEPI 18203 ! AF! 

So we jumped. Using the MEM key disposed of.Register A display. The 

memory address we last requested is still there, so pressing MEM will 

fetch it back again. 

EJ 18300 I .16! 

We have introduced four new instructions and looked at the details of 

their execution cycles. The instructions are summarized in Section 

2.4, and the command key functions are reviewed in Section 2.5. In 

Chapter 3 we will begin to develop some fundamental concepts of 

programming. 
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TWO AND THREE BYTE INSTRUCTIONS 

2.4 SUMMARY OF INSTR UCTIONS 

3C INR A Increment Register A 

One byte 

one machine cycle 

AF XRA A Clear Register A

One byte 

One machine cycle 

C6 ADI Add immediate 

xx data Two bytes 

Two machine cycles 

32 STA Store Register A

xx low address Three bytes 

xx high address Four machine cycles 

3A LDA Load Register A

xx low address Three bytes 

xx high address Four machine cycles 

C3 JMP Jump 

xx low address Three bytes 

xx high address Three machine cycles 
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TWO AND THREE BYTE INSTRUCTIONS 

2.5 REVIEW OF COMMAND KEYS 

ADDR 

STEP 

REG 

MEM 

Display Program Counter and Instruction. 

This instruction will be executed when you 

press STEP. Permits entry of another memory 

address to be examined or executed. 

Executes one instruction. If STEP 

immediately follows entry of an address, 

that address is entered into the program 

counter. 

Must be followed by a register name 

(e.g. A). Displays the content of that 

register, and allows a new value to be 

entered from the keyboard. 

Enables entry of data to a memory location. 

Lights a decimal point to indicate that data 

entry is enabled. 

If MEM directly follows ADDR, the contents 

of the program counter become the 

addressed memory location. 
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TWO AND THREE BYTE INSTRUCTIONS 

NEXT 

2-30

If MEM follows entry of an address that 

beco mes the addressed memory location. 

If MEM follows NEXT and data entry was no t 

previously enabled, the displayed address 

b�co mes enabled for data entry. 

If data entry was already enabled, MEM 

decrements the address. 

If MEM follows REG or STEP it recalls the 

previously displayed memory address. 

If a memory address and its content are 

displayed, NEXT increments the address and 

stores it as the address to be recovered 

by MEM. NEXT does not enable or disable 

data entry. NEXT has other functions in 

monitor display modes. 
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3. 1 PROGRAM LOOPS AND FLOW CHARTS

The program we used in Chapter 2 was a loop:

XRA A 

LDA 8300 

INR A 

STA 8300 

JMP 8203 

Short loops of this kind are very common in computer programs, but 

they always include some means of exit from the loop. Otherwise the 

program would simply recycle through the loop forever, doing nothing 

useful. 

3.1.1 The Monitor Run Command 

To this point you have used 

programs. Each time ISTEPI 

by your PC is executed, after 

the I STEPI command to execute your 

is pressed, the instruction pointed to 

which the monitor is re-entered so that 

it may activate the display and wait for your next command. 

When the [;;] 
command is issued , the monitor is also re-entered

after your instruction is executed. However, instead of waiting for 

your command, it immediately allows your next instruction to be 

executed. To demonstrate this, make sure that your program loop is 

still in memory. 

If you press to execute this loop, the display wi 11 

disappear and nothing more will happen. Internally, the count at 
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location 8300 is being incremented again and again, but you have no 

way of knowing what is happening. The keyboard is dead. Only the 

RESET key (or the power cord) can interfere. There must be some 

means of leaving such a closed loop. 

In a sense, all computer programs are loops: they must somehow return 

and repeat the same instructions, but operating on different data, 

producing different outputs, and sometimes executing different 

sections of the program depending on the data. 

This chapter presents the conditional jump, an instruction that 

alters the program flow as a function of the data. This is the most 

common way of exiting from a short loop. The flow chart is 

introduced, which describes the problem flow and is the principal 

design tool for programming. Finally, another method of entering the 

monitor for input and output will be provided. 

3.1.2 The Conditional Jump 

When certain instructions generate a zero result, a special "Flag" 

flip flop is set. This condition is displayed by the bottom LED 

labeled "Z" at the left of the numeric display. You will have seen 

this 

(if 

is 

turn on each time XRA A was executed in the previous exercises 

not, try it now). When INR A causes a non-zero result, this LED 

turned off. In tne program loop above, Register A is repeatedly 

incremented. Once every 256 loops the content of A goes from FF to 

00, setting the Zero flag. During the other 255 loops, the Zero flag 

is not set. The condition of this flag can be sensed and acted upon 

by the instruction "Jump if Not Zero" . 
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BINARY CODE: 

HEX CODE: 

BYTE TWO: 

BYTE THREE: 

MNEMONIC: 

MEANING: 

We will now modify the 

PROGRAM.LOOPS 

11000010 

C2 

Low-order part of address. 

High-order part of address. 

JNZ 

Jump to the address contained 

in the following two words if 

the result of the last counting, 

arithmetic or logical operation 

was not zero. 

program loop above by replacing the jump 

instruction with the conditional jump, as follows: 

8203 AF XRA A 

8204 3A LDA 8300 

8205 00 

8206 83 

8207 3C INR A 

8208 32 STA 8300 

8209 00 

820A 83 

820B C2 JNZ 8203 

820C 03 

820D 82 



PROGRAM LOOPS 

Change the jump instruction by pressing: 

820B) C3 

820BI c2 

Since the jump address for the JNZ instruction is the same as for the 

old JMP, it need not be reentered. To avoid going through the loop 

many times, set a high value, say FC, into address 8300. Then step 

through the program: 

83001 ??) 

t a3oo I FCI 

Now go back to the beginning and step. 

E]EJEJEJEJ I 82001 00) 

I 82011 001 

Request display of Register A, 

EJEJ I 82011 I A-??I 

3-4



PROGRAM LOOPS 

and step through the program, watching Register A. 

I 8202 I I A-?? I 

I 8203) I A-??I 

I s204J I A-001 

THE XRA A instruction at 8203 has cleared A. The Zero flag should 

now be set. 

I STEP] I 8207 l ! A-FCJ

The LDA instruction at 8204 has loaded A with the data from 8300. 

The Zero flag does not change. 

!STEP l 
INR A done. 

cleared. 

I STEP] 

(STA done) 

I STEPI 

(JNZ done) 

! 8208 I !A-FD I

The result was non-zero, so now the Zero flag is 

820Bl I A-FDI 

I 8203 i I A-FD! 
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Continue stepping until you see: 

I STEP/ ! 8207) ! A-FFj

(LDA done) 

I STEP/ ! 8208) I A-00]

INR A done. Register A has been incremented from FF to 00. The Zero 

flag is now set, indicating that when you reach the JNZ it will not 

be executed. 

I STEP/ I 820Bl ! A-00!

(STA done) 

1 82oEI I A-ooj 

Since the INR A instruction at 8207 has incremented the value to 00, 

the JNZ instruction at 820B did not result in a jump. The three 

machine cycles were still performed, loading I, Z and W with the 

three bytes of the instruction and incrementing the program counter 

three times. At the final step, however, the logic unit tests for 

zero and sees that the condition for jumping is not met -- the result 

was zero and so does not transfer Wand Z into the program 

counter. Execution continues from the previously incremented 

contents of the program counter to the next sequential instruction. 
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3.1.3 Flow Charts 

A flow chart shows this operation in the following fashion: 

Clear A 

Load A from 8300 

Increment.A 

Store A at 8300 

NO 

YES 

The diamond shape represents a program branch conditioned by data. 

The branch to be followed depends on the results of the previous 

operations. 

Fl ow charts represent the design of computer· programs; they may be 

considered the equivalent of schematics in electronic design. 

Writing the final program is akin to the circuit board layout - the 
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function is fully defined but there is still some degree of freedom 

for the designer. From here on, each exercise will either include a 

flow chart or ask you to prepare one. 

FLOW CHART: A symbolic representation of the logical 

steps of a program, detailing control and 

sequencing of the flow of data, procedures 

to be followed, computations to be 

performed, and input/output operations. 

The flow chart above shows an incomplete program. If you continue to 

step after passing the JNZ instruction, you will execute an 

unintended instruction at location 820E. A closed loop such as we 

started with has no value since it accomplishes nothing but merely 

repeats itself. An open loop is intolerable because it will have 

unintended results. 

The purpose 

inputs. We 

of 

have 

the computer is 

been obtaining 

to provide outputs depending on 

outputs by looking at Register A 

contents after each step. You provided one input by loading data to 

address 8300. You could also change the data in the A register by a 

monitor command, but this is only effective at certain points in the 

program, since Clear A and Load A will destroy anything you enter. 

What we need is a means of entering data only at a certain position 

in the program. 
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3.2 PROGRAMMED MONITOR ENTRY 

PROGRAM LOOPS 

It is possible to activate the monitor from your program, instead of 

from the keyboard. The command is: 

When this 

available 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

command is executed, all 

to you. This allows 

11100111 

E7 

RST4 

Restart the monitor at entry 

point four. 

of the monitor functions become 

you to use the RUN command, but 

permits your program to enter the monitor where you wish it to do so. 

Now you can modify your program to provide additional inputs. 

Consider the revised flow chart in Figure 3-1. 
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3-10

1 • 

Clear A 

1'f 

Load A from 8300 

-

., 

Increment A 

1'f 

Store A at 8300 

NO 
ZERO? 

YES 

Enter Monitor 

, ' 

Put New Value in A 

Conditional Jumps 

Figure 3-1 



PROGRAM LOOPS 

To implement the program, make the following changes to your code: 

820E 

820F 

8210 

8211 

E7 

C3 

07 

82 

RST4 

JMP 

Enter the monitor 

Jump to the "INR A" 

instruction. 

Once again load a large value at 8300, then set the address to 8200 

and step through the program. 

When the address display shows: 

(or) 

have entered the monitor. 

Now try RUN 

1 0020) F31 

I 00201 I A-??! 

Step again and your jump instruction 

Each time you press RUN the display 

you 

will 

will 

appear. 

go blank briefly while the computer counts to FF and 00, and 

then it will re-enter the monitor. Now press: 

EJEJ ! 820Fl ! A-00!

Register A has reached 00, the zero flag is set, and the program

counter points to the jump instruction. 
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EJEJ I 820F! I A-F'OI 

you have entered a large value to Register A. 

EJ 820Fj A-00!

This time the display should barely blink, because the program only 

looped 16 times instead of 256. 

This exercise illustrates the way in which timed delays may be 

implemented using program loops, a feature which is common in many 

process control operations. 
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3.3 ADDITION BY COUNTING 

PROGRAM LOOPS 

The next program 

numbers by the 

specification is: 

exercise will demonstrate finding the sum of two 

basic principle of counting. The program 

"Write a program which will form the sum of two numbers by 

successively incrementing the first number and decrementing 

the second, until the second reaches a value of zero." 

To implement this program a new instruction will be required: 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

00111101 

30 

OCR A 

Decrement R egister A 

A flow chart for the program will be helpful and one is presented in 

Figure 3-2. Before looking at the coding sheet (Figure 3-3) try to 

write this program all by yourself, then match it against the one 

provided. 
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3-14

1, 

Enter Monitor 
to Obtain a Value 

1 f 

Store It at 8300 

1 f 

Enter Monitor for 
Another Value 

,, 

Store It at 8301 

'W 

Load, Increment and 
Store the Value 

at 8300 

,, 

Load, Decrement and 
Store the Value 

at 8301 

,, 

NO 
ZERO? 

YES 

1 f 

Load the Value From 
8300 

Addition by counting

Figure 3-2 

Go back to the monitor 
to display the result 
and obtain another value 
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Before stepping through your program, press RST and then enter a 

small value in A: 

EJEJEJ 

Now press STEP repeatedly: 

You have just entered the monitor. 

Continue to STEP: 

You have entered the monitor again. 

Continue to STEP. 

This is the beginning 

of the loop. Continue to step. 

You have done the first INR A. 

The first value has been stored. 

The second value, also 2, has been loaded, 

decremented 

3-16

I 8200 I I A-02 I 

la2a11 IA-021 

82021 1 A-crn1 

I 8203] I A-021 

I 0020 1 I A-021 

I 8204) I A-02) 

i 82Q7) j A-02j 

aa2al I A-021 

I 82081 I A-021 

B2QJ3l I A-021 

820EI I A-021 

I 820FI I A-031 

82121 I A-Ogl 

82151 I A-021 

82161 A-Oil



and stored. 

The program is now at JNZ, the result is not zero, 

and the jump occurs. 

The first value is loaded, 

incremented, 

stored, 

the second value is loaded, 

decremented (and the Zero flag is set), 

stored. The program is 

again at JNZ but 

the jump does not occur. 

The first value is loaded 

and now the jump 

back to the beginning occurs. 

The monitor again. 

Step again. Back to your 

program with A unchanged. 

PROGRAM LOOPS 

8219! A-Oil

s20B! A-Oll

820El A-o3j

820FI A-041

8212] A-041

82151 i A-011 

82161 A-Obi

82191 ' A-Ooj 

a21cl I A-001 

821FI I A-041 

8203l I A-041 

t 0020 I I A-041  

82041 A-b;;II

As the initial value placed in A (2) became the value of both the 

first and second numbers, we can verify that the result (4) is in 

fact their sum. 
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Now press RST and run your program for various pairs of numbers. 

Remember each instruction takes only a few microseconds; the display 

will not even blink .. Press RUN, then REG A (PC will be 8204) and 

enter the first number. Press RUN, REG A (PC will be 8208) and enter 

the second number. Press RUN again. The result will be displayed, 

and you can key in a new pair. Any two numbers whose sum is less 

than or equal to 255 (;FF hex) can be added in Register A. 



3.4 .EXERCISE 

PROGRAM LOOPS 

The program we have developed enters the monitor twice to accept tw·o 

numbers to be added together. The sum is displayed (in Register A) 

and two more numbers are entered. Modify the flow chart of Figure 

3-2 so that after a sum is displayed only one new number is entered,

and that number is added to the previous sum. With the modified 

program you can sum a column of numbers. 
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PROGRAM LOOPS 

3.5 SUMMARY 

In this 

use of 

important 

chapter several new instructions have been introduced, the 

RUN and programmed monitor entry has been shown, and the 

concept of flow charts has been presented. All of the 

instructions used so far are summarized in Section 3.6. You may wish 

to write a program of your own at this point, for practice. If you 

do, follow the rules: 

3-20

a) Specify the program

b) Draw the flow chart

c) Select memory areas for the program and for

data (Do not use locations 83CO - 83FF)

d) Write the code, with comments

e) Key in the code and verify it

f) Step through the program to check it, then

run it



3.6 SUMMARY OF INSTRUCTIONS 

00 

AF 

3C 

3D 

3A 

xx 

xx 

32 

xx 

xx 

C3 

xx 

xx 

NOP 

XRA A 

INR A 

DCR A 

LDA 

low address 

high address 

STA 

low address 

high address 

JMP 

low address 

high address 

PROGRAM LOOPS 

Do nothing 

Clear Register A 

Increment Register A 

Decrement Register A 

Load Register A 

with the data stored 

in the memory location 

whose address is in the 

second and third bytes. 

Store the contents of 

Register A in 

the memory location 

whose address is in the 

second and third bytes. 

Jump to the location 

whose address is in the 

second and third bytes. 
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3-22

C2 

xx 

xx 

E7 

JNZ 

low address 

high address 

RST4 

Jump if the result of 

the last arithmetic 

operation was not zero; 

otherwise continue to 

the next sequential 

instruction. 

Enter the monitor. 
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THE OTHER REGISTERS AND MEMORY ADDRESSING 

4. THE OTHER REGISTERS AND MEMORY ADDRESSING

In this chapter we introduce the general purpose Registers B, C, D, 

E, H and L. These registers are used for: 

1) Temporary data storage

2) Storing operands for arithmetic and logical operations

3) Counting

4) Memory addressing

For temporary data storage and counting, the general purpose 

registers are equivalent to Register A. There are instructions for 

all 

data 

seven 

into 

registers permitting data to 

them from memory, moving 

be moved among them, moving 

data from them into memory, 

incrementing and decrementing their contents. They are not identical 

in all functions, however, and each has certain unique features. 

Register A, or accumulator, is very different in that the results of 

most arithmetic and logical operations are stored in Register A. 

Similarly, input/output instructions use Register A. 
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THE OTHER REGISTERS AND MEMORY ADDRESSING 

4.1 THE MOV INSTRUCTIONS 

It is often necessary to move data into one register from another. 

The instruction to do this has the form "MOV destination. source". 

Such an instruction exists for each possible pairing of registers. 

For instance: 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

01001111 

4F 

MOV C, A 

Move into C the content of A 

The data remain unchanged in the source register and are copied into 

the destination register, whose old content is lost. Note that in 

the mnemonic the destination is listed first, then the source 

register. Interchanging these is a common source of error, so be 

careful. Think of the instruction as "move into C from A" or "set C 

equal to A''. The table below contains a summary of the MOV 

instructions. Note that the table is complete, ·including the useless 

MOV A,A; MOV B,B; etc. These are totally valueless to the user, but 

because of internal procedures in the microprocessor it would have 

added complexity to omit them or to use the wasted instruction codes 

for other purposes. 
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THE OTHER REGI,STERS A ND MEMORY ADDRESSING 

Inter-Register MOV Inst ructions: 

Source Register 

A B C D E H L 

MOV A,s 7F 78 79 7A 7B 7C 7D 

MOV B,s 
I 

47 40 41. 42 43 44 45 

MOV C,s 4F 48 49 4A 4B 4C 4D 

MOV D,s 57 50 51 52 53 54 55 

MOV E,s 5F 58 59 5A 5B 5C 5D 

MOV H,s 67 60 61 62 63 64 65 

MOV L,s 6F 68 69 6A 6B 6C 6D 

As an example we might need to copy data from some memory location 

into Register C: 

3A 

00 

83 

4F 

LDA 8300 

MOV C,A 

The content of memory location 8300 is loaded into Register A and 

then copied into Register c. Both A and C now contain the same data 

as memory location 8300. 
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THE OTHER REGISTERS AND MEMORY ADDRESSING 

4.2 THE ADD INSTRUCTION 

The program of Chapter 3 performed addition by counting. This is 

inefficient in terms of both program space and execution time. A 

single instruction will perform this function, now that we have a way 

to put one operand into another register: 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

10000001 

81 

ADD C 

Add into A the content of C 

Any register content may be added to A, with the result always being 

placed in A. 

HEX 

ADD A 87 

ADD B 80 

ADD C 81 

ADD D 82 

ADD E 83 

ADD H 84 

ADD L 85 
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We can replace the repetitive loop i Il the program of Figures 3-2 and 

3-3 with the ADD instruction.

8200 00 NOP 

8201 00 NOP 

8202 00 NOP 
8203 E7 RST4 Enter Monitor 
8204 32 STA 8300 Store Value Returned 
8205 00 
8206 83 
8207 E7 RST4 Enter Monitor Again 
8208 32 STA 8301 Store Value Returned 
8209 01 
820A 83 
820B 3A LDA 8300 Load First Value 
820C 00 
820D 83 
820E 4F MOY C,A First Value to C 
820F 3A LDA 8301 Load Second Value 
8210 01 
8211 83 
8212 81 ADD C Add First Value 
8213 C3 JMP 8204 Go Back to Store and Display Sum 
8214 04 
8215 82 

This program is equivalent to the modified program of exercise 3.4. 

After finding a sum (by ADD C), we loop back to store the sum (STA 

8300); enter the monitor to display the sum and accept a new number 

(RST4). After the first sum is displayed in this program, we only 

take one new number· each time, and always add it to the old sum. 

There is an important difference between this program and the 

"addition by counting" program, in its effect on the Carry flag. 
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4.3 THE CARRY AND ZERO FLAGS 

In Chapter 3 we introduced the Zero flag and the conditional 

instruction Jump if Not Zero (JNZ). There are several other flags, 

Different instructions affect and conditional instructions. 

different flags, and some of the rules are fairly complicated. 

However, there are some simple general rules which may be defined 

before proceeding. 

4-6

a. Data Transfer instructions never affect any flags. These

include LDA, STA, MOV, and other similar instructions�

b. Counting (incrementing or decrementing) in any single register

(A, B, C, D, E, H, L) sets the zero flag if the result of

that count is zero. The condition of this flag at any given

time does not necessarily mean that the register contains

zero, however. Once the flag is set, a data transfer

instruction may load the register without changing the flag.

c. Jump and conditional jump instructions never affect any flags.



THE OTHER REGISTERS AND MEMORY ADDRESSING 

4.3.1 Carry 

If two numbers are added whose sum is greater than FF, there should 

be a Carry from the addition, e.g.: 

75 (HEX) 

t 94 

= 109 

(HEX) 

(HEX) 

This Carry is generated by the ADD instruction, among others, and 

sets a condition flag called Carry. Like the zero flag, Carry can be 

tested to c�use a conditional jump to occur, but it can also be used 

in various arithmetic operations. Before discussing these, we will 

step through the program of Section 4.2 and observe Carry. It is 

indicated to the left of the numeric display by the top LED, labelled 

"CY". 

left. 

(In this description, keys to be pressed are shown at the 

The displays to be expected are shown at the right. (CY) and 

(Z) are shown where those flags are set. Until the first ADD, their 

states are unknown.) 

RESET 8200 00 

RUN (un ti 1 RST4) 8204 32 

REG A 8204 A-?? 

6 8 (enter a number) 8204 A-68

RUN (un ti 1 RST4) 8208 A-68

2 0 (another number) 8208 A-20

STEP 8208 A-20 
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The two values have been stored and we will now load the first value. 

STEP 

STEP 

REG C 

820E 

820F 

820F 

A-68

A-68

C-68

The first value has been copied to Register C and we will load the 

second value. 

REG 

STEP 

STEP 

A 

(execute ADD C) 

820F 

8212 

8213 

A-68

A-20

A-88

We have added the two values. Note that both LED's left of the 

numeric display are off. The result of the addition was not zero, 

and did not generate a Carry. 

4:...9 

STEP 

RUN (until RST4 done) 

8204 

8208 

A-88

A-88
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The old result has been stored at 8300, and the monitor is waiting 

for a new value, to be stored at 8301. 

9 8 (enter a number) 8208 A-98

STEP (store it) 820B A-98 

STEP ( load the old result) 820E A-88

STEP (move it to C) 820F A-88

STEP ( load the new number) 8212 A-98

Now the content of 8300 has been copied to register C and the content 

of 8301 has been loaded into A. The next step will add these values. 

The hexadecimal result should be: 

88 

+ 98

= 120 

The sum is greater than FF, so a Carry will result and will be shown 

in the upper LED to the left of the display. 

STEP 

RUN (until RST4) 

(CY) 

(CY) 

8213 

8208 

A-20

A-20

Note that the jump and store instructions have not affected the Carry 

flag. The value 20 (HEX) has been stored at 8300. 

6 

RUN 

0 (enter new number) (CY) 8208 

8208 

A-60

A-80

We have added 20 + 60. The Carry flag is cleared, because the result 

was not greater than FF. 
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Now we shall allow 80 (HEX) to be used_for both values. 

RUN (CY) (Z) 8208 A-00

A Carry was generated by adding 80 + 80, and the numeric result is 

zero, so both Carry and Zero are set. 

Use this program to add the column of numbers below. Write in the 

result of each addition and note if the Carry is set. 

First Number 04 Carry Sum 

Second Number 44 

60 

95 

32 

Al 

FO 

C2 

C2 

80 

44 

60 

FF 

FF 

OA 

60 
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We have seen how the Carry flag is set or reset by the addition. Note 

that with the ADD instruction any previous Carry was lost and did not 

affect a further result. In the next section we shall see how the 

Carry flag can be us�d in addition. 

4.3.2 Multiple Precision - The ADC Instruction 

A single byte of data in memory or in a register can represent an 

integer value from 00 to FF (255 decimal). Obviously many computer 

programs need to represent numbers much larger than this, so more 

than one byte is used to represent such numbers. This is just like 

the use of multiple digits to represent numbers greater than 9 in 

decimal arithmetic. 

Definitions: 

MULTIPLE PRECISION: The use of two or more bytes to represent an 

integer greater than FF (255 decimal). 

DOUBLE PRECISION: The use of exactly two bytes to represent an 

integer value from 0000 to FFFF (65535 decimal). 

These definitions apply only to computers whose word size is 8 bits, 

and only in the context of unsigned integer values. The phrases 

convey similar ideas but with more complicated definitions in other 

contexts. 
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When we perform multi-digit addition the low order digits are added 

without regard to Carry, but for all higher digits a Carry must be 

considered. 

Carry 1 0 1 X 

7 6 3 9 (decimal) 

+ l 5 4 3 (decimal) 

= 9 1 8 2 (decimal) 

Similarly the computer can add low order bytes without regard to 

Carry, and then include the Carry for higher bytes using an ADC (add 

with Carry) instruction. 

Example: ADC B 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

4-12

100.01000 

88 

ADC B 

Add the content of B to the content of A. 

If Carry was set before the addition, 

increase the result by 1. Place the result 

into Register A. If the addition generates 

Carry, set the Carry flag; otherwise reset 

it. If the result of the addition is zero, 

set the Zero flag; otherwise reset it. 



THE OTHER REGISTERS AND MEMORY ADDRESSING 

Note that ADD and ADC both set or reset Carry and Zero in exactly the 

same way. The difference lies in the inclusion of Carry in the 

addition. A full set of ADC instructions exists. 

HEX CODE 

ADC A SF 

ADC B 88 

ADC C 89 

ADC D SA 

ADC E SB 

··ADC H SC 

ADC L SD 

Example: Add the content of Registers B and C to the content of 

Registers D and .E. Here we consider C and E to contain the 

low order. bytes to be added; B and D the high order bytes. 

The result is to be placed in D and E-. Load this program. 

8200 7B MOV A,E 

8201 81 ADD C 

8202 5F MOV E,A 

8203 7A MOV A,D 

8204 88 ADC B 

8205 57 MOV D,A 

8206 E7 RST4 

8207 C3 JMP 8200 

8208 00 

8209 82 
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Before stepping through the prqgram pla_ce a two byte number (four HEX 

digits) into Registers B and C, and another number into Regist_ers D

and E. 

REG B 4 5 8200 B-45

REG C 8 5 8200 C-85

REG D 5 2 8200 D-52

REG E A 7 8200 E-A7

The numbers to be added are: 

B, C 4585 

D, E 52A7 

The sum should be: 982C 

Now step through the program. 

ADDR 8200 78 

REG A 8200 A-?? 

STEP 8201 A-A7

STEP (CY) 8202 A-2C

The low bytes (A7 and 85) have been added, resulting in the low byte 

of the sum in Register A. Carry is set. 

STEP (CY) 8203 A-2C

STEP (CY) 8204 A-52

We are about to add the high bytes (52 and 45) with Carry, which is 

set. 

STEP 8205 A-98
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The sum of 52 and 45 has been augmented by the Carry. No Carry 

resulted from this addition, so the Carry flag is clear. 

STEP 

STEP 

STEP 

8206 

0020 

8207 

A-98

A-98

A-98

We reentered the monitor at 0020 and are now at 8207 where we will 

jump back to the beginning. Examine the registers. 

REG 

NEXT 

NEXT 

NEXT 

.B 8207 

8207 

8207 

8207 

B-45

C-85

D-98

E-2C

The content of Registers Band C has not changed. Registers D and E 

contain the sum, 982C. 

We can again add the content of Band C to this sum merely by 

pressing RUN. 

RUN 

REG D 

The new sum is DDB1. 

8207 

8207 

E-Bl 

D-DD
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Before doing this again, predict the next sum an d 6arry. 

B, C = 

D, E = 

4 5 8 5 

D D B 1 

Carry __ _ Sum ,,__.-, _______ _ 

RUN 

NEXT 

8207 

8207 

D-?? 

E-?? 

Does the result agree with your prediction? It should be Carry, 2336. 

4.3.3 Exercise 

Rewrite the program we have just used to add the content of Registers 

B and C to the content of Registers Hand L, placing the result in 

Registers Hand L. 

The solution is given in Figure 4-1. 
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1-w
w 
I 
Cf) 
(.9 
z 
0 
0 
u 

� 
w 
I-­Cf)
>­
Cf)
(.9 
z 
z 
<( 
a: 
l­
a: 
w 
I­
:)a..
� 
0 
u 
0 
a: 
u 
>-

Cf) 
� 
w 
I-­Cf)
>­Cf)
a: 
w 
I­
:)a..
� 
0 
u 
0 
w 

a: 
(.9 
w 
1-
z 

A D D R CODE 

a�o 0 7 .l) 
1 J' I 
2 fl) F 
3 7 c
4 ? J? 
5 h 7 
G E 7. 
7 C 3 
8 0 0 
9 cf' ;2 
A 

B 

C 

D 

E 

F 

8 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E-

F 

8 0 

1 

2 

3 

4 

5 

6 

7 

8 

DOUBLE PRECISION ADDITION 

M a V (} L 

A- l) D c/ 
,VJ 0 V ·L fl 
t1 D V A-

I 

I./ 
fl- l) C t3 

I 

M 0 V i-1- ) 
� 

I<. s 7 L/ 
J M p J' ,!)_ a [) 

A J) ]) ,S T ff E C ON7EA/T or-

R £ (_7 T s T E R (i 13 /1-/IID (? '-> 

.L- Al T 0 T 1-f E (:_' O;t/TEA/T /JF 

I< E G L s T � IR 3 1-I /1-;t/ l) L 

Figure 4-1 
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4.3.4 Subtraction - SUB and SBB 

Subtraction is defined as the inverse of addition: 

If A = B + C  

Then C = A - B 

We can show that this rule applies in the computer as well as in 

elementary school arithmetic . The 8080 has a set of subtract 

instructions ; for example: 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

4-18

10010000 

90 

SUB B 

Subtract the content of Register B from the 

content of Register A. Place the result in 

Register A. If the result i s  zero, set the 

Zero flag; otherwise reset the Zero flag. 

If the content of Register B was greater 

than the or iginal content of Register A, 

set the Carry flag; otherwise reset 

the Carry flag. 
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To 

Now 

test the definition enter 

8200 

8201 

8202 

8203 

8204 

8205 

enter data 

REG 

REG 

REG 

STEP 

STEP 

STEP 

78 

81 

90 

C3 

00 

82 

into 

B 

C 

A 

B 

MOV A,B 

ADD C 

SUB B 

JMP 8200 

and 

8 

1 

C, 

Adding 86 plus 12 gave 98; 

this program: 

and step 

6 

2 

through the program observing 

8200 

8200 

8200 

8201 

8202 

8203 

B-86 

C-12

A-?? 

A-86

A-98 

A-12

A. 

subtracting 86 gave 12. The rule st i 11 

holds even if the sum is greater than FF. 

STEP 8200 A-12 

REG C 9 0 8200 C-90

REG A 8200 A-12

STEP (move into A from B) 8201 A-86

STEP (add C, 86 + 90) (CY) 8202 A-16 

STEP (subtract B, 16 - 86) (CY) 8203 A-90
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Although the Carry flag was set when a sum greater than·FF was 

generated, this Carry was ignored by the SUB instruction. It was set 

again by SUB when we subtracted 86 from 16. 

As in addition, the Carry flag is used for multiple precision 

arithmetic. The SBB (subtract with borrow) instructions are. used for 

this purpose. Note that although this name speaks of a "borrow" 

rather than a "carry" it is represented by the same flag in the 8080 

microprocessor. The 8080 does not distinguish whether it resulted 

from an ADD or SUB instruction. 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

4-20

1001 1000 

98 

SBB B 

If the Carry flag is set, reduce the value in 

Register A by 1. Subtract the content of 

Register B from the content of Register A. 

Place the result in Register A. If the result 

is zero, set the Zero flag; otherwise reset 

Zero. If the content of Register B was greater 

than the content of Register A minus CY, set 

Carry; otherwise reset Carry. 
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SUB and SBB exist for all registers: 

97 SUB A 9F SBB A 

90 SUB B 98 SBB B 

91 SUB C 99 SBB C 

92 SUB D 9A SBB D 

93 SUB E 9B SBB E 

94 SUB H 9C SBB H 

95 SUB L 9D SBB L 

The double precision addition we programmed in Section 4.3.2 can 

readily be converted to a double precision subtraction, using SUB and 

SBB in place of ADD and ADC. Refer to Section 4.3.2 and write a 

program to subtract the content of Registers B and C from the content 

of Registers D and E. A solution is given in Figure 4-2. 

From this point on we shall omit the binary codes when new 

instructions are defined, showing only the hex codes. Binary codes 

have been shown to stress that the computer recognizes binary 

patterns, not hex characters. If you translate into binary the hex 

codes above, and those for the MOV, ADD and ADC instructions given 

previously, you can see the patterns recognized by the computer. 

These are discussed in Chapter 11. 
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4.3.5 Review and Self Test 

In Sections 4.1, 4.2 and 4.3 we ha ve introduced a number of 

inst�uctions that involve using registers to store data, provide 

operands, and count. Test your knowledge by answering the questions 

below. Each question refers to the section in which it is answered. 

The correct answers are given on the reverse side of this page. 

1) What is the other name for Register A? (Section 4.0) ______ _

2) Name the other general purpose registers. (Section 4.0)_'------�

3) Which register receives results from arithmetic operations?

(Section 4.0) 

4) Which register has its content changed by the instruction

MOV E,C? (Section 4.1)��

5) Which register has its content changed by the instruction

ADD B? (Section 4.2)

6) Which of the flags are affected by each of the following

instructions? (Section 4.3)

MOV E,C 

ADD B 

LDA 8300 

INR A 

OCR C 

SBB D 

ZERO CARRY 
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Answers to Self-Test, Section 4.3.4 

1) Register A is also called the Accumulator.

2) The other registers are B, C ,  D, E, H ,  L. 

3) Register A receives the results of arithmetic and logic

operations.

4) MOV E,C moves into Ethe content of C. Register Eis affected; 

Register C is unchanged.

5) ADD B adds the content of B to the content of A and places the

result in A. Register Bis unchanged. 

6) MOV E,C affects no flags.

ADD B 

LDA 

INR A 

OC RC 

S BB D 
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affects all flags. 

affects no flags. 

affects Zero. 

does not affect Carry. 

affects Zero. 

does not affect Carry. 

affects all flags. 
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4.4 IMMEDIATE INSTRUCTIONS 

Altho�gh we have distinguished program memory from data memory, it is 

common to include some data in the program memory. Tables of fixed 

values such as values of functions (e.g. trigonometric) or 

calibration data are often stored at the end of a program. Some 

instructions include data in the second, or second and third bytes of 

the instruction. These are known as "immediate data" and the 

instructions are called "immediate instructions". Such an 

instruction (ADI) was presented in the second chapter. 

A very common requirement is to load a register with some fixed 

value. 

4.4.1 Move Immediate Instructions (MVI r) 

The MOV instruction has a complete set of MVI counterparts. The 

general MVI instruction looks like this: 

MNEMONIC: 

SECOND BYTE: 

MEANING: 

MVI r 

Data 

Move the value contained in the 

immediately following byte into 

Register r. 
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Following is the complete set of MVI instructions: 

MNEMONIC HEX CODE

MVI A 3E 

MVI B 06 

MVI C OE 

MVI D 16 

MVI E lE 
. ,  ... 

MVI H '26 

MVI L 2E 

The MVI instruction is often used to initialize a counter. For 

example, in serial data communi.cations it is necessary to transmit 

the eight bits of one byte sequen'tially. The counter is initialized 

at 8 and successively decremented (using DCR) tci detect completion of 

the transmission. Then a JNZ in�truction at the· end of the loop 

causes repetition until the counter reaches zero. The instruction 
- -

cycle for the MVI is shown in Figure 4-3. 
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PROCESSOR 

A 

B 

0 

,
-----

[p C 8205 

G) CPU sends PC as address

G) .Memory selects 8205 and
returns data 

A 

B 

06 

p C 

G) CPU loads data to Register I and
increments PC 

CPU interprets 06 as a two byte 
instruction 

CPU as address 

A 

B 27 

06 

p C r:]707 

Memory selects 8206 and returns data 

CPU loads data to Register B and 
increments PC 

MVI Instruction Cycle 

Figure 4-3 

AND MEMORY ADDRESSING 

MEMORY 

8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

06 8 2 0 

27 8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 

8 2 0 A 

8 2 0 B 

8 2 0 C 

8 2 0 D 

8 2 F F 

8 3 0 0 

8 3 0 1 
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4.4.2 Immediate Arithmetic Instructions 

It is sometimes necessary to add a fixed value to a number - for 

instance one might want to count by threes. Although this could be 

done by placing the desired value in a register and adding the 

register content to Register A, the 8080 provides two instructions to 

perform the function directly: ADI data (add immediate) and ACI data 

(add with Carry immediate). We met the ADI instruction in Chapter 1; 

ACI is defined here. 

HEX CODE: 

SECOND BYTE: 

MNEMONIC: 

4-28

CE 

Data 

Add the value contained in the immediately 

fol lowing byte to the content of A. If Carry 

was set before the addition, increase the result 

by 1. Place the result in Register A. Set 

or reset the Carry and Zero flags according to 

the result. 
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Similarly there exist immediate counterparts for SUB and SBB. Thus 

we have: 

C6 ADI data 
data 

CE AC! data 
data 

D6 SUI data 
data 

DE SB! data 
data 

Probably the most common use of the AC! instruction occurs when an 

arithmetic operation is required to generate a result with more bytes 

than the numbers being added. In the example of Section 4.3.2 we 

repeatedly added the content of B and C to a value in Registers D and 

E. When the sum exceeded FFFF a Carry occurred from the multi-byte

addition, but was lost when we repeated the addition again. If we 

had provided for an additional byte in the result (say in Register L) 

the Carries could have been added into that byte by: 

MOV A,L 

AC! 00 

MOV L,A 

This technique is used in multiplication or when a ·column of numbers 

is to be added. The next exercise demonstrates this. 
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4.4�3 Multiplication by Repetitive Addition 

The process of multiplication that we use in decimal arithmetic is 

exactly equivalent to repetitive addition. 

3 X 8 = 8 + 8 + 8 = 24 (decimal) 

The same is true in binary (or hexadecimal) arithmetic in a computer. 

One way of performing multiplication is to add the multiplicand (8 in 

the above example) into the product (initially set to zero) 

repeatedly, multiplier times. 

Definition,: 

MULTIPLICAND: A number which is to be multiplied by another number, 

called a MULTIPLIER to generate a PRODUCT. 

4;...30 
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Although the multiplier and multtplicapd should be interchangeabie 

without affecting the result, the distinction is useful in describing 

the process. Load and test this: 

8200 

8201 

8202 

8203 

8204 

8205 

.8206 

8207 

8208 

8209 

820A 

820B 

820C 

820D 

.820E 

820F 

8210 

06 
08 
OE 
03 
lE 
00 
7B 
80 
5F 
OD 
c� 

06 
82 
E7 
C3 
00 
82 

MVI B,08 

MVI C,03 

MVI E .. , 00

MOV A., E 
ADD B ,-
MOV E:,4 
DCR C 

JNZ 8206 

RST 4 
JMP 8200

Place in Register B 
The multiplicand 
Place in Register C 
The multiplier 
Clear the product 
to zero 
Add jo product 
The multiplicand 
Sav� partial product 
Count multiplier 
down to zero 

Re-enter monitor 
Rep�at 

The result (in Register E) is l&HEX (= 24 decimal). The program 

works· since the product does not ex6e�d FF, �nd sti' can be stoied in a 

single byte. What happens for larger values of multiplicand or 

multiplier? If the immediate value for the multiplicand (at address 

8201) is set to 70, then the final addition results in a Carry. 

Initial Product 

Add Multiplicand 

Par ti a 1 Product 

Add Multiplicand 

Partial Product 

Add Multiplicand 

Product 

= 00 

+ 70

= 70 

+ 70

= EO 

+ 70

= 50

No Carry 

No Carry 

Carry Set 
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Since the Carry is preserved, indicating a product of 150 (HEX) this 

might be acceptable. If the multiplicand were 90, this process would 

occur: 

lni tial Product = 00 

Add Mul tipl i.cand f 90 

Partial Product = 90 No Carry 

Add Multipli.cand -+ 90 

Partial Product = 20 Carry 

Add Multiplicand f 90 

Product = BO No Carry 

The intermediate carry is lost. The result should have been lBO, not 

BO . If the multiplicand and multiplier were each set to FF, the 

product would be FEOl, a two byte number. 

We can fix the program above by using two bytes for the product (say 

D and E). Both must be cleared initially. Then the multiplicand is 

added to the low byte of the product. If a Carry results it must be 

added into the high byte of the product. This is done with the 

AC! 00 instruction as shown below: 
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Program For Multiplication by Repetitive Addition 

8200 
8201 
8202 
8203 
8204 
8205 
8206 
8207 
8208 

8209 
820A 
8208 

820C 
820 D 
820E 
820F 
8210 
8211 
8212 
8213 
8214 
8215 
8216 

06 
FF 
OE 
FF 
lE 
00 
16 
00 
78 
80 
5F 
7A 

CE 
00 
57  

O D  
C2 
08 
82 
E7 
C3 
00 
82 

MVI 

MVI 

MVI 

MVI 

MOV 

ADD 
MOV 
MOV 

ACI 

MOV 
DCR 
JNZ 

RST 
JMP 

B,FF 

C,FF 

E,00 

D,00 

A,E 

B 
E,A 
A, D 

00 

D,A 

C 
8208 

4 
8200 

Place in Register B 
the multiplicand 
Place in Register C 
the multiplier 
Clear product 
low byte 
high byte 

Product low byte 

Add multiplicand 

Product hi gh byte 
Add Carry 

Count multiplier 
down to zero 

Enter monitor 
Repeat 

Step through this program for a few loops, observing Register A and 

Carry . Then run it and look at the result in Registers D and E. Is 

Carry set or cleared at the end? 
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4.4.4 Multiplication - Exercise 

When we perform multiplication with pencil and paper, the number of 

digits in the product depends on the sizes of the two numbers: 

22 

X 14 

308 

99 

X 99 

9801 

We express the answers this way because we always discard leading 

zeros, and assume that any higher order digits not shown must be 

zero. In the computer, however, storage must be provided for as many 

bytes as might be generated with the maximum values of multiplier and 

multiplicand that are permitted by the program. 

The product of two numbers may occupy as many bytes as the sum of the 

number of bytes being multiplied. For example, a two byte number 

multiplied by a one byte number generates a three byte result. 

FFFF X FF = FEFFOl 

(in decimal, 65535 X 255 = 16711425) 

Write a program to multiply a two byte multiplicand by a one byte 

multiplier. Take the multiplier from memory location 8300. Take the 

low byte of the multiplicand from memory location 8301 and the high 

byte from memory location 8302. Store the three byte result in 

memory locations 8303 (low byte) to 8305 (high byte). 
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Try to write this program by yourself, using the instructions listed 

in Section 4.4.5. Remember to clear the product before starting the 

repetitive additions. Hint: It is usually more efficient to use 

registers for data than to loa d  and store numbers in memory 

repetitively. Make a table of memory and register assignments. 

Meaning of Data Memory Location Register 

Multiplier 8300 

Multiplicand (low byte) 8301 

Multiplicand (high byte) 8302 

Product (low byte) 8303 

Product (mid byte) 8304 

Product (high byte) 8305 

A solution is given in Figure 4-4, following the list of instructions 

in Section 4.4.5. 
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4.4.5 Table of Instructions 

Re-enter Monitor 

E7 RST 4 (applies to ICS Microcomputer 
Training System �nly) 

Jump and Conditional Jump Instructions 

C3 
xx 

xx 

JMP Address 
(low address) 
(high address) 

Data Transfer Instructions 

3A LDA Address 
xx (low address) 
xx (high address) 

78 MOV A,B 

79 MOV A,C 
7A MOV A,D 
7B MOV A,E 

7C MOV A;H 
7D MOV A,L 

(O ther register-to-register 
Page 4-3.) 

C2 
xx 

xx 

JNZ Address 
(low address) 
(high address) 

32 STA address 
XX (low address) 
XX (high address) 

47 
4F 

57 
5F 

67 
6F 

MOV 
MOV 
MOV 
MOV 
MOV 
MOV 

B,A 
C,A 
D,A 
E,A 
H,A 
L,A 

MOV instructions are tabulated on 

Immediate Data Transfer Instructions 

3E MVI A, data 
data 
06 MVI B, data 
data 
OE MVI C, data 
data 
16 MVI D, data 
data 
1E MVI E, data 
data 
26 MVI H, data 
data 
2E MVI L, data 
data 

None of the above instructions affect any flags. 
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Counting Instructions 

These counting instructions set or reset Zero. The ·carry Flag is not 

affected. 

3C. INR A 3D OCR A 

04 INR B 05 OCR B 
oc INR C OD DCR C 
14 INR D 15 DCR D 
lC INR E lD DCR E 
24 INR H 25 OCR H 

2C INR L 2D DCR L 

Arithmetic Instructions 

Zero and Carry are set or reset by these instructions. 

87 ADD A SF ADC A 
80 ADD B 88 ADC B 
81 ADD C 89 ADC C 

82 ADD D 8A ADC D 
83 ADD E SB ADC E 
84 ADD H SC ADC H 

85 ADD L 8D ADC L 

C6 ADI data CE ACI data 
data data 

97 SUB A 9F SBB A 

90 SUB B 98 SBB B 
91 SUB C 99 SBB C 
92 SUB D 9A SBB D 

93 SUB E 9B SBB E 
94 SUB H 9C SBB H 

95 SUB L 9D SBB L 

D6 SUI data DE SBI data 
data data 
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MULTIPLICATION BY REPETIVE ADDITION 
A D D R CODE 

8 c:2. 0 0 I I�
1 () 6 
2 � t., 
3 t) 111
4 b( F 
5 0 {) 
6 3 ll 
7 a 0 
8 1R 3 
9 :? ;::. 
A 3 ll 
B 0 I 
C p 3 
D w ,c 
E 3 l4 
F {!) ;; 

a ot. / o JJ 3 
1 4 ·7 
2 7 l) 
3 Ji I 
4 fn != 
5 7 C
6 '? J' 
7 � 7 
8 IJ ll 
9 C E 
A CJ � 
B Ii 7 
C I [7) 
D f �
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F 2 .;2_ 
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MULTIPLICATION BY REPETIVE ADDITION (continued) 

A D D R 

ac:1/2 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 
C 

D 

E 
F 

8 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 
F. 

8 0 

1 

2 

3 

4 

5 

6 

7 

8 

CODE 

7 v) M 

3 :;] s 

{J 3 
i 3

7 e M 

3 ;2_ s 
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..-
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Figure 4-4b 
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4.5 CONDITIONAL JUMPS 

In Sections 4.3 and 4.4 we used the Carry flag in addition (with ADC 

or ACI) and in subtraction (SBB or SB!). This flag can also be 

controlled in several ways other than by addition and subtraction. 

Moreover, the Carry flag can be used to control execution of a 

conditional jump just as the Zero flag has done in our programs thus 

far. 

Before proceding with this subject, let us review that single 

register counting instructions (INR and DCR) affect the Zero flag, 

but not the Carry flag. If the result of the count is zero, the Zero 

flag is set; otherwise it is cleared. 

Arithmetic and logical instructions, on the other hand, affect both 

Zero and Carry. If the result of the operation is a zero in the 

accumulator, the Zero flag is set; otherwise it is cleared. If the 

operation generates a carry out of the highest bit the Carry flag is 

set, otberwise it is cleared. Conditional jumps can be made with 

tests for the set or clear state of each flag: 
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HEX CODE 

C2 xxxx

CA xxxx

D2 xxxx

DA xxxx

MNEMONIC 

JNZ address 

JZ address 

JNC address 

JC address 

MEANING 

Jump if not Zero 

Jump if Zero 

Jump if not Carry 

Jump if Carry 
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All of these are three byte instructions. For instance: 

8218 

8219 

821A 

821B 

D2 

lC 

82 

14 

JNC 

INR 

821C 

D 

If Carry is not set when the JNC instruction is executed, the jump to 

821C is made. If Carry is set, the program continues at 821B. The 

instruction cycle is similar to that for JMP. The entire instruction 

is read, with the address being copied into temporary Registers W and 

Z; the flag determines whether that address is copied into the 

program counter. 

The 

the 

ACI 

for 

means of adding the Carry into 

which can be used instead of the 

procedure shown above is another 

high byte of a sum or product, 

00 instruction. If the two instructions above are substituted 

in the 

product 

given 

will 

MOV A,D 

ACI. 00 

MOV D,A 

solution 

be found. 

for exercise 

When no Carry 

4.4.4 (Figure 4-4) the same 

is generated by the mid-byte 

addition, the JNC instruction passes over the INR D. When a Carry is 

generated, the JNC is not executed, so Register D is incremented, 

just as though the Carry had been added by ACI 00. 
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There is one effect of the revised program different from the 

original version. Since the multiplication of one byte times two 

bytes cannot exceed the cipacity of the three byte product, ACI 00, 

in the program of Figure 4-4, never generates a Carry. Therefore, 

the original version of this program always finishes with no Carry. 

In the version using JNC, if the mid byte addition ADC B generates a 

Carry on the final. loop, that Carry remains at the end because 

following JNC, INR D, DCR E instructions in that program do not 

affect the Carry flag. With arbitrary multiplicand and multiplier we 

cannot predict the state of the Carry at the end, and it conveys no 

useful information. Therefore, the ACI 00 technique is generally 

preferred in arithmetic programs, unless its very slightly slower 

execution is important. JNC and JC were 

typical programs much more often use the 

making than for arithmetic. 
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4.6 TRANSFER NOTATION 

A number of new instructions have been introduced .• Most of these are 

members of sets that perform similar functions using different 

registers as a source and destination for data. 

For convenience· in describing instructions, we sha 11' now introduce 

."transfer notation". A capital letter designates·a specfic register 

or a flag; a lower ca�� letter refers to a register which will be 

identified in.the instruction. Parentheses imply "the content of"� 

Thus: 

ADD r (A) <- (A) t (r)

states that the content of Register r is added to the content of 

Register A and the result is placed in Register A. 
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4.6.1 Instruction Definitions 

The instructions used so far in the course are described below using 

transfer notation. Their effects on the Carry and Zero flags are 

also indicated. (The other three flags of the 8080 are treated in 

Chapters 10 and 11.) Review all of the instructions shown here to be 

sure that you understand them. 

LDA address 

STA address 

JMP address 

4-44

(A) <- (address)

Regiser A is loaded with the content of the 

memory location whose address is given in 

bytes 2 and 3 of the instruction. No flags 

are affected. 

(address) <- (A) 

The content of Register A is stored at the 

memory location whose address is given in 

bytes 2 and 3 of the instruction. No flags 

are affected. 

(PC) <- address 

The address in bytes 2 and 3 of the instruction 

is loaded into the program counter. Program 

execution continues from that address. No 

flags are affected. 



JNZ address 

JZ address 

JNC address 

JC address 

MOV d,s 
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If Zero flag is clear (PC) <- address 

Otherwise program execution continues at the 

next sequential instruction. No flags are 

affected. 

If Zero flag is set (PC) <- address 

Otherwise program execution continues at the 

next sequential instruction. No flags are 

affected. 

If Carry flag is clear (PC) <- address 

Otherwise program execution continues at the 

next sequential instruction. No flags are 

affected. 

If Carry flag is set (PC) <- address 

Otherwise program execution continues at the 

next sequential instruction. No flags are 

affected. 

(d) <- (s)

The content of source Register s is copied 

into destination Register d. No flags are 

affected. 
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MVI r, data (r) <- data

Register r is loaded with the data contained 

in byte 2 of ,the instruction. No flags are 

affected. 

INR r ( r) <- (r) + 1

Register r is incremented. Zero is set or 

reset. Carry is not affected. 

DCR r ( r) <- (r) - 1

Register r is decremented. Zero is set or 

reset. Carry is not affected. 

ADD r (A) <- (A) + (r)

Zero is set or reset. Carry is set or reset. 

ADC r (A) <- (A) + (r) + (CY)

Zero is set or reset. Carry is set or reset. 

ADI data (A) <- (A) + data

Zero is set or reset. Carry is set or reset. 

ACI data (A) <- (A) + data + (CY)

Zero is set or reset. Carry is set or reset. 
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SUB r (A) <- (A) - (r)

Zero is set or reset. Carry is set or reset. 

SBB r (A) <- (A) - (r) - (CY)

Zero is set or reset. Carry is set or reset. 

SUI data (A) <- (A) - data

Zero is set or reset r Carry is set or reset. 

SBI data (A) <- (A) - data - (CY)

Zero is set or reset. Carry is set or reset. 

XRA A (A) <-·oo

Zero is set. Carry is reset. 

(Note: XRA A is a member of a set of logic 

instructions which wi 11 be introduced later. 

The above definition applies to XRA A only). 

RST 4 Enter monitor 

This applies to the !CS Microcomputer Training 

System only. 
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4.6.2 Review and Self Test 

In the preceding sections we have used data transfer instructions, 

arithmetic and counting instructions, and immediate instructions. 

Test your knowledge by answering the questions below. Correct 

answers are on Page 4-51. 
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1) Use transfer notation to describe these instructions:

(Section 4. 5)

MOV C,E 

SUB r 

MVI D, 13 

ADC E 

AC! 00 '. I\ 

2) What instruction is described by each of the following

statements in transfer notation? (Section 4.5)

(8300) <- (A) 

(PC) <- address 

(r) <- (r) - 1

(A)<- (A) t data t (CY) 

3) What instruction usually appears at the end of a repetitive

loop controlled by counting? (Section 4.4.1)
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4) Identify the register and flags affected by each of these

instructions. (Section 4.5)

INR D 

MOV B,A 

STA 8300 

ADC E 

Register Zero Carry· 
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Answers to Self Test, Section 4.6.2 

1) MOV C,E (C) <- (E)

SUB r (A) <- (A) - (r)

MVI D, 13 (D) <- 13 

ADC E (A) <- (A) + (E) + (CY)

AQI 00 (A) <- (A)+ (CY)

2) STA 8300 (8300) <- (A) 

JMP address (PC) <-address 

DCR r ( r) <- (r) - 1

AC! data (A) <- (A) + data t (CY)

3) A repetitive loop controlled by counting us ually ends with JNZ

4) Register Zero Carry 

INR D D X 

MOV B,A B 

STA 8300 None 

ADC E A X X 
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Bit Pattern 

0000 0000 

0000 0001 

0000 0010 

0000 0100 

0000 1000 

0001 0000 

0010 0000 

0100 0000 

1000 0000 

1111 0111 
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0 

Bit Patterns for MTS Display 

Figure 4-5 

Display 

Off 

(Top Horizontal) 

(Upper Right) 

(Lower Right) 

(Bottom Horizontal) 

(Lower Left) 

(Upper Left) 

(Middle Horizontal) 

(Decimal Point) 

(All Elxcept 
· Bottom Horizontal)
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4.7 THE MTS DISPLAY 

Until this point the only means we have used for input of data and 

output of results has been to enter the monitor and look at registers 

and memory locations. Now we will output directly to the display. 

The hardware used in this process is described in Chapter 5; for the 

moment simply accept the following functional description. Later we 

will explain the external process. 

4.7.1 Displaying a Bit Pattern 

If you store a pattern of bits in a cetain memory location, that 

pattern will be reproduced in one of the display digits. Note that 

the bit pattern is not interpreted as a number, but reproduced as a 

pattern. Figure _4-5 shows the segments illuminated by each bit. If 

only one bit in the pattern is a 1 and all others are 0, then exactly 

one segment will be illuminated. If two bits are l's, then two 

segments will be illuminated. The last pattern in Figure 4-5 shows 

seven bits set to 1; only the bottom horizontal is left off. Try this 

with the following program. 
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8200 32 

8201 F8 

8202 83 

8203 

8204 

C3 

03 

8205 82 

STA 83F8 

JMP 8203 

Before running this program, enter a value into register A. 

REG 

RUN 

RESET 

REG 

RUN 

A 

A 

4 

F 

0 

7 

8200 

8200 

8200 

A. 

A-40

32 

A-F7

The bit pattern you enter into Register A is reproduced in the left 

hand digit. The monitor destroys the pattern you have displayed, so 

here we cannot reenter the monitor automatically, nor step through 

the program. 

to itself. 

that jump, 

Instead the program ends with an instruction that jumps 

The program waits here indefinitely, simply repeating 

until you press RESET. Therefore, we can now write 

programs that have output functions but no input. Until we learn of 

other means of input (in Chapter 6) we are limited to generating 

displays that change only according to values built into the program, 

or values entered before running the program. The following exercise 

uses such a procedure. 
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4.7.2 Display Digit Addresses 

You saw above that a pattern stored at memory location 83F8 appears 

in the left digit. The next digit is controlled by 83F9, the third 

by 83F A, etc. The right hand digit is controlled by the bit pattern 

stored at 83FF. 

We can load the display with a fixed pattern by a series of 

instructions like: 

MVI A, xx. 

STA xxxx 

To create the bit pattern for a desired display, draw the pattern in 

seven segment format, and mark the bit numbers. For example: 

0 

5 
6 

4 

3 

1 

2 

76 54 3210 
!oh !1!0 !1! 1!o!1 !

If the segment is to be illuminated, enter a 1 for that bit position 

into the pattern; otherwise enter a O. Translate the bit pattern 

into hexadecimal and use that value in a MVI A, data instuction. The 

above example gives a HEX value of 6D, so the instruction is 

3E MVI A, 6D 

6D 
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For example, the series below will display res.

8200 3E MVI 
8201 06 
8202 32 STA 
8203 F8 
8204 83 
8205 3E MVI 
8206 39 
8207 32 STA 
8208 F9 
8209 83 
820A 3E MVI 

820B 6D 
820C 32 STA 
820D FA 
820E 83 
820F C3 JMP 
8210 OF 
8211 82 

Exercise: Convert your 

the patterns 

pleases you. 
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A, 'I I 

83F8 

A, 'C I 

83F9 

A, Is I 

83FA 

820F 

own initials or name 

from Figure 4-5, and 

\ I 

into 

make 

characters, using 

a display that 
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4.8 REGISTER PAIRS AND MEMORY ADDRESSING 

In the examples and exercises of Sections 4.3 and 4.4 we often used 

two registers to store a 16 bit number (and once, three registers for 

a 24 bit number). The general purpose registers (B, C, D, E, H, L) 

are equivalent to each other for the instructions used so far. They 

store data, provide operands for arithmetic and logical instructions, 

and count either up or down. When we stored a multiplicand in 

Registers B and C we could equally well have chosen any other two 

registers, or we could have reversed the order, using B for the low 

byte and C for the high byte. 

Many instructions of the 8080 treat the general purpose registers as 

pairs, to hold sixteen bit numbers, in much the way we have been 

using them: 

Register Pair B B contains high byte 
contains low byte 

Register Pair D D contains high byte 
E contains low byte 

Register Pair H H contains high byte 
contains low byte 

Their arrangement is like that of Registers W and Z, and for the same 

reason: a pair of eight bit registers.is able to store a 16-bit 

memory address. 

A number of instructions use register pairs for addressing the data 

memory. There are several reasons for addressing the memory this 

way. The least important (but not trivial) reason is efficiency. If 

the same address is to be accessed repeatedly, it takes less program 

space and running time to load the address into a register pair than 
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to repeatedly load the memory address from the program memory into 

W,Z. More importantly, if the same operation is to be performed on 

data in a series of adjacent memory locations, that operation can be 

performed in a repetitive loop, with the address being modified by 

incrementing (or decrementing� the register pair. 

In many applications · a memory address is calculated from variable 

data, or loaded from another memory location. 
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4.8.1 The LDAX and STAX Instructions 

Register pairs B,C and D,R are used for addressing by the LDAX and 

STAX instructions. These correspond to the LDA and STA instructions, 

differing only in the source of addres� information. As is the case 

in all instructions using register pairs, the name- of the first 

register is used to identiff the pair, as in LDAX B: 

HEX CODE: 

MNEMONIC: 

MEANING: 

OA 

LDAX B 

Load Register A with the content of the memory 

location whose address is contained in 

register pair B,C. No flags are affected. 

This is called an indirect instruction, and is expressed as: " Load A 

indirect from B". The term "indirect" means simply that the content 

of the designated register is not to be loaded; rather, its content 

is the address of a location to be loaded. The address is obtained 

indirectly, rather than by directly specifying it as the LDA 

instruction would have done. 
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The other instructions in this set are: 

lA LDAX D Load A indirect from D 

(A) <- ((DE))

The STAX instructions similarly provide for storing data: -

02 STAX 

12 STAX 

B 

D 

Store A indirect at B 

((BC)) <- (A) 

Store A indirect at D 

((DE)) <- (A) 

The content of A is stored in the memory location whose address is 

contained in the named register pair. Note that double parentheses 

such as ((BC)) imply the content of the memory location whose address 

is contained in register pair B,C. 

Figure 4-6 illustrates the instruction cycle for STAX D, which 

typifies this usage of register pairs. 

Note the absence of LDAX H and STAX H. The register pair HL is ,used 

to address memory in an even more powerful way, which will be 

introduced in Section 4.9. 
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A 

D 

E 

p C 

0 

p 

A 

D 

E 

C 

A 

D 

E 

p C 

PROCESSOR 

-

83 

01 

8209 

Memory selects 8209 
and returns data 

CPU loads data to I and 
increments PC 

83 

01 

12 

CPU interprets instruction 

CPU sends content of D, E 
as an address 

Memory selects 8301 

09 

820A 

MEMORY 

' 
12 

� 

0 CPU sends content of A to :rnerrory 

Instruction Cycle for STAX D Instruction 

Figure 4-6 

8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

8 2 0 B 

8 2 0 C 

8 2 0 D 

8 2 F F 

8 3 0 0 

8 3 0 1 
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A 77 a 

B b 7C 

C 39 C 58 

D d 5E 

E 79 e 
F 71 f 

G 3D g 6F  

H 76 h 34 

I 06 i 04 
J lE j 
K k 

L 38 1 06 

M use N,N m use n,n 

N 37 n 54 

0 7F 0 5C 

p 73 p 

Q q 67  
R r 50 

s 6D s 

T t 78 

u 3E u lC 

V use u V use u 

w use u,u w use u,u 

X X 

y 6E y 

z 5B z 

HEX Codes and Characters 

Figure 4-7 

'4-62 



THE OTHER REGISTERS AND MEMORY ADDRESSING 

4.8.2 Copy a List to Display - Exercise 

With the LDAX and STAX instructions it becomes easy to access data in 

successive memory locations. In this exercise we will create a 

sequence of characters translated into bit patterns and place this 

sequence into'memory as we load the program. Then the program will 

copy the characters into the display. 

Figure 4-7 gives 

Unfortunately K 

HEX 

and X 

codes that can be 

are impossible, 

used for most characters. 

M and W require double 

characters, and several others are not very good representations 

because of the physical limitations of, a 7-segment display. Use this 

table to generate a list of characters to be displayed,,and store the 

list starting at address 8300. For example: 

8300 73 

8301 5C 

8302 06 

8303 04 

8304 58 

8305 79 
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Now write a program, using MVI instructions to load register pair BC 

with the address of your list (8300); pair DE with the address of the 

display (83F8), and Register L with the number of characters. Use 

these addresses to copy the list into the display. 

OA 

12 

LDAX B 

STAX D 

Load Character 

Copy to display 

Increment the addresses in Register C and Register E; (the high bytes 

in B and D should not change); Count down in Register L and repeat 

(use JNZ) until the required number of characters have been copied. 

Finally jump back to the starting location (8200). 

Write and code your program. Step through the program to test the 

program flow, but do not expect to see any results in the display 

while you are stepping. The monitor program uses the same display by 

writing to the same memory locations you are using. After the first 

time the JNZ instruction is executed, look at the registers to make 

sure they contain the correct addresses and count. 
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REG 

NEXT 

NEXT 

NEXT 

REG 

B 

L 

820A 

820A 

820A 

820A 

820A 

B-83

C-01 

D-83

E-F9

L-05(?)
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The count in Register L should now be one less than the number of 

characters, since it has counted down once. The given solution 

(Figure 4-8) has six characters. Your program may have fewer or more, 

but not more than eight, since that is the size of our display. 
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A D D R 

so<O o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

/?_�/) A
B 

C 

D 

E 

F 

a o2 Io 
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2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

f 

8 , ;;n o 
1 

2 

3 

4 

5 

6 

7 

8 

CODE 

c) /,-;

l,P � 

II> E
() /)

/ (u 

J .. 3 
I E

F p 

.,j E 

() 11, 
() /I 
/ c2. 
0 C 
I C 

.:;__ ]) 

{!, /2 

() II 
y c2 
(! 3 
CJ 0 

J' b/ 

7 3 
5 C 
() 0 
() LJ 
�- J' 
'l 9 

COPY LIST TO DISPLAY 

/VI V T 6 p 
.., 

�j 
/ 

M v L ·C {) {) 

tV\. J T ]) f 3 
, 

;vi v' I £ I� J' 
,, 

M 1) .I L 0 h 
I 

L J) I+ ·f,_ B 
s 7 f} X. ]) 
I N R C. 
1 A) R E 
1) C R. L 
J N z p d,. L) fl
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L I s T {) ;:: C I-I 

·,
I
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k' 
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l 
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J 

. - (J M.h /J /' t;;-' ) f'. . . f:
,. 
} A 

(I j /1}, dJ /1 � . .� "--- - , -� j,

..,,1,;, -/2_,,, ,,,.., I/) d � 
1
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() 
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Figure 4-8 
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4.8.3 Display of Eight Characters 

If you display exactly eight characters in the preceding program you 

can make use of the fact that the final display location is 83FF. 

When the display has been fully loaded, the INR E instruction will 

count to  00, setting the zero flag. In your program, replace the DC R 

L instruction with NOP (HEX code 00). Now exactly eight characters 

will be displayed. If you want any blank characters, put zeros in 

the table to turn off all segments. 
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4.8.4 Register Pair Loading - LXI 

Because it is so common to use register pairs for addressing memory, 

the 8080 includes special load immediate and counting instructions 

fo�'register pairs. 

01 LXI B, address 
xx (low byte of address - to Register C) 
xx (high byte of address - to Register B)

11 LXI D, address 
xx (low byte of address - to Register E)
xx (high byte of address - to Register D)

21 LXI H, address 
xx (low byte of address - to Register L) 
xx (high byte of address - to Register H)

These instructions are similar to the MVI instructions, except that 

two bytes of data follow the op-code and two registers are loaded. 

Note that we will write the addresses in a mnemonic instruction in 

the conventional way, with high byte first: 

LXI D, 8300 

When this is translated into 8080 machine language we must follow the 

8080 convention (as in JMP instructions) with low byte first, then 

high byte: 

11 LXI D, 8300 

00 (low byte of address) 

83 (high byte of address) 
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In transfer notation we use the abbreviation rp to designate any one 

of the register pairs. The LXI instructions can then be defined as: 

LXI rp, address 

(low register of pair) <- (byte 2) 

(high register of pair) <- (byte 3) 

No flags are affected. 

In your program for copying a list to the display, replace the MVI 

instructions with LXI instructions. 

Change These To These 

06 MVI B,83 01 LXI B, 8300 

83 00 

OE MVI C,00 83 

00 00 NOP 

16 MVI D,83 11 LXI D, 83F8 

83 F8 

lE MVI E,F8 83 

FS 00 NOP 

The program operation will be unchanged. 
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4.8.5 Register Pair Counting - INX, DCX 

In the program for copying a list to the display we started the list 

at 8300, so for eight characters it ended at 8307. Suppose the list 

were to start at 82FF. Then the first INR C instruction would 

advance Register C to 00, but Register B would not be affected and 

the address in B,C would be 8200. The 8080 includes register pair 

counting instructions, which will count a sixteen bit number in a 

pair. 

03 

13 

23 

INX B 

INX D 

INX H 

OB 

lB 

2B 

Again using rp to designate a register pair: 

INX rp 

DCX rp 

( rp) < - ( rp) -t 1 

No flags are affected 

( rp ) < - ( rp ) -- 1 

No flags are affected 

DCX 

DCX 

DCX 

B 

D 

H 

Note that the register pair counting instructions do not affect any 

flags. In the modified "Copy List to Display" program, using the

count of Register E to terminate the loop, we must continue to use 

INR E, since INX D would fail to terminate the loop at 8400. We can 

use INX B to address the list, and we are then not constrained to 

start the 1 ist at any particular place. Figure 4-9 shows the fully 

modified version of the given "Copy List to Display" program. 
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4.8.6 Delay Loops 

Although most of the operations we have performed with the computer 

appear to happen instantaneously, in fact each step in the computer 

takes a defined time to occur. If a delay of a specific length of 

time is desired it is easy to achieve, provided that the computer has 

nothing else to do. The trick is to perform some simple operation a 

very large number of times. 

We will cause the display we created in the previous exercises to 

appear gradually by inserting a delay loop between characters. The 

program description becomes: 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

10) 

Address List 

Address Display 

Copy one character 

Set Delay 

Count Delay down to 

Next List Addresses 

Next Display Digit 

Repeat fro- 3 until 

Clear the display 

Repeat from start 

to display 

zero 

finished 

(BC) <- 82FF 

(DE) <- 83F8

((DE)) <- ((BC))

(HL) <- 04 00 

(BC) <-(BC)+ 1 

'(E) <- (E) i 1 

This will load the display as before but with a delay between 

characters. Once loadeq, the display will be turned off by writing 

zero into all the display locations, and the process will be 

repeated. 
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Steps 1, 2, 3 and 6, 7, 8 are the same steps we have been using. Step 

4 uses another LXI instruction (LXI H,0400). The delay sequence is: 

r · DCR 

JNZ 

DCR 

-------JNZ 

L 

H 

Register L repeatedly counts down from 00, FF, FE --- 01, 00. The 

final count sets the Zero flag and register H is counted once. Then 

L is counted down from 00 again, and so on until Registers H and L 

have both reached zero. (Be sure you understand this - study the 

sequence above carefully). For an 8080 running at normal speed this 

delay loop takes 3855 clocks or .001882 second for each count in 

Register H. Since we started with a count of 4 in Register H, the 

delay would be only 7�5 milliseconds (.0075 second) at full speed, 

still an imperceptible time. Because we are using the MTS monitor 

your program is executed much more slowly, and the value given is 

suitable for our purpose. The slow operation is explained in the 

next section. 

Note that we have placed the address incrementing instructions (INX 

B, INR E) after the delay. The delay count uses the Zero flag, so 

the INR E instruction must follow the delay so that it can terminate 

the loop for displaying digits. 
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To clear the display �e can ag�in load its address into (PE) and 

write zeros into all eight locations. 

Write this program yourself, referring to the program description. 

Then compare your results with our solution. (Figure 4-10). The next 

section describes a new technique for testing the program flow. 

4-75



1-w 
w
I
U)
(!) z 
Cl 
0 
(.) 

�w
1-U)>­U)
(!) z 
z 
<(
a:
l­
a:
UJ
1-
:J
Cl. 
� 
0 
(.) 
0 
a: 
(.) 

2 

U) 
�
UJ
1-U)>­U)
a:
w
1-
:J
Cl. 
� 
0 
(.) 

Cl 
w

a: 
(!) w
1-z

4-76

A D D R CODE 

Bc:20 o t) I
1 r �
2 J' :2
3 I I 
4 F J'' 
5 p 3 

P�()G 6 fl 
7 I :2
8 c:2.- I 
9 0 {) 
A a JJ 

YdlJ B � J> 
C C :; 
D (!) 8 
E tf � 
F l� :J 

a o2 / o C :)
1 {) 13 
2 J' .;? 
3 {) 3 
4 I C 
5 C r2 
6 ·CJ �
7 SJ (j_ 
8 / / 
9 F J' 
A f 3 

B fr F 
?c:2_/ C I d, 

D I <3 
E C <f2 
F I C

8 o:1� 0 ? � 
1 (3 3 
2 0 0 
3 IP :2 
4 

5 

6 

7 

8 

L 

L 

L 

.s 

L 

J) 

J 

]) 

J 

I 
I 

J 

L 

X 

s 

I 

J 

J 

8 
/) 

GRADUAL DISPLAY WITH CLEAR 

x I. 6 
I/ 

x I l) 
I 

]) A- "i, 8 
7 /)- X J) 
x 7_ /-I I 

/ 

C 1< L 
N z g 

C R H 
N z ? 

Iv' X B 
IJ R E 
Iv' z f 

X I. J) 
I 

I 

R A A 
T 4 x J) 
Iv R E

tJ z J' 

M p J? 

A M E ]) 
� ;=- I. G-

y .;L F F 

,f 3 ? J'

0 7' tJ 1)

o2 - {) 13 

� 0 i3 

� 0 l.0 

y 3 F �P 

di / C 

c2_ CJ 0 

R T I) 
v1 R. E:

/) d d� ti ,A,A )('� ;I-: 
I 

r'J /Id;, 11 ,,,, A ) if t � F ;J,,, • �

.... f� -t- -11, t7 ,,-i J ..,. 

{/' 

"-17/) J,,,.. I J '� .r) 

{/ (/ 

II 

f /tv!/-· (7../ a J.. /J fi:tiA_., 
'-/),/J;//- -/;. J • /-J I'],., 

·A�t'JA� ./J_.,."h'L

ti � ·_ j � � ,� Al 
.... 

(T

// d1 d h /) ,a..a) i./ ), A• fl If /M J : 

J.A.,., ) (/ t7 ,7 /J Jr ; .,J /,( (I

I 0 

(f})i:--O?J 
<../1>:i� r 1::-- OLJ 
0 £/r, '-/2 /-:}'., f ..

� �ri,.,_.,,-,t. /.J er,/� /J,,, - � _.,
fl 

l�AJ,) L,., �.l.T,

L T'l'! /JT ?cl.FF 

L/-9 

Figure 4-10 



THE OTHER REGISTERS AND MEMORY ADDRESSING 

4.8.7 Breakpoints 

We have used the MTS monitor to step through programs to test the 

program flow and look for errors. In a program that has short 

repetitive loops this is a little tiresome; when a loop such as the 

delay in this program is repeated a large number of times it is 

impractical to step through it • .  You would have to press STEP more 

than 16,000 times to step all the way through this program. 

The monitor has a powerful feature that avoids repeated stepping, yet 

allows you to test program flow thoroughly. 

Using the program solution given in Figure 4-10 we shall demonstrate 

the breakpoint ability of the monitor. (Be sure that the toggle 

switch at the left of the circuit board is in the "single step" 

position.) 

RESET 

Do not press RESET again after the next steps. 

ADDR 

BRK 

8 2 0 6 

8200 

8206 

8206 BP. 

01 

OA 
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We have set a breakpoint at 8206, the LDAX B instruction. 

ADDR 8200 01 

This displays the present program address, at present the start of 

the program. 

RUN 8206 OA 

Your program was executed until it reached the instruction whose 

address you entered as a breakpoint. 

been executed. 

STEP 

STEP 

STEP 

STEP 

STEP 

This instruction has not yet 

8207 

8208 

820B 

820C 

820B 

12 

21 

2D 

C2 

2D 

We have now started the long countdown in Register L. We have 255 

steps to go. 

REG L 820B L-FF
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Now we know that this piece of the program is operating. Enter 

another breakpoint after this loop, at DCR H. 

ADDR 

BRK 

RUN 

8 2 0 F 820F 

820F 

(Z) 820F

25 

BP. 

L-00

The first segment of the delay loop has been executed and we have 

reached the brea·kpoin t at 820F. The last register we displayed is 

shown again, just as. though we had stepped 255 times . Register L has 

counted down to zero (note that the zero flag is set) and we are 

ready to count in Register H. 

REG 

STEP 

STEP 

RUN 

RUN 

RUN 

H (Z) 820F

8210

820B

(Z) 820F

(Z) 820F

(Z) 820F

H-04

H-03

H-03

H-03

H-02

H-01

Note that we are always seeing the Zero flag set from counting down 

in Register L. 
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The program is stopped before we execute the OCR H. Now we are about 

to count H down to zero. 

STEP 

ADDR 

STEP 

The JNZ (C2) instruction was not executed. 

addresses being incremented. 

REG 

STEP 

C 

(Z) 8210

(Z) 8210

(Z) 8213

H-00 

C2 

H-00

We can watch the 

( Z) 8213

(Z) 8214

C-FF

c-oo

The Zero flag is still set from the previous DCR H. The next time 

around we shall see that when (BC) becomes 8301 the Zero flag is not 

affected. 

Now we should STEP to be sure that the next untested instructions are 

correct. 

REG 

STEP 

STEP 

ADDR 

E 

This is the LDAX B instruction. 

REG A 

(Z) 8214

8215

8206

8206

8206 

Register A still contains the first character of the list. 

STEP 8207 
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We have loaded the second display character. When we press RUN that 

character will appear momentarily on the display before we reach the 

breakpoint at 820F. 

RUN p 

(Z) 820F A-73

REG H (Z) 820F H-04

RUN (Z) 820F H-03

RUN (Z) 820F H-02

RUN (Z) 820F H-01

We are about to leave the delay loop. 

STEP (Z) 8210 H-00

STEP (Z) 8213 H-00

Watch REG C and the Zero flag. 

REG C (Z) 8213 c-oo

STEP (Z) 8214 C-01

As promised, INX B did not affect Zero. We need not continue to 

observe this part of the program, but we might want to see each 

character displayed. 
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We shall clear the breakpoint at 820F, but leave the breakpoint at 

8206. Press BRK to display the breakpoint: 

BRK 

CLR 

(Z) 820F

(Z) 8206

BP.00 

BP.00 

Clear removes the breakpoint displayed and shows the other one. 

ADDR 

RUN 

RUN 

,(Z) 8214 

8206 

lC 

C-01

The third character appeared momentarily and we are about to send the 

fourth. If you are now satisfied that this part of the program works 

we can clear the breakpoint at 8206, and insert a new breakpoint at 

8218, just before the display is cleared. 

BRK 

CLR 

No breakpoints remain. 

ADDR 

BRK 

ADDR 

8 

MEM 

2 1 

Pressing ADDR shows the instruction. 

8 

8206 

8218 

8218 

8206 

BP.00 

BP. 

11 

BP. 

.OA 

MEM tells the monitor to 

display the instruction instead of a register. 
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Now run the remainder of the program. 

RUN licE 

(Z) 8218 11 

After the rest of the message was shown we reached the breakpoint at 

8218 when Register E counted to zero. 

Step through the display clearing loop once, and then practice what 

you have learned by setting breakpoints at the JNZ and JMP 

instructions. After a couple of times through the clearing loop, 

remove the breakpoint at JNZ, and watch the program stop at the JMP. 

Finally, remove all breakpoints by pressing RESET, and run the whole 

program. 

It was pointed out in Section 4.8.6 that your program executes slowly 

because of the MTS monitor. Before each of your instructions is 

executed the monitor looks in its list of breakpoints to see whether 

your program counter has reached one of them. This is done by the 

8080 executing the monitor program. For every one of your 

instructions that is executed the 8080 executes at least 68

instructions of the monitor program. When you have entered 

breakpoints some of these must be executed in repetitive loops, 

making the process even slower. You can make your program run at 

full speed, after it is tested and operates correctly, by switching 

the monitor off. At the left edge of the MTS circuit board there is 

a switch. In its low position (STEP) the monitor is active; in AUTO 

the monitor is inactive. 
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4.8.8 Review and Self Test 

This section has introduced register pairs ) and used them to address 

memory. We have practl�ed the use of the MTS Display and used 

repetitive loops to address successive locations in·memory and to 

generate a time delay. Monitor breakpoints were introduced. Test 

your knowledge with this quiz. 

1) Identify the three register pairs, and tell which register is

used for the high byte and the low byte of an address stored in 

the pair. (Sections 4.8, 4.8.1)

Register Pair Name High Byte Low Byte 

2) Describe the following instructions using transfer notation.

(Sections 4.8.1, 4.8.4, 4.8.5)

LXI 

INX 

LDAX 

STAX 

B, 

D 

D 

B 

address 

3) Which flags, if any, are affected by each of the above

instructions? (Sections 4.8.1, 4.8.4, 4.8.5)������������

4) Give the MTS key sequence to set a breakpoint at address 8218,

(Section 4. 8. 7)
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5) Create a bit pattern to display the numeral 3, and translate it

into hexadecimal. (Section 4.7.1) ���������������

6) Give the two instructions to display a 3 in a digit addressed by

(DE). ·,\ � \ I 
; ' 

7) What hexadecimal value should be written to a display location

for a blank digit? (Section 4.7.1)
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Answers to Self Test - Section 4.7.8 

1) The register pairs ire:

B 

D 

H 

2) LXI B, address
or 

INX D 

LDAX D 

STAX B 

B Stores the 
Stores the 

D Stores the 
E Stores the 

H Stores the 
Stores the 

(BC) <- address 
(C) <- byte 2 of instruction

(low address) 
(B) <- byte 3 of instruction

(high address) 

(DE) <- (DE) + 1 

(A) <- ((DE))

((BC)) <- (A) 

high byte 
low byte 

high byte 
low byte 

high byte 
low byte 

3) None of the above instructions affects any flags.

4) To set a breakpoint press

ADDR 8 2 1 8 BRK 

5) Bit Pattern for 3 = 01001111 = 4F 

6) To display 3 at (DE)

MVI A, 4F 

STAX D 

7) Hexadecimal 00 gives a blank.
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4.9 USE OF A MEMORY LOCATION AS A REGISTER 

Register pair HL is primarily intended for addressing memory, and the 

memory location addressed by (HL) is available to the CPU as though 

it were another register. All of the register reference instructions 

(MOV, MVI ,  INR, DCR, ADD , ADC, SUB, SBB, and others not yet 

presented) have counterparts that perform the same function using the 

memory location addressed by (HL). The flags are affected as though 

the memory location were a general purpose register. 

Before carrying out an exercise involving this type of memory 

addressing, we will formally define some instructions involving 

memory reference. Note that in transfer notation parentheses mean 

"the content of", so (HL) refers to the content of register pair HL. 

Doubled parentheses such as ((HL)) mean "the content of the memory 

location addressed by the content of register pair HL". In memory 

reference instructions that treat this memory location as a register, 

we use M to designate the register. For example: INR M. Thus (M) 

is always equal to ((HL)). Instead of LDAX H and STAX H we have 

equivalent instructions. 

7E 

77 

MOV 

MOV 

A,M 

M,A 

(A) <- ((HL))

((HL)) <- (A) 
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4.9.1 Memory Reference Instructions 

4-88

HEX 

34 

35 

36 

xx 

MNEMONIC 

INR M 

DCR M 

MOV M,s 
(See Section 4.11.4 

for hex codes) 

MOV d,M 
(See Section 4.11.4 

for· hex codes) 

MEANING 

Increment Memory 
((HL)) <- ((HL)) + 1 
Increment the content of the 
memory location addressed 
by the content of register 
pair HL. 
If ((HL)) becomes O then (Z)<-1 

else (Z) <-O 
The Carry flag is not affected. 

Decrement Memory 
((HL)) <- ((HL)) - 1 
Decrement the content of the 
memory location addressed 
by the content of register 
pair HL. 
If ((HL)) becomes O then (Z)<-1 

else (Z)<-O 
The Carry flag is not affected. 

Move into memory from register 

((HL)) <- (s) 
The memory location addressed 
by the register pair HL is 
loaded with the content of 
source register s. 
The flags are not affected. 
The content of s is not affected. 

Move into register from memory 
(d) <- ((HL))
Destination register d is
loaded with the content
of the memory location
The flags are not affected.
The content of the memory
location is not affected.

MVI M,data Move immediate data into memory 
((HL)) <- (byte 2) 
The memory location addressed 
by register pair HL is 
loaded with the content of 
byte 2 of the instruction. 
The flags are not affected. 
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ADD M 

ADC M 

SUB M 

SBB M 

Add memory to accumulator 
(A) <-(A)+ ((HL))
The content of the memory
location addressed by register
pair HL is added to the
content of Register A and the
result is placed in Register A.
The content of the memory
location is not affected.
If (A) becomes O then (Z) <- 1

else (Z) <- O 
If the result of the addition 
is greater than FF (ie a 
carry occurs) then (CY) <- 1 

else (CY) <- O 

Add memory to accumulator 
with Carry. 
(A) <- (A)+ ((HL)) + CY
Flags are affected as in ADD M

Subtract memory from accumulator 
(A) <- (A) - ((HL))
The content of the memory
location addressed by (HL)
is subtracted from the content
of register A and the result
is placed in register A. The
content of the memory location
is not affected.

If the result is zero the Zero 
flag is set. Otherwise the 
Zero flag is reset. 

If the content of the memory 
location was greater than the 
original content of A then 
Carry is set to indicate a 
borrow. Otherwise Carry is 
reset. 

Subtract memory from accumulator 
with borrow. 
(A) <- (A) - ((HL)) - CY

Flags are affected as in SUB M. 
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1' 

Address Augencl 
(DE)- 8300 

Address Addend 
(HL)- 8304 

Load Byte Counter 
(C) - 04

Clear A and CY 

,. 

Add Bytes with Carry 
Store Sum 
Increment Both Addresses 
Decrement Byte Count 

'I, 

Not Zero 

zero 
1 � 

Not Carry 

carry 

, � 

Increment High Byte 
of Sum 

1 � 

Enter Monitor 

Four Byte Addition in Memory 
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4.9.2 Four Byte Addition Exercise 

The use of ((HL)) as a register makes it easy to do arithmetic with 

numbers that are too large (i.e., require too many bytes) to be kept 

in the working registers. For example: add two numbers of four 

bytes each and replace one of them (called the addend) with the sum. 

Allow the sum to occupy five bytes (since it might be as great as 

OlFFFFFFFE). Figure 4-11 is a flow chart for the program. We shall 

use Register C for a byte counter; DE for the address of the augend 

(the number to be added to the addend) and HL to address the addend. 

The augend is stored at 8300 - 8303; the addend and sum at 8304 -

8308. 

Because we shall do the multi-byte addition in a loop, we must use 

the ADC addition instruction. Carry must be cleared before the first 

addition. We have peviously used: 

AF XRA A 

to clear Register A; the same instruction also clears the Carry flag. 

The addition loop is: 

XRA A 

LDAX D 

ADC M 

MOV M,A 

INX D 

INX H 

DCR C 

JNZ 
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At the end of this loop Carry is set if the sum is too great for four 

bytes. Then either of these techniques can be used: 

[JijC MOV A,M 

INR M AC! 00 

RST 4 MOV M,A 

JMP START RST 4

JMP START 

We have used ADC M and INR M, treating M or ((HL)) as though it 

were a register. A program solution is given in Figure 4-12. 

For additional practice, convert this into a multiplication program. 
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4.9.3 Counting in the Display - Exercise 

A trivial but amusing use of the INR M instruction allows us to view 

a counting operation as it occurs. Since the display is controlled 

by eight specified memory-locations, we can count in those locations 

and see the effect on the display. Figure 4-13 shows the program 

flow chart. The left hand digit of the display memory counts very 

rapidly, using only two i�structions: 

C
INR 

··· JNZ

M 

With the monitor disabled (set the STEP/AUTO switch to AUTO) this 

loop is executed once in 10 microseconds. A full cycle in that digit 

takes about .00256 second. The secon� digit counts 256 times more 

slowly; allowing for the extra instructions, but a clock rate 

slightly greater than 2 MHZ, a full cycle in the second digit takes 

0.646 second� and the thitd completes • cycle in 165 seconds. How 

long will it be before the display is all blank again? 
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4.10 INDIRECT ADDRESSING 

We have previously described LDAX B (or MOV A,M) as "indirect 

addressing". This is Intel usage of the phrase, but more 

conventionally indirect addressing implies taking an address from one 

location in memory to point to another memory location. This can be 

done in two ways in the 8080. 

LXI 

MOV 

IN X 

MOV 

Now register pair 

stored in memory 

powerful, as we 

store an address 

desired data. 
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H, 

C,M 

H 

B,M 

8300 

BC contains an address 

locations 8300 and 8301. 

shall see in the later 

which was (and still is) 

This technique is very 

exercises. 

in memory, and later use that 

A program can 

address to find 
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4.10.1 Load and Store HL Direct 

In order to use a memory location as a working register, its address 

�ust be in register pair HL. We can load an address into pair BC as 

above and then copy it to HL by using MOV L,C and MOV H,B. It is so 

important to be able to do this kind of function that the 8080 

provides an instruction to do it: 

2A 

xx 

xx 

LHLD Address 

(low address) 

(high address) 

Load H and L Direct 

(L) <- (address)

(H) <- {address t 1) 

No flags are affected. 

This is a three byte instruction similar to LDA address, but it loads 

two bytes of data from memory. The byte stored at "address" is 

copied into Register L, and the following byte is copied into 

Register H. Be sure to understand the difference between LXI H 

address and LHLD address. 

LXI H, 8300 (L) <- 00

(H) <- 83

LHLD 8300 (L) <- (8300)

(H) <- (�301)

The reverse function is also available: 

22 SHLD Address Store H and L Direct 

xx (low address) (address) <- (L) 

xx (high address) (address t 1) <- (H) 
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Note that these are ca 11 ed "direct" instructions because the program 

provides the address where the data are stored. Their principal use 

is for indirect addressing; having loaded H and L directly, we now 

use the information we loaded as an address to find other data. 

LHLD 

MOV 

8300 

A,M 

We have loaded Register A from memory, using another pair of memory 

locations (8300, 8301) to provide an address. 
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4.10.2 LHLD and SHLD - Example 

To make these instructions more clear, enter and step through this 

program: 

8200 AF XRA A Clear A 
8201 21 LXI H,8400 An address for data 
8202 00 

8203 84 
8204 77 MOV M,A Store datum 
8205 22 SHLD 8300 Store address 

8206 00 
8207 83 
8208 21 LXI H,FFFF Discard the address 
8209 FF to prove it has 
820A FF been stored 
820B 7D MOV A,L Discard the datum 
820C 2A LHLD 8300 Recover the address 
820D 00 
820E 83 
820F 7E MOV A,M Recover the datum 
8210 23 INX H Next address 
8211 3C INR A Next datum 
8212 C2 JNZ 8204 Repeat 256 times 
8213 04 
8214 82 
8215 E7 RST 4 Enter monitor 
8216 C3 JMP 8200 
8217 00 

8218 82 

The following pages describe the results of this program as you step 

through it. 
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This program will store the content of A (MOV M,A) at the address 

contained in HL. At the beginning it stores 00 at.address 8400, and 

stores 8400 at 8300 and 8301. Set the STEP/AUTO switch to step and 

go through the first six instructions. 

RST 

STEP 

STEP 

STEP 

STEP 

STEP 

STEP 

Now inspect the registers and memory locations. 
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NEXT 

ADDR 

ADDR 

NEXT 

A 

H 

(the next register) 

8 4 0 

8 3 0 

0 

0 

(the next memory location) 

8200 

8201 

8204 

8205 

8208 

820B 

820C 

820C 

820C 

820C 

8400 

8300 

8301 

AF 

21 

77 

22 

21 

7D 

2A 

A-FF 

H-FF 

L-FF

00

00

84
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The registers contain garbage, but the ini tial value of A i s  sto red 

at 8400 and tha t address is stored at 8300, 8301. 

ADDR 

This is the LHLD instruction. Watch H. 

REG 

STEP 

REG 

H 

L 

820C 

820C 

820F. 

820F 

2A 

H-FF

H-84

L-00

The address has been recovered by LHLD 8300, and (HL) now contains 

8400. 

REG A 820F A-FF

Register A still contains garbage but the next instruction (MOV A,M) 

will recover the data from (8400). 

STEP 8210 A-00

Place a breakpoint here ( at 8210) and step thro ugh the next several 

instructions. 

ADDR 

STEP 

STEP. 

BRK 8210 

8211 

8212 

BP. 

A-00

A-01
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Register pair H now contains the next address for data storage (8401) 

and Register A contains the next datum. 

STEP 8204 A-01

The new value in A wili be stored at 8401 by MOV M,A and the new 

address will be stored at 8300, 8301. 

RUN 8210 A-01

We have gone through the store and recover instructions, so once 

again the address and datum have been recovered from memory by LHLD 

8300 and MOV A,M. 

REG 

NEXT 

ADDR 

H 

8 4 0 1 

8210 

8210 

8401 

H-84

L-01

01

Register pair HL points to memory location 8401, which contains the 

datum 01, which we have already loaded into A. 

We shall continue stepping through this program in the next section. 
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4.10;3 E�amining a Register Pair 

The MTS monitor provides a convenient means of examining a register 

pair and the memory location addressed by the register pair. Note 

that key 8 is also labelled H. This refers to register pair H. 

ADDR H MEM 8401 HL.01 

The monitor is now addressing the same memory location that is 

addressed by (HL). 

NEXT 8402 ?? 

Next displays the next memory location. It does not affect the 

contents of Hand L. 

ADDR H 

Run through the loop 

RUN 

ADDR H 

We can look backward 

MEM 

MEM 

MEM 

again. 

MEM 

in memory by pressing: 

8401 HL.01 

8210 23 

8402 HL.02 

8401 • 01

8400 • 00

4.;,.103 



THE OTHER REGISTERS AND MEMORY ADDRESSING 

Repeat this a few more times. 

RUN 8210 23 

ADDR H MEM 8403 HL.03 

RUN 8210 23 

RUN 8210 23 

ADDR H MEM 8405 HL.05 

Remove the breakpoint and run all the way. 

BRK 8210 BP.00 

CLR BP. 

RUN (Z) 8216 C3 

The program has run all the way and is ready to start over. 

REG A 8216 A- 00

ADDR H MEM 8500 HL.?? 

Now look through the memory. 

ADDR 8400 8400 00 

NEXT 8401 01 

NEXT 8402 02 

4-104



THE OTHER REGISTERS AND MEMORY ADDRESSING 

Review what has been done. During each loop we stored a data byte in 

a memory location (8400, then 8401, then 8402, etc.) and stored the 

address of that memory location in a pair of other memory locations. 

Then we used the registers for some other undefined purpose. Then we 

recovered the address and the data byte, incremented both, and 

repeated. The important points here are the storage of an address in 

memory so that it could be found later, and indirectly loading data 

from the addressed location. 
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4.10.4 Review and Self Test 

The use of registers pairs for addressing memory, and the use of the 

memory location addressed by (HL) as a working register are extremely 

important features of the 8080 microprocessor. The next two 

exercises use these features. Before going on, test your knowledge. 

1) Assume (for the program below) that �emory contains:

8300 
8301 
8302 
8303 
8304 
8305 
8306 
8307 

03 
83 
03 
06 
QA 
6F 
FF 
84 

For each step in the following program indicate which registers 

and/or memory lbcati6ns are affected, and give the content of the 

register or memory location after execution of the instruction. 

8200 LXI 

8203 LDAX 
8204 LXi 

8207 ADD 
8208 LHLD 

820B INX 

820C MOV 
820D SHLD 

8210 LHLO. 

8213 DCR 
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H, 8304 

M 

8306 

H 

M;A 
8309 

8300 
' 

M 
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2) Which instructions in the program above affect the Zero flag?

3) Which instructions affect Carry?

4) If you press the following keys after the instruction at 8213 has

been executed, what will be displayed?

ADDR H MEM 

5) Neither of the following instructions exists in the 8080. What 

equivalent instructions do exist?

LDAX H 

STAX H 

6) There is no instruction to load BC or DE in the same way that

LHLD loads HL. There are several ways to accomplish the same

function with three or four instructions. Give three ways to

load register pair B with the data stored at addresses 8300 and

8301. Which takes the fewest bytes of program memory?

) . 
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Answers to Self Test, Section 4.10.4 

1) After execution of: Register or Content 
Memory Location 

8200 LXI B, 8302 C 02 
B 83 

8203 LDAX B A 03 
8204 LXI H, 8304 L 04, 

H 83 
8207 ADD M 4 OD 
8208 LHLD 8306 L FF 

' H 84 
820B INX H L 00 

H 85 

820C MOV M,A 8500 OD 
820D SHLD 8306 8306 00 

8307 85 
8210 LHLD 8300 L 03 

H 83 
8213 DCR M 8303 05 

2) The Zero flag is reset by:

8207 ADD M (result = OD) 

8213 DCR M (result = 05) 

3) The Carry flag is reset by:

8207 ADD M 

4) ADDR H MEM displays 8303 HL.05 
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5) Instead of LDAX H use MOV A,M

Instead of STAX H use MOV M,A

6) To load BC with data from memory locations 8300 and 8301:

a) �DA 8301

MOV C.,A 

LOA 8300 

MOV B,A 

This takes 8 bytes of program memory. 

b) LXI H, 8300

MOV C,M 

INX H 

MOV B,M 

This takes 6 bytes of program mempry. 

c) LHLD 8300

MOV C,L 

MOV B,H 

This takes 5 bytes of program memory. 
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4.11 COMPARISONS AND CONDITIONAL JUMPS 

We have repeatedly used the Zero flag in counting and repeating a 

loop (DCR, JNZ). 

We have 

setting 

and SBB 

used the Carry flag in arithmetic in several exercises: 

or resetting the flag by ADD and SUB; using it in ADC or ACI 

or SBI; and demonstrated a conditional jump (JNC) in one 

arithmetic program. There are a number of other ways to set or reset 

the flags, and they are most often used with the conditional jumps. 

Review the four conditional instructions that have been introduced so 

far: 

C2 xxxx

CA xxxx

D2 xxxx

DA xxxx

JNZ address 

JZ address 

JNC address 

JC address 

Jump if not zero 

Jump if zero 

Jump if not carry 

Jump if carry 

Recall that both Zero and Carry are affected by arithmetic and logic 

instructions. Zero is affected by single register counting 

instructions (INR, DCR) but not by register pair counting (INX, DCX). 

Carry is not affected by counting. Pata movemen t instructions and 

jump instructions do not affect any flags. 

4-110



THE OTHER REGISTERS AND MEMORY ADDRESSING 

4.11.1 Comparison Instructions - CMP 

In addition and subtraction the Carry. and Zero flags were set or 

reset as a result of the arithmetic operation. There is a set of 

comparison instructions whose only function is to affect the flags. 

These instructions permit a program to determine whether the content 

of Register A is greater than, equal to, or less than the content of 

any specified general purpose register (including M). The operation 

is identical to subtraction except that the numeric result is 

discarded instead of being placed in Register A. 

For comparing Register C with Register A the instruction is: 

HEX CODE: 

MNEMONIC: 

MEANING: 

B9 

CMPC 

Subtract the content of C from the 

content of A and set the flags 

accordingly. The content of A is not 

changed. 

This sets or clears the Zero and Carry flags as follows: 

A greater than C 

A equal to C 

A less than C 

Zero 

Cleared 

Set 

Cleared 

Carry 

Cleared 

Cleared 

Set 
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4.11.2 Compare Immediate Instruction - CPI 

The CPI instruction compares the content of the immediately following 

data byte with the content of A. 

HEX CODE: 

SECOND BYTE: 

MNEMONIC: 

MEANING: 

FE 

Data 

CPI 

Subtract the value in the immediately 

following byte from the content of A. 

Set or reset all flags to reflect the 

The content of of A is not changed. 

For all of the arithmetic and logical instructions that operate on 

data in Register A and one general purpose register, there are 

corresponding immediate instructions. These may be thought of as 

referring to a phantom register, created just to provide a desired 

data byte. 

4-112



THE OTHER REGISTERS AND MEMORY ADDRESSING 

4.11.3 Moving Message - Exericse 

In our previous display exercises we have been limited by the eight 

digit display. Here we shall output a longer message, shifting it 

across the display. The message will be terminated by a character 

with a period (decimal point) and then it will start again. Recall 

that the decimal point in a display digit is controlled by bit 7 in 

the byte written to the display memory, so: 

79 = "E" 

F9 = "E." 

We can test for the decimal point by: 

CPI 80 

Any character that does not have a period or decimal point is less 

than 80 (see Figure 4-7) so CPI 80 must set Carry unless a period is 

present. Thus we can continue a loop to shift the display as long as 

this instruction sets Carry; when the period appears we will restart 

the message. 
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The procedure to be used is this: 

1) Copy 8 bytes of message to display. If the end of the message 

is reached, continue from the start of the message until the 

display is filled. 

2) D elay

3) Examine the character displayed at the left. If it contains 

a period, address the start of the message. If not, address 

the next following character in the message table. 

4) Repeat from (1).

We need to keep track of two message addresses - the start of the 

message and the message location most recently displayed at the left. 

During Step 1 we will increment the message address eight times and 

then discard the final address. The starting location and the most 

recent left hand location will be kept in memory. 
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A program flow chart is shown in Figure 4-14. 

Write � and code this program yourself. The next section lists all of 

the instructions we have introduced so far. Generate a message using 

the characters from Figure 4-7 and store it in memory, or else use 

one of two character tables that are in Read Only Memory -- at 02B3 

or 0326. One of these displays the HEX characters and the other 

displays the register name�, followed by some garbage characters. 

Your own message can be more interesting. 

A program solution is given in Figure 4-15, following Section 4.11.4. 
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4-116

(from next 
page) 

START 

store Message Starting Address 
(HL)- Start of Message 
(8300,8301) - (HL) 

Store Left Character Location 
(8302,8303) - (HL) 

Address Left Digit of Display 
(DE)- 83F8 

Copy Character is Display 
(A) - ( (HL))

((DE)) - (A) 
Test for Period 
Address Next Character 

No Period (Carry) 

Period (No Carry) 

Address Message Start 
(HL) - (8300,8301) 

Address Next Display Digit 
(E) - (E) + 1

Not Zero 

(to next page) 

Moving Message 

Figure 4-14a 
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Set Delay 

(from previous 
page) 

(HL)- 0400 
Count Down Delay 

Address Left Character 
(HL) - (8302,8303) 

Test for Period. 
Address Next Character 

Not Period 

Address Start of Message 
(HL) - (8300,8301) 

Movi.ng Message (continued) 

Figure 4.:.14b 
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4.11.4 List of Instructions 

Re-enter Monitor 

E7 RST4 (applies to res Microcbmputer Training System 
only.) 

Jump and Conditional Jump Instructions 

C3 JMP address Unconditional Jump 
xx (low address) 
xx (high address) 

C2 JNZ address Jump if Not Zero. 
xx (low address) xx 

xx (high address) xx 

CA JZ address Jump if Zero 
xx (low address) xx 

xx (high address) xx 

D2 JNC address Jump if Not Carry 
xx (low address) 
xx (high address) 

DA JC· address Jump if Carry 
xx (low address) 
xx (high address) 
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Data Transfer Instructions 

3A LOA address 32 STA address 
xx (low address) xx (low address) 
xx (high address) xx (high address). 

OA LDAX B 02 STAX B 

lA LDAX D 12 STAX D 

78 MOV A,B 47 MOV B,A 
79 MOV A,C 4F MOV C,A 
7A MOV A,D 57 'MOV D,A 
78 MOV A,E 5F MOV E,A 
7C MOV A,H 67 MOV H,A 
7D MOV A,L 6F MOV L,A 

7E MOV A,M 77 MOV M,A 

Other register-to-register MOV instructions are tabulated below. 

MOV A,s 
MOV B,s 
MOV C,s 
MOV D,s 
MOV E,s 
MOV H,s 
MOV L,s 
MOV M,s 

SOURCE REGISTER 

A B C 

7F 78 79. 
47 40 42 
4F 48 49 
57 50 51 
5F 58 59 
67 60 61 
6F 68 69 
77 70 71 

Immediate Data Transfer 

3Exx 
06xx 
OExx 
16xx 
lExx 
26xx 
2Exx 
36xx 

MVI A, 
MVI B, 
MVI C, 
MVI D, 
MVI E, 
MVI H, 
MVI L, 
MVI M, 

data 
data 
data 
data 
data 
data 
data 
data 

D 

7A 
42 
4A 
52 
5A 
62 
6A 
72 

E 

7B 
43 
4B 
53 
5B 
63 
6B 
73 

None of the above instructions affect any flags. 

H L M 

7C 7D 7E 
44 45 46 
4C 4D 4E 
54 55 56 
5C 5D 5E 
64 65 66 
6C 6D 6E 
74 75 
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Register Pair Data Transfer Instructions 

01 LXI B address 
xx (low address) 
xx (high address) 

11 LXI D, address 
xx (low address) 
xx (high address) 

21 LXI H, address 
xx (low address) 
xx (high address) 

2A LHLD address 
xx (low address) 
xx (high address) 

22 SHLD address 
xx (low address) 
xx (high address) 

Register Pair Counting Instructions 

03 INX B OB DCX B 
13 INX D lB DCX D 

23 INX H 2B DCX H 

None of the above affect any flags. 
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Counting Instructions 

These counting instructions set or reset Zero. The Carry flag is not 

affected. 

3C INR A 3D OCR A 
04 INR B 05 DCR B 
QC INR C OD OCR C 
14 INR D 15 DCR D 
lC INR E 1D OCR E 
24 INR H 25 OCR H 
2C INR L 2D DCR L 

34 INR M 35 DCR M 

Arithmetic Instructions 

Zero and Carry are set or reset by these instructions. 

87 ADD A BF ADC A 
80 ADD B 88 ADC B 

81 ADD C 89 ADC C 

82 ADD D SA ADC D 
83 ADD E 8B ADC E 
84 ADD H SC ADC H 

85 ADD L SD ADC L 

86 ADD M SE ADC M 

C6 ADI data CE ACI data 

data data 

97 SUB A 9F SBB A 
90 SUB B 98 SBB B 
91 SUB C 99 SBB C 
92 SUB D 9A SBB D 
93 SUB E 9B SBB E 
94 SUB H 9C SBB H 
95 SUB L 9D SBB L 

96 SUB M 9E SBB M 
D6 SUI data DE SBJ data 

data data 

BB CMP A 
B9 CMP B 
BA CMP C 
BB CMP D 
BC CMP E 

BD CMP H 

BE CMP L 

BF CMP M 
FE CPI data 
data 
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4.12 SENSOR CORRECTION EXERCISE, VERSION 1 

This exercise introduces a more complete and realistic problem than 

any we have dealt with previously. It has four purposes: 

1) to suggest the kind of task that a microcomputer may perform in

a measurement or control application;

2) to bring in the idea of a data structure;

3) to demonstrate table lookup and calculating an address; and

4) to give you practice in using the instructions that you have

learned.
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4.12.1 Sensor Characteristics 

A sensor is a device for measuring a physical variable such as 

temperature, pressure, sound intensity, light, etc. With our nerve 

cells we detect coldness and warmth; the familiar mercury thermometer 

converts that same physical variable into the length of a column of 

mercury; a semiconductor device called a thermistor con�erts that 

variable into a resistance that can be detected electrically. 

The computer itself cannot measure resistance. External circuits 

must be attached to convert the variable resistance of a thermistor 

into a number that can be handled by the computer. This process is 

part of what is called "interfacing" -- connecting a computer to the 

external world. We shall not treat that subject here
J but assume 

that our computer receives a number representing a measurement. We 

must process the number, perhaps to display or record a temperature 

or control a heater. 

Suppose that we had an unmarked thermometer. To measure temperature 

in inches or millimeters of mercury would be meaningless, because the 

relationship depends on the size of the.well of mercury at the bottom 

of the thermometer and the inside diameter of the glass tube. We 

could immerse the thermometer in a pot of melting ice, to give one 

repe�table temperature, and mark the point on the tube that the 

mercury reached. Then if we placed the thermometer in a pot of 

boiling •ater we could mark another point on the tube. Such a 

procedure is called "calibration". If we label the two points O and 

100, and mark off equal spaces between them, we have calibrated our 

thermometer to the Celsius scale of temperature. 
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Similarly, if we have a sensor and an interfacing system connected to 

the computer, we can relate numbers we receive to known temperatures 

(or other physical qualities). Generally some arithmetic must be 

done to relate the electronically generated numbers to a familiar 

scale; this is similar to the procedure of converting a temperature 

measured in Fahrenheit to a Celsius temperature: 

C = (F-32) (5/9) 

Since Fahrenheit measurements relate to the same physical sensing 

device as Celsius measurements, this formula applies to any 

Fahrenheit thermometer. When we use a fundamentaly different sensing 

device such as a thermister, we have a more difficult problem. This 

is partly because the manufacturer of these devices is less 

consistent; each device may need a different offset and a different 

scaling factor. 

C = (measured value-offset) (scaling factor) 

An additional problem arises with many electronic sensors: 

non-linearity. A formula such as that above may give correct answers 

over a limited range of measurement, but be increasingly in error 

outside of that range. Provided that the device gives conslstent 

measurements, the measurements can still be converted to a standard 

scale, but simple arithmetic may not be sufficient. We may have to 

calibrate the device by making measurements at many known 

temperatures instead of just two. For each measurement we record the 

number received by the computer, and the known temperature. The 

resulting list is called a calibration table. Then in normal 
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operation, when we receive a new measurement we can look in the table 

to find the correct value. Such a procedure is part of the sensor 

correction exercise. 

If all possible measurements are recorded in the table, it is easy to 

address the table and obtain the final result required. Sometimes, 

however, we can conserve memory space by including only a partial 

table. Suppose that we have a sensor which is linear over most of 

the range of measurements we are interested in, but at one end of the 

scale it has significant departure f�om linearity. Such behavior is 

suggested in the curve of Figure 4-16. If we had an ideal linear 

sensor, it would give a straight line in this plot, from O up to FF 

(if this is the possible range). Our real sensor is linear 

everywhere above about OC, but at the low end we have measured 

different values. These measurements are tabulated below. 
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SENSOR CALIBRATION TABLE 

Sensor Value 
0 

1 
2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

> B

Corrected Value 
0 

3 

4 

5 

6 

7 

8 

9 

9 

A 

B 

B 

Linear 



Value as 
Measured 
by Sensor 

10 

C 

8 

4 
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Ideal Linear 
Sensor 

Real 
Sensor 

Actual Physical Value 

Sensor Calibration Curves 

Figure 4-16 
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With this table we can correct the real sensor input to be equivalent 

to that of an ideal sensor. If the input is greater than OB, no 

adjustment is required; if less than that we must obtain an adjusted 

value from the table. There is no offset here --0 input means O true 

-- but we will have to multiply the actual or adjusted measurement by 

a scaling factor. 

4.12.2 Organizing the Data Structure 

We shall develop a program to adjust a non-linear sensor input value 

by table look-up, and multiply the result by a scaling factor. The 

adjusted values will be listed in a table, with one entry for each 

possible measurement up to the point-where the sensor becomes linear. 

Because the same program may be used for a different sensor, which 

may have a different linear point and a different scaling factor, 

these values will also be stored in the table. Such a combination of 

related but different kinds of values is called a "data structure". 

The data structure will have this form: 

8308 Scaling Factor 

8309 Linear Point 

830A Adjusted value for input = 00 

830B Adjusted value for input = 01 

830C Adjusted value for input = 02 

(more adjusted values up to the linear point) 

We shall see later how we can use an identical data structure, but 

with different information, to describe a second sensor which is also 

processed by the computer. 
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4.-12� 3 Organizing the Program 

This program requires both input and output - obtain a value, correct 

it, and display it. We shall use a single programmed entry to the 

monitor (RST4) to accomplish the output from one calculation and the 

input to the next calculation. Each time the monitor is entered 

(after the first) Register A will contain a result. We shall display 

Register A to see this, enter a new input data byte to Register A, 

and press RUN to perform the next calculation. 

At this point we must perform the following tasks: 

1) Address the data structure ind load the sc,ling f�ctor into

register E.

2) Increment the address and compare the input value with the

linear point.

If the input value is equal to or greater than the linear point, skip 

the next three steps. Otherwise: 

3) Increment the address to reach the adjusted value

corresponding to a zero input.

4) Add the input into the address to reach the adjusted value

corresponding to the actual input.

5) Replace the input value (A) with the adjusted value from

memory.

Register A now contains either an input value which is in the linear 

range or an adjusted value. 
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6) Copy the (adjusted) input value to Register C from A.

7) Clear register pair HL for the product (C) * (E).

8) Perform the multiplication. (see Section 4.4.3) 

9) Jump back to enter the monitor again, with Register A

containing the high byte of the result.

Note that using (HL) to address memory gives us two advantages here. 

We can move the scaling factor directly into Register E from memory, 

without disturbing Register A where we have the input, and we can 

compare (A) with memory to test whether the input is linear. 

We have located the data structure starting at address 8308. Write 

the program 

Figure 4-17a. 

yourself; then compare it with the solution given in 

Copy the data structure from Figure 4-17b. Note that 

a scaling factor of 00 is given there. If you perform multiplication 

by repetitive addition, without special precautions, a zero 

multiplier does not result in a zero product. 
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If the multiplier is initially 01, the first decrement will set the 

Zero flag and end. the process after the multiplicand has been added 

in once. If the multiplier is initially 00, the first decrement will 

make it FF, not zero, and the loop will be repeated 256 times. This 

technique does not admit the existance of multiplication by zero; 

instead it takes 00 in the multiplier (but not in the multiplicand) 

to mean 100 HEX. 

We shall use this feature as a convenience here. An input of (say) 

36 will be multiplied by 100 HEX, giving 3600 as a product. The high 

byte remains in (A) at the end of the multiplication, and is to be 

displayed. For initial testing of this program it will be easier if 

the adjusted result has not been scaled but merely shows the data 

from the table. A multiplier of 00 does this. Later we shall change 

to a different scaling factor. 
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4.12.4 Testing Sens or Correction 

After writing your program and comparing it with Figure 4-17, you can 

test it by entering data and observing results . First, however, you 

should step through it to be sure there are no mistakes. If your 

program is different from Figure 4-17, follow the procedure below 

approximately, taking into account the differences. 

RST 

RUN 

8200 

8205 

We have entered the monitor. Now it is time to enter data. 

REG 

3 

STEP 

STEP 

STEP 

A 8205 

8205 

8208 

8209 

820A 

00 

21 

A-00

A-03

A-03

A-03

A-03

We should now have copied the scaling factor into (E) and addressed 

the linear point. 
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ADDR 

STEP 

E 

8/H MEM 

(CY) 

820A 

8309 

820B 

E-00

HL.OC 

D2 
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The linear point (OC) is greater than the input value (03), so Carry 

was set by CMP M at 820A. The JNC will not be executed. 

STEP 

STEP 

Now we shall add the input value to the table address. 

REG 

STEP 

STEP 

ADDR 

A 

8/H MEM 

820E 

820F 

820F 

8210 

8211 

830D 

23 

85 

A-03

A-OD

A-OD

HL.05 

We have addressed the table for an input value of 03. The adjusted 

value is 05. 

STEP 8212 4F 

STEP 8213 21 

STEP 8216 7D 

All of the registers have been prepared for the multiplication. 

REG C (multiplicand) 8216 C-05

REG E (multiplier) 8216 E-00

REG H (product) 8216 H-00

NEXT 8216 L-00

NEXT 8216 A-05
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Step through the multiplication loop once or twice and then press 

RUN. 

RUN 8205 A-05

Multiplication by 100 HEX made the high byte of the product equal to 

the multiplicand. 

ADDR 8/H MEM 0500 HL.?? 

Test the program with each of the non-linear values (00 through OB) 

and see that the results agree with the tabulated values. Switch to 

AUTO mode to speed up the lengthy multiplication. 

Now change the scaling factor at 8308 to 88. Then try these input 

values and see if y our results agree. 

Input Result 

00 00 
01 01 
02 02 
03 02 
04 03 
05 03 
06 04 
09 05 
OD 06 
10 08 
20 11 

30 19 
40 22 
80 44 
co 66 
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4.12.5 Review 

In this exercise we have introduced the idea of a data structure -- a 

combination of related but different kinds of values. Often the 

arrangement of the data structure has an important effect on the 

efficiency of a program. If we had placed the scaling factor after 

the table of adjusted values, instead of before, we could still have 

found it but with several more program steps. In any program with 

variable data that can be structured, the data organization should be 

an early step in program development. 

The table lookup in this program is a typical requirement in real 

measurement and control systems. Adding a physical quantity to an 

address seems peculiar on the surface -- like adding the number of 

passengers on a train to its speed, the numbers do not have the same 

dimensions. Adding a physical value to an address is only meaningful 

in the context of a data structure or table. 

We have seen here the use of addressing memory with the register pair 

HL, thereby making a memory location available to be treated as a 

register. We used a comparison and the Carry flag to make a 

decision -- to adjust or not to adjust. 

In the next exercise, which is a continuation of this one, we shall 

see further use of table lookup using HL memory addressing, and more 

decision making. 
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4.13 MULTIPLE TABLES WITH A DIRECTORY 

In the sensor correction exercise of Section 4.12 we had a single 

sensor whose characteristics were described by the contents of a data 

structure. 

sensors. 

We shall now extend that program to handle multiple 

Both a sensor number and a physical measurement will be 

taken as inputs. The sensors, although similar in kind, will have 

different scaling factors, linear points and adjustment tables. 

We shall add a second set of data with the same data structure as the 

existing one. The content of this second copy of the data structure 

will be: 

8316 CB Sealing factor 

8317 08 Linear point 

8318 00 Adjusted value, input = 00 

8319 02 input = 01 

831A 04 input = 02 

831B 04 input = 03 

831C 05 input = 04 

831D 06 input = 05 

831E 07 input = 06 

831F 07 input = 07 

Now on the basis of the sensor number the program must select the 

appropriate table. Although we have specified addresses for the two 

tables in this example, the program must be written in a general way 

that permits more sensors, each having its own copy of the data 

structure with different data. 
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shall assume that the number of sensors and the lengths of their 

tables are unknown; they are to be provided as initial information 

later on. For simplicity we shall allow not more than seven sensors, 

numbered from 1 to 7; and require that all of the sensor data will 

fit within 120 (decimal) bytes, from 8308 through 837F. 

4.13.1 Directory to Data S tructures 

To find the address for the data relating to a particular sensor, we 

shall create an additional, different, data structure called a 

"directory". This is a different data structure in that the data 

contained in it do not have the same meanings as those for the 

individual sensors. The directory contains a list of the addresses 

of sensor data structures. It also contains, as its first entry, the 

highest sensor number for which data is stored in memory. The 

directory is to be located at 8300 - 8307. 

8300 02 Highest existing sensor number 

8301 08 Address for sensor number 1 

8302 16 Address for sensor number 2 

8303 00 Not used 

8304 00 

8305 00 

8306 00 

8307 00 
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Since we have only two sensors in this exercise, there are no tables 

for 3 through 7, and their positions in the directory are empty. 

Because we have specified that all of the data are in page 83xx, we 

have stored only the low byte of each data structure address. 

4.13.2 Organizing the Program 

We shall accept sensor number as an input to the program at the same 

time that we accept the measured data. The sensor number probably 

will be one for which a data table is in the memory (in our example, 

1 or 2). A wise programmer protects against errors, so we shall 

test for illegal sensor numbers -- 00 is forbidden, and any number 

greater than the first entry in the directory is forbidden. 

We shall again use a monitor entry (RST4) to accept inputs. To avoid 

having to enter a sensor number every time, we shall keep the sensor 

number in Register B and allow but not require that it be changed. 

Thus you can test the program for one sensdr at a time� without 

touching Register B. 
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Let us list the steps required in the program. 

1) Clear the result (A) <- 00

2) Set a legal sensor number (B) <- 01

3) Enter the monitor to display the result and accept new data.

Also accept sensor number if desired.

4) Test sensor number for a legal value -- not zero, and not greater

than the highest sensor number in the directory. If illegal,

take some special action, to be determined.

5) Use sensor number with dire·ctory to address the data structure for

the sensor.

6) Load the scaling factor into register E.

7) Test data input:

If less than linear point, address the adjustment table; jind 

and load the adjusted value. 

8) Multiply the (adjusted) value times the scaling factor.

9) Go to Step 3 and display the result.
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Figure 4-18 shows the program as a flow diagram. The circled numbers 

correspond to the steps listed above. Reviewing these, steps 6 

through 9 are identical to the program of Section 4.12. Steps 4 and 

5 replace the LXI H, 8308 instruction which addressed the single data 

structure in the previous program. We can replace that LXI 

instruction with a JMP to some other location where we perform Steps 

5· 
, then jump back to Step 6 to finish the remaining program 4 and 

steps. This is shown in Figure 4-18. As indicated in the flow 

diagram, if an illegal sensor number is detected we shall go back to 

set a legal sensor number again. 

4.13.3 Testing Sensor Number 

At return from the monitor we have two bytes of data to be handled. 

(A)= data input 

(B) = sensor number

At this point we jump to another program segment to test the sensor 

number and find its data structue address. 

We shall need Register A for making comparisons, so move the input 

data to another register. Then address the directory at 8300. 

MOV C,A 

LXI H, 8300 

Memory location 8300 contains the hi ghest existing sensor number. 
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We are required to reject the input if the sensor number is greater 

than the highest existing number. Recall the way flags are set by a 

comparison (section 4.11.1). 

CMP r 

(A) greater than (r)

(A) equal to (r)

(A) less than (r)

Zero 

Cleared 

Set 

Cleared 

Carry 

Cleared 

Cleared 

Set 

To make the decision with a single conditional jump we must make the 

comparison by: 

MOV 

CMP 

A,M 

B 
v' 

'). 
0 e 

Highest existing sensor 

Compare sensor number 

This sets Carry if the sensor number is too great. Then a single JC 

·will handle this error condition. If we used

'\ 

MOV A,B 

.. ,·-

CMP M
., 

then either Carry or Zero would indicate a legal sensor number, and 

two conditonal jumps would be needed. 

We must also test for the other illegal condition, sensor number 

zero. This can be done by 

MOV A,B 

ORA A 

which sets Zero if the sensor number is zero. 
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it would be convenient if the error condition were somehow indicated� 

and if the illegal sensor number were kept available fcir inspection 

at reentry to the monitor. When the sensor number is legal we go to 

the monitor with (A)= high byte of the multipli6ation result, and 

carry clear from the multiplication. Let us define the error result 

as follows: 

Carry set 

(A)= illegal sensor number 

(B) = sensor number 1

The following procedure will do the testing and give the above 

result. 

MOV 

LXI 

MOV 

CMP 

MOV 

JC 

ORA 

STC 

JZ 

C,A 

H,  8300 

A,M 

B 

A,B 

8202 

.A 

8202 

(C) <- Input Value

Address Directory 

Highest Sensor Number 

Test sensor number 

(A) <- sensor number

To set (B) = 01 and 

display (A) with Carry 

Test for sensor = 0 

Mark·error 

To set (B) = 01 and 

display (A) with Carry 

If both tests are satisfied (the sensor number is legal) .we must find 

the address of its data structure. 
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4.13.4 Using the Directory 

Assuming that we have a legal sensor number, we shall now use it to 

look in the directory and address the data structure for this sensor. 

In the table lookup of Section 4.12 we added the input value to a 

table address to find another address where desired data was stored. 

Here we do the same thing. Recall that the directory contains: 

8300 

8301 

8302 

02 

08 

16 

Highest existing sensor number 

Data structure address for 

Sensor Number 1 

Data structure address for 

Sensor Number 2

Register pair HL contains 8300, and the sensor number is already in 

Register A. 

Add the sensor number into the address: 

ADD L 

MOV L,A 

and now (HL) contains either 8301 or 8302. (Since Register L 

contained 00 we could skip the ADD L, but that would only work with a 

directory starting at a page boundary such as 8300). 

Now (HL) points to a memory location containing the address of 

another memory location. Since all of the data are· in a single page 

we can finish the indirect addressing with only one more instruction: 

MOV L,M Address data table 
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Note that we can load L with a data byte from a memory location 

addressed by HL. By the time Register L is affected we no longer 

need the old address in HL. If the directory entries were two byte 

addresses we would use a more conventional indirect addressing means. 

We have now loaded HL with the address of the data structure for the 

given sensor number. 

For Sensor Number 1, (HL) = 8308. We have replaced the instruction 

LXI H, 8308 that existed in the earlier program. One more step is 

required before going back to the original program: copy the input 

value back into Register A where it was placed originally. 

MOV A,C 

JMP 8208 

Now for Sensor Number 1 the program should behave exactly as it did 

with the program of Section 4.12. When you change the sensor number 

you will receive different results. 

When you have loaded your program and the directory and second set of 

data, we shall step through the program. The addresses shown below 

refer to the given solution (Figure 4-19). Follow your own program 

through the same process. 
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THE OTHER REGISTERS AND MEMORY ADDRESSING 

4.13.5 Testing MULTIPLE SENSOR CORRECTION 

First, let us try the program with an illegal sensor to check on the 

test: 

RST 8200 3E 

RUN 8205 C3 

REG B 8205 B-01

3 8205 B-03

REG A 8 8205 A-08

RUN (CY) 8205 A-03

The illegal sensor number is displayed with Carry set. B has been 

loaded with 01 again. Let 03 stay as an input value. 

STEP 

STEP 

STEP 

STEP 

(CY) 

(CY) 

(CY) 

(CY) 

8230 

8231 

8234 

8235 

A-03

A-03

A-03

A-02

We have loaded the highest existing sensor number. Now the comparison 

( CMP B): 

STEP 8236 A-02 

Since Register B contains a legal number (01 ) Carry is reset. We 

move the sensor number into A, do not execute JNC , and test for zero. 

STEP 

STEP 

STEP 

8237 

823A 

823B 

A-01

A-01

A-01
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Neither Carry nor Zero is set by the test for zero (ORA A at 823A), 

but now the program sets Carry before the conditional jump, which 

will not be executed. 

STEP 

STEP 

(CY) 

(CY) 

823C 

823F 

A-01

A-01

ADD L clears the Carry but, since (L ) = 00 it changes nothing else. 

STEP 

STEP 

8240 

8241 

We have now addressed the directory entry for Sensor Number 1. 

ADDR 8/H MEM 8301 

ADDR 8241 

This is the MOV L,M instruction. 

STEP 8242 

ADDR 8/H MEM 8308 

We have addressed the scaling factor for Sensor Number 1.

STEP 8243 

REG A 8243 

STEP 8208 

We are ready for table lookup and multiply. 

RUN (Z) 8205

Multiplication has set Zero (by OCR E) but left Carry clear. 
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Check the two byte result of the multiplication: 

ADDR 8/H MEM 02A8 HL.?? 

The data in HL represent the product. Because this happens also to 

represent a memory address within the monitor, a data byte is shown, 

but it is meaningless here. 

Now try the other sensor. 

REG 

REG 

B 

A 

2 

8 

Set a breakpoint at the instruction after the JMP 8230. 

ADDR 

RUN 

8 2 0 8 BRK 

8205 

8205 

8208 

8208 

B-02

A-08

BP. 

A-08

The input data has been restored. 

structure address. 

Check the sensor number and data 

REG 

ADDR 

B 

8/H MEM 

8208 

8316 

We have addressed the data structure for sensor number 2. 

RUN 

REG A 

8205 

8205 

8-02

HL.C8 

C3 

A-06

The entry value (08) was not adjusted, but it was multiplied by CS. 

The two byte product is: 

ADDR 8/H MEM 0640 HL.?? 
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It all of this has worked, set AUTO mode to speed up the operation. 

Try the following input data and check that your results agree. T}J.e 

inputs have been chosen to include some that give identical results� 

Sensor Input Result[ Two Byte Product 
(B) (A) (A) (HL) 

01 00 00 0000 

01 01 01 0198 
01 04 03 0330 

01 07 04 04C8 

01 08 04 04C8 

01 09 05 0550 

01 OA 05 05D8 

01 OB 05 05D8 

01 oc 06 0660 

01 80 44 4400 

02 03 03 0320 

02 06 05 0578 

02 07 05 0578 

02 08 06 0640 

02 09 07 0708 

02 oc 09 0960 

02 80 64 6400 
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4.14 SUMMARY 

In this chapter we have met many of the 8080 instructions. Registers 

have been used for temporary data storage, providing operands for 

ADD, SUB, CMP, etc., and for counting. Exercises have been used to 

introduce arithmetic, including double precision addition, 

subtraction and multiplication. 

We have used register pairs to address memory, using LDAX and STAX, 

and using ((HL)) as a register. The concept and practice of indirect 

addressing was introduced, and we have used several methods of 

obtaining memory addresses from other memory locations. 

The technique of operating the MTS display by storing data in certain 

memory locations was also 

dealt extensively with memory. 

hardware and how some of 

physical sense. 

used. Overall, then, this chapter has 

The next chapter teaches about memory 

these addressing techniques work in a 
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4.15 INSTRUCTION CHART 

The instruction chart on the following page shows all of the 8080 

instructions. Most of the data transfer, counting and arithmetic 

instructions have now been introduced, as well as a few of the branch 

instructions. Study the organization of this chart so that you can 

readily find an instruction when you need it. A hard copy of this 

chart is supplied for convenient reference. 
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DATA 
TRANSFER A B 

MOV A,s 7F 78 
MOV B,s 47 40 
MOV C,s 4F 48 
MOV D,s 57 50 
MOV E,s 5F 58 
MOV H,s 67 60 
MOV L,s 6F 68 
MOV M,s 77 70 

LXI rp 01 

LDA addr 3A 
STA addr 32 

LDAX rp OA 
STAX rp 02 

LHLD addr 
SHLD addr 

SPHL 
PCHL 
XCHG 
XTHL 

PUSH rp C5 
POP rp C1 

COUNTING A B 

INR d 3C 04 
DCR d 3D 05 
INX rp 03 
DCX rp OB 

ARITH/LOGIC A B 
DAD rp 09 
ADD s 87 80 
ADC s BF 88 
SUB s 97 90 
SBB s 9F 98 
ANA s A7 AO 
XRA s AF AB 
ORA s B7 BO 
CMP s BF B8 

ACCUMULATOR RLC RRC 
AND CARRY 07 OF 

BRANCH JMP CALL 
UNCOND C3 CD 
COND NZ C2 C4 

z CA cc 

NC D2 D4 
C DA DC 
PO E2 E4 
PE EA EC 
PLUS F2 F4 
MINUS FA FC 

INPUT/OUTPUT IN OUT 
&INTERRUPT DB D3 

RESTART RST O AST 1 
(CALL TO) 0000 0008 
HEX CODE C7 CF 

THE OTHER REGISTERS AND MEMORY ADDRESSING 

HEX CODES FOR 8080 INSTRUCTIONS 

SOURCE REGISTER 
IMMEDIATE 

C D E H L M SP (DATA FROM PROGRAM) 

79 7A 7B 1C 7D 7E MVI A 3E 
41 42 43 44 45 46 MVI B 06 
49 4A 48 4C 4D 4E MVI C OE 
51 52 53 54 55 56 MVID 16 
59 5A 5B 5C 5D 5E MVI E 1E 
61 62 63 64 65 66 MVI H 26 
69 6A 6B 6C 6D 6E MVI L 2E 
71 72 73 74 75 - MVI M 36 

11 21 31 2 DATA BYTES 
FROM PROGRAM 

ADDRESS FROM 
PROGRAM (2 BYTES) 

1A ADDRESS FROM 
12 REGISTER PAIR 

2A ADDRESS FROM 
22 PROGRAM (2 BYTES) 

F9 SP+-HL 
E9 PC+-HL (BRANCH) 
EB DE.+HL 
E3 STACK TOP._.HL 

D5 E5 PUSH PSW F5 SP.._SP- 2 
D1 E1 POP PSW F1 SP+-SP + 2 

C D E H L M SP FLAGS AFFECTED 

oc 14 1C 24 2C 34 Z,S,P,AC 
OD 15 1D 25 2D 35 Z,S,P,AC 

13 23 33 NONE 
1B 28 38 NONE 

C D E H L M SP IMMEDIATE 
19 29 39 (DATA FROM PROGRAM) 

81 82 83 84 85 86 ADI C6 
89 BA 88 SC SD BE ACI CE 
91 92 93 94 95 96 SUI DG 
99 9A 98 9C 9D 9E SBI DE 
A1 A2 A3 A4 A5 A6 ANI E6 
A9 AA AB AC AD AE XRI EE 
B1 B2 B3 B4 B5 B6 ORI F6 
B9 BA BB BC BD BE CPI FE 

INSTRUCTION FLAGS 

RAL RAR DAA CMA STC CMC ONLY THE CY FLAG IS AFFECTED EXCEPT: 

17 1F 27 2F 37 3F CMA NO FLAGS 

DAA ALL FLAGS 

RET PCHL HLT NOP 
BRANCH AND IN/OUT INSTRUCTIONS 

DO NOT AFFECT ANY FLAGS 

C9 E9 76 00 DATA TRANSFER INSTRUCTIONS DO NOT 

co AFFECT ANY FLAGS EXCEPT: 

ca POP PSW AFFECTS ALL FLAGS 

DO ARITHMETIC/LOGIC INSTRUCTIONS 

DB 
AFFECT ALL FLAGS EXCEPT: 

DAD AFFECTS CY ONLY 

EO INR AND DCR AFFECT ALL FLAGS 
EB EXCEPT: 

FO CY 

F8 INX AND DCX DO NOT AFFECT ANY FLAGS 

El DI IN AND OUT ARE TWO BYTE 

FB F3 INSTRUCTIONS WITH PORT ADDRESS 

RST 2 RST 3 RST 4 RST 5 RST 6 RST 7 
0010 0018 0020 0028 0030 0038 
07 OF E7 EF F7 FF 

4-159



THE OTHER REGISTERS AND MEMORY ADDRESSING 

This page intentionally left blank. 

4-160



MICROCOMPUTER TRAINING WORKBOOK 

CHAPTER 5 

MEMORY HARDWARE 



,< 



INTRODUCTION TO CHAPTER 5 

Having explored (in Chapters 2 and 4) the ways that programs address 

the memory, we will now examine the physical addressing of the 

memory. This chapter discusses the following subjects: 

Control Interface 

Memory Technology - ROM and RAM 

Memory Addressing and Address Decoding 

Data Bus Connections and Tri-State Circu�ts 

Direct Memory Access and Interrupt Inputs 

Memory Signals and Timing 

The principal purpose of this chapter is to discuss the connection of 

memory devices to the microprocessor. This requires a cursory 

understanding of the control signals between the CPU and the memory. 

For the sake of completeness Section 5.1 discusses these control 

signals in some detail, but it is suggested that the student skim 

much of this section now, and refer back to it when other control 

signals are brought up in later chapters. 
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5.1 SYSTEM CONTROLLER 

MEMORY AND CONTROL HARDWARE 

A computer must include a CPU (central processing unit), memory, and 

input/output devices (Figure 5-1). The 8080 microprocessor demands 

additional hardware (the System Controller) to allow the necessary 

connections to memory and I/0, because of pin limitations. To 

overcome this limitation, 

times they are inputs to 

outputs. 

some pins are bi-directional -- at some 

the CPU, and at other times they are 

The CPU controls the usage of the address and data buses, giving 

control signals to memory, I/0, and other external devices to 

indicate the functions to be performed. To further extend the 

functions of the limited number of pins, certain of the control 

signals are output on the data bus, and must be accepted and stored 

by the System Controller so that the data bus can be used to transfer 

other data. The control signals output via the data bus are referred 

to collectively as the "status byte". 

5.1.1 Control Signals 

In Chapters 1, 2 and 4 we described in some detail the series of 

steps required to execute each of several instructions. Such a 

series is an "instruction cycle". In general each of the steps is a 

"machine cycle", and in each step the address and data buses may be 

used differently. The control signals are largely concerned with 

defining the functions of the buses, controlling the operations of 

different external devices. 
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Some of the control signals contain timing information, and vary 

within a machine cycle. These signals have assigned pins on the 8080 

chip. Other signals remain effective throughout one machine cycle. 

These are output on the data bus at the beginning of a machine cycle 

as the status byte and are latched by the System Controller. 

The timing signals are: 

SYNC 

OBIN 

WR 

WAIT 

HLDA 

Designates status byte time. 

CPU will accept data from bus. 

CPU places d·ata on bus. 

Acknowledge "Not Ready". 

Acknowledge "Hold". 

The two signals OBIN and WR are actually sufficient for a system that 

does not use interrupts, and which uses "memory mapped" input/output. 

(These 1/0 schemes are described in Chapter 8.) 

When OBIN is true (high) the memory or input device addressed should 

deliver data onto the data bus to be read by the CPU. When WR is 

true (low) the memory or output device addressed should accept data 

placed on the data bus by the CPU. These signals do not distinguish 

memory from 1/0 devices. 

If the memory or 1/0 device is too slow to deliver or accept data 

within the time available, it can give the 8080 a Not Ready input 

which will extend the time of OBIN or WR for one or more clock 

cycles. WAIT acknowledges this request. 
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If. some other device needs to use the address and dltl bu�es, it may 

ask the CPU.to suspend its operations and relea-se the buses. HLDA is 

a si gna 1 that grants- such a ,request. 

SYNC actually extends both before and after the time that the status 

byte is present on the data bus. It must be gated with the phase 1 

clock (a narrow pulse) to latch the status byte into the System 

Controller. This function is performed by the 8224 clock generator, 

which receives SYNC and outputs STSTB, the narrow pulse. 

5.1.2 Status Byte 

The status byte output on the data bus at SYNC time is defined below. 

The major function of the System Controller is to latch (hold) the 

status byte and also decode it to give signals that are more 

convenient for use by the memory and 1/0 devices. The data bus line 

that carries each signal is designated in parentheses. 

Some of the functions mentioned below have not been defined, and will 

not be discussed until later chapters. The student is urged to 

ignore them for now, and refer back to this chapter when appropriate. 

A detailed understanding of these controls is necessary for the 

hardware designer, but not for the programmer. 
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a. MEMR (D7) This machine cycle is to read from memory. The 

signal is true during instruction fetch,memory read, stack read, 

and halt machine cycles. 

b. WO (D1) This machine cycle is to output from the CPU to 

memory or 1/0. The signal is true (low) during memory write, 

stack write, and output machine cycles. 

c. !NP (D6) An IN instruction is being executed. The 

addressed input device should place data on the bus during OBIN. 

d. OUT

addressed 

�. 

(D4) An OUT instruction 

output device should accept 

is being executed. The 

data from the bus during 

e. Ml (D5) An instruction fetch cycle is being executed. 

This is true only and always for the first machine cycle of 

every instruction cycle. 

f. STACK (D2) The current address is from the stack pointer. 

g. HLTA (D3) Indicates that the CPU is in a Halt state. 

h. INTA (DO) Acknowledges an interrupt. 

5.1.3 Decoded Control Signals 

The System Controller gates the various status byte and timing 

signals to generate control signals that are convenient for memory 

and 1/0 devices. In subsequent discussion of memory and 1/0 

hardware, we will refer to the .following signals: 
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a. MEMW An active low signal indicating that the data bus

content should be stored at the addressed memory location. It 

is true (low) during WR time if WO is true and OUT is false. 

b. MEMR An active low signal indicating that data from the

addressed memory location should be placed on the data bus. It 

is true (low) during DBIN time of an instruction fetch, memory 

read or stack read machine cycle. 

c. IOW An active low signal indicating that the addressed 
.. �+l"--1:
fiiput device should accept data from the bus. It is true ( low) 

during WR time if WO is true and OUT is true. 

d. IOR An active low signal indicating that the addressed 

input device should place data on the bus. It is true during 

OBIN time of an input read machine cycle. 

e. INTA An active low signal indicating that an interrupt has

been acknowledged, and the interrupt instruction should be 

placed on the data bus. It is true during DBIN time if INTA of 

the status byte is true. 

f. Ml An active high signal indicating that the current 

machine cycle is the first (or only) machine cycle of an 

instruction cycle. It is the latched value of Ml in the status 

byte. 
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5.1.4 MTS System Controller Logic 

Figure s�2 shows the detailed logic of the MT� system controller. The 

two 8216 · bidirectional bus drivers provide electrical isolation of 

. the 8080 data bus from the system bus. The 74LS174 six bit latch 

stores the required bits of the status bytes. (STACK and HLTA are 

not used.) The 74LS368 tri state buffer (upper section) generates 

either MEMW or IOW during WR time, depending on whether OUT is false 

or true. The lower section of the 368 generates IOR, MEMR or INTA 

during DBIN time, depending on whether IN, MEMR, or INTA of the 

status byte was true. These signals are further qualified by the 

flip flop and gates at the bottom of the diagram, which have the 

effect of inhibiting the signals when a HOLD request has been given 

by the OMA channel and acknowledged by the 8080 1 on HLDA� 

5.1.5 Intel 8228 System Controller 

All of the functions of the system controller can be provided by the 

Intel 8228. This is a 28 pin chip, is fairly inexpensive, and is 

used in most 8080 microcomputer systems. In fact, Intel refers to 

the 8080 microprocessor, 8224 clock generator and 8228 system 

controller as the "CPU Groupll. 

In addition to latching and decoding the control signals, the 8228 

isolates· the system data bus from the 8080 data bus, providing 

additional power drive capability to support large memories and 

allowing certain data bus uses to overlap in time. 

Although the 8228 is applicable in most microcomputer designs and is 

typically more economical than the several logic chips required to 
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replace it, the 8228 is unfortunately not compatible with the S-100 

data bus. Therefore, the MTS was designed without the 8228 because 

its use would have precluded system expansion to the S-100 bus. 

This incompatibility arose because the S-100 Bus was defined prior to 

the development of the 8228 by Intel. For good engineeririg reasons, 

the 8228 does not handle the status byte exactly as r�quired for 

S-100 compatibility. In particular, the 8228 isolates the system data

bus from the 8080 data bus during SYNC time, and does not place the 

status byte on the external bus. This has the advantage that an 

addressed memory or input device can place data on the bus prior to 

the DBIN signal, which slightly increases the effective memory speed. 

On the other hand� the S-100 Bus definition requires that the status 

byte be available on the data bus. 

used with an S-100 interface. 

Therefore, the 8228 cannot be 

The 8228 has two additional functions that are useful in some 

interrupt systems, as wi 11 be described in Chapter a. INTA is 

principally an output signal from the 8228, acknowledging an 

interrupt and indicating that an external device should enter an 

instruction to the 8080. If this pin is pulled up through a lK

resistor to +12 volts, the 8228 will supply the instruction code FF, 

which is RST7. (See Chapter 8.) In the MTS controller this function 

is accomplished by resistor pullups on the data bus. 

The 8228 also recognizes a CALL instruction being placed on the data 

bus in response to INTA, and controls the buses to accept from the 

external device the second and third bytes of the CALL. 
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MEMORY AND CONTROL HARDWARE 

A memory device includes semiconductor circuits or elements to serve 

four functions: 

a) Store data in an ordered array

b) Decode the address inputs to select a certain location

c) Alter the stored data at the selected location upon command

d) Output the data from the selected location upon command

The memory 

addressed by 

devices used in the MTS 

the low-order ten bits of 

each have 1024 locations, 

the system address bus. The 

ROM and RAM memories of your MTS system are shown in Figure 5-3. The 

ROM devices store eight bits at each location. The RAM devices store 

four bits at each location, so two devices are used for the eight 

bits that must be stored for each address. 

5-11



MEMORY AND CONTROL HARDWARE

U') 
I-.,_. 

U') ,:::Q 
=> 

,:::Q lO. 

U') e:::: 
U') L1J 

�52 
AO 
A 
<C :::z::: 

t!) .,_. 
:::z::: 

U') 
I­
=> 

U') ,:::Q 
=> 

,:::Q 0 
r-1 

U') 
U') e:::: 
L1J L1J 
e:::: A 
A e:::: 
AO 
<C 

5-12

3; 
0 
....J 

-
"' 

-/

� 

U') 
=> 

,:::Q 

<C 
I--
<C 
A 

CHIP 

SELECT 

DECODER 
} TO ADD I Tl ONAL

MEMORY 

LOCATIONS 

NOT SUPPLIED 

• II n I 

CE CE CE CE 

ROM 
RAM RAM RAM 

1024 LOCATIONS 
1024 1024 1024 
X X X 

8 BITS EACH 4 4 4 

' 

ONE ROM CHIP 

PROVIDES 8 BITS 

TWO RAM CHIPS 

SELECTED TOGETHER 

PROVIDE 8 BITS 

Memory Addressing 

Figure 5-3 

I 

CE 

RAM 

1024 
X 

4 



MEMORY AND CONTROL HARDWARE 

The electronic means of storing data depends on the kind of memory 

device used. Permanent (mask) Read Only Memory (ROM) has, for each 

bit, a transistor that is either created or destroyed during the 

semiconductor manufacturing process. In eraseable and Programmable 

Read Only Memory (PROM) devices, such as the MTS's 2708, a physical 

qualit� of the semiconductor material at each bit position is altered 

by a relatively high voltage pulse during programming. The change is 

reversible but non-volatile:' it will remain indefinitely until a new 

programming operation is performed. The MTS has no facility for 

applying such high energy pulses, so data cannot be written to the 

PROM while it is in the c1rcuit. The PROM can be rewritten by 

removing it from the circuit board, erasing it by exposure to intense 

ul traviolei light, and writing a new program with a special 

programming device. 

In read�write memory the data are stbred in the form of current or 

charge in transistors. Static RAMs, such as the MTS's 2114, include 

a flip tlop circuit for each bit. Such a circuit has two stable 

stat2s; one tran�istor conducts while a second is cut off. Dynamic 

RAM� store data in the form of a charge, which gradually leaks away 

and must be refreshed at approximately one millisecond intervals. 

Refreshing r�quire� additional external circuitsj which' is not 

appropriate in small systems. However, many more bits can be stored 

in one dynamic device, which is desirable in large systems. 
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The MTS read-write memory devices have an array of 4096 storage 

locations, arranged as a square 64 cells high and 64 cells wide. The 

ten address lines received by the device are divided into two groups, 

of six and four bits. The six lines are decoded to select one of 64 

columns, as shown in Figure 5-4. The other four lines are decoded by 

a one-of-16 decoder to select four of the 64 rows, provided that the 

chip select input to the memory device is active. Thus a unique ten 

bit address, plus chip select, addresses a single set of four bits 

out of the 4096 bits stored in the memory device. These four bits 

are connected to control logic in the memory device to be read or 

written as required. 

The PROM addressing is similar, except that these devices store 8192 

bits, arranged as 1024 sets of eight bits. 
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5.3 CHIP SELECT LOGIC 

The MTS provides for mounting four ROM (or PROM) chips and four pairs 

of RAM chips. It is supplied with one PROM device and two RAM chip 

pairs; the other locations are empty. Each memory device receives 

the ten low order lines of the address bus (ABO through AB9) to 

select one byte (or half byte, in the RAM). The six high order 

address lines (ABlO through AB 15) are decoded externally to select 

one PROM or two RAM chips. These six lines can select among 64 

possible positions of which only three are occupied and only eight 

can exist on the MTS circuit board. If one of the four PROM 

locations or one of the four RAM pair locations is addressed, 

decoding logic shown in Figure 5-5 will generate the appropriate chip 

select signal. 

This is an active low signal, so one of eight chip select lines goes 

low. 

In the following description it is assumed that the reader has at 

least a slight knowledge of TTL logic and conventional symbols. 

Readers lacking this knowledge should skip to Section 5.4. 
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5.3.1 Memory Enabling 

Two signals, MEMR and MEMW, are derived by the system controller 

logic from data output by the microprocessor at the beginning of each 

machine cycle. If this cycle is to read from memory, MEMR becomes 

true (low). This occurs for an instruction fetch (the first machine 

cycle of every instruction cycle), and again to read the second and 

third bytes of multi-byte instructions or to load data from memory 

into the microprocessor. 

If a data byte is to be written to memory (as in loading a program or 

in a STA instruction, for instance) MEMW becomes true. Either MEMR 

or MEMW implies that memory is to be addressed. Various other 

operations do not require access to the memory and neither of these 

signals is true. The negative OR gate (1) in Figure 5-5 recognizes 

that memory access is required and enables gates (2) and (3). 

5.3.2 RAM Chip Selection 

O ne pair of RAM memory chips (1024 bytes) will be selected by one of 

the output lines from the decoder (5). This occurs under the 

following conditions. 

The S-100 PHANTOM is a signal derived from the S-100 bus that can 

inhibit the addressing of any of the memory on the MTS. This signal 

must be false. Then if the three high bits of the address bus 

contain 100, the 74LS42 decoder selects the output line labeled 100 

in Figure 5-5, and gives a true (low) signal to gate (2). Gate (3) 

receives a false (high) signal from the line labeled 000, so its 

output will remain false. 
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Finally, address bus line 12 (AB12) must be low to make gate (2) have 

a true output and enable the decoder (5). Now this decoder selects 

among four RAM chip select lines according to ABll and ABlO. These 

lines are labeled with the six bits of the address bus that make them 

active. The bottom line of this group (100000) addresses the RAM 

pair for memory addresses 8000 - 83FF. These 1024 bytes include the 

display, monitor variable data, stack, and all ·the programs developed 

in this course. This leads to an important point for the design of 

small microcomputer systems. To address this 1024 byte RAM pair it 

would be sufficient to recognize only the high bit of the address bus 

if no other devices were addressed in the 8000 - FFFF memory area. 

Gate (4) allows the selection of the 8000 - 83FF RAM pair in response 

to DMA ENABLE. This signal is generated during the repetitive 

accesses to memory to operate the display. At frequent intervals the 

8080 processor stops its operations to allow the display circuits to 

obtain data for the seven segment displays. During this "Direct 

Memory Access" neither MEMR nor MEMW is active, so both decoders (5) 

and (6) are disabled, and the RAM chips are selected by the DMA 

ENABLE signal. 

5.3.3 ROM Chip Selection 

Now consider gate (3) and decoder (6). These select among the ROM or 

PROM chips. As for RAM chip selection, either MEMR or MEMW must be 

true. (In fact only MEMR should be true, since it is not possible to 

write to the ROM's, but the system hardware does not enforce this 

limitation.) 
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The 74LS42 decoder selects the lowest output line (000) if the three 

high bytes of the address bus contain 000. Now if AB12 is also 0, 

gate (3) output becomes true, and enables decoder (6). This selects 

among its four output lines according to ABll and ABlO, to enable one 

of the four ROM positions on the MTS. Since the monitor program 

occupies addresses 0000 through 03FF, only the lowest of these four 

lines will ever be active in normal operation of the MTS as supplied. 

You can read from a non-existing location: 

ADDR 0400 MEM 0400 • FF

Pul lup resistors on the data bus force the bus content high when no 

other device drives it. If you now press a hex key the monitor 

program will attempt to write to this location. The monitor always 

tests after writing, and indicates an error if writing is not 

successful. 
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5.3.4 Partial Decoding 

The memory locations that are addressed by the high six bits of the 

address bus (AB15-AB10) are tabulated in Figure 5-6. In the monitor 

and in the programs developed in this course only addresses 0000-03FF 

(the monitor) and 8000-83FF (RAM) are used. The logic of Figure 5-7 

would be sufficient to select the RAM if AB15 = 1 and ROM if AB15 = 

O.; Such an arrangement is perfectly suitable for small microcomputer 

systems dedicated to well defined applications. With this 

arrangement, five bits of the address bus are ignored (AB14-AB10). 

Addresses 8000, 8400, 8800, 8COO, 9000, 9400, etc., are exactly 

equivalent, any of them reading or writing the same byte in memory. 

This is referred to as "partial decoding". Its only disadvantage is 

that it precludes expansion of the system. The MTS uses "full 

decoding", uniquely addressing each byte of memory, to permit 

expansion of the system through the S-100 bus interface. 
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5.3.5 Alternative Memory Addressing 

Refer again to Figure 5-5, and note that provision is made for 

changing the address decoding. The jumpers between the 74LS42 

decoder (Figure 5-5) and gates (2) and (3) allow the user to move the 

physical memory devices on the MTS circuit board to different logical 

addresses. This is not permissible with the MTS educational monitor, 

which must be located at addresses 0000-03FF and must have memory at 

8000-83FF. 

The jumpers between AB12-AB10 and gate (3) and decoder (6) may be 

reconfigured to permit use of ROM or PROM chips containing 2048 bytes 

instead of 1024 bytes each. Thus a total of 8192 bytes of ROM could 

be installed on the MTS for a large system. 

The S-100 bus defines the signal S-100 PHANTOM. If this is made 

true, all of the MTS memory is disabled. Suppose that you have 

developed a program which is ultimately to operate at memory 

locations 0000-07FF. You can use the MTS monitor to load this 

program into memory physically located in the S-100 system. Then by 

setting S-100 PHANTOM true you di.sable the MTS monitor and use the 

S-100 memory to run your program. Such operations are beyond the 

scope of this course, and this is mentioned solely to explain the 

PHANTOM si gna 1. 

5-25



MEMORY AND CONTROL HARDWARE 

5.4 DATA BUS CONN ECTIONS 

Figure 5 -1 shows that the inputs and outputs of all the memory 

devices are connected to a common data bus. Only the chip (or 

pair of RAM chips) that has been enabled by the high address decoder 

is �llowed to use the data bus: when the bus is active it is 

driven by one device (memory, CPU, or input) and it drives one 

device (memory, CPU, or output). 

5.4.1 Tri-State Circuits 

The device that is to receive data from the bus expects e�ch line of 

the bus to be in a clearly defined state - one or zero. To achieve 

this the driving device either pulls the bus down to a voltage level 

close to O vol ts or pulls it up to a voltage level well above 0 

volts between about 2.5 and 5 volts. Other devices that are 

capable of driving the bus must not interfere with this operation. 

A semiconductor· circuit for this purpose is called a Tri-State 

circuit: it has three output states, high, low, and off, 

analogous to a three-way on-off-on toggle switch. 

No Connection 
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Clearly we could connect many su ch switches to a data bus line and 

if exactly one switch is high or low the line will be in a well 

defined state. 

transistors. If 

The circuit used 

the high transistor 

in 

is 

the memory uses MOS 

turned on, the circuit 

delivers current to the line from the 5 volt supply. If the low 

transistor is turned on, the circuit sinks current to ground. If 

both are off, the circuit exhibits a high impedance to the line. 

Tri-state circuits are used for all connections capable of driving 

the address bus or the data bus. This includes the 8080 CPU, 

the System Controller, each 2708 ROM and 2114 RAM (on the data bus 

only), and the 8255 Peripheral Interface. 

5.4.2 Read-Write Control 

In addition to allowing many devices to share the data bus, 

the tri-state circuit allows the individual device to use the same 

pins for input and output. When a device has been selected by the 

address bus decoder it observes the control lines from the system 

controller (the control bus), signals which are derived from the CPU. 

A memory read operation causes the selected memory device to connect 

the outputs of the selected memory location to the system data 

bus by enabling the tri-state output to enter its high or low state. 

When its tri-state circuits are in the high impedance state the 

device can sense data that the CPU has placed on the data bus. 

When a signal from the CPU commands a memory write operation, the 

selected device copies data from the bus to the inputs of the storage 

flip flops addressed by its internal decoder. 
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A similar operation occurs in the 8255 Peripheral Interface device 

when the CPU commands an input or output operation. On input the 

8255 copies data from its external ports (from the keyboard, for 

instance) onto the data bus. On output the 8255 senses the data bus 

�nd copies the data to the output ports. 

Some memory devices (such as·the 2101) have separate input and output 

pins; but st ill include tri-sta te c ire ui ts control-led to permit both 

inputs and outputs to be connected to the data bus •. Other memory 

devices (such as the 2102) do not permit such direct connection of 

outputs and inputs. 

these are enabled 

Although the outputs 

whenever the chip is 

have tri-state circuits, 

selected. Therefore a 

separate tri-state circuit must isolate the outputs from the data bus 

during memory write. 

5.4 •. 3 OMA and Interr·upts - Introduction 

The 8255 provides for programmed input and output. lt sends data to 

the CPU from the external world when the program requests it, and 

it sends data to the external world when the program so specifies. 

There are two other means of input 

and the MTS employs both of them. 

Interrupts both provide for input 

external device instead of on demand 

and output used in computers, 

Direct Memory Access and 

or output on demand of an 

by a program. These subjects 

are discussed in detail in a later chapter; at the moment we are 

concerned with their relationship to memory and the buses. 

Direct memory access permits a� external device to read or write to 

the computer's memory without program control or CPU intervention. 
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When the device needs access to the memory it generates a signal 

to the CPU requesting a HOLD state. When the CPU finishes the 

current machine cycle it acknowledges the hold and relinquishes 

control of the memory, placing its address and data bus 

drivers into the high impedance condition. The external device --

the OMA channel -- now drives the address lines and the read and 

write control lines. If memory read is being requested, the selected 

memory device dri.ves the data bus just . as if the CPU had commanded 

a memory read the memory does not know the difference. The 

DMA channel accepts the data from the bus, then returns control to 

the CPU by dropping the hold request. 

The Interrupt method of externally controlled input and output 

involves only the data bus. An interrupt request is deliver�d to 

the CPU, which finishes the current instruction and relinquishes 

control of the buses. The interrupting device proceeds to place 

an instruction on the data bus, and the CPU treats this as though it 

were an instruction read from the program memory. Eight RST 

instructions are provided for this purpose. As you have seen, RST4 

as an instruction in your program causes an entry to .the 

monitor program. If it were entered by means of an external 

interrupt, exactly the same process would occur. Usually the 

interrupt initiates a programmed input or output operation; this is 

treated in Chapter 8. 
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5.5 MEMORY SIGNALS AND TIMING 

5.5.1 Machine States and Transitions 

MEMORY AND CONTROL HARDWARE 

Figure 5-8 shows the signals involved in memory access during the 

MOV M,A instruction cycle. The 

clock generator, which includes 

system clock is driven by the 8224 

an oscillator controlled by an 

external crystal. The oscillator is counted down and divided into 

a two phase clock: the pl and 12 clocks, as shown. SYNC is generated 

by the CPU at the beginning of each machine cycle. The)fl clock 

period marks "states" of the processor. Each machine cycle has three 

or more states (clock periods). Each instruction cycle has one or 

more machine cycles. We will proceed along the time axis and explain 

the states as we meet them. 

5.5.2 First State (Tl) 

During the last half of state Tl and the first half of state T2, the 

CPU generates a SYNC signal, and outputs on the data bus an eight-bit 

status word designating the kind of machine cycle that is being 

performed. In the first machine cycle of any instruction this is 

always an instruction FETCH. 

The clock generator receives the SYNC signal and generates a status 

strobe in response: This is a narrow pulse which the system 

controller uses to latch the status data. 

The CPU also connects its program counter outputs onto the address 

bus during the instruction FETCH machine cycle. This connection is 

retained through most of the machine cycle. All of the memory 
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devices receive the address (10 low-order bits) and decode it, and 

the external decoder selects one of the memory devices. 

The system controller recognizes that this is an instruction FETCH 

cycle and generates the MEMORY READ signal. This is an active low 

signal; the near O volts condition tells the memory to read. It is 

timed by DBIN to ensure that the memory does not drive the data bus 

until the CPU has released the bus. 

5.5.3 Second State (T2) and Wait (TW) 

During state T2 a signal (DBIN) is raised to receive data. The OBIN 

signal is terminated during state T3. Some memory devices are too 

slow to delive� data to the CPU by this time, or if the memory is 

physically separated from the CPU the cables may introduce an 

excessive delay. To provide for this� if the READY signal to the CPU 

is low at the end of T2 the CPU enters a WAIT state, TW. The WAIT 

state is repeated until READY is high at the end of a clock period. 

Figure 5-8 shows one WAIT cycle with each memory access. This does 

not occur in the MTS when it operates with its own memory, but is 

required if it operates with S-100 memory. The READY signal can also 

be used during input or output to slow peripheral devices. 

5.5.4 States T3, T4 and T5 

During T3 the data bus is read by the CPU, and since this is an 

instruction FETCH it is loaded to Register I. The instruction is 

interpreted during T4, at the end of which a new machine cycle 

begins. The T5 state is available for certain instructions, but if 

not required Tl follows T4. 
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Since the instruction in Figure 5-8 is MOY M,A a MEMORY WRITE cycle 

is required. The CPU again outputs SYNC, Status and an address, but 

·now the address is the content of (H,L). During T2 the CPU places 

the content of Register A on its data bus and the system controller 

passes it on to the system data bus. The CPU status indicates that a 

memory write cycle is required, so the system controller generates 

MEMW. Once again a WAIT state is sh6wn. After TW the standard T3 

state occurs. With fast memory the T3 state provides time enough for 

writing. The TW state doubles that time, while reducing the 

processor's speed by about 25%. 
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MODULES., SUB-ROUTINES AND THE STACK 
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6.1 PROGRAM MODULES 

The design and hardware of a complex machine are always divided 

into modules, each having a limited function and a limited set of 

inputs and outputs. The purpose is to make each module 

comprehensible to the designer and to make it fit within a 

physically realizable structure (such as a circuit board). Often 

modules operate in parallel because their functions are separable 

but must or can overlap in time. 

The design of a machine that uses a microprocessor is handled the 

same way. The microprocessor is part of a solution; it is 

surrounded by other hardware modules that relate to it. The 

program of the microprocessor is similarly divided into modules, 

which relate to each other and to the surrounding hardware. Your 

microcomputer 

clear example 

displayed, but 

between the 

training system and its monitor program include a 

of this: when you press numeric keys they are 

in the hardware there is no physical connection 

keyboard and display. There is a program module 

which services the keyboard and a program module which services 

the display. These operate independently, and other program 

modules determine their interactions, which vary with time and 

history. When you press a hexadecimal key it may be displayed 

in any of six positions depending on what command key and _other 

hexadecimal keys you pressed before. (In a later chapter we 

will examine the design of the MTS and its input and output 

electronics and·programming.) 

6-1



MODULES, SUBROUTINES AND THE STACK 

6.1.1 In-Line Programming 

Consider the sensor correction program of Chapter 4: 

If the input and output functions were part of your program you 

might program them all "in-line", with a series of instructions 

to accept hexadecimal keys and display them (possibly with a loop for 

input of two or more keys), followed by the instructions for the 

directory search and table lookup for a linearized value, followed by 

the multiplication for scaling, then the commands to output the 

result, and finally a jump back to the beginning. 

Obtain the 'Input 

Search Directory 

Table Lookup 

Multiply 

Display Result 
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6.1.2 Creating Program Modules 

As these procedures become sufficiently complex, it is desirable 

to distinguish each of

develop it independently. 

them as a separate module and 

This can be done with a subsequent 

integrati on of the several modules into an in-line program. 

Consider an in-line procedure comprising input, process, and output. 

-
I 

j ', 

Demand Input 

! Input Program 
-

' Hardware 
Module 

Input Data 

I 

l
Input 

l Data 

Process Data 
I 

i Program Module 

Result 

I 

I 
Command Output 

I 
Output Hardware 

Program Module 
-

i Result Data 
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The input may involve several data items ( for instance, sensor 

number and data input), and the input program module retains 

control until the requisite data items have been obtained. 

There may be loops and decision points within the .module, but 

control stays there until the task has been completed. Then 

some data processing occur�, which may i��olve 16ops, table 

lookup, and perhaps use of previous data. Again, control remains 

with this program module until its task is done. Finally results 

are passed to an output module which sends out the data. Such a 

procedure is exemplified by the sensor correction problem in 

Chapter 4, although we entered the monitor for i�pu{ �nd output. (By 

the end of this chapter you will have learned ways to call upon ;the 

monitor for input and output as separate functioris.) 

Another way of organizing a program is to write the separat� modules, 

locating them in different areas of program memory, and provide a 

control program that jumps to each module in turn. This is suggested 

in Figure 6-1. Why would we do this? In the �ensor correction 

exercise of Section 4.12 we used a directory procedure that required 

all data tables to fit into a single page (8300 -- ) of memory. If we 

found later that more sensors or larger table� were needed, we might 

need a directory with two byte addresses. If the program were 

organized as Figure 6 -:1 we could rewrite the SEARCH DIRECTORY module 

with no effect on any other module. If we found it desirable to have 

the microprocessor select the sensor to be read instead of taking 

sensor number as an input, we would modify the input module, and 

possibly add a new module to select the sensor. 
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CONTROL PROGRAM .MODULES 

Initialize 

. -. 

JMP to Input - INPUT -: 

� JMP back 

JMP to Search . 

SEARCH 
Directory DIRECTORY 

JMP back 

JMP to Table Lookup 
-

- TABLE LOOKUP 

� JMP back 

JMP to Multiply . MULTIPLY 

� JMP back 

JMP to Display - DISPLAY
RESULT

JMP back� 

Program Modules with Control Program 

Figure 6-1 
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As long as the overall function remains unchanged and no new modules 

are added, the main program retains the same jumps - one to the start 

of each module. Each module jumps back to the main program location 

following the instruction that jumped to the module. Wh�n each jump 

occurs, there usually is some information to be passed to the module 

or back to the main program: at least the inputs and results. These 

data may be in registers (the inputs and outputs, for instance) while 

other data might be in specified memory locations. 

6.1.3 Module Specification 

Now consider the program specification for each module • .  Suppose each 

were to be designed independently; what must its designer be given? 

Here are some of the important considerations: 

Function: 

Specify the "black box" algorithm·for the module. 

Entry: 

The address to which the master program must jump. 

Extent: 

The range of program memory allotted to the module ( starting 
and ending addresses or number of memory words used). 
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Inputs: 

Identify the inputs to be given to the module. What are 
they, and where will they be? In what register or memory 
location? How many bytes? (Recali the specification of 
register assignments in Section 4.4.4.) 

Outputs: 

Identify the results the module is to generate. 
they, and where must the module place them? 

Registers: 

What are 

What registers are used or preserved? 
preserved sensor number in Register B.) 

(Recall that we 

Constraints: 

What memory. areas may the module use for data storage, 
either temporary or permanent? Is the module permitted to 
use all of the registers, or must certain ones be preserved? 
How much time is permitted for the module's function? 

It may appear that the need to specify all of this (and often much 

more) ma�es the use of program modules a nuisance. In fact it is· 

one 9f the best reasons for modular design: 

discipline that may otherwise be neglected. 

it forces a 

When such items 

are well-defined, many programming errors may be avoided. 

Suppose that one module serves a function that is needed several 

times in the program - displaying data, for instance. In the 

sensor correction program it would be desirable to display the sensor 

number and the input data; later we display the result. If we jumped 

to the display module with an additional variable (perhaps in an 

unused register) indicating whether the entry is for input or 

result, the display module could test that variable and decide where 

to return. This would demand that the specification include 

two return addresses and a definition of the new control variable. 
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A much better procedure is for the main control program to pass 

the return address as a variable. Then we need a jump instruction 

that can use a variable address. We have such an instruction: 

HEX CODE: 

MNEMONIC: 

MEANING: 

E9 

PCHL 

Move the content� of re�ister pair H,L 

into the program counter and continue 

program execution from that address. 

To experiment with this we will write a trivial program that 

does nothing except load a variable> return,address\and jump to a

module, which does nothing except jump back. Figure 6-2 is a flow 

chart of the program shown in Figure 6-3. The return address to 

be loaded must be the address of the instruction following the jump 

into the module. 
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Do nothing 

Load immediate 

return address 

to HL 

Jump to module 

Do nothing, 

Load immediate 

return address 

to HL 

Jump to module 

Do nothing 

Jump to start 

Do nothing 

Jump back 

to main 

(PCHL) 

Do Nothing Program With Do Nothing Module 

Figure 6-2 
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When you have loaded the program, step though it. The program 

counter should show this sequence: 

8200 00 NOP 

8201 00 NOP 

8202 00 NOP 

8203 21 LXI H, 8209 

8206 C3 JMP 8220 

8220 00 NOP 

8221 E9 PCHL 

8209 00 NOP 

820A 21 LXI H, 8210 

820D C3 JMP 8220 

8220 00 NOP 

8221 E9 PCHL 

8210 00 NOP 

8211 C3 JMP 8200 

8200 00 NOP 

8201 00 NOP 

etc. 

Of course if H,L were needed for other purposes we could have stored 

the return address in memory. In fact, the use o f  a variable return 

address is so common that the microprocessor has special jump 

instructions that do this for us automatically. When these are 

used the module becomes a subroutine. 
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6.2 SUBROUTINES 

A subroutine is a program module that uses built-in features of the 

computer for entry to the module, and return from the module. 

6.2.1 Subroutine Entry and Return 

The entry to a subroutine is made by a special kind of jump 

instruction, CALL, which includes the address of the subroutine 

ordinary jump instruction includes an address. The 

automatically generates and saves an address for a 

back to the calling program, executed at a RETurn 

just as an 

mic:r:oprocessor 

subsequent jump 

instruction. 

6-,12 

SUBROUTINE: A program module which is entered by means 

of a CALL instruction and which normally 

returns to the calling program by means of a 

RETurn instructio�. 

CALLING PROGRAM: The program module which has called a 

subroutine. The calling program may be 

the main program or another subroutine. 
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The CALL instruction is: 

HEX CODE: 

MNEMONIC: 

SECOND BYTE: 

THIRD BYTE: 

MEANING: 

CD 

CALL 

Low address 

High address 

Save the address of the next following 

instruction, and jump to the subroutine 

whose first instruction is located at the 

address given in Bytes 2 and 3. 

The CALL instruction executes a jump, but instead of discarding 

the present content of the program counter it stores (PC) in an 

assigned memory area called the stack. 

STACK: An area of memory assigned by the programmer 

for the temporary storage of return addresses 

or other d ata. It is addressed by a dedicated 

16-bit counter called the Stack Pointer.

The jump back to the calling program is made by the RETurn 

instruction: 

HEX CODE: 

MNEMONIC: 

· MEANING:

C9 

RET 

Recove� the add�ess stored by 

CALL and jump to that location. 
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6.2.2 Tracing Subroutine Entry and. Return 

Revise the Do Nothing program (Fi�ure 6-3) by

following op-codes (the JMP addresses are not changed): 

replacing the 

Address Was Change To 

8206 C3 JMP CD CALL 

820D C3 JMP CD CALL 

8221 E9 PCHL C9 RET 

Again trace the program flow and observe that the program 

counter sequence is the same; only the instructions change. 

The two LXI H instructions could be changed or removed with no 

effect. Now we will examine and define the CALL and RET 

instructions more thoroughly, and discuss the stack. 

Use the "Do Nothing" program to foll ow this. 

program to 8206, the CALL: 

STEP 

Step through your 

8206 CD 

The monitor can display the stack pointer as a register pair. Key 1 

is also labelled P to designate the stack pointer. 

ADDR 1/P MEM 83EO SP.?? 

Now step once to execute the CALL instruction: 

STEP 8220 00 
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Display the stack pointer again: 

ADDR 1/P MEM 83DE SP09 

The stack pointer contains the address in memory where the low byte 

of the return address (8209) is stored. The next memory location 

contains the high byte of the return address: 

NEXT 83DF 82 

Any time that you display a register pair and the memory location it 

addresses you can see the following sequential memory location by 

pressing NEXT. In debugging progra ms you 

interested in the return address than the 

pointer. Key 2 is  labelled T to designate the 

in the stack. 

ADDR 2/T MEM 

The stack top contains the return address. 

Now step twice to return to the main program: 

STEP 

STEP 

will 

value 

stack 

more 

of 

top -

8209 

8221 

8209 

The return address has been placed in the program counter. 

often be 

the 

two 

stack 

bytes 

STOO 

C9 

00 
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6.2.3 CALL Execution 

Figure 6�4 Shows the program counter addressing 8206 and the 

CALL instruction being loaded into the instruction register. The 

program counter is incremented three times as the op code and the 

following two bytes are loaded into Registers I, Z and W 

respectively.· So far the proc�ss is identical to that of a JMP 

instruction, as described in Chapter 2. We see that the 

program counter 'now addresses the next instruction following CALL, 

which is to be the return address. Registers W and Z contain 

the jump. address. The stack pointer addresses·a location (83EO) 

near the top of memory; this was loaded by the monitor program when 

power was turned on. (The description continues on the next page.) 
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CALL INSTRUCTIONS 

PROCESSOR 

21 

0 
8206 

83EO 

0 
Address 

820T 

83EO 

CD 

20 

Address 
83EO 

Data 
CD 

82 
20 

8209 

83EO 

MEMORY 

21 
09 

82 

CD 

20 
82 

00 

� 
9 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

s 2 

8 2 

8 2 

8 2 

8 2 

8 3 

8 3 

8 3 

8 3 

8 3 

8 3 

8 3 

8 3 

As in a jump instruction, the PC is used to address 

0 0 

0 1 

0 2 

0 3 

0 4 

0 5 

0 6 

0 7 

0 8 

0 9 

0 A 

0 0 

2 0 

D A 

D B 

C C 

D D 

D 

D F 

E 0 

E 1 

the instruction code and the b.o following bytes, which are ·loaded into 
I, z and W respectively 

Figure 6-4 6-17
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Figure 6-5 shows the stack writing operation in a CALL instruction.

The content of the stack pointer is decremented (7) and sent out on 

the address bus (8). The high byte of the program counter is sent 

out on the data bus (9) to be written to the selected location in 

the stack area of the memory. Now the stack pointer is decremented 

again (10) and the low byte of the program counter is written to 

the memory at the next location below the high byte (11, 12). Any 

8080 instruction that stores an address places it in the same 

position sequence - low byte at the lower memory location. 

Finally the subroutine address is moved (13) from Registers Wand Z

into the program counter, as in a normal jump, and program 

execution continues with the instruction there. 
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CALL INSTRUCTION 

PROCESSOR MEMORY 

,..-...._ 

CD 

82 

20 21 

8209 09 

83EO 82 

CD 

20 

82 

00 

8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

Fo?9 
� 

8 2 2 0 

8 2 2 1 

20 
/ 

Address 

82 09 

83DE 
8 3 D 

8 3 D 

8 3 D 

8 3 D 

I 09 8 3 D 

82 8 3 D 

8 3 E 

8 3 E 

83DE 

The stack po inter is decremented (7) and sent out as an 
. address (8). The high byte of  the program counter is 
sent on the data bus (9) and wri tten to the addressed 
merrory location. This is repeated for the low byte of the program 
counter (10,11,12). · Then the content of W,Z, is noved to PC. 

Figure 6-5 6-19
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6.2.4 Return Instruction 

The RET instruction recovers the last address entered in the stack 

and executes· a jump to that address. Note that a 1 though RET is a 

jµmp it only requires one byte in the program (like PCHL) because the 

address tp wh_ich it jumps is a variable stored by the CALL. The 

RET instruction cycle is shown in Figures 6-6 and 6-7. 

HEX CODE: 

MNEMONIC: 

MEANING: 

C9 

RET 

Return to the calling program. 

Figure 6-6 shbws the fetch and execution of the NOP instruction at 

8220 and fetch of the RET instruction (C9) at 8�21� Execution of 

the return is shown in Figure 6-7. 
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PROCESSOR MEMOFlY 

8 2 0 0 

. r 
. .

CD 8 2 0 1 

w. 82 8 2 · 0 .  2 
... 

z 20 21 8 2 0 3 

p C 8220 09 8 2 0 4 

s p 83DE 
0 82 8 2 0 5 

CD 8 2 0 6 

0 20 8, 2 0 7 

82 8 2 0 8 

00 8 2 0 9 

w 8 2 0 A 

z 

p C 8221 

s p 83DE 

8 2 2 0 

G 
8 2 2 1 

cg·

w 

z 

p C 8222 

s p 83DE 
8 3 D A

8 3 D B

The NOP instruction at 8220 is 8 3 D C

fetched and executed and the 
8 3 D D 

return instruction at 8221 is 
D fetched. 09 8 3 E 

82 8 3 D F 

8 3 D 0 

8 3 D 1 

Figure 6-6 
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In Figure 6-6 we saw the RET instruction loaded to the I register. 

Its execution appears in Figure 6-7. The stack pointer provides a 

memory address (7) and the low byte of the return address is moved 

into Z (8). The stack pointer is incremented (9) to address the high 

byte (10), which is moved into W (11). The stack pointer is 

incremented again (12) and the content of W and Z is moved to the

program counter to accomplish the jump (13). Notice that this 

process is identical to a normal jump except that after the 

instruction fetch, the stack pointer is used instead of the program 

counter to read the jump address. 

6-22



w 

z 

p C 

s p 

w 

z 

p C 

s p 

w 

z 

p C 

s p 

w 

z 

p C 

s p 

MODULES, SUBROUTINES .AND THE STACK 

RETURN INSTRUCTION Cont'd 

PROCESSOR 

C9 

8222 

83DE 

C9 

09 

8222 

83DF 

C9 

82 

09 

8222 

83EO 

83EO 

0 

--
----

--

MEMORY 

21 

09 

82 

CD 

20 

82 

00 

09 

82 

09 

82 

The stack pointer addresses the low byte 
of the return address which is loaded 
to Z (7,8). The stack pointer is incremented 
(9} and the high byte is loaded to W (10, 11}. 
The stack pointer is incremented again (12) 
and the program counter is loaded from W and z.

Figure 6-7 

8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

8 2 2 0 

8 2 2 1 

8 3 D A 

8 3 D B 

8 3 D C 

8 3 D D 

8 3 D E 

8 3 D F 

8 3 E 0 

8 3 E 1 
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6.2.5 Subroutine Nesting 

Why is the return address stored in memory? Since a 16 bit 

register exists 

return address 

(the stack pointer), why not simply place the 

in that register? In fact, this scheme was used in 

early computers, and still appears in such small microprocessors as 

the 4004 and 4040. The problem is that if only one register exists 

there can be only one level of subroutine: one subroutine cannot 

call another subroutine. The 4004 and 4040 have four return address 

registers, so that four levels of subroutines can be used. 

This is still a noticeable limitation� Using a memory stack 

permits unlimited subroutine nesting. Figure 6-8 shows some nested 

subroutines • .  Note that there is no inherent "level" to a subroutine. 

Any subroutine can be called from the· main program or fr'om any 

other subrotitine. 

Load the program (Figure 6-9) and 

described on the following pages • 

. 6�24 
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CALL SUB1 i SUB1 

CALL SUB2 SUB2 

RET CALL SUB3 

RET 

CALL SUB3 SUB3 

RET 

Figure 6-8 
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Trace the program flow through the dummy subroutines of Figure 6-9. 

Step to address 821C. 

RST 8200 

STEP - - - - - STEP 821C 

Di splay the stack pointer, and examine the stack. 

ADDR 1/P MEM 83DA 

NEXT 83DB 

NEXT 830C 

NEXT 8300 

NEXT 83DE 

NEXT 83DF 

Now execute the NOP and RET intructions. 

STEP 821D 

STEP (back in SUB 2) 821A 

00 

. 00 

SPlA 

} 

Return 

82 to SUB 2 

14} Return

82 to SUB 1 

04

} 

Return 

82 to MAIN 

C9 

00 
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The stack pointer now addresses the return address that will take us 

back to SUB 1. 

ADDR 1/P MEM 83DC SP14 

STEP 8213 C9 

STEP (back in SUB 1) 8214 00 

The stack pointer now addresses the return address that will take 

us back to MAIN. 

ADDR 1/P MEM 83DE SP04 

STEP 8215 C9 

STEP (back in MAIN) 8204 00 

STEP ( call SUB 3) 8205 CD 

STEP (in SUB 3) 821C 00 

STEP 821D C9 

ADDR 1/P MEM 83DE SP08 

STEP (back in MAIN) 8208 00 
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The central reason for writing modules as subroutines is to permit 

the same module to be called from various program locations; however, 

there are two extra advantages: The single byte RET saves program 

space, and it avoids the need to specify the return address during 

program design. Therefore most program modules are written as 

subroutines even if they are to be used only once. 

We commonly 

DIRECTORY, 

give a name to a subroutine (INPUT, DISPLAY, SEARCH 

TABLELOOKUP, MULTIPLY). This is a convenience for the 

programmer, like the mnemonic names of instructions. It is much 

easier to remember a name than an address, and the name conveys 

some meaning. However, a subroutine has an address, the address of 

its first instruction. When you write the CALL instruction you 

must, of course, use the hexadecimal address of the subroutine, just 

as you would use an address in a jump instruction. 

Figure 6-10 shows a flow chart for the sensor correction problem 

written as a series of subroutines and a main program. We shall 

briefly define all of the subroutines, and then develop them one at a 

time, with· detailed specifications. 
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6-30

CONTROL PROGRAM SUBROUTINES 

Initalize 

-

CALL INPUT INPUT 

Process -

RET -

CALL SEARCH 
-

SEA'RCH 
D.IEECTORY

-
DIRECTORY 

RET 

CALL TABLE LOOKUP 
-

TABLE LOOKUP -

Process - RET 

CALL MULTIPLY 
-

MULTIPLY-

Process 
-

RET� 

CALL DISPLAY RESULT -

DISPLAY RESUL'J -

Process 
-

� RET 

Sensor Correction with Subroutines 

Figure 6-10 
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6.3.1 Program Development - Sensor Correction Problem 

Developing a program generally involves these steps: 

a) Define the problem

b) Conceive a program solution

c) Divide the solution into comprehensible and

realizable program modules

d) Specify the modular functions

e) Specify the interfaces

f) Develop the main control program

g) Develop and test the modules

h) Integrate and test the system

In Chapter 4 we defined the sensor correction problem and conceived 

a solution. Now we have divided the program into moqules. It 

remains to specify the functions and interfaces of the modules, to 

develop and integrate them. First we will give brief functional 

specifications. These will be developed more fully later. 
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Subroutines for Sensor Correction 

Input: 

Accept data input from the keyboard. Display the data as it 
is entered. On a specified command, change the sensor 
number. Return when a command is entered. 

Search Directory: 

Find the table address for the present sensor number. 

Table Lookup: 

Obtain the scaling factor and linearized .value of the input 
from a data table 

Multiply: 

Generate the product of the scaling factor and the linearized 
value of the input as a double precision result 

Display Result: 

Display the double precision result. 

We must also define the displays to be generated by this program. 

Data to be displayed are the sensor number, input byte, and result. 

I I I I I I I 

L
input 

Blank 

Result 

'--����Sensor Number 
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6.3.2 M ain Program 

A good procedure for developing a program that comprises a number of 

subroutines is to �evelop the main program first, using CALL 

instructions to call the various subroutines. At earih subroutine 

location enter nothing but a RET instruction. You can then step 

through the main program to test the program flow, even though the 

subroutines do nothing. Then develop each subroutine in turn; as 

these are entered you can test them by running the main program. When 

all of the subroutines have been developed and tested, the entire 

program has also been integrated and te�ted. This approach is part 

of what is called "Top Down Programming" because you have started at 

the top (the main program) and worked down to the bottom. 

Often a main program is required to load data, or move data around in 

registers, before calling a subroutine, and to store data returned by 

a subroutine. If you leave some space between the CALL statements it 

becomes easy to insert such functions into the main program later. 

The main program for sensor correction is shown in Figure 6-11. 

Three 

MOV's 

NOP's are left between CALL's. This is enough space for three 

or one LXI, LDA, STA, LHLb, or SHLD. If more manipulation is 

needed the three NOP's can be replaced by a CALL, and another 

subroutine can 

required. We 

ini tia 1 iza tion. 

be created to load, store or manipulate the data as 

have left three bytes at the beginning for 
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This is a very straightforward program. Most commonly the main 

program makes decisions, therefore including comparisons and 

conditional jumps. These should be designed in from the start, not 

patched in later. Programs, like machines, must be designed before 

they are built, or they are likely to fail. The spaces we have left 

are intended only for data movement, which is not fundamental to the 

design. 

In Figure 6-11 we have arbitrarily placed the subroutines as follows: 

8240 

8260 

8280 

82AO 

82CO 

INPUT 

SEARCHDIRECTORY 

TABLE LOOKUP 

MULTIPLY 

DISPLAYRESULT 

Thus 32 bytes (20 hex) are allotted to each subroutine. If this is 

not enough we can easily relocate a subroutine and change the address 

in the main program. 

Load 

the 

the main program, and enter a RET instruction (C9) at each of 

addresses above. Step through to make sure the program operates 

correctly. 

with only 

established 

Note one of the advantages of "Top Down" programming -

vague aefinitions of the program modules we have now 

the relationships among them. This will help immensely 

in specifying the modules. 
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6.3.3 Input Subroutine 

The definition for this subroutine was given as: 

Accept data input from the keyboard. 

Display the data as it is entered. 

On a specified command, change the sensor number. 

Return when � command is entered. 

Nothing has been said here about register or memory assignments, and 

the mention of changing sensor number is vague indeed. A better 

definition is essential before we can design this module� 

We shal 1 switch temporarily from "Top Down" programming to "Bottom 

Up" programming. When you have no idea of how to accomplish a 

function, it is often much better to work out some details before 

proceeding with a design just as we may experiment with a 

breadboard electronic circuit, or look in catalogs to see what is 

available, before specifying and designing hardware. 

You do not yet have enough knowledge of the MTS hardware, nor of the 

8080 instructions, to write a keyboard input subroutine. There is a 

built-in subroutine, GETKY, which you can use without understanding 

how it works just as you can buy and use an integrated circuit. This 

subroutine is used by the monitor when you key in a program or enter 

commands such as STEP or RUN. In fact, when you ire using the

monitor it spends almost all of its time in subroutine GETKY, waiting 

for you to press a key. The specification is given here: 
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6.3.3.1 Subroutine GETKY 

Function: 

Read the keyboard repeatedly until a key is pressed. Wait 
until the key is released; then return the value of the key 
and indicate whether it is a command or hex key. 

Entry: 

Inputs: 

CD CALL GETKY 

30 
02 

No data required at entry. 

Returns: 

The value of the key pressed, with Carry set if hex key; 
Carry cleared if command. 

Registers: 

(A)= (C) = Key Value 
(B) = 00

All other registers are preserved. All flags are affected. 

Note that this specification is not quite complete. No mention is 

made of the possibility of several k�ys being pressed at once, and 

there are some constraints that you need not worry about. We have 

not stated the values returned for the command keys; you wi 11 

determine that by testing the subroutine. 
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·6.3.3.2 Monitor Display Subroutine DBY2

Although you have operated the MTS display directly, by writin� to 
. . 

me,mory locations 83F8 to 83FF, and you could develop your own display

subroutine, it will be easier to use another monitor subroutine that 

displays a byte of data in two digits. 

Subroutine DBY2 

Function: 

6-38

Display one byte of data in two specified digits of the MTS 
display. 

�ntry: 

Inputs: 

CD 
98 
02 

CALL DBY2 

Byte to be displayed in Register A. Display address for low 
digit in register pair DE. 

Outputs: 

The byte displayed is duplicated in Registers A and C. The 
display address is decremented by two, pointing to the 
memory location below the left digit location. 

Registers: 

(A)= (C) = byte displayed 
(DE)= Entry value of (DE) - 2 
(B), (H), (L) preserved 
Carry and Zero are cleared 

Constraints: 

For an effective display the entry value of (DE) must be in 
the range 83F9-83FF. No test is made on the address; DBY2 
will store symbols for two digits at the address in (DE) and 
the next lower address. Only two memory locations and 
display digits are affected. 



We can 

context 

test 

of 

MODULES, SUBROUTINES AND THE STACK 

both of these subroutines (GETKY and DBY2) within the 

the sensor correction subrbutine INPUT. AT 8240, enter 

the calls and required input data for these two subroutines, followed 

by RET. Do this yourself, and then compare your work with Figure 

a�12. 
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6.3.3.3 Testing GETKY and DBY2 

These subroutines are guaranteed to work, so press RUN. The display 

will go blank. Press and release a key; its value will be displayed. 

With a display address. of 83FB, the byte will appear in digits 3 and 

4 of the display. 

See that the hex keys of O - F are displayed as 00 - OF. Make a list 

of the values returned by GETKY for commands. 

REG MEM BRK CLR RST 

STEP 

RUN 

ADDR 

NEXT 

You will find that RST does not return a value from GETKY -- it 

resets the microcomputer. Electrically, RST is not part of the 

keyboard input circuit. in�tead, it provides a direct input to the 

microprocessor and its function cannot be changed. 

Place a breakpoint at the LXI D instruction, after the call to GETKY. 

ADDR 8 2 4 3 BRK 8243 BP. 
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Enter arbitrary data into the registers: 

REG A A 8200 A-OA

NEXT B 8200 B-OB

NEXT C 8200 c-oc

NEXT D 8200 D-OD

NEXT E 8200 E-OE

NEXT F 8200 F-OF

NEXT 8 8200 H-08

NEXT 9 8200 L-09

NEXT 8200 A-OA

RUN 

The monitor blanks the display. You are now in subroutine GETKY. 

Press and release key 6. The program stops at the breakpoint. 

6 (CY) 8243 A-06

Examine the registers and note the Carry and Zero indicators. 

Confirm that GETKY returns (A)= (C) = key; (B) = 00; that D, E, H 

and L are preserved; that Carry was set by a hex key. 

"Register" F actually displays the content of the five flags of the 

8080; the only ones we are interested in are Carry and Zero, which 

appear in the LED indicators. The others will be described in later 

chapters. 
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Press RUN. The key you entered is displayed by DBY2 as before. 

Press RUN again. This time it is an entry to GETKY for your program. 

Again execution stops at 8243. Confirm that GETKY has returned (A)= 

(C) = 14 and (B) = 00. (DE) contains the value entered by your

program decremented by 2, or(82F9j This was returned by DBY2; GETKY 
'63f '\ 

has not disturbed it. Registers H and Lare still preserved. Carry 

is cleared in response to the command key. Zero is also cleared in 

response to RUN. What key returns Zero set? 

Now place a breakpoint at the RET instruction (8249), retaining the 

breakpoint at 8243. Run the program and press a key. When the 

program stops at 8243 i enter arbitrary data into Registers B and C, 

and press RUN. At the 8249 breakpoint confirm that Register B has 

been preserved; (A) has been copied into Register C; and again (DE)= 

83F9. 

Be sure that you understand these two monitor subroutines before 

going on. Experiment further with them if you want. 
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6.3.3.4 Definition of Sensor Correction INPUT Subroutine 

Now that we have some tools (the monitor subroutines GETKY and DBY2) 

we can define the INPUT subroutine for the sensor correction program. 

We want it to accept hex keys followed by a command, just as the 

m6nitor does, assembling two suc�essive keys into a byte. We shall 

see how to do that in the next section. If some specified command 

key is entered, we are to "change" sensor number. The original 

definition was vague about this. What command key causes the change? 

Exactly what is meant by "change"? Is the user allowed to enter 

input data for the new sensor before making the change? If not, what 

is to be done with data entered before the change? Must new data be 

entered after the change? 

You can make your own decisions about these questions. The solution 

given here is the simplest to program, but other approaches might be 

more interesting. 

For simplicity we will use the following rules: 

Key MEM calls for a change in sensor number. (MEM returns 

Zero set from GETKY.) 

A data byte for the new sensor is to be entered before the 

change (MEM) command. 

If no hex key is entered, the input value returned will be 

zero. 

If only one hex key is entered, it will be t�ken as the low 

digit, and the high digit will be zero.· 
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If two hex keys are entered, the earlier will be the high 

digit; the later will be th� low digit. 

If more than two hex �eys are entered, the oldest will be 

discarded and the last two wi�l be used to form the.input

data byte. 

The change 1n sensor number will be to set the next higher 

allowable sensor number. The changes will be effected by 

another subroutine, NEXTSENSOR, which is called by INPUT in 

response to the MEM key. (Note that by defining another 

subroutine we are spared worrying about its details now. 

This is "Top Down" design again.) 

Now we must also assign registers for data to be returned by INPUT, 

and decide whether it requires any input data from the main program. 

The only input data that INPUT might need would be the sensor number. 

INPUT itself has no need for this; only SEARCHDIRECTORY and 

NEXTSENSOR use the sensor number.. Let us say that it wi 11 be stored 

in memory, and leave the memory location to be defined later. 

INPUT must return the data byte keyed in, and display it. Since 

GETKY and DBY2, between them, use Registers A, B, C, D and E but 

preserve H and L, we can only use Register H or L to accumulate the 

data as it is keyed in. Since NEXTSENSOR will surely need the 

Accumulator, it is probably easiest to return the data in one of 

these registers; we shall choose Register L. The specification for 

INPUT is given below. 
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Subroutine INPUT 

Function: 

Accept a byte of data from the keyboard, followed by a 
command. If the command is MEM, call NEXTSENSOR to set the 
next legal sensor number. If no hex keys are entered, 
return 00 for the data byte. Display the data byte in the 
third and fourth digits of the MTS display. 

Entry: 

Inputs: 

CD 
40 

82 

CALL INPUT 

None needed for INPUT. 

Outputs: 

Data byte entered from keyboard. 

Registers: 

Constrafnts: 

A, B, C, D, E and L are used. 
At return (L) = dat� byte entered·. 
Register H is preserved. 

In response to MEM command calls NEXTSENSOR, which must 
preserve Registers Hand L. 

Processing of successive hex keys wili be as defined in 
Sec ti on 6. 3. 3. 4. 
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byte? 
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Design of Sensor Correction INPUT Subroutine 

a firm definition and the necessary subroutines we can now work 

the program for INPUT. How can we combine two keys into one 

When the first hex key is entered, it is considered to be the low 

digit of the byte. When another hex key is entered, the earlier key 

becomes the high digit, and the -later key the low digit. Recall that 

in a hexadecimal number the high digit has a value of 10 hex (16 

decimal) times the number. That is: 

10 = 1 x 10 (hex) 

20 = 2 x 10 (hex) 

30 = 3 x 10 (�ex) 

and FO = F x 10 (hex) 

With two non-zero digits, the value is 10 (hex) times the higher 

numeral, plus the value of the lower numeral. 

24 = 2 x 10 (hex)+ 4 
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To convert two digits into a byte, then, we must multiply the older 

digit by 10 (hex) or 16 (decimal). We could, of course, add the 

older digit into a product sixteen times, but there is a much easier 

procedure. Add the digit to itself once to get two times its value. 

Add that result to itself to get four tim es the digit value; again 

for eight times the digit value and once more for sixteen (10 hex) 

times. Now add in the low digit. Thus with the old digit in L and 

the new digit in C: 

MOV A,L Old Digit 

ADD A 2 X Old Digit 

ADD A 4 X Old Digit 

ADD A 8 X Old Digit 

ADD A l0 1"'x Old Digit 

ADD C 10
1b

x Old -+ New 

MOV L,A = Data Byte 

Let us program this into our INPUT subroutine and test it. Start by 

entering a zero into Register L; call GETKY; test for a command key 

(Carry clear) and jump to the return if a command is entered. 

Otherwise do the process above; address 83FB and display the result, 

and jump back to call GETKY again. Try to program this yourself, 

then compare your program with Figure 6-13. We have not yet handled 

the call to NEXTSENSOR; this is covered in Section 6.3.4 •. 
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The main program of Figure 6-11 and this input subroutine can be run 

as we did the test of GETKY and DBY2. When you fir st enter a hex key 

it is displayed as the low digit, with a zero in the high digit. The 

next hex key shifts the old digit to the high position and enters the 

second key at the right. If you enter more hex keys the oldest one 

is lost. What happened to it? Review the multiplication by 10 hex. 

Place a breakpoint at the first ADD A (8249 in Figure 6-13) and run 

the program. ·Enter one hex key - 7. Program execution stops at the 

breakpoint. 

Carry is 

.00 X 10 

RUN 

7 

REG C 

REG A 

set because a 

(hex) and add 

hex 

7. 

(CY) 8249 

(CY) 8249 

(CY) 8249 

key was entered. 

87 

C-07

A...:.oo 

We are about 

When you press RUN the result 

to multiply 

is displayed 

and the program waits for another key. The Carry indicator stays on. 

RUN (CY) 07 

5 (CY) 8249 A-07

REG C (CY) 8249 C-05

RUN (CY) 75

8 (CY) 8249 C-08

REG A (CY)· 8249 A-75

The old value is 75 from the first two digits. or binary 0111 0101. 

Now step through the multiplication. 

STEP 8249 A-EA
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Carry is now off. 2 X 75 = EA with no Carry. This can also be 

viewed as a left shift of the binary value. 

Bit Positions _CY 7 6 5 4 3 2 1 0 

Old Value (75) 1 0 1 1 1 0 1 0 1 

2 X Old Value (EA) 0 1 1 1 0 1 0 1 0 

The old Carry is lost. The high bit (0) has been shifted into Carry, 

and the other bits have shifted left. 

times and see the hex values shown below. 

Now you can step three more 

4 x Old Value (D4) 

8 x Old Value (AS) 

10 x Old Value (50) 

1 

1 

1 

1 1 0 1 0 1 0 0 

1 0 1 0 1 0 0 0 

O 1 0 1 0 0 0 0 

All four bits of the oldest key (7) have been shifted out of Register 

A. The next step will add the new key from (C).

10 x Old t New (58) 0 0 l O 1 1 O O 0 

This addition clears Carry, so now all four bits of the oldest key 

are irretrievably lost. 

RUN 58 

The equivalence of a left shift to a multiplication by two is used in 

binary multiplication, as we shall see in Chapter 7. 

When you test the subroutine, note any flaw you see in its operation, 

and correct the flaw. 
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6.3.4 Conditional Calis 

We have still to handle the call to NEXTSENSOR in response to the MEM 

command. Subroutine INPUT (Figure 6-13) jumps to 8258 when any 

command key is pressed. There we must test the command key value and 

if it is MEM (= 10) then call NEXTSENSOR. Obviously this can be done 

by: 

CPI 10 I • JNZ to return 

CALL NEXTSENSOR 

RET 

Test Command 

CALL and RET are special forms of JMP, and the 8080 provides the same 

conditional variations of CALL and RET as it does for JMP. 

C3 

C2 

CA 

D2 

DA 

JMP 

JNZ 

JZ 

JNC 

JC 

CD 

C4 

cc 

D4 

DC 

CALL 

CNZ 

CZ 

CNC 

cc 

C9 

co 

CB 

DO 

DB 

RET 

RNZ 

RZ 

RNC 

RC 

Four more variations of each, not listed above, also exist. 

If the specified flag is set or reset, according to the instruction, 

execute the Jump, Call or Return. Otherwise continue program 

execution at the next sequential instruction. 

defined in detail. 
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Call if Zero 

Read the;three byte instruction into Registers I, Zand w. If 

the Zero flag is set, save the program counter in the stack and 

move W and Z into the program counter. Other wise proceed with 

program execution at the next location after the three byte CZ 

instruction. 

No flags are affected. 

6.3.4.1 Completion of Subroutine INPUT 

With conditional call instructions we can avoid spending three bytes 

on a conditional jump instruction. Instead of JNZ, CALL, we shall 

use: 

CPI 10 

CZ NEXTSENSOR 

RET 

As before, NEXTSENSOR is called if and only if the command key value 

is 10 (MEM). If you did not detect the flaw in the operation of 

INPUT, make this test. Run the program, key in a hex value and NEXT. 

The number is displayed. Now press NEXT again. According to the 

specification, pressing a command key with no preceding hex keys must 

return a value of zero, but the display shows the old value. What

actually happened? Review the program and figure it out. 
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To correct this flaw, display the content of Register L after a 

command key is pressed. The solution given below in Figure 6-14 uses 

the same call to DBY2 both for hex keys and the command, thereby 

saving a little space in the program. This is not important - memory 

space is cheap. If your version of INPUT takes more than 20 (hex) 

bytes, relocate SEARCHDIRECTORY to 8270 instead of 8260. It will fit 

easily in 10 (hex) bytes. Since we have not done anything with it 

yet, the only change required is in the main program: 

CD CALL TABLELOOKUP 

70 

82 

Remember to insert: 

8270 C9 RET 

6.3.4.2 Subroutine NEXTSENSOR Definition 

This subroutine was not included in the original list of subroutines 

in Section 6.3.1, but we have described it in the course of 

developing INPUT (Section 6.3.3.4). We must assign a location for 

storage· of the sensor number. We have two possibilities - in a 

register or in memory. In the sensor correction program of Chapter 4 

we reserved Register B for the cur�ent sensor number, but here 

Register B has been affected by GETKY. INPUT preserved Register H, 

but this will be used in SEARCHDIRECTORY and MULTIPLY. Generally it 

is better to use memory to store a variable that must be retained 

indefinitely and changed only occasionally. We hav� previO<Usly said 

that the directory occupies 8300-8307 and the data tables 8308-837F; 
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let us now assign memory location 8380 for the current sensor number. 

Assign memory locations 82EO through 82FF to this subroutine. 

Subroutine NEXTSENSOR 

Function: 

Select the· next legal sensor number following 
sensor number. If the current sensor number is 
allowable, set the sensor number equal to 1. 
new sensor number in the left hand digit. 

Entry Address: 82EO 

the current 
the highest 
Display the 

(The call from INPUT will be CZ, but this is not a part of 
the subroutine specification.) 

Inputs: 

None required in registers. The following data must be in 
memory. 

8380 

8300 

Outputs: 

Current Sensor Number 
Highest Existing Sensor Number 

Memory location 8380 is updated to contain the new current 
sensor number. 

Registers: 

A, C, D and E are used. B, H .and L are preserved. 

Constraints: 

The sensor number is to be displayed at the left by storing 
its display symbol at 83F8. ·The next display position 
(83F9) must be left blank. Memory location 83F7 must not be 
affected. {This location is reserved for use. by the 
monitor, whose operation will be affected if you enter data 
there.) 
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6.3.4.3 Subroutine NEXTSENSOR Program 

The function of this subroutine may be listed in six steps. 

Load and increment the sensor number •. 

Test for a legal number (greater than zero; less than or equal to 

highest existing sensor number�) 

Skip the next step if legal. 

Set sensor number to 1. 

Store the sensor number. 

Display the sensor number. 

You should be able to program all of this. 

Remember that Registers H and L must be preserved. This does not 

forbid you to use them, but if you need them you must preserve their 

data by moving it elsewhere and restoring it to H and L before 

return. 

The display function introduces a problem. We have been using DBY2 

for display, but this subroutine displays a byte in two digits. We 

want to display the sensor number in the left hand digit (83F8) but 

we are required to leave the second digit (83F9) blank, and we are 

forbidden from disturbing memory location 83F7. Can you solve this 

problem? 

(One helpful hint: The Read Only Memory contains a table of symbols 

for the numerals O - F, starting at 02B3.) 
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6.3.4.4 Testing INPUT and NEXTSENSOR 

Once again, test the new subroutine using the main program to call 

it. When you enter hex keys they should be displayed; when you enter 

MEM a sensor number should be displayed. Your test should include 

not only checking the displays, but als6 making sure that the entire 

specificatio.n for each of these subrou.tines is met. 

For this test to be successful you must have stored the highest 

allowable sensor number· at memory location 83 00. Try different 

values there. This may also be a convenient time to enter the 

directory and data tables. A complete version of INPUT and 

NEXTSENSOR, and the directory and data tables, are shown in Figures 

6�14, 6-15 and 6-16. 
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6.3.5 Subroutine DISPLAYRESULT 

It is often convenient to develop input and output subroutines for a 

program at an early stage, because these provide tools for testing 

othef program modules. We now have the input subroutine with its own 

display, and we have a monitor subroutine that makes it easy to 

displ�y the result. DBY2 only shows one byte; we want to display two 

bytes, but that merely involves two calls to DBY2, one for each byte. 

Remembering that DBY2 preserves the content of Registers H and L 

suggests that these registers can be used for the two byte number to 

be displayed. 

Subroutine DISPLAYRESULT 

Function: 

Display two bytes of data in the four right hand digits. 

Entry Address: 

82CO 

Inputs: 

(L) = low byte to be displayed
(H) = high byte to be displayed

Outputs: 

(Specification of the outputs is left as an exercise for the 
student. Review the specification of DBY2 in Section 
6.3.3.2, and state what each register will contain at return 
from DISPLAYRESULT.) 
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To test DISPLAYRESULT, remember that INPUT places the entry data in 

Register L, and preserves Register H. Before running the program, 

use the monitor to load arbitrary data into H; this should be 

displayed every time. The data keyed in through INPUT should appear 

in digits 7 and 8 as well as digits 3 and 4. 

Note that we are able to test each subroutine as we develop it, using 

the main program and earlier subroutines as testing tools. 

Figure 6-17 gives a solution for subroutine DISPLAYRESULT. 
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6.3.6 Subroutine SEARCHDIRECTORY 

This subroutine is to be used to return the address of the data table 

.for a particular sensor - the.one whose sensor µumber was stored at 

memory location 8380 by subroutine NEXTSENSOR. With the sensor 

number, directory and data tables all in a single page of memory 

(83xx) this subroutine can use single byte indirerit addressing. It 

is further simplified by the assignments in the directory: 

8301 Table address for sensor 1 

8302 Table address for sensor.2 

The indirect addressing then is mer�ly: 

(H) < -

(L) < -

(L) < -

83 

( 8380) 

( (HL)) 

This can be coded as: 

LXI 

MOV 

MOV 

H,8380 

L,M 

L,M 

(H) <.­

(L) < -

(L) < -

83 

( 8380) 

( ( 8380)) 

Remember, however, that at the return from INPUT we have the input 

data byte in Register L. This is why we provided NOP instructions in 

the main program - to make space for MOV instructions. Although we 

could specify that SEARCHDIRECTORY move the content of L to some 

other register, this is generally undesirable. Keep subroutines as 

nearly single purpose as possible in order to improve readability of 

the program and generality of the subroutine. 
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Subroutine SEARCHDIRECTORY 

Function: 

Load into register pair HL the address of the data table 
corresponding to the sensor number. 

Entry Address: 8260 

Inputs: Sensor number stored at 8380 

Outputs: Data Table Address in (HL) 

Registers: Only (H) and (L) are used 

Constraints: 

A directory must be stored in memory at 8301 - 8307. The 
data tables must also be in page 83xx. 

Test SEARCHDIRECTORY using the main program, INPUT, NEXTSENSOR and 

DISPLAYRESULT. Since TABLELOOKUP and MULTIPLY do nothing yet, the 

address returned by SEARCHDIRECTORY wi 11 be displayed by 

DISPLAYRESULT. For Sensor Number 1 the address returned by 

SEARCHDIRECTORY should be 8308; for Sensor 2 it should be 8316. 

This subroutine (Figure 6-18) is so short that it could easily be 

programmed in-line (i.e., in the main program) or it could be 

included in TABLELOOKUP. In another exercise we shall see reasons 

for not doing so. 
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6.3.7 Program Data Initialization 

At this point we can see a need for setting initial values into the 

program data. In this program the only variable that is retained 

from one iteration of the main loop to the next is the sensor number. 

Recall that in Chapter 4 we always tested the sensor number before 

proceeding with the directory search and table lookup. Now we have 

delegated the task of testing sensor number to a subroutine that is 

only called in response to a user command. This implies the 

possibility of having an illegal sensor number stored when the 

program starts to run; hence making improper calculations. The risk 

is not immediately obvious, because we have already exercised 

subroutine NEXTSENSOR, thereby storing a legal sensor number at 

memory location 8380. Store an illegal number at that location and 

run the program already loaded, without pressing MEM. The address 

displayed will be neither 8308 nor 8316, which are the only proper 

table addresses. When you press MEM, thereby calling NEXTSENSOR, the 

table addresses become legal. 

In the final program, if we accept data entry while an illegal sensor 

number is stored, the result will be meaningless. This must be 

forbidden. Also, of course, we want the sensor number displayed 

right from the start. 
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We can ensure that a legal sensor number is set and displayed by 

calling NEXTSENSOR as an initialization step. 

main program, enter: 

At the start of the 

8200 CD 

8201 E O  

8202 82 

CALL NEXTSENSOR 

· Test this. Either a 1 or 2 should appear at the left. Press MEM to

change sensors. The only weakness is that on the first run you

cannot predict which will appear. If this !llatters, an initial value

must be stored before calling NEXTSENSOR.

6.3.7.1 Alternate·Entry to Subroutine 

There is another technique available which must be used with care. 

Examine the given solution for NEXTSENSOR (Figure 6-15). After 

incrementing the sensor number and finding it illegal (either 00 or 

greater than the highest allowable) the program reaches 82FO. The 

code there is: 

82FO MVI 

STA 

LXI 

ADD 

MOV 

LO.AX 

STA 

RET 
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The code above can be us�d as a subroutine bJ itself; to set and 

display Serisor Nri�ber 1. Th� initialization in the maih program· could 

be: 

· 8200 CD 

8201 FO 

8202 82 

CALL 82FO 

· If your NEXTSENSOR program is �imilar to Figure 6�15, you can use

this procedure Successfully. 

·Entry" to subroutine NEXTSENSOR.

Address 82FO is then an "Alternate

Suppose now that a slightly more clever program had been written for 

NEXTSENSOR: 

82EO LXI D,8380 

82E3 LDAX D 

82E4 INR A 

82E5 JZ 82'Fl 

82E8 MOV C,A 

82E9 LDA 8300 

82EC CMP C 

82ED MOV A,C 

82EE JNC 82F3 

82Fl MVI A,01 

82F3 STAX D 

82F4 LXI D,02B3 

etcetera 
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T�is program is one byte shorter than the solution of Figute 6-15. If 

you were to call this at the MVI A,01 instruction, however, it would 

fail, because the STAX D instruction could store 01 anyplace - in tQe 

middle of your program, for instance. This is the danger of 

alternate entries to subroutines. If used without great care they 

can be disastrous. 

The only safe way to use alternate entries is at the beginning of a 

subroutine. For instance, the display subroutine we have been using, 

DBY2, is actually an alternate entry to the monitor subroutine DBYTE, 

w.hich starts at 0295 with LXI D,83FF. A call to DBYTE displays the 

byte in (A) in the two right hand digits; the alter nate entry DBY2 

allows you to select a different pair ot display digits. It only 

bypasses the one instruction that loads a constant into the display 

address. 

6.3.7.2 External Alternate Entry 

In the discussion above we referred to address 82FO as a possible 

alternate to NEXTSENSOR. The risk of using such an entry comes from 

the fact that it is inside the subroutine � hence it may be called an 

"internal alternate entry". We could avoid using an alternate entry 

by· creating a separate initialization subroutine to be called by th� 

main program. 
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procedure is safe, because we are not relying on any specific 

can modify this to the of subroutine NEXTSENSOR. We 

XRA A 

STA 8380 

JMP NEXTSENSOR 

Set Sensor = O 

Set Sensor = 1 

This has an �ssentially identical effect. When it is called by main, 

a rettirrt address (8203) is p�aced in the stack. After setting sensor 

number equal to zero, it jumps to NEXTSENSOR to increment the number •. 

When. th� RET instruction is encountered at the end of NEXTSENSOR, 

address 8203 is recovered from the stack so the return is directly to 

the main program inst�ad of to another RET� This is 6alled an 

"external alternate entry". We shall use this technique for 

initializatiort of sensor number. 

Figure 6-19 shows the revised main program and subroutine INITIALIZE. 

Test that we now always sta·rt with Sensor Number 1 displayed, and 

that no improper table address occurs. 
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6.3.8 Subroutine TABLELOOKUP 

This subroutine is specified to load data from the table whose 

address is supplied by SEARCHDIRECTORY. The scaling factor is loaded 

from the first entry in the table and the input data (in Register A)

is compared with the linear point, the second item in the table. 

MOV E,M 

INX H 

CMP M 

If the in�ut data byte is equal to or greater than the linear point 

Carry· is cleared by the comparison and no adjustment is necessary. 

Here we can use the conditional return, RNC, since the task of the 

subroutine is finished. 

Return if Not Carry 

Hex Code: DO 

Mnemonic: RNC 

If. the Carry flag is clear, recover a return address from the 

stack and jump to that address. 

If Carry is set, continue program execution at the next 

sequential instruction, leaving the returh address in the stack. 

If the input value is less than the linear point (Carry is set) we 

must bbtain an adjusted value fr6� the t�ble. In Chapter 4 we did 

this by: 
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INX 
ADD 
MOV 
MOV 

L 
L,A 
A,M 

Address table for 00 input 

Since Carry is set (else we would have returned) we can use a trick 

here: instead of INX H, ADD L we use ADC L. Adding in the Carry has 

the same effect, of adding table addre�s + 1 plus input value. 

Subroutine TABLELOOKUP 

Entry Address: 8280 

�ntry Data: 

Return Data: 

(A)= Measured Input 

(E) = Scaling Factor 

If the input is greater than or equal to the linear point: 

(A) preserved
(HL) addressing linear point 

(A)= adjusted input value 
(HL) addressing table location for the input value 

Registers: 

A, E, H and L Used 
B, C, and D Preserved 

To test this program we can again use our existing main program and 

subroutines. (Remember that MAIN must include MOV A,L before the 

call to SEARCHDIRECTORY.) Since we have not yet programmed the 

subroutine MULTIPLY, (HL) contains the address in the table, and this 

will be displayed. For a data input less than the linear point we 

should see the table address corresponding to the sensor number and 

input value. For greater inputs we should see the address of the 

linear point. Test your prqgram in this mode, comparing inputs and 

results with the data tables of Figure 6-16. 
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6.3.9 Stubs for Subroutines 

When we first entered the main program into the computer we placed a 

RET instruction at each subroutine location. Only one of these 

remains now (at MULTIPLY); all the others have been replaced by 

subroutines. Such a RET instruction is called a "stub" - it is a 

very short subroutine. Sometimes it is useful or necessary to have a 

stub that performs some reasonable substitute for the program module. 

For instance, if we did not yet have the data tables available, 

TABLELOOKUP could enter a fix�? scaling factor into Register E, and 

do no adjustment on the input data. We could even think of our 

present version of TABLELOOKUP as a stub for a much more 

sophisticated program that might eventually provide for interpolation 

or some complex calculation. 
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The usual purpose of a stub is to permit other program modules to be 

tested in the absence of a module which has not yet been written. 

Somtimes a stub is substituted for a program module (even though that 

module may have been finished and tested) in order to make the test 

of a new module easier. Let us replace the existing stub of MULTIPLY 

(which has been simply RET) with a new stub which will cause the 

adjusted input and the scaling factor to be displayed. 

82AO 

82Al 

82A2 

67 

6B 

C9 

MOV 

MOV 

RET 

H,A 

L,E 

(H) < - Input

(L) < - Scaling Factor

Now the program will display the results of TABLELOOKUP. This might 

discover some error in the data tables that otherwise would be 

concealed by the multiplication. 

see the scaling factory (88) 

adjusted input in digits 5 and 6. 

this stub for MULTIPLY. 
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Figure 6-20 shows TABLELOOKUP and 
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6.3.10 Register Pair Addition 

In Chapter 4 we used a repetitive double precision addition to 

perform multiplication. 

LXI 

MOV 

ADD 

MOV 

MOV 

ACI 

MOV 

DCR 

JNZ 

H,0000 

A,L 

C 

L,A 

A,H 

00 

H,A 

E 

Clear product 

Add multiplicand (C) 

into product (HL)

Decrement multiplier 

The 8080 provides instructions that perform the double precision 

addition in a single step. 

6.3.10.1 Double Precision Add - DAD 

DAD rp 
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Add the 16 b
i

t content of register pair rp

to the content of register pair HL, placing the 

result in HL 

( HL) < - ( H ) + ( rp)

If the resul is greater than FFFF, set Carry. 

Otherwise cl ar Carry. No other flags are 

affected. 
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The hex codes for the DAD intructions are: 

09 

19 

29 

DAD B 

DAD D 

DAD H 

(HL) < - (HL) t (BC)

(HL) < - (HL) t (DE)

(HL) < - (HL) t (HL)

6.3.10.2 Subroutine MULTIPLY 

If our sensor data tables were more extensive, and might cross page 

boundaries, we would have used a DAD instruction in TABLELOOKUP. 

Here we shall use it in MULTIPLY. 

We must still clear (HL) for the product. To use DAD we must place 

the multiplicand in the low byte of a register pair, and clear the 

high byte of that pair. Then to duplicate the multiplication of 

Chapter 4 we would do: 

[:::: JNZ 

As before, multiplication by zero would be equivalent to 

multiplication by 100 hex. Although that was convenient in Chapter 4 

we will here use a technique that gives the correct result of 0000 if 

the scaling factor is 00. We can readily test a register content for 

zero by: 

lC INR E 

lD DCR E 

6-79



'MODULES, SUBROUTINES AND THE STACK 

The register content is restored and the Zero flag is set or reset 

according to the content. Now we can use a conditional return: 

CB RZ Return if Multiplier Zero 

If the multiplier was zero this returns before we have added the 

multiplicand the first time. Otherwise, execute DAD B; then jump 

back to DCR E, RZ. 

Write. and load this final subroutine. 
1 

Once again, the main program 

provides a test, described in Section 6.3.10.3. 
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6.3.10.3 Final Test 

With subroutine MULTIPLY written and entered we are ready for a final 

test. W� shall use the same data that were used in Chapter 4. 

Sensor 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

2 

2 

2 

Input 

00 

01 

04 

07 

08 

09 

OA 

OB 

oc 

80 

03 

06 

07 

08 

09 

oc 

80 

Two Byte 

(HL) 

0000 

0198 

0330 

04C8 

04C8 

0550 

05D8 

05D8 

0660 

4400 

0320 

0578 

0578 

0640 

0708 

0960 

6400 

Product 

This test does not fully prove the MULTIPLY subroutine, since only 

two different multipliers (88 and CB) have been used. This is one 
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case where we should properly write a "driver" program to test the 

subroutine. Such a program would test MULTIPLY for all possible 

multipliers and multiplicands. The exercise of Section 6.7 involves 

writing a test driver for MULTIPLY . 

6.3.11 Program Integration 

Historically, every program module was written and tested separately, 

using "driver" programs to supply simulated input data and test the 

results. Then a giant task called "program integration" would bring 

all of the modules together, and find out why they did not work. Top 

down programming has brought us to a finished product when the last 

subroutine was written and tested. 

listing the program in one place. 

Program integration consists of 

(This listing appears at the 

beginning of Section 6.5, where some additional exercises are 

suggested.) 

No special test programs to try out the modules were written - the 

main program tested each module. The only exception was the special 

stub for MULTIPLY, used for testing TABLELOOKUP. We also indicated 

the need to test MULTIPLY with a "driver" program. 

This does not imply that final testing is not needed, but the purpose 

of the test should be to prove that the program handles all 

conditions - not to debug modules and their interfaces. Of course it 

is not this easy with a big program, but that is where top down 

programming really pays off. 
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6.4 REVIEW AND SELF TEST 

This chapter has introduced the very important concepts of program 

modules and subroutines, and "top down" programming. We have used a 

main program with subroutines, and used stubs for subroutines that 

had not yet been written. 

Section 6.2 described how the stack pointer works with the CALL and 

RET dnstructions, and· we used the monitor to examine the stack 

pointer and the contents of the stack. We have also used �onitor 

subroutines for input and output. Section 6.10 defines a number of 

additional monitor subroutines that you will use in this course; 

others appear in Appendix A, Volume II. 

Review the new instructions that have been introduced in this 

chapter. You have already used six of these fourteen. 

09 

19 

29 

Double Precision Add 

DAD B 

DAD D 

DAD H 

(HL) < -

(HL) < -

(HL) < -

(HL) i (BC) 

(HL) -+ (DE) 

(HL) -+ (HL) 

These instructions set or reset Carry but do not aff�ct Zero or any 

other flag. 

E9 

Indirect Jump 

PCHL (PC) < - (HL) 

Jump to the location whose address 

is in (HL) 
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Call and Return Instructions 

CD CALL address Unconditional Call 

C4 CNZ address Call if Not Zero 

cc CZ address Call if Zero 

D4 CNC address Call if Not Carry 

DC cc address Call if Carry 

Calls are three byt_e instructions. The returns are single byte· 

instructions. 

C9 

co 

CB 

DO 

DB 

RET 

RNZ 

RZ 

RNC 

RC 

Unconditional Return 

Return if Not Zero 

Return if Zero 

Return if Not Carry 

Return if Carry 

Refresh your memory by answering the following questions. 

1) What instructions are used to enter a subroutine? What

supplies the subroutine address? �-

2) What instructions exit from a subroutine? What supplies the

return address? 

3) What is an internal alternate entry to a subroutine? Why is

it undesirable? How can you avoid the difficulties? 

4) What happens to the stack pointer when a CALL is executed?

What datum is found in the memory location addressed by the 

stack pointer after the CALL? 
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5) What happens to the stack pointer when a RET is executed?

6) What happens to the stack pointer if the instruction RNZ is

encountered when the Zero flag is set? What happens to the Zero 

flag? 

7) Show the content of the three register- pairs and the Carry

and Zero flags after each instruction in the following program 

segment. 

Star ting Data 

LXI H,2000 

MOV C,L. 

MOV B,H 

LXI D,4000 

DAD B 

DADD 

DAD H 

CY z 

1 0 

·, 

BC DE; HL 

0654 83F8 6400 

·--·

' 

.;_ 
. .

, ._.  
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Answers to Self Test, Section 6.4 

1) CALL and conditional c�lls enter a subroutine. Bytes 2 and 3 of 

the intruction supply the address. 

2) RET and conditional returns exit from a subroutine.. The return

address. is t�ken from the stack. 

3) An internal alternate entry is a location within the body of a

subroutine that may be called from another program module. It 

requires that the coding of the subroutine be designed to permit the 

alternate entry to a specific location. An external alter nate entry 

avoids this requirement because it reaches the normal starting point 

of .the subroutine. 

4) A CALL instruction causes the ·stack pointer to be decremented

twice. The high byte of the return address is stored after the first 

decrement; then the low byte is stored after the second decrement, so 

the siack pointer addresses th� low byte of the return address. 

5) A RET ·instruction recovers the return address from the stack, and

.in the process the stack pointer is incremented twice.

6) RNZ is not executed if the Zero flag is set. Therefore the stack 

'and stack pointer are not changed. 

not affect any flags. 

Call �nd return instructions do 

(The answers t o  question 7 are on the next page) 
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7) Show the content of the three register pairs and the Carry and

Zero flags after each instruction in the following program segment. 

Starting Data 

LXI H,2000 

MOV C,L 

MOV B,H 

LXI D,4000 

DAD B 

DAD D 

DAD H 

CY z 

1 0 

1 0 

1. 0

1 0

1 0

0 0

0 0

1 0

BC DE HL 

0654 83F8 6400 

0654 83F8 2000 

0600 83F8 2000 

2000 83F8 2000 

2000 4000 2000 

2000 4000 4000 

2000 4000 8000 

2000 4000 0000 

The first two DAD's clear carry. The final DAD H adds 8000- + 8000, 

giving a carry. Even though the result is 0000 the Zero flag is not 

affected. 

6.5 ADDITIONAL EXERCISES 

The following exercises will give you added experience in 

programming, but more importantly, in specifying subroutines. All of 

these involve changes to the sensor correction exercise, whose given 

solution is repeated here for convenience. Read the descriptions of 

all four changes. Then write new specificatons for INPUT and 

NEXTSENSOR. Revise and test the program after each change. Note how 

easy this is with a main program and subroutines. 
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MODULES, SUBROUTINES AND THE STACK 

6.5.1 Clear Result Display 

While a new data input is being entered, the old result still appears 

at the right. During this time the. dlsplay is showing misleading 

data - an input at the 1 eft with a result at the right that does not 

correspond to the input being displayed. Revise the specification of 

INPUT to require that the right hand display be blanked as soon as a 

key is entered. 

6.5.2 Store and Recover Table Address 

The sensor correction main program calls subroutine SEARCHDIRECTORY 

every time we receive new input data, even though the address 

returned is always the same unless NEXTSENSOR has been called, by 

INPUT. It would be more efficient to combine the two functions. 

Revise NEXTSENSOR 

SEARCHDIRECTORY to 

to 

store 

call SEARCHDIRECTORY; 

the sensor table address 

MAIN, simply load the table address from memory. 

and require 

in memory. In 

Alternately, require that INPUT and NEXTSENSOR return Zero set if a 

MEM command has been entered; Not Zero for other commands. Then have 

MAIN call SEARCHDIRECTORY only after a MEM command. 

Very often it is useful to have a subroutine preserve or restore the 

flags, especially if the subroutine is expected to be called 

conditionally. In this case NEXTSENSOR could set Zero (by XRA A or 

CMP A); then the above requirement would be met. 
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6.5.3 Two Byte Table Addresses 

Revise the directory to include two byte addresses for the data 

tables. Since each entry will now require two bytes we cannot do the 

simplified indirect addressing previously used in SEARCHDIRECTORY� 

This was: 

LXI, H, 8380 Address Sensor Number 

MOV L,M Address Di.fee tory 

MOV L,M Address Table 

RET 

To obtain a two byte address from the sensor number, you must double 

the sensor number and add it to a fixed value to generate the correct 

address. Be careful about selecting the fixed value. 

6.5.4 Empty Sensor Numbers 

The existing data table and directory include only Sensor Numbers 1 

and 2. The program allows for higher sensor numbers, but there is an 

assumption that no gaps exist in the sequence. If the sensor number 

were greater than zero and less than or equal to the highest 

allowable, then it is legal, and the directory must have an entry for 

it. 

Remove that constraint by testing for the existence of a valid 

directory entry as part of the new NEX TSENSOR subroutine. If a 

sensor does not exist, its directory entry should be 0000. Make 

sensor 1 non-existent and use its data table for sensor 3. 
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6.6 USING THE STACK FOR DATA 

MODULES, SUBROUTINES AND THE STACK 

The stack can provide temporary storage of data as well as storage of 

return addresses. You have probably seen a spring loaded stack of 

dishes in a restaurant. The busboy puts clean dishes on top and 

their 

spring 

weight pushes them down. 

pops the next one up. 

When one is taken from the top, the 

The microprocessor has PUSH and POP 

instructions to place data into the stack, and recover it. Since the 

stack exists mainly to hold addresses, the data are entered and 

recovered two bytes at a time, from and to register pairs: 

C5 

D5 

PUSH B 

PUSH D 

E5 PUSH H 

Cl 

01 

El 

POP B 

POP D 

POP H 

Push data into ·the stack from 

register pair B, D or H 

Pop data into register pair B, D 

or H from the stack. 

Suppose that a program needs to call MULTIPLY and DISPLAYRESULT but 

also 

is 

needs to retain other data in HL. Since each of the registers 

used in at least one of these subroutines, we must save the 

content of HL in memory. We could do this with SHLD and LHLD, but at 

the expense of three bytes for each instruction and two bytes in data 

memory at least partially dedicated to this purpose. PUSH H before 

the call to MULTIPLY and POP H after return from DISPLAYRESULT will 

save and recover the data. The content of any of the three register 

pairs can be saved in this manner. 
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6.6.l T esting Stack Usage 

Enter this program in order to observe the operations. 

8200 01 
8201 oc 

8202 OB 
8203 11 
8204 OE 

8205 OD 
8206 21 
8207 09 
8208 08 
8209 E5 
820A D5  
820B C5 
820C CD 
820D 15 
820E 82 
820F Cl 
8210 01 
8211 El 
8212 C3 
8213 09 
. 8214 82 
8215 04 
8216 oc 

8217 14 
8218 lC 
8219 24 
821A 2C 
821B C9 

LXI 

LXI 

LXI 

PUSH 
PUSH 
PUSH 
CALL 

POP 
POP 
POP · 
JMP 

INR 
INR 
INR 
INR 
INR 
INR 
RET 

!3,0BOC 

D,ODOE 

H ,0809 

H 
D 
B 
8215 

B 
D 

H 
8209 

B 
C 
D 

E 
H 
L 

L oad registers 
with easily 
recognized data 

Save HL 
Save DE 
Save BC 

Restore BC 
Restore DE· 
Restore HL 

Subroutine· 

N ote. that this program pushes the register pairs in the sequence H, 

D, B and pops them in reverse sequence. T he last bytes pushed are 

the first bytes popped. We shall see this in operation. Step 

through the first three instructions and examine the registers. 

6-100

RST 

REG B 

NEXT 

NEXT 

NEXT 

STEP STEP STEP 8209 

8209 

8209 

8209 

_8209 

E5 

B-OB

c-oc

D-OD

E-OE



NEXT (Ignore F) 

NEXT 

NEXT 

Examine the stack pointer. 

ADDR 1/P MEM 

Now we shall execute PUSH H 

ADDR 

STEP 

ADDR 1/P MEM 

NEXT 

MODULES, SUBROUTINES AND THE.STACK 

8209 F-?? 

8209 H-08

8209 L-09

83EO SP.?? 

8209 E5 

820A D5 

83DE SP.09 

83DF 08 

The contents of pair HL have been pushed into the stack. The stack 

pointer has been decremented by 2, and points to the location where 

the low byte (from L) has been stored. The next higher memory 

location contains the high byte (from H). 

Execute the next two push intructions. 

ADDR 820A D5 

STEP 820B C5 

STEP 820C CD 

ADDR 1/P MEM 83DA SP.QC 

NEXT 83DB OB 

NEXT 83DC OE 

NEXT 83DD OD 

NEXT 8�DE 09 

NEXT ·83DF 08 
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The stack contains the six bytes we have saved. The top of the stack 

(the most recent two bytes stored) contains the d�ta from register 

pair B, the last one pushed. 

ADDR 2/T MEM 

The next instruction is the call to 8215. 

ADDR 

STEP 

ADDR 1/P MEM 

The stack pointer has been decremented two more times. 

The stack top now contains the return address. 

ADDR 2/T MEM 

OBOC 

820C 

8215 

8308 

820F 

ST.?? 

CD 

04 

SP.OF 

ST.Cl 

The registers have not been altered by any of these in$tructions. 

Step through the subroutine, which increments each of tbe six 

registers. Review the registers again to check that we now have: 

(B) = OC (C) = OD (D) = OE (E) = OF (H) = 09 (L) = OA 

The stack still contains the original data. 

Now execute the return and three POP instructions. 

8212 check that the six registers have been restored. 

stack pointer. 

ADDR 1/P MEM 

When you reach 

Also check the 

82EO SP.?? 

The stack pointer is back to its original position, and the entire 
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stack is available for other uses. 

Transfer 

source or 

example: 

notation for PUSH an4 POP refers to th.e ."Stack Top" as the 

destination. This means two bytes in the stack. For 

PUSH B 

POP H 

(ST) < - (BC)

(SP) < - (SP) - 2

(HL) 

($�) 

< - (ST)

< - (SP) + 2
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6.6.2 us·ng the Stack Inside a Subroutine 

It is perfectly legitimate to use.the stack for data outside of a 

subrout·ne, as we have just done, arid also inside a subroutine. 

Replace the subroutine abdve with: 

8215 C5 

8216 01 

8217 00 

8218 00 

8219 Cl 

821A C9 

PUSH B' 

LXI B,0000 

POP B 

RET 

(ST) 

(BC) 

(BC) 

(BC) 

0000 

(ST) 

Now ste through the program again until you reach 8219. (Do not use 

a breakpoint.) Examine the stack. The stack pointer now contains 

83D6, rhere (C) has been stored again. The register contents can be 

saved 
r

nd restored by PUSH and POP either outside or inside the 

subrout
L

ne. It is crucial, however, that these not be mixed. The 

PUSH a

]

n(l POP instructions must be balanced in each program module. 

What ould happen if you executed a. POP B inside the subroutine, 

without a preceding PUSH? The two bytes at the top of the stack 

would be copied into register pair B, and the stack pointer would be 

increm nted 

instrudtion 

the sJack 

twice. Now BC contains the return address, and a RET 

will jump to the location found in the next two bytes of 

OBOC in the program above. Test this by deleting the 

PUSH B at 8215 and stepping through the program� 
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6.6.3 Processor Status Word (PSW) 

The content of the accumulator and flags can also be saved .in the 

stack. For PUSH and POP only, Register A and the flags are treated as 

a register pair, called the "Processor Status Word". 

F5 

Fl 

PUSH 

POP 

PSW 

PSW 

These instructions save and restore the content of the accumulator 

and all five 8080 flags (Zero, Carry, and three others not yet 

described.) 

Recall in the sensor correction subroutine INPUT (Figure 6-22b) we 

copy an input key to Register B, and after displaying the hex value 

we test (B) to determine whether a hex key, or command MEM, or some 

other command was entered. 

CALL GETKY 

MOV B, A 

MOV A,B 

CPI 10 

JC 8242 

CZ NEXTSENSOR 

RET 
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The CPI 10 instruction was in fact done in GETKY, which returns Carry 

for hex keys; Not Carry, Zero for MEM, Not Carry, Not Zero for the 

other commands. Then the above sequence could have been: 

CALL GETKY 

PUSH PSW 

POP PSW 

JC 8242 

CZ NEXTSENSOR 

RET 

It is fairly common to need the results of a test after some 

intervening operations .that affect the flags; PUSH PSW and POP PSW 

provide this facility. In these instructions the flags are treated 

as the low byte of the pair (stored in the lower memory location of 

the stack) and the accumulator is treated as the high byte. PUSH PSW 

and POP PSW are the only instructions that treat the flags as a 

register, or as part of a register pair; there is no LXI PSW 

instruction. 
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6.6�4 -Exchange Instructions 

With two exceptions the data movement instructions of the 8080 are 

all one-way. MOV A,C copies into A the content of C; Register C is 

not affected. SHLD. stores the contents of H and L; the registers are 

not affected. In each case the old content of the destination is 

lost. 

The two exchange intructions are the exceptions. 

6.6.4.1 Exchange (HL) with (DE)" 

EB XCHG (HL) < - > (DE) 

The content of Register E is exchanged 

with the content of Register L. 

The content of Register D is exchanged 

with the content of Register H. 

Flags are not affected. 

Here all four data bytes are preserved, but in different registers. 

This instruction is especially useful when two different memory 

locations are successively addressed, or when some following 

operation must use HL. It can also sometimes be used merely as a 

single instruction to substitute for MOV E,L; MOV D, H. For instance, 

to load four bytes from memory: 

LHLD 8300 

XCHG 

LHLD 8302 

6-107



MODU LES, SUBROUTINES AND THE STACK

There is no corresponding instruction involving pair B; the other 

8080 exchange involves the stack. 

6.6.4.2 Exchange HL with Stack Top 

E3 XTHL (HL) < - > (ST) 

The operation involves the stack pointer and the temporary Registers 

Wand z. The data byte addressed by the stack pointer is copied into 

Z and the stack pointer is incremented; the data byte now addressed 

by the stack pointer is copied into w. Register His copied into the 

stack and the stack pointer is decremented; RegisterL is copied into 

the location so addressed. Wand Z are copied into Hand L. There 

is no net effect on the staik pointer; it ends up where it started. 

The process could be shown as: 

(WZ) < - (ST)

(ST) < - (HL)

(HL) < - (WZ)

(like a POP ) 

(like·a PUSH) 

(like an LXI) 

This powerful one byte instruction effectively adds one more register 

pair to the 8080 set. This is particularly useful where three memory 

locations are to be addressed and one register is wanted for a 

counter. To add two multibyte numbers and place the result in a 

separate location, for example: 
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XRA A 

'LXI H, 

PUSH H 

LXI H, 

LXI D, 

MVI C, 

LDAX D. 

ADC M 

XTHL 

MOV M,A 

INX H 

XTHL 

INX H 

INX D 

DCR C 

i---JNZ 

POP H 

MODULES, SUBROUTINES AND THE STACK 

address of sum 

address of augend 

address of addend 

byte count 

The XTHL instruction is also useful for doing arithmetic in 

registers. To multiply two numbers of two bytes each, giving a four 

byte result requires eight registers; BC, DE, HL and ST provide just 

enough. 
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6.7 TEST DRIVER FOR MULTIPLY-EXERCISE 

We observed in Section 6.3.10 that subroutine MULTIP LY is not fully 

tested by the procedure we have used, since only a very small sample 

of all possible multiplicands (adjusted input values) and multipliers 

(scaling factors) have been rised. O ne way of testing such a 

subroutine is to try either all possible values or a large random 

sample of possible values. Then each answer must be checked by some 

different calculation. We need 65536 tests to try all possible 

multipliers and multiplicands - a lengthy but reasonable task. 

By sequentially testing all multipliers, starting at 00, it is easy 

to predict the correct result •. The first product should be 0000; 

each following product should be the previous product plus the 

multiplicand. Figure 6-23 shows the test driver program. Note that 

when all . multipliers have been tested with a given multiplicand we 

display that multiplicand; this is to.provide assurance that the 

program is running. The test for each multiplicand, in AUTO mode, 

takes about half a second; in STEP mode more than 40 seconds. 

Write the program, using PUSH, PO P and XCHG instructions where 

appropriate. Step through one loop to test the program flow, then 

switch to AUTO mode and run the program for the full cycle of tests. 
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START 

Clear BC for Mul tipl_icand 

Clear E for Multiplier 
Clear HL for Product 

Save BC,DE,HL in Stack 
Call MULTIPLY 

(HL) - (E) * (A) 
(DE) - (liL) = Product 
(HL) - (ST) = Expected Product 
Test for Equal 

Equal 

Not Equal 

Re-enter Monitor on Error 

(DE) - (ST) = Multiplier (in E) 
(BC) - (ST) = Multiplicand (in C) 
(HL) - (HL) + (BC) = Next Product 
(E) - (E) + l = Next Multiplier

Not Zero 

Display Completed Multiplicand 
(C) - (C) + 1 = Next Mul�iplicand

Test Driver for MULTIPLY 

Figure 6-23 

Finished) 
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This is not a complete and perfect test because we have entered 

MULTIPLY with the flags and unassigned registers containing tixed 

information. For instance, the given version of MULTIPLY (Figure 

6-24b) contains the instructions MOV B,L and MOV C,A to place the

multiplicand in pair BC for the DAD instruction. If either of. these 

were left out inadvertently the subroutine would be wrong, but our 

test program would not catch the error because the test program uses 

pair BC the same way. 

Suppose the repetitive addition in MULTIPLY had been written like 

this: 

LXI H,0000 

MOV C,A 

INR E 

DCR E 

RZ 

MOV A,L 

ADC C 

MOV L,A 

MOV A,H 

AC! 00 

MOV H,A 

JMP 

Can you see the error? The test program will not find it, because 

the test for equality between the value returned by MULTIPLY and the 

known correct result will always clear the carry. Nevertheless, the 
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routine is wrong because if it were entered with carry set it would 

give a wrong answer. This error would not be detected in the sensor 

correction program either - TABLELOOKUP always returns carry cleared, 

just before the call to MULTIPLY. Imagine using-such a subroutine 

successfully, believing you have tested it with a test driver, and 

some day copying it into a new program that occasionally calls it 

with carry set. Even then the error isn't obvious - it only affects 

the least significant bit of the result. 

The design of test programs is extremely difficult - especially for 

testing your own programs. It is easy to test for errors that you 

can think of, but those are not the errors you make. If at all 

possible someone else should write the test, using only the module 

specification as a guide. 
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6.8 STACK POINTER INSTRUCTIONS AND RULES 

6.8.1 Instructions that Affect Only the Stack Pointer 

These intructions are deftned for completeness. You are urged not to 

use ·them when working with MTS until you fully understnd the monitor 
' 

. 

· program. The first, however, is a vital part of any real program:

31 

xx . 

yy 

LXI SP 

low address. 

high address 

. . 

. 
. 

Lo ad· an i n i ti a 1

-v�lue to the

stack pointer.

This instruction must be executed befbre the stack can be used for 

data storage or for subroutine calls. Address 0000 to see it: it is 

the first instruction in the monitor, and ini t ia 1 i zes the stack at 

power-on or reset. Other instructions include: 

33 

3B 

39 

F9 

INX 

DCX 

DAD 

SPHL 

SP 

SP 

SP 

Increment stack pointer 

Decrement stack poiner 

(HL) < -

(SP) < -

(HL) + (SP) 

(HL) 

These manipulate the stack pointer. It may be incremented (with INX 

SP) to discard data or a return address that has been pushed into the 

stack, or decremented (with DCX SP) to recover data that has been 

pushed and popped • 
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The only way of finding the content of the stack pointer is this: 

' ' 

LXI H,0000 

DAD SP 

Now (HL) is equal to (SP); Using this together with '.'LXI SP, 

address" per mi ts you : to assign a different area ln memory ,_for· the 

stack, a�d later restore the previous stack address. 

LXI H,0000 

DAD SP 

LXI 

PUSH 

POP 

SPHL. 

SP, _address 

H 

H 

Get existing stack pointer 

Address new stack 

Save old stack pointer 

Recover old stack pointer 

Restore old stack pointer. 
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6.8.2 Stack Operation Rules 

There are some restrictions on use of the stack. 

a) For every CALL there must be a RETURN. You must not jump

into or out of a subroutine except by CALL and RETU.RN. 

b) For every PUSH there must be a POP. You must not repeatedly

push data onto the stack, or you will write into your program 

memory. 

c) To restore registers saved by PUSH, the POP instructions

must be in reverse order from the push instructions, because the 

last data entered is the first data returned. 

d) PUSH and POP must be in the same program module. If a

subroutine executes a POP with no preceding PUSH, the data 

recovered will be the return address. 

These rules are not absolute: if you understand what you are doing 

you may use violations of the rules to good purpose. For instance, 

one program module might push data into the stack for retrieval by 

another module. This is referred to as unbalanced usage of the 

stack. It can lead to serious problems unless great care is 

utilized. (See Section 6.6.2.) 

It may be desirable to jump from any of several subroutines to a 

specia.1 location in the .main program when an error is detected. This 

is called an abnormal return. The error handling module may then 

return to the calling program, it may POP the return address to a 

register pair and discard it, or it may initialize the stack. Avoid 
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such procedures until you are reasonably expert. 

6.8.3 Monitor Usage of the Stack 

The MTS monitor program shares the stack with your program. You will 

not notice any effect from this except if you manipulate or examine 

the stack p6inte�. The· monitor operates by ."interrupting" your 

program before each of your instructions is executed. (The subject 

of interrupts is treated in Chapter 8.) The monitor program pushes 

yotir registers into the stack, and calls its own subroutines. When 

you display the register contents the monitor calculates their 

locations in the stack and displays the contents of those locations . 

When you display the stack pointer, the monitor calculates the 

address that will be contained in the stack pointer before your next 

instruction is executed. To look into this, let us again use a 

program that places readily identified data in the registers. 

8200 AF XRA A Clear Carry, Set Zero 
8201 3E MVI A,OA 
8202 OA 
8203 ·01 LXI B,OBOC 
8204 oc

8205 OB
8206 11 LXI D,ODOE 
8207 OE
8208 OD
8209 21 LXI H, 0809 
820A 09
820B 08
820C E5 PUSH H 
820D C5 PUSH B 

820E D5 PUSH D 
820F F5 PUSH PSW 
8210 C3 JMP 8210 
8211 10
8212 82
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6.8.3.1 Examining the Monitor Stack

Step through this program to the JMP instruction at 8210. (Do not 

use breakpoints.) Check the register contents. 

(A)�OA (B )=OB (C)=OC (D)=OD (E)=OE (F)=46 (K)=08 (L)=09 

Look at your stack: 

ADDR .1/P MEM 83D8 SP.46 

NEXT 83D9 O A

· NEXT· .83DA OE 

NEXT 83DB OD 

NEXT 83DC oc 

NEXT 83DD OB 

NEXT 83DE 09 

NEXT 83DF 08 

Now let us look into the monitor's part of the stack'. The data shown

depend on your following these steps ex·ac t ly; a different key 

sequence could give different data in the first fe'W bytes here. 

ADDR 8 3 C 2 · 82C2 A2 

NEXT 82C3 02 
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This is a return address within the subroutine DBY2, placed in the 

stack when DBY2 called another subroutine. It has since been used by 

a RET instruction. POP and RET do not remove the data or return 

address from the stack memory; they recover the data and increment 

the stack pointer. The contents of following locations can be seen by 

pressing NEXT. 

The entire stack is listed here and on the following page: 

The return address 

described above 

The address previously 

displayed, from PUSH H 

The return address 

into DBY2 again 

The address of the byte 

previously displayed 

Another return address 

for a display subroutine 

A return address from 

the NEXT command 

A return address to 

the main monitor program 
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83C2 

83C3 

83C4 

83C5 

83C6 

83C7 

83C8 

83C9. 

83CA 

83CB 

83CC 

83CD 

83CE 

83CF 

A2 

02 

C2 

83 

A2 

02 

C7 

83 

Dl 

02 

FA 

01 

A6 

00 
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PSW pushed by monitor 83DO 4q 

8301 OA 

DE pushed by monitor 83D2 OE 

83D3 OD 

BC pushed by monitor 8304 oc 

83D5 OB 

HL pushed by monitor 83D6 09 

83D7 08 

PSW pushed by your program 83D8 46 

83D9 OA 

DE pushed by your program 83DA OE 

83DB OD 

BC pushed by your program 83DC OC 

83DD OB 

HL pushed by your program 83DE 09 

83DF 08 

The monitor has used 22 (decimal) bytes in the stack. Until 

breakpoints are set this is the most it uses. 

There is no need for you to be familiar with the details above. In 

fact one of the great advantages of a stack is that you can use it, 

following some simple rules, without any concern over where a 

particular piece of data is stored. However, an understanding of the 

stack is very useful in troubleshooting programs that misbehave. 
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6.8.3.2 Breakpoints in the Stack 

The MTS monitor breakpoint system also uses the stack, but in a 

special way. It moves all of the existing stack downward (to lower 

addresses) in memory, and places the breakpoint information above the. 

stack. Four bytes are stored for each breakpoint. Press RST twice 

and then step to 8210 again. Now enter a breakpoint. 

ADDR BRK 8210 

This has moved the stack down four bytes. 

ADDR 8 3 B E 83BE 

NEXT 83BF 

Most of the same data we looked at before are again in 

BP. 

A2 

02 

the stack, 

at locations four bytes lower. A few bytes are different because 

have displayed different locations. Look at your stack pointer: 

ADDR 1/P MEM 83D4 SP.46 

but 

we 

Your stack has also been moved down by four bytes. Examine the rest 

of your stack by pressing NEXT. 

NEXT (Register A) 83D5 OA 

NEXT (E) 83D6 OE 

NEXT (D) 83D7 OD 

NEXT (C) 83D8 oc 

NEXT (B) 83D9 OB 

NEXT (L) 83DA 09 

NEXT (H) 83DB 08 
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The next two bytes contain the value of your program counter the last 

time you pressed RST. Because you pressed it twice, this is 8200. 

NEXT 

NEXT 

(Program counter at RST) 

Now we find the breakpoint data. 

NEXT 

NEXT 

NEXT 

(The address, 8210) 

(The data byte (JMP)) 

(An optional count) 

83DC 

83DD 

83DE 

83DF 

83DO 

83El 

00 

82 

10 

82 

C3 

00 

Each breakpoint you enter occupies another four bytes in the stack. 

6.8.4 The Growing Stack Problem 

When you use the stack for data in complicated problems it is easy to 

make a mistake and have more PUSH instructions than POP instructions. 

If this occurs in a repetitive loop the stack will grow by two bytes 

each time through the loop, and eventually fill the memory with stack 

data until it destroys the program. 
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The monitor breakpoint system can be used to protect against a 

growing stack . In addition to stopping your program when ·the program 

counter reaches a breakpoint, the monitor will stop execution if the 

data stored at any breakpoint address is changed. This feature has 

two uses: to stop when a loop that is writing to various locations 

reaches some particular position; or to stop if your program writes 

in some specific but undesired location. If we choose a location 

somewhere between the lowest address the stack should ever reach, and 

the highest address (within page 83xx) that is occupied by variable 

data, we should expect no change in data at that location. By 

protecting it with a breakpoint we can detect a growing stack. 

Try this disastrous program: 

8330 21 LXI H,1111 

8331 11 

8332 11 

8333 E5 PUSH H 

8334 C3 JMP 8333 

8335 33 

8336 83 

Be sure to set STEP mode, and set a breakpoint at 83AO before 

running. 
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ADDR 

ADDR 

RUN 

8 3 

8 3 

A 

3 

0 

0 

BRK 83AO 

8330 

8334 

BP. 

21 

C3 



Now look at the stack: 

ADDR 

NEXT 

1/P MEM 
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83AE 

83AF 

SP.11 

11 

You will find 11 in all locations up through 83DB. The unbalanced 

PUSH has wiped out the memory content in this area, but the 

breakpoint at 83AO protected everything below 8398. The monitor 

detected the growing stack at the next instruction after your stack 

pointer reached 83AE, because the monit or itself had ihen written 

irito 83AO. Then the monitor's display operations used another eight 

bytes of stack, down through 8398. 

Now let us see what happens without the breakpoint protection. 

RST 

ADDR 8 3 3 0 R UN 

The display goes blank (probably - depending on the garbage pushed 

into the stack other things could happen.) Push RST and look at the 

test program (8330 up). It has been destroyed by the repeated PUSH. 

To protect your programs against such errors, follo� these rules: 

Avoid using memory locations between 8398 and 83F F, except for 

the stack and display. 

Place a breakpoint at 83AO. 

Operate the computer in STEP mode (rather than AUTO) until you 

are satisfied that your program is correct. 
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6.8.5 Review and Self Test 

At this point you have completed �wo program developments in which 

you used subroutines that you wrote yourself, and also monitor 

subroutines for input and output. You have used the stack to store 

data, and seen how the monitor allows you to examine the stack 

pointer and the stack. The questions and problems below will help 

you to judge your understanding of the stack. 

1) Identify the four PUSH instructions. Show their effects using 

transfer notation. 

2) Identify the two exchange instructions, and show their effects

in transfer notation. How do they affect the length of the stack? 

3) How many bytes in the stack are used in the following program

segment? 

PUSH B 

PUSH D 

CALL 

CALL 

POP 

POP 

STUB (just a return) 

STUB 

D 

B 

4) The monitor initializes the stack pointer, so you need not do 

so when using the res Microcomputer Training System. For almost 

any other machine your program must initialize the stack. What 

intruction would you use? 
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5) You are writing a main program, , and intend· to call a

subroutine called QUIZ whose specification states:

Entry data: (DE)= Address for Data 

Return data: (A) - Answer 

Registers: All registers are used. 

The data address you must pass to QUIZ is stored in memory 

locations 8300, 8301. Register pairs DE and HL presently contain 

data that you wi 11 need in subsequent operations. Write a program 

segment to save the data, load the address, call the subroutine, 

and recover the data. 

6) Identify the serious flaw in this multiplication subrbutine

for (E) * (A), which is re�uired to preserve (BC). Fix it without

making the subroutine longer.

PUSH B (ST) < - (BC)
LXI H,0000 Clear Product 
MOV B,L (BC) < - Multiplicand 
MOV C,A 

INR E Test multi plier 
DCR E and exit if zero 
RZ 

C
DAD B Multiplication Loop 
DCR E
JNZ 

POP B (BC) < - (ST) 
RET 

7) How does your corrected version of the above multiplication

subroutine affect Zero and Carry? Modify it_ to preserve the Carry

flag, and return Zero set if the product is 0000. How many bytes

in the stack are used when the subroutine is called?

6-129



MODULES, SUBROUTINES AND THE STACK 

Answers to Self Test, Section 6.8.5 

1) The four PUSH instructions are:

C5 PUSH B 

D5 PUSH ;{t; 

E5 PUSH H 

F5 PUSH PSW 

(ST) 

(SP) 

(ST) 

(SP) 

(ST) 

(SP) 

(ST) 

(SP) 

< - (BC)

< - (SP) - 2

< - (DE)

< - (SP) - 2

< - (HL)

< - (SP) - 2

< - (PSW)

< - (SP) - 2

2) The two exchange instructions are:

EB XCHG 

E3 XTHL 

(HL) < - > (DE) 

(HL) < - > (ST) 

XCHG does not use the stack. XTHL does not change the length of the 

stack, although it temporarily changes the stack pointer. 

3) Each PUSH and each CALL uses two bytes in the stack, but the two

CALL's use the same stack locations. Therefore the segment uses six 

bytes in the stack. 

4) LXI SP, address initializes the stack pointer. You can also use

LXI H, address; SPHL. 
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5) Program segment:

PUSH D (ST) < - (DE)
PUSH H (ST) < - (HL)
LHLD 8300 (HL) < - Address
XCHG (DE) < - Address
CALL QUIZ (A) < - Answer
POP H (HL) < - (ST)
POP D (DE) < - (ST)

Equally good: 

PUSH H (ST) < - (HL)
LHLD 8300 (HL) < - Address
PUSH D (ST) < - (DE)
XCHG (DE) < - Address
CALL QUIZ (A) < - Answer
POP D (DE) < - (ST)
POP H (HL) < - (ST)

Equivalent, but two bytes longer: 

PUSH H (ST) < - (HL) 
PUSH D (ST) < - (DE) 
LXI H,8300 Address the address 
MOV E,M (DE) < - Address 
INX H 
MOV D,M 
CALL QUIZ (A) < - Answer 
POP D (DE) < - (ST)
POP H (HL) < - (ST)
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6) The bad multiplication subroutine ittempts t& exJt = f6r·a zero

multiplier with (BC) in the stack. The version shown below corrects

the problem by testing for a zero multiplier before saving (BC) and

placing the multiplicand there. This change goes not add or change

any instructions.

LXI 

INR
DCR 
RZ 
PUSH
MOV 
MOV

C
OAD 
OCR. 
JNZ 
POP 
RET 

H,0000
E 
E 

B 

B ,L
C,A 

B 
E 

B 

Clear Product 
Test mu1 tiplier 
and exit if zero 

(ST) < - (BC) 
(BC) < - multiplicand

Multiplication Loop 

(BC) < - (ST) 

7) The given solution to 6 preserves Carry if the multiplier is

zero; .otherwise it returns.Carry ·clear. It-always returns Zero set.

The following version meets the requirement stated •.

LXI 

INR
DCR
RZ 
INR
OCR
RZ 
PUSH
PUSH

C
DAD 
DCR 
JNZ 

·POP 

POP
RET 

H,0000 
E 

E 

A 

A 

PSW 
B 

B 

-E

B 

PSW 

Clear Product 
Test multiplier 
and exit"if zero 

Test multiplicand
and exit if zero 

Save Carry, Not Zero
(ST) · < - (BC)· 

Unless the product is zero, a call to this subroutine uses six bytes 

in the stack. 
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6.9 SUBROUTINE CLASSIFICATION 

We will define four kinds of subroutines. 

exclusive. 

These are not mutually 

Global Subroutines 

Local Subroutines 

Reentrant Subroutines 

Interrupt Service Routines 

6.9.1 Global Subroutines 

A global subroutine is one which is available to be called from any 

other program module. Typically it serves a general purpose function 

such as input, output, multiplication, exponentiation� etc. It must 

be fully specified so that other programmers may use it. A number of 

restrictions are usually applied, although none are absolute: 

a) It always returns to the calling program - it does

not make abnormal returns.

b) Any use of the stack is balanced.

c) No data are preserved from one call to the next, except

in memory locations specified by the calling program.

The global subroutine may have memory areas reserved for

its own use.

In the sensor correction problem, MULTIPLY and DISPLAYRESULT could be 

considered as global subroutines. 
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6�9.2 Local Subroutines 

A local subroutine has testrictions that limit its use by other 

program modules. Typically it is a small or special purpose 

procedure. 

unbalanced 

permanently 

modules. 

It may have restrictions on entry, abnormal r�ttirns, 

stack usage, or it may preserve variable data in 

assigned memory locations which are also used by other 

In the sensor correction problem the subroutines that use 

the directory and data table are clearly local, because the data 

organization is highly specialized. INPUT could have been writt�n as 

a global suroutine, but because it calls NEXTSENSOR it must be 

considered local to the sensor correction problem. 

6.9.3 Re-Entrant Subroutines 

A re-entrant suroutine is one that can be called even though it is 

already in use. A few of the monitor subroutines are re-entrant. 

Any subroutine that is subject to interrupts and which is called by 

an interrupt service routine must be re-entrant. Full discussion of 

this type of subroutine is beyond the scope of this text. 

6.9.4 Interrupt Service Routine 

An interrupt service routine is executed when an external interrupt 

occurs. There are very special requirements for interrupt servici�g, 

which we will present in Chapter 8 with other input and output 

functions. 

6.9.5 Subroutine Transparency 

Transparency implies that a subroutine avoids changing register 
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contents except as necessary for returning results to the calling 

program. It is generally a desirable quality in a global subroutine, 

since the calling program is less likely to need PUSH and POP 

instructions. The monitor subroutine GETKY is a good example; it 

preserves D, E, H and L. The fact that the key value is returned in 

(BC) as well as in (A) is used by many programs that call GETKY. It 

also. returns useful information in the Carry and Zero flags. 

The display subroutines of the monitor are not as transparent as 

would be desirable. It would be sufficient to pass two bytes to 

DBY2� the dati t6 be displayed and the display location; all other 

registers and the flags could be preserved since DBY2 has no useful 

information to be returned except the next display location. It is 

only converiient for DBY2 itself that the data displayed is copied 

into Register C· 
J 

calling programs seldom if ever use that 

information. An earlier version was even worse; it destroyed the 

contents of Registers A and B. 

The use of alternate entries to a subroutine tends to make it 

difficult to achieve transparency. This is especially true of 

internal alternate entries, since registers cannot be pushed into the 

stack at the beginning of the subroutine. Subroutine DBYTE, for 

example, loads (DE) with the address 83FF to display a byte in the 

right hand digit. It could save BC and DE in the stack, but the 

alternate entry DBY2 could not then be used_ to display data at other 

locations. 
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6.iO MONITOR SUBROUTINES 

The remainder of this chapter describes monitor subroutines that 

are available to you. Others will be found in Appendix A. Timing 

data are given for some subroutines. These are in decimal count of 

clocks and include the time for the CALL to the subroutine (17 

clocks). The MTS clock rate is 2048000 clocks per second. Operation 

of the monitor greatly extends the time for the display subroutines 

(by a factor of approximately 100). Operation of the display OMA 

channel very slightly extends the time, typically by about 0.1 

percent. 
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6.10.1 Monitor Keyboard Scan Subroutine (SCAN) 

Function 

Scan the keyboard once, and if a key is pressed decode it 
and r•turn with the key value in Registe� A, -and the CY f)ag 
set. If no key is pressed return with CY clear. 

CALL 

CD 
57 
02 

Extent 

CALL SCAN 

0257 through 0281 

Inputs 

Keyboard 

Outputs 

No key pressed: Cy clear, (A)= 00 
Key pressed: Key value in A; CY set 

Registers 

A 

Constraints 

Uses Output Port C and Input Port A. Interface adaptor 
must be programmed for these. This is done by the monitor. 

Leaves Output Port C loaded with different data depending on 
which key was pressed. 

The monitor is disabled during operation and at return. 

Timing 

200 to 553 clocks, depending on input key. 457 clocks, if no 
key is pressed. Add 5432 clocks if the monitor is enabled. 
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6.10.2 Monitor Key Entry Subroutine (GETKY) 

Function 

Obtain one key input from the keyboard. Return when a key 
has been pressed and released. 

Call 

CD 
3D 
02 

Extent 

CALL GETKY 

023D through 0256. 
Calls SCAN 

Inputs 

Keyboard 

Outputs 

a) Value of the key entered, duplicated in Registers A and 
C. A hexadecimal key returns the hexadecimal value as 
the low four bits. Command keys return the following: 

MEM 10 
REG 11 
ADDR 12 

STEP 13 
RUN 14 
NEXT 15 
BRK 16 
CLR 17 

RST causes a general reset to the processor and is not 
handled by the subroutine. 

b) The Carry flag is cleared if a command key is entered; 
it is set if a hexadecimal key is entered. 

Registers 

Registers A, B and C are used. Register B is cleared. The 
contents of Registers D, E, H and L are preserved. 
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Constraints 

a) Input Port A and Output Port C are used.

b) GETKY retains control utttil a key has been 'pressed
and released. It delays until release has been continuously
detected for 20 milliseconds (debouncing).

c) The monitor is disabled during key entry. At return the 
monitor, display, and keyboard are enabled.
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6.10.3 Monitor Data Byte Input Subroutine (ENTBY) 

Function 

Accepts hexadecimal keys and one command key. 
Successive hexadecimal keys are combined into a byte and 
the last two keys pressed are displayed and returned in 
Regi.ster L. The preceding two keys ( if any) are 
.returned in Register H. Returns when a command key has been 
pressed, released and debounce_d, with the command key 
value in Registers A and c •. 

Call 
·--

CD 
36 
03 

CALL ENTBY 

Extent 

0336 through 0345. 
Calls DBYTE and KEYS. 

Inputs 

Keyboard 

Outputs 

Command key in Registers A and 
keys combined as a byte in L. 
keys combined as a byte in H. 
pressed in Register D. Register B 
no hexadecimal keys were pressed • 

. Registers

A, B, C, D, H, L 

Constraints 

See GETKY Constraints. 
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6.10.4 Monitor Data Word Input Subro'utine (ENTWD) 

Function 

Accepts hexadecimal keys and one command key. 
Successive hexadecimal keys are combined into two bytes, 
and the last four k�ys pressed are displayed and returned in 
Registers· H and L. When four or more key have been pressed 
the content of the memory location addressed by those keys is 

. displayed. Returns when a command key has been 

Call 

pressed, released and debounced, with the command key value 
in Registers A and C. 

CD 
46 
03 

CALL ENTWD 

Alternate Entry (See Note) 

CD CALL ENTW2

49 

03 

Extent 

0346 through 0364 
Calls DWORD, DMEM, CLEAR 

Inputs 

Keyboard 

Outputs 

Command key in Registers A and C. Last four hexadecimal 
keys in Registers H and L. Number of hexadecimal keys 
pressed in Register D. Zero set if no hexadecimal keys 
entered. Register B cleared. 

Registers 

Note 

A, B, C, D, H, L 

Register pair (HL) is cleared at entry ENTWD, so if no 
hexadecimal keys are pressed (HL) = 0000. If entry ENTW2 is 
used (HL) is preserved until a hexadecimal key is pressed; 
then the leading three digits are cleared. 

Constraints 

See GETKY Constraints. 
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6.10.5 Monitor Display Digit Subroutine (DISPR) 

Function 

Display one hexadecimal digit at a specified display 
position. The input is a hexadecimal value; the output to 
the display is encoded in the seven segment format. 

Call. 

CD CALL DISPR 
A6 
02 

Extent 

02A6 through 02C2 

Inputs 

a) Hexadecimal value in Register A.

b) Display digit address stored in register pair D,E as
follows:

Outputs 

(D,E) 
83F8 

83F9 
83FA 
83FB 
83FC 
83FD 
83FE 

83FF 

Left digit 
Second digit 
Third digit 
Fourth digit 
Fifth digit 
Six th digit 
Seventh digit 
Right digit 

a) The seven segment code for the hexadecimal input
value is placed in the address provided. If the address 
is one of those listed above the value will be displayed 
bi the OMA chanrtel, provided th�t the channel has been 
turned on. (Note: the monitor leaves the OMA channel turned 
on, so unless you use other outputs this need not concern 
you.) If a different address is specified, the seven segment 
value will be stored the�e. 

b) The address in Register D, E is decremented by one.
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Registers 

a) Registers A, C, D, E, H, L are used.
b) Only the memory location addressed by D,E 1s affected.
c) Register A is preserved and copied into Register c.

d) Zero and Carry flags are cleared�

Constraints 

Hardware control outputs are not affected. 
effective the display must be enabled by 
PORTOC7. 

Timing 82 clocks 

For display to be 
a high output at 
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6.10.6 Monitor Display Byte Subroutine - DMEM, DBYTE, DBY2 

Function 

Dtsplay 
display 
off. 

Call 

CD 
94 

02 

CD 
95 
02 

CD 
98 
02 

Extent 

a byte of data as two hexadecimal digits. The 
is coded in sev�n segment format; decimal points are 

CALL DMEM

Display ((HL)) in tight hand 
digits 

CALL DBYTE 
Display (A) in right hand digits 

Call DBY2 
Display (Af at location ((DE)) 

0294 through 02A5 
Calls DISPR and DIGHI 

Inputs 

DMEM 
DBYTE 
DBY2 
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Outputs 

Registers A and C contain byte displayed. 

Register pair D,E is decremented by two. 

Memory location addressed by contents of register 
pair DE (at entry) is loaded with the seven 
segment code for the low order four bits of the input 
byte. 

The next lower memory location (DE) - 1 is loaded with 
the seven segment code for the high order four bits of 
the input byte. 

Registers 

Registers A, C, D, E are used 

Registers B, H, L are preserved Register A is preserved 
except by DMEM. 

Constraints 

Successive calls to DBY2 will display bytes in 
successive pairs of digits. DBY2 does not test the 
address, so the codes may be stored in other memory 
locations. If data are stored in locations between 
83CO and 83F7 the monitor operation may be disrupted. 

The monitor, display, and keyboard are enable���t exit. 

Timing 

DMEM 

DBYTE 

DBY2 

332 clocks 
325 clocks 
315 clocks 
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6.10.7 Monitor Display Word Subroutine - DWORD DWD2 

Function 

Call 

Display two bytes of dat� as four hexadecimal digits. 

CD 
Dl 
02 

CD 
D4 
02 

CALL DWORD 
Displays content o+ 
register pair; H, L in 
four left digits. 

CALL DWD2 
Displays cont�nt of 
register pair H,L 
in specified digit 

Extent 

02Dl through 02DB 
Calls DBY2 

Inputs 

a) Data to be displayed: in (HL)
b) For DWD2 only, displ•y address in register pair DE

Outputs 

Registers A and C contain more significant byte of display. 
Register pair DE i� decremented by 4 from the initial 
value provided by DWORD or at entry to DWD2. 

Registers 

Registers A, C, D and E are used. Registers B, H and L are 
preserved. 

Constraints 

Successive calls to DWD2 may be made without 
re-initializing (D,E), :provided the first call addressed 
83FF. The address supplied in DE is not tested, so the 
seven segment codes may be stored in other memory 
locations. If data ar� stored in locations between 83CO and 
83F7 the monitor operation may be disrupted. 

Monitor interrupts, keyboard and display are enabled at exit. 

Timing 660 clocks 
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6.10.8 Monitor Subroutine CLRGT, CLEAR, CLRLP 

Function 

Call 

Clear part or all of the display or memory. 

CD 
82 
02 

CD 
87 
02 

CD 
BC 

02 

CALL CLRGT 
Clears four right hand 
display digits 

CALL CLEAR 
Clears entire display 

CALL CLRLP 
Enter with number of bytes to be cleared 
in (B) and highest address to be cleared 
in (HL) 

Extent 

0282 through 0293 

Inputs 

CLEAR, CLRGT - none 
CLRLP - number of bytes in B 

highest address in (H,L) 

Outputs 

Contents of display memory area starting at 
right are set to O (except for CLRLP) 

(B) = 00
(HL) decremented by number of bytes cleared, 

addressing memory location below last 
byte cleared. 

Registers 

B, H, L are used. Zero is set. Carry is preserved. 

Timing 

284 clocks 
174 clocks 

CLEAR 
CLRGT 
CLRLP 27 clocks + 30 clocks for each byte cleared. 
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6.10.9 Monitor Subroutine DELAY, DELYA 

Function 

Wait in a loop for a defined time. 

Call 

CD 
36 
02 

CD 
38 
02 

CALL DELAY 
Wait for one millisecond 

CALL DELYA 

Wait for a time 
set in Register A 

Extent 

0236 through 023C 

Input 

DELAY - None 

DELYA - Enter with a value in Register A, 
proportional to the delay desired. 

Output 

(A) = 00 

Registers 

Zero flag set. Carry preserved 

A is used. 

Timing for DELYA 

Delay 15 clock times for each count in 
Register A, plus CALL and RET (27 clocks). 

With the monitor enabled the delay is 1381 
clocks for each count in Register A, plus 
1393 clocks for CALL and RET. 

Exact Timing for DELAY 

1999 clocks = 0.976 milliseconds. With 
monitor enabled 182994 clocks = 375 milliseconds. 
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7. LOGIC AND BIT MANIPULATION

It is often necessary to perform functions that depend on individual 

bits in a byte. This is common, for example, in control problems, 

where data bits may represent discrete signals rather than numeric 

values. 

In this chapter two sets Of instructions will be introduced: rotate 

commands, which work on the Accumulator and Carry flag only; and 

logical functions, which generally involve the Accumulator and 

another register. 

7.1 ROTATE COMMANDS 

Rotate is a command to move each bit in the Accumulator to an 

adjacent position. 

17 RAL Rotate Accumulator Left Through Carry 

Move each 

position. 

Carry flag. 

the least 

affected. 

bit 

Move 

in Register A to the 

the most significant 

next higher 

bit into the 

Move the contents of the Carry flag into 

significant bit. Carry is the only flag 
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lF RAR Rotate Accumulator Right Through Carry 

Move each bit in Register A to the next lower 

position. Move the least si gnificant bit into the 

Carry flag. Move the content of the Carry flag into 

the most significant bit. Carry is the only flag 

affected. 

These two rotate commands are sometimes called "arithmetic shift" 

because they can be used to double or halve the value of the content 

of Regi$ter A and are used in multiplication and division. They can 

also be used to obtain access to an individual bit. To illustrate 

the arithmetic properties of rotate, consider the following simple 

binary numbers: 

0000 0111 {=07) 0000 1110 {=OE, or 14 decimal) 

The second number results from a left shift of the first, and as a 

result has been doubled in magnitude. 
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7.1.1 Rotate Exercise 

A byte can be doubled by moving it -into Register A, clearing the 

Carry, and rotating lefti Thts places its most significant bit (MSB) 

i.n ···the Carry. To double a two byte value, perform this operation on

the less significant· byte (Register L), move the result back to L, 

and repeat on the more significant byte (Register H), but without 

clearing the Carry: 

FIRST STEP 

F SECOND STEP 

The result is that each bit in the sixteen bit word has been shifted 

left one position. 

The word can be halved by the reverse process. It must start wtth 

the more significant byte and shift right: 

FIRST STEP 

SECOND STEP 
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In this exercise we shall use the rotate left and rotate right 

commands in two ways: to perform the arithmetic function of doubling 

or halving a two byte value, and to move specific bits of a command 

byte into the Carry so they can be tested. We shall use monitor 

subroutines to accept data and display the results. The result of 

the operation is to be preserved until a new command is entered, so 

that we can (according to the command) either use newly entered data 

or pertorm another operation on the previous result. 

The result can be displayed by the subroutine DISPLAYRESULT from 

Chapter 6 if you still have that in memory. Otherwise use an almost 

identical monitor subroutine. DWD2 is an alternate entry to DWORD, 

which displays two bytes in the left hand four digits. To place the 

display at the right, preload (DE) with 83FF and call DWD2. 

CD CALL DWD2 Display the content 

D4 of HL in the digits 

02 addressed by (DE). 

To display in the left hand digits: 

CD CALL DWORD Display the content 

Dl of HL in the 

02 left hand digits. 

We shall use the monitor subroutine ENTWD to obtain two data bytes 

and a command key, and act on the data word according to the command 

key entered. 
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CD 

46 

03 

CALL ENTWD 

LOGIC AND BIT MANIPULATION 

(HL) < - hex keys 

(A) < - command key 

ENTWD displays the hex keys as they are entered,· using the four left 

hand digits of the d1splay. When four or more digits have been 

entered a byte is also displayed at the right. This is of no 

interest here; it is part of the function of ENTWD in the monitor 

when you press ADDR followed by four keys. 

The arithmetic operations are to be performed by subroutines: 

SHIFTRIGHT 

Shift the content of register pair HL right one bit. Shift a zero 

into the high bit of (H). All flags and all other registers must be 

preserved. 

SHIFTLEFT 

Shift the content of register pair HL left one bit. Shift a zero 

into the low bit of (L). All flags and all other registers must be 

preserved. 
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Because we 

subroutines, 

are 

it 

using some new instructions 

is desirable here to start 

programming. Use a simple test driver: 

8200 CALL 

CALL 

LXI 

CALL 

JMP 

ENTWD 

SHIFTLEFT 

D,83FF 

DWD2 

8200 

and new monitor 

with "bottom-up" 

Write the subroutine SHIFTLEFT and test it. Then write SHIFTRIGHT 

and change the call in the test driver. Try the programs with simple 

numbers for data entry and observe that SHIFTLEFT doubles the value 

and SHIFTRIGHT halves the value. 
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7.1.2 Rotate Instructions for Control Functions 

In the final program the command keys are to be defined as follows: 

MEM (=0001 0000) Halve the new hex value 

REG (=0001 0001) Double the new hex value 

ADDR (=0001 0010) Halve the previous result 

STEP (=0001 0011) Double the previous result 

RUN (=0001 0100) Same as MEM 

NEXT (=0001 0101) Same as REG 

BRK (=0001 0110) Same as ADDR 

CLR (=0001 0111) Same as STEP 

Thus the control is exercised according to the two low bits of the 

command key value. Bit O (the least significant bit) selects the 

arithmetic function; Bit 1 chooses between new data or an old result. 

The command key definitions can be remembered easily if you use only 

the top row. The left keys (REG and MEM) use new data and the right 

keys (BRK and CLR) use the old result. The outside keys (REG and 

CLR) double the value and the inside keys halve it. 

The main program must make all decisions and call subroutines as 

required. The decisions are based on the two low bits of the command 

character: 

Bit 0

Bit · 1 

0 = Halve the data 

1 = Double the data 

0 = Use new data 

1 = Use old result 
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The first decision depends on Bit 1. This can be moved into Carry, 

where it can control a conditional jump, by two RAR instructions. 

These also move Bit O into Bit 7. 

The old result must be kept in memory, since ENTWD uses all registers 

except E. Let us assign 8300, 8301 for .the result. 

ENTWD will display newly entered data in the left digits. When an 

old result is to be used for the new calculation, it will be 

desirable to display it at the left. We can display it now, but must 

save the command character: 

RAR 

RAR 

---- JNC 

LHLD 

PUSH 

CALL 

POP 

RAL 

8300 

PSW 

DWORD 

PSW 

Bit Oto Sit 7 and Bit 1 to CY 

If new data to be used 

(HL) < - Old Result 

Save Command 

Display Result at Left 

Recover Command 

(CY) < - Halve/Doubl�

The RAL instruction moves the original Bit O of the command from a1t 

7, where two RAR's put it, into Carry. 
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7.1.3 If - Then - Else Con�truct 

With the Carry flag set to distinguish between SHIFTLEFT' arid 

SHIFTRIGHT we could do this: 

....---- JNC 

CALL 

JMP 

._ __ ._ CALL 

SHIFTLEFT 

SHIFTRIGHT 

(Display Result) 

A more attractive way to do this is: 

PUSH 

cc 

POP 

CNC 

PSW 

SHIFTLEFT 

PSW 

SHIFTRIGHT 

Because it has no jump instructions this has fewer bytes and fewer 

opportunities for mistakes. (It is slower ,bY el ther 6 or 11 

microseconds than the former arrangement.) 
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Either of these constrtictions is shown in a block diagram as: 

Not Carr 

SHIFTRIGHT SHIFTLEFT 

It is de cribed in words (in computereze) as: 

. I 

If Carry Then Shiftleft 

Else Shiftright 

This is a very powerful construe tion ( or "construct," in computereze) 

and the best computer languages (such as PASCAL) use it very 

commonly. 
I 
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Now let us describe the main program as though we were writing it in 

a "higher level language" - a computer language that understands 

words instead of binary intructions. 

1) Input Data and Command

2) If (Command Bit 1) = 1 then do the following: 

Replace Input Data with Old Result 

Display Old Result 

3) If (Command Bit 0) = 1 then Shiftleft

Else Shiftright 

4) Store Result

5) Display Result

6) Go to step 1
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The completed program solution is given in Figure 7-3. but for·

practice you should write and code it youse lf. Then experiment with 

numbers. 

1 ·2 3 4 REG 1234 2468 

CLR (2 x Old) 2468 48DO 

CLR (2 x Old) 48DO 91AO 

BRK (Old/2) 91AO 48DO 

BRK 48DO 2468 

BRK 2468 1234 

BRK 1234 091A 

BRK 091A 048D 

Up to ttiis point we �an restore the previous value, because we have 

only shitted zeros out. 

CLR (2 x Old) 048D 091A 

BRK (Old/2) 091A 048D 

:One more shift right will lose the one in the least significant bit. 

BRK 048D 0246 

CLR (2 x Old) 0246 048C 

CLR 048C 0918 

CLR 0918 1230 

Try other numbers to see where you lose data. 
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7�1.4 A�ithmeti� Substitutes for RAL 

We hive seen that RAL doubles the content of A. This can equally 

well be done by adding the content of A to itself by ADD A or ADC A. 

87 

BF 

ADD A 

ADC A 

(A) < -

(A) < -

(A) + (A)

(A) + ( A ) + ( CY )

ADD A discards the old content of Carry. Since the value is doubled 

it must result in an even number, with O in the least significant 

bit. ADC A adds the old Carry in, so it is identical to RAL in its 

numeric result. In SHIFTLEFT we can discard the XRA A, whose 

function was to clear Carry, and replace the first RAL with ADD A. 

Replace the second �AL with ADC A. Test to see that the result is 

identical. 

These instructions differ from RAL in that all flags are affected, 

whereas RAL affects only the Carry flag. Sometimes one usage or the 

other is preferred because. of the different effect on· flags. 

We also h-ve available the double precision add instruction DAD H. 

This shifts · left the 16 bit number in (HL), so we can replace the 

entire SHIFTLEFT $Ubroutine by: 

8240 

8241 

29 

C9 

DAD Ii 

RET 

(HL) < - (HL) + (HL)

Like RAL this affects only the Carry flag. MaJ,ce the substitution and 

see ·that the program operation is unchanged. 

There is p.o arithmetic instruction equivalent to· HAR. 
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7.1.5 Logical Rotate 

Two other rotate commands are provided in the 8080, which are similar 

to RAL and RAR except for their handling of the Carry and the most 

and least significant bits. 

07 RLC 

OF RRC 

Rotate Left into Carry 

Move each bit in Register A to the next higher 

position. Move MSB into the Carry flag...!IDL_ into LSB. 

Only the Carry flag is affected •. 

Rotate Right into Carry 

Move each bit in Register A to the next lower 

position. Move LSB into the Carry flag and into MSB. 

Only the Carry flag is affected. 

These two instructions are called logical rotate because they treat 
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the Accumulator as an eight bit ring in which MSB and LSB are 

conceptually juxtaposed. The operation does not have an arithmetic 

equivalent. 

The logical shifts discard the old value of the Carry flag. If in 

the SHIFTLEFT and SHIFTRIGHT subroutines you replace both RAL 

commands (17) with RLC (07) and both RAR commands (lF) with RRC (OF)

you will see that the two bytes are now independent of each other. 

If you enter two new bytes, using REG to shift left, and then BRK to 

shift the same data right, the input value will be restored. Now if 

you use either BRK or CLR eight times each byte will be shifted back 

to its original value. After four shifts in one direction the digits 

of each byte are interchanged: 

1 2 3 4 

CLR 

CLR 

CLR 

REG 1234 

2468 

48DO 

90Al 

2468 

48DO 

90Al 

2143 

Another four shifts in either direction will restore the initial 

values. 

Can you modify the SHIFTLEFT and SHIFTRIGHT subroutines to achieve 

sixteen bit logical rotates? This will �reserve all bits, so that 

pressing BRK or CLR sixteen times will restore the initial value. 

Think of the solution before looking at Figure 7-4. 
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7.2 BINARY ENTRY AND DISPLAY EXERCISE 

In the preceding exercise we accepted hexadecimal keys and displayed 

hexadecimal values, using monitor subroutines. Now we shall use the 

display techniques learned in Chapter 4 to display a number in binary 

form. Monitor subroutine GETKY will be used to read in one key at a 

time, and distinguish commands from hex keys. 

CD 

3D 

02 

CALL GETKY (A) = (C) < - Key

Carry set if hex 

At any moment we shall control one bit of the number being entered, 

and one digit of the display. This bit and display digit can be 

changed back and forth between O and 1. A command key will move on 

to the next bit and display digit. 

Only the least significant bit of a hex key will be used. If it is 

zero, we shall put a zero into the bit being entered; if it is one, 

put a one into the bit being entered. Display O or 1 in the 

corresponding display digit, using 3F for 0, 06 for 1. Until a bit 

has been entered display a decimal point only (80) in the digit. 

A convenient way of both testing and keeping the data bit entered 

uses the RRC intruction. This sets Carry if the least significant 

bit (Bit 0) is one, and also copies Bit O into Bit 7. Save this in 

Register L. 

7-22



LOGIC AND BIT MANIPULATION 

·When any command key is entered, do the following:

If no hex key has yet been entered for the current position, enter

· and display a zero.

Shift the data bit entered for the current position into the least

significant bit of a data by�e, shifting preceding bits left.

Address the next digit of the display. If still within the eight

digit display then loop to accept data for the next bit. At the end

of the display, when eight bits have been entered, clear the binary

display and show the eight bit value in hexadecimal.

Figure 7-5 shows the program af3 a flow diagram.
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7-24

START 

Clear the Data Byte (H) 
Address the Left Digit 

B ,-...-------------..-. 

Mark the Digit Addressed 
with a Decimal Point 

Call GETKY 
(A) = (C) - Key

CY Set if Hex

Command (Not Carr 

Hex (Carry) 

Shift LSB into CY and Bit 7 
Copy_ Result into (L) 

LSB = 0 LSB = 1 

.Display O Display 1 

Binary Entry and Display Program 

Figure 7-5a 
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Test Display Digit for Decimal 
Point or Binary Display 

Decimal Point 

Enter O into ({L)
Display O (3F) 

Shift Data Byte (H) Left 
and Shift Bit 7 of (L) 

into Bit O of (H) 
Address Next Bit Position 

Within 8 Bits 
B14�--------<

(Not·zero) 
of Display 
Data Byte 

Clear Display 
Display Data Byte (H) 

A 

Figure 7-Sb 
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· Since the display digit contains only a decimal point (80) until a

hex key has been pressed, we can test for that value when a command

is entered. If nothing has been entered, replace 80 by 3F to display

O. Also enter OOinto Register L.

Register H is used for the data byte entered; the high bit of 

Register L contains the new data bit. DAD H will shift the data byte 

and enter the new bit. 

We have monitor display routines to clear the display and show the 

data byte (H) in hex. 

CD 

87 

02 

CALL CLEAR Clear the display 

Uses (B) and (HL) 

Since CLEAR uses Register H but not A, precede this with MOVA, H. 

Then .use: 

CD 

95 

02 

CALL DBYTE Di splay (A) 

at the right 

Write the program and try entering binary values. The next exercise 

will use similar techniques. 
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7.3 LOGIC FUNCTIONS 

LOGIC AND BIT MANIPULATION 

Logic functions operate on individual bits or pairs of bits. The 

defined functions are: 

Complement 

AND 

Inclusive OR 

Exclusive OR 

7.3.1 Complement (CMA) 

If a bit is O, its complement is 1; if a bit is 1, its complement is 

O. The complement is o:ften symbolized by a bar, read as NOT. Thus:

If X = 1, X = 0 

If X = O, X = 1 

(If X equals one, NOT X equals zero) 

(I:f X equals zero, NOT X equals one) 

The complement of a byte is the byte comprising the complements of 

each of the bits of the original byte. For example: 

01101100 = 10010011 

or 6C = 93 

This function is generated in the 8080 by the instruction: 

2F CMA Complement Accumulator 

(A) < - (A) 

No flags are affected. 

The complement function is also involved in arithmetic, as you will

see in later chapters. 

t--
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7.3.2 AND (ANA) 

The AND of two bits is 1 if and only if both bits are 1. The AND is 

symbolized by a dot, or by the intersection symbol n ' or simply 

by placing two symbolic characters next to each other. Since we will 

be dealing with bytes for Which mul�iplication is also defined, we 

will use ,'\ 

X ny (X). AND (Y)

The operation of a logical function is often shown by a truth table. 

The 

AND 

X 

0 

0 

1 

1 

AND of two bytes 

of corresponding 

01101100 

or 6C 

y (X) n (Y)

0 0

1 0 

0 0 

1 1 

is the byte comprising the bits 

bits in the two original bytes. 

11101001 = 01101000 

E9 = 68 

generated by the 

For instance: 

A logic function of two bytes expressed in hexadecimal is not obvious 

at·,� glance � one usually has to expand the bytes to binary 

re pre sen ta ti.on•: 

The AND of the bytes in Register A and any other register (or M, the 
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memory location addressed by the content of register pair H) is 

generated, and the result placed in Register A, by: 

ANA r 

7.3.3 Inclusive OR (ORA) 

And (r) with (A);

place the result in A. 

(A) <- (A) ,'\ (r)

The Carry flag is cleared. 

Other flags are set or cleared 

.according to the result. 

The inclusive OR of two bits is 1 if either of the bits is 1. The OR 

is symbolized by a -+  sign or the Union symbol U 

addition is defined for bytes, we use\....) 

X 

0 

0 

1 

1 

y 

0 

1 

0 

1 

(X) V (Y) 

0

1 

1 

1 

The OR of two bytes it the OR of corresponding bits: 

01101100 \....) 

or 6C U 

11101001 = 11101101 

E9 = ED 

Again, since 

· The OR of the·bytes in.Register A and any other register (or M) is

generated, and the result placed in Register A, by ORA r.
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ORA r OR (r) with (A); 

place the result in A. 

(A) <- (A) \.._) (r)

The �arry flag is cleared. 

Other flags are set or cleared 

according to the result. 

Since l\._.)l == 1 and o\.._)o = 0, the function ORA A do.es not change the 

content of Register A, but s�ts the Zero flag if (A)= 0, and clears 

it otherwise. It similarly sets or clears the other flags which have 

not yet been defined. We have used it to clear the Carry flag. 

7.3.4 Exclusive OR (XRA) 

The Exclusive OR of two bits is 1 if one but not both of the bits is 

1. The Exclusive OR, commonly referred to as XOR. (sometimes EXOR),

is symb?l ized ©

X y (X ) 0 (Y) 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

The XOR of two bytes is the XOR of corresponding bits: 

01101100 

or 6C. 

8 
0 

11101001 = 10000101 

E9 = 85 

The XOR of the byte in Register A and any other register (or M) is 

generated, and the result placed in Register A, by XRA r. 
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XOR (r) with (A); 

place the result in A. 

(A) <- (A) 8 (r)

The Carry flag is cleared. 

Other flags are set or cleared 

according to the result. 

Recognize that since 1G) 1 = O, and oG) O = O, then (A)G) (A) = O. 

Therefore XRA A is used to clear Register A (SUB A could also be 

used.) 

7.3.5 Immediate Logic Functions 

For each of the logic functions except complement, there is a set of 

instructions using each of the registers (or the referenced memory 

location) as a sourc� for the data byte. These instructions are 

tabulated in the instruction chart. As with the arithmetic 

instructions, there are also immediate versions of each: 

E6 

xx 

F6 

xx 

EE 

xx 

AN! 

ORI 

XRI 

AND Immediate data 

with Register A. 

OR Immediate data 

with Register A. 

XOR Immediate data 

with Register- A. 

These generate the indicated logic function of the content of 

Register A with the content of Byte 2 of the instruction and place 
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the result i Register A. The Carry flag is cleared and other flags 

are set or cl
J
lared according to the result of the operation. 

The instruct on ANI is especially useful in masking unwanted data 

from the re!ult of an input operation. For instance, if you are 

concerned with Bit 4 of an input byte and want to jump if it is one, 

it is more efficient to write: 

ANI 

JNZ 

10 (00010000) 

than to shif the data bit to the Carry flag and jump if Carry. Even 

more importan , ANI can test for any of several bits: 

ANI 

JNZ 

58 (01011000) 

If Bit 3 or Bit 4 or Bit 6 of Register A is 1, the result is not 

zero. 

7.3.6 Set and 
r
omplement Carry 

These two ins ructions affect only Carry. 

37 

3F 

STC 

CMC 

Set Carry 

Complement Carry 

We have seen several ways of clearing the Carry flag, but these also 

affect other flags. STC,CMC clears Carry with no effect on other 

flags. 
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7.4 LOGIC FUNCTION EXERCISE 

Now we shall plan an exercise using bit shifting and masking 

techniques· to demonstrate the logic functions. We sha 11 ac't�ept eight 

data bits· as a sequence of ones and zeros from the keyboard and 

display them as they are received, l!Sing the decimal point to mark 

the bit position, as in the exercise of Section 7.2. At the same 

time, we shall perform a logic function, combining the new data bit 

with one previously entered in the 

the old bit, and the result of 

displayed togeth�r. 

same bit position. 

the logic function 

Top Horizontal = Logic Function 

Middle Horizontal = Old Bit 

Bottom Horizontal = New Bit 

• Decimal Point = Bit Marker

The new bit, 

wi 11 all be 

A blank horizontal bar will represent O and an illuminated bar ·will 

represent 1. 

7...;.35 



LOGIC AND BIT MANIPULATION 

The logic function of the old and new data bytes will be selectable 

by command keys. Define the commands in the top row of keys for this 

purpose. 

REG = ORA 

MEM = ANA 

BRK = XRA 

CLR = CMA 

These commands are to be stored, so that whenever a bit is changed 

the function most recently selected can be generated and displayed. 

Define the command keys at the right for moving data. 

NEXT 

ADDR 

RUN 

srnP 

Move to next bit position 

Ignore - has no purpose here 

Replace old data with result 

of logic function 

Replace old data with new data 

These commands are only executed when entered, so they need not be 

stored. 
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7.4.1 Data Byte and Bit Marker 

In this new exercise we will not clear the data byte after entering 

eight bits, but wrap around to the most significant bit. When NEXT 

is pressed we shall move on to the next bit, preserving the existing 

bit, rather than inserting a zero. With this rule, the shifting 

technique we used for entering bits into a register in Section 7.2 is 

no longer suitable; instead we must use a masking technique. Use 

Register D for the data byte. In Register H keep a mark indicating 

position: 

80 = Most significant bit (Bit 7) 

40 = Bit 6

20 = Bit 5

10 = Bit 4 

08 = Bit 3

04 = Bit 2 

02 = Bit 1 

01 = Bit 0 

The bit marker keeps track of which bit is to be entered, and we will 

use it to modify individual bits. For example: 

Replace this bit 

Bit Marker (H) 00100000 

Data Byte (D) 01100111
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There are several ways of entering the new bit. One obvious way is 

to test the key (in the Carry after a shift right) and jump to one of 

two separate procedures: 

Key is zero: 

Key is one: 

Bit marker 

Complement 

Da ta byte 

00100000 

11011111 

01100111 

AND result 01000111 

Bit set to o����__.t

Bit marker 

Da ta byte 

00100000 

01100111 

OR result 01100111 

Bit set to 1�����-t 

We shall consider alternative methods later. 

The bit marker itself is changed when NEXT is pressed. It move� to 

the right by one bit position, until it is 00000001, marking the 

least significant bit. Now it must wrap around to the most 

significant bit. This is exactly the function of the RRC instruction, 

so the response to NEXT will be: 

7-38
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7.4.2 Keyboard Functions 

Review the responses to the keyboard entries: 

a) When a hex key is pressed, enter its least significant bit into 

Register D in the bit position marked by (H). Display the new data. 

Calculate the logic function and display the new result. 

b) When NEXT is pressed, move the bit marker in (H). Display the

bit marker. 

c) When STEP is pressed, replace the old data byte with the new data

byte. Display the newly replaced "old" data byte. Calculate the 

logic function and display the result. 

d) When RUN is pressed, replace the old data byte with the result of

the logic function. Display the newly replaced "old" data byte. 

Calculate the logic function again (now using different "old" data) 

and display the result. 

e) When REG, MEM, BRK or CLR is pressed, replace the logic function

selector. Calculate the new logic function and display the result •. 

From the above we can see that most keys require calculation and 

display of the logic function. Only NEXT and ADDR have no effect on 

the function result. Therefore it is reasonable to recalculate the 

logic function and display it after every key has been processed. 

Once displayed it need not be retained. 
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7.4.3 Register Assignments 

We can keep all of the data for this program in registers, using_ the 

stack for temporary storage. 

assignments are convenient: 

In the main program the following 

(D) = New Data 

(E) = Old Data 

(H) = Bit Mark 

(L) = Logic Function Selector

These registers are preserved by GETKY, and other subroutines must 

affect them only as required by the data and command entries. 

7.4.4 Subroutines for Logic Functions Exercise 

Let us define the following subroutines to accept and process data 

and comm.ands. 

GETKY The monitor subroutine (at 0230) which accepts one key and 

returns: 

(A) = (C) = key value 

(B) = 00 

Carry set for a hexadecimal key 

Carry clear for a command key 

D, E, Hand L are preserved. 

DATA A local subroutine to enter the least significant bit of a hex 

key into the new data byte (D) and display the byte. 
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COMMAND A local subroutine to interpret the commands. The logic 

function commands (REG, MEM, BRK, CLR) will be stored; the other 

commands will be processed immediately. 

FUNCTION Generate the logic function selected by (L) (ORA, ANA, 

XRA, CMA), of new data (D) with old data (E). Return the result· in 

Register A, 

DISPLAY Display one byte of data which may be the new data, old 

data, logic function or bit marker as selected by the calling 

program. Enter with: 

(A) = data to be displayed 

(B) = symbol for data], as follows: 

01 = Logic Function (Top Horizontal) 

40 = Old Data (Middle Horizon ta 1) 

08 = New Data (Bottom Horizontal) 

80 = Bit Marker (Decimal Point) 

All segments of each display digit, except the segment designated by 

(B), must be preserved. 
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7.4.5 Main Program for Logic Function Exercise 

Having assigned registers and identified subroutines we can now 

proceed to develop the program, again using the top-down approach. 

Initialize Registers 

Display Bit Marker (DISPLAY) 

Calculate Logic Function (FUNCTION) 

Display Logic Function (DISPLAY) 

Accept a key (GE T.KY) 

If hex key, enter (DATA) 

If command, process (COMMAND) 

The bit marker is displayed by a call from MAIN because we do not 

want to wait until a key is pressed to show the location. There are 

two reasons for placing the logic function display in MAIN rather 

than in FUNCTION. When the command key RUN is pressed we must 

calculate the function in order to replace the old data, but do not 

particularly want to display it. Second, FUNCTION will require jumps 

to each of the logical functions (ORA, ANA, XRA, CMA); the subroutine 

will be shorter if each of these can be followed by RET instead of 

calling DISPLAY. 
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Assign the following memory locations to the subroutines and write 

the main program. 

8220 DISPLAY 

8240 DATA 

8260 COMMAND 

82AO FUNCTION 

Use stubs (RET) !or the subroutines. 

initialized as follows: 

The registers should be 

(D) < - 00 

(E) < - 00 

(H) < - 80 

(L) < - 17 

for new data byte 

for old data byte 

mark most significant bit 

for CMA function 

LXI instructions can be used for these. 

With no subroutines except GETKY the display will be blank and 

pressing keys will have no visible effect. Place a breakpoint after 

the return from GETKY and step through the program to be sure that 

DATA and COMMAND are called appropriately in response to hex and 

command keys. 
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7.·4�6 Stubs for COMMAND and FUNCTION

These subroutines will be fairly complicated, but we must at least 

react to NEXT before we can enter data and observe the display. It 

will also be useful to have something returned by FUNCTION, for 

testing the display. 

The stub for COMMAND can test for NEXT, 

perform the logical rotate right on (H). 

then ignore it. 

and if the command is NEXT 

If the command is not NEXT 

A convenient stub for FUNCTION returns the complement of the new 

data. This is the same function that CLR will give us when COMMAND 

and FUNCTION are completed. Since DATA does not yet exist, register 

D will always contain 00, and FUNCTION will return FF. The stubs are 

shown in Figure 7-8. 

Test the operation of COMMAND by setting a breakpoint at 8265. It 

should only be reached after a NEXT key. The content of H should be 

halved each time NEXT is pressed, until after 01 it becomes 80. 
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7.4.7 Logic Functions DISPLAY Subroutine 

Now create the subroutine DISPLAY, since this will be a necessary 

tool for the rest of the program. It will also give you some 

familiarity with the logic function commands. 

In accordapce with the description in Section 7.4.4, DISPLAY receives 

a byte of data in Register A and a symbol in Register B. It must 

preserve all segments of each display digit except the segment 

designed by (B). For each bit in (A) the designated segment of the 

corresponding displ�� digit must be cleared or set. Figure 7-9 shows 

one design for DISPLAY. Although a shorter version could be written, 

this has the ad.vantage of simplicity. 

Enteri�g the symbol (B) into a display digit is done by the OR 

function. 

MOV A,M 

ORA B 

MOY M,A 

Entering a zero requires that (B) be complemented and used as a mask. 

MOV A,B 

CMA 

ANA M 

MOV M,A 

When (B) is complemented all bits except the designated symbol bit 

become 1, while the symbol bit becomes O. The AND function then 

preserves ali display segments except the one designated. 
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Stepping through DISPLAY is unrewarding because it takes existing 

data from the display, but thi� is upset by the monitor. The best 

way to debug a display subroutine is to substitute some different 

memory locations such as 82F8 - 82FF when stepping. 

With DISPLAY and the stub for COMMAND you can observe the bit marker 

move in response to NEXT. Since we cannot yet enter data, the bottom 

segments will remain off, and the top segments will all be turned on 

because FUNCTION returns the complement of (D). Try a different 

initial value for D to see the effect. 
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7. 4. 8 Logic Functions DATA Subroutine

This subroutine was defined as follows: Enter the least significant 

bit of a hex key irito the new data byte (D) and display the byte. 

The bit marker in (H) identifies the bit position in (D) where the 

bit is to be entered. We have used one method for entering a bit 

into a byte, in the DISPLAY subroutine. There we make a conditional 

jump; if the input bit is 1 we OR the symbol into the display digit; 

if the input bit is Owe mask the display with the complemented 

symbol. 

A possibly more efficient procedure is to force the bit to 1 by an 

OR, and then complement that bit by XOR with the bit marker if the 

key is zero (leaving the OR result if the key was one): 

Bit marker 00100000 

Data byte 01100111 

OR result 01100111 

Bit set to l 

Bit marker 00100000 

XOR if key 0 

Bit set to O 

01000111 

This procedure is efficient if we can make the decision after the 
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first OR operation. Since the logic instructions (except CMA) affect 

all flags, this is a little awkward. 

The following procedure avoids any jump instructions, but requires 

use of an extra register. First, combine the input data with the bit 

mask: 

Key 0 Key 1 

RAR (Clears Carry) (Sets Carry) 

SBB A (A) = 00000000 11111111 

ANA H (A) = 00000000 00010000 

Location of Bit Marker t t 
Save this result in another register, and create a reverse mask from 

the bit marker by complementing it. 

MOV B,A (B) = 00000000 

MOV A,H (A)= 00010000 

CMA (A) = 11101111 

00010000 

00010000 

11101111 

AND this with the existing data byte to force the marked bit position 

to zero; OR the desired bit; and return the new byte to D. 

(D) = 10110010 10110010 

ANA D (A) = 10100010 10100010 

ORA B (A) = 10100010 10110010 

MOV D,A (D) = 10100010 10110010 

tBit reset or set 
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The revised data byte is now in (D) where it is to be kept, and also 

in (A), ready to be displayed. L0ad (B) with the symbol fQr the new 

data byte and call DISPLAY. 

Reviejing the MAIN prog�am we can see an addition�! requi�ement to be 

placed on DATA •. We used: 

CC DATA 

CNC COMMAND 

If command is not to be called after a hex key, then DATA must return 

'with Carry set. The 8080 provides an instr�cti6n:to perform this: 

37 STC Set the Carry Flag 

(CY) < - 1 

No othet flags or registers 

are affected. 

This can be placed just before the return from DATA, to inhibit the 

foilowing CNC COMMAND in the main program. 

Code and test the program. You can now enter data with hex keys and 

move the bit marker with NEXT. The stub for FUNCTION returns the 

complement of the data entered, so data entered appear in the bottom 

�6rizontals and the complements appear in the top� 

Figure 7-11 gives the coded subroutine. 
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7.4.9 Additional Specifications for DATA 

We have previously indicated that the bit marker is to be moved only 

in response to NEXT. You might prefer to move it also whenever a hex 

key is pressed. If we allow NEXTCOMMAND (at 8280) as an internal 

alternate entry to COMMAND, it can be called by DATA. An alternative 

would be for DATA to enter a simulated NEXT command, and clear Carry 

to force a call to COMMAND. 

·rhe 8080 does not provide an explicit "clear Carry" command, but the

logic instructions (ORA, ANA, XRA) all clear Carry. We have used XRA

A to clear both Carry and the content· of A; this works because the

exclusive or of a bit with itself is always zero.

1 

0 

G) 

8 

1 = 0 

0 = 0 

ORA A and ANA A have the effect of clearing Carry and preserving the 

content of A. They set or reset Zero (and the other flags) according 

to the content of A; in fact they are exactly equivalent to CPI 00. 

Another way of controlling the flags is to compare (A) with itself. 

CMP A will clear Carry and set Zero without affecting the content of 

Register A. 

Replace the STC instruction at the end of DATA with any of these 

intructions: 
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followed by: 

3E 

15 

MVI 

C9 RET 

A,15 

Now the bit marker moves in response to hex keys as well as NEXT. 

There was some purpose in the o�iginal design of DATA, that did not 

shift the bit marker after a hex key: observation of the effects of 

the several logic functions is more convenient if you can switch one 

bit back and forth easily. Since we are using only the least 

significant bit of a hex key as data, it is possible to define 

additional bits for other purposes. 

0 Enter zero into current bit position 

1 Enter one into current bit position 

2 Enter zero into current bit position 

and shift bit marker to next position 

3 Enter one into current bit position 

and shift bit marker to next position 

Recall that GETKY returns the key value in both A and C, and neither 

DATA nor DISPLAY affects Register C (in the given solutions, at 

least; check your own program designs.) 

Set or reset Carry according to bit 1 of the command. 

MOV A,C 

RAR 

RAR 
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This procedure makes Carry the opposite of what we wanted according 

to the definitions of the hex keys, since 2 and 3 will set Carry 

which inhibits the CNC command. 

this: 

3F CMC 

The end of DATA then becomes 

79 MOV A,C 

lF RAR 

lF RAR 

3F CMC 

3E MVI A, 15 

15 

C9 RET 

Another 8080 instruction corrects 

Complement Carry 

(CY) < - (CY) 

No other flags or registers 

are affected. 

The completed program appears in Figure 7-12. Write a specification 

for the subroutine, indicating the function, entry data and return 

·data.
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7.4.10 Logic Functions COMMAND Subroutine 

The command keys are interpreted according to the definitions below. 

REG 

MEM 

BRK 

(11) 

(10) 

(16) 

CLR ( 17)

STEP (13)

RUN (14)

ADDR (12) 

NEXT (15) 

Set Logic Function ORA 

Set Logic Function ANA 

Set Logic Function XRA 

Set Logic Function CMA 

Replace Old Data with New Data 

(E) < - (D) 

Replace Old Data with Logic Function 

of Old Data (E) with New Data (D) 

selected according to (L) 

Ignore 

Rotate Bit Marker (H)

The sequence above reflects the physical arrangement of the keys. 

Numerically, keys of value greater than NEXT (15) or less than ADDR 

(12) are· to be stored in (L) as logic function commands. Keys of

value greater than ADDR but less than NEXT (STEP = 13 and RUN = 14) 

replace Old Data. This suggests that we can separate the key 

commands with three 

conditional instructions. 

CPI 15 

CPI 12 

CPI 14 
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The coding for subroutine COMMAND to make and act on these tests is 

indicated below: 

CPI 15 NEXT 

JZ to Rotate Bit Marker 

JNC to Store Function Selector 

CPI 12 ADDR 

RZ Ignore ADDR 

JC to Store Function Selector 

CPI 14 RUN 

MOV A,D If not Run, 

CZ FUNCTION If Run, A < 

Replace Old Data and Display 
MOV E,A 
MVI B,40 

JMP DISPLAy 

Store Function Selector 
MOV L,A 
RET 

Rotate Bit Marker 
MOV A,H 
RRC 
MOV H,A 
RET 

A< - New data 

- Function 

Note that for the first test (CPI NEXT) there are two conditional 

jumps each with a completed decision. If neither of these 

conditions is met, another test is made, followed by two conditional 

instructions (RZ, JC) for the two completed decisions. The final 

test (CPI RUN) is only testing for two possibilities - RUN or STEP -

since all others have been eliminated. Here we make an assumption 

about the result - MOV A,D to copy the "new" data into A, to replace 

"old data" and display it, if the command was STEP. Now we can use 
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the conditional call (CZ FUNCTION) if in fact the command was RUN. 

This · is permissible because FUNCTION has been defined to return the 

logic function in Register A, and does not use Register A for input 

data. -Therefore· we come to "Replace old Data and Di splay" with the 

appropriate value in Register A for either STEP or RUN. Note also 

that JMP DISPLAY is used instead of CALL DISPLAY, RET. 

This subroutine has four exits - RZ for ADDR; JMP DISPLAY for STEP 

and RUN; RET after Store Function Selector and RET after Rotate Bit 

Marker. The multiple exits are efficient, because. using a single 

return instruction would require three jumps to reach it. There is a 

disadvantage to this efficiency. Suppose that in the course of 

testing the entire program you should find that it occasionally 

"derails" it fails to return ,to the main program. You might want 

to set a breakpoint at the return from COMMAND to examine the stack. 

With multiple exits you must enter multiple breakpoints. This is a 

minor nuisance here, but becomes a substantial problem with bigger 

programs, many subroutine calls, and extensive usage of the stack. 

Write the COMMAND subroutine. A solution is given in Figure 7-13. 

With COMMAND in place, we can see the effect of STEP and RUN as well 

as NEXT. STEP causes the middle horizontal segments to duplicate the 

bottom segments; RUN causes the middle to duplicate the top. We 

still have only the one. logic function, CMA, in operation, so we 

cannot readily see the effect of the other command keys. One way to 

observe them is to store the function selector in memory and set a 

monitor breakpoint to detect a memory data change at that location. 

In the stub of FUNCTION, insert SHLD 8300. This will store the 
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function selector at 8300 and the bit marker at 8301. Set a 

breakpoint at 8300. Although data will be written there on every pass 

through the main program loop, the monitor will only detect a change 

which occurs only when REG, MEM, BRK or CLR has been pressed. (It 

will also occur the ftrst time the program is run.}· 
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7.4.11 Subroutine FUNCTION 

Finally we come to the subroutine which performs the basic purpose of 

this entire exercise. FUNCTION must recognize the seiector and 

perform one of the four logic functions - ORA, ANA, XRA or CMA. 

At entry the registers contain: 

(D) = new data

(E) = old data 

(L) = function selector 

Returrt the selected function of (D) with (E) in register A. Preserve 

all other registers. 

The function selector in L is the key value used to select the 

function: 

(L) = 10 = MEM = ANA 

(L) = 11 = REG = ORA

(Lj = 16 = BRK = XRA 

(L) = 17 = CLR = CMA 

Write the subroutine yourself. A solution is given in Figure 7-14, 

followed by an explanation of this solution. 

7-65



7-66

1-w
w 
I 
en 
(!) 
z 
0 
0 
u 

� 
w 
I­
V) 

>­VJ
(!) 
z 

z 
<( 
a: 
l­
a: 
w 
I­
::) a. 
� 
0 
u 
0 
a: 
u 
� 

en 
� 
w

I-­en
>­
en 
a: 
w 
I­
::) a. 
� 
0 
u 
0 
w 

a: 
(!) 
w 
1-
z 

A O O R 

ad/J. o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

C 

D 

E 

.,?,...JA F 
ao2/?o 

J'r� '3 1 

2 

3 

4 

5 

,Yc:2A 6 

7 

8 

9 

A 

B 

C 

D 

E 

F 

a 0 

1 

2 

3 

4 

5 

6 

7 

8 

CODE 

7 1) 
E � 

{) 3 
0 �

CJ F 

? 7 
7 �-

7) ,4

8 I 
J' b.? 
(l, o7 

IA F

g .;2 
It 3 
C 9

t3 3 
C 9 
C c:;
/3 C, 
? o2_ 
/-}- g 
(!, 9 
cX, I= 
(2, q 

LOGICAL FUNCTIONS - SUBROUTINE FUNCTION 

M 0 L IJ L I/A- J�:_ L ;Jt7 /1 /7J-7 � 
ff IJ .L {) :3 ) /0/J :== /11E M 

I 

//o � REG ( 

R R C ,-

.?o = BRr 
j2_ R /1 (!1J = 17 LR ._, ..)

fl- l1> J) A ,) .. �/ Cha//_) {:, V a/Yld Z

M 0 t/ t+ 
J J) { 1-J-Y � 7"l.,u1Y :./i, ·t ,

J C g :2 8 I n, - 1 • ../ B;f I( ,!)v c·L,e
I " / 

J"" tJ z jJ � I+ F /VIEM o-u l?E6-
GL - ,L. ) _,; iL, .e £ &
ti ii / 

fl-tJ A £ MEM ·=: /-lAJ /l 
R. E- 7
(J R fl- E RE&� /JR/J· 
R E 

s /J z p .2 13 6 J3R� o--u {!LR 
ICt, ., �.n _ _;../ CLR 
II ' ti 

x R A I: f3Rt< ::: ><RA 
R E T 
C M A f!LR == CMA 
R E IT 

E N T R 'I LI) A T A
( D ) - N E w D ftTA 
( E- ) = 0 L 1) D A-TA 

( L J - F u IJ C, T Lo t--.1 'SE LE=-C TCJR

R f; rr u R tJ .s 
( IA- ) - L. n G I C F Ll /\JCT Io rJ 

Figure 7-14 



LOGIC AND BIT MANIPULATION 

The given solution for FUNCTION achieves its efficiency by setting 

two flags (Zero and Carry), to distinguish the four selector values. 

This permits loading A with the "new" data byte _before making a,ny 

jumps. By masking out the unwanted Bits 2 through 7, and rotating 

Bits 1 and O into Bits 7 and 6, the four selector values become: 

00000000 = MEM = ANA 

01000000 = REG = ORA 

10000000 = BRK - XRA 

11000000 = CLR = CMA 

Now ADD A shifts Bit 7 into Carry, to distinguish ANA and ORA from 

XRA and CMA. It also leaves (A) = 00 and sets Ze.ro for MEM and BRK; 

it leaves (A)= so; so Not Zero, for ORA and CMA. 

A conceivably useful feature is that it returns Carry set if the 

function is CMA, since that does not affect Carry while ORA, ANA and 

XRA clear Carry • .  This information is not used in the program. 
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7.4.12 Exercising Logic Functions 

Now with the final program in operation we can experiment with the 

logic functions and test your knowledge of them. It is particularly 

instructive to see the results of the functions on identical data 

bytes and on data bytes which are complementary. Enter some data -

say 11000000. Store this value as the old data (STEP). Observe the 

functions: 

REG (ORA) 

MEM (ANA) 

BRK (XRA) 

CLR (CMA) 

11000000 

11000000 

00000000 

00111111 

ORA and ANA duplicate the data bytes when the two bytes are 

identical; XRA gives a zero result. Recall the use of ORA A or ANA A 

to clear Carry and control Zero without changing the data , and XRA A 

to clear Register A. 

Now store the complement of the data byte (CLR, RUN), and try the 

functions again. 

REG 

MEM 

BRK 

(ORA) 

(ANA) 

(XRA) 

11111111 

00000000 

11111111 

These same values will occur for any data if its complement is 

stored. Try entering other data, followed by CLR, RUN, REG, MEM, BRK. 
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We wil 1 use the program to test your knowledge of the logic 

functions. 

Problem 1) Enter the data byte 01101100 and store it as old 

data by pressing STEP. Enter the new data byte 11010101. 

Before using REG, MEM and BRK, calculate the results yourself 

and fill in the blanks in Figure 7-15. Then use the program to 

check your results. 

Problem 2) Store the result of XRA by pressing BRK, RUN. Enter 

new data 00010011. Calculate the next set of results, and again 

check.your answers. 

Problem 3) Store the result of XRA from Problem 2. Calculate a 

new data byte needed to generate the last three results in 

Figure 7-15. 
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1) Enter

2) 

Store Data (STEP)

New Data

ORA (REG)

ANA (MEM)

XRA (BRK)

Replace old data 

Old Data 

New Data 

ORA (REG) 

ANA (MEM) 

XRA (BRK) 

with XRA 
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0 1 1 0 1 1 0 0 

1 1 0 1 0 1 0 1 

(press BRK, RUN) 

--------

0 0 0 1 0 0 1 1 

--------

------- -

-- ---- ·- -

3) Replace old data with XRA (press BRK, RUN)

Old Data

New Data

ORA (REG) 

ANA (MEM) 

XRA (BRK) 

--------

--------

1 0 l 1 1 1 1 1 

1 0 0 0 0 0 1 0 

0 0 1 1 1 1 0 1 

Logic Functions - Self Test 

Figure 7-15 
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7�5 FLOW CONTROL TECHNIQUES 

In the logic functions exercise we saw two schemes to decide which of 

several possible actions to take, based on a data byte from the 

keyboard. In the COMMAND subroutine we used numeric comparisons: 

CPI NEXT 

JZ to rotate bit mark 

JNC to select logic function 

CPI ADDR 

RZ 

JC to select logic function 

CPI RUN 

In the FUNCTION subroutine we shifted control bits and used JC and 

JNZ instructions: 

MOV A,L 

ANI 03 

RRC 

RRC 

ADD A 

JC to BRK or CLR 

JNZ to REG 

These were reasonably efficient because the numeric values of the 

control bit patterns had convenient relationships. If the key 

definitions had been random it might have been necessary to use seven 

CPI, JZ segments in COMMAND. 
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It is possible to use a directory, or "dispatch table" instead of 

such a procedure. The command, or control pattern, is added to a 

table address. This locates a memory byte where we have stored 

another address. This is just like the directory procedure we used 

in the sensor correction programs of Chapters 4 and 6. In this case, 

however, we want to jump to the address obtained from the table, 

rather than using it to find more data. 

If register pair HL is not in use for other data, it is very 

convenient to use it with a dispatch table, as we did with the sensor 

correction directory. 

If all of the program segments to which we might jump are in the same 

memory page as the dispatch table, we can use single byte indirect 

addressing: 

LXI H, TABLEADDRESS 

ADD L 

MOV L,A 

MOV L,M 

This has loaded into register pair HL the address to which we will 

jump. Recall the indirect jump instruction: 

E9 PCHL Jump to the address contained 

in register pair HL. 

(PC) < - (HL) 

No flags are affected. 

If we do not want to use register pair HL, but do have another pair 

available, we can use this technique: 
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LXI 

ADD 

MOV 

LDAX 

MOV 

B, TABLEADDRESS 

C 

C,A 

B 

C,A 

This has loaded the jump address into register pair BC. There is no 

"PCBC" instruction, but we can use the stack. 

PUSH 

RET 

B (ST) < - Address 

Jump to (ST) 

Here we place the address into the stack top, and a RET jumps to that 

address. 

A third method uses HL and the stack. 

PUSH H Save (HL) 

LXI H, TABLEADDRESS 

ADD L 

MOV L,A 

MOV L,M 

As in the first method, we have loaded the address into HL. Now we 

can recover the data that we saved, and put the jump address into the 

stack. 

XTHL 

RET 

Exchange stack top with HL 

Jump to (ST) 

Any of these techniques can be used, with only slightly more 
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complexity, if two byte indirect addressing is needed. 

When a dispatch table is used for MTS command keys, remember that 

these keys 

subtract 10 

return the values 10-17. Therefore, we must either 

from the command before adding it to the table address 

or, more efficiently, load the register pair with an address 10 hex 

bytes below the actual table location. 

Recall that subroutine GETKY returns with Register B cleared and the 

key in C as well as in Register A. This is designed to make the use 

of dispatch tables easy. 

PUSH 

LXI 

DAD 

MOV 

XTHL 

RET 

H 

H, DISPATCHTABLE -10 

B 

L,M 

(Monitor subroutines ENTBY and ENTWD similarly return with Register B 

cleared and the command key in C as well as A.) This technique can 

be used in the logic functions program COMMAND subroutine. Change 

the specification of COMMAND to require that (B) = 00 and (C) = 

command key. (This change requires a change in DATA.) Rewrite 

COMMAND to use a dispatch table. A solution is shown in Figure 7-16. 
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7�6 R EVIEW AND ADDITIONAL EXERCISES 

The logic and bit manipulation techniques taught in this chapter are 

most commonly used for control operations and decision making. The 

additional exercises suggested in the following sections simulate 

some control applications. 

We have introduced four types of instructions: 

Arithmetic and Logical Rotate 

arithmetic intructions ADD A, 

. properties. 

RAR, RAL, RRC, and RLC, and the 

ADC A and DAD H that have related 

Logic Functions - ORA, ANA and XRA, which combine two data bytes by 

the OR, AND and Exclusive OR rules; also CMA which complements (A) 

without involving another data byte. 

Flag Control Instructions STC and CMC, plus the logic and 

arithmetic instructions that can be used to control flags - ORA A, 

ANA A, XRA A, CMP A. 

Masking The use of ANI to mask (discard) unwanted bits in a byte 

used for control functions. 

The exercises of this chapter have also given practice in important 

flow control techniques: the IF-THEN-EL SE construct; the use of 

conditional calls and returns; sequential testing procedures; and 

dispatch tables. We saw the use of making assumptions before 

executing a conditional jump, call or return. 

Once again we saw the convenience of top-down programming and 
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·subroutines, with stubs for incomplete subroutines. We passed

arguments to subroutines. This is especially noticeable in the

DISPLAY subroutine, where we placed various data bytes in (A) and a

symbol in (B), but all of the subroutines in the exercise of Section

7.4 involved passing arguments.

Finally, we again used features that are specific to the ICS 

Microcomputer Training System -- the monitor subroutines DWORD and 

ENTWD in Section 7.1, and GETKY in the later exercises; the display 

system; and the use of a breakpoint to detect a change in memory 

content in Section 7.4.10. 

It is recommended that you work out at least one of the exercises in 

the following four sections to obtain additional experience. Glance 

through all of the descriptions before choosing which you will 

pursue. 

7.6.1 Traffic Control Exercise 

Develop a 

controller. 

simulator for a street intersecti9n traffic light 

This can use the same display subroutine and much of the 

same main program as the logic functions program. 

Traffic lights are simulated by horizontal segments in the display. 

A top segment represents a red light, middle segment a yellow light, 

and a bottom �egment a green light. Allow two lights to appear at 

the same time by initializing the bit marker (H) to 10000001 (81). 

Let (D) represent green lights and ( E) represent yellow lights. 

Initialize (D) to 80, to start with one green light. 
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We no longer want to display the bit marker; it is convenient to 

disp�ay the green light where previously we displayed the bit marker . 

The display of the logic functions can be retained to display the red 

light instead. 

Different subroutines are called for FUNCTION and COMMAND. These are 

defined as follows: 

.Subroutine REDS (replaces FUNCTION) 

Function: 

From given yellow and green lights, return other lights as 

red. 

Entry Address� 82DO 

Entry Data: 

(D) = Green Lights (E) = Yellow Lights (H) = Light Positions

Return Data: 

(A)= Red Lights 

Registers: 

All registers except (A) are preserved. 

Constraints: 

Entry of data to Register D without properly modify ing the 

content of E may cause an improper condition of both lights 

being the same color. 

7-80



LOGIC AND BIT MANIPULATION 

Comment: The CC DATA instruction has been retained in the 

main program to permit forcing an error into Register D. 

Test your program initially without any error protection in 

subroutine REDS. 

Subroutine SWITCH (replaces COMMAND) 

Function: 

Change any green light to yellow. If a light was previously 

yellow, change the other light to green, and turn off the 

yellow light. 

Entry Address: 82CO 

Entry Data: 

(D) = green lights 

(E) = yellow lights

(H) = light positions 

Return Data: 

(D) = new green lights 

(E) = new yellow lights

_Registers: 

A, D and E are affected. 

B, C, H and L are preserved. 
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Constraints: 

It is assumed that the main program will display red and 

green lights. 

Subroutines DISPLAY and DATA from the logic functions exercise are 

also required, 

In this version of the program the lights only change in response to 

command keys. In Section 7.6.2 a timer will be introduced. It is 

suggested that you copy the changes of Figure 7-17a into the main 

program of Section 7.4, but develop subroutines SWITCH and REDS 

yourself. 
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7.6.2 Extended Traffic Control Exercise 

Elaborate the traffic control program of Section 7.6.1 in the 

following ways. 

7.6.2.1 

Revise subroutine REDS to protect against an error that sets both 

lights green at once. If such an error occurs, correct it by 

modifying the content of (D). 

7.6.2.2 

Replace the CALL GETKY instruction with a call to a time delay 

subroutine. This should set a relatively short delay for a yellow 

light; a longer delay for a green light. Review the discussion of 

time delays in Section 4.8.6 if necessary. 

7.6.2.3 

Replace the time delay subroutine with one that tests the keyboard 

during the time delay. If a key is pressed, call GETKY and return 

without completing the time delay. The monitor subroutine SCAN 

(0257) reads the keyboard once: if no key is pressed it returns Not 

Carry and (A)= 00; if a key is pressed it returns Carry set and the 

key value in Register A. SCAN takes a relatively long time; reduce 

your time delay count to compensate for this. This subroutine is 

shown in Figure 7-18. It permits you to change the lights at will, 

instead of waiting for the time delay. 
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7.6�2.4 

Revise the traffic control program function to simulate a triggered 

traffi c controller. This will normally keep the main street traffic 

light (the left hand digit) green, and the side street traffic light 

(the right hand digit) red. When a key is pressed, call SWITCH and a 

time delay four times, to allow side street traffic to flow. This 

can best be done 9y having the main program call a new subroutine 

intead of SWITCH. 
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7.6.3 Fire and Burglar Alarm 

Let the keys 0, 1, 2 and 3 represent two fire (or smoke) detectors 

and two burglar alarm sensors. If a fire is detected, flash the 

message FIRE in the display repeatedly. If a burglar is detected; 

flash the message POLICE. If both are detected, alternate the two 

displays. 

Accept some sequence of the higher digits (4 through F) to simulate a 

combination lock used for an authorized entry, and turn off any 

alarm. If a wrong sequence is entered, or a long delay occurs between 

keys, call the police. 

7�6.4 Model Railroad Simulator 

If at this point you want to undertake a much more difficult program, 

simulate a model railroad in the display. Represent a train by a 

string of ·segments following each other around a track. Represent 

switches by the decimal point indicators. These can be set or reset 

by hex keys O through 7. The following rules are suggested for train 

control. 

a) When a train is moving on the bottom track and encounters a

switch which is set, it turns up to the middle track, where it 

resumes its previous direction. 

b) When a train is moving on the middle track, and sees a

switch set, it turns toward the bottom track where it resumes 

its previous direction. 

c) If a train is moving on the top track it ignores the

7-88 



LOGIC AND BIT MANIPULATION 

indicated switches. If one of the hex keys 8 through Fis bei�g 

held down when the train reaches the corresponding position, 

then the train turns toward the bottom track. If it encounters 

a set switch, then it resumes its previous leftward or rightward 

direction. (This will reverse its clockwise or 

counter-clockwise direction.) If the train encounters a switch 

which is not set it must stop until the switch is set. 

This program is difficult and lengthy. 

you want a real challenge. 

Do not undertake it unless 
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